
Closures of May and Must Convergence for
Contextual Equivalence

Manfred Schmidt-Schauß and David Sabel

Fachbereich Informatik und Mathematik,
Institut für Informatik, Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany,
{schauss,sabel}@ki.informatik.uni-frankfurt.de

Technical Report Frank-35

December 10, 2008

Abstract. We show on an abstract level that contextual equivalence in
non-deterministic program calculi defined by may- and must-convergence
is maximal in the following sense. Using also all the test predicates gen-
erated by the Boolean, forall- and existential closure of may- and must-
convergence does not change the contextual equivalence. The situation
is different if may- and total must-convergence is used, where an ex-
pression totally must-converges if all reductions are finite and terminate
with a value: There is an infinite sequence of test-predicates generated
by the Boolean, forall- and existential closure of may- and total must-
convergence, which also leads to an infinite sequence of different contex-
tual equalities.

1 Introduction

We are interested in generalizations of may- and must-convergence predicates for
contextual equivalence of non-deterministic and concurrent programming lan-
guages. Contextual equivalence in Morris’ sense is based on termination, i.e. on
may-convergence: e↓ ⇐⇒ ∃v : e

∗−→ v where v is a value. This notion is success-
fully used for deterministic calculi (for instance [Abr90,Pit97,MS99,Pit02]). If the
investigation of contextual equivalence is applied to non-deterministic program
calculi, then besides may-convergence – “there is some reduction to a value” –
the branching structure of reduction sequences is also observed in the form of
must-convergence, since contextual equivalence based on may-convergence only
has insufficient discrimination power. E.g., bottom-avoiding choice can only be
distinguished from erratic choice if contextual equivalence also tests for must-
convergence [SSS08]. However, there are different versions of this test: One
variant is the total must-convergence, denoted e W , that is true iff all reduc-
tions originating in e are finite and terminate in a value. The other variant

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14506119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. Schmidt-Schauß, D. Sabel

is must-convergence, denoted e⇓, that is true iff every successor of e is may-
convergent. A conjunction of may- and total must-convergence is used in e.g.
[KSS98,MSC99], and a conjunction of may- and must-convergence is used in e.g.
[CHS05,SSS08,NSSSS07]. The latter combination is called should testing in the
area of process algebras [RV07].
We will show in this paper that ↓ generates a finite class of test predicates
using Boolean combinations and ∀ and ∃-generators, and that the corresponding
contextual equivalence defined by the conjunction of ↓ and ⇓-testing already
covers the equivalence w.r.t. the closure of ↓. We also show that the closure of

W generates at least ↓ and ⇓ and in fact an infinite family of predicates leading
to an infinite family of contextual congruences.
This shows that the combination of ↓ and ⇓ has the nice property of generating a
contextual equivalence that it is invariant under closure of test predicates, which
complements the advantage that fairness is built-in [CHS05,SSS08,RV07]. This is
in contrast to the combinations with W whose closure leads to an infinite family
of contextual equivalences, and, moreover is not useful for analyzing fairness.

2 May- and Must-Testing

The triple (E, V,→) is called a reduction structure, provided V ⊆ E 6= ∅, → ⊆
E × E, and e → e′ =⇒ e 6∈ V . The reflexive transitive closure of → is denoted
as ∗−→. The idea is that E is the set of expressions of a programming calculus, →
the small-step reduction relation, and V the (irreducible) values, i.e. successful
outcomes of reductions. Note that there may be irreducible elements e ∈ E with
e 6∈ V , where e ∈ E is called irreducible, iff there is no e′ ∈ E with e → e′. We
will analyze unary predicates over E, which are always written in postfix. The
first predicate is eV , which holds iff e ∈ V . Note that (eV ∧ e

∗−→ e′) implies
that e = e′. This predicate, however, will not be used for observations. We will
also use the predicates > and ∅, where e> is always true, and e∅ is always false.
For predicates P,Q we write P ⊆ Q if eP =⇒ eQ for all reduction structures
(E, V,→) and for all e ∈ E, and P = Q iff P ⊆ Q and Q ⊆ P . We write
P 6= Q, iff for some reduction structure (E, V,→) and some e ∈ E, eP 6= eQ.
The notation P ⊂ Q means that P ⊆ Q but P 6= Q.

Definition 2.1. We define the following predicate-generators: Given predicates
P,Q, the following new predicates can be defined:

e(∃P) := ∃e′ : e
∗−→ e′ ∧ e′P

e(∀P) := ∀e′ : e
∗−→ e′ =⇒ e′P

e(¬P) := ¬eP
e(P ∧Q) := eP ∧ eQ
e(P ∨Q) := eP ∨ eQ

Given a predicate (or a set of predicates) P , B∀∃(P) denotes the closure under
all predicate generators, N∀∃(P) denotes the closure under ∀,∃ and ¬, and
B(P) denotes the Boolean closure.

Note that the predicate closure corresponds to closing formulas in modal logic
S4 (see [HC90]), where ∀(P) corresponds to the modal operator 2P , and ∃(P)
to the modal operator 3P .

Closures of May and Must Convergence for Contextual Equivalence 3

It is obvious that the usual propositional laws hold for the Boolean combinations.
The proof of the following simple laws is left to the reader:

Lemma 2.2 (Simplification Rules). For all predicates P,Q:
1. ¬∃P = ∀¬P 2. ¬∀P = ∃¬P 3. ∀∀P = ∀P
4. ∃∃P = ∃P 5. ∃(P ∨Q) = ∃P ∨ ∃Q 6. ∀(P ∧Q) = ∀P ∧ ∀Q
7. ∀∅ = ∃∅ = ∅ 8. ∀> = ∃> = > 9. ∀P ⊆ P ⊆ ∃P

The predicates ↓ := ∃V , ⇑ := ¬ ↓, ↑ := ∃ ⇑, and ⇓ := ¬ ↑ are called may-
convergence, must-divergence, may-divergence, and must-convergence, respec-
tively. Note that ⇑ = ¬∃V = ∀¬V , ↑ = ∃∀¬V = ¬∀∃V , and ⇓ = ∀∃V .
Since ∗−→ is transitive and sV implies that s is irreducible, we obtain:

Lemma 2.3. The set of predicates {↓, ↑,⇑,⇓} is closed w.r.t. negation.
Also ⇓ ⊆ ↓, ⇑ ⊆ ↑, V ⊆ ⇓, and ↓ ∨ ↑ = >.

Proof. Using the representation above, the following is easy: ¬↓ = ¬∃V = ⇑,
¬↑ = ¬∃∀¬V = ∀∃V = ⇓, ¬ ⇑ = ¬¬∃V = ∃V = ↓, and ¬ ⇓ = ¬¬ ↑ = ↑.
The subset relationships ⇓ ⊆ ↓, ⇑ ⊆ ↑ follow from Lemma 2.2. Hence the last
equality holds. The relation V ⊆ ⇓ follows from irreducibility of elements e with
eV and so the only reduction possibility is e

∗−→ e.

The following picture shows the complete set of expressions as a set diagram:

↓

⇓

↑

⇑↓ ∧ ↑

Theorem 2.4. N∀∃(↓) = {↓, ↑,⇑,⇓}.

Proof. We show by induction that constructing predicates cannot increase the
set {↓, ↑,⇑,⇓}. Lemma 2.3 shows that this holds for negation. It is sufficient to
consider ∀-constructions. Obvious reasoning shows ∀↓ = ⇓, ∀⇑ = ⇑, and ∀⇓ = ⇓.
The relation ∀↑ = ⇑ is proved as follows: Since ⇑⊆↑, by monotonicity of ∀, we
obtain ⇑ = ∀ ⇑⊆ ∀ ↑. To show the other direction, let e∀ ↑, and assume that
e ⇑ is false. Then e

∗−→ e′ with e′V . However, since e′ is irreducible, the predicate
e′ ↑ is wrong, hence we have a contradiction. This shows that ∀ ↑ ⊆ ⇑. ut

Theorem 2.5. B∀∃(↓) = {∅, ↓, ↑,⇑,⇓, ↓ ∧ ↑,⇓ ∨ ⇑,>}.

Proof. This is shown by induction on the construction of predicates. Lemmas
2.2, 2.3 and Theorem 2.4 show that the claim holds for the construction ¬,∨,∧,
and for ∀-constructions with the exception of ∀(↓ ∧ ↑) and ∀(⇓ ∨ ⇑). It is
sufficient to check the ∀-construction. Lemma 2.2 and the proof of Theorem 2.4

4 M. Schmidt-Schauß, D. Sabel

show ∀↓ ∧ ∀↑ = ⇓ ∧ ⇑ = ∅. For ∀(⇓ ∨ ⇑), we have ∀(⇓ ∨ ⇑) ⊆ ⇓ ∨ ⇑ by
Lemma 2.2. Since e⇓ =⇒ e∀(⇓ ∨ ⇑) and e⇑ =⇒ e∀(⇓ ∨ ⇑), we have proved
∀(⇓ ∨ ⇑) = ⇓ ∨ ⇑. ut

Definition 2.6. Given a set P of predicates, we define the following preorders
and equivalences on E:

e1 ≤P e2 : ⇐⇒ ∀P ∈ P : e1P =⇒ e2P
e1 ∼P e2 : ⇐⇒ ∀P ∈ P : e1 ≤P e2 ∧ e2 ≤P e1

The following considerations for these orderings are transferrable also to contex-
tually defined orderings and equivalences.

Lemma 2.7. Let e1, e2 be expressions with e1↓ ⇐⇒ e2↓ and e1⇓ ⇐⇒ e2⇓.
Then e1(↓ ∧ ↑) ⇐⇒ e2(↓ ∧ ↑) and e1(⇓ ∨ ⇑) ⇐⇒ e2(⇓ ∨ ⇑).

The conclusion is that the equivalence corresponding to all test predicates is the
same as the equivalence defined by the two test predicates ↓ and ⇓.

Main Theorem 2.8 ∼{↓,⇓} = ∼B∀∃(↓) = ∼N∀∃(↓).

This does not hold for respective preorders, since e.g. ≤{↓,⇓} 6= ≤{↓,⇑}.

3 Analyzing the Total-Must-Predicate

In this section we consider also the predicate that tests whether for an expression
all (maximal) reduction sequences end in a value in V .

Definition 3.1. Total must-convergence is defined as e W iff every →-reduction
sequence of e is finite and for every irreducible e′ with e

∗−→ e′, it is e′V . The
negation of W is defined as e· := ¬(e W)

The following reduction structure R = (E0, V0,→0) is used to provide examples:
The set E0 is inductively defined as {p0, T,⊥}∪{e1⊕e2 | e1, e2 ∈ E0}, V0 := {T},
and →0 = {p0 → T, p0 → p0,⊥ → ⊥, e1 ⊕ e2 → e1, e1 ⊕ e2 → e2}.

Lemma 3.2. The following equivalences and relations hold:
∀ W = W , ∀ · = ⇑,∃ W = ↓, ∃ · = ·.

W ⊂ ⇓ ⊂ ↓, and ⇑ ⊂ ↑ ⊂ ·.

Proof. This can be proved by standard reasoning. The example p0 of R satisfies
p0⇓, but also p0·, and thus shows that W 6= ⇓. ut

Theorem 3.3. N∀∃(W) = {↓, ↑,⇑,⇓, W , ·}.

Proof. Follows from Lemma 3.2 and Theorem 2.4. ut

The Boolean closure of {↓, ↑,⇑,⇓, W , ·} are the 16 predicates generated from
the mutually disjoint 4 predicates: W , (· ∧ ⇓), (↓ ∧ ↑),⇑.

Corollary 3.4. ∼{↓,⇓, W} = ∼B({↓,⇓, W})

Corollary 3.5. ≤{↓,⇓, W} 6= ≤{↓,⇓}

Closures of May and Must Convergence for Contextual Equivalence 5

3.1 Infinity of the Closure of Total Must-Convergence

We show below that the set B∀∃(W) is infinite. After having analyzed three levels
by alternating Boolean- and ∀-closure, we could construct an infinite sequence
of predicates, and an infinite sequence of elements of R:

A1 := ↓ ∧ ↑ ∧∀(W∨ ↑)
Ā1 := ↓ ∧ ↑ ∧¬(∀(W∨ ↑))

A2 := Ā1 ∧ ∀(⇓ ∨Ā1∨ ⇑)
Ā2 := Ā1 ∧ ¬(∀(⇓ ∨Ā1∨ ⇑))

Ai := Āi−1 ∧ ∀(⇓ ∨Āi−1 ∨Ai−2 ∨ . . . ∨A1∨ ⇑)
Āi := Āi−1 ∧ ¬(∀(⇓ ∨Āi−1 ∨Ai−2 ∨ . . . ∨A1∨ ⇑))

Let a1 := T ⊕ ⊥, a2 := ⊥ ⊕ p0, a3 := a1 ⊕ p0, and for i ≥ 4, let ai := ai−2 ⊕ ai−3.
Some obvious properties of Ai, Āi are

Lemma 3.6. For all i ≥ 1: Ai ⊆ ↓ ∧ ↑ and Āi ⊆ ↓ ∧ ↑.
For i ≥ 1: Ai ∩ Āi = ∅ and for all i ≥ 2 : Ai ∪ Āi = Āi−1.
For all i 6= j: Ai ∩Aj = ∅.

Lemma 3.7. For all i ≥ 2: Ai = Āi−1 ∧ ¬(∃Ai−1) and Āi = Āi−1 ∧ ∃Ai−1

Proof. We compute an equivalent of ¬(∀(⇓ ∨Āi−1 ∨ Ai−2 ∨ . . . ∨ A1∨ ⇑)): The
first step produces ∃(↓ ∧ ↑ ∧¬Āi−1 ∧ ¬Ai−2 ∧ . . . ∧ ¬A1): We have that ↓ ∧ ↑
∧¬A1 = Ā1. By induction on j, we obtain that ¬Aj ∧ Āj−1 = Āj . Finally, we
obtain ¬Āi−1 ∧ Āi−2 = Ai−1. Hence, Āi = Āi−1 ∧ ∃Ai−1. It is easy to see that
this also implies Ai = Āi−1 ∧ ¬(∃Ai−1). ut

Corollary 3.8. Āi = Ā1 ∧ ∃A1 ∧ . . . ∧ ∃Ai−1 which is equivalent to
(↓ ∧ ↑ ∧∃(⇓ ∧ ·)) ∧ ∃A1 ∧ . . . ∧ ∃Ai−1.

Lemma 3.9. For all i : aiAi holds.

Proof. Inspection of the definitions shows a1A1. Since a2
∗−→ p0, we have a2∃(⇓

∧ ·). Since ⊥↑, p0↓ and p0(⇓ ∧ ·), we also have a2Ā1. But then also a2A2

holds. Similar arguments show a3Ā2, and since A3 = Ā2 ∧ ∀(⇓ ∨Ā2 ∨ A1∨ ⇑)
and scanning the successors of a3, we see that a3

∗−→ a1A1, and that the second
part holds, hence a3A3.
By simultaneous induction on i we show the following 4 claims:

1. for all i ≥ 2 : aiĀ1.
2. For all i ≥ 3, j = 1, . . . , i− 2: ai∃Aj .

3. For i ≥ 1 : aiĀi−1.
4. For i ≥ 1 : aiAi holds.

Now we give the proofs for every item, where we can use the induction hypothesis
for all claims and for smaller i.

1. For a3, this can be seen by the same arguments. For i ≥ 4: ai−2Ā1, since
i− 2 ≥ 2 and by induction hypothesis, and hence also aiĀ1.

2. The base cases are i = 3, 4. For a3, claim (2), which is only a3A1, follows
from the definition. For a4, we have a4

∗−→ a2 and a4
∗−→ a1. By induction

hypothesis, the claims ajAj hold for j < i. Now the general case is ai
∗−→ ai−2

and ai
∗−→ ai−3, and by induction and transitivity of ∗−→, the claim is proved.

3. For i ≥ 1 : aiĀi−1. Item (1) shows aiĀ1. Item (2) shows that ai∃Aj holds
for all j = 1, . . . , i− 2. By Corollary 3.8, this shows aiĀi−1.

6 M. Schmidt-Schauß, D. Sabel

4. aiAi holds: The base cases i = 1, 2, 3 are already proved. Let i ≥ 4: we
already have shown that aiĀi−1. Now it suffices to scan all successors. Either
the successors are in ⇓ ∨ ⇑, or aiĀi−1 or for j ≤ i−2: it is ajAj . This satisfies
the definition Ai = Āi−1 ∧ ∀(⇓ ∨Āi−1 ∨Ai−2 ∨ . . . ∨A1∨ ⇑).

Theorem 3.10. The set B∀∃(W) is not finite.

Corollary 3.11. There is no finite set of predicates M ′ ⊆ B∀∃(W) such that
∼M ′ = ∼B∀∃(W).

Acknowledgements We thank Jan Schwinghammer for his valuable comments.

References

Abr90. Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Re-
search Topics in Functional Programming, pages 65–116. Addison-Wesley,
1990.

CHS05. Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the repre-
sentation of McCarthy’s amb in the pi-calculus. Theoret. Comput. Sci.,
330(3):439–473, 2005.

HC90. G. E. Hughes and M. J. Cresswell. Introduction to Modal Logic. Routledge,,
London, 1990.

KSS98. Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic call-by-
need lambda calculus. In International Conference on Functional Program-
ming 1998, pages 324–335. ACM Press, 1998.

MS99. A. K. D. Moran and D. Sands. Improvement in a lazy context: An oper-
ational theory for call-by-need. In POPL 1999, pages 43–56. ACM Press,
1999.

MSC99. Andrew K. D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets:
A semantic theory for an embedded coordination language. In Coordination
’99, volume 1594 of Lecture Notes in Comput. Sci., pages 85–102. Springer-
Verlag, 1999.

NSSSS07. Joachim Niehren, David Sabel, Manfred Schmidt-Schauß, and Jan Schwing-
hammer. Observational semantics for a concurrent lambda calculus with ref-
erence cells and futures. Electron. Notes Theor. Comput. Sci., 173:313–337,
2007.

Pit97. Andrew M. Pitts. Operationally-based theories of program equivalence. In
Semantics and Logics of Computation. Cambridge University Press, 1997.

Pit02. Andrew M. Pitts. Operational semantics and program equivalence. In J. T.
O’Donnell, editor, Applied Semantics, volume 2395 of Lecture Notes in Com-
puter Science, pages 378–412. Springer-Verlag, 2002.

RV07. Arend Rensink and Walter Vogler. Fair testing. Inform. and Comput.,
205(2):125–198, 2007.

SSS08. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus
with locally bottom-avoiding choice: Context lemma and correctness of
transformations. Math. Structures Comput. Sci., 18(03):501–553, 2008.

Closures of May and Must Convergence for Contextual Equivalence 7

APPENDIX

A Analyzing the Closure for Total Must Testing

A.1 The First Level

The table 1 shows the predicates that correspond to ∀P for all Boolean combi-
nations P of the four basic sets W , (· ∧ ⇓), (↓ ∧ ↑),⇑. It is sufficient to look
for the ∀-construction only. The only predicate that cannot be represented is
∀(W∨ ↑): It is obvious that ⇓ ∨ ⇑ ⊆ ∀(W∨ ↑) ⊆ W∨ ↑. We only have to show
that the inclusions are proper. The element ⊥ ⊕ T does not satisfy ⇓ ∨ ⇑, but
∀(W∨ ↑). The element ⊥ ⊕ p0 satisfies W∨ ↑, but not ∀(W∨ ↑), since p0 does
mot satisfy W∨ ↑.

∀ W = W
∀ ⇑ = ⇑
∀(� ∧ ⇓) = ∅
∀(↓ ∧ ↑) = ∅
∀ ⇓ = ⇓
∀(W ∨ (↓ ∧ ↑)) = W

∀(W∨ ⇑) = W∨ ⇑
∀((⇓ ∧ �) ∨ (↓ ∧ ↑)) = ∅
∀((⇓ ∧ �)∨ ⇑) = ⇑
∀ ↑ = ⇑
∀(⇓ ∨(↓ ∧ ↑)) = ⇓
∀(⇓ ∨ ⇑) = ⇓ ∨ ⇑
∀(W∨ ↑) = a new test predicate
∀ � = ⇑

Fig. 1. Predicates using ∀ on the first level

For convenience, we abbreviate two new components as follows:

A := ↓ ∧ ↑ ∧∀(W∨ ↑)
Ā := ↓ ∧ ↑ ∧¬(∀(W∨ ↑))

Now the sets on this level can be illustrated in the following diagram. There are
now 5 basic sets:

∧ ⇓ ↓ ∧ ↑ ⇑
Ā A

W ∅ ∅ ∅
·

Using the refined sets we have to check 32 combinations on the next level, among
them 16 new combinations, which are presented in the table 2.

8 M. Schmidt-Schauß, D. Sabel

∀A = ∅
∀Ā = ∅
∀(W ∨A) = W

∀(W ∨ Ā) = W

∀((� ∧ ⇓) ∨A) = ∅
∀((� ∧ ⇓) ∨ Ā) = ∅
∀(A∨ ⇑) = ⇑
∀(Ā∨ ⇑) = ⇑
∀(⇓ ∨A) = ⇓
∀(⇓ ∨Ā) = ⇓
∀(W ∨A∨ ⇑) = W ∨A∨ ⇑ see Lemma A.1
∀(W ∨ Ā∨ ⇑) = W∨ ⇑ see Lemma A.2
∀((⇓ ∧ �) ∨A∨ ⇑ = ⇑
∀((⇓ ∧ �) ∨ Ā∨ ⇑ = ⇑
∀(⇓ ∨A∨ ⇑) = ⇓ ∨A∨ ⇑ see Lemma A.3
∀(⇓ ∨Ā∨ ⇑) = a new test predicate see Lemma A.4

Fig. 2. New cases using ∀ on the second level

Lemma A.1. ∀(W ∨A∨ ⇑) = W ∨A∨ ⇑

Proof. It is easy to see that W∨ ⇑ ⊆ ∀(W ∨ A∨ ⇑). So assume that sA. We
have to show that for every s′ with s

∗−→ s′: s′(W ∨ A∨ ⇑). Note that sA means
s(↓ ∧ ↑ ∧∀(W∨ ↑)). The condition s∀(W∨ ↑) shows that s′¬(· ∧ ⇓). So, it
remains to show that s′(↓ ∧ ↑) implies that s′A. Suppose that this is false. Then
s′(↓ ∧ ↑ ∧¬(∀(W∨ ↑))), which is equivalent to s′(↓ ∧ ↑ ∧∃(· ∧ ⇓))). Then
there is some s′′ with s′

∗−→ s′′ and s′′(· ∧ ⇓). But this contradicts the facts
s
∗−→ s′

∗−→ s′′ and s(∀(W∨ ↑)).

Lemma A.2. ∀(W ∨ Ā∨ ⇑) = W∨ ⇑.

Proof. It is easy to see that W∨ ⇑ ⊆ ∀(W ∨ Ā∨ ⇑). So assume that sĀ. Note
that sĀ means s(↓ ∧ ↑ ∧¬(∀(W∨ ↑))), which in turn is equivalent to s(↓ ∧ ↑
∧∃(· ∧ ⇓)). The condition s∃(· ∧ ⇓)) contradicts s(∀(W ∨ Ā∨ ⇑)).

Lemma A.3. ∀(⇓ ∨A∨ ⇑) = ⇓ ∨A∨ ⇑

Proof. It is easy to see that ⇓ ∨ ⇑ ⊆ ∀(⇓ ∨A∨ ⇑). So assume that sA. We
have to show that for every s′ with s

∗−→ s′: s′(⇓ ∨A∨ ⇑). Note that sA means
s(↓ ∧ ↑ ∧∀(W∨ ↑)). The condition s∀(W∨ ↑) shows that s′¬(· ∧ ⇓). So, it
remains to show that s′(↓ ∧ ↑) implies that s′A.
Suppose that this is false. Then s′(↓ ∧ ↑ ∧¬(∀(W∨ ↑))), which is equivalent to
s′(↓ ∧ ↑ ∧∃(· ∧ ⇓))). Then there is some s′′ with s′

∗−→ s′′ and s′′(· ∧ ⇓). But
this contradicts the facts s

∗−→ s′
∗−→ s′′ and s(∀(W∨ ↑)).

Lemma A.4. ⇓ ∨ ⇑ ⊂ ∀(⇓ ∨Ā∨ ⇑) ⊂ ⇓ ∨Ā∨ ⇑.

Closures of May and Must Convergence for Contextual Equivalence 9

Proof. Lemma 2.2 shows that ∀(⇓ ∨Ā∨ ⇑) ⊆ ⇓ ∨Ā∨ ⇑. It is easy to see that
⇓ ∨ ⇑⊆ ∀(⇓ ∨Ā∨ ⇑). Note that for a process s: sĀ means s(↓ ∧ ↑ ∧¬(∀(W∨ ↑))),
which is equivalent to s(↓ ∧ ↑ ∧∃(· ∧ ⇓)).
Now we construct the examples. The following process p3 := (T⊕⊥)⊕p0 satisfies
p3Ā, but p3

∗−→ (T⊕⊥) with (T⊕⊥)A. Hence ∀(⇓ ∨Ā∨ ⇑) 6= ⇓ ∨Ā∨ ⇑.
For the element p = (⊥⊕p0) it is obvious that p¬(⇓ ∨ ⇑), but for every reduct s′

of p the test s′(⇓ ∨Ā∨ ⇑) is true. Suppose that (⇓ ∨ ⇑) fails for s′. Then s′ = p,
which satisfies p(↓ ∧ ↑ ∧∃(· ∧ ⇓)), and hence pĀ. Hence ⇓ ∨ ⇑ 6= ∀(⇓ ∨Ā∨ ⇑).

If we use the abbreviation: B := Ā∧ ∀(⇓ ∨Ā∨ ⇑) and B̄ := Ā∧¬(∀(⇓ ∨Ā∨ ⇑)),
then the following table illustrates the 6 basic sets on the next level:

⇓ ↓ ∧ ↑ ⇑
∧ Ā A

B̄ B

W ∅ ∅ ∅ ∅
·

Some properties of A, B are:

Lemma A.5.

1. ∀(⇓ ∨Ā∨ ⇑) = ¬(∃A). Thus B = Ā ∧ ¬(∃A) and B̄ = Ā ∧ ∃A.
2. B ⊆ ∀(¬(B̄)).

Proof. 1. We compute ¬(∀(⇓ ∨Ā∨ ⇑)): Then ∃(↑ ∧(¬(Ā))∧ ↓)) = ∃((↑ ∧ ↓
)∧ (⇑ ∨ ⇓ ∨(∀(W∨ ↑)))) = ∃((↑ ∧ ↓ ∧ ⇑)∨ (↑ ∧ ↓ ∧ ⇓)∨ (↑ ∧ ↓ ∧∀(W∨ ↑))))
= ∃(↑ ∧ ↓ ∧∀(W∨ ↑)) = ∃(A).

2. Suppose there is some bB such that b
∗−→ b′ with b′B̄. The latter is equivalent

to b′Ā ∧ b′¬(∀(⇓ ∨Ā∨ ⇑)). In particular, there is some b′
∗−→ b′′ with b′′¬(⇓

∨Ā∨ ⇑). Transitivity of ∗−→ shows that b
∗−→ b′′. However, bB implies that

b∀(⇓ ∨Ā∨ ⇑)). Hence there is no such b′.

Some witnesses for the elements of A, Ā, B, B̄ are in the following lemma:

Lemma A.6.

1. A contains T⊕⊥
2. Ā contains p := ⊥⊕ p0.
3. B ⊂ Ā contains ⊥⊕ p0

4. B̄ ⊂ Ā contains (T⊕⊥)⊕ p0

A.2 The Third Level

The abbreviations and an alternative formulation are:

A := ↓ ∧ ↑ ∧∀(W∨ ↑)
Ā := ↓ ∧ ↑ ∧¬(∀(W∨ ↑))
B := Ā ∧ ∀(⇓ ∨Ā∨ ⇑) = Ā ∧ ¬(∃A)
B̄ := Ā ∧ ¬(∀(⇓ ∨Ā∨ ⇑)) = Ā ∧ ∃A

10 M. Schmidt-Schauß, D. Sabel

Using the refined sets we have to check 64 combinations on the next level, among
them 32 new combinations, the combinations without A are presented in table
3.

∀B = ∅
∀B̄ = ∅
∀(W ∨B) = W

∀(W ∨ B̄) = W

∀((� ∧ ⇓) ∨B) = ∅
∀((� ∧ ⇓) ∨ B̄) = ∅
∀(B∨ ⇑) = ⇑
∀(B̄∨ ⇑) = ⇑
∀(⇓ ∨B) = ⇓
∀(⇓ ∨B̄) = ⇓
∀(W ∨B∨ ⇑) = W∨ ⇑ see Lemma A.7
∀(W ∨ B̄∨ ⇑) = W∨ ⇑ see Lemma A.8
∀((⇓ ∧ �) ∨B∨ ⇑ = ⇑
∀((⇓ ∧ �) ∨ B̄∨ ⇑ = ⇑
∀(⇓ ∨B∨ ⇑) = ⇓ ∨B∨ ⇑ see Lemma A.9
∀(⇓ ∨B̄∨ ⇑) = ⇓ ∨ ⇑ see Lemma A.10

Fig. 3. New cases without A using ∀ on the third level

Lemma A.7. ∀(W ∨B∨ ⇑) = W∨ ⇑.

Proof. It is easy to see that W∨ ⇑ ⊆ ∀(W ∨B∨ ⇑) ⊆ W ∨B∨ ⇑. We only have
to consider sB. Since B ⊆ Ā, the claim follows from Lemma A.2.

Lemma A.8. ∀(W ∨ B̄∨ ⇑) = W∨ ⇑.

Proof. It is easy to see that W∨ ⇑ ⊆ ∀(W ∨ B̄∨ ⇑). So assume that sB̄. Since
B̄ ⊆ Ā, the claim follows from Lemma A.2.

Lemma A.9. ∀(⇓ ∨B∨ ⇑) =⇓ ∨B∨ ⇑

Proof. It is easy to see that ⇓ ∨ ⇑ ⊆ ∀(⇓ ∨B∨ ⇑) ⊆ ⇓ ∨B∨ ⇑. So assume
that sB. We have to show that for every s′ with s

∗−→ s′: s′(⇓ ∨B∨ ⇑). Note
that sB means s(Ā ∧ ∀(⇓ ∨Ā∨ ⇑)). The condition s(∀(⇓ ∨Ā∨ ⇑)) shows that
s′(⇓ ∨Ā∨ ⇑). The case s′B̄ is not possible due to Lemma A.5. Hence s′(⇓ ∨B∨ ⇑)
holds, and the lemma is proved.

Lemma A.10. ∀(⇓ ∨B̄∨ ⇑) = ⇓ ∨ ⇑.

Proof. The relations ⇓ ∨ ⇑ ⊆ ∀(⇓ ∨B̄∨ ⇑) ⊆ ⇓ ∨B̄∨ ⇑ follow easily. Note that
sB̄ means sĀ∧∃A. Hence there is some s′A with s

∗−→ s′. Hence s¬∀(⇓ ∨B̄∨ ⇑).
and the Lemma is proved.

Closures of May and Must Convergence for Contextual Equivalence 11

∀B ∨A = ∅
∀B̄ ∨A = ∅
∀(W ∨A ∨B) = W

∀(W ∨ B̄ ∨A) = W

∀((� ∧ ⇓) ∨B ∨A) = ∅
∀((� ∧ ⇓) ∨ B̄ ∨A) = ∅
∀(B ∨A∨ ⇑) = ⇑
∀(B̄ ∨A∨ ⇑) = ⇑
∀(⇓ ∨B ∨A) = ⇓
∀(⇓ ∨B̄ ∨A) = ⇓
∀(W ∨B ∨A∨ ⇑) = W∨ ⇑ see Lemma A.11
∀(W ∨ B̄ ∨A∨ ⇑) = W ∨A∨ ⇑ see Lemma A.12
∀((⇓ ∧ �) ∨B ∨A∨ ⇑ = ⇑
∀((⇓ ∧ �) ∨ B̄ ∨A∨ ⇑ = ⇑
∀(⇓ ∨B ∨A∨ ⇑) = ⇓ ∨B ∨A∨ ⇑ see Lemma A.13
∀(⇓ ∨B̄ ∨A∨ ⇑) ⊃ ⇓ ∨A∨ ⇑ see Lemma A.14

Fig. 4. New cases with A using ∀ on the third level

Now we present the new combinations with A in table 4.

Lemma A.11. ∀(W ∨B ∨A∨ ⇑) = W ∨A∨ ⇑.

Proof. It is easy to see that W∨ ⇑ ⊆ ∀(W ∨ B ∨ A∨ ⇑) ⊆ W ∨ B ∨ A∨ ⇑.
Lemma A.2 shows that W ∨A∨ ⇑ ⊆ ∀(W ∨B∨A∨ ⇑). We only have to consider
sB. Since B ⊆ Ā, the claim follows similar as in the proof of Lemma A.2.

Lemma A.12. ∀(W ∨ B̄ ∨A∨ ⇑) = W ∨A∨ ⇑.

Proof. It is easy to see that W ∨A∨ ⇑ ⊆ ∀(W ∨ B̄ ∨A∨ ⇑). So assume that sB̄.
Since B̄ ⊆ Ā, the claim follows similar as in the proof of Lemma A.2.

Lemma A.13. ∀(⇓ ∨B ∨A∨ ⇑) = ⇓ ∨B ∨A∨ ⇑

Proof. It is easy to see that ⇓ ∨A∨ ⇑ ⊆ ∀(⇓ ∨B∨ ⇑) ⊆ ⇓ ∨B ∨ A∨ ⇑. The
claim now follows from Lemmas A.3 and A.9.

Lemma A.14. = ⇓ ∨A∨ ⇑ ⊂ ∀(⇓ ∨B̄ ∨A∨ ⇑) ⊂ ⇓ ∨B̄ ∨A∨ ⇑)

Proof. The relations ⇓ ∨A∨ ⇑ ⊆ ∀(⇓ ∨B̄ ∨A∨ ⇑) ⊆ ⇓ ∨B̄ ∨A∨ ⇑ follow easily
and from Lemma A.3.
The element b3 := ((choice T ⊥) ⊕ p0 is in B̄ ⊂ Ā, and it is b3

∗−→ (T ⊕ ⊥)A.
Hence b∀(⇓ ∨B̄ ∨ A∨ ⇑). Let b4 := (T⊕⊥) ⊕ (⊥⊕ p0). Then b4Ā, since p0 is a
successor. Moreover, b4(∃A), since (T⊕⊥) is a successor, and it has (T⊕⊥) as
a successor in B. Thus b4¬∀(⇓ ∨B̄ ∨A∨ ⇑)

12 M. Schmidt-Schauß, D. Sabel

B Abstract Properties

Let us assume that the sets E have some structure like a programming language
as follows:

1. Given expressions e1, e2, the expression amb e1 e2 is also an expression in E

with
e1 → e′1

amb e1 e2 → amb e′1 e2
,

e2 → e′2
amb e1 e2 → amb e1 e′2

,
e1W

amb e1 e2 → e1
, and

e2W

amb e1 e2 → e2
.

2. Given expressions e1, e2, e3, the expression if e1 == w then e2 else e3

is in E such that:
wW

if w == w then e2 else e3 → e2
, and

wW, w′W, w 6= w′

if w′ == w then e2 else e3 → e3
,

3. There are at least two elements w1, w2, . . . in W .
4. There is an element ⊥ with ⊥ ⇑.

We say the relation ∼ is a congruence, iff it is an equivalence relation and for all
contexts C constructed from amb or if-then-else, and for all elements e1, e2, the
relation e1 ∼ e2 implies C[e1] ∼ C[e2].

Lemma B.1. Assume that ∼⇓ and ∼↓ are congruences. Then for all expressions
s, t: If s ≤⇓ t, then t ≤↓ s.

Proof. Let s ≤⇓ t, t ↓, and assume for contradiction that s ⇑. Let w ∈ W be an
element, such that for some w′ ∈ W : w 6= w′ and t

∗−→ w′.
Let C be the context C[] := if (amb [] w) == w then w else ⊥. Then
C[s] ∼⇓ C[t] by the congruence assumption. We also have C[s] ⇓, which implies
C[t] ⇓. This, however, contradicts the fact that t may reduce to a value w′ 6= w.
Hence, s ⇑ is false, which means s ↓ holds.

Corollary B.2. Assume that ∼⇓ and ∼↓ are congruences. Then for all expres-
sions s, t: If s ∼⇓ t, then s ∼↓ t.

Proof. Lemma B.1 applied twice shows that s ∼↓ t.

Corollary B.3. Assume that ∼⇓ and ∼↓ are congruences. Then for all expres-
sions s, t: If s ≤⇓,↓ t, then s ∼↓ t.

Proof. Lemma B.1 applied once shows that t ≤↓ s. Since the assumptions in-
cludes s ≤↓ t, this also shows s ∼↓ t.

Note that the our method is too weak to show the corresponding theorems
for the non-deterministic higher-order language with amb (see [SSS08]) , since
lambda-abstractions cannot be compared in such a simple way.

	Closures of May and Must Convergence for Contextual Equivalence
	Manfred Schmidt-Schauß and David Sabel

