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Abstract

This thesis contributes to the field of soft matter research and studies the im-
portance of hydrodynamic interactions during free-solution electrophoresis of linear
polyelectrolytes by means of coarse-grained molecular dynamics simulations inclu-
ding full electro-hydrodynamic interactions. The center of attention is the specific
role of hydrodynamic interactions on the electrophoretic behaviour of charged ma-
cromolecules. Points of interest are the dependence of hydrodynamic interactions
on the chain length, the chain flexibility and the surrounding counterions, and their
combined influence on important observables such as the static chain conformations
and the dynamic transport coefficients, i.e., the diffusion and the electrophoretic
mobility. These problems are addressed by extensive computer simulations that are
quantitatively matched with experimental results. Existing theoretical predictions
are carefully examined and are augmented by the observations in this thesis.

Starting with the static chain properties of the polyelectrolyte and the counterion
distribution around the chain, the influence of hydrodynamic and electrostatic in-
teractions is investigated, especially with respect to the screening due to a finite salt
concentration in the solution. Additionally, the perturbation by an external electric
field is studied and it is shown that, within the linear response regime, static and
dynamic properties are not affected by the electric field.

The dynamic properties of flexible polyelectrolyte chains are determined in de-
pendence of the chain length. The comparison of the simulations to existing theo-
ries and experiments underlines the importance of hydrodynamic interactions. The
simulations can be quantitatively matched to available experimental data and spe-
cifically show the experimentally observed maximum in the electrophoretic mobility
for intermediate chains, currently not covered by existing theories.

To understand this interesting behaviour on a microscopic level, five indepen-
dent estimators are formulated and used to determine the effective charge of the
polyelectrolyte. The estimators are analysed with respect to their accuracy, as well
as their applicability and efficiency in simulations and their transferability to ex-
periments. The effective charge of the polyelectrolyte turns out to be reduced by
counterions surrounding the chain and moving with the polyelectrolyte. An import-
ant observation in this context is the fact that the effective charge is not depending
on hydrodynamic interactions.

Additionally, it is shown that the counterions have a crucial influence on the ef-
fective friction of the polyelectrolyte complex during electrophoresis. Based on the
mobility measurements and on the charge estimates, the length-dependence of the
effective friction is quantified and exhibits a sharp decrease in the friction per mo-
nomer due to hydrodynamic shielding. This shielding is reduced as the chain length
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Abstract

is increased, indicating an equal exposure of all parts of the chain to the fluid. The
results clearly show a screening of hydrodynamic interactions, which is explained by
the presence of counterions creating a fluid flow inside the polyelectrolyte coil. The
associated screening length is similar to the Debye length for electrostatic screening,
emphasizing the role of counterions.

With the analysis of the effective charge and the effective friction a detailed
picture of the dynamic behaviour of charged macromolecules during electrophoresis
is created. The previously unexplained mobility maximum is shown to be a direct
consequence of a different scaling of charge and friction. Similarly, the constant
free-solution mobility of long polyelectrolyte chains, the free-draining behaviour,
can be attributed to the linear dependence on chain length of both properties for
sufficiently long chains.

The detailed microscopic understanding of the underlying processes during free-
solution electrophoresis with respect to the interplay between hydrodynamic and
electrostatic forces paved the way for studying compounds consisting of a polyelec-
trolyte and an attached drag-tag, like they are used for end-labeled free-solution
electrophoresis. The contribution of various drag-tags to the total effective friction
based on their hydrodynamic size is studied in order to contribute to the improve-
ment of this method for the separation of polyelectrolytes in free-solution.

Summarizing, the main results and observations of this thesis contribute to the
theoretical understanding of polyelectrolyte electrophoresis and provide an in-depth
understanding of the microscopic processes that govern the macroscopic behaviour
of charged polyelectrolytes in free-solution electrophoresis. Having a simulation mo-
del at hand, which matches the experimental data and confirms theoretical predic-
tions, opens new possibilities of investigating the dynamic behaviour of charged
macromolecules. Due to the complex interactions between the system components,
a purely theoretical description is often not possible or too general to provide in-
sight into a specific problem. Under the right assumptions, the problem remains
tractable by simulations. This highlights their general importance in the area of
soft matter research and specifically the contribution made by the presented work.
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Ausführliche Zusammenfassung

Im Rahmen der vorliegenden Doktorarbeit aus dem Forschungsgebiet der sogenann-
ten ”Weichen Materie“ (soft matter) wird im Besonderen der Einfluss hydrodyna-
mischer Wechselwirkungen auf die Elektrophorese linearer Polyelektrolyte in freier
Lösung, d. h. in Abwesenheit eines trennenden Gels, untersucht. Hierzu wird eine
vergröberte Molekulardynamiksimulation verwendet, die die vollständigen elektro-
statischen und hydrodynamischen Wechselwirkungen zwischen allen Komponenten
des Systems berücksichtigt. Ein besonderes Gewicht liegt auf der Analyse der Rolle
der Hydrodynamik für das elektrophoretische Verhalten geladener Makromoleküle.
Diese Arbeit untersucht die Längenabhängigkeit der hydrodynamischen Wechsel-
wirkungen, den Einfluss der Kettenflexibilität und der das Polyelektrolyt umgeben-
den Gegenionen, sowie ihre gemeinsame Wirkung auf die dynamischen Transport-
koeffizienten, die Diffusion und die elektrophoretische Mobilität. Diese Problemstel-
lung wird mit Hilfe umfangreicher Computersimulationen bearbeitet, deren Ergeb-
nisse quantitativ mit experimentellen Resultaten verglichen werden können. Dabei
werden bestehende Theorien sorgfältig analysiert und durch die in dieser Arbeit
ermittelten Erkenntnisse erweitert.

Polyelektrolyte als Teil der Weichen Materie

Die Erforschung der Weichen Materie ist ein relativ neues Forschungsgebiet, das
sich verschiedenen Problemklassen von Teilchensuspensionen über Polymerlösun-
gen zu Zellnetzwerken widmet. Darin eingeschlossen sind Strukturen in fast allen
biologischen Systemen – so auch die im menschlichen Körper. Die unterschiedli-
chen Prozesse, in denen diese Strukturen involviert sind, haben oft eine gemeinsa-
me Längen- und Energieskala auf der Größenordnung von Nano- bis Mikrometern
bzw. vergleichbar mit der thermischen Energie der Umgebung. Die relevanten Zeits-
kalen variieren dabei zwischen Bruchteilen von Sekunden bis hin zu Stunden.

Computersimulationen kommt seit jeher eine wichtige Rolle bei der Studie derar-
tiger Systeme zu, wobei deren komplexe Natur jedoch eine große Herausforderung
darstellt. Biologische Vorgänge sind häufig von starkvariierenden lokalen Kräften
dominiert, die nur mit höherem Modellierungsaufwand erfasst werden können. Ver-
gröberte Simulationsmodelle auf mesoskopischen Längenskalen erweisen sich dabei
als besonders erfolgreich in der Bewältigung dieser Probleme, in dem sie die Kom-
plexität auf die essentiellen Eigenschaften der mikroskopischen Physik reduzieren,
die dann mit aktuellsten Algorithmen auf Hochleistungsrechensystemen effizient
gelöst werden können.
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Ausführliche Zusammenfassung

Diese Doktorarbeit widmet sich hauptsächlich der Klasse der Polyelektrolyte,
d.h. geladenen molekularen Ketten. Sie übernehmen eine fundamentale Rolle in
der Strukturbildung, der Stabilität in verschiedensten molekularen Systemen. Ihre
einzigartigen Eigenschaften werden in einer Vielzahl von technischen und industri-
ellen Anwendungen nutzbar gemacht, das wichtigste Einsatzgebiet ist jedoch die
Biologie bzw. die Biochemie. Dies liegt daran, dass faktische alle Proteine sowie die
Erbsubstanz, die DNS, selbst geladene Makromoleküle sind.

Leider ist das theoretische Verständnis ihrer Eigenschaften weniger gut voran-
geschritten als das neutraler Polymere, da sich die Beschreibungen in wichtigen
Punkten unterscheiden. Insbesondere sind die Wechselwirkungen unterschiedlicher
Polyelektrolyten untereinander bis dato größtenteils unerforscht.

Die Polyelektrolytcharakterisierung erfolgt hauptsächlich durch Elektrophorese,
mit der es zum Beispiel gelungen ist, die menschliche DNS zu trennen und so das
gesamte Genom zu entschlüssen. Dieser Erfolg erhöht den Bedarf an verbesserten
und schnelleren Sequenzierungsmethoden, um auch zukünftige Herausforderungen
bewältigen zu können.

Hierzu ist ein grundlegendes Verständnis des Verhaltens geladener Polyelektro-
lyte in externen elektrischen Feldern notwendig. Das Ziel dieser Arbeit ist, dieses
fundamentale Wissen für den Prozess der elektrophoretischen Separation zu erar-
beiten. Aus dem breiten Anwendungsspektrum der Elektrophorese folgt, dass die
erzielten Ergebnisse von großer Relevanz für die Forschung auf den Gebieten der
Elektrophorese, der Mikrofluidik und darüber hinaus sind.

Statische und dynamische Eigenschaften

Angefangen bei den statischen Ketteneigenschaften eines Polyelektrolyts sowie der
Verteilung der Gegenionen um diese Kette wird der Einfluss der Hydrodynamik
und der Elektrostatik systematisch untersucht, insbesondere im Hinblick auf die
Abschirmung dieser Wechselwirkungen durch die Gegenwart von Salzionen in der
Lösung. Zusätzlich wird der Störeinfluss betrachtet, der von einem externen ange-
legten elektrischen Feld ausgeht.

Dabei wird gezeigt, dass für kleine Feldstärken im ”linearen Antwortbereich“ (li-
near response regime) statische und dynamische Ketteneigenschaften nicht beein-
flusst sind. Die Ergebnisse zeigen das theoretisch erwartete Verhalten für Polyelek-
trolytketten: die Kettengröße, ausgedrückt durch den End-zu-End-Abstand, den
Gyrationsradius sowie den hydrodynamischen Radius, wächst für kurze Ketten mit
einem Exponenten, der zwischen 1 und dem Floryexponenten für ungeladene Ket-
ten liegt. Es wird gezeigt, dass der effektive Skalierungsexponent abnimmt, wenn
die Salzkonzentration und damit die elektrostatische Abschirmung erhöht wird.

Darüberhinaus wird der Einfluss des externen elektrischen Felds auf die Ket-
tenkonformationen und die Verteilung der Gegenionen untersucht. Unterhalb eines
kritischen Wertes ist, in Übereinstimmung mit der linearen Antworttheorie, kei-
ne Abhängigkeit von der Feldstärke beobachtbar. Höherer Feldstärken verändern

vi



die statischen (und auch der dynamischen) Eigenschaften der Polyelektrolyte. Die
Grenze zwischen linearer und nicht linearer Wirkung des elektrischen Feldes wird
ermittelt und liegt im theoretisch vorhergesagten Bereich.

Anschließend werden die dynamischen Eigenschaften flexibler Polyelektrolytket-
ten in Abhängigkeit von der Kettenlänge bestimmt. Dabei wird das Modell ange-
passt, sodass die Transportkoeffizienten von Polystyrenesulfonaten (PSS) bestimmt
werden können. Diese werden dann mit den Ergebnissen zweier unabhängiger ex-
perimenteller Messungen verglichen. Es kann eine quantitative Übereinstimmung
zwischen den Simulationsergebnissen und den Experimenten sowie den theoreti-
schen Vorhersagen hergestellt werden, solange die hydrodynamischen Wechselwir-
kungen zwischen Polyelektrolyt, Gegenionen und Lösungsmittel korrekt berücksich-
tigt werden. Ein Simulationsmodell, welches diese Wechselwirkungen vernachlässigt,
ist nicht in der Lage, das dynamische Verhalten kurzer PSS-Ketten zu beschreiben.
Dahingegen ist es möglich, die chemischen Details des Moleküls zu vernachlässigen
und nur eine generalisierte Darstellung eines Polyelektrolyts zu verwenden.

Zusätzlich wird die Rolle der Gegenionen und der Einfluss der Stärke des elektri-
schen Feldes untersucht, wobei der Schwerpunkt aber auf der Betrachtung hydrody-
namischer Wechselwirkungen liegt, deren enorme Wichtigkeit besonders durch den
Vergleich zu den experimentellen Daten unterstrichen wird. Darüberhinaus zeigen
die Simulationen das experimentell beobachtete Maximum in der elektrophoreti-
schen Mobilität für Ketten von mittlerer Länge, welches derzeit nicht in der Theorie
erfasst ist.

Effektive Ladung und effektive Reibung

Um das Verständnis dieses Verhaltens auf mikroskopischer Ebene zu erweitern,
werden fünf unabhängige Schätzer zur Bestimmung der effektiven Ladung des Po-
lyelektrolyts formuliert, die im Hinblick auf ihre Genauigkeit, ihre Anwendbarkeit
und Effizienz für Simulationen sowie im Bezug auf die Bedeutung im experimen-
tellen Rahmen untersucht werden. Die Analyse zeigt, dass die effektive Ladung des
Polyelektrolyts teilweise durch die die Ketten umgebenden und sich mit ihr bewe-
genden Gegenionen reduziert wird. Eine hervorhebenswerte Beobachtung in diesen
Zusammenhang ist die Tatsache, dass die ermittelte effektive Ladung unabhängig
von der Art und Stärke der hydrodynamischen Wechselwirkungen ist.

Zwei dieser Schätzer sind besonders vielversprechend. Für den auf einem reinen
Langevinmodel basierende Schätzer ist es nur notwendig, die elektrophoretische Mo-
bilität zu bestimmen. Alle anderen Parameter ergeben sich direkt aus dem Model.
Die Tatsache, dass die effektive Ladung unabhängig von den hydrodynamischen
Wechselwirkungen ist, erlaubt die Bestimmung der Mobilität unter Vernachlässi-
gung dieser bei geringem Simulationsaufwand.

Die Abschätzung über die Ionendiffusionsmessung ist numerisch aufwändiger, hat
aber den entscheidenden Vorteil gegenüber allen anderen Methoden, dass es mög-
lich ist, sie direkt in einer experimentellen Messung anzuwenden. Alle notwendigen
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Ausführliche Zusammenfassung

Größen, d.h. der freie Diffusionskoeffizient der Ionen, der Diffusionskoeffizient der
gebundenen Ionen und der Polyelektrolytdiffusionskoeffizient, können mittels Stan-
dardverfahren bestimmt werden. Dieser Schätzer ist der erste, der eine direkte Mes-
sung einer mikroskopischen Eigenschaft, hier der effektiven Ladung, im Experiment
erlaubt.

Mit der effektiven Ladung wird außerdem der wichtige Beitrag der Gegenionen
zur effektiven Reibung des Polyelektrolytkomplexes mit dem Lösungsmittel wäh-
rend der Elektrophorese herausgestellt. Ausgehend von den Mobilitätsmessungen
sowie den Schätzungen für die effektive Ladung ist es möglich, die effektive Reibung
in Abhängigkeit von der Kettenlänge zu quantifizieren. Es zeigt sich mit steigen-
der Länge ein anfänglicher steiler Abfall der Reibung pro Monomer bedingt durch
die hydrodynamische Abschirmung der Monomere untereinander. Diese Abschir-
mung nimmt mit Wachstum der Kettenlänge ab, welches ein Hinweise darauf ist,
dass alle Bereiche der Kette im gleichen Maße der Flüssigkeit ausgesetzt sind. Die
Analyseergebnisse zeigen darüberhinaus eindeutig die Abschirmung der hydrodyna-
mischen Wechselwirkungen, die mit der Präsenz von Gegenionen und des von ihnen
erzeugten Flüssigkeitsflusses erklärt werden kann. Die zugordnete Abschirmlänge
ist vergleichbar mit der Debyelänge zur elektrostatischen Abschirmung, welches zu-
sätzlich die Rolle der Gegenionen zur Dynamik unterstreicht.

Die Analyse der effektiven Ladung und der effektiven Reibung erzeugt ein de-
tailliertes Bild des dynamischen Verhaltens geladener Makromoleküle während der
Elektrophorese. Das zuvor unerklärte Mobilitätsmaximum ergibt sich hierbei als
direkte Folge einer unterschiedlichen Abhängigkeit von Ladung und Reibung ge-
genüber der Länge des Polyelektrolyts. Gleichermaßen ist es möglich, die konstante
elektrophoretische Mobilität langer Polyelektrolytketten, das sogenannte ”Durch-
dringungsregime“ (free-draining), auf die lineare Abhängigkeit beider Größen von
der Länge für lange Ketten zurückzuführen.

Polyelektrolyte mit molekularem Anhang

Das detaillierte mikroskopische Verständnis der zugrundeliegenden Prozesse wäh-
rend des Elektrophoresevorgangs in freier Lösung im Hinblick auf die Wechsel-
wirkung von hydrodynamischen und elektrostatischen Kräften bereitet den Weg
für das Studium zusammengesetzter Moleküle bestehend aus einem Polyelektrolyt
und einem angehängten Reibungskern, wie sie für die ”Elektrophorese in freier Lö-
sung mit molekularem Anhang“ (end-labeled free-solution electrophoresis) verwen-
det werden. Diese Arbeit untersucht den Beitrag der verschiedenen Reibungskerne
zur Gesamtreibung basierend auf ihrer hydrodynamischen Größe, und trägt da-
mit zur Verbesserung dieser Methode zur Separation von Polyelektrolyten in freier
Lösung bei.

Nach einer Analyse der bestehenden Theorie auf Grundlage der Erkenntnisse
dieser Arbeit wird das Simulationsmodell für die Bestimmung der elektrophoreti-
schen Mobilität eines Polyelektrolyts verwendet, welches an einem Ende mit einem
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linearen ungeladenen Polymer verbunden ist. Die Ergebnisse werden in guter Über-
einstimmung mit der erweiterten Theorie verglichen.

Im Anschluss wird das lineare Polymer durch ein verzweigtes Polymer ersetzt,
um kürzlich getroffene Vorhersagen zu überprüfen. Hierbei wird gezeigt, dass der
zusätzliche Reibungsbeitrag der von dem angehängten Molekül ausgeht, direkt pro-
portional zu seiner hydrodynamischen Größe ist. Im Vergleich mit den Simulationen
des linearen Polymers zeigt sich, dass der Reibungsbeitrag pro Monomer am größ-
ten für die unverzweigte Kette ist. Experimentelle Einschränkungen in der Synthese
dieser Moleküle begrenzen jedoch ihre praktische Anwendbarkeit. Hier schafft das
Anhängen von Seitenketten Abhilfe, da es die Möglichkeit bietet, die hydrodyna-
mische Größe und damit den Reibungsbeitrag zu erhöhen, ohne die lineare Länge
des Polymers zu verändern. Es wird gezeigt, dass die Effektivität eines derartigen
verzweigten Moleküls mit der Länge der Seitenketten zunimmt.

Die dritte Klasse von möglichen molekularen Anhängen, die untersucht wird,
scheint in besonderem Maße für die Anwendung in der Polyelektrolytseparation
geeignet zu sein. Temporär gebundene Mizellen verfügen über einen signifikant hö-
heren Reibungsbeitrag, da sie einen großen hydrodynamischen Radius besitzen. Die
Untersuchung zeigt, dass der Reibungskoeffizient linear mit der Größe der Mizelle
zunimmt. Daraus ergibt sich, dass die Wirksamkeit dieser Anhangklasse nur durch
die Größe der synthetisierbaren Mizellen begrenzt ist.

Das erfolgreiche Zusammenspiel von Theorie und Computersimulationdazu trägt
dazu bei, die Entwicklung neuer Anhangsmoleküle zu unterstützen, und erweitert
somit die Anwendbarkeit dieser Methode der elektrophoretichen Separation.

Realistische Modellierung der Elektrophorese

Diese Arbeit bietet eine detaillierte Studie des Einfluss hydrodynamischer Wech-
selwirkungen auf die Elektrophorese geladener Makromoleküle auf der Basis einer
vergröberten Molekulardynamiksimulation unter Berücksichtigung der vollständi-
gen elektrohydrodynamischen Wechselwirkungen.

Die Hauptergebnisse und Beobachtungen liefern einen Beitrag zum theoretischen
Bild der Polyelektrolytelektrophorese und bieten ein tiefgehendes Verständnis der
mikroskopischen Prozesse, die das makroskopische Verhalten geladener Makromo-
leküle in freier Lösung bestimmen.

Ein Simulationsmodell, welches die experimentellen Beobachtungen abbilden und
bestätigen kann, eröffnet neue Möglichkeiten, das elektrophoretische Verhalten kur-
zer Polyelektrolytketten zu untersuchen, welches bislang nur unzureichend durch
bestehende Theorien erfasst ist. Die Komplexität der Wechselwirkung zwischen
den einzelnen Systembestandteilen verhindert eine exakte analytische Beschreibung.
Unter geeigneten Annahmen ist das Problem jedoch mit Hilfe von Computersimu-
lationen zu beschreiben. Dies unterstreicht die Wichtigkeit solcher Simulationen für
die Forschung auf dem Gebiet der Weichen Materie und den Beitrag, den diese
Arbeit leistet.
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1. Introduction

The field of soft matter research is a relatively new field that deals with various
problems, ranging from particle suspensions over polymer solutions to cell networks.
This includes most of the structures in actual biological systems – such as the human
body. These different systems typically share a mesoscopic length scale, i.e., their
relevant dimensions are of the order of nano- to micrometers, and the processes
happen at energy scales comparable to the thermal energy. On the other hand, the
relevant time scales can be as short as nanoseconds or as long as hours.

Computer simulations have played an important role in the study of soft mat-
ter systems, but their complex nature poses great challenges. Additionally to the
length, energy and time scale requirements, biological processes are often driven by
strongly varying forces, which increase the complexity of the modelling. Mesoscopic
or coarse-grained simulation methods show promising results in dealing with this
complexity by reducing the system properties to the essential features of the mi-
croscopic physics. The system can then be efficiently solved using state-of-the-art
algorithms on high-performance computer systems.

The aim of soft matter research is to test physical theories, predict previously
untested behaviours, and create ideas for novel experimental approaches. The focus
of this thesis is the study of free-solution electrophoresis of polyelectrolytes, and in
particular to elucidate the role of hydrodynamic interactions on mesoscopic length
scales.

1.1. Polyelectrolyte electrophoresis

Polyelectrolytes are charged macro-molecular chains, commonly present in soft mat-
ter systems. They play a fundamental role in determining the structure, stability
and interactions of various molecular assemblies, and their unique properties are
being exploited in a wide range of technological and industrial fields. One of their
major roles, however, seems to be the one played in biology and biochemistry. This
is due to the fact that virtually all proteins, as well as the DNA and RNA, are
polyelectrolytes.

Unfortunately, the theoretical understanding of polyelectrolytes is little developed
as the approaches describing their statistical properties differ profoundly from those
of their uncharged counterparts. Furthermore, their interactions with each other
and with the other biomolecules is not completely understood. This is mainly
due to the difficult treatment of long range interactions in theory and simulations.
Promising approaches using approximations will be discussed in the next section.
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Electrophoresis is one of the main experimental techniques employed to charac-
terise polyelectrolytes. Furthermore, it is widely used to separate DNA molecules
by size and has shown its effectiveness in the sequencing of entire genomes, includ-
ing our own [1]. This success story also increased the demand for improved and
faster sequencing methods, in order to meet the upcoming challenges.

1.2. State of the art

Over the last years, many experimental investigations have been performed in the
field of polyelectrolyte electrophoresis, in order to improve existing methods or to
develop new separation techniques which yield a faster or better separation [2–18].
These experimental improvements gave rise to many interesting questions that still
need to be dealt with from a theoretical point of view.

Biomolecules like DNA and proteins are usually charged, and predominantly ex-
ist in aqueous solutions. The dynamics of biomolecules in such an environment is
determined by an interplay of various factors: external forces, the local flow of the
medium, short-range interactions, long-range electrostatic and hydrodynamic inter-
actions. Externally applied flow or external electric fields are used to manipulate
and separate biomolecules in analytic devices.

In order to understand these processes from a theoretical point of view, the
biomolecules must modeled with high detail. However, a full simulation of a mi-
crochannel, which accounts explicitly for every single water molecule, is not only
a formidable task, but also unnecessarily inefficient. Since typical channel sizes
are still much larger than the size of small molecules, a solvent treatment on the
level of a continuum theory is perfectly sufficient. On the other hand, simplified
models, which replace the solvent, the counterions, and the salt ions by effective
interactions, miss many relevant physical phenomena.

So far, computer simulations of DNA electrophoresis have often used Brownian
dynamics [19–25], i.e., the medium was replaced by a simple random noise and fric-
tion term. Furthermore, electrostatic interactions between the polyelectrolyte and
the surrounding ions have not been accounted for. This treatment was reasonably
successful, and lead to results which were in accord with experiments both for the
cases of gel electrophoresis [19–21] and electrophoresis in microchannels [24, 25].

However, a closer inspection shows that there are problems with such a simpli-
fied description: first, the often assumed hydrodynamic screening only applies to
the mobility of DNA in free solution. If the DNA is stopped by an obstacle, the
hydrodynamic drag of the DNA is no longer balanced by the counterion friction,
because the counterions are still mobile [26]. Furthermore, hydrodynamic interac-
tions affect the diffusion of the chain [27, 28], and for systems of many molecules
intricate inter-particle effects exist, as is known from colloidal dispersions [29, 30]
and neutral polymer solutions [31].

Second, a theory which accounts for the electrostatic screening on a mean-
field level without explicit counterions, like a linearised or fully nonlinear Poisson-
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Boltzmann treatment, cannot describe the subtle dependence of the free-solution
mobility of DNA on the composition of the buffer - the salt concentration, the pH,
the valency of the ions etc. [32, 33]. Already for the static case drastic deviations
from this mean-field description are known to occur, namely, effective attractions
between like charged macromolecules [34] and the effect of overcharging, where the
macro ion charge gets overcompensated by its (usually multivalent) counterions [35].

Now, looking at a non-equilibrium situation as it is the case in an electrophoresis
experiment, one has to account for the fact that a certain amount of the counterions
surrounding the DNA may be dragged along with the DNA, which leads to an
effective charge renormalisation. The amount of co-moving counterions, however,
may depend in a subtle way on the hydrodynamic interactions.

1.3. Aim of this work

While there exist several theories [36–39] that have been successfully used to de-
scribe qualitatively the experimentally observed behaviour of various polyelectro-
lytes, there are still many open problems to address.

A thorough understanding of the behaviour of polyelectrolytes in external fields is
needed in order to improve current electrophoretic separation methods and to sup-
port the development of new methods for efficient separation of charged biopolymers
by length. This has recently become an area of significant activity due to the fact
that genome sequencing techniques make heavy use in electrophoretic separation
techniques.

The aim of this thesis is to provide fundamental understandings of the elec-
trophoretic separation process. Based on the existing experimental results, a coarse-
grained simulation model will be developed that allows to treat all the necessary
interactions with the required accuracy. Based on this model, recently suggested
electrophoresis methods will be tested and characterised. Ultimately, this work can
contribute to the the design of novel separation techniques. Since the thesis deals
with a topic which is beneficial for a wide variety of potential applications, the
achieved results should be of broad interest to the electrophoresis, microfluidics,
nano science community, and beyond.

1.4. Overview

This thesis is organised as follows:

Chapter 2 provides the theoretical framework and established concepts that will
be used throughout the thesis to interpret and analyse the results of this work.

Chapter 3 outlines the simulation model used to describe the behaviour of poly-
electrolytes during free-solution electrophoresis.
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Chapter 4 contains the results on the static properties of polyelectrolytes and the
surrounding counterions as obtained from the simulations.

Chapter 5 is dedicated the dynamical properties of polyelectrolytes as measured
in electrophoretic experiments.

Chapter 6 offers a detailed analysis of the electrophoretic mobility of polyelec-
trolytes, especially with regards to length dependence by determining the
effective friction of the polyelectrolyte chain and its surrounding counterions
with the solvent.

Chapter 7 studies the modification of the effective friction in the process of free-
solution electrophoresis by attaching additional drag targets to the polyelec-
trolyte chains.

Chapter 8 provides a brief outlook on further free-solution separation techniques
for polyelectrolytes.

Chapter 9 summarises the results and concludes this thesis.

The main part of the thesis is followed by a brief appendix that contains the
derivation of the Green-Kubo expression to determine the electrophoretic mobility
at vanishing external electric field (Equation 5.4). A second appendix contains an
annotated simulation script.

The work of Chapters 4 through 6 has been concisely presented in the following
publications:

• K. Grass, U. Böhme, U. Scheler, H. Cottet, and C. Holm. Importance of hy-
drodynamic shielding for the dynamic behavior of short polyelectrolyte chains.
Physical Review Letters, 100(9):096104, 2008;

• K. Grass and C. Holm. On the importance of hydrodynamic interactions in
polyelectrolyte electrophoresis. J. Phys.: Condens. Matter, 20(494217), 2008;

• K. Grass and C. Holm. Polyelectrolytes in electric fields: Measuring the dy-
namical effective charge and effective friction. Soft Matter, accepted, 2009.
http://arxiv.org/abs/0902.1886.

The results of Chapter 7 are prepared for publication as:

• K. Grass, C. Holm, and G. W. Slater. Optimizing end-labeled free-solution
electrophoresis by increasing the hydrodynamic friction of the drag labels.
Submitted to Macromolecules, 2009. http://arxiv.org/abs/0902.1889.

Furthermore, the author contributed to a comprehensive review on separation
methods for DNA:
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• G. W. Slater, C. Holm, M. V. Chubynsky, H. W. de Haan, A. Dubé, K. Grass,
O. A. Hickey, C. Kingsburry, D. Sean, T. N. Shendruk, and L. Zhan. Model-
ing separation processes: A review of current computer simulation methods.
Electrophoresis, (30):792–818, 2009.
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2. Theoretical background on
polyelectrolytes in free-solution

This chapter introduces the main theoretical concepts that will be used to describe
the properties of polyelectrolytes during free-solution electrophoresis.

Firstly, the theory of hydrodynamic interactions will be briefly reviewed, then
the standard polymer theory will be summarised. Following the static properties,
the dynamic quantities will be investigated. After describing the polymers, the
polyelectrolytes – the charged equivalent of polymers – will be introduced.

The chapter concludes by formulating the requirements for the simulation model
presented in the next chapter.

2.1. Hydrodynamics

In order to study the behaviour of particles within a solvent, a precise understanding
of the fluid is needed. Due to the nonlinear and long-range nature of the forces
involved, fluid mechanics is a highly complex topic and a complete description of
hydrodynamic interactions easily fills books, such as the standard references by
H. Lamb [45] or by Landau and Lifshitz [46]. The essential concepts and quantities
that will be used throughout this thesis are briefly summarised in the following.

2.1.1. What are hydrodynamic interactions?

The Merriam-Webster’s dictionary1 defines hydrodynamics as “. . . a branch of phys-
ics that deals with the motion of fluids and the forces acting on solid bodies im-
mersed in fluids and in motion relative to them”.

Simply speaking, hydrodynamic interations are long-range interactions arising
within a fluid. An object that is moved through the fluid creates a movement of
fluid particles around its surface called flow. This local disturbance of the fluid
propagates through the medium. It can affect the movement of another object:
if the flow created by the first object is strong enough, the second object might
even be dragged along. The interaction necessary to mediate this force is called
hydrodynamic interaction. Likewise, the presence of an object, e.g., a wall, inside a
moving fluid can influence the flow and divert it in such a way that other objects
inside the fluid are not affected by it any more. The first object (the wall) shields
the second object from the flow, thereby reducing the force exerted by the fluid on
this particle. This effect is called hydrodynamic shielding.

1http://mw1.m-w.com/dictionary
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2. Theoretical background on polyelectrolytes in free-solution

HIV v

V HI

a)

b)

Figure 2.1: The motion of fluids and the forces acting on solid bodies immersed in
them is called hydrodynamics. a) The flow created by a moving body can induce
motion in a second body. b) An object placed in between the two bodies can block
the hydrodynamic interactions (HI).

In the following section, the theoretical framework that describes hydrodynamics
from a physicist’s point of view is presented.

2.1.2. Navier-Stokes equation

In general, a fluid is composed of small particles or molecules that move around
and collide with each other and with immersed objects following some conservation
laws, namely the conservation of mass, momentum and energy known from classical
mechanics. However, due to the large number of such particles within the fluid, a
continuum assumption can be made. Only the combined effect of the individual
fluid molecules is considered. In this case, the individual particle properties are
replaced by averaged local quantities such as the density ρ and the flow velocity ~v.

The dynamics of the continuous fluid are then described by the Navier-Stokes
equation, which in its most general form can be written as:

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+∇ · T + ~f, (2.1)

where ~v is the fluid velocity, ρ is the fluid density, p is the pressure, T is the general
stress tensor, and ~f sums all forces acting on the fluid, be that gravity, centrifugal
forces, etc.

As the Navier-Stokes equation only ensures conservation of momentum, an addi-
tional equation has to be enforced for conservation of mass:

∂ρ

∂t
+∇ · (ρ~v) = 0. (2.2)
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2.1. Hydrodynamics

Equation 2.1 can be simplified if additional assumptions about the nature of the
fluid are taken into account. In the present study, only incompressible Newtonian
fluids will be considered, for which the stress tensor T is proportional to the local
strain ∇~v with the dynamic viscosity η as proportionality constant. In this case
the Navier-Stokes equation can be simplified:

ρ
( ∂~v

∂t︸︷︷︸
Unsteady

acceleration

+ ~v · ∇~v︸ ︷︷ ︸
Convective
acceleration

)
= −∇p︸ ︷︷ ︸

Pressure
gradient

+ η∇2~v︸ ︷︷ ︸
Viscosity

+ ~f︸︷︷︸
Other
forces

. (2.3)

Solving the Navier-Stokes equation

In general, the set of Navier-Stokes equations (Eq. 2.1) is composed by nonlinear
partial differential equations in almost every real situation. Few exceptions exist,
for example, in one dimensional flow, called also the Stokes flow (or creeping flow),
for which Eq. 2.1 boils down to the single ordinary differential equation that can be
easiliy solved analytically. Due to the nonlinearity, many problems are difficult or
impossible to solve analytically. Furthermore, no closed-form solutions are proved
to exist for the unsimplified Navier-Stokes equations.

However, many computational methods to solve the Navier-Stokes equations are
known: finite volume methods (FVM)2, finite element methods (FEM)3, and finite
difference methods (FDM)4 to name a few. All of these methods discretise the
whole fluid volume into smaller elements, and the partial differential equations are
specialised to these elements making them numerically solvable. In general, the
accuracy of the solution depends on the geometry of flow and the chosen discreti-
sation.

In the next chapter, mesoscopic fluid models will be introduced (see Section 3.5.2)
that solve Navier-Stokes equations and allow for direct coupling to chosen simulation
approach.

2.1.3. Important hydrodynamic quantities

When describing a specific fluid and its properties a whole zoo of hydrodynamic
quantities can be used. So far, the fluid density ρ and the dynamic viscosity η have
been introduced to describe the fluid itself. Often one is especially concerned with
the ratio between the viscous force and the inertial force. This ratio is characterised
by the kinematic viscosity ν:

ν =
η

ρ
. (2.4)

2http://tinyurl.com/sdbp3
3Ciarlet, Phillippe G. (1978). The Finite Element Method for Elliptic Problems. Amsterdam:

North-Holland
4William F. Ames, Numerical Methods for Partial Differential Equations, Section 1.6. Academic

Press, New York, 1977. ISBN 0-12-056760-1.
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2. Theoretical background on polyelectrolytes in free-solution

As a guideline, the density of water is roughly ρ = 1g/cm3, and its dynamic
viscosity is η ≈ 1mPa · s = 1cP (centi poise5). This leads to a kinematic viscosity
of ν = 1mm2/s = 1cSt (centi stokes).

To characterise the fluid flow, several dimensionless physical quantities have been
introduced. Below the four most commonly used ones are listed. All of them
describe the ratio between different physical aspects of the fluid and can be used to
distinguish different flow characteristics.

The Reynolds number Re quantifies the ratio between the inertial forces (V 2ρD2)
and the viscous forces (ηDV ), where D is the relevant physical length scale, and it
is a dimensionless quantity that is defined as follows:

Re =
ρV D

η
, (2.5)

with V being the average fluid velocity. The Reynolds number is used to describe
the onset of turbulent flow. Flows with a Reynolds number below a critical value
(≈ 104 for pipes) are laminar, whereas flows with a higher Reynolds number might
show turbulence.

For example, the Reynolds number of the blood flow in the aorta is Re ≈ 103, the
one of a person swimming is Re ≈ 106, and finally the one of a large ship moving
at full speed is Re ≈ 109.

The second dimensionless number, the Schmidt number Sc, defines the ratio of
momentum diffusivity (∝ ν) and mass diffusivity D:

Sc =
ν

D
=

η

ρD
. (2.6)

As such, the Schmidt number relates the the convective matter transport to the
diffusive transport.

In liquids, such as water, Sc ≈ 1000 and the momentum transport is much
more prominent than actual matter transport. For example, while water waves
collectively transport large momenta, the individual water molecule on average
moves over very small distances.

Another dimensionless number is the Knudsen number Kn. It is a microscopic
quantity defined as the ratio between the molecular mean free path length λ, the
distance a molecule travels until the first collision, to a representative physical
length scale L:

Kn =
λ

L
. (2.7)

The Knudsen number can be used to determine whether a fluid should be described
by statistical mechanics or by continuum mechanics. If Kn > 1, i.e., the mean free
path of a molecule is comparable or larger to the relevant length scale, a continuum
approximation is no longer valid.

All problems discussed in this thesis have Knudsen numbers smaller than one.
5named after Jean Louis Marie Poiseuille
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2.2. Polymer chains

The Mach number Ma describes the speed of an object v moving through a fluid
relative to the speed of sound cs in it:

Ma =
v

cs
. (2.8)

Objects that move with a speed higher than Ma = 1 travel faster through a medium
than the disturbance they cause to the medium. Obviously, this leads to strongly
nonlinear effects that are not the subject of this thesis. All velocities in the systems
of interest are subsonic with Ma < 1.

2.2. Polymer chains

The theoretical description of polymer chains in solution can be found nicely ex-
plained in several standard textbooks. The author especially recommends the
works by M. Doi and S. F. Edwards, by M. Rubinstein and R. H. Colby, and
by I. Teraoka [27, 47, 48]. The concepts essential for this thesis will be reviewed in
this section.

A polymer is a molecule consisting of several identical repeating units, the mono-
mers. The number N of monomers in a chain is also referred to as degree of
polymerisation. Usually N is very large, i.e., ranging up to 106 or more units, and
the polymer properties depend less on the individual small monomer than on the
total assembly of linked particles. Thus, it is possible to formulate a decription
which is independent on the chemical detail and use this generic model to describe
polymers.

Many different models of this kind exist that differ in the way the polymer is
described, but most of them can be mapped to one another in the limit of large N .

2.2.1. Ideal chains

An intuitively simple model, displayed in Figure 2.2, is the freely jointed chain
(FJC) model, in which a polymer is described by a series of points that are linked
by connections representing the polymer’s bonds of fixed length b0. The FJC model
belongs to the ideal chain models, i.e., there are no interactions between two points
i and j as long as they are separated by a sufficient number of bonds |i−j| � 1. As
a consequence, it is possible that points of different parts of the chain overlap and
the chain crosses itself. In Section 2.2.2, models for real chains, where the chain
crossings are prevented, will be introduced and discussed.

If no external forces influence the chain conformations, long enough chains form
an isotropic random coil with spherical shape maximizing the entropy that can be
described by the end-to-end vector shown in Figure 2.2:

~Re = ~rN − ~r1 =
N−1∑
i=1

~bi, (2.9)
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2. Theoretical background on polyelectrolytes in free-solution

bi

b2

bi+1

bN-1

bN-2

b1r2

r1 rN

Re

Figure 2.2: Scheme of the freely jointed chain model.

with ~r1 and ~rN being the position of the first and the last point of the polymer
chain and the ~bi are the (N −1) bond vectors between the N points of the polymer.

One quantity that can be used to describe the random coil formed by an ideal
chain is the mean squared end-to-end distance:

〈R2
e〉 =

N−1∑
i,j=1

〈~bi ·~bj〉 =
N−1∑
i=1

〈~b2i 〉+ 2
N−1∑
i=1

N−1∑
j=i+1

〈~bi ·~bj〉. (2.10)

Here the 〈. . .〉 denote the averaging over all possible configurations ~r1, . . . , ~rN .
In the FJC model, the orientations of two different bond vectors ~bi and ~bj (i 6= j)

are not correlated: 〈
~bi ·~bj

〉
= 0. (2.11)

From Equations 2.10 and 2.11 one immediately obtains that characteristic length
of the polymer, Re, the average distance between both chain ends of a FJC polymer
grows proportionally to the square root of the number of bonds N − 1:

Re = 〈R2
e〉1/2 = b0(N − 1)1/2. (2.12)

In other words, the random coil generated by the FJC model is an object with
a fractal dimension of 2. Later, in Section 2.3.1, it will be shown how the random
configurations of a polymer chain can be compared to the random movement of a
particle in solution due to Brownian motion.
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2.2. Polymer chains

The scaling relation in Equation 2.12 also holds for other models describing ideal
chains, most importantly for the Gaussian chain model, as long as Equation 2.11
is fulfilled. In this model, the distance between two connected monomers is no
longer fixed to b0 but is drawn randomly from a Gaussian distribution with a known
average b. This average value b replaces b0 as effective bond length in Equation 2.12.

A second quantity of importance is the radius of gyration Rg, which is defined
similarly to the moment of inertia of a rigid body of N unit masses:

R2
g =

1
N

N∑
i=1

(~ri − ~rcm)2 . (2.13)

Here, ~rcm = 1/N
∑N

i=1 ~ri is the center of mass of the chain. The average radius of
gyration for an ideal chain exhibits the same scaling behaviour as the end-to-end
distance:

Rg = 〈R2
g〉1/2 =

b0√
6
(N − 1)1/2. (2.14)

The ideal chain models can be used to derive further observables for polymer
chains, i.e., structure factors, but they are omitted here, as they will not be used
in this study.

2.2.2. Real chains

bi-1 bi
bi+1

bj
bj+1

bj-1

Figure 2.3: The excluded volume effect prevents two different chain segments from
coming close to each other.

So far, theoretical models were discussed that described idealised chains only,
where interactions between points separated by a couple of bond lengths were ne-
glected. In reality, however, different parts of a polymer chain do interact if they
come close to each other. The most obvious of such interactions is the steric interac-
tions between the individual monomers of the polymer chain depicted in Figure 2.3.
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2. Theoretical background on polyelectrolytes in free-solution

Each chain monomer has a finite size that prevents them from coming close to each
other. This leads to a finite volume around each point from which all other points
are excluded, with the resulting effect that the chain swells compared to the non-
interacting one. The effect is called excluded volume effect.

Depending on the interactions between the chain monomers and interactions with
the surrounding solvent the scaling exponent in Equations 2.12 and 2.14 will vary,
and a more general formulation is needed:

Re = 〈R2
e〉1/2 ≈ (N − 1)ν , (2.15)

and
Rg = 〈R2

g〉1/2 ≈ (N − 1)ν . (2.16)

Here, ν is the scaling exponent, which describes the dependence of the polymer
conformations on the number of monomers.

Flory derived an expression of ν for polymer chains at dilute and semi-dilute
concentrations in a good solvent [49], i.e., a solvent in which the polymer can be
easily dissolved, which was later generalised by Fisher [50]:

ν =
3

2 + d
, (1 ≤ d ≤ 4). (2.17)

The scaling exponent in good solvent depends solely on the dimensionality d. The
prediction has been confirmed for one and two dimensions [51], where Flory’s mean-
field approach is exact. The most precise estimate for ν in three dimensions,
ν = 0.588 [52], was obtained by renormalization group theory and differs slightly
from the Flory prediction ν = 3/5. A more detailed analysis of the Flory formula
(Eq. 2.17) can be found in Reference 53.

Semi-flexible chains

The chain models presented so far described fully flexible chains, i.e., there were no
restriction to the angle between two consecutive bonds. In reality, however, chemical
details restrict the bond angle α between two linked monomers to a specific range.
Consequently, the orientations of two neighbouring bonds~bi and~bi+1 are correlated:〈

~bi ·~bi+1

〉
6= 0. (2.18)

This correlation changes the local chain structure and violates the assumptions
made in Section 2.2.1 for the derivation of Eq. 2.12. Locally, the chain appears to
be more stretched out and less flexible. However, on a large scale, i.e., for long
chains, the correlations between more distant bond vectors decay〈

~bi ·~bj
〉

= 0, if |j − i| � 1, (2.19)

and the chain appears to be fully flexible again. Such chains are called semi-flexible
chains.
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a) b)

Figure 2.4: A fully flexible chain has unrestricted bond angles (a), unlike a semi-
flexible chain, where chemical properties may demand a specific bond angle α (b).

It is possible to define a rescaled polymer chain with larger but again independent
segments for every semi-flexible chain. The fixed bond length b is replaced by
the distance between two uncorrelated bonds. This distance is called Kuhn length
bK = nb, where n is the distance between two bonds in which the correlation between
the bond vectors goes to zero. Consequently, the number of such independent Kuhn
segments is NK = N/n. Using bK and NK the scaling behaviour of a semi-flexible
chain can be described analogously to the scaling of flexible chains:

Re = 〈R2
e〉1/2 = bKN

ν
K, (2.20)

and

Rg = 〈R2
g〉1/2 =

bK√
6
Nν

K. (2.21)

A basic mechanical property related to the Kuhn length is the persistence length
lp that measures the stiffness of a polymer chain. Figure 2.5 shows two polymer
chains with different persistence length. The left polymer has very short persistence
length, making it more flexible and allowing it to change directions over relative
short distances. The polymer with a larger persistence length behaves more like a
flexible rod and remains straighter. The fully flexible models presented here describe
chains that are longer than their persistence length and thus resemble more the first
type of polymers.

Similar to the Kuhn length, the persistence length is defined as the length along
the polymer chain after which the correlations between the bond vectors vanish. It
can be shown that the average correlation function decays exponentially with the
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2. Theoretical background on polyelectrolytes in free-solution

Figure 2.5: Two polymers with a different persistence length. The left polymer with
a small persistence length is more flexible and changes direction over relatively short
distances. The right polymer has a much larger persistence length, and therefore
remains straighter.

distance |i− j| between the bond vectors:〈
~bi ·~bj

〉
= b2e−lp/|i−j|. (2.22)

To give a visual impression, a piece of cooked spaghetti has a persistence length
on the order of 10 cm, whereas double-stranded DNA has a persistence length of
about 50 nanometers.

The persistence length is found to be one half the Kuhn length:

lp = bK/2. (2.23)

2.3. Diffusion of polymer chains

The quantities Re and Rg describe the spatial extension of polymer chains in the
solvent medium, but do not characterise their motion through it. Even in an equi-
librium situation in the absence of external forces the polymer chain is not at rest,
but moves through the medium. This non-directed motion is called diffusion and is
caused by thermal fluctuations of the solvent molecules colliding with the polymer,
cf. Brownian motion.

2.3.1. Single-particle diffusion

Let’s first look at a single particle embedded in a solvent. This particle is constantly
subject to random collisons with the the fluid particles moving due to their thermal
energy. Each collision imparts a small momentum to the solute particle, and the
combined effect of all collisions is a macroscopic random motion of the particle, the
Brownian motion or diffusion.

One can characterize the diffusion process analogously to the size of random
polymer chain (cf. 2.2.1). While the first one is a random walk in time, the latter
one is a random walk in space. The end-to-end distance of the polymer is replaced
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2.3. Diffusion of polymer chains

by the mean-square displacement of the diffusing particle, the number of chain
segments by the number of random moves of the particle which is proportional to
the time t.

The equivalent of Equation 2.12 is the used to define the diffusion coefficient, or
diffusivity, D:

〈[~r(t)− ~r(0)]2〉 = 2dDt, (2.24)

where ~r(0) and ~r(t) are the initial and final particle position, and the constant d is
the dimensionality of the random walk, e.g., d = 3 for the purpose of this thesis.

Equation 2.24 can be used to obtain the diffusion coefficient of a particle by
measuring the mean-square-displacement:

D =
〈[~r(t)− ~r(0)]2〉

6t
. (2.25)

Again, the angular brackets 〈. . .〉 denote an averaging over different random walks.
For a single particle, the diffusion coefficient D0 is related to the resistance Γ0

the particle experience from the solvent when it moves through it:

D0 =
kBT

Γ0
, (2.26)

with kB being the Boltzmann constant and T the temperature. This ratio is also
known as Einstein relation. The value of Γ0 mainly depends on the size and the
shape of the particle and on the type of interaction with the solvent. As the inter-
action with the solvent creates a frictional force on the particle, Γ0 is also referred
to as friction coefficient.

Only for very few cases a closed form for the friction coefficient can be given,
e.g., for a sphere with radius R in a homogeneous medium with viscosity η one
obtains the Stokes law :

Γ0 = 6πηR. (2.27)

Combining Stokes law (2.27) with the Einstein relation (2.26) results in a simple
equation for the diffusion coefficient of a spherical particle in a homogeneous solvent,
also known as Stokes-Einstein relation:

D =
kBT

6πηR
. (2.28)

2.3.2. Chain diffusion

Similarly to the single-particle diffusion, one can define the single-chain diffusion of
a polymer chain. As before, the corresponding diffusion coefficient D fulfils Einstein
relation:

D(N) =
kBT

Γ(N)
. (2.29)

Here, both the diffusion and the friction coefficient are functions of the polymer
length N . Again, the functional form of Γ(N) strongly depends on the type of
interactions that are taken into account. The two most important cases for polymer
chains are described in the coming section.
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2. Theoretical background on polyelectrolytes in free-solution

Rouse dynamics

The simplest expression for Γ(N) is obtained when all long-range interactions be-
tween individual monomers are neglected. This regime is called Rouse regime [54].
The hydrodynamic interaction with the solvent is only treated locally, i.e., each
of the N monomers interacts as an independent single particle. Thus, the total
friction coefficient is the sum of the individual friction coefficients:

ΓR(N) =
N∑
i=1

Γi = NΓ0. (2.30)

Substituting Equation 2.30 into Equation 2.29 results in a 1/N -scaling for the
diffusion coefficient of a polymer chain in the Rouse regime:

DRouse(N) =
kBT

Γ0

1
N
. (2.31)

Zimm dynamics

The hydrodynamic interactions between the monomers that are neglected in the
Rouse regime only slowly decay with the distance r between the particles:

fHI(r) ∝ 1/r. (2.32)

The hydrodynamic forces fHI can be neglected for dense polymer melts, but are
important in dilute solutions. In this regime, the polymer follows Zimm dynam-
ics [55].

Every chain monomer displaces the surrounding solvent molecules, effectively
dragging them along when it moves. From the outside, the polymer coil and the
pervaded solvent move as one compact object through the surrounding solvent. The
hydrodynamic radius of such an object formed by a real chain and the solvent is
estimated as in Equation 2.16:

R(N) ≈ bNν . (2.33)

The friction of the total object is given by Stokes law (Eq. 2.27):

ΓZ(N) ≈ 6πηR(N). (2.34)

Using once again Stokes-Einstein relation (Eq. 2.28), the diffusion of a polymer
chain in the Zimm model is obtained:

DZ(N) ≈ kBT

ΓZ(N)
≈ kBT

6πηR(N)
≈ kBT

6πηbNν
. (2.35)

In other words, the diffusion coefficient DZ of a polymer chain is expected to show
a length-dependent scaling with N−ν .
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2.3. Diffusion of polymer chains

R

Figure 2.6: The Zimm model assumes that the moving polymer chain drags along
the surrounding solvent, forming a compact object with radius R that moves
through the medium. The hydrodynamic flow through the polymer is blocked
(schematically displayed by the broken flow lines).

A more detailed analysis is offered by Kirkwood-Zimm theory, which is reviewed
nicely in Reference 56. The hydrodynamic interactions between the chain monomers
are taken into account via the Oseen tensor, yielding the following formula for the
diffusion coefficient originally suggested by Kirkwood and Riseman [57]:

DKZ(N) =
D0

N
+
kBT

6πη

〈
1
Rh

〉
, (2.36)

with D0 being the monomer diffusion coefficient and Rh being the so-called hy-
drodynamic radius defining the effective size of the polymer in the solvent. The
hydrodynamic radius is given by

〈
1
Rh

〉
=

1
N

∑
i6=j

〈
1

‖~ri − ~rj‖

〉
. (2.37)

Here, ~ri the position of the i-th monomer, and ~rcm the center of mass of the poly-
electrolyte chain. The angular brackets 〈. . .〉 indicate an ensemble average.

For large N the average value for Rh is expected to scale with Nν , like the other
measures for the polymer size. Within this limit, the Zimm diffusion DZ and the
Kirkwood-Zimm diffusion DKZ agree up to the monomer diffusion term, which can
be neglected for long chains.

19



2. Theoretical background on polyelectrolytes in free-solution

2.4. Polyelectrolytes

Polyelectrolytes are polymers whose monomers carry an electrolyte group which
dissociates in water, leaving the monomer with an electric charge. Additionally, an
oppositely charged counterion is released into the solvent. The charged nature of
polyelectrolytes plays a fundamental part in determining their dynamic and static
behaviour, which differs from those of their uncharged counterparts.

2.4.1. Chain conformations

The presence of charges along the polyelectrolyte chain causes a repulsion between
the individual monomers, which leads to an intrinsic stiffness of the polyelectrolyte
chain. Even an otherwise fully flexible chain has a non-zero persistence length due
to the electrostatics.

The long-ranged electrostatic interactions influence the static chain properties,
especially the chain conformation. For a polyelectrolyte in (infinite) dilution, ne-
glecting the influence of the counterions (see Section 2.4.2), the size-dependence on
the number of monomers can be estimated as follows.

The Hamiltonian of a polyelectrolyte chain is:

H = H0 +
1
2
kBT

N∑
i=1

∑
j 6=i

lB
|~ri − ~rj |

. (2.38)

Here, H0 is the energy of the neutral polymer chain. The double summation over
all monopairs accounts for the electrostatic interaction energy, with lB being the
Bjerrum length, which characterizes the strength of electrostatic interactions in the
solvent (see Section 2.4.2).

The energy contribution of the neutral polymer, H0, contains all terms describing
the chemical nature of the polymer and short range excluded volume interactions.
In the simplest case of a Gaussian ideal chain, one obtains:

H0 =
3kBT
2b2

N∑
i=1

(~ri+1 − ~ri)2 . (2.39)

The total energy can be express by the so-called Flory free energy of the poly-
electrolyte in dependence of its size R, neglecting all prefactors of the order 1 [58]:

EFlory = kBT

(
R2

Nb2
+
N2lB
R

)
, (2.40)

which after minimalization with resprect to R yields the equilibrium size of the
polyelectrolyte chain

R ∝ N
(
lBb

2
)1/3

. (2.41)
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2.4. Polyelectrolytes

In other words, the electrostatic repulsion between the monomers leads to a
swelling of the polyelectrolyte and to an extended conformation with a scaling
exponent ν = 1, i.e., all static chain properties scale with the number of monomers:

Re,g,h ∝ N1. (2.42)

As a reminder, without charges ν is the Flory exponent, i.e., ν ≈ 0.588.
However, this derivation is only applicable in the absence of electrostatic screening

by the counterions which will be detailed in the following section.

2.4.2. Counterions

After looking at the chain conformations, we now take a look at the counterion
distribution around the polyelectrolyte chains. The dissociated counterions are at-
tracted to the charged polyelectrolyte by long-ranged Coulomb interactions. This
attraction leads to the formation of a typically loosely bound counterion cloud
around the polyelectrolyte. Nevertheless, these counterions strongly influence the
polyelectrolyte conformation and its static and dynamic properties. The major
parts of this thesis are devoted to the in-depth analysis of the complex interaction
between polyelectrolyte and counterions mediated by the electrostatic and hydro-
dynamic interactions.

Counterion condensation

It is observed that strongly charged polyelectrolytes permanently attract some of
the released counterions and effectively reduce their line charge density. This phe-
nomenon was predicted by Onsager and later on described by Manning and Oosawa
under the term counterion condensation [59, 60]. This topic has been discussed from
varying viewpoints (see [61, 62] and the references therein).

The attraction of the counterions is not based on chemical bonding, but can
be explained by the system’s desire to minmize the free energy resulting from a
competition between electrostatic energy and entropy:

∆F = ∆E − kBT∆S (2.43)

The most common derivation, shown in Figure 2.7, uses the electrostatic potential
created by an infinite stiff rod with a line-charge density equal to

λ = e/b, (2.44)

where b is the spacing of the charged monomers of the polyelectrolyte approximated
by the stiff rod.

The electrostatic potential around the rod decays logarithmically with the dis-
tance to the rod, more specifically, the energy difference for a counterion between
an arbitrary point R and a point r, which marks the distance of closest approach
to the rod, is given by:

∆E ∼ e
λ

2πε
ln
R

r
. (2.45)
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2. Theoretical background on polyelectrolytes in free-solution

Figure 2.7: Scheme to motivate the counterion condensation phenomena based
on the competition between electrostatic energy and entropy. The linear rod is
modelled by a series of discrete charges e that have a linear separation of b. The
counterion can move freely around the rod, but only approach it up to a minimal
distance r.

On the other hand, the entropy is proportional to the volume accessible to the
counterion, i.e., a confinement close to the change reduces the entropy:

∆S ∼ ln
VR
Vr

≈ 2 ln
R

r
. (2.46)

Substituting Equations 2.45 and 2.46 into Equation 2.43 yields an approximation
for the free energy of a counterion in dependence on its position R:

∆F ∼
(
lB
b
− 1
)

2kBT ln
R

r
. (2.47)

Consequently, the distribution of counterions around highly charged rodlike poly-
electrolytes can be described in terms of the Manning parameter

ξ = lB/b, (2.48)

where b is the distance between charges along the backbone of the polyelectrolyte,
i.e., the inverse line charge density, and lB is the Bjerrum length

lB =
e20

4πε0εrkBT
, (2.49)

which represents the distance at which two unit charges experience an electrostatic
potential that is equal to the thermal energy kBT . Here, kB is the Boltzmann
constant, and e0 the elementary charge. The Bjerrum length defines the length
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2.4. Polyelectrolytes

scale for electrostatic interactions and depends on the investigated system, e.g., for
water at room temperature lB ≈ 7.1Å.

For ξ < 1, the system is entropy dominated, i.e., the counterions try to maximize
the accessible volume. On the other hand, for ξ > 1, the system is energy domi-
nated, which means that the electrostatic interactions makes it more favourable for
a fraction of counterions to always be in the vicinity of the polyelectrolyte. These
fraction of ions are the so-called condensed counterions.

In this study highly charged polyelectrolytes with ξ > 1 are investigated. The
condensed counterions reduce the effective charge of the created polyelectrolyte-
counterion compound. The theory predicts the fraction of those condensed counte-
rions to be

fCI = 1− 1
ξ
, (2.50)

and thus the total number NCI is

NCI = (1− 1/ξ)N. (2.51)

The counterion condensation has also been investigated by mean-field Poisson-
Boltzmann approaches and, for the systems studied in this thesis, similar results
are obtained [63–65].

2.4.3. Electrostatic screening

The presence of counterions in the vicinity of the polyelectrolyte has an important
effect on it, as the electrostatic interactions between the chain monomers are partly
screened.

To derive an expression for this screening, one can start out with the Poisson
equation defining electrostatics for a system of positive and negative unit charges:

∇2ψ (~r) = −e
ε

(
n(+) (~r)− n(−) (~r)

)
. (2.52)

Here, n(+/−)(~r) is the density of positive and negative charges at position ~r.
The electrochemical potential of each ion is

µ(+/−) = eψ + kBT lnn(+/−), (2.53)

from which one obtains the Boltzmann expression for the densities:

n(+/−) = n
(+/−)
0 e(−/+)eψ/kBT . (2.54)

Combining Equations 2.52 and 2.54 yields the Poisson-Boltzmann equation:

∇2ψ(~r) = −e
ε

(
n

(+)
0 e−eψ/kBT − n

(−)
0 e+eψkBT

)
, (2.55)

and for a simple electrolyte of monovalent salt, where n0 = n
(+)
0 = n

(−)
0 , this can

be rewritten as
∇2ψ(~r) =

2e
ε
n0sinh (eψ/kBT ) . (2.56)
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2. Theoretical background on polyelectrolytes in free-solution

The linearization of the Poisson-Boltzmann equation leads to the Debye-Hückel
approximation:

∇2ψ(~r) = 8πlBn0ψ(~r) = λ−2
D ψ(~r) = κ2ψ(~r), (2.57)

which has an exponential solution for the electrostatic potential:

ψ(~r) = Ae−κr, (2.58)

where κ is called the screening parameter, and λD is called the Debye-Hückel screen-
ing length, or Debye length for short:

κ2 = λ−2
D = 8πlBn0. (2.59)

According to Debye-Hückel theory, the electrostatic interaction energy is reduced
due to the presence of additional neutralizing charges in the solution:

UDH(r) = UCoulomb(r)e−κr. (2.60)

For a solution containing the polyelectrolyte and its counterions, as well as addi-
tional salt, the Debye screening parameter has to be adjusted and depends on the
concentration of the counterions cCI and of the (monovalent) salt cS:

κ2 = 4πlB (cCI + 2cS) . (2.61)

For example, at physiological conditions (inside the human body) the salt con-
centration is cS ≈ 0.1M, which leads to λD ≈ 1nm. In other words, although the
Coulombic interactions are long-ranged, in physiological conditions they are highly
screened above length scales of a few nanometers.

The precise influence of the electrostatic screening on the static and dynamic
properties will be investigated in this thesis (Chapters 4 and 5). Likewise, the
related effect of hydrodynamic screening is the topic of Chapter 6.

Screening and polyelectrolyte conformations

The electrostatic screening effectively neutralises the electrostatic interactions on
long length scales, i.e., long polyelectrolyte chains are expected to show a similar
scaling behaviour as uncharged polymer chains. Thus, the scaling exponent ν will
asymptotically approach the Flory value for uncharged chains. This transition is
faster the higher the electrostatic screening is, i.e., the shorter the Debye length is.

For short polyelectrolyte chains, the influence of electrostatic interactions remains
important. Most importantly, the effective persistence length has two contributions:

lP,eff = lP,0 + lP,ES, (2.62)

where lP,0 is the intrinsic persistence length of the polyelectrolyte and lP,OSF is
the additional contribution due to electrostatic interactions. For a fully flexible
polyelectrolyte lP,0 vanishes, but lP,ES remains finite [66, 67]:

lP,ES =
lB

4b2κ2
. (2.63)
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2.5. Electrophoresis of polyelectrolytes

The effective persistence length lP,eff has to be used when calculating the Kuhn
segments length for a polyelectrolyte in solution.

2.5. Electrophoresis of polyelectrolytes

The charged nature of polyelectrolytes allows their manipulation by electric fields.
During electrophoresis charged particles are moved through a medium by applying
an external electric field. Electrophoresis has many variants and numerous applica-
tions, one of which is the the separation of polyelectrolytes by length. For detailed
reviews on the various current techniques see References 68–71.

2.5.1. Free-solution electrophoresis

- +

E

Detector

L

Figure 2.8: Electrophoresis of polyelectrolytes by capillary free-solution elec-
trophoresis: the polyelectrolytes are driven by an external electric field E and
the detectors measure the time t that is needed to travel along length L inside the
capillary.

The method investigated in detail in this thesis is called capillary electrophoresis,
displayed in Figure 2.8 [28, 32, 72]. The polyelectrolyte is dissolved in an aqueous
solution and driven through a narrow capillary by an external DC electric field with
field strength E. In contrast to the widely used method of gel electrophoresis, no
sieving matrix is used in this technique, which is why it is also named free-solution
electrophoresis. A detector measures the time t the polyelectrolyte needs to travel
the known length L of the capillary.6 From this data the electrophoretic mobility µ

6Usually, UV absorbance or fluorescence detection cells are used.
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2. Theoretical background on polyelectrolytes in free-solution

is calculated:
µ =

L/t

E
=

v

E
. (2.64)

Commonly used silica capillaries have a diameter of 50µm and a detector length of
30 cm, the applied electric field strengths are about 1000 V/cm. As the mobilities
for standard polyelectrolytes such as polystyrene sulfonate (PSS) or DNA are of
the order of 3–4 10−4cm2/Vs, the elution times t for electrophoretic separation are
only a couple of minutes. These short elution times represent the main advantage
of the free-solution electrophoresis over other electrophoretic methods such as the
predominantly used gel electrophoresis.

On the other hand, size separation of polyelectrolytes of different length is only
possible if the mobility itself is a function of length. Unfortunately, this is not
the case for all polyelectrolyte lengths. This is why, nowadays, gel electrophoresis
still is the separation method of choice despite its speed disadvantage. Possible
approaches to size separation without a sieving matrix are discussed in Chapter 8
and also in Ref. 71.

2.5.2. Current theoretical understanding of free-solution electrophoresis

In the scheme of the free-solution electrophoresis of flexible polyelectrolytes shown
in Figure 2.9, one can see that the mobility is a function of length only for short
chains. For long chains a constant value is approached so that separation of longer
macromolecules by electrophoresis is not possible. This limit, called the free drain-
ing regime, is well described by analytical methods [37–39].

Local force picture

When the polyelectrolyte moves at a constant velocity, the system is in a steady
state where the applied electrical force ~FE is exactly balanced by the frictional drag
force ~FD the solvent exerts on the moving polyelectrolyte (see Fig. 2.10).

The electric force is given by

~FE = Qeff
~E, (2.65)

where Qeff is the effective charge of the object. As mentioned in Section 2.4.2, the
bare charge of the polyelectrolyte is reduced by the condensation of counterions.
For long polyelectrolyte chains, Manning’s theory predicts (cf. Equation 2.51):

Qeff = (1/ξ)N. (2.66)

In Chapter 6 this prediction for the long-chain limit will be revisited and several
estimators for the effective charge of the polyelectrolyte-counterion complex will be
introduced and analysed in detail.

The counteracting drag force exerted by the solvent is given in analogy to the
Stokes friction by

~FD = −Γeff~v. (2.67)
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2.5. Electrophoresis of polyelectrolytes

Figure 2.9: Scheme of the dependence of the electrophoretic mobility on the length
of a flexible polyelectrolyte in free solution. Short rod-like oligomers show an
monotonic increase in electrophoretic mobility with chain length. The mobility
approaches a constant for long globular chains in the free draining regime. Between
these two behaviours lies a transition region in which both counterion and hydro-
dynamic effects must be accounted for. This figure is based on experimental results
presented in References 33, 73 and 74.
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Figure 2.10: For a polyelectrolyte traveling at constant velocity v the electrical force
~FE and the solvent drag force ~FD are balanced.
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2. Theoretical background on polyelectrolytes in free-solution

Here, Γeff is the effective friction of the polyelectrolyte. Using the scaling of the
diffusion coefficient of a polymer (Eq. 2.35) and the Einstein relation (Eq. 2.26) one
would obtain

Γeff ∝ Nν , (2.68)

where the scaling exponent ν ≈ 0.6 for long chains. This prediction derived from
asymptotic scaling, however, does not seem to be applicable in the local picture, as
will be shown now.

In the steady state, both forces have to be equal and one obtains:

QeffE = Γeffv, (2.69)

from which immediately follows

µ =
v

E
=
Qeff

Γeff
. (2.70)

This equation, together with the predictions in Equation 2.66 and 2.68, are not in
agreement with the experimental observation of a constant mobility for long chains.

Free-draining picture
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Figure 2.11: During electrophoresis, the polyelectrolyte coil is penetrated by op-
positely charged counterions, thereby canceling out all long-range hydrodynamic
interactions. The polyelectrolyte becomes “free-draining”.

For this reason, prediction 2.68 has been discarded and replaced by a new theory
schematically displayed in Figure 2.11. The polyelectrolyte coil is no longer assumed
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2.6. Model requirements

to travel as a compact spherical object with a given hydrodynamic radius. Instead it
is penetrated by the counterions that, due to their opposite electrical charge, move
into the opposite direction. Thereby, they drag along the surrounding solvent,
allowing it to “drain” through the polyelectrolyte coil. Therefore, this picture is
called the free-draining picture.

The counter-moving ions are assumed to destroy the long-range hydrodynamic
interactions otherwise persistent in the polyelectrolyte coil. The interaction of the
monomer with the solvent becomes a local interaction, much like in the Rouse
regime for polymers (Section 2.3.2). The associated effective friction coefficient for
long chains is estimated to be linearly dependent on the chain length

Γeff = ΓN, (2.71)

which explains the constant mobility for long polyelectrolyte chains.
In Chapter 6, the effective friction of polyelectrolytes will be analysed in detail

on the basis of the simulations of this thesis.

2.5.3. Short chain behaviour

The behaviour of short chains, exhibiting not only length dependence but a non-
monotonic behaviour in the transition from oligomers to long flexible chains, is not
adequately described by current theoretical approaches. To some extent this can
be attributed to the simplifying assumptions made in those models regarding the
interplay of the various interactions: the Coulomb interaction between the charged
polyelectrolyte monomers and its counterions, the external electric field likewise
acting on the charges, and the hydrodynamic interactions with the solvent.

To provide a fundamental understanding of the involved dynamics, the effects of
these forces will be studied on a microscopic level, thereby taking into account full
electrostatic as well as hydrodynamic interactions. By switching the hydrodynamic
interactions “on” and “off” in different simulations, their role can be assessed in
detail.

This thesis is dedicated to the in-depth study of this interesting aspect of soft
matter physics.

2.6. Model requirements

Knowing the theoretical framework, the following model requirements can be for-
mulated:

• Polyelectrolyte chains consists of charged monomers that are flexibly linked
together by bonds;

• The solvation of polyelectrolytes releases oppositely charged counterions into
the solvent that interact with the polyelectrolyte;
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2. Theoretical background on polyelectrolytes in free-solution

• Without external forces, polyelectrolytes and ions diffuse freely through the
system following the main conservation laws for momentum and energy;

• Electrostatic interactions between all charged particles in the system, includ-
ing additional salt ions, have to be accounted for;

• All particles interact with the fluid and with each other via long-range hydro-
dynamic interactions.

In the following chapter, these requirements are translated to a coarse-grained
polyelectrolyte model.
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3. A coarse-grained model for
polyelectrolytes

This chapter outlines the mesoscale simulation model employed to describe the
behaviour of polyelectrolytes during free-solution electrophoresis. In order to be
capable of dealing with experimentally relevant length scales, physical and chemical
details have to be abstracted without loosing focus on the important interplay of the
relevant interactions. This work uses a coarse-grained molecular dynamics model
to simulate the polyelectrolytes and surrounding ions. Furthermore, it emphasises
the importance of the electrostatic interaction and the hydrodynamic interaction
within a solvent by accounting for them explicitly on a mesoscopic level.

3.1. On physical and computational complexity

The accuracy with which a certain physical system is described is directly related
to the complexity of the chosen theoretical model. The inclusion of further rel-
evant features usually leads to a better agreement between model and real-world
process.1 On the other hand, each additional detail to be modelled increases the
computational complexity and thus limits the system size that can be studied by
the chosen method. This trade-off between accuracy and complexity is clearly seen
in Figure 3.1.

The best model for a given problem includes all relevant physical processes to be
as accurate as possible, but neglects non-relevant properties to be computational
efficient. The differentiation between relevant and non-relevant properties is the
stumbling block in developing of a realistic model.

In Section 2.6, it was pointed out that a realistic description of polyelectrolyte
electrophoresis demands for taking into account the nature of discrete charges flex-
ibly connected by the polyelectrolyte backbone, the electrostatic interactions with
the freely moving counterions, and full hydrodynamic interactions with the sur-
rounding solvent. This rules out continuum approaches as well as Brownian dy-
namics simulations, in which the solvent is only treated implicitly. For a good
approximation, quantum mechanical and chemical details can safely be neglected.
The system size requirements render fully atomistic molecular dynamic approaches
infeasible, so that a mesoscopic approach is chosen in which the atomistic degrees
of freedom of solute and solvent are coarse-grained as shown in Figure 3.2. The

1However, not all physical interactions are relevant on all length-scales, i.e., the model for a
moving car can usually just do fine without quantum mechanics or electrostatics.
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Figure 3.1: Increasing detail in the computational model increases the accuracy of
the description but, at the same time, limits the system size tractable with available
computation power.

Figure 3.2: Example of the coarse-graining procedure used in this thesis: The
chemical details of the monomer, in this example sulfonated polystyrene, are sum-
marised by a single particle, carrying the electric charge, and the connectivity of
the polyelectrolyte molecule is reflected in the links between the charged particles.

32



3.2. The model at a glance

chemical details of the monomer, in this example sulfonated polystyrene, are sum-
marised by a single particle, carrying the electric charge, and the connectivity of
the polyelectrolyte molecule is reflected in the links between the charged particles.
In the following sections, this coarse-grained model will be described in detail.

3.2. The model at a glance
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Figure 3.3: Scheme of the coarse-grained model to simulate polyelectrolyte elec-
trophoresis. It is comprised of a bead-spring model for the polyelectrolyte and
the counterions (Section 3.3), the handling of full electrostatic interactions within
a dielectric continuum model (Section 3.4), and the treatment of hydrodynamic
interactions with a mesoscopic fluid (Section 3.5).

The model features can be represented by the scheme in Figure 3.3. The poly-
electrolyte is modelled by a set of inpenetrable spheres, each of which represents a
individual monomers, and that are connected to each other by springs. Likewise
the dissociated counterions are modelled as inpenetrable spheres. In this repre-
sentation, atomistic degrees of freedom are combined into the microscopic degrees
of freedom of the spheres. This approach is called coarse-grained molecular dy-
namics (Section 3.3). Monomers and ions carry electric charges by which they
interact. The electrostatic interactions are influenced by the dielectric nature of
the surrounding solvent. As the solvent particles are not explicitly included, a con-
tinuum model is used to allow for full electrostatics (Section 3.4). For the same
reason, hydrodynamic interactions between the solute particles and the solvent are
not described on a particle level. Instead a mesoscopic fluid model is applied that
restores hydrodynamic interactions without having to track individual solvent par-
ticles (Section 3.5). All interactions are calculated in a periodic simulation box to
recover bulk behaviour.
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3. A coarse-grained model for polyelectrolytes

See Section 3.6 for an exhaustive list of parameters used to adapt this model to
the physical systems studied in this work.

3.3. Coarse-grained molecular dynamics

The basic idea of (coarse-grained) molecular dynamics is straightforward and de-
scribed in detail in standard text books on simulation methods, such as [75, 76].
Only the central aspects relevant to this work are reviewed in the following section.

3.3.1. Interaction potentials

All particles interact with one another via potentials that describe their physical
nature.

The polyelectrolyte is comprised of N particles representing the individual mono-
mers. A truncated, purely repulsive, Lennard-Jones or Weeks-Chandler-Anderson
potential [77]

UWCA(rij) =

4εij

[(
σij

rij

)12
−
(
σij

rij

)6
+ 1

4

]
for rij < rcut

0 for rij ≥ rcut

(3.1)

is acting between all particles in the system determining their size. Here, rij is the
distance between two interacting particles i and j, σij sets the length scale, and εij
the energy scale of the interaction. The physical particle size is directly related to
the parameter σij , which is therefore also seen as the effective size of the particles.
In this study, the cutoff rcut = 6

√
2σij ensures a purely soft repulsive interaction.

The N monomers are connected to a chain by finitely extensible nonlinear elastic
(FENE) bonds [78]

UFENE(rij) =
1
2
kR2 ln

(
1−

(rij
R

)2
)
, (3.2)

with stiffness k, maximum extension R, and rij again being the distance between
the interacting monomers.

Together, these two potentials create a fully flexible self-avoiding polymer com-
posed by N units. Stiff polymers with higher persistence length are modelled by
including a bond angle potential

UBA(φ) =
K

2
(φ− φ0)2, (3.3)

where the angle φ created by three connected particles is harmonically restored to
the equilibrium angle φ0 via an elastic constant K.

Unbound ions interact via a WCA potential, Eq. 3.1, that defines their physical
size.
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3.4. Continuum electrostatics

3.3.2. Velocity Verlet integration scheme

By taking the derivative of the potentials one obtains the forces between the par-
ticles. The sum of all the forces ~FT acting on a single particle from the interaction
with the other particles and from external sources is calculated. Specifically, the
contributions from electrostatic (Section 3.4) and hydrodynamic interactions (Sec-
tion 3.5) are added to the total force ~FT prior to the integration of Newton’s equa-
tion of motion:

~FT = m~a. (3.4)

Here, the velocity Verlet scheme is used to integrate Equation 3.4 and determine
the particles’ movement [79]. The time is discretised with a time step ∆t and the
following equations are used to update the particles’ positions and velocities:

~r(t+ ∆t) = ~r(t) + ~v(t)∆t+
1
2
~a(t)∆t2 (3.5)

~v(t+ ∆t) = ~v(t) +
1
2

[~a(t) + ~a(t+ ∆t)] (3.6)

The velocity Verlet algorithm is time-reversible and, more importantly, it con-
serves the size of any volume element in phase space. Also, it was shown that the
algorithm shows no long time energy drift, which is especially important for simu-
lating constant energy ensembles. Finally, the formulation in Equation 3.5 and 3.6
is exact up to O(∆t4) in the positions and O(∆t3) in the velocities.

Note that in the presented formulation all particles have the same unit mass,
m = 1, which allows use of reduced forces. This is done without loss of generaltiy,
as, due to Newton’s third law of action and reaction, the mass term cancels out if
all particles have the same mass.

3.4. Continuum electrostatics

All particles in the system, i.e., all N monomers and all ions, carry an electrical
charge qi that creates a non-bonded long-range interaction given by the Coulombic
potential

UC(rij) =
1

4πε0
qiqj
εrrij

. (3.7)

Here, qi and qj are the effective charges on each particle, ε0 is the permittivity
of free space, and εr is the dielectric constant of the medium. When an explicit
polar solvent is used, including εr is not necessary. However, for simulations with
either implicit or non-polar solvent models, as the ones used in this study, εr is an
effective dielectric constant that includes the screening effects due to the medium
(e.g., εr = 80 for water).

When the system is simulated at a certain temperature T by using a thermostat
(see Section 3.5.1), Equation 3.7 is commonly reformulated as

1
kBT

UC(rij) = lB
q̂iq̂j
rij

, (3.8)
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3. A coarse-grained model for polyelectrolytes

using the Bjerrum length lB as defined by Equation 2.49.

3.4.1. Electrostatics in periodic boundary conditions

In this study, as well as in many others, periodic boundary conditions are used to
approach bulk system behaviour within the limit of currently available computer
systems. The main simulation cell is extended infinetly in all dimensions via copies
of itself. In this way, it can be avoided that particles which are close to the boundary
of the simulation cell, “feel” a different environment than particles in the center of
the cell.

Unfortunately, the calculation of the electrostatic interaction is complicated by
the periodic boundary conditions as not only the contribution of the real charges
but also of the periodicly repeated images has to be taken into account. Therefore,
equation 3.7 has to be rewritten as follows:

UC,PBC(~r) =
1

4πε
1
2

N∑
i=1

N∑
j=1

∑
~n∈Z3

† qiqj
|~rij + ~nL|

, (3.9)

where ~rij = ~ri − ~rj , the difference between the position of the charges. The sum
over ~n is taken over all simple cubic lattice points, ~n = (nxL, nyL, nzL) with nx,
ny, and nz being integers. The † indicates that the i = j term must by omitted for
~n = 0 to avoid to take into account the interaction of a particle with itself.2

The use of Eq. 3.9 in order to compute electrostatic interactions is known as direct
sum method, which, although simple to implement, suffers from a major drawback:
the sum over ~n is an infinite series. This entails that when we want to evaluate the
sum numerically we must perform a cutoff, i.e., we assume that the contributions
arising from larger ~n values can be neglected. Unlike the WCA interaction (Eq. 3.1),
which is extremely short ranged, the Coulombic interaction is long ranged and only
decays very slowly (∝ 1

r ). While a cutoff value is appropriate in one dimension [75],
the long-ranged contributions are important in two or three dimensions and a too
low cutoff value incurs large numerical errors. For this reason, inclusion of electro-
static effects can be computationally expensive and many sophisticated techniques
have been developed to address this particular problem (see [80] and the references
therein).

3.4.2. Ewald sum

The electrostatic force in a periodic system can be more efficiently calculated using
an Ewald sum, which involves calculating the short range interactions in real space
and the long range contributions in Fourier space [81, 82].

2Equation 3.9 is only conditionally convergent in 3D. In other words, the value of the sum is
not well defined unless one specifies the way we are going to sum up the terms (spheric, cubic,
cylindric, etc.).
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3.4. Continuum electrostatics

The algorithm is based on splitting the slowly convergent equation 3.9 into two
series which can be computed much faster at a given accuracy by expressing 1/r as

1
r

=
f(r)
r

− 1− f(r)
r

. (3.10)

An usual choice is f(r) = erfc(αr), where α is called the Ewald splitting parame-
ter, which result in the Ewald formula for the energy of the main cell

U = U (r) + U (k) + U (self) + U (dipolar) (3.11)

where U (r) is called the real space contribution, U (k) is the reciprocal space contri-
bution, U (self) is the self-energy, and U (dipolar) accounts for the dipolar correction.

In the case of performing a spherical sum over the lattice vectors ~n, the expres-
sions for these contributions are given by

U (r) =
1
2

N∑
i

N∑
j

∑
~n∈Z3

†
qiqj

erfc(α|~rij + ~nL|)
|~rij + ~nL|

(3.12)

U (k) =
1

2L3

∑
~k∈K3,~k 6=0

4π
k2

exp (−k2/4α2)
N∑
i

N∑
j

qiqj exp(−i~k · ~rij)(3.13)

U (self) = − α√
π

N∑
i

q2i (3.14)

U (dipolar) =
2π

(1 + 2ε)L3

(
N∑
i

qiri

)2

(3.15)

where K3 = {2π~n/L : ~n ∈ Z3}.
In practice the sums for U (r) and U (k) are evaluated performing cutoffs given by

rcut and kcut. Typical implementations, as the one we are going to use, assume the
minimum image convention, i.e., , rcut < L/2 and therefore ~n = 0 in the expression
for U (r).

The advantage of the Ewald sum is two-fold. On the one hand, the convergence
of Equations 3.12 and 3.13 is faster than the Equation 3.9 making it possible to
define a more efficient cutoff for a given accuracy. On the other hand, it is possible
to derive exact estimates for the error incurred by applying a certain cutoff.

3.4.3. Fast calculation of electrostatics

Although the Ewald sum method represents a substantial improvement with respect
to the direct sum, in many cases it is not as fast as one would desire. This drawback
is specially notorious when we are dealing with systems containing a large number
of charged particles and is mainly due to the fact that the computer time in Ewald
sums scales with the number of particles as O(N2), or in the best versions as
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3. A coarse-grained model for polyelectrolytes

O(N3/2). These scalings entail that the computer time grows very quickly with the
number of particles.

The approach is efficiently sped up by the use of fast Fourier transformation
(FFT) in commonly used algorithms: the so-called particle-particle-particle mesh
(P3M) [83, 84], particle mesh Ewald (PME) [85], and smooth PME (SPME) [86]
methods. See [87] for a review of the individual methods and a detailed compari-
son. Further interesting approaches to solve this problem are the (fast) multipole
methods [88] and the local reaction field (LRF) method [89].

In this study, the P3M algorithm is used that scales like O (Nlog(N)) ∼ O(N).
Deserno et al. [90] derived error estimates that predict the achieved accuracy of
the method based on the parameters chosen. This error estimates are used in an
automated tuning routine that checks all parameter combinations that yield the
desired accuracy α for the given system and selects the set that uses the least
computation time.

3.5. Modelling the fluid

The potentials defined in Section 3.3.1 neglect any influence of the solvent in which
the polyelectrolyte and the ions move. In the previous section, the dielectric con-
stant εr was introduced to account for the polar characteristics of the solvent. In the
following section, we will look at other system properties related to the immersion in
a fluid and describe their realisation in simulations. Firstly, the thermalising prop-
erties of an implicit fluid are considered (Section 3.5.1), secondly, the mesoscopic
fluid model is introduced, which is used in this study to account for long-range
hydrodynamic interactions between the particles in solution (Section 3.5.2).

3.5.1. Implicit fluid model

In general, a fluid has two main effects on the solute: i) a frictional force opposing
the particles’ motion and ii) random kicks arising from collision with the individual
solvent molecules. The later phenomenon is known as Brownian motion. Whereas
the friction with the solvent dissipates energy from the particles, the kicks add
energy to them.

A simple model that treats the fluid interactions implicitly is the Langevin ther-
mostat [91]. Here, a modified version of the equation of motion (Eq. 3.4) is used,
that contains two additional forces, a dissipative and a random one:

~FT + ~FD + ~FR = m~a. (3.16)

The dissipative force is defined similarly to the Stokes’ friction an object immersed
in a fluid experiences:

~FD = −Γ0~vi, (3.17)

with ~vi being the particle velocity and Γ0 the appropriately chosen friction coeffi-
cient. For example, for a sphere with radius R in a medium with viscosity η the
friction coefficient would be equal to Γ0 = 6πηR.
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3.5. Modelling the fluid

The random force
~FR = ~ζi(t) (3.18)

is taken as a Gaussian random variable ~ζi(t) with

〈~ζi(t)〉 = 0 and 〈~ζi(t) · ~ζj(t′)〉 = 6Γ0kBTδijδ(t− t′), (3.19)

i.e., it is not correlated between the particles or in time.
The random noise defined in this way acts as heat bath that keeps the simulated

system at a constant temperature T . Note that the variance of the random noise
is correlated to the friction coefficient Γ0 in order to fulfil fluctuation-dissipation
theorem [92].

Both forces of the Langevin thermostat, ~FD and ~FR, are included in the the total
force acting on each particle, ~FT, in the integration of Equation 3.4. As a technical
point, it is to be remarked that the combination of the Langevin thermostat with
the velocity Verlet integration introduces an error of order O(∆t) in the forces, and
so the total error in the velocities and the positions are of order O(∆t2) and O(∆t3)
respectively [93].

As the random noise is not correlated between particles (see Eq. 3.19), the relative
momentum between solute particles is not conserved. This leads to a cancellation
of all long-range hydrodynamic interactions mediated by the fluid. As such, one
has to use another fluid model to study hydrodynamic effects on polyelectrolytes.

3.5.2. Mesoscopic fluid models

An alternative approach to include hydrodynamic interactions is to model an ex-
plicit fluid where fluid particles are interacting via a WCA potential (Eq. 3.1).
This conceptually obvious approach is easy to implement and preserves long-range
hydrodynamic interactions. In practise, however, as the trajectory of every fluid
particle has to be calculated explicitly, much computing time is spent on details of
the fluid which are often not of interest. For this reason, several modelling tech-
niques to maintain the hydrodynamic interactions within the fluid while neglecting
the costly computational details of the fluid motion have been developed. The de-
scription of the hydrodynamic effects in these approaches lies in between the use of
an explicit description of fluid molecules and the solution to the continuous Navier-
Stokes equations (Eq. 2.1). In particular, a clever use of conservation laws allows
these methods to employ local algorithms to recover the solution to the hydrody-
namic equations in the large-scale/long-time limit, bypassing at the same time the
molecular detail of the fluid and thus reducing dramatically the computational cost
of the simulation.

Nowadays, the most commonly used methods are Multiparticle Collision Dynam-
ics (MPC) – also called Stochastic Rotation Dynamics (SRD) – [94–100], Dissipa-
tive Particle Dynamics (DPD) [101–105], and Lattice Boltzmann (LB) [106–110].
There are several recent publications reviewing the different mesoscopic fluid mod-
els: [111–113].
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3. A coarse-grained model for polyelectrolytes

Comparison of mesoscopic fluid models

All of the above methods use a simple (but sufficient) model to describe fluid dy-
namics, and can also act as thermostats that define the local temperature when
coupled to MD particles. As such, they are well suited to study the polyelectrolyte
electrophoresis as they can dissipate the energy transferred to the system by the
applied electric field.

Due to their conceptual differences, these methods use different types of pa-
rameters to describe the fluid, which results in a different suitability for specific
problems. For example, while the fluid viscosity is directly accessible in LB meth-
ods, it becomes a combination of different parameters and can only be controlled
indirectly in DPD [114, 115]. Similarly, while DPD and LB can only approximate
the continuous-time dynamics of the fluid when the discrete time step is small,
SRD is proven to yield correct long-time hydrodynamic interactions for any step
size. However, SRD’s transport properties depend explicitly on the chosen time
step [116]. More differences between the methods arise if confined fluids or in-
teractions with large obstacles or particles are studied. Here, the ability to treat
different boundary conditions becomes important, which is covered in detail in the
literature [95, 96, 117–121].

All three methods share a similar computational efficiency, and computation
times depend mainly on the implementation, on the computer system, and also on
the investigated system. However, the speedup over explicit fluid simulations can
be a factor 20 or higher [122, 123].

This study uses the Lattice Boltzmann method that is briefly reviewed in the
following section.

3.5.3. The Lattice Boltzmann method

The Lattice Boltzmann (LB) method is based on a solution of the discretised Boltz-
mann transport equation, which by means of a Chapman-Enskog expansion leads
to the Navier-Stokes equation (Eq. 2.1) in the incompressible limit [107, 110].

The main quantities in the LB approach are the particle densities ni(~r, t) at
each point ~r on a spatially discrete grid at time t, rather than the fluid particles
in the volume. It is an inherently statistical approach, where discrete velocities
~ci(a/τ)(i = 1, . . . , b) are associated to the particle densities ni(~r, t), with a being
the grid spacing, τ the time step of the discretisation, and the ~ci vectors pointing
towards the ith of b next neighbours on the grid. Each of the ni(~r, t) can be
interpreted as the fraction of fluid that will move with the i-th discretised velocity
at time t and position ~r.

In this study the LB method was implemented on a D3Q18 lattice, i.e., the parti-
cle distributions with velocity vectors ~ci pointing to the the 18th nearest neighbours
on a cubic lattice in three dimensions are considered as illustrated in Figure 3.4.3

3The system described in Chapter 7 was also used to test a newer implementation using a D3Q19
lattice. No differences have been observed.
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Figure 3.4: The 18 velocity vectors ~ci for a D3Q18 lattice. From the central grid
point, the velocity vectors point towards all 18 nearest neighbours marked by filled
circles.

The particle densities ni(~r, t) define the hydrodynamic quantities of interest, the
mass density ρ(~r, t), the fluid momentum ~j(~r, t), and the fluid velocity ~u(~r, t), as
given by the following equations:

ρ(~r, t) =
∑
i

ni(~r, t) (3.20)

~j(~r, t) =
∑
i

ni(~r, t)~ci (3.21)

~u(~r, t) = ~j(~r, t)/ρ(~r, t). (3.22)

The LB method consists of two steps, a collision step and a streaming step.
During the collision step the particle densities at each lattice site are updated. In
the streaming step, the updated particle densities are propagated over the grid
according to the associated velocity vectors.

The evolution of ni(~r, t) in the collision step is described by the lattice Boltzmann
equation:

ni(~r + ~cia, t+ τ) = ni(~r, t) +
b∑

j=1

Lij(nj(~r, t)− neqi (ρ, ~u)), (3.23)

where the last term expresses the relaxation towards a local pseudo-equilibrium.
The discretised Boltzmann equation provides a generic description for the time evo-
lution of the particle densities, but there is freedom in the choice for the actual form
of the collision integral Lij . A common formulation is the Bhatnagar-Gross-Krook

41



3. A coarse-grained model for polyelectrolytes

approximation [124] with a diagonal Lii = τ/τr, where τr is a phenomenological re-
laxation time. It prescribes the timescale for the relaxation towards the equilibrium
density neqi (ρ, ~u), which can be written as

neqi (ρ, ~u) = ρaci
(

1 +
~u · ~ci
c2s

+
(~u · ~ci)2

2c4s
− u2

2c2s

)
(3.24)

with cs being the speed of sound.
However, in this study, following [108, 122], a general form for Lij was used, where

the matrix structure is derived from physical and numerical arguments. This entails
a local pseudo-equilibrium density distribution neqi (ρ, ~u) of the following functional
form:

neqi (ρ, ~u) = ρ(Aq +Bq(~ci · ~u) + Cqu
2 +Dq(~ci · ~u)2). (3.25)

The coefficients Aq, Bq, Cq, andDq depend on the chosen lattice and are determined
in order to recover correct macroscopic hydrodynamic behaviour. One can show via
Chapman-Enskog expansion4 that this model leads to the Navier-Stokes equations
in the limit of small Knudsen and Mach numbers. From this, the relation between
the non-trivial eigenvalue λ of Lij and the kinematic viscosity ν follows:

ν = −1
6

(
2
λ

+ 1
)
a2

τ
, (3.26)

which can be used to specify the viscosity as an explicit input parameter for the
LB method.

In order to thermalise the fluid under electrophoretic conditions, a stochastic
term

n′i(~r, t) = −Dq

∑
αβ

σ′αβciαciβ (3.27)

fulfilling fluctuation-dissipation relation is added to the lattice Boltzmann equa-
tion (3.23) [108]. It has recently been shown that this noise has to be applied
to all non-conserved modes of the collision operator to prevent poor thermalisa-
tion on smaller length scales, and not only to the elements of the viscous stress
tensor [125, 126].

Coupling LB to coarse-grained molecular dynamics

On the length and time scales important in polyelectrolyte electrophoresis, the phys-
ical observables do not depend on the microscopic details of the coupling between
the LB fluid and the coarse-grained molecular dynamics particles, as long as it is
assured that the hydrodynamic interactions within the fluid evolve on time scales

4The Chapman-Enskog expansion is essentially an asymptotic analysis in time and space with
t1 = εt and r1 = εr followed by a Taylor expansion of ni to second order in ε. Using that
the conservation laws for mass and momentum must hold at every order in ε together with the
substitution of the expansion of ni into the Boltzmann equation 3.23 leads to the hydrodynamic
equations when collecting terms in orders of ε.
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faster than the diffusion time scale of the monomers. Therefore, it is not necessary
to resolve the shape of the particles for the fluid, but they can instead be treated
as point particles. This approach was originally suggested by Ahlrichs et al. [122].

v(t)

u(1,t) u(2,t)

u(3,t) u(4,t)

u(r,t)

Figure 3.5: The coupling scheme between fluid and particles is based on the inter-
polation of the fluid velocity ~u from the grid nodes marking the cell the particle is
in to the actual position ~r of the particle. This is done by linear interpolation. The
difference between the actual particle velocity ~v(t) and the interpolated velocity
~u(~r, t) is used in the momentum exchange of Equations 3.28 and 3.29.

In analogy to the Stokes friction for a sphere in viscous fluid, cf. Section 3.5.1,
the force on a particle exerted by the fluid is assumed to be proportional to the
difference between the monomer velocity ~v and the fluid velocity ~u at the monomer’s
position

~FD = −Γbare (~v(t)− ~u(~r, t)) . (3.28)

Here, the friction coefficient Γbare determines the strength of the interaction between
fluid and particles. In order to conserve total momentum of fluid and monomers,
the opposite force has to be assigned to the fluid in the particles’ cell fulfilling

− ~FD/a
3 =

∆~j
∆t

=
∑
i

∆ni(~r, t)~ci
ρ

a2τ∆t
. (3.29)

As the fluid velocity ~u is only defined at the grid sites, ~u(~r, t) has to be interpolated
to the particle position. This is done by a simple linear interpolation with the
neighbouring grid nodes, as indicated in Figure 3.5.

Additionally to the dissipative coupling, a stochastic random force is added to
model the thermalising properties of the fluid:

~FR = ~ζi(t). (3.30)
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As for the implicit fluid model, cf. Section 3.5.1, ~ζi(t) has to fulfill the following
equations:

〈~ζi(t)〉 = 0 and 〈~ζi(t) · ~ζj(t′)〉 = 6ΓbarekBTδijδ(t− t′). (3.31)

Again, the added momentum has to be transferred to the fluid following Eq. 3.29.
Both ~FD and ~FR are added to the total force ~FT before integrating Eq. 3.4 for

the particles. At the same time, the fluid is updated according to the LB method.
The momentum exchange between particles and fluid correctly reproduces long-
range hydrodynamic interactions at relatively low computation costs compared to
an explicit fluid. In fact, as mentioned before, it has been shown that the relative
speedup can be a factor 20 or higher [122, 123].

Technical remarks on LB

The implementation used in this study allows to specify the fluid and the coupling
via five parameters:

• the average fluid mass density ρ,

• the kinematic viscosity ν,

• the grid spacing a,

• the time step τ used for the fluid evolution,

• and the coupling parameter Γbare.

Whereas the first two parameters define the physical properties of the fluid, and the
following two parameters detail the numerical discretisation, the coupling parameter
has no predefined meaning. However, it can be related to the single particle friction
coefficient Γ0 of the implicit fluid model (Section 3.5.1) via

1
Γ0

=
1

Γbare
+

1
gνρa

, (3.32)

where g is numeric constant depending on the details of the lattice geometry and
of the averaging procedure. Here, g ≈ 25.

As the value of Γbare is a priori not defined by the physical nature of the problem,
it was chosen in such a way that the single particle diffusion coefficient D0 (Sec-
tion 2.3.1) within the LB fluid corresponds to that obtained in simulations using
an explicit fluid consisting of soft WCA spheres [56].

Finally, it remains to be pointed out that the parameters specifying the length and
time scales of the molecular dynamics simulation, σij and ∆t, and of the LB fluid, a
and τ , can be chosen independently of one another. However, as the grid spacing a
defines the length scale on which hydrodynamic interactions are correctly resolved,
it should be similar or smaller than σij . On the other hand, one can confirm easily
that τ can be chosen up to 5-times larger than ∆t without a significant loss in
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accuracy for the systems investigated in this work. As the updating of fluid is the
most time-consuming step during simulation, this provides a significant speed-up
in computation time.

3.6. System parameters

The generic model for polyelectrolytes in solution outlined above can be specialised
to match the physical properties of a target system via the parameters listed in
Table 3.1.

Unless indicated, all simulation parameters are given in reduced units in the
energy scale kBT , the mass scale m0 and the relevant length scale σ0 that is used
to match the model to a specific polyelectrolyte. If not specified differently in the
following chapters, the values indicated in this table were used throughout this
study.

Note that the size L of the periodic simulation box is indirectly defined by the
total number of polyelectrolyte monomers in the system and their concentration.
In this way the properties of chains of different length N can be compared at
the same monomer concentration cM since this is the situation encountered in the
experiments.

3.6.1. Data sampling

In order to obtain data with a sufficient accuracy, all averaging has to be done over
large enough sample sizes. In order to reduce statistical errors but at the same time
keeping the computational effort at a minimum, several approaches are combined
in this study.

The focus of this study are equilibrium properties. To ensure that the system
has relaxed from the random initial position to the equilibrium, a sufficient number
of equilibration time steps (ET) are executed before the sampling process begins.
It has been identified, that 106 MD steps are guaranteeing a well relaxed system
state.

To eliminate possible finite size effects, the number of chains of the same length,
nc, is varied from 1 to 8. In the latter case, 8 chains (and the associated counterions)
are simulated at the same time in a box with a doubled box length to keep the
monomer concentration at the chosen value. In addition to reducing the finite size
effects, this approach also increases the sample size available for averaging.

The data is sampled from trajectories of 107 sampling time steps (ST). To increase
the number of statistically independent samples, up to 10 separate runs for the same
parameter set are simulated and combined during the averaging procedure.

The obtained time-series are analysed using auto-correlation functions to estimate
the statistical errors as detailed in Reference 127.
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Description Used values
General N length of the PE in monomers 1 . . . 256

nc number of chains 1 or 8
cM concentration of the PE monomers 1 . . . 100mM
cCI concentration of the counterions 1 . . . 100mM
cS concentration of additional salt 0 . . . 1M
σ0 length scale of the system 2.5 . . . 4.2Å
kBT energy scale of the system 1.0
m0 mass scale of the system 1.0

Interaction σij length scale of the WCA potential 1.0
potentials εij energy scale of the WCA potential 0.25
(Section 3.3.1) k spring constant for the FENE springs 30.0

connecting the PE monomers
R maximal extension of the FENE springs 1.5
K harmonic constant of the bond potential 0 . . . 30.0

to increase the persistence length
φ0 equilibrium angle of the bond potential 0◦

∆t time step for the integration of motion 0.01
Electrostatics qi charges of the particles 1.0
(Section 3.4) lB Bjerrum length (≈ 7.1Å/σ0) 1.7 . . . 3.4

α accuracy requirement for electrostatics 1e−4

Hydro- ρ density of the mesoscopic LB fluid 0.864
dynamics ν kinematic viscosity 3.0
(Section 3.5) a grid spacing of the lattice 1.0

Γbare coupling constant for the particles 20.0
τ time step for the update of the fluid 0.01 . . . 0.05

Sampling ET equilibration time steps 106

(Section 3.6.1) ST sampling time steps 107

IS independent sample runs up to 10

Table 3.1: Summary of the parameters employed to adapt the generic polyelec-
trolyte model to a specific system, including the range of values used in this study.
Parameters without physical units are specified in reduced units.
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3.6. System parameters

3.6.2. Mapping between reduced and real-world units

The mapping between reduced simulation units and real-world units often is a source
of confusion for people not familiar with coarse-grained simulation techniques. The
following three questions and their answers explain the most significant relations.

What is the real-world temperature of the system?

As specified in Table 3.1 the system is simulated at a thermal energy of kBT =
1.0. But this only defines the energy scale and not a real-world temperature. For
all purposes of this study, the temperature is chosen to be room temperature,
i.e., 300K. As the interaction potentials between the particles are artificial, no real
world matching exists for these parameters and it is sufficient to express them in
multiples of the thermal energy kBT , distinguishing between easily excitable and
hard excitable modes.

What is the size of the polyelectrolyte monomers?

The relative sizes of all particles are given by the interaction potentials. We find
the average distance between two neighbouring chain monomers in this model to
be approximately 0.9, whereas the distance of closest approach between two not
connected monomers is 1.0. The length-scale σ0 relates the system dimensions to
the real-world. e.g., for modelling polystyrene sulfonate (PSS) with a monomer
distance of 2.5Å in real-world units σ0 is chosen to be 2.78Å.

The parameter σ0 is furthermore important in mapping the particle densities
in the simulation box to the concentrations cM, cCI and cS, as well as for the
electrostatic interactions by entering the rescaled Bjerrum length lB = 7.1Å/σ0.

How large is the applied electric field?

Physical quantities with non-trivial dependence on the system parameter can be
transformed from reduced units to real-world units and back by dimensional anal-
ysis. As an example, we look at the electric field strength Ê of an external field
applied during electrophoresis5. The field strength is measured in V/m:[

Ê
]

=
V
m

=
VC
mC

=
J

mC
. (3.33)

From this it becomes apparent that the electric field can be expressed in units
of energy (J), distance (m) and charge (C). When using reduced units, i.e., all
scales are represented in terms of the corresponding parameter, just a dimensionless
electric field E remains:

Ê = E
kBT

σ0e0
. (3.34)

5Here, the hat denotes real-world units.
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3. A coarse-grained model for polyelectrolytes

The conversion factor can be calculated by substituting the real-world values for
the simulated system, e.g., for T = 300K, σ0 = 2.78Å, and e0 = 1.6 · 10−19C:

Ê ≈ E · 108V/m. (3.35)

Commonly used fields in electrophoresis are of the order of 1 kV/cm or 105V/m
corresponding to a simulation field of E = 0.001.

3.7. Implementation

The model was implemented and simulated using the ESPResSo software package
[128], which was specifically designed with the flexibility in mind to be applicable
to different soft matter systems. Details about ESPResSo and the implementation
can be found in the program’s documentation and on the corresponding website6.

In ESPResSo every system to be simulated is defined by a script using predefined
additional commands within the scripting language tcl7. The script also controls
the actual simulation flow as well as the analysis of the output data. A detailed
annotated sample script used in this work can be found in the appendix.

All simulations were carried out on the computing clusters of the Center for
Scientific Computing8. The CPU time for the simulations varied between a few
hours and 4 weeks. In total, more than 50 CPU years were used for this scientic
investigation.9

The visualisation was done using the Visual Molecular Dynamics (VMD) soft-
ware10.

6http://www.espresso.mpg.de/
7http://www.tcl.tk/
8http://www.csc.uni-frankfurt.de/
9The carbon footprint of this work is approximately 50t CO2, not including any conference travel.

10http://www.ks.uiuc.edu/Research/vmd/, cf. Reference 129
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4. Static properties of polyelectrolytes in
electric fields

In this chapter, the proposed coarse-grained model is used to quantify the static
properties of the polyelectrolyte chain and the surrounding counterions. The in-
fluence of the individual concentrations of the monomers cPE and the counterions
cCI as well as the dependence on the strength of the external electric field E are
investigated.

4.1. Introduction

The results in this chapter were obtained for polystyrene sulfonate (PSS) chains
using the model described in the previous chapter with a length scale of σ0 =
2.75Å. The individual charges along the backbone of the polyelectrolyte have an
average distance b = 0.91σ0 = 2.5Å, which is the charge spacing along a fully
charged polystyrene sulfonate chain. The Bjerrum length is set to its value for
water at room temperature lB = 2.58σ0 = 7.1Å. The monomer concentration is
systematically varied between cPE = 1mM and 100 mM. Additional salt is added
up to a concentration of cs = 1M.

Two types of MD simulations are compared: Langevin type simulations as de-
scribed in Section 3.5.1 with a friction parameter Γ0 = 15.34 and simulations using
the coupling to a Lattice Boltzmann fluid with a kinematic viscosity ν = 3.0, a fluid
density ρ = 0.864, and a bare friction parameter Γbare = 20.0 (see Section 3.5.3).
The Langevin friction parameter Γ0 and the bare friction parameter Γbare are linked
to one another via Equation 3.32 and yield matching single particle mobilities. By
comparing both types of MD simulations, the impact of HI on the dynamics of the
system can be characterised.

The simulations are carried out with a MD time step τMD = 0.01 and LB time step
τLB = 0.05. After equilibration of 106 steps, 107 steps are used for generating the
data. The time-series are analysed using auto-correlation functions to estimate the
statistical errors as detailed in Reference 127. Error bars of the order of the symbol
size or smaller are omitted in the figures. Up to ten independent simulations are
carried out for each data point, taking between one day and three weeks on a single
standard CPU depending on the chain length N and the monomer concentration
cPE.
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4. Static properties of polyelectrolytes in electric fields

4.2. Visualisation

Figure 4.1: A visualisation snapshot of a system with a polyelectrolyte chain of
length N = 32 (red beads) and the surrounding counter- and salt ions (blue and
cyan).

Figure 4.1 shows a snapshot of a system of a polyelectrolyte chain of length
N = 32 (in red) with its counterions (in blue) surrounding the chain. The simula-
tion box also contains the same number of salt ions (in cyan). During the simulation,
the monomers and the counterions move according to the acting force and fluctu-
ate due to thermal noise. The excluded-volume effect prevents all particles in the
system from overlapping, but one can see that the electrostatic interaction attracts
a number of counterions to be very close to the chain. A second point to note is
the extended conformation of the polyelectrolyte chain. In the following section,
the chain behaviour will be investigated in detail in order to show that the charged
nature of polyelectrolytes indeed gives rise to more extended conformations com-
pared to uncharged polymers. Furthermore, the role of counterions and salt will be
analysed rigorously in Section 4.4.

4.3. Chain scaling

The polyelectrolyte chain conformations can be characterised by the average square
end-to-end distance

R2
e =

〈
(~r1 − ~rN )2

〉
, (2.10)

the square radius of gyration

R2
g =

〈
1
N

∑
i

(~ri − ~rcm)2
〉
, (2.13)
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Figure 4.2: Both the end-to-end distance Re and the radius of gyration Rg at
vanishing external field for a monomer concentration of cPE = cCI = 10 mM exhibit
an effective scaling exponent ν = 0.85. The hydrodynamic radius Rh shows a
different behaviour for short chains and only slowly reaches the asymptotic scaling.
The static chain properties are not influenced by hydrodynamic interactions (HI)
and fully agree with the ones obtained without HI.

and by the hydrodynamic radius〈
1
Rh

〉
=

1
N

∑
i6=j

〈
1

‖~ri − ~rj‖

〉
. (2.37)

Here N is the number of chain monomers, ~ri the position of the i-th monomer,
and ~rcm the center of mass of the polyelectrolyte chain. The angular brackets
〈. . .〉 indicate an ensemble average. All three quantities are expected to exhibit a
power law scaling Re,g,h ∼ (N − 1)ν , where the scaling exponent ν depends on the
system. For an uncharged polymer with ideal chain behaviour ν ≈ 0.588 (Flory
exponent) [53], whereas for a fully charged polyelectrolyte without electrostatic
screening ν = 1.

Figure 4.2 showsRe,g,h for polyelectrolyte chains of different length in the presence
of the neutralizing counterions at a concentration for monomers and counterions
of cPE = cCI = 10 mM and in the absence of an external field. An effective
scaling exponent ν ≈ 0.85 for Re and Rg for chains up to N = 256 is obtained,
which is an indication of the electrostatic screening and the counterion influence
on the chain conformations. The hydrodynamic radius Rh exhibits a very slow
asymptotic behaviour which leads to a lower apparent scaling exponent for short
and intermediate chains. In Chapter 5, it will be shown that this is in perfect
agreement with the measured diffusion coefficients. Figure 4.2 shows no influence
of hydrodynamic interactions on static chain properties.
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Figure 4.3: The end-to-end distance Re (a) and the radius of gyration radius Rg (b)
for a chain ofN = 40 monomers differ from the value at zero external field E (dashed
line), if a critical value is reached. Beyond this threshold, the polyelectrolyte chain
is extended (increased Re and Rg) and starts to align with the field directed in
x-direction as indicated by the quantities Rg,x and Rg,yz. This effect is independent
of hydrodynamic interactions (HI).

If the polyelectrolyte chain is subjected to a strong external electric field E,
depending on the magnitude of E, conformational changes might be induced [130].

Figure 4.3 shows that the model polyelectrolyte of length N = 40 experiences
conformational changes if the external electric field is Ecrit ≥ 0.2. According to [130,
131], Ecrit is depending on the strength of the electrostatic coupling and on the
length N . The approximation calculates the critical field strength that polarizes
the polyelectrolyte chain sufficiently to make the transition from a coil like structure
to an extended structure energetically favourable. It yields Ecrit ≈

√
lb/N ≈ 0.25,

a value comparable to the one obtained in this study.
The increased end-to-end distance (Figure 4.3a) indicates that the polyelectrolyte

chain conformation is extended. This can also be seen by looking at Rg in Fig-
ure 4.3b. Additionally, two new observables

R2
g,x =

〈
3
N

∑
i

(~ri,x − ~rcm,x)
2

〉
(4.1)

and

R2
g,yz =

〈
3

2N

∑
i,α=y,z

(~ri,α − ~rcm,α)2
〉
, (4.2)

are introduced, where ri,α is the position component in α-direction of the i-th par-
ticle. For an isotropic chain, Rg = Rg,x = Rg,yz, which is shown in Figure 4.3b for
E ≤ 0.1. For electric fields beyond the threshold, an increase of Rg,x and a decrease
of Rg,yz is observed. This can be understood as an extension of the polyelectrolyte
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4.3. Chain scaling

conformation in x-direction (into the direction of the external field) and a compres-
sion perpendicular to it. This alignment in high electric fields has also been studied
in Reference 132. There it was shown that for even higher fields and stiff polymers,
the phase of alignment along the electric field is followed by an alignment perpen-
dicular to it. This transition has also been recently observed by [133]. Figure 4.3
also shows that this effect is independent of long range hydrodynamic interactions,
which is consistent with the initial observations by Netz that were obtained without
the inclusion of hydrodynamic interactions [130, 131].

For the purpose of this thesis, it is noted that for electrical fields of E = 0.1 or
lower, no conformational change and orientation are induced.
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Figure 4.4: The end-to-end distance Re and the radius of gyration Rg at zero
external field, monomer concentration cPE = 10 mM, and no added salt (cs = 0
M) exhibit an effective scaling exponent ν = 0.85 (dashed line). With cs = 1 M
monovalent salt added, the scaling exponent drops down to ν = 0.68 (dotted line).

Adding salt to a polyelectrolyte solution screens electrostatic interactions on a
length scale known as Debye length lD. Following from Equations 2.59 and 2.61,
lD is inversely proportional to the square root of the concentration of the added
monovalent salt:

l−1
D =

√
4πlB (2cs + cCI)NA, (4.3)

where cs is the concentration of the monovalent salt, cCI is the concentration of
the polyelectrolyte’s counterions and NA is the Avogadro number. In Figure 4.4,
the screening effect of added salt can be seen. The scaling of Re and Rg for the
salt-free case (lD ≈ 16.7) is compared to a solution with cs = 1 M of added salt
(lD ≈ 1.2). The additional salt screens the electrostatic interactions between the
polyelectrolyte monomers and reduces the scaling coefficient to ν = 0.68, which is
close to the scaling for an uncharged polymer with the Flory exponent. It remains
to be pointed out that the measured scaling exponent is only an effective value for
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4. Static properties of polyelectrolytes in electric fields

the length range investigated. For chains with a contour length much larger than
the finite electrostatic screening length lD, the scaling is expected to be equal to
the scaling of an uncharged polymer, ν = 0.588.
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Figure 4.5: The effective scaling factor ν shows strong dependence of the Debye
length. Without added salt (i.e., large Debye lengths) ν is close to 1, whereas for
high salt concentrations (i.e., small Debye lengths) approaches the Flory number
ν ≈ 0.588 (dashed line), the value for an uncharged polymer.

By adding salt, the polyelectrolyte conformations become less extended. The ef-
fective scaling exponent ν depends on the inverse Debye length in the system. This
is illustrated in Figure 4.5: for no additional salt (small inverse Debye lengths) the
observed scaling exponent is close to 1 as it is expected for an unscreened polyelec-
trolyte chain. As additional salt is added and thereby the inverse Debye length is
increased, the scaling exponent decreases and approaches the Flory number indi-
cated by the dashed line. The additional salt screens the electrostatic interactions
along the polyelectrolyte chain, which starts to assume configurations close to those
of an uncharged polymer in ideal solvent.

Note that adding monovalent salt to the solution decreases the spatial extension
of the polyelectrolyte chain and makes the conformations more compact.

4.4. Counterions

After looking at the chain conformations, now the counterion distribution around
the polyelectrolyte chain is investigated. The model results for counterion conden-
sation are then compared to the predictions from Section 2.4.2.
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4.4. Counterions

4.4.1. Counterion condensation

Strongly charged polyelectrolytes attract some of the released counterions and effec-
tively reduce their line charge density. This phenomenon was described by Manning
and Oosawa under the term counterion condensation [59, 60] and has been discussed
from varying viewpoints (see [61, 62] and the references therein).

According to Manning’s theory, the distribution of counterions around highly
charged rod-like polyelectrolytes can be described in terms of the Manning parame-
ter ξ = lB/b, where lB = 2.58 is the Bjerrum length and b = 0.91 is distance between
charges along the backbone of the polyelectrolyte (inverse line charge density), thus
ξ = 2.84.

Here, highly charged polyelectrolytes with ξ > 1 are investigated, for which a
finite number of counterions is always found in close vicinity of the polyelectrolyte
chain, thus reducing the effective charge of the created polyelectrolyte-counterion
compound. The theory predicts the fraction of those condensed counterions to be
fCI = 1 − 1/ξ, albeit without specifying the actual distance to the chain in which
those counterions are to be found. Following the prediction, the total number is

NCI = (1− 1/ξ)N, (2.51)

where N is the length of the polyelectrolyte. This leads to a predicted effective
charge Qeff(N) = (1/ξ)N .
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Figure 4.6: The histogram of the fraction of counterions, nCI, for a chain of N = 32
monomers found at a distance r to the closest chain monomer and the integrated
number of counterions NCI found up to this distance are a measure of the distribu-
tion of counterions around the chain.

Several observations can be made when looking at the fraction of counterions
nCI found at a given distance r from the closest chain monomer, as plotted in
Figure 4.6 for a chain of N = 32 monomers. Due to the excluded volume effect,
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4. Static properties of polyelectrolytes in electric fields

no counterions are found at small distances, but then many counterions are found
around the distance r ≈ 1. Here, the histogram shows a “binning effect”, i.e., these
first counterions are split into two bins from 0.75 to 1.0 and from 1.0 to 1.25. A
more accurate binning should catch all those ions within one bin with a value of
nCI ≈ 0.21. The fraction then decreases as d grows and seems to level of at a value
of nCI ≈ 0.9 which is the average number expected for the chosen monomer and
counterion density.

The second curve in Figure 4.6 shows the integrated number of counterions NCI

found up to the distance r of the closest chain monomer. Again, one can see that
the majority of counterions are within close distance to the chain, i.e., N ≈ 16 for
r ≈ 3.5.
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Figure 4.7: As a simple estimate of the number of condensed counterions NCI

all ions within a distance of 2σ0 around the polyelectrolyte chain are summed up.
For long polyelectrolyte chains, the value predicted by Equation 2.51 is approached.
The static counterion distributions are not influenced by hydrodynamic interactions
(HI).

As the simple Manning condensation theory is not specifying a distance crite-
rion, but instead only predicts the existence of such a finite value, a threshold has
to be chosen based on other assumptions to actually estimate the number of con-
densed counterions. In Figure 4.7, the prediction of Equation 2.51 is compared
to the number of counterions that are found within a distance of r ≤ 2 to the
closest polyelectrolyte monomer. For long polyelectrolyte chains (N > 100), the
measured number of condensed counterions approaches the predicted value. It is
noteworthy that the distribution of counterions around the chain is not influenced
by hydrodynamic interactions.

Using Poisson-Boltzmann theory, it is possible to derive a distance criterion with-
out a free cut-off parameter [63–65]. Based on the exact solution for an initely long
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stiff rod, the cut-off is determined by the inflection point of the integrated number
of counterions, NCI in Figure 4.6, versus the logarithmic distance to the chain. This
level of detail, however, is not needed for the investigations in this chapter.

Several ways to estimate the effective charge will be discussed and analysed in
Chapter 6. In this context, the estimate based on the fixed cut-off and the one
using the inflection point criterion will be revisted.
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Figure 4.8: The number of condensed counterions NCI for a polyelectrolyte chain
of N = 40 depends on the applied external electrical field. Above a threshold of
E = 0.1, counterions start to be stripped from the polyelectrolyte chain and NCI

differs from the value at zero field (dashed line). This effect is independent of
hydrodynamic interactions (HI).

An external electric field not only couples to the polyelectrolyte monomers, but
also acts on the oppositely charged counterions. Strong electric fields are known to
reduce the number of condensed counterions in the vicinity of the chain [130, 131].
In Figure 4.8, the number of counterions within 2σ0 around a polyelectrolyte chain
with N = 40 monomers is determined for different values of the applied electric
field. Beyond a critical threshold of E ≈ 0.2, counterions are stripped away from the
polyelectrolyte chain. The onset of this effect coincides with the observed extension
and alignment of the chain (Figure 4.3).

Again, it is noted that for electrical fields of E = 0.1 or lower, no change to the
counterion distribution around the polyelectrolyte chain is found.

4.4.2. Radial distribution functions

In addition to the absolute quantities for the size of the polyelectrolyte, Re and
Rg and the number of counterions, the structure of the polyelectrolyte-counterion
complex can be described by radial density distributions. In Figure 4.9, the radial
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(e) N = 64, cS = 0M
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Figure 4.9: Radial density distribution functions for polyelectrolyte monomers ρPE

and its counterions ρCI with (a, c, e) and without additional salt (b, d, f). Here
d = ‖~ri − ~rcm‖ is the distance to the center of mass of the polyelectrolyte, and N
is the length of the polyelectrolyte. It can be seen that the counterion density is
increased significantly above the average value ρ0 within the polyelectrolyte coil,
indicating the strong attraction of counterions.
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density distribution functions for polyelectrolyte monomers ρPE and their counte-
rions ρCI are compared in the salt-free case and the added salt case. In Figure 4.9
shows chains of different lengths from N = 16 to 32. Note that here, unlike in
Figure 4.6, the radial distance d is determined to the center of mass of the poly-
electrolyte: d = ‖~ri−~rCM‖. The decay of ρPE defines the boundary of the polyelec-
trolyte. It is clearly seen that ρCI is increased beyond the average value ρ0 within
the polyelectrolyte coil, which is a clear indication of a strong counterion attraction.

Figure 4.10: A simulation snapshot for a polyelectrolyte chain of length N = 32
with surrounding ions. The translucent sphere represents the boundary of the
radial distribution function for the chain monomers in the center of mass frame of
the polyelectrolyte. The polyelectrolyte conformation and its fluctuations give rise
to roughly spherical shape when averaged over time.

The sharp decrease of the radial distribution function for the chain monomers
ρPE in the chain’s center of mass reference frame can be used to determine the
relative size of the polyelectrolytes. Figure 4.10 shows a simulation snapshot of a
chain of length N = 32 and its surrounding ions including a visualisation of the
boundary of ρPE in three dimensions. The polyelectrolyte conformations, when
averaged over time, give rise to a spherical shape. However, it is important to
note that this “sphere” is not a solid object but can be penetrated by the fluid.
This can also be seen when comparing the apparent sizes, i.e., Rg ≈ 6, 12, 22 for
N = 16, 32, 64 respectively, to the hydrodynamic radius Rh shown in Figure 4.2,
i.e., Rh ≈ 2.6, 3.9, 6.1. Even though the real hydrodynamic size of the object is
significantly smaller, the density distribution functions support the idea that, when
averaged over time, the shape of the polyelectrolyte, as seen by the fluid, is a
spherical object with a well-defined size.
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4. Static properties of polyelectrolytes in electric fields

4.5. Summary

The static chain properties have been tested under variation of the external electric
field and the concentration of additional salt. The static properties are not influ-
enced by the presence of hydrodynamic interactions, which also serves as a testing
ground for the model. The results show the expected behaviour of polyelectrolyte
chains: the scaling of Re,g,h for short chains exhibits an effective exponent that
lies between the infinite dilution exponent, ν = 1, and the Flory exponent for un-
charged chains, ν = 0.588. The effective exponent ν decreases with increased salt
concentration due to electrostatic screening.

Furthermore, the influence of the strength of an applied external electric field
on the chain conformations and the counterion cloud was tested. Below a critical
value Ecrit, no dependence on the field strength is observed, which is in agreement
with linear response theory. The application of field strengths above Ecrit changes
the static and dynamic properties of the polyelectrolyte. The threshold identified
in this study is in agreement with theoretical predictions by Netz [130, 131].
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In the previous chapter, the static properties of polyelectrolyte chains were inves-
tigated and characterised. A particular focus was put on the role of counterions
and the influence of the electric field. In this chapter, the dynamic properties as
measured in electrophoretic experiments will be investigated.

After a brief introduction, the theoretical and experimental background on free-
solution electrophoresis will be reviewed. Then, the transport coefficients of polysty-
rene sulfonate (PSS) will be determined and compared to the available experimental
data. Additionally, the role of the counterions and the influence of the electric field
is analysed, but the key point of this chapter is the study of the importance of
hydrodynamic interactions.

5.1. Introduction

Electrophoresis methods are widely used to separate (macro)biomolecules [72, 134]
such as peptides, proteins, and DNA, as well as synthetic polymers [135, 136].
Short polyelectrolytes can conveniently be separated in free solution without the
aid of a gel by capillary electrophoresis (CE). Additionally, CE is employed to
characterise the hydrodynamic properties of charged biomolecules, in particular the
electrophoretic mobility, µ, the diffusion coefficient, and the hydrodynamic radius
[28, 32].

Alternatively, these properties can be determined by pulsed field gradient (PFG)
NMR [137, 138]. With a combination of diffusion NMR and electrophoretic NMR,
the charge of macromolecules [139], the influence of ionic strength and the dielectric
constant of the solution have been investigated [140–142].

Several studies of polyelectrolytes of well defined length in the short chain regime
have shown that the free-solution mobility µ exhibits a characteristic behaviour
[32, 33, 73, 74] (see Figure 2.9 on page 27): from the monomer mobility, µ0, onwards,
µ increases towards a maximum, µmax that occurs for chains of a specific degree of
polymerisation Nmax. After this maximum, µ decreases slightly to reach a constant
value, µFD, the so-called free draining mobility. Very little is known about the
origin of the maximum, yet the knowledge of the precise dynamic behaviour of a
polyelectrolyte is a prerequisite for designing possible applications in microfluidic
devices, such as electrophoretic separation or gene sequencing.

Whether or not a mobility maximum appears and the precise value of Nmax seems
to depend on the flexibility of the chain. While a maximum has been observed for
flexible polyelectrolytes, such as single stranded DNA or sulfonated polystyrene
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(PSS) with Nmax ≈ 10 for the latter [33, 73, 74], semi-flexible double-stranded
DNA does not exhibit it. The small number for Nmax and the strong influence of
the persistence length show that a short chain behaviour must be responsible for
this. Furthermore, it has been shown that the µmax is diminished under elevated
salt conditions.

Existing theories [33, 37–39, 73] have been successful in describing the qualita-
tive behaviour of an initially rising mobility as well as the constant long-chain limit,
but they have not been able to reproduce this maximum or explain its origin. As
discussed in Chapter 2, this can be attributed to some extent to the simplifying as-
sumptions made in those models regarding the interplay of the various interactions.

To provide a fundamental understanding of the involved dynamics, it is manda-
tory to study the effects of these forces on a microscopic level, thereby taking into
account full electrostatic as well as hydrodynamic interactions. In the following, the
coarse-grained Molecular Dynamics model presented in this thesis is used to deter-
mine the dynamic transport coefficients of strong polyelectrolytes in free-solution
electrophoresis and demonstrate that the chosen model quantitatively reproduces
experimental results obtained by two completely different experimental techniques.
The results of this chapter will be used in the following chapters to characterise the
hydrodynamic interactions between solvent and solute on a microscopic level, and
determine the relevant length scale for these interactions.

5.2. Experimental techniques

The simulation results are compared to two different experimental techniques used
to measure transport coefficients of the standard polyelectrolyte polystyrene sul-
fonates. The capillary electrophoresis experiments were carried out by Hervé Cot-
tet1 and the electrophoresis NMR experiments were done out by Ulrich Scheler and
Ute Böhme2.

5.2.1. Capillary Electrophoresis

Capillary electrophoresis (CE) is an analytical separation technique based on the
differential migration of ionic species under electric field [72, 143]. Separation occurs
in a narrow bore capillary (25-100 µm diameter) using high electric field (100-1000
V/cm) (cf. Figure 2.8 on page 25). In Capillary Zone Electrophoresis (CZE), the
capillary is filled with an electrolyte and both ends of the capillary are dipped in
reservoirs filled with the same electrolyte. Samples are injected in the capillary,
whereas electrolyte conditions and electric field are kept constant. The apparent

1Institut des Biomolécules Max Mousseron, (UMR 5247 CNRS - Université de Montpellier 1 -
Université de Montpellier 2), 2, place Eugène Bataillon CC 017, 34095 Montpellier Cedex 5,
France

2Leibniz Institute of Polymer Research, Hohe Str. 6, D-01069 Dresden, Germany
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electrophoretic mobility µapp of the solute is determined according to equation 5.1:

µapp =
vapp

E
=

Ll

V tapp
(5.1)

where vapp is the apparent velocity, E is the electric field, V is the applied voltage,
L is the total length of the capillary, l is the migration (or effective) length up to
the detector and tapp is the apparent detection time of the solute. The apparent
mobility is the sum of two distinctive contributions. One comes directly from the
effective electrophoretic mobility of the solute (µep), the other is due to the mobility
of the electroosmotic flow (µeo). The electroosmotic flow (EOF) refers to the move-
ment of the solvent in a capillary under the influence of an electric field. Indeed,
under neutral or basic conditions, the negatively charged wall of the fused silica
capillary attracts the cations of the electrolyte generating the so-called electrical
double layer. When a voltage is applied across the capillary, cations of the double
layer migrate in the direction of the cathode, dragging water molecules with them
and generating this EOF. Anionic solutes (like the polystyrene sulfonates) migrate
in counter-electroosmotic mode (i.e., against the electroosmotic flow). Thus, the
effective electrophoretic mobility is related to the apparent electroosmotic (µeo)
mobilities according to equation 5.2:

µep = µapp − µeo =
Ll

V tapp
− Ll

V teo
, (5.2)

where teo is the migration time of a neutral molecule. Cations have positive µep

values while anions have negative µep values.

Experimental setup

The CE experiments considered here were performed using an Agilent technologies
capillary electrophoresis system (Agilent, Waldbronn, Germany). Capillaries of
33.5 cm (25 cm to the detector) length, and 50 µm diameter were prepared from
bare silica tubing purchased from Supelco (Bellefonte, PA, USA). New capillaries
were conditioned by performing the following flushes: 1M NaOH for 30 min, 0.1 M
NaOH for 10 min, and water for 5 min. Samples were introduced hydrodynamically
(∼ 4 nl) at 0.5 g/l concentration (∼ 2.5mMol/l monomer concentration). The
electrolyte was pure water. Solutes were detected at 225 nm. The electric field was
kept constant at 224 V/cm (V=+7.5 kV). The polarity of the applied voltage on
the inlet side of the capillaries was positive. All the experiments were performed
at 27 ◦C. Electroosmotic mobilities were determined from the migration time of a
neutral marker (mesityl oxide, ∼ 0.1% (v/v) in the electrolyte).

The sodium polystyrene sulfonate standards (Mw1.430×103, 5×103, 8×103, 16×
103, 31×103, 41×103, 88×103, 177×103, 350×103; Mw/Mn ca 1.1) were purchased
from American Polymer Standards Corp. (Mentor, OH, USA). Borax (disodium
tetraborate decahydrate) was from Prolabo (Paris, France). Mesityl oxide used as
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neutral marker was obtained from Aldrich. Purified water delivered by an Alpha-
Q system (Millipore, Molsheim, France) was used to prepare all electrolytes and
sample solutions.

5.2.2. Electrophoresis NMR

In electrophoresis NMR, diffusion and electrophoretic motion are separated by the
design of the experiment [144]. No gel has been used, so that self diffusion and free
electrophoresis are measured. The PSS samples have been obtained from Fluka. To
minimise the effects of variations of the ionic strength [140], samples have been dial-
ysed against water (cutoff volume 0.5 kDA), and subsequently dried under vacuum.
For all experiments a concentration of 5 mMol/l (monomer) in deuterated water
has been used. The system temperature is kept at ambient level, i.e., T ≈ 21◦. The
diffusion experiments have been performed on a Bruker Avance 500 NMR spectrom-
eter operating at a Larmor frequency of 500 MHz for protons equipped with a DIFF
30 probe head generating a maximum pulsed field gradient strength of 12 T/m. The
gradient pulse duration δ and diffusion times ∆ have been adjusted between 0.8 to 2
ms for δ and 8 to 20 ms for ∆ respectively for optimal resolution for each molecular
weight resulting in different diffusion coefficients. Because of their narrow molecu-
lar weight distribution, diffusion coefficients have been determined by a linear fit to
the Stejskal-Tanner equation [137]. Electrophoresis NMR experiments have been
performed on a Bruker Avance 300 NMR spectrometer operating at a Larmor fre-
quency of 300 MHz for protons with an in-house-built electrophoresis probe head
utilizing a Bruker micro2.5 imaging gradient system generating magnetic field gra-
dient strength of up to 1 T/m. The electrophoretic mobility is a model-free read
out from the two-dimensional electrophoresis NMR spectrum [139]. Data process-
ing has been performed in MatNMR [145]. The resolution of the electrophoretic
mobility is determined by the limited electric field strength, which is limited mostly
by Joule heating of the sample. Since in the electrophoresis NMR experiment the
only incremented variable is the electric field strength, diffusion does not influence
the resolution.

5.3. Determining transport coefficients in simulations

The simulation model is used to determine two different transport coefficients for the
model polyelectrolyte that are likewise determined in the associated experiments.

5.3.1. Diffusion

The diffusion coefficient D characterises the thermal motion of the polyelectrolyte.
It is obtainable from the simulation trajectory of the polyelectrolyte chain, by mea-
suring the slope of the center of mass’ mean-square displacement

D =

〈
[~rcm(t)− ~rcm(0)]2

〉
6t

, (2.25)
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where ~rcm is the position of the center of mass, and t is the time. The angular
brackets 〈. . .〉 indicate the averaging over many configurations.

Alternatively, the diffusion coefficient D can be obtained from the integration of
the velocity auto-correlation function of the center of mass

D =
1
3

∞∫
0

〈~vcm(t) · ~vcm(0)〉 dt. (5.3)

Here, ~vcm is the center of mass velocity of the polyelectrolyte at a given time. Again,
the angular brackets 〈. . .〉 indicate the averaging over many configurations.
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Figure 5.1: The diffusion coefficient D of a polyelectrolyte chain of length N = 32 is
determined (a) via a fit (dashed line) to the linear part of the mean square displace-
ment, which yields a diffusion coefficient of D = 0.0045± 0.0002 via Equation 2.25,
(b) and via fitting a t−3/2 power law to the long-time tail of the center of mass auto-
correlation function and using Equation 5.3, which results in D = 0.0041± 0.0005.

The accuracy of both methods depends on the number of statistically independent
data samples. In Figure 5.1, sample graphs to determine the diffusion of a polyelec-
trolyte chain of length N = 32 using Equations 2.25 and 5.3 are presented. Since
simulations with hydrodynamic interactions are computationally very demanding,
the achievable accuracy is limited. The errors are determined from the statistical
fluctuations of the data and the uncertainty in the fit parameter.

In Figure 5.1a, the diffusion is obtained from a fit to the linear part of the mean
square displacement. This yields a diffusion coefficient of D = 0.0045 ± 0.0002 in
simulation units. To calculate the integral in Equation 5.3, a fit to the slowly decay-
ing long-time tail of the center of mass’ velocity auto-correlation function has to be
obtained as shown in Figure 5.1b. Here, the theoretical predicted functions are used
to match the long-time tail: without hydrodynamic interactions, an exponential de-
cay of the velocity correlations is expected, whereas with hydrodynamic interactions
the correlation function decays with t−3/2. The figure shows the more interesting
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case with hydrodynamic interactions. The combined results of simulation data and
long-time fit are integrated and a diffusion coefficient of D = 0.0041 ± 0.0005 is
obtained, which is in agreement with the corresponding value obtained from the
mean square displacement.

Both methods are strictly equivalent for classical systems, but for the remain-
der of this thesis, the integral method is used to obtain the diffusion coefficient as
one can use a similar formulation to obtain the mobility of the polyelectrolyte (see
Equation 5.4), and thus can determine both quantities without additional compu-
tational effort. Specifically, both auto-correlation functions have to be determined
accurately on the interval t = [0, 100], whereas the root mean square displacement
has to be determined on the interval t = [100, 100000], as shown in Figure 5.1. The
chosen sampling procedure, cf. Section 3.6.1, has been optimised for the calculation
of the auto-correlation functions.

5.3.2. Electrophoretic mobility

The second transport coefficient of interest is the electrophoretic mobility µ. It
characterises the motion of the polyelectrolyte in an external electric field.

In capillary electrophoresis experiments [72], the electrophoretic mobility of the
solute is determined by Equation 5.1. This method can be directly transferred
and applied to computer simulations. The external electric field E is modelled by
a constant force proportional to the electric charge acting on the particles in the
solution. This causes a directed motion with a certain velocity v. From this one
can obtain the electrophoretic mobility

µ =
v

E
. (2.64)

Transforming this in a straightforward way to simulations is not always advanta-
geous. Polyelectrolyte mobilities in free solution are of the order of 4 · 10−8 m2/Vs
[74, 140, 146, 147]; under experimentally used electric fields of up to 1000 V/cm,
this leads to a velocity of about 100 nm/s. Having in mind the natural diffusive
motion with a diffusion constant of D ≈ 10−10 m2/s [140, 148], this directed elec-
trophoretic motion is difficult to separate from the underlying fluctuations within
the accessible time frame of simulations that usually is limited to microseconds.

This problem can be overcome by simulating long trajectories at the expense of
computing time. Applying an artificially high external field also reduces the com-
putational effort, but may induce a conformational change of the polyelectrolyte
and its surrounding counterions, which leads to significant discrepancies between
experimentally observed results and simulations as shown in the case of static prop-
erties in the previous chapter. According to Netz et al. this effect is attributed to
the polarisation and the following removal of the counterion cloud surrounding the
polyelectrolyte [130, 131]. Below a critical value, the mobility is not affected by the
electric field, and the system is in the linear response regime.

Experimentally used electric fields are usually below 1 kV/cm, which corresponds
to a reduced field strength of E = 0.001, and as such are far below the critical
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threshold. This study focuses on the behaviour of polyelectrolytes in weak electric
fields below the threshold of E ≈ 0.2 identified in Chapter 4. For simulations, the
usage of a weak electrical driving force requires long simulations times, in order to
be able to accurately separate the directed motion from the thermal fluctuations.

Alternatively, the electrophoretic mobility can be calculated from the following
Green-Kubo relation

µ =
1

3kBT

∑
i

qi

∞∫
0

〈~vi(0) · ~vcm(τ)〉 dτ, (5.4)

where the summation is over all charged particles (monomers, counterions, and
salt ions) in the system, and the ~vi are their individual velocities and the qi their
charges. Here, ~vcm is the velocity of the center of mass of the polyelectrolyte. This
approach has been successfully applied in simulations of charged colloids [149, 150].
Please refer to Appendix A for a detailed derivation of Equation 5.4.

This method guarantees that no conformational changes of the chain structure
or the ion distribution are induced by an artificially high external field. Another
beneficial side effect of this method is that both transport properties can be obtained
from the same simulation trajectories in the absence of an applied field without
additional computational effort.

5.4. Results

The following results were obtained by adapting the generic model to match the
properties of polystyrene sulfonate (PSS) as described in the previous chapter in
Section 4.1. For the direct comparison to experimental results, the simulations were
carried out under periodic boundary conditions in a rectangular simulation box of
size L = 34 (for N = 2) to L = 89 for (N = 32) resulting in constant monomer
concentration of approximately 1 g/l or 5 mM.

It is important to note that the two different experimental setups used different
buffer solutions, aqueous borate buffer versus deuterated water, at different temper-
ature, T = 27◦ versus T ≈ 21◦, which leads to significant deviations in the absolute
value of the electrophoretic mobility measured. Therefore, when comparing to the
simulation data, normalised transport coefficients have to be used.

5.4.1. Diffusion

The diffusion of polymers in the presence or absence of hydrodynamic interactions is
very well studied from a theoretical point of view. In general, the following Einstein
equation is valid

D =
kBT

Γ
, (2.29)

where Γ is the so-called friction coefficient of the studied object, kB is the Boltzmann
factor and T is the temperature.
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Without hydrodynamic interactions, one expects Rouse behaviour, i.e., a friction
coefficient Γ that linearly depends on the change length N :

D =
kBT

Γ0N
. (2.31)

Here, Γ0 is the friction coefficient of a single monomer of the polymer chain.
With hydrodynamic interactions, Zimm behaviour is expected. The scaling of D

with the chain length is no longer proportional to N−1, but can be described by
the Kirkwood-Zimm theory [55, 57]. Within this theory, the diffusion coefficient is
expected to be

D =
D0

N
+

kbT

6πηRh
, (2.36)

where D0 is the diffusion coefficient of a single monomer of the polymer chain, N
is the chain length, η is the viscosity of the solvent, and Rh is the hydrodynamic
radius of the polymer. In general, as pointed out in Chapter 4, Rh is not linear
in N , resulting in a scaling different from N−1 for the diffusion coefficient of a
polyelectrolyte in the presence of hydrodynamic interactions.

1 10
N

0.1

1

D
/D
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D (with HI)
D (w/o HI)
D = D0/N + 1/(6πηRh)

Figure 5.2: The diffusion of a polyelectrolyte chain of length N at a monomer
concentration cm = 10mM, normalised by the monomer diffusion D0, shows the
influence of hydrodynamic interactions (HI). With HI a scaling exponent of m =
0.63±0.01 is obtained (solid line), whereas without HI, the slope is m = 1.02±0.02
(dashed line). The diffusion in presence of HI agrees with the values obtained from
Equation 2.36, where Rh is determined from the simulation (triangles).

Figure 5.2 shows the normalised diffusion coefficient for polyelectrolyte chains of
varying length with and without hydrodynamic interactions. When hydrodynamic
interactions are present, the polyelectrolyte diffusion shows a behaviour which can
be described by a power law scaling D = D0N

−m, where D0 is the monomer
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diffusion coefficient. For the model polyelectrolyte, a scaling exponent ofm = 0.63±
0.01 is observed. In order to check the validity of Equation 2.36 the hydrodynamic
radius is also calculated. The data is in perfect agreement with Zimm theory.
This is especially remarkable, as it shows that the presence of counterions, which
are not considered in Equation 2.36, does not directly influence the diffusion of
polyelectrolytes. Instead, only the conformations of the polyelectrolyte itself are
determining the diffusive behaviour. The observed scaling exponent is in good
agreement with experimental results for the diffusion coefficient of polyelectrolytes,
as will be shown in Section 5.4.1.

When hydrodynamic interactions are switched off, the polyelectrolyte chain ex-
hibits Rouse behaviour with a scaling of m = 1.02 ± 0.02, demonstrating the im-
portance of hydrodynamic interactions for the observed diffusion scaling with chain
length.

However, as shown in the previous chapter, the static chain properties, including
the hydrodynamic radius Rh do not depend on the presence of hydrodynamic in-
teractions. This allows for the correct calculation of the diffusion coefficient even in
the absence of hydrodynamic interactions by means of Equation 2.36. Having said
that, the direct measurement of D is only possible when hydrodynamic interactions
are included in the simulation model.

In the course of this study, the monomer concentration of the polyelectrolyte was
furthermore varied from cm = 100 mM up to 1 mM. Within this range, no change
of diffusion coefficients was observed.

Influence of the electric field
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Figure 5.3: The translational diffusion coefficient measured at a reduced electric
field E = 0.1 (circles) is in agreement with the measurements at zero electric field
(solid line).
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When an external electric field is applied to the polyelectrolyte solution the diffu-
sive motion in the direction of the electric field is mixed with the induced directed
motion. However, it is possible to determine the translational diffusion coefficient
Dtrans perpendicular to the electric field. Figure 5.3 shows that for a reduced electric
field of E = 0.1 no deviation from the diffusive behaviour at vanishing electric field
is found. This is in-line with the findings of Chapter 4, i.e., that for small enough
electric fields, the conformation of the polyelectrolyte chains and the surrounding
counterions are unchanged, such that the measured quantities do not depend on
the applied electric field.

Experimentally [140], it is also possible to determine the diffusion coefficient in
the direction of the field by separating the diffusive from the directed motion. The
electric field showed no influence on the diffusion coefficient.

Comparison to experimental data

1 10 100
N

0.01

0.1

1

D
 / 

D
0

Simulation (HI)
Experiment (NMR)
x-0.63

Figure 5.4: The normalised diffusion coefficient D/D0 for PSS of different lengths
N as obtained by electrophoresis NMR agrees with the simulation results with full
hydrodynamic interactions (HI).

Figure 5.4 compares the diffusion coefficient D determined by simulations to the
experimental results. Here, the simulated data is normalised by D0 = 0.052, the
monomer diffusion as obtained by a power law fit, and the experimental data by the
monomer diffusion coefficient of D0 = 5.7 ·10−10 m2/s. The simulation data exhibit
a power law scaling D = D0N

m, with a scaling exponent m = 0.63 ± 0.01, which
agrees with previous results. For the standard polyelectrolyte PSS (polystyrene sul-
fonate), Böhme and Scheler [141] obtained m = 0.64, whereas Stellwagen et. al. [33]
reported a scaling with m = 0.617. It is worth mentioning that the latter value
was obtained in the presence of 50 to 100 mM additional salt and for PSS chains
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of up to 20000 repeat units, therefore a smaller scaling exponent can be expected
as shown in Chapter 4.

Only for very short chains, (N < 5), is a deviation from the prediction is observed
and a higher diffusion coefficient is found in the simulations. For intermediate chain
length, the coarse-grained simulation model with HI, reproduces the experimentally
observed behaviour.

As shown in Figure 5.2, without hydrodynamic interactions, the chains show the
expected Rouse diffusion with an exponent of m ≈ 1. From this, it can be seen that
the Langevin model without hydrodynamic interactions is clearly not applicable to
mimic the experimental behaviour of short polyelectrolyte chains.

5.4.2. Electrophoretic mobility

While there are several theories [36–39] that have been successfully used to describe
qualitatively the experimentally observed electrophoretic behaviour of various poly-
electrolytes, there are still some open questions to address. Recent experiments on
strongly charged flexible polyelectrolytes, such as polystyrene sulfonate (PSS) and
single-stranded DNA (ssDNA) of well defined length, have shown a characteristic
behaviour for the short chain free-solution mobility µ [32, 33, 73, 74]: after an initial
increase of the mobility with increasing length, µ passes through a maximum, and
then decreases towards a constant mobility for long chains.

As mentioned earlier, the increase for short chains and the long-chain limit can
be explained within the theoretical approaches, but the origins of the maximum
for intermediate chains are not accounted for. This chapter will show that the
experimentally observed behaviour can be simulated using a coarse-grained model.
In Chapter 6, it will be shown that the maximum appears due to the hydrodynamic
interactions between the polyelectrolyte, its counterions, and the solvent.

Figure 5.5 illustrates that the maximum in the electrophoretic mobility can only
be reproduced when hydrodynamic interactions are properly accounted for. The
neglect of hydrodynamic interactions leads to a decreasing electrophoretic mobility
for short chains. This observation was also made in a recent publication by Frank
and Winkler [133].

In addition to the measured mobilities, Figure 5.5 includes a prediction for the
mobility without hydrodynamic interactions based on local force balance: without
hydrodynamic interactions, every particle of the polyelectrolyte-counterion com-
pound is subject to the same frictional force FSolvent = −Γ0v counterbalancing the
electric driving force FField = qiE. From this one can obtain the following expres-
sion for the electrophoretic mobility in the absence of hydrodynamic interactions,
where µ0 = 1/Γ0 is the mobility of a single monomer, N is the length of the poly-
electrolyte, and NCI is the number of condensed counterions that move with the
polyelectrolyte:

µ

µ0
=
N −NCI

N +NCI
. (5.5)
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Figure 5.5: The normalised electrophoretic mobility at a monomer concentration
of cm = 5 mM with hydrodynamic interactions (HI) reproduces the experimentally
observed behaviour and shows a maximum for intermediate chains. Without HI the
measures mobility strongly deviates from this, showing a decrease with increasing
chain length N . This behaviour can be explained by Equation 5.5 in the local force
picture (dashed line) and approaches the limiting value of the Manning prediction
(Eq. 5.6).

For plotting Equation 5.5 in Figure 5.5, NCI is obtained by counting the average
number of counterions found within 2σ0 of the chain as done in Section 4.4.1. Ad-
ditionally, one can substitute NCI from Eq. 2.51 and obtain the Manning prediction
for the mobility

µ

µ0
=

1
2ξ − 1

≈ 0.2, (5.6)

that is approached nicely for long chains.
The local force picture successfully describes the observed behaviour in the ab-

sence of hydrodynamic interactions, but qualitatively fails to describe the mobility
for short chains in any real experiment, where hydrodynamic interactions are obvi-
ously present.

Influence of the electric field

The effect of strong electric fields on the mobility of polyelectrolytes has been in-
vestigated theoretically before. Below the critical field strength, i.e., in the linear
response regime, the electrophoretic mobility µ is independent of the applied elec-
tric field. Figure 5.6 compares µ for a polyelectrolyte chain at cm obtained at zero
field via Equation 5.4 to the mobility at finite fields, E = 0.05 and 0.1, via Equa-
tion 2.64. The measured values agree within their displayed precision. For com-
parison, all data series were obtained using the same computational effort (same
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Figure 5.6: Electrophoretic mobility µ of polyelectrolyte chains at monomer con-
centration cm = 5 mM measured without electric field (circles) and with field at
E = 0.05 and 0.1 (triangles) with the corresponding error bar. (Data sets have
been shifted to increase readability.)

number of simulation steps). For short chains, the Green-Kubo based method yields
more accurate results, whereas longer chains can be simulated at equal accuracy
by an external applied field. For short chains and weak fields, the thermal (Brow-
nian) motion dominates the directed electrophoretic motion, which decreases the
accuracy of the obtained values.

Based on this observation, it is concluded that the Green-Kubo method to mea-
sure the electrophoretic mobility of polyelectrolytes in solution has several advan-
tages. Firstly and most importantly, it guarantees the measurement of free-solution
mobilities in the linear regime, which are comparable to experimental measurements
at standard field strengths. The alternative method uses fields that are about a
factor 100 higher than the experimentally used ones and are close to the critical
value at which static and dynamic properties of the polyelectrolyte are significantly
changed. In the case of the electrophoretic mobility, a high electric field leads to
an increased mobility due to the stripping of counterions. Secondly, the compu-
tational effort needed to achieve a given accuracy for short polyelectrolyte chains
(N < 10) is up to 50% smaller than with the direct method. And lastly, the trajec-
tories simulated at zero field can be used to determine the electrophoretic mobility
and the diffusion (using Equation 5.3) at the same time, additionally reducing the
computational cost of such a study.

Influence of the monomer concentration

It is well known that the free-solution mobility of polyelectrolytes depends on the
salt concentration of the solution [73]. With increasing additional salt, the maximal
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Figure 5.7: The normalised electrophoretic mobility µ/µ0 shows a strong depen-
dence on the monomer concentration cm. For dilute systems the experimental
behaviour is recovered, while at high monomer concentrations the shape is signifi-
cantly altered.

free-solution mobility decreases due to the increased counterion condensation. The
author would like to point out that the long chain mobility also shows a dependence
on the monomer concentration in the absence of additional salt. This effect can be
mainly attributed to the changed electrostatic screening.

Figure 5.7 shows that not only the long chain limit is influenced by increased
electrostatic screening, but also the short chain behaviour. The maximum is sig-
nificantly reduced for higher monomer concentrations. For cm = 100 mM it is
completely reduced, and the behaviour in the presence of hydrodynamic interac-
tions is similar to the one without hydrodynamic interactions, as seen in Figure 5.5.
The increased electrostatic screening caused by a higher concentration (resulting in
a shorter Debye length) suppresses the short-range hydrodynamic interactions that
are essential for the formation of the maximum.

This is reflected in Figure 5.8, which shows the degree of polymerisation with
the maximum mobility Nmax versus the Debye length λD. The lower the Debye
length, i.e., the higher the electrostatic screening, the more the maximum is shifted
towards short chains. This correlation has not been investigated previously. In
Chapter 6, the importance of the interplay of the electrostatic screening with the
hydrodynamic interactions will be analysed and found to explain this observation.

Comparison to experimental data

Figure 5.9 shows the electrophoretic mobility µ in pure water without additional
salt normalised by µFD, the constant (not length-dependent) value for long chains.
The simulation results are compared to two different experimental data sets. To
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Figure 5.8: The approximate position of the maximum Nmax changes with the
Debye length λD.
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Figure 5.9: Including hydrodynamic interactions (HI), the normalised elec-
trophoretic mobility µ/µFD as a function of the number of repeat units N obtained
in simulations reproduces a maximum for intermediate chains, as well as the long-
chain behaviour observed in experiments.
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account for the different viscosities of the solvents, the mobilities are rescaled by
the free-draining mobility µFD as obtained for long chains. The simulation results
reproduce a maximum for intermediate chains as well as the long-chain behaviour
(the constant mobility for long chains) observed in experiments if the hydrodynamic
interactions are properly accounted for.

The experimental data sets agree within the accuracies of the individual meth-
ods and show the characteristic behaviour of the mobility in dependence to chain
length. A mobility maximum for N = 10 is observed with capillary electrophoresis.
This maximum for intermediate chains as well as the long chain behaviour is suc-
cessfully reproduced in simulations with hydrodynamic interactions. For the first
few oligomers, a small difference is observed, which is in line with the deviation
for the diffusion. Therefore, it is inferred that the mobility maximum can only be
explained when taking into account hydrodynamic interactions between the poly-
electrolyte and the surrounding solvent. Similar effects were found by R. Winkler
using SRD to model hydrodynamics [133].

5.5. Summary

In this chapter, the transport properties of short PSS chains were investigated
via coarse-grained MD simulations, and the data was compared to two different
experimental approaches. The results of experiments and simulations can be quan-
titatively matched and agree with the existing theoretical predictions, as long as
the simulation model includes long-range hydrodynamic interactions. A simulation
model that neglects hydrodynamic interactions fails to reproduce the short-length
scale behaviour of the PSS diffusion coefficient and of the electrophoretic mobility.

To the author’s knowledge, it has been demonstrated for the first time that
the transport coefficient of short polyelectrolytes can be quantitatively modeled by
coarse-grained simulation techniques. No chemical details are needed to explain the
experimental results. The salient feature of our model is that it allows to simulate
time scales otherwise out of reach for atomistic simulations. The short chain be-
haviour, as observed in experiments, is accurately reproduced when hydrodynamic
interactions are included. From this observation it is concluded that hydrodynamic
interactions between the chain monomers are the major reason for the existence of
the maximum at intermediate length.

Having a simulation model at hand which confirms the experimental data opens
new possibilities of investigating the electrophoretic behaviour of short polyelec-
trolytes, which so far has not been fully explained by the existing theories.

When simulating the dynamic transport properties, such as diffusion coefficient
and electrophoretic mobility, the role of long-range hydrodynamic interactions be-
comes crucial. Only with their correct inclusion the experimentally observed be-
haviour is reproduced and excellent agreement between experiments and simula-
tions is found. The presented findings demonstrate convincingly that it is possible
to model the dynamic behaviour of polyelectrolytes using coarse-grained models.

76



6. Effective charge and effective friction

This chapter offers a detailed analysis of the electrophoretic mobility of a polyelec-
trolyte, especially with regards to length dependence. The observed behaviour will
be explained by determining the effective friction of the polyelectrolyte chain and
its surrounding counterions with the solvent. It will also be shown that the screen-
ing of hydrodynamic interactions by the counterions is essential in the explanation
of the process.

6.1. Introduction

In order to quantify the hydrodynamic friction, one can start out with Equation 2.70

µ =
v

E
=
Qeff

Γeff
,

and solve it for the effective friction Γeff:

Γeff =
Qeff

µ
. (6.1)

The electrophoretic mobility µ as a function of the chain length N was studied
in the previous chapter. Therefore, in the first section of this chapter, five different
estimators to measure the effective charge Qeff of polyelectrolytes in simulations and
experiments are introduced. The results for µ and Qeff are then combined to obtain
quantitative values for the effective friction coefficient and provide interpretations
of the physical processes during electrophoresis based on these observations.

6.2. Charge estimators

This section introduces five different estimators to measure the effective charge Qeff

of the polyelectrolyte counterion compound. The practicability and accuracy of the
estimators are compared, and the obtained results are discussed in the context of
polyelectrolyte electrophoresis. They will be compared to the Manning condensa-
tion theory (Equation 2.51) to check their validity. Here, retardation or polarisation
effects are not taken into account, as they are negligible at the field strength usually
used in electrophoresis [130, 131].
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6. Effective charge and effective friction

6.2.1. Primitive estimate

A simple method of estimating the effective charge has been used in Figure 4.7 for
describing the static properties of the polyelectrolyte counterion complex:

Q
(1)
eff = NPE −NCI(d < d0), (6.2)

where NCI(d < d0) is the average number of counterions that can be found in a
distance d around the polyelectrolyte, and d is the distance to the closest monomer.
The threshold d0 is usually chosen to be d0 = 2σ0. This method counts all counte-
rions that are found in a flexible tube with radius d0 around the polyelectrolyte as
shown in Figure 6.1.
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Figure 6.1: For the charge estimator Q(1)
eff all counterions are counted towards NCI

if they are closer to any chain monomer than d0. All ions within this tube are
considered to be condensed.

In Section 4.4.1, it was shown that the effective charge is not affected by hydro-
dynamic interactions. This method is computationally inexpensive and it yields a
reasonable estimate for the effective charge, as seen in Figure 4.7. The drawback
is that the threshold d0 is arbitrarily defined, which limits the accuracy of this
estimator.

6.2.2. Inflection criterion

A more advanced method uses the inflection criterion to estimate the threshold of
counterion condensation [63–65]. It has been shown that the position dc of the
inflection point (zero of the second derivative) for the integrated ion distribution
with respect to the logarithmic distance from the closest chain monomer yields a
cutoff that accurately separates free from bound counterions in the case of a rod-like
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6.2. Charge estimators

polyelectrolyte in cylindrical geometry. The applicabibility to polyelectrolytes will
be shown here.
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Figure 6.2: The integrated ion distribution I(d) for a chain of N = 32 monomers
shows a clear inflection point identified by the zero of the second derivative with
respect to ln(d). The value of I(d) at the inflection point specifies the fraction of
condensed counterions fCI.

The integrated ion distribution is defined as

I(d) =

d∫
0

ρCI(r)dr = fCI(r < d), (6.3)

where ρCI is the normalised density of counterions at a distance r to the closest
chain monomer, and fCI(r < d) is the fraction of counterions found at a distance
closer than d. The total number of condensed counterions up to this distance given
by the multiplication with NCI.

In order to apply the inflection point criterion to the polyelectrolyte model, the
integrated ion distribution has to be measured and plotted logarithmically. Fig-
ure 6.2 shows the result for a chain of N = 32 monomers. Additionally, the first
and second derivative obtained numerically are plotted.1 The cutoff value dc indi-
cated by the inflection point and the associated fraction of condensed counterions
fCI can be directly seen from the figure.

The effective charge of the polyelectrolyte using the inflection criterion is then
given by

Q
(2)
eff = NPE −NCI(d < dc). (6.4)

1Note that there is a difference between the linear (normal) derivative and the logarithmic deriva-
tive, i.e., the inflection point criterion is only correct when applied to the ion distribution versus
the logarithmic distance.
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6. Effective charge and effective friction

N dc fCI Q
(2)
eff

2–4 n/a n/a n/a
5 3.75 0.09 4.56
6 4.23 0.14 5.16
7 4.59 0.18 5.73
8 4.81 0.23 6.19
9 5.04 0.26 6.68
10 5.47 0.29 7.14
16 6.51 0.40 9.60
32 8.52 0.53 15.52
64 10.87 0.61 26.81

Table 6.1: The cutoff value dc as obtain from the inflection point criterion in de-
pendence of the length N of the polyelectrolyte, as well as the fraction of condensed
ions fCI and the resulting effective charge Q(2)

eff .

The cutoff dc is not a fixed parameter anymore, but has to be determined for
every chain length. Table 6.1 shows the values used in this study and the associated
values for the counterion condensation. Please note that the logarithmic inflection
point criterion is not applicable to short chains, therefore no effective charge can
be estimated for chains of length N ≤ 4.

6.2.3. Langevin model

In Section 5.4.2, the local force picture was used to derive Equation 5.5 for the
electrophoretic mobility in the absence of hydrodynamic interactions. Similarly,
one can derive an expression for the effective charge of the polyelectrolyte in the
absence of hydrodynamic interactions based on the measured mobility µ of the
compound.

Starting with Equation 5.5,

µ =
Qeff

Γeff
=

N −NCI

Γ0 (N +NCI)
, (5.5)

and solving it for NCI, one obtains

NCI = N
1− µΓ0

1 + µΓ0
. (6.5)

As before the effective charge is defined as

Qeff = N −NCI, (6.6)

which leads to a charge estimator based on the measured mobilities in the Langevin
model:

Q
(3)
eff = NPE

(
1− 1− µΓ0

1 + µΓ0

)
. (6.7)
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6.2. Charge estimators

Equation 6.7 offers a way to determine the effective charge of the polyelectrolyte
counterion complex based on the measured mobility in the absence of hydrodynamic
interactions without the need of free parameter and at reasonable computational
costs. The accuracy of this estimator is limited by the accuracy of the measured
electrophoretic mobility µ.

6.2.4. Ion diffusion

The local force picture used for the Langevin model assumes that a finite amount
of counterions is bound to the polyelectrolyte, while the remaining ions can move
freely. The NCI bound counterions are expected to diffuse together with the poly-
electrolyte with a diffusion coefficient DPE as determined in Section 5.4.1. Likewise,
the N −NCI free counterions will diffuse with a different diffusion coefficient D0. If
one measures the ion diffusion coefficient DCI for all N ions in such a system, the
measured quantity will be the weighted average of the bound and the free diffusion
coefficients:

DCI =
NCIDPE + (N −NCI)D0

N
. (6.8)

From this, a novel estimator for the effective charge is derived that has the ad-
vantage of only including quantities which are experimentally accessible. As such,
the estimator can be used in experiments, for example the described NMR setup,
to directly measure the effective charge:

Q
(4)
eff = N

(
1− D0 −DCI

D0 −DPE

)
. (6.9)

Figure 6.3 compares the results of estimator Q(4)
eff with and without hydrodynamic

interactions and shows that, within the accuracy of the method, no difference can be
observed. This indicates that the effective charge, like the static chain properties,
is not affected by the presence of hydrodynamic interactions. The charge estimator
presented in the following section supports this important observation.

Equation 6.9 is valid for simulations independent of the presence or absence of
hydrodynamic interactions and has the computational complexity of determining
the diffusion coefficients (see Section 5.4.1).

The derivation of equation 6.9 assumes the absence of additional salt, i.e., cS = 0,
but it can be modified to account for a finite amount of salt. In this case, the average
diffusion coefficient can be written as:

DCI =
cMNCIDPE + (cM(N −NCI) + cS)D0

cMN + cS
, (6.10)

which now also depends on the monomer and the salt concentration, cM and cS.
Solving this equation for NCI yields a modified version of the charge estimator:

Q
(4′)
eff = N

(
1− D0 −DCI

D0 −DPE

)
− D0 −DCI

D0 −DPE

cS
cM
. (6.11)
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6. Effective charge and effective friction
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Figure 6.3: Estimated charge Q(4)
eff (Equation 6.9) of polyelectrolyte chains of vary-

ing length N with and without hydrodynamic interactions (HI).

The additional term vanishes for cS = 0 and the Equation 6.9 is recovered.
The ratio between cM and cS strongly influences the achievable resolution. The

higher the salt concentration is with respect to the monomer concentration, the
smaller the difference between the free and the bound ion diffusion coefficient is.
Ultimately, both diffusion coefficients become indistinguishable, which prohibts the
application of this charge estimator.

A similar analysis may be performed using the free and the bound mobility, but
these quantities are experimentally more difficult to obtain.

6.2.5. Co-moving counterions

The last estimator for the effective charge introduced in this thesis is based on
directly determining the counterions that are co-moving with the polyelectrolyte
during free-solution electrophoresis, similarly to the method used in Reference 151.

When applying an external electric field E, the polyelectrolyte moves with a
velocity vPE = µPEE in the direction of the electric field. Co-moving counterions
move with the same velocity in the same direction, whereas free counterions move
with a velocity vCI,0 = µ0E into the opposite direction. Here, µ0 is the mobility of
free counterions. To guarantee a linear response of the system to the electric field,
a value of E = 0.1 has been chosen, which is well above the estimated critical field
strength of E ≈ 0.25.2

The velocity vCI of the ions versus the distance d to the center of mass of the
polyelectrolyte is shown in Figure 6.4. It can be seen that ions close to the center

2In priciple, the relative velocity can also be calculated in the absence of an electric field leading
to a similar results[152].
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Figure 6.4: The ion velocity distribution vCI(d) for a polyelectrolyte chain of length
N = 32 shows the transition from co-moving counterions with a velocity similar
to vPE (dashed line and dotted line indicate vPE with and without hydrodynamic
interactions (HI)) to the free ion velocity vCI,0 (dash-dot line). vCI(d = d0) = 0
defines the threshold between co- and counter-moving ions, and is used to determine
the effective charge of the polyelectrolyte counterion complex in Equation 6.12.

of mass are co-moving, i.e., vCI = vPE, and ions far away from the chain are indeed
freely moving with a velocity vCI = vCI,0. For an intermediate value of d0, the
ion velocity vCI is zero, i.e., the ions are not moving in the electric field due to
the interaction with the polyelectrolyte. This distance d0 separates the co-moving
counterions from the free-moving ones. Similar toQ(1)

eff (Eq. 6.2), the effective charge
is obtained by averaging the number of counterions found within a distance d0 of
the center of mass of the chain.

Q
(5)
eff = NPE −NCI(d < d0), (6.12)

Note that for this estimator, d is the distance from the counterion to the center
of mass of the polyelectrolyte, not to the closest polyelectrolyte monomer.

The results shown in Figure 6.4 indicate a small influence of the hydrodynamic
interactions on the value of d0, but it is important to note that the ion density in
this region is very low, resulting in almost identical values of the Q(5)

eff in both cases
(cf. Figure 4.6 on page 55).

The threshold used for this estimator is not predefined, but has to be determined
from the simulation and generally is a function of the chain length. Since vCI has
to be determined for each distance d to the center of mass of the polyelectrolyte,
this estimator is computationally expensive, as a high number of statistically inde-
pendent samples are required.
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6. Effective charge and effective friction

6.2.6. Comparison
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Figure 6.5: The effective charge of polyelectrolyte chains of length N using the

estimators Q(1)
eff to Q(5)

eff . The dotted line indicates the bare, unscreened charge of
the polyelectrolyte, whereas the solid line shows a prediction based on counterion
condensation theory, with ξ = 2.84 being the condensation parameter. Whereas
estimators Q(3)

eff to Q(5)
eff agree over the range of lengths N tested, Q(1)

eff overestimates
the effective charge of the polyelectrolyte counterion complex.

Figure 6.5 compares the results of all presented charge estimators Q(1)
eff to Q(5)

eff .
For short chains (N < 4), the estimators agree and coincide with the bare, un-
screened charge of the polyelectrolyte. In this regime, no counterion condensation
is observed.

For intermediate and long chains (N > 4), the effective charge is reduced as it
deviates from the bare charge and tends towards the Manning prediction but does
not reach it completely as the polyelectrolyte starts to assume a coiled conformation
that is not accounted for in condensation theory. Here, the condensation parameter
for the polyelectrolyte system is ξ = 2.84. In this regime, the simple estimator
Q

(1)
eff measures a higher effective charge, i.e., not all condensed counterions that are

correctly included in the other estimators are taken into account. This effect is not
observed if the cutoff value is chosen using the inflection criterion.

All estimators show no or little influence of the hydrodynamic interactions on
the effective charge of the polyelectrolyte counterion complex. This independence
on the hydrodynamic interactions has been recently observed for highly charged
colloid using a similar simulation approach [151].

Furthermore, no difference between the static estimate, Q(2)
eff and the dynamic

estimates Q(3−5)
eff for the effect charge are observed. This is especially remarkable

as it is an open question if there is a difference between the static and the dynamic
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6.3. Effective friction

charge. For the case of charged colloids this seems to be the case [149, 153], but
the results of this work show that for strongly charged linear polyelectrolytes both
quantities are identical and one does not have to differentiate between static and
dynamic charge.

6.3. Effective friction
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Figure 6.6: The effective friction of the polyelectrolyte counterion complex is in
agreement with the hydrodynamic friction (Γ = 1/D) for short chains only. For
longer chains beyond the Debye length in the system (indicated by the dashed lines)
the effective friction deviates and seems to approach a linear behaviour.

Now the effective charge will be used to quantify the effective friction of the
polyelectrolyte-counterion compound. As shown in Figure 6.5, the estimators Q(2)

eff

to Q
(5)
eff yield the same effective charge, thus only Q

(3)
eff is used to determine the

effective friction in the following equation:

Γeff =
Qeff

µ
. (6.13)

Here the electrophoretic mobility µ obtained in Section 5.4.2 is used.
The result is shown in Figure 6.6. One can see that, for short chains, the effective

friction determined by Equation 6.13 is in agreement with the hydrodynamic friction
Γ = 1/D following the Einstein relation (cf. Equation 2.29). For longer chains, on
the other hand, a significant deviation is observed. The effective friction no longer
follows the N−m behaviour of the Einstein relation (with m ≈ 0.63), but instead
tends towards a linear increase in N. The length scale separating both regimes is of
the order of the Debye length in the system.
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6. Effective charge and effective friction

From this, it is inferred that the effective friction increases due to the counterions
close to the chain, which destroy long-range hydrodynamic interactions between
distant parts of the polyelectrolyte and thus reduce the shielding effect. Effectively,
different chain segments are decoupled. As this effect is strongly related to the
counterion density in the vicinity of the chain, it is likewise depending on the Debye
length in the system.
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Figure 6.7: The effective charge Qeff and the effective friction Γeff per monomer
show a strong dependence on the chain length N for short chains. For long chains,
both values are constant. The transition occurs on a length-scale similar to the
Debye length (dashed lines).

This effect becomes more evident when looking at the effective friction per mono-
mer, Figure 6.7. Initially, for short chains, the effective friction decreases strongly
with increasing chain length N . The monomers move together through the solvent
and can shield each other from the flow, in this way reducing the effective friction
they experience with the solvent. For longer chains, this reduction of the effective
friction becomes less pronounced.

The effective charge per monomer shows a different behaviour. Short chains do
not have any bound counterions and show their bare charge of 1e per monomer.
With increasing length, they can attract counterions which are then co-moving with
the polyelectrolyte and reducing its effective charge.

The combined behaviour of effective friction and effective charge leads to the
observed length dependent mobility for short chains and the constant mobility for
long chains. The mobility maximum which is observed for flexible polyelectrolytes
appears due to the efficient shielding between monomers for short chains, which
reduces the effective friction. Stiffer polyelectrolytes experience a stronger friction,
since the monomers in rod-like conformations can not shield each other that ef-
ficiently. This is the reason why the maximum in the mobility for intermediate
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6.4. Counterion induced hydrodynamic screening

chains is only observable for flexible or semi-flexible polyelectrolytes, such as PSS
or single-stranded DNA, but not for the more rigid double-stranded DNA. More-
over, the decrease of the effective charge by counterion attraction depends on the
linear charge density of the polyelectrolyte. The higher the polyelectrolyte’s charge
is, the more the effective charge is reduced by co-moving counterions. Additionally,
it is shown that the counterions also increase the effective friction. Both effects
work in the same direction and cause the maximum to be shifted to shorter chains
(in case of PSS) or disappear completely (for double-stranded DNA).

This study has shown that the concentration of counterions and salt around
the polyelectrolyte plays an important role on the electrophoretic behaviour of
polyelectrolytes in free-solution. It was illustrated that the relevant length-scale
for the hydrodynamic screening is comparable to the Debye length. This effect is
explained in detail in the next section.

6.4. Counterion induced hydrodynamic screening
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Figure 6.8: The Figure schematically illustrates the influence of surrounding ions
on to the long-range hydrodynamic interactions between different parts of a poly-
electrolyte chain. a) For an uncharged polymer, the hydrodynamic interactions
are unscreened and all chain monomers can interact with each other. This is the
basis of the Zimm model (cf. Section 2.3.2). b) The anti-correlated movement of
the counterions during electrophoresis of polyelectrolytes limits the hydrodynamic
interaction. c) The more salt is added to the system, the higher is the ion density
in the vicinity of the chain, which reduces the hydrodynamic interaction range even
further, so that most parts of the chain appear to be hydrodynamically decoupled.

Figure 6.8 illustrates how counterions and salt in the vicinity of polyelectrolyte
chains influence the hydrodynamic interactions during electrophoresis. As explained
in the Zimm model (cf. Section 2.3.2), the hydrodynamic interactions between
different parts of an uncharged polymer chain are unscreened and essentially have
an infinite interaction range.
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6. Effective charge and effective friction

Figure 6.8a indicates this regime, where all parts of the chain can interact via
hydrodynamic interactions. The individual chain segments provide hydrodynamic
shielding to each other, so that the fluid feels a combined spherical object (cf. Fig-
ure 2.6). For polyelectrolytes this picture holds during electrophoresis, as proven
by the comparison between Kirkwood-Zimm formula, Eq. 2.36, and the measured
diffusion coefficient D in Figure 5.2.

When measuring the electrophoretic mobility, a different phenomenon can be
observed: the effective hydrodynamic friction of the polyelectrolyte chain is not
directly related to its hydrodynamic size as measured in diffusion experiments any-
more, see Figure 6.6. The reason for this is illustrated in Figure 6.8b: during
electrophoresis, the counterions within the polyelectrolyte coil move – due to their
opposite charge – anti-correlated to the polyelectrolyte. This movement allows
the fluid molecules to penetrate into the polyelectrolyte coil. As a consequence,
the range of the hydrodynamic interaction gets limited. Like the Debye length
for electrostatic screening, the hydrodynamic screening length depends on the ion
concentration in the vicinity of the chain. This relation between the electrostatic
screening and the hydrodynamic screening length was previously suggested by dif-
ferent authors [154, 155].

The connection between electrostatic screening and hydrodynamic screening can
be easily motivated by the following reasoning: the Debye length is the length-scale
on which the charge of the polyelectrolyte is screened by the surrounding ions.
When looking at this object from the outside, the total force exerted by the applied
electric field is zero, i.e., no momentum is transferred to the polyelectrolyte-ion
complex. Due to momentum conservation, the interaction with the fluid has to
result in a vanishing total force.

The counterions that associate with the polyelectrolyte influence the solvent flow
around it, effectively canceling the beneficial shielding effects. When additional salt
is added to the system, the like charged salt ions likewise contribute to this effect as
shown in Figure 6.8c. The higher the ion concentration is, i.e., the shorter the Debye
length is, the shorter is the length scale on which different polyelectrolyte monomers
can interact hydrodynamically. On a length scale comparable to the Debye length
in the system, different parts of the polyelectrolyte become decoupled. For longer
chains, the effective friction per segment does not depend on the length of the
polyelectrolyte anymore. Consequently, the effective friction per monomer becomes
independent of the length of the polyelectrolyte chain, as seen in Figure 6.7.

6.5. Summary

This chapter provides a microscopic understanding of the effects that lead to the ex-
perimentally observed length independent mobility of long flexible polyelectrolytes,
which is in agreement with the free-draining picture illustrated in Section 2.5.2. To
investigate the dynamic behaviour quantified in Chapter 5, five different approaches
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6.5. Summary

to estimate the dynamic effective charge of the polyelectrolyte-counterion complex
during free-solution electrophoresis were introduced.

Two of these estimators are particularly promising. For the charge estimator
based on the Langevin model, Q(3)

eff , it is only necessary to determine one dynamic
quantity, namely the electrophoretic mobility. All other parameters are directly
given by the model. In this way one can obtain an accurate estimate without
too much computational effort. The ion-diffusion estimator Q(4)

eff , on the other
hand, requires the calculation of three dynamic quantities, which is slightly more
costly in simulation but has the great advantage of being directly transferable to
experiments, since all needed quantities, i.e., the free ion diffusion, the bound ion
diffusion, and the chain diffusion can be measured by standard techniques. To the
author’s knowledge, this is the first time this method is proposed to determine the
effective charge of polyelectrolytes during electrophoresis.

All estimators show that the effective charge is not influenced by hydrodynamic
interactions. Thus, it is possible to use these estimators in simulations without
hydrodynamic interactions that are computationally inexpensive.

With these estimators, the length dependence of the effective charge is determined
and, combined with the measurements of the electrophoretic mobility, the effective
friction of the polyelectrolyte chain is obtained. The results indicate that the effec-
tive friction during electrophoresis is different from the hydrodynamic friction for a
single polyelectrolyte chain obtained from diffusion measurements. This difference
is attributed to the contribution of the co-moving counterions, which influences
the hydrodynamic interactions between different chain monomers. On short length
scales, the hydrodynamic interactions create a hydrodynamic shielding effect for
the polyelectrolyte molecules. On larger length scales, the hydrodynamic interac-
tions between different parts of the polyelectrolyte chain are destroyed. Thus, for
compounds of longer chains, the hydrodynamic interactions are screened and the
friction becomes linear in terms of the chain length. For these chains, the effec-
tive friction per monomer approaches a constant value, which – together with the
constant value per monomer of the effective charge – leads to the well-known and
observed constant electrophoretic mobility for long polyelectrolyte chains.

It is shown that the length scale of this effect, namely the hydrodynamic screening
length, is comparable to the Debye length for electrostatic screening in the system.
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7. Size-separation by end-labeled
free-solution electrophoresis

The final chapter of this thesis is dedicated to the the electrophoretic separation
of polyelectrolytes of varying length in free-solution by means of end-labeled free-
solution electrophoresis (ELFSE). The coarse-grained simulation model is used to
characterize the drag coefficients of different label types: linear and branched poly-
meric labels, as well as transiently bound micelles.

After introducing the history and the background of the ELFSE method, it is
specifically shown that the label’s drag coefficient is determined by its hydrodynamic
size, and that the drag per label monomer is largest for linear labels. However,
the addition of side chains to a linear label offers the possibility to increase the
hydrodynamic size, and therefore the label efficiency, without having to increase
the linear length of the label, thereby simplifying synthesis. The third class of
labels investigated, transiently bound micelles, seems very promising for the usage
in ELFSE, as they provide a significant higher hydrodynamic drag than the other
label types.

The results are compared to theoretical predictions, and it is analysed how the
efficiency of the ELFSE method can be improved by using smartly designed drag-
tags.

7.1. Introduction

As shown in Chapters 5 and 6, the free-solution mobility of a flexible polyelectrolyte
chain does not depend on the chain length N anymore if the chain is longer than a
certain length NFD. The regime where N > NFD is called free-draining regime. In
this regime, the counterions influence the inter-monomer hydrodynamic interactions
and allow the fluid to drain through the polyelectrolyte coil. The effective friction
Γeff becomes linear in the chain length, as does the effective charge Qeff for longer
chains, which leads to a constant, length-independent mobility

µ0 =
Γeff

Qeff
. (7.1)

It was shown that attaching a suitable uncharged molecule to an electrophore-
sis target can restore the size-dependent mobility and overcome the free-draining
property of long polyelectrolyte chains [2, 3, 18]. This method, which is known as
end-labeled free-solution electrophoresis (ELFSE), is based on the alteration of the
charge-to-friction ratio of the polyelectrolyte molecules by an uncharged drag label.
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The effect of the label can be compared to that of a parachute attached to a
moving object. The additional friction provided by the parachute slows the object
down. This effect is stronger for smaller molecules with a lower effective friction,
as the ratio between charge and friction is changed more drastically than for larger
molecules with a naturally higher effective friction.

Since the method’s introduction, finding suitable labels that provide a high hy-
drodynamic drag has been a major concern in this field [156–158]. A larger hy-
drodynamic drag enables the separation of longer chain fragments, as the length-
dependence of the electrophoretic mobility decreases with increasing polyelectrolyte
length. When the additional friction provided by the drag-tag becomes negligible
against the intrinsic effective friction of the polyelectrolyte, the chain becomes es-
sentially free-draining again. Experimentally relevant is that the mobility of long
polyelectrolyte chains should differ by a factor large enough to allow for accurately
separating them, although their lengths only vary by a single monomer. The max-
imum chain length resolvable in this way is called the read length.

In general, the drag labels can be chosen from a wide range of molecules but
they have to fulfill certain requirements, such as being water-soluble at experimen-
tal conditions, having a unique attachment mechanism to the polyelectrolyte and
showing minimal interaction with the walls of the capillary. The read length is op-
timised by choosing a large molecule that imposes a high frictional drag. However,
to fulfill resolution requirements, the labels must remain perfectly monodisperse.

As it poses an experimental challenge to produce large, monodisperse linear poly-
mer labels, two recently proposed alternatives seem promising. Haynes et. al. [159]
proposed to use branched polymers with well-defined architecture. A first theo-
retical study on this method [160] verified the approach and concluded that, even
though a branched polymer is more compact and thus provides a smaller hydrody-
namic friction for a given molecular weight than a linear polymer, this drawback is
offset by the monodispersity of the branched labels created by assembling shorter
linear chains. Grosser et. al. [161–163] introduced nonionic surfactant micelles as
drag labels with very large hydrodynamic friction. The inherent polydispersity of
the micelles is overcome by using a PNA amphiphile that only provides a tran-
sient binding between the DNA fragments to be separated and the micelles. Each
fragment attaches to a different micelle every couple of seconds, which results in
an averaging procedure over the course of the elution time that remedies the need
for perfect monodispersity. Both methods discussed above can benefit significantly
from supporting computer simulations that include hydrodynamic interactions be-
tween polyelectrolyte, label and solvent, as well as account for the influence of the
electrostatic interaction between the polyelectrolytes and its surrounding counteri-
ons.

Since the ELFSE method overcomes the main drawback of ordinary gel elec-
trophoresis, the long separation time due to the slow down by the applied gel
matrix, it is a promising method on the way to faster sequencing methods and, as
such, of especial interest to the community.
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7.2. Theory

The theory for end-labeled free-solution electrophoresis is based on the interplay
between the hydrodynamic and the electrostatic forces. In general, only hydrody-
namic interactions with the solvent are taken into account, but the ones between
the attached drag-tag and the polyelectrolyte are neglected. The coupled electro-
hydrodynamic interactions are linearised based on the assumption that the confor-
mations and counterion clouds are not deformed. This is valid for small velocities
and small electric fields (cf. [130, 131], also see Chapter 4).

Neglecting molecular end-effects, the electrophoretic mobility µ = v/E of the
polyelectrolyte with an attached linear drag-tag can be described in terms of the
effective friction of the polyelectrolyte ΓPE, its effective charge QPE and the hydro-
dynamic friction of the attached label ΓL:

µ =
QPE

ΓPE + ΓL
= µ0

1
1 + ΓL/ΓPE

, (7.2)

where µ0 is the length independent free solution mobility without drag-tag.
Equation 7.2 shows the importance of the ratio between ΓPE and ΓL. The elec-

trophoretic mobility µ is a function of N for a fixed ΓL as long as ΓPE changes with
N and the ratio between ΓL and ΓPE remains non-negligible.

Since ΓPE grows linear with the length of the polyelectrolyte for long chains, as
shown in Chapter 6, Equation 7.2 can be reformulated as follows:

µ = µ0
1

1 + αL/N
, (7.3)

with a constant drag coefficient

αL =
ΓL

ΓPE/N
. (7.4)

The chemistry and temperature dependent αL is a measure for the difference in
hydrodynamic properties between the polyelectrolyte and the label [3, 158, 164–
166].

In order to characterize the effectiveness of an arbitrary (not necessarily linear)
label for size-separation, Equation 7.3 has been used to define this specific label
property from the measured mobilities:

αL = N

(
µ0

µ
− 1
)
, (7.5)

where αL is conveniently determined as the slope when plotting µ0/µ versus 1/NPE:

µ0

µ
= 1 + αL/N. (7.6)
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(a) No drag-tag (b) Linear drag-tag

(c) Branched drag-tag (d) Micellar drag-tag

Figure 7.1: (a) Polyelectrolyte with surrounding counter- and co-ions. (b) with
linear drag-tag, (c) with branched polymeric drag-tag, and (d) with micellar drag-
tag.
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7.3. Modelling drag-tags

The coarse-grained molecular dynamics model used in this thesis is extended by the
inclusion of the three labels investigated, as shown in Figure 7.1. The linear labels
use the same flexible bead-spring model as the polyelectrolytes, but are uncharged.
For the study of branched labels, flexible side chains of well-defined length are added
to the linear label. The third kind of label, micellar drag-tags, is represented by a
sphere of given radius whose surface is modelled by many small WCA spheres that
are connected with each other by a network of FENE springs. The number of small
spheres is defined by the radius of the large sphere to be modelled. This model has
been successfully used to study colloidal electrophoresis [149, 152, 167].

For this study, the length scale is set to σ0 = 4.7Å, which, with the average
bond length along the polyelectrolyte chain of 0.91σ0, represents a linear monomer
distance of approximately 4.3 Å, the distance between two bases of single-stranded
DNA [166]. The Bjerrum length is changed to lB = e20/4πεkBT = 1.5 in simulation
units to preserve correspondence to 7.1 Å, the Bjerrum length in water at room
temperature.

The electrophoretic mobility is obtained by applying a constant electric field of
reduced field strength E = 0.1 that acts on all charged particles. The mobility is
then given by direct measurement of the center of mass velocity v of the chain:

µ =
v

E
. (7.7)

This approach is different from the method used in the previous chapters on the
free-solution mobility of polyelectrolytes, where the Green-Kubo formulation to de-
termine the electrophoretic mobility at zero electric field was used. As this chapter
is dedicated to study the behaviour of longer polyelectrolyte chains, the direct mea-
surement of the velocity offers the better trade-off between computational effort
and accuracy of the results.

Before applying this method, it was ensured that the applied electric field strength
E is small enough not to distort chain conformations or counterion distributions.
Therefore, the system is in the linear response regime, i.e., the measured mobility
does not depend on the magnitude of the electric field.

The mesoscopic LB fluid uses a kinematic viscosity ν = 1.0 and a fluid density
ρ = 1.0. The simulations are carried out under periodic boundary conditions in a
cubic simulation box. The behaviour of polyelectrolyte chains varying from N = 20
to N = 60 monomers is investigated. The size L of the box is varied in order
to maintain a constant monomer density of nPE = 10−3, which corresponds to a
concentration cPE = 16mM. The same concentration is used for the additional salt,
resulting in a Debye length of λD ≈ 4.2.

Up to ten independent simulations are carried out for each data point, taking
between one day and two weeks on a single standard CPU1 depending on the chain
length N and the type of label investigated.

1Dual Core AMD Opteron(tm) Processor 270
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7.4. Linear drag tags

In this section, the simulation model is applied to the electrophoresis of polyelec-
trolyte chains with an attached linear polymeric drag-tag. The electrophoretic
mobility for polyelectrolyte chains is determined with and without different labels,
and the results are compared to the theoretical predictions.
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L = 70

Figure 7.2: The free-solution electrophoretic mobility without label (black circles)
shows no dependence on the chain length N . The free-draining mobility is µ0 =
0.147± 0.002. The attachment of linear drag-tags to the end of the polyelectrolyte
chains reduces the mobility and restore a N -dependent behaviour. The label length
L is varied from 30 to 70 monomers, with the largest label resulting in the strongest
slowdown.

First, the free-solution electrophoretic mobility without an attached drag-tag, µ0,
is determined, as shown in Figure 7.2. The measured mobility does not depend on
the chain length, as expected for longer free-draining polyelectrolyte chains. The
average mobility is determined to be

µ0 = 0.147± 0.002. (7.8)

Additionally, in Figure 7.2, the mobilities with attached drag-tags ranging from
L = 30 to L = 70 monomers are measured, and it is confirmed that a length-
dependence is achieved and that the difference in mobilities, i.e., the resolution of
the separation, is bigger the longer the attached label is. Equation 7.6 is used to
calculate the hydrodynamic drag coefficients as shown in Figure 7.3, resulting in
values from αL = 13.5± 0.4 for L = 30 to αL = 25.7± 0.6 for L = 70.

In the following, an expression for αL based on the hydrodynamic size and shape
of the label is developed. The hydrodynamic friction ΓL of the uncharged label is
related to the hydrodynamic radius Rh by means of the Stokes relation:

ΓL = 6πηRh,L. (7.9)
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Figure 7.3: The hydrodynamic drag coefficient αL is given by the slope of the curve.
For the linear labels, αL ranges from 13.5 to 25.7.

As in the previous chapter, the effective friction of the polyelectrolyte is expressed
in terms of the free-solution mobility µ0 and the effective charge Qeff:

ΓPE = Qeff/µ0. (7.10)

Using the Manning prediction Qeff = 1/ξN for the effective charge finally yields

αL = µ0ξ6πηRh,L. (7.11)

With the system parameter used here, ξ = lB/b = 1.63, one obtains

αL = (4.5± 0.1)Rh,L. (7.12)

Equation 7.11 will be shown to be valid for linear labels whose size is not exceeding
the Debye length λD. When the label size becomes larger, the friction of the label
is not anymore directly related to the hydrodynamic radius, as the salt ions that
penetrate the polymer coil influence the intermonomer hydrodynamic interactions
and limit them to the hydrodynamic screening length. As for the polyelectrolyte
itself, this screening length is of the order of the Debye length.

For linear labels larger than the Debye length, McCormick et al. introduced a re-
lation for the hydrodynamic drag coefficient, with which αL can be determined from
the size of the polyelectrolyte and label monomers, bPE and bL, and the correspond-
ing Kuhn lengths, bk,PE and bk,L, which describe the stiffness of the chains [165]:

αL =
bLbk,L

bPEbk,PE
L. (7.13)

The derivation of Equation 7.13 assumes that the polyelectrolyte and the label
can be represented by a series of hydrodynamically equivalent entities, called“blobs”
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7. Size-separation by end-labeled free-solution electrophoresis

Figure 7.4: Scheme of the “blob” picture used to derive Equation 7.13. The circles
represent the blobs with a size comparable to the Debye length λD. Hydrodynamic
interactions are screened beyond the size of the blobs.

as shown in Figure 7.4. The number and the size of these blobs depend on the bond
length and flexibility of the chain, resulting in the presented relation for αL.

The total effective friction of the polyelectrolyte-label compound with the sur-
rounding solvent is linear in the total number of hydrodynamically equivalent blobs
given by

N = NPE + αNL. (7.14)

This is true for long polyelectrolytes in the free-draining regime, where the size of the
compound is larger than the Debye length λD, since the hydrodynamic interactions
between the individual monomers are screened on this length scale, as shown in
Chapter 6.

Thus, the hydrodynamic drag αL can be directly calculated from the persistence
lengths of the polyelectrolyte and of the label using Equation 7.13. Here, lp,PE and
lp,L are calculated from the bond correlation function [168]:

lp =
1
2b

N/2∑
i=0

〈~bN/2 ·~bN/2+i +~bN/2 ·~bN/2−i〉, (7.15)

where ~bi is the i-th bond vector and b is the average bond length. The angular
brackets 〈. . .〉 denote an ensemble average.2

Under the chosen conditions, the persistence length of the polyelectrolyte is found
to be

lp,PE = 5.1± 0.3,

and the label’s one
lp,L = 1.9± 0.1.

2For a discussion about different ways to determine the persistence length in computer simulations
please refer to Reference 169.
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In our model, all monomers have the same size, so that Equation 7.13 is reduced to

αL =
lp,L

lp,PE
L = (0.37± 0.03)L. (7.16)
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Figure 7.5: The hydrodynamic drag coefficient αL for the linear label is compared
to the theoretical predictions of Equations 7.11 and 7.13. Both predictions are
valid in different regimes with the division being Rh ≈ λD indicated by the vertical
dashed line. Note that neither theory has a free fitting parameter used to achieve
the quantitative agreement with the simulation data.

The comparison between the measured drag coefficient and the theoretical pre-
diction in Figure 7.5 shows an agreement for the respective regimes of validity and
underlines the applicability of the chosen simulation model for this problem. For
labels with a hydrodynamic size smaller than the Debye length, i.e., Rh < λD,
Equation 7.11 gives the correct prediction for the drag coefficient αL. Longer la-
bels, however, can no longer be seen as a single polymer coil with a hydrodynamic
size Rh, but instead the blob picture described by Equation 7.13 has to be used.
This prediction is only valid when the hydrodynamic size becomes larger than the
Debye length. For Rh ≈ λD a cross-over between both predictions is observed.

It remains to be emphasised that, by determining αL from the measurements
of the persistence lengths and the hydrodynamic radius, there is no free fitting
parameter and the quantitative agreement in Figure 7.5 is noteworthy.

7.4.1. Increasing the hydrodynamic drag coefficient

In Figure 7.5, it is shown that the total drag coefficient αL for linear labels can be
increased by using longer labels, and that beyond the Debye length the increase is
linear with the length L of the label. Unfortunately, the experimental requirement
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7. Size-separation by end-labeled free-solution electrophoresis

of strict monodispersity of the label limits the size of linear polymeric labels that
are synthesizable. In this section, it will be shown how one can influence the total
drag coefficient also by modifying the relative stiffness of the polyelectrolyte chain
and the label.

Increasing the label stiffness

Equation 7.13 shows the dependence of αL on the persistence lengths of polyelec-
trolyte and label. Therefore, αL can be increased by either increasing the persis-
tence of the label or decreasing the persistence of the polyelectrolyte. Both ways
are shown here.

First, an additional harmonic bond angle potential,

UBA = kBA (φ− φ0)
2 , (7.17)

is added to the interaction between the label monomers, where φ is the angle be-
tween two consecutive bonds. Here, kBA = 30 and φ0 = 0 are chosen.

The bond angle potential increases the hydrodynamic radius of the 30 monomer
label to

Rh,L = 5.25± 0.05,

and thus puts the label size into the regime where the blob picture is valid. The
increased stiffness doubles the persistence length of the label to

lp,L = 4.0± 0.1,

which yields an increased drag coefficient according to Equation 7.13 of:

αL = (0.79± 0.04)L ≈ 23.7.

Figure 7.6 compares the theoretical predicted slowdown of the stiffer 30 mono-
meric label to the measured mobilities. As before, a good agreement to the theory
is found for the investigated label lengths.

Reducing the polyelectrolyte stiffness

Now, the amount of additional monovalent salt is increased from a concentration
of cS = 16mM to cS = 1M , thereby significantly reducing the Debye length of the
system to λD ≈ 0.65, making the blob picture fully applicable.

The increased electrostatic screening reduces the extension of the polyelectrolyte
chain and reduces the contribution of electrostatics to the persistence length, which
is determined to be

lp,PE = 3.8± 0.2,

whereas the label persistence is unaffected. Thus, one obtains a hydrodynamic drag
coefficient of

αL = (0.50± 0.04)L.
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Figure 7.6: The hydrodynamic drag coefficient of a stiff linear label is higher than
that of a fully flexible label with the same length. The slowdown of the stiff label
is correctly predicted by Equation 7.13 (solid line).

0 20 40 60 80
N

0

0.05

0.1

0.15

µ

w/o label
L = 20
L = 40

Figure 7.7: In the presence of 1 Mol additional salt, the persistence length of
polyelectrolyte is reduced, changing the relative hydrodynamic drag αL of the label.
The measured mobilities for two linear labels of length 20 and 40 are compared to
the prediction using Equation 7.13.
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The change in electrophoretic mobilities for a label of length L = 20 and L = 40
can be seen in Figure 7.7. Please note that the free-draining mobility µ0 also
changes due to the fact that the additional salt also increases the screening of the
polyelectrolyte charge, thus reducing the force from the external field:

µ0 = 0.113± 0.002.

This reduction of the electrophoretic mobility has a negative impact on the size-
selectivity of the separation, because the absolute difference between the mobilities
of polyelectrolyte chains of different length is reduced. Consequently, an increased
hydrodynamic drag coefficient is less effective when achieved by adding additional
salt.

In conclusion, it has been found that, while it might be easier to influence the
persistence length of the polyelectrolyte to be analysed by the addition of salt, a
better size-selectivity can be achieved when a suitable stiff label with high persis-
tence length is used. In any case, it was demonstrated that the hydrodynamic drag
coefficient can be significantly increased without changing the label length.

7.5. Branched drag tags

In this section, it will be investigated if branched polymeric labels can be used as
efficient drag-tags for ELFSE. First, the results obtained in a recent experimental
study by Haynes et al. are briefly reviewed [159]. The study compared a linear
polypeptide drag-tag with 30 repeat units to two branched drag-tags, each with 5
side-chains spaced evenly along a 30 unit-long backbone. The two different branched
labels had 4 and 8 monomer long side-chains. The drag coefficients αL were obtained
by measuring the mobility of two different DNA fragments of 20 and 30 bases length.
It was found that the value of αL increases roughly linearly with the molecular
weight of the branched label.

This astonishing observation was theoretically analysed by Nedelcu et al. [160].
It was shown that the drag coefficient is directly related to the hydrodynamic radius,
and that the linear dependence on molecular weight is only true in the limit of short
side chains.

Furthermore, the drag provided by a linear label is always higher than that
provided by a branched label of the same molecular weight. The reason for this is
that, with a fixed length backbone, a branched polymer is essentially a compact star
polymer with a smaller hydrodynamic size than the linear equivalent. Indeed, as
the number of arms increases, the branched polymer becomes even more compact
and less favorable for ELFSE.

Based on the observations, the following optimal design is proposed when using
branched polymeric labels for ELFSE: I) side chains with length comparable to the
distance between branching points, or II) two long branches located near the ends
of the molecule’s backbone.
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Here, the focus will be on investigating the effect of the length of the side chains
for a polymeric drag-tag with a fixed backbone length. Similar to the structure of
the label used by Haynes et al. , the label has a backbone of L = 30 monomers to
which 5 side chains are attached evenly spaced along the backbone. The side-chain
length is varied from 2 to 8 monomers, so that the total number of monomers in
the label ranges from 40 to 70. The drag coefficient of the labels is determined by
measuring the electrophoretic mobility of polyelectrolyte chains from N = 20 to
N = 60.
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Figure 7.8: The reduced mobility µ/µ0 for polyelectrolytes with an attached linear
label with side chains of length 4 and 8 shows a more pronounced slowdown than
for the label without side chains.

Figure 7.8 shows the simulation results for a 30 monomeric label without side
chains and with the tetra and octamer side chains. To analyze the hydrodynamic
drag of the branched labels in detail, αL is determined according to Equation 7.6.
The obtained αL values are compared to the corresponding value of a purely linear
drag-tag with the same number of monomers.

Figure 7.9 confirms the work by Nedelcu, showing that the label with the highest
drag per monomer is the linear label. For the same number of monomers L, the
hydrodynamic drag coefficient αL of the linear label is higher than that of the
branched one. But it also shows that the addition of side chains can be used to
increase the hydrodynamic drag of the label. This is attributed to two effects:
firstly, the hydrodynamic size of the label is increased as the side chains extend
from the label. Of similar importance is the second effect, namely that the side
chains stiffen the label due to steric repulsion with the backbone, increasing the
overall persistence length and increasing the linear length of the backbone.

The drag coefficients obtained for the labels show a scaling with the hydrody-
namic radius Rh, as given by Equation 7.11. Since the polymer coil formed by
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Figure 7.9: The hydrodynamic drag coefficient αL of a branched polymeric label is
compared to the previously determined drag of a linear label. L is the total number
of monomers. As long as the hydrodynamic radius Rh of the label is smaller than
the Debye length λD, the αL is given by Equation 7.11. The vertical lines indicate
the number of monomers L for which Rh(L) ≈ λD obtained from simulations.

the branched label is more compact, it is less penetrated by ions and, therefore,
the prediction of Equation 7.11 remains valid for a higher number of monomers
compared to the linear label.

The experimentally observed linear scaling with L can be attributed to seemingly
linear relationship between Rh and L, but, as Nedelcu et al. have shown before,
this is only true in the case of side chains smaller or equal to the spacing along the
backbone. The only relevant quantity in all cases is the hydrodynamic radius and
its contribution to the hydrodynamic drag, as formulated in Equation 7.11.

Although linear labels remain preferable as long as the pure hydrodynamic drag
coefficient αL per molecular weight is concerned, branched polymers offer practical
advantages because of the possibility of synthesizing larger monodisperse molecules
in a simple, stepwise way.

7.6. Micellar drag tags

Recently, Grosser et al. [161, 163] proposed another promising class of drag-tags
that in principle can provide very large hydrodynamic drag coefficients αL. They
used nonionic surfactant Triton X-100 micelles that attach to PNAA-taged DNA
strands. The micelles are water-soluble and are created and destroyed on a timescale
of milliseconds to seconds, forming a fairly monodisperse populations of structures
with a tunable size and morphology. During the whole electrophoresis time, a single
DNA strand attaches to a large numer of different micelles. Of importance for the
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ELFSE application is the fact that this leads to an averaging effect between micelles
of different size for the individual DNA strand, meaning the DNA can be though of
as having a drag tag of fixed size 〈R〉, where 〈R〉 is the average micelle size. Only
with this averaging, the natural polydispersity of the micelles is overcome and a
measurement with a size resolution up to a couple of base pairs is possible.

As a free DNA strand quickly attaches to a new micelle, the DNA is bound to
a micelle most of the electrophoresis time. Consequently, the transiently bound
micelles provide about the same hydrodynamic drag as a covalently bound drag-
tag of similar size would provide. The reported αL values range between 33 and 58
for a single micelle, depending on the micelle type and the PNAA molecule used
for connecting to the DNA strand. Savard et al. [163] showed that dual-tagging
of the DNA, i.e., attaching a PNAA molecule to both ends of the DNA strand so
that two micelles are transiently bound can increase the hydrodynamic drag even
further.

In this study, four different micelles with radius R = 2 to R = 5 are attached
to polyelectrolyte chains of different length. Neither the attaching and detaching
process or the forming of the micelles themselves is modelled explicitly, but only
the hydrodynamic drag of a covalently bound spherical drag-tag is investigated.
The results by Grosser and Savard show that the polyelectrolyte is in fact attached
to micelles for most of the time and only spends a small fraction of time without
drag-tag. As the micelle size can be exactly chosen in simulations, the averaging
procedure resulting from the attaching and detaching process does not need to be
included.
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Figure 7.10: The electrophoretic mobility µ as a function of the polyelectrolyte
length N becomes size dependent when a micellar drag-tag is attached. The
strength of the slowdown depends on the radius R of the micelle.
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Figure 7.11: The hydrodynamic drag coefficient αL of a micellar drag-tag is directly
proportional to the radius R. The Equation 7.11 gives a very good prediction of
the drag coefficient for all tested micelles.

Figure 7.10 shows that micellar drag-tags can be successfully used for electropho-
retic separation of polyelectrolyte chains. The values for αL are obtained as before
and compared to Equation 7.11, which correctly predicts the observed behaviour.
With the chosen radius of the micelle of R = 5, drag coefficients up to αL = 24.3
are achieved.

The results show that the hydrodynamic drag is directly depending on the size
of the micelle, as can be seen in Figure 7.11. A linear increase with the radius
is observed, as expected from Stokes theory. Again, Equation 7.11 give a correct
prediction of the drag coefficient, clearly indicating that only the hydrodynamic size
of the drag-tag is important, not the number of units it is made of or the weight
associated with it.

The author strongly believes that the use of micellar drag-tags has great potential
for the further advancement of end-labeled free-solution electrophoresis. Especially
the tunable size makes them ideal candidates, as the drag coefficient can be opti-
mised to the lengths of polyelectrolyte fragments to be analysed.

7.7. Summary

This chapter presented a detailed study of end-labeled free-solution electrophoresis
using various hydrodynamic drag-tags by coarse-grained molecular dynamics simu-
lations. Linear, branched and micellar drag-tags were investigated. The simulations
support the theoretic predictions and can be matched qualitatively to it. This en-
ables the use of computer simulation as a tool to support the design of improved
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hydrodynamic drag-tags usable for electrophoretic separation of polyelectrolytes in
free-solution.

It was specifically shown that the drag coefficient of the label is determined by
its hydrodynamic size. The hydrodynamic drag per label monomer is largest for
linear labels, but experimental restrictions in the synthesis of such labels and the
monodispersity requirement limit their practical applicability.

The addition of side chains to a linear label offers the possibility to increase the
hydrodynamic size without having to increase the linear length of the label. The
synthesis process creates perfectly monodisperse labels. It was shown that the label
efficiency is increased with the length of the side chains. In addition to increasing
the lateral size of the drag-tag, the side chains also increase the persistence of
the backbone and thus contribute two-fold to the increased hydrodynamic size.
Especially the steric stabilisation of the linear backbone is responsible for an initial
increase of the drag-coefficient with the total number of monomers of the label,
i.e., with the molecular weight. For longer side chains, the lateral contribution to
the hydrodynamic radius becomes more important.

The third class of labels investigated seems very promising for usage in ELFSE.
Transiently bound micelles provide a significant higher hydrodynamic drag, as they
can be synthesised with a large hydrodynamic radius. Additionally, the time av-
eraging by attaching to many different micelles over the electrophoresis time span
helps to meet the monodispersity criteria. This study showed that the hydrody-
namic drag is directly proportional to the hydrodynamic radius of the micelle. The
efficiency of this method is, in principle, only limited by the size of labels that can
be synthesised.

The results demonstrate convincingly that theory and computer models can sup-
port the experimental progress towards the design of novel improved drag-tags,
thereby extending the applicability of the ELFSE technique.
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8. Outlook: Other free-solution
separation methods

The field of electrophoresis constantly produces new ideas on how to improve the
separation of polyelectrolytes in terms of accuracy and speed. This chapter pro-
vides a brief outlook on two different free-solution separation techniques that are in
principle treatable by state-of-the-art computer simulations such as the simulation
model used in this thesis. Recent results show how the development of new methods
can be supported by such computer simulations. Further promising approaches are
reviewed in References 69, 71 and will not be discussed here.

8.1. Surface electrophoresis
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Figure 8.1: Different regimes of confinement used in some gel-free separation tech-
niques: a) weak confinement (d > 2Rg) in the presence of an attractive surface, b)
strong confinement (d ∼ 2Rg) that starts to influence the chain conformations, and
c) extreme confinement (d < 2Rg) in which the chain conformations are determined
by the walls of the channels.

109



8. Outlook: Other free-solution separation methods

A novel electrophoretic separation technique based on the DNA’s interaction with
a surface was first reported by Pernodet et. al. [11] in 2000. By adsorbing DNA to
a surface, length dependent separation on a flat surface without any restrictions or
any sieving matrices was achieved (see Fig. 8.1a). It was found that the interactions
between the molecule and the substrate essentially act as a length dependent source
of friction, enabling electrophoretic separation. The initial experimental observa-
tions were accompanied by MD simulations [12, 170] and have been followed up
by further studies [171, 172] under different conditions. The results showed that
the DNA-surface interaction is a key parameter for the process: a strong attraction
leaves the molecules fully adsorbed and no separation is possible, while a too weak
attraction lets molecules desorb and resume bulk behaviour, where likewise no sep-
aration is possible. Additionally, the interaction can be noticeably influenced by
choosing a specially patterned surface [173, 174], an exciting and unique approach
for designing optimised and custom-made separation systems.

Since the exact nature of the interaction and the resulting separation mechanism
remain elusive at this point, there is a pressing need for more elaborate theoretical
studies that include electrostatic and hydrodynamic effects alike, as they are crucial
when the molecules approach the surface. This has been neglected so far.

8.2. Confinement-driven separation

Recent progress in design and fabrication of microfluidic devices on a sub-micro-
meter length-scale [175–177] demands a good understanding of the statics and dy-
namics of the polyelectrolytes under steric confinement. Several regimes of confine-
ment can be distinguished. In a device that is much larger than the size of the
polyelectrolytes, given by its radius of gyration Rg, the conformations are unper-
turbed and isotropic (weak confinement). Reducing the dimensions of the devices
to the order of Rg, the conformations of the polyelectrolytes start to become re-
stricted by the walls, and show deviations from the equilibrium (strong confine-
ment, see Fig. 8.1b). With further reduction of the device size, the polyelectrolyte
becomes extremely restricted and the static and dynamic properties undergo sig-
nificant changes [178, 179] (Fig. 8.1c).

The decrease in size of microfluidic devices used in actual experiments and the
growth in size of the systems that are addressable by means of computer simu-
lations - due to advancement of simulation methods together with the increase
of computer power - led to a cross-over, creating systems that can be worked on
from both sides. Recent experiments in slit-like nano channels studied the static
and dynamic properties of single molecules and showed how confinement can be
used as a tool to change polymer conformations as well as the dynamics through
modulation of the hydrodynamic interactions [180–186]. Consequently, the role
of hydrodynamic interactions in confinement has been the focus of several recent
computer studies [186–194]. The results indicate that, under weak confinement,
the hydrodynamic interactions between polymer and wall drive the polymer to the
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8.2. Confinement-driven separation

center of the channel if an external flow is applied. However, in high confinement,
a migration towards the channel walls was observed. Since this interesting phys-
ical phenomenon depends on the ratio between the size of the polymer and the
width of the channel as well as on the strength of the driving force, it seems to
be an ideal candidate for free-solution separation of polyelectrolytes. Recently re-
ported measurements on the diffusion and the electrophoretic mobility of DNA in
strongly confined systems [195–197] indicate a possible electrophoretic separation
mechanism based on the modified dynamics in strong confinement. A systematic
simulation study of this subject has yet to be done in order to verify these results.
In particular, electrostatic interactions and the influence of counterions on the hy-
drodynamic interactions have been neglected so far, but they should be assumed
to be of great importance if the length scales of the system become comparable to
the Debye length, below which electrostatic interactions are not fully shielded by
the solvent [193, 198].
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9. Concluding remarks

Detailed studies of the importance of hydrodynamic interactions during free-solu-
tion electrophoresis of linear polyelectrolytes by means of coarse-grained molecular
dynamics simulations including full electro-hydrodynamic interactions have been
presented. The presented simulation model was shown to be fully capable of re-
producing the theoretically predicted static conformations of polyelectrolyte chains
and their experimentally observed dynamic behaviour, including a maximum in the
free-solution electrophoretic mobility of flexible polyelectrolytes that was previously
not understood from a theoretical point of view.

A rigorous analysis isolated the two decisive properties of the polyelectrolyte-
counterion complex that govern the electrophoretic behaviour: the total effective
charge and the total effective friction. This two terms have been defined more
precisely and more concisely than they are commonly used, which allowed for a
separated analysis of both quantities, explaining the complex dynamic behaviour of
charged macromolecules. The main result shows that both quantities, friction and
charge, ultimately exhibit a linear dependence on the length of the polyelectrolyte,
resulting in a length-independent mobility for long chains.

The understanding of the underlying process paved the way not only for in-
vestigating the electrophoresis of single polyelectrolytes, but also for studying com-
pounds consisting of a polyelectrolyte and an attached drag-tag as they are used for
end-labeled free-solution electrophoresis. The contribution of various drag-tags to
the total effective friction based on their hydrodynamic size has been studied. It was
confirmed that recently suggested branched polymeric and micellar drag-tags offer
properties suitable for efficient separation of polyelectrolytes using end-labeling.

The main results and observations of this work contribute to the theoretical
understanding of polyelectrolyte electrophoresis. It was found that the static chain
properties are not influenced by the presence of hydrodynamic interactions and that
the expected scaling behaviour of the chain conformations is observed. Specifically,
the influence of additional salt on the scaling exponent due to electrostatic screening
was shown. The influence of the strength of an applied external electric field on the
chain conformations and the counterion cloud was analysed and, below a critical
value, no dependence on the field strength was observed, which is in agreement with
linear response theory. The application of field strengths above the critical limit
changes the static and dynamic properties of the polyelectrolyte. The threshold
identified in this study is on a par with theoretical predictions.

The study of the transport properties of short PSS chains showed that the re-
sults of two different experimental approaches, namely, capillary electrophoresis and
pulsed-field gradient NMR, can be quantitatively matched by the simulation data.
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9. Concluding remarks

Excellent agreement is achieved as long as the simulation model correctly includes
long-range hydrodynamic interactions. When these interactions are absent, the de-
scription of the short-length scale behaviour of the PSS diffusion coefficient and
of the electrophoretic mobility fails completely. The findings of this thesis demon-
strate convincingly that the transport coefficient of short polyelectrolytes can be
quantitatively modeled by coarse-grained simulation techniques. To first order, no
chemical details are needed to explain the experimental results.

The novel charge estimators introduced to investigate the dynamics even further
are, on the one hand, computationally inexpensive, as they are correct even without
the inclusion of hydrodynamic interactions. On the other hand, the estimator based
on the measurement of the ion diffusion coefficient is at the same time directly
transferable to experiments and can be measured by standard techniques. To the
author’s knowledge, this is the first time this method is proposed to determine the
effective charge of polyelectrolytes during electrophoresis. This opens numerous new
opportunities to investigate the dynamic behaviour of charged macromolecules and
provides a handle to a previously non-accessible physical quantities of the system.

Using theses estimators, the length dependence of the effective charge was studied
and, combined with the measurements of the electrophoretic mobility, the effective
friction of the polyelectrolyte was obtained. The results indicate that this effective
friction during electrophoresis is different from the hydrodynamic friction for a
single polyelectrolyte chain obtained from diffusion measurements. This difference is
attributed to the contribution by the co-moving counterions, which cause a shielding
of the hydrodynamic interactions.

A hydrodynamic screening length was identified, beyond which the effective fric-
tion approaches a constant value per monomer, which - together with the constant
value per monomer of the effective charge - leads to the well-known and observed
constant electrophoretic mobility for long polyelectrolyte chains. Furthermore, the
previously not understood mobility maximum can be likewise attributed to this
screening effect. The identification of the Debye length as the relevant length scale,
for electrostatic and also for hydrodynamic screening, not only provides a concise
description of the results presented in this thesis, but also proves the correctness of
assumptions made in the theories describing electrophoresis. The direct proof of the
free-draining assumption that is used to explain the length-independent mobility of
long polyelectrolyte chains underlines the importance of this work.

The hydrodynamic drag of an uncharged molecule with the solvent can be success-
fully used to restore the size-dependent mobility of polyelectrolytes in free-solution
using the ELFSE technique. This study showed that various classes of hydrody-
namic drag-tags can be employed, but specifically revealed that the decisive prop-
erty is the hydrodynamic drag which is directly related to the hydrodynamic size
of the label. However, when linear polymeric labels are employed, the screening
of hydrodynamic interactions by charged ions in the system results in a effective
hydrodynamic drag coefficient for the label that is linear in the contour length of
the label.
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As such, the hydrodynamic drag per monomer is largest for linear labels, but
experimental restrictions in the synthesis of such labels and the monodispersity
requirement limit their practical applicability. The addition of side chains to a lin-
ear label offers the possibility to increase the hydrodynamic size without having to
increase the linear length of the label, which simplifies the synthesis process and
creates perfectly monodisperse labels. Although only recently introduced, tran-
siently bound micelles, the third class of labels investigated, seems very promising
for usage in ELFSE. They provide a significant higher hydrodynamic drag than the
other drag-tags, as they can be synthesised with a large hydrodynamic radius. This
study showed that the hydrodynamic drag is directly proportional to the hydrody-
namic radius of the micelle, and that the efficiency of this method is, in principle,
only limited by the size of labels that can be synthesised.

The characterisation of the dynamic effective friction of macromolecules based
on the direct measurement of their effective charge seems to be a promising tool to
investigate and understand systems related to the ones studied in this work. The
author strongly believes that theory and computer models can support the experi-
mental progress towards the design of novel improved drag-tags, thereby extending
the applicability of the ELFSE technique. Likewise, they can be used to develop
other matrix-free separation techniques that make use of the changed hydrody-
namic interactions in confined geometries. The study of these problems will greatly
benefit from the results of this thesis and will ultimately lead to a more profound
understanding of soft matter as a whole.

The results of this work provide an in-depth understanding of the microscopic
processes that govern the macroscopic behaviour of charged polyelectrolytes in free-
solution electrophoresis. Having a simulation model at hand, which matches the
experimental data and confirms theoretical predictions, opens new possibilities of
investigating the dynamic behaviour of charged macromolecules. Due to the com-
plex interactions between the system components, a purely theoretical description
is often not possible or too general to provide insight into a specific problem. This
highlights the great importance of computer simulations in the area of soft matter
research and the contribution made by the presented work.
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Appendix A.

Green-Kubo formula for the
electrophoretic mobility

This appendix outlines the derivation of the Green-Kubo relation

µ =
1

3kBT

∑
i

qi

∞∫
0

〈~vi(0) · ~vc(τ)〉 dτ (5.4)

to calculate the electrophoretic mobility of a charged macromolecule at zero external
electric field. In this equation the summation is executed over all charged particles
(monomers, counterions and salt ions) in the system, and the ~vi are their individual
velocities and the qi their charges. Here, ~vcm is the velocity of the center of mass of
the polyelectrolyte. The angular brackets 〈. . .〉 indicate an ensemble average which
has to be taken over a large number of statistically indpendent samples.

This usage of the Green-Kubo relation has the great advantage of guaranteeing
undistorted chain conformations and counterion distributions, as the measurement
is done in the absence of any external field. As such, it can be an effective tool to
determine dynamic quantities in computer simulations.

The derivation shown here is analogous to the derivation in Reference 76 and is a
generalisation of the derivation for the electrophoretic mobility of colloidal objects
shown in Reference 150.

The Hamiltonian of a charged system under the influence of an external electric
field can be written as

H = H0 +
∑
i

qi ~E · ~xi. (A.1)

Here, H0 contains all interactions apart from the influence of the external field ~E,
which is taken into account by the scalar product between the electric field ~E and
the positions ~xi. The summation runs over all charged particles in the system, each
of which is carrying a charge qi.

Without loss of generality the following derivation is shown in 1d and for one
particle only with X(t) being the spatial coordinate. In general, the second part
of the right hand side of Eq. A.1 can be seen as time dependent perturbation
f(t) = qE to the system with Hamiltonian H0:

H(t) = H0 − f(t)X(t). (A.2)
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Appendix A. Green-Kubo formula for the electrophoretic mobility

The mobility is defined as

µ =
〈Vc(t)〉
E

, (A.3)

where Vc is the velocity of the polyelectrolyte chain that is induced by the pertur-
bation.

Onsager’s regression states that “the correlation of microscopic thermal fluctua-
tions at equilibrium describe the macroscopic decay of small non-equilibrium dis-
turbances” [199, 200]. This can be translated to this system as follows: the center-
of-mass velocity of the polyelectroylte Vc (a macroscopic quantity) is related to the
correlation function with the thermally fluctuating positions of the charges X (mi-
croscopic quantities). The proportionality constant is given by the perturbation
causing the change in the macroscopic quantity, here by f(t) = qE. One obtains:

〈Vc(t)〉 = βf(t)〈X(0)Vc(t)〉. (A.4)

Here, the averaging brackets denote an ensemble average.
Alternatively, one can apply linear response theory, which states that the most

general response of a macroscopic property, here VC, to a pertubation, f(t), is given
by:

〈Vc(t)〉 =

∞∫
−∞

χV X(t, t′)f(t′)dt′. (A.5)

The function χV X(t, t′) describes the linear response of the system to the pertuba-
tion. It is often-called “after-effect” or memory function.

In order to describe a physical reponse, the after-effect function has to obey
causality

χV X(t, t′) = 0 for t < t′, (A.6)

and time-invariance, i.e., the after-effect function can only depend on the time
difference:

χV X(t, t′) = χV X(t− t′). (A.7)

With this, Equation A.5 reads as follows:

〈Vc(t)〉 =

t∫
−∞

χV X(t− t′)f(t′)dt′. (A.8)

If one now assumes f(t′) = 0 for t′ > 0 and f(t′) = f0 otherwise, i.e., the
perturbation is constant and switched off at time t = 0, this simplifies to:

〈Vc(t)〉 = f0

0∫
−∞

χV X(t− t′)dt′. (A.9)
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Now, let’s define τ = t− t′, and finally one obtains:

〈Vc(t)〉 = f0

∞∫
0

χV X(τ)dτ (A.10)

By comparison of Equations A.4 and A.10 one finds an expression for the after-
effect function

χV X(τ) = −β〈X(0)
d

dτ
Vc(τ)〉 for τ > 0, (A.11)

which can be substituted back into Equation A.10 to obtain the following Green-
Kubo relation:

〈Vc(t)〉 = −βf0

∞∫
0

〈X(0)
d

dτ
Vc(τ)〉dτ (A.12)

Since time correlation functions are stationary, i.e.,

d

dt
〈X(t)Vc(t+ t′)〉 = 0, (A.13)

the derivative can be shifted from V to X:

〈X(t)
d

dt
Vc(t+ t′)〉 = −〈 d

dt
X(t)Vc(t+ t′)〉. (A.14)

Finally, f0 is substituted back by the constant perturbation qE one ends up with

〈Vc(t)〉 = βEq

∞∫
0

〈V (0)Vc(τ)〉dτ. (A.15)

After transforming this back to three dimensions and N charged particles in the
system, the result is the Green-Kubo expression for the electrophoretic mobility:

µ =
1

3kBT

N∑
i

qi

∞∫
0

〈~vi(0) · ~vc(τ)〉dτ. (5.4)
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Appendix B.

Sample ESPResSo scripts

The simulations presented in this thesis were done using the ESPResSo software
package (see Ref. [128] and http://www.espresso.mpg.de/ for details). ESPResSo
is controlled by a scripting language that augments tcl1.

The following detailed sample script was used to obtain the static and dynamic
transport coefficients of polystyrene sulfonate. It has been tested and used on
the standard version of Espresso including the most recent implementation of the
Lattice Boltzmann algorithm by Ulf Schiller, i.e., version 2.0.4t or higher2.

The scripts use the following options that have to be activated: FFTW3, ELEC-
TROSTATICS, EXTERNAL_FORCES, LENNARD_JONES, BOND_ANGLE_HARMONIC, LB.

The standard data generation procedure uses two scripts: a simulation script that
sets the system up, performs the simulation and the data and saves all necessary
data to the hard disk, and an analysis script that performs an offline analysis of
the stored data. Even though, this method creates large amounts of data, it is
nevertheless recommended as it ensures that all system information is available at
all times and all data is present for inspection at any time following the quality
guidelines of scientific work. Furthermore, disk space is fairly cheap nowadays and
the long simulation time of up to 4 weeks warrant the usage of a couple of gigabytes.

All standard commands of tcl are highlighted in blue, whereas new ESPResSo
commands are highlighted in red. Please refer to the ESPResSo documentation for
detailed information on these commands.

B.1. Simulation script

The simulations script is divided in several independent sections that will be ex-
plained one by one. Only redundant lines of code and some comments are removed
so that the combination of all code blocks yields the complete script.

B.1.1. Command line parsing

In order to simplify the specification of input parameters for various different sim-
ulations, a simple but flexible command line parser has been created.

1http://www.tcl.tk/
2Please note that this version does not support proper treatment of boundary conditions for the

LB fluid. A new implementation will be included in an upcoming release (December 2008).
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Appendix B. Sample ESPResSo scripts

1 set parameters {nodes npc cha ins cm cs lbgamma lbt ime run}
2 set opt ions {debug vmd { randomseed seed } { cont inue snapshot }

t e s t }

The lists parameters contains all parameter that can be passed to the script
as command line arguments. The parser automatically assigns the value to a a
variable of the specified name. As just the values are specified, the order of the
parameters is crucial.

The list options provides the possibility to pass optional arguments to the script.
An option is specified via --identifier, e.g., --debug. The parser creates a vari-
able of the given name that contains the value 0 if the options was not specified
or 1 otherwise. Unlike parameters, the options can be specified in any order and
can be either before or in between the parameters.3 Options in { }-brackets have
a second parameter that is read from the command line if this option is specified.
The parameter has to directly follow the corresponding option.

This script takes the following input parameters:

nodes the number of nodes for parallel computing

npc the length of the polyelectrolyte chain

npc the number of independent polyelectrolyte chains

cm the monomer concentrations (in mMol/l), which together with the number and
length of the chains defines the size of the simulation box.

cs the concentration of additional monovalent salt (in mMol/l)

lbgamma the value of the bare friction parameter of the LB algorithm

lbtime the interval of MD time steps at which the LB fluid is updated, i.e., the LB
time τ = lbtime∆t.

run a unique identifier for this specific set of parameters

The available options are:

debug for additional console print outs

vmd opens an online connection to the program VMD (for visualisation)

randomseed set the initial state of the random number generator to seed4

3Note that the ESPResSO MPI wrapper expects the first value following the script name to be
the number of processors, therefore it is advised to start with the parameter nodes and follow
with options only thereafter.

4This allows for exactly reproducing the random numbers used in a simulation, which might be
necessary for debugging.
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B.1. Simulation script

continue accepts a file name that points to a snapshot of a previous simulation to
be continued

test parameter that influence the choice of some simulation parameters, e.g., results
in short simulation times for testing purposes

Auxiliary functions

These two auxiliary functions are used by the automatic parser to display certain
outputs in debug mode and to print out the information about the script usage if
fewer parameters than expected are specified on the command line.

3 # debug d i s p l a y func t i on ( on ly works wi th debug f l a g )
4 proc debug { t ex t } {
5 global debug
6 i f { $debug } {
7 puts $text
8 }
9 }

10

11 # d i s p l a y usage in format ion
12 proc usag e i n f o { {msg} { excode −1} } {
13 global scr iptname parameters opt ions
14 puts $msg
15 puts ”Usage: $scr iptname ”
16 puts ”\ tRequired parameter s : $parameters ”
17 puts ”\ tOpt ions : $opt ions ”
18 exit $excode
19 }

Automated parsing

The parameter are extracted from the arguments passed to the script via the com-
mand line that are stored in the list argv.

20 set scr iptname [ f i l e t a i l $argv0 ] ; # ge t t i n g the s c r i p t name
21 set num params [ llength $parameters ] ; # number o f r e qu i r ed

parameter
22 set num options [ llength $opt ions ] ; # number o f d i f f e r e n t op t i ons
23

24 # de f a u l t op t i ons to 0
25 for { set i 0 } { $ i < $num options } { incr i } {
26 for { set j 0 } { $ j < [ llength [ lindex $opt ions $ i ] ] } { incr

j } {
27 set [ lindex [ lindex $opt ions $ i ] $ j ] 0
28 }
29 }
30

31 # parse command l i n e
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32 set num params set 0 ; # number o f arguments a l r eady s e t
33 set cur ra rg 0 ; # current argument to be passed
34 while { $currarg < $argc } {
35 switch −glob −− [ lindex $argv $currarg ] {
36 −−∗ { ; # se t op t i ons ( s t a r t i n g wi th −−) by name
37 set curropt [ lindex $argv $currarg ]
38 set curropt [ string trimleft $curropt −]
39 set optpos [ lsearch −glob $opt ions ”$curropt∗ ”]
40 i f { $optpos < 0 } { usag e i n f o ”Option not r e c o gn i z ed :

−−$curropt. ” }
41 set curropt [ lindex [ lindex $opt ions $optpos ] 0 ]
42 set $curropt 1 ; incr cur ra rg ;
43 for { set i 1 } { $ i < [ llength [ lindex $opt ions $optpos ] ]

} { incr i } { set [ lindex [ lindex $opt ions $optpos ] $ i ]
[ lindex $argv $currarg ] ; incr cur ra rg }

44 }
45 default { ; # se t r e qu i r ed parameters by order
46 i f { $num params set < $num params } { set [ lindex

$parameters $num params set ] [ lindex $argv $currarg ] ;
incr num params set ; incr cur ra rg }

47 }
48 }
49 }
50 i f { $num params set < $num params } { usag e i n f o ”Not enough

arguments ( $num params set < $num params ) . ” }
51 unset cur ra rg
52 unset num params set

Note that the usage of
set [lindex $parameters $num params set] [lindex $argv $currarg]

makes use of a special feature of the tcl language, namely that variable identifier
can be variables themselves, i.e., the first value of the list parameter becomes the
variable nodes which is initialised with the corresponding command line value.

Feedback

Upon successful parsing of the command line arguments, the script displays all
parameters and its values. For timing purposes, the start time is also recorded.

53 # s t a r t time
54 set s t a r t t ime [ clock seconds ]
55 # check number o f a s s i gned proce s so r s
56 set rnodes [ setmd n nodes ]
57

58 # feedback
59 puts ”[ code info ] ”
60 puts ””
61 puts ”$scr iptname ”
62 puts ”Started at [ clock format $ s ta r t t ime ] on $rnodes cpu ( s ) . ”
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B.1. Simulation script

63 puts ”Parameters : ”
64 for { set i 0 } { $ i < $num params } { incr i } { puts ”\ t [ lindex

$parameters $ i ] = [ set [ lindex $parameters $ i ] ] ” }
65 puts ”Options g i v en : ”
66 for { set i 0 } { $ i < $num options } { incr i } {
67 i f { [ set [ lindex [ lindex $opt ions $ i ] 0 ] ] } {
68 puts ”\ t [ lindex [ lindex $opt ions $ i ] 0 ] ”
69 for { set j 1 } { $ j < [ llength [ lindex $opt ions $ i ] ] } {

incr j } {
70 puts ”\ t \ t [ lindex [ lindex $opt ions $ i ] $ j ] = [ set [ lindex

[ lindex $opt ions $ i ] $ j ] ] ”
71 }
72 }
73 }

Initialisation of random number generator

It is necessary to initialize the random number generator of ESPResSO with a
unique number. Otherwise the drawing sequence of random numbers is always
identical.

74 # check i f randomseed and seed are a v a i l a b l e
75 i f { [ info exists randomseed ] && [ info exists seed ] } {
76 # i f randomseed i s not g i ven ge t a random one from cpu time
77 i f { ! ( $randomseed ) } {
78 set seed [ expr abs ( [ clock c l i c k s ]%100000) ]
79 }
80 # use l i s t to d i s t r i b u t e random seeds to more
81 # than one computing node
82 for { set i 0 } { $ i < $rnodes } { incr i } {
83 lappend randomnums [ expr $seed+$i∗4543 ]
84 }
85 eval t random seed $randomnums
86 unset randomnums
87 }
88 puts ”\ n I n i t i a l random number generato r s t a t e = [ t random seed ] ”

B.1.2. System setup

The system is either generated according to the simulations parameters as specified
in the script and via the command line or restored from a snapshot of a previous
simulation run if specified via the continue option.

Continuation of a previous simulation

If a snapshot for continuation is specified, the system is restored to this snapshot.
However, not the complete snapshot is restored, but only the MD variables (set by
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setmd), interactions, particles (including positions and velocities) and bonds. The
variables on the tcl level are not restored by default.

89 i f { $cont inue } {
90 puts ”Restor ing system . . . ”
91 i f { [ f i l e exists $snapshot ] } {
92

93 # only t h e s e b l o c k s are r e s t o r ed
94 set r e s t o r e ”variable i n t e r a c t i o n s p a r t i c l e s bonds ”
95 set b l o c k f i l e v a r i a b l e b l a c k l i s t {min num cel l s node gr id } ;

# t h i s v a r i a b l e s are not read from ”v a r i a b l e ” b l o c k
96

97 # ge t t a g s
98 puts ”\ tReading tags . . . ”
99 i f { [ string compare [ lindex [ sp l i t $snapshot ” . ”] end ]

”gz ”]==0 } { set i n f i l e [open ”| gz ip −cd $snapshot ” r ] }
else { set i n f i l e [open ”$snapshot ” ”r ”] }

100 set eof 0 ; set tags {}
101 while { ! $ eo f } {
102 i f { [ catch { lappend tags [ blockf i le $ i n f i l e read s t a r t ] ;

blockf i le $ i n f i l e read toend } ] } { set eof 1 }
103 }
104 catch { close $ i n f i l e } ; unset eof
105 puts ”\ tdone . ”
106

107 # re s t o r e s e l e c t e d b l o c k s
108 puts ”\ tReading system . . . ”
109 i f { [ string compare [ lindex [ sp l i t $snapshot ” . ”] end ]

”gz ”]==0 } { set i n f i l e [open ”| gz ip −cd $snapshot ” r ] }
else { set i n f i l e [open ”$snapshot ” ”r ”] }

110 for { set i 0 } { $ i < [ llength $tags ] } { incr i } {
111 i f { [ lsearch $ r e s t o r e [ lindex $tags $ i ] ] >= 0 } {
112 blockf i le $ i n f i l e read [ lindex $tags $ i ] ; puts

”\ t \ t [ lindex $tags $ i ] ”
113 } else {
114 blockf i le $ i n f i l e read s t a r t ; blockf i le $ i n f i l e read

toend ;
115 }
116 }
117 catch { close $ i n f i l e } ; unset tags ; unset r e s t o r e ;
118 puts ”\ tdone . ”
119

120 } else { puts ”Cannot open ’ $snapshot ’ ”; exit }
121 puts ”done. ”
122 }
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Model parameter

Now, the model parameters are set. At this point the generic coarse-grained MD
model is specified to match the system of interest, in this case polystyrene sulfonate
(PSS) under the conditions used in the corresponding experiments.

123 set sigma [ expr 2 . 5 /0 .91 ] ; # beads are 0 .91 apart and rep re s en t
2 .5 A (PSS)

124 set nm [ expr $cm∗1e−3∗6.022∗1e−4 ∗ pow( $s igma,3 ) ] ;# number
den s i t y in reduced un i t s

125 set ns [ expr $cs∗1e−3∗6.022∗1e−4 ∗ pow( $s igma,3 ) ] ;# number
den s i t y in reduced un i t s

126

127 set length [ expr round(pow( $npc∗$chains /$nm,1. /3 . ) ) ]
128

129 set n s a l t [ expr round(pow( $ l eng th , 3 ) ∗$ns ) ]
130 set nc i [ expr $npc∗$chains+$nsa l t ]
131 set nco [ expr $n sa l t ]
132

133 # FENE parameters
134 set f ene k 30
135 set f e n e r 1 . 5
136

137 # LJ parameters
138 set l j e p s 0 .25
139 set l j s i g 1 . 0
140 set l j c u t 1 .12246
141 set l j s h i f t 0 . 25
142 set l j o f f 0 . 0
143

144 # l b f l u i d parameter
145 # se t lbgamma 20 .0 <− de f ined v ia commmand l i n e
146 set lbdens 0 .864
147 set agr id 1 . 0
148 set v i s c 3 . 0
149 set l b t ime s t ep [ expr $t imestep∗$ lbt ime ]
150

151 # Bjerrum l en g t h
152 set bjerrum [ expr 7 . 1 /$sigma ]
153

154 # Debye l en g t h
155 set l d [ expr

1 . /sqrt (4 ∗ [ PI ] ∗$bjerrum∗ ( $nc i+$nco ) /pow( $ l eng th , 3 ) ) ]
156 puts ” l d = $ l d sigma = [ expr $l d∗$s igma ] A”

Remember that the bare friction parameter of the LB fluid, lbgamma, is obtained
as command line argument.
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Generic simulation parameter

Additionally, the following generic parameters have to be specified.

157 # In t e g r a t i on parameter
158 set gamma 1 . 0 ; # langev in f r i c t i o n
159 set temp 1 . 0
160 set t imestep 0 .01
161 set sk in 0 . 2
162

163 # E l e c t r o s t a t i c i n t e r a c t i o n parameters
164 set accuracy 1 .0e−5 ;# accuracy f o r e l e c t r o s t a t i c i n t e r a c t i o n
165

166 # Other parameters
167 set t c l p r e c i s i o n 6
168

169 # In t e g r a t i on c y l c l e s
170 i f { $ t e s t } {
171 set warm n times 20
172 set warm steps 100
173 set i n t e q s t e p s 10000
174 set i n t e q l b s t e p s 10000
175 set i n t n t ime s 10000
176 set i n t s t e p s 10
177 set s ave s t ep s 100
178 set vacs teps 1000
179 set maxtau 100 ; # tau = 10 .0
180 set i n t e r v a l 1 ; # dtau = 0 .1
181 } else {
182 set warm n times 20
183 set warm steps 100
184 set i n t e q s t e p s 1000000
185 set i n t e q l b s t e p s 1000000
186 set i n t n t ime s 1000000
187 set i n t s t e p s 10
188 set s ave s t ep s 100
189 set vacs teps 100000
190 set maxtau 400 ; # tau = 40 .0
191 set i n t e r v a l 1 ; # dtau = 0 .1
192 }

System identification

Based on the chosen parameters a unique system identification is created and the
necessary directories and files to store the simulation data are created.

193 set subdirname ”pss−lb−t$lbtime−g$gamma−gk ”
194

195 # crea t e s u bd i r e c t o r y to s t o r e output data
196 i f { ! [ f i l e isdirectory ”$subdirname ”] } {
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197 puts ”Creat ing path ’ $subdirname ’ . ”
198 f i l e mkdir $subdirname
199 }
200

201 # crea t e s u bd i r e c t o r y to s t o r e snapshot s
202 i f { ! [ f i l e isdirectory ”$subdirname/ snapshots ”] } {
203 puts ”Creat ing path ’ $subdirname/ snapshots ’ . ”
204 f i l e mkdir $subdirname/ snapshots
205 }
206

207 i f { $ t e s t } {
208 set i dent ”test−pss−cm$cm−cs$cs−${ cha ins }x${npc}−run${ run }”
209 } else {
210 set i dent ”data−pss−cm$cm−cs$cs−${ cha ins }x${npc}−run${ run }”
211 }
212

213 puts ”subdirname = $subdirname ”
214 puts ” ident = $ ident ”
215

216 i f { ! ( $ t e s t ) } {
217 # check i f s imu la t i on f i l e a l r eady e x i s t s .
218 i f { [ f i l e exists ”$subdirname/ $ i d e n t . f i n a l . g z ”] } {
219 puts ”WARNING: $subdirname/ $ i d e n t . f i n a l . g z a l r eady e x i s t s . ”
220 puts ”To con t i nue , use the continue opt ion and provide a

d i f f e r e n t run number ”
221 exit
222 }
223 }

Simulation box setup

Now, it is time to specify the simulation box.

224 # de f i n e the c e l l s y s t em
225 cellsystem domain decomposit ion −n o v e r l e t l i s t
226

227 i f { ! ( $cont inue ) } {
228 # se t s imu la t i on box
229 setmd box l $ length $ length $ length
230 setmd pe r i o d i c 1 1 1
231 setmd sk in $sk in
232 setmd t ime s tep $t imestep
233 }
234

235 puts ”System s i z e : [ setmd box l ] . ”
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Interactions

Before setting up the particles, ESPResSO requires to specify the interactions.
Please note that electrostatic and hydrodynamic interactions are only specified at
a later point in the script.

236 i f { ! ( $cont inue ) } {
237 # non−bonded i n t e r a c t i o n
238 # type 0 nega t i v e chain
239 # type 1 counter ions
240 # type 2 s a l t ions +
241 # type 3 s a l t ions −
242 inter 0 0 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
243 inter 0 1 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
244 inter 0 2 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
245 inter 0 3 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
246 inter 1 1 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
247 inter 1 2 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
248 inter 1 3 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
249 inter 2 2 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
250 inter 2 3 lennard− jones $ l j e p s $ l j s i g $ l j c u t $ l j s h i f t

$ l j o f f
251

252 # bonded i n t e r a c t i o n
253 inter 0 FENE $fene k $ f en e r
254 } else {
255 puts ”System r e s t o r e : [ inter ] ”
256 }

Particles

Last but not least the MD particles are added to the system.

257 i f { ! ( $cont inue ) } {
258 # polymer
259 polymer $cha ins $npc 1 . 0 types 0 0 charge −1 d i s t anc e 1 mode RW

1 .0 30000
260 counterions [ expr $chains∗$npc ] charge 1 type 1 mode SAW 1 .0

30000
261

262 i f { $n sa l t > 0 } {
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263 # setup s a l t
264 sa lt $n sa l t $n sa l t mode SAW 1 .0 2000 charges 1 −1 types 2 3
265 }
266 }
267 puts ”[ setmd n part ] p a r t i c l e s . ”

Open connection to VMD

The system setup is completed and a connection to VMD is opened to visualize the
system if the corresponding option is specified.

268 i f { $vmd } {
269 puts ”Set up VMD connect ion at [ clock format [ clock seconds ] ] ”
270 prepare vmd connection ”$ ident ” 10 1
271 imd l i s t e n 30
272 imd po s i t i o n s −unfolded
273 puts ”Done. ”
274 }

B.1.3. System warmup

Initially the system is in an artificial configuration and has to be relaxed to an
equilibrium configuration first. This process called the system warmup is again
split in different parts.

275 thermostat o f f
276 thermostat l angev in $temp $gamma

For equilibration a pure Langevin thermostat is used without the inclusion of
hydrodynamic interactions as it is orders of magnitude faster 5.

Chain relaxation

The first, very short warmup cycle allows the polyelectrolyte chain and the counte-
rions to relax from their initial positions. This way, they can escape energetically
unfavourable initial position that were chosen at random.

277 i f { ! ( $cont inue ) } {
278 puts ”Star t warmup 1 at [ clock format [ clock seconds ] ] ”
279

280 # se t LJ cap
281 set cap 5
282 inter l j f o r c e c a p $cap
283

284 # Warmup In t e g r a t i on Loop f o r chain se tup
285 set i 0

5Furthermore, the static properties are not affected by the presence of hydrodynamic interactions.
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286 while { $ i < $warm n times } {
287 i f { [ catch { integrate $warm steps} e r r ]} {
288 puts ”caught error $e r r at time [ setmd time ] ”
289 puts [ part [ lindex [ lindex $e r r end ] end ] p r i n t pos ]
290 exit
291 }
292 stop particles
293 i f { $ t e s t } {
294 puts ”run $ i at time= [ setmd time ] (LJ cap=$cap ) at [ clock

format [ clock seconds ] ] ”
295 flush stdout
296 }
297 i f { $vmd } {
298 imd po s i t i o n s −unfolded
299 }
300 # Increase LJ cap
301 set cap [ expr $cap+5]
302 inter l j f o r c e c a p $cap
303 incr i
304 }
305

306 # Bring back the o r i g i n a l f o r c e s
307 inter l j f o r c e c a p 0
308 integrate $warm steps
309 puts ”\ nDone. ”
310 }

Note that the Lennard-Jones interactions are capped to avoid nonphysically high
forces that arise when two particles are arbitrary close as a consequence of the
random placement. Likewise, the velocities of the particles is reduced to zero after
each integration cycle to improve numerical stability.

Setting up electrostatics

As a next step, electrostatic interactions are added to the system by activating the
P3M algorithm. Here, the automated tuning routine is used to specify the P3M
parameter. The tuning of the parameter is followed by a second warmup phase now
including electrostatic interactions between all particles.

311 puts ”Set up e l e c t r o s t a t i c s at [ clock format [ clock seconds ] ] ”
312 i f { $ t e s t } {
313 puts ”Tune p3m . . . ”
314 puts ”[ inter coulomb 2 .84 p3m 7 .93306 16 5 0 .317383

0 .000996235 ] ”
315 puts ”Coulomb parameters : [ inter coulomb ] ”
316 } else {
317 puts ”[ inter coulomb $bjerrum p3m tunev2 accuracy $accuracy

r cu t 0 cao 0 mesh 0 ] ”
318 puts ”Coulomb parameters : [ inter coulomb ] ”
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319 }
320 puts ”Done. ”
321

322 # Equ i l i b r a t e wi th e l e c t r o s t a t i c s
323 i f { ! ( $cont inue ) } {
324 puts ”Star t e q u i l i b r a t i o n at [ clock format [ clock seconds ] ] ”
325 integrate $ i n t e q s t e p s
326 i f { $vmd } {
327 imd po s i t i o n s −unfolded
328 }
329 # save e q u i l i b r a t e d con f i g u ra t i on
330 checkpoint set ”$subdirname/ $ i d e n t . e q u i l i b r a t e d . g z ”
331 }

Setting up hydrodynamics

The last warmup phase is done after activating the hydrodynamic interactions via
coupling of the MD particles to the LB fluid.

332 # stop a l l p a r t i c l e s b e f o r e en t e r ing l b
333 stop particles
334 thermostat o f f
335 thermostat lb $temp
336 lbf luid dens $ lbdens v i s c $v i s c agr id $agr id tau $ lb t imes t ep
337 lbf luid f r i c t i o n $lbgamma
338 puts ” [ thermostat ] ”
339 puts ” lbf luid dens $ lbdens v i s c $v i s c agr id $agr id tau

$ lb t imes t ep ”
340 puts ” lbf luid f r i c t i o n $lbgamma”
341

342 # Equ i l i b r a t e wi th LB
343 puts ”Star t e q u i l i b r a t i o n with lb at [ clock format [ clock

seconds ] ] ”
344 integrate $ i n t e q l b s t e p s

B.1.4. Data generation

The system is integrated over 107 time steps and snapshots are saved at equal
intervals for offline analysis.

345 puts ”Star t s imu la t i on at [ clock format [ clock seconds ] ] ”
346

347 # re s e t time
348 setmd time 0
349

350 # in t e g r a t i o n loop
351 for { set i 1} { $ i <= $ in t n t imes } { incr i } {
352 integrate $ i n t s t e p s
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353 # save snapshot
354 i f { $ i%$savesteps==0 } {
355 i f { $ t e s t } { puts ” In t e g r a t i on $ i / $ in t n t imes ” }
356 i f { $vmd } {
357 imd po s i t i o n s −unfolded
358 }
359 # save snapshot
360 set out [open ”| gz ip −c − >

$subdirname/ snapshots / $ i d en t . [ format %06u [ expr
round ( [ setmd time ] ) ] ] . g z ” ”w”]

361 #b l o c k f i l e $out wr i t e v a r i a b l e a l l
362 #b l o c k f i l e $out wr i t e t c l v a r i a b l e a l l
363 #b l o c k f i l e $out wr i t e i n t e r a c t i o n s
364 #b l o c k f i l e $out wr i t e p a r t i c l e s ”id pos type q v f ” a l l
365 #b l o c k f i l e $out wr i t e bonds a l l
366 blockf i le $out wr i t e p a r t i c l e s ” id pos ” a l l
367 close $out
368 }
369 # . . . f o r loop cont inued here

Velocity auto-correlation functions

The measurement of the diffusion and the electrophoretic mobility via Green-Kubo
relation requires the calculation of velocity auto-correlation functions for all parti-
cles. These correlation functions decay very fast, but have to be sampled with high
accuracy to obtain useful measurements. Therefore, they can not be determined
with the same intervals as for example the static chain properties but have to be
sampled individually. The large number of independent samples needed to obtain
reasonable statistics also prohibits the complete storage of the trajectories, and thus
the auto-correlation functions are analysed during the data production run and not
via a separate offline analysis script.

370 # . . . con t inua t ion o f f o r loop
371

372 # normal izaton f a c t o r
373 # v e l o c i t y c o r r e l a t i o n fun t i on s use d i f f e r e n c e o f p o s i t i o n s

in s t ead o f v e l o c i t i e s
374 # norma l i sa t ion by d t∗d t ( where dt i s d i s t ance between two

saved p o s i t i o n s )
375 set norm [ expr 1 . /pow( $ i n t s t e p s ∗ [ setmd t ime s tep ] , 2 ) ]
376

377 # s to r e con f i gu ra tons in memory
378 analyze push $vacs teps
379

380 # ana lyze vac f unc t i on s
381 i f { $ i%$vacsteps==0 } {
382 # ana lyze t r an spo r t p r o p e r t i e s
383 # cacu l a t e ion d i f f u s i o n
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384 set vac [ analyze vac 1 1 $maxtau $ i n t e r v a l ]
385 set ion [ lindex $vac 0 ]
386 set e ion [ lindex $vac 1 ]
387 # cacu l a t e chain d i f f u s i o n
388 set vac [ analyze vac 2 1 $maxtau $ i n t e r v a l ]
389 set d i f f [ lindex $vac 0 ]
390 set e d i f f [ lindex $vac 1 ]
391 # cacu l a t e chain mob i l i t y
392 set vac [ analyze vac 3 1 $maxtau $ i n t e r v a l ]
393 set mob [ lindex $vac 0 ]
394 set emob [ lindex $vac 1 ]
395

396 # wr i t e out d i f f u s i o n graphs
397 set currt ime [ expr round ( [ setmd time ] ) ]
398 set a l l d i f f d a t [open

”$subdirname/ $ id en t . a l l d i f f−$maxtau−$ in t e rva l . [ format %06u
[ expr round ( [ setmd time ] ) ] ] . da t ” ”w”]

399 puts $ a l l d i f f d a t ”#tau ion e ( ion ) d i f f e ( d i f f ) mob e (mob) ”
400 for { set j 0 } { $ j <= $maxtau } { incr j } { ; # error s are

mu l t i p l i e d wi th s q r t (2 ∗ t au to ) , where t au t o i s the
au t o co r r e l a t i on time

401 puts −nonewline $ a l l d i f f d a t ”[ expr $ j∗$ i n t s t ep s∗$ t ime s t ep ]
[ expr [ lindex $ion $ j ] ∗$norm ] [ expr [ lindex $e ion

$ j ] ∗$norm∗sqrt (10) ] ”
402 puts −nonewline $ a l l d i f f d a t ” [ expr [ lindex $ d i f f

$ j ] ∗$norm ] [ expr [ lindex $ e d i f f $ j ] ∗$norm∗sqrt (10) ] ”
403 puts −nonewline $ a l l d i f f d a t ” [ expr −1.0∗ [ lindex $mob

$ j ] ∗$norm ] [ expr [ lindex $emob $ j ] ∗$norm∗sqrt (10) ]\n”
404 }
405 flush $ a l l d i f f d a t
406 close $ a l l d i f f d a t
407 }
408

409 # end o f f o r loop
410 }

The function analyze vac is a user-defined function to efficiently calculate the
auto-correlation functions from trajectories stored via analyze push.

End of script

The script finishes with the storage of a final snapshot. Additionally, the run-time
is calculated for timing purposes.

411 # save f i n a l c on f i g u ra t i on ( but not con f i g array )
412 analyze remove
413 checkpoint set ”$subdirname/ $ i d e n t . f i n a l . g z ”
414

415 set stopt ime [ clock seconds ]
416 puts ”\ nFinished without e r r o r s at [ clock format $stopt ime ] ”
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417 set usedtime [ expr $stopt ime − $ s ta r t t ime ]
418 puts ”Total time used : [ format ”%02u:%02u:%02u” [ expr

$usedtime /(60 ∗60 ) ] [ expr ( $usedtime%(60∗60 ) ) /60 ] [ expr
( $usedtime%60) ] ] . ”

419 exit

B.2. Analysis script

Upon the completion the data generation via the simulation script, a second anal-
ysis script is executed that loads the previously saved trajectories and calculates
observables of interest. Note that the auto-correlation functions for the diffusion
and mobility measurements are already calculated during the simulation script for
reasons of efficiency.

B.2.1. Command line parsing

The analysis script starts with the same flexible command line parser which is
therefore not discussed in detail.

1 set parameters {nodes npc cha ins cm cs lbgamma lbt ime run}
2 set opt ions {debug vmd { randomseed seed } { cont inue snapshot } t e s t

{ sk ip sk ip l eng th }}

The parameter are identical to the ones provided to the simulation script. Addi-
tionally the option skip is available that removes the first skiplength stored snapshots
from the analysis process.

B.2.2. User-defined functions

The script uses some of reoccurring functions to load and analyze the data. These
are defined at the beginning of the script.

Column average

This procedure calculates the average over a data file column using the an auto-
correlation time calculation to obtain the error estimate as explained in Refer-
ence 127.

89 proc get uwerr av { { f i l ename } { dco l } { sk ip 0 } } {
90 i f { [ f i l e exists $ f i l ename ] } {
91 set input [open $ f i l ename r ]
92 gets $input l i n e
93 set header [ lindex $ l i n e $dco l ]
94 i f { $ : :debug } {
95 puts ”$ l i n e −> $header ”
96 }
97 set data ””
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98 while { [ gets $input l i n e ] >= 0} {
99 i f { $sk ip > 0 } {

100 incr sk ip −1
101 } else {
102 set tmp [ lindex $ l i n e $dco l ]
103 i f { $tmp !=”” } {
104 lappend data $tmp
105 }
106 }
107 }
108 set nrep [ llength $data ]
109 i f { $ : :debug } {
110 puts ”Analzye ’ $ f i l ename ’ − column $dco l − nrep $nrep ”
111 }
112 i f { [ catch { set uwout [ uwerr $data $nrep 1 ]} e r r ] } {
113 puts ”UW−Error: $ f i l ename ”
114 puts ”$e r r ”
115 set r e s u l t ” 0 . 0 0 . 0 0 . 0 ”
116 } else {
117 set r e s u l t ”[ lindex $uwout 0 ] [ lindex $uwout 1 ] ”
118 }
119 close $input
120 return ”$header $ r e s u l t ”
121 } else {
122 puts ”WARNING: F i l e ’ $ f i l ename ’ not found. ”
123 return ””
124 }
125 }

Simpson integration

To calculate the diffusion coefficient and the electrophoretic mobility the auto-
correlation functions have to be integrated. This is done via Simpson integration.

126 proc s impson integ ra te { { d a t a f i l e } { t c o l } { dco l } { header 1
} { upperbound −1 } } {

127 # open data f i l e
128 i f { ! [ f i l e exists $ d a t a f i l e ] } {
129 puts ”Could not f i nd input f i l e : $ d a t a f i l e . ”
130 puts ”Exi t ing . . . ”
131 exit −1
132 }
133 set input [open $ d a t a f i l e ”r ”]
134 #puts ”Data f i l e opened: $ d a t a f i l e . ”
135

136 # read and d i s card header
137 set i 0
138 while { $ i < $header } {
139 gets $input l i n e
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140 incr i
141 # i f { $ : : d e bug } { puts ”Line d i s c a r d ed : $ l i n e . ” }
142 }
143

144 # read data s e t s
145 set cu r r t 0
146 set t { }
147 set data { }
148 set e r r { }
149 while { ( [ gets $input l i n e ] >= 0) &&
150 ( ( ( $upperbound != −1) && ( $cur r t < $upperbound ) ) | |

( $upperbound == −1) ) } {
151 set cu r r t [ lindex [ sp l i t $ l i n e ] $ t c o l ]
152 lappend t $cur r t
153 set currd [ lindex [ sp l i t $ l i n e ] $dco l ]
154 lappend data $currd
155 set cur re [ lindex [ sp l i t $ l i n e ] [ expr $dco l +1] ]
156 i f { $curre > 0 } {
157 lappend e r r $curre
158 } else {
159 lappend e r r 0 . 0
160 }
161 }
162 set n [ llength $data ]
163 set dt [ expr ( [ lindex $t end ]−[ lindex $t 0 ] ) /(1 .∗ ($n−1) ) ]
164

165 i f { $n%2 == 0 } {
166 lappend t [ expr [ lindex $t end]+$dt ]
167 lappend data 0 . 0
168 lappend e r r 0 . 0
169 }
170 set n [ llength $data ]
171

172 # simpson i n t e g r a t i o n
173 set m [ expr ( [ llength $t ] − 1 . ) /2 . ]
174 set dat $data
175 set sumEven 0
176 for { set k 1 } { $k <= [ expr $m−1 ] } { incr k } {
177 set sumEven [ expr $sumEven + [ lindex $dat [ expr 2∗$k ] ] ]
178 }
179 set sumOdd 0
180 for { set k 1 } { $k <= $m } { incr k } {
181 set sumOdd [ expr $sumOdd + [ lindex $dat [ expr 2∗$k−1 ] ] ]
182 }
183 set in tavg [ expr $dt /3 .∗ ( [ lindex $dat 0 ]+[ lindex $dat

end ]+2 .∗$sumEven+4.∗$sumOdd ) ]
184

185 return $ intavg
186 }
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Load system

This function restores the complete system description from a snapshot file and sets
all internal variables accordingly.

187 proc loadsystem { { f i l ename } } {
188 i f { [ f i l e exists $ f i l ename ] } {
189

190 # only t h e s e b l o c k s are r e s t o r ed
191 set r e s t o r e ”variable i n t e r a c t i o n s p a r t i c l e s bonds ”
192 # t h i s v a r i a b l e s are not read from ”v a r i a b l e ” b l o c k
193 set b l o c k f i l e v a r i a b l e b l a c k l i s t {min num cel l s node gr id } ;
194

195 # ge t t a g s
196 puts ”\ tReading tags . . . ”
197 i f { [ string compare [ lindex [ sp l i t $ f i l ename ” . ”] end ]

”gz ”]==0 } { set i n f i l e [open ”| gz ip −cd $ f i l ename ” r ] }
else { set i n f i l e [open ”$ f i l ename ” ”r ”] }

198 set eof 0 ; set tags {}
199 while { ! $ eo f } {
200 i f { [ catch { lappend tags [ blockf i le $ i n f i l e read s t a r t ] ;

blockf i le $ i n f i l e read toend } ] } { set eof 1 }
201 }
202 catch { close $ i n f i l e } ; unset eof
203 puts ”\ tdone . ”
204

205 # re s t o r e s e l e c t e d b l o c k s
206 puts ”\ tReading system . . . ”
207 i f { [ string compare [ lindex [ sp l i t $ f i l ename ” . ”] end ]

”gz ”]==0 } { set i n f i l e [open ”| gz ip −cd $ f i l ename ” r ] }
else { set i n f i l e [open ”$ f i l ename ” ”r ”] }

208 for { set i 0 } { $ i < [ llength $tags ] } { incr i } {
209 i f { [ lsearch $ r e s t o r e [ lindex $tags $ i ] ] >= 0 } {
210 blockf i le $ i n f i l e read [ lindex $tags $ i ] ; puts

”\ t \ t [ lindex $tags $ i ] ”
211 } else {
212 blockf i le $ i n f i l e read s t a r t ; blockf i le $ i n f i l e read

toend ;
213 }
214 }
215 catch { close $ i n f i l e } ; unset tags ; unset r e s t o r e ;
216 puts ”\ tdone . ”
217

218 } else { puts ”Cannot open ’ $ f i l ename ’ ”; exit }
219 puts ”done. ”
220 }
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Load snapshot

In contrast to loadsystem this function only updates the particle positions and veloci-
ties with the data from the snapshot file. It does not recreate a system from scratch.
The loaded positions are added to the internal configuration array of ESPResSO
via analyze append.

221 proc loadsnapshot { { f i l ename } } {
222 i f { [ f i l e exists $ f i l ename ] } {
223

224 set tags ” p a r t i c l e s ”
225 # only t h e s e b l o c k s are r e s t o r ed
226 set r e s t o r e ” p a r t i c l e s ”
227 set b l o c k f i l e v a r i a b l e b l a c k l i s t {min num cel l s node gr id } ;

# t h i s v a r i a b l e s are not read from ”v a r i a b l e ” b l o c k
228

229 # re s t o r e s e l e c t e d b l o c k s
230 #puts ”\ tReading system . . . ”
231 i f { [ string compare [ lindex [ sp l i t $ f i l ename ” . ”] end ]

”gz ”]==0 } { set i n f i l e [open ”| gz ip −cd $ f i l ename ” r ] }
else { set i n f i l e [open ”$ f i l ename ” ”r ”] }

232 for { set i 0 } { $ i < [ llength $tags ] } { incr i } {
233 i f { [ lsearch $ r e s t o r e [ lindex $tags $ i ] ] >= 0 } {
234 blockf i le $ i n f i l e read [ lindex $tags $ i ] ; #puts

”\ t \ t [ l i n d e x $ t ag s $ i ] ”
235 } else {
236 blockf i le $ i n f i l e read s t a r t ; blockf i le $ i n f i l e read

toend ;
237 }
238 }
239 catch { close $ i n f i l e } ; unset tags ; unset r e s t o r e ;
240 #puts ”\ t done . ”
241

242 } else { puts ”Cannot open ’ $ f i l ename ’ ”; exit }
243 #puts ”done. ”
244

245 analyze append
246 }

B.2.3. Restore system

The system is restored from a snapshot file and the configurations are loaded for
analysis.

247 puts ”\ nStart a n a l y s i s at [ clock format [ clock seconds ] ] ”
248

249 # system i d e n t i f i c a t i o n
250 set subdirname ”pss−lb−t$lbtime−g$gamma−gk ”
251 i f { $ t e s t } {
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252 set i dent ”test−pss−cm$cm−cs$cs−${ cha ins }x${npc}−run${ run }”
253 } else {
254 set i dent ”data−pss−cm$cm−cs$cs−${ cha ins }x${npc}−run${ run }”
255 }
256 puts ”subdirname = $subdirname ”
257 puts ” ident = $ ident ”
258

259 # output r e s u l t s
260 set outdirname ” r e s u l t s ”
261 i f { ! [ f i l e isdirectory ”$outdirname ”] } {
262 puts ”Creat ing path ’ $outdirname ’ . ”
263 f i l e mkdir $outdirname
264 }
265 set out ident ”result−lb−t$lbtime−g$lbgamma−E$E ”\
266 ”−cm$cm−cs$cs−${ cha ins }x$npc−run$run.dat ”
267 set output [open ”$outdirname/ $out ident ” w]
268

269 # load system
270 puts ”Load system . . . ”
271 loadsystem $subdirname/ $ i d e n t . f i n a l . g z
272

273 # load snapshot s
274 set s t a r t 10
275 set stop 100000
276 set s tep 10
277 puts ”Load snapshots . . . ”
278 for { set i $ s t a r t } { $ i <= $stop } { incr i $ s tep } {
279 loadsnapshot $subdirname/ snapshots / $ i d en t . [ format %06u $ i ] . g z
280 }
281 puts ”done. ”
282 puts ”[ analyze s to r ed ] c on f i g u r a t i o n s l oaded . ”

B.2.4. Data analysis

Chain conformations and ion distributions

The stored configurations are used to calculate the static observables of the system
such as the chain conformations and the distributions of ions around the chains.

284 # se t chain
285 analyze set cha ins 0 $cha ins $npc
286

287 set pedat [open ”$subdirname/ $ i d e n t . p e s t a t s . d a t ” ”w”]
288 puts $pedat ”#time pe re pe rg pe rh ”
289

290 set c i da t [open ”$subdirname/ $ i d en t . c oun t e r i o n . d a t ” ”w”]
291 puts $c ida t ”#time c i2 c i3 co2 co3 ”
292

293 for { set i 0 } { $ i < [ analyze s to r ed ] } { incr $ i } {
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294 # ac t i v a t e i−th c on f i g u ra t i on
295 a c t i v a t e c o n f i g u r a t i o n $ i
296

297 #chain props
298 puts −nonewline $pedat ”$ i ”
299 puts −nonewline $pedat ”[ lindex [ analyze re ] 0 ] ”
300 puts −nonewline $pedat ”[ lindex [ analyze rg ] 0 ] ”
301 puts $pedat ”[ lindex [ analyze rh ] 0 ] ”
302

303 # ion d i s t r i b u t i o n
304 i f { $nsa l t >0} {
305 set c od i s t [ lindex [ analyze d i s t r i b u t i o n { 3 } { 0 } 1 . 0

3 . 0 2 0 1 ] 1 ]
306 set c i d i s t [ lindex [ analyze d i s t r i b u t i o n { 1 2 } { 0 } 1 . 0

3 . 0 2 0 1 ] 1 ]
307 } else {
308 set c i d i s t [ lindex [ analyze d i s t r i b u t i o n { 1 } { 0 } 1 . 0

3 . 0 2 0 1 ] 1 ]
309 set c od i s t { {0 0} {0 0} }
310 }
311 puts $c ida t ”$ i [ expr $nc i / $cha ins∗ [ lindex [ lindex $ c i d i s t 0 ]

1 ] ] [ expr $nc i / $cha ins∗ [ lindex [ lindex $ c i d i s t 1 ] 1 ] ]
[ expr $nco/ $cha ins∗ [ lindex [ lindex $ cod i s t 0 ] 1 ] ] [ expr
$nco/ $cha ins∗ [ lindex [ lindex $ cod i s t 1 ] 1 ] ] ”

312 }
313 close $pedat
314 close $c ida t

Averaging of the data files is done as a second step using the previously defined
procedure get uwerr av.

315 # cha i n s t a t s
316 puts $output ”[ get uwerr av $subdirname/ $ i d e n t . p e s t a t s . d a t 1

$ sk ip l eng th ] ”
317 puts $output ”[ get uwerr av $subdirname/ $ i d e n t . p e s t a t s . d a t 2

$ sk ip l eng th ] ”
318 puts $output ”[ get uwerr av $subdirname/ $ i d e n t . p e s t a t s . d a t 3

$ sk ip l eng th ] ”
319

320 # counter ions
321 puts $output ”[ get uwerr av $subdirname/ $ i d en t . c oun t e r i o n . d a t 1

$ sk ip l eng th ] ”
322 puts $output ”[ get uwerr av $subdirname/ $ i d en t . c oun t e r i o n . d a t 2

$ sk ip l eng th ] ”
323 puts $output ”[ get uwerr av $subdirname/ $ i d en t . c oun t e r i o n . d a t 3

$ sk ip l eng th ] ”
324 puts $output ”[ get uwerr av $subdirname/ $ i d en t . c oun t e r i o n . d a t 4

$ sk ip l eng th ] ”
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Dynamic transport coefficients

After the static properties the dynamic properties are analysed, starting with the
chain diffusion coefficient. Here, a linear fit to the root-mean square displacement
is used which is also obtained from the stored configurations.

325 # output
326 set d i f f d a t [open ”$subdirname/ $ i d e n t . c h a i n d i f f . d a t ” w]
327 set de l t a t 10
328

329 # chain d i f f u s i o n
330 set g3 [ analyze <g3>]
331 for { set i 0 } { $ i < [ llength $g3 ] } { incr i } {
332 puts $d i f f d a t ”[ expr $ i ∗ $d e l t a t ] [ lindex $g3 $ i ] ”
333 }
334 close $d i f f d a t
335

336 # prepare l i n reg
337 set min 100
338 set max 2000
339 set reg ””
340 for { set i $min } { $ i < $max } { incr i } {
341 lappend reg ”[ expr $ i ∗ $d e l t a t ] [ lindex $g3 $ i ] ”
342 }
343 set r e s [ LinRegression $reg ]
344 puts $output ”D rmsd [ expr [ lindex $ re s 1 ]/6 . ] [ expr [ lindex $ re s

3 ]/6 . ] ”

Now, the velocity auto-correlation functions that were calculated during the sim-
ulation run have to be analysed. The integral value is calculated using Simpson
integration and the averages of the independent correlation functions yield the final
values for the dynamic transport coefficients of the chains and the ions.

345 set maxtau 400 ; # tau = 40 .0
346 set i n t e r v a l 1 ; # dtau = 0 .1
347 set s t a r t 10000
348 set stop 100000
349 set s tep 10000
350 set temp 1 . 0
351

352 # ion d i f f u s i o n
353 set va l 0 ; set e r r 0 ; set n 0
354 for { set snap $ s t a r t } { $snap <= $stop } { incr snap $step } {
355 set tmp [ expr 1 . /3 .∗ [ s impson integ ra te

”$subdirname/ $ id en t . a l l d i f f−$maxtau−$ in t e rva l . [ format %06u
$snap ] . da t ” 0 1 ] ]

356 set va l [ expr $va l+$tmp ]
357 set e r r [ expr $e r r+$tmp∗$tmp ]
358 incr n
359 }
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360 puts $output ”D ion [ expr $va l /$n ] [ expr
sqrt ( ( $n∗$err−$val∗$val ) /( $n∗ ($n−1) ) ) ] ”

361

362 # cm d i f f u s i o n
363 set va l 0 ; set e r r 0 ; set n 0
364 for { set snap $ s t a r t } { $snap <= $stop } { incr snap $step } {
365 set tmp [ expr 1 . /3 .∗ [ s impson integ ra te

”$subdirname/ $ id en t . a l l d i f f−$maxtau−$ in t e rva l . [ format %06u
$snap ] . da t ” 0 3 ] ]

366 set va l [ expr $va l+$tmp ]
367 set e r r [ expr $e r r+$tmp∗$tmp ]
368 incr n
369 }
370 puts $output ”D cm [ expr $va l /$n ] [ expr

sqrt ( ( $n∗$err−$val∗$val ) /( $n∗ ($n−1) ) ) ] ”
371

372 # cm d i f f u s i o n
373 set va l 0 ; set e r r 0 ; set n 0
374 for { set snap $ s t a r t } { $snap <= $stop } { incr snap $step } {
375 set tmp [ expr 1 . /(3 .∗$temp ) ∗ [ s impson integ ra te

”$subdirname/ $ id en t . a l l d i f f−$maxtau−$ in t e rva l . [ format %06u
$snap ] . da t ” 0 5 ] ]

376 set va l [ expr $va l+$tmp ]
377 set e r r [ expr $e r r+$tmp∗$tmp ]
378 incr n
379 }
380 puts $output ”mu cm [ expr $va l /$n ] [ expr

sqrt ( ( $n∗$err−$val∗$val ) /( $n∗ ($n−1) ) ) ] ”

End of script

The script finishes after all observables have been written to the output file.

381 flush $output ; close $output
382

383 # End of program
384 set stopt ime [ clock seconds ]
385 puts ”\ nFinished without e r r o r s at [ clock format $stopt ime ] ”
386 set usedtime [ expr $stopt ime − $ s ta r t t ime ]
387 puts ”Total time used : [ format ”%02u:%02u:%02u” [ expr

$usedtime /(60 ∗60 ) ] [ expr ( $usedtime%(60∗60 ) ) /60 ] [ expr
( $usedtime%60) ] ] . ”

388 exit
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