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Abstract: 
This paper analyzes liquidity in an order driven market. We only investigate the best limits in 
the limit order book, but also take into account the book behind these inside prices. When 
subsequent prices are close to the best ones and depth at them is substantial, larger orders can 
be executed without an extensive price impact and without deterring liquidity. We develop 
and estimate several econometric models, based on depth and prices in the book, as well as on 
the slopes of the limit order book. The dynamics of different dimensions of liquidity are 
analyzed: prices, depth at and beyond the best prices, as well as resiliency, i.e. how fast the 
different liquidity measures recover after a liquidity shock. Our results show a somewhat less 
favorable image of liquidity than often found in the literature. After a liquidity shock (in the 
spread or depth or in the book beyond the best limits), several dimension of liquidity 
deteriorate at the same time. Not only does the inside spread increase, and depth at the best 
prices decrease, also the difference between subsequent bid and ask prices may become larger 
and depth provided at them decreases. The impacts are both econometrically and 
economically significant. Also, our findings point to an interaction between different 
measures of liquidity, between liquidity at the best prices and beyond in the book, and 
between ask and bid side of the market. 
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1 Introduction

In this paper, we analyze the liquidity in an order driven market as provided by the

limit order book. Since liquidity refers to how easy and quickly traders can buy or sell

large numbers of shares without large price effects or costs, it is clearly determined by

several elements. First, the bid-ask spread and the depth available at the best prices are

essential. In the literature liquidity is often analyzed by looking only at these so-called

“best limits” (i.e. the best prices and depths) in the limit order book (henceforth in

short the LOB or simply the book). Although these best limits are important aspects

in assessing liquidity, they form nevertheless only a part of the picture. Traders may not

only care about the inside spread or the depth at the best prices, but also about the LOB

beyond these best limits. If subsequent prices are close to the best ones and if sufficient

depth is provided at those prices, large orders can execute at a lower cost, than when

the spread is narrower but lower depth is available and/or subsequent prices are further

away from the best price. Hence, while the best limits provide an important element,

the rest of the LOB may is also relevant when assessing liquidity in a limit order market.

Furthermore, for well functioning markets it is also crucial that liquidity is restored

quickly when a liquidity shock has taken away a significant part of the liquidity that

was available in the book. This dimension of liquidity is called resiliency.

The main objective of this paper is therefore to investigate liquidity provided by

the LOB, not only at the best limits, but also beyond in them. We devote particular

attention to the resiliency of the book. In the analysis, we take into account different

measures of liquidity, in line with the intuition just presented. Each measure then

captures an aspect of liquidity. One set of measures focusses on liquidity at the best

limits: the bid-ask spread and depth at the best ask and bid price. In measuring liquidity

in the LOB beyond the best limits we take two complementary approaches. The first

is to use limit order book slopes. Slopes summarize the price and depth dimensions

of liquidity in one variable for the ask side and another for the bid side. This has the

advantage that a parsimonious model is obtained, but price and depth effects can no

longer be separated. In a second, alternative approach, we investigate on the one hand

the “spread” between best and subsequent prices, i.e. how far subsequent ask (bid)

prices are away from the best ask (bid), expressed in number of ticks. We also look at

the depth that is provided at these prices. In all models, we allow for an interaction

between the different aspects of liquidity: between liquidity at and beyond the best

limits and at ask and bid side of the market, and also between prices and depth. This is

important since if e.g. a shock that widens the bid-ask spread would imply an increase

in the depth, the impact of the shock on liquidity may be less severe than if depth

would decline. In this way, this paper is one of the first to provide a detailed analysis of

liquidity and the impact of liquidity shocks at as well as beyond the best limits.
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In our empirical methodology, we divide the trading day in 15 minute intervals and

compute time-weighted averages of each variable (i.e. liquidity measure) over each in-

terval. We also adjust for intraday patterns exhibited by the data. We develop different

specifications of vector autoregressive models (VARs), in each the endogenous variable

capture various aspects of liquidity. Starting from these VARs, we subsequently analyze

the dynamics of the LOB after shocks, which is the main focus of the paper. For this,

we compute, on the basis of the VAR-models, impulse response functions (IRFs) which

plot the dynamic evolution of the variables around different types of liquidity shocks.

Moreover, these IRFs allow at the same time for unraveling the dynamic relationships

between different measures of liquidity, and between ask and bid side of the book. The

analysis is performed by using data from the Spanish Stock Exchange SIBE, this is a

pure limit order market without market makers1.

To our knowledge, limit order book slopes have not been extensively analyzed in the

literature. Although slopes provide a good measure of the book, their behavior around

shocks has not yet been documented. Næs and Skjeltorp (2006) analyze empirically the

relation between the shape of the LOB, measured by the average elasticity of demand and

supply schedules in the book, and the volume-volatility relation. They find a systematic

negative relation between the slope and price volatility and between the slope and the

daily number of trades. Kalay, Sade and Wohl (2004) estimate demand and supply

elasticity at the opening stage of the Tel Aviv Stock Exchange. The elasticity is largest

at the opening. Also, it is larger for the demand schedule than for the supply schedule.

An alternative measure, but related to the slope, is the cost of round trip trade (CRT)

in Irvine, Benston and Kandel (2000). This measure aggregates the status of the LOB

at a given time for a specific transaction size. Suppose that trader wants to buy and

sell the same number of shares at the same time. The CRT then determines the cost of

such trade, taking into account not only the inside spread and depth at the best prices,

but (for larger sizes) also the entire structure of the book. The smaller the CRT, the

larger liquidity. They show that the CRT can predict the number of subsequent trades.

Moreover, it is correlated with other measures of liquidity, such as the inside spread and

depth, but provides additional information. The same information about the LOB is

however also used to compute the slopes. Moreover, the latter has the advantage that it

is a more general measure since, in contrast with the CRT, it does not refer to a particular

transaction size. However, none of the papers above provides a detailed analysis of the

relation between different liquidity measures or between prices (or spreads) and depth.

Our paper complements and contributes to this literature by doing so.

From a theoretical perspective, also very few papers deal with slopes. Many models

are not able to fully capture the behavior of slopes. Parlour (1998) considers the queues

1In fact, some smaller stocks have a specialist who basically comits to provide liquidity for that
stock. This is, however, not the case for the stocks in our sample.
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at the best bid and ask prices in a one-tick market2. Foucault, Kadan and Kandel (2005)

allow traders to undercut the existing prices in the book, but do not allow for queuing at

a given price3. This means traders either submit a market order, taking the best prices,

or submit an order that undercuts the best price. The spread improvement, which has

an impact on the slope, is larger when the proportion of patient traders is larger, the

waiting cost is higher and the order arrival rate is smaller. A recent model that is able

to formulate predictions about the shape of the LOB is Rosu (2007). Using a continuous

time model with only liquidity traders (so without asymmetric information) he shows

that, when traders can submit multi-unit market orders, then the book exhibits a hump

shape, i.e. limit orders cluster at prices away from the best bid and ask. Moreover, he

confirms the results of Foucault, Kadan and Kandel (2005) about resiliency in a limit

order market. Finally, he shows that after a market sell order, not only the best bid

decreases, but also the best ask, although less than the bid. This leads to a widening

of the spread. This fact was also found by Biais, Hillion and Spatt (1995). The latter

provide an information-related explanation, but Rosu (2007) shows that even without

asymmetric information, this occurs. We motivate the inclusion of variables in the

different econometric models below in part by this theoretical literature.

Our results demonstrate a somewhat less sunny picture of liquidity in a limit order

market than is often obtained in the literature. First, when the bid-ask spread on average

increases in a 15-minute interval, depth at the best prices subsequently decreases. This

means that both dimensions of liquidity deteriorate. On the other hand, shocks that

increase depth, lower the bid-ask spread. The analysis of the LOB beyond the best

limit shows that decreasing liquidity at the best prices leads to less liquidity further in

the LOB as well. More specifically, a shock that increases the bid-ask spread, lowers

the slope of the book (a flatter book means less liquidity is present), both at bid and

ask side. A steeper LOB (a shock to the slopes) in turn implies a smaller spread in

the periods after the shock. The analysis of prices and depth in the LOB confirms the

results. A shock increasing the bid-ask spread first implies a lower distance between the

first and fifth price in the book, but after some periods an increase is observed. Depth

beyond the best limits remains relatively unaffected. Inversely, a shock that increases

the distance between the first and fifth prices in the book (either at ask or bid side) first

causes a decrease in the bid-ask spread, but after some periods, the spread increases.

Again depth is less affected but if so, in general decreases. On the other hand, when

depth at the best prices increases, also depth beyond does. For all shocks in all models the

impact is realized within one to 1.5 hours. Important is that all impacts and interactions
2She also briefly discusses a two-tick market, but the exposition does not allow for deriving empirical

predictions about slopes.
3Limit orders can however queue at different prices since unexecuted limit orders that are undercut,

remain in the book. However, traders cannot submit a limit order at an existing price. In other words,
new limit orders must always improve the existing best price.
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just discussed are not only econometrically significant, but their order of magnitude is

also significant from an economic point of view. Finally, three more points are worth

stressing. First, it is important to allow for a relation between spreads and depths when

analyzing liquidity. Secondly, shocks do not remain confined to the own side, but also

cause a response at the other side of the market. If e.g. a shock occurs to slopes or depth

at the ask side, this affects not only the ask side of the market, but also the bid side.

Thirdly, our results clearly show that liquidity at and beyond the best limits interact.

This paper is structured as follows. Section 2 discusses the empirical methodology

used and specifies the different econometric models. Moreover, we outline the procedure

for computing the IRFs. In Section 3, we introduce the data set. Section 4 shows a

number of descriptive statistics of the data and provides evidence for their intraday

patterns throughout the trading day. The results are presented in two sections. Section

5 presents the estimation results of the alternative VAR-models and briefly discusses the

most important findings. The main section however is Section 6, which plots the IRFs,

i.e. the dynamics of the different variables and their evolution after different kinds of

liquidity shocks. Moreover, we point to the interrelationships between different aspects

of liquidity and between ask and bid sides of the market. Section 7 provides a number

of robustness checks for the results obtained. Section 8 concludes.

2 Empirical Methodology

2.1 Introduction

When modeling intraday time series, two issues should be dealt with: irregular spacing

of the data and intraday seasonality. First, the intraday time series are irregularly

spaced since successive orders are submitted with irregular durations between them. In

the literature, in general two approaches are used to deal with the irregular spacing of

observations.4 The first one is to work in event time and record an observation whenever

there is a best limit or blim update (i.e. a change in one of the best prices or depths).

However, recall that in this paper we are not only interested in the best limits but

also in the LOB beyond. If we would record an observation whenever one of the prices

or depths in the LOB changes, most of the other prices and depths typically remain

unchanged. These hamper accurate estimations. This is amplified by the fact that the

data will contain much microstructure noise. Therefore we opt for the second possibility

put forward in the literature: we resample the intraday data at a given frequency (e.g. 15

minutes), such that again regularly spaced data are obtained. Next to econometrically

4A third possibililty is to deal directly with the irregularly spaced data by using duration models,
or joint models of durations and associated marks such as returns. For an overview of this approach,
see e.g. Bauwens and Giot (2001).
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more suited, our choice is also motivated by the research question we address. The use of

regularly spaced intervals permits us to provide a more aggregated view than would be

the case when using event time. It allows for investigating if periods where the book is

unexpectedly steeper or flatter (in other words, where liquidity is higher or lower) tend

to be reversed quickly or whether they persist during a number of consecutive periods.

This provides additional and complementary insights to an analysis of the immediate

consequences of liquidity shocks as analyzed in e.g. Degryse, de Jong, van Ravenswaaij

and Wuyts (2005) who work in event time.

After having opted for using regularly spaced intervals, it is important to tackle

a second issue, and take into account intraday patterns exhibited by the (resampled)

series (we will illustrate the presence of such patterns in Section 4). The importance of

correctly modeling such intraday seasonality is put forward in a number of studies such

as Engle and Russell (1998) or Bauwens and Giot (2001)).

Therefore, we go trough the following steps in our analysis:

1. Define the regularly spaced time intervals (i.e. choose the sampling frequency) and

specify regularly spaced variables.

2. Compute the intraday pattern of each variable and deseasonalize each variable by

its intraday pattern.

3. Model the deseasonalized variable using the appropriate econometric model.

4. Compute the impulse response functions.

In the next subsections, we discuss each of these points more in detail.

2.2 Sampling Frequency

When resampling the data - by dividing the trading day in equal intervals - a choice

must be made on the sampling frequency. The advantage of short intervals (say 1

minute) is that few information is lost in the aggregation of tick-by-tick data in intervals.

The disadvantage is that possibly more noise remains. The inverse arguments hold for

longer intervals e.g. of one hour (or more). Less noise will be present but much of

the dynamics within an interval is lost. Little guidance is provided in the literature

in choosing an “optimal” frequency. Aït-Sahalia, Mykland and Zhang (2005) compare

various possibilities for resampling tick-by-tick data in the context of realized volatility

models. They show that it is optimal to sample as often as possible, but one then needs

to correct for microstructure noise. Sparse sampling (e.g. at 5- or 15-minute intervals)

is the fourth best solution and sampling at an optimal frequency (to be computed) the

third best in estimating realized volatility. Simulations point to an optimal frequency of

about 6 to 7 minutes. Using IBM data, Oomen (2005) estimates an optimal sampling
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frequency of 2.5 minutes. It is however not clear how these findings extend to other

variables, nor to less frequently traded stocks. Almost all stocks in our sample are

much less frequently traded than IBM, which is traded almost every second. Some

of our stocks even have a duration between updates of one of the five best prices or

depths of more than 1.5 minutes5 (and only part of these updates correspond to actual

trades). Sampling at very short frequencies, say 1 to 5 minutes, then implies that the

time-weighted average of a variable over the interval is based on just a few observations.

Therefore, we opt for a compromise and divide each trading day in 15-minute inter-

vals. This is in line with, among others, Ahn, Bae and Chan (2001) and Beltran, Durré

and Giot (2004). As a robustness check (see Section 7), we also used a 5-minute sampling

frequency, our results remain qualitatively unaltered. In the description of the dataset

in Section 3, it is explained that the sample comprises 124 trading days. Moreover, each

trading day ranges from 9:00 until 17:30. We thus have 34 intervals per day or 4216 in

total. In the remainder of the paper, the time index t refers to 15-minute intervals and

each variable has 4216 observations.

For each variable in the models below, we compute time-weighted averages of that

variable over each interval. Let m∗
t be a variable in our model (e.g. the bid-ask spread

or the slope on the ask side of the LOB), where the star refers to the fact that the

variable is not yet corrected for intraday seasonality (see next subsection). Assume

there are Υt observations in interval t (where Υt can differ across intervals) and denote

each observation as m∗
t,τ , with τ = 1, ...,Υt. Assume the observation has a duration of

ωt,τ seconds.6 Then the variable m∗
t , the time-weighted average in interval t, is defined

as:

m∗
t =

PΥt

τ=1 ωt,τm
∗
t,τPΥt

τ=1 ωt,τ

(1)

2.3 Intraday Seasonality

The second step in the procedure involves adjusting each variable for its intraday pat-

tern. Not or not properly implementing this step may often lead to incorrect model

estimations. Moreover, an economic reasoning exists for this seasonal adjustment. Mar-

ket participants in principal know the intraday patterns and thus have expectations for

the pattern of a specific variable. They are then only affected by surprises (i.e. devia-

tions) from what was expected. We remove intraday effects by regressing each variable

on a series of intraday dummies:

m∗
t = β0 +

33X
j=1

βjTj + et (2)

5The average duration between such updates is 34.3 seconds, the minimum is 2.7, the maximum
101.4.

6So, it must hold that
P

ωτ,t = 900 seconds (= 15 minutes).
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wherem∗
t is the not deseasonalized variable. Tj is one if t refers to period j = 1, ..., 33

in the trading day, and zero otherwise. We left out the last period (j = 34) to avoid

perfect multicollinearity. Equation (2) is then used to generate the fitted (or forecasted)

values of m∗
t . Finally, we deseasonalize each variable by taking the difference between

m∗
t and its forecasted value. This difference becomes the endogenous variable in the

VAR-models of the next section and will be denoted a variable as mt, so without a star

as superscript. From now on, all variables in the models in the next section are to be

interpreted as intraday deseasonalized.

2.4 Econometric models

As our main interest lies in investigating the dynamic behavior of spreads and depths

at and beyond the best limits and their interrelation, we turn to VAR-models. Their

use for analyzing intraday, equally spaced data has been advocated in e.g. Hasbrouck

(1999). Below, several alternative models will be specified. Each model, however, starts

from the following general VAR-specification:

yt = A0 +
LX
l=1

Alyt−l + ut (3)

where yt is the k×1 vector of endogenous variables, ut is a k-dimensional white noise
process7 and A0 and Al are the conformable coefficient matrices. We consider three

alternative specifications of equation (3), each taking a different approach to analyze

the LOB. In each model, the vector of endogenous variables is different. Important

to recall is that each endogenous variable in the models below is adjusted for intraday

seasonality and thus should be understood relative to its intraday pattern.

Equation (3) shows that all VAR-models are specified in reduced form. Instead, we

could have used a structural VAR (SVAR), as in Coppejans, Domowitz and Madhavan

(2004). We would then need, however, identifying restrictions. Coppejans, Domowitz

and Madhavan (2004) do impose identifying restrictions, but their model only includes

best prices and depths (comparable to our Model 1 below). Given the Models 2 and 3

below, which include more elaborate variables. Moreover, the main interest of this paper

will not lie in the VARs themselves, but rather in the impulse response functions (IRFs).

Therefore, we start from the reduced form in (3) and use a particularly adequate method

to compute the IRFs. This method does not require a priori identifying restrictions as

for SVARs, neither does it require a specific ordering as in a Choleski decomposition.

We come back to this in Subsection 2.5 after the three VAR-models have been presented.

Finally, robustness checks show that our conclusions do not change when an SVAR is

used (see Section 7).

7That is E (ut) = 0, E (utu0t) = Σu and E (utu
0
s) = 0 for t 6= s.

7



2.4.1 Model 1: Best Limits

In the base case model, we investigate the best limits in the book sampled at 15-minute

intervals. More specifically, we set the vector of endogenous variables in (3) equal to:

yt = {Spr_BAt, AD1t, BD1t}

Spr_BAt is the time-weighted average inside or bid-ask spread, i.e. the difference be-

tween the best ask and bid, in ticks, computed over each 15-minute interval. AD1t and

BD1t are the time-weighted monetized depth at the best ask and bid, respectively, in

euro. We included the spread in the model, instead of separate bid and ask prices (as

in e.g. Engle and Patton (2004)). For models in event time, it is natural to allow for

divergent evolutions of ask and bid prices. When averaged over 15 minutes, however,

both will evolve much in the same way. Therefore, the decomposition of the spread in its

evolution on ask and bid side is less meaningful and we include the spread as measure of

liquidity. We include both depth at the best ask and bid, however, since Parlour (1998)

shows that traders look at both sides of the market when deciding which type of order

to submit. This specification is also similar to the one in Coppejans, Domowitz and

Madhavan (2004)

2.4.2 Model 2: Limit Order Book Slopes

Just considering the best prices and depths in the LOB only provides a partial picture

of liquidity. As argued in the introduction, also the state of the book beyond these best

limits is important. In the second VAR-specification, we therefore develop a first ap-

proach for investigating the LOB beyond the best limits. A concise way of summarizing

the book beyond the best limits is by considering limit order book slopes. Then, the

vector of endogenous variables becomes:

yt = {Spr_BAt, Slope_At, Slope_Bt}

As before, Spr_BAt is the time-weighted average bid-ask spread in number of ticks.

Slope_At and Slope_Bt are the slopes of the LOB at the ask and bid side respectively.

They are computed in a similar way as in Kalay, Sade and Wohl (2004) and Næs and

Skjeltorp (2006). More specifically, we compute the time-weighted average of the slope

on the ask side as follows. For each update τ in the book8 in interval t, we compute the

8Recall that in this paper an update is recorded whenever at least one of the five best bid or ask
prices or the depth at one of these prices changes.
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slope using the following expression for the ask side:

Slope_At,τ =
1

5

"
ADC1t,τ
AP1t,τ
Mt,τ

− 1 +
ADC2t,τ−ADC1t,τ

ADC1t,τ
AP2t,τ−AP1t,τ

AP1t,τ

+

ADC3t,τ−ADC2t,τ
ADC2t,τ

AP3t,τ−AP2t,τ
AP2t,τ

(4)

+

ADC4t,τ−ADC3t,τ
ADC3t,τ

AP4t,τ−AP3t,τ
AP4t,τ

+

ADC5t,τ−ADC4t,τ
ADC4t,τ

AP5t,τ−AP4t,τ
AP5t,τ

#

where ADC1t,τ , ..., ADC5t,τ are the cumulative depths at the first, ..., fifth ask price in

the book9. AP1t,τ , ..., AP5t,τ are the five first ask prices at time τ , Mt,τ is the midprice

defined as the average of the best bid and ask price. All variables are recorded after

update τ . The expression can be interpreted as the average elasticity for the five first

limit prices at the ask side of the market. The slope at for interval t, denoted by

Slope_At, is then the time-weighted average of the slopes Slope_At,τ for the 15-minute

interval t.

For the bid side of the market, the symmetric procedure is used, although we take

absolute values of the price differences in the denominator when computing Slope_Bt,τ .

Note that it follows from the definitions that higher slopes are associated with higher

liquidity in the LOB.

2.4.3 Model 3: Prices and Depths in the Limit Order Book

While limit order book slopes offer the advantages of resulting in a concise model, a

shortcoming is that it is not possible to distinguish dynamics at the prices or depths.

Therefore, we develop a third model allowing for this. We take into account both the

difference between subsequent prices at bid and ask side and the depths and specify the

vector of endogenous variables in Model 3 as:

yt = {Spr_BAt, AD1t, BD1t, Spr_A15t, Spr_B15t, AD25t, BD25t}

The first three variables are defined in the same way as in Model 1. Spr_A15t is the

“spread” between the best ask and the 5th ask price in the book in ticks, Spr_B15t is the

absolute value of the difference between the best bid and 5th bid price. The cumulative

depth, in euro, at the second, third, fourth and fifth prices in the book at the ask (bid)

side of the market is denoted by AD25t (BD25t). We thus summarize the book beyond

the best limits by four variables, two for prices (Spr_A15t and Spr_B15t) and two for

depths (AD25t and BD25t). In this way, we obtain a more parsimonious model than if

all five prices and depths at ask and bid side would be included. All variables are time-

weighted averages over interval t. The endogenous variables are similar to the ones in

Pascual and Veredas (2006). These authors find that, although most of the explanatory

9Note that ADC1t,τ = AD1t,τ .
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power of the book concentrates on the best limits, the book beyond them also matters

in explaining the order choice of traders. Hence, they are also a determinant of liquidity

supply (by limit orders) and demand (by market orders) in a limit order market and are

included in the model.

A summary of all the variables, used in the three models, and their description, is

presented in Table 1. Recall also that all variables are adjusted for intraday seasonality.

Table 1: Summary of Notation

Note: This table presents a summary of the different variables
used in the econometric models, their notation and definition. In
the models, all variables are computed as time-weighted averages
over 15-minute intervals and adjusted for intraday patterns.

Variable Description
Spr_BA Difference between best ask and bid, in # ticks
AD1 Depth available at best ask, in 1000 euro
BD1 Depth available at best bid, in 1000 euro
Slope_A Slope of the book at the ask side, computed as in equation (4), (∗10−6)
Slope_B Absolute value of the slope of the book at the bid side,

computed similar as in equation (4), (∗10−6)
Spr_A15 Difference between best and fifth ask price, in # ticks
Spr_B15 Absolute value of difference between best and fifth bid price, in # ticks
AD25 Cumulative depth available at second until fifth ask price, in 1000 euro
BD25 Cumulative depth available at second until fifth bid price, in 1000 euro

2.5 Impulse Responses

Although the coefficients in the three VAR models in the previous section already reveal

interesting insights, the main goal of this paper is to analyze in detail the dynamic prop-

erties of the different variables and their interrelation. Therefore, we compute impulse

response functions (IRFs) of the different VAR-models which give the responses of the

endogenous variables to different shocks. In order to compute the IRFs, we follow the

procedure proposed by Pesaran and Shin (1998). For notational simplicity, we bring

together the constant term, the vector of exogenous variables and its lags10 and denote

it by xt. The general form of the VAR in equation (3) can then be rewritten as:

yt =
LX
l=1

Alyt−l +Bxt + ut (5)

10Models 1, 2 and 3 do not contain exogenous variables. But as a robustness check, we will include
them later in the paper.
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with yt the (k × 1) vector of endogenous variables and xt the vector of all exogenous
variables (it thus contains a constant, the exogenous variables and their lags). Al and

B are conformable coefficient matrices. The following standard assumptions are made

(see also e.g. Lutkepohl (1991)): E (ut) = 0, E (utu
0
t) = Σ, E (utu

0
s) = 0 for all s and

E (ut|xt) = 0. Moreover, all roots of
¯̄̄
Im −

PL
l=1Alz

l
¯̄̄
fall outside the unit circle. Under

these assumptions, we can rewrite (5) in an infinite MA representation:

yt =
∞X
i=0

ζiut−i +
∞X
i=0

ϑixt−i

where ζi can be determined recursively

ζi = A1ζ i−1 + ...+Apζi−p, i = 1, 2, ...

ζi = 0 for i ≤ 0

and ϑi = ζiB. Suppose that a (k × 1) vector of shocks hits the variables in the model.

Then Koop et al. (1996) define the generalized impulse response function of yt in period

t+ n as:

GIRFn ( , It−1) = E (yt+n|ut = , It−1)− E (yt+n|It−1) (6)

with It−1 the information set at time t− 1. Using the MA representation, we find that:

GIRFn ( , It−1) = ζn

From this expression, it follows that the choice of the vector of shocks is crucial. In

practice, there is correlation between shocks to different variables, so a shock in one

variable is likely to be accompanied by shocks in other variables. In this case, we cannot

attribute movements in a variable to a particular shock. The traditional approach is

to solve this problem by using the Choleski decomposition of Σ (see e.g. Lutkepohl

(1991)). A main drawback of this decomposition is that the impulse responses can be

sensitive to the ordering of the variables imposed in the composition. Moreover, theory

does not provide a clear guidance for a specific ordering in our setting. Therefore, we

use an alternative methodology, proposed by Pesaran and Shin (1998), which does not

impose a particular ordering of the variables.

Their main idea is to start from the generalized IRFs in (6). Instead of shocking

all elements in ut, they shock only one element j and integrate out the effects of other

shocks using an assumed or historically observed distribution of the errors. Then:

GIRFn ( j, It−1) = E (yt+n|ut,j = j, It−1)− E (yt+n|It−1)

11



If ut has a multivariate normal distribution, it can be shown that:

E (ut|ut,j = j) = Σιjσ
−1
jj j

with ιj a selection vector with the jth element equal to one and zeros elsewhere; and σjj
is the jjth element of Σ. Hence, the generalized impulse responses to a shock in the jth

equation at time t is given by:

GIRFn =
ζnΣιj√
σjj

j√
σjj

, n = 0, 1, 2, ...

By setting j =
√
σjj scaled IRFs are obtained as:

SGIRFn = σ
−1/2
jj ζnΣιj, n = 0, 1, 2, ...

This formula measures the effect of one standard error shock to the jth equation at time

t on expected values of y at time t+ n.

3 Data

This paper uses data from the Spanish Stock Exchange SIBE, an exchange which oper-

ates essentially as a pure order driven market. For the institutional details of SIBE and

a description of its main features, we refer to Pardo and Pascual (2007). The sample

contains 35 stocks that were part of the IBEX35 stock index during the sample period.

The IBEX35 is composed by the 35 most liquid and active stocks, traded on the ex-

change. Our sample period ranges from July 2000 - December 2000 and thus spans 124

trading days. The data on the LOB contain the five best bid and ask prices and the

displayed depth at each of these ten prices. Moreover, we have data on all trades that

were executed during the continuous trading session. Preopening or postclosing orders

are not included since the trading mechanism during this period is different from the one

during the trading day. All changes in the book are timestamped to 100th of a second.

The trading data show price and size of each trade. The index numbers and time stamps

allow for a perfect matching of trade and LOB data. Because of this matching, it is also

possible to detect if hidden depth when executing an order. Since the sample period is

before 2001, we do not have to take into account the presence of volatility auctions (see

Pardo and Pascual (2007)). These auctions were only introduced at May 14, 2001.

The raw data, as obtained from the different files, first need to be filtered before they

can be used in the analysis. The reasoning is that the database contains many typos,

as well as other errors, e.g. registers out of sequence and increases in the accumulated

volume over the day that are negative. For more details on the procedure, we refer to

12



Pardo and Pascual (2007), who use the same dataset. Our sample is also the same as

the one in Pascual and Veredas (2006).

4 Descriptive Statistics

Table 2 presents the mean, median and standard deviation of each of the variables,

used in the three VAR-models. Important to note is that the data in the figures are

not yet adjusted for intraday patterns (in contrast with the VAR-models). All variables

are represented as their unweighted average across the 35 stocks. The average inside

spread is almost 6 ticks. A notable result in the table is that liquidity at the ask side

of the market is on average larger than liquidity on the bid side. Depth at the best ask,

cumulative depth at subsequent ask prices are larger than their counterparts on the bid

side, while the spread between the best and fifth ask prices is smaller than the similar

difference on the bid side. As a result, also the slope of the LOB is larger on the ask

than on the bid side.

Table 2: Descriptive Statistics

Note: This table presents the summary statistics, i.e. the mean,
median and standard deviation (S.d.), for the different variables
used in the econometric models. Data are not adjusted for intraday
seasonality. A description of the variables and their notation is
presented in Table 1.

Mean Median S.d.
Spr_BA t 5.959 5.047 3.809

AD1 t 37.459 27.584 40.835
BD1 t 34.800 27.008 32.926

Spr_A15 t 10.570 9.201 5.205
Spr_B15 t 10.688 9.114 5.790

AD25 t 251.774 179.969 258.240
BD25 t 211.566 170.704 162.867

Slope_A t 0.953 0.637 1.301
Slope_B t 0.852 0.614 0.938

Figure 1 draws the mean of the different variables for each of the 34 periods in the

day. Obviously, these are again data which are not yet adjusted for intraday patterns.

In each graph, the x-axis shows the 34 trading periods of a trading day, while the title

displays the name of the variable depicted. All graphs draw the unweighted averages

over all stocks. Starting with the graphs of Spr_BA, Spr_A15 and Spr_B15, clearly,

all are higher at the beginning of continuous trading and decline over the day. At the

13



end of the trading day, they slightly increase again. These graphs are consistent with

earlier results in the literature, documenting U or J-shaped intraday patterns for the

spread (see e.g. Biais, Hillion and Spatt (1995)). The evolution of the depth a the best

ask and bid (AD1 and BD1) as well as of cumulative depth at the second until fifth

ask and bid prices over the trading day (AD25 and BD25) show that initially, depth is

low and then gradually increases over the day. At the end of trading, depth is highest.

Finally, for the the slope of the LOB at the ask and bid side (Slope_A and Slope_B),

the graphs show that slopes are lower in early periods of the day, and higher later on.

Recall that a flatter slope means that liquidity provided by the book is low. Therefore,

since slopes increase over the day, liquidity improves.

Figure 1 clearly shows that various measures of liquidity are characterized by intraday

patterns. Moreover, liquidity is lowest at the beginning of the trading day, and improves

over the day. This holds both in terms of spreads and depths. Limit order book slopes

display the same pattern. Given these patterns, it is necessary to correct for intraday

seasonality before estimating the different VAR-models to avoid biased estimates. The

procedure is outlined in Section 2.

5 Results: Estimations

5.1 Introduction

The empirical results of the three VAR-models described above, are presented in two

sections. The current section presents the estimation results. The dynamic aspects and

the behavior of various variables after shocks are investigated by the IRFs, computed

on basis of the VAR-models. An elaborate discussion of them is given in Section 6.

Before estimating the VAR-models, we verified by means of an Augmented Dickey-

Fuller test that none of the variables contains a unit root. The results of these tests, not

reported, show that in all cases, the null hypothesis of a unit root can be rejected. When

subsequently estimating the VAR-models, we include 2 lags of the endogenous variables

(L = 2). This values is motivated by investigating the AIC-criterion. Moreover, addi-

tional lags are in general not significant. The model specification is also in line with the

literature. Coppejans, Domowitz and Madhavan (2004) specify a structural VAR-model

and include, next to the contemporaneous value, also the first lag. Finally, recall also

that each variable is adjusted for intraday patterns and should therefore be interpreted

as relative to their pattern in a given period during the trading day.

5.2 Model 1: Best limits

Recall Model 1 includes the inside bid-ask spread and the depth at the best bid and

ask. Its estimation results are presented in Table 3. The first column of the table
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Note: This figure presents the intraday patterns of the variables of
the different VAR-models. All variables are drawn before adjust-
ment for intraday seasonality. The x-axis displays the 34 intervals
of each trading day. Unweighted averages across stocks are shown.
A description of the variables and their notation is presented in
Table 1.

Figure 1: Descriptive Statistics: Intraday Patterns
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shows the right hand side variables of each equation. The other three columns then

display the results for the three equations in the VAR-model, where the header of each

column is the endogenous variable. Model 1 was estimated for each stock separately,

the table presents the (unweighted) average of the estimated coefficients across the 35

stocks in the sample. Below each coefficient, between brackets, the number of stocks

is given for which the coefficient was significantly positive (first element) and negative

(second element). Between squared brackets, the 5% and 95% percentile of the estimated

coefficient across the 35 stocks are presented. For example, the coefficient of the first lag

of the spread (Spr_BAt−1) in the equation of the depth at the best ask (AD1t), averaged

over the 35 stocks, is −3.312. For 0 stocks, the coefficient is significantly positive, for 22
significantly negative and for 35− 0− 22 = 13 stocks it is not significant. The 5% and

95% percentiles of the coefficient, computed across the coefficients that are estimated in

separate regressions for each of the 35 stocks, are −30.94 and −0.04 respectively.
Several results emerge from Table 3. First, all endogenous variables are autocorre-

lated, but the autocorrelation decreases quickly. Secondly, lags of the bid-ask spread

are significant in the depth equation, with a negative sign. Thirdly, the first lag of ask

and bid depth in the spread equation is significant only for some stocks . Fourth, we

find some evidence for a significant positive relation between ask and bid depth. In

other words, we find evidence for interactions between spread and depth and between

ask and bid side of the market. Our results are also in line for the model in Coppejans,

Domowitz and Madhavan (2004), both with respect to signs, significance and order of

magnitude.11

5.3 Model 2: Limit Order Book Slopes

The first approach to account for the LOB behind the best limits, is by means of limit

order book slopes as analyzed in Model 2. The estimation results of this model are

presented in Table 4. The interpretation of the table is the same as the previous one.

We find that the slopes are positively autocorrelated but the magnitude of this auto-

correlation decreases quickly. Moreover, the lagged spread has a negative sign in the

slope equations. This means that when the spread becomes larger, the slope of the book

becomes smaller the next period, ceteris paribus. We also find a positive relation be-

tween the slope on the ask and bid side for a majority of the stocks. In other words,

not only does the slope at the ask side remains high after a period with steep ask slopes

(due to the high autocorrelation), also the slope at the bid side will be higher, ceteris

paribus. Finally, there is little evidence for a relation between lagged slopes and the

bid-ask spread.

11To be precise, note that Coppejans et al. include contemporaneous effects in their VAR and moreover
consider the return on the midquote instead of the spread. However, their results for the depth equations
are similar to ours.
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Table 3: Model 1: Estimation Results

Note: This table presents the estimation results of VAR-model 1.
The first column shows the right hand side variables. The remain-
ing columns are the equations in the VAR-model, each column
header displays the specific endogenous variable on the left hand
side of the equation: Spr_BAt is the bid-ask spread, AD1t (BD1t)
the depth at the best ask (bid). Each variable is the time-weighted
average over the 15-minute interval t and adjusted for intraday
patterns. Coefficient estimates are reported, as well as (between
brackets) the number of stocks, out of 35, for which the coefficient
is significantly positive (first element) and negative (second). Be-
tween squared brackets, the 5% and 95% percentile of the estimated
coefficient across the 35 stocks are presented. Below the table, the
adjusted R2 of each equation is shown, computed as the average of
the adjusted R2 of the individual regressions for each stock.

Spr_BA t AD1 t BD1 t

C 0.000 0.000 0.000
(0,0) (0,0) (0,0)

[0.00,0.00] [0.01,0.00] [0.02,0.00]
Spr_BA t-1 0.567 -3.312 -2.669

(35,0) (0,22) (0,19)
[0.37,0.73] [-30.94,-0.04] [-22.62,0.00]

Spr_BA t-2 0.079 -0.896 -1.013
(26,1) (2,5) (1,6)

[0.00,0.17] [-5.10,0.21] [-7.86,0.42]
AD1 t-1 -0.001 0.452 0.036

(3,7) (35,0) (14,0)
[-0.01,0.01] [0.28,0.71] [-0.01,0.16]

AD1 t-2 -0.002 0.034 0.009
(1,7) (19,6) (5,2)

[-0.01,0.00] [-0.07,0.14] [-0.06,0.07]
BD1 t-1 -0.003 0.047 0.456

(0,13) (20,0) (35,0)
[-0.01,0.00] [0.00,0.15] [0.23,0.63]

BD2 t-2 0.000 0.017 0.057
(1,5) (6,2) (24,2)

[-0.01,0.01] [-0.03,0.06] [-0.07,0.17]

Adj R² 0.404 0.25 0.273
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Table 4: Model 2 : Estimation Results

Note: This table presents the estimation results of VAR-model 2.
The first column shows the right hand side variables. The remain-
ing columns are the equations in the VAR-model, each column
header displays the specific endogenous variable on the left hand
side of the equation: Spr_BAt is the bid-ask spread, Slope_At

(Slope_Bt) the slope at the ask (bid) side of the market. Each
variable is the time-weighted average over the 15-minute interval
t and adjusted for intraday patterns. Coefficient estimates are re-
ported, as well as (between brackets) the number of stocks, out of
35, for which the coefficient is significantly positive (first element)
and negative (second). Between squared brackets, the 5% and 95%
percentile of the estimated coefficient across the 35 stocks are pre-
sented. Below the table, the adjusted R2 of each equation is shown,
computed as the average of the adjusted R2 of the individual re-
gressions for each stock.

Spr_BA t Slope_A t Slope_B t

C -0.001 0.000 0.000
(0,0) (0,0) (0,0)

[-0.01,0.00] [0.00,0.00] [0.00,0.00]
Spr_BA t-1 0.565 -0.089 -0.090

(35,0) (0,29) (0,30)
[0.36,0.73] [-0.61,0.00] [-0.82,0.00]

Spr_BA t-2 0.074 -0.036 -0.037
(24,1) (0,9) (0,4)

[0.00,0.18] [-0.12,0.02] [-0.24,0.00]
Slope_A t-1 0.039 0.408 0.040

(1,2) (35,0) (17,0)
[-0.24,0.39] [0.24,0.73] [-0.01,0.18]

Slope_A t-2 -0.146 0.020 0.014
(0,10) (19,7) (9,1)

[-0.67,0.09] [-0.19,0.13] [-0.03,0.09]
Slope_B t-1 -0.014 0.052 0.397

(2,5) (22,0) (35,0)
[-0.22,0.32] [-0.01,0.19] [0.14,0.58]

Slope_B t-2 -0.021 0.023 0.060
(1,5) (12,2) (24,4)

[-0.40,0.38] [-0.04,0.08] [-0.06,0.17]

Adj R² 0.403 0.235 0.248
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5.4 Model 3: Beyond the Best Limits

Model 3 is the second approach to investigate the LOB behind the best limits. The

estimation results are presented in Table 5. First note that the conclusions of Model

1 concerning the inside spread and depth at the best bid and ask are robust to the

inclusion of new variables. In general, the order of magnitude of the coefficients of the

Spr_Ba, AD1 and BD1 in the respective equations slightly declines, but their sign and

significance remain. Secondly, the new variables also exhibit positive autocorrelation,

with a rather high AR (1) coefficient. This has important consequences. Suppose the

spread between the first and fifth ask price is large in the current period. The high

autocorrelation then implies that the difference will indeed decrease, but will remain

high from an economic point of view, other things equal. On the positive side, it also

means that if depth beyond the best prices is high now, it is likely to remain high the

next period, other things equal. Thirdly, Spr_A15t−1 and Spr_B15t−1 have a positive

sign in the equation of the inside spread. This means that a period where subsequent

ask (bid) prices are far away from each other, tends to be followed by a period where

the inside spread is on average larger. We also find some evidence for a negative relation

between Spr_A15t−1 (Spr_B15t−1) and AD25t (BD25t), meaning that not only the

inside spread rises, but also the depth in the book decreases. AD25t (BD25t) are also

negatively related to inside spread such that a lower depth beyond the best limits is

associated with a larger inside spread. Finally, we find a positive correlation between

lagged depth at the best ask (bid) and depth at subsequent ask (bid) prices. These

results show that the relation between spreads and depths extends beyond the best

limits. Moreover, there is clear evidence, that the LOB beyond the best limits influences

the liquidity at the best limits, both in terms of spreads and depth.

6 Results: Responses to Liquidity Shocks

6.1 Introduction

In this section, Figures 2 until 4 draw the impulse response functions (IRFs) computed

on the basis of the four VAR-models. We use the procedure of Pesaran and Shin (1998)12,

as outlined in Section 2.5 and implement one standard deviation shocks to each variable.

The IRFs are plotted during 12 intervals after the shocks (the x-axis on each graph),

which thus span a period of three hours. We compute the IRFs for each of the 35 stocks

separately but all graphs depict, in full lines, the unweighted average of IRFs over the 35

stocks. Dashed lines represent the 5% and 95% percentile of the IRFs, computed across

12Recall that the advantage of this procedure is that the ordering of the variables is irrelevant. So we
do not need to specify such ordering for the different models below, as would be necessary e.g. when
using a Choleski decomposition.
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Table 5: Model 3: Estimation Results

Note: This table presents the estimation results of VAR-model 3.
The first column shows the right hand side variables. The remain-
ing columns are the equations in the VAR-model, each column
header displays the specific endogenous variable on the left hand
side of the equation: Spr_BAt is the bid-ask spread, AD1t (BD1t)
the depth at the best ask (bid), Spr_A15t (Spr_B15t) the differ-
ence (in absolute value) between the best and the fifth ask (bid)
price and AD25t (BD25t) the cumulative depth at the second un-
til fifth ask (bid) price. Each variable is the time-weighted average
over the 15-minute interval t and adjusted for intraday patterns.
Coefficient estimates are reported, as well as (between brackets)
the number of stocks, out of 35, for which the coefficient is sig-
nificantly positive (first element) and negative (second). Between
squared brackets, the 5% and 95% percentile of the estimated co-
efficient across the 35 stocks are presented. Below the table, the
adjusted R2 of each equation is shown, computed as the average of
the adjusted R2 of the individual regressions for each stock.

Spr_BA t AD1 t BD1 t Spr_A15 t Spr_B151 t AD25 t BD25 t

C -0.001 -0.002 0.000 -0.002 -0.002 -0.007 -0.018
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

[-0.01,0.00] [-0.02,0.00] [-0.02,0.01] [-0.01,0.00] [-0.01,0.00] [-0.13,0.08] [-0.09,0.08]
Spr_BA t-1 0.533 -1.968 -1.769 0.012 -0.031 -8.376 -4.982

(35,0) (0,23) (0,17) (7,3) (2,16) (0,19) (1,17)
[0.28,0.73] [-16.29,-0.05] [-15.37,-0.01] [-0.05,0.07] [-0.10,0.08] [-67.02,-0.07] [-16.90,0.15]

Spr_BA t-2 0.044 -0.172 -0.402 0.060 0.091 -1.796 -2.609
(21,1) (1,1) (1,2) (30,0) (33,0) (0,3) (1,3)

[-0.02,0.10] [-1.32,0.19] [-4.32,0.40] [0.02,0.10] [0.03,0.14] [-14.08,0.61] [-17.47,0.74]
AD1 t-1 -0.002 0.421 0.029 0.002 0.001 0.202 0.047

(1,5) (35,0) (13,0) (2,1) (5,2) (28,1) (4,1)
[-0.01,0.00] [0.22,0.69] [-0.01,0.10] [0.00,0.01] [-0.01,0.01] [-0.07,0.43] [-0.04,0.24]

AD1 t-2 -0.002 0.008 0.000 0.000 -0.001 0.059 0.009
(0,6) (16,7) (1,3) (1,2) (2,2) (7,4) (4,2)

[-0.01,0.00] [-0.10,0.11] [-0.07,0.04] [-0.01,0.01] [-0.01,0.01] [-0.12,0.42] [-0.09,0.14]
BD1 t-1 -0.004 0.041 0.427 -0.001 0.002 0.105 0.188

(0,14) (16,0) (35,0) (1,1) (3,0) (10,0) (27,1)
[-0.01,0.00] [0.00,0.11] [0.15,0.62] [-0.01,0.00] [0.00,0.01] [-0.07,0.57] [-0.12,0.39]

BD2 t-2 0.000 0.007 0.033 -0.001 0.001 -0.008 -0.023
(2,2) (1,3) (18,4) (2,1) (4,3) (0,2) (1,7)

[-0.01,0.01] [-0.04,0.04] [-0.08,0.11] [-0.01,0.01] [0.00,0.01] [-0.24,0.10] [-0.17,0.14]
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Table 5 (continued)

Spr_BA t AD1 t BD1 t Spr_A15 t Spr_B151 t AD25 t BD25 t

Spr_A15 t-1 0.100 -0.404 -0.443 0.698 -0.003 -5.135 -0.429
(35,0) (0,3) (0,3) (35,0) (4,5) (0,16) (1,3)

[0.06,0.14] [-1.64,0.26] [-3.67,0.02] [0.52,0.79] [-0.06,0.05] [-28.54,0.19] [-8.16,3.03]
Spr_A15 t-2 -0.023 0.090 -0.068 0.038 0.020 -2.475 0.490

(2,15) (3,0) (0,0) (20,0) (11,1) (2,1) (1,0)
[-0.05,0.02] [-0.49,1.58] [-1.25,0.30] [-0.01,0.08] [-0.01,0.08] [-23.09,0.98] [-0.98,4.05]

Spr_B15 t-1 0.098 -0.417 -0.268 0.023 0.680 -0.467 -4.718
(35,0) (1,4) (8,2) (16,1) (35,0) (1,2) (1,9)

[0.06,0.15] [-3.44,0.12] [-2.38,0.34] [-0.03,0.09] [0.51,0.81] [-3.76,11.40] [-36.72,0.21]
Spr_B15 t-2 -0.017 0.536 0.182 0.006 0.053 3.178 -0.321

(0,14) (7,1) (1,0) (7,2) (27,0) (7,0) (3,1)
[-0.06,0.02] [-0.79,4.05] [-0.33,1.35] [-0.03,0.04] [0.01,0.12] [-0.22,25.45] [-5.20,4.74]

AD25 t-1 0.000 0.035 0.002 -0.001 0.000 0.766 0.005
(0,7) (35,0) (5,0) (0,10) (4,2) (35,0) (2,1)

[0.00,0.00] [0.02,0.07] [-0.01,0.01] [0.00,0.00] [-0.01,0.00] [0.56,0.92] [-0.01,0.03]
AD25 t-2 0.000 -0.005 0.001 0.000 0.000 -0.013 0.005

(2,4) (4,13) (3,0) (2,3) (3,3) (10,14) (2,2)
[0.00,0.00] [-0.03,0.02] [-0.01,0.01] [0.00,0.00] [0.00,0.00] [-0.12,0.09] [-0.04,0.04]

BD25 t-1 0.000 0.003 0.029 0.000 -0.001 0.004 0.741
(1,6) (1,0) (33,0) (1,1) (2,9) (5,0) (35,0)

[0.00,0.00] [-0.01,0.02] [0.00,0.05] [0.00,0.00] [-0.01,0.00] [-0.03,0.05] [0.44,0.91]
BD25 t-2 -0.001 -0.001 0.001 0.000 0.000 0.001 0.016

(0,4) (0,1) (6,5) (2,2) (0,6) (1,2) (14,5)
[0.00,0.00] [-0.01,0.01] [-0.02,0.03] [0.00,0.00] [0.00,0.00] [-0.05,0.03] [-0.09,0.12]

Adj R² 0.438 0.272 0.291 0.581 0.567 0.625 0.614
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the 35 stocks. The title of each graph shows for which variables the IRF is drawn.

Before presenting the results, it is important to stress (again) the interpretation

of the variables. These are adjusted for intraday seasonality and should therefore be

interpreted relative to their intraday pattern. Suppose e.g. that a certain shock induces

an initial change in the bid-ask spread of 3 ticks. This means that in this case the spread

becomes three ticks larger than would be expected on basis of its time-of day patterns

alone. Hence, it should not be understood as the spread being equal to three ticks. In

the subsections below, a phrase such as “an increase in variable ...” should therefore

be read as “an increase in variable ... relative to what is expected on the basis of its

intraday pattern”. We do not always repeat explicitly this qualification.

6.2 Model 1: Best Limits

The IRFs of Model 1, which only considers the best limits, are drawn in Figure 2. Not

surprisingly, the results show that each variable responds most strongly to an own shock.

However, we do find clear evidence for interactions, both between spread and depth, and

between ask and bid side of the market. A shock in the bid-ask spread (i.e. an increase

in the inside spread of one standard deviation) has a negative impact both on AD1 and

BD1. This is in contrast with the results obtained in Degryse et al. (2005) in event time.

There, after a shock increasing the spread, depth at the best prices increased. In other

words, immediately after an increase in the bid-ask spread, depth increases (Degryse

et al. use event time). However, when the average spread over a 15-minute interval

increases, depth decreases or in other words, both dimensions of liquidity, spread and

depth, deteriorate. This contradiction may be explained as follows. Suppose the spread

increases within an interval. If some time after the shock small undercutting of the best

prices takes place, the spread on average will remain higher but average depth over the

interval decreases. Moreover, as can be seen in the figure, from an economic point of

view, the decrease in depth is small but not negligible. If one compares the immediate

impact of a spread shock on depth, with the immediate impact of shock to depth on the

own or other side, this impact is much smaller than in the latter case.

Further, when a shock occurs that increases the depth at the ask or bid side, the

spread decreases slightly on average, but results are mixed across stocks (as can be

seen from the 5% and 95% percentiles). When depth at the best prices is higher, the

execution probability of an additional limit order that joins the queue is rather small

and traders will prefer to undercut the existing prices to obtain execution.

Finally, we find that the impact of a shock is stronger on the ask side than on the

bid side. A shock in Spr_BA has a larger impact on AD1 than on BD1. Moreover,

the impact of a shock in BD1 on AD1, is bigger than the other way around. Also, the

response of AD1 to its own shock is larger than is the case for BD1.
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Note: This figure presents the IRFs, computed on basis of VAR-
model 1. The x-axis shows the number of 15-minute intervals after
the shock (1..12). The title of each graph gives the IRF that is
computed. A description of the variables and their notation is
presented in Table 1.

Figure 2: Model 1: Impulse Response Functions
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6.3 Model 2: Limit Order Book Slopes

Figure 3 presents the IRFs for VAR-model 2, modeling limit order book slopes. We find

clear evidence of the existence of a relationship between the bid-ask spread and slopes,

and between slopes on the ask side and bid side. First, the response of the spread to

shocks on ask or bid slopes is negative. In other words, if the slope on bid or ask side

increases, the spread decreases. The reasoning is as follows. If the slope is higher, either

the prices on ask side are closer together (for the bid side, the reasoning is identical),

or the depth provided at given prices is larger. For a trader, it is then either less easy

to undercut a price beyond the best ask (i.e. to specify a price in between the first and

fifth best), or less attractive to join the queue at a particular price since the execution

probability is relatively small if their are a number of shares before her in the queue.

Therefore, in order for such trader to increase the execution probability is to undercut

the best prices, as a result of which the bid-ask spread decreases.

The response of the slopes to a shock in the spread is negative, i.e. when the difference

between the best ask and bid increases, the slope of the book at ask and bid side becomes

smaller. Confirming the results of the previous model, in general, the response of the

ask-slope tends to be larger than the response of the bid-slope.

Finally, we also find evidence for co-movement between ask and bid sides since a

positive shock to the ask slope goes together with a positive response of the bid slope

and vice versa.

Computed (not reported) confidence intervals around the shocks indicate that the

effects are econometrically significant for a large majority of the stocks. Moreover, and

probably more important, the effects are also economically significant. This can be seen

by comparing the magnitude of the response of a variable to an own shock and a shock

in another variable. A shock of one standard deviation to the slope on ask or bid side

induces the spread to be initially about 0.5 ticks lower than expected during the next

interval of the trading day. If one compares this 0.5 ticks with the response of the

spread to a shock in the spread itself of just above 2 ticks, it is clear that 0.5 ticks is

not a negligible amount. A similar ratio between both remains when the effect of the

respective shocks die out. Also the response of the bid or ask slope to a shock in the

spread or to a shock to the slope at the other side of the markets cannot be considered as

immaterial, since it on average amounts to about 20% of the response to an own shock.

Summarizing, both econometrically and economically, our results point to the possi-

bility that several dimensions of liquidity can deteriorate at the same time. The evolution

of the limit order book slopes moreover indicate that this conclusion is not restricted to

the best limits, but extends to the rest of the book as well. However, slopes do not allow

to disentangle price and depth effects in the book beyond the best limits. Therefore, we

now turn to the results of the IRFs of VAR-model 3.
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Figure 3: Model 2: Impulse Response Functions
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6.4 Model 3: Beyond the Best Limits

The impulse response functions based on Model 3 are shown in Figure 4. We discuss in

turn the consequences of a shock in each of the endogenous variables, starting with a

shock of one standard deviation in the spread. The graphs show that all variables respond

significantly to a shock in the bid-ask spread. The spread itself declines quickly after an

increase. All measures of depth decrease after an increase in the spread. Finally, the

difference between the best and fifth bid and ask prices first reacts negatively, meaning

that the subsequent prices in the book are closer together. This is beneficial for liquidity.

Although the inside spread increase, subsequent prices are closer to the best ones, such

that an order that walks up in the book still has a relatively small impact. After some

periods, as the bid-ask spread declines again, prices become more dispersed, i.e. the

difference between the first and fifth best price increases.

Secondly, we turn to a shock in the depth at the best ask. After such shock, the

spread declines slightly on average, in line with theoretical predictions. Since the queue

of outstanding limit orders is longer if depth is higher, traders will prefer to undercut best

prices in order to obtain faster and more certain execution (see e.g. Parlour (1998) or

Rosu (2004)). However, results vary across stocks as can be seen from the 5% and 95%

percentiles in the graph. Interesting is that the depth beyond the best ask increases

as well after an increase in AD1. So when depth at the best limits becomes larger,

also depth further in the book benefits from this. Moreover, also depth at the best

bid rises. Finally, the other spread measures (Spr_A15 and Spr_B15) do not respond

significantly to a shock in AD1 for a majority of the stocks. A shock in the depth at the

best bid has symmetric consequences.

Thirdly, we consider a shock in Spr_A15. In general, two variables show a significant

response for a majority of the stocks. The first one is the bid-ask spread. When the

difference between the best price and the fifth ask price rises, the spread first declines,

but from the second period onwards, it starts increasing again. Secondly, also the depth

at prices further in the book (AD25) declines. This results is similar to the one obtained

for the inside bid-ask spread and depth at the best prices. Not only are prices further

away from each other, but also the depth in the book decreases. A possible consequence

is that larger order thus have a larger price impact and traders submitting such order

face higher trading costs. A shock in Spr_B15 has similar affects on the spread and on

BD25.

Finally, we consider a shock to depth in the book beyond the best limits, i.e. AD25

and BD25 respectively. When depth behind the best limits enhances, this has also

a beneficial effect on the depth at the best prices. Moreover, also the bid-ask spread

declines, implying an additional improvement of liquidity.
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Figure 4: Model 3: Impulse Response Functions

27



 

2 4 6 8 10 12
-15

-10

-5

0

5
Response of AD1 to Spr BA

2 4 6 8 10 12
0

50

100

150

200
Response of AD1 to AD1

2 4 6 8 10 12
-10

0

10

20

30
Response of AD1 to BD1

2 4 6 8 10 12
-10

-5

0

5
Response of AD1 to Spr A15

2 4 6 8 10 12
-10

-5

0

5
Response of AD1 to Spr B15

2 4 6 8 10 12
-20

0

20

40
Response of AD1 to AD25

2 4 6 8 10 12
-5

0

5

10

15
Response of AD1 to BD25

 

2 4 6 8 10 12
-10

-5

0

5
Response of BD1 to Spr BA

2 4 6 8 10 12
-5

0

5

10
Response of BD1 to AD1

2 4 6 8 10 12
0

20

40

60

80
Response of BD1 to BD1

2 4 6 8 10 12
-6

-4

-2

0

2
Response of BD1 to Spr A15

2 4 6 8 10 12
-10

-5

0

5
Response of BD1 to Spr B15

2 4 6 8 10 12
-5

0

5

10
Response of BD1 to AD25

2 4 6 8 10 12
-10

0

10

20

30
Response of BD1 to BD25

Figure 4 (continued)
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Figure 4 (continued)
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7 Robustness

To check for the robustness of the results obtained above, we also estimated a number of

alternative models. First, we changed the three VAR-models, used so far. Adding more

lags to these models does not change the estimation results; in fact, the additional lags

often are not significant. We also added a number of exogenous variables, characterizing

the order flow during an interval. More specifically, we added the average duration

between updates of the book, as well as the average number of updates of the book of a

given aggressiveness type that occurred in interval t. The same classification schema as

in Biais, Hillion and Spatt (1995) was used to classify updates. Neither of these changes

to the three models has an impact on the results presented above.

Secondly, we used different definitions for a number of variables. We used the relative

spread, defined as the ratio of the difference between the bid-ask spread and the midprice.

We also redid the estimations with depth expressed in number of shares instead of

monetized depth (this is the number of shares times the price). Also, we computed

weighted slopes using a simple linear scheme:

Slope_At,τ =

"
5

15

ADC1t,τ
AP1t,τ
Mt,τ

− 1 +
4

15

ADC2t,τ−ADC1t,τ
ADC1t,τ

AP2t,τ−AP1t,τ
AP1t,τ

+
3

15

ADC3t,τ−ADC2t,τ
ADC2t,τ

AP3t,τ−AP2t,τ
AP2t,τ

(7)

+
2

15

ADC4t,τ−ADC3t,τ
ADC3t,τ

AP4t,τ−AP3t,τ
AP4t,τ

+
1

15

ADC5t,τ−ADC4t,τ
ADC4t,τ

AP5t,τ−AP4t,τ
AP5t,τ

#

instead of using equation (4). Neither of these alternative variables caused our results

to change.

Thirdly, we changed the sampling frequency to 5-minute intervals instead of 15-

minute intervals. This does not induce any qualitative change to the results found

above.

Fourthly, as an alternative to the methodology of Pesaran and Shin (1998) for com-

puting the IRFs, we applied the Choleski decomposition with various orderings. The

figures are in general very similar to the one in the text above.

Finally, we estimated a structural VAR-model, imposing similar identification re-

strictions as in Coppejans, Domowitz and Madhavan (2004). This does not affect the

results discussed above. More specifically, Coppejans, Domowitz and Madhavan (2004)

start from the following structural VAR-model:

Ψyt =
LX
l=1

Alyt−l + ut
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where Ψ captures contemporaneous effects. Their vector of endogenous variables is

specified as yt = {BDt, ADt,∆mt}, where ∆mt measures the return on the midquote,

and ADt (BDt) is the depth at the ask (bid) side, six ticks away from the best ask (bid).

They include one lag in the estimation. To identify the system, several restrictions are

imposed. The variance-covariance matrix of ut is assumed to be block diagonal. In

particular, returns are assumed to be uncorrelated, while shocks to bid and ask side may

be contemporaneously correlated. Ψ is specified as:

Ψ =

⎡⎢⎣ 1 0 −ψ13
0 1 −ψ23
0 0 1

⎤⎥⎦
An additional restriction is imposed on A1 (the coefficient matrix) in which the coeffi-

cient on lagged returns is assumed to be zero. The other elements of A1 are unrestricted.

Economically, this specifications means that neither depth at the bid nor ask side con-

temporaneously affect returns but only with a lag. On the other hand there may be a

contemporaneous and/or effect of returns on depth at both sides of the market. Further,

depth on one side of the market does not contemporaneously affect depth on the other

side, but only with a lag. However, shocks to depth on the bid and ask sides of the

market are correlated.

As a robustness check, we estimated a similar model, but defined the vector of

endogenous variables as:

yt = {Spr_BAt, AD1t, BD1t}

This is the same vector as in Model 1. We also computed impulse responses. These are

not different from the ones obtained in Model 1 when using the methodology of Pesaran

and Shin (1998). It is however not straightforward to extend this method to VAR-model

2, given the absence of contribution modelling slopes of LOBs. In Model 3, it is again

difficult to base restrictions on theory. In this case, a larger number of restriction will

be needed in order to be able to estimate the model. Nor theory, nor empirical work is

however able to guide a choice of restrictions. For this reason, we opted for the approach

of Pesaran and Shin (1998), which avoids this issue.

8 Summary and Conclusion

In this paper, we provided an analysis of liquidity in an order driven market. More

specifically, we investigated not only the best limits but also the LOB beyond. We

presented two different approaches. First, we computed limit order book slopes, which

parsimoniously summarize liquidity provided by the book. Secondly, we measured how
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far subsequent prices in the book are away from the best prices (lowest ask and highest

bid) and the depth provided at these prices. In both approaches, we separately modeled

bid and ask sides of the market. We also specified a model which only include the (inside)

bid-ask spread and the depth at the best prices. We estimated different VAR-models

and computed impulse response functions after various liquidity shocks, measured as a

one standard deviation shock of a variable. The results of these IRFs are summarized

in Table 6. The different panels in this table correspond to the various VAR-models in

this paper (see Section 2).

From Panel A, it can be seen that a shock that increases the bid-ask spread, decreases

depth, meaning that both dimensions of liquidity deteriorate. This is in contrast with

the conclusions reached in the literature where often only one dimension of liquidity

deteriorates while others improve. We also find that shocks that increase depth, lower

the bid-ask spread. Both facts demonstrate the importance of allowing for interactions

between dimensions of liquidity. Moreover, a positive shock on depth at one side of the

market, also increases depth at the other side.

Panels B and C include also the LOB beyond the best limit in the analysis. They

provide interesting additional insights, as compared to a model that only considers the

best limits. Panel B shows that after a liquidity shock that decreases liquidity at the

best prices, also liquidity in the remainder of the book, as measured by limit order book

slopes, deteriorates. These slopes summarize liquidity provided by the book (both at

and beyond the best limits). After an increase in the spread, the slopes at bid and ask

side decrease, pointing at a deterioration of liquidity. On the other hand, a steeper LOB

(a shock to slopes) implies a smaller spread.

Panel C shows that after a liquidity shock that decreases liquidity at the best prices,

also liquidity in the remainder of the book deteriorates. More specifically, a shock

increasing the bid-ask spread first decreases the distances between the first and fifth

price in the book, but after some periods an increase is observed. On the other hand,

depth beyond the best limits remains relatively unaffected. Moreover, a shock that

increases the distance between the first and fifth prices in the book (either at ask or bid

side) first causes a decrease in the bid-ask spread, but after some periods, this spread

increases. Again depth is less affected but if so, in general depth decreases as well. On

the other hand, shocks that increase depth at the best prices also tend to increase depth

in the remainder of the book. Moreover, if depth beyond the best prices increases, also

depth at the best prices does so. This holds both for bid and ask sides. Furthermore,

a positive shock to depth on the ask side also increases depth on the bid side and vice

versa. The results in panel B and C clearly, demonstrate a relation between liquidity at

the best limits and liquidity in the rest of the LOB.

Concluding, one can say that these result show a somewhat less sunny picture of
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liquidity provision in a limit order market than is often found in the literature. In

particular the fact that different dimensions of liquidity deteriorate at the same time is

possibly worrying. Nevertheless, most of the impact of a shock is realized within 1 to

1.5 hours.

One reason for the contradiction in the results of the current paper and the literature,

can be that we used more aggregated data (15-minute intervals) instead of result in order

time. A second explanation may be provided by the possibility that stale limit orders are

present in the book. Traders do not monitor the market continuously since this is costly.

Immediately after a liquidity shock, depth at the best prices may e.g. increase, but this

could mean that such stale limit orders are used. After this, or after other stale orders

have been cancelled, the results in this paper may point to the fact that less new liquidity

is provided afterwards. Another important difference is the sample period. The SIBE

data come from after the bursting of the bubble in asset markets. It is well possible that

for the latter period, less traders where left in the market. Moreover, volatility may have

been higher in the second half of 2000, and Beltran, Durré and Giot (2004) demonstrate

the existence of differences in liquidity between low and high volatility periods.

These possible explanations comprise an interesting road for future research of liq-

uidity provision in limit order markets. A first intriguing topic that certainly deserves

future research is the comparison of liquidity in bull and bear markets. A second is the

importance of stale limit orders, which are present in the book for a longer time, for the

provision liquidity immediately after a shock. As a final point, we want to mention that

our sample only contains large, frequently traded stocks. An interesting extension would

therefore be to investigate small stocks and assess whether in this case, limit orders are

able to provide sufficient liquidity.
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Table 6: Impulse Response Functions: Summary

Note: This table summarizes the results of the IRFs of the dif-
ferent VAR-models. The rows represent that variables that are
shocked by 1 standard deviation, the columns give the responses
of the variables. A “+” means a positive response, “-” a positive
response and “+/0” (“-/0”)a positive (negative) response but only
significant for about half of the stocks.

Panel A: Model 1: Best limits

Spr_BA AD1 BD1
Spr_BA + 0/- 0/-

AD1 - + +
BD1 - + +

Shock

Response

Panel B: Model 2: Limit order book slopes

Spr_BA Slope_A Slope_B
Spr_BA + - -
Slope_A - + +
Slope_B - + +

Shock

Response

Panel C: Model 3: Beyond the best limits

Spr_BA AD1 BD1 Spr_A15 Spr_B15 AD25 BD25
Spr_BA + 0/- 0/- - then + - then + 0/- 0/-

AD1 - + + - - + +
BD1 - + + - - + +

Spr_A15 - then + + 0/- + + 0/- 0/+
Spr_B15 - then 0/+ 0/+ + 0 then + + 0/+ -

AD25 - + + - 0/- + 0/+ then +
BD25 - + + 0/+ then 0/- - 0/+ then + +

Shock

Response
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