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Zusammenfassung 
 
Ziel dieser Dissertation war es, die Phylogenie und Evolution der Heterobranchia (Mollusca, 

Gastropoda) auf der Basis von Nukleotidsequenzen zu klären. Ein Hauptfokus lag dabei auf 

den basalen Heterobranchia, die in vorangegangenen molekularen Studien meist 

unberücksichtigt blieben. Das Konzept der Heterobranchia basiert auf morphologischen 

Studien von Haszprunar (1985a und 1988) und umfasst die paraphyletische Gruppe der 

basalen Heterobranchia sowie die monophyletische Gruppe der Euthyneura, zu der die 

Opisthobranchia und Pulmonata gehören. Eine Bestätigung dieses Konzeptes anhand 

molekular-systematischer Analysen blieb bislang aus. 

 

Zusätzlich wurden im Rahmen dieser Dissertation unterschiedliche (meist neu entwickelte) 

Softwareprogramme auf ihre Anwendbarkeit bzw. Nutzen getestet, um Fragen, die zum einen 

Verwandtschaftsverhältnisse und zum anderen Evolutionsereignisse der Heterobranchia 

betreffen, besser beantworten zu können. 

 

Zur Klärung der Monophylie bzw. der Verwandtschaftsverhältnisse innerhalb der 

Heterobranchia wurden molekulare Analysen sowohl mit einem Bayesianischen als auch 

einem Likelihood Ansatz durchgeführt. Die dafür verwendeten Daten wurden in intensiven 

Voranalysen auf ihre Qualität (phylogenetisches Signal) überprüft, um die geeignetsten Daten 

a priori zu identifizieren. 

 

Ausgangssituation für die Voranalyse waren drei verschiedene Datensätze (Datensatz 0, I und 

II), bestehend aus Sequenzen der nukleären 18S rDNA und 28S rDNA sowie Sequenzen der 

mitochondrialen 16S rDNA und Cytochrom Oxidase I (COI). Mit Hilfe der Software Muscle 

wurden Alignments der einzelnen genetischen Marker für alle 3 Datensätze erstellt. Die 

Alignments von Datensatz 0 blieben im Anschluss unmodifiziert, d. h. es wurden keine 

Basenpositionen herausgenommen, wodurch die Alignments ihre Originallänge beibehielten. 

Datensatz I und II hatten die gleichen Ausgangsdaten wie Datensatz 0, allerdings wurden in 

Datensatz I und II diverse Alignmentbereiche nach zwei verschiedenen Konzepten a priori 

eliminiert. Der Ansatz bei Datensatz I war hierbei eine visuelle Durchsicht der einzelnen 

Alignments nach langen Inserts und hypervariablen Bereichen. Beides kann die 

Phylogenierekonstruktion negativ beeinflussen und wurde deshalb vorab aus den Alignments 

von Datensatz I entfernt. Die Entscheidung, welche Bereiche in 
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Datensatz II vor der Phylogenierekonstruktion eliminiert werden, wurde mittels der Software 

Aliscore eruiert. Es handelt sich dabei um ein neu entwickeltes Programm von Misof & Misof 

(in press), das verrauschte Nukleotidpositionen im Alignment erkennen und entfernen kann.  

Mit diesen drei unterschiedlichen Datensätzen wurden verschiedene statistische Tests (wie 

Chi-Quadrat-Test oder Relative-Rate-Test) sowie Sättigungsanalysen durchgeführt. 

Zusätzlich wurden intensive Netzwerkanalysen durchgeführt, zum einen mit der Software 

SplitsTree und zum anderen mit der Software SAMS. Dies diente vor allem dazu, 

herauszufinden, welcher dieser drei Datensätze das beste phylogenetische Signal für die 

Phylogenie-Rekonstruktion der Heterobranchia enthält. 

Nach Auswertung der einzelnen Tests zeigte sich, dass Datensatz I am besten geeignet schien, 

die Phylogenie des Taxons Heterobranchia zu rekonstruieren. Allerdings musste festgestellt 

werden, dass der festgelegte Datensatz aufgrund eines hohen Sättigungsgrades (der bei 

Großgruppenphylogenien selten ausbleibt) kritisch zu betrachten ist. Zusätzlich zeigte der 

Datensatz für bestimmte Gruppierungen ein konfliktreiches phylogenetisches Signal. Um 

Unsicherheiten, die z.B. auf eine hohe Ratenheterogenität oder abweichende 

Basenkompositionen zurückzuführen sind, auszugleichen, wurden für die 

Baumrekonstruktion Analysemethoden verwendet, die evolutionäre Modelle der 

Nukleotidsubstitutionen mit berücksichtigen. 

 

Die sich anschließende Phylogenierekonstruktion stützt die Monophylie der Heterobranchia. 

Einige traditionelle, auf Basis morphologischer Untersuchungen beschriebene Taxa, konnten 

nicht bestätigt werden, z. B. gruppieren die Pyramidellidae und Glacidorboidea nicht an der 

Basis der Heterobranchia.  

Die „basalen Heterobranchia“ sind paraphyletisch. Aufgrund einer unaufgelösten 

Baumtopologie an der Basis der Heterobranchia kann keine Aussage darüber getroffen 

werden, welches basale Taxon als erstes im Laufe der Erdgeschichte aufgetreten ist. 

Die Murchisonellidae stehen in keinem Schwestergruppenverhältnis zu den Pyramidellidae, 

was bedeutet, dass die Pyramidelloidea polyphyletisch sind. 

Die bereits im Vorfeld angenommene Heterobranchia-Verwandtschaft der Gattungen Graphis 

und Larochella konnte durch den Einschluss der beiden Taxa in die Heterobranchia bestätigt 

werden. 

Valvata und Cornirostra clustern zusammen als Valvatoidea und bilden die Schwestergruppe 

zu einer Klade bestehend aus Architectonicoidea und Omalogyroidea. Die Orbitestellidae 

(deren Zugehörigkeit zu den Valvatoidea in früheren Studien diskutiert wurde) sowie die 
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Cimidae stehen in keinem Schwestergruppenverhältnis sondern bilden in der Topologie 

einzelne evolutionäre Linien. 

Ein unerwartetes Schwestergruppenverhältnis, welches die Phylogeniehypothese 

wiederspiegelt, besteht zwischen den Rissoelloidea und den Acteonoidea.  

Die Euthyneura sind aufgrund der abgeleiteten Stellung der Pyramidellidae und 

Glacidorboidea innerhalb der Euthyneura in dieser Studie paraphyletisch. Die Pulmonata sind 

ebenfalls paraphyletisch wohingegen die Opisthobranchia polyphyletischen Ursprungs sind. 

Innerhalb der Euthyneura bzw. Opisthobranchia zweigen die Nudibranchia als erstes Taxon 

ab und stehen dabei im Schwestergruppenverhältnis zu den restlichen Euthyneura, 

wohingegen die ebenfalls zu den Opisthobranchia gehörenden Umbraculoidea, Cephalaspidea, 

Akeroidea und Pteropoda als gut gestützte Clade im Baum erscheinen. Über die 

Verwandtschaftsverhältnisse der Sacoglossa (Opisthobranchia) und Siphonarioidea 

(Pulmonata) läßt sich aufgrund einer unaufgelösten Baumtopologie wenig sagen. 

 

Eine weitere Klade im Baum umfasst die zu den Pulmonaten gehörenden Taxa Hygrophila 

und Amphiboloidea, die basalen Gruppen Glacidorboidea und Pyramidellidae und die 

monophyletischen Eupulmonata (Stylommatophora, Onchidioidea, Ellobioidea und 

Otinoidea). Innerhalb der Eupulmonata zeigen die Stylommatophora ein 

Schwestergruppenverhältnis mit den restlichen Eupulmonaten. Die Onchidioidea sind die 

Schwestergruppe der Ellobioidea und Otinoidea wobei die Ellobioidea die Schwerstergruppe 

der Otinoidea sind. Eine Monophylie der Basommatophora (Siphonarioidea, Hygrophila und 

Amphiboloidea) konnte nicht bestätigt werden.  

 

Die Ergebnisse der Phylogenierekonstruktion wurden im Anschluss an die Analyse genutzt, 

um verschiedene evolutionäre Szenarien zu entwickeln bzw. zu diskutieren. Es konnte dabei 

festgestellt werden, dass die basalen Gruppen, im Hinblick auf die Diversität auf Gattungs- 

und Artebene, weit weniger Taxa hervorgebracht haben als die Euthyneura, die allgemein als 

Königsgruppe der Gastropoda bezeichnet werden. Dies könnte verschiedene Gründe haben. 

Zum einen scheint die Nahrungsspezialisierung vor allem innerhalb der Opisthobranchia zu 

einer explosionsartigen adaptiven Radiation einzelner Opisthobranchia-Gruppen geführt zu 

haben. Zum anderen war die erfolgreiche Besiedlung nicht-mariner Habitate innerhalb der 

Pulmonata ebenfalls ausschlaggebend für eine enorme Diversifikation. Solche Großereignisse 

fanden innerhalb der basalen Gruppen, wenn überhaupt, nur mit mäßigem Erfolg statt. 
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Des Weiteren wurden durch den Einschluss neuer limnischer Arten, wie Valvata oder 

Glacidorbis, in die Phylogenierekonstruktion, neue Erkenntnisse über die Besiedlung des 

Süßwassers gewonnen. Eine Kolonialisierung des Süßwassers erfolgte innerhalb der 

Heterobranchia mehrmals unabhängig voneinander. Innerhalb der Pulmonaten erfolgte die 

Besiedlung mindestens zweimal, einmal durch die Hygrophila und ein anderes Mal durch die 

Glacidorboidea, deren Pulmonaten-Zugehörigkeit durch die phylogenetischen Analysen 

bestätigt wurde. 

 

Aufgrund von unzureichenden Erkenntnissen über die Funktionen bestimmter neuronaler 

Strukturen im Nervensystem der basalen Gruppen bzw. der Euthyneura, kann keine Aussage 

darüber getroffen werden, ob neuronale Unterschiede für den unterschiedlichen evolutionären 

Erfolg verantwortlich sind. 

 

Um erste Einblicke in die Evolution der Heterobranchia zu bekommen, wurde eine Fallstudie 

durchgeführt. Hierfür wurden in einer intensiven Literaturrecherche fossile Daten gesammelt, 

mit denen im Anschluss eine molekulare Uhr geeicht wurde, die wiederum helfen sollte, 

bestimmte Aufspaltungsereignisse im phylogenetischen Baum zeitlich einzuordnen. Als 

Werkzeug diente das Programm Beast, das eine so genannte “relaxed” molecular clock 

implementiert hat. Durch dieses neue Verfahren können Evolutionsraten verschiedener 

Organismengruppen innerhalb einer Analyse variieren. Um mögliche Korrelationsmuster 

zwischen einem Anstieg von Diversifikations- und Massenaussterbeereignissen zu finden, 

wurde zusätzlich ein „Lineage-through-time plot“ mit den gewonnenen Daten erstellt.   

Aufgrund von großen 95% Konfidenzintervallen an den Knoten der mit Beast rekonstruierten 

Baumtopologie, ist die zeitliche Einordnug bestimmter Aufspaltungsereignisse nur ungefähr 

möglich. Dieser Versuchsansatz soll deshalb als Arbeitshypothese verstanden werden, um 

erste Einblicke in den Ursprung und das Alter des Taxons Heterobranchia und seine 

Untergruppen zu geben. 

 

Da einige Ergebnisse der in dieser Arbeit aufgestellten molekularen Phylogeniehypothese mit 

morphologischen Erkenntnissen nicht übereinstimmen, wurden nachträglich verschiedene 

Methoden angewandt, um die Plausibilität dieser Hypothesen zu überprüfen. Der 

durchgeführte AU-Test, mit dem die Wahrscheinlichkeit von anderen, erzwungenen 

Baumtopologien getestet werden kann, lieferte keine eindeutigen Ergebnisse. Zwar zeigte die 

nicht erzwungene Hypothese dieser Arbeit die besten Likelihood-Werte, es konnten jedoch 
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andere Hypothesen (wie monophyletische Euthyneura, Opisthobranchia und Pulmonata) 

aufgrund einer nicht signifikanten statistischen Unterstützung nicht ausgeschlossen werden.  

 

Des Weiteren wurden Sekundärstrukturrekonstruktionen der 18S rRNA und 28S rRNA 

durchgeführt. Zum einen sollten auf diese Weise weitere Erkenntnisse bezüglich der 

Verwandtschaftsverhältnisse innerhalb der Heterobranchia gewonnen werden und zum 

anderen sollte dies helfen evolutionäre Modelle, die zur Baumrekonstruktion eingesetzt 

werden, weiter zu verbessern. 

 

Innerhalb der rekonstruierten Sekundärstrukturen konnten tatsächlich synapomorphe 

Strukturen gefunden werden, die verschiedene Gruppen innerhalb der Heterobranchia stützen.  

Außerdem zeigte diese Studie auch spezifische Strukturen, die vor allem die Vetigastropoda 

von den restlichen Gruppen trennt. Daraus lässt sich schließen, dass 18S rRNA und 28S 

rRNA Sekundärstrukturen potentiell geeignet sind, um Verwandtschaftsverhältnisse innerhalb 

höherer taxonomischer Einheiten wie Gastropoda oder Mollusca aufzuklären. 

Leider konnte keine Verbesserung des phylogenetischen Signals durch den Einsatz von 

spezifischen rDNA Evolutionsmodellen (wie sie in dem Programm Phase implementiert sind) 

sowie der Berücksichtigung von gepaarten und ungepaarten Basenpaaren in der 

Phylogenierekonstruktion beobachtet werden. Dies lag möglicherweise daran, dass aufgrund 

von fehlenden Übereinstimmungen im Taxonsampling nur Einzelanalysen der 18S und 28S 

rDNA Sequenzen und keine Kombinationsanalysen durchgeführt werden konnten und in den 

einzelnen Marker nicht genügend phylogenetisches Signal vorhanden war. 

Es konnte jedoch gezeigt werden, dass es sich bei der neu entwickelten Software RNAsalsa 

um ein geeignetes Werkzeug handelt, schnell und zuverlässig Sekundärstrukturen der 18S 

rRNA und 28S rRNA zu rekonstruieren.  

 

Zusammenfassend ist zu sagen, dass die Ergebnisse dieser Arbeit zahlreiche neue Einblicke 

bzw. Erkenntnisse über die Phylogenie und Evolution der Heterobranchia liefern und als 

Basis für weiterführende Analysen verwendet werden können. 

Außerdem sollen die Erfahrungen, die aus zum Teil neu entwickelten und hier getesteten 

Programmen gewonnen werden konnten, anderen Wissenschaftlern helfen, eigene 

Fragestellungen besser beantworten zu können. 
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Abstract 
 
Many questions regarding gastropod phylogeny have not yet been answered like the 

molecular confirmation of the Heterobranchia concept based on morphological studies from 

Haszprunar (1985a; 1988). This taxon contains the “Lower Heterobranchia” (with several 

“primitive” or “basal” members) and the Euthyneura (with the Opisthobranchia and 

Pulmonata). 

 

Phylogenetic relationships of subgroups within the Heterobranchia have not been 

satisfactorily resolved and monophyly of some taxa within the Heterobranchia (e.g. 

Opisthobranchia) is questionable. Moreover, most of the “Lower Heterobranchia” have not 

been included in former molecular studies. 

 

In order to resolve phylogenetic relationships within the Heterobranchia, I pursued a 

molecular systematic approach by sequencing and analysing a variety of genetic markers 

(including nuclear 28S rDNA + 18S rDNA and mitochondrial 16S rDNA + COI sequences).  

Maximum likelihood as well as Bayesian inference methods were used for phylogenetic 

reconstruction. 

 

The data were investigated a priori to tree reconstruction in order to find the most appropriate 

dataset for reconstructing heterobranch phylogeny. A variety of statistical tests (like Chi-

Square-Test or Relative-Rate-Test) were applied and the substitution saturation was measured. 

The Relative-Rate-Test revealed the highest evolution rates within the “Lower 

Heterobranchia” (Omalogyra sp., Omalogyra fusca, Murchisonella sp., Ebala sp. and 

Architectonica perspectiva) and Opisthobranchia (Hyalocylis striata). Furthermore, many of 

the nucleotide positions show a high degree of substitution saturation. Additionally, 

bipartitions (splits) in the alignment were examined and visualized by split network analyses 

to estimate data quality. A high level of conflict indicated by many parallel edges of the same 

lengths could be observed in the neighbournet graphs. Moreover, several taxa with long 

terminal branches could be identified in all three datasets belonging to the Vetigastropoda, 

Caenogastropoda, “Lower Heterobranchia” or Opisthobranchia (Nudipleura).  

 

All phylogenetic analyses revealed a monophyletic Heterobranchia. Within the 

Heterobranchia several well supported clades could be resolved. However, the traditional 
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classification based on morphological data could not be confirmed due to paraphyletic 

Euthyneura (because of the inclusion of the Pyramidellidae and Glacidorboidea) as well as 

paraphyletic Pulmonata and polyphyletic Opisthobranchia. 

Based on the phylogenetic inferred evolutionary trends regarding habitat colonisation or 

character complexes could be deduced. 

 

A case study was conducted in order to estimate divergence ages using a “relaxed” molecular 

clock approach with fossils as minimum age constraints. However, due to large 95% 

confidence intervals a precise dating of the nodes was not possible. Hence, the results are 

considered as preliminary. 

 

To test the plausibility of the newly obtained hypotheses, the results were evaluated a 

posteriori using a hypothesis test and secondary structures of the complete 18S rRNA and 

28S rRNA. Secondary structure motifs were found within domain 43 and E23 2 &5 of the 

18S rRNA as well as within domain E11 and G5_1 of the 28S rRNA, which contain 

phylogenetic signals to support various groups within the Heterobranchia. In addition, taxon 

specific motifs were found separating the Vetigastropoda from the Caenogastropoda and 

Heterobranchia, indicating a possible application of the secondary structure of 18S rRNA and 

28S rRNA to reveal phylogenetic relationships at higher taxonomic levels such as Gastropoda 

or even Mollusca.  

 

The utility of the newly invented software RNAsalsa for the reconstruction of secondary 

structures was tested. The obtained structures were used to adjust evolutionary models 

specific to rRNA stem (paired basepairs) and loop (unpaired basepairs) regions with the 

intention of improving phylogenetic results. This approach proved unsuccessful. 

 

This molecular phylogenetic investigation provides the most comprehensive molecular study 

of Heterobranchia relationships to date. Substantial insights into the evolution and phylogeny 

of this enigmatic taxon have been gained. 
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1.  General introduction 
 
The phylum Mollusca is extremely diverse, enabling a great variety of functional body plans 

to evolve. The Gastropoda comprise the largest class of the eight living classes representing 

about 80% of the extant Mollusca (Haszprunar et al. 2008). They are defined by the following 

apomorphic characters in relation to their sister taxa: torsion, larval operculum and the shape 

of the larval shell (Ponder & Lindberg 1997). Many gastropod taxa have become important 

model organisms in various biological fields like ecology, evolutionary biology or 

neurobiology.  

 

The current classification of the Gastropoda is a consensus of phylogenetic hypotheses 

proposed by several authors during the last two decades e.g. Haszprunar (1985a; 1988), Bieler 

(1992), Salvini-Plaven & Steiner (1996), Ponder & Lindberg (1997), Colgan et al. (2000; 

2003; 2006), Dayrat et al. (2001), Dayrat & Tillier (2002), Grande et al. (2004a; 2008), 

Klussmann-Kolb et al. (2008). Currently, the Gastropoda are divided into six major groups: 

Patellogastropoda, Neritopsina, Cocculiniformia, Vetigastropoda, Caenogastropoda and 

Heterobranchia (Ponder & Lindberg 1997, Grande et al. 2008).   

 

Gastropoda have a rich fossil record dating back to the Cambrian (Fryda et al. 2008). The 

oldest known Heterobranchia occurred in the Middle Paleozoic (Bandel 1994, Bandel & 

Heidelberger 2002, Fryda et al. 2008) but are more abundant in the Late Paleozoic (Bandel 

2002, Fryda et al. 2008). Up to date no Opisthobranchia or Pulmonata are known from the 

Paleozoic (Fryda et al. 2008). The oldest Opisthobranchia appeared in the Triassic and the 

Pulmonata in the Jurassic as proposed by Bandel (1994; 2002). 

 

The most heterogeneous Gastropoda are the Heterobranchia which were classified by 

Haszprunar in 1985 and 1988. They comprise the paraphyletic “Lower Heterobranchia” and 

the Euthyneura (including Opisthobranchia and Pulmonata). The monophyly of the 

Heterobranchia is well supported based on morphological characters like a sinistral larval 

shell produced by a planktotrophic veliger, a distinctive sperm ultrastructure, a medial 

position of the eyes in many taxa, a lack of a true ctenidium, a simple oesophagus and a 

pigmented mantel organ (which is reduced in more derived taxa) (Haszprunar 1985a, Ponder 

& Lindberg 1997). 
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The molecular confirmation of the Heterobranchia concept including representatives of most 

of the major groups is lacking to date. The inclusion of lower heterobranch taxa (e.g. 

Architectonicoidea, Glacidorboidea, Omalogyroidea, Pyramidelloidea, Rissoelloidea, 

Valvatoidea) has been particularly neglected in most of the former molecular studies. 

Moreover, phylogenetic relationships of subgroups of Heterobranchia have not been resolved 

satisfactorily and monophyly of some taxa within Heterobranchia is questionable. 

 

A long evolutionary history, often rapid radiations, and the adaptation to many habitats by 

members of the same evolutionary line as well as to the same habitat by distantly related 

forms, results in a multitude of convergences. These convergences render the reconstruction 

of gastropod phylogeny difficult (Bieler 1992).  

 

There is a high degree of homoplasy in many morphological gastropod characters leading to 

difficulties in obtaining significant results from phylogenetic analyses based on morphology. 

The reduction and loss of plesiomorphic structures, rather than their structural modification is 

responsible for much of the homoplasy in gastropods (Ponder & Lindberg 1997). Moreover, 

parallel trends, such as the evolution of various body forms (e.g. limpets, slugs), habits or 

dietary specialisations and the resulting homoplasy are major problems of the phylogenetic 

reconstruction (Ponder & Lindberg 1997). This is particularly true for the Opisthobranchia 

(Gosliner 1985; 1991, Gosliner & Ghiselin 1984, Ponder & Lindberg 1997, Dayrat & Tillier 

2002) and partly for the Pulmonata (Tillier 1989, Ponder & Lindberg 1997, Dayrat & Tillier 

2002).  

 

Phylogenetic inferences based on molecular data are known to also have problems with 

homoplasy. Substitution saturation caused by multiple-hits is responsible for homoplastic 

changes (Grande et al. 2004a). High rates of homoplasy cause a loss of phylogenetic signal. 

Moreover, convergent evolutionary changes could be misinterpreted to support nonexisting 

relationships (Boore and Brown 1998). 

 

Therefore, when working with molecular data one must answer different questions (as already 

proposed by Wägele & Mayer 2007) before conducting phylogenetic analyses like “How 

informative is the data set?”, “Is it possible to discern signal and noise?”, “How likely are 

specific alternative tree topologies?” or “Is the substitution model adequate?” to enable that 

the best possible results and the most plausible hypotheses, respectively, are obtained.  
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Structure and aim of the present study 

The aim of this comprehensive study is the evaluation of the Heterobranchia concept based on 

morphological studies from Haszprunar (1985a, 1988) with molecular methods. The main 

focus lies on the “Lower Heterobranchia”, which were neglected in former molecular studies. 

Moreover, the implementation of novel methodological approaches will be tested, which 

include the detection of ambiguously aligned positions in sequence alignments, reconstruction 

of rRNA1 secondary structures and the application of specific rDNA2 substitution models. 

 

This thesis is divided into seven chapters. The following chapter 2 deals with the a priori 

evaluation of data quality in order to determine whether the data are suitable for phylogenetic 

reconstruction in the case of the Heterobranchia. As aforementioned, molecular data of 

Gastropoda could show a high degree of homoplasy. Therefore, it is important to improve the 

information value of molecular data using tools which are independent from tree 

reconstruction. In this light, the first aim of chapter 2 is to identify ambiguous nucleotide sites 

in the alignment using the newly developed software Aliscore. The second aim is to verify the 

most appropriate data to infer a highly probable phylogenetic hypothesis of the 

Heterobranchia. To reach this aim, a variety of statistical tests (like the Chi-Square-Test or 

Relative-Rate-Test) are conducted and substitution saturation is measured. In addition, 

bipartitions (splits) in the alignment are examined and visualized by split network analyses to 

estimate data quality. 

 

Chapter 3 provides a new phylogenetic hypothesis based on a multigene approach using 

nuclear (18S rDNA and 28S rDNA) as well as mitochondrial (16S rDNA and COI) sequences. 

The dataset with the highest phylogenetic signal (as estimated with the methods described in 

chapter 2) is used for phylogenetic inference. This is the first time a large number of 

representatives of “Lower Heterobranchia” is included along with taxa of most of the major 

Euthyneura groups. 

The aim of chapter 3 is to reconstruct the phylogeny of the Heterobranchia by means of 

Maximum likelihood and Bayesian inference methods. Moreover, based on the phylogenetic 

hypothesis proposed here, various evolutionary scenarios are discussed in order to give new 

insights into evolutionary trends within Heterobranchia.  

 

                                                 
1 Regarding the genes 
2 Regarding the sequences 
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Chapter 4 gives first insights into the evolution of the Heterobranchia by using fossil data and 

molecular clock approaches in order to calibrate the phylogenetic tree and to estimate 

divergence ages. 

The aim of chapter 4 is to estimate divergence times of groups belonging to the 

Heterobranchia with the newly developed software Beast which is a relaxed-clock Bayesian 

dating approach. Moreover, in order to place the phylogeny into a temporal framework and to 

recover possible correlation patterns between accelerated lineage splitting and mass extinction 

events, the lineages through time diversification patterns are analysed. These results are 

discussed in an evolutionary context.  

 

Chapter 5 deals with the a posteriori evaluation of data quality using various approaches to 

verify the phylogenetic hypotheses proposed in chapter 3.  

The aim of chapter 5 is to prove or reject the plausibility of tree reconstruction. The AU 

(Approximately Unbiased) Test is performed to evaluate how likely alternative hypotheses are. 

Furthermore, to verify the phylogenetic hypothesis of chapter 3, secondary structures of an 

almost complete 18S rRNA and a reduced 28S rRNA dataset are reconstructed. The 

secondary structures are treated as morphological characters and are parsimoniously mapped 

onto the phylogenetic tree in order to search for potential synapomorphies for members of 

certain clades. For this purpose, a recently developed software for secondary structure 

reconstruction called RNAsalsa is tested. The obtained consensus structures are used to 

determine evolutionary models specific to rRNA stem (paired basepairs) and loop (unpaired 

basepairs) regions with the intention to improve phylogenetic results. 

 

Chapter 6 provides a review of the newly obtained results regarding heterobranch phylogeny. 

Furthermore, a general discussion of the employed methods regarding the results of the 

present study is given. 

 

Chapter 7 gives a prospect for future projects while underscoring the inclusion of additional 

“Lower Heterobranchia” taxa such as Mathildoidea (Architectonicoidea), Amathina 

(Pyramidelloidea), Hyalogyrinidae (Valvatoidea?) and Xylodisculidae (Valvatoidea). The 

utility of using new phylogenetic tools (e.g. 3D reconstruction) and markers (e.g. gene 

arrangement, ESTs) is also discussed. 
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2.  A priori evaluation of data quality 

2.1  Introduction 
 

Molecular phylogenies are usually based upon data whose quality has not been investigated a 

priori to tree inference. This could lead to incorrect results because phylogenetic trees 

obtained with traditional methods conceal conflicting evidence. To assess the reliability of an 

analysis conventional methods compare the fit between results and data (e.g. bootstrapping). 

Therefore, statistical support values may be high even if there is an ambiguous phylogenetic 

signal (Wägele & Mayer 2007). 

 

Hence, any phylogenetic analysis should begin with an investigative evaluation of the quality 

of the dataset. 

 

Several tools have been published that allow an a priori examination of data quality so far 

(Wu & Li 1985, Lyons-Weiler et al. 1996, Wilkinson 1998, Wägele & Rödding 1998, 

Holland et al. 2002, Xia et al. 2003, Mayer & Wägele 2005, Huson & Bryant 2006). 

Nevertheless, only a few scientists use them to test whether their data are suitable for a 

phylogenetic analysis or not (Wägele & Mayer 2007).  

 

However, a priori analysis of data quality is a little explored field, and only a few tools that 

are independent of tree reconstruction are existing.  

 

The first a priori analysis of data quality starts with the alignment. Very often a reliable 

alignment of divergent regions is hopeless because positional homology cannot be detected 

unambiguously. Especially hyper variable regions, nested within conserved, slowly evolving 

sections of ribosomal RNA sequences make the aligning procedure difficult and can have an 

impact on phylogenetic analyses. Thus, some authors proposed to search for ambiguous 

alignment positions and exclude them before tree reconstruction (Kjer 1995). Nevertheless, 

the removal of problematic alignment regions could have a strong influence on the tree 

reconstruction. Therefore, scientists should protocol and justify the exclusion of data (Gatesy 

et al. 1993). 
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Generally, ambiguous nucleotide sites are excluded from the alignment prior to a 

phylogenetic analysis by visual judgement which depends of course on the intuition or 

experience of the scientist and is rarely impartial.  

A few approaches are available, applying objective algorithms to identify ambiguous 

alignment positions. Programs like Comalign (Bucka-Lassen et al. 1999), T-Coffee 

(Notredame et al. 2000), Gblocks (Castresana 2000), Soap (Loytynoja & Milinkovitch 2001), 

Altavist (Morgenstern et al. 2003) and Mumsa (Lassmann & Sonnhammer 2005) compare 

different alignments of similar sequences to test positional homology hypotheses and 

consistency of the alignments. 

 

A new algorithm implemented in the software Aliscore (Misof & Misof, in press) is available 

and able to detect random similar sites (including ambiguously aligned positions and non-

signal sections) which might have negative effects on tree reconstruction and exclusion of the 

identified characters is recommended. 

 

The reliability of results from molecular phylogenetics also depends on how well the analysis 

deals with the problem whether some or all sequences in the data set have already lost 

phylogenetic information due to substitution saturation (Lopez et al. 1999, Philippe & 

Forterre 1999). Moreover, substitution saturation decreases phylogenetic information 

contained in the sequences and interferes phylogenetic analysis aiming to resolve deep nodes 

(Xia et al. 2003). In the worst case, sequences have experienced full substitution saturation 

and the similarity between the sequences which depends entirely on the similarity in 

nucleotide frequencies does not reflect phylogenetic relationships (Xia 2000).  

There are currently two main approaches to test the degree of substitution saturation a priori 

in the aligned nucleotide sequences: The first approach plots patristic distances against 

distances obtained with different models of sequence evolution. The second approach 

developed by Xia et al. (2003) has been implemented in the software DAMBE (Xia 2000, Xia 

& Xie 2001) and is a new entropy-based index of substitution saturation. 

 

Various other statistical tests exist for evaluating the data quality a priori, e.g. estimating the 

base composition to check whether there is a variation in GC content among the investigated 

species which can influence tree reconstructing or conducting a Chi-Square-Test to test for 

homogeneity of base frequencies across taxa.  
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The most promising a priori approach to evaluate data quality is the examination of 

bipartitions (splits) that are present in an alignment, to compare their support by nucleotide 

patterns, and to check the compatibility of these patterns (Wägele & Mayer 2007). To 

visualize these splits two different methods can be used: split decomposition (networks) and 

split support spectra. Networks or spectra of supporting positions can be generated without 

reference to a tree topology or a model of sequence evolution and are therefore ideal tools for 

a priori estimation of data quality (Wägele & Rödding 1998). Most notably is the possibility 

of networks to visualize various possible evolutionary scenarios and not only one 

evolutionary pathway like tree topologies do (Huson & Bryant 2006). 

The first efficient tool to visualize split support present in an alignment was spectral analysis 

developed by Hendy & Penny (1993). Other methods followed like Rasa (Relative Apparent 

Synapomorphy Analysis) (Lyons-Weiler et al. 1996), Splits Randomization Tests (Wilkinson 

1998), Physid (Wägele 1996 and Wägele & Rödding 1998) and δ Plots (Holland et al. 2002). 

Due to the large computing time increasing exponentially with the number of sequences 

Wägele & Mayer (2007) developed a simpler method (implemented in the software SAMS 

1.4 beta). This method searches only for those splits that are represented in the data and 

visualises them as split support spectra. Additionally, Huson & Bryant (2006) provided a new 

program called SplitsTree4, an interactive and comprehensive tool for inferring different 

types of phylogenetic networks from sequences, distances and trees. 

 

This cheapter deals with a priori evaluation of the molecular data and aims at recovering the 

most informing dataset of the three available concatenated datasets. Moreover, it will be 

tested whether the data are suitable for phylogenetic analysis and contain enough 

phylogenetic signal to infer a highly probable phylogenetic hypothesis. 
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2.2  Material and methods 
 
Taxon sampling 

A total of 52 gastropod species have been investigated (2 Vetigastropoda, 4 Caenogastropoda, 

18 “Lower Heterobranchia”, 14 Opisthobranchia, 12 Pulmonata and 2 taxa not assigned to the 

Heterobranchia yet). For details about the taxonomy and collecting locations of the sampled 

taxa as well as Genbank accession numbers see tab. A1 in the appendix.  

The animals were collected from the field by hand, snorkelling or scuba diving and stored in 

70-100% ethanol. Most of the “Lower Heterobranchia” were collected intertidally by 

collecting algae or substrata where they are living on. The material was washed and sieved 

and the animals were picked alive under the binocular. 

 

DNA extraction, amplification and sequencing 

For details on used chemicals and kits see also tab. A2 in the appendix.  

Until further processing specimens were stored in 70–100% ethanol at -20 °C. DNA was 

isolated from foot tissue or the entire animal using the DNeasy Tissue Kit (Qiagen, Hilden, 

Germany) according to manufacturer’s instructions. 

The amount of obtained DNA was evaluated by electrophoresis with the molecular weight 

marker Lamda-Hind-III-Ladder in a 1,4% agarose gel in 10x TBE buffer. The DNA was 

visualised with ethidium bromide and documented with the camera Canon Power Shot G9 

and the software PS Remote 1.5.7. 

 

Sequences of the complete nuclear 18S rDNA, partial nuclear 28S rDNA and partial 

mitochondrial 16S rDNA and one protein coding gene fragment (Cytochrome C Oxidase 

subunit I – COI) were amplified. 

18S rRNA and 28S rRNA are slowly evolving genes and are known to be more conservative 

than 16S rRNA and COI, hence they were used to infer deep phylogenetic nodes (e.g. order 

and family level). 16S rRNA as well as COI are fast evolving genes and were therefore used 

to reconstruct terminal nodes (e.g. genus and species level). 

 

The PCR technique was used to amplify defined gene fragments (primer designs see tab. A3 

in the appendix). PCRs were generally performed using a standard protocol (see tab. 2.1) for 

18S rDNA, 16S rDNA and COI and a slightly modified protocol for 28S rDNA. To check for 

contaminations negative controls (dH2O) were included in each reaction array. 
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Tab. 2.1: PCR protocol for a total reaction volume of 25µl  
Components Concentration Volumes for the standard 

protocol 
Volumes for the modified 

protocol 
DNA 1 ng 5,00 µl 5,00 µl 

Taq polymerase 1 Unit 0,20 µl 0,20 µl 

Buffer 10x 2,50 µl 2,00 µl 

MgCl2 50mM 2,00 µl 1,00 µl 

dNTP 25mM 0,20 µl 0,20 µl 

Primer 10nmol 1,00 µl 0,80 µl 

Primer 10nmol 1,00 µl 0,80 µl 

BSA  10mg/ml 1,50 µl 1,00 µl 

TMAC 0,5M 0,25 µl - 

DMSO 0,5M - 1,25 µl 

dH2O - 11,35 µl 12,75 µl 

 
Thermal cycling was performed with a Primus 96 AdvancedGradient Thermal Cycler (Peqlab, 

Erlangen, Germany) using the following programs: 

 
a) 18S (annealing temperature 52,5 °C), 16S and COI (annealing temperature 52 °C) 
 

Denaturation 95 °C 01:00 min  
Denaturation 95 °C 00:30 min   
Annealing 52-52,5 °C 00:30 min 30x 
Extension 72 °C 00:30 min   
Extension 72 °C 03:00 min  
Store 08 °C Forever  

 
b) 28S  
 

Denaturation 95 °C 04:00 min  
Denaturation 94 °C 00:30 min   
Annealing 52,5 °C 00:30 min 38X 
Extension 72 °C 02:50 min   
Extension 72 °C 10:00 min  
Store 08° C Forever  

 
The success of the PCR was verified by electrophoresis with the molecular weight marker 

100-bp-DNA-Leiter-extended in a 1,4% agarose gel in 10x TBE buffer. The DNA was 

visualised with ethidium bromide and documented with the camera Canon Power Shot G9 

and the software PS Remote 1.5.7. 

 

Amplification products were purified by cutting out corresponding bands from a 1,4% agarose 

gel. DNA was isolated from the gel using a QIAquick Gel Extraction Kit (Qiagen, Hilden, 

Germany) following the manual instructions. Both sense and antisense strands were 

sequenced directly either on the CEQ 2000 Beckmann Coulter capillary sequencer at the 
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Institute for Ecology, Evolution and Diversity, Frankfurt/Main or on the ABN 3130 XL 

Applied Biosystems capillary sequencer at the SRD GmbH, Bad Homburg. 

 

Sequence editing and alignment 

To check if the correct genes have been amplified BLAST searches (Altschul et al. 1990) 

were performed to compare amplified sequences with all sequences stored in the Genbank 

database (www.ncbi.nlm.nih.gov/Genbank/index.html). 

 

Sequence chromatograms of each amplified fragment were displayed with the software 

Chromas lite 2.0.1 (www.technelysium.com.au/chromas_lite.html) and browsed for reading 

mistakes of the sequencer by eye. 

 

Sequences were aligned using the default parameters of Muscle 3.6 (Edgar 2004) and checked 

manually with BioEdit 7.0.5.3 (Hall 1999). Regions which could not be unambiguously 

aligned and long inserts were excluded by eye or based on the analysis of the software 

Aliscore 0.2 (see tab. A4 in the appendix). 

 

The following datasets were composed: 

 

Dataset 0 = combination of complete 18S rDNA, partial 28S rDNA, partial 16S rDNA and 

COI sequences; no alignment positions were excluded (see tab. A5 in the appendix).  

 

Dataset I = combination of complete 18S rDNA, partial 28S rDNA, partial 16S rDNA and 

COI sequences; long inserts and ambiguous alignment positions were excluded by visual 

judgement (see tab. A4 and A5 in the appendix).  

 

Dataset II = combination of complete 18S rDNA, partial 28S rDNA, partial 16S rDNA and 

COI sequences; ambiguous alignment positions were determined with the software Aliscore 

0.2 and excluded from further analyses (see tab. A4 and A5 in the appendix). 

 

Aliscore 

Random similarity within multiple sequence alignments were identified with the software 

Aliscore 0.2 (see tab. A4 in the appendix) which has been newly invented by Misof & Misof 

(in press) and Bernhard Misofs former working group at the Forschungsmuseum König in 



2. A priori evaluation of data quality   11

Bonn. This method is based on Monte Carlo (MC) resampling within a sliding window. The 

MC resampling compares the score of the originally aligned sequences in a given window 

position with scores of randomly drawn sequences of similar character composition. 

Sequences are assumed unrelated if the observed score is not better then 95 % of scores of 

random sequences of similar window size and character composition. 

 

Substitution saturation 

Gene sequences can become saturated when the visible genetic distance of the sequences may 

not increase at the same rate as the evolutionary distances. This could be due to multiple 

substitutions when comparing the same gene fragment in different taxa if these taxa have been 

separated by long divergence times. This could lead to a loss of phylogenetic information 

within the sequences. 

 

The substitution saturation was tested in two different ways: 

1. with the test by Xia et al. (2003) implemented in the software DAMBE 4.5.47 (Xia & 

Xie 2001). This method is based on the notion of entropy in information theory. One 

derives the critical values of the index based on computer simulation with different 

sequence lengths, different number of taxon units and different topologies. A quick 

evaluation whether a set of aligned sequences is useful for phylogenetic studies is 

possible. 

2. by plotting patristic distances against distances obtained with different models of 

sequence evolution (see tab. A5 in the appendix). Transition and transversion data 

were calculated with the program PAUP 4.0 beta 10 (Swofford 2002) and examined 

separately. 

 

Base composition and Chi-Square-Test 

Base compositions were estimated using the software PAUP 4.0 beta 10 (Swofford 2002) and 

the software SAMS 1.4 beta (Mayer & Wägele 2005) to check whether there is a variation in 

GC content among the investigated species. This variation can influence tree reconstructing 

because unrelated species with similar GC content are often grouped together. 

A Chi-Square-Test was conducted using the program PAUP 4.0 beta 10 (Swofford 2002) to 

test for homogeneity of base frequencies across taxa.  
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Relative-Rate-Test 

The relative rate test is used to check whether two species evolve at the same rate by testing 

whether their distances to an outgroup are equal (Philippe & Laurent 1998). In this study, the 

relative rate test of Wu and Li (1985) as implemented in the program K2WuLi (Jermiin 1997) 

was performed and Littorina littorea (Caenogastropoda) was used as outgroup. 

 

Incongruence length difference test 

The incongruence length difference (ILD) test was performed to verify whether the single 18S, 

28S, 16S and COI data sets contain the same phylogenetic signal and therefore could be 

analysed as a single concatenated dataset (taxa for which a gene region was unavailable were 

excluded from the test). The test, described by Farris et al. (1994) measures the significance 

of incongruence among data sets. The ILD test is also known as the partition-homogeneity 

test, which is implemented in the software PAUP 4.0b10 (Swofford 2002). Using the 

maximum parsimony criterion heuristic searches with 100 replicates were conducted. 

 

Network analyses 

To visualize variations in signal distinctness, network analyses were used based on split 

decomposition (applied with SplitsTree 4.10 (Huson & Bryant 2006)) and split support 

spectra (applied with Sams 1.4 beta (Mayer & Wägele 2005)). Both tools allow an a priori 

examination of data quality. 

 

SplitsTree 4.10 was used to calculate phylogenetic networks. The compared network 

structures were based on the Neighbournet algorithm. 

 

The phylogenetic signal present in the data that supports or contradicts putative splits were 

estimated with the program SAMS 1.4 beta using the default parameters and visualized with 

the diagram-assistant implemented in the program Microsoft Excel 2002.  

SAMS is an analysing software for molecular data and implements several features which 

estimate the phylogenetic signal present in the data that supports or contradicts putative splits. 

With this information it is possible to visualize the information content of the data set and the 

signal to noise relationship. 
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2.3  Results 

2.3.1 A priori evaluation of data quality by the identification of 
random similarity within sequence alignments using Aliscore 
and by visual judgement 

 

Aliscore assigns every position in an alignment a positive or negative score; a positive value 

indicates non-random similarity a negative value random similarity. Alignment positions with 

negative scores are phylogenetically uninformative and are therefore advised to be excluded 

prior to phylogenetic analyses.  

The single alignments comprised the following bp: 18S rDNA (complete) 2716 bp, 28S 

rDNA (partial) 1980 bp, 16S rDNA (partial) 722 bp and COI 579 bp (each codon position 

with 193 bp) (see also tab. A4 in the appendix).  

Aliscore detected as putative randomly similar nucleotide positions within 18S rDNA 80 bp 

(2,95%), within 28S rDNA 171 bp (8,64%), within 16S rDNA 153 bp (21,19%), within COI 

first codon position 17 bp (8,81%), within second codon position none and within third codon 

position 175 bp (90,67%) (see fig. 2.1 and 2.2). 

 

Due to the visual judgment 941 bp of 18S rDNA (34,66%), 1150 bp of 28S rDNA (58,08%), 

444 bp of 16S rDNA (61,49%), none of COI first and second codon position and all of COI 

third codon positions (100%) were identified as inserts or ambiguous alignments. 

 

Summing up the visual judgment yielded more ambiguous positions than Aliscore did but 

both methods identified the third codon position of COI as the one with the most and the 16S 

rDNA alignment as the one with the second most critical positions. Aliscore as well as visual 

judgment excluded no positions of the second codon position of COI and identified 18S 

rDNA as the alignment with the fewest critical positions. 

 

In the following it is tested which of the three datasets (dataset 0 – all positions, dataset I – 

alignment positions were excluded by visual judgement and dataset II – alignment positions 

were excluded by Aliscore) (see also tab. A4 and A5 in the appendix) is the most informative 

one for phylogenetic reconstruction by a priori evaluation of the data. 
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Fig. 2.1: Consensus profile of the Aliscore check for random similar characters of a: 18S 
rDNA, b: 28S rDNA and c: 16S rDNA; x-axis = alignment positions, y-axis = scores, green = 
positive scores, red = negative scores, positions with negative scores should been excluded 
from further investigations. 
 

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576 601 626 651 676 701



2. A priori evaluation of data quality   15

a 

 

 

 

 

 

 

 

 

 

b 

 

 

 

 

 

 

 

 

 

c 

 

 

 

 

 

 

 

 

 

Fig. 2.2: Consensus profile of the Aliscore check for random similar characters of a: COI first 
codon position, b: COI second codon position and c: COI third codon position; x-axis = 
alignment positions, y-axis = scores, green = positive scores, red = negative scores, positions 
with negative scores should been excluded from further investigations. 
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2.3.2 A priori evaluation of data quality by the measurement of 
substitution saturation in the aligned nucleotide sequences 

 
Here I tested the degree of substitution saturation in two different ways: by an index to 

measure substitution saturation developed by Xia et al. (2003) and by plotting patristic 

distances against distances obtained with different models of sequence evolution (graphically). 

 

2.3.2.1  Index to measure substitution saturation (by Xia et al. 2003) 
 

Genetic sequences will fail to recover the true phylogeny long before the full substitution 

saturation is reached indicated by the index of substitution saturation (Iss). For this reason, 

one needs to find the critical index of substitution saturation (Iss.c) at which the sequences 

will begin to fail to recover the true tree. According to Xia et al. (2003) the results of the test 

should be interpreted in the following way: Iss < Iss.c indicating little or no saturation while 

Iss > Iss.c indicating phylogenetic uninformative sequences.  

 

Tab. 2.2: Substitution saturation meassured by Xia et al. (2003) 
Dataset Substitution saturation 

Dataset 0  
18S rDNA Iss 1,398 > Iss.c 0,371 
28S rDNA Iss 1,795 > Iss.c 0,455 
16S rDNA Iss 1,847 > Iss.c 0,398 

COI position 1 Iss 0,369 > Iss.c 0,306 
COI position 2 Iss 0,127 < Iss.c 0,306 
COI position 3 Iss 0,793 > Iss.c 0,305 

Dataset I  
18S rDNA Iss 0,682 > Iss.c 0,336 
28S rDNA Iss 0,592 > Iss.c 0,357 
16S rDNA Iss 0,719 > Iss.c 0,332 

COI position 1 Same as dataset 0 
COI position 2 Same as dataset 0 
COI position 3 No data 

Dataset II  
18S rDNA Iss 1,324 > Iss.c 0,367 
28S rDNA Iss 2,209 > Iss.c 0,347 
16S rDNA Iss 2,052 > Iss.c 0,381 

COI position 1 Iss 0,326 > Iss.c 0,304 
COI position 2 Iss 0,124 < Iss.c 0,306 
COI position 3 Iss 0,705 > Iss.c 0,283 

 

 



2. A priori evaluation of data quality   17

Comparing the substitution saturation data of the three datasets with each other (see tab. 2.2) 

it becomes evident that in all datasets only the second codon position of COI was not 

saturated. All other markers showed a high degree of saturation.  

Comparing the Iss-Data with each other, dataset I showed the lowest Iss values in most of the 

markers. 

 

2.3.2.2 Plotting patristic distances against distances obtained with different 
models of sequence evolution (graphically) 

 

A sequence is saturated when the visible genetic distances (p-distances) of a sequence is not 

increasing at the same rate as the evolutionary distances (d-distances) because of multiple 

substitutions. Saturation can be detected with plots and a bisecting line indicating a linear 

increase of p- and d-distances. When the p-distances increase faster than the d-distances a 

sloping curve is the result falling below the bisecting line. 

 

The graphs of all genes in all three datasets showed a high degree of saturation while 

transitions showed a higher saturation than transversions. The 18S rDNA curve shape in all 

three datasets was quite similar showing a first saturation effect at a value of 0.04 (fig. 2.3). 

This applied also to the 28S rDNA curve shape in all three datasets (fig. 2.4) showing a first 

saturation effect at the same value as 18S rDNA but with a more scattered curve shape for the 

transitions. All positions of 16S rDNA of dataset 0 were saturated (fig. 2.5). With the 

exception of a few positions at the beginning of the graph (up to a value of 0.04) of 16S 

rDNA of dataset I and II all positions showed saturation, too. Transition and transversion 

curve shapes were scattered. The COI curve shape of first and second codon position in all 

three datasets (dataset 0 and I are the same) was quite similar showing a first saturation effect 

at a value of 0.04 and a scattered curve shape (figs. 2.6, 2.7). A graphical display of the third 

codon position of COI of all three datasets was not possible because PAUP was not able to 

calculate the genetic distances. The software stopped at a d-distance of 4.664.742.279 

(transversion) and 115.871 (transition) in dataset 0 and I and at a d-distance of 402.808.285 

(transversion) and 2.183.206.940 (transition) in dataset II. All four values indicated a genetic 

distance higher than by chance. 
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Fig. 2.3: Saturation of substitution of 18S rDNA. Distances are calculated as patristic 
distances (y-axis) against d-distances calculated by applying the GTR model (x-axis), blue = 
transversion, pink = transition; a: dataset 0; b: dataset I; c: dataset II. 
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Fig. 2.4: Saturation of substitution of 28S rDNA. Distances are calculated as patristic 
distances (y-axis) against d-distances calculated by applying the GTR model (x-axis), blue = 
transversion, pink = transition; a: dataset 0; b: dataset I; c: dataset II. 
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Fig. 2.5: Saturation of substitution of 16S rDNA. Distances are calculated as patristic 
distances (y-axis) against d-distances calculated by applying the GTR model (x-axis), blue = 
transversion, pink = transition; a: dataset 0; b: dataset I; c: dataset II. 
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Fig. 2.6 Saturation of substitution of COI position 1. Distances are calculated as patristic 
distances (y-axis) against d-distances calculated by applying the GTR model (x-axis), blue = 
transversion, pink = transition; a: dataset 0 and I; b: dataset II. 
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Fig. 2.7: Saturation of substitution of COI position 2. Distances are calculated as patristic 
distances (y-axis) against d-distances calculated by applying the GTR model (x-axis), blue = 
transversion, pink = transition; a: dataset 0 and I; b: dataset II. 
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2.3.3 A priori evaluation of data quality by a variety of statistical tests  

2.3.3.1  Base composition 
 

The mean base frequencies of all markers show the same distribution in all datasets (see tab. 

2.3). The G+C content is higher than the A+T content in the 18S rDNA and 28S rDNA and 

lower in the 16S rDNA and all positions of COI. 

 

Tab. 2.3 Mean base frequencies 
Genes A+T G+C 

Dataset 0   
18S rDNA 0.47477 0.52523 
28S rDNA 0.35938 0.64062 
16S rDNA 0.63891 0.36109 

COI position 1 0.55414 0.44586 
COI position 2 0.58160 0.41840 
COI position 3 0.78410 0.21590 

Dataset I   
18S rDNA 0.49403 0.50597 
28S rDNA 0.38121 0.61879 
16S rDNA 0.59006 0.40994 

COI position 1 same as dataset 0 same as dataset 0 
COI position 2 same as dataset 0 same as dataset 0 
COI position 3 no data no data 

Dataset II   
18S rDNA 0.47776 0.52224 
28S rDNA 0.36875 0.63124 
16S rDNA 0.59482 0.40518 

COI position 1 0.55560 0.44441 
COI position 2 0.58160 0.41840 
COI position 3 0.86309 0.13691 

 

Omalogyra fusca showed the largest deviation of the mean G+C content in the 18S rDNA in 

all three datasets (0 = 0.586079, I = 0.5723319, II = 0.585003) while Ebala sp. showed the 

largest deviation of the mean A+T content in the 18S rDNA in all 3 datasets (0 = 0.650894, I 

= 0.638568, II = 0.646868). 

Chromodoris krohni showed the largest deviation of the mean G+C content in the 28S rDNA 

in dataset 0 (0.713998) and I (0.688950) while Architectonica perspectiva showed the largest 

deviation of the mean G+C content in the 28S rDNA in dataset II (0.693784). Murchisonella 

sp. showed the largest deviation of the mean A+T content in the 18S rDNA in all three 

datasets (0 = 0.437560, I = 0.433113, II = 0.447939). 

 

Diodora graeca showed the largest deviation of the mean G+C content in the 16S rDNA in all 

three datasets (0 = 0.454357, I = 0.484496, II = 0.467066) while Ebala sp. showed the largest 
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deviation of the mean A+T content in the 16S rDNA in dataset 0 (0.732620), Murchisonella 

sp. showed the largest deviation of the mean A+T content in the 16S rDNA in dataset I 

(0.681452) and Omalogyra fusca showed the largest deviation of the mean A+T content in the 

16S rDNA in dataset II (0.676157). 

Bathymargarites symplector showed the largest deviation of the mean G+C content in the first 

codon position of COI in all three datasets (0 = 569948, I = same as dataset 0, II = 0.556818) 

while Omalogyra sp. showed the largest deviation of the mean A+T content in the first codon 

position of COI in all three datasets (0 = 661458, I = same as dataset 0, II = 0.685714). 

None of the taxa showed a mentionable deviation of the mean G+C content as well as the 

A+T content in the second codon position of COI.  

Diodora graeca showed the largest deviation of the mean G+C content in the third codon 

position of COI in dataset 0 (0.450777) while Murchisonella sp. showed the largest deviation 

of the mean A+T content in the third codon position of COI in dataset 0 (0.927461). The 

results of dataset II for the third codon position was not representative because of the small 

number of base positions (18).  

 

To sum up little deviation of the mean G+C and A+T content was observed in all markers of 

all datasets. If a deviation was observed then within taxa belonging to the Vetigastropoda or 

“Lower Heterobranchia” (and in one case to the Opisthobranchia). 

 

2.3.3.2  Chi-Square-Test 
 

When P ≤ 0,05 the base composition indicates a significant heterogeneity and when P ≥ 0,05 

the base composition indicates a significant homogeneity. 

 

Within dataset 0 only the first and second codon position of COI showed homogeneity of base 

frequencies while 18S rDNA, 28S rDNA, 16S rDNA and third codon position of COI showed 

a heterogeneity (see tab. 2.4). Within dataset I all sequences with the exception of 18S rDNA 

showed homogeneity of base frequencies. Within dataset II the sequences of 16S rDNA and 

all codon positions of COI showed homogeneity while 18S rDNA and 28S rDNA showed 

heterogeneity of base frequencies. 
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Tab. 2.4: Chi-Square-Test of homogeneity of base frequencies across taxa 
Sequences Chi-Square df P 

Dataset 0    
18S rDNA 351.024.747 153 0.00000000 
28S rDNA 312.690.985 153 0.00000000 
16S rDNA 248.124.449 138 0.00000003 

COI position 1 132.394.187 150 0.84621041 
COI position 2 26.833.931 150 1.00000000 
COI position 3 756.200.271 150 0.00000000 

Dataset I    
18S rDNA 222.934.498 153 0.00019294 
28S rDNA 121.079.129 153 0.97325718 
16S rDNA 105.994.410 138 0.98023221 

COI position 1 same as dataset 0 same as dataset 0 same as dataset 0 
COI position 2 same as dataset 0 same as dataset 0 same as dataset 0 
COI position 3 no data no data no data 

Dataset II    
18S rDNA 323.553.686 153 0.00000000 
28S rDNA 240.363.336 153 0.00000821 
16S rDNA 113.982.072 141 0.95396238 

COI position 1 111.101.936 150 0.99258445 
COI position 2 26.833.931 150 1.00000000 
COI position 3 163.771.109 150 0.20891673 

 

2.3.3.3  Relative-Rate-Test 
 

For a better estimation of the relative substitution rates within a dataset it is important to 

choose a closely related reference taxon. The closer the outgroup is related to the ingroup the 

higher is the probability to estimate differences in relative rates correctly. Therefore a 

Caenogastropoda (Littorina littorea) and not a Vetigastropoda was defined as outgroup for 

this test. 

 

The Relative-Rate-Test revealed no significant difference in evolutionary rates between 

dataset 0, I and II but between the investigated taxa and genetic markers (tab. 2.5).  

One could observe the highest evolution rates within the „Lower 

Heterobranchia“ (Omalogyra sp., Omalogyra fusca, Murchisonella sp., Ebala sp. and 

Architectonica perspectiva) and Opisthobranchia (Hyalocylis striata) (tab. 2.5). 18S rDNA 

and 28S rDNA were the markers with the highest z-scores while 16S and the first and second 

codon position of COI were the markers with the lowest z-scores.  

The program K2WuLi was not able to estimate the relative rates of the third codon position of 

COI in all three datasets.  
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Tab. 2.5: Maximum z-scores (only scores above 5.0 are shown - with the exception of 16S 
rDNA) 
Sequences Species z-scores (max.) 

Dataset 0   
18S rDNA Omalogyra sp. vs. Orbitestella vera 13.379992 
 Omalogyra fusca vs. Orbitestella vera 13.323153 
 Murchisonella sp. vs. Orbitestella vera 12.860143 
 Ebala sp. vs. Orbitestella vera 11.155443 
 Architectonica perspectiva vs. Orbitestella vera 10.658446 
28S rDNA Omalogyra sp. vs. Orbitestella vera 9.138800 
 Murchisonella sp. vs. Orbitestella vera 8.586671 
 Ebala sp. vs. Orbitestella vera 8.108975 
 Omalogyra fusca vs. Orbitestella vera 7.724675 
 Architectonica perspectiva vs. Otina ovata 7.688050 
16S rDNA Architectonica perspectiva vs. Cornirostra pellucida 4.256653 
COI position 1 Omalogyra sp. vs Aperostoma pelermi 5.273325 
 Omalogyra fusca vs Aperostoma pelermi 5.118954 
 Hyalocylis striata vs. Cornirostra pellucida 4.248102 
COI position 2 Architectonica perspectiva vs Valvata piscinalis 4.726909 
COI position 3  no data  
Dataset I   
18S rDNA Omalogyra fusca vs Orbitestella sp. 13.722511 
 Omalogyra sp. vs Orbitestella sp. 13.472862 
 Murchisonella sp. vs Orbitestella vera 12.782731 
 Ebala sp. vs Orbitestella sp. 11.007350 
 Architectonica perspectiva vs Orbitestella vera 10.742792 
 Larochella alta vs Orbitestella vera 8.970545 
28S rDNA Omalogyra sp. vs Orbitestella vera 8.040198 
 Architectonica perspectiva vs Orbitestella vera 7.946169 
 Ebala sp. vs Orbitestella vera 7.815249 
 Omalogyra fusca vs Orbitestella vera 7.723543 
 Murchisonella sp. vs Orbitestella vera 7.766580 
16S rDNA Architectonica perspectiva vs Umbraculum umbraculum 4.192090 
COI position 1  same as dataset 0 
COI position 2  same as dataset 0 
COI position 3   no data 
Dataset II   
18S rDNA Omalogyra sp. vs. Orbitestella vera 13.618592 
 Omalogyra fusca vs. Orbitestella vera 13.507419 
 Murchisonella sp. vs. Orbitestella vera 13.099827 
 Ebala sp. vs. Orbitestella vera 11.350836 
 Architectonica perspectiva vs. Orbitestella vera 11.133709 
28S rDNA Omalogyra sp. vs. Orbitestella vera 9.348291 
 Murchisonella sp. vs. Orbitestella vera 8.691861 
 Ebala sp. vs. Orbitestella vera 8.433427 
 Architectonica perspectiva vs. Orbitestella vera 8.131231 
 Omalogyra fusca vs. Orbitestella vera 8.037855 
16S rDNA Architectonica perspectiva vs. Cornirostra pellucida 4.817522 
COI position 1 Omalogyra sp. vs. Cornirostra pellucida 5.625573 
 Architectonica perspectiva vs. Cornirostra pellucida 5.609777 
 Omalogyra fusca vs. Cornirostra pellucida 5.531493 
COI position 2 Hyalocylis striata vs. Valvata piscinalis 4.738736 

COI position 3  no data  
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2.3.3.4  ILD Test 
 

Investigation of differences in incongruence length between 18S rDNA, 28S rDNA, 16S 

rDNA and COI revealed that combination of the partitions improves phylogenetic signal with 

a p-value of 0.01 (10.000 replicates) in all three datasets.  

According to this result the next chapters investigated the combined datasets only. 

 

2.3.4 A priori evaluation of phylogenetic signal by split network 
analyses 

 

To visualise variations in signal distinctness we used network analyses based on split 

decomposition (applied with SplitsTree 4.10) and split support spectra (applied with SAMS 

1.4 beta).  

 

2.3.4.1  SplitsTree 
 

In a network a split between two groups is indicated by parallel edges of the same length 

while edge length is proportional to the weight of the associated split (Huson & Bryant 2006).  

 

Taking a first look at the network of all three datasets one was able to see a high level of 

conflict indicated by many parallel edges of the same lengths (forming a netlike structure). 

Several taxa with long terminal branches could be identified in all three datasets belonging to 

the Veti- and Caenogastropoda, “Lower Heterobranchia” or Opisthobranchia (Nudipleura) 

(see figs. 2.8 – 2.10).  

 

Investigating the deep splits (regarding higher taxonomic levels) different split support within 

the three datasets was evident (see figs. 2.8 – 2.10 – deep splits are marked with a dotted line). 

The Vetigastropoda and Caenogastropoda alone were supported by splits in all three datasets 

while the Caenogastropoda and Vetigastropoda together as outgroup differentiated to the 

Heterobranchia (I-XXV) were only supported within dataset 0 and I. Neither the Pulmonata 

nor the Opisthobranchia were supported by any split in any of the datasets. However, the 

Nudipleura (III in dataset 0, VII in dataset I and XIX in dataset II) had very good split support 

in all three datasets. 



2. A priori evaluation of data quality   28

There were several deep splits only occurring within one of the three datasets. Dataset 0 

showed a split separating the Veti- and Caenogastropoda together with the „Lower 

Heterobranchia“ (with exception of Cimidae I, Rissoelloidea II, and Acteonoidea XIX) from 

the remaining taxa (see fig. 2.8). Within dataset I a deep split separated the Pyramidellidae 

(XII), Glacidorboidea (XIV), Pulmonata (with exception of Amphiboloidea XXI), 

Umbraculoidea (VIII), Akeroidea (X) and Pteropoda (IX+XIII) from the remaining taxa (see 

fig. 2.9). Within dataset II a deep split separated the Architectonicoidea (XXIV), 

Omalogyroidea (XXV) and Murchisonellidae (XXIII) from the remaining taxa. An additional 

split partitioned the Pyramidellidae (X), Glacidorboidea (XI), Pulmonata, Opisthobranchia 

(with the exception of Nudipleura XIX), Acteonoidea (III) and Rissoelloidea (II) from the 

remaining sequences (see fig. 2.10). 

According to Bouchet & Rocroi (2005) (see classification in tab. A1 in the appendix) most of 

the major heterobranch subgroups were supported by splits in all three combined datasets (see 

figs. 2.8 – 2.10). Only Pyramidelloidea (as well as Pyramidellidae) and Siphonaroidea were 

not supported by any split. Stylommatophora, Onchidioidea and Nudipleura were supported 

by splits in all three datasets while Hygrophila were only supported in dataset I and II. A 

sister group relationship between Omalogyroidea and Architectonicoidea was well supported 

by splits with very long edges in all three datasets.  
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2.3.4.2  SAMS 
 

In spectral analyses a split is represented by a column in the spectrum graph. In addition, 

following the concept of Wägele & Rödding (1998) and Wägele & Mayer (2007) in each 

column three different types of positions can be discerned: binary support (red) = with only 

two character states (symmetric positions), noisy outgroup support (green) = one partition of 

the split with only one character state, the other with more than one state (asymmetric 

positions) and noisy in- and outgroup support (yellow) = more than one state in each partition 

(noisy positions). 

The complete spectrum of the combined dataset 0 contained 5890 splits, of the combined 

dataset I 3808 splits and of the combined dataset II 3102 splits. There was little binary support 

(red), some noisy outgroup support (green) and many noisy in- and outgroup support (yellow) 

(see fig. 2.11) in all three datasets.  

The most prominent split (supporting Omalogyroidea) was present in all three combined 

datasets while the second (supporting Architectonicoidea, Omalogyroidea and Balcis 

eburnean - Caenogastropoda) and third (supporting Architectonicoidea and Omalogyroidea) 

most prominent splits only occurred in datasets 0 and II (see tabs. 2.6 – 2.8).  Within the 60 

best splits one was able to find signals for partitions concerning mainly “Lower 

Heterobranchia” as well as Veti- and Caenogastropoda and some Opisthobranchia taxa. None 

of the deeper splits were found among the 60 best splits. However, only the first couple of 

splits of all three datasets were distinctly stronger, while the remaining spectral signals were 

not higher than background noise. 
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Fig. 2.11: Split support spectrum of the 60 most frequent partitions, x-axis = splits, y-axis = 
number of sequence positions, above x-axis = outgroup, below x-axis = ingroup, red = binary 
support, green = noisy outgroup support, yellow = noisy in- and outgroup support; a: dataset 0; 
b: dataset I; c: dataset II 
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Tab. 2.6: Split support values of dataset 0; Taxa names were coded in a four letter name using the first 
two letters of the genus and species name (for abbreviation see tab. A1 in the appendix). 

Split 
No. Split Taxa 

Outgroup support Ingroup support 

binary 
support 

noisy 
outgroup 
support 

noisy in- 
and 

outgroup 
support 

binary 
support 

noisy 
outgroup 
support 

noisy in- and 
outgroup 
support 

1 (Omfu,Omsp) 3 0 708 0 694 0 
2 (Arpe,Omfu,Omsp,Baeb) 0 38 460 0 23 150 
3 (Arpe,Omfu,Omsp) 11 9 464 11 332 0 
4 (Arpe,Omfu,Omsp,Pobr) 0 0 415 0 21 176 
5 (Laal,Grsp) 10 353 0 10 0 266 
6 (Arpe,Omfu,Omsp,Grsp) 0 2 339 0 36 162 
7 (Arpe,Omfu,Omsp,Ebsp) 1 4 320 1 46 217 
8 (Arpe,Omfu) 0 0 357 0 114 0 
9 (Arpe,Omfu,Omsp,Musp) 3 8 263 3 55 192 

10 (Basy,Digr) 1 0 262 1 233 0 
11 (Cope,Omfu,Omsp,Grsp) 0 0 315 0 5 49 
12 (Cope,Arpe,Omfu,Omsp) 1 0 241 1 48 158 
13 (Arpe,Omfu,Omsp,Gono) 0 75 178 0 37 110 
14 (Riel,Grsp) 4 16 271 4 92 0 
15 (Omfu,Omsp,Musp,Baeb) 0 1 278 0 8 47 
16 (Riel,Baan) 0 0 275 0 88 0 
17 (Riel,Riri,Omfu,Omsp) 0 0 247 0 11 63 
18 (Arpe,Riri,Omfu,Omsp) 1 32 148 1 0 177 
19 (Arpe,Omfu,Omsp,Digr) 0 0 181 0 33 145 
20 (Ebsp,Musp) 1 2 206 1 155 0 
21 (Arpe,Omfu,Omsp,Basy) 0 53 144 0 0 168 
22 (Arpe,Omsp) 0 0 238 0 50 0 
23 (Arpe,Omfu,Omsp,Appa) 0 0 168 0 30 117 
24 (Riel,Omfu,Omsp,Baan) 0 0 218 0 2 54 
25 (Omsp,Grsp) 0 0 235 0 38 0 
26 (Grsp,Baan) 0 0 225 0 87 0 
27 (Arpe,Riel,Omfu,Baan) 0 0 240 0 1 14 
28 (Cope,Omfu,Omsp,Ebsp) 0 1 222 0 2 35 
29 (Omfu,Grsp) 0 0 229 0 33 0 
30 (Ebsp,Musp,Laal,Grsp) 0 0 181 0 17 77 
31 (Ebsp,Musp,Basy,Digr) 0 1 201 0 7 46 
32 (Chkr,Gono) 0 162 0 0 0 139 
33 (Omfu,Omsp,Ebsp,Musp) 0 24 122 0 0 119 
34 (Cope,Omfu,Omsp,Baan) 0 0 215 0 3 22 
35 (Omfu,Omsp,Grsp) 0 0 203 0 46 0 
36 (Omfu,Omsp,Grsp,Baan) 0 0 208 0 5 42 
37 (Cope,Riel,Laal,Grsp) 0 2 202 0 1 26 
38 (Omfu,Omsp,Laal,Grsp) 0 0 139 0 20 81 
39 (Riel,Omfu,Baan,Pobr) 0 0 211 0 1 7 
40 (Arpe,Omfu,Omsp,Basy,Digr) 0 1 184 0 13 40 
41 (Musp,Basy) 0 0 150 0 92 0 
42 (Omsp,Musp) 0 0 180 0 33 0 
43 (Arpe,Omfu,Omsp,Toan) 0 36 105 0 0 104 
44 (Riel,Omfu,Grsp,Baan) 0 0 189 0 6 27 
45 (Riel,Riri) 0 165 0 0 0 108 
46 (Arpe,Musp) 0 0 173 0 51 0 
47 (Riel,Omfu) 0 0 178 0 50 0 
48 (Omfu,Musp) 0 0 173 0 27 0 
49 (Musp,Digr) 0 0 135 0 83 0 
50 (Arpe,Omfu,Omsp,Grsp,Baan) 0 0 187 0 1 6 
51 (Riel,Oxan) 0 0 151 0 81 0 
52 (Toan,Baan) 0 156 0 0 0 110 
53 (Omfu,Omsp,Musp) 0 0 159 0 65 0 
54 (Arpe,Omfu,Omsp,Chkr) 0 28 110 0 1 97 
55 (Omfu,Baan) 0 0 173 0 19 0 
56 (Riel,Omfu,Omsp,Musp) 0 0 146 0 8 56 
57 (Riel,Grsp,Baan) 0 0 173 0 14 0 
58 (Cope,Omfu,Omsp,Grsp,Baan) 0 0 173 0 1 7 
59 (Toan,Baan,Chkr,Gono) 1 0 110 1 40 67 
60 (Cope,Omfu,Omsp,Ebsp,Musp) 0 1 162 0 2 19 
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Tab. 2.7: Split support values of dataset I; Taxa names were coded in a four letter name using the 
first two letters of the genus and species name (for abbreviation see tab. A1 in the appendix). 

Split 
No. Taxa 

Outgroup support Ingroup support 

binary 
support 

noisy 
outgroup 
support 

noisy in- 
and 

outgroup 
support 

binary 
support 

noisy 
outgroup 
support 

noisy in- 
and 

outgroup 
support 

1 (Omfu,Omsp), 3 318 0 3 0 269 
2 (Arpe,Omfu,Omsp) 8 1 285 8 243 0 
3 (Arpe,Omfu,Omsp,Ebsp) 1 4 228 1 37 153 
4 (Laal,Grsp) 10 214 0 10 0 131 
5 (Arpe,Omfu,Omsp,Musp) 1 1 164 1 42 110 
6 (Basy,Digr) 1 0 173 1 142 0 
7 (Cope,Arpe,Omfu,Omsp) 1 0 151 1 36 96 
8 (Arpe,Omfu,Omsp,Basy) 0 42 83 0 0 124 
9 (Ebsp,Musp) 1 1 152 1 74 0 

10 (Arpe,Riri,Omfu,Omsp) 1 0 130 1 17 89 
11 (Omfu,Omsp,Ebsp,Musp) 0 0 125 0 18 64 
12 (Arpe,Omfu,Omsp,Ebsp,Musp) 1 2 139 1 7 37 
13 (Ebsp,Musp,Laal,Grsp) 0 2 139 0 8 31 
14 (Ebsp,Musp,Basy,Digr) 0 1 134 0 7 38 
15 (Arpe,Omfu,Omsp,Basy,Digr) 0 1 140 0 6 20 
16 (Arpe,Omfu,Omsp,Grsp) 0 21 78 0 0 89 
17 (Omfu,Omsp,Ebsp,Basy,Digr) 0 0 136 0 1 4 
18 (Arpe,Omfu,Omsp,Gono) 0 1 95 0 29 65 
19 (Arpe,Omfu,Omsp,Sial) 0 20 81 0 1 75 
20 (Arpe,Omfu,Omsp,Ebsp,Basy) 1 0 109 1 5 21 
21 (Arpe,Omfu,Omsp,Euve) 0 0 86 0 10 66 
22 (Toan,Baan) 0 114 0 0 0 74 
23 (Arpe,Omfu,Omsp,Appa) 0 17 65 0 0 78 
24 (Musp,Basy) 0 0 107 0 38 0 
25 (Arpe,Omfu,Omsp,Ebsp,Basy,Digr) 1 2 114 1 2 6 
26 (Omsp,Musp) 0 0 105 0 14 0 
27 (Arpe,Omfu) 0 0 98 0 36 0 
28 (Arpe,Musp) 0 0 106 0 16 0 
29 (Omfu,Omsp,Laal,Grsp) 0 0 85 0 12 33 
30 (Arpe,Omsp) 0 0 92 0 20 0 
31 (Omfu,Omsp,Basy,Digr) 0 0 92 0 5 33 
32 (Arpe,Omfu,Omsp,Chkr) 0 20 65 0 1 64 
33 (Ebsp,Baeb,Basy,Digr) 0 0 89 0 1 18 
34 (Riel,Riri) 0 91 0 0 0 60 
35 (Vapi,Arpe,Omfu,Omsp) 0 23 55 0 0 50 
36 (Omfu,Omsp,Musp) 0 0 89 0 32 0 
37 (Arpe,Omfu,Omsp,Hyst) 0 15 48 0 0 59 
38 (Cope,Omfu,Omsp,Musp,Digr) 0 0 94 0 1 1 
39 (Arpe,Omfu,Omsp,Ripu) 0 5 64 0 6 60 
40 (Ebsp,Laal) 0 0 84 0 28 0 
41 (Riel,Riri,Omfu,Omsp) 0 0 71 0 7 36 
42 (Omsp,Ebsp) 0 0 80 0 15 0 
43 (Arpe,Omfu,Laal,Grsp) 0 0 83 0 1 8 
44 (Ebsp,Laal,Grsp,Basy) 0 1 79 0 1 9 
45 (Arpe,Omsp,Musp,Digr) 0 0 81 0 1 6 
46 (Musp,Laal,Grsp,Digr) 0 0 84 0 1 15 
47 (Arpe,Omfu,Omsp,Musp,Grsp) 0 0 80 0 1 10 
48 (Arpe,Omfu,Omsp,Laal,Grsp) 0 2 74 0 5 10 
49 (Chkr,Gono) 0 62 0 0 0 52 
50 (Vapi,Omfu,Omsp,Ebsp,Musp) 0 0 73 0 1 6 
51 (Omfu,Omsp,Musp,Grsp) 0 0 66 0 4 19 
52 (Ebsp,Basy) 0 1 69 0 17 0 
53 (Omfu,Omsp,Ebsp,Grsp) 0 0 70 0 2 14 
54 (Toan,Baan,Chkr,Gono) 1 0 67 1 14 13 
55 (Omsp,Basy) 0 0 70 0 11 0 
56 (Omfu,Ebsp) 0 0 71 0 6 0 
57 (Omfu,Omsp,Ebsp) 0 0 72 0 19 0 
58 (Arpe,Omfu,Omsp,Lili) 0 19 43 0 0 38 
59 (Omfu,Basy) 0 0 66 0 13 0 
60 (Arpe,Omfu,Omsp,Ebsp,Musp,Basy,Digr) 0 2 73 0 0 1 
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Tab. 2.8: Split support values of dataset II; Taxa names were coded in a four letter name using the 
first two letters of the genus and species name (for abbreviation see tab. A1 in the appendix). 

Split 
No. Split Taxa 

Outgroup support Ingroup support 

binary 
support 

noisy 
outgroup 
support 

noisy in- and 
outgroup 
support 

binary 
support 

noisy 
outgroup 
support 

noisy in- and 
outgroup 
support 

1 (Omfu,Omsp) 3 0 697 3 593 0 
2 (Arpe,Omfu,Omsp,Baeb) 0 38 443 0 17 105 
3 (Arpe,Omfu,Omsp) 11 9 453 11 282 0 
4 (Arpe,Omfu,Omsp,Grsp) 0 2 328 0 25 107 
5 (Arpe,Omfu) 0 0 349 0 96 0 
6 (Laal,Grsp) 9 271 0 9 0 258 
7 (Arpe,Omfu,Omsp,Ebsp) 1 4 309 1 37 165 
8 (Cope,Omfu,Omsp,Grsp) 0 0 304 0 4 38 
9 (Arpe,Omfu,Omsp,Musp) 3 8 253 3 42 138 

10 (Riel,Grsp) 4 16 269 4 74 0 
11 (Basy,Digr) 1 0 258 1 183 0 
12 (Omfu,Omsp,Musp,Baeb) 0 1 264 0 5 31 
13 (Riel,Baan) 0 0 270 0 67 0 
14 (Arpe,Omfu,Omsp,Gono) 0 75 168 0 27 68 
15 (Cope,Arpe,Omfu,Omsp) 1 0 235 1 34 114 
16 (Riel,Riri,Omfu,Omsp) 0 0 243 0 9 44 
17 (Arpe,Omsp) 0 0 231 0 36 0 
18 (Arpe,Riel,Omfu,Baan) 0 0 234 0 1 15 
19 (Omsp,Grsp) 0 0 229 0 30 0 
20 (Omfu,Grsp) 0 0 222 0 30 0 
21 (Grsp,Baan) 0 0 224 0 60 0 
22 (Cope,Omfu,Omsp,Ebsp) 0 1 214 0 2 28 
23 (Ebsp,Musp) 1 2 206 1 84 0 
24 (Arpe,Omfu,Omsp,Digr) 0 0 174 0 27 96 
25 (Riel,Omfu,Omsp,Baan) 0 0 211 0 2 29 
26 (Ebsp,Musp,Basy,Digr) 0 1 196 0 7 39 
27 (Cope,Omfu,Omsp,Baan) 0 0 207 0 2 16 
28 (Arpe,Riri,Omfu,Omsp) 1 0 172 1 15 98 
29 (Omfu,Omsp,Grsp,Baan) 0 0 204 0 4 33 
30 (Arpe,Omfu,Omsp,Basy) 0 0 163 0 39 99 
31 (Omfu,Omsp,Grsp) 0 0 195 0 43 0 
32 (Riel,Omfu,Baan,Pobr) 0 0 203 0 1 5 
33 (Cope,Riel,Laal,Grsp) 0 2 191 0 1 14 
34 (Ebsp,Musp,Laal,Grsp) 0 0 174 0 14 39 
35 (Riel,Omfu,Grsp,Baan) 0 0 184 0 6 24 
36 (Arpe,Omfu,Omsp,Basy,Digr) 0 1 180 0 9 28 
37 (Omsp,Musp) 0 0 174 0 23 0 
38 (Arpe,Omfu,Omsp,Grsp,Baan) 0 0 182 0 1 5 
39 (Riel,Omfu) 0 0 173 0 37 0 
40 (Arpe,Omfu,Omsp,Ebsp,Musp) 1 0 128 1 19 63 
41 (Chkr,Gono) 0 0 136 0 114 0 
42 (Arpe,Musp) 0 0 166 0 34 0 
43 (Riel,Grsp,Baan) 0 0 171 0 14 0 
44 (Omfu,Musp) 0 0 168 0 10 0 
45 (Cope,Omfu,Omsp,Grsp,Baan) 0 0 168 0 1 6 
46 (Omfu,Baan) 0 0 168 0 14 0 
47 (Cope,Omfu,Omsp,Ebsp,Musp) 0 1 161 0 1 12 
48 (Omfu,Omsp,Ebsp,Basy,Digr) 0 0 165 0 1 4 
49 (Omfu,Omsp,Musp) 0 0 153 0 49 0 
50 (Riel,Omsp) 0 0 157 0 17 0 
51 (Riel,Omsp,Grsp,Baan) 0 0 153 0 2 23 
52 (Musp,Laal) 0 0 149 0 29 0 
53 (Omsp,Baan) 0 0 153 0 15 0 
54 (Musp,Basy) 0 0 145 0 42 0 
55 (Riel,Oxan) 0 0 148 0 41 0 
56 (Omfu,Omsp,Ebsp,Musp) 0 0 116 0 18 58 
57 (Omfu,Omsp,Laal,Grsp) 0 0 132 0 14 31 
58 (Riel,Omfu,Omsp,Baan,Pobr) 0 0 152 0 1 5 
59 (Arpe,Omfu,Laal,Grsp) 0 0 144 0 2 13 
60 (Riel,Riri,Chkr,Gono) 0 0 149 0 3 11 
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2.4  Discussion 
 

The first aim of this chapter was to identify ambiguous nucleotide sites by visual judgement 

and with the software Aliscore while the second aim was to decide which of the three 

available datasets (see tab. A5 in the appendix) is the most appropriate one for the 

phylogenetic reconstruction of the Heterobranchia and to discuss the data quality of the 

elected dataset a priori. 

 

The measurement of substitution saturation of the aligned nucleotide sequences with the 

method developed by Xia et al. (2003) showed that all markers with the exception of the 

second codon position of COI were saturated in all datasets. When comparing the Iss.data, 

dataset I showed the lowest Iss values indicating the least saturation (see tab. 2.2). However, 

when plotting patristic distances against distances obtained with different models of sequence 

evolution, no essential differences could be observed within all three datasets (see figs. 2.3 – 

2.7). The inability of calculating the genetic distances of the third codon position of COI 

implied how improper this codon position is to reconstruct phylogenetic relationships of the 

Heterobranchia due to the large genetic distances which could also be attributed to chance. 

The base composition was of little value to decide which dataset is the most appropriate one 

for phylogenetic reconstruction of the Heterobranchia because only little deviation of the 

mean G+C and A+T content was observed in all markers of all datasets (see tab. 2.3). 

dataset 0 showed little homogeneity of base frequencies compared to datasets I and II while 

Dataset I showed the highest p-values in most of the markers (see tab. 2.4). 

The relative rate test was also of little help to decide which dataset is the most promising one 

because the test revealed no significant differences in evolutionary rates between datasets 0, I 

and II (see tab. 2.5). The inability of the software K2WuLi to estimate the relative rates of the 

third codon position of COI in datasets 0 and II again implied how improper this codon 

position is for phylogenetic reconstruction at the taxonomic level investigated in the current 

study. 

The SplitsTree analysis of all three datasets showed quite similar results regarding the 

superfamily level (see figs. 2.8 – 2.10). The supported splits of the combined datasets I and II 

are the same while the combined dataset 0 showed less supporting splits for the major 

heterobranch subgroups (according to the taxonomic classification by Bouchet & Rocroi 

2005). Comparing datasets I and II with each other regarding the deep splits it was evident 

that only in dataset I the Vetigastropoda and Caenogastropoda are clearly distinguished from 
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the remaining Heterobranchia by various splits. Therefore, dataset I seems more eligible to 

reconstruct the phylogeny of the Heterobranchia (see figs. 2.9 and 2.10). 

Because of very similar results in all three datasets the split network analyses with SAMS was 

little helpful for the decision which dataset should be used for phylogenetic reconstruction. 

 

Taking all results of the a priori evaluation of chapter 2 into account I decided to use dataset I 

for further phylogenetic analyses of the Heterobranchia because it seemed to be the most 

informative one. According to the results of the statistical tests dataset I and II were more 

informative than dataset 0. Dataset I and II (except of little differences) were quite similar but 

taking also the split network analyses into account dataset I was more promising. 

Nevertheless, I think that Aliscore is a suitable tool to detect random similarity within 

sequence alignments and should be tested for other taxon samplings besides Heterobranchia. 

 

In the following the quality of the elected dataset (dataset I) will be discussed. 

 

As already mentioned, according to the test developed by Xia et al. (2003) only the second 

codon position of COI was not saturated. 18S rDNA, 28S rDNA, 16S rDNA and the first 

codon position of COI showed little saturation (see tab. 2.2). Taking also the graphical display 

of the saturation into account, all markers showed saturation at a value of 0.04 (see figs. 2.3 – 

2.7 – dataset I). To exclude all saturated markers for further investigations would mean to 

exclude nearly all available data gathered in the current study for the phylogenetic 

reconstruction of the Heterobranchia. I therefore decided to use the complete dataset I to 

avoid the loss of phylogenetic signal at all taxonomic levels. Other authors, e.g., Thollesson 

(1999) demonstrated that even in a “fast” gene like 16S rRNA one can find a useful amount of 

variation for “higher-level” phylogenies despite the noise due to multiple substitutions. Yang 

(1998) even went a step further and proposed that the problem of saturation may have been 

exaggerated. He examined the effect of the evolutionary rate of a gene on the accuracy of 

phylogeny reconstruction by computer simulation. Yang found out that saturation occurs only 

at a much higher level of sequence divergence than was previously suggested and 

phylogenetic methods appear quite tolerant of multiple substitutions at the same site.  

 

Generally, the proportion of A+T in a genome is rarely equal to the G+C proportion and 

different organisms exhibit different patterns of base composition variation, especially 

mitochondrial genomes are GC poor (Mooers & Holmes 2000). The current study supported 
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this assumption (see tab. 2.3 – dataset I) because the G+C and A+T content in the 18S rDNA 

was almost equal while the G+C content in the 28S rDNA was much higher than the A+T 

content. Within the mitochondrial 16S rDNA and COI one was able to observe a high A+T 

content compared to the G+C content.  

Unequal base frequencies among species indicate that the substitution process is not 

homogeneous among lineages, as is commonly assumed in most phylogeny reconstruction 

methods. In such cases, tree reconstruction methods tend to group species with similar base 

content instead of common ancestries (Steel et al. 1993). Especially the heterogeneity of the 

G+C content of rDNA (35 – 70%) brought the first criticisms because it can lead to tree 

reconstruction artefacts (Hasegawa & Hashimoto 1993).  In this study mentionable deviation 

of the mean G+C and A+T content was observed within taxa belonging to the Vetigastropoda 

(Diodora graeca and Bathymargarites symplector) and “Lower Heterobranchia” (Omalogyra 

sp., Omalogyra fusca, Ebala sp. and Murchisonella sp.) as well as Opisthobranchia (only 

Chromodoris krohni). These taxa should be viewed carefully when interpreting the 

phylogenetic hypotheses proposed in the current thesis. 

 

The Chi-Square-Test revealed homogeneity of base frequencies of 28S rDNA, 16S rDNA and 

first and second codon position of COI while only 18S rDNA showed heterogeneity of base 

frequencies (see tab. 2.4 – dataset I).  

 

The Relative-Rate-Test showed a significant difference in evolutionary rates between the 

genetic markers and investigated taxa (see tab. 2.5 – dataset I). The highest z-scores were 

found within 18S rDNA, the second highest within 28S rDNA, the third highest within COI 

and the lowest z-scores within 16S rDNA. The Omalogyroidea, Murchisonellidae and 

Architectonicoidea as well as Larochella alta (Aclididae) and Hyalocylis striata (Pteropoda) 

evolved faster than the remaining taxa indicated by high z-scores. These taxa should be 

considered carefully. 

 

Investigating the deep splits calculated with SplitsTree one was able to see much conflict in 

the dataset (see fig. 2.9). There was a good split support separating the Veti- and 

Caenogastropoda from the Heterobranchia and also a good support for the Nudipleura (VII). 

This taxon was introduced by Wägele & Willan (2000) and comprises the Pleurobranchoidea 

and the Nudibranchia. Indicated by very long edges there was a split supporting the 

Omalogyroidea (I) and Architectonicoidea (II) as sister groups. In the literature one can find 
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evidence based on morphology data (e.g Haszprunar 1988) for a sister relationship of these 

groups. Another deep split could be observed within the neighbournet graph separating the 

Pyramidellidae (XII), Glacidorboidea (XIV), Pulmonata (with exception of Amphiboloidea 

XXI), Umbraculoidea (VIII), Akeroidea (X) and Pteropoda (IX+XIII) from the remaining 

taxa. No characters from the literature support this split. Anyway, there is little split support 

regarding the relationships of taxa within this deep split. This applies especially to the 

Pulmonata. 

The network graph also showed that most of the major heterobranch subgroups were 

supported by splits and these groupings are in accordance with the latest taxonomic 

classification by Bouchet & Rocroi (2005) (see fig. 2.9 and tab. A1 in the appendix). This 

result indicated a good phylogenetic signal at superfamily level. Only Pyramidelloidea 

(III+XIV) (as well as Pyramidellidae XIV) and Siphonarioidea (XVII) were not supported by 

any split while Siphonaria alternata showed a conspicuous short terminal branch compared to 

the other taxa. Glacidorboidea (XIV) as well as Pyramidellidae (XIV) were separated from 

the remaining “Lower Heterobranchia” and nested somewhere between the Pulmonata and 

Opisthobranchia. This could be a hint for a relationship with the Euthyneura because the 

phylogenetic positions of both taxa were not clarified yet.  

Larochella alta and Graphis sp. which have not been assigned to the Heterobranchia yet 

clustered within the “Lower Heterobranchia” suggesting a close relationship. Also noticeable 

is the position of the Sacoglossa (XXII). They were separated from the remaining 

Opisthobranchia and nested between the Pulmonata and „Lower Heterobranchia“. 

 

The spectrum graph evaluated with SAMS showed much conflicts because of the 60 best 

splits only 13 splits have a binary support and 28 splits a noisy outgroup support while most 

of the remaining splits showed a high noisy in- and outgroup support only (see fig. 2.11b – 

dataset I). Only the first couple of splits were distinctly stronger than the visible high 

background noise.  

None of the deeper splits (above superfamily level) were found among the 60 best splits, only 

signals for groupings between taxa belonging to “Lower Heterobranchia”, Veti- and 

Caenogastropoda and some Opisthobranchia were detected. 
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Conclusion 

 

The following phylogenetic reconstruction based on the here a priori investigated dataset 

should be handled with care. Substitution saturation was observed in most of the alignment 

positions and the relative rate test revealed taxa with high evolutionary rates. Both split 

network analyses (with SplitsTree and SAMS) showed many conflicts, not within the terminal 

branches but the deep splits. Especially within the Pulmonata little signal could be determined. 

As a consequence of these results no Maximum parsimony analyses will be used for 

reconstructing heterobranch phylogeny but model based Maximum likelihood and Bayesian 

approaches. The evolutionary models should help to compensate the expected problems 

discussed above. 
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3.  Phylogeny of the Heterobranchia 

3.1   Introduction 
 

The Gastropoda are the largest and most diverse class of the phylum Mollusca and exhibit the 

highest diversity in morphology. Many questions regarding gastropod phylogeny have not yet 

been answered. One major question is the molecular confirmation of the Heterobranchia 

concept based upon morphological studies by Haszprunar (1985a, 1988). This diverse taxon 

comprises the Pentaganglionata, also known as Euthyneura (with the Opisthobranchia and 

Pulmonata), and several less known “basal” groups such as Valvatoidea, Architectonicoidea, 

Omalogyroidea, Rissoelloidea and Pyramidelloidea. These lesser known “basal” groups 

supposedly present a step-by-step evolution towards the euthyneuran level of organisation 

(Haszprunar 1988). The systematic position and much disputed taxonomic history of these 

“Lower Heterobranchia” has been discussed in detail by Haszprunar (1985a, 1988), Bieler 

(1992) and Huber (1993). 

The heterobranch clade is supported by numerous autapomorphies, including a pigmented 

mantel organ (which is reduced in more derived taxa), a medial position of the eyes in many 

taxa, a lack of a true ctenidium, a simple oesophagus, a distinctive sperm ultrastructure and 

most importantly a sinistral larval shell produced by a planktotrophic veliger (Haszprunar 

1985a, Ponder & Linderberg 1997).  

The monophyly of the Heterobranchia based upon morphological characters is confirmed by 

many authors (Haszprunar 1985a, 1988, Ponder & Lindberg 1997) (see fig. 3.1 a-b) while the 

monophyly of several currently recognised groupings within the Heterobranchia is equivocal.  

The “Lower Heterobranchia” are clearly paraphyletic for which Haszprunar (1985a) was the 

first investigator to include many former “prosobranch-like” taxa in this informal group. 

Other authors followed, such as Ponder & Lindberg (1997), Dayrat & Tillier (2002) (see fig. 

3.1 c) or Healy (1988; 1993). 

The taxon Euthyneura includes the Pulmonata and Opisthobranchia, whose members 

secondarily reduce or revert the effects of torsion on the nervous system and other organ 

systems (Bieler 1992). Euthyneury itself, is convergently originated by detorsion, nerve 

concentration, or a combination of both (Haszprunar 1985a). Nevertheless, the monophyly of 

the Euthyneura based upon morphological data is generally accepted (Haszprunar 1988, 

Ponder & Lindberg 1997, Dayrat & Tillier 2002) and characterised by the presence of two 

additional (so-called parietal) ganglia on the visceral loop (Haszprunar 1985a; 1990). Within 
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the Euthyneura, the Opisthobranchia which share few if any obvious synapomorphies, may be 

paraphyletic (Haszprunar 1985b, Dayrat & Tillier 2002 and Wägele & Klussmann-Kolb 

2005). Pulmonata have also been analysed morphologically and have mostly been recovered 

monophyletic (Tillier 1984, Haszprunar 1988, Haszprunar & Huber 1990, Nordsieck 1992, 

Dayrat & Tillier 2002). 

 

Molecular analyses of heterobranch relationships demonstrate varying degrees of success in 

identifying the placement and monophyly of various groups within the Heterobranchia. This 

is largely due to the absence of molecular work including an adequate taxon sampling of all 

major heterobranch groups. Former investigations of the Gastropoda included only a few 

heterobranch taxa. They were rarely monophyletic in the analyses of Colgan et al. (2003) 

(including 9 heterobranch taxa) due to the variable position of the architectonicoid Philippea. 

Grande et al. (2008) (including 11 heterobranch taxa) (see fig. 3.1 d) found them to be 

monophyletic.  

The lower heterobranchs have been neglected amongst the Heterobranchia because only few 

were included in phylogenetic analyses based upon molecular data. Until now, there is no 

comprehensive investigation concerning more than only a few representative taxa (e.g. 

Valvatoidea – Cornirostra pellucida, Architectonicoidea – Philippea lutea, Pyramidelloidea – 

Pyramidella dolabrata) (Colgan et al. 2000, Grande et al. 2004a; 2004b). 

The monophyly of the Euthyneura has not yet been clarified via molecular studies. In some 

studies they are recovered monophyletic (Colgan et al. 2000; 2003, Knudsen et al. 2006) 

while in others, there are not (Thollesson 1999, Klussmann-Kolb et al. 2008). The molecular 

confirmation regarding the monophyly of the Opisthobranchia (Vonnemann et al. 2005, 

Dayrat et al. 2001, Grande et al. 2004a; 2008, Klussmann-Kolb et al. 2008 – see fig. 3.1 e, 

Wollscheid & Wägele, 1999) and the Pulmonata (Tillier et al. 1996, Winnepenninckx et al. 

1998, Wade & Mordan 2000, Dayrat et al. 2001, Grande et al. 2004a; 2008, Klussmann-Kolb 

et al. 2008) is also still a matter of debate.  

 

There appears good evidence in the literature that other minute snails such as the genera 

Graphis Jeffreys, 1867 and Larochella Powell, 1927 previously assigned to the 

Caenogastropoda, should perhaps also be integrated into the Heterobranchia (Ponder 1991). 

Little morphological and no molecular investigations have been undertaken within these 

groups.  
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In the present study a phylogenetic hypothesis of the Heterobranchia was inferred by using a 

multigene dataset including nuclear (28S rDNA + 18S rDNA) and mitochondrial (16S rDNA 

+ COI) sequences. Phylogenetic trees were reconstructed using Maximum likelihood and 

Bayesian methodologies. Bathymargarites symplector (Vetigastropda) was defined as 

outgroup.  

 

a         b           c   

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
  d       e 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1: Phylogenetic relationships among gastropods (Heterobranchia are marked by an 
asterisk): a) morphological data (Haszprunar 1988); b) morphological data (Ponder & 
Lindberg 1997); c) morphological data (Dayrat & Tillier 2002); d) molecular data (Grande et 
al. 2008); e) molecular data (Klussmann-Kolb et al. 2008).  
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The outstanding taxon sampling includes representatives of several groups, which have been 

poorly represented in earlier morphological studies and have never been included in 

molecular investigations (e.g. Ebala, Murchisonella, Larochella, Graphis, Glacidorbis, 

Smeagol). 

 

3.2  Material and methods 
 

Taxon sampling 

(according to chapter 2.2) 
 

DNA extraction, amplification and sequencing 

(according to chapter 2.2) 
 

Sequence editing and alignment 

(according to chapter 2.2) 
 
Maximum likelihood and Bayesian inference phylogenetic analyses were performed using 
dataset I (see tab. A5 in the appendix): 
 
Dataset I = combination of complete 18S rDNA, partial 28S rDNA, partial 16S rDNA and 

COI sequences; long inserts and ambiguous alignment positions were excluded by visual 

judgement (see tab. A4 in the appendix).  

 

Phylogenetic analyses 

Maximum Likelihood (ML) methods seek to identify the most likely tree given the available 

data. An evolutionary model needs to be identified which estimates the probability of each 

possible individual nucleotide change. 

ML analyses of sequences were carried out using the program RAxML 7.0.3. (Stamatakis 

2006) adapting the program parameters to the alignment manually as recommended in the 

manual (the “hard & slow” way). RAxML is able to handle large datasets. It only implements 

GTR-based models of nucleotide substitution arguing with the idea that GTR is the most 

common and general model for DNA analysis. Hence, the GTRmixed model was used and 

200 multiple inferences were executed on the original alignment. Bootstrapping was 

performed for 1.000 replicates. 
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Bayesian inference of phylogeny is based upon a quantity called the posterior probability 

distribution of trees, which is the probability of a tree conditioned on the observations. The 

core algorithm implemented in software packages like MrBayes (Huelsenbeck & Ronquist 

2001) or Phase (http://www.bioinf.manchester.ac.uk/resources/phase/) is the Metropolis-

Hastings Markov Chain Monte Carlo (MCMC). MCMC is a stochastic algorithm that 

produces sample-based estimates of a target distribution of choice. 

 

Bayesian analyses were conducted with the program MrBayes 3.1.2 (Huelsenbeck & 

Ronquist 2001) for which 4 simultaneous Markov chains were run twice. Likelihood 

parameters were estimated separately for each gene (and each codon position within coding 

sequences) using a character partition. The analysis for each data set was run for 2.000.000 

generations, with a sample frequency of 10. The first 20.000 generations were discarded as 

burnin. If likelihoods had not reached a plateau the burnin was increased to 40.000 

generations. 

Support for nodes is expressed as posterior probabilities. 

The best-fit models of nucleotide substitution were selected with MrModeltest 2.2 (Nylander 

2004) while choosing the Akaike information criterion (AIC) (see tab. A5 in the appendix). 

 

3.3  Results 
 
 
The Maximum likelihood and Bayesian analyses yielded similar results regarding 

phylogenetic relationships of subgroups within Heterobranchia however, with different 

statistical support which will be displayed in the following way: (posterior 

probability/bootstrap support). Only posterior probabilities of ≥ 0.95 and bootstrap support 

values of ≥ 75 respectively are statistically significant. Hence, support values below this 

significance level will not be discussed. 

 

The reconstructed Bayesian 50% majority rule consensus tree based upon dataset I is shown 

in fig. 3.2. The Maximum likelihood tree is not shown, only the resultant bootstrap support 

values are plottet on the 50% majority rule consensus tree of the Bayesian analyses. 

 

In general, it can be stated that both trees show a good resolution with high statistical support 

at the terminal branches while support for the deep nodes is sometimes nonexistent, 

particularly regarding bootstrap supports of the Maximum likelihood analyses. 
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Fig. 3.2: Bayesian inference phylogram of the 50% majority rule consensus tree of dataset I; 
posterior probabilities as well as bootstrap support are provided at the branches (only supports 
above 0.5/50 are shown; green: statistically significant, red: statistically insignificant); 
taxonomic classification follows Bouchet & Rocroi (2005); the branch leading to the 
Architectonicoidea and Omalogyroidea was shortened due to a better presentability of the tree 
topology; for references of taxa images see tab. A6 in the appendix. 

Heterobranchia 

Euthyneura 
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Extremely long terminal branches can be observed within the Murchisonellidae, 

Architectonicoidea and Omalogyroidea.  

 

In both analyses, the Heterobranchia are monophyletic with good statistical support (1.00/99).  

Most of the “Lower Heterobranchia” are nested at the base of the Heterobranchia with the 

exception of the Glacidorboidea and Pyramidellidae. However, there is no resolution at the 

base of the Heterobranchia, thus there is no evidence which group/clade is the earliest 

offshoot.  

Murchisonellidae is not the sister group of the Pyramidellidae which renders the 

Pyramidelloidea polyphyletic.   

The two aclidids (Larochella alta and Graphis sp.) cluster within the Heterobranchia. 

The next clade comprises the Valvatoidea (with Valvata and Cornirostra), Architectonicoidea 

and Omalogyroidea with a high posterior probability but no significant statistical bootstrap 

support (0.97/27). The Architectonicoidea are the sister group to the Omalogyroidea with a 

very good statistical support (1.00/100). The Orbitestellidae as well as the Cimidae appear as 

single offshoots and are in no sister group relationship to any other single taxon. The position 

of the Orbitestellidae within the system of the Heterobranchia has no statistical significant 

support (0.94/34) while the position of the Cimidae is supported by a high posterior 

probability but low bootstrap support (0.99/50).  

The Rissoelloidea appear as sister to the Acteonoidea (1.00/73). 

The Euthyneura are paraphyletic due to the inclusion of the Pyramidellidae and 

Glacidorboidea. The Pulmonata are also paraphyletic while the Opisthobranchia are 

polyphyletic. Within Euthyneura the Nudipleura (0.95/33) appear as the first single offshoot 

of the Opisthobranchia taxa. 

The following Opisthobranchia clade comprises the Umbraculoidea, Cephalaspidea, 

Akeroidea and Pteropoda with a high statistical support (1.00/82). The phylogenetic position 

of the Siphonarioidea (Pulmonata) and the Sacoglossa (Opisthobranchia) remains unclear 

because of an unresolved tree topology. Another large clade comprises the pulmonate taxa 

Hygrophila and Amphiboloidea, the Glacidorboidea and Pyramidellidae as well as the 

monophyletic Eupulmonata (Stylommatophora, Onchidioidea, Ellobioidea and Otinoidea) 

with a high posterior probability and no significant statistical bootstrap support (1.00/41). The 

monophyly of the Basommatophora (Pulmonata) (comprising the Siphonarioidea, Hygrophila 

and Amphiboloidea) is rejected. 
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3.4  Discussion 
 
Phylogenetic analyses 

The current study represents the first molecular phylogeny of the Heterobranchia including 

representatives of most of the major taxonomic groups. A phylogenetic hypothesis was 

inferred by using a multigene dataset comprising nuclear (18S rDNA + 28S rDNA) and 

mitochondrial (16S rDNA + COI) sequences of the Heterobranchia. Because the phylogenetic 

software MrBayes allows the simultaneous application of more than one evolutionary model 

the analysis of this study was applied with different models for each genetic marker (18S, 28S 

and 16S) as well as for each codon position of COI (see tab. A5 in the appendix). Applying 

unique models to different regions of DNA takes the heterogeneous nature of DNA evolution 

into account while reducing systematic errors (Brandley et al. 2005), a practice which 

becomes more and more common in molecular phylogeny (e.g. Klussmann-Kolb & Dinapoli 

2006, Grande et al. 2008, Klussmann-Kolb et al. 2008, Voigt et al. 2008). Unfortunately, 

RAxML does not have the feature to apply different evolutionary models for different gene 

partitions. Therefore, only one model (GTRmixed model) was used for the entire dataset I.  It 

is obvious that in the present study, posterior probabilities (which were estimated with 

MrBayes) are generally higher than the bootstrap support (which was estimated with 

RAxML). At this point, it is difficult to infer if the better posterior probabilities are due to a 

sometimes overoptimistic estimation (which is a well known problem of Bayesian approaches) 

or due to a more realistic modelling of substitution rates by application of different models to 

the different partitions of the dataset. 

 

Two Vetigastropoda and four Caenogastropoda were chosen as outgroup to infer phylogenetic 

relationships of the Heterobranchia. Caenogastropoda and Heterobranchia are considered to 

be sister taxa (Apogastropoda) based on morphological as well as molecular data (Ponder & 

Lindberg 1997, Colgan et al. 2003). In the recently published paper of Grande et al. (2008), a 

close relationship between the Veti- and Caenogastropoda was recovered in all analyses. 

Moreover, the Patellogastropoda were identified as sister to the Heterobranchia while 

rejecting the validity of the derived clade Apogastropoda. These are surely unexpected results 

and further investigations including morphological as well as molecular data are needed. 

Nevertheless, no Patellogastropoda was included in the present study because this would 

extend beyond the scope of this work but, should be taken into account for future studies. 
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Haszprunar introduced the concept of the Heterobranchia in 1985 and 1988 and included the 

Euthyneura as well as many “prosobranch-like” taxa which he grouped as Triganglionata 

Haszprunar, 1985 or Allogastropoda Haszprunar, 1985. The same paraphyletic grouping was 

referred to as Heterostropha by Golikov & Starobogatov (1975) and Ponder & Warén (1988). 

Bouchet & Rocroi (2005) introduced the informal group “Lower Heterobranchia” as a 

synonym to Allogastropoda.  

The monophyly of Heterobranchia is widely accepted based on morphological characters 

(Haszprunar 1985a; 1988, Ponder & Lindberg 1997 and Dayrat & Tillier 2002) as well as 

molecular data (Grande et al. 2008). My results also reveal monophyletic Heterobranchia in 

all analyses and were always supported by very high statistical values (1.00/99). In the 

molecular analyses of Colgan et al. (2003) Heterobranchia were rarely monophyletic due to 

the variable position of Philippea (Architectonicoidea). However, blasting the 28S rDNA as 

well as the COI sequences of Philippea used by Colgan et al. (2003) (and deposited in 

Genbank) revealed a high affinity of these sequences to Arthropoda, Annelida and Bivalvia 

rather than Gastropoda. So, the reason for the position of Philippea outside of the 

Heterobranchia was probably due to contamination and not because of ancestral relationship. 

 

Two Murchisonellidae (Ebala and Murchsisonella), also known as Ebalidae (Warén, 1994) or 

Anisocyclidae (Aartsen, 1995), as well as three Pyramidellidae (Odostomia, Eulimella and 

Turbonilla) were included in the present analyses. Traditionally, the murchisonellid taxa have 

been classified to the Pyramidellidae based upon shell characters only. However, Warén 

(1994) demonstrated that unlike the Pyramidellidae, the Murchisonellidae possess a complex 

jaw apparatus instead of a diagnostic buccal stylet (Wise 1996). These and other differences 

in their respective nervous systems (Huber 1993) and sperm morphology (Healy 1993) further 

support the separation of Murchisonellidae and Pyramidellidae. Therefore this family is 

considered to be a sister taxon of the Pyramidellidae of which bose comprise the 

Pyramidelloidea. Interestingly, in the present study the Murchisonellidae grouped at the base 

of the Heterobranchia, outside of the Euthyneura not forming a sister group relationship with 

the Pyramidellidae which are nested within the Euthyneura. This renders the Pyramidelloidea 

polyphyletic and supports the idea of a non basal position of the Pyramidellidae. As already 

mentioned, the relationship between the Murchisonellidae and the Pyramidellidae previously 

has been based mainly upon shell morphology. Huber (1993) investigated the cerebral 

nervous system of marine Heterobranchia and also included pyramidellid taxa (like 

Odostomia, Boonea, Turbonilla and Pyramidella) as well as a murchisonellid taxon (Ebala) 
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in his studies. He discovered significant differences in the nervous system of Ebala and the 

remaining pyramidellids (e.g. no rhinophores and lateral nerves are present in Ebala). Huber 

(1993) as well as the author of the present study call for further investigations of this group. In 

particular anatomical as well as histological studies are needed to shed light on the taxonomic 

position of the Murchisonellidae. Without any statistical support, they show an affinity to 

Larochella and Graphis in this study.  

 

As already mentioned, the systematic position of many gastropod taxa has not yet been 

clarified. Groups traditionally assigned to the “Prosobranchia” are now considered to be 

“primitive” Heterobranchia such as Valvatoidea or Rissoelloidea (Haszprunar 1988, Healy 

1993). Two genera, which had an unsteady taxonomic position in the past, are Graphis and 

Larochella. Fretter & Graham (1982) noted that the taxonomic position of Graphis remains 

unclear because there were reasons for doubting the placement within the family Aclididae. 

These doubts were mainly based on shell morphology and the presence of a pallial tentacle 

which separates Graphis from Aclis. Ponder (1984) remarked that the examination of the shell 

confirmed that Larochella (together with Graphis) should be placed in a new group near the 

Aclididae, concluding (1991) that these two genera have a pigmented mantle gland and 

belong to the heterobranch gastropods. Based on the molecular data of the present study, I 

support the opinion of Fretter and Ponder and suggest the inclusion of these two genera in the 

informal group “Lower Heterobranchia”. 

 

The next clade comprises the Valvatoidea, Architectonicoidea and Omalogyroidea. The taxon 

Valvatoidea is of special interest because some taxa occur in freshwater (e.g. Valvatidae) as 

well as marine habitats (e.g. Cornirostridae, Hyalogyrinidae). In addition, their early offshoot 

within the heterobranch clade probably provides information on what the early heterobranchs 

were like (e.g. morphology, life-style) (Ponder 1991). The taxonomic classification of the 

Valvatoidea is still under review (Ponder 1990a). According to the taxonomic classification of 

Bouchet & Rocroi (2005) the taxon consists of at least three recent families (Valvatidae, 

Cornirostridae and Hyalogyrinidae). Since they have several features in common (e.g. similar 

nervous system, similar sperm morphology), a close relationship of the Orbitestellidae with 

the Valvatidae was suggested by Ponder & Warén (1988), Ponder (1990b) and Healy (1993). 

On the other hand, Bieler at al. (1998) surveyed distinguishing characters of different 

Valvatoidea families and found Cornirostridae significantly different from Orbitestellidae. So, 

according to Ponder (1990b) the question arose whether the Orbitestellidae and Valvatidae are 
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similar because both groups are primitive, or whether they are part of the same monophyletic 

group at the base of the Heterobranchia. To answer this question I included Valvatidae, 

Cornirostridae and Orbitestellidae in my molecular analyses. Fig. 3.2 shows a sister group 

relationship between Valvata (Valvatidae) and Cornirostra (Cornirostridae). Together, they 

are sister to a clade comprising the Architectonicoidea and Omalogyroidea. The 

Orbitestellidae appear not to be related to the Valvatoidea, supporting the latest taxonomic 

classification by Bouchet & Rocroi (2005), where the Orbitestellidae are not yet assigned to 

any superfamily. Nevertheless, the position of the Orbitestellidae in the system of the 

Heterobranchia remains unclear because of a non-significant statistical support at the 

respective node (fig. 3.2) in the present study. 

 

The Omalogyroidea as well as the Architectonicoidea are considered to be basal taxa of the 

Heterobranchia (Haszprunar 1985a; 1988). However, their exact systematic affinities, in 

particular the supposed close relationship between these two taxa is still unclear. Healy (1988) 

mentioned a possible affinity between Omalogyroidea and Architectonicoidea based on sperm 

morphology. Haszprunar (1985a; 1988) proposed the same relationship based on similarities 

in the mantle cavity and in the genital system. The results of the present study, based on 

molecular data, support these assumptions and propose a close relationship between 

Architectonicoidea and Omalogyroidea with a high statistical support (1.00/100) in all 

analyses. Nevertheless, recently Bäumler et al. (2008) studied the anatomy of the taxon 

Omalogyra atomus using 3D reconstructions and postulated that a closer relationship with the 

Arcitectonicoidea is not likely due to an erroneously stated (Haszprunar 1988) left-side 

position rather than a right-side position of the ciliary stripes (which replace the ctenidial 

function).  

 

Another enigmatic taxon with a formerly unclear taxonomic position is Cima. Fretter & 

Graham (1982) concluded that Cima belongs to the Aclididae (Caenogastropoda). However, 

morphological characters such as shellmorphology, the ptenoglossate radula, absence of penis 

and the anterior edge of the foot being obtusely rounded in the Aclididae are different from 

other Aclididae. Warén (1993) assigned Cima to the “Lower Heterobranchia” based on the 

following characters: presence of a pigmented mantle organ, anteriorly deeply bifurcated foot, 

brownish digestive gland with darker granulae, and eyes situated centrally at the bases of the 

cephalic tentacles. He introduced a new family Cimidae. At this time, it was not possible for 

Warén (1993) to recognize any described family of the Heterobranchia to which the Cimidae 
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show a clear affinity. He therefore did not place this taxon in any superfamily. My results 

support the inclusion of the Cimidae in the Heterobranchia as well as the isolated position as 

sister group to Rissoelloidea + Acteonoidea + Euthyneura (incl. Pyramidelloidea). 

 

Relative to the “Lower Heterobranchia” the most striking result of this new phylogeny is the 

sister group relationship between the Rissoelloidea and Acteonoidea, a sister group 

relationship which has never been proposed before. This could be due to the fact that previous 

studies on Heterobranchia (Gastropoda) phylogeny did not include both taxa in the same 

analyses. Nevertheless, in the current study bootstrap support for this sister group relationship 

was low (73) and synapomorphies (e.g. from morphology) to support this relationship are 

missing. Further testing of this phylogenetic hypothesis with additional morphological, 

ultrastructural and molecular data is urgently needed.  

While the basal position of the Rissoelloidea within the Heterobranchia is supported by 

various authors (e.g. Haszprunar 1988, Healy 1993), the position of Acteonoidea is still 

unresolved. Traditionally, the latter have been regarded as opisthobranchs mostly with a basal 

position (Ponder & Lindberg 1997, Dayrat et al. 2001, Grande et al. 2004a and Klussmann-

Kolb et al. 2008) or have even been excluded from Opisthobranchia (Mikkelsen 1996; 2002, 

Thollesson 1999, Bouchet & Rocroi 2005 and Wägele & Klussmann-Kolb 2005) (for a short 

review about the phylogenetic position of Acteonoidea see Mikkelsen 2002). My results 

support the latter authors because of the aforementioned sister group relationship of 

Rissoelloidea and Acteonoidea and support a taxonomic position of the Acteonoidea within 

the Heterobranchia but outside the Euthyneura.  

 

As already mentioned Opisthobranchia and Pulmonata together comprise the Euthyneura, 

which have been accepted as monophyletic in most phylogenetic investigations (Nordsieck 

1992, Tillier et al. 1994, Salvini-Plawen & Steiner 1996, Ponder & Lindberg 1997, Wade & 

Mordan 2000, Yoon & Kim 2000, Dayrat & Tillier 2002 and Knudsen et al. 2006). 

Nevertheless, the Euthyneura have been recovered paraphyletic in the current study because 

of the inclusion of two “Lower Heterobranchia” taxa (Pyramidellidae and Glacidorboidea). 

Other authors obtained similar results when including the Pyramidellidae in their molecular 

analyses. Grande et al. (2004a) and (2008) found Pyramidellidae nested deeply within 

Pulmonata whereas Klussmann-Kolb et al. (2008) recovered them as sister group to the 

Amphiboloidea (Pulmonata). Unlike these studies, which included only one Pyramidellidae in 

the analyses, three pyramidellid taxa were included in the current investigation (Odostomia, 
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Eulimella and Turbonilla). The Pyramidellidae nested within Pulmonata in all my analyses 

forming a clade with the Amphiboloidea and Glacidorboidea.  

 

The Opisthobranchia show only few apomorphies, like the bifurcation of the Nervus 

labiotentacularis (N2) (Salvini-Plawen & Steiner 1996) but current studies of Staubach (2008) 

detected a homologous cerebral nerve (Nervus tentacularis) in Achatina fulica (Pulmonata) 

which is also bifurcated. Hence, the apomorphic character of this nerv for the Opisthobranchia 

is questionable. Nevertheless, the Opisthobranchia have also been recovered paraphyletic 

regardless of whether the analyses were based upon morphological or molecular data 

(Haszprunar 1988, Ponder & Lindberg 1997, Thollesson 1999, Wägele et al. 2003, Grande et 

al. 2004a; 2008, Vonnemann et al. 2005, Wägele & Klussmann-Kolb 2005 and Klussmann-

Kolb et al. 2008). In all current analyses Opisthobranchia was never recovered monophyletic. 

 

In the current phylogeny the first offshoot within Euthyneura respectively Opisthobranchia 

are the Nudipleura (see fig. 3.2). This is remarkable because the Nudipleura are usually 

regarded as highly derived (Wägele & Willan 2000, Wägele et al. 2003 and Wägele & 

Klussmann-Kolb 2005). This taxon was introduced by Wägele & Willan (2000), which 

comprises the Pleurobranchoidea and the Nudibranchia, both characterised by the possession 

of a blood gland, an androdiaulic reproductive system and the loss of the osphradium. Grande 

et al. (2004a), Vonnemann et al. (2005) and Klussmann-Kolb et al. (2008) found Acteonoidea 

to be the sister group of Nudipleura. It is noticeable that, Klussmann-Kolb et al. (2008) 

observed deviant base composition and rate heterogeneity in Nudipleura which could 

consequently lead to an artificial basal position in a molecular tree. Hence, evolutionary 

models which have the ability to compensate rate heterogeneity are urgently needed. A PhD 

student (Karen Meusemann) from the Forschungsmuseum Alexander Koenig in Bonn, who is 

working on this problem, has most likely found a possibility to solve the problem of high rate 

heterogeneity by modifying models of the software package called Phase. However, these 

models are currently not publicly available. 

Nevertheless, a basal position of the highly derived Nudipleura seems to be unlikely, 

underscoring the fact that further investigations are indeed necessary. Currently, in the 

Department of Phylogeny and Systematics, a PhD study is being conducted, which is 

investigating molecular as well as sperm morphology of the Nudipleura. This investigation 

intends to shed more light on the systematic position of this enigmatic group. 
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The next clade comprised the Umbraculoidea, Cephalaspidea, Akeroidea (Aplysiomorpha) 

and Pteropoda with a good statistical support (1.00/78). The same clade was revealed by the 

study of Klussmann-Kolb et al. (2008) with a high posterior probability (1.00) as well as 

bootstrap support (99). Klussmann-Kolb et al. (2008) only included one umbraculoid taxon 

and considered taking more taxa into account for further phylogenetic studies in order to 

clarify the position of this group within the heterobranch system. Additionally, I included 

Tylodina in my analyses, which did not change the topology of the clade comprising the 

Umbraculoidea, Cephalaspidea, Akeroidea and Pteropoda. Dayrat et al. (2001) and 

Klussmann-Kolb & Dinapoli (2006) found a strongly supported monophyly of a group 

comprising the Aplysiomorpha (including Akeroidea) and Pteropoda. The latter authors also 

discussed the stomach caecum with a typhlosolis and specialized glandular epithelium as a 

possible synapomorphy of these two taxa. Due to the adaptation to a pelagic life style, the 

relationship of the pteropods with other opisthobranchs has been difficult to reveal but 

Klussmann-Kolb & Dinapoli (2006) considered this caecum to be homologous in 

Thecosomata and Akeroidea (Aplysiomorpha). Their molecular analyses also showed a 

support for the hypothesis of Cephalaspidea being the sister group of Aplysiomorpha + 

Pteropoda but with rather low bootstrap support. However, histological investigations of 

gizzard plates revealed that these plates are built by a very similar epithelium as seen in the 

representatives of all three taxa (Klussmann-Kolb & Dinapoli 2006). Another feature 

probably uniting the Pteropoda, Aplysiomorpha and Cephalaspidea are the parapodia. 

However, the homology of these structures in the three taxa has not yet been clarified, 

rendering a discussion at this point inappropriate.  

 

The systematic position of the Sacoglossa as well as the Siphonarioidea is still a matter of 

debate (Grande et al. 2004a; 2004b, Vonnemann et al. 2005 and Klussmann-Kolb et al. 2008). 

Unfortunately, according to my results, any statement about the phylogeny of both taxa is 

impossible because my analyses reveal an unresolved tree topology at the position of the 

Siphonarioidea and Sacoglossa. This topology presents both taxa outside a clade comprising 

the remaining Pulmonata (Hygrophila, Amphiboloidea, Stylomatophora, Onchidioidea, 

Ellobioidea, Otinoidea) + Glacidorboidea + Pyramidellidae. 

Different molecular analyses assign the Sacoglossa and Siphonarioidea equivocally to 

different clades within Euthyneura. Dayrat et al. (2001) found Sacoglossa to be basal within 

the Euthyneura. According to Grande et al. (2004b), they are basal but sister to Siphonaria 

and the remaining Opisthobranchia. The molecular data of Klussmann-Kolb et al. (2008) 
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suggested a close affinity of the Sacoglossa to primitive Pulmonata, especially Siphonarioidea. 

In Remigio & Hebert (2003) the marine basommatophoran Siphonaria did not group with 

other members of this order or even with pulmonates but appears as an offshoot within the 

Opisthobranchia. All analyses of Grande et al. (2008) also support Siphonaria as an 

opisthobranch.  

Because of the variable position of the Siphonarioidea and Sacoglossa within the system of 

the Heterobranchia respectively Euthyneura a re-evaluation of morphological as well as 

molecular data is urgently needed. 

 

In contrast to the Opisthobranchia, the monophyly of Pulmonata is widely accepted based on 

morphological characters (Tillier 1984, Haszprunar 1985a; 1990, Nordsieck 1992 and Dayrat 

& Tillier 2002). However, paraphyly or even polyphyly of Pulmonata was recovered using 

molecular data (Tillier et al. 1996, Grande et al. 2004a; 2008, Knudsen et al. 2006 and 

Klussmann-Kolb et al. 2008).  The molecular results of the present study also support the idea 

of a paraphyletic Pulmonata. 

The phylogeny of the Pulmonata has been discussed controversially over the years (Tillier 

1984, Haszprunar & Huber 1990, Nordsieck 1992, Salvini-Plawen & Steiner 1996, Barker 

2001, Dayrat et al. 2001, Dayrat & Tillier 2002, Grande et al. 2004a; 2008, Wade et al. 2006 

and Klussmann-Kolb et al. 2008).  

Within the present study, the monophyly of the Hygrophila is confirmed. The hypothesis of a 

common origin of the freshwater taxa belonging to the Hygrophila was supported earlier by 

morphological (Salvini-Plawen 1990, Nordsieck 1992, Barker 2001) and molecular studies 

(Dayrat et al. 2001, Albrecht 2005, Klussmann-Kolb et al. 2008). However, only two 

Hygrophila taxa were included in the current study. Hence, the result is of little significance. 

The monophyly of the Eupulmonata is also confirmed whereas, neither the monophyly of the 

Basommatophora (Siphonarioidea, Hygrophila and Amphiboloidea) nor the monophyly of the 

Thalassophila (= Amphiboloidea + Siphonarioidea) is supported. Recent molecular studies 

also failed to recover Basommatophora as a monophyletic group (Tillier et al. 1996, Yoon & 

Kim 2000, Grande et al. 2004a; 2008 and Klussmann-Kolb et al. 2008).  

The superfamily Glacidorboidea and the family Glacidorbidae were introduced by Ponder 

(1986) and placed within the Basommatophora based on several morphological characters 

(e.g. similarity of the genital system, dorsal and ventral jaw elements, sperm morphology, 

euthyneurous nervous system). Ponder (1986) also proposed a possible relationship between 

the freshwater genus Glacidorbis and the Amphiboloidea. A pulmonate relationship was also 
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accepted by Visser (1988) and Healy (1996) based on sperm ultrastructural data. In contrast to 

this view, Haszprunar (1988) argued that Glacidorbidae are not related to Pulmonata and 

should be placed within the “Lower Heterobranchia” due to the lack of a typical 

pentaganglionate nervous system, a pneumostome, a procerebrum and dorsal bodies. Barker 

(2001) and Dayrat & Tillier (2002) followed this opinion. In 2000 Ponder & Avern 

considered that a pulmonate relationship is still possible because Glacidoris is highly 

paedomorphic, which would explain the absence of many of the typical pulmonate characters. 

Based on my molecular data I follow the opinion of Ponder (1986) and Ponder & Avern 

(2000). We agree upon the pulmonate relationship suggesting a closer relationship to the 

Amphiboloidea.  

 

The systematic position of the Pyramidellidae within the gastropod system has been discussed 

controversially for over 130 years. This controversy is caused in part by the lack of 

information about this taxon but also due to changing views about gastropod phylogeny (Wise 

1996). Based on morphological characters, older studies placed them in the “Prosobranchia” 

because of a spirally coiled calcareous shell into which the entire body is retractable, a foot 

with an operculum, a long proboscis and an anteriorly oriented mantle cavity (e.g. Golikov & 

Starobogatav 1975). Younger studies placed them in the Opisthobranchia because of a pallial 

kidney, subepithelial eyes on the median side of the tentacles, an ovotestis and a 

heterostrophic protoconch (e.g. Salvini-Plawen 1980). At present, many scientists assign them 

to the “Lower Heterobranchia” (e.g. Haszprunar 1985a; 1988, Ponder & Warén 1988) (for a 

short review about the current state of pyramidellid phylogeny see also Wise 1996). 

Haszprunar (1990) discussed synapomorphies of high significance, such as giant nerve cells, a 

rhinophoral and a lateral nerve and characters of sperm morphology possibly shared by 

Euthyneura and Pyramidelloidea. However, he placed the Pyramidelloidea closest to the 

Euthyneura but still outside of the latter. Huber (1993) investigated the cerebral nervous 

system of marine Heterobranchia and included also a remarkable number of “Lower 

Heterobranchia”.  According to Huber (1993), rhinophoral and lateral nerves are present in 

the Pyramidellidae and the Opisthobranchia but absent in the Caenogastropoda, 

Architectonicoidea, Omalogyroidea and Rissoelloidea. Moreover, he observed giant cerebral 

nerve cells in Amathina tricarinata (Amathinidae, Pyramidelloidea) but not in small 

Pyramidellidae like Pyramidella or Odostomia. Therefore, he favoured the idea that the 

Pyramidellidae have an intermediate position between the “Lower Heterobranchia” and the 

Opisthobranchia. According to the results of the present study, I propose a different scenario. 
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The Pyramidellidae should be included within the Euthyneura based on the newly acquired 

molecular data (see fig. 3.2). This assumption is supported by morphological data of the 

nervous system. Rhinophoral and lateral nerves are present in the Pyramidellidae (Huber 1993) 

while the additional pair of ganglia (which is an autapomorphy for the Euthyneura) have 

possibly been lost due to small body size or the parasitic life style of the Pyramidellidae. 

These aspects are often associated with enormous morphological changes. Another hint is the 

presence of giant nerve cells in Amathina tricarinata (Amathinidae, Pyramidelloidea). These 

particular cells occurred only within Euthyneura and are linked to body size and therefore 

possibly not present in the minute Pyramidellidae. Anyway, the inclusion of Amatinidae taxa 

in further phylogenetic analyses could be the key to the answer of the phylogenetic position of 

the Pyramidellidae. If Amathina clustered with the Pyramidellidae within the Euthyneura, 

then one could assume that the giant cells are secondarily lost in the minute Pyramidellidae. 

However, if Amathina clustered with the Murchisonellidae outside the Euthyneura, then an 

earlier occurrence of giant cells in the evolution would have to be proposed. 

According to the aforementioned molecular data, the Pyramidellidae show Pulmonata affinity. 

Morphological characters which support these results are lacking to date. Thollesson (1999) 

investigated the phylogeny of the Euthyneura based on molecular data and found an 

apomorphic deletion (gap of ca. 20 bp) in the helix G16 of the 16S rRNA molecule. This gap 

was also found in the Pyramidellidae, supporting not a close relationship with the Pulmonata 

but rather a possible synapomorphy of Pyramidellidae and Euthyneura. A recent diploma 

thesis in our working group, took additional pyramidellid taxa into account. The results 

support this assumption. The Pyramidellidae nested within the Euthyneura in all analyses but 

neither a closer relationship with the Pulmonata nor with the Opisthobranchia could be 

concluded in this diploma study (Zinßmeister 2008). 

 

According to the latest review by Bouchet & Rocroi (2005), the clade Eupulmonata comprises 

the Stylommatophora + Onchidioidea + Ellobioidea + Otinoidea + Trimusculoidea. Although, 

there are no morphological apomorphies known to date, this taxon receives good support in 

molecular studies (Wade & Mordan 2000, Klussmann-Kolb et al. 2008, current study). 

Monophyly of Stylommatophora within the Euthyneura is strongly supported by Nordsieck 

(1992), Tillier et al. (1996), Wade & Mordan (2000), Dayrat et al. (2001), Dayrat & Tillier 

(2002), Grande et al. (2004a; 2008), Wade et al. (2006), Klussmann-Kolb et al. (2008) and the 

present study. As sister to the Stylommatophora, the present study shows a clade comprising 

the Onchidioidea, Ellobioidea and Otinoidea with high statistical support (1.00/97). These 
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results are congruent to former molecular studies of Klussmann-Kolb et al. (2008) who 

discussed the phylogeny of the Eupulmonata in detail.  

 

The taxon Smeagol (Smeagolida) was introduced by Climo (1980) who assigned them to the 

Gymnomorpha (syn. Systellommatophora). Tillier (1984) argued that Smeagol is related to 

the Otininidae and has undergone modification due to “limicization” (e.g. loss of shell). 

Tillier & Ponder (1992) reinvestigated Smeagol and came to the same conclusion that (based 

upon the synapomorphic occurrence of an ocular ridge and arrangement of the heart and 

kidney, together with the probable symplesiomorphic foot morphology) Otina and Smeagol 

form a monophyletic group. Barker (2001) followed this opinion, whereas Haszprunar & 

Huber (1990) assumed a close relationship between Smeagol and the Onchidioidea based 

upon the nervous system. Nordsieck (1992) followed the opinion of the latter one. To prove 

or reject both phylogenetic hypotheses, based on morphological data, Otina as well as 

Smeagol, were included in the present molecular study. According to the results (fig. 3.2), the 

author favours the hypothesis that Otina and Smeagol form a monophyletic group since these 

two taxa appear as sister taxa in all analyses with a high statistical support (1.00/94). 

 

Conclusion 
 
Although, the a priori analyses have revealed much conflict in the dataset, the here presented 

molecular hypotheses show new insights into heterobranch phylogeny mainly due to the 

outstanding taxon sampling of the “Lower Heterobranchia”. Moreover, this is the first 

analysis comprising a multigene dataset of two molecular and two mitochondrial genes (about 

4000 bp) in representatives of all major lineages of Heterobranchia. Species like Ebala, 

Murchisonella, Glacidorbis or Smeagol were included for the first time in a molecular 

analysis of the Gastropoda. The phylogeny also shows that taxonomy never ends due to the 

inclusion of two aclidids within the Heterobranchia.  

The monophyly of the Heterobranchia was confirmed while the monophyly of Euthyneura as 

well as Opisthobranchia and Pulmonata was rejected. This supports the request of re-

evaluation of morphological characters as well as molecular data that have been used to 

analyse relationships within gastropods due to a missing phylogenetic signal. 

Except for Glacidorboidea and Pyramidellidae all “Lower Heterobranchia” are nested at the 

base of the Heterobranchia. Good evidence (morphologically as well as molecular) suggests 

that Glacidorbidae and Pyramidellidae are more derived than originally hypothesized. 
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The Rissoelloidea were recovered as sister group to the Acteonoidea supporting a basal 

position of the latter taxon. 

Nevertheless, many questions remain unanswered due to unresolved nodes in the tree. These 

include the clarification of the most basal heterobranch or the taxonomic position of 

Siphonarioidea and Sacoglossa.  

Despite the integration of more taxa and molecular data in the present study, some aspects of 

heterobranch phylogeny remain equivocal. There were incongruencies between 

morphological trees and the molecular trees of this study, as well as between this and other 

molecular trees. Additional data such as gene order data or more refined morphological data 

will be required to resolve some of these problems. Moreover, fossil data are needed due to 

the fact that the origin of many major gastropod groups remains unclear.  

 

Evolutionary scenarios 

Other than classification, the main goal of phylogenetic studies is to give insights into the 

evolutionary history of characters and the evolution of taxa. This means the phylogenetic tree 

is more a preliminary step than a final goal (Dayrat & Tillier 2003). 

 

When investigating the evolution of the Heterobranchia, one comes to the conclusion that the 

exception proves not the rule but rather, the exception is the rule. Regardless of which 

evolutionary event one might examine, it seems that all processes evolved convergent rather 

than synapomorphic. Even within related groups, homologies are often uncertain and 

independent origins of some structures have been proposed. 

 

With the new and comprehensive phylogenetic framework obtained in this study it is now 

possible to propose evolutionary scenarios that have lead to vast diversification within the 

Heterobranchia.  

 

Upon comparing the paraphyletic “Lower Heterobranchia” with the Euthyneura, a 

distinguishing feature within species abundance is evident. The “Lower Heterobranchia” 

represent a step by step evolution with a marginal richness in species. Most of the families 

include only one or two genera (e.g. Rissoellidae, Orbitestellidae, Cimidae). In contrast, the 

Euthyneura are considered to be the crown group of the Gastropoda because they show an 

amazing species richness and ecological diversity. Reasons for their evolutionary success 

were probably due to several newly acquired features. 
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The central nervous system (CNS) has played an increasingly important role in our 

understanding of gastropod relationships. Torsion is probably the most distinguishing 

characteristic of the Gastropoda. All modern Gastropoda undergo torsion during some stage in 

their development. Streptoneury (twisted/crossed visceral loop) is the result. Contrasting to 

the streptoneury is secondary euthyneury (uncrossed visceral loop). The change from 

streptoneury to euthyneury is obtained by detorsion. Euthyneury distinguishes the 

Opisthobranchia and the Pulmonata from the remaining Gastropoda (formerly 

“Prosobranchia”). Many primitive features, including torsion, have been secondarily lost 

through evolution in opisthobranchs and pulmonates. 

Little is known about the nervous system of the “Lower Heterobranchia” but as far as one 

knows they are more aligned with the Opisthobranchia and the Pulmonata than with the 

remaining Gastropoda, mainly because they have also an uncrossed (euthyneural) nervous 

system (Chase 2002).  

Anyway, euthyneury of the Heterobranchia is a result of multiple convergences (Haszprunar 

1985a, Haszprunar & Huber 1990, Bieler 1992). In contrast to euthyneury itself, there is 

another character of the central nervous system which is diagnostic for the Euthyneura. This is 

the presence of an additional pair of ganglia resulting in a so-called pentaganglionate visceral 

loop (Haszprunar 1988). Haszprunar (1985a) therefore, introduced the taxon Pentaganglionata 

Haszprunar, 1985 as a synonym of Euthyneura. Ponder & Lindberg (1997) noted that these 

ganglia are often absent, especially in pulmonates. However, Haszprunar (1985b) argues that 

this is through fusion with other ganglia. Nevertheless, Dayrat & Tillier (2000) conclude that 

the occurrence of five visceral ganglia is not ascertained for all euthyneuran taxa. Therefore it 

cannot be accepted as general character of Euthyneura.  

Aside from the discussion regarding the pentaganglionate condition and the consideration as 

an apomorphic character of the Euthyneura, the function of this additional pair of ganglia is 

not yet entirely clarified. Hence, discovering the function of the additional pair of ganglia will 

possibly also answer the question as to what enables Euthyneura more successful than “Lower 

Heterobranchia”. 

 

Maybe the condition of neuronal giantism in the Pulmonata and Opisthobranchia has been a 

significant selective advantage. Caenogastropoda have no giant neurons while most species of 

the Opisthobranchia and Pulmonata show 10-20 neurons in the category “giant” (Chase 2002). 

The significance of giant neurons to the animals in which they are found has not been 

satisfactorily understood (Gillette 1991). Nevertheless, because of their size they are very 
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popular in neuroscience, e.g. Nudibranchia have relatively simple nervous systems, with large 

identifiable neurons and clusters of neurons, making them amenable to neural circuit analysis 

(Newcomb et al. 2006). 

Gillette (1991) introduced an interesting speculation beginning with the observation that the 

earliest molluscs were minute creatures, whereas recent gastropods are usually larger. 

Because larger bodies need more servicing by the nervous system, there were two possible 

adaptations during evolution (Chase 2002). One was to increase the number of neurons and 

the other was to increase the size of existing neurons taking over multiple functions (Chase 

2002). Comparing animals of equal size of the Caenogastropoda versus Opisthobranchia and 

Pulmonata, the former have considerably more neurons than the latter one. Consequently, the 

Caenogastropoda evolved the first scenario, whereas the Opisthobranchia and Pulmonata 

developed the second alternative (Chase 2002).  

Gillette (1991) suggested that the behaviour of the Opisthobranchia and Pulmonata, relative to 

that of the Caenogastropoda is simpler and also underlaid by a simpler nervous system. 

Therefore, Opisthobranchia and Pulmonata might have economized on developmental 

complexity and reduced energy costs by using a small number of very large neurons (Chase 

2002). Unfortunately, Gillette says nothing about neuronal giantism in the “Lower 

Heterobranchia”.  

As aforementioned, little is known about the nervous system of the “Lower Heterobranchia”. 

Other than Haszprunar’s work (1985a), where he introduced the concept of the 

Heterobranchia, there is only one detailed study existing from Huber (1993). Huber discusses 

the cerebral nervous system of marine Heterobranchia including the basal groups. Huber 

(1993) observed giant cerebral nerve cells in Amathina (Amathinidae, Pyramidellidae) and 

Euthyneura. They were absent in the Caenogastropoda, Architectonicoidea, Omalogyridae, 

Rissoellidae and in small Pyramidellidae (e.g. Turbonilla, Odostomia). The inclusion of 

Amathina in further molecular phylogenetic analyses is necessary in order to answer different 

questions regarding the phylogeny of the Heterobranchia particularly Pyramidelloidea. 

Assuming that Amathina would cluster with the Pyramidellidae within the Euthyneura, one 

has to interpret the findings of Huber (1993) in the following way. First of all, his observation 

would support the idea of a more derived position of the Pyramidellidae within the 

Euthyneura due to the presence of giant nerve cells in Amathina (see also discussion in the 

phylogenetic analyses chapter). Secondly, it would support the assumption that giant cells are 

correlated with body size because they were found in the relatively large Amathina but not in 

the minute Turbonilla or Odostomia. Furthermore, neuronal giantism could be a reason for a 
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more successful Euthyneura compared to the “Lower Heterobranchia” because they occur 

only in the former group. It is most probable that these neuronal cells give the Euthyneura a 

significant selective advantage as Gillette (1991) already assumed. 

 

What else makes the Euthyneura more successful than their close relatives?  

 

One of the most important innovations related to feeding was the move from grazing of 

microorganisms to omnivorous and then to carnivorous grazing on sessile animals (Caron et 

al. 2006). This step causes some of the most important adaptive radiations through dietary 

specialisation (Aktipis et al. 2008).  

A key event was certainly the invasion of freshwater and in particular terrestrial habitats. 

Moreover, a specialisation on less utilised food resources such as sponges or cnidarians as 

evolved in several marine clades of the Opisthobranchia possibly leads to this species richness. 

Opisthobranchia are certainly less diverse in species numbers than other marine gastropods 

(Wägele & Klussmann-Kolb 2005). However, when comparing species numbers within 

opisthobranch taxa, it becomes quite obvious that some taxa far outnumber others (Wägele 

2004). Wägele (2004) investigated potential key characters in Opisthobranchia and concluded 

that the examined key characters in her study are morphological characters related to feeding. 

She assumed them to be triggers for exploring new food sources. Moreover, it was difficult 

for Wägele (2004) to decide whether the switch to a new food source was the key innovation, 

followed by a morphological adaption promoting radiation, or vice versa. Nevertheless, the 

Nudibranchia is the most diverse group within the Opisthobranchia (with more than 2.700 

species) while the Cephalaspidea s.str. is the second largest taxon (with at least 840 extant 

species) (Wägele 2004). Feeding on different kinds of food is surely one reason for the high 

diversification of these two groups. The same applies for the Sacoglossa which comprises 

approximately 300 species. The Sacoglossa opened new food resources because of the 

evolution of a uniseriate radula with just one median tooth per row. This uniseriate radula 

enables the cutting open of algal cells so that the content can be sucked out (Jensen 1997, 

Wägele 2004). The Chromodorididae (Nudibranchia) comprising more than 500 species, is 

considered to be extremely efficient by storing secondary metabolites from their sponge prey 

in special organs (mantle dermal formations — MDFs) (Wägele 2004). 

The only lower heterobranch with a noteworthy number of species are the Architectonicoidea 

(about 100 species). They are (as far as is known) marine ectoparasites of colonial cnidarians 

(mainly zoantharian, scleractinian and antipatharian corals) (Robertson 1967; 1970). The 
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specialised lifestyle of the Architectonicoidea supports the idea of an evolutionary advantage 

because of food specialisation. 

 

The invasion of freshwater and terrestrial habitats by Pulmonata was doubtlessly a key step in 

the ongoing evolution of the Euthyneura. This habitat shift has necessitated numerous 

adaptive changes in their respiratory, nervous, excretory, and reproductive systems, as well as 

in behaviour and physiology (Mordan & Wade 2008). Moreover, a radiation into these 

habitats has lead to an enormous increase in species numbers. The most successful Pulmonata 

are the terrestrial Stylommatophora with about 95% of all pulmonates. They are grouped into 

about 90 families with more than 10.000 species (Mordan & Wade 2008). The second 

successful Pulmonata are the principal freshwater taxon Hygrophila with about 1.000 species 

(Mordan & Wade 2008). 

Monophyly of the Pulmonata is supported by various morphological characters like 

acquisition of a pneumostome and pulmonary vessels, presence of a procerebrum and dorsal 

bodies (Dayrat & Tillier 2002). All four apomorphies can be related to life outside the sea 

(Mordan & Wade 2008). Central to the success is the contractile pneumostome, in addition to 

its role in respiration it also acts as an important water storage area which reduces dehydration 

(Barker 2001). The procerebrum has direct nervous connections with the cephalic tentacles 

and is the major central site of olfactory information processing in terrestrial forms (Barker 

2001). The medio-dorsal bodies appear to act on the development of both male and female 

cells in the gonad (Barker 2001).  

An additional important key to successful invasion of nonmarine habitats is certainly the 

regulation of osmotic processes of body fluids. Therefore, many of the adaptations of 

freshwater and land snails are related to the excretory system (Andrews 1988, Mordan & 

Wade 2008).  

Such terrestrial and freshwater adaptations are uncommon within the “Lower Heterobranchia”. 

No member has ever invaded a terrestrial habitat. The Valvatidae are the only basal 

freshwater taxon. Compared to their successful euthyneuran freshwater relatives, the 

Valvatidae possess no “lung” but rather a secondary gill (Rath 1988), making them probably 

less successful in freshwater colonisation. 

  

The latest study by Klussmann-Kolb et al. (2008) showed that within the Pulmonata, the 

freshwater habitat has only been conquered once by the Hygrophila. Their reconstruction of 

character evolution for the different habitat types at specific nodes indicated that the ancestor 
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of Hygrophila probably already lived in a freshwater habitat. Moreover, Klussmann-Kolb et al. 

(2008) conclude, that colonisation of freshwater in Pulmonata occurred via an aquatic 

pathway directly from the marine habitat and not via a terrestrial step because the ancestor of 

Eupulmonata and Hygrophila appeared to have lived in a marginal zone (e.g. supralittoral 

zones, estuaries or mangroves). 

The present study provides new insights into freshwater colonisation by heterobranch 

gastropods due to the inclusion of additional limnic taxa (e.g. Valvata, Glacidorbis) in the 

phylogenetic analyses. Within Heterobranchia, the colonisation of freshwater occurred several 

times independently. Once by the taxon Valvatidae and twice within the Euthyneura. The 

genus Valvata lives in freshwater while the sister taxon Cornirostridae only occurs in the 

intertidal zone in sheltered, fully marine water. Moreover, the present study clearly shows that 

Glacidorbis is related to the Pulmonata. Consequently, within the Pulmonata, the colonisation 

of freshwater happened at least twice. Once by the Hygrophila and in parallel by the 

Glacidorbidae in the Australian region.  

 

In conclusion, it can be stated that the adaptation of different feeding habits has had a 

noticeable influence on Heterobranchia evolution. Especially the Opisthobranchia have 

undergone what appears to be explosive adaptive radiations because of food specialization. 

Moreover, the successful invasion of non-marine habitats has had a profound influence on 

heterobranch taxa also. Here, the Pulmonata represent by far the most significant invasion of 

limnic as well as terrestrial environments. 

Lower heterobranchs show neither a strong food specialization nor was there a significant 

shift in environments. Consequently, the “Lower Heterobranchia” show a poorer 

diversification than their close relatives. 

 

The next chapter deals with the molecular dating of the present phylogenetic hypothesis by 

using the software Beast. This method reconstructs phylogenies and presents a framework for 

testing evolutionary hypotheses without conditioning on a single tree topology. The obtained 

results should help to prove or reject some of the equivocal results, enabling a better 

understanding of heterobranch evolution. 
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4.  Evolution of the Heterobranchia 

4.1   Introduction 
 

“The present is the key to the past” is one of the key concepts in geology and palaeontology. 

When it comes to the reconstruction of the evolution of gastropods the opposite is also true, 

and the past represents the key to their present classification (Bandel 1997). It does not matter 

which evolutionary theory one may prefer, the evidence to support it must come from the 

fossil record (Bandel 1997). Without fossils the evolutionary history can never be 

reconstructed in a way that comes close to the truth (Bandel 1997).  

 

Gastropods have remained surprisingly underutilized as models for evolutionary studies. No 

other animal group offers an equal opportunity to combine the results of morphological and 

molecular studies of the diverse living fauna with data derived from the extensive fossil 

record (Bieler 1992). Fossils of the Gastopoda have a long history that can be traced to the 

Ordovician and have roots in the Cambrian (Fryda & Bandel 1997).  

 

An independent evolutionary history of the Heterobranchia started a long time ago (Bandel & 

Heidelberger 2002). A Heterobranchia relative is documented from Early Devonian (Emsian) 

(Kuskokwimia Fryda & Blodgett 2001) and similar species lived at the Mid Devonian 

(Plaeocarboninia Bandel & Heidelberger 2002). Both gastropod taxa (Kuskokwimia Fryda & 

Blodgett, 2001 and Plaeocarboninia Bandel & Heidelberger, 2002) belong to a group that can 

be connected with Mesozoic and extant representatives of the Valvatoidea (Bandel 2002). 

Bandel (1994, 2002) proposed that the oldest Opisthobranchia appeared in the Triassic (~ 220 

Ma). With the exception of the Cephalaspidea and Pteropoda, very little information is 

available on fossil Opisthobranchia. Like most other molluscan groups, opisthobranchs do 

have a poor fossil record. Reasons for that are their reduced, thin-walled or complete absent 

shells. Many families with numerous extant, shelled representatives have never been found in 

the fossil record (Valdez & Lozouet 2000).  

According to Bandel (1994; 2002), the Pulmonata appeared in the Jurassic (~ 190 Ma). The 

fossil record of the Pulmonata is incomplete, too. Reasons for that are sometimes reduced or 

lacking shells as well as many shells formed of aragonite which does not preserve well. 

Additionally, the systematic interpretation is often difficult, because there is much 
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convergence in shell morphology (Wade et al. 2006). Hence, the fossil data that are available 

must be interpreted with caution (Mordan & Wade 2008). 

 

Nevertheless, fossil gastropods must be included into a system of the phylogenetic 

relationships of extant gastropods, if the resulting system is to be considered in an 

evolutionary framework (Bandel 1997). Without taking the fossil forms into account a 

reconstruction of the phylogenetic relationships of modern gastropods would be incomplete 

(Bandel 1997). 

 

Fossil data and molecular clock approaches together are a promising combination for 

investigating evolutionary events. A molecular clock measures the number of changes, or 

mutations, which accumulate in the gene sequences of different species over time. The idea of 

dating evolutionary divergences using calibrated sequence differences was first proposed in 

1965 by Zuckerkandl & Pauling. Based on this idea, molecular dating has been used in many 

studies as a method to investigate mechanisms and processes of evolution (for a review see 

Rutschmann 2006). Drummond et al. (2006) introduced a new “relaxed” approach for the 

estimation of phylogenetic divergence times. A “relaxed” molecular clock is a phylogenetic 

technique that allows the rate of sequence evolution to vary among groups of organisms 

(Pybus 2006). Furthermore, this new approach estimates phylogeny shape and rate variation 

among phylogeny branches simultaneously. These are two processes that had to be performed 

separately in the past (Pybus 2006). 

 

Nevertheless, molecular clocks had a difficult status over the years and one has to keep in 

mind that there are many sources of error in estimating the actual date of origin of a clade, e.g. 

an incorrect phylogenetic topology, incomplete fossil record, wrong determination (Donoghue 

& Benton 2007).  

 

However, for the first time reliably dated trees provide the opportunity to explore a 

comprehensive field within evolution. Fossil and molecular date estimates are more and more 

congruent (Benton & Ayala 2003) and this trend has increased (Bromham 2006) as molecular 

clock analyses have become more sophisticated (Welch & Bromham 2005). 

 

In the present study the phylogenetic relationships of the Heterobranchia with the combined 

dataset I will be reinvestigated. Based on the resulting phylogeny the evolutionary timescales 
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of groups belonging to the Heterobranchia will be calculated with the software Beast which is 

a newly developed relaxed-clock Bayesian dating approach. 

 

4.2   Material and methods 
 

Taxon sampling 

(according to chapter 2.2) 
 

DNA extraction, amplification and sequencing 

(according to chapter 2.2) 
 

Sequence editing and alignment 

(according to chapter 2.2) 
 

Molecular clock 

Dataset I (see tab. A5 in the appendix) was used to estimate approximate divergence times 

using a relaxed clock method (Drummond et al. 2006), as implemented in the software Beast 

1.4.8 (Drummond & Rambout 2007). Beast applies Bayesian methods in search for the 

optimal phylogeny and estimates divergence times simultaneously. Four nodes were chosen 

as primary calibrations points with a normal distributed prior for the divergence time (tab. 

4.1).  

 

Tab. 4.1: Fossil calibration nodes 
Calibration Age (Ma) Fossil Source 
Heterobranchia 399 ± 11.5  Palaeocarboninia jankei  Bandel & Heidelberger 2002 
Acteonoidea 210 ± 6,1  Tornatellaea heberti Tracey et al. 1993  
Omalogyridae 88 ± 2.4  Omalogyra sp. Tracey et al. 1993 
Pteropoda 62 ± 1.8  Heliconoides mercinensis Tracey et al. 1993, Bandel 1997 
 

Divergence times for the remaining nodes in the tree were estimated with Beast using a GTR 

+ I + G model of nucleotide substitution. The Yule process was used to describe speciation. 

The MCMC chain was run for 20 million generations sampled every 1000 generations. The 

first 1500 trees were discarded as burnin. 

 

A lineage-through-time plot from the maximum clade probability tree of dataset I was 

generated with the software Mesquite version 2.5 (Maddison & Maddison 2008). 
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4.3   Results 
 

The phylogenetic hypothesis obtained with the software Beast (fig. 4.1) appears quite similar 

to the one reconstructed with MrBayes and RAxML (see fig. 3.2). There are only little 

differences within the Euthyneura especially Pulmonata. The Siphonarioidea appear as sister 

group to the Sacoglossa with a reasonable statistical support (0.95) and both are the sister 

taxon to the remaining Pulmonata. Surprisingly, the Hygrophila are not monophyletic but the 

phylogenetic position of both included taxa (Acroloxus and Latia) remains unclear because of 

a weak statistical support. The same applies for Phallomedusa (Amphiboloidea). 

 

Four fossil calibration points to estimate the divergence dates within the Heterobranchia were 

used (see tab. 4.1). The posterior mean of the divergence time at the root (fig. 4.1/node 1) 

(origin of the Vetigastropoda and Caenogastropoda + Heterobranchia) was defined at 500 

million years ago (Ma), which agrees with palaeontological data suggesting an appearence of 

the earliest representatives of the group in the Cambrian (Ponder & Lindberg 1997). However, 

due to the wide uniform priors used for the calibration points in the present study and the high 

geological age, the 95% confidence interval (CI) remains large at most of the nodes (see fig. 

4.2). Therefore, the results of the present study should be considered as a working hypothesis 

respectively a first insight into the origin and age of the Heterobranchia and their subgroups. 

 

The combined Beast gene analysis (fig. 4.1) dated the most recent ancestor of the 

Caenogastropoda and the Heterobranchia to Middle Silurian (node 2). The divergence of the 

major clades of the “Lower Heterobranchia” took place during Middle Carboniferous (fig. 

4.1/nodes 3-5) where most of the basal taxa originated (e.g. the two aclidids Graphis and 

Larochella, Murchisonellidea, Valvatoidea, Architectonicoidea, Omalogyroidea and 

Orbitestellidae).  

 

Beast reconstructed a Middle Permian (fig. 4.1/node 6) origin of the Cimidae and the 

remaining Heterobranchia. The divergence of the latter clade took place later during the 

Mesozoic. At Middle Triassic (fig. 4.1/node 9) the latest common ancestor of the Acteonoidea 

+ Rissoelloidea as well as the ancestor of the Euthyneura occurs. The origin of the 

Opisthobranchia was estimated about late Triassic (fig. 4.1/node 11) with the Nudipleura as 

the earliest offshoot. The initial divergence within the remaining Opisthobranchia occurred 

during the end of Jurassic to beginning of Cretaceous. 
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An initial divergence of the Euthyneura with rise of many of the extant taxa, is estimated to 

have happened in Early Cretaceous (fig. 4.1/nodes 17, 19, 20, 22). The next divergence events 

within the Euthyneura were from the Middle up to the Late Cretaceous (e.g. fig. 4.1/nodes 24, 

26-30, 33, 34).  

Glacidorboidea and Pyramidellidae seem also to have their origin in the Cretaceous (fig. 

4.1/nodes 24, 30) but show posterior probabilities with no statistical support at the nodes of 

their common ancestor. Therefore, it is difficult to infer when they first appeared during the 

evolutionary history of the Gastropoda. 

 

Fig. 4.3: Lineage-through-time plot for the consensus tree of dataset I; x-axis: time in Ma, y-
axis: logarithm of number of lineages; the big five mass extinction events are marked with red 
bars (1: End Ordovician, 2: Late Devonian, 3: End Permian, 4: End Triassic, 5: End 
Cretaceous); geological time scale follows the International Commission on Stratigraphy (see 
fig. A1 in the appendix). 
 
The lineage-through-time-plot (fig. 4.3) reveals a more or less continuous lineage increase. 

Fitting a geological time scale to the plot one can see that during the Carboniferous an 

increase of lineages is implied. However, the number of new lineages are not significant to 

make a final statement. From Middle Permian to Late Jurassic a more or less continuous 

increase of new lineages can be seen. At the beginning of the Cretaceous an increase of 

lineages occurs but like in the Carboniferous the number of new lineages are not significant. 
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Adding more taxa would possibly potentiate the observed increase effect. Finally, from 

Middle Cretaceous to date a continuous lineage increase can be observed. 

4.4   Discussion 
 

Origin and age of lineages 

Haszprunar (1988) proposed a common ancestry of Heterobranchia and Caenogastropoda. 

Moreover, he placed heterostroph taxa which are neither Opisthobranchia nor Pulmonata in 

the paraphyletic taxon “Allogastropoda” (“Lower Heterobranchia”). Because of the right 

coiled shell of the Caenogastropoda and the left coiled protoconch and right coiled teleoconch 

of the Heterobranchia it was questionable whether these two taxa are related to each other 

(Bandel 1997). The known fossil record allows a relationship between members of the 

Heterobranchia and Caenogastropoda only when their common ancestors have lived before 

the Devonian (Bandel 2002). They certainly represent different phylogenetic lineages by 

about Mid Devonian (Bandel 1994; 1995; 1996) but they have no fossil record older to that. 

The phylogeny of the present study supports the idea of a close relationship between the 

Caenogastropoda and the Heterobranchia. Moreover, the results of the present study support 

the assumption that the common ancestor of the Caenogastropoda and Heterobranchia lived 

before the Devonian (fig. 4.1/node 2). 

 

As far as is known up to date only representatives of the “Lower Heterobranchia” lived during 

the Paleozoic (Bandel 2002). The results of the present study indicate a first radiation during 

Middle Carboniferous (fig. 4.1/nodes 3-5) where most of the major lineages of the “Lower 

Heterobranchia” originated.  

The result of the Beast analysis of a non monophyletic Pyramidelloidea supports the result of 

the phylogenetic reconstruction already discussed in chapter 4.1. The Ebalidae 

(Murchisonellidae) existed from the Triassic (Schröder 1995, Bandel 1994) and still live in 

marine habitats (Bandel 2002) whereas the Pyramidellidae with many extant parasitic species 

appear in the geological record not before Cretaceous (Bandel 1995; 1996; 1997, Kiel & 

Bandel 2001). Schröder (1995) interpreted a fossil called Kleinella from the Lower and 

Middle Jurassic as member of the Pyramidellidae, but probably it belongs to the Donaldinidae. 

True Pyramidellidae are found in the Campanian and Maastrichtian of the Cretaceous with 

fossils called Creonella and Lacrimifromia (Bandel 1994). The results of the present study 

also support a very early occurrence of the Ebalidae (Murchisonellidae) and a later occurrence 

of the Pyramidellidae during the history of Gastropoda. It is therefore hard to believe that both 
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groups have the same origin. A basal position of the Pyramidellidae seems also implausible 

because nearly all major lineages of the “Lower Heterobranchia” have their origin during the 

Paleozoic but not later than Early Mesozoic. 

The neritiform Amathinidae are considered to represent close relatives of the Pyramidellidae. 

They also do not appear prior to the Upper Cretaceous (Bandel 1994). To shed light on the 

origin of the Pyramidellidae it is absolutely necessary to include members of the Amathinidae 

(Pyramidelloidea) in further analyses.  

 

The earliest occurrence of Opisthobranchia and Pulmonata in the fossil record has been 

shifted to the Mesozoic due to current knowledge (Fryda et al. 2008). The results of the 

present study support the idea of an occurrence of the Euthyneura stemline not before the 

Mesozoic (fig. 4.1/node 9).  

 

Opisthobranchia can not be traced back prior to the Triassic (Bandel 1991; 1994). What has 

been considered to represent Opisthobranchia from the Carboniferous (Kollmann & 

Yochelson 1976) are non-heterostrophic Gastropoda with a convergent shell shape (Bandel 

2002). The present study support the assumption of Bandel (1991; 1994) that the ancestor of 

the Opisthobranchia appeared not before Triassic (fig. 4.1/node 11).  

Gründel (1997) proposed a radiation of the Opisthobranchia during the Jurassic where they 

obtain a first large divergence event. Since then they are an important part of the gastropod 

fauna.  

 

Opisthobranchia particularly Cephalaspidea are represented by members of the 

Cylindrobullinoidea from the Late Triassic and Jurassic (Schröder 1995, Bandel 1991; 1994). 

Acteonoidea can be traced from the Middle Jurassic (Schröder 1995, Gründel 1997) in a 

continuous lineage to the modern species. Pteropoda as well as Nudipleura appear during the 

Paleogene (Bandel 1997). In the present study the ancestors of the Nudipleura appear to be 

the oldest Opisthobranchia. This result is contrary to the assumption that the Nudipleura are 

highly derived (Wägele & Willan 2000, Wägele et al. 2003, Vonnemann et al. 2005 and 

Wägele & Klussmann-Kolb 2005) (see also discussion in chapter 4.1). Once again, the author 

of the present study is unwilling to believe in a basal position of the Nudipleura. Problems 

during the phylogeny reconstruction respectively estimating divergence times because of 

deviant base composition and rate heterogeneity should be considered to have caused this 

unexpected result. Nevertheless, one should keep in mind that the fossil record of the 



4. Evolution of the Heterobranchia  75 

Nudipleura is problematic. Due to lacking hard body parts there is no reliable fossil record for 

the Nudibranchia. The sister group to the Nudibranchia are the Pleurobranchoidea (Wägele & 

Willan 2000). They show a fossil record which can be traced back till the end of the 

Paleogene beginning of the Neogene (Valdés & Lozouet 2000). Some Pleurobranchoidea 

have small and fragile internal shells or even lack a shell. It is therefore likely that only a part 

of their historical diversity has been preserved (Valdés 2004). Nevertheless, the results of the 

present study support a late appearance of the modern Pleurobranchoidea during the Cenozoic 

(fig. 4.1/node 43). But the divergence time of the Nudibranchia was estimated to have 

happened earlier (fig. 4.1/node 34) and the ancestor of both possibly occurred a long time ago 

during the Mesozoic (fig. 4.1/node 12). 

Further analyses with more Nudipleura are needed to shed light on the history of this 

enigmatic group, which is rich in species diversity but poor in fossil record. 

 

The present study supports the divergence of many Pulmonata clades during the beginning of 

the Cretaceous (fig. 4.1/nodes 17, 19, 22). 

Earliest Pulmonata can not be recognized with any certainty in the Triassic but have been 

documented from the Jurassic (Kiel & Bandel 2001). Among the Pulmonata the 

Basommatophora are more ancient appearing in the Jurassic (Bandel 1991) while the 

Stylommatophora are recognizable during the Late Mesozoic with some doubtful species 

(Bandel 1991) but with better recognized taxa in the Late Cretaceous (Bandel & Riedel 1994). 

The present study supports this hypothesis. 

This is contrary to the fossil record of Upper Carboniferous terrestrial pulmonates which are 

regarded to be the earliest stylommatophoran land snails by Solem & Yochelson (1979). 

Some of them have been re-interpreted as non-stylommatophoran by Bandel (1991; 1997). 

Moreover, a no Paleozoic origin of the Stylommatophora was supported by sequence studies 

of 28S rDNA fragments (about 700 bp in total) carried out by Tillier et al. (1996) who 

inferred the ages of divergence from branch lengths in a tree of molecular distances. He 

confirmed a Late Mesozoic derivation of this large group of gastropods. This is also 

supported by the present data. However, because of an incomplete taxon sampling (only two 

Stylommatophora were included) a statement about radiation events of this group is 

impossible. 

Wade et al. (2006) concluded that a Palaeozoic origin of the Stylommatophora remains a 

possibility but supporting evidence is lacking. The results of the present study support a late 

divergence of the Pulmonata in the Jurassic and Cretaceous.  
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Ellobiidae (Pulmonata) can safely be traced to the Late Jurassic (Bandel 1991) and usually 

live in intertidal mud flats, coastal forests and swambs. Their close relatives Chilinidae are 

found in rivers and lakes while the Carychiidae live on land in wet litter and moss (Bandel 

1997). The latter one may even be present on land since Late Carboniferous (Bandel 1997) 

but this contrasts of course the comparatively late appearance of pulmonates like the 

Basommatophora and the Ellobiidae in the Early Mesozoic. Because Carychiidae and 

Chilinidae were not included in the present study, a statement about a possible early 

occurrence of the Carychiidae could not be made. Nevertheless, both taxa should be included 

in future analyses to get a more detailed picture of pulmonate evolution.  

 

Lineage-through-time plot 

The lineage-through-time plot (fig. 4.3) exhibits a more or less continuous diversification 

through time. Adding more taxa would possibly potentiate two indicated accelerated lineage 

splitting periods in the Carboniferous and Cretaceous. 

When fitting mass extinction events to the lineage-through-time plot then it is evident that the 

two implied lineage increase periods coincide with recovery phases. Both recovering phases 

occurred after a mass extinction event. The lineage increase during the Carboniferous could 

be correlated with the late Devonian mass extinction which took place during the later part of 

the Devonian at the Frasnian-Famennian boundary. It was one of the “Big Five” major 

extinction events in the history of the Earth's biota. This crisis primarily affected the marine 

community. Among marine invertebrates, 70% of the taxa did not survive into the 

Carboniferous (Elewa 2008). Reasons for the Late Devonian extinction are still speculative. 

This event was described either to glaciation or meteorite impact leading to an episode of 

global cooling. Warm water marine species were the most affected organisms in this 

extinction event (Elewa 2008). Niches which were occupied during the Devonian by various 

marine invertebrates were now possibly open for the Heterobranchia. Moreover, reef-builders 

like tabulate corals and stromatoporoids which were the food resources of many marine 

invertebrates never truly recovered from the extinctions (McGhee 1996). 

No major extinction or diversification event separates the Cretaceous from the Jurassic 

(Stanley 2001, Eleva 2008). Hence, there must be another explanation for an accelerated 

diversification at the Jurassic-Cretaceous boundary. The Cretaceous was a period with a 

relatively warm climate and high eustatic sea level. Therefore, a large area of the continents 

was covered by warm shallow seas (Stanley 2001). Moreover, the oceans were enriched with 

calcium; best life conditions for most of the heterobranch gastropods. This good life 
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conditions possibly led to an increase of lineages within this taxon. During that time several 

occupation events took place like the invasions of land and fresh water, e.g. Provalvata 

migrated into fresh water during Jurassic and may have given rise to the recent fresh water 

Valvatoidea (Bandel 1991). Because of an incomplete taxon sampling of the species rich 

Stylommatophora (only two taxa were included in the present study) it is not possible to see 

any effect on the lineage-through-time plot of a possible radiation of this group. Nevertheless, 

Tillier et al. (1996) proposed that fossil evidence indicates an explosive radiation of the 

Stylommatophora at the Upper Cretaceous-Paleocene period because most of the families 

known as fossils appear at that time. For further analyses more Stylommatophora should be 

included to verify the assumption of Tillier et al. (1996) and to get a better idea of 

Stylommatophora radiation. 

 

Conclusion 

The present study is the first comprehensive survey using molecular clock approaches to 

estimate divergence time within the Heterobranchia. Nevertheless, as aforementioned the 

confidence intervals (CI) were large in most of the cases meaning that a precise dating of the 

nodes was impossible. Anyway, many evolutionary hypotheses based on fossils could be 

confirmed.  

Molecular clocks are still in their infancy but it could be shown that the present study or 

others before (e.g. Krause et al. 2008, Njabo et al. 2008, Zhang et al. 2008 etc.) can make a 

contribution to a better understanding and reconstruction of evolutionary processes. Therefore, 

one goal should be the improvement of molecular clock methods (which already happened 

with the introduction of relaxed molecular clocks). Moreover, the fossil record needs to be 

enhanced to close fossil gaps which will maximise the accuracy of the calibration points. 

. 

 

 

 

 

 
 
 
 
 
 



5. A posteriori evaluation of data quality    78

5.  A posteriori evaluation of data quality 

5.1  Introduction 
 

Given that some of the phylogenetic hypotheses proposed in chapter 3 are contrary to other 

hypotheses based on morphological (e.g. Haszprunar 1985a; 1988, Ponder & Lindberg 1997, 

Dayrat & Tillier 2002) and molecular data (e.g. Colgan et al. 2003, Grande et al. 2004a; 2008), 

it is imperative that the current hypotheses are further tested using independent data sets. 

 

Different approaches exist for testing data a posteriori. One option is to apply various 

statistical tests, e.g. the Approximately Unbiased test (AU), Shimodaira-Hasegawa test (SH) 

and Kishino-Hasegawa (KH) test from Shimodaira (2002). These tests compare alternative 

tree topologies and evaluate the differences between trees based on their likelihood scores 

using bootstrapping. 

Investigations of rRNA secondary structures also seem to be promising for evaluating data 

quality a posteriori. The rRNA molecules fold into specific secondary structures, which are 

important for conservation of their three dimensional structure and their function within the 

ribosome. The secondary structure is maintained by hydrogen bonds between RNA 

nucleotides, which form stems (paired regions) or loops (unpaired regions). The stem regions 

show a high degree of conservation while the loops have a considerable amount of variability 

(Caetano-Anollés 2002). A feature that makes rRNA markers popular in phylogenetics 

because different questions with different time scales of diversification can be answered 

(Higgs 2000). 

Nevertheless, information regarding the secondary structure is missing in most phylogenetic 

studies although the secondary structure has consequences for the use of rRNA molecules in 

phylogenetic reconstruction. The pairing between the stem nucleotides has important influence 

on their evolution which differs from that of unpaired loop nucleotides. These differences in 

evolution should be taken into account when using rDNA sequences for phylogeny estimation 

(Telford et al. 2005). Specific rDNA evolutionary models have to be applied in order to 

overcome the problem of co-evolution of paired sites, which violates the basic assumption of 

the independent evolution of sites made by most phylogenetic methods (Dixon & Hills 1993). 

Moreover, information about secondary structure also supports the process of aligning rDNA 

sequences (Kjer 1995, Buckley et al. 2000, Hickson et al. 2000, Misof et al. 2001, Gillespie et 

al. 2005, Voigt et al. 2008). Both aspects increase the accuracy of phylogenetic reconstructions. 
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However, secondary structure models are still little used in phylogenetic analyses, probably 

because establishing a secondary structure for a new sequence is still a time-consuming 

process and very few software packages allow the simultaneous analysis of paired and 

unpaired rRNA regions (Voigt et al. 2008). Some databases (e.g. Cannone et al. 2002) provide 

secondary structure information for a number of organisms, but their records are far from 

complete. 

Lydeard et al. (2002) showed based on a comprehensive analysis of mitochondrial LSU rDNA 

sequences and subsequently derived secondary structures that the loss or reduction of three 

helical-loop structures are apomorphies of the Heterobranchia. Hence, it seems possible that 

comparative analyses of secondary structures of heterobranch taxa will yield phylogenetically 

informative data for supporting deep evolutionary nodes. 

 

This chapter deals with the a posteriori evaluation of data quality. The phylogenetic 

hypotheses proposed in chapter 3 will be proven or rejected with various statistical tests as 

well as network analyses and secondary structure reconstruction. For the latter method a 

comprehensive survey of the complete 18S rRNA and 28S rRNA secondary structure of 

representatives of most of the major heterobranch groups was performed for the first time. 

Secondary structures were reconstructed and browsed for possible synapomorphies to support 

certain nodes in the phylogenetic tree (fig. 3.2). Furthermore, a comparative study was 

conducted using standard evolutionary models implemented in the software MrBayes 

(Huelsenbeck & Ronquist 2001) as well as rDNA specific models (which takes paired and 

unpaired sites into account) implemented in the software package Phase 2.0 beta 

(http://www.bioinf.manchester.ac.uk/resources/phase/). By accounting the secondary structure 

in the models of evolution the author hopes to improve the plausibility of the phylogenetic tree. 
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5.2  Material and methods 
 

Taxon sampling for additional datasets using complete 18S and 28S rDNA sequences 

The complete 18S rRNA of 45 gastropod species have been investigated (Dataset III = 2 

Vetigastropoda, 4 Caenogastropoda, 12 “Lower Heterobranchia”, 14 Opisthobranchia, 11 

Pulmonata and 2 taxa not assigned to the Heterobranchia yet) as well as the complete 28S 

rRNA of 22 gastropod species (Dataset IV = 3 Vetigastropoda, 1 Caenogastropoda, 7 “Lower 

Heterobranchia”, 5 Opisthobranchia, 5 Pulmonata and 1 taxon not assigned to the 

Heterobranchia yet). For optimal results of the secondary structure reconstruction only 

sequences without missing data were included in the analyses. For details about the taxonomy 

and collecting locations of the sampled taxa as well as Genbank accession numbers see tab. A1 

in the appendix. 

The animals were collected from the field by hand, snorkelling or scuba diving and stored in 

70-100% ethanol. Most of the “Lower Heterobranchia” were collected intertidally while 

collecting algae or substrata where they are living on. The material was washed and sieved and 

the animals were picked alive under the binocular. 

 
Taxon sampling for dataset I was according to chapter 2. 
 

DNA extraction, amplification and sequencing 

(according to chapter 2.2) 
 

Sequence editing and alignment 

(according to chapter 2.2) 
 

No ambiguous alignment positions were excluded in dataset III and dataset IV due to the 

secondary structure reconstruction. 

 

Approximately Unbiased (AU) Test 

Alternative tree topologies for dataset I were tested using the Approximately Unbiased (AU) 

Test developed by Shimodaira (2004).  

The likelihood at each nucleotide position was calculated for an unconstrained topology as 

well as different alternative constrained topologies (monophyletic Opisthobranchia, 

monophyletic Pulmonata and monophyletic Euthyneura) according to the latest classification 

of Bouchet & Rocroi (2005) using PAUP 4.0b10 (Swofford 2002). The obtained likelihoods 
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were used to calculate p-values using default settings of the software CONSEL version 0.1 

(Shimodaira & Hasegawa 2001). 

 

Relative rate test and Network analyses 

(according to chapter 2.2) 

 

Phylogenetic analyses 

Bayesian inference phylogenetic analyses were performed using the software MrBayes 3.1.2 

(Huelsenbeck & Ronquist 2001) and Phase 2.0 beta 

(http://www.bioinf.manchester.ac.uk/resources/phase/) for two different datasets (see tab. A5 

in the appendix): 

 

Dataset III = complete 18S rDNA sequences for secondary structure reconstruction; no 

alignment positions were excluded 

 

Dataset IV = complete 28S rDNA sequences for secondary structure reconstruction; no 

alignment positions were excluded 

 

Detailed information about MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001) see chapter 2.2.  

The analysis for each data set was run for 2.000.000 generations, with a sample frequency of 

10. The first 20.000 generations were discarded as burnin. If likelihoods have not reached a 

plateau the burnin was increased to 40.000 generations. 

Support for nodes was expressed as posterior probabilities. 

The best-fit models of nucleotide substitution were selected with MrModeltest 2.2 (Nylander, 

2004) choosing the Akaike information criterion (AIC) (see tab. A5 in the appendix). 

 

The Phase package is designed specifically for usage with RNA sequences that have a 

conserved secondary structure, e.g. rRNA. Four simultaneous chains were run for 2.000.000 

generations, with a sample frequency of 10. The first 20.000 generations were discarded as 

burnin. A mixed model was used. Unpaired nucleotides were handled by the model REV 

(Tavare 1986) and paired nucleotides by the model RNA7D (Tillier & Collins 1998). 

 

 

 



5. A posteriori evaluation of data quality    82

Secondary structures 

Secondary structures of the rRNA of dataset III and IV were reconstructed using the software 

RNAsalsa (Stocsits et al. submittet). The result of this application is a complete individual 

secondary structure for each sequence. For further phylogenetic analysis, a sequence alignment 

with a consensus structure is produced, which can be used as an input for suitable programs 

like Phase 2.0 beta (http://www.bioinf.manchester.ac.uk/resources/phase/) where evolutionary 

models specific to the stem and loop regions of structural RNA molecules are implemented.  

RNAsalsa is a method for aligning ribosomal RNA sequences, by adopting thermodynamic 

folding (using the folding algorithm taken from the Vienna RNA package – RNAfold) and 

comparative evidence algorithms, combined in a suitable framework. The program 

simultaneously generates secondary structures for a set of homologous RNA genes and aligns 

them by taking sequences and structure information into account from so-called constraint 

sequences. 

 

Constraint sequences (sequences with an already available secondary structure) for 18S rRNA 

(Monodonta labio – Vetigastropoda, Mollusca) and 28S rRNA (Caenorhabditis elegans - 

Rhabditida, Nematoda) were downloaded from the European ribosomal RNA database 

(http://bioinformatics.psb.ugent.be/webtools/rRNA/). 

 

The program XRNA 1.1.12 beta (http://rna.ucsc.edu/rnacenter/xrna/xrna.html) was used to 

edit secondary structure diagrams. XRNA is a Java based suite of tools for the visualisation, 

annotation and modification of RNA secondary structure diagrams. 

 

Differences or similarities between secondary structures of different taxa were treated like 

morphological characters and included in a character matrix (see tabs. A6 and A7 in the 

appendix).  

Character evolution was reconstructed using MacClade 4.0 (Maddison & Maddison 2000) 

while characters were treated as unordered and most parsimoniously mapped onto the inferred 

phylogeny. 
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5.3  Results 

5.3.1 A posteriori evaluation to test the congruence between the 
phylogenetic inference and data quality 

5.3.1.1  Relative-Rate-Test 
 

The results of this test were already discussed under a priori aspects in chapter 2.3.3.3 and will 

be re-evaluated under a posteriori aspects in this chapter. The aspects focus on unexpected 

positions of certain heterobranch taxa in the resulting tree topology introduced in chapter 3. 

The highest evolutionary rates were observed within the “Lower Heterobranchia” in particular 

Omalogyra sp., Omalogyra fusca, Murchisonella sp., Ebala sp. and Architectonica perspectiva 

(see tab. 5.1a). These high evolution rates are perfectly pictured in the 50% majority rule 

consensus phylogram (see fig. 3.2) by very long branches.  
 

Tab. 5.1a: Maximum z-scores of dataset I (only noticeable high scores are shown) 
Alignment Species z-scores (max.) 

18S rDNA Omalogyra fusca vs Orbitestella sp. 13.722511 
 Omalogyra sp. vs Orbitestella sp. 13.472862 
 Murchisonella sp. vs Orbitestella vera 12.782731 
 Ebala sp. vs Orbitestella sp. 11.007350 
 Architectonica perspectiva vs Orbitestella vera 10.742792 
 Larochella alta vs Orbitestella vera 8.970545 
28S rDNA Omalogyra sp. vs Orbitestella vera 8.040198 
 Architectonica perspectiva vs Orbitestella vera 7.946169 
 Ebala sp. vs Orbitestella vera 7.815249 
 Omalogyra fusca vs Orbitestella vera 7.766580 
 Murchisonella sp. vs Orbitestella vera 7.723543 
16S rDNA Architectonica perspectiva vs Umbraculum umbraculum 4.192090 
COI position 1 Omalogyra sp. vs Aperostoma pelermi 5.273325 
 Omalogyra fusca vs Aperostoma pelermi 5.118954 
COI position 2 Architectonica perspectiva vs Valvata piscinalis 4.726909 
COI position 3   no data 

 

Tab. 5.1b: Maximum z-scores of dataset I for Pyramidellidae and Glacidorboidea 
(exemplary for 18S rDNA and 28S rDNA) 
Alignment Species z-scores (max.)

18S rDNA Eulimella ventricosa vs. Orbitestella sp. 2.901336
 Odostomia sp. vs. Orbitestella sp. 2.769155
 Turbonilla sp. vs. Orbitestella sp. 3.551441
 Glacidorbis rusticus vs. Orbitestella sp. 4.228920
28S rDNA Eulimella ventricosa vs. Orbitestella vera 1.533776
 Odostomia sp. vs. Orbitestella vera 0.858330
 Turbonilla sp. vs. Orbitestella vera 1.547940
  Glacidorbis rusticus vs. Orbitestella vera 0.718196
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When comparing the maximum z-scores of dataset I of the Pyramidellidae (Eulimella, 

Odostomia and Turbonilla) and Glacidorbis (exemplary for 18S and 28S rDNA) (tab. 5.1b) 

with z-scores of the “Lower Heterobranchia” (displayed in tab. 5.1a), then a large discrepancy 

can be observed. The evolutionary rates of Pyramidellidae and Glacidorbidae are significantly 

lower than of other “Lower Heterobranchia” like Murchisonella or Ebala.  

 

5.3.1.2  Approximately Unbiased (AU) Test 
 

The AU test was performed to evaluate whether alternative phylogenetic hypotheses 

(enforcing monophyly of traditional taxa) can be rejected based on the analysed dataset I.  

For AU values of the monophyly of Opisthobranchia, Pulmonata and Euthyneura see tab 5.2.  

The unconstrained hypothesis shows the maximum likelihood. The three constrained 

topologies however cannot be discarded since their likelihoods are not significantly lower in 

the AU-test (p-values not smaller than the significance level of 0.05). 

 

Tab. 5.2: Statistical test of alternative phylogenetic hypotheses of dataset I; taxa names are 
coded in a four letter name using the first two letters of genus and species name (for 
abbreviation see tab. A1 in the appendix). 

Constraint Loglikelihood AU test  
(p-values) 

Unconstrained see tree topology (fig. 3.2) -41798.54 0.829 

Opisthobranchia (Toan, Baan, Chkr, Gono, Umum, Type, Hahy, Togl, Akbu, Hyst, Spau, 
Oxan, Elvi, Cyni) 

-41827.63 0.366 

Pulmonata (Sica, Sial, Lane, Acla, Saso, Diro, Dere, Onfl, Onve, Opor, Smph, Otov) -41809.44 0.135 

Euthyneura (Toan, Baan, Chkr, Gono, Umum, Type, Hahy, Togl, Akbu, Hyst, Spau, 
Oxan, Elvi, Cyni, Sica, Sial, Lane, Acla, Saso, Diro, Dere, Onfl, Onve, 
Opor, Smph, Otov) 

-41839.65 0.089 

 

5.3.1.3  SplitsTree 
 

The results of the SplitsTree analysis (fig. 5.1) will be described in context with the results of 

the tree reconstructions (see fig. 3.2). 

 

The neighbournet graph created with the software SplitsTree was already examined in chapter 

2.3.4.1 a priori. A high level of conflict was observed indicated 1.) by many parallel edges of 
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the same lengths and 2.) by several taxa belonging to the Veti- and Caenogastropoda, “Lower 

Heterobranchia” or Opisthobranchia (in particular Nudipleura) with long terminal branches. 

The monophyly of the Heterobranchia was supported by tree reconstructions. This result is 

also fostered by a good split support in the SplitsTree analysis (see fig. 5.1). The 

Vetigastropoda + Caenogastropoda are separated by various splits with long parallel edges 

from the remaining Heterobranchia (see fig. 5.1). The polyphyly of the Pyramidelloidea in the 

phylogenetic tree (fig. 3.2) can be supported because there is no split support for 

Murchisonellidae (III) being the sister taxon to Pyramidellidae (XII) (fig. 5.1). They occupy 

positions in the neighbour net graph far away from each other. There is split support for the 

Murchisonellidae (III) being the sister taxon to other “Lower Heterobranchia” taxa like 1.) the 

Omalogyridae (I) + Architectonicoidea (II) or 2.) Valvatoidea (IV) (without Orbitestellidae) + 

Aclididae (V) but none of them is distinctly stronger than the other. Nevertheless, these two 

splits support a close affinity of the Murchisonellidae (III) to the “Lower Heterobranchia”. In 

contrast, there is no split support for the Pyramidellidae (XII) to other “Lower Heterobranchia”. 

The Pyramidellidae are situated within a group comprising the Glacidorboidea (XIV), 

Opisthobranchia (without Nudipleura – VII and Sacoglossa – XXII) and Pulmonata (without 

Amphiboloidea XXI).  

The SplitsTree analysis also supports the result of the tree reconstruction regarding the 

inclusion of the two aclidids (V) to the Heterobranchia. On the one hand there is split support 

for a relationship of Aclididae (V) with Valvatoidea (IV) (without Orbitestellidae) + 

Murchisonellidae (III) and on the other hand for a relationship of Aclididae (V) with 

Orbitestellidae (VI) but non of these splits has a stronger support (which would be indicated by 

distinctly longer parallel edges). 

There is a good split support indicated by long parallel edges for Valvata (IV) being the sister 

taxon to Cornirostra (IV) but no support for a relationship of these two groups with the 

Orbitestellidae (VI). These results are congruent to the tree topology (fig. 3.2).  

The Architectonicoidea (II) and the Omalogyroidea (I) are in a sister group relationship 

according to tree reconstruction (see chapter 3). This result can be supported by a very strong 

split indicated by extremely long parallel edges (see fig. 5.1).  

The inclusion of the Cimidae (XXV) in the Heterobranchia as well as the single offshoot in the 

phylogenetic tree can be supported by a rather isolated position within the split network (fig. 

5.1). 
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There is a strong split support for the Rissoelloidea (XXIV) and the Acteonoidea (XXIII) 

respectively but much conflict exists for a sister group relationship between them (see fig. 5.1). 

Hence, the SplitsTree analyses can neither support the results of the phylogenetic analyses (see 

fig. 3.2) nor reject them. The paraphyly of Euthyneura as well as the polyphyly of 

Opisthobranchia and the paraphyly of Pulmonata as recovered in the phylogenetic analyses 

(see fig. 3.2) are also supported by the neighbournet graph (fig. 5.1) because no conflict free 

split support for these three groups can be found. 

The monophyly of the Nudipleura (VII) is supported by a strong split. The basal position of 

the Nudipleura (VII) within the system of the Heterobranchia as indicated by the results of the 

phylogenetic analyses (fig. 3.2) cannot be rejected because in the neighbournet graph they are 

associated with the “Lower Heterobranchia” rather than with the remaining Opisthobranchia 

(fig. 5.1). 

There is no split support for a clade comprising the Umbraculoidea (VIII), Cephalaspidea (XI), 

Akeroidea (XI) (Aplysiomorpha) and Pteropoda (IX + XIII) as proposed by the phylogenetic 

hypothesis although they are grouped close together (with the exception of Hyalocylis) in the 

neighbournet graph (fig. 5.1). In fact there is no specifiable signal uniting these groups in the 

SplitsTree analysis. 

There was no resolution in the phylogenetic tree regarding the exact position of the 

Siphonarioidea (XVII) and the Sacoglossa (XXII). Within the SplitsTree analyses the 

Sacoglossa (XXII) as a monophylum are supported by a split but show a rather isolated 

position with little split support to Rictaxis punctocaelatus (Acteonoidea). In contrast, the 

monophyly of the Siphonarioidea (XVII) is not supported due to the very short terminal 

branch of Siphonaria alternata but both taxa are enclosed within Pulmonata in the 

neighbournet graph (fig. 5.1). 

The position of the Glacidorboidea (XIV) in the neighbournet graph (fig. 5.1) is distant to the 

remaining “Lower Heterobranchia” (with exception of Pyramidellidae – XII). There is no split 

support indicating a close relationship with other basal groups which is congruent to the results 

of the tree reconstruction (fig. 3.2). Because of much conflict in the neighbournet graph (fig. 

5.1) within the Pulmonata, little can be said about the position of the Pyramidellidae and 

Glacidorbidae within the Pulmonata.  

The taxon Hygrophila (XV) is supported by a weak split while there is no split support for the 

Eupulmonata (XVI + XVIII + XIX + XX) which is contrary to the tree reconstruction (see fig. 

3.2). 
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5.3.1.4  SAMS 
 

The results of the SAMS analysis will be described in context with the results of the 

phylogenetic tree reconstructions (see fig. 3.2).  

The split support spectrum created with the Software SAMS was already examined in chapter 

2.3.4.2 a priori. As already stated there was little binary support (red), some noisy outgroup 

support (green) and many noisy in- and outgroup support (yellow) for taxa partitions (see fig. 

2.11b).  

None of the deeper splits were found among the 60 best splits, only signals for groupings of 

taxa belonging to “Lower Heterobranchia” (e.g. Omalogyroidea, Aclididae), Vetigastropoda 

and Caenogastropoda and some Opisthobranchia (e.g. Nudipleura) were detected.  

Altogether, SAMS detected 3102 partitions in dataset I. 25 groupings can be found in the 1000 

most frequent partitions as well as in the corresponding phylogenetic tree (see tab. 5.3, fig. 5.2 

and fig. 3.2). All other partitions contain random groupings of species. 

 

Tab. 5.3: Split support values of groupings which can be found in the 1000 most frequent 
partitions of dataset I as well as in the phylogenetic tree (fig. 3.2); Taxa names are coded in a 
four letter name using the first two letters of the genus and species name (for abbreviation see 
tab. A1 in the appendix). 

Split 
No. Taxa 

Outgroup support Ingroup support Posterior 
probability / 
Bootstrap-

support 
binary 

support

noisy 
outgroup 
support 

noisy in- 
and 

outgroup 
support 

binary 
support 

noisy 
outgroup 
support 

noisy in- 
and 

outgroup 
support 

1 (Omfu,Omsp) 3 318 0 3 0 269 1.00/100 
2 (Arpe,Omfu,Omsp) 8 1 285 8 243 0 1.00/100 
4 (Laal,Grsp) 10 214 0 10 0 131 1.00/100 
6 (Basy,Digr) 1 0 173 1 142 0 No support 
9 (Ebsp,Musp) 1 1 152 1 74 0 1.00/100 

13 (Ebsp,Musp,Laal,Grsp) 0 2 139 0 8 31 0.71/>50 
22 (Toan,Baan) 0 114 0 0 0 74 1.00/100 
34 (Riel,Riri) 0 91 0 0 0 60 1.00/100 
49 (Chkr,Gono) 0 62 0 0 0 52 1.00/100 
54 (Toan,Baan,Chkr,Gono) 1 0 67 1 14 13 1.00/100 
63 (Pobr,Appa,Lili,Baeb,Basy,Digr) 0 25 24 0 0 48 1.00/99 

100 (Pobr,Appa,Lili,Baeb) 0 28 23 0 0 35 1.00/- 
106 (Vapi,Cope) 0 0 51 0 13 0 1.00/99 
126 (Vapi,Cope,Arpe,Omfu,Omsp) 0 0 39 0 7 12 0.97/>50 
155 (Diro,Dere) 0 40 0 0 0 8 1.00/100 
185 (Elvi,Cyni) 0 32 0 0 0 18 1.00/100 
200 (Riel,Riri,Ripu,Puso) 0 0 25 0 4 12 1.00/73 
242 (Euve,Tusp) 0 24 0 0 0 6 1.00/98 
274 (Ripu,Puso) 0 18 0 0 0 13 1.00/100 
283 (Orve,Orsp) 0 16 0 0 0 16 1.00/100 
315 (Hyst,Spau) 0 0 20 0 6 0 1.00/97 
439 (Hahy,Togl) 0 16 0 0 0 1 1.00/100 
485 (Umum,Type) 0 14 0 0 0 2 1.00/100 
705 (Smph,Diro,Dere,Onfl,Onve,Opor,Otov) 0 0 8 0 5 0 1.00/94 
979 (Euve,Odos,Tusp) 0 4 0 0 0 0 1.00/90 
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Fig. 5.2: Split support spectrum of the 100 most frequent partitions of dataset I;  for the sake 
of clarity only the first 100 partitions are shown; x-axis = partitions, y-axis = number of 
sequence positions; above x-axis = outgroup, below x-axis = ingroup; red = binary support, 
green = noisy outgroup support, yellow = noisy in- and outgroup support.  
 

5.3.2 Utility of the secondary structure of 18S rRNA for phylogenetic 
inference of the Heterobranchia 

 

This chapter focuses on two major aspects. The first aspect is the reconstruction of the 

secondary structure of 18S rRNA for representatives of most of the Heterobranchia families 

with the software RNAsalsa. The single structures will be compared and browsed for positions 

which have the potential to contain a phylogenetic signal. Identified characters are mapped 

most parsimoniously on the phylogenetic hypothesis (see fig. 3.2) presented in chapter 3. The 

second aspect comprises the inclusion of rRNA secondary structure information in alignment 

and tree reconstruction procedures. The extract consensus structure from RNAsalsa (which 

provides reliable information on positional interrelation) is used for tree reconstruction and the 

application of specific rDNA substitution models as implemented in the software package 

Phase. The application of this new alignment approach on ribosomal sequence data will 

perhaps allow a more precise identification of positional homologies and thus phylogenetic 

signal within these data. 

 

For both approaches dataset III for 18S rDNA (see tab. A5 in the appendix) was used. 

 

Vetigastropoda 

Murchisonellidae 

Murchisonellidae + Aclididae 

Pleurobranchoidea

Rissoelloidea 

Nudibranchia 

Nudipleura 

Vetigastropoda + Caenogastropoda 

Caenogastropoda 

Omalogyroidea 

Aclididae 
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5.3.2.1  Secondary structure reconstruction of 18S rRNA  
 

The comparative analysis of all secondary structures reveals at least three types of structural 

domains:  

 

Type I:  conserved among all investigated taxa 

Type II: variable to a certain degree but conserved among younger phylogenetic groups  

Type III: highly polymorphic among all investigated taxa 

 

When browsing the reconstructed secondary structures for type II domains, two promising 

domains were found (see domain 43 as well as E23 2 & 5 in fig. 5.3) which possibly contain a 

phylogenetic signal to confirm or reject the phylogenetic hypotheses proposed in chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 5.3: Exemplary secondary structure model of the complete 18S rRNA of Umbraculum 
umbraculum (Opisthobranchia, Umbraculoidea); domain 43 as well as E23 2 & 5 are 
surrounded by a box; helix numbering according to E. coli (comparative RNA WebSite, 
Cannone et al. 2002). 
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Tab. 5.4: Secondary structure models of domain 43 and domain E23, 2 & 5 of 18S rRNA 
Taxa Domain 43 Domain E23, 2 & 5 

Vetigastropoda  
Bathymargarites symplector  
 
 
 
 
  
Diodora graeca  
 
 
 
 
 
 
 
Caenogastropoda   
Littorina littorea  
 
   
Pomacea bridgesii  
 
   
Aperostoma palmeri  
 
   
Balcis eburnea  
 
Aclididae  
 
Larochella alta  
 

 
 

 
 
Graphis sp. 
 

 

 
 
 
  
"Lower Heterobranchia"  
  
Omalogyroidea  

 
Omalogyra fusca  
 
 

 

Omalogyra sp. 
 
 
Orbitestellidae  

 
Orbitestella vera  
 
  
Orbitestella sp. 

 
 
Cimidae 
   
Cima sp. 
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Rissoelloidea  
 
Rissoella elongatospira  
 

 
 

 
Ebalidae  
Murchisonella sp.  
 
 
Pyramidellidae  
Odostomia sp.   
 
 
Turbonilla sp.   
 
 
Eulimella ventricosa    
 
 
   
Glacidorboidea  
Glacidorbis rusticus  
 
 
Acteonoidea  
Pupa solidula  
 
  
Opisthobranchia  
Nudipleura  
Tomthompsonia antarctica  
 
 
 
 

 
Bathyberthella antarctica   
 

Chromodoris krohni   
  
Goniodoris nodosa  
 
Sacoglossa  
Elysia viridis  
 
  
Oxynoe antillarum  
 
Cyerce nigricans 
 
 

 

  
Akeroidea   
Akera bullata  
 
 
Cephalaspidea   
Haminoea hydatis  
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Toledonia globosa    
 
 
Tylodinoidea 

 

 
Umbraculum umbraculum  
 
 
Tylodina perversa  
 
 
Thecosomata   
Hyalocylis striata   
 
 
Gymnosomata   
Spongiobranchaea australis  
 
Pulmonata  
Otinoidea   
Smeagol phillipensis   
 
 
Otina ovata    
 
 
Amphiboloidea  
Phallomedusa solida  
 
Hygrophila 
Latia neritoides  
 
    
Acroloxus lacustris   
  
  
Siphonarioidea   
Siphonaria alternata  
 
 
Stylommatophora   
Deroceras reticulatum  
 
   
Discus rotundatus   
 
 
Systellomatophora   
Onchidella floridana  
 
  
Onchidium verruculatum  
 
Ellobioidea  
 
Ophicardelus ornatus 
 
 



5. A posteriori evaluation of data quality    94

A

Legend - Domain 43
a) Bathymargarites symplector
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Legend - Domain E23_2 & E23_5
b)

equivocal

PulmonataOpisthobranchia“Lower Heterobranchia” Incertae sedis Vetigastropoda & Caenogastropoda

Fig. 5.4: Parsimony optimization mapping of secondary structure models of the 18S rRNA on 
the inferred phylogeny; a: domain 43 and b: domain E23 2 & 5; The tree is the cladogram of 
fig. 3.2; blue = character state 0, red = character state 1, black = character state 2, striped = 
equivocal; arrows mark main character state change.  
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Both domains show different character states (see tab. 5.4). These states were coded in a 

character matrix (see tab. A6 in appendix) and mapped most parsimoniously on the 

phylogenetic tree (see fig. 5.4) with the software MacClade 4.0 (Maddison & Maddison, 2000). 

To have a clear overview in fig. 5.4, only the three main character states (marked in blue, red 

and black) are represented in the legend by an exemplary structure. 

 

Within domain 43 one can distinguish two different main clades (see fig. 5.4a). Clade one (red) 

comprises the Caenogastropoda + “Lower Heterobranchia” (without Pyramidellidae + 

Glacidorboidea) + Nudipleura. Within clade one, Graphis (Aclididae) appears in a different 

character state (yellow). Clade two (black) comprises the remaining Opisthobranchia + 

Glacidorboidea + Pyramidellidae + Pulmonata. Within clade two, Oxynoe (Sacoglossa) (green), 

Acroloxus (Hygrophila) (brown) and Phallomedusa (Amphiboloidea) (purple) appear in 

different character states. 

Both Vetigastropoda taxa appear in the same character state (blue) which is clearly different 

from other states. Due to tree reconstruction procedures of the software MrBayes the 

Vetigastropoda are unresolved therefore it is not possible to determine this character state as a 

clade. 

The same problem applies to Domain E23 2 & 5. The Vetigastropoda are unresolved too but 

both taxa appear in the same character state (blue). Nevertheless, Domain E23 2 & 5 also 

shows two different main clades. Clade one (red) comprises the Caenogastropoda + “Lower 

Heterobranchia” (without Rissoelloidea + Pyramidellidae + Glacidorboidea). Because of 

missing data it was not possible to determine the character state of the ancestor of Acteonoidea 

and Rissoelloidea. The corresponding branch is therefore shown as equivocal. Clade two 

(black) comprises the Opisthobranchia + Glacidorboidea + Pyramidellidae + Pulmonata. 

Rissoelloidea show the same character state. Within clade two, Glacidorbis (Glacidorboidea) 

shows a different character state (green).  

 

5.3.2.2  Comparative tree reconstruction of 18S rDNA (with the software MrBayes 
  and Phase) 
 
Both software programs (MrBayes and Phase) are bases upon the Bayesian inference method. 

To avoid misunderstandings the author uses the software names instead of the method 

designation when comparing them with each other. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.5: Bayesian inference cladograms of the 50% majority rule consensus tree of dataset III 
using a: MrBayes and b: Phase; posterior probabilities are provided at the branches 
respectively (green: statistically significant, red: statistically insignificant); taxonomic 
classification follows Bouchet & Rocroi (2005).  

Heterobranchia 

Heterobranchia 
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The trees reconstructed with MrBayes and Phase show comparable results (see fig. 5.5 a & b). 

As expected, there is a good resolution regarding the deep nodes in both trees. The 

Caenogastropoda as well as the Heterobranchia are detected in both trees with a high statistical 

support.  

Within the Heterobranchia the resolution is mostly poor. Taking a look at the tree conducted 

with MrBayes (see fig. 5.5a) one can see a comb-like structure. The following monophyla with 

a statistically significant support were detected: Orbitestellidae, Stylommatophora, Otinoidea, 

Omalogyroidea, Cephalaspidea, Pyramidellidae, Aclididae, Umbraculoidea and Nudipleura. 

Additionally, the following sister group relationships were found: Cimidae as sister taxon to 

Orbitestellidae and Oxynoe as sister taxon to Rissoella which is the sister taxon to the 

Aclididae. 

 
The tree reconstructed with Phase is likewise unresolved (see fig. 5.5b). Within the 

Heterobranchia the resolution of deep nodes is poor. The same monophyla and most of the 

sister group relationships as in the topology shown in fig. 5.5a were detected. Only Oxynoe, 

representing the sister taxon to Rissoella and Aclididae has no statistically significant support. 

 

5.3.3 Utility of the secondary structure of 28S rRNA for phylogenetic 
inference of the Heterobranchia 

 

This chapter focuses on the same approaches as chapter 5.3.2. First of all the secondary 

structure of the 28S rRNA of representatives of the Heterobranchia has been reconstructed 

with the software RNAsalsa and browsed for domains which possibly contain synapomorphies. 

The identified characters are mapped most parsimoniously on the tree (see fig. 5.7) shown in 

chapter 5.3.3.1 which was conducted using dataset IV and MrBayes. Unlike the data of the 

18S rDNA, the results could not be mapped on the tree based on dataset I because of a 

mismatch of many of the taxa.  

Like in chapter 5.3.2.2 the next step comprises the inclusion of rRNA secondary structure 

information in alignment and tree reconstruction procedures. The obtained trees of the 

analyses with the software Phase and MrBayes are being compared.  

For both approaches dataset IV containing sequences of the 28S rDNA (see A5 in the 

appendix) was used. 
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5.3.3.1  Secondary structure reconstruction of 28S rRNA  
 

The reconstructed secondary structures of 28S rRNA comprise at least 2 domains which show 

possible synapomorphies to support groups within the Heterobranchia (see domain E11 and 

G5_1 in fig. 5.6). 

Fig. 5.6: Exemplary secondary structure model of the LSU of Umbraculum umbraculum 
(Opisthobranchia, Umbraculoidea); black = 28S, blue = 5.8S (B), green = H; promising 
domains are surrounded by a box; helix numbering according to E. coli (comparative RNA 
WebSite, Cannone et al. 2002). 
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Tab. 5.5: Secondary structure models of domain E11 and domain G5_1 of 28S rRNA  
Taxa Domain E11 Domain G5_1 

Vetigastropoda   

Nordotis discus 

 

 

Lepetodrilus elevatus 

  

Gibbula magnus 

  

Caenogastropoda   

Ilyanassa obsoleta 

  

Aclididae   

Graphis sp. 

  

"Lower Heterobranchia"   
Valvatoidea   

Valvata piscinalis 

  

Cornirostra pellucida 
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Cimidae   

Cima sp. 

  

 
Rissoelloidea   

Rissoella rissoaformis 

 

 
 
Pyramidellidae   

Boonea seminuda 

  

 
Glacidorboidea   

Glacidorbis rusticus  

  

 
Acteonoidea   

Rictaxis punctocaelatus 

  

 
Opisthobranchia   
 
Nudipleura   

Diaulula sandiegensis 
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Sacoglossa 
 
 
 
Oxynoe antillarum 

 

 

 
Cephalaspidea   

Haminoea solitaria  

  

 
Umbraculoidea   

Umbraculum umbraculum  

  

 
Aplysioidea   

Aplysia californica 

  

 
Pulmonata   
 
Otinoidea   

Smeagol phillipensis  

  

 
Hygrophila   

Latia neritoides  
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Siphonarioidea  
 
 
 
Siphonaria capensis 
 
 
 
 

  

Stylommatophora   

Deroceras reticulatum  

  

Arion silvaticus 

  

 

Like in chapter 5.3.2.1 the domains appear in different character states (see tab. 5.5) These 

states were also coded in a character matrix (see tab. A7 in appendix) and mapped most 

parsimoniously on the phylogenetic tree conducted with dataset IV and the software MrBayes 

(see fig. 5.7). 

 

Within domain E11 one can distinguish three main character states (see fig. 5.7a). Character 

state one (blue) comprises the Vetigastropoda, state two (red) the Caenogastropoda + Cimidae 

+ Nudipleura + Valvatoidea + Aclididae + Rissoelloidea + Acteonoidea + Pyramidellidae. 

State three (black) comprises the remaining Opisthobranchia + Glacidorboidea + Pulmonata 

while Haminoea (Cephalaspidea) appears in a different character state (green). 

 

Within Domain G5_1 one can find two main character states (see fig. 5.7b). Taxa appearing in 

the first character state (blue) are Vetigastropoda, Caenogastropoda, Acteonoidea, 

Pyramidellidae, Glacidorboidea, Opisthobranchia (without Sacoglossa) and Pulmonata. 

Cimidae, Valvatoidea, Aclididae, Rissoelloidea and Sacoglossa appear in the second character 

state (red). Glacidorbis (Glacidorboidea) represents its own character state (black). 
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Fig. 5.7: Parsimony optimization mapping of secondary structure models on the inferred 
Bayesian phylogeny based on dataset IV of a: domain E11 and b: domain G5_1; blue = 
character state 0, red = character state 1, black = character state 2, striped = equivocal; arrows 
mark main character state changes. 
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5.3.3.2  Comparative tree reconstruction of 28S rDNA (with the software MrBayes 
  and Phase) 
 
Compared to the other datasets, dataset IV comprises less taxa. Therefore, most of the major 

groups are represented only by one taxon. Because this chapter deals with the comparison of 

two different tree reconstruction methods rather than proposing phylogenetic hypotheses 

single taxa will be discussed as major groups (e.g. Diaulula = Nudipleura). 

 
Fig. 5.8: Bayesian inference cladogram of the 50% majority rule consensus tree of dataset IV 
using Phase and MrBayes; Phase and MrBayes topology are the same; posterior probabilities 
are provided at the branches (MrBayes/Phase) (green: statistically significant, red: statistically 
insignificant); taxonomic classification follows Bouchet & Rocroi (2005).  
 

Heterobranchia 
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The trees inferred with the two Bayesian approaches (MrBayes and Phase) show the same 

topology but different support values for the respective clades (see fig. 5.8). Support values are 

displayed in the following way (MrBayes/Phase). All posterior probabilities are above 0.50/50 

but some are below 0.95/95 which renders them statistically insignificant. 

 

The Heterobranchia are monophyletic with a high statistical support in both trees (1.00/99). 

The cladogram obtained with MrBayes will be described first concerning the phylogenetic 

relationships within the Heterobranchia. Some of the nodes have no statistically significant 

support (values below 0.95/95) and will therefore not be discussed. The Cimidae appear as the 

first offshoot of the “Lower Heterobranchia”. Only a few clades are supported like the 

Valvatoidea + Aclididae + Rissoelloidea as well as the clade comprising the Aplysioidea + 

Umbraculoidea + Cephalaspidea. A third clade comprises the Sacoglossa + Siphonarioidea + 

Otinoidea + Stylommatophora. Within this clade the Sacoglossa are the sister to 

Siphonarioidea and the Otinoidea are the sister to the Stylommatophora. 

The cladogram obtained with Phase shows a better node support within the Heterobranchia. 

The Cimidae also appear as the first offshoot of the “Lower Heterobranchia”. The next clade 

comprises Nudipleura + Rissoelloidea + Aclididae + Valvatoidea while Rissoelloidea are the 

sister taxon to Aclididae and both are sister to Valvatoidea. 

The Acteonoidea are the next offshoot followed by the Pyramidelloidea. The next clade 

comprises the Opisthobranchia (without Nudipleura) + Pulmonata + Glacidorboidea. Within 

this clade Aplysioidea + Cephalaspidea + Umbraculoidea cluster together. The Siphonarioidea 

are the sister taxon to the Sacoglossa while the Otinoidea are the sister taxon to the 

Stylommatophora. 
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5.4  Discussion 
 

The aim of this chapter was to evaluate the data quality a posteriori after the tree 

reconstruction by comparing congruence of statistical tests for phylogenetic signal with tree 

topology hypotheses proposed in chapter 3.  

 

A posteriori evaluation of data quality by a variety of statistical tests 

The Relative-Rate-Test determined high evolutionary rates within the “Lower Heterobranchia” 

(in particular Omalogyra sp., Omalogyra fusca, Murchisonella sp., Ebala sp. and 

Architectonica perspectiva – see Tab. 5.1) which were also visible as long branches in the 50% 

majority rule consensus tree (see fig. 3.2). These long branches could be a problem for tree 

reconstruction methods because they show a large number of substitutions which cause signal 

erosion. The formation of non-monophyletic groups supported mainly by analogies or 

convergences could be the result (Wägele 2005). Taking a look at the tree topology (especially 

at taxa with long branches) (see fig. 3.2) with this information in mind it seems that the high 

substitution rates in various “Lower Heterobranchia” had no (or if only little) influence on the 

tree reconstruction. Maybe, the sister group relationship of Architectonicoidea and 

Omalogyridae could be caused by a long branch attraction because both taxa show a long 

branch. However, this seems to be improbable because there is evidence in the literature for a 

close relationship of both taxa based on morphological characters (see chapter 3). The clade 

Ebala + Murchisonella was recovered as sister group to the clade Larochella + Graphis. Both 

clades also show a long branch but as one can see there is no statistical support for this 

sistergroup relationship. Hence, this result should be ignored as insignificant anyway.  

In summary, one can say that evolutionary rates had no visually negative influence (in terms of 

misarrangements of not related taxa due to long branch attraction) on the tree reconstruction. 

Actually, the Relative-Rate-Test gives additional hints for an affinity of the Pyramidellidae 

and Glacidorboidea to the Euthyneura (as already discussed in chapter 3) due to low 

evolutionary rates compared to other “Lower Heterobranchia” (see tab. 5.1a+b).  

However, the basal position of the Nudipleura within the Euthyneura still seems unlikely (see 

also discussion in chapter 3.4). The Nudipleura do not show long branches (indicating a 

possible long branch attraction) but show deviating sequences compared to the other more 

derived Euthyneura which could be the reason for them not clustering with the latter one (see 

fig. 3.2). 
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Nevertheless, due to the insignificant results of the performed AU-test alternative phylogenetic 

hypotheses could not be rejected confidently. Although, the unconstrained hypothesis shows 

the maximum likelihood (see tab. 5.2) the three constrained trees could not be discarded 

because the p-values of the AU-test are not smaller than the significance level of 0.05. 

Nevertheless, a monophyletic Euthyneura (in the traditional sense – excluding Glacidorboidea 

+ Pyramidellidae) seems to be less probable due to a lower p-value (0.089) compared to the 

unconstrained p-value (0.829). A monophyletic Pulmonata and Opisthobranchia seem also 

unlikely because both p-values are distinctly lower than the unconstrained p-value. However, 

the p-values are not significant. Hence, a definitive conclusion is not possible. Reasons for this 

are probably the unresolved tree topology at the base of the Heterobranchia and within the 

Euthyneura regarding the position of the Siphonarioidea and Sacoglossa. 

 

Although the dataset shows much conflict (indicated by many parallel edges of the same 

length), many of the proposed hypotheses of chapter 3 regarding the terminal branches of the 

“Lower Heterobranchia” are supported by splits in the neighbournet graph (fig. 5.1). Moreover, 

one obtains additional information particularly regarding the “Lower Heterobranchia” because 

one big advantage of neighbournet graphs is the possibility to represent more information than 

a single tree topology could (Huson & Bryant 2006) (e. g the possible relationship of 

Murchisonellidae or Aclididae with various “Lower Heterobranchia” taxa indicated by 

different split support). Network methods can extract phylogenetic signals that are missed by 

tree-based-methods (Huson & Bryant 2006) and give a more complete picture. 

The already mentioned conflict is reflected mainly in the deep nodes. Neither the Euthyneura 

nor the Pulmonata or Opisthobranchia have any split support. With the exception of the 

Heterobranchia, none of the deeper nodes of the tree topology of chapter 3 receives any split 

support. Moreover, there is little or no split support for relationships within the Pulmonata (see 

fig. 5.1) Nevertheless, the tree topology proposed in chapter 3 (fig. 3.2) shows a significant 

statistical support of many subgroups indicating a good phylogenetic signal. 

 

According to Wägele & Mayer (2007) network analyses as well as split support spectra are not 

meant to replace tree building methods. The spectra show only distinct conserved patterns. 

Many clades appearing in phylogenetic trees are not represented among the best splits. This 

does not mean that such clades do not exist. Instead, spectra and split networks will show 

whether an alignment contains distinct signals or not, whether a clade is strongly contradicted, 

and which clades have the best support (Wägele & Mayer 2007). The analysis conducted with 
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the software SAMS must be classified as a quality analysis. In this case, the stronger the 

support of the best compatible splits is, the higher is the probability of homology for character 

states in corresponding supporting positions (Wägele & Mayer 2007). In addition to 

phylogenetic networks the spectrum shows a ranking order of support quality and it shows 

splits that are excluded in the network since not all splits can be drawn in planar graph 

(Wägele & Mayer 2007). Within this study the software SAMS detected 25 groupings within 

the 1000 most frequent partitions (see tab. 5.3 and fig. 5.2) which also appear in the 

phylogenetic tree (fig. 3.2). All other partitions are equivalent to random combination of taxa 

and incompatible with the tree. These incompatible groups show how many chance similarities 

(noise) occur in this alignment. This implies that many of the spectral signals of the 

corresponding groupings are not higher than background noise independently from a high 

posterior probability/bootstrap support (tab. 5.3). Hence, a high support value does not 

necessarily mean that a clear phylogenetic signal is conserved. This was also observed by 

Wägele & Rödding (1998) investigating the a priori estimation of phylogenetic information 

conserved in aligned sequences.  

There is obviously a high noise level in the alignment utilized in the current study. This can 

probably be explained by the composition of the dataset. The major part of the used sequences 

consists of rDNA (18S, 28S and 16S). Besides well-conserved positions, these sequences also 

contain variable positions. They seem to evolve relatively fast, with the consequence that the 

phylogenetic signals are destroyed by multiple substitution. An observation that was also made 

by Wägele & Rödding (1998) 

Interestingly, 17 of the 25 detected partitions comprise basal groups belonging to the veti- and 

caenogastropods as well as lower heterobranch taxa. Seven partitions comprise opisthobranch 

taxa and only one partition comprises pulmonate taxa. The good support for basal groups is 

congruent to the observations made with the SplitsTree analyses. A possible reason for this 

could be the already mentioned high evolutionary rates of taxa belonging to the “Lower 

Heterobranchia”. Less detected partitions within Pulmonata are probably caused by an 

incomplete taxon sampling because most of the groups are represent by only one taxon. 

However, the main focus of the current study lays not on the underrepresented taxa (e.g. 

Stylommatophora). 

Nevertheless, this result also reflects the already stated conflict in the data (particularly 

concerning Pulmonata and Opisthobranchia) visualized by the neighbournet graph (fig. 5.1). 
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Utility of the secondary structure of 18S and 28S rRNA for phylogenetic reconstruction 

 

When working with secondary structures one should keep in mind that the inferred secondary 

structures must be treated with caution and can only be considered as working hypotheses 

(Misof & Fleck 2003). Therefore, the secondary structures amplified for this study were 

compared with previously published ones (e.g Erpenbeck et al. 2007, Voigt et al. 2008) to 

increase the confidence that the reconstructions are generally correct.  

However, valuable systematic information can sometimes be achieved by analysing DNA and 

RNA structure (Erpenbeck et al. 2004). Such “molecular morphology” has been carried out on 

various invertebrate taxa like cnidarians (Ender & Schierwater 2003, Odorico & Miller 1997), 

sponges (Chombard & Boury-Esnault 1999) and gastropods (Lydeard et al. 2002).  

This study also revealed specific structures for some lineages of Vetigastropoda and 

Caenogastropoda as well as the Heterobranchia within the 18S rRNA secondary structure (see 

tab. 5.4 and fig. 5.4). Domain 43 of the 18S molecule appears in three main character states 

and four further states. In general, one can say that character state 0 (blue) as well as 2 (black) 

are comparatively constant while within character state 1 (red) some variations appear (see tab. 

5.4).  

The Vetigastropoda are clearly distinguishable from the remaining taxa by a long stem region 

within domain 43 which has been reduced during evolution. Character state 1 (red) shows 

mainly two remaining base pairs and character state 2 (black) only one remaining base pair. 

This domain supports the basal position of the Acteonoidea and Nudipleura as already stated 

in chapter 3 because both taxa show secondary structures of character state 1 (red). 

Furthermore, a non basal position of the Pyramidellidae and Glacidorbidae is supported 

because both taxa possess character state 2 (black). 

Domain E23 2 & 5 of the 18S molecule also comprises three main character states (0 = blue, 1 

= red, 2 = black) while Glacidorbis (Glacidorboidea) shows a deviating character state (3 = 

green). Character state 0 (blue) is defined by the following nucleotide sequence CUCAA, 

character state 1 (red) is defined by one of the following two nucleotide sequences 

CCCUU/CCCAU and character state 2 (black) is defined by one of the following three 

nucleotide sequences CCCGGC/CCCGCG/CCCGUG. These different nucleotide sequences 

consequently determine different secondary structures.  

Within Domain E23 2 & 5 of the 18S molecule, the Vetigastropoda are also clearly 

distinguishable from the remaining taxa by their nucleotide sequence. The basal position of the 

Acteonoidea is also supported because it shows character state 1 (red). In contrast the 
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Nudipleura show a different character state (2 = black) than the more basal taxa (1 = red) 

which supports a non basal position of this taxon. This is in contrast to domain 43 (see above). 

Furthermore, like in domain 43 a non basal position of the Pyramidellidae as well as 

Glacidorboidea is supported because both taxa possess the derived character states 2 (black) or 

3 (green). 

To sum up, it can be proposed that domain 43 as well as E23 2 & 5 of the 18S molecule are 

adequate to separate the Vetigastropoda from the remaining taxa and to support a basal 

position of the Acteonoidea. A non basal position of the Pyramidellidae as well as the 

Glacidorboidea is also supported by both domains. A final statement about the basal position 

of the Nudipleura is not possible because of contrary results of domain 43 and E23 2 & 5. 

Nevertheless, one should be aware of the conserved condition of the secondary structure of 

18S rRNA especially within the Heterobranchia, because sometimes only one base 

distinguishes one character state from another. Hence, random mutations could lead to wrong 

results respective to a wrong interpretation of evolution. 

Other studies show a less conserved secondary structure for the 18S rRNA. Voigt et al. (2008) 

for example investigated the complete SSU rRNA secondary structure in Porifera and found 

structural differences in SSU rRNA among different Porifera groups. He concluded that 

secondary structure features can provide alternative support for sequence-based topologies and 

give insights into the evolution of the molecule itself. 

 

Many rDNA molecular phylogenetic studies result in trees that are incongruent to either 

alternative gene tree reconstructions and/or morphological assumptions. One reason for this 

outcome might be the application of suboptimal phylogenetic substitution models (Erpenbeck 

et al. 2007). Partitioned analyses using rDNA specific models have been reported to result in 

better supported tree topologies (Dohrmann et al. 2006, Erpenbeck et al. 2007, Voigt et al. 

2008). Thus, it appears relevant to apply consensus structures in rDNA based phylogenies via 

rDNA substitution models (Misof et al. 2006). Furthermore, taking secondary and tertiary 

structures of rRNA genes into account seems to be a promising approach to improve 

homology estimation in alignments (Kjer 1995; 2004). Therefore, two different analyses with 

the same dataset (dataset III) of the 18S rDNA were conducted. One analysis was carried out 

using standard settings (one evolutionary model for the entire molecule) with the software 

MrBayes. The other one was conducted using the software RNAsalsa and Phase. RNAsalsa 

uses secondary structure information for adjusting and refining the sequence alignment. This 
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alignment was used for tree reconstruction with the software Phase taking specific rDNA 

evolutionary models for paired and unpaired bases into account. 

Comparing the two obtained phylogenetic trees (fig. 5.5) it seems that the MrBayes tree shows 

a better resolution than the Phase tree but taking a look at the statistical support (only posterior 

probabilities above 0.95/95 are statistically significant) than the first impression needs to be 

revised. Taking only relationships with a statistically significant node support into account 

both trees show more or less the same phylogenetic topology. Thus, the here presented results 

are contrary to other comparable studies where using rDNA specific models have improved 

phylogenetic results (Dohrmann et al. 2006, Erpenbeck et al. 2007, Voigt et al. 2008). A 

reason for the missing improvement of the phylogeny could be the limited number of gene 

markers the tree reconstruction was based on. The 18S rDNA sequences alone does not 

contain enough phylogenetic signal to solve deep as well as terminal nodes independent of the 

used tree reconstruction method or evolutionary model. 

 

The large nuclear ribosomal subunit (LSU) is a popular phylogenetic marker in Metazoa 

research with its most variable regions located in the expansion or D segments (Erpenbeck et 

al. 2004). Especially the domains D1-D3 of the 28S rRNA have been used for phylogenetic 

analyses of gastropod taxa (Dayrat et al. 2001, Klussmann-Kolb & Dinapoli 2006, Vonnemann 

et al. 2005, Klussmann-Kolb et al. 2008). 

Within the 28S rRNA secondary structure of Vetigastropoda, Caenogastropoda and 

Heterobranchia particular motifs were found that are specific for some lineages (see tab. 5.5 

and fig. 5.7) (see also discussion about the 18S rRNA secondary structure above). 

Domain E11 (fig. 5.7a) appears in three main character states (state 0 = blue, state 1 = red, 

state 2 = black) while Haminoea (Cephalaspidea) shows a deviating character state (green). 

All four states are clearly distinguishable from each other by their different structure.  

The Vetigastropoda are clearly distinguishable from the Caenogastropoda and Heterobranchia 

showing character state 0 (blue). 

Domain E11 supports the already stated basal position of the Nudipleura and Acteonoidea (see 

discussion above) because both taxa possess character state 1 (red). In contrast to the 

secondary structure of the 18S rRNA the Pyramidellidae also show character state 1 which 

implicates a basal position for this taxon. Nevertheless, a non basal position of the 

Glacidorbidae is supported because Glacidorbis presents the derived character state 2 (black). 

Domain G5_1 (fig. 5.7b) appears in two main character states (0 = blue, 1 = red) while 

Glacidorbis (Glacidorboidea) shows an aberrant character state (2 = black). 
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The character state change from 0 (blue) to 1 (red) within domain G5_1 is characterised  by an 

insertion event leading to an extreme long stem region. This event happened within groups 

belonging to the “Lower Heterobranchia” (Cima, Cornirostra, Valvata, Graphis and Rissoella) 

and Sacoglossa. Nudipleura, Acteonoidea and Pyramidellidae show the original character state 

(0 = blue) which means that the results of Domain G5_1 favour the hypothesis that these three 

groups are not closely related to the “Lower Heterobranchia” and Sacoglossa. 

At this point the question arises whether this insertion event happened only once or several 

times independently during evolution. If it only happened once than one must assume mistakes 

during tree reconstruction and the Nudipleura for example are less basal while the Sacoglossa 

are less derived than the phylogenetic topology implies. However, when looking at the results 

of chapter 5.3.3.2 (fig. 5.8) some of the posterior probabilities are below the statistical 

significant level of 0.95 and thus a misarrangement of the tree topology is within the realms of 

possibility. 

Summing up, it seems that domain E11 contains a phylogenetic signal for separating the 

Vetigastropoda from the Caenogastropoda + Heterobranchia and groups within the 

Heterobranchia from each other. Domain G5_1 possibly contains a phylogenetic signal to 

characterise taxa belonging to the “Lower Heterobranchia”. Both domains favour the idea of 

non basal Glacidorbidae while domain E11 favours basal Nudipleura, Acteonoidea and 

Pyramidellidae whereas domain G5_1 favours the latter three taxa in a non basal position. 

 

As expected, the secondary structure of 28S rRNA is less conserved than the secondary 

structure of 18S rRNA.  

The fact that variable structures are found in domain 43 and E23 of the 18S rRNA as well as in 

domain E11 and G5_1 of the 28S rRNA in various taxa indicates that these regions are under 

less functional constraints than are the core regions of the small and large ribosomal subunit. 

Wuyts et al. (2001), by investigating the tertiary structure of rRNA showed that the 

substitution rates are generally low near the centre of the ribosome (where the nucleotides 

essential for its function are situated) and that nucleotide variability increases towards the 

surface. 

 

As already discussed, it seems to be a promising approach to use secondary structure 

information to improve the alignment and to use rDNA specific models. 

The same two analyses conducted for the 18S rDNA dataset (dataset III) were carried out for 

the 28S rDNA dataset (dataset IV) (see fig. 5.8). 
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Comparing the two Bayesian phylogenetic trees (one with MrBayes and one with Phase) (fig. 

5.8) both trees show the same topology but with a different statistical support. The posterior 

probabilities from the MrBayes analysis are often lower than support values from the Phase 

analysis. However, the author feels unable to decide whether the lower posterior probabilities 

are due to a lower or noisy phylogenetic signal or due to the different evolutionary models 

applied with the different softwares. Once again these results are contrary to already existing 

studies (Dohrmann et al. 2006, Erpenbeck et al. 2007, Voigt et al. 2008) where specific rDNA 

models have noticeably improved the phylogenetic results. So, one should be aware that the 

use of secondary structures in aligning rDNA sequences does not guarantee obtaining the 

correct alignment for every base. This especially counts for sequence variable loops (Buckley 

et al. 2000) 

 

However, the phylogenetic tree based on dataset IV (complete 28S rDNA sequences only) has 

a noticeably better resolution than the phylogenetic tree based on dataset III (complete 18S 

rDNA sequences only) which leads to the conclusion that complete 28S rDNA sequences 

contain a useful phylogenetic signal to reconstruct Heterobranchia phylogeny. Because 

amplifying the complete 28S rDNA sequences is a time consuming and expensive procedure 

only few taxa belonging to different groups within the Heterobranchia were selected for 

amplification for the current study. In addition, all available Genbank sequences were added to 

the alignment. Because of this positive result more taxa belonging to the Heterobranchia 

should be sequenced in the future to improve the taxon sampling and to get a better impression 

of gastropod evolution. 

A combination of the complete 18S and 28S rDNA datasets could also possibly improve the 

phylogenetic signal. Unfortunately, for this study, there was little taxa overlap between the two 

datasets. This should be taken into account in further studies. 

 

Conclusion 

The results of this chapter regarding the data quality are congruent to the conclusions made in 

chapter 2 (a priori evaluation of data quality). Much conflict was observed in the dataset. 

Nevertheless, the a posteriori investigation also supports many of the obtained results of the 

phylogenetic tree reconstruction of chapter 3 regarding the phylogeny of the “Lower 

Heterobranchia” like the affinity of the Pyramidellidae and Glacidorbidae to the Euthyneura or 

the sister group relationship between the Architectonicoidea and Omalogyroidea. Hence, an a 
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posteriori evaluation is helpful in estimating whether the complete alignment contains distinct 

or noisy signals and which clades have a strong or weak support. 

 

Within this study the first comprehensive survey of the complete 18S rRNA and 28S rRNA 

secondary structures of representatives of the main lineages of the Heterobranchia was 

performed and evaluated how secondary structure information and features can contribute to 

improve phylogenetic reconstructions. 

The 18S and 28S rRNA secondary structure provide valuable phylogenetic information in 

addition to the primary sequence. This study demonstrated that secondary structure analyses 

can increase the potential phylogenetic information of already available rDNA sequences 

because the secondary structures of both rRNA molecules show taxon specific structural 

variation within Vetigastropoda and Ceanogastropoda as well as Heterobranchia. Thus, the 

importance of 18S and 28S rRNA secondary structure information for phylogenetic 

reconstruction is still generally underestimated, at least among Gastropoda.  

 

It is well established that phylogenetic methods perform better when the model of evolution is 

appropriate (Sullivan & Swofford 1997, Posada & Crandall 2001). This also concerns the 

specific rDNA models which have noticeable improved phylogenetic results (Dohrmann et al. 

2006, Erpenbeck et al. 2007, Voigt et al. 2008). So far, the automatisation of alignment 

procedures using secondary structures failed due to inadequate formalizations of the alignment 

process and moreover because of difficulties in generating secondary structure models for 

rDNA sequences (Higgs 2000). This study shows that the new phylogenetic software 

RNAsalsa is a fast and capable tool to reconstruct secondary structures even if a significant 

improvement of the phylogenetic results of this study could not be recognized although 

specific rDNA evolutionary models were used. 

Nevertheless, improvement and innovation of phylogenetic reconstruction methods is essential 

to advance the reconstruction and thus the understanding of phylogenetic and evolutionary 

processes. Better partitioned analyses and refined evolutionary models will certainly bring us 

closer to this goal. 
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6.  General conclusion 
 

The present study focused on two major goals. The first goal was the reconstruction of the 

Heterobranchia phylogeny and evolution based on molecular data whereas the main focus was 

on the “Lower Heterobranchia”. The second goal comprised the adoption of newly developed 

approaches in phylogenetic inference. These approaches include the detection of ambiguously 

aligned positions in sequence alignments with the software Aliscore, consideration of rRNA 

secondary structures in tree reconstruction and alignment procedures with the software 

RNAsalsa, and the application of specific rDNA substitution models with the software Phase. 

Moreover, a case study using “relaxed” molecular clock approaches to estimate divergence 

times within the Heterobranchia was accomplished using the software Beast. 

 

6.1  New insights into heterobranch phylogeny and 
evolution 

 

Due to an outstanding taxon sampling the proposed phylogenetic hypothesis enables many 

new insights into heterobranch phylogeny and evolution. Various important “lower” 

heterobranch groups which have not received much attention in former morphological and 

molecular investigations (e.g. Omalogyra, Rissoella, Orbitestella, Glacidorbis, Ebala, 

Murchisonella) as well as additional members of several groups with uncertain systematic 

affinities (e.g. Larochella, Graphis), were included for the first time in a phylogenetic 

approach based on molecular data. Mikkelsen (2002) already stated that many phylogenetic 

analyses are biased towards Pulmonata and Opisthobranchia due to an unbalanced taxon 

sampling. Until the present study, insufficient “Lower Heterobranchia” taxa have been 

included in former studies to receive a reliable phylogenetic hypothesis for the main lineages 

within the Heterobranchia. 

 

The monophyly of the Heterobranchia which was already proposed based on morphological 

data could be confirmed in the present study. Within the Heterobranchia, many new findings 

concerning the “Lower Heterobranchia” as well as the Opisthobranchia and Pulmonata were 

recovered.  
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The inclusion of the two murchisonellid taxa Ebala and Murchisonella as well as three 

pyramidellid taxa (Odostomia, Eulimella and Turbonilla) in the current study shows new 

insights into Pyramidelloidea phylogeny. The monophyly of the Pyramidelloidea was rejected 

while a derived position of the Pyramidellidae within the Euthyneura seems ever more likely. 

The same applies for the inclusion of Glacidorbis in the phylogenetic analyses rejecting a 

basal position of the Glacidorboidea as proposed by Haszprunar (1988) and Dayrat & Tillier 

(2002). In fact, the current study supports a pulmonate relationship of Glacidorbis with an 

affinity to the Amphiboloidea as proposed by Ponder (1986) and Ponder & Avern (2000).  

 

The inclusion of further “Lower Heterobranchia” taxa and the resultant outcomes of the 

present study, like the sister group relationship between the Acteonoidea and the 

Rissoelloidea, gives also new research impulses. Further research must be undertaken to 

clarify whether this newly resolved sister group relationship is based on tree reconstruction 

artefacts or represents true relationships supported by further data and potential 

synapomorphies. 

 

The inclusion of taxa other than “Lower Heterobranchia”, like the pulmonate taxon Smeagol, 

provides additional insights into gastropod phylogeny. Within the current study, Smeagol 

appears as sister group to Otina (Otinidae) as already proposed by Tillier (1984), Tillier & 

Ponder (1992) and Barker (2001) based on morphological characters. Smeagol is not related 

to the Onchidioidea as proposed by Haszprunar & Huber (1990) and Nordsieck (1992) based 

on the nervous system. 

 

Hence, the present study yields an important contribution for the better understanding of the 

phylogeny and evolutionary history of Gastropoda. Furthermore, the recovered phylogeny 

provides the basis for further comparative studies within the Gastropoda. 

 

The data of the present study were evaluated a priori to tree reconstruction in order to detect 

the data with the most appropriate phylogenetic signal for investigating the Heterobranchia 

phylogeny. Furthermore, an estimation of data quality was made to get an idea of how reliable 

the expected results of the tree reconstruction will be. 

This proved advantageous when it came to deciding which inference method would be the 

best for reconstructing heterobranch phylogeny. The a priori evaluation revealed rate 

heterogeneity, some deviating base composition and much conflict in the dataset possibly due 
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to noisy nucleotide positions. For this reason, I decided to use only model based inference 

methods to compensate possible reconstruction difficulties. 

 

More and more tools are available to investigate data independent of tree reconstruction 

methods (see also discussion in chapter 6.2). A more significant picture of phylogenetic 

relationships and evolutionary events can be shown. Hence, a priori evaluation of data should 

be accomplished in all future studies. 

 

Some of the results introduced in the current molecular study are contrary to already existing 

hypotheses based primarily on morphological but also molecular data. The derived position of 

the Pyramidellidae and Glacidorbidae as well as the resulting paraphyly of the Euthyneura 

demonstrates this. The a posteriori evaluation of the data helped the author to prove the 

plausibility of the new phylogenetic hypothesis obtained via tree reconstruction methods and 

accomplished by various statistical tests as well as secondary structure reconstruction methods 

(see also discussion in chapter 6.2). The received additional outcomes complement the results 

obtained with tree reconstruction methods. This practical approach should be considered in 

future studies.  

 

6.2  Novel methodological approaches using newly invented 
software 

 
Many of the software packages used in the present study were applied for the first time to 

answer questions regarding gastropod phylogeny and evolution. Therefore, a brief review 

about the utility of these (partially) newly invented methods will be given in this chapter. 

 

The software Aliscore (Misof & Misof in press) was introduced by Bernhard Misof and his 

former working group at the Forschungsmuseum König in Bonn. This method identifies 

random similarity within multiple sequence alignments based on a Monte Carlo resampling. 

Random similarity of sequences can impact phylogenetic reconstruction as well as interfere 

negatively with the estimation of substitution model parameters. The identification and 

removal of possible random similarity in advance of model estimation as well as tree 

reconstruction is therefore recommended. After testing this novel invented software I believe 

that Aliscore is a promising tool to examine sequence alignments a priori. Although I decided 

to use the by eye reviewed dataset, the dataset modified by Aliscore achieved in most of the a 

priori investigations (e.g. Chi-Square-Test) better results than the original alignment (see also 
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discussion in chapter 2.4). Though, in the case of the very heterogeneous Heterobranchia 

sequences a more conservative evaluation of the sequence alignment was necessary to make 

sure that most of the random similarities were excluded. Nevertheless, Aliscore provides an 

automised and more objective evaluation and should therefore be utilised in further analyses. 

 

Two different split network analyses (split decomposition and split support spectra) were used 

to visualize variations in signal distinctness. The split decomposition was applied with 

SplitsTree 4.10 (Huson & Bryant 2006) and the split support spectra with SAMS 1.4 beta 

(Mayer & Wägele 2005).  

Both tools are appropriate for the examination of data quality a priori as well as a posteriori 

because the networks of supporting positions can be generated without reference to any tree 

topology. But the most important advantage of network analyses approaches is the possibility 

to visualize various possible evolutionary scenarios rather than only one evolutionary pathway 

like a tree topology does (Huson & Bryant 2006). 

The network approaches are not meant to replace tree building methods but will show 

whether an alignment contains distinct signal or not and which clades have the best support 

(Wägele & Mayer 2007). 

Regarding the results of the current study, a strong split support of the sister group 

relationship between the Architectonicoidea and Omalogyroidea can be seen. This split 

support is indicated by long parallel edges in the neighbournet graph (fig. 5.1) supporting the 

results of the tree reconstruction (fig. 3.2). Moreover, this cluster receives also very good 

support in the split support spectrum (the second strongest split in fig. 5.2). All three results 

together are strong arguments to propose a phylogenetic relationship between the 

Architectonicoidea and the Omalogyroidea based on molecular data. These findings are 

contrary to recently published results of Bäumler et al. (2008) who studied the anatomy of the 

taxon Omalogyra atomus via 3-D reconstruction and concluded that a closer relationship with 

the Architectonicoidea is unlikely (see also discussion in chapter 3.4).  

Another example for the utility of network analyses concerning data evaluation is the support 

of the recovered polyphyly of the Pyramidelloidea in the current phylogenetic tree (fig. 3.2). 

The monophyly of this taxon also gains no support in the neighbournet graph (fig. 5.1) where 

Murchisonellidae and Pyramidellidae occupy positions far away from each other and share no 

split support at all. 
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The software package RNAsalsa (Stocsits et al. submittet) was introduced by Roman Stocsits 

in cooperation with the working group of the Forschungsmuseum König in Bonn. RNAsalsa 

can be used to reconstruct secondary structures as well as to adjust and refine sequence 

alignments automatically and is therefore a less time consuming approach compared to 

previous reconstruction methods. Hence, in the present study little computing time was 

needed (less than three days for the folding procedure – depending on computer power) to 

reconstruct the complete 18S rRNA secondary structures of 45 taxa and the complete 28S 

rRNA secondary structure of 22 taxa. Taxon specific secondary structure motifs were found 

in the 18S rRNA as well as 28S rRNA which contribute additional important information to 

the phylogenetic hypothesis achieved with traditional tree reconstruction methods. These 

findings improve at least the understanding of the phylogeny and evolution of the 

Heterobranchia. The secondary structures of both domains (domain 43 and E23 2 & 5, see fig. 

5.4) of 18S rRNA for example, support a derived position of the Pyramidellidae and 

Glacidorboidea within the Euthyneura according to the tree reconstruction (fig. 3.2) of the 

current study. 

 

Moreover, especially the secondary structure characters of the 18S rRNA (domain 43 and E23 

2 & 5, see fig. 5.4) and 28S rRNA (domain E11 and domain G5_1, see fig. 5.7), separating 

the Vetigastropoda from the Caenogastropoda and Heterobranchia, were clearly 

distinguishing. Hence, it can be assumed that RNAsalsa will also be an appropriate 

algorithmic framework to reconstruct the secondary structure of higher taxonomic levels such 

as Gastropoda or even Mollusca. 

 

Additionally to the facility of secondary structure reconstruction, RNAsalsa provides 

informations about paired and unpaired base pairs. These informations help to refine tree 

reconstruction methods by optimising rDNA specific evolutionary models. Using appropriate 

rDNA models have improved phylogenetic reconstruction approaches in earlier studies (for a 

discussion see also chapter 5.4) but not in the present study. A significant improvement of the 

phylogenetic reconstruction was missing even though rDNA specific evolutionary models 

were used. Reason for that is possibly the inability of one molecular marker rather than a 

combination of different markers to reconstruct Heterobranchia phylogeny due to missing 

phylogenetic signal. However, the further improvement of phylogenetic reconstruction tools 

as well as the refinement of evolutionary models has to be the aim. To date an incredible 

amount of data has been generated, possibly already containing the answers we are still 
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searching for. Maybe we just do not know how to extract the appropriate information because 

of improper phylogenetic methods.  

 

The software package Beast (Drummond & Rambaut 2007) is a program for Bayesian 

MCMC analysis of molecular sequences using strict or relaxed molecular clock models.  

The results of the present investigations on the evolution of the Heterobranchia using the 

software Beast have to be seen as preliminary mainly due to large 95% confidence intervals 

(CI) (see also discussion in chapter 4.4). Further analyses are necessary readjusting the prior 

settings by examining the fossil record in order to provide even more reliable estimates for 

clock calibration. In addition, the taxon sampling has to be extended because some taxa are 

underrepresented to answer specific questions such as the occurrence of the first Pulmonata or 

the radiation of the Stylommatophora. 

Nevertheless, molecular clock methods are now more sophisticated than they were a few 

years ago and it seems that “relaxed” clock methods with their sensible date estimates 

complement the fossil record as our guide to evolutionary history. 
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7.  Outlook 

7.1   Inclusion of additional taxa 
 
Although the present study provides the most extensive taxon sampling of the “Lower 

Heterobranchia” there are still important taxa missing to answer different phylogenetic 

questions regarding the Heterobranchia. 

The inclusion of the Amathinidae (Pyramidelloidea) could shed light on the phylogenetic 

position of the Pyramidellidae in the system of the Heterobranchia as well as the monophyly 

of the Pyramidelloidea.  

The same applies for the minute deep water gastropods of Xylodisculidae Waren, 1992 and 

the minute hydrothermal vent gastropods of Hyalogyrinidae Warén & Bouchet, 1993. 

According to Bouchet & Rocroi (2005) the Xylodisculidae (like the Orbitestellidae) are 

unassigned to any superfamily yet and the Hyalogyrinidae are assigned to the Valvatoidea. A 

molecular confirmation of the systematic position of both taxa is missing to date. Including 

both taxa in further analyses could possibly give new insights into the evolutionary 

relationships of the “Lower Heterobranchia” particularly Valvatoidea. Moreover, new 

findings regarding the phylogenetic position of the Orbitestellidae and Xylodisculidae within 

the Heterobranchia could possibly result. 

The inclusion of further Architectonicoidea (like the Mathildidae) could provide new insights 

into the controversially discussed relationship between the Architectonicoidea and 

Omalogyroidea. 

Last but not least, the inclusion of more “Lower Heterobranchia” in general could help to 

resolve the unsolved base of the tree topology (see fig. 3.2) presented in chapter 3. 

 

To answer further questions regarding the occurrence of the first pulmonate more pulmonate 

taxa have to be included in future analyses. Carychiidae may have been present during the 

Late Carboniferous as proposed by Bandel (1997) but this hypothesis needs further testing. 

The inclusion of Carychiidae, Chilinidae and more Ellobiidae as well as Systellommatophora 

could give new insights into pulmonate evolution. In addition, more Stylommatophora should 

be included to get a better inside into pulmonate radiation during the Cretaceous. 
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7.2   Utility of novel analysing tools 
 
The results of the current molecular study request the reassessment of morphological 

characters because of incongruence of morphological and molecular hypothesis. Due to their 

small size, many lower heterobranch species are not suitable for anatomical investigations by 

dissecting. The tinyness and complexity of e.g. central nervous and reproductive systems 

makes the data interpretation derived from histology difficult. Computer based 3D-

reconstruction techniques have already been utilized successfully to resolve complex 

anatomical regions in minute gastropods such as Acochlidia (Neusser et al. 2006, Neusser & 

Schrödel 2007, Jörger et al. 2008), Omalogyridae (Bäumler et al. 2008) or skeneimorph 

gastropods (Kunze et al. 2008). Especially the software Amira (TGS Template Graphics 

Software, San Diego, CA) seems to be a capable tool for efficient analysis and presentation of 

the microanatomy of small specimens. Therefore, taxa whose systematic positions are still 

ambiguous like Pyramidellidae and Glacidorbidae should be re-evaluated morphologically 

using 3D reconstruction methods.  

 

More and more analysing tools especially for investigating molecular data are available such 

as alignment programs which have also become more sophisticated over the years.  

A new multiple sequence alignment program for unix-like operating systems called Mafft 

Version 6 (Katoh & Toh 2008) seems to be very promising in obtaining more accurate 

alignments in extremely difficult cases (Patrick Kück, pers. comm.) and should therefore be 

tested in further analyses. 

 

In general, the amount of data will rise within the next years due to a more sophisticated 

automatisation of sequence amplification and the associated decreasing costs. To handle this 

huge amount of data new automatised computerised pipelines are needed, for example to 

evaluate data quality a priori as shown in the current study. 

 

7.3   Novel phylogenetic markers 
 

Over the years, comparing gene sequences have enriched our knowledge about gastropod 

phylogeny a lot. Nevertheless, to avoid errors in tree reconstruction one has to be aware that a 

large number of genes from many species have to be taken into account (Philippe & Telford 

2006). In recent years, sequence capacity is increasing while sequencing costs are decreasing. 
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Hence, expressed sequence tags (EST’s) provide a reliable alternative to common PCR-based 

sequencing approaches of single genes. The guideline of an EST approach is that a cDNA 

library is made from each taxon of the dataset, from which a few thousands clones are then 

sequenced (Philippe & Telford 2006). Dunn et al. (2008) recently showed, how a broad 

phylogenomic sampling improves resolution of the animal tree of life, using 77 taxa and 150 

genes. Within gastropod phylogeny many relationships remain disputed and support for deep 

nodes is often low. Conducting phylogenetic approaches in future studies using EST data will 

possibly help to overcome these problems. 

 

Compared to other vertebrate (e.g. fishes, amphibians, mammals) or invertebrate (e.g. 

arthropods) phyla, the mitochondrial genomic structure is unusually variable in the molluscan 

phylum (Kurabayashi & Ueshima 2000a). Mitochondrial gene contents as well as gene 

arrangements can vary between different molluscan groups (Kurabayashi & Ueshima 2000a). 

Wilding et al. (1999) demonstrated that mitochondrial gene arrangements are not only highly 

variable among different Mollusca, but also within the Gastropoda. Mitochondrial gene 

arrangements in Gastropoda exhibit high levels of variability and may provide valuable 

information for phylogenetic reconstruction. Over the years, mitochondrial gene arrangements 

have attracted the attention of evolutionary biologists as new phylogenetic markers (Boore & 

Brown 1998, Dowton 1999, Kurabayashi & Ueshima 2000a; b, Grande et al. 2008). 

Kurabayashi & Ueshima (2000b) investigated the mitochondrial genome organization of 

Omalogyra atomus (“Lower Heterobranchia”) in context of gastropod phylogeny. They found 

unique gene order which can be regarded as synapomorphies of the Heterobranchia. This kind 

of data will possibly provide valuable information for phylogenetic reconstruction of the 

Heterobranchia. Grande et al. (2008) investigated the evolution of gastropod mitochondrial 

genome arrangements and already included a remarkable number of Opisthobranchia and 

Pulmonata. However, “Lower Heterobranchia” taxa are missing and have to be included in 

further analyses to complete the puzzle of Heterobranchia evolution, of which the present 

study has provided first important pieces. 

 

Moreover, in the future scientists will possibly work increased with whole genomes due to the 

already mentioned further development of sequencing techniques as well as the possibility to 

handle this huge amount of data with high-performance computers and the respective 

software. 
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Appendix 
 
Tab. A1 Taxon sampling: taxonomic classification (following Bouchet & Rocroi, 2005), collecting sites, accession numbers; gene sequences 
amplified for this study are marked with an *. 
Taxon  Abbreviation Family Locality 

18S  28S 16S  COI  
complete partial  complete partial complete 

LOWER HETEROBRANCHIA         
VALVATOIDEA         

Valvata piscinalis (Müller 1774) Vapi Valvatidae Lake Prespa, Macedonia FJ917222*/ 
FJ91723* FJ917224* FJ917224* FJ917248* FJ917267* 

Cornirostra pellucida (Laseron 1954) Cope Cornirostridae Port Stephens, Australia FJ917215* FJ917225* FJ917225* FJ917249* FJ917282* 
ARCHITECTONICOIDEA         

Architectonica perspectiva (Linné, 1758) Arpe Architectonicidae Dingo Beach, Australia FJ917220*/ 
FJ917221* FJ917231* - FJ917251* FJ917269* 

RISSOELLOIDEA         
Rissoella elongatospira Ponder, 1966 Riel Rissoellidae Wellington, New Zealand FJ917203* FJ917232* - - FJ917270* 
Rissoella rissoaformis (Powell, 1939) Riri Rissoellidae Wellington, New Zealand FJ917214* FJ917226* FJ917226* FJ917252* FJ917271* 
OMALOGYROIDEA         
Omalogyra fusca Suter,1908 Omfu Omalogyridae Leigh, New Zealand FJ917217* FJ917233* - FJ917253* FJ917272* 
Omalogyra sp. Omsp Omalogyridae Ahipara, New Zealand FJ917204* FJ917234* - FJ917254* FJ917273* 
PYRAMIDELLOIDEA         
Eulimella ventricosa (Forbes, 1844) Euve Pyramidellidae off Gnejna Bay, Malta FJ917213* FJ917235* - FJ917255* FJ917274* 
Odostomia sp. Odsp Pyramidellidae Banyuls sur mer, France AY427526 AY427491 - FJ917256* FJ917275* 
Turbonilla sp. Tusp Pyramidellidae Pahia, New Zealand FJ917216* FJ917236* - FJ917257* FJ917276* 
Boonea seminuda (Adams, 1839) Bose Pyramidellidae Genbank - - AY145395 - - 

Ebala sp. Ebsp Murchisonellidae Moreton Bay, Australia FJ917218*/ 
FJ917219* FJ917237* - FJ917258* FJ917277* 

Murchisonella sp. Musp Murchisonellidae Moreton Bay, Australia FJ917205* FJ917238* - FJ917259* FJ917278* 
GLACIDORBOIDEA         
Glacidorbis rusticus Ponder, 2000 Glru Glacidorbidae Wilsons Promontory, Australia FJ917211* FJ917227* FJ917227* FJ917264* FJ917284* 
ACTEONOIDEA         
Rictaxis punctocaelatus (Carpenter, 1864) Ripu Acteonidae California, USA EF489346 EF489318 FJ917243* EF489393 EF489370 
Pupa solidula (Linné, 1758) Puso Acteonidae Genbank AY427516 AY427481 - EF489319 DQ238006 
UNASSIGNED TO SUPERFAMILY         
Cima sp. Cisp Cimidae Port Stephens, Australia FJ917206* FJ917228* FJ917228* FJ917260* FJ917279* 
Orbitestella vera Powell, 1940 Orve Orbitestellidae Wellington, New Zealand FJ917207* FJ917239* - FJ917250* FJ917268* 
Orbitestella sp. Orsp Orbitestellidae Genbank EF489352 EF489377 - EF489333 EF489397 
PULMONATA         
BASOMMATOPHORA         
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SIPHONARIOIDEA         
Siphonaria capensis Quoy & Gaimard, 1833 Sica Siphonariidae South Africa EF489335  EF489354 FJ917244* EF489301 EF489379 
Siphonaria alternata Say, 1826 Sial Siphonariidae Genbank AY427523 AY427488 - - - 
AMPHIBOLOIDEA         
Phallomedusa solida (Martens, 1878) Phso Amphibolidae Genbank DQ093440 DQ279991 - DQ093484 DQ093528 
HYGROPHILA         
ACROLOXOIDEA         
Acroloxus lacustris (Linné, 1758) Acla Acroloxidae Genbank AY282592 EF489364 - EF489311 AY282581 
CHILINOIDEA         
Latia neritoides Gray,1850 Lane Latiidae Waikato, New Zealand EF489339 EF489359 FJ917245* EF489307 EF489384 
EUPULMONATA         
ELLOBIOIDEA         
Ophicardelus ornatus (Ferussac, 1821) Opor Ellobiidae Genbank DQ093442 DQ279994 - DQ093486 DQ093486 
OTINOIDEA         
Otina ovata (Brown, 1827) Otov Otinidae Genbank EF489344 EF489363 - EF489310 EF489389 
Smeagol phillipensis Tillier & Ponder, 1992 Smph Smeagolidae Phillip Island, Australia FJ917210* FJ917229* FJ917229* FJ917263* FJ917283* 
SYSTELLOMMATOPHORA         
ONCHIDIOIDEA         
Onchidella floridana (Dall, 1885) Onfl Onchididae Genbank AY427522 AY427487 - EF489316 EF489391 
Onchidium verruculatum Cuvier, 1830 Onve Onchididae Genbank AY427521 AY427486 - EF489317 EF489392 
STYLOMMATOPHORA         
PUNCTOIDEA         
Discus rotundatus (Müller, 1776) Diro Endodontidae Frankfurt, Germany FJ917212* FJ917240* - FJ917265* FJ917285* 
LIMACOIDEA         

Deroceras reticulatum (Müller, 1776) Dere Agriolimacidae Ober-Olm, Germany AY145373.1 FJ917241* AY145404 FJ917266* FJ917286* 
ARIONIDAE         

Arion silvaticus Lohmander, 1937 Arsi Arioninae Genbank - - AY145392 - - 
OPISTHOBRANCHIA         
UMBRACULOIDEA         

Umbraculum umbraculum (Lightfoot, 1786) Umum Tylodinidae New South Wales, Australia AY427499 AY427457 FJ917246* EF489322 DQ256200 
Tylodina perversa (Gmelin, 1791) Type Tylodinidae Genbank AY427496 AY427458 - - AF249809 
APLYSIOMORPHA         
AKEROIDEA         
Akera bullata Müller, 1776 Akbu Akeridae Genbank AY427502 AY427466 - AF156127 AF156143 
APLYSIOIDEA         
Aplysia californica Cooper, 1863 Apca Aplysiidae Genbank - - AY026366 - - 
THECOSOMATA         
CAVOLINIOIDEA         
Hyalocylis striata (Rang, 1828) Hyst Cavoliniidae Genbank DQ237966 DQ237985 - - DQ237999 
GYMNOSOMATA         
CLIONOIDEA         
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Spongiobranchaea australis d'Orbigny, 1836 Spau Pneumodermatidae Genbank DQ237969 DQ237988 - - DQ238002 
SACOGLOSSA         
PLACOBRANCHIDOIDEA         
Elysia viridis (Montagu, 1804) Elvi Placobranchidae Genbank AY427499 AY427462 - AJ223398 DQ237994 
POLYBRANCHIOIDEA         
Cyerce nigricans (Pease, 1866) Cyni Polybranchiidae Genbank AY427500 AY427463 - EU140843 DQ237995 
OXYNOOIDEA         

Oxynoe antillarum Mörch, 1863 Oxan Oxynoeidae Isla de Cubagua, Venezuela FJ917441 FJ917466 FJ917466/ 
FJ917247* FJ917425 FJ917483 

CEPHALASPIDEA         
HAMINOEOIDEA         
Haminoea hydatis (Linné, 1758) Hahy Haminoeidae Genbank AY427504 AY427468 - EF489323 DQ238004 
Haminoea solitaria Say, 1822  Haso Haminoeidae Genbank - - AY145408 - - 
DIAPHANOIDEA         

Toledonia globosa Hedley, 1916 Togl Diaphanidae Genbank EF489350 EF489375 - EF489327 EF489395 
NUDIPLEURA         
PLEUROBRANCHOIDEA         
Tomthompsonia antarctica (Thiele, 1912) Toan Pleurobranchidae Genbank AY427492 AY427452 - EF489330 DQ237992 
Bathyberthella antarctica Willan & Bertsch, 1987 Baan Pleurobranchidae Genbank AF249219 AY427453 - Katrin AY345027 
EUDORIDOIDEA         
Chromodoris krohni (Vérany, 1846) Chkr Chromodorididae Genbank AJ224774 AY427445 - AF249239 AY345036 
Diaulula sandiegensis (Cooper, 1863) Disa Discodorididae Genbank - - AY144352 - - 
ANADORIDOIDEA         
Goniodoris nodosa (Montagu, 1808) Gono Goniodorididae Genbank AJ224783 AY014157 - AF249226 AF249788 
UNASSIGNED TO HETEROBRANCHIA         
Larochella alta Powell,1927 Laal Aclididae Leigh, New Zealand FJ917208* FJ917242* - FJ917261* FJ917280* 
Graphis sp. Grsp Aclididae Leigh, New Zealand FJ917209* FJ917230* FJ917230* FJ917262* FJ917281* 
CAENOGASTROPODA         
Pomacea bridgesii (Reeve, 1856) Pobr Ampullariidae Genbank DQ093436 DQ279984 - DQ093480 DQ916496 
Aperostoma palmeri (Bartsch & Morrison, 1942) Appa Cyclophoridae Genbank DQ093435 DQ279983 - DQ093479 DQ093523 
Littorina littorea (Linné, 1758) Lili Littorinidae Genbank X91970 AJ488672 - DQ093481 AY345020 
Balcis eburnea (Muehlfeld, 1824) Baeb Eulimidae Genbank AF120519 AF120576 - DQ280051 AF120636 
Ilyanassa obsoleta Say, 1822 Ilob Nassariidae Genbank - - AY145411 - - 
VETIGASTROPODA         
Diodora graeca (Linné, 1758) Digr Fissurellidae Genbank AF120513 DQ279980 - DQ093476 AY923915 
Bathymargarites symplector Warén & Bouchet, 1989 Basy Trochidae Genbank DQ093433 DQ279982 - DQ093477 DQ093521 
Gibbula magnus (Linné, 1758) Gima Trochidae Genbank - - AY145406 - - 
Lepetodrilus elevatus McLean, 1988 Leel Lepetodrilidae Genbank - - AY145413 - - 
Nordotis discus (Reeve, 1846) Nodi Haliotidae Genbank - - AY145418 - - 



Appendix    144 

Tab. A2: List of used chemicals and kits (in alphabetical order) 
Chemical/Kit Company 

Agarose Carl-Roth, Karlsruhe, Germany  
100 bp-DNA-Leiter extended Carl-Roth, Karlsruhe, Germany  
BSA (Albumin) Invitrogen, Karlsruhe, Germany 
Buffer Invitrogen, Karlsruhe, Germany 
dH2O destilated Water 
DMSO (Dimethyl Sulfoxide) Carl-Roth, Karlsruhe, Germany 
DNeasy Tissue Kit Qiagen, Hilden, Germany 
dNTP Invitrogen, Karlsruhe, Germany 
Ethidium bromide Carl-Roth, Karlsruhe, Germany 
Lamda Hind III-Ladder Carl-Roth, Karlsruhe, Germany  
MgCl2 Invitrogen, Karlsruhe, Germany 
Primer Invitrogen, Karlsruhe, Germany 
Primer Invitrogen, Karlsruhe, Germany 
QIAquick Gel Extraction Kit Qiagen, Hilden, Germany 
Taq polymerase recombinant Invitrogen, Karlsruhe, Germany 
TBE Buffer 
   -Tris 
   -Boracid 
   -EDTA 

NeoLab Migge Laborbedarf-Vertriebs GmbH, Heidelberg, Germany 
NeoLab Migge Laborbedarf-Vertriebs GmbH, Heidelberg, Germany 
Mallinckrodt Baker, Griesheim, Germany   

TMAC (Tetramethyl Ammonium Chloride) Carl-Roth, Karlsruhe, Germany 
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Tab. A3: Primer design following the IUPAC 1-letter code abbreviations (S = G/C, W= T/C, Y = C/T, R = AG, M = A/C) 
Primer Fragment length Direction Sequence 5'  3' Reference 

18S COMPLETE ca. 1800 bp    
PCR amplification     
18A1  Forward CCT ACT TCT GGT TGA TCC TGC CAG T Wollscheid & Wägele 1999 
1800  Reverse TAA TGA TCC TTC CGC AGG TT Wollscheid & Wägele 1999 
Sequencing     
18A1seq  Forward CTG GTT GAT CCT GCC AGT CAT ATG C Vonnemann et al. 2005 
400F  Forward ACG GGT AAC GGG GAA TCA GGG Wollscheid & Wägele 1999 
470F  Forward CAG CAG GCA CGC AAA TTA CCC Vonnemann et al. 2005 
700F  Forward GTC TGG TGC CAG CAG CCG CG Vonnemann et al. 2005 
1155F  Forward CTG AAA CTT AAA GGA ATT GAC GG Wollscheid & Wägele 1999 
1600F  Forward CGT CCC TGC CCT TTG TAC ACA CC Vonnemann et al. 2005 
1800seq  Reverse GAT CCT TCC GCA GGT TCA CCT ACG Vonnemann et al. 2005 
1500R  Reverse CAT CTA GGG CAT CAC AGA CC Vonnemann et al. 2005 
1155R  Reverse CCG TCA ATT CCT TTA AGT TTC AG Wollscheid & Wägele 1999 
700R  Reverse CGC GGC TGC TGG CAC CAG AC Vonnemann et al. 2005 
400R   Reverse CCC TGA TTC CCC GTT ACC CGT Wollscheid & Wägele 1999 
28S PARTIAL (D1-D3) ca. 1000 bp    
PCR amplification     
28SC1  Forward ACC CGC TGA ATT TAA GCA T Dayrat et al. 2001 
28SD1  Forward ACC CSC TGA AYT TAA GCA T Colgan et al. 2003 
28SD3  Reverse GAC GAT CGA TTT GCA CGT CA Vonnemann et al. 2005 
Sequencing     
28SC1  Forward ACC CGC TGA ATT TAA GCA T According to PCR primer 
28SC2F (C2’)*  Forward GAA AAG AAC TTT GAA GAG AGA GT Dayrat et al. 2001  
28SD2F  Forward CCC GTC TTG AAA CAC GGA CCA AGG Vonnemann et al. 2005 
28SD3  Reverse GAC GAT CGA TTT GCA CGT CA According to PCR primer 
28SD2R  Reverse CCT TGG TCC GTG TTT CAA GAC GGG Vonnemann et al. 2005 
28SC2R (C2)*   Reverse ACT CTC TCT TCA AAG TTC TTT TC Dayrat et al. 2001 
28S COMPLETE ca. 3500 bp    
PCR amplification     
F63.2   Forward ACC CGC TGA AYT TAA GCA TAT Passamaneck et al. 2004  
R3264.2   Reverse TWC YRM CTT AGA GGC GTT CAG Passamaneck et al. 2004  
Sequencing     



Appendix    146 

28F5   Forward CAA GTA CCG TGA GGG AAA GTT G’ Passamaneck et al. 2004  
28 MT4.1   Reverse TCC TTG GTC CGT GTT TC AAG ACG Passamaneck et al. 2004 
28nn   Reverse GGA ACC AGC TAC TAG ATG GTT CG Passamaneck et al. 2004   
28F1-2   Forward GYW GGG ACC CGA AAG ATG GTG AAC Passamaneck et al. 2004   
28F2-2   Forward GCA GAA CTG GCG CTG AGG GAT GAA C Passamaneck et al. 2004   
28ff   Reverse GGT GAG TTG TTA CAC ACT CCT TAG CGG Hillis & Dixon 1991  
28ee   Forward ATC CGC TAA GGA GTG TGT AAC AAC TCA CC Hillis & Dixon 1991  
28R2   Reverse GAG GCT GTK CAC CTT GGA GAC CTG CTG CG Passamaneck et al. 2004   
28F4   Forward CGC AGC AGG TCT CCA AGG TGM ACA GCC TC Passamaneck et al. 2004   
28R4   Reverse GAG CCA ATC CTT ATC CCA AAG TTA CGG ATC Passamaneck et al. 2004 
28R3   Reverse GAT GAC GAG GCA TTT GGC TAC C Passamaneck et al. 2004   
28gg   Reverse GAC GAG GCA TTT GGC TAC CTT AAG Hillis & Dixon 1991  
28V   Forward AAG GTA GCC AAA TGY CTC GTC ATC Hillis & Dixon 1991  
28X    Reverse GTG AAT TCT GCT TCA CAA TGA TAG GAA GAG CC Hillis & Dixon 1991  
16S PARTIAL ca. 500 bp    
PCR amplification and sequencing     
16S-H  Forward CGC CTG TTT ATC AAA AAC AT Simon et al. 1994 
16S-R   Reverse CCG GTC TGA ACT CAG ATC ACG T Simon et al. 1994 
COI PARTIAL ca. 700 bp    
PCR amplification and sequencing     
LCOI  Forward GGT CAA CAA ATC ATA AAG ATA TTG G Folmer et al. 1994 
HCOI  Reverse TAA ACT TCA GGG TGA CCA AAA AAT CA Folmer et al. 1994 
Cox AF  Forward CWA ATC AYA AAG ATA TTG GAA C Colgan et al. 2003 
Cox AR  Reverse AAT ATA WAC TTC WGG GTG ACC Colgan et al. 2003 

Cox 623R   Reverse GGT AAR TYT ATT GTA ATA GCW CC Colgan et al. 2003 
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Tab. A4: Alignment information     

Alignment 
Length of alignment 
(prior to removal of 

ambiguous positions)

Length of alignment 
(after removal of 

ambiguous positions) 
Excluded nucleotide positions 

Ambiguous alignment positions were excluded by visual judgement 

18S rDNA complete 2716 bp 1775 bp 
175-240, 271-381, 434-454, 854-
1200, 1212-1299, 1401-1412, 1455-
1466, 1701-1728, 1778-1799, 2055-
2243, 2564-2594, 2657-2676  

28S rDNA partial (D1-D3) 1980 bp 830 bp 
413-481, 506-668, 695-736, 765-843, 
879-1018, 1049-1093, 1128-1290, 
1301-1336, 1345-1387, 1472-1496, 
1520-1841 

28S rDNA complete 4084 bp 4084 bp - 
16S rDNA partial 722 bp 278 bp 18-32, 143-158, 238-409, 431-564, 

594-634, 662-700 
COI 579 bp 386 bp 3rd codon positions 

Ambiguous alignment positions were determined with the software Aliscore 

18S rDNA complete 2716 bp 2636 bp 47-52, 165-168, 231-234, 283-292,  
312-315, 436-438, 1241-1244, 1305-
1313, 1406-1408, 2192-2209, 2362-
2364, 2618- 2629 

28S rDNA partial (D1-D3) 1980 bp 1809 bp 
58-63, 113- 119, 526-535, 542-549, 
577-578, 586-590, 612-621, 625-630, 
672-675, 854-861, 873-877, 894-915, 
936-941, 950-954, 962-967, 1006-
1014, 1033, 1209-1213, 1223-1229, 
1247-1248, 1250-1251, 1253-1264, 
1269, 1780-1787, 1795-1808 

28S rDNA complete 4084 bp 4084 bp not analysed 
16S rDNA partial 722 bp 569 bp 1-7, 20-27, 122, 141-165, 182-184, 

212-220, 371-397, 452-478, 533-543, 
562-573, 617-618, 639-642, 676-687, 
692-706 

COI position 1 193 bp 176 bp 17-21, 84-90, 107-108, 167-169 
COI position 2 193 bp 193 bp - 
COI position 3 193 bp 18 bp 1-35, 42-70, 74-134, 143-193 
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Tab. A5: Models of sequence evolution 

Alignment  Number 
of taxa Model 

Proportion 
of invariable 

sites 

Gamma 
distribution 

shape 
parameter 

Base frequencies Substitution rate matrix 

Dataset 0 (all positions)                                                                                   

18S rDNA 52 GTR+I+G 0.1386 0.3587 freqA = 0.2052 R(a) [A-C] = 0.8825 
complete     freqC = 0.2631 R(b) [A-G] = 1.8087 

     freqG = 0.3059 R(c) [A-T] = 0.8778 
     freqT = 0.2257 R(d) [C-G] = 0.6711 
      R(e) [C-T] = 3.5935 
      R(f) [G-T] = 1.0000 

28S rDNA  52 GTR+I+G 0.1290 0.6352 freqA = 0.1482 R(a) [A-C] = 0.6206 
partial (D1-D3)     freqC = 0.3121 R(b) [A-G] = 1.9812 

     freqG = 0.3415 R(c) [A-T] = 1.3390 
     freqT = 0.1982 R(d) [C-G] = 0.5563 
      R(e) [C-T] = 4.2856 
      R(f) [G-T] = 1.0000 

16S rDNA 47 GTR+I+G 0.1451 0.5874 freqA = 0.3771 R(a) [A-C] = 1.5400 
partial     freqC = 0.1004 R(b) [A-G] = 4.2779 

     freqG = 0.1432 R(c) [A-T] = 1.5752 
     freqT = 0.3793 R(d) [C-G] = 0.6856 
      R(e) [C-T] = 5.4464 
      R(f) [G-T] = 1.0000 

COI position 1 51 GTR+I+G 0.2135 0.8081 freqA = 0.2830 R(a) [A-C] = 0.9756 
     freqC = 0.1419 R(b) [A-G] = 2.3303 
     freqG = 0.2386 R(c) [A-T] = 1.6616 
     freqT = 0.3365 R(d) [C-G] = 0.4750 
      R(e) [C-T] = 18.8917 
      R(f) [G-T] = 1.0000 

COI position 2 51 GTR+G 0 0.4753 freqA = 0.1055 R(a) [A-C] = 3.7541 
     freqC = 0.2601 R(b) [A-G] = 11.6163 
     freqG = 0.1708 R(c) [A-T] = 2.6554 
     freqT = 0.4636 R(d) [C-G] = 16.6939 
      R(e) [C-T] = 4.2370 
      R(f) [G-T] = 1.0000 

COI position 3 51 HKY+G 0 0.4712 freqA = 0.3598 Ti/tv ratio = 28.9173 
     freqC = 0.0880  
     freqG = 0.1306  
          freqT = 0.4216   

Dataset I                                                                                             
(inserts and ambiguous alignment positions were excluded by visual judgement)                                      

Outgroup = Bathymargarites symplector (Vetigastropoda) 

18S rDNA 52 GTR+I+G 0.2536 0.4831 freqA = 0.2676 R(a) [A-C] = 1.1589 
complete     freqC = 0.2163 R(b) [A-G] = 2.0870 

     freqG = 0.2775 R(c) [A-T] = 0.7485 
     freqT = 0.2386 R(e) [C-T] =0.8912 
      R(e) [C-T] = 4.3018 
      R(f) [G-T] = 1.0000 

28S rDNA 52 GTR+I+G 0.1839 0.5076 freqA = 0.1666 R(a) [A-C] =  0.7743 
partial (D1-D3)     freqC = 0.3011 R(b) [A-G] = 2.1984 

     freqG = 0.3482 R(c) [A-T] = 1.4786 
     freqT = 0.1841 R(d) [C-G] = 0.5559 
      R(e) [C-T] = 5.0289 
      R(f) [G-T] = 1.0000 
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16S rDNA 47 GTR+I+G 0.3017 0.6511 freqA = 0.3445 R(a) [A-C] = 1.0673 
partial     freqC = 0.1208 R(b) [A-G] = 5.3205 

     freqG = 0.1685 R(c) [A-T] = 2.0630 
     freqT = 0.3662 R(d) [C-G] = 0.4678 
      R(e) [C-T] = 5.7894 
      R(f) [G-T] = 1.0000 

COI Position 1 same as dataset 0    
COI Position 2 same as dataset 0    
COI Position 3 same as dataset 0       

Dataset II                                                                                              
(ambiguous alignment positions were determined with the software Aliscore and excluded from further analyses) Outgroup = 

Bathymargarites symplector (Vetigastropoda) 

18S rDNA 52 GTR+I+G 0.2624 0.6120 freqA = 0.2648 R(a) [A-C] = 1.0843 
complete     freqC = 0.2141 R(b) [A-G] = 2.3710 

     freqG = 0.2818 R(c) [A-T] = 0.7846 
     freqT = 0.2393 R(d) [C-G] = 1.0280 
      R(e) [C-T] = 4.5929 
      R(f) [G-T] = 1.0000 

28S rDNA 52 GTR+I+G 0.1797 0.6649 freqA = 0.1886 R(a) [A-C] =  0.8507 
partial (D1-D3)     freqC = 0.2929 R(b) [A-G] = 2.2883 

     freqG = 0.3399 R(c) [A-T] = 1.5812 
     freqT = 0.1786 R(d) [C-G] = 0.5264 
      R(e) [C-T] = 5.6147 
      R(f) [G-T] = 1.0000 

16S rDNA 47 GTR+I+G 0.3466 0.7178 freqA = 0.3012 R(a) [A-C] = 2.0588 
partial     freqC = 0.1455 R(b) [A-G] = 6.2902 

     freqG = 0.2181 R(c) [A-T] = 2.3338 
     freqT = 0.3352 R(d) [C-G] = 0.2031 
      R(e) [C-T] = 6.4473 
      R(f) [G-T] = 10000 

COI Position 1 51 GTR+I+G 0.2489 0.7955 freqA = 0.2867 R(a) [A-C] = 2.4516 
     freqC = 0.1326 R(b) [A-G] = 3.2453 
     freqG = 0.2213 R(c) [A-T] = 1.9847 
     freqT = 0.3594 R(d) [C-G] = 1.0668 
      R(e) [C-T] = 25.4845 
      R(f) [G-T] = 1.0000 

COI Position 2 same as taxon set "all position"    
COI Position 3 51 HKY+G 0 2.2008 freqA = 0.2152 Ti/tv ratio = 2.3411 

     freqC = 0.1599  
     freqG = 0.1024  
          freqT = 0.5224   

Dataset III (secondary structure 18S)                                                                        
Outgroup = Bathymargarites symplector (Vetigastropoda) 

18S rDNA 45 GTR+I+G 0.1519 0.3861 freqA = 0.2120 R(a) [A-C] = 0.9825 
complete     freqC = 0.2569 R(b) [A-G] = 1.6636 

     freqG = 0.2916 R(c) [A-T] = 0.8875 
     freqT = 0.2395 R(d) [C-G] = 0.8755 
      R(e) [C-T] = 2.9367 
      R(f) [G-T] = 1.0000 

Dataset IV (secondary structure 28S)                                                                        
Outgroup= Nordotis discus (Vetigastropoda) 

28S rDNA 22 GTR+I+G 0.3616 0.4475 freqA = 0.2071 R(a) [A-C] = 0.7132 

complete     freqC = 0.2764 R(b) [A-G] = 1.5505 
     freqG = 0.3236 R(c) [A-T] = 1.1976 
     freqT = 0.1930 R(d) [C-G] = 0.8776 
      R(e) [C-T] = 3.9398 

            R(f) [G-T] = 10000 
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Tab. A6: References of taxa images 
Taxa Source 

Vetigastropoda www.cienciatk.csic.es 
Caenogastropoda www.sydneycichlid.com 
"Lower Heterobranchia"  
Valvatoidea Angela Dinapoli 
Architeconicoidea Angela Dinapoli 
Omalogyroidea Angela Dinapoli 
Orbitestellidae Angela Dinapoli 
Cimidae Angela Dinapoli 
Rissoelloidea Angela Dinapoli 
Murchisonellidae Angela Dinapoli 
Pyramidellidae Angela Dinapoli 
Glacidorbidae Angela Dinapoli 
Acteonidae  Annette Klussmann-Kolb 
Opisthobranchia  
Nudipleura www.seaslugforum.net 
Sacoglossa www.seaslugforum.net 
Akeroidea www.seaslugforum.net 
Cephalaspidae www.seaslugforum.net 
Umbraculoidea Angela Dinapoli 
Pteropoda www.seaslugforum.net 
Pulmonata  
Otinoidea Angela Dinapoli 
Amphiboloidea www.roboastra.com 
Hygrophila www.fugleognatur.dk 
Siphonarioidea www.conchology.be 
Stylommatophora www.gardensafari.net 
Systellomatophora Annette Klussmann-Kolb 
Ellobioidea www.gastropods.com 
Uncertain systematic rank  
Aclididae Angela Dinapoli 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix   151

Tab. A7: Character matrix of 18S rRNA of domain 43 and domain E23, 2 & 5  
Taxa Domain 43 Domain E23, 2 & 5 

Vetigastropoda   
Bathymargarites symplector  0 0 
Diodora graeca  0 0 
Caenogastropoda   
Littorina littorea  ? 1 
Pomacea bridgesii  1 1 
Aperostoma palmeri  1 1 
Balcis eburnea  1 1 
Aclididae   
Larochella alta  1 ? 
Graphis sp. 1 1 
"Lower Heterobranchia"   
Valvatoidea   
Valvata piscinalis ? ? 
Cornirostra pellucida ? ? 
Architeconicoidea   
Architectonica perspectiva ? ? 
Omalogyroidea   
Omalogyra fusca  1 ? 
Omalogyra sp. 1 ? 
Orbitestellidae   
Orbitestella vera  1 1 
Orbitestella sp. 1 1 
Cimidae   
Cima sp. 1 1 
Rissoelloidea   
Rissoella elongatospira  1 2 
Rissoella rissoaformis ? ? 
Murchisonellidae   
Murchisonella sp. 2 1 
Ebala sp. ? ? 
Pyramidellidae   
Odostomia sp. 3 2 
Turbonilla sp. 3 2 
Eulimella ventricosa  3 2 
Glacidorbidae   
Glacidorbis rusticus  3 3 
Acteonidae    
Pupa solidula  ? 1 
Rictaxis punctocaelatus ? ? 
Opisthobranchia   
Nudipleura   
Tomthompsonia antarctica  1 2 
Bathyberthella antarctica  1 2 
Chromodoris krohni  ? 2 
Goniodoris nodosa  1 2 
Sacoglossa   
Elysia viridis  3 2 
Oxynoe antillarum  5 2 
Cyerce nigricans  3 2 
Akeroidea   
Akera bullata  3 2 
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Cephalaspidea   
Haminoea hydatis  3 2 
Toledonia globosa  3 2 
Umbraculoidea   
Umbraculum umbraculum  3 2 
Tylodina perversa  ? 2 
Thecosomata   
Hyalocylis striata  3 2 
Gymnosomata   
Spongiobranchaea australis  3 2 
Pulmonata   
Otinoidea   
Smeagol phillipensis  3 2 
Otina ovata  3 2 
Amphiboloidea   
Phallomedusa solida  6 2 
Hygrophila   
Latia neritoides  3 2 
Acroloxus lacustris  4 2 
Siphonarioidea   
Siphonaria alternata  3 2 
Siphonaria capensis ? ? 
Stylommatophora   
Deroceras reticulatum  3 2 
Discus rotundatus  3 2 
Systellomatophora   
Onchidella floridana  3 2 
Onchidium verruculatum  3 2 
Ellobioidea   
Ophicardelus ornatus  3 2 
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Tab. A8: Character matrix of 28S rRNA of domain E11 and domain G5_1  
Taxa Domain E11 Domain G5_1 

Vetigastropoda   
Nordotis discus 0 0 
Lepetodrilus elevatus 0 0 
Gibbula magnus 0 0 
Caenogastropoda   
Ilyanassa obsoleta 1 0 
Aclididae   
Graphis sp. 1 1 
"Lower Heterobranchia"   
Valvatoidea   
Valvata piscinalis 1 1 
Cornirostra pellucida 1 1 
Cimidae   
Cima sp. 1 1 
Rissoelloidea   
Rissoella rissoaformis 1 1 
Pyramidellidae   
Boonea seminuda 1 0 
Glacidorbidae   
Glacidorbis rusticus  2 2 
Acteonidae    
Rictaxis punctocaelatus 1 0 
Opisthobranchia   
Nudipleura   
Diaulula sandiegensis 1 0 
Sacoglossa   
Oxynoe antillarum  2 1 
Cephalaspidea   
Haminoea solitaria 3 0 
Umbraculoidea   
Umbraculum umbraculum  2 0 
Aplysioidea   
Aplysia californica 2 0 
Pulmonata   
Otinoidea   
Smeagol phillipensis  2 0 
Hygrophila   
Latia neritoides  2 0 
Siphonarioidea   
Siphonaria capensis 2 0 
Stylommatophora   
Deroceras reticulatum  2 0 
Arion silvaticus 2 0 
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