Closures of May and Must Convergence for Contextual Equivalence

Manfred Schmidt-Schauß and David Sabel

Fachbereich Informatik und Mathematik, Institut für Informatik, Johann Wolfgang Goethe-Universität, Postfach 11 19 32, D-60054 Frankfurt, Germany, {schauss,sabel}@ki.informatik.uni-frankfurt.de

Technical Report Frank-35

December 10, 2008

Abstract. We show on an abstract level that contextual equivalence in non-deterministic program calculi defined by may- and must-convergence is maximal in the following sense. Using also all the test predicates generated by the Boolean, forall- and existential closure of may- and mustconvergence does not change the contextual equivalence. The situation is different if may- and total must-convergence is used, where an expression totally must-converges if all reductions are finite and terminate with a value: There is an infinite sequence of test-predicates generated by the Boolean, forall- and existential closure of may- and total mustconvergence, which also leads to an infinite sequence of different contextual equalities.

1 Introduction

We are interested in generalizations of may- and must-convergence predicates for contextual equivalence of non-deterministic and concurrent programming languages. Contextual equivalence in Morris' sense is based on termination, i.e. on may-convergence: $e \downarrow \iff \exists v : e \xrightarrow{*} v$ where v is a value. This notion is successfully used for deterministic calculi (for instance [Abr90,Pit97,MS99,Pit02]). If the investigation of contextual equivalence is applied to non-deterministic program calculi, then besides may-convergence – "there is some reduction to a value" – the branching structure of reduction sequences is also observed in the form of must-convergence, since contextual equivalence based on may-convergence only has insufficient discrimination power. E.g., bottom-avoiding choice can only be distinguished from erratic choice if contextual equivalence also tests for mustconvergence [SSS08]. However, there are different versions of this test: One variant is the total must-convergence, denoted $e \Downarrow l$, that is true iff all reductions originating in e are finite and terminate in a value. The other variant is must-convergence, denoted $e \downarrow$, that is true iff every successor of e is mayconvergent. A conjunction of may- and total must-convergence is used in e.g. [KSS98,MSC99], and a conjunction of may- and must-convergence is used in e.g. [CHS05,SSS08,NSSSS07]. The latter combination is called *should testing* in the area of process algebras [RV07].

We will show in this paper that \downarrow generates a finite class of test predicates using Boolean combinations and \forall and \exists -generators, and that the corresponding contextual equivalence defined by the conjunction of \downarrow and \Downarrow -testing already covers the equivalence w.r.t. the closure of \downarrow . We also show that the closure of \Downarrow generates at least \downarrow and \Downarrow and in fact an infinite family of predicates leading to an infinite family of contextual congruences.

This shows that the combination of \downarrow and \Downarrow has the nice property of generating a contextual equivalence that it is invariant under closure of test predicates, which complements the advantage that fairness is built-in [CHS05,SSS08,RV07]. This is in contrast to the combinations with \Downarrow whose closure leads to an infinite family of contextual equivalences, and, moreover is not useful for analyzing fairness.

2 May- and Must-Testing

The triple (E, V, \rightarrow) is called a *reduction structure*, provided $V \subseteq E \neq \emptyset, \rightarrow \subseteq E \times E$, and $e \rightarrow e' \Longrightarrow e \notin V$. The reflexive transitive closure of \rightarrow is denoted as $\stackrel{*}{\rightarrow}$. The idea is that E is the set of expressions of a programming calculus, \rightarrow the small-step reduction relation, and V the (irreducible) values, i.e. successful outcomes of reductions. Note that there may be irreducible elements $e \in E$ with $e \notin V$, where $e \in E$ is called *irreducible*, iff there is no $e' \in E$ with $e \rightarrow e'$. We will analyze unary predicates over E, which are always written in postfix. The first predicate is eV, which holds iff $e \in V$. Note that $(eV \land e \xrightarrow{*} e')$ implies that e = e'. This predicate, however, will not be used for observations. We will also use the predicates \top and \emptyset , where $e\top$ is always true, and $e\emptyset$ is always false. For predicates P, Q we write $P \subseteq Q$ if $eP \implies eQ$ for all reduction structures (E, V, \rightarrow) and for all $e \in E$, and P = Q iff $P \subseteq Q$ and $Q \subseteq P$. We write $P \neq Q$, iff for some reduction structure (E, V, \rightarrow) and some $e \in E, eP \neq eQ$.

Definition 2.1. We define the following predicate-generators: Given predicates P, Q, the following new predicates can be defined:

	$e(\neg P) := \neg eP$
$e(\exists P) := \exists e' : e \xrightarrow{*} e' \land e'P$	$e(P \land Q) := eP \land eQ$
$e(\forall P) := \forall e' : e \xrightarrow{*} e' \implies e'P$	$e(P \lor Q) := eP \lor eQ$

Given a predicate (or a set of predicates) P, $B \forall \exists (P)$ denotes the closure under all predicate generators, $N \forall \exists (P)$ denotes the closure under \forall, \exists and \neg , and B(P) denotes the Boolean closure.

Note that the predicate closure corresponds to closing formulas in modal logic S4 (see [HC90]), where $\forall(P)$ corresponds to the modal operator $\Box P$, and $\exists(P)$ to the modal operator $\diamond P$.

It is obvious that the usual propositional laws hold for the Boolean combinations. The proof of the following simple laws is left to the reader:

Lemma 2.2 (Simplification Rules). For all predicates P, Q: 1. $\neg \exists P = \forall \neg P$ 2. $\neg \forall P = \exists \neg P$ 3. $\forall \forall P = \forall P$ 4. $\exists \exists P = \exists P$ 5. $\exists (P \lor Q) = \exists P \lor \exists Q$ 6. $\forall (P \land Q) = \forall P \land \forall Q$ 7. $\forall \emptyset = \exists \emptyset = \emptyset$ 8. $\forall \top = \exists \top = \top$ 9. $\forall P \subseteq P \subseteq \exists P$

The predicates $\downarrow := \exists V, \Uparrow := \neg \downarrow, \uparrow := \exists \Uparrow$, and $\Downarrow := \neg \uparrow$ are called *may-convergence*, *must-divergence*, *may-divergence*, and *must-convergence*, respectively. Note that $\Uparrow = \neg \exists V = \forall \neg V, \uparrow = \exists \forall \neg V = \neg \forall \exists V$, and $\Downarrow = \forall \exists V$. Since $\xrightarrow{*}$ is transitive and sV implies that s is irreducible, we obtain:

Lemma 2.3. The set of predicates $\{\downarrow,\uparrow,\uparrow,\downarrow\}$ is closed w.r.t. negation. Also $\Downarrow \subseteq \downarrow, \uparrow \subseteq \uparrow, V \subseteq \Downarrow$, and $\downarrow \lor \uparrow = \top$.

Proof. Using the representation above, the following is easy: $\neg \downarrow = \neg \exists V = \Uparrow$, $\neg \uparrow = \neg \exists \forall \neg V = \forall \exists V = \Downarrow, \neg \uparrow = \neg \neg \exists V = \exists V = \downarrow$, and $\neg \Downarrow = \neg \neg \uparrow = \uparrow$. The subset relationships $\Downarrow \subseteq \downarrow, \Uparrow \subseteq \uparrow$ follow from Lemma 2.2. Hence the last equality holds. The relation $V \subseteq \Downarrow$ follows from irreducibility of elements e with eV and so the only reduction possibility is $e \xrightarrow{*} e$.

The following picture shows the complete set of expressions as a set diagram:

Theorem 2.4. $N \forall \exists (\downarrow) = \{\downarrow, \uparrow, \Uparrow, \Downarrow\}.$

Proof. We show by induction that constructing predicates cannot increase the set $\{\downarrow, \uparrow, \Uparrow, \Downarrow, \Downarrow\}$. Lemma 2.3 shows that this holds for negation. It is sufficient to consider \forall -constructions. Obvious reasoning shows $\forall \downarrow = \Downarrow, \forall \Uparrow = \Uparrow$, and $\forall \Downarrow = \Downarrow$. The relation $\forall \uparrow = \Uparrow$ is proved as follows: Since $\Uparrow \subseteq \uparrow$, by monotonicity of \forall , we obtain $\Uparrow = \forall \Uparrow \subseteq \forall \uparrow$. To show the other direction, let $e \forall \uparrow$, and assume that $e \Uparrow$ is false. Then $e \xrightarrow{\rightarrow} e'$ with e'V. However, since e' is irreducible, the predicate $e' \uparrow$ is wrong, hence we have a contradiction. This shows that $\forall \uparrow \subseteq \Uparrow$.

Theorem 2.5. $B \forall \exists (\downarrow) = \{ \emptyset, \downarrow, \uparrow, \Uparrow, \Downarrow, \downarrow \land \uparrow, \Downarrow \lor \Uparrow, \top \}.$

Proof. This is shown by induction on the construction of predicates. Lemmas 2.2, 2.3 and Theorem 2.4 show that the claim holds for the construction \neg, \lor, \land , and for \forall -constructions with the exception of $\forall(\downarrow \land \uparrow)$ and $\forall(\Downarrow \lor \uparrow)$. It is sufficient to check the \forall -construction. Lemma 2.2 and the proof of Theorem 2.4

show $\forall \downarrow \land \forall \uparrow = \Downarrow \land \Uparrow = \emptyset$. For $\forall (\Downarrow \lor \Uparrow)$, we have $\forall (\Downarrow \lor \Uparrow) \subseteq \Downarrow \lor \Uparrow$ by Lemma 2.2. Since $e \Downarrow \Longrightarrow e \forall (\Downarrow \lor \Uparrow)$ and $e \Uparrow \Longrightarrow e \forall (\Downarrow \lor \Uparrow)$, we have proved $\forall (\Downarrow \lor \Uparrow) = \Downarrow \lor \Uparrow$.

Definition 2.6. Given a set \mathcal{P} of predicates, we define the following preorders and equivalences on E:

 $e_1 \leq_{\mathcal{P}} e_2 : \iff \forall P \in \mathcal{P} : e_1 P \implies e_2 P$ $e_1 \sim_{\mathcal{P}} e_2 : \iff \forall P \in \mathcal{P} : e_1 \leq_{\mathcal{P}} e_2 \land e_2 \leq_{\mathcal{P}} e_1$

The following considerations for these orderings are transferrable also to contextually defined orderings and equivalences.

Lemma 2.7. Let e_1, e_2 be expressions with $e_1 \downarrow \iff e_2 \downarrow$ and $e_1 \Downarrow \iff e_2 \Downarrow$. Then $e_1(\downarrow \land \uparrow) \iff e_2(\downarrow \land \uparrow)$ and $e_1(\Downarrow \lor \Uparrow) \iff e_2(\Downarrow \lor \Uparrow)$.

The conclusion is that the equivalence corresponding to all test predicates is the same as the equivalence defined by the two test predicates \downarrow and \Downarrow .

 $\textbf{Main Theorem 2.8} \sim_{\{\downarrow,\downarrow\}} = \sim_{B \forall \exists (\downarrow)} = \sim_{N \forall \exists (\downarrow)}.$

This does not hold for respective preorders, since e.g. $\leq_{\{\downarrow,\downarrow\}} \neq \leq_{\{\downarrow,\uparrow\}}$.

3 Analyzing the Total-Must-Predicate

In this section we consider also the predicate that tests whether for an expression all (maximal) reduction sequences end in a value in V.

Definition 3.1. Total must-convergence is defined as $e \Downarrow$ iff every \rightarrow -reduction sequence of e is finite and for every irreducible e' with $e \xrightarrow{*} e'$, it is e'V. The negation of \Downarrow is defined as $e \uparrow \uparrow := \neg(e \Downarrow)$

The following reduction structure $\mathcal{R} = (E_0, V_0, \rightarrow_0)$ is used to provide examples: The set E_0 is inductively defined as $\{p_0, \mathsf{T}, \bot\} \cup \{e_1 \oplus e_2 \mid e_1, e_2 \in E_0\}, V_0 := \{\mathsf{T}\},$ and $\rightarrow_0 = \{p_0 \rightarrow \mathsf{T}, p_0 \rightarrow p_0, \bot \rightarrow \bot, e_1 \oplus e_2 \rightarrow e_1, e_1 \oplus e_2 \rightarrow e_2\}.$

Lemma 3.2. The following equivalences and relations hold: $\forall \Downarrow = \Downarrow, \forall \uparrow\uparrow = \uparrow, \exists \Downarrow = \downarrow, \exists \uparrow\uparrow = \uparrow\uparrow.$ $\Downarrow \subset \Downarrow \subset \downarrow, and \uparrow\uparrow \subset \uparrow \subset \uparrow\uparrow.$

Proof. This can be proved by standard reasoning. The example p_0 of \mathcal{R} satisfies $p_0 \Downarrow$, but also $p_0 \uparrow\uparrow$, and thus shows that $\Downarrow \neq \Downarrow$. \Box

Theorem 3.3. $N \forall \exists (\Downarrow) = \{\downarrow, \uparrow, \Uparrow, \Downarrow, \Downarrow, \uparrow \}.$

Proof. Follows from Lemma 3.2 and Theorem 2.4.

The Boolean closure of $\{\downarrow,\uparrow,\uparrow,\Downarrow,\Downarrow,\Downarrow,\uparrow\uparrow\}$ are the 16 predicates generated from the mutually disjoint 4 predicates: $\Downarrow,(\uparrow\uparrow\wedge\Downarrow),(\downarrow\wedge\uparrow),\Uparrow$.

Corollary 3.4. $\sim_{\{\downarrow,\Downarrow,\Downarrow\}} = \sim_{B(\{\downarrow,\Downarrow,\Downarrow\})}$

Corollary 3.5. $\leq_{\{\downarrow,\Downarrow,\Downarrow\}} \neq \leq_{\{\downarrow,\Downarrow\}}$

3.1 Infinity of the Closure of Total Must-Convergence

We show below that the set $B \forall \exists (\Downarrow)$ is infinite. After having analyzed three levels by alternating Boolean- and \forall -closure, we could construct an infinite sequence of predicates, and an infinite sequence of elements of \mathcal{R} :

$$\begin{array}{l} A_1 := \downarrow \land \uparrow \land \forall (\Downarrow \lor \uparrow) & A_2 := \bar{A}_1 \land \forall (\Downarrow \lor \bar{A}_1 \lor \Uparrow) \\ \bar{A}_1 := \downarrow \land \uparrow \land \neg (\forall (\Downarrow \lor \uparrow)) & \bar{A}_2 := \bar{A}_1 \land \neg (\forall (\Downarrow \lor \bar{A}_1 \lor \Uparrow)) \\ A_i := \bar{A}_{i-1} \land \forall (\Downarrow \lor \bar{A}_{i-1} \lor A_{i-2} \lor \ldots \lor A_1 \lor \Uparrow) \\ \bar{A}_i := \bar{A}_{i-1} \land \neg (\forall (\Downarrow \lor \bar{A}_{i-1} \lor A_{i-2} \lor \ldots \lor A_1 \lor \Uparrow)) \\ \end{array}$$

Let $a_1 := \mathsf{T} \oplus \bot$, $a_2 := \bot \oplus p_0$, $a_3 := a_1 \oplus p_0$, and for $i \ge 4$, let $a_i := a_{i-2} \oplus a_{i-3}$. Some obvious properties of A_i , \overline{A}_i are

Lemma 3.6. For all $i \ge 1$: $A_i \subseteq \downarrow \land \uparrow$ and $\bar{A}_i \subseteq \downarrow \land \uparrow$. For $i \ge 1$: $A_i \cap \bar{A}_i = \emptyset$ and for all $i \ge 2$: $A_i \cup \bar{A}_i = \bar{A}_{i-1}$. For all $i \ne j$: $A_i \cap A_j = \emptyset$.

Lemma 3.7. For all $i \geq 2$: $A_i = \overline{A}_{i-1} \land \neg(\exists A_{i-1})$ and $\overline{A}_i = \overline{A}_{i-1} \land \exists A_{i-1}$

Proof. We compute an equivalent of $\neg(\forall(\Downarrow \lor \bar{A}_{i-1} \lor A_{i-2} \lor \ldots \lor A_1 \lor \Uparrow))$: The first step produces $\exists(\downarrow \land \uparrow \land \neg \bar{A}_{i-1} \land \neg A_{i-2} \land \ldots \land \neg A_1)$: We have that $\downarrow \land \uparrow \land \neg A_1 = \bar{A}_1$. By induction on j, we obtain that $\neg A_j \land \bar{A}_{j-1} = \bar{A}_j$. Finally, we obtain $\neg \bar{A}_{i-1} \land \bar{A}_{i-2} = A_{i-1}$. Hence, $\bar{A}_i = \bar{A}_{i-1} \land \exists A_{i-1}$. It is easy to see that this also implies $A_i = \bar{A}_{i-1} \land \neg(\exists A_{i-1})$.

Corollary 3.8. $\bar{A}_i = \bar{A}_1 \land \exists A_1 \land \ldots \land \exists A_{i-1}$ which is equivalent to $(\downarrow \land \uparrow \land \exists (\Downarrow \land \uparrow)) \land \exists A_1 \land \ldots \land \exists A_{i-1}.$

Lemma 3.9. For all $i : a_i A_i$ holds.

Proof. Inspection of the definitions shows a_1A_1 . Since $a_2 \stackrel{*}{\to} p_0$, we have $a_2 \exists (\Downarrow \land \uparrow\uparrow)$. Since $\bot\uparrow$, $p_0 \downarrow$ and $p_0(\Downarrow \land \uparrow\uparrow)$, we also have $a_2\bar{A}_1$. But then also a_2A_2 holds. Similar arguments show $a_3\bar{A}_2$, and since $A_3 = \bar{A}_2 \land \forall(\Downarrow \lor \bar{A}_2 \lor A_1 \lor \uparrow)$ and scanning the successors of a_3 , we see that $a_3 \stackrel{*}{\to} a_1A_1$, and that the second part holds, hence a_3A_3 .

By simultaneous induction on i we show the following 4 claims:

1. for all $i \ge 2 : a_i \bar{A}_1$. 2. For all $i \ge 3, j = 1, ..., i - 2: a_i \exists A_j$. 3. For $i \ge 1 : a_i \bar{A}_{i-1}$. 4. For $i \ge 1 : a_i A_i$ holds.

Now we give the proofs for every item, where we can use the induction hypothesis for all claims and for smaller i.

- 1. For a_3 , this can be seen by the same arguments. For $i \ge 4$: $a_{i-2}\bar{A}_1$, since $i-2 \ge 2$ and by induction hypothesis, and hence also $a_i\bar{A}_1$.
- 2. The base cases are i = 3, 4. For a_3 , claim (2), which is only a_3A_1 , follows from the definition. For a_4 , we have $a_4 \xrightarrow{*} a_2$ and $a_4 \xrightarrow{*} a_1$. By induction hypothesis, the claims a_jA_j hold for j < i. Now the general case is $a_i \xrightarrow{*} a_{i-2}$ and $a_i \xrightarrow{*} a_{i-3}$, and by induction and transitivity of $\xrightarrow{*}$, the claim is proved.
- 3. For $i \ge 1$: $a_i \bar{A}_{i-1}$. Item (1) shows $a_i \bar{A}_1$. Item (2) shows that $a_i \exists A_j$ holds for all $j = 1, \ldots, i-2$. By Corollary 3.8, this shows $a_i \bar{A}_{i-1}$.

4. $a_i A_i$ holds: The base cases i = 1, 2, 3 are already proved. Let $i \ge 4$: we already have shown that $a_i \bar{A}_{i-1}$. Now it suffices to scan all successors. Either the successors are in $\Downarrow \lor \Uparrow$, or $a_i \bar{A}_{i-1}$ or for $j \le i-2$: it is $a_j A_j$. This satisfies the definition $A_i = \bar{A}_{i-1} \land \forall (\Downarrow \lor \bar{A}_{i-1} \lor A_{i-2} \lor \ldots \lor A_1 \lor \Uparrow)$.

Theorem 3.10. The set $B \forall \exists (\Downarrow)$ is not finite.

Corollary 3.11. There is no finite set of predicates $M' \subseteq B \forall \exists (\Downarrow)$ such that $\sim_{M'} = \sim_{B \forall \exists (\Downarrow)}$.

Acknowledgements We thank Jan Schwinghammer for his valuable comments.

References

- Abr90. Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research Topics in Functional Programming, pages 65–116. Addison-Wesley, 1990.
- CHS05. Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the representation of McCarthy's amb in the pi-calculus. *Theoret. Comput. Sci.*, 330(3):439–473, 2005.
- HC90. G. E. Hughes and M. J. Cresswell. Introduction to Modal Logic. Routledge, London, 1990.
- KSS98. Arne Kutzner and Manfred Schmidt-Schau
 ß. A nondeterministic call-byneed lambda calculus. In *International Conference on Functional Program*ming 1998, pages 324–335. ACM Press, 1998.
- MS99. A. K. D. Moran and D. Sands. Improvement in a lazy context: An operational theory for call-by-need. In *POPL 1999*, pages 43–56. ACM Press, 1999.
- MSC99. Andrew K. D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets: A semantic theory for an embedded coordination language. In *Coordination* '99, volume 1594 of *Lecture Notes in Comput. Sci.*, pages 85–102. Springer-Verlag, 1999.
- NSSSS07. Joachim Niehren, David Sabel, Manfred Schmidt-Schau
 ß, and Jan Schwinghammer. Observational semantics for a concurrent lambda calculus with reference cells and futures. *Electron. Notes Theor. Comput. Sci.*, 173:313–337, 2007.
- Pit97. Andrew M. Pitts. Operationally-based theories of program equivalence. In Semantics and Logics of Computation. Cambridge University Press, 1997.
- Pit02. Andrew M. Pitts. Operational semantics and program equivalence. In J. T. O'Donnell, editor, Applied Semantics, volume 2395 of Lecture Notes in Computer Science, pages 378–412. Springer-Verlag, 2002.
- RV07. Arend Rensink and Walter Vogler. Fair testing. Inform. and Comput., 205(2):125–198, 2007.
- SSS08. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus with locally bottom-avoiding choice: Context lemma and correctness of transformations. *Math. Structures Comput. Sci.*, 18(03):501–553, 2008.

APPENDIX

A Analyzing the Closure for Total Must Testing

A.1 The First Level

The table 1 shows the predicates that correspond to $\forall P$ for all Boolean combinations P of the four basic sets \Downarrow , $(\uparrow\uparrow \land \Downarrow)$, $(\downarrow \land \uparrow)$, \Uparrow . It is sufficient to look for the \forall -construction only. The only predicate that cannot be represented is $\forall(\Downarrow \lor \uparrow)$: It is obvious that $\Downarrow \lor \Uparrow \subseteq \forall(\Downarrow \lor \uparrow) \subseteq \Downarrow \lor \uparrow$. We only have to show that the inclusions are proper. The element $\bot \oplus \mathbf{T}$ does not satisfy $\Downarrow \lor \Uparrow$, but $\forall(\Downarrow \lor \uparrow)$. The element $\bot \oplus p_0$ satisfies $\Downarrow \lor \uparrow$, but not $\forall(\Downarrow \lor \uparrow)$, since p_0 does mot satisfy $\Downarrow \lor \uparrow$.

$\forall \Downarrow$	$=$ \Downarrow
$\forall \uparrow$	= 🕆
$\forall (\Uparrow \land \Downarrow)$	$= \emptyset$
$\forall (\downarrow \land \uparrow)$	$= \emptyset$
$\forall \Downarrow$	$= \Downarrow$
$\forall(\Downarrow \lor (\downarrow \land \uparrow))$	$=$ \Downarrow
$\forall(\Downarrow \lor \uparrow)$	$= \Downarrow \lor \uparrow$
$\forall ((\Downarrow \land \uparrow \uparrow) \lor (\downarrow \land \uparrow))$	$) = \emptyset$
$\forall ((\Downarrow \land \uparrow\uparrow) \lor \uparrow)$	$= \uparrow$
$\forall \uparrow$	= ↑
$\forall (\Downarrow \lor (\downarrow \land \uparrow))$	= \
$\forall (\Downarrow \lor \Uparrow)$	$= \Downarrow \lor \uparrow$
$\forall(\Downarrow \lor \uparrow)$	= a new test predicate
$\forall \uparrow \uparrow$	$= \uparrow$

Fig. 1. Predicates using \forall on the first level

For convenience, we abbreviate two new components as follows:

$$\begin{array}{l} A := \downarrow \land \uparrow \land \forall (\Downarrow \lor \uparrow) \\ \bar{A} := \downarrow \land \uparrow \land \neg (\forall (\Downarrow \lor \uparrow)) \end{array}$$

Now the sets on this level can be illustrated in the following diagram. There are now 5 basic sets:

\wedge	\Downarrow	$\downarrow \land \uparrow$		↑
		Ā	A	
\Downarrow		Ø	Ø	Ø
$\uparrow\uparrow$				

Using the refined sets we have to check 32 combinations on the next level, among them 16 new combinations, which are presented in the table 2.

8

$\forall A$	$= \emptyset$	
$\forall \bar{A}$	$= \emptyset$	
$\forall (\Downarrow \lor A)$	= ₩	
$\forall (\Downarrow \lor \bar{A})$	$=$ \Downarrow	
$\forall ((\uparrow\uparrow \land \Downarrow) \lor A)$	$= \emptyset$	
$\forall ((\uparrow\uparrow \land \Downarrow) \lor \bar{A})$	$= \emptyset$	
$\forall (A \lor \Uparrow)$	$= \uparrow$	
$\forall (\bar{A} \lor \Uparrow)$	$= \uparrow$	
$\forall (\Downarrow \lor A)$	$= \Downarrow$	
$\forall (\Downarrow \lor \bar{A})$	$= \Downarrow$	
$\forall(\Downarrow\lor A\lor\Uparrow)$	$= \Downarrow \lor A \lor \Uparrow$	see Lemma A.1
$\forall (\Downarrow \lor \bar{A} \lor \Uparrow)$	$= \Downarrow \lor \uparrow$	see Lemma A.2
$\forall ((\Downarrow \land \uparrow \uparrow) \lor A \lor \uparrow)$	$\uparrow = \uparrow$	
$\forall ((\Downarrow \land \uparrow \uparrow) \lor \bar{A} \lor \uparrow)$	$\uparrow = \uparrow$	
()	$= \Downarrow \lor A \lor \Uparrow$	see Lemma A.3
$\forall (\Downarrow \lor \bar{A} \lor \Uparrow)$	= a new test predicate	e see Lemma A.4

Fig. 2. New cases using \forall on the second level

Lemma A.1. $\forall (\Downarrow \lor A \lor \Uparrow) = \Downarrow \lor A \lor \Uparrow$

Proof. It is easy to see that $\Downarrow \lor \Uparrow \subseteq \forall (\Downarrow \lor A \lor \Uparrow)$. So assume that sA. We have to show that for every s' with $s \xrightarrow{*} s': s'(\Downarrow \lor A \lor \Uparrow)$. Note that sA means $s(\downarrow \land \uparrow \land \forall(\Downarrow \lor \uparrow))$. The condition $s\forall(\Downarrow \lor \uparrow)$ shows that $s'\neg(\uparrow \land \Downarrow)$. So, it remains to show that $s'(\downarrow \land \uparrow)$ implies that s'A. Suppose that this is false. Then $s'(\downarrow \land \uparrow \land \neg(\forall(\Downarrow \lor \uparrow)))$, which is equivalent to $s'(\downarrow \land \uparrow \land \exists(\uparrow \uparrow \land \Downarrow))$. Then there is some s'' with $s' \xrightarrow{*} s''$ and $s''(\uparrow \uparrow \land \Downarrow)$. But this contradicts the facts $s \xrightarrow{*} s' \xrightarrow{*} s''$ and $s(\forall(\Downarrow \lor \uparrow))$.

Lemma A.2. $\forall (\Downarrow \lor \overline{A} \lor \Uparrow) = \Downarrow \lor \Uparrow$.

Proof. It is easy to see that $\Downarrow \lor \uparrow \subseteq \forall (\Downarrow \lor \bar{A} \lor \uparrow)$. So assume that $s\bar{A}$. Note that $s\bar{A}$ means $s(\downarrow \land \uparrow \land \neg(\forall(\Downarrow \lor \uparrow)))$, which in turn is equivalent to $s(\downarrow \land \uparrow \land \exists(\uparrow\uparrow \land \Downarrow))$. The condition $s\exists(\uparrow\uparrow \land \Downarrow))$ contradicts $s(\forall(\Downarrow \lor \bar{A} \lor \uparrow))$.

Lemma A.3. $\forall (\Downarrow \lor A \lor \Uparrow) = \Downarrow \lor A \lor \Uparrow$

Proof. It is easy to see that $\Downarrow \lor \uparrow \subseteq \forall (\Downarrow \lor A \lor \uparrow)$. So assume that sA. We have to show that for every s' with $s \xrightarrow{*} s'$: $s'(\Downarrow \lor A \lor \uparrow)$. Note that sA means $s(\downarrow \land \uparrow \land \forall (\Downarrow \lor \uparrow))$. The condition $s\forall(\Downarrow \lor \uparrow)$ shows that $s'\neg(\uparrow\uparrow \land \Downarrow)$. So, it remains to show that $s'(\downarrow \land \uparrow)$ implies that s'A.

Suppose that this is false. Then $s'(\downarrow \land \uparrow \land \neg(\forall(\Downarrow \lor \uparrow)))$, which is equivalent to $s'(\downarrow \land \uparrow \land \exists(\uparrow \uparrow \land \Downarrow)))$. Then there is some s'' with $s' \xrightarrow{*} s''$ and $s''(\uparrow \uparrow \land \Downarrow)$. But this contradicts the facts $s \xrightarrow{*} s' \xrightarrow{*} s''$ and $s(\forall(\Downarrow \lor \uparrow))$.

Lemma A.4. $\Downarrow \lor \Uparrow \subset \forall (\Downarrow \lor \overline{A} \lor \Uparrow) \subset \Downarrow \lor \overline{A} \lor \Uparrow$.

Proof. Lemma 2.2 shows that $\forall(\Downarrow \lor \bar{A} \lor \Uparrow) \subseteq \Downarrow \lor \bar{A} \lor \Uparrow$. It is easy to see that $\Downarrow \lor \Uparrow \subseteq \forall(\Downarrow \lor \bar{A} \lor \Uparrow)$. Note that for a process $s: s\bar{A}$ means $s(\downarrow \land \uparrow \land \neg(\forall(\Downarrow \lor \uparrow)))$, which is equivalent to $s(\downarrow \land \uparrow \land \exists(\uparrow\uparrow \land \Downarrow))$.

Now we construct the examples. The following process $p_3 := (\mathbb{T} \oplus \bot) \oplus p_0$ satisfies $p_3 \overline{A}$, but $p_3 \xrightarrow{*} (\mathbb{T} \oplus \bot)$ with $(\mathbb{T} \oplus \bot)A$. Hence $\forall (\Downarrow \lor \overline{A} \lor \Uparrow) \neq \Downarrow \lor \overline{A} \lor \Uparrow$.

For the element $p = (\bot \oplus p_0)$ it is obvious that $p \neg (\Downarrow \lor \Uparrow)$, but for every reduct s'of p the test $s'(\Downarrow \lor \overline{A} \lor \Uparrow)$ is true. Suppose that $(\Downarrow \lor \Uparrow)$ fails for s'. Then s' = p, which satisfies $p(\downarrow \land \uparrow \land \exists(\Uparrow \land \Downarrow))$, and hence $p\overline{A}$. Hence $\Downarrow \lor \Uparrow \neq \forall(\Downarrow \lor \overline{A} \lor \Uparrow)$.

If we use the abbreviation: $B := \overline{A} \land \forall (\Downarrow \lor \overline{A} \lor \Uparrow)$ and $\overline{B} := \overline{A} \land \neg (\forall (\Downarrow \lor \overline{A} \lor \Uparrow))$, then the following table illustrates the 6 basic sets on the next level:

	₩	$\downarrow \land \uparrow$			1
\wedge		Â		A	
		B	В		
\Downarrow		Ø	Ø	Ø	Ø
$\uparrow\uparrow$					

Some properties of A, B are:

Lemma A.5.

- 1. $\forall (\Downarrow \lor \bar{A} \lor \Uparrow) = \neg (\exists A)$. Thus $B = \bar{A} \land \neg (\exists A)$ and $\bar{B} = \bar{A} \land \exists A$. 2. $B \subseteq \forall (\neg (\bar{B}))$.
- *Proof.* 1. We compute $\neg(\forall(\Downarrow \lor \bar{A} \lor \Uparrow))$: Then $\exists(\uparrow \land(\neg(\bar{A}))\land \downarrow)) = \exists((\uparrow \land \downarrow \land \downarrow)) \land (\Uparrow \lor \Downarrow \lor (\forall(\Downarrow \lor \uparrow)))) = \exists((\uparrow \land \downarrow \land \Uparrow) \lor (\uparrow \land \downarrow \land \Downarrow) \lor (\uparrow \land \downarrow \land \forall(\Downarrow \lor \uparrow)))) = \exists(\uparrow \land \downarrow \land \forall(\Downarrow \lor \uparrow)) = \exists(A).$
- 2. Suppose there is some bB such that $b \xrightarrow{*} b'$ with $b'\overline{B}$. The latter is equivalent to $b'\overline{A} \wedge b' \neg (\forall (\Downarrow \lor \overline{A} \lor \Uparrow))$. In particular, there is some $b' \xrightarrow{*} b''$ with $b'' \neg (\Downarrow \lor \overline{A} \lor \Uparrow)$. Transitivity of $\xrightarrow{*}$ shows that $b \xrightarrow{*} b''$. However, bB implies that $b \forall (\Downarrow \lor \overline{A} \lor \Uparrow)$. Hence there is no such b'.

Some witnesses for the elements of $A, \overline{A}, B, \overline{B}$ are in the following lemma:

Lemma A.6.

- 1. A contains ${\tt T} \oplus \bot$
- 2. \overline{A} contains $p := \bot \oplus p_0$.
- 3. $B \subset \overline{A} \text{ contains } \bot \oplus p_0$
- 4. $\overline{B} \subset \overline{A} \text{ contains } (\mathtt{T} \oplus \bot) \oplus p_0$

A.2 The Third Level

The abbreviations and an alternative formulation are:

$$\begin{aligned} A &:= \downarrow \land \uparrow \land \forall (\Downarrow \lor \uparrow) \\ \bar{A} &:= \downarrow \land \uparrow \land \neg (\forall (\Downarrow \lor \uparrow)) \\ B &:= \bar{A} \land \forall (\Downarrow \lor \bar{A} \lor \uparrow) = \bar{A} \land \neg (\exists A) \\ \bar{B} &:= \bar{A} \land \neg (\forall (\Downarrow \lor \bar{A} \lor \uparrow)) = \bar{A} \land \exists A \end{aligned}$$

10 M. Schmidt-Schauß, D. Sabel

Using the refined sets we have to check 64 combinations on the next level, among them 32 new combinations, the combinations without A are presented in table 3.

$\forall B$	$= \emptyset$	
$\forall ar{B}$	$= \emptyset$	
$\forall(\Downarrow \lor B)$	= ₩	
$\forall (\Downarrow \lor \bar{B})$	$=$ \Downarrow	
$\forall ((\uparrow\uparrow \land \Downarrow) \lor B)$	$= \emptyset$	
$\forall ((\uparrow\uparrow \land \Downarrow) \lor \bar{B})$	$= \emptyset$	
$\forall (B \lor \Uparrow)$	$= \uparrow$	
$\forall (\bar{B} \lor \Uparrow)$	= ↑	
$\forall (\Downarrow \lor B)$	$= \Downarrow$	
$\forall (\Downarrow \lor \bar{B})$	$= \Downarrow$	
$\forall(\Downarrow\vee B\lor\Uparrow)$	$= \Downarrow \lor \uparrow$	see Lemma A.7
$\forall (\Downarrow \lor \bar{B} \lor \Uparrow)$	$= \Downarrow \lor \uparrow$	see Lemma A.8
$\forall ((\Downarrow \land \uparrow \uparrow) \lor B \lor \uparrow)$	1 = 1	
$\forall ((\Downarrow \land \uparrow \uparrow) \lor \bar{B} \lor \uparrow)$	1 = 1	
$\forall (\Downarrow \lor B \lor \Uparrow)$	$= \Downarrow \lor B \lor \uparrow$	∖ see Lemma A.9
$\forall (\Downarrow \lor \bar{B} \lor \Uparrow)$	$= \Downarrow \lor \Uparrow$	see Lemma A.10

Fig. 3. New cases without A using \forall on the third level

Lemma A.7. $\forall (\Downarrow \lor B \lor \Uparrow) = \Downarrow \lor \Uparrow$.

Proof. It is easy to see that $\Downarrow \lor \land \subseteq \forall (\Downarrow \lor B \lor \land) \subseteq \Downarrow \lor B \lor \land$. We only have to consider sB. Since $B \subseteq \overline{A}$, the claim follows from Lemma A.2.

Lemma A.8. $\forall (\Downarrow \lor \overline{B} \lor \Uparrow) = \Downarrow \lor \Uparrow$.

Proof. It is easy to see that $\Downarrow \lor \uparrow \subseteq \forall (\Downarrow \lor \bar{B} \lor \uparrow)$. So assume that $s\bar{B}$. Since $\bar{B} \subseteq \bar{A}$, the claim follows from Lemma A.2.

Lemma A.9. $\forall (\Downarrow \lor B \lor \Uparrow) = \Downarrow \lor B \lor \Uparrow$

Proof. It is easy to see that $\Downarrow \lor \Uparrow \subseteq \forall (\Downarrow \lor B \lor \Uparrow) \subseteq \Downarrow \lor B \lor \Uparrow$. So assume that sB. We have to show that for every s' with $s \xrightarrow{*} s': s'(\Downarrow \lor B \lor \Uparrow)$. Note that sB means $s(\bar{A} \land \forall(\Downarrow \lor \bar{A} \lor \Uparrow))$. The condition $s(\forall(\Downarrow \lor \bar{A} \lor \Uparrow))$ shows that $s'(\Downarrow \lor \bar{A} \lor \Uparrow)$. The case $s'\bar{B}$ is not possible due to Lemma A.5. Hence $s'(\Downarrow \lor B \lor \Uparrow)$ holds, and the lemma is proved.

Lemma A.10. $\forall (\Downarrow \lor \overline{B} \lor \Uparrow) = \Downarrow \lor \Uparrow$.

Proof. The relations $\Downarrow \lor \land \uparrow \subseteq \forall (\Downarrow \lor \overline{B} \lor \Uparrow) \subseteq \Downarrow \lor \overline{B} \lor \Uparrow$ follow easily. Note that $s\overline{B}$ means $s\overline{A} \land \exists A$. Hence there is some s'A with $s \xrightarrow{*} s'$. Hence $s \neg \forall (\Downarrow \lor \overline{B} \lor \Uparrow)$. and the Lemma is proved.

$\forall B \lor A$	$= \emptyset$
$\forall \bar{B} \lor A$	$= \emptyset$
$\forall (\Downarrow \lor A \lor B)$	= ₩
$\forall (\Downarrow \lor \bar{B} \lor A)$	$=$ \Downarrow
$\forall ((\uparrow\uparrow \land \Downarrow) \lor B \lor A)$	$= \emptyset$
$\forall ((\uparrow\uparrow \land \Downarrow) \lor \bar{B} \lor A)$	$= \emptyset$
$\forall (B \lor A \lor \Uparrow)$	$= \uparrow$
$\forall (\bar{B} \lor A \lor \Uparrow)$	$= \uparrow$
$\forall (\Downarrow \lor B \lor A)$	$= \Downarrow$
$\forall (\Downarrow \lor \bar{B} \lor A)$	$= \Downarrow$
$\forall (\Downarrow \lor B \lor A \lor \Uparrow)$	$= \Downarrow \lor \uparrow$ see Lemma A.11
$\forall (\Downarrow \lor \bar{B} \lor A \lor \Uparrow)$	$= \Downarrow \lor A \lor \Uparrow$ see Lemma A.12
$\forall ((\Downarrow \land \uparrow \uparrow) \lor B \lor A \lor \uparrow$	$\uparrow = \Uparrow$
$\forall ((\Downarrow \land \uparrow \uparrow) \lor \bar{B} \lor A \lor \uparrow$	$\uparrow = \uparrow$
$\forall (\Downarrow \lor B \lor A \lor \Uparrow)$	$= \Downarrow \lor B \lor A \lor \Uparrow$ see Lemma A.13
$\forall (\Downarrow \lor \bar{B} \lor A \lor \Uparrow)$	$\supset \Downarrow \lor A \lor \Uparrow \qquad \text{see Lemma A.14}$

Fig. 4. New cases with A using \forall on the third level

Now we present the new combinations with A in table 4.

Lemma A.11. $\forall (\Downarrow \lor B \lor A \lor \Uparrow) = \Downarrow \lor A \lor \Uparrow$.

Proof. It is easy to see that $\Downarrow \lor \Uparrow \subseteq \forall (\Downarrow \lor B \lor A \lor \Uparrow) \subseteq \Downarrow \lor B \lor A \lor \Uparrow$. Lemma A.2 shows that $\Downarrow \lor A \lor \Uparrow \subseteq \forall (\Downarrow \lor B \lor A \lor \Uparrow)$. We only have to consider sB. Since $B \subseteq \overline{A}$, the claim follows similar as in the proof of Lemma A.2.

Lemma A.12. $\forall (\Downarrow \lor \overline{B} \lor A \lor \Uparrow) = \Downarrow \lor A \lor \Uparrow$.

Proof. It is easy to see that $\Downarrow \lor A \lor \Uparrow \subseteq \forall (\Downarrow \lor \overline{B} \lor A \lor \Uparrow)$. So assume that $s\overline{B}$. Since $\overline{B} \subseteq \overline{A}$, the claim follows similar as in the proof of Lemma A.2.

Lemma A.13. $\forall (\Downarrow \lor B \lor A \lor \Uparrow) = \Downarrow \lor B \lor A \lor \Uparrow$

Proof. It is easy to see that $\Downarrow \lor A \lor \Uparrow \subseteq \lor (\Downarrow \lor B \lor \Uparrow) \subseteq \Downarrow \lor B \lor A \lor \Uparrow$. The claim now follows from Lemmas A.3 and A.9.

Lemma A.14. = $\Downarrow \lor A \lor \Uparrow \subset \forall (\Downarrow \lor \overline{B} \lor A \lor \Uparrow) \subset \Downarrow \lor \overline{B} \lor A \lor \Uparrow)$

Proof. The relations $\Downarrow \lor A \lor \Uparrow \subseteq \lor (\Downarrow \lor \overline{B} \lor A \lor \Uparrow) \subseteq \Downarrow \lor \overline{B} \lor A \lor \Uparrow$ follow easily and from Lemma A.3.

The element $b_3 := ((\text{choice } T \perp) \oplus p_0 \text{ is in } \overline{B} \subset \overline{A}, \text{ and it is } b_3 \xrightarrow{*} (T \oplus \perp)A.$ Hence $b \forall (\downarrow \lor \overline{B} \lor A \lor \Uparrow)$. Let $b_4 := (T \oplus \bot) \oplus (\bot \oplus p_0)$. Then $b_4 \overline{A}$, since p_0 is a successor. Moreover, $b_4(\exists A)$, since $(T \oplus \bot)$ is a successor, and it has $(T \oplus \bot)$ as a successor in B. Thus $b_4 \neg \forall (\downarrow \lor \overline{B} \lor A \lor \Uparrow)$

B Abstract Properties

Let us assume that the sets E have some structure like a programming language as follows:

- 1. Given expressions e_1, e_2 , the expression amb $e_1 e_2$ is also an expression in Ewith $\frac{e_1 \rightarrow e'_1}{\text{amb } e_1 e_2 \rightarrow \text{amb } e'_1 e_2}$, $\frac{e_2 \rightarrow e'_2}{\text{amb } e_1 e_2 \rightarrow \text{amb } e_1 e'_2}$, $\frac{e_1 W}{\text{amb } e_1 e_2 \rightarrow e_1}$, and $\frac{e_2 W}{\text{amb } e_1 e_2 \rightarrow e_1}$.
- amb $e_1 \ e_2 \rightarrow e_2$. 2. Given expressions e_1, e_2, e_3 , the expression if $e_1 == w$ then e_2 else e_3 is in E such that: $\frac{wW}{\text{if } w == w \text{ then } e_2 \text{ else } e_3 \rightarrow e_2}, \text{ and}$
 - $\begin{array}{c} \text{If } w == w \text{ then } e_2 \text{ else } e_3 \to e_2 \\ \hline wW, w'W, w \neq w' \\ \hline \text{if } w' == w \text{ then } e_2 \text{ else } e_3 \to e_3 \end{array},$
- 3. There are at least two elements w_1, w_2, \ldots in W.
- 4. There is an element \perp with $\perp \uparrow$.

We say the relation ~ is a *congruence*, iff it is an equivalence relation and for all contexts C constructed from **amb** or if-then-else, and for all elements e_1, e_2 , the relation $e_1 \sim e_2$ implies $C[e_1] \sim C[e_2]$.

Lemma B.1. Assume that \sim_{\downarrow} and \sim_{\downarrow} are congruences. Then for all expressions s, t: If $s \leq_{\downarrow} t$, then $t \leq_{\downarrow} s$.

Proof. Let $s \leq_{\downarrow} t, t \downarrow$, and assume for contradiction that $s \Uparrow$. Let $w \in W$ be an element, such that for some $w' \in W : w \neq w'$ and $t \xrightarrow{*} w'$.

Let C be the context C[] := if (amb [] w) == w then w else \bot . Then $C[s] \sim_{\Downarrow} C[t]$ by the congruence assumption. We also have $C[s] \Downarrow$, which implies $C[t] \Downarrow$. This, however, contradicts the fact that t may reduce to a value $w' \neq w$. Hence, $s \uparrow$ is false, which means $s \downarrow$ holds.

Corollary B.2. Assume that \sim_{\downarrow} and \sim_{\downarrow} are congruences. Then for all expressions s, t: If $s \sim_{\downarrow} t$, then $s \sim_{\downarrow} t$.

Proof. Lemma B.1 applied twice shows that $s \sim_{\downarrow} t$.

Corollary B.3. Assume that \sim_{\downarrow} and \sim_{\downarrow} are congruences. Then for all expressions s, t: If $s \leq_{\downarrow,\downarrow} t$, then $s \sim_{\downarrow} t$.

Proof. Lemma B.1 applied once shows that $t \leq_{\downarrow} s$. Since the assumptions includes $s \leq_{\downarrow} t$, this also shows $s \sim_{\downarrow} t$.

Note that the our method is too weak to show the corresponding theorems for the non-deterministic higher-order language with amb (see [SSS08]), since lambda-abstractions cannot be compared in such a simple way.