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The interplay of charmonium production and suppression inIn + In andPb+ Pb reactions at

158 AGeV and inAu+ Au reactions at
√

s = 200 GeV is investigated with the HSD transport

approach within the ‘hadronic comover model’ and the ‘QGP melting scenario’. The results for

theJ/Ψ suppression and theΨ′ to J/Ψ ratio are compared to the recent data of the NA50, NA60,

and PHENIX Collaborations. We find that, at 158 AGeV, the comover absorption model performs

better than the scenario of abrupt threshold melting. However, neither interaction with hadrons

alone nor simple color screening satisfactory describes the data at
√

s= 200 GeV. A deconfined

phase is clearly reached at RHIC, but a theory having the relevant degrees of freedom in this

regime (strongly interacting quarks/gluons) is needed to study its transport properties.
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1. Introduction

Measurements of charmonium production in heavy-ion collisions at different energies can
provide clear signatures of the onset of deconfinement. Indeed, according to potential model pre-
dictions and to the pioneering idea of Matsui and Satz [1],cc̄ meson states might no longer be
formed in a very hot fireball due to color screening [2, 3, 4]. This initially intuitive expectation has
guided experimental studies for almost two decades. However, more recent lattice QCD calcula-
tions have shown that theJ/Ψ survives up to at least 1.5Tc (Tc ≈ 170 to 185 MeV) such that the
lowestcc̄ states may remain bound up to rather high energy density [5, 6, 7, 8]. On the other hand,
theχc andΨ′ appear to melt soon aboveTc.

According to present knowledge, the charmonium productionin heavy-ion collisions,i.e. cc̄
pairs, occurs exclusively at the initial stage of the reaction in primary nucleon-nucleon collisions.
At the very early stage color dipole states are expected to beformed (cf. Refs. [9, 10]). Thesecc̄
states are assumed to be absorbed in a ‘pre-resonance state’before the final hidden charm mesons
are formed. Such absorption – denoted by ‘normal nuclear suppression’ – is also present inp+A
reactions and is determined by a dissociation cross sectionσB ∼ 4 to 7 mb. Those charmonia
or ‘pre-resonance’ states that survive normal nuclear suppression during the short overlap phase
of the Lorentz contracted nuclei furthermore suffer from (i) a possible dissociation in the decon-
fined medium at sufficiently high energy density and (ii) the interactions with secondary hadrons
(comovers) formed in a later stage of the nucleus-nucleus collision.

In the QGP ‘threshold scenario’, e.g the geometrical Glauber model of Blaizot et al. [11] as
well as the percolation model of Satz [3], the QGP suppression ‘(i)’ sets in rather abruptly as soon as
the energy density exceeds a threshold valueεc, which is a free parameter. This version of the stan-
dard approach is motivated by the idea that the charmonium dissociation rate is drastically larger in
a quark-gluon-plasma (QGP) than in a hadronic medium [3]. Onthe other hand, the extra suppres-
sion of charmonia in the high density phase of nucleus-nucleus collisions at SPS energies [12, 13,
14, 15] has been attributed to inelastic comover scattering(cf. [10, 16, 17, 18, 19, 20, 21, 22, 23]
and Refs. therein) assuming that the correspondingJ/Ψ-hadron cross sections are in the order of a
few mb [24, 25, 26, 27]. In these models ‘comovers’ are viewednot as asymptotic hadronic states
in vacuum but rather as hadronic correlators (essentially of vector meson type) that might well sur-
vive at energy densities above 1 GeV/fm3. Additionally, alternative absorption mechanisms might
play a role, such as gluon scattering on color dipole states as suggested in Refs. [28, 29, 30, 31] or
charmonium dissociation in the strong color fields of overlapping strings [32].

We recall that apart from absorption or dissociation channels for charmonia also recombination
channels suchD+ D̄ → Xc +meson(Xc = (J/Ψ,χc,Ψ′)) play a role in the hadronic phase. These
backward channels – relative to charmonium dissociation with comoving mesons – have been found
to be practically negligible at the SPS energies [33], but extremely important at the top RHIC energy
of

√
s= 200 GeV [34]. This is in accordance with independent studiesin Refs. [26, 29, 35, 36]

and earlier analysis within the HSD transport approach [37,38].

The explicit treatment of initialcc̄ production by primary nucleon-nucleon collisions and the
implementation of the comover model - involving a single matrix elementM0 fixed by the data at
SPS energies - as well as the QGP threshold scenario in HSD were explained in Ref. [33] (see Fig. 1
of Ref. [33] for the relevant cross sections). We recall thatthe ‘threshold scenario’ for charmonium
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dissociation is implemented as follows: whenever the localenergy densityε(x) is above a threshold
valueε j (where the indexj stands forJ/Ψ,χc,Ψ′), the charmonium is fully dissociated toc+ c̄.
The default threshold energy densities adopted areε1 = 16 GeV/fm3 for J/Ψ, ε2 = 2 GeV/fm3 for
χc, andε3 = 2 GeV/fm3 for Ψ′.

It is presently not clear, if also theD-mesons survive at temperaturesT > Tc, but strong corre-
lations between a light quark (antiquark) and a charm antiquark (quark) are likely to persist [39].
One may also speculate that similar correlations survive also in the light quark sector aboveTc such
that ‘hadronic comovers’ – most likely with different spectral functions – might show up also at
energy densities above 1 GeV/fm3, which is taken as a characteristic scale for the critical energy
density. Therefore, we study both possibilities:with andwithoutcomover absorption (andD + D̄
recombination) at energy densities above the cut-energy density parameterεcut = 1 GeV/fm3.

Since we aimed to answer, whether the charmonium dissociation mechanism is identical at
SPS and top RHIC energies, we adopted in [34] the same cross sections for the color-dipole disso-
ciation with nucleons as well the dissociation cross sections with comovers as in Ref. [33] for SPS.
Consequently no free parameters entered our studies at the RHIC energy. We note that the hadronic
comover reactions for the recreation of charmoniaJ/Ψ,χc,Ψ′ by D+ D̄ reactions are incorporated
in all simulations. This is a ‘default’ in the comover absorption and recreation scenario and ‘nec-
essary’ in the QGP ‘threshold scenario’ because (in view of Fig. 4, l.h.s.) practically all charmonia
are dissolved due to the very high initial energy densities.Therefore, any model without recreation
of charmonia is clearly ruled out by the PHENIX data.

2. Comparison to data

We directly step on with results for the charmonium suppression at SPS energies in comparison
with the experimental data from the NA50 and NA60 Collaborations. These Collaborations present
their results onJ/Ψ suppression as the ratio of the dimuon decay ofJ/Ψ relative to the Drell-
Yan background from 2.9 - 4.5 GeV invariant mass as a functionof the transverse energyET , or
alternative, as a function of the number of participantsNpart, i.e.

Bµµσ(J/Ψ)/σ(DY)|2.9−4.5, (2.1)

whereBµµ is the branching ratio forJ/Ψ → µ+µ−. In order to compare our calculated results to
experimental data, we need an extra input, i.e. the normalization factorBµµσNN(J/Ψ)/σNN(DY),
which defines theJ/Ψ over Drell-Yan ratio for elementary nucleon-nucleon collisions. We choose
BµµσNN(J/Ψ)/σNN(DY) = 36 in line with the NA60 compilation [15].

Furthermore, theΨ′ suppression is presented experimentally by the ratio

Bµµ(Ψ′ → µµ)σ(Ψ′)/σ(DY)

Bµµ(J/Ψ → µµ)σ(J/Ψ)/σ(DY)
. (2.2)

In our calculations we adopt this ratio to be 0.0165 for nucleon-nucleon collisions, which is again
based on the average overpp, pd, pA reactions [42].

We first show in Fig. 1 the calculated ratio (2.1) as a functionof Npart for Pb+Pb and In+In
collisions at 158 A·GeV (upper plots) in the nuclear suppression scenario, i.e.without comover
dissociation or ‘QGP threshold suppression’. The dashed (blue) lines stand for the HSD result

3



Charmed signatures for phase transitions in heavy-ion collisions Elena Bratkovskaya

0 25 50 75 100 125 150

0 50 100 150 200
0

10

20

30

40

0 100 200 300 400

HSD

 NA50 1997 
 NA50 1998-2000
 Baryon absorption
 Comover absorption

 

E
T
 [GeV]

0 50 100 150 200
0.000

0.005

0.010

0.015

HSD

 

 Baryon absorption
 Comover absorption

B
µµµµ µµµµ

( ΨΨ ΨΨ
')

 σσ σσ
ΨΨ ΨΨ

' /
 B

µµµµ µµµµ
(J

/ ΨΨ ΨΨ
) σσ σσ

J/
ΨΨ ΨΨ

N
part

HSD

In+In, 158 A GeV

 

 

B
µµµµ µµµµ

σσ σσ(
J/

ΨΨ ΨΨ
)/

σσ σσ(
D

Y
)|

2.
9-

4.
5

N
part

 NA60 2005
 Glauber model
 Baryon absorption
 Comover absorption .

HSD

Pb+Pb, 158 A GeV

 

N
part

 NA50 2004
 Glauber model
 Baryon absorption
 Comover absorption

Figure 1: The ratioBµµσ(J/Ψ)/σ(DY) as a function of the number of participants in In+In (l.h.s.)and
Pb+Pb reactions (r.h.s.) at 158 A·GeV. The full symbols denote the data from the NA50 and NA60 Collabo-
rations (from Refs. [40, 15, 41]), while the dashed (blue) lines represent the HSD calculations including only
dissociation channels with nucleons. The lower parts of thefigure show the HSD results in the same limit
for theΨ′ to J/Ψ ratio as a function ofNpart (for In+In) or the transverse energyET (for Pb+Pb). The solid
(red) lines show the HSD results for the comover absorption model with a matrix element squared|M0|2
= 0.18 fm2/GeV2. The (light blue) bands in the upper parts of the figure give the estimate for the normal
nuclearJ/Ψ absorption as calculated by the NA60 Collaboration. The vertical lines on the graphs reflect the
theoretical uncertainty due to limited statistics of the calculations. The figure is taken from [33].

while the (light blue) bands give the estimate for the normalnuclearJ/Ψ absorption as calculated
by the NA60 Collaboration. The normal nuclear suppression from HSD is seen to be slightly lower
than the (model dependent) estimate from NA60, however, agrees quite well with their model
calculations for more central reactions. The various experimental data points have been taken
from Refs. [15, 40, 41]. As a next step we add the comover dissociation channels within the
model described in [33] for a matrix element squared|M0|2 = 0.18 fm2/GeV2. Note that in this
case the charmonium reformation channels are incorporated, too, but could be discarded since the
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Figure 2: Same as Fig. 1 but for the ‘QGP threshold scenario’ withεJ/Ψ = 16 GeV/fm3, εχc = 2 GeV/fm3

= εΨ′ while discarding comover absorption. The figure is taken from [33].

charmonium regeneration is negligible at SPS energies (cf.Ref. [37]). The extra suppression of
charmonia by comovers is seen in Fig. 1 (solid red lines) to match theJ/Ψ suppression in In+In and
Pb+Pb as well as theΨ′ to J/Ψ ratio (for Pb+Pb) rather well. The more recent data (1998-2000)
for theΨ′ to J/Ψ ratio agree with the HSD prediction within error bars. This had been a problem
in the past when comparing to the 1997 data (dark green stars). The Ψ′ to J/Ψ ratio for In+In
versus centrality is not yet available from the experimental side but the theoretical predictions are
provided in Fig. 1 and might be approved/falsified in near future.

The results for the ‘threshold scenario’ are displayed in Fig. 2 in comparison to the same
data for the thresholdsεJ/Ψ = 16 GeV/fm3, εχc = 2 GeV/fm3 = εΨ′ . In this scenario theJ/Ψ
suppression is well described for In+In but the suppressionis slightly too weak for very central
Pb+Pb reactions. This result emerges since practically allχc andΨ′ dissolve forNpart > 100 in
both systems whereas theJ/Ψ itself survives at the energy densities reached in the collision. Since
the nucleon dissociation is a flat function ofNpart for central reactions, the total absorption strength
is flat, too. The deviations seen in Fig. 2 might indicate a partial melting of theJ/Ψ for Npart >
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Figure 3: The ratioBµµσ(J/Ψ)/σ(DY) as a function of the number of participantsNpart in In+In (red line
with open squares) and Pb+Pb reactions (blue line with open circles) at 158 A·GeV relative to the normal
nuclear absorption given by the straight black line. The full dots and squares denote the respective data from
the NA50 and NA60 Collaborations. The model calculations reflect the comover absorption model (right
part) and the ‘QGP threshold scenario’ (left part) withεJ/Ψ = 16 GeV/fm3, εχc = 2 GeV/fm3, εΨ′ = 6.55
GeV/fm3 while discarding comover absorption. Figure is taken from [33].

250, which is not in line with most lattice QCD calculations claiming at leastεJ/Ψ > 5 GeV/fm3.
In fact, a lower threshold of 5 GeV/fm3 (instead of 16 GeV/fm3) for the J/Ψ has practically no
effect on the results shown in Fig. 2. Furthermore, a threshold energy density of 2 GeV/fm3 for
theΨ′ leads to a dramatic reduction of theΨ′ to J/Ψ ratio which is in severe conflict with the data
(lower part of Fig. 2). Also note that there is no step in the suppression ofJ/Ψ versus centrality.
As pointed out before by Gorenstein et al. in Ref. [43], this is due to energy density fluctuations in
reactions with fixedNpart (or ET).

Additionally, one can plot the results in an intuitive though model-dependent way, as a ratio of
the measuredJ/Ψ yield divided by the normal nuclear absorption result calculated in the Glauber
model. Since the NA60 Collaboration prefers to represent their data in this form, we additionally
show in Fig. 3 our calculations for In+In (red lines with opensquares) and Pb+Pb (blue lines
with open circles) as a function of the number of participants Npart relative to the normal nuclear
absorption given by the straight black line1. The full dots and squares denote the respective data
from the NA50 and NA60 Collaborations. The model calculations reflect the comover absorption
model (right part) and the ‘QGP threshold scenario’ (left part) with εJ/Ψ = 16 GeV/fm3, εχc =

2 GeV/fm3, εΨ′ = 6.55 GeV/fm3. Since only the representation is different the message stays the
same: The comover absorption model follows slightly betterthe fall of theJ/Ψ survival probability
with increasing centrality whereas the ‘threshold scenario’ leads to an approximate plateau in both
reactions for high centrality.

Let us now move to a much higher energy scale by calculating charmonium dynamics at the

1Note that recently the NA60 collaboration has refitted the parameters of their Galuber model, therefore newer data
releases [44] might appear to be up- or down-scaled comparedto the data plotted here [15], if shown in this particular
representation (measured to expected ratio). This scalingfalls within the systematic uncertainty of the ratio and does not
change results and conclusions of our study.
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Figure 4: TheJ/Ψ nuclear modification factorRAA for Au+ Au collisions at
√

s= 200 GeV as a function
of the number of participantsNpart in comparison to the data from [10] for midrapidity (full circles) and
forward rapidity (full triangles). HSD results for the QGP ‘threshold melting’ scenarios are displayed in
terms of the lower (green solid) lines for midrapidityJ/Ψ’s (|y| ≤ 0.35) and in terms of the upper (orange
dashed) lines for forward rapidity (1.2≤ y≤ 2.2) within different recombination scenarios (see text). The
error bars on the theoretical results indicate the statistical uncertainty due to the finite number of events in
the HSD calculations. Predictions for the ratioBµµ(Ψ′)σΨ′/Bµµ(J/Ψ)σJ/Ψ as a function of the number of
participantsNpart are shown in the lower set of plots. The figure is taken from [34].

top RHIC energy of
√

s= 200 GeV. In the initial stages ofAu+ Au collisions at this
√

s, energy
densities above 30 GeV/fm3 are reached [34]. Therefore, in the threshold melting scenario, all
initially createdJ/Ψ, Ψ′ andχc mesons melt. However, the PHENIX collaboration has found that
at least 20% ofJ/Ψ do survive at RHIC [45]. Thus, the importance of charmonium recreation
is shown again. We account forJ/Ψ recreation via theDD̄ annihilation processes as explained
in detail in [33, 34]. Note that in our approach, the cross sections of charmonium recreation in
D + D̄ → J/Ψ + mesonprocesses is fixed by detailed balance from the comover absorption cross
sectionJ/Ψ + meson→ D + D̄. But even after both these processes are added to the threshold
melting mechanism, the centrality dependence of theRAA(J/Ψ) cannot be reproduced, especially
in the peripheral collisions (see Fig. 4). This holds for both possibilities: with (r.h.s. of Fig. 4) and
without (center of Fig. 4) the energy density cutεcut, below whichD-mesons and comovers exist
and can participate inD+ D̄ ↔ J/Ψ+mesonreactions.
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Figure 5: Same as Fig. 4 for the ‘comover absorption scenario’ including the charmonium reformation
channels without cut in the energy density (l.h.s.) and witha cut in the energy densityεcut = 1 GeV/fm3 (see
text for details). The figure is taken from [34].

We recall that the nuclear modification factorRAA is given by

RAA =
dN(J/Ψ)AA/dy

Ncoll ·dN(J/Ψ)pp/dy
, (2.3)

wheredN(J/Ψ)AA/dy denotes the final yield ofJ/Ψ in AA collisions,dN(J/Ψ)pp/dy is the yield
in elementarypp reactions,Ncoll is the number of binary collisions.

Comover absorption scenarios give generally a correct dependence of the yield on the central-
ity. If an existence of D-mesons at energy densities above 1 GeV/fm3 is assumed, the amplitude of
suppression ofJ/Ψ at mid-rapidity is also well reproduced (see the line for ‘comover withoutεcut’
scenario in Fig.5, l.h.s.). Note that this line correspond to the prediction made in the HSD approach
in [38]. On the other hand, the rapidity dependence of the comover result is wrong, both with and
without εcut. If hadronic correlators exist only atε < εcut, comover absorption is insufficient to
reproduce theJ/Ψ suppression even at mid-rapidity (see Fig. 5, r.h.s.). The difference between the
theoretical curves marked ‘comover +εcut’ and the data shows the maximum supression that can
be attributed to a deconfined medium.
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3. Summary

We have investigated the formation and suppression dynamics of J/Ψ, χc and Ψ′ mesons
within the HSD transport approach forIn+ In andPb+Pb reactions at 158 AGeV and forAu+Au
reactions at

√
s= 200 GeV. Two currently discussed models, i.e. the ’hadronic comover absorption

and reformation’ model as well as the ’QGP threshold meltingscenario’ have been compared to the
available experimental data. We adopted the same parameters for cross sections (matrix elements)
or threshold energies at both bombarding energies.

We find that both scenarios are compatible with experimentalobservation ofJ/Ψ suppression
at SPS energies, while theΨ′ to J/Ψ ratio data appear to be in conflict with the ‘threshold melting’
scenario [33]. On the other hand, both ‘comover absorption’and ‘threshold melting’ fail severely
at RHIC energies [34]. The failure of the ’hadronic comover absorption’ model goes in line with
its underestimation of the collective flowv2 of leptons from open charm decay as investigated in
Ref. [46]. This suggests that 1) a deconfined phase is clearlyreached at RHIC, 2) the dynamics of
c, c̄ quarks at this energy are dominated by partonic interactions in the strong QGP (sQGP) which
cannot be modeled by ‘hadronic’ interactions or described appropriately by color screening alone.
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