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SUMMARY (in German) 
 

Der Nucleus geniculatum mediale (MGB, medial geniculate body) ist in der 

aufsteigenden Hörbahn der Säuger die Umschaltstation auf der Ebene des Diencephalon 

(Zwischenhirn), nach den Kerngebieten Ganglion ciliare (dessen Fasern den Hörnerven 

bilden), dem Nucleus cochlearis, dem oberen Olivenkomplexes, dem Colliculus inferior und 

dem Lemniscus laterale. Vom MGB aus wird die Erregung zu den auditorischen Arealen des 

Cortex cerebri  (Hörkortex) weitergeleitet. Der MGB ist aber Teil der absteigenden Hörbahn. 

Er erhält direkte Eingänge vom Hörkortex und hat selbst Afferenzen zum Colliculus inferior. 

Diese absteigende Hörbahn reicht über den Olivenkomplex bis einer Innervation des 

Innenohrs, wo die Erregung der (äußeren Haarsinneszellen) beeinflusst werden kann. Der 

MGB ist damit sehr wahrscheinlich in unterschiedliche funktionelle Verarbeitungsschritte 

eingebunden.  

Die Einbindung in mehrere Funktionen deutet sich auch in der internen Struktur des 

MGB an. Der ventrale Bereich des MGB (vMGB) ist tonotop organisiert, d.h. enthält eine 

systematische Frequenzanordnung, und ist ein Teil der primären Hörbahn. Neurone im 

vMGB sind damit Teil einer systematischen Frequenzrepräsentation, haben meist eine 

schmale Frequenzabstimmung und zeigen eine kurze Antwortlatenz bei akustischer Reizung. 

Der dorsale Bereich des MGB (vMGB) ist eine dagegen nicht tonotop organisierte Struktur, 

die sehr wahrscheinlich abgeleitete Funktionen bei der Hörverarbeitung hat, wie zum Beispiel 

die Integration der Hörinformation mit anderen Sinnessystemen. Neurone im dMGB sind 

nicht Teil einer systematischen Frequenzabbildung, haben meist eine breite 

Frequenzabstimmung und zeigen lange Antwortlatenzen bei der Reizung mit Reintönen 

(Calford & Webster 1981, Webster 1983). 

Neuronen aus dem dMGB und dem vMGB, die jeweils an unterschiedlichen 

Verarbeitungsschritten im neuronalen Verbund beteiligt sind, zeigen möglicherweise auch 
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Unterschiede in ihren elektrophysiologischen Eigenschaften als Einzelneurone. Dies könnte 

wesentlich zu Unterschieden in der Verarbeitung beitragen. Solche Unterschiede können bei 

grundlegenden neuronalen Eigenschaften wie Ruhemembranpotenzial, Erregungsschwelle 

oder Antwortlatenz vorhanden sein. Solche Unterschiede sind zum Beispiel zwischen den 

Typ I- und Typ II- Neuronen des Ganglion ciliare zu finden (Reid et al. 2004). Es können 

aber auch abgeleitete Eigenschaften sein, wie z.B. den Fähigkeiten Erregung räumlich oder 

zeitlich zu integrieren. Der Vergleich der Neurone aus vMGB und dMGB eignet sich gut um 

mögliche Unterschiede in den intrinsischen elektrophysiologischen Eigenschaften der 

Nervenzellen mit unterschiedlichen Aufgaben bei der Hörverarbeitung zu korrelieren. 

Deshalb wurde dieser Vergleich zum zentralen Thema der vorliegenden Arbeit gemacht.  

Für die Untersuchungen wurden lebende, frontal orientierte Hirnschnitte (200 µm 

Dicke) des Thalamus von 4 bis 5 Wochen alten Wüstenrennmäusen präpariert. Mit der patch 

clamp-Technik wurde elektrophysiologisch Potenziale von Neuronen des dorsalen und 

ventralen Bereichs des MGB abgeleitet. Es wurden sowohl die Reaktionen der Zellen auf 

hyper- als auch depolarisierende Strominjektion untersucht. Die dabei notwendigen 

Parameter für einen gute physiologischen Zustand der Hirnschnitte und eine stabile patch-

clamp-Ableitung wurden in umfangreichen Vorversuchen ermittelt. Bereits in der 

Ableitapparatur war eine genaue Positionierung der Elektrode im dMGB oder vMGB unter 

optischer Kontrolle möglich. Zusätzlich wurden nach erfolgreicher Ableitung die 

Hirnschnitte fixiert, gegen Nissl gefärbt und zur Bestätigung der Ableitposition 

lichtmikroskopisch untersucht.  

Insgesamt wurden 73 Neurone (vMGB: 34 Neurone, dMGB: 39 Neurone) vollständig 

untersucht. Deren Ruhepotenzial lag zwischen -79 mV und -45 mV. Dabei gab es keine 

Unterschiede zwischen vMGB-Neuronen und dMGB-Neuronen (vMGB: 62.9 mV; dMGB: 

60.1 mV; Abb. 3.2). Wurden die Neurone vom Ruhepotenzial aus durch zunehmende 
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Strominjektion überschwellig depolarisiert, dann antworteten sie mit einer zunehmenden 

Anzahl von Aktionspotenzialen (Abb. 3.1). Diese wurden bei zunehmender Reizstärke in 

immer schnellerer Folge und mit immer kürzerer Latenz ausgelöst wurden. Allerdings gab es 

ein Potenzialniveau (zwischen -35 mV und -25 mV) bei dem eine maximale Feuerrate 

erreicht wurde. Bei noch höherer Depolarisation blieb diese maximale Feuerrate gleich oder 

nahm wieder ab.  

Bei Stimulation von einem hyperpolarisierten Haltepotenzial aus (z.B. -90 mV) kam 

es zusätzlich zu Beginn der Antwort zu einem kleinen initialen Gipfel, dem eine schnelle 

Repolarisation (durch offensichtlichen Einstrom) folgte (Abb. 3.0). Nach deren Abklingen 

kam es zum Potenzialanstieg mit einer schnellen Folge von Aktionspotenzialen. Die 

Feuerschwellen zum Auslösen von Aktionspotenzialen im MGB lagen zwischen -54 mV und 

-32 mV. Die mittleren Schwellenwerte im vMGB (42.9 mV) und dMGB (44.3 mV) waren 

nicht signifikant verschieden. Die Dauer der an der Schwelle ausgelösten Aktionspotenziale 

wurde bei halber Höhe gemessen und vergleichen. Auch dieser Wert war im Mittel zwischen 

vMGB (2.04 ms) und dMGB (1.95 ms) nicht verschieden. Diese Werte änderten sich bei 

höherer Stimulation kaum.  

Außerdem wurden der Membranwiderstand (d.h. der "Eingangswiderstand") der 

Neurone bei Potenzialen um das Ruhepotenzial ("niedriges Potenzial") und bei Potenzialen 

oberhalb der Feuerschwelle ("hohes Potenzial") gemessen. Die Membranwiderstände in 

beiden Bereichen des MGB waren im Mittel bei niedrigem Potenzial deutliche höher (vMGB: 

307.0 MΩ; dMGB: 237.5 MΩ) als bei hohem Potenzial (vMGB: 61.0 MΩ; dMGB: 

64.2 MΩ) und in beiden Zuständen zwischen vMGB und dMGB nicht signifikant 

unterschiedlich.   

Da aufgrund der Literatur mögliche Unterschiede zwischen ventralem und dorsalem 

Bereich des MGB bei der Fähigkeit der Neurone zur Integration über mehrere Eingänge zu 
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erwarten waren, wurden zusätzlich Zeitparameter und die Dynamik der Reizantworten 

untersucht, die besonders für die zeitliche Integration wichtig sind. Dabei fiel besonders auf, 

dass die Neurone teilweise eine starke Adaptation (Abnahme) der Aktionspotenzial-Rate über 

die Dauer des Reizes (200 ms) hinweg zeigten. Dieses Verhalten wurde bei maximaler 

Aktionspotenzial-Rate (siehe oben) näher untersucht.  

Zum einen zeigte sich, dass die Neurone unterschiedliche schnelle Adaptations-Raten 

zeigten (Abb. 3.3a,b). Quantifiziert wurde das mit der Anzahl der Aktionspotenziale während 

des Reizes von 200 ms Dauer (Adaptationsrate). Die Neurone zeigten maximal zwischen 1 

und 23 Aktionspotenziale (Abb. 3.4). Sie wurden entweder in schnell adaptierende Neurone 

(bis max. 4 Aktionspotenziale) oder langsam adaptierende Neurone (5 und mehr 

Aktionspotenziale während der Reizdauer) eingeteilt. In schnell adaptierenden Neuronen war 

gleichzeitig auch die Folge von Aktionspotenzialen (max. 5 APs; siehe Abb. 3.4) vor Ende 

des Reizes beendet (Beispiel in Abb. 3.3B), während das bei langsam adaptierenden 

Neuronen (bis zu 23 APs) nicht der Fall war (Beispiel in Abb. 3.3A). Dieses Kriterium hatte 

sich schon im peripheren Hörsystem bewährt (Adamson et al. 2002; Reid et al. 2004). Die 

meisten Neurone im MGB der Wüstenrennmaus waren schnell adaptierend (76.5%; n = 56; 

Fig. 3.4).  

Beim Adaptationsverhalten gab es klare Unterschiede zwischen vMGB und dMGB. 

Der Anteil langsam adaptierender Neurone im dMGB war deutlich höher (33%) als im 

vMGB (11%; Abb. 3.3D). Entsprechend war die mittlere Anzahl an ausgelösten 

Aktionspotenzialen bei vergleichbarem Haltepotenzial im dMGB deutlich höher (6.0 APs) als 

im vMGB (2.0 APs; Abb. 3.3C). Die große Mehrheit der langsam adaptierenden Neuronen 

(in absoluten Zahlen) wurde im dMGB gefunden (13 von 17 Neuronen). Ein Teil der langsam 

adaptierenden Neurone zeigte außerdem spontane Erregung (Aktionspotentiale) schon auf 

dem Niveau des Ruhepotenzials (n= 4; Beispiel in Abb. 3.5). Diese Neurone wurden alle im 
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dMGB gefunden. Die Spontane Rate lag dabei zwischen 12 und 15 Hz. Der Anteil an den 

langsam adaptierenden Neuronen betrug dabei 24%).  

Um das Adaptationsverhalten noch genauer an analysieren wurden die Abstände der 

Aktionspotenziale gemessen und gegen den Zeitverlauf des Reizes aufgetragen. Es zeigte 

sich, dass das Adaptationsverhalten unabhängig von der absoluten Feuerrate war (Abb. 3.6). 

Nur die ersten Intervalle schwankten stark, danach pendelte sich meist das Verhalten auf 

einen mittleren Wert ein. Dieser blieb bei langsam adaptierenden Neuronen sehr konstant 

(Abb. 3.7, hier als Verhältnis der Intervalle zw. Aktionspotenzialen (In+1/In), das um 1 herum 

schwankte). Das mittlere Verhältnis der Intervalle war im vMGB 1.04 und im dMGB 1.08.  

Entscheidend für den Grad der zeitlichen Erregungsintegration ist auch die 

Geschwindigkeit des Erregungsanstiegs beim Einsetzen des Reizes (sog. Anstiegskinetik). 

Dadurch werden zwei eng miteinander zusammenhängende Parameter bestimmt: die Latenz 

bis zum Auftreten des ersten Aktionspotenzials und die Zeitkonstante des Potenzialanstiegs 

bei depolarisierenden Strominjektionen. Diese Parameter waren massiv von der Reizstärke 

abhängig und wurden mit zunehmender Reizstärke deutlich kürzer (Beispiele in Abb. 3.8).  

Bei beiden Parametern zeigten sich außerdem signifikante Unterschiede zwischen 

Neurone des vMGB und des dMGB. Ventrale Neurone antworteten im Mittel mit deutlich 

kürzeren Latenzen bis zum ersten Aktionspotenzial (vMGB: 41.5 ms) als dorsale Neurone 

(dMGB :128.4 ms), letztere betrugen im Mittel das dreifache der Latenzen im vMGB. 

Neurone im vMGB zeigten dabei Latenzen in einem viel größeren Bereich (29 – 250) als 

Neurone im dMGB (130 – 260). Verlängerte Latenzen blieben über den ganzen 

Potenzialbereich bei Depolarisation erhalten: Neurone die an der Schwelle eine längere 

Latenz hatten, zeigten auch bei stärkerer Depolarisation eine längere Latenz (Abb. 3.9). 

Entsprechend zeigte auch die Gruppe der langsam adaptierenden Neurone längere Latenzen 

(137 ms) als die schnell adaptierenden (54 ms).  
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Die Zeitkonstanten des Potenzialanstiegs bei depolarisierenden Reizen wurden 

ermittelt, indem eine Exponentialfunktion an den Potenzialverlauf (Bereich Ruhepotenzial bis 

erstes Aktionspotenzial, Abb. 3.10) angepasst wurde. Die Zeitkonstanten dieser Funktionen 

betrugen im Mittel bei Neuronen des vMGB 6.9 ms, bei Neuronen des dMGB 116.7 ms. 

Auch die Zeitkonstanten wurden mit stärkerer Depolarisation kürzer (Abb. 3.12). Die 

Unterschiede zwischen vMGB und dMGB, und die Abhängigkeit von der Reizstärke bei den 

Zeitkonstanten waren bei den Neuron sehr eng mit dem Verhalten bei den Latenzen 

korreliert. 

Neurone des vMGB sind hauptsächlich für die Fortleitung von primären auditorischen 

Eingängen verantwortlich, die Neurone des dMGB integrieren dagegen verschiedene 

multimodale Eingänge. Ein Vergleich der hier gefundenen Unterschiede mit den peripher 

gelegenen Neuronen des Hörnerven, den Fasern des Spiralganglion vom Typ I und Typ II, 

erbrachte ein vergleichbares Muster. Neurone vom Typ I vermitteln primäre auditorische 

Eingänge und haben kurze Antwortlatenzen sowie schnelle Zeitkonstanten im 

Antwortpotenzial auf elektrische Reizung. Neurone vom Typ II integrieren dagegen über 

viele Eingänge, auf elektrische Reizung hin zeigen sie langsame Erregung und vielfach eine 

langsame Adaptation.  

Zusammenfassen ergibt sich als generelles Muster für die physiologischen 

Eigenschaften der beiden Zelltypen in der peripheren und der zentralen Hörbahn, dass Grad 

der Adaptation, Antwortlatenz und Zeitkonstanten in der Erregung in direktem 

Zusammenhang zur Anzahl der Eingänge steht, über welche die Neurone integrieren müssen. 

Hohe Integration korreliert dabei mit langsamer Adaptation, deutlich längerer Antwortlatenz 

und verzögertem Erregungsanstieg. Umgekehrt korreliert die präzise Weitergabe einzelner 

Eingänge mit schneller Adaptation, sowie kurzer Antwortlatenz und schneller 

Anstiegskinetik der Erregung.  
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ABSTRACT 
 

Neurons in the medial geniculate body (MGB) have the complex task of processing 

the auditory ascending information from the periphery and a more extensive descending input 

from the cortex. Differences in the pattern of afferent and efferent neuronal connections 

suggest that neurons in the ventral and dorsal divisions of the MGB take different roles in this 

complex task.  The ventral MGB (vMGB) is the primary, tonotopic, division and the dorsal 

MGB (dMGB) is one of the higher order, nontonotopic divisions.  The vMGB neurons are 

arranged tonotopically, have sharp tuning properties, and a short response delay to acoustic 

stimuli.  The dMGB neurons are not tonotopically arranged, have broad tuning properties, 

and a long response delay to acoustical stimuli. 

These two populations of neurons, with inherently different tasks, may display 

differences in intrinsic physiological properties, e.g. the capacity to integrate information on a 

single cell level.  Neurons of the ventral and dorsal divisions of the MGB offer an ideal 

system to explore and compare the intrinsic neuronal properties related to auditory 

processing. 

Coronal slices of 200 μm thicknesses were prepared from the thalamus of 4 - 5 week 

old gerbils.  The current-clamp configuration of the patch-clamp technique was used to do 

experiments on the dorsal and ventral divisions of the medial geniculate body.  Slices were 

subsequently Nissl stained to verify the location of recording.     

 Recordings from the dorsal and ventral divisions exhibited differences in response to 

depolarizing current injections.  The ventral division responded with significantly shorter first 

spike latency (vMGB = 41.50 ± 7.7, dMGB = 128.43 ± 16.28; (p < 0.01)) and rise time 

constant (vMGB = 6.95 ± 0.90, dMGB = 116.67 ± 0.13; (p < 0.01)) than the dMGB.  
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Neurons in the dorsal division possessed a larger proportion of slowly accommodating 

neurons (rapidly accommodating: vMGB: 89%, dMGB: 64%), including a subpopulation of 

neurons that fired at resting membrane potential. 

 Neurons in the vMGB are primarily responsible for relaying primary auditory input. 

Dorsal MGB neurons relay converging multimodal input.  A comparative analysis with the 

primary auditory neurons, the Type I and Type II spiral ganglion neurons, reveals a similar 

pattern.  Type I neurons relay primary auditory input and exhibit short first spike latencies 

and rise time constants.  The Type II neurons relay converging input from many sources, 

while possessing significantly slower response properties and a greater subpopulation of 

slowly accommodating neurons.  Hence, accommodation, first spike latency, and rise time 

constant are suggested to be a reflection of the amount of input that must be integrated before 

an action potential can be fired. More converging input correlates to slower accommodation, 

a longer first spike latency and rise time.  Conversely, a greater capacity to derive discrete 

input is associated with rapid accommodation, along with a short first spike latency and rise 

time.  
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ABBREVIATIONS 
 

ACSF  artificial cerebral spinal fluid 

ADP  afterdepolarization 

cAMP  cyclic adenosine monophosphate 

CCD  charged-coupled device 

dMGB  dorsal medial geniculate body 

FRB   fast repetitive bursting/ chattering 

FS  fast spiking 

IB  intrinsically bursting 

ICC   inferior colliculus 

IHC   inner hair cells 

IR-DIC infra-red differential interference contrast 

ISI  interspike interval 

Ih  hyperpolarization-activated cation channel activity 

IT   voltage and time dependent inward Ca2+ current 

LTS  low-threshold spiking 

ms  millisecond 

mV  millivolts 

NMDA N-methyl-D-aspartate 

OHC  outer hair cells 

pS  picosiemens 

RMP  resting membrane potential 

RS  regular spiking 

RT  room temperature 

SGN  spiral ganglion neurons 

SOC  superior olivary complex 

vMGB  ventral medial geniculate body 
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1.0 INTRODUCTION 
 
 
 
 

1.01 Sound  

Encoding sound into the nervous system is a complex task.  The underlying 

complexity of sound involves many intricate biological processes, beginning with the 

transduction of sound into a neural code within the peripheral auditory system.  Sound 

produces an air pressure change that, upon entering the external ear, sets into motion middle 

ear mechanical machinations that culminate into neural signals in the cochlea.  These neural 

signals are relayed with high temporal fidelity to the central nervous system for higher 

auditory processing.  The focus herein is to gain a better understanding of the intrinsic neural 

mechanisms that are involved in the encoding of sound on the central auditory nervous system 

level, within the thalamus. 

1.02 Mechano-electrical Transduction in the Auditory Periphery 
 

Sound is a temporally varying phenomenon and the role of timing in neural encoding 

is more critical in encoding sound than in any of the other sensory systems.  The auditory 

system has the nontrivial task of processing information about sound frequency and amplitude 

at precisely coordinated times.  Thus a rigorous temporal regimen is necessary to encode and 

relay sounds from the auditory receptors, the hair cells in the cochlea, to the primary auditory 

cortex.  Sound consists of frequency and amplitude components.  Sound waves or the sound 

induced movement of air molecules that reach the ear are transformed through the outer and 

middle ear structures before reaching the cochlea in the inner ear (Figure 1.1).  Within the 

cochlea the hair cells transduce sound induced movements as small as a nanometre into ion 
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conductance changes with microsecond resolution (Corey & Hudspeth, 1983).  Conductance 

changes within the hair cells sum to generate a signal that follows the vibrations of sound 

waves, a cochlear microphonic potential, as high as 20 kHz in humans and 100 kHz in some 

bat species (Suga, 1988).  These mechano-electrical transduction mechanisms initiate the 

neural response to sound by releasing neurotransmitters onto primary auditory neurons. 

 

1.03 Topographic Organization of the Auditory System 
 

Functionally, another important process in the cochlea besides mechanoelectrical 

transduction is spectral decomposition.  Sound is decomposed into component frequencies 

and encoded in the cochlea according to the frequency.  In the auditory system the functional 

topography is organized tonotopically, according to frequency. High frequency sounds are 

encoded at the opposite end of the tonotopic axis as low frequency sounds, with intermediate 

 
Figure 1.1. The cochlea in the inner ear houses the hair cells, which are connected to 
the neurons responsible for encoding sound.  Sound travels through the outer ear and 
middle ear to reach the spiral ganglion neurons in the cochlea.  The spiral ganglion 
neuron, the first step into the nervous system for sound, relays the signal to the brainstem 
nuclei along the VIII Cranial Nerve. (Adapted from Eckert & Randall, 1978). 
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frequencies graded along this axis (Miller, 1997; Raphael & Altschuler, 2003).  Different 

frequencies excite hair cells and spiral ganglion neurons at different places along the basilar 

membrane from the basal to the apical end.    This introduces a spatial component.  Hence, 

sound encoding is a spatio-temporal process.  This organizational structure based upon 

frequency extends, beginning in the cochlea, along the entire primary auditory pathway to the 

cortex. 

Several functional characteristics in the auditory periphery are related to the tonotopic 

gradient. The tonotopic organization is related to the timing of the latency of the initial spike 

in response to a depolarizing current injection (Adamson & Reid et al., 2002a,b; Reid et al., 

2004).  In general, current injection induced responses in the membrane potential of neurons 

located in the high frequency region of the cochlea are faster than those found in the low 

frequency region (Adamson & Reid et al., 2002a, b).  Gradients of K+ channel subtypes, i.e. 

Kv3.1,Kv1.4, BK,  and Kv1.1,  that may be involved in shaping the kinetics of neuronal response 

properties were also found to be organized according to tonotopy (Adamson & Reid et al., 

2002a,b). This shows that the tonotopic organization offers an additional layer of 

computational capacity.   

In the cortex this capacity is expanded further as the tonotopic map is relayed onto 

multiple auditory cortical areas.  An indication of the behavioural significance of hearing can 

be deduced by the extent of parcellation and cortical area dedicated to the auditory system.  In 

the gerbil sound is relayed to at least 8 areas (Scheich et al., 1993; Thomas et al., 1993).  

Primates possess at least 20 interconnected auditory cortical areas (Kaas & Hackett, 2000).  

There are species whereby very few auditory areas may exist also, such as in the marsupials 

where only one auditory area exists (Gates & Aitkin 1982), or insectivores where only 3 or 4 

exist, or approximately 6 in carnivores (Merzenich & Schreiner, 1992).  The auditory system 

may differ between species but there are several commonalities that define all mammalian 

auditory systems. 
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1.04 Primary Auditory Processing 
 

In the cochlea there are two types of auditory receptors, the inner hair cells (IHC) and 

the outer hair cells (OHC), and they transmit their signals to at least two types of neurons, 

Type I or Type II spiral ganglion neurons (SGN).  All auditory information reaching the 

nervous system must travel along the spiral ganglion neurons.  Sensory stimuli travels from 

the spiral ganglion neurons in the periphery to the cochlear nuclei (dorsal, posteroventral, and 

anteroventral cochlear nuclei) in the brainstem and then on to the inferior colliculus either 

along the lateral lemniscus or via the superior olivary complex.  Neurons of the core and 

cortex of the inferior colliculus project to the ventral and dorsal medial geniculate body of the 

thalamus, respectively, which then innervates the auditory cortex (Figure 1.2).       

  The Type I and Type II SGNs play different specific roles in the encoding of sound 

but both adhere to a tonotopic organization, although their functional properties differ.  The 

Type I neurons are responsible for encoding precise frequency information whereas the Type 

II neurons integrate converging information, which can be better understood upon 

consideration of the different innervation patterns.  The Type I group receives input from 

individual IHCs and the Type II group receives input from many OHCs.  Therefore one IHC 

receives innervation from many Type I neurons but each Type I neuron innervates only one 

IHC.  Each Type II neuron innervates many OHCs, thereby acting as a convergent relay for 

the OHCs.  Upon comparison of electrophysiological response properties, the Type II SGNs 

were found to have slower response properties than the Type I SGNs (Reid et al., 2004).  

Hence, slower response properties were found in neurons that receive a greater amount of 

synaptic input.   

Once the information is encoded in the spiral ganglion neurons it is relayed into the 

brainstem and parceled into separate functional and spatial streams, following parallel afferent 



                                                                                                            MGB Response Properties 

 22

routes.  These parallel routes extend from the cochlear nucleus directly to the inferior 

colliculus but may also go to the inferior colliculus via routes relayed through the trapezoid 

body or the olivary complex (Casseday et al., 2000).  In order for the auditory information to 

reach the cortex for higher processing it must be relayed through the inferior colliculus and 

the medial geniculate body of the thalamus. 

 

1.05 Auditory Processing in the Thalamus 
 

How is auditory information encoded in higher order processing in the central auditory 

nervous system?  The thalamus was chosen to explore this question further.   The term 

“thalamus” is commonly used to refer to the dorsal thalamus, which is only one of four 

portions of the diencephalon area of the brain.  The diencephalon can be divided into the 

dorsal and ventral thalamus, the epithalamus, and the hypothalamus (Jones, 1985; Rose, 

1958).  In mammals the dorsal thalamus forms the largest part of the thalamus and is the 

source of the majority of subcortical input to the cerebral cortex.  The dorsal thalamus 

contains two morphologically and functionally distinct classes of neurons, the relay neurons, 

which project outside of the thalamus, and interneurons, whose axons do not leave the 

thalamic nuclei in which they reside.  This distinction was first recognized by Ramon y Cajal 

and later confirmed in electrophysiological and anatomical studies (Anderson et al., 1962).  

Immunocytochemical studies demonstrated that projection neurons in the dorsal thalamus use 

excitatory neurotransmission, while interneurons use the inhibitory neurotransmitter GABA 

(Jones, 1985, 2003; Penny & Diamond, 1984; Spreafico et al., 1983, 1994).   Previous 

electrophysiological and neuroanatomical studies have consistently demonstrated that 

projection neurons provide excitatory output and GABAergic interneurons are a prominent 

source of intrathalamic inhibitory input (Jones, 1985).  GABAergic interneurons are not 

present in all thalamic nuclei of every mammalian species.  In primates and carnivores 
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GABAergic neurons are prevalent in the entire dorsal thalamus but they are virtually 

nonexistent in rodents, with the exception of the lateral geniculate nucleus (Barbaresi et al., 

1986; Bentivoglio et al., 1991).  Another major source of inhibition to the dorsal thalamus is 

the reticular nucleus of the ventral thalamus provides (Jones et al., 1975).  There is also 

significant feedforward inhibition to the MGB from the inferior colliculus (Winer et al., 1996; 

Peruzzi et al., 1997). 

The main auditory area of the dorsal thalamus is the medial geniculate body, which 

consists of three main areas: the ventral, dorsal, and medial divisions.  The vMGB and dMGB 

divisions primarily relay auditory information whereas the medial division is primarily 

multisensory, integrating limbic and visceral information.   
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Figure 1.2. Connections in the auditory system. This cartoon depicts the entire auditory 
pathway.  Auditory information enters at the spiral ganglion neuron level.  Information is 
then relayed to the cochlear nucleus (AVCN, PVCN, DCN).  Parallel routes are taken 
through the brainstem nuclei (LSO, MSO, MNTB, DNLL, VNLL) to reach the midbrain 
(ICc, ICp, ICdc, ICx).  The primary auditory information is then relayed to the vMGB. Both 
pathways ultimately connect to the auditory cortex. Secondary auditory information is 
relayed to the dMGB.  Information is processed and relayed to other cortical areas (temporal 
lobe, frontal lobe, parabelt, belt).  The cortical connections are extensive and vary with 
species. Connections may be reciprocal, excitatory or inhibitory. The subcortical 
connections are generic for mammals.  Abbreviations of subcortical nuclei: AVCN, 
anteroventral cochlear nucleus; PVCN, posteroventral cochlear nucleus; DCN, dorsal 
cochlear nucleus; LSO, lateral superior olivary nucleus; MSO, medial superior olivary 
nucleus; MNTB, medial nucleus of the trapezoid body; DNLL, dorsal nucleus of the lateral 
lemniscus; VNLL, ventral nucleus of the lateral lemniscus; ICc, central nucleus of the 
inferior colliculus; ICp, pericentral nucleus of the inferior colliculus; ICdc, dorsal cortex of 
the inferior colliculus; ICx, external nucleus of the inferior colliculus; MGv, ventral nucleus 
of the medial geniculate complex; MGd, dorsal nucleus of the medial geniculate complex; 
MGm, medial nucleus of the medial geniculate complex; Retic, reticular nucleus of the 
thalamus; Sg, suprageniculate nucleus; Lim, limitans nucleus; PM, medial pulvinar nucleus. 
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Neurons in the vMGB and dMGB share a similar distinction as the one found in the 

periphery.  The vMGB neurons relay primary information, as done by the Type I SGNs.  The 

dMGB neurons relay integrated information, as done by the Type II SGNs.  Both the SGNs 

and the MGB neurons are part of mandatory pathways to the cortex, however at very different 

levels.  This comparative observation is strictly based upon commonalities in innervation 

pattern and reported electrophysiological response properties.   

As a mandatory pathway to the cortex, the thalamus has gained the name “gateway to 

the cortex” (Le Gros Clark, 1932).  However, in recent years our understanding of the 

thalamus has been greatly enhanced and a more apt metaphor may be to consider the thalamus 

as a “courtyard” to the cortex, much like a courtyard may facilitate efficient movement 

between different parts of a building.  It has been shown that the thalamus is enlisted 

extensively to relay information between different regions of the cortex (Jones, 1985), thereby 

maintaining a central role in cortical processing.   The thalamus has historically received less 

focus than the other processing levels (Glimcher & Lau, 2005) but there have been studies 

that have offered useful insights on some of the important functional aspects of the thalamus 

(Sherman & Guillery, 1998; Jones, 1985, 2003).  

Each area in the thalamus differs in connectivity (Calford, 1983; LeDoux et al., 1985; 

Doron & LeDoux, 1999; Morest et al., 1965, 1986), cell density (Winer et al., 1999; Morest, 

1965), biochemistry (Jones, 1985, 2003), and functionality (Bordi & LeDoux, 1994). The 

primary auditory thalamic division, the vMGB, receives ascending input from the central 

nucleus of the inferior colliculus (ICC) (LeDoux et al., 1987).  The higher order auditory 

division, the dMGB, receives input from the external cortex of the inferior colliculus (Aitkin, 

1978; Jones, 1985; Kudo, 1984; Morest, 1964; Moore, 1963; Rose & Woosley, 1958; Winer 

et al., 1992). In addition to the feedforward excitatory input, a feedforward inhibitory input 
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exists (Winer et al., 1996) between the inferior colliculus with both the vMGB and the 

dMGB.  

 

In general, the nontonotopic pathways have prominent efferent projections to the 

limbic system (Shinonaga et al., 1994; Deschenes et al., 1998; Doron & Ledoux, 2000).  Main 

 
Figure 1.3. Cell morphology of neurons in the ventral division of the MGB.  Examples 
of bushy tufted neurons in the ventral MGB are shown, except for the small lower left 
neurons, which is a Golgi Type II neuron. (Reprinted from Winer 1999; Fig.3.) 
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projections from the vMGB however, extend directly to layers III-IV (Scheel et al., 1988; 

Roger & Arnault, 1989; Romanski & Ledoux, 1993; Kimura et al., 2003) of the primary 

auditory cortex.  Reciprocal innervation extends from layer VI, innervating the neurons in the 

vMGB with small boutons.  Collaterals from the cortico-thalamic projections also innervate 

the thalamic reticular nucleus, which in turn relays inhibitory input to the vMGB nuclei (Liu, 

1995, 1999).  In contrast, the dMGB projects to the nonprimary auditory regions and receives 

large bouton projections from layer V neurons (Ojima et al., 1994; Rouiller et al, 1985a,b; 

Rouiller & Welker, 1991; Shi & Cassell, 1997; Bartlett et al., 1997).  

 

1.06 Morphology of MGB Neurons 
 

Neuronal morphology in the MGB is commonly described in terms of dendritic 

branching. MGB neurons have been morphologically characterized as either tufted, stellate, or 

radiate (Winer et al., 1999).  Tufted refers to the particular ramification of the dendritic tree 

(Figures 1.3 and 1.4).  Tufted neurons are in both divisions.  The soma size and dendritic field 

dimensions vary between divisions. Small stellate neurons have also been identified in both 

divisions. Stellate cells have a small soma (~6 µm) with 3-4 primary dendrites with irregular 

projections (Figure 1.4).  The radiate neuron is similar to the tufted neuron in soma size (8-10 

µm) and dendritic field size, 80 by 80 µm.  The distinction between radiate and tufted cell 

types is that the tufted cell has a more complex dendritic arbour whereas the radiate cell types 

are simpler with a dichotomous or bifurcated dendritic branching (Figure 1.4).  The radiate 

neurons are also multi-dimensional in orientation.  Surprisingly, intrinsic electrophysiological 

distinctions have not yet been reported based upon morphology in the MGB (Jahnsen & 

Llinas, 1984a,b; Bartlett & Smith, 1999).   
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Figure 1.4. Cell morphology of neurons in the dorsal division of the MGB.  Examples of 
tufted (enclosed in squares), radiate (enclosed in circles), and small stellate (enclosed in a 
diamond) morphologies in the dorsal division are shown. (Reprinted from Winer et al., 
1999; Fig.4). 
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The neuronal population in the vMGB consists of stellate or tufted neurons (Figure 

1.3).  The tufted neurons that exist in the vMGB have profuse dendritic branching and are, 

therefore, called bushy tufted neurons (Figure 1.3). Bushy tufted neurons have an elongated 

dendritic field with a branching area of 50 by 100 µm.  

The dMGB neuronal population consists of tufted, stellate, and radiate neurons (Figure 

1.4).  The tufted neurons that predominant in the dMGB are more polarized laterally, with a 

branching area of 200 by 100 µm, and are less profusely branched than the bushy tufted 

neurons of the vMGB (Figure 1.4).  

 

1.07 Electrophysiology of MGB Neurons 
 

Some of the first single-unit extracellular recordings of MGB neurons showed 

response differences between the ventral and dorsal pathways (Calford et al., 1983; Calford & 

Aitkin, 1983).  Perhaps this was a first indication that an intrinsic distinction between the 

divisions of the MGB might exist.  It is now recognized that the characteristic frequencies of 

neurons in the vMGB are tonotopically organized, have shorter tuning properties and possess 

shorter response times to sound stimulation (Miller & Schreiner, 2000; Miller et al., 2001a, b).   

Meanwhile, neurons in the dMGB are not tonotopically organized, have broad tuning 

properties and exhibit longer response latencies to sound stimulation (Hu, 2003).  Intracellular 

studies in the rat MGB have reported that a minority subpopulation of neurons in the vMGB 

may exhibit a prominent inward rectifying “sag” in response to hyperpolarization, whereas no 

such subpopulation was found in the dMGB (Bartlett & Smith, 1999; Hu et al., 1995).  These 

studies have led to the thought that the vMGB is responsible for rapidly relaying precise 

tonotopic information from the periphery while the dMGB is primarily responsible for greater 

integration and temporal pattern recognition (Winer, 1992).  Those studies were pioneering in 

their focus but their analytical scope was limited to comparisons of a few parameters, i.e. 
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resting membrane potential, accommodation rates, inward rectification and rebound spikes in 

response to hyperpolarization, Ca2+ bursting, and input resistance (Bartlett & Smith, 1999).  

Since the focus in this study is on the intrinsic properties of these neurons, the scope has 

included a more extensive list of parameters, i.e. action potential latency and duration, 

afterhyperpolarization, onset and offset kinetics, and threshold level, in addition to the 

parameters compared by other groups.   

 

 

 

1.08 Gerbil Hearing Sensitivity 
 

Early on it was observed that there is an inverse relationship between animal head size 

and hearing frequency range sensitivity (Masterton, 1969).  This is due to head shadowing, 

the attenuation and filtering of sound by the head as it reaches the ears, and interaural timing 

differences, the difference in the arrival of sound between the two ears.  Animals with smaller 

Frequency (kHz 
 
Figure 1.5. Gerbil hearing sensitivity spans human hearing sensitivity in the low 
frequency range. The figure shows average hearing thresholds for 3 species including man. 
Thresholds are based on behavioral performance in a tone detection task.  Average hearing 
threshold in humans is similar to the recently revised standard ISO 226 (small differences in 
the low frequency range).  The solid line represents the gerbil, the dots represent humans, 
and the line segments represent the chinchilla.  (Reproduced from Ryan, 1976; Fig.6) 
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heads would be predicted to have sensitivity to higher frequencies and, conversely, animals 

with larger heads should be more sensitive to lower frequency sounds.  Webster and Webster 

(Webster & Webster, 1978) were able to show evidence that there are rodents with an 

expanded middle-ear cavity, indicative of low frequency sensitivity.  It was then 

unequivocally shown that the gerbil did indeed possess hearing sensitivity comparable to 

humans in the low frequency range (Ryan, 1976) (Figure 1.5).  Unlike most rodents, the gerbil 

has hearing sensitivity as low as 100 Hz but also as high as 60,000 Hz (Fay & Popper, 1994).  

This range of sensitivity spans much of the hearing sensitivity range of humans (20 - 

20,000Hz). The low frequency hearing sensitivity of the gerbil makes the gerbil a more 

relevant animal model for understanding human hearing than most other rodents. Therefore 

the gerbil was chosen as the animal of choice to explore the auditory questions focused upon 

herein.  

 

1.09 Gerbil Ecology  

The subfamily Gerbillinae, commonly termed gerbils, inhabits as a particular 

ecological environment the arid desert areas.  Physiological, anatomical, and behavioral 

adaptations permit the gerbil to survive in these harsh desert environments, which exhibit 

extremes in temperature and a sparse food supply.  In fact, gerbils have more species of any 

mammals living in most of the deserts of the world.  The desert environment is harsh.  The 

summers are extremely hot and the winters are extremely cold. Not surprisingly, the gerbil 

has nocturnal habits.  They forage for food during the night, while remaining in their 2-3 

meters deep underground burrows during the days.  Gerbils require little free water since they 

are able to survive on metabolic water and are either herbivorous or granivorous. The species 

of particular interest here is Meriones unguiculatus.  It is granivorous.  Gerbils are preyed 

upon by birds, cats, foxes, and reptiles to varying extents, which is partially dependant upon 
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the season of the year and the availability of other sources of sustenance for the predators.  It 

can be argued that because they must forage on an open plain, without the cover of vegetation 

to hide from predators, it is especially useful to be able to hear a broad range of sounds to 

avoid predators (Lay, 1972).   

 

Parallel evolution of low frequency sensitivity in other subfamilies of rodents, for 

example the desert ground squirrel, in different yet comparably harsh desert climates, 

suggests an adaptive preference for low-frequency sensitivity (Webster & Plassmann, 1991).   

Another palatable argument is that the low frequency hearing allows gerbils to communicate 

in their burrows by stomping their hind legs, conveying a low-frequency resonance through 

the labyrinthine network of tunnels to warn of predators, such as a snake.  Gerbils 

Figure 1.6. Rapid 
developmental changes 
occur at young ages. 
Rapid changes in neuronal 
cell size and density in the 
MGB occur in early post-
natal development.   (top) 
Pruning of neurons and 
(bottom) cell growth is 
accelerated in the first 3 
weeks of rat development, 
which is similar to the 
gerbil developmental time 
line (Blumberg-Feld-man 
& Eilam 1995).  The onset 
of hearing in the gerbil 
coincides with the ending 
of the period of rapid 
development.  It is not 
clear when develop-
mental changes plateau 
but changes occur into 
adulthood.  (Repro-duced 
from Clerici & Coleman, 
1998; Fig. 8 and 9.) 
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communicate fear or alarm with a staccato burst of thumping of their hind limbs, which drives 

all gerbils within earshot older than 3 weeks to stop all activity, i.e. eating or digging, and 

exhibit vigilance.  To illustrate, in response to such a low-frequency sound gerbils either seek 

refuge in the gerbil shelters that are in each cage, go to the highest point in the cage and 

observe quietly, or also thump their hind legs in staccato bursts.  This behavior can be readily 

triggered by mimicking the thumping sound while rapping in a similar rhythm on a wooden 

table (personal observations).    

1.10 Developmental Changes 

 Neurobiological developmental changes are more profound in younger animals. Any 

physiological characterization of a neuron must take into account the developmental stage of 

the animal in order to determine whether a feature is most likely to be developmental or 

functional (Clerici & Coleman, 1998). Significant developmental changes occur in the gerbil 

nervous system in young animals (< 3 weeks) (Figure 1.5).  Morphological studies have 

shown rapid developmental changes in cell size and density before 3 weeks of age in gerbils 

(Budinger, 2000). Concurrently, hearing onset occurs during this period.  Older (4 - 5 weeks 

postnatal) animals were chosen for this study in order to better ascertain the functional 

physiological properties rather than a transient developmental phenomenon. Older animals 

were prohibitively difficult to do patch-clamp recordings due to the excessive myelination 

that exists in the thalamus after 5 weeks of age. 

 

1.11 The Driver and Modulator Concept 

In light of the driver and modulator concept (Sherman & Guillery, 1998) some 

interesting implications concerning the functional organization of the medial geniculate body 

neurons have arisen.  The concept of “drivers” and “modulators” was coined by S.M. 

Sherman and R.W. Guillery (Sherman & Guillery, 1998) as a functional paradigm to describe 
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the differences in the thalamic nuclei and pathways based upon the sources of initial neural 

activity, connectivity, and the impact of the respective synaptic inputs.  In general, neurons in 

the primary or first order thalamic nuclei are primarily involved in relaying “driver” 

information.  Higher order thalamic nuclei are considered to consist of neurons relaying 

primarily “modulator” information.  Some of the attributes that are ascribed to the driver 

designation are sparse convergence of input, relying instead upon input from a single or a 

small number of axons with strong synaptic input.  Driver input represents the first relay or 

initial introduction of a particular kind of information.  The driver or first order relay station 

in the auditory or visual thalamus are the ventral MGB and the lateral geniculate nuclei, 

respectively. Modulators integrate more converging inputs than drivers and are associated 

with converging facilitating weak synaptic input (Sherman et al., 1998). By using the driver 

and modulator paradigm, the physiology of two separate auditory regions are described and 

compared.  The identification of parameters that can be attributed to either the driver or 

modulator designation may offer some insight on the role of intrinsic parameters in the type of 

information processed. 

 

1.12 Objective 
 

The output of a neuron is a product of the synaptic input, intrinsic physiology, leak 

conductances, and the proximal environment (eg. glial influences) of a neuron.  Synaptic 

input is the sum impact of the excitatory and inhibitory input. The proximal external 

environment may be considered as a constant value in in vitro preparations.  The focus in this 

study is the intrinsic properties of dMGB and vMGB neurons.  In order to approximate the 

intrinsic response properties of neurons, rectangular-pulse current injections were 

administered to the soma at different amplitudes and polarities.  Upon sufficient depolarizing 

current injection and time, action potential threshold is reached.   
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The resultant spike waveform entails a specific delay in the rise time to the action 

potential.  The kinetics of this rise time is a benchmark to the conductances, both passive and 

active, that would be engaged in response to synaptic activity leading to threshold. The delay 

from the onset of the stimulus to the occurrence of a spike is a function of the subthreshold 

conductances, which is driven by the sum of the excitatory and inhibitory inputs.  Essentially, 

the delay to fire a spike is a function of the integration capacity of a neuron.  Shorter delays 

may be more appropriate for relaying discrete information.  Longer delays may be more 

useful in relaying more integrated information.  

The objective of this study is to contribute to the current understanding of the intrinsic 

response properties of neurons in the ventral and dorsal division of the medial geniculate 

body.  Upon consideration of the following facts, this study clearly represents a novel 

approach.  First, the gerbil has similar hearing frequency sensitivity as humans, in the lower 

frequency range.  Secondly, the gerbil medial geniculate body is devoid of GABAergic 

interneurons therefore the response properties should exclusively reflect those of a relay 

neuron to the cortex.  Also, patch-clamp electrophysiological recordings in the auditory 

thalamus of the gerbil have not been reported heretofore.  Lastly, older animals (4-5 weeks) 

give a better estimation of the adult functional properties than younger animals.   
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2.0 METHODS AND MATERIALS 
 

The experiments reported here comply with the ‘‘Principles of Animal Care’’ 

(publication No. 86-23, revised 1985 of the NIH) and also with current German laws.    

2.01 Slice Preparation 

Gerbils (Meriones unguiculatus) between 28-40 days old were anaesthetized with 

isoflourane (Forene, Abbott Gmbh & Co., Wiesbaden) and decapitated.  Coronal slices (200-

μm-thick) were cut using a Leica Vibratome (vibratome, Leica 1000S, Leica).  Dissection and 

slices were done in cold (1-2°C) Ringer’s solution containing:  (in mM) 87 NaCl, 25 

NaHCO3, 10 Glucose, 2.5 KCl, 1.25 NaH2PO4, 7 MgCL2, 0.5 CaCl2, and 75 sucrose 

equilibrated with 95% O2 and 5% CO2.  Slices were incubated at 34°C for 25 minutes and 

subsequently stored at room temperature (RT) for at least 20 minutes before being moved to 

the recording chamber.  

2.02 Development of Slice Preparation Protocol 

One of the most important limiting factors in slice electrophysiology is making 

adequate slices (Geiger et al., 2002).  Several fundamental issues must be addressed in order 

to accomplish this task.  Earlier patch-clamp work (Adamson & Reid et al., 2002a, b; Reid et 

al.2004) done by the author was done on cultured cells, not slices therefore a significant effort 

was undertaken to find the optimal method to procure adequate slices.  The slice protocol for 

rats was adapted for the gerbil (Edwards et al., 1989).  Succinctly, obtaining brain slices 

requires (a) removing the brain from the animal; (b) submerging the brain in cold (2 ° C) 

ringer solutions while maintaining adequate carbogen gas concentration; (c) slicing the brain 

with the proper vibratome settings for blade vibration (90 Hz) and slice speed (0.05 mm/s); 

(d) storing the brain slices carefully in warm (34°C) solution and subsequently in solution at 
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RT for the optimal amount of time; (e) determining how much time should be allowed for the 

slice to equilibrate in the recording chamber before recording; and (f) handling the slices 

properly in between all stages.  These issues were further complicated by the fact that the area 

of interest, the MGB, is heavily myelinated after a certain age (4 - 5 weeks).  Therefore, a 

compromise must be made about what age the animal should be.  If the animal is too young 

(< 3 weeks) then significant developmental changes are still taking place (Figure 1.5; 

Budinger, 2000).  If the gerbil is too old (> 5 weeks) then the density of myelinated fibers 

crossing through the thalamus makes patch recording prohibitively difficult.  The thalamus is 

particularly difficult to do intracellular recordings because of the heavy myelination.  

Attempts at recordings in animals up to 8 weeks old were done, but were not successful. 

The two initial challenges were the identification of the location of the appropriate 

brain region of interest and the determination of how thick a slice should be.  In order to find 

the regions of interest, variations of slice angles (e.g. parasaggital, horizontal, and coronal) 

were tried.  Coronal slices proved to have the best angle to find visually clear delineated 

borders between the ventral and dorsal divisions and because of the well established 

anatomical documentation of the borders in this view (Paxinos & Watson, 1986; Winer et al., 

1999).  Another challenge was determining the best slice thickness to obtain the vMGB and 

the dMGB in a single slice, with clearly delineated borders.  Slice thicknesses of 400, 350, 

325, 300, 275, 250, 225, and 200µm were tried and 200µm was chosen to be the best 

compromise for good visibility and cell viability.  All of these issues had to be sorted out 

through meticulous trial and error.   
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2.03 Identification of the Area of Interest: MGB subdivisions 

The dorsal and ventral MGB divisions are visually distinguishable under the microscope.  The 

dorsal MGB division is dorsally located and has sparse cell density.  The ventral MGB 

division is ventrally located and has a densely populated and laminated organization.   The 

border between the two divisions was clearly identifiable in IR-DIC images by the stark 

contrast in light transmission (Figure 2.0).  The laminated cell dense vMGB permitted very 

little light through and was, therefore, dark. 

 

 

 
 
Figure 2.0 Low magnification (40x) IR-DIC image of a coronal slice through the 
thalamus displaying the medial geniculate body of a 5 week old gerbil shows that the 
dorsal (D) and the ventral (V) divisions are visually distinguishable.  The MGB 
protrudes laterally from the thalamus. The cell dense ventral division is less transparent 
and larger in size than the cell sparse dorsal division.  The cartoon is an overlay of the IR-
DIC image, depicting the division borders.  The dotted parallel vertical lines are traces of 
the wire, used to hold the brain slice securely to the recording chamber.  The slice is a 200 
µm coronal section through the main at approximately 6 mm caudal of Bregma.  
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2.04 Recording Solutions 

Slices were superfused with a physiological extracellular solution, artificial cerebral 

spinal fluid (ACSF), containing (in mM): 125 NaCl, 25 NaHCO3, 10 Glucose, 2.5 KCl, 1.25 

NaH2PO4, 1 MgCl2, and 2 CaCl2 equilibrated with 95% O2 / 5% CO2; mOsm=315, pH=7.4.  

Pipette solutions contained (in mM) 105 K-Gluconate, 30 KCl, 10 HEPES, 5 EGTA, 2 MgCl, 

0.1 CaCl, and 2 Na2-ATP, mOsm=290; pH=7.3. All water used for solutions was prepared by 

a 3 step process: reverse osmosis, ion exchange, and UV radiation.   

The appropriate solutions were critical.  Physiological salt concentrations across the 

biological membrane, first proposed by Ringer (1882a,b; 1883a,b) and Nernst (1893), give the 

first approximation of the appropriate ion composition (Na+, Ca2+, K+) to use and at what 

concentrations.  Other standard metabolically important ingredients include glucose, 

NaH2PO4 and NaHCO3, extracellularly; as well as ATP, EGTA, and HEPES, intracellularly.  

Cryoprotection during slicing in 2°C solution was accomplished with sucrose (75 mM).  

Calcium concentration was particularly important.  Calcium is involved in many cellular 

processes, such as 2nd-messenger systems and channel gating.  Thalamic neurons vary in their 

calcium binding capacity.  Different cell groups may express parvalbumin or calbindin, which 

bind to Ca2+ with different kinetics (Müller et al., 2007).  Also, thalamic cell functionality at 

low voltage levels is Ca2+ dependent.  An extracellular Ca2+ concentration of 2 mM and an 

intracellular concentration of 0.1mM were chosen.  Extracellular millimolar concentrations of 

Cl-=134; Mg2+=7; Na+=151; K+=2.5 and intracellular millimolar concentrations of Cl-=154; 

Mg2+=2; K+=150 were determined to be most appropriate.  In order to obtain the appropriate 

concentration of chloride, K+-gluconate in addition to K+Cl-, instead of K+Cl- alone, was used.  

K+-gluconate was not used exclusively either because it may lower the resting membrane 

potential as much as 10 mV.  The resultant solutions were a slight variation on the slice 

electrophysiology solutions commonly used (Edwards et al., 1989).  
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2.05 Holding Potential Dependent Firing Properties 

 

 The issue that this study focuses on is the question of the intrinsic properties of the 

MGB neurons that may be involved in sensory encoding.  Any observation of thalamic 

 
Figure 2.1. Electrophysiological set-up for patch-clamp slice recording.  The standard 
slice recording setup including a microscope, patch-clamp amplifier, CCD camera, and 
monitor is displayed.  IR-DIC microscopy is used to visualize neurons on the monitor via a 
CCD camera.  Patch-clamp whole-cell recordings are then conducted.  Schematic drawings 
in the box (lower right) depict a patch-clamp electrode tip ending that is submerged into a 
slice of brain tissue.  The electrode is pressed upon a neuron and suction is applied.   An 
opening is then created in the cell allowing the electrode to have access to the internal 
milieu of the neuron thereby permitting whole-cell patch-clamp recordings. 
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physiology must take into account the peculiarity that thalamic neurons may respond in one of 

two general firing modes, tonic or bursting firing mode (Sherman et al., 1998, 2001, 2005) 

depending upon the holding membrane potential and the timing of the stimulus. The tonic 

mode permits the cell to follow the stimulus input in a non-stereotyped, relatively linear 

fashion.  The bursting mode restricts the response of the neuron to a stereotyped bursting 

response, irrespective of changes in input strength (Ramcharan et al., 2005).  A neuron can 

respond in a tonic mode if held at a high resting membrane potential voltage.  The same 

neuron can respond in a burst mode when held at a lower voltage membrane potential 

(Sherman et al., 1998).  Brain slice patch-clamp recording is an ideal technique to explore the 

electrophysiology of thalamic neurons because it allows direct control of the membrane 

potential. The tonic mode is commonly held to serve in an “active or awake” role.  The burst 

mode is considered to represent a “sleeping” or low activity state (Steriade et al., 2004.).  For 

these reasons the tonic mode is better suited for a more faithful representation of 

behaviourally relevant information to be relayed.   

2.06 Electrophysiology 

Patch pipettes were pulled from thick-walled borosilicate glass tubing (1.05 x 1.50x 

100 mm, GB-150TF) on a Sutter Instruments Company P-87 Puller. Signals were recorded 

with a Heka EPC-10 amplifier (HEKA Elektronik Lambrecht, Germany), digitized at 20 kHz, 

and low pass filtered at 10 kHz. Potential values were not corrected for liquid junction 

potentials, which could add +5 - 8 mV (Barry et al., 1991). MGB neurons were identified 

visually with infrared differential interference contrast (IR-DIC) video microscopy on a Zeiss 

(Oberkochen, Germany) inverted microscope with a 40x water immersion objective (Figure 

2.1). Whole cell patch-clamp slice recordings were then performed (Hamill et al., 1981). 

Recordings were made at 30-32°C from the neuronal cell somata. Pipette offset current was 

zeroed immediately before contacting the cell membrane.  
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2.07 Recording Conditions 

The resting membrane potential was measured in the current-clamp configuration, 

without any current injection, input at the membrane voltage level immediately after 

establishing a whole-cell patch clamp seal and checked intermittently during the experiment.  

Threshold voltage level was measured at the steady-state portion at the end of the stimulus 

response.  Responses to hyperpolarizing current injections were evaluated by hyperpolarizing 

from the holding potential to a maximal level of -160 mV.  Neurons were analyzed at resting 

membrane potential and during a hyperpolarized holding potential of either -60 mV, -70 mV, 

and/or -80 mV.  Recordings adhering to the following criteria were used for further analysis: 

stable membrane potentials with less than a 3 mV fluctuation at the holding membrane 

potential, discernible membrane rise time on step current injection (i.e. no noticeable 

membrane voltage fluctuations in the response to the step current- less than 1 mV), and 

overshooting action potentials (clear inflection points and action potentials overshooting the 0 

voltage level, with a magnitude of over 50 mV in the first spike).  If any of these parameters 

changed during an experiment, indicating compromised cell health or metabolic failure, the 

remaining data were not analyzed.   

2.08 Data Analysis and Parameter Definitions 

Measurements were expressed as a function of voltage level attained, rather than 

injected current.  The use of this physiological relevant parameter does not distort any of the 

physiological characteristics described.  Measurements were made at the action potential 

threshold voltage level for all mean value comparisons of parameters in the current-clamp 

configuration.  Threshold voltage level is the voltage that a neuron becomes functional 

therefore neurons were compared at their respective threshold levels.  This threshold was 

defined as the lowest voltage level that an action potential can be elicited. The voltage level 

measurement was taken at the plateau of the steady-state level during the stimulus (Figure 
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3.15, single asterisk).  Mean value measurements, for comparisons, were made at threshold.  

Threshold levels vary between neurons and a bias can be introduced into the analysis.  

Therefore, in addition to mean value measurements at threshold, comparisons were made 

throughout the full range of voltage levels attained for each parameter measured.   

The rise time constant to the first action potential was measured with an exponential fit 

from the onset of the stimulus to the inflection point of the action potential (Figure 3.9). The 

first spike latency was defined as the time difference between the onset of stimulus to the 

peak of the spike.  The offset time constant was measured with a decaying exponential from 

the end of the stimulus step.  For all neurons, a voltage level of maximum excitation could be 

defined, at which a max number of spikes could be elicited.  This maximum number of spikes 

fired in response to increasing current injections occurred at voltage levels between -35 and -

25 mV. For the maximum number of spikes fired in response to depolarizing currents of 200 

ms duration, two categories regarding neuronal adaptation were defined, slowly 

accommodating and rapidly accommodating neurons.  Neurons that fired throughout the 

duration of the stimulus were characterized as slowly accommodating (Adamson & Reid, 

2002a). The accommodation rate of slowly accommodating neurons was compared by 

measuring the interspike intervals between successive spikes (Spiken+1/Spiken).  Neurons that 

did not fire throughout the duration of the stimulus were characterized as rapidly 

accommodating. Another parameter, the duration of the half-width of the spike, was measured 

at the half-way point between the peak and the threshold of the spike.  The input resistance 

was measured close to 0-injected current for low-voltage measurements and above threshold 

level for high voltage measurements.  The afterhyperpolarization was described with a 

decaying exponential fit at the time of the offset of stimulus to the end of the trace.  

Hyperpolarization activated current (Ih) responses were measured from the onset of stimulus 

to the plateau and the time constant was established with an exponential fit to the curve. 

Values are given as the mean and SEM.  Error bars also indicate SEM. 
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2.09 Nissl Staining 

 Conventional Nissl stains were done on all slices.  All slices within a series from 

one brain were fixed in 4% paraformaldehyde over night after each experiment. Fixed slices 

were mounted onto slides, allowed to dry over night, and then processed on the slides. Slices 

were first defatted in 96% ethanol for at least 2 hours.  Slices were then put into 70% ethanol 

for 5 minutes and then washed in distilled water for 5 minutes.  Slices were then put into 

cresyl violet for 10 minutes.  Afterwards, slices were dipped briefly in aqua dest. to reduce 

excessive cresyl violet staining.  Further differentiation was done in 70% ethanol with a small 

amount (1/4 of a Pasteur pipette) of pure acetic acid (glacial acetic acid,”Eisessig”) for 2-5 

minutes, until the background was nearly without stain and the somata were clearly stained.  

 

 
 
Figure 2.3. Nissl stained coronal slice of the right medial geniculate body.  Cartoon of 
the medial geniculate body anatomy is to the left.  A Nissl stained image of the right side of 
the thalamus is rendered in grey scale.  Slice thickness is 200 µm. The medial geniculate 
body (MGB) protrudes laterally from the main body of the thalamus close to the midpoint 
of the MGB along the rostral-caudal axis. The rostral and caudal ends are more difficult to 
define because the protrusion of the medial geniculate body disappears; therefore recordings 
were concentrated on neurons in sections with prominent medial geniculate body 
protrusions.  Recordings were done in the encircled regions labeled D and V. D- dorsal, V- 
ventral, M- medial, mb- midgeniculate bundle.  
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Slides were then put into 96% ethanol for 10 minutes, then 100% isopronanol for 10 minutes.  

Slides were then put into rotihistol for 3 x 10 minutes and coverslipped with DPX (Fluka). 

2.10 Image Acquisition 

 

Infra-red differential interference contrast (IR-DIC) images were acquired on a Zeiss 

microscope (Koehler aligned) with a charged-coupled device (CCD) camera coupled to a 

video monitor.  In addition, photographs were taken with a digital camera (Casio 5700) for 

archival purposes.  Nissl stains were photographed in light microscopy with a Zeiss 

microscope equipped with CCD camera. 
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 3.0 RESULTS 
 

 Relay neurons of the dorsal and ventral divisions of the medial geniculate body are 

responsible for transmitting the bulk of auditory information to the cortex. Specifically, the 

vMGB and dMGB receive tonotopic and nontonotopic auditory information from the central 

nucleus and the cortex of the inferior colliculus along glutamatergic and GABAergic 

pathways. Neurons in the vMGB and dMGB also receive reciprocal input from layers V and 

VI projection neurons in their respective cortical areas. In addition, layer V projections send 

collaterals to the neurons in the reticular nucleus of the thalamus, which in turn sends 

inhibitory projections to the vMGB and dMGB. This study aimed to elucidate the functional 

distinction of the intrinsic firing properties of neurons in the vMGB and dMGB.  The whole-

cell configuration of the patch-clamp technique was employed to obtain current-clamp 

recordings for this purpose (Neher & Sakmann 1975; Sakmann & Neher, 1976). 

Electrophysiological recordings were conducted in coronal slice preparations of the medial 

geniculate body in older gerbils (P28 - P35). A total of 73 neurons were patched and included 

in the final analysis. Intrinsic properties were compared between neurons from the vMGB (n 

= 34) and the dMGB (n = 39) in response to rectangular-pulse depolarizing or hyperpolarizing 

current injection of varying lengths (50 - 250 ms). Neurons were held at resting membrane 

potential or a more hyperpolarized holding potential. All neuronal recordings underwent the 

same initial stimulus protocol and then, based upon the response properties, the stimulus 

protocol was subsequently adjusted to further elucidate the properties of interest. 
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3.01 General Response Properties 
 
 The average resting membrane potential levels were not significantly different 

between the vMGB and the dMGB (p > 0.05), with mean values of -62.9 ± 3.4 mV (n = 34) 

and -60.1 ± 2.9 mV (n = 39), respectively (Table 1). The RMP values ranged between -79 mV 

and -45 mV.  

 

 
 

Figure 3.0. Low-voltage membrane potential dependent response properties. 
Example traces from one neuron of responses to current injections at the low voltage 
level (-90 mV) holding potential.  Step current injections of 150 ms resulted in a 
stereotyped delay-like response.  Three sweeps from the same neuron are shown at 3 
different current injection levels of 40, 100, and 140 pA.  The bottom trace is at the 
threshold voltage level.  The middle and upper traces are at increased depolarized 
voltage levels.  Arrows indicate subthreshold depolarization peak before delayed spike 
bursts. 
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Neurons stimulated with a rectangular pulse current injection from a more 

hyperpolarized (i.e. low) holding voltage (-80 to -120 mV) potential for a short period (40 - 

100 ms) elicited a stereotyped delayed response of burst-like spike behaviour (Figure 3.0). 

Upon stimulation from a hyperpolarized holding potential the membrane potential increased 

to an initial peak (see arrows in Fig. 3.0), followed by a rapid repolarization caused by an 

apparent inward conductance. This rapid repolarization subsided as an ascending 

 
 
Figure 3.1. High Voltage membrane potential dependent response properties. Three 
current-clamp traces are shown from the same experiment as in Figure 3.2.  Current 
injections from resting membrane potential (-62 mV) were done (150 ms duration).  
Medial geniculate body neurons responded in a linear fashion at voltages near resting 
membrane potential.  The lower trace is at threshold.  Increasing current injections 
resulted in responses with corresponding increases in kinetics and firing of 3 spikes 
(middle) and 4 spikes (top), respectively, with increasingly shorter interspike intervals and 
timing. 
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voltage ramp leading to a burst of action potentials.  The same neurons were stimulated from 

resting membrane potential levels (Figure 3.1).  Neurons stimulated from the more 

depolarized resting membrane potential levels elicited a corresponding rise in membrane 

potential, which culminated into firing at threshold voltage level. 

3.02 Threshold 
 
 The threshold voltage level to evoke action potentials was compared between both 

groups.  The average threshold values were -44.29 ± 2.92 mV for the dMGB and –42.91 ± 

2.87 mV for the vMGB, which were not significantly different (Table 1). The values ranged 

between -54 mV and -32 mV. 

 
Figure 3.2.  Membrane voltage potential measured at threshold and rest were not 
significantly different between the dorsal and ventral groups in the MGB. Shown are 
average membrane potentials for dMGB (open bars) and vMGB neurons (grey bars). The 
ventral group had a lower average resting membrane potential and a higher average threshold 
level than the dorsal group.  Hence the ventral group has a greater voltage range to span 
between resting and threshold to fire a spike.  The threshold, resting membrane voltage and 
the range between rest and threshold were not found to be significantly different (P > 0.05) 
between dMGB and vMGB.  Error bars are S.E.M. 
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Figure 3.3. Slowly and rapidly accommodating neurons can be found in the gerbil 
MGB. (A) Example of a slowly accommodating neuron from the dMGB. In response to 3 
depolarizing steps of 40 pA of current injection the neuron fired 7 action potentials 
maximally. (B) Example of a rapidly accommodating neuron. In response to similar 
stimuli the neuron fired only 1 spike maximally at a high voltage level. (C) Statistical 
comparisons of dMGB and vMGB slowly accommodating neurons revealed that the 
average number of spikes elicited in response to similar depolarizing stimuli (200 ms) was 
greater in the dMGB (6 ± 1.12 spikes) than the vMGB (2 ± 0.3 spikes). (D) Comparison 
of the distribution of neurons with different accommodation behavior between dMGB and 
vMGB. The percentage of slowly accommodating neurons was much larger in the dMGB 
than in the vMGB. 

A. B.

C
. 

D. 
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 The greater differences between RMP and threshold voltage levels were seen in the 

dMGB group (average value = 22.65 ± 3.99 mV), whereas the average difference in the 

vMGB group was only 16.6 ± 3.90 mV (Figure 3.2). That is a 28% difference in RMP to 

threshold difference between the dMGB and vMGB groups. The difference did not prove to 

be significant (p > 0.05, Table 1).   

 

3.03 Accommodation 

The diminution of repetitive spikes in response to a sustained stimulus is known as 

accommodation. Depolarizing current step injections from RMP caused a corresponding 

 
 

Figure 3.4. The maximum number of spikes was uses as a criterion for classification of 
slowly and rapidly accommodating neurons. Neurons were characterized based upon the 
maximum number of spikes that were fired during the 200 ms-stimulus, irrespective of the 
current injection level it occurred.  Most of the neurons did not fire more than 5 spikes.  
Neurons in the dMGB were capable of firing more than 5 spikes maximally, whereas the 
vMGB neurons fired 5 or less spikes.  The arrow indicates the dividing point between the class 
of slowly accommodating neurons that fired throughout the 200 ms stimulus and rapidly 
accommodating neurons that did not cease firing before the end of the stimulus.  Slowly 
accommodating neurons were found mostly in the dMGB, whereas the vMGB neurons were 
almost exclusively rapidly accommodating. 
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depolarization of membrane potential that culminated in a maximum number of action 

potentials. The spike number increased with depolarization, between -35 mV and -25 mV, and 

attenuated at higher voltage levels due to Na+ channel inactivation, which does not subside 

until the membrane voltage is hyperpolarized (Fleidervish et al., 1996; Jung et al., 1997).  The 

response behaviour of neurons was classified as "slowly accommodating" when the neurons 

did not stop firing action potentials before the end of a 200 ms rectangular pulse current 

injection stimulus.  A typical example of a slowly accommodating neuron from the dMGB is 

given in Fig. 3.3A.  As these neurons fired (maximally) 5 spikes or more, a measure of spike 

count (during 200 ms stimulus duration) was used as a quantitative criterion for classification 

(Figure 3.4).  Neurons, on the other hand, that fired maximally 4 action potentials or less were 

also the neurons that stopped firing before the end of the stimulus.  An example of such a 

neuron is given in Fig. 3.3B.  These neurons were classified as "rapidly accommodating" 

(Figure 3.4). The distinction between slowly and rapidly accommodating neurons is based on 

a criterion that was applied in the peripheral auditory system (Mo & Davis, 1997, Adamson & 

Reid, et al., 2002a, b; Reid et al, 2004). Overall, most neurons in the gerbil MGB were found 

to be rapidly accommodating (76.5%, n = 56; Figure 3.4; Table 1).  

Neurons from the dMGB and vMGB were found to display different degrees of 

accommodation in response to a rectangular pulse stimulus (200 ms duration).  The average 

number of spikes fired during the 200 ms stimulus was greater in the dMGB (5.95 ± 1.12 

spikes/ 200 ms) than in the vMGB (2.05 ± 0.3 spikes /200 ms) at comparable voltage levels (p 

< 0.01; Figure 3.3C).  Accordingly, the percentage of neurons that showed slow 

accommodation was much larger in the dMGB (33%) than in the vMGB (11%), as shown in 

Figure 3.3D. The vast majority of slowly accommodating neurons (in absolute numbers) were 

found in the dMGB (13 of 17 neurons; open bars in Figure 3.4).   
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Figure 3.5. Spontaneously firing neuron from the dorsal MGB.  Spontaneously 
firing neurons were found exclusively in the dorsal MGB.  (Top) Traces from a dMGB 
neuron without stimulation (bottom trace) and in response to depolarizing current-
injections in 10 pA increments. While at resting membrane potential voltage level 
spikes persisted throughout the entire time frame (spontaneous activity), the neuron 
increased firing frequency to a maximal point and decreased firing inactivation at higher 
voltage levels. (Bottom) The open and dark bars represent slowly accommodating 
neurons that fired spontaneously or at distinct higher threshold levels (non-
spontaneously active), respectively  
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Figure 3.6 Inter-spike intervals of slowly accommodating neurons change over time.  
Example traces from slowly accommodating neurons with very different accommodation 
rates. (A) Example neuron displaying slow accommodation at a low firing rate. (B). 
Example neuron that displays slow accommodation at high firing rate. Both traces have 
Sn+1/Sn ratios close to 1. Both traces are from dorsal MGB neurons.  
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A subpopulation of slowly accommodating neurons fired at RMP, “spontaneously” 

(n=4), all of which were found in the dMGB (Figure 3.5).  The family of traces in Fig. 3.5 

(top) are an example of such a spontaneously firing neuron, spiking at RMP and higher 

membrane potentials. The firing rate of the spontaneously firing neurons was between 12 and 

15 Hz at RMP but was similar to the other slowly accommodating neurons at the maximum 

firing rate (25 – 100 Hz).  Overall percentage of spontaneously active and non-spontaneously 

active neurons among slowly accommodating neurons was 24% and 76%, respectively.   

Changes in the interspike interval (ISI), the time difference between two action 

potentials, can in addition be used as an index to describe accommodation behaviour in slowly 

accommodating neurons.  In this study the ratio of two successive ISIs (In+1/In, with n being 

any integer greater than 0) was used as a measure to quantify in detail the change in 

accommodation rate over time.  

 

 
Figure 3.7. The interspike interval (ISI) of slowly accommodating neurons.  The ISI 
changes over time but the average ratio of ISIs stays close to 1 for ISIs after the initial 3 – 4 
spikes.  The connected symbols represent ISI ratios (In+1/In) from individual recordings of 
different slowly accommodating neurons. 

In+1/In 
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Slowly accommodating neurons with ISI-ratios (In+1/In) of 2.0 between the first 

interspike interval and a subsequent interspike interval indicates a doubling of the interspike 

interval. Ratios close to 1.0 indicate little or no accommodation, i.e. a nearly unchanging or 

constant interspike interval.  

Accommodating behavior in these slowly accommodating neurons was independent of 

the absolute values of interspike interval, i.e. independent of absolute firing rate. Figure 3.6A 

shows a neuron with different firing rate. ISI ratios in this recording ranged from 0.87 to 1.23 

(Fig. 3.6C black dots). The measured ISI-ratios are well comparable to values from Fig. 3.6B 

which shows a neuron with high firing rate. ISI ratios in this case oscillated between 0.83 and 

1.29 (Fig. 3.6C, open dots), a very similar range.  Both traces in Figure 3.6 are from dorsal 

MGB neurons.  The majority of slowly accommodating neurons displayed an accommodation 

pattern as shown in Figure 3.6B.   

ISI ratios in slowly accommodating neurons usually oscillated around 1.0 (± 0.2), 

examples are shown in Figure 3.7. Typically, the initial 3 - 4 spikes displayed a distinct trend 

that was different from the following spikes. The first ISI-ratios deviated stronger from 1 than 

later ratios with values up to 2.0 or down to 0.6. After the 4th spike, slowly accommodating 

neurons displayed ISI values that were concentrated near a mean as compared with the normal 

distribution of values (Fig. 3.7).   

The slowly accommodating neurons in both the vMGB and dMGB possessed similar 

ISI properties (average ISI ratio: dMGB: 1.08, vMGB: 1.04). ISI ratios were also similar 

between those neurons that fired at RMP and at a distinct threshold, measured at their 

respective maximum firing rates.   
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Figure 3.8. First spike latency in dorsal and ventral MGB groups.  Three superimposed 
traces of a dorsal MGB (top left) and a ventral MGB (top right) are shown.  The trace with a 
single action potential is at threshold level.  The additional traces are responses to more 
depolarizing current injections, showing the maximal number of spikes the respective 
neurons could fire in response to the 100 ms rectangular-pulse stimulus. (Bottom) Average 
latency of first spike in dorsal MGB neurons (128.43 ± 16.28 ms, open bar) and ventral 
MGB neurons (41.50 ± 7.77 ms, grey bar).  Error bars are S.E.M 
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Figure 3.9. Voltage dependent changes in first spike latency in dMGB and vMGB 
neurons.  Latency as a function of membrane potential values were plotted for dorsal MGB 
neurons (top) and ventral MGB neurons (bottom) to compare the voltage dependence of 
latency between both groups.  Neurons that possessed longer latency values at threshold 
maintained longer latency values throughout the entire voltage range.     
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3.04 First Spike Latency 
 

Neurons in the dMGB had a significantly longer average first spike latency at the 

spike threshold voltage level than neurons in the vMGB (dMGB = 128.4 ± 16.3 ms, n = 39: 

vMGB = 41.5 ± 7.8 ms, n = 34, p < 0.01, Figure 3.8; Table 1).  The same was true throughout 

the full voltage range (Figure 3.9). Neurons in the vMGB had a wider range in latency values 

(20 – 250 ms) than the dMGB group (130 – 260 ms). It is not clear whether the broad range of 

latency values is associated with the tonotopic organization of the vMGB. The slowly 

accommodating neurons as a whole had significantly longer latencies, with an average latency 

of 100.5 ± 18.8 ms (dMGB 152.3 ± 17.6 ms; n=13; vMGB 48.7 ± 5.9 ms; n=4), than the 

rapidly accommodating neurons, which had an average latency of 58.5 ± 8.9 ms (dMGB 72.3 

± 16.5 ms, n=26; vMGB 44.7 ± 7.6 ms, n = 30 (p < 0.01).   

 

 
Figure 3.10 Quantification of rise time to the first action potential (onset kinetics) 
revealed differences between neurons in the dorsal MGB and ventral MGB.  (A) Ten 
traces from the same neuron at different voltage levels were superimposed and normalized 
to the inflection point to show the changing rise times in response to depolarizing current 
injections.  The left most rise time is at threshold to spiking. Rise time kinetics changed with 
voltage.  (B) Time constant of the rise time to the first spike was quantified by means of an 
exponential fit from the point of the onset of stimulus to the inflection point (arrow) of the 
spike (dotted lines). This was done for a rapid (black) and a slow (red) time constant rise 
time. (C) Average rise time constant in dMGB neurons were found to be significantly 
slower than in vMGB neurons at spike threshold membrane potential.  Error bars are S.E.M 
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Figure 3.11 The rise time constant is related to first spike latency in MGB neurons. 
(top) Shown is the first spike latency as a function of membrane voltage, as shown in 
Figure 3.9 but with an expanded y-axis (0 to 50 ms).  Circles with connecting lines 
represent the dMGB recordings.  Triangles with connecting lines represent the vMGB 
experiments.  For comparison, latency values of (A) 30 ms, (B) 20 ms, and (C) 12 ms 
were chosen, as indicated by bold horizontal lines in the figure.  The rise time constants 
were evaluated for each latency level (A, B, and C) at the data point that corresponds to 
the latency level for each experiment. (bottom)  Comparison of average time constants for 
rise time of the ventral and dorsal MGB at different latency levels of 30, 20, and 12 ms. 
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Further comparisons at specific intermittent voltages were done to further confirm that 

the dMGB neurons had longer latencies than the vMGB neurons along the full voltage range 

of membrane potentials (Figures 3.9 and 3.11). The dMGB and vMGB group comparisons at 

intermittent voltage levels were made at the respective threshold voltage levels and at -30 mV, 

-20 mV, and -12 mV.  The vMGB neurons were found to maintain shorter first spike latency 

values than the dMGB at the different voltage levels.  Neurons that possessed longer latency 

values at threshold were found to maintain their longer time spans even at higher voltages. 

The latencies of dMGB neurons were found to be longer than those of the vMGB neurons 

throughout the entire voltage range tested and were averaged 128.43 ± 16.28 and 41.5 ± 7.77 

ms at the spike threshold voltage level, respectively.  The latency is a function of the sub-

threshold conductances, threshold, and the resting membrane potential. Therefore, a delayed 

onset and a higher threshold/RMP difference should result in a longer first spike latency.   

3.05 Quantification of Onset Rise Time Constant 

 
 The precise timing of the occurrence of the first spike (first spike latency) is 

determined by the delay of the rise time constant (Figure 3.10). This was quantified by fitting 

exponential fits to the rising voltage curve from stimulus onset to the inflection point of the 

first spike. Time constants read from these fits were strikingly different between dMGB and 

vMGB neurons, when measured at threshold level.  The average rise time constants of the 

dorsal MGB neurons were much longer (tau = 116.7 ± 30.45 ms; n = 39) than from the ventral 

MGB neurons (tau = 6.9 ± 0.90 ms, n = 34) on average (Table 1).  The difference in average 

time constant remained significant upon comparison of time constants at similar membrane 

voltage values.   



                                                                                                            MGB Response Properties 

 63

 

The majority of MGB neurons could be fitted with one exponential. MGB neurons that 

required 2 exponentials to characterize a fast and slow component were average tau-weighed. 

 
Figure 3.12 Differences in the kinetics of the delay to the first action potential were 
found between the dorsal and ventral MGB groups throughout the entire range of 
voltages tested.  Rise time constants as a function of membrane potential values were 
plotted for dorsal (circles) and ventral (triangles) MGB neurons to compare the voltage 
dependence between both groups.  Dorsal MGB neurons possessed slower kinetics than 
the ventral group throughout the full range of voltages.  Both charts show the same data, 
only the y-axis is expanded in the bottom chart to show the data more clearly for time 
constants below 40 ms.  
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The rise time constant of the first spike of neurons that were shown to be slowly 

accommodating (93.2 ± 30.87 ms) were found to be significantly slower (p < 0.01) than those 

that rapidly accommodated (11.7 ± 0.94 ms), at threshold levels. The rise time constants 

decreased asymptotically with membrane potential (Figure 3.12). The ventral division 

maintained a more rapid time constant throughout the voltage range tested.  

3.06 Relating Rise Time Constant to Membrane Potential and First Spike Latency 

The rise time constants were not only compared at similar membrane voltage levels 

but were also compared at similar latency values to explore whether the rise time kinetics can 

be correlated to the latency values (Figure 3.11).  The y-axis of the latency-voltage 

relationship from Figure 3.9 was expanded in Figure 3.11 thereby displaying the data from 0-

50 ms more clearly.  The x-axis remained unchanged.  Latency values (30, 20, and 12 ms) 

were specified (a, b, and c). The corresponding traces for each data point were evaluated for 

rise time constant values.  The rise time constants and the latency were then compared.  

Surprisingly, the average values of the rise time constants were not significantly different for 

short latency values (less than 12 ms) irrespective of membrane potential (p > 0.05).  The time 

constants at the 30 ms latency level were 9.08 ms (dorsal) and 4.83 ms (ventral).  The 20 ms 

latency level had 8.92 ms (dorsal) and 4.28 (ventral) time constant values.  Rise time 

constants  at the 12 ms latency level were 6.14 ms (dorsal) and 3.80 ms (ventral) The P values 

were  (p = 0.088) for A, 30 ms; (p = 0.288) for B, 20 ms; and (p = 0.101) for C, 12 ms, for the 

Student’s Two Tailed T-test. 

The latency and rise time constant were fitted with regression linear trend lines (Figure 

3.13). The linear regression analysis of the time constants and first spike latency in Figure 

3.13 resulted in an average coefficient of determination of 0.9652 for the vMGB neurons and 

0.8312 for the dMGB neurons, indicating that the regression lines were able to predict the 

normalized R from the latency values.   
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 The rise time constant decayed asymptotically as a function of increasing 

depolarization of the membrane potential, similar to the latency. The latency and rise time 

constants are nearly linearly related (Figure 3.13).  

 
Figure 3.13 Onset kinetics versus first spike latency in dMGB and vMGB neurons. 
The data points for different membrane potentials from each neuron were fitted with a 
linear function.  The dorsal group (circles) is fitted with red lines and the ventral group 
(triangles) with black lines.  Since the dorsal group had significantly longer latency and 
onset rise time constants, the scales of the top graph were reduced to show the ventral 
group more clearly in the bottom graph.   
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Figure 3.14. Current clamp recordings reveal similar inward rectification properties 
between dMGB and vMGB neurons in response to hyperpolarizing current 
injections.  Neither group displayed a prominent hyperpolarizing activated inward 
rectifying “sag” (A) Superimposed sweeps of an example vMGB neuron that was held at 
RMP (-72 mV) and stepped to hyperpolarized voltages with 75 ms rectangular pulses.  
(B) Superimposed sweeps of an example dMGB neuron stepped to hyperpolarized 
voltages with 100ms rectangular pulses.  Note the rebound spikes.  Rectangular pulse 
stimulus protocols are depicted.  (dMGB, tau = 6.4  ±  0.83 ms , n = 39; vMGB, tau= 4.9 
± 1.63 ms , n = 34, P > 0.05).      
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3.07 Hyperpolarization- Activated Responses 
 

 Currents activated in response to hyperpolarizing current injections were investigated.  

Neurons from neither the dMGB or vMGB groups displayed a prominent inward rectifying 

‘sag’. Neurons may respond to a square pulse hyperpolarizing current with a pronounced 

inward rectification that has been variously described as a ‘sag’ because the resultant voltage 

trace has a sagging portion.  Neurons hyperpolarized from RMP, e.g. -60 mV, displayed 

various degrees of inward rectification but the depolarizing ‘sag’ was not an apparent feature 

 
Figure 3.15. Significant differences in the action potential half-width were not found 
between the dorsal and ventral MGB groups.  The length of time between the half-way 
point of the spike, “half-width”, were measured and compared between the ventral (2.04 ± 
0.16 ms) and dorsal (1.95 ± 0.13 ms) MGB groups.  The groups were not found to have 
significantly different half-width values (p > 0.05).  
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of these neurons, under stated conditions (stimulus time < 200ms, holding at resting 

potential).  Neurons of both the dorsal and ventral divisions failed to show the “sag” and the 

inward rectification but seemed to follow a slower activating conductance trajectory (Figure 

3.14). Dorsal MGB (tau = 6.4 ± 0.8 ms) and ventral MGB (tau = 4.9 ± 1.6 ms) neurons 

displayed differences in time constant that were not significantly different (p > 0.05; Table 1). 

Both groups displayed rebound spikes. Rebound spikes possessed spike half-width times 

similar to the first spike duration at threshold level. No correlation between occurrence of 

rebound spikes and inward rectification was found 

 

3.08 Half-width of Initial Spike 

 The action potential duration was quantified by measuring the width of the action 

potential half-way between the peak of the spike and the beginning of the 

afterhyperpolarization (Figure 3.15, Table 1).    

 

 
 
Figure 3.15 Action potential half-width in first spike of dMGB and vMGB neurons 
as a function of membrane potential.  Half-width values of neurons from both groups 
exhibited a marginal decrease in the half-width time that changed linearly but not to a 
significant extent from threshold values (red-dMGB, black-vMGB).  
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Neurons in the dMGB (1.95 ± 0.13 ms, n = 39) and vMGB (2.04 ± 0.16 ms, n = 34) 

did not have significantly different spike durations at threshold level (p > 0.05, Table 1).  

Spike duration did not change much in response to increased depolarization in either group 

nor with respect to other parameters. Half-width values of neurons from both groups exhibited 

a marginal decrease in the half-width time with the increase of membrane potential. 

 
 

Figure 3.16. The time constant of afterdepolarization (ADP) of the dorsal and ventral 
divisions were compared. The time constant of ADP was measured from offset of 
stimulus (*), at the steady-state portion of the trace, along the decaying portion of the 
response (**).  The ADP measurements were not found to differ significantly (P > 0.05) 
between the two groups. 
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3.09 Afterdepolarization (ADP) at the offset of the stimulus step 

Cessation of steady depolarizing current injection not only allows Na+ ion channels to 

loose their deactivation but the voltage response represents the activation of K+ currents. 

Measurements of the time course of the response at the offset of depolarizing current 

injection, the afterdepolarization (ADP), were fitted with single decaying exponentials.   

TABLE 1 Ventral MGB Dorsal MGB 

First Spike Latency** 41.5 ± 7.7 128.4 ±16.2 

Spike Half-width  2.0 ± 0.2 1.95 ± 0.1 

Rise Time Constant** 7.0 ± 0.9 116.7 ± 30.5 

Accommodation** 2.1 ± 0.03 5.95 ± 1.1 

Threshold 42.9 ± 2.9 44.3 ± 2.9 

% Spontaneous 0% 23.5% 

RMP-Threshold 19.96 17.95 

Ih Tau 4.9 ± 1.63 6.4 ± 0.83 

Slow AHP 8.3 ± 3.8 13.2 ± 3.4 

RMP  62.9 ± 3.4 60.1 ± 2.9 

Low Voltage Rinput 307.0 ± 74.2 237.5 ± 48.9 

High Voltage Rinput 61.0 ± 10.4 64.2 ± 16.2 
 

 
Table 1. The Table compares the average values of the respective intrinsic properties 
between the dMGB (n = 39) and vMGB (n = 34) measured at spiking threshold, unless 
otherwise indicated. Asterisks indicate the statistical significance between dorsal and 
ventral MGB neurons (**p < 0.01, *p < 0.05). The latency, duration, onset tau, Slow AHP, 
and Ih tau are expressed in milliseconds; the threshold and resting membrane potential in 
millivolts; and the input resistances for the low voltage (Low Rinput) and high voltage (High 
Rinput) measurements are in megaohms.  The accommodation comparison is of the number 
of spikes averaged for a 200 ms stimulus time. 
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The ADP was not found to be significantly different between the two groups of neurons. Both 

the dMGB (13.2 ± 3.4 ms) and the vMGB (8.3 ± 3.8 ms) groups were fitted and exhibited a 

monophasic ADP that was able to be fitted with a single exponential. No significance 

differences were found (p > 0.05; Table 1) (Fig. 3.16).   

 

 
Figure 3.17 Input resistances at low and high voltage levels were similar. An example 
of comparisons of current-to-voltage relationships of the dMGB and vMGB groups were 
found to have similar values at low (below -55mV) and high (above -55 mV) voltage 
levels for input resistances.  The current-to-voltage relationship of dMGB and vMGB 
neurons was used to calculate the input resistance.  The input resistance was not found to 
be significantly different between both groups of neurons.  Low-voltage input resistance 
was 237.5 ± 48.9 MΩ and 307 ± 74.2 MΩ and high-voltage input resistance was 64 ± 16.2 
MΩ and 61 ± 10.4 MΩ for the dMGB and vMGB groups, respectively (dMGB n = 39, 
vMGB n = 34 P > 0 05)
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3.10 Input Resistance 
 
 Neurons in the dMGB and the vMGB did not have significantly different input 

resistances at low or high voltage levels (Table 1).  Input resistances were measured at low-

voltage, near resting membrane potential, and at high voltage, suprathreshold levels. Input 

resistance values at low voltage levels were 237.5 ± 48.9 MΩ in the dMGB and 307.0 ± 74.2 

MΩ in the vMGB. Input resistance at high voltage levels were 64.2 ± 16.2 MΩ in the dMGB 

and 61.0 ± 10.4 MΩ were found in the dMGB and vMGB groups (p > 0.05), respectively 

(Figure 3.17).   
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4.0 DISCUSSION 

 
There are copious descriptions of the physiological properties of neurons, based upon 

intracellular electrophysiology, on most of the major groups of neuronal subtypes in the 

peripheral and central nervous system.  Nonetheless, there still remains much to be learned 

about the functional implications and an elegant system to use as a model for a better 

understanding of neuronal physiology is the auditory system.   Within the auditory nervous 

system there resides a topographic and physiological strategy to faithfully encode and 

preserve the sound properties that carry information about temporal and frequency properties 

of a sound stimulus with high fidelity. 

 

4.01 The Auditory Peripheral Nervous System: A Model of Organization 
 

Sound temporally varies in amplitude, the phase of oscillatory compounds, and in 

frequency.  The auditory nervous system has the task of analyzing these time-varying 

features.  The integration of the full spectro-temporal range of sounds into a spatio-temporal 

code of neural activity is the challenge that the auditory nervous system meets perpetually.  

Along the entire auditory processing axis, from the external ear to the cortex, sound 

frequencies are encoded tonotopically, a specific topological organization based upon 

frequency (Kiang, 1965; Spoendlin, 1973).  Before sound reaches the nervous system, a real-

time spectral decomposition is executed as the tonotopic segregation of sound begins 

biomechanically in the cochlea (see Dallos, 1992 for review).  Once sound reaches the 

nervous system, at the level of the spiral ganglion neurons (SGN), the tonotopic order is 

established. A convenient feature of the auditory system is that the tonotopic organization 
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permits an investigator to identify the high and low frequency regions anatomically.  One can 

compare the properties along the frequency axis thereby identifying parameters that may be 

involved with the neural encoding of sound (Liu 2007).  In earlier studies it was shown that 

the SGNs possess intrinsic electrophysiological features that varied along the tonotopic axis 

of the cochlea (Adamson & Reid et al.,2002a,b, Reid et al., 2004) (Figure 4.1).  Some of the 

intrinsic parameters compared were the action potential latency, duration, and rise time 

constant from the onset of stimulus.  The neurons in the high frequency region possessed 

shorter response times than those in the low frequency region for the parameters studied.  This 

organization exemplifies a system with heterogenous electrophysiogical properties orderly 

distributed along the tonotopic axis, an “ordered heterogeneity”.  Another significant 

electrophysiological distinction that was determined in the auditory periphery is between the 

two main groups of SGNs, the Type I and Type II spiral ganglion neurons.  These two groups 

were known to differ in innervation pattern (Dallos, 1992) and intermediate filament protein 

distribution (Hafidi et al., 1998) and were later shown to differ in their electrophysiological 

properties in ways that may have bearing on other regions of the nervous system (Reid et al., 

2004).  Considering the auditory peripheral nervous system can set the stage for a clearer 

understanding of the relevance and implications of the physiology elsewhere in the auditory 

system.  

 

4.02 Comparative Analysis of the Spiral Ganglion & Medial Geniculate Neurons 

Parallels can be drawn between the spiral ganglion neurons and the neurons found in 

the medial geniculate nucleus of the thalamus, which may give some insight on neuronal 

encoding strategies.  For instance, a comparative analysis of the innervation patterns and the 

firing properties between the spiral ganglion and the medial geniculate body neurons suggests 

a correlation between the firing characteristics and the innervation pattern. 
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4.02a Innervation Patterns 

In the cochlea between 10,000 and 55,000 spiral ganglion neurons can be found in 

each ear, depending on the animal species. For instance, cats have 55,000 neurons, while 

rodents have 30,000.  These neurons innervate the 2 categories of sensory receptors, the inner 

hair cells (IHC) and outer hair cells (OHC).  One row of IHC and 3 rows of OHCs are in each 

ear.  The Type I and Type II SGNs innervate the 2 categories of hair cells. The peripheral, 

also termed radial, fibers of the Type I SGNs innervate the IHCs.  Those of the Type II SGNs 

innervate the OHCs.  Type I SGNs make up 95% of the afferents, while Type IIs comprise 

 
 

Figure 4.1 Differences in latency and rise time kinetics in the spiral ganglion neurons.  
(A) Two families of traces from current clamp recordings are shown to depict the 
differences in rise time kinetics and latency between neurons with different functional roles.  
The left and right family of traces are from Type I spiral ganglion neurons that encode high 
and low frequency sounds, respectively.  (B) Average threshold values were not 
significantly different while (C) latency to the first spike values were found to be so.  
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less than 5%.  Although the Type II SGNs comprise less than 5% of the afferents they 

innervate all of the OHC.  It has been shown that there may be another category rarer than the 

Type II variety, the Type III SGNs, which also innervate the OHC but they are much larger 

than the Type IIs and little is known about them (Webster & Webster, 1978).   

The Type I and Type II SGNs do not only differ in which sensory receptors they 

innervate.  There is also difference in their pattern of innervation.  The Type I SGNs innervate 

the inner hair cells in a one to one fashion, with a non-branching dendrite, and each IHC is 

innervated by 10 - 70 Type I SGNs.  In contrast, each Type II SGN innervates 5 - 50 OHCs 

(Spoendlin, 1979; Perkins & Morest, 1975; Ryugo, 1992).  Therefore, the output of multiple 

OHCs converges onto an individual Type II dendritic tree and the individual IHC output 

diverges upon multiple Type I fibers.  The axons of the Type I and Type II fibers comprise a 

part of the vestibulo-cochlear pathway (Cranial Nerve VIII) projecting to the cochlear nucleus 

complex in the brainstem.  The cochlear nuclei project to the superior olivary complex (SOC), 

which not only projects forward to the inferior colliculus but feeds back to the cochlea.  

Processes from the lateral olivocochlear system of SOC project directly back to the OHC, 

thereby modulating the input to the Type II SGNs.  Processes from the medial olivocochlear 

system of the SOC project back to the dendritic processes of the Type I radial fibers to 

modulate the dendritic conductance of the SGNs (Warr, 1997).  The precise innervation of 

Type I SGNs from individual IHCs is reflected by their high selectivity for a narrow range of 

sound frequencies at low stimulus levels (Kiang, 1965; Liberman, 1978).  The profuse 

innervation of the Type II SGNs from many OHCs predicts that they possess sensitivity for a 

broad range of frequencies and the capacity to integrate greater combinations of input (Reid, 

2004).  The differences in the innervation patterns and roles of the Type I and Type II SGNs 

bares similarity to the innervation patterns of the vMGB and dMGB neurons. The vMGB 

neurons derive precise frequency input from less sources than the dMGB neurons, which must 

integrate multi-modal and broad frequency input.  
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4.02b Firing Properties 

The Type II neurons have significantly slower response properties (latencies = 121.9 ± 

7.25 and rise time constants: 35.16 ± 4.1) than the Type I (latencies: 17.4 ± 0.7 and rise time 

constants: 15.6 ± 0.25) neurons (Reid et al., 2004).  Type II neurons also have a greater 

percentage of slowly accommodating neurons. The distinction between firing properties, 

coupled with the differences in the pattern of innervation along the tonotopic axis, seem to 

suggest a link between intrinsic firing properties and neural encoding.  The differences in 

firing responses between the Type I and Type II SGNs share similarities to the differences 

between the neurons of the vMGB and dMGB, qualitatively.  The dMGB have significantly 

(p < 0.01) longer first spike latency (128.43 ± 16.28) and rise time constants (116.67 ± 30.45) 

than the vMGB (latency: 41.50 ±. 7.7, rise time: 6.95 ± 0.90).  Additionally, the dMGB 

neurons also exhibit a greater amount of slow accommodation.  

Although the vMGB and dMGB relationship was found to be qualitatively similar to 

the Type I and Type II relationship, there was no reason to expect that the latency and rise 

time constants of the dMGB and the Type II SGNs or the vMGB and the Type I SGNs to be 

statistically similar.  The dMGB neurons possessed significantly different first spike latency 

(p < 0.01) and rise time (p < 0.05) values from the Type II group.  The vMGB neurons 

differed from the Type I neurons in first spike latency (p < 0.001) but not in the rise time 

constant (p = 0.539).  However, differences in experimental procedures make it difficult to 

make direct comparisons.  The spiral ganglion neurons were stimulated from a holding 

potential of -80 mV, while the MGB neurons were stimulated from resting potential.  The 

SGNs were patched in culture and the recordings from the MGB neurons were done in slices. 

The SGNs were from 6 - 10 day old mice and the MGB neurons were from 4 – 5 week old 

gerbils.  What is being described is a conserved neuronal encoding strategy that may extend, 



                                                                                                            MGB Response Properties 

 78

not simply across species, but at different stages of the auditory system.  Hence, an added 

benefit of the present study is the opportunity to make a comparison at two stages of the 

auditory system to assess whether similar or conserved cellular properties can be found.  

 

4.03 Membrane Voltage Dependent Spiking Behaviour 
 

The thalamic nuclei are strongly suggested to have two membrane potential modes of 

operation when stimulated without any synaptic background conductances, the high voltage 

“active” state and the low voltage “sleep” state (Sherman & Guillery, 1998).  Such a 

mechanism is not unique to neurons in the thalamus.  For instance, cortical neurons may 

respond differently dependent upon the background conductances (Bal et al., 2004) or the 

timing of different conductances in the dendrites and soma (Larkum et al., 1998, 1999). 

Nonetheless, these two functional states have been demonstrated in some thalamic nuclei, 

including the MGB (Tennigkeit, 1998). Therefore, before any consideration of the 

functionality of neuronal physiology in the thalamus can be entertained, the implications of 

membrane voltage level must be determined.   

4.03a Resting Membrane Potential 

The resting membrane potential (RMP) was measured as the membrane voltage 

potential that the neuron maintained without hyperpolarizing or depolarizing current injection, 

e.g. 0 current input.  The threshold voltage potential was determined by measuring the lowest 

membrane voltage that elicited an action potential.  In the present study, the two MGB groups 

did not show significantly different resting membrane potentials, -60.1 mV and -62.9 mV for 

the dorsal and ventral group, respectively. This is supported by an in vitro study from Smith 

and Bartlett (Bartlett & Smith 1999).  Smith and Bartlett reported RMP levels that were not 

significantly different between the dMGB and vMGB in the rat with RMP levels of -64.7 ± 

6.4 mV and -64.3 ± 4.9 mV, respectively.  However, Hu reported a significantly lower RMP 
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in the dMGB (-62 ± 4.6 mV) than the vMGB (-71 ± 4.7 mV) neurons in in vivo experiments 

(Hu, 1995; Yu, 2004).  

Several reasons may account for the differences found in the resting membrane 

potential levels.  The differences may reflect species specific differences.  Others used rats or 

mice (Bartlett & Smith, 1999; Hu, 1995).  The differences may be due to differences in the 

preparations.  Synaptic connections were maintained in other studies whereas the cortical and 

subthalamic connections were not preserved in this study, in order to avoid any inadvertent 

synaptic activity.  An in vivo preparation would leave intact several inhibitory circuits, which 

could lower the membrane potential.  It is possible that the hyperpolarizing effects of the 

cholinergic input from the midbrain parabrachial region (Mooney et al., 2004) and the 

GABAergic input from the zona incerta (Bokor, 2005) and the inferior colliculus (Winer et 

al., 1996) account for the differences. The membrane potential differences may also be due to 

differences in recording solutions, i.e. the use of K+-gluconate would lower the membrane 

potential more than KCl-.   

4.03b Threshold Voltage Level 

The threshold levels between the two groups were not significantly different either. 

The dMGB was -44.29 ± 2.92 mV and the vMGB –42.91 ± 2.87 mV.  Since the threshold 

voltage levels were not significantly different, it can be assumed that the threshold level is not 

the determining factor in the functional differences between the ventral and dorsal groups.  

Other groups did not report the specific spiking threshold levels, but rather stated that it lies 

above -55 mV (Schwartz, 1998; Tennigkeit et al., 1997 1998; Hu et al., 1994, 1995; He et al., 

2002; 2004, Bartlett & Smith, 1999).  The respective absolute voltage differences between the 

threshold and resting membrane potentials were compared and not found to be significantly 

different.  This difference is a reflection of the requisite depolarizing conductance that must 

take place before a neuron can fire.   
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Thusly, the vMGB and dMGB neurons were stimulated from resting potential, instead 

of a hyperpolarized voltage level, and neither the RMP nor the threshold voltage level were 

significantly different from each other.  Therefore, it can be assumed that the spike behavior 

differences were not due to differences in membrane voltage level and must be due to some 

other intrinsic physiological factor. 

 

4.04 Some Varieties of Spiking Behaviour 

Spiking behaviour has been variously characterized in cortical neurons and may offer 

some insights on the firing properties of thalamic neurons. Reports describing the 

electrophysiology of neocortical neurons have appeared since the early days of in vivo 

intracellular electrophysiology (Albe-Fessard & Buser, 1953; Calvin & Sypert, 1976; Li, 

1959; Phillips, 1956; Takahashi, 1965; Tasaki, 1954). However, it was not until more recent 

studies on membrane properties of cortical neurons that we begin to gain our current, more 

extensive, perspective on electrophysiological distinctions (Connors et al, 1982; Llinas, 1988, 

1990; McCormick et al, 1985; Victor 2000, 2005).  Neocortical neurons have been classified 

into at least 5 main electrophysiological categories based upon firing patterns in response to 

intracellular current injection: regular spiking (RS), intrinsically bursting (IB), fast spiking 

(FS), fast repetitive bursting/chattering (FRB), and low-threshold spiking (LTS) (For review 

see Rieke et al 1997).  One of the distinctions, the LTS category, is of particular interest here 

because neurons in the thalamus have been described as being of the LTS variety.  LTS 

spiking is typified by short bursts of 2 - 3 spikes riding on a small depolarizing hump, which 

can only be elicited from a hyperpolarized membrane voltage level. The activation range is 

positive of -70 mV.  The inactivation range is between -100 mV and -60 mV, with a time 

constant of 20 - 50 ms for complete inactivation.  The spike generation is based on a small 

single channel conductance (8 pS) and it is calcium dependent (Hille, 2001).  The LTS 
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spiking pattern is also attributed to tiny conductance Ca2+ channels and is, therefore, also 

referred to as IT. IT is normally found in the dendrites and plays a critical role in amplifying 

electrotonically distant inputs (de la Pena, 2000).   LTS neurons respond linearly, with spikes, 

to synaptic input if they are stimulated from depolarized voltage level but are reported to 

respond with a stereotyped burst of spikes when stimulated from hyperpolarized voltage level, 

relative to RMP (Contreras et al., 2004).  For instance, if an LTS neuron were stimulated by 

an inhibitory input reducing the membrane potential to below -65 mV for at least 50 ms just 

before (< 7 ms) an excitatory stimulus then the neuron would respond in the stereotyped 

bursting pattern.  The duality of the spiking behaviour of the MGB neurons is most similar to 

the LTS neurons of the cortex.  The different firing patterns, in the same neuron, found at 

depolarized or hyperpolarized stimulation voltage levels is aptly described as a tonic or 

bursting firing behaviour, respectively (Sherman et al, 1998). 

The important functional distinction that has been drawn about thalamic relay neurons 

to be considered is that neurons either assume a tonic or burst firing modus operandi, 

dependent upon membrane potential level (Sherman et al., 1998).  Neurons held at lower 

voltage levels are shown to have a stereotyped response mode, a LTS spike pattern.  On the 

other hand, neurons held at depolarized voltage levels have tonic properties.  The stereotyped 

mode is the firing pattern induced by holding a neuron at a hyperpolarized (below -65 mV) 

membrane voltage for approximately 100 ms before stimulating, similar to the cortical 

responses that have also been reported in many thalamic nuclei (Ramcharan et al., 2005).  

This protocol engages a voltage and time dependent inward Ca2+ current (IT) (Sherman et al., 

2001; Zhan et al., 2000; Jahnsen, 1984; Destexhe et al., 1998; Williams et al., 2000) resulting 

in a low threshold spike crowned with several Na+ spikes.  The tonic mode requires holding a 

neuron at high voltage levels (approximately -60 mV) before stimulation.  The tonic mode is 

considered to be the most relevant mode for sensory encoding because it is the mode whereby 

stimulus input can have direct temporal and amplitude correlation to the response.  It has been 
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further suggested that the low voltage is associated with sleep whereas the high voltage mode 

plays a functional or arousal role (Steriade et al., 1993; Crick et al., 1984; Hubel & Livington, 

1981).    

This study is concerned with the intrinsic response properties found in the depolarized 

or tonic mode of functionality within the gerbil thalamus that may have significant coding 

capacity.  Therefore each neuron was characterized at or near RMP (-60 mV).  In addition, 

neurons were subsequently held at hyperpolarized voltages and underwent a similar stimulus 

protocol.  Upon comparison of dMGB and vMGB neurons that were characterized at or near 

RMP significant differences were found.  Since the goal is to characterize the functional 

neuronal encoding mechanisms than it is was necessary to characterize the neurons at a higher 

voltage holding potential, e.g. RMP.   

 

4.05 The Temporal Characteristics of Spiking 

The time constant of the rise time, quantified by the time constant of one exponential 

fitted along the response at the onset of stimulation to the inflection of the spike, defines the 

specific timing of the action potential.  This exponentially rising membrane voltage, in time, 

is the response to an “instantaneous” jump in membrane potential and is a simplified 

approximation of the complex process that entails the dynamics of the activation properties of 

different channel types, the quantity of the respective channels, and the various ionic 

conductances.  The time constant is a cursory, yet definitive, approximation.  The time 

constant of the rise time offers insight on the functional role of a neuron because of the direct 

relation to the spike latency and, additionally, the rise time waveform offers insight on the 

appropriate strength and timing of the ideal synaptic input required to elicit a spike.   

The time constant of the rise time to an action potential occurs between the resting and 

threshold potential levels.  In consideration of the fact that spike timing is a function of the 
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RMP, threshold level, and rise time constant combined then it should follow that one of these 

factors should significantly differ between the dMGB and vMGB groups.  The dMGB and 

vMGB groups maintained similar resting and threshold voltage levels but differed in rise time 

constant values.  This may be a hint to the functional role of rise time constants. The longer 

rise times between rest and threshold would allow for greater integration or convergence of 

input.    Conversely, the faster rise time may afford the neuron greater resolution.  

 

4.06 Action Potential Latency may be Critical for Encoding 
 

Intracellular recording studies in the MGB have not reported action potential latency 

differences between the dorsal and ventral subnuclei.  Latency changes in response to 

increased depolarization were described in general, but not comparatively (Bartlett & Smith, 

1999).  Additionally, other groups that have investigated medial geniculate body neuronal 

physiology used sharp electrodes which may have limited their ability to resolve the latency 

differences (Bartlett & Smith, 1999; Hu et al., 1994, 1995; He et                        

2004) due to the shunting or leakage resistance effect of impaling a neuron.  Different 

parameters were the focus of these earlier studies, such as input resistance; RMP; rebound 

spikes and rectification in response to hyperpolarization; accommodation rate; and Ca2+-

dependent bursts; versus the primary considerations taken herein, e.g. first spike latency and 

rise time constant (Bartlett & Smith, 1999; Hu et al., 1995).   Studies that have focused on the 

first spike latency have shown that the first spike is the most critical spike in a spike train for 

neuronal encoding (Panzeri, 2001) The authors quantified the contribution of ‘information’ in 

each spike in a spike train and were able to show that the bulk (83%) of information in a spike 

train resided in the first spike.  The authors used an improvised (Panzeri et al., 2001; Panzeri 

& Schultz, 2001) Mutual Information (Shannon, 1963) information theoretic method, which 

quantifies the discrimination ability of an ideal observer of neuronal responses between all of 
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the different stimulation times, based on a single response trial.  Therefore it is particularly 

important to concentrate on the first spike in a train when considering neuronal encoding. 

It has been shown in the auditory periphery that first spike latency is associated with 

frequency encoding by correlating the latency of the first spike with the tonotopic 

organization of the cochlea in in vitro studies (Adamson & Reid et al., 2002a, b; Liu, 2007).  

It has also been shown in the same studies that first spike latency can be correlated to the 

amount of innervation a neuron receives (Reid et al., 2004).  Additionally, it has been shown 

with in vivo studies that there is a more delayed response to auditory stimuli in the dMGB 

than the vMGB (Hu et al., 1995; He, 2002; Yu, 2004). 

What might the purpose of this feature be? The functional significance may be 

indicative of the capacity of a neuron to integrate multiple inputs or respond to rapid inputs.  

In the auditory periphery, each Type II spiral ganglion neuron receives converging input from 

many outer hair cells and these neurons also have significantly longer latencies than their 

Type I primary auditory neuronal counterparts.  This may be a case where many inputs are 

required to garner a response.  Each Type I spiral ganglion neuron receives input from only 

one sensory receptor cell, permitting higher sensitivity and more resolution. Hence the longer 

latency of Type II neurons may imply a greater integration capacity, while a shorter latency of 

Type I neurons may suggest a greater capacity to derive discrete input.  This idea does not 

imply that the dendritic tree in the respective neurons is not involved in the integration 

process.  The role of the first spike latency in the computational capacity of a neuron does not 

negate the computational processes that occur in the dendritic tree (Larkum, 2005) but may 

shed further light on the complexity of interactions. An example of the complex interactions 

can be demonstrated by considering the role of spike latency in a backpropagating spike that 

is involved in coincident detection with dendritic Ca2+ spikes.   

Upon consideration of the Type I group singularly, another functional purpose can be 

reasonably suggested.  In the case of the Type I SGN group a latency difference is 
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tonotopically arranged, longer latencies are found in the low frequency area and shorter 

latencies are found in the high frequency area.  The extensive range in latency values for the 

vMGB neurons may be related to the tonotopic organization of the ventral division although it 

was neither proven nor disproved herein.  The tonotopy of the vMGB is arranged 

orthogonally along the rostro- caudal axis.  In the periphery, the tonotopic order is arranged 

along one axis and is more accessible to investigation.  Based upon the findings in the 

periphery, it was expected that the high frequency neurons would possess faster and the low 

frequency neurons slower response properties.  The added difficulty however, lies in 

establishing the tonotopic axes in the slice preparation.  The dMGB is not known to be 

organized tonotopically, although it projects tonotopically to the cortex (He et al., 2004), and 

has a narrower range in latency values.  Therefore it came as no surprise to find that the 

response properties of the dMGB were not organized in any recognizable topography 

although the tonotopic organization is somehow be preserved. 

4.07 Accommodation Rates 
 

Rapidly and slowly accommodating neurons were found in both divisions but the 

dMGB possessed more slowly accommodating neurons, which is similar to the findings of 

others (Hu et al., 1994; Bartlett & Smith, 1999). The dMGB neurons possessed a significantly 

higher frequency of spikes per time period (200 ms bin).  But not all properties of the slowly-

accommodating neurons were the same, slowly accommodating neurons were found to 

exhibit two different firing characteristics in response to increasing stimulation.  The majority 

of slowly accommodating neurons fired at threshold levels that were distinct from the resting 

membrane potential level but a subpopulation of 23.5 % fired at RMP, “spontaneous firing”.  

Neurons that fired at RMP were found exclusively in the dMGB.   

Spontaneously firing neurons were first described in invertebrates (Alving, 1968; 

Getting, 1989).  It was shown that spontaneous firing arises from specific combinations of 
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intrinsic conductances (Llinas, 1988).  In order for a neuron to fire spontaneously intrinsic 

conductances must depolarize the cell membrane to spiking threshold and then repolarize the 

membrane to a sufficiently negative membrane potential to elicit the next spike.  Several 

currents have been found to be responsible for the subthreshold conductances that generate 

each spike spontaneously.  Currents carried by Ih channels and T-type Ca2+ channels have 

been implicated (McCormick & Huguenard, 1992).  Voltage-gated Na+ currents and non-

selective cation currents have also been shown to bring the membrane potential to threshold 

(Raman et al. 2000; Taddese & Bean, 2002; Jackson et al., 2004).  

Spontaneous activity plays a role in transforming synaptic input into a specific spike 

output (Hausser et al, 2004).  The role of spontaneously active neurons in the medial 

geniculate is clearly to regulate information flow to the cortex, since there are not any 

interneurons in the medial geniculate of the gerbil. These neurons were found only in the 

dorsal division and, therefore, may play a role in controlling non-auditory information flow to 

the cortex.   

4.08 Not All Parameters Were Significantly Different 

 Other parameters that were compared in the auditory periphery (Reid et al., 2004) 

were also compared between the dMGB and vMGB.  These parameters include the half-width 

of the first spike, the input resistance, and responses to hyperpolarizing current injections. 

4.08a Half-width of the Spike 

Unlike the parameters of latency, onset rise time, and accommodation rates, the spike 

half-width measurements were not significantly different between the dMGB and vMGB 

groups although the vMGB group was slightly longer.  Similarly, the spiral ganglion neurons 

did not possess significantly distinct spike half width values between the Type I and Type II 

populations.    
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4.08b Input Resistance 

Neurons in the dMGB and vMGB did not differ significantly in input 

resistance.  Similarly, SGN groups did not possess significantly different input resistances.  

This finding suggests that the neuronal sizes between both groups were not significantly 

different.  It can be then argued that the electrophysiological differences may not be a 

function of cell size differences.  This is consistent with all other studies, which have not 

shown there to be a correlation between morphology or cell size and electrophysiological 

properties (Winer et al., 1999; Barltett & Smith, 1999). 

4.08c Response to Hyperpolarizing Current 

It has been reported that hyperpolarization-activated (Ih) cation channel activity is 

evident in a minority of vMGB neurons (Bartlett & Smith, 1997; Hu, 1995).  

Hyperpolarization-activated inward currents (Pape et al., 1996) have been reported 

extensively within the auditory nervous system (Davis et al., 1997b; Rogelis et al., 2006).  It 

has been shown by in situ hybridization in the mouse that Ih genes (mHCN gene family) are 

expressed throughout the nervous system, including the relay nuclei of the thalamus 

(mHCN2, mHCN3, and mHCN4) (Franz et al., 2000; Santoro et al., 1998).  Ih channel activity 

in various cell types have been well-documented (Yanagihara & Irisawa, 1980; DiFrancesco, 

1981, 1986; Bader & Bertrand, 1984; Mayer & Westbrook, 1983; Spain et al., 1987).  In the 

spiral ganglion neurons Ih activity is common, existing in most of the neurons (personal 

observations).  These channel currents play a role in regulating synaptic transmission, setting 

the resting membrane potential, and contributing to the pacemaker depolarization in 

“spontaneous” firing neurons (McCormick & Bal, 1997).  Ih channel activity can initiate 

rebound spikes after strong inhibition (McCormick & Pape, 1990; Pape et al., 1994, 1996; 

Lüthi & McCormick, 1998).  Hyperpolarizing steps from resting membrane potential 

displayed a time-dependent slowly activating inward current in some neurons in the dMGB 
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and the vMGB (Figure 3.6) with rebound spikes.    It has been suggested that Ih channels play 

a role in the sleep-wake cycle of the thalamus by regulating the transition from burst to tonic 

firing (Luthi, 1988). 

Both the vMGB and dMGB were able to fire rebound spikes in response to 

hyperpolarizing stimuli.  The ability for rebound spikes was not dependent upon latency, 

onset kinetics, accommodation rate, or any other measured parameter. Others have also 

reported rebound spikes in MGB neurons (Bartlett & Smith, 1999; Hu, 1995).  

In response to hyperpolarizing current injection, neurons can respond in a variety of 

ways.  A neuron may give a generic RC circuit response, displaying exponentially decaying 

charging voltage as a function of time, comparable to a Hodgkin-Huxley model (Hodgkin & 

Huxley, 1939, 1945, 1952a,b,c,d).  Another common response to rectangular pulse stimulus is 

inward rectification, first characterized by Katz (1962) as a phenomenon whereby there 

existed a higher conductance for inward than outward current.  Many neurons exhibit “inward 

rectification” in the hyperpolarizing direction (Ih), unlike the “inward rectification” described 

by Katz in several fundamental respects.  The inward rectification described by Katz is a pure 

K+ conductance.  It is active mainly at voltage levels negative to the K+ reversal potential, 

within several milliseconds, and is ohmic in nature.  In contrast, Ih has a mixed Na+/ K+ 

conductance and is dependent upon extracellular Cl-.  Ih has a reversal potential of 

approximately -20mV and very slow gating properties.  Similar to Na+, Ca2+, and delayed 

rectifier K+ channels, Ih has steep activation curves and activates with a sigmoidal time course 

but, in addition, Ih also deactivates with a sigmoidal time course in response to a rectangular-

pulse stimulus.  The Ih currents start activating between -45 and -60 mV, with a 1/2 –activation 

between -75 and -85mV and a maximal conductance level at membrane potentials below -110 

mV.  Ih can also be regulated by the second-messenger signal cyclic adenosine 

monophosphate (cAMP), which can shift the gating along the voltage axis.  Ih also affects 

resting membrane potential, input resistance, and afterhyperpolarization and, therefore, could 
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have a profound impact on the integrative capacity of a neuron.  Ten to 15% of Ih is active at 

RMP, resulting in an estimated 30% addition to the resting conductance (Maccaferri et al., 

1993; Pape et al., 1994).  This depolarizing resting conductance makes the membrane 

potential positive to the K+ equilibrium potential, which is at -90 mV.  Establishment of the 

RMP allows the Ih to lower the apparent input resistance at membrane potentials negative to 

rest (Edman et al., 1989). An increase in Ih conductance and a lowered input resistance will 

result in a reduced period of hyperpolarization after a Na+/ K+ action potential.  Although Na+/ 

K+ spike activity is out of the range of Ih activation, the rate of repolarization will be also 

enhanced by Ih.  Ih has been implicated in rhythmic and burst firing and the initiation of 

rebound spikes (McCormick & Pape et al., 1990, 1996; Lüthe & McCormick, 1998).  In the 

heart Ih plays a role in setting the pace of firing, in combination with several other prominent 

currents (IK+, ICa2+, and leaky inward currents).  The Ih current can play a role in shaping 

synaptic potentials to improve signal processing, which could be particularly advantageous in 

the auditory system (Banks M. et al, 1993).  Indeed, in the SGN many neurons exhibited 

prominent Ih currents.  Ih has also been reported in the auditory brainstem (Banks et al., 1993; 

Oertel et al., 1997).  Ih currents have been demonstrated in a subpopulation of vMGB neurons 

but not in the dMGB.  Under the conditions compared herein, higher voltage “tonic” resting 

membrane potential levels (-65 mV), Ih would be detected as a slowly activated inward 

current, possibly with a rebound spiking behaviour, but a prominent inwardly rectifying 

current was not obvious.  

 Bartlett and Smith (1999) showed a very slow mild inward rectification which rectifies 

to steady-state after several hundred milliseconds in response to hyperpolarizing current 

injections from a RMP of -63mV in the vMGB.   

 The inward rectification properties found in the present study displayed response 

properties that may be consistent with findings reported for thalamic relays neurons (Franz et 
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al., 2000), which showed evidence that slowly-activated inward rectification was due to low 

HCN1 and high HCN2, HCN3, and HCN4 expression, but a clear Ih sag could not be found. 

 

4.09 The Driver and Modulator Hypothesis Applied  

Sherman and Guillery (Sherman & Guillery et al., 1996, 1998, 2001) have proposed a 

theory on the functional organization of the sensory nervous system.  According to their 

theory, sensory input is either of the driver or modulator variety.  Drivers are inputs that carry 

primary information.  The driver input carries the information that is qualitatively preserved.  

An example of driver input would be the projection from the retina to the lateral geniculate 

nucleus, which then continues as a driver pathway to the primary visual cortex.  Another 

would be the Type I spiral ganglion input relayed through the subthalamic structures and then 

to the vMGB and the primary auditory cortex.  Modulators are inputs that carry information 

that has been subsequently integrated.  The modulator input carries information that has been 

converged upon by other pathways.  An example of modulator input may be the layer VI 

cortico-thalamic pathway from a secondary auditory cortical area to the dMGB.     Another 

would be the olivocochlear input to the OHC, which modulates the OHC activity that is 

relayed to the Type II spiral ganglion neurons.  The modulatory input is essentially neural 

information that has been integrated with other neural information thereby fundamentally 

changing the qualitative nature of the code.   

The primary, driver, input to the auditory system must travel through the vMGB.  The 

projection neurons of the vMGB carry the precisely derived driver input to the primary 

auditory cortex.  Thalamic nuclei that relay primary information are termed “first order”.  

Secondary thalamic nuclei are termed “higher order” nuclei.  The vMGB is considered a first 

order nucleus and the dMGB is considered a higher order nucleus.  Additionally, higher-order 

thalamic neurons receive cholinergic inputs from the midbrain parabrachial region that cause 
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greater hyperpolarization than in the first-order neurons (Mooney, 2004) and a GABAergic 

input from the zona incerta targets higher order subnuclei predominately (Bokor, 2005).  

Therefore, in principle the higher order neurons are expected to have lower resting membrane 

potential levels, which were not found to be the case in this study.  Regarding the other 

electrophysiological characteristics (e.g. action potential rise time constant, latency, and 

accommodation rates) distinguishing higher and first order relays, the dMGB and vMGB 

intrinsic neuronal responses were consistent with the driver-modulator theory. 

Neurons in the dMGB and vMGB possess several physiological and anatomical 

characteristics that suggest a primary role in relaying primarily modulator or driver 

information, accordingly.  Neurons in the dMGB have been consistently shown to exhibit 

longer delays and fire more spikes than vMGB neurons (Yu et al., 2004; Hu et al., 1995, 

2003; Bartlett & Smith, 1999).  It has been strongly suggested that higher-order neurons, 

presumably such neurons that relay modulator information predominately, burst more than 

first-order neurons (Sherman et al., 2001).  Although neurons in both the dMGB and vMGB 

may respond with fast excitatory synaptic potentials, mediated by glutamate acting on N-

methyl-D-aspartate (NMDA) and non-NMDA receptors, neurons exclusively found in the 

dMGB display a predominant slow synaptic potential that is associated with NMDA receptors  

(Hu, 1995).  The multi-modal dMGB also sends efferents more broadly than the vMGB 

neurons and, thusly, receives reciprocal innervation from each of the respective structures 

such as the amygdala and association auditory cortical regions (Shinonaga, 1994; Deschenes 

et al., 1998; Doron & Ledoux, 2000).   These synaptic properties are consistent with the 

respective intrinsic properties of the dMGB and vMGB.  As such, the dMGB is thought to 

play a more prominent role in cortico-thalamo-cortical processing of information further 

downstream (Sherman, 2001).  Similar to the auditory periphery, the neurons that receive 

more converging inputs, the dMGB or Type II spiral ganglion neurons, possess longer spike 

latency, rise time constants, and higher firing rates.   
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  According to Sherman and Guillery’s definition, the vMGB and the dMGB would 

then possess neurons that are intrinsically predisposed to relay “driver” and “modulator” 

information, respectively. 

 

4.10 Conclusion 

The question is of functionality, to the extent that it is based upon intrinsic 

physiological characteristics.  An intracellular approach looking at intrinsic properties 

“reflects a closed reference system” (Llinas et al., 1988).  Such a system affords us the 

opportunity to ascertain the integrative capacity, thereby defining the inherent limits or the 

physiological boundaries, of a particular neuron.   

Upon comparison of the firing properties, innervation patterns, and roles of neurons in 

the auditory periphery and the thalamus, two functional organizational structures are 

suggested.  Firstly, the Sherman and Guillery paradigm of modulator and driver organization 

may be correlated to the response differences.  The neurons in the vMGB (and the Type I 

SGN) have shorter latency and rise time kinetics to spiking, are along the primary path to the 

cortex, and exhibit more rapid accommodation.  These properties may be more useful in 

relaying driver input.  The neurons in the dMGB (and Type II SGN) have longer latency and 

rise time constants to spiking, are along a secondary path, and exhibit slower and more 

variable accommodation rates.  These properties may be better for relaying modulator 

information.    

Secondly, the role of action potential latency and rise time constant may be 

determinants of a functional organizational structure, in and of themselves.  They help 

determine the spike timing and are therefore the axial that turns the wheel with the spikes as 

the spokes, determining precisely when and where each spoke or spike will occur in time.  
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Spike timing is regulated by specific intrinsic physiology, i.e. action potential latency and rise 

time constantss.   

In the cochlea and in the thalamus, two separate processing stages in the auditory 

system, an “ordered heterogeneity” of intrinsic electrophysiological properties have been 

explored.  In the SGNs, the action potential latency, rise time constant, accommodation rates, 

and other parameters were found to be heterogeneous in the temporal component of their 

response.  This heterogeneity is ordered along the tonotopic axis and suggests a functional 

role for these properties in the cochlea.  As a further exploration into the significance of these 

electrophysiological properties as functional, experiments were done centrally, in the vMGB 

and dMGB, and the results indicate that the former proposed functional organization of 

“ordered heterogeneity” for the encoding of the modality of sound may not apply in this case 

but it could not be unequivocally ruled out.  Interestingly, a modality related ordered 

heterogeneity along the tonotopic axis was not the only ordered heterogeneity to be found. 

In addition to this ordered heterogeneity for the encoding of the modality of sound the 

Type I and Type II SGN groups, which have established functional distinctions, can also be 

correlated to an ordered heterogeneity of firing properties. Type I SGNs (and vMGB neurons) 

relay diverging information precisely and with high resolution whereas Type II SGNs (and 

dMGB neurons) relay converging input from many sources with low specific frequency 

resolution.  The vMGB and the Type I SGNs relay a specific derivative of information.  The 

dMGB and Type II SGNs relay an integrated input of information.    

The latter suggested organization of a derivative or integration distinction evident in 

the subthreshold kinetics and organized by location is the primary theme of this dissertation.  

The vMGB must relay precisely resolved information from a specific frequency source, hence 

the precise tuning properties, implying a role in relaying discrete frequency information.  This 

does not suggest that the vMGB dendrites receive input from one synaptic partner like the 

Type I SGNs, which receive input from a single inner hair cell.  Yet it is suggested that the 
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vMGB relay cells’ role may be to derive, irrespective of how it is received, a more discrete 

input for relay.   The dMGB possesses broad tuning properties, implying a relay of multiple 

frequency sources, at least, and a greater integrative demand.  The two groups do not have 

significantly different resting or threshold membrane potential but they differ in their intrinsic 

integrative capacity.  The respective derivation or integration is a function of the kinetics of 

the subthreshold conductances that take place between the resting and threshold membrane 

potential before culminating in the all-or-nothing spike signal.  Therefore the intrinsic 

physiology may be a critical component to understanding the information processing of 

individual neurons and the organizational structure of various nerve groups.  Future studies on 

the functional relationship between intrinsic subthreshold kinetics and the presynaptic input 

should reveal new vistas for the elucidation of neural encoding, 
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