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Abstract 

 

This paper relates recursive utility in continuous time to its discrete-time origins and 
provides a rigorous and intuitive alternative to a heuristic approach presented in [Duffie, 
Epstein 1992], who formally define recursive utility in continuous time via backward 
stochastic differential equations (stochastic differential utility). Furthermore, we show that 
the notion of Gâteaux differentiability of certainty equivalents used in their paper has to be 
replaced by a different concept. Our approach allows us to address the important issue of 
normalization of aggregators in non-Brownian settings. We show that normalization is 
always feasible if the certainty equivalent of the aggregator is of expected utility type. 
Conversely, we prove that in general L´evy frameworks this is essentially also necessary, 
i.e. aggregators that are not of expected utility type cannot be normalized in general. 
Besides, for these settings we clarify the relationship of our approach to stochastic 
differential utility and, finally, establish dynamic programming results. 
 
 
 
Keywords: recursive utility, stochastic differential utility, L´evy framework, certainty 
equivalents, normalization, dynamic programming 
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1 Introduction and Motivation

In their seminal paper, [Duffie, Epstein 1992] show that for Brownian settings recursive

utility functionals can be normalized by transforming away the so-called variance multi-

plier. In a more general Lévy framework, given an aggregator (f,m) there is an additional

jump term leading to a backward equation of the form

Vt = E

[∫ T

t

{
f(cs, Vs) + 1

2
σ2

sA(Vs) +

∫
R�∗

J(Vs, Ψs(x))ϑ(dx)

}
ds

∣∣∣∣ Ft

]
for t ∈ [0, T ].

Since the method of [Duffie, Epstein 1992] allows for only one degree of freedom, it is by

no means clear that it can be generalized to a Lévy framework where both, the variance

multiplier A and the jump term J , must be transformed away at the same time. If the

answer were negative, then normalization would in general not be possible, and thus, for

instance, Bellman equations would involve additional terms.

To be able to address this point, we firstly provide an alternative rigorous approach to

recursive utility in continuous time that directly relates the continuous-time formulation

to its discrete-time counterpart via the condition

d

ds

∣∣∣∣
s=0

m(L(Vt+s|Ft)) = −f(ct, Vt),

where L(Vt+s|Ft) denotes the conditional distribution of Vt+s given time-t information.

To distinguish this concept from that of stochastic differential utility (SDU) as defined

in [Duffie, Epstein 1992], we refer to it as continuous-time recursive utility (CRU). This

alternative concept is also mentioned in [Duffie, Epstein 1992], but only to heuristically

motivate SDU. In this motivation, they use an inappropriate concept of differentiability

of certainty equivalents, namely Gâteaux differentiability.1 We will introduce a suitable

notion of differentiability that forms the basis for our formulation of CRU. We also clarify

the connection to SDU, thereby also providing a natural discrete-time foundation for SDU.

It is then shown that CRU is exactly the right approach to study the above-mentioned

1We wish to point out that their definition of SDU does not rely on this motivation. Therefore, none

of their formal results is affected.
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issue of normalization. In particular, we demonstrate that normalization is feasible if and

only if the certainty equivalent of the aggregator is of expected utility type. Therefore,

aggregators that allow for normalization are behaviorally indistinguishable from aggrega-

tors with expected utility certainty equivalents. We wish to point out that our results

also imply that aggregators which are not of expected utility type cannot be normalized

in general (e.g. Chew-Dekel preferences as in Proposition 5.10 and Example 8.2). Finally,

using extended versions of the so-called stochastic Gronwall-Bellman inequalities, we prove

that the results of [Duffie, Epstein 1992] on Hamilton-Jacobi-Bellman equations generalize

to Lévy settings.

Recursive utility plays an increasingly important rôle in the literature on optimal con-

sumption and portfolio choice. As mentioned above, normalization is necessary to obtain

tractable Hamilton-Jacobi-Bellman equations in the dynamic programming approach of

[Fisher, Gilles 1998], [Benzoni, Collin-Dufresne, Goldstein 2005], and

[Bhamra, Kuehn, Strebulaev 2008], among others. Moreover, normalization is crucial for

addressing questions such as the existence of recursive utility indices. Consequently, nor-

malization is also relevant for the utility gradient approach pioneered by [Duffie, Skiadas 1994]

and extended in [Schroder, Skiadas 1999], [Schroder, Skiadas 2003], and [Schroder, Skiadas 2008]

when this method is applied to SDU.2 In a different context, [Ma 2000] provides an ex-

istence result for SDU in a finite-intensity Lévy framework assuming a normalized vari-

ance multiplier. However, there are only few papers studying the transition of recur-

sive utility from discrete to continuous time. To the best of our knowledge, apart from

[Duffie, Epstein 1992] only [Svensson 1989] looks at a related issue by presenting a heuris-

tic dynamic programming approach based on a continuous-time limit. [Skiadas 2008b]

provides an intuitive interpretation of the impact of jumps on recursive utility and studies

their effects in the presence of ambiguity. Finally, for axiomatic foundations of recursive

utility we refer to [Kreps, Porteus 1978] and [Skiadas 1998], and to [Skiadas 2008a] for a

2Normalization transforms can also be used to simplify the analysis of translation-invariant and homo-

thetic aggregators.
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general overview.

Since subsequent work adopted the notion of Gâteaux differentiability, it is important to

point out that this notion has to be replaced by another concept such as the one proposed

in our paper. Somewhat oversimplified, the problem is due to the fact that for two point

masses δv and δw we have

δv + δw �= δv+w.

More precisely, our notion of U-differentiability in Definition 5.4 is based on the linear

structure of the underlying space, whereas the notion of Gâteaux differentiability is based

on the linear structure of the space of probability measures. This point is highlighted by

Example 5.1 and resolved in Section 5. Interestingly, the local gradient representations

computed by [Duffie, Epstein 1992] can be interpreted as U-derivatives in the sense of our

paper.

To summarize, the main contributions of this paper are the following: Firstly, we present

an alternative rigorous approach to recursive utility in continuous time which is directly

related to its discrete-time foundations. For this purpose, we secondly introduce a novel

notion of differentiability of certainty equivalents. Thirdly, we use our approach to clarify

the crucial issue of normalization and show that normalization is essentially feasible if and

only if the certainty equivalent is of expected utility type. Fourthly, we establish a dynamic

programming result for the maximization of recursive utility in a Lévy framework.

The remainder of this paper is organized as follows: In Section 2, we fix our mathematical

framework and introduce some terminology. Section 3 briefly summarizes the fundamental

concepts of recursive utility in discrete time, setting the basis for the transition to contin-

uous time in Section 4, which contains our definition of CRU. Additionally, we show why

differentiability is relevant. Section 5 then thoroughly analyzes this important point. In

Section 6, we study CRU in a Lévy framework and clarify its relationship to SDU. Section

7 presents our results on normalization. In Section 8, a verification theorem is derived,

and Section 9 concludes. The Appendix collects stochastic Gronwall-Bellman results.
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2 Mathematical Setting and Notation

We let (Ω,F, P) be a probability space endowed with a filtration {Ft}t∈[0,T ] satisfying the

usual conditions of completeness and right-continuity such that F0 is P-trivial. Moreover,

we fix a set C ⊆ Rk of feasible consumption rates and a subinterval V ⊆ R of the real

line. We denote by C a class of predictable C-valued processes with time horizon [0, T ],

which we take as a model for the consumption processes to be ranked. Barred quantities

are interpreted in the same way as their non-barred analogs.

Sometimes we restrict attention to a Lévy setting by which we mean the following: We

assume as given a standard Wiener process B = {Bt}t∈[0,T ] and a Poisson random measure

ν on (R�
∗,B(R�

∗)) with intensity ϑ where R�
∗ � R� \ {0}. The associated compensated

random measure is denoted by ν̃, i.e. ν̃(dt, dx) = ν(dt, dx) − dtϑ(dx). We suppose that

the underlying filtration {Ft}t∈[0,T ] is generated by W , ν and the class of P-negligible sets.

Further, we say that a càdlàg process V = {Vt}t∈[0,T ] is regular if

dVt = ξtdt + σtdWt +

∫
R�∗

Ψt(x)ν̃(dt, dx) (1)

where ξ = {ξt}t∈[0,T ] and σ = {σt}t∈[0,T ] are progressive processes and {Ψt( · )}t∈[0,T ] is a

predictable3 process that satisfy the integrability conditions

E

[∫ T

0

|ξt|pdt

]
< ∞, E

[∫ T

0

|σt|pdt

]
< ∞, E

[∫
[0,T ]×R�∗

|Ψt(x)|pdtϑ(dx)

]
< ∞ (2)

for any p ∈ [1,∞). Finally, we take C to be a class of predictable C-valued processes

c = {ct}t∈[0,T ] with

E

[∫ T

0

|ct|pdt

]
< ∞ for all p ∈ [1,∞).

3This means that Ψ : [0, T ] × Ω ×R�
∗ → R is P ⊗ B(R�

∗)-measurable, see [Jacod, Shiryaev 2003].
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3 Recursive Utility in Discrete Time: A Brief Review

We are interested in a mapping u : C → R, c �→ u(c) that ranks consumption streams in

such a way that u(c) ≥ u(c′) if and only if c is weakly preferred to c′. The notion of recursive

utility provides a paradigm to construct such a functional via a so-called continuation value

process V c associated to c by setting

u(c) � V c
0 for every consumption stream c.

The mapping u is referred to as a recursive utility function, and u(c) is the utility

index of c. In the following, we recapitulate the exact definition of continuation value

processes. Let [t0, t1, . . . , tN ] be a partition of [0, T ] with t0 = 0, tN = T , and suppose

that c = {ctk}k=0,1,...,N is a discrete-time deterministic consumption stream. Then V c =

{V c
tk
}k=0,1,...,N is defined by means of the backward recursion

V c
tk

� W
(
tk+1 − tk, ctk , V

c
tk+1

)
for k = N − 1, . . . , 0 with V c

tN
= 0. (3)

Here, the mapping W : [0,∞) × C × V → V, (∆, c, v) �→ W (∆, c, v) is of class C0 with

W (0, c, v) = v for c ∈ C, v ∈ V, and describes the temporal aggregation of present

consumption ctk and the value V c
tk+1

of future consumption outstanding. In the presence of

randomness, the quantity V c
tk+1

is not known as of time tk. As a substitute, the agent may

resort to its conditional distribution L(V c
tk+1

|Ftk) given the information available to her at

tk, which is a lottery on future utility. Thus as a further ingredient a certainty equivalent

m is required, and (3) canonically generalizes to

V c
tk

� W
(
tk+1 − tk, ctk ,m(L(V c

tk+1
|Ftk))

)
for k = N − 1, . . . , 0 with V c

tN
= 0, (4)

where u(c) � V c
0 is a deterministic quantity. Formally we state

Definition 3.1 (Certainty Equivalent). Let M1(V) denote the set of probability mea-

sures on the Borel σ-field B(V) of V with moments of all orders. Then a functional

m : M1(V) → R, µ �→ m(µ),
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is called a certainty equivalent on V if m(δv) = v for all v ∈ V. If there exists a strictly

increasing polynomially bounded C2 function h : V → R such that

m(µ) = h−1

(∫
V

hdµ

)
for all µ ∈ M1(V),

then m is said to be an expected utility, or EU, certainty equivalent. If h is the identity

mapping, then m is said to be risk-neutral.

The pair (W,m) completely describes an agent’s preferences over discrete-time stochastic

consumption streams via the associated recursive utility function u.

Definition 3.2 (Discrete-Time Aggregator). Suppose that W : [0,∞)×C×V → V is

of class C0 with W (0, c, v) = v for all c ∈ C and v ∈ V and let m be a certainty equivalent

on V. Then the pair (W,m) is said to be a discrete-time aggregator on V.

If V c = {V c
tk
}k=0,1,...,N is such that E[|V c

tk
|p] < ∞ for all k = 0, 1, . . . , N , p ∈ [1,∞) and V c

satisfies (4), then we refer to V c as the continuation value process of c under (W, m).

We are now going to address the issue of normalization in discrete time. Recall that

the interpretation of recursive utility indices is ordinal rather than cardinal. Hence, if

Φ : V → V̄ is strictly increasing and we set

ū : C → R, ū(c) � Φ(u(c)),

then ū is a recursive utility function describing the same preference structure as u. In

this situation, we say that u and ū are equivalent. Two discrete-time aggregators (W, m)

and (W̄ , m̄) with associated recursive utility functions u and ū are said to be ordinally

equivalent if u and ū are equivalent.

Proposition 3.3 (Transformation of Aggregators). Let (W, m) and (W̄ , m̄) be discrete-

time aggregators on V and V̄ and suppose that4

m(µ) = Φ−1
(
m̄(µΦ)

)
for all µ ∈ M1(V)

4µΦ � µ ◦ Φ−1 ∈ M1(V̄) denotes the image of µ ∈ M1(V) under the Borel mapping Φ : V → V̄.
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and

W (∆, c, v) = Φ−1
(
W̄ (∆, c, Φ(v))

)
for ∆ ≥ 0, c ∈ C, v ∈ V

for some strictly increasing polynomially bounded function Φ : V → V̄ with Φ(0) = 0.

Then (W, m) and (W̄ , m̄) are ordinally equivalent.

Proof. Let c = {ctk}k=0,1,...,N be a consumption process, let V c = {V c
tk
}k=0,1,...,N denote

the corresponding continuation value process, and let V̄ c be given by V̄ c
tk

� Φ(V c
tk

) for k =

0, 1, . . . , N . By the Lp-contraction property of conditional expectations and the polynomial

boundedness assumption, we have E[|V̄ c
tk
|p] < ∞, k = 0, 1, . . . , N , p ∈ [1,∞). Substituting

into the recursion (4), we obtain

V̄ c
tk

= Φ(V c
tk

) = Φ
(
W (tk+1 − tk, ctk ,m(L(V c

tk+1
|Ftk)))

)

= W̄
(
tk+1 − tk, ctk , m̄(L(V c

tk+1
|Ftk)

Φ)
)

= W̄
(
tk+1 − tk, ctk , m̄(L(V̄ c

tk+1
|Ftk))

)

for k = N − 1, . . . , 0 and V̄ c
tN

= 0 since Φ(0) = 0. Hence, V̄ c is the continuation value

process of c under (W̄ , m̄), and the corresponding recursive utility functions satisfy

ū(c) = V̄ c
0 = Φ(V c

0 ) = Φ(u(c)).

Since the consumption stream c is arbitrary, the claim follows.

Let (W,mh) be an aggregator with an EU certainty equivalent induced by a function h.

Then, by taking Φ � h − h(0), we obtain

Corollary 3.4 (Normalization of EU Certainty Equivalents). Every discrete-time

aggregator with an EU certainty equivalent is ordinally equivalent to an aggregator whose

certainty equivalent is risk-neutral.
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4 From Discrete to Continuous Time

[Duffie, Epstein 1992] use a heuristic limiting argument to motivate their SDU approach to

recursive utility in continuous time.5 Recall that SDU is rigorously defined in continuous

time and does not rely on this discrete-time motivation. In this section, we set their

heuristic motivation on a rigorous basis and provide an alternative definition of recursive

utility in continuous time via CRU. Hence, our approach directly relates recursive utility in

continuous time to its discrete-time counterpart. We fix a discrete-time aggregator (W, m)

and a consumption process c = {ct}t∈[0,T ]. For a partition π = [t0, . . . , tN ] with t0 = 0,

tN = T write |π| � maxk=0,...,N−1(tk+1 − tk). Then equation (4) leads to the requirement

that the continuation value process V c = {V c
t }t∈[0,T ] satisfies

V c
tk

= W
(
tk+1 − tk, ctk , m(L(V c

tk+1
|Ftk))

)
for k = N − 1, . . . , 0, V c

T = 0,

if |π| is sufficiently small. On the other hand, we have V c
tk

= W (0, ctk , V
c
tk

) for k = N −
1, . . . , 0, so with t = tk and ∆ = tk+1 − tk we obtain

0 = W
(
∆, ct,m(L(V c

t+∆|Ft))
) − W (0, ct, V

c
t )

=
∂W

∂∆
(0, ct, V

c
t )∆ +

∂W

∂v
(0, ct, V

c
t )

d

ds

∣∣∣∣
s=0

m(L(V c
t+s|Ft))∆ + o(|π|),

provided W is of class C1 with ∂W
∂v

(0, c, v) > 0 for c ∈ C, v ∈ V, and the real function

s �→ m(L(V c
t+s|Ft)) is a.s. differentiable at s = 0. (5)

In this case, the continuation value process V c must satisfy6

d

ds

∣∣∣∣
s=0

m(L(V c
t+s|Ft)) = −f(ct, V

c
t ) a.s., V c

T = 0, (6)

where f : C × V → R is given by

f(c, v) �
∂W
∂∆

(0, c, v)
∂W
∂v

(0, c, v)
. (7)

5See (16) in [Duffie, Epstein 1992].
6This relation can also be found in [Epstein 1987] and [Duffie, Epstein 1992].
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Observe that (5) requires differentiability in the sense of ordinary calculus. However, to

study this condition in detail, one needs a chain rule involving two different types of non-

standard derivatives. This is addressed in Section 5. At this point we give

Definition 4.1 (Continuous-Time Aggregator, Continuation Value Process). Let

f : C × V → R be Borel measurable and let m be a certainty equivalent on V. Then the

pair (f, m) is called a continuous-time aggregator on V. If c ∈ C is a consumption

process and V c = {V c
t }t∈[0,T ] is a V-valued semimartingale with E[supt∈[0,T ] |V c

t |p] < ∞ for

all p ∈ [1,∞) such that the differentiability condition (5) holds and that (6) is satisfied for

a.e. t ∈ [0, T ], then V c is called a continuation value process of c.7

Definition 4.1 has the advantage that it preserves the intuitive interpretation of aggregators.

We now return to the construction of a continuous-time aggregator from its discrete-time

analog. Equation (7) yields a general method to determine f from a discrete-time aggre-

gator (W, m), as illustrated in the following

Example 4.2 (Epstein-Zin Preferences). Let h, u : (0,∞) → R, h(v) � 1
ρ
vρ and

u(v) � 1
γ
vγ for ρ, γ < 1, and define

W (∆, c, v) � h
(
e−α∆u(h−1(v)) + u(c)∆

)
for ∆ ≥ 0, c, v > 0.

Then straightforward computations using equation (7) show that

f(c, v) =
h′(h−1(v))

u′(h−1(v))

[
u(c) − αu(h−1(v))

]
= −β1v

1− γ
ρ

[
cγ − β2v

γ
ρ

]
, c, v > 0,

where β1 � 1
γ
ρ1− γ

ρ and β2 � αρ
γ
ρ .

If for each consumption process c there exists a corresponding continuation value process

V c, then we can define recursive utility in continuous time as follows.

Definition 4.3 (Continuous-Time Recursive Utility, CRU Function). Let (f, m)

be a continuous-time aggregator on V and suppose that for each consumption process c ∈ C

7The space [0, T ] is endowed with the Lebesgue measure.
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there exists an a.s. uniquely determined continuation value process V c = {V c
t }t∈[0,T ]. Then

we define the corresponding continuous-time recursive utility function, or CRU

function, by setting

u : C → R, u(c) � V c
0

and say that (f, m) generates the CRU function u.

5 Differentiability of Certainty Equivalents

This section addresses the question of when the differentiability condition (5) is satisfied.

To give (5) a precise meaning, it is clear that we need a suitable chain rule. Therefore, we

have to clarify what it means for

m : M1(V) → V to be differentiable, (8)

and we have to clarify what it means for the function

h �→ L(V c
t+h|Ft) to be differentiable. (9)

Recall that in [Duffie, Epstein 1992] differentiability in (8) is taken in the sense of Gâteaux

derivatives8 on the convex set M1(V) of probability distributions on V. We however wish

to stress that this is inappropriate. Indeed, consider the following

Example 5.1 (Gâteaux Differentiability Is Inappropriate). Let for an arbitrary

α ∈ (0, 1) the certainty equivalent mα on R be given by

mα : M1(R) → R, mα(µ) � sup {x ∈ R : µ((−∞, x]) ≤ α} ,

which assigns to each probability distribution its α-quantile. For v ∈ R and a finite signed

measure ρ with ρ(R) = 0 observe that

(δv + hρ)((−∞, x]) = hρ((−∞, x]) ≤ |h| ‖ρ‖ ≤ α for all x ∈ (−∞, v)

8[Duffie, Epstein 1992] require m to be ’smooth at certainty’, i.e. Gâteaux differentiable at point masses.
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and

(δv + hρ)((−∞, v]) = 1 + hρ((−∞, v]) ≥ 1 − |h| ‖ρ‖ > α if 0 < h < δ,

where ‖ρ‖ denotes the total variation of ρ and δ � 1
‖ρ‖ min(α, 1 − α). Hence, we have

mα(δv + hρ) = x for sufficiently small h > 0.

Thus m is smooth at certainty in the sense of [Duffie, Epstein 1992], and its Gâteaux

derivative vanishes identically.

In the light of this example, it is apparent that equation (13) below is not valid for Gâteaux

derivatives. Therefore, we now provide novel definitions of differentiability for both (8) and

(9); we first address (9). Let us fix a class U of polynomially bounded C2 test functions

defined on V. The rôle of U is technical and will become clear from Definitions 5.2 and

5.4. The set U may depend on the aggregator (f,m) under consideration.

Definition 5.2 (U-Differentiability). A family {µs}s≥0 ⊆ M1(V) of probability measures

on V is said to be U-differentiable at s = 0 if µ0 = δv for some v ∈ V and

d

ds

∣∣∣∣
s=0

∫
V

udµs = lim
s↓0

1

s

[∫
V

udµs − u(v)

]
exists for any u ∈ U. (10)

In this case, we refer to the operator

µ̇0 : U → R, u �→ µ̇0[u] � d

ds

∣∣∣∣
s=0

∫
V

udµs

as the U-derivative of {µs}s≥0 at s = 0.

As an important application, let us consider a Lévy setting. Assume that each u ∈ U is

such that u′ and u′′ are bounded, and µs = L(Vt+s|Ft), s ≥ 0, where V = {Vs}s≥0 is regular

and given by (1), i.e. dVs = ξsds + σsdWs +
∫
R�∗

Ψs(x)ν̃(ds, dx). Then Itô’s formula yields

du(Vs) =

{
ξtu

′(Vt) + 1
2
σ2

t u
′′(Vt) +

∫
R�∗

[u(Vt + Ψt(x)) − u(Vt) − u′(Vt)Ψt(x)] ϑ(dx)

}
dt+dZt,

11



where Z = {Zt}t∈[0,T ] is a martingale due to the integrability conditions stated in (2).

By Fubini’s theorem for conditional expectations as stated in Proposition A.2 and the

fundamental theorem of calculus, which is justified by (2), we obtain for a.e. t ∈ [0, T ]

d

ds

∣∣∣∣
s=0

E[u(Vt+s)|Ft] =
d

ds

∣∣∣∣
s=0

E

[∫ t+s

t

{
ξru

′(Vr) + 1
2
σ2

ru
′′(Vr)+

+

∫
R�∗

[u(Vr + Ψr(x)) − u(Vr) − u′(Vr)Ψr(x)] ϑ(dx)
}

dr

∣∣∣∣ Ft

]

= lim
s↓0

1

s

∫ t+s

t

E

[
ξru

′(Vr) + 1
2
σ2

ru
′′(Vr)+

+

∫
R�∗

[u(Vr + Ψr(x)) − u(Vr) − u′(Vr)Ψr(x)] ϑ(dx)

∣∣∣∣ Ft

]
dr

= ξtu
′(Vt) + 1

2
σ2

t u
′′(Vt) +

∫
R�∗

[u(Vt + Ψt(x)) − u(Vt) − u′(Vt)Ψt(x)] ϑ(dx) a.s.

Hence, the family {L(Vt+s|Ft)}s≥0 is a.s. U-differentiable with derivative

L̇(Vt|Ft)[u] = ξtu
′(Vt)+ 1

2
σ2

t u
′′(Vt)+

∫
R�∗

[u(Vt + Ψt(x)) − u(Vt) − u′(Vt)Ψt(x)] ϑ(dx). (11)

Remark 5.3. In the terminology of Markov semigroups, if µs = L(Xs), s ≥ 0, for some

stochastic process X with a corresponding semigroup {Kt} on the function space Cb(V),

then the U-derivative of Definition 5.2 resembles the notion of the (weak∗) generator of the

associated dual semigroup {K∗
t } on M1(V) ⊆ Cb(V)∗. Note, however, that Definition 5.2

is not restricted to Markovian settings.

Let us now introduce a corresponding notion of differentiability for certainty equivalents.

Definition 5.4 (Differentiability of Certainty Equivalents). A certainty equivalent m

on V is said to be U-differentiable if there exists a continuous function M : V×V → R,

(v, w) �→ M(v, w) with M(v, · ) ∈ U for each v ∈ V such that whenever {µs}s≥0 is U-

differentiable at s = 0 with µ0 = δv, it follows that the function s �→ m(µs) is differentiable

at s = 0 and
d

ds

∣∣∣∣
s=0

m(µs) = µ̇0[M(v, · )]. (12)

In this case, M is called a local gradient representation of m. A continuous-time

aggregator (f, m) is U-differentiable if m is U-differentiable.
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Equation (12) is to be understood as a chain rule. Moreover, the rôle of U becomes clear

at this point: U must be chosen large enough so that differentiability in (8) holds and small

enough so that differentiability in (9) holds. In particular, by Proposition 5.8, one may take

U = {h} for any EU certainty equivalent induced by a function h. Interestingly, Definition

5.4 is the natural concept of differentiability corresponding to the notion of continuity in

[Epstein, Zin 1989]. Finally, note that local gradient representations need not be unique.

Example 5.5 (Example 5.1 continued). It is clear that the family {δv+s}s≥0 is U-

differentiable, and since m(δv+s) = v + s for any s ≥ 0, we find µ̇0[u] = u′(v) for any

u ∈ U. Thus (12) implies
∂M

∂w
(v, v) = 1 for all v ∈ V. (13)

As emphasized in Section 1, the fundamental difference between U-differentiability and

Gâteaux differentiability is that the former is based on the linear structure of V, whereas

the latter is based on that of M1(V). In this context, it is in order to clarify

Remark 5.6 (Relationship to [Machina 1982]). [Machina 1982] and subsequent work

study preference structures over probability measures, i.e. on M1(V), and investigate when

preferences are ’locally linear in probabilities’. In contrast to our purposes here, the appro-

priate concept of differentiability to address this issue is indeed based on the linear structure

of M1(V). From what has been said above, it is apparent that this notion of differentiability

is conceptually different from that of Definition 5.4.

Example 5.7. Similarly as in Example 5.5, we can take µs to be a distribution with mean

v and variance s that is compactly supported in V and deduce that the U-derivative of

{µs}s≥0 is given by µ̇0[u] = u′′(v) for u ∈ U. We conclude that if m is risk-averse in the

sense that m(µ) ≤ m(δE(µ)) for all µ ∈ M1(V) where E(µ) �
∫

V
xµ(dx) is the mean of µ,

then it follows that ∂2M
∂w2 (v, v) ≤ 0 for all v ∈ V.

Proposition 5.8 (Differentiation of EU Certainty Equivalents). Let mh denote the

EU certainty equivalent on V induced by the function h ∈ U. Then mh is U-differentiable,
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and its local gradient representation Mh is given by

Mh(v, w) =
h(w)

h′(v)
for v, w ∈ V. (14)

In particular, the local gradient representation of a risk-neutral certainty equivalent is the

identity mapping Id : V × V → V, (v, w) �→ w.

Proof. Let {µs}s≥0 be a U-differentiable family with µ0 = δv. Then we have

d

ds

∣∣∣∣
s=0

m(µs) =
d

ds

∣∣∣∣
s=0

h−1

(∫
V

hdµs

)
=

1

h′(v)

d

ds

∣∣∣∣
s=0

∫
V

hdµs = µ̇0

[
h

h′(v)

]
,

and therefore the local gradient representation is given by (14).

Remark 5.9. In the special case of Proposition 5.8, the local gradient representation in the

sense of [Duffie, Epstein 1992], which refers to Gâteaux derivatives, happens to be given

by the same formula since we have

d

ds

∣∣∣∣
s=0

m(δv + sρ) =
d

ds

∣∣∣∣
s=0

h−1

(
h(v) + s

∫
V

hdρ

)
=

∫
V

h(w)

h′(v)
ρ(dw),

whenever ρ is a signed measure on B(V) such that ρ(V) = 0.

Finally, we calculate the local gradient representation of the Chew-Dekel certainty

equivalent9 mH induced by the C2 function H : V×V → R. Here it is assumed that ∂H
∂m

is strictly positive and H(w,w) = 0 for w ∈ V. Then mH : M1(V) → R is determined by

the condition that

m = mH(µ) is the unique solution to

∫
V

H(m,w)µ(dw) = 0 for every µ ∈ M1(V).

Note that for H(m, w) = h(m)−h(w) the Chew-Dekel certainty equivalent collapses to an

EU certainty equivalent.

Proposition 5.10 (Differentiation of Chew-Dekel Certainty Equivalents). Let

mH denote the Chew-Dekel certainty equivalent induced by the function H. Assume that

9See [Dekel 1986] and [Chew 1989].
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H(m, · ), ∂H
∂m

(m, · ) ∈ U for m ∈ V, and suppose that ∂H
∂m

and ∂2H
∂m2 are uniformly bounded.

Then mH is U-differentiable with local gradient representation

MH : V × V → R, MH(v, w) = −H(v, w)
∂H
∂m

(v, v)
. (15)

Proof. Let {µs}s≥0 be U-differentiable with µ0 = δv, and set g(s) � m(µs) for s ≥ 0.

Observe that, by construction,

1

s

∫
V

H(g(s), w)µs(dw) = 0 for all s ≥ 0. (16)

Applying the mean value theorem to H( · , w), we obtain for w ∈ V and s ≥ 0 that

H(g(s), w) = H(g(0), w) + [g(s) − g(0)]
∂H

∂m
(θ(s, w)g(0) + [1 − θ(s, w)]g(s), w)

= H(g(0), w) + sg′(0)
∂H

∂m
(g(0), w) + ϕ(s, w) (17)

where θ(s, w) ∈ [0, 1] and ϕ : [0,∞) × V → R is given by

ϕ(s, w) � [g(s) − g(0) − sg′(0)]
∂H

∂m
(θ(s, w)g(0) + [1 − θ(s, w)]g(s), w) +

+ sg′(0)

[
∂H

∂m
(θ(s, w)g(0) + [1 − θ(s, w)]g(s), w) − ∂H

∂m
(g(0), w)

]
.

Note that clearly 1
s
|[g(s)−g(0)−sg′(0)]∂H

∂m
(θ(s, w)g(0)+[1−θ(s, w)]g(s), w)| ≤ |g(s)−g(0)

s
−

g′(0)|K → 0 as s ↓ 0 where K ∈ (0,∞) is a uniform bound for ∂H
∂m

and ∂2H
∂m2 . Furthermore,

we have |g′(0)[∂H
∂m

(θ(s, w)g(0)+[1−θ(s, w)]g(s), w)− ∂H
∂m

(g(0), w)]| ≤ |g′(0)|K|g(s)−g(0)| →
0 as s ↓ 0. Hence, it follows that

sup
w∈V

|ϕ(s, w)|
s

→ 0 as s ↓ 0.

Substituting (17) into (16) yields

0 =
1

s

∫
V

H(g(0), w)µs(dw) + g′(0)

∫
V

∂H

∂m
(g(0), w)µs(dw) +

∫
V

ϕ(s, w)

s
µs(dw), s ≥ 0.

Here the last summand tends to 0 as s ↓ 0, and since g(0) = v and H(v, · ), ∂H
∂m

(v, · ) ∈ U

0 = µ̇0[H(g(0), · )] + g′(0)

∫
V

∂H

∂m
(g(0), w)µ0(dw) = µ̇0[H(v, · )] +

d

ds

∣∣∣∣
s=0

m(µs)
∂H

∂m
(v, v).

After rearranging we obtain d
ds
|s=0m(µs) = − µ̇0[H(v, · )]

∂H
∂m

(v,v)
= µ̇0[MH(v, · )] where MH is defined

as in the assertion. This completes the proof.
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In special cases of Chew-Dekel certainty equivalents, one can establish U-differentiability

under weaker assumptions. For weighted utility this is shown in the following proposition.10

Proposition 5.11 (Differentiation of Weighted Utility Certainty Equivalents).

Let h : V → R be a strictly increasing function of class C2 and let g : V → (0,∞).

Assume that g and h are polynomially bounded and g, gh ∈ U. Then the weighted utility

certainty equivalent

m : M1(V) → R, m(µ) � h−1

(∫
V

ghdµ∫
V

gdµ

)

is U-differentiable and its local gradient representation is given by

M : V × V → R, M(v, w) =
g(w)[h(w) − h(v)]

g(v)h′(v)
. (18)

Proof. If {µs}s≥0 is a U-differentiable family with µ0 = δv, we have

d

ds

∣∣∣∣
s=0

m(µs) =
d

ds

∣∣∣∣
s=0

h−1

(∫
V

ghdµs∫
V

gdµs

)

=
1

h′(v)

[
µ̇0[gh]

g(v)
− g(v)h(v)µ̇0[g]

g(v)2

]
= µ̇0

[
g[h − h(v)]

g(v)h′(v)

]
.

Hence, m is U-differentiable with local gradient representation given by the stated formula.

Remark 5.12. The local gradient representation of a weighted utility certainty equivalent

can also be calculated via Proposition 5.10 if its assumptions are satisfied. Of course in

this case (15) reduces to (18).

To summarize, let us return to the problem formulated at the beginning of this section

concerning the derivative in equation (6) of Definition 4.1. We suppose that the contin-

uation value process V c is such that {L(V c
t+s|Ft)}s≥0 is a.s. U-differentiable at s = 0 for

a.e. t ∈ [0, T ] and assume that the certainty equivalent m is U-differentiable in the sense

of Definition 5.4. Then condition (5) is satisfied and

d

ds

∣∣∣∣
s=0

m(L(V c
t+s|Ft)) = L̇(V c

t |Ft)[M(V c
t , · )] exists a.s. for a.e. t ∈ [0, T ]

10Note that for g = 1 the weighted utility certainty equivalent collapses to an EU certainty equivalent.
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where L̇(V c
t |Ft) denotes the U-derivative of {L(V c

t+s|Ft)}s≥0. Substituting into (6), we

obtain

Theorem 5.13 (U-Differentiability and CRU). Let (f, m) be a U-differentiable continuous-

time aggregator on V and let M denote the local gradient representation of m. Moreover,

suppose that for each consumption process c = {ct}t∈[0,T ] there exists an a.s. unique V-

valued semimartingale V c = {V c
t }t∈[0,T ] with E[supt∈[0,T ] |V c

t |p] < ∞ for all p ∈ [1,∞) such

that {L(V c
t+s|Ft)}s≥0 is a.s. U-differentiable for each t ∈ [0, T ], V c

T = 0, and

L̇(V c
t |Ft)[M(Vt, · )] = −f(ct, V

c
t ) a.s. for a.e. t ∈ [0, T ].

Then (f, m) generates a CRU function.

6 Lévy Settings and Stochastic Differential Utility

Throughout this section, we assume that we are in a Lévy setting and that u′, u′′ are

bounded for each u ∈ U. For a U-differentiable aggregator (f, m) and a regular process

V c = {V c
t }t∈[0,T ] with dV c

t = ξtdt + σtdWt +
∫
R�∗

Ψt(x)ν̃(dt, dx) as in (1), the discussion

preceding Theorem 5.13 leads to the condition

−ξt = 1
2
σ2

t A(V c
t ) +

∫
R�∗

J(V c
t , Ψt(x))ϑ(dx) + f(ct, V

c
t ) a.s. for a.e. t ∈ [0, T ]

where the variance multiplier A and the jump term J associated to m are defined by

A(v) � ∂2M

∂w2
(v, v) and J(v, ψ) � M(v, v + ψ) − M(v, v) − ψ for v, v + ψ ∈ V. (19)

Intuitively, A represents the investor’s aversion towards diffusion risk, whereas J essentially

captures aversion towards jump risk, see [Skiadas 2008b]. Hence, we obtain for a.e. t ∈
[0, T ]

V c
t = E

[∫ T

t

{
f(cs, V

c
s ) + 1

2
σ2

sA(V c
s ) +

∫
R�∗

J(V c
s , Ψs(x))ϑ(dx)

}
ds

∣∣∣∣ Ft

]
a.s. (20)

Following [Duffie, Epstein 1992], one may now take (20) as a formal definition of recursive

utility in continuous time.
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Definition 6.1 (Stochastic Differential Utility, SDU Function). In a Lévy frame-

work, suppose f : C×V → R is Borel measurable and M : V×V → R is such that M(v, ·)
is of class C2 for every v ∈ V. Let A and J be given by (19). If for each c ∈ C there is an

a.s. unique V-valued semimartingale V c such that dV c
t = ξtdt+σtdWt +

∫
R�∗

Ψt(x)ν̃(dt, dx)

and the backward stochastic differential equation (20) is satisfied, then the function

u : C → R, u(c) � V c
0

is said to be the stochastic differential utility function, or SDU function, associ-

ated to (f, M).

Note that Definition 6.1 also captures generalized stochastic differential utility in the sense

of [El Karoui, Peng, Quenez 1997] and [Lazrak, Quenez 2003]. The following result shows

that the notions of CRU and SDU are essentially equivalent in Lévy settings.

Theorem 6.2 (CRU vs. SDU). In a Lévy framework, suppose that (f, m) is a U-

differentiable continuous-time aggregator with local gradient representation M . If (f, m)

generates a CRU function and each continuation value process is regular, then (f,M) gen-

erates an SDU function. Conversely, if (f, M) generates an SDU function, then (f, m)

generates a CRU function. In both cases, the corresponding CRU and SDU functions

coincide.

Proof. It is clear from the derivation of (20) that if (f, m) generates a CRU function u

and each continuation value process is regular, then (f, M) generates the SDU function u.

The converse follows from Theorem 5.13 if we recall from Section 5 that the conditional

distributions of any regular process are a.s. U-differentiable.

The remainder of this section is concerned with existence and uniqueness results for CRU

and SDU in Lévy settings with V = R. For SDU, the relevant equation (20) is in gen-

eral hard to deal with. Nevertheless, for Poisson random measures with finite intensities,

[Ma 2000] establishes the existence of SDU indices using the fact (see Corollary 7.3 below)
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that the variance multiplier can be transformed away. In the special case when both the

variance multiplier A and the jump term J are zero, equation (20) simplifies to

V c
t = E

[∫ T

t

f(cs, V
c
s )ds

∣∣∣∣ Ft

]
a.s. for a.e. t ∈ [0, T ]. (21)

In the terminology of Section 7, this means that (f,m) is normalized. Existence (in the

class of regular processes) and uniqueness (modulo indistinguishability in the class of Lp-

bounded càdlàg processes, for arbitrary p ∈ [1,∞)) of solutions to (21) follow11 under the

assumption that f satisfies Lipschitz and linear growth conditions, i.e.

|f(c, v) − f(c, w)| ≤ α|v − w| for all c ∈ C, v, w ∈ R (22)

for some α > 0 and |f(c, 0)| ≤ β0 + β1|c|, c ∈ C, for some β1, β2 > 0. However, it is not at

all clear at this point under which conditions the normalization (21) is feasible; this will be

addressed in the next section. The SDU existence result just discussed yields the following

existence result for CRU.

Corollary 6.3 (Existence of CRU). Let mn denote a risk-neutral certainty equivalent.

In a Lévy setting with V = R, consider an aggregator (f, mn) where f satisfies Lipschitz

and linear growth conditions. Then (f,mn) generates a CRU function u, and u coincides

with the SDU function generated by (f, Id) where Id(v, w) = w for v, w ∈ R.

Proof. The result immediately follows from Theorem 6.2 since risk-neutral certainty equiv-

alents are U-differentiable with local gradient representation Id.

Remark 6.4. The boundedness condition on u′ and u′′ for u ∈ U and the Lipschitz con-

dition on f are not satisfied for some relevant classes of certainty equivalents. This is

however a generic technical problem that already occurs for stochastic differential utility in

Brownian settings. We refer the reader to [Duffie, Lions 1992] for an approach via par-

tial differential equations and to [Schroder, Skiadas 1999] for an approach via backward

stochastic differential equations.

11See Lemma 2.4 of [Tang, Li 1994] and Theorem 2.1 of [Barles, Buckdahn, Pardoux 1997]. Note that

this result is stated in [Tang, Li 1994] and [Barles, Buckdahn, Pardoux 1997] for p = 2, but it can be

extended to the case p > 2, see the arguments in the proof of Proposition 3.1 in [Buckdahn, Pardoux 1994].
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We also remark that with the help of Theorem 6.2 and the Gronwall-Bellman results es-

tablished in Appendix A, the desirable properties of stochastic differential utility functions

in Section 5 of [Duffie, Epstein 1992] can be extended to Lévy frameworks.

7 Ordinal Equivalence and Normalization

Returning to the discussion of ordinal equivalence at the end of Section 3, we say that two

aggregators (f,m) and (f̄ , m̄) generating recursive utility functions u and ū are ordinally

equivalent if u and ū are equivalent. The degree of freedom implicit in this notion can

be used to perform a change of scale analogously to the discrete-time normalization of

Proposition 3.3. A certainty equivalent m is said to be normalized if it is U-differentiable

and the associated variance multiplier and jump term as defined in (19) vanish. For

instance, this is the case for risk-neutral certainty equivalents. An aggregator (f,m) is said

to be normalized if m is normalized. It turns out that the concept of CRU is especially

suitable to study normalization as Theorem 7.1 shows. We wish to point that this theorem

is not restricted to Lévy settings.

Theorem 7.1 (Transformation of Aggregators). Let (f,m) and (f̄ , m̄) be aggregators

on V and V̄ and suppose that (f,m) generates a CRU function. Furthermore, let Φ : V → V̄

be a C2 function with Φ′(v) > 0 for v ∈ V and Φ(0) = 0 such that Φ and Φ−1 are

polynomially bounded.12 Given that13

m(µ) = Φ−1
(
m̄(µΦ)

)
for all µ ∈ M1(V) (23)

and

f(c, v) =
f̄(c, Φ(v))

Φ′(v)
for c ∈ C, v ∈ V, (24)

12Here and in the following, polynomial boundedness assumptions are required because of the generality

of our framework: We are working within the class of Lp-bounded semimartingales, see Definition 4.1. For

a given aggregator, one might be able to relax these conditions by using a setting exactly tailored to this

aggregator.
13µΦ = µ ◦ Φ−1 continues to denote the image of µ ∈ M1(V) under Φ : V → V̄.
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then (f̄ , m̄) generates a CRU function, and (f, m) and (f̄ , m̄) are ordinally equivalent.

Moreover, if m̄ is Ū-differentiable and ū◦Φ ∈ U whenever ū ∈ Ū, then m is U-differentiable

with local gradient representation

M(v, w) =
M̄(Φ(v), Φ(w))

Φ′(v)
for v, w ∈ V. (25)

Proof. Let c ∈ C and denote by V c the associated continuation value process. Then

−f(ct, V
c
t ) =

d

ds

∣∣∣∣
s=0

m(L(V c
t+s|Ft)) =

d

ds

∣∣∣∣
s=0

Φ−1
(
m̄(L(V c

t+s|Ft)
Φ)

)

=
d

ds

∣∣∣∣
s=0

Φ−1
(
m̄(L(V̄ c

t+s|Ft))
)

=
1

Φ′(Vt)

d

ds

∣∣∣∣
s=0

m̄(L(V̄ c
t+s|Ft)) a.s.,

where V̄ c = {V̄ c
t }t∈[0,T ] is given by V̄ c

t � Φ(V c
t ), t ∈ [0, T ]. Note that E[supt∈[0,T ] |V̄ c

t |p] < ∞
for p ∈ [1,∞). Thus if conditions (24) and (23) hold, then V̄ c is a continuation value process

of c under (f̄ , m̄). Applying the preceding argument to V̄ c and the mapping Φ−1, we see

that V̄ c is uniquely determined. Consequently, (f̄ , m̄) generates a CRU function ū with

ū(c) = V̄ c
0 = Φ(V c

0 ) = Φ(u(c)) for any c ∈ C,

and thus ū and u are equivalent. Next let {µs}s≥0 be a U-differentiable family on V with

µ0 = δv. The identity

d

ds

∣∣∣∣
s=0

∫
V̄

ū dµΦ
s =

d

ds

∣∣∣∣
s=0

∫
V

ū ◦ Φ dµs = µ̇0[ū ◦ Φ]

shows that {µΦ
s }s≥0 is Ū-differentiable with µ̇Φ

0 [ū] = µ̇0[ū ◦ Φ] for ū ∈ Ū. Now, if m̄ is

Ū-differentiable with local gradient representation M̄ , then it follows that

d

ds

∣∣∣∣
s=0

m(µs) =
d

ds

∣∣∣∣
s=0

Φ−1
(
m̄(µΦ

s )
)

=
1

Φ′(v)

d

ds

∣∣∣∣
s=0

m̄(µΦ
s ) =

1

Φ′(v)
µ̇Φ

0

[
M̄(Φ(v), Φ( · ))] .

Hence, m is U-differentiable, and its local gradient representation M is given by (25).

If m is of EU type, then setting Φ � h − h(0) leads to

Corollary 7.2 (Normalization of EU Certainty Equivalents). Suppose (f, mh) is an

aggregator with an EU certainty equivalent induced by a function h where h−1 is polyno-

mially bounded. Furthermore, assume that (f,mh) generates a CRU function. Then there
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exists an ordinally equivalent normalized aggregator (f̄ , m̄) where m̄ can even be chosen to

be risk-neutral.

In particular, it follows that, in a general semimartingale framework, existence and unique-

ness results for the normalized backward stochastic differential equation (21) can be applied

to establish existence of CRU functions associated to aggregators with EU certainty equiv-

alents. U-differentiability has to be checked separately.

In the remainder of this section, we restrict ourselves to a Lévy setting. In the situation

of Theorem 7.1, the respective variance multipliers A and Ā satisfy

A(v) = Ā(v)Φ′(v) +
Φ′′(v)

Φ′(v)
for v ∈ V,

provided Φ is of class C2. This can be interpreted as an ordinary differential equation of

second order for Φ that allows us to transform away Ā.

Corollary 7.3 (Transformation of Variance Multipliers). In a Lévy framework, sup-

pose that (f, m) is a U-differentiable aggregator that generates a CRU function. Let A de-

note the variance multiplier of m. Moreover suppose that there is a solution to Φ′′ = AΦ′,

Φ(0) = 0, such that Φ and Φ−1 are polynomially bounded. Then there exists an ordinally

equivalent aggregator with vanishing variance multiplier.

If the jump term is to disappear as well, then EU form is essentially necessary in the

following sense.

Theorem 7.4 (Necessity of EU Form). In a Lévy setting, suppose that the aggregator

(f, m) on V is ordinally equivalent to an aggregator (f̄ , m̄) on V̄ with normalized jumps,

i.e. J̄(v̄, ψ̄) = 0 for v̄, v̄ + ψ̄ ∈ V̄. Then the local gradient representation M of m can be

taken to be of EU form (14), i.e.

M(v, w) =
Φ(w)

Φ′(v)
for v, w ∈ V.

22



Proof. By the definition of J̄ , the function M̄(v̄, · ) must be affine-linear for each v̄ ∈ V̄.

Hence, by (13) the local gradient representation M̄ must satisfy M̄(v̄, w̄) = ᾱ(v̄) + w̄ for

all v̄, w̄ ∈ V̄ with some function ᾱ : V̄ → R. Then (25) yields

M(v, w) = α(v) +
Φ(w)

Φ′(v)
for v, w ∈ V

where α(v) � ᾱ(Φ(v))
Φ′(v)

. However, it is obvious from equation (11) that the latter term cancels

out, and the claim thus follows.

In a discontinuous Lévy setting (ν �= 0), we arrive at the following important conclusion:

If u is a recursive utility function that arises from a continuous-time aggregator (f, m)

after normalization, then the local gradient representation of m must be of EU form. Thus

from a behavioral point of view, the restriction to aggregators which can be normalized is

equivalent to a restriction to EU certainty equivalents. Note that this is in line with the

normalization result of [Duffie, Epstein 1992] because in their Brownian setting ’normal-

ization’ refers to the variance multiplier only.

8 Dynamic Programming with Recursive Utility

Generalizing [Duffie, Epstein 1992], we study a stochastic control problem whose criterion

is defined by a recursive utility function. Assume that we are in a Lévy framework and

that the recursive utility function u coincides with the normalized stochastic differential

utility functional induced by f : R×R → R where f satisfies the Lipschitz condition (22).

The state process X has the dynamics

dXt = b(t, Xt, ct)dt + a(t,Xt, ct)dWt +

∫
R�∗

e(t,Xt−, ct, y)ν̃(dt, dy), X0 = x, (26)

with b, a and e being suitable coefficients and x ∈ Rd. The process c = {ct}t∈[0,T ] is chosen

from the class of admissible controls

C(x) � {c ∈ C : (26) has a unique solution Xx,c and ct ∈ Γ(t,Xx,c
t ) for t ∈ [0, T ]}
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where the function14 Γ : [0, T ] × Rd → 2C models a possibly state-dependent constraint.

Given an initial value x ∈ Rd, the optimization problem is to maximize utility over the

class C(x) of admissible strategies, i.e. to

find c� ∈ C(x) such that u(c�) = max
c∈C(x)

u(c). (27)

Problem (27) is invariant with respect to ordinally equivalent transformations. Therefore,

the results of Section 7 provide sufficient conditions such that the assumption that u is a

normalized stochastic differential utility functional is satisfied. We now formulate a dy-

namic programming equation for problem (27). Therefore, define the controlled generator

Lc for c ∈ C as

Lc[u](t, x) � ∂u
∂t

(t, x) + b(t, x, c)∂u
∂x

(t, x) + 1
2
a(t, x, c)2 ∂2u

∂x2 (t, x)+

+

∫
R�∗

[
u(t, x + e(t, x, c, y)) − u(t, x) − ∂u

∂x
(t, x)e(t, x, c, y)

]
ϑ(dy)

for (t, x) ∈ [0, T ]×Rd and u ∈ C1,2([0, T ]×Rd). Moreover, a Borel function γ : [0, T ]×Rd →
C is said to be an admissible feedback control if the equation

dXt = b(t,Xt, γ(t,Xt))dt+a(t,Xt, γ(t,Xt))dWt+

∫
R�∗

e(t,Xt−, γ(t,Xt−), y)ν̃(dt, dy), X0 = x,

has a unique solution Xx,γ such that c = {ct}t∈[0,T ] � {γ(t,Xx,γ
t )}t∈[0,T ] ∈ C(x). We now

establish a verification result for problem (27).

Theorem 8.1 (Verification Theorem). Let w ∈ C1,2([0, T ] × Rd) be a solution of the

dynamic programming equation

sup
c∈Γ(t,x)

Lc[w](t, x) + f(c, w(t, x)) = 0, w(T, · ) = 0, (28)

and assume that the local martingales

∫ ·

0

∂w
∂x

(s,Xx,c
s )a(s,Xx,c

s , cs)dWs and

∫
[0, · ]×R�∗

J [w] (s,Xx,c
s− , e(s,Xx,c

s− , cs, y)) ν̃(ds, dy),

142C denotes the power set of C.
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where J [w](s, x, y) � w(s, x+y)−w(s, x)−∂w
∂x

(s, x)y for s ∈ [0, T ], x, y ∈ R, are martingales

for every c ∈ C(x). Further, suppose there is a measurable function γ� : [0, T ] × Rd → C

with

Lγ�(t,x)[w](t, x) + f(γ�(t, x), w(t, x)) = 0 for all (t, x) ∈ [0, T ] ×Rd.

Then the feedback control γ� is optimal, and w is the value function of problem (27). In

particular,

w(0, x) = max
c∈C(x)

u(c) for all x ∈ Rd.

Proof. We adapt the line of argument given in the proof of Proposition 9 in [Duffie, Epstein 1992].

Let x ∈ Rd and c ∈ C(x) be an arbitrary admissible control. To shorten notation, X = Xx,c

and V = V c denote the controlled process and the continuation value process associated

to c, respectively. Itô’s formula implies that

w(t,Xt) = w(t,Xt) − w(T, XT ) = −
∫ T

t

Lcs [w](s,Xs)ds − MT + Mt a.s.,

where M is a martingale. Taking conditional expectation yields w(t,Xt) = −E[
∫ T

t
Lcs [w](s,Xs)ds|Ft]

a.s. On the other hand, we have Vt = E[
∫ T

t
f(cs, Vs)ds|Ft] a.s. due to the definition of V .

Hence,

w(t,Xt) − Vt = −E

[∫ T

t

{Lcs [w](s,Xs) + f(cs, Vs)}ds

∣∣∣∣ Ft

]
a.s. for all t ∈ [0, T ]. (29)

The dynamic programming equation and the Lipschitz property of f imply

Lcs [w](s,Xs) + f(cs, Vs) = Lcs [w](s,Xs) + f(cs, w(s,Xs)) + f(cs, Vs) − f(cs, w(s,Xs))

≤ f(cs, Vs) − f(cs, w(s, Xs)) ≤ α |w(s,Xs) − Vs| for s ∈ [0, T ]. (30)

Combining equation (29) with (30), it follows that Y = {Yt}t∈[0,T ] � {w(t,Xt) − Vt}t∈[0,T ]

satisfies Yt = E[
∫ T

t
Hsds|Ft] with Ht ≥ −α|Yt| for all t ∈ [0, T ]. Thus we can apply the

generalized version of Skiadas’ Lemma A.4 and obtain u(c) = V c
0 ≤ w(0, Xx,c

0 ) = w(0, x).

Since c ∈ C(x) is arbitrary, we have maxc∈C(x) u(c) ≤ w(0, x).

Conversely, under the assumptions of the theorem, the feedback control γ� is admissible
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and (30) is satisfied as equality for γ�. Therefore, the above argument applies to both

{w(t, Xx,c�

t ) − V c�

t }t∈[0,T ] and {V c�

t − w(t, Xx,c�

t )}t∈[0,T ]. Consequently, u(c�) = w(0, x)

where c� = {c�
t}t∈[0,T ] � {γ�(t,Xx,γ�

t )}t∈[0,T ]. Hence, γ� is an optimal feedback control.

Finally, the following example shows that Hamilton-Jacobi-Bellman equations can involve

non-standard terms if normalization is not feasible.

Example 8.2 (Chew-Dekel Preferences). Consider an aggregator (f, mH) where mH

is the Chew-Dekel certainty equivalent induced by H. If the assumptions of Proposition

5.10 are satisfied, mH is U-differentiable with local gradient representation (15). Even if

we assume that the variance multiplier is 0, an additional term appears in the Hamilton-

Jacobi-Bellman equation (28) that cannot be transformed away:

sup
c∈Γ(t,x)

Lc[w](t, x) + f(c, w(t, x)) +

∫
R�∗

{
−H(w(t, x), w(t, x + e(t, x, c, y)))

∂H
∂m

(w(t, x), w(t, x))
+

+
H(w(t, x), w(t, x))
∂H
∂m

(w(t, x), w(t, x))
− w(t, x + e(t, x, c, y)) + w(t, x)

}
ϑ(dy) = 0.

9 Conclusion

This paper provides an alternative rigorous derivation of recursive utility in continuous

time. In contrast to stochastic differential utility, we directly link continuous-time recur-

sive utility to its discrete-time counterpart by applying a novel notion for differentiating

certainty equivalents. We have shown that this approach is useful to study the question of

when aggregators can be normalized. It turns out that in the presence of jumps normal-

ization is essentially feasible if and only if certainty equivalents are of expected utility type

(i.e., linear homogenous). Consequently, related Hamilton-Jacobi-Bellman equations have

the well-known form. For instance, this is so for Epstein-Zin preferences. However, if cer-

tainty equivalents are not linear homogenous, which is for instance the case for Chew-Dekel

preferences, then aggregators cannot be normalized in general. This implies that Bellman

equations involve non-standard terms. This is a crucial result and has to be taken into
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account in future research on portfolio optimization and asset pricing using non-standard

preferences such as preferences modeled by weighted utility theory. Furthermore, normal-

ization is also relevant if the existence of stochastic differential utility is studied. For this

reason, our paper also contributes to this strand of research and shows that in the presence

of jumps it is not sufficient to study stochastic differential utility for normalized aggregators

only.

A Stochastic Gronwall-Bellman Inequalities

We extend the results of Appendix B in [Duffie, Epstein 1992] to discontinuous processes;

the appendix of [Ma 2000] contains a related result. Since in the absence of continuity the

line of argument has to be refined, we give complete proofs. Throughout this section, we

assume as given a probability space (Ω,F, P) endowed with an arbitrary filtration {Ft}t∈[0,T ]

satisfying the usual conditions. Recall the general version of

Lemma A.1 (Gronwall-Bellman Inequality). Let h : [0, T ] → R be a bounded mea-

surable function such that for some α ∈ (0,∞)

h(t) ≥ α

∫ T

t

h(s)ds for a.e. t ∈ [0, T ].

Then it follows that h(t) ≥ 0 for a.e. t ∈ [0, T ].

Below we need a Fubini-type theorem for conditional expectations that we state explicitly

for ease of reference.

Proposition A.2 (Conditional Fubini Theorem). Let Y = {Yt}t∈[0,T ] be a measurable15

process on the probability space (Ω,F, P) with
∫ T

0
E[|Yt|]dt < ∞ and let G ⊆ F be a sub-σ-

field. Then there exists a measurable process H = {Ht}t∈[0,T ] with

Ht = E[Yt|G] a.s. for all t ∈ [0, T ].

15A process Y = {Yt}t∈[0,T ] is measurable if the mapping Y : [0, T ]×Ω → R is B([0, T ])⊗F-measurable.
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Moreover, whenever H = {Ht}t∈[0,T ] is a measurable process with the stated property,

E

[∫ t

0

Ysds

∣∣∣∣ G

]
=

∫ t

0

Hsds a.s. for all t ∈ [0, T ].

A proof can be found in [Ethier, Kurtz 2005]. Note that it is not trivial that (some version

of) the process {E[Yt|G]}t∈[0,T ] is ’well-behaved’. In particular, H is not unique modulo

indistinguishability; in [Duffie, Epstein 1992] it is assumed to be continuous.

Theorem A.3 (Stochastic Gronwall-Bellman Inequality). Let Y = {Yt}t∈[0,T ] be a

right-continuous adapted process such that E[sups∈[0,T ] |Ys|] < ∞ and suppose that for some

α ∈ (0,∞) we have

Yt ≥ αE

[∫ T

t

Ysds

∣∣∣∣ Ft

]
a.s. for every t ∈ [0, T ].

Then Yt ≥ 0 for all t ∈ [0, T ] a.s.

Proof. Since Y is right-continuous, it suffices to prove Y (t0) ≥ 0 a.s. for each t0 ∈ [0, T ]. If

the result is established for t0 = 0, then applying it to each of the processes {Yt0+t}t∈[0,T−t0]

for t0 ∈ [0, T ] yields the claim.16 Hence, it is sufficient to show that Y0 ≥ 0 a.s. We choose

a measurable modification H of the conditional expectations process {E[Yt|F0]}t∈[0,T ] and

observe that

Ht ≥ αE

[
E

[∫ T

t

Ysds

∣∣∣∣ Ft

]∣∣∣∣ F0

]
= αE

[∫ T

t

Ysds

∣∣∣∣ F0

]
= α

∫ T

t

Hsds a.s., t ∈ [0, T ],

by iterated conditioning and Proposition A.2. It follows that H ≥ α
∫ T

· Hsds a.e. on

[0, T ] × Ω, i.e. it is a.s. true that

Ht ≥ α

∫ T

t

Hsds for a.e. t ∈ [0, T ]. (31)

Conditional dominated convergence yields Ht = E[Yt|F0] → Y0 as t ↓ 0 in L1. Lemma

A.1 and (31) imply that Ht ≥ 0 for a.e. t ∈ [0, T ], a.s., i.e. Ht ≥ 0 a.s. for a.e. t ∈ [0, T ].

Choosing {tn}n∈N such that tn ↓ 0 and Htn ≥ 0 a.s. for each n ∈ N, and extracting a

subsequence if necessary, we obtain Htn → Y0 a.s., whence Y0 ≥ 0 a.s.

16Recall that we are not assuming that F0 is trivial.
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Finally, we generalize a crucial lemma by Costis Skiadas.

Corollary A.4 (Skiadas’ Lemma). Let Y = {Yt}t∈[0,T ] be a right-continuous adapted

process with YT = 0 and E[sups∈[0,T ] |Ys|] < ∞. Moreover, assume that there exist a

progressive process H and a constant α ∈ (0,∞) such that

Yt = E

[∫ T

t

Hsds

∣∣∣∣ Ft

]
a.s. and Ht ≥ −α|Yt| a.s. for all t ∈ [0, T ]. (32)

Then Yt ≥ 0 for all t ∈ [0, T ] a.s.

Proof. By a similar argument as in the proof of Theorem A.3, it suffices to show that

Y0 ≥ 0 a.s. We define the stopping time

τ � inf {t ∈ [0,∞) : Yt > 0} ∧ T.

Note that Yτ ≥ 0 since Y is right-continuous and YT = 0. By (32) it follows17 that

Yt +
∫ t

0
Hsds = E[

∫ T

0
Hsds|Ft] a.s., t ∈ [0, T ]. So {Yt +

∫ t

0
Hsds}t∈[0,T ] is a martingale.

Thus, E[1{τ>t}(Yτ +
∫ τ

0
Hsds)|Ft] = 1{τ>t}(Yt +

∫ t

0
Hsds) a.s. by optional stopping. Hence,

1{τ>t}Yt = E

[∫ τ

t

1{τ>t}Hsds + 1{τ>t}Yτ

∣∣∣∣ Ft

]
a.s. for t ∈ [0, T ]. (33)

The assumption on H yields Ht(ω) ≥ −α|Yt(ω)| = αYt(ω) for all (t, ω) ∈ [0, T ] × Ω with

0 ≤ t < τ(ω), and substituting this into (33), we get

1{τ>t}Yt ≥ E

[∫ τ

t

1{τ>t}Hsds

∣∣∣∣ Ft

]
≥ αE

[∫ T

t

1{τ>s}Ysds

∣∣∣∣ Ft

]
a.s.

Applying the Stochastic Gronwall-Bellman Inequality A.3 to {1{τ>t}Yt}t∈[0,T ], we find that

1{τ>0}Y0 ≥ 0 a.s. By definition of τ , we have 1{τ=0}Y0 ≥ 0. Hence, Y0 ≥ 0 a.s.
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