
A MACHINE-INDEPENDENT MICROPROGRAM

DEVELOPMENT SYSTEM

THESIS

Submitted in Fulfillment of t he

Requirements for the Degree of

MASTER OF SCIENCE

of Rhodes University

by

MICHAEL JOHN WARD

December 1986

SYSMW

ACKNOWLEDGEMENTS.

I express my sincere gratitude to my supervisor, Peter Clayton for his

help and encouragement during the development of this thesis. His

assistance with all aspects of the project is truely appreciated.

I thank my mother for her love and support and especially my late

father, who persuaded me to tackle the degree but who is unfortunately

unable to witness its completion.

I am deeply endepted to my fiancee, Carry for her love and inspiration

throughout the year.

To fellow students John, Karen, Pete and Glenn, thanks for helping to

make this project a truely memorable and enjoyable one.

Finally I acknowledge the financial support of the Council for

Scientific and Industrial Research and Rhodes University.

(-i-J Acknowledgements

SYSMW

ABSTRACT

The aims of this project are twofold. They are firstly, to implement a

microprogram development system that allows the programmer to write

microcode for any

micro programmable

simulator, while

from working with

microprogrammable machine, and secondly, to build a

machine, incorporating the user friendliness of a

still providing the 'hands on' experience obtained

actual hardware.

Microprogram development involves a two stage process. The first step

is to describe the target machine, using format descriptions and

mnemonic-based template definitions. The second stage involves using

the defined mnemonics to write the microcodes for the target machine.

This includes an assembly phase to translate the mnemonics into the

binary microinstructions.

Three main components constitute the microprogrammable machine. The

Arithmetic and Logic Unit (ALU) is built using chips from Advanced

Micro Devices' Am2900 bit-slice family, the action of the Microprogram

Control Unit (MCU) is simulated by software running on an IBM Personal

Computer, and a section of the IBM PC's main memory acts as the Control

Store (CS) for the system. The ALU is built on a prototypi ng card that

pl ugs into one of the slots on the IBM PC's mother board. A hardware

simulator program, that produces the effect of the ALU, has also been

developed.

A small assembly language has been developed using the system, to test

the various functions of the system. A mini-assembler has also been

written to facilitate assembly of the above language.

A group of honours students at Rhodes University tested the

microprogram development system. Their ideas and suggestions have been

tabulated in this report and some of them have been used to enhance the

(-ii-) Abstract

SYSMW

system's performance.

The concept of allowing 'inline' microinstructions in the macroprogram

is also investigated in this report and a method of implementing this

is shown.

(-iii-) Abstract

SYSMW

CONTENTS.

0..!tline

PART 1

Section 1 Introduction

1.1 Introduction to Microprogramming

1.2 History and Perspective•......................•..

1.3 Vertical Migration

1.4 Microprogramming Terminology

1.5 Microprogram Development Systems ..••••..............•.

1.6 The Design Objectives of SYSMW ...•.•••.....•.......•••

Section 2 General Concepts and Scope

5

6

6

8

12

14

16

19

23

2.1 Requirements of Development Systems ..•.•....•.•.....•• 23

2.2 SYSMW in the context of Table Driven Assemblers 25

2.2 .1 Ml.chine Description . . . • . • • . . • . • • • . 25

2 .2.2 Micro-code Development • • . . • • • . . . • • . . . • 27

2.3 SYSMW and Microprogrammable Ml.chines and Simulators 29

2.4 SYSMW testing and Inline Microcode•••.....•. 30

Section 3 Comparisons with other

3.1 Microprogramming languages

Systems

and Simulators
33

33
3 .1.1 Microprogramming Languages••..... 33

3.1.2 AMD's SYS 29 38

3 .1.3 Simulators• 39

3.2 Survey and Recent Developments in Bit-Slice components 41

Section 4 Discussion and Conclusions

4. 1 Discussion

4.2 Conclusions

(-iv-) Contents

43
43
45

PART 2

Section 1 Design details

1.1 Introduction

1.2 The Target Ml.chine definition Program

Microcode definition Program

Development $ystem in Use

SYSMW

1.3 The

1.4 The

1.5 The

1.6 The

Microprogrammable Ml.chine•... ..•.••••

Arithmetic Logic Unit hardware•.......

1.7 The Microprogram Control Unit emulator•••........

1.8 ALU Simulator••... •.••...•...•...•..

Section 2 Example

2 .1

2.2

2.3

Introduction

The Ml.chine Language Instructions

The Mini-Assembler program

47

48

48

50

56

62

67

73
80

87

89

89

92

96

Section 3 A User's guide•.............................. 100

3.1 Introduction . • . • . . . • • 100

3.2 Micro 1 Program • • 100

3.2.1 (N)ewfile option 102

3.2.2 (U)pdate option . 105

3.2.3 (P)rint option

3.2.4 (S)etup option

3.2 .5 Error messages

107

108

109

3.3 Micro2 Program • .. 110

3.3 .1 (W)orkfile option 111

3.3.2 (E)ditfile option

3 .3.3 (P)rintfile option

3 . 3.4 (A)ssemble option

3.3.5 Error messages

3 . 4 Elnula tor Program

3.4.1 (R)un option

(- v-) Contents

112

115

116

117

118

119

3.4.2 (S) ingle option

3.4.3 (E)dit option

3.4 .4 (D) -bus option

3.4.5 (T)race option

3.4.6 (L)ook option

3.4.7 (M)PC option

SYSMW

3.4.8 (P)eek option•..••......••••...••••..•••••.•.

3 .4 .9 Error messages .•..•..•...•.•.••••.••••.•.••.•..•.

3.5 AssemMW Program ..•......•.••....•.••.•••••••••...•....

3.5.1 (E)dit option ..•••••••••...••• •• .• ••• . ••••.••

3.5.2 (A)ssemble option .•.••.•••••••.•••..••.•••....•••

3.5.3 (P)rint option ..••...•••• •• ••• • •..•.•..••.••....•

119

120

120

121

121

121

121

122

122

123

123

123

Bibliography 124

Appendices . . • . • . •. • •• • . . • • • . . •• . . •. . . • •. •• • . • • . . •• . • A.1

A : Micro 1 program • . . . • • . • . . . • • . • • • • • . • A. 1

B

C

D

A. 1 Micro 1 listing • . . • • . • • • . • • . . . • • . . . • . • . • • • . A. 1

A.2 Micro 1. PRN include file • . • . . . • . . • •• • . . . •• • A.34

Micro2 pr ogram•.••...•.....•....••.....•.......•

B.1 Micro2 listing .•....•..••....•.•..•.....••.•..•..••

B.2 Micro2.PRN include file .•..•......•.•..••.••....• •

B. 1

B.1

B.30

B.3 Micro2. ASM include file • • . . • . • • • . . . • . • • B.40

Elnulator program•..•. ••..••••.....•.•.....•

C.1 Elnulator listing •......•................••...•...•.

C.2 Elnulator .SIM include file•....••.........•

AssemMW program .•.••....... •••.••.•....•.....

D. 1 AssemMW listing••.••.............•.••...•.....

C.1

C.1

E Help files

C.33

D.1

D.1

E.1

E.1

E.5

E.8

E.1 Micro 1 helpfile

E.2 Micro2 helpfile

E.3 Elnulator helpfile

(-vi-) Contents

SYSMW

F Micro-order function tables . F. 1

G Example file listings . G. 1

H

G.1 Format fi le .. G.1

G.2 Definition file•.......... G.3

G.3 Table file ... G.16

G.4 Macroinstruction definition file G.29

G.5 Decode file . . . • . • • G. 34

G.6 Instruction file•............ ••...•...• G.35

G.7 Control Store • • . • • G. 38

Circuit diagrams

H.1 Decode Circuits

H.2 Wire-wrapped Circuit

(-vii-) Contents

H.1

H.2

H.4

SYSMW

TABLE OF FIGURES.

Part

1.1 Schematic diagram of a generalised computer

1.2

1.3

Part 2

1 .1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Schematic diagram of a microprogrammable CPU

Graph of richness of instruction set repertoire vs cost

The microcode development system

The microprogrammable machine•••.••.

The Micro 1 program files ..•••••....................•...

The Micro2 program files •...•....................••..••

Layout of the code and micro files•..•

Schematic diagram of the processor circuit ..••.........

Control path schematic of the Triple-M machine•

Data path schematic of the Triple-M machine

The microinstruction fields

6

7

11

48

49
50

56
58

63
69
70

73
1.10 Schematic diagram of the ALU • 74

1.11 Connections between the ALU and MCU ..••................ 75

1 .12

1. 13

1. 14

1 .15

2.1

2.2

3 .1

3.2

3.3

The bread board ALU

The wire wrapped prototyping board

Port assignment diagram

The Emulator program files

The inline instruction data paths

The AssemMW program files

Micro 1 menu hierarchy

Micro2 menu hierarchy

Emulator menu hierarchy

C-viii-) Table of figures

76
77 /8

79
80

95
97

101

110

118

OUTLINE.

This thesis,

development

SYSMW

presented in two parts, describes SYSMW, a micropr ogram

system. Part 1 looks at the field of microprogramming in

general and the underlying motivations for designing this type of

system. SYSMW is discussed in terms of its broad principles and

comparisons are drawn with other similar systems. Part 1 concludes with

a critical assessment of the project and a discussion of possible

research projects for which SYSMW may be used. Part 2 deals with the

design details of the system. The software and the hardware are

discussed and an example architecture is presented. Part 2 also

includes a user's guide for the system . The appendices contain listings

of the 'TURBO' Pascal [TUR] code, circuit diagrams, further data

pertaining to the hardware, and the example architecture files.

PART 1

1 : Introduction

This section describes microprogramming systems in general. It includes

a short history of microprogramming and discusses why microprogramming

has become a plausible design option for the systems engineer. Two main

areas of research in this field are identified, namely firmware

engineering and vertical migration . Although this thesis is concerned

almost exclusively with firmware engineering, a brief scenario of

vertical migration is included for completeness. Section 1 goes on to

introduce general microprogramming terms, including relevant background

information concerning development systems. Finally there is an

introduction to the design objectives of SYSMW.

(- 1-) Outline

SYSMW

2 General Concepts and scope

Section 2 discusses the requirements of development systems and how

most of these are met by SYSMW. The system's hardware independence is

described against the background of table driven assemblers. The

discussion covers the use of templates to describe the machine and the

use of defined mnemonics to facilitate easy microprogramming. SYSMW is

then discussed in the context of microprogrammable machines and

simulators. Major differences between other systems and SYSMW are

described with explanations of how these are used to SYSMW's advantage.

The testing of the system by post graduate students is introduced

along with the motivations for developing a test architecture. Finally

the system's ability to facilitate the use of 'inline' microcode is

discussed.

3 Comparisons with other Systems

This section provides a

development systems. The

microprogramming languages

general comparison of SYSMW with other

comparisons fall into two areas, namely

and simulators. Included in these categories

are points on how other microprogrammable machines compare. A separate

section on AMD's SYS 29 seems justified as it appears to be the most

widely used commercial microprogram development system [DATJ. In

addition there is a survey of bit slice chips other than those used in

the design of this system and a discussion of recent microprogramming

developments.

4 Discussion and Conclusion

Section 4 forms the overall project evaluation. Possible research

projects using this kind of system are suggested.

(-2-) Outline

SYSMW

PART 2

1 : Design Details

This section deals with the overall design specifications of the

system. Micro1 and Micro2, involved in the first and second phases of

microprogram development respectively, are described. Schematic

diagrams and algorithms are included to aid the description. Micro1 and

Micro2 are then drawn together, showing how they form a machine

independent microprogram development system. The thoughts and ideas

acquired from the Computer Science Honours class at Rhodes University,

after they had tested the system, are tabulated. It is pointed out

which of these ideas were implemented as updates to the system and

which were omitted, along with the justifications for these decisions.

Section 1 continues with a description of SYSMW's microprogrammable

machine. The arithmetic and logic unit (ALU) hardware and the

microprogram control unit (MeU) software are explained. Each of these

parts is then discussed in more detail, including a section on how they

communicate with each other. A Simulator, that produces the effect of

the ALU hardware, is also described.

2 Example

This section takes the form of an example of the use of the

microprogramming system. The implementation of a simple assembly

language is shown. The concept of 'inline' microcode is discussed in

terms of a working example. General comments on how t he assembly

language operates and a brief discussion of the mini-assembler program,

a code generator for the above language, are also included.

(- 3-) Outline

SYSMW

3 A User's Guide

Section 3 is a general user's guide which includes specific operating

instructions and comments on the help files and the error messages, for

all programs in the system.

Appendices A to H.

Appendices A to D contain the 'TURBO' Pascal program listings. Appendix

E lists the help files for all the programs while appendices F through

H contain the micro-order tables, the example file listings, and the

hardware circuit diagrams, respectively.

(-4-) CAltline

SYSMW Part 1

PART 1

(-5-)

SYSMW Part 1

1 : INTRODUCTION.

~~ Introduction to Microprogramming.

There are two types of computers available today, those with

'monolithic' and those with 'bit-sliced' based processors [SKO].

Monolithic machines have a fixed instruction set and fall into the

class of conventional assembly language machines. Bit-slice machines on

the other hand can have very different language instruction sets chosen

by the designer or user .

The two types of machines do however have a lot in common. Fi gure 1.1

shows the constituent functional units of a typical computer, namely

the memory, the central processing unit (CPU), and the input/output

(110) drivers.

,- - -- - - - -- - -- -,
I
I
I
I

I

~ I

Arithmetic

and Logic

Unit ~
Program I r Data I

and i
Storage < I ~

Control
I Unit
I

, .
'- - - - - - - - - - -

Central Processing Unit

Figure 1.1

Input /

Output

Unit

SCHEMATIC DIAGRAM OF A GENERALISED COMPUTER

(-6-) Introduction

SYSMW Part 1

As a consequence of having two design philosophies, microprocessor

technology has evolved in two distinct directions [MCG]. The first is

the design of microprocessors that have more and more of the features

of large computers. The second is the design of microprocessors more

closely adapted to the digital hardware or specific application. The

former class is dominated by 16-bit microprocessors while the latter is

characterised by the development and use of bit-slice processors [MCG].

Control

Store

/JAdd"" Bus

~ Control

r-------~~~------_.

Microinstr.

Microprogram

Control

Unit

Arithmetic

Logic

Unit

~
Flag

\\'----~:>
_ Data Bus 7'

F'igure 1.2

SCHEMATIC DIAGRAM OF' A MICROPROGRAMMABLE CPU

In microprogrammable machines, the CPU is the only part of the computer

that differs in design from conventional, fixed instruction set

machines. A microprogrammed CPU consists of three parts, the arithmetic

and logic unit (ALU), the microprogram control unit (MCU), and the

(-7 -) Introduction

SYSMW Part 1

control store (CS) [COLJ. Conventional machines employ hard-wired

sequential logic to perform the functions of "the MCU and the CS and

these together with the ALU are usually all on a single chip. (In bit

slice machines, the necessary control is performed by the MCU and the

CS .) The permanent nature of the hard-wired control section gives rise

to the term 'fixed instruction set'. The relationship between the ALU,

MCU and CS for a microprogrammable processor is shown in Figure 1.2.

~~ History and Perspective.

In 1951, wanting to improve the reliability by increasing the

regularity of the control unit in CPU's, Maurice V Wilkes suggested the

idea of having a microprogramming level below the machine language

l evel [WILJ. He intended the microprogram to serve as an alternative

method for the design of the control unit, as opposed to hard wired

designs used exclusively at the time in the fixed instruction set

processors. His primary motive was a systematic design method as a

replacement for the random logic of the control unit. This idea is

preserved in its pure form in horizontally microprogrammed machines

[CHRJ.

The IBM System/360 was one of the first computers to use

microprogramming [MCG] , and today most main frame computers, and

numerous minicomputers, have a microprogrammed level beneath their

machine architectures [CHR]. This statement is perhaps a bit nebulous

as one should not refer to microprogramming in the binary sense but

rather the degree to which a machine is microprogrammed [MYE]. In many

applications the microinstruction signals are decoded before being fed

to the hardware and the control system is therefore a combination of

hard-wired and microprogrammed control.

(-8-) Introduction

SYSMW Part 1

The term 'firmware' was coined by Asher Opler when he projected an idea

of what fourth generation computers would look like COPLJ. He felt that

microprogramming would lead to the wide spread use of no-order-set/no

data-structure computers, which could be individually t ailored for

specific applications through the use of replaceable microprograms. The

microprograms would either be available from the manufacturer, or they

could be prepared by the users themselves. He also foresaw the

inclusion of high level functions into the firmware COPLJ. This has

become known as vertical migration.

The microprogramming concept has no clear-cut formal definition,

although Myers suggests the following working definition [MYE1J.

"Microprogramming is the process of producing microprograms.

A microprogram is a form of stored-program logic that

explicitly and directly controls the major logic devices of

digital systems (e .g., registers, ALUs, counters, busses,

memory). As such, a microprogram is a substitute f or a

sequential logic control network. The most common application

of a microprogram, but certainly not the only application, is

to give a processor a particular instruction-set

architecture."

If a monolithic processor and its support chips can be used in a

particular application, then the tasks of digital systems design and

physical layout are substantially reduced. However this is not a viable

solution to all design problems as monolithic microprocessors are

relatively slow, and as has been seen, have static instruction sets.

More flexible fourth generation building blocks are sometimes needed

and bit-slice devices are an answer to this requirement [MYE1J .

The microprogramming option is usually selected by the design engineer

because it improves flexibility, performance and LSI utilization of

(- 9-) Introduction

SYSMW Part 1

microprocessor systems [MIC]. Microprogramming also leads to a more

structured organization while cost and design time are reduced.

Diagnosti cs can be implemented easily, design changes are simple, fiel d

updates are easy, adaptations are straight forward, the system

definition can be expanded to include new functions, documentation and

service are easier, and design aids are usually available [MIC].

Interest in and the use of microprogramming has soared, driven by

recent advances in technology [SCH]. This renewed and widespread

interest has been facilitated by the availability of high speed memory

and powerful LSI bit-slice processor components [MEZ3].

Microprogramming is being used to reduce the complexity of VLSI design

because previously complex hardwired logic can become impossible to lay

out on a single chip [SCH] . The recent push towards fifth generation

computers has resulted in microprogramming being used to migrate

functions into intelligent components, and cheap hardware has caused

more architects to use the parallelism available in horizontal

microcode to speed their systems up [SCH]. The direct benefits of

microprogramming are thus a reduction in the desi gn time of the control

section, and increased performance of the system [MEZ3].

There

opposed

that it

are of course disadvantages in using microprogrammed control as

hard-wired control. Myers puts forward a few of these, namely,

is more costly for simple

designs are easier to copy,

microprogram changes [MYEl].

machines, it is sometimes slower, the

and the user is tempted to make

The graph (figure 1.3) shows how the cost involved in developing the

system compares to the richness of the resulting instruction set for

sequential-logic and microprogrammed controlled processors [MYEl].

(-1 0-) Introduction

.j.)
(f)

o
u

SYSMW Part 1

-

Richness of instruction set

Figure 1.3

GRAPH OF RICHNESS OF INSTRUCTION SET REPERTOIRE vs COST

There are a few further factors which influence the decision of whether

to use a fixed instruction set processor or a microprogrammable bit

slice processor [WHIJ. These include the physical size of the resulting

board (approximately 10 times the number of chip are required for a

bit-slice design than for a fixed instruction set machine), the word

length (bit-slice offers any multiple of 4 bits - more recently bit

slices have become available in sizes from 2 to 32 bits wide), and

s peed (bit-slice devices are about 10 times as fas t). In general it can

be said that bit-slices are applied in three basic areas, namely,

machines with long words, machines with special instruction sets and

high speed machines [WHIJ.

Microprogramming has over the years, branched into two main areas of

research. The first of these areas addresses the question of how to

write microprograms. This has become known as 'firmware engineering '.

(- 11-) Introduction

SYSMW Part 1

The second area considers how to isolate functions which are candidates

to be migrated into the firmware. This has become known as 'vertical

migration' [MON].

The growing

availability

interest in firmware engineering is a consequence of the

of user microprogrammable machines, and as long as only

machine instructions are emulated, microprograms are relatively simple

[MON]. This thesis is concerned almost exclusively with this branch of

microprogramming research.

~~ Vertical Migration.

The classical form of migration is the migration of functions from

software to firmware [STA]. A generalisation of the classical form of

migration is called vertical migration which is the migration of

functions from a high level abstract machine to a lower level abstract

machine. Hence vertical migration includes software migrations as well

as the software to firmware migrations [STA].

If there is a desire to migrate functions with complex interfaces into

the firmware, the microprograms are no longer simple. MOving the

function down in the hierarchical structure allows for the faster

execution of this function, but at the same time makes its

implementation more difficult and later changes more costly. The main

driving force to move functions from software into firmware is the

gain in performance. Vertical migration is almost

understood in this sense [MON].

exclusively

To perform

function to

the migration, a systems programmer must

be moved, and must know the 'high-use'

understand

paths of

the

that

function, as well as all the control and data interconnections related

(-12-) Introduction

SYSMW Part 1

to the function [STA]. The performance improvements attainable by

vertical migration arise in two ways. Firstly, the function is moved to

a faster level, and secondly, higher level functions are often general

enough to handle a variety of inputs. By making the function less

general it can be optimised [STA].

Grossman et al. show that the performance of micro programmable computer

systems can be greatly improved by microcoding frequently executed, and

CPU intensive, software functions. These authors quote percentage

benchtime improvements for vertical migration techniques implemented on

a Burroughs B 1726 [GRO].

'Today it is a well known fact that the efficiency of solving a

particular problem (executing a problem-oriented program) depends

primarily on the degree to which the architecture of the computer

supports the problem solving primitives. A measure of the difference

between the concepts in the programming languages and the concepts in

the computer architecture is the "semantic gap'" [LUQ]. In most present

day systems this gap is large. Vertical migration can close the gap by

moving selected functions to a more optimal level in the hierarchy and

hence improve the system performance. One should realise however that

microcoding an inefficient algorithm, may result in faster execution

than with a software implementation, but the algorithm will still

remain inefficient. A formal statement to this effect has been coined

as Raucher's Law [RAU]. With the gains in being able to close the

semantic gap, it seems obvious that microprogramming is going to become

more and more important in the future, as the call for more specialised

and faster machines increases.

(-13-) Introduction

SYSMW Part 1

~~ Microprogramming Terminology.

Support tools for microprogramming are either hardware based or

software based. The software supports for microprogramming can be

subdivided into two distinct classes namely, microprogramming languages

and simulators [MEZ2]. The microprogramming languages range from simple

microprogram assembler languages, through register transfer languages,

to procedural oriented machine dependent microprogramming languages,

and beyond [RAU]. Simulators satisfy two different requirements in that

they can be used for the verification of the hardware and for

microprogram checking [MEZ2].

Within the field of simulators it is interesting to note that there is

a distinct difference between simulation and emulation. The term

simulation is used when the software program 'acts' like the prototype

processor but it runs slower and therefore critical timing

relationships are impossible to verify [EDE]. Emulation involves the

construction of a hardware model of the prototype processor. It may be

constructed using discrete logic or another type of microprocessor

[EDE]. An emulator therefore allows one to check the critical timing

between the software and the prototype hardware. The term emulator has

been used loosely in this report and does not include the constraint on

critical timing.

The term emulator can also be used to describe 'a complete set of

microprograms which, when imbedded in control store, define a machine'

[LEW]. The machine which is realised by the emulator is called a

virtual machine, and the machine which supports the microprograms, a

host machine [LEW] . In other words the microcode emulates the higher

level macroinstructions that define a virtual machine.

The field of microprogramming languages gives rise to a multitude of

terms and definitions. Each primitive function at the microprogramming

(-14-) Introduction

SYSMW Part 1

level is referred to as a microoperation or micro-order. One or more

micro-orders m~e up a single microinstruction [CLA1] which performs

one micro-operation [KRA] in each micro clock cycle. These

microinstructions are stored as words usually in a high speed memory

area, called the control store [CLA1].

Macroinstructions are strings of 0's and 1 's that reside in main memory

and a sequence of macroinstructions is termed a macro-program or main

program [KRA]. Each of these macroinstructions is emulated by series of

microinstructions collectively called a microroutine. One or more

microroutines form a microprogram [CLA1].

The microinstructions may either be wide (anything above about 60 bits

wide), or narrow (anything below about 30 bits wide). The former is

termed horizontal microprogram design and the latter vertical

microprogram design [CLA1]. In horizontal microprogramming, one bit of

the microinstruction corresponds to one command [OBR] or one physical

control signal. Some space is usually wasted, but this method is useful

from a topological point of view, is easy to implement, and is usually

faster than a vertical design [OBR]. Horizontal designs allow the

micro programmer to explore the prinCiples of concurrent processes as it

is possible to execute various functions at the same time.

In vertical microprogramming, the microinstructions are encoded and the

micro programmer becomes more divorced from the actual logical devices

benefit of shorter microinstructions is

of decoding logic [OBR]. In the limit, the

in the

offset

system [CLA1].

by the added cost

The

microinstructions become macroinstructions and the control system is

hard-wired as in the case of a fixed instruction set machine. Any

designs that fall into the grey area between vertical and horizontal,

are usually referred to as diagonal microprogram designs [CLA1].

A further extension of microprogramming, called nanoprogramming, is

(-15-) Introduction

SYSMW Part 1

used in the machine Nanodata QM-1 [KRUJ. In nanoprogramming, the

microinstructions address a lower level nanostore which contains the

nanoinstructions. These nanoinstructions are effectively subroutines

called by the microinstructions.

This thesis is concerned mainly with horizontal microprogram designs as

these are considered true microprogramming from an academic point of

view. The philosophy behind horizontal microprogramming is also

consistent with the original ideas of Maurice Wil kes.

~~ Microprogram Development Systems.

Microprogramming as an end-user tool has evolved slowly due to three

major obstacles that have stood in its way [VAXJ . Firstly, there is a

need for very fast random access memories. Secondly, microprogramming

requires special knowledge and it has taken time for the subject to be

incorpcrated into curricula and be taught. Thirdly, and most

importantly, the

generality and

expansion of microprogramming is the inclusion

extensibili ty in computer design . A system with

of

no

address space for user control programs or no buil t in features to

support general microprogramming, makes writing user microcode

extremely difficult [VAXJ. This means that software microprogramming

support tools have to be developed.

In general a development system should have all the facilities

necessary for the development and testing of microprograms. These

include microcode definition, assembly of the definitions into binary

micrOinstructions, verification of the hardware, testing and debugging

of the microcode routines, and loading of the microcode into the

control store memory area.

(-1 6-) Introduction

SYSMW Part 1

Corcoran has the following feeling on development systems: 'The

availability of a higher level language programming system which can be

systematically and easily tailored to a specific target machine

architecture without having to rewrite any part of the compiler

software, would serve to bring a level of standardisation into this

field and could also increase the number of users who would consider

using microcoded architectures' [COR].

The main problem is that, although bit-slice processors offer a

considerable advantage in execution speed and processing capability, it

is generally hard to get them operational. The problems include the

complexity of the microinstructions and the intimate relationship

between them and the hardware for which they are intended [COL].

Tsuchiya also expresses a need for better and more systematic

development procedures and methodologies, because of the increased

interest in firmware [TSU]. Firmware developers usually turn to

software disciplines for directions and while software and firmware are

inherently different, they do share many common characteristics. If

viewed in this light, microprogramming is simply an adaptation of

programming techniques to implement the hardware control sequencing

[TSU]. This is however a very simplistic view, which becomes less and

less pertinent as one moves away from vertical towards horizontal

microprogram designs.

There has recently been a great deal of interest in the effective use

of high-level microprogramming languages [MUE]. The primary goals

behind their use are the reduction in development time and the increase

in reliability, without the loss of efficiency, in the end product.

Achieving these goals is largely dependent on the translator which maps

high level descriptions of the desired machine to a control store

implementation of that machine on a microprogrammable host.

(-17-) Introduction

SYSMW Part 1

The main issues which help to distinguish between different

microprogramming languages are increased machine independence,

efficient code generation and structured programming [BALJ. These often

cause conflicts in the language design necessitating compromises. The

state of development of microprogramming languages is nowhere near the

level of high-level programming languages, mainly due to the

of the microcode to be generated. Balakrishnan et al. [BALJ

deviations from the conventional languages due to the

characteristics of the microprogramming environment: the

efficiency

list major

following

support of

parallel operations as opposed to serial, optimality considerations at

a low hardware level, and the need to support a wide range of

architectures.

There are two main approaches to the generation of microcode from a

high level source language. These are, firstly the type where a

separate translator has to be written for each machine and secondly,

the type where there is a single translator, but the microarchitecture

has to be described for each different machine [BALJ.

Support tools for firmware engineering have lagged behind other

developments in microprogramming because microprograms have up until

recently been relatively small in size [LEWJ . This is a problem because

microprograms are now becoming very large, as VLSI structures become

more available, and as operating system programs migrate into the

control store [LEWJ.

The increase in microprogram size makes the task of debugging the

microcode a formidable one [MYE2 J . This has fostered a need for

simulators to facilitate the debugging of microcode [MYE2J. Simulators

are useful as they allow the user to monitor a completely controlled

execution of the microinstructions. Single stepping through the

microprogram is easily implemented and the values of various flags and

registers can be traced.

(- 18-) Introduction

SYSMW Part 1

~~ The Design Objectives of SYSMW.

Microprogramming is one of the few areas in Computer Science that

overlaps naturally

give the student

with Electronic Engineering and it is one that can

some contact with hardware design [CLA3J . Myers

specifically states that microprogramming requires both engineering and

programming knowledge [MYE1J . It is very important that the students be

able to verify their designs by executing a few microprogram segments

on readily avai l able equipment [CLA3J. One of the primary design

objectives of the microprogram development system, SYSMW, described in

this report, is that of providing a system on which the practical part

of a graduate course in microprogramming may be run.

Microprogramming has become the means of implementing the machine

language instructions of a conventional computer. Vertical migration

has caused functions to be moved from the software to the firmware.

These and other factors tend to increase the complexity and volume of

the firmware and there is therefore an overall incr eased importance of

microprogramming and firmware design . This makes it highly desirable to

have courses pertaining to these areas in a modern computer science

curriculum [BEHJ. A course of this nature could perhaps be divided into

two distinct parts. Firstly, a firmware design section where students

learn to specify the behavior and performance of microprograms in an

operational specification met hod . Secondly, a microprogramming section

where the student gains 'hands on' experience in the microprogramming

of a particular computer

microassembler language and by

by writing microcode segments in a

loading and testing and debugging them

[BEHJ . SYSMW attempts to cover both of these areas, with perhaps more

emphasis being placed on the latter.

There are two options available to the designer of a microprogram

development system . Either a universal development system can be

(-19-) Introduction

SYSMW Part 1

constructed, which is usually very expensive, or a cheaper and more

efficient system relatively dependent on the application site can be

developed [MaNJ. SYSMW combines the generality of a universal

development system with the low cost and efficiency of a site dependent

system.

A necessary condition for a machine-independent code generation system

is that the specific target machine and microcode specifications are

independent of the proof system [MUEJ.

A machine-independent microprogramming language is not an adequate

substitute for a machine-oriented language if optimally efficient

microprograms are required. This is the view of Sommerville [SOMJ when

he identifies the following four application areas for machine

independent microprogramming systems: (1) as a machine-description

language formally defining a machine architecture, (2) as a research

tool allowing research workers to produce and evaluate experimental

machine architectures quickly, (3) as a portability tool which can be

used to emulate a particular architecture on another machine, and (4)

as a tool for the systems programmer, allowing him to extend a machine

instruction set for his own application. SYSMW is capable of being used

in all four of these areas, but points 1, 2 and 4 are of particular

interest as it is for these reasons that SYSMW was developed.

Renyi et al. [RENJ feel that it is of the utmost importance to have an

easily manageable and versatile hardware-software interface, during the

development phase of a microprogrammed system. A user oriented

microprogramming system ought to have an easy to use, reliable and

pleasant interface [BALJ. SYSMW was developed with ease of use and

versatility as important criteria.

The basic design approach for SYSMW was to tackle the topic from an

Electronic Engineer's point of view rather than form a Computer

(-20-) Introduction

SYSMW Part 1

Scientist's point of view. Most other proposed microprogram development

systems [BAB] [SaM] [COR] [SKO] [BALl] [CHA] [MEZ1] [BAL2] [SRI]

approach the problem from the software side and try to match hi gh level

constructs with the very low

application. The SYSMW philosophy

level, parallel type, microcode

is different, providing the user with

a new and divergent angle on microprogramming. This approach assumes

that the user a lready has a bit-slice machine that he now wishes to

microprogram. He would initially like to be able to develop only a

small subset of the target language, in order to test the system

functions

aids other

be able

and validate the hardware design. He would perhaps have

than the data sheets supplied with the chips . He should

to use the SYSMW microprogram development system to get

no

now

the

machine up and running. The data sheets accompanying the chips f it in

perfectly wit h the system and provide the necessary starting point for

the target machine definition.

Fletcher's text entitled 'An engineering approach to digital design ',

provides a good overview of the concepts of a programmable system

controller, from an engineering point of view [FLE].

The SYSMW Triple-M microprogrammable machine may be used to emulate and

extend existing architectures or to develop and evaluate new ones. This

microprogrammable machine makes the SYSMW development system complete,

as it provides the necessary tools to realise the objectives of

microprogramming systems [SOM].

SYSMW also includes a simulator that produces the effect of the ALU

hardware. Myers et al. recognise the general objectives of simulators

as follows: being able to display the state of the machine, being able

to modify the state (registers and memory), being able to initialise

and record various states, being able to set breakpoints and maintain

timing data where possible, to be of an interactive nature, and to take

cognisance of human factors (the man-machine interface and user

(-21-) Introduction

SYSMW Part 1

friendliness) [MYE2J.

Working with microprogrammable processors seems likely to provide a

better understanding of the internal operations of programmed machines.

Microprogrammable devices permit the user to experiment with different

instruction sets and tryout different architectures, within limits . If

the user of a bit-slice processor could more easily experiment with the

relationships between macroinstructions and microinstructions, and with

the details of microprogram executi on, he could better understand the

principles involved in the underlying hardware [DAVJ.

(-22-) Introduction

SYSMW Part 1

2 : GENERAL CONCEPTS AND SCOPE.

~~ Requirements of Development Systems .

Horizontal microprogramming has become extremely attractive in most

high speed and real time applications due to the progress in the design

and the fabrication of bit-slice devices [MEZ1J. This growing interest

in microprogramming has lead to a need for tools that facilitate the

development and the debugging of microprogrammed systems.

Microprogramming support tools fall into three main categories; (1)

microassemblers that allow one to represent microcode in a symbolic

language, (2) high level microprogramming languages and their

associated compilers, and (3) simulator programs that simulate the data

flow of a microprogram at the micro-operation level [MEZ1J. Each of

these tools has general validity in that it can be designed to adapt

and process any kind of microprogrammable system. SYSMW, the system

described in this report falls into groups 1 and 3 of the above

microprogramming support tools.

There is a need for software tools for microprogram development. In

general, machine dependent tools do not turn out to be cost effective.

The availability of machine-independent software aids is therefore

imperative. Such systems should be both flexible, in that the tools

must be usable for different designs and products, and modular, in that

there should be a uniform design approach across the different tools

that constitute the whole system [MEZ1J.

There are two parts to the design of any digital system. Firstly one

has to become familiarised with the basic components of the system, and

secondly one has to develop the system with all the attendant hardware,

firmware and software [DIMJ. The following steps are relevant in the

development process of a microprogrammed bit-slice system: [GIBJ

1- do a preliminary investigation

(-23-) General Concepts and Scope

SYSMW Part 1

2- construct a block diagram

3- decide on the bit-slice chips to be used

4- decide on the microword width

5- decide on the microword format

6- write the microcode

7- assemble the microcode

8- debug the microcode

9- load the microcode into ROM

10- layout and produce the printed circuit board

11- test the complete interface

The SYSMW development system aids the microprogrammer in the execution

of steps five through eight.

The basic function of a microprogram development system can therefore

be seen as providing a means of writing and debugging the microcode.

Desirable features of such a development system include: the ability to

readily modify a microword, the ability to vary the method of execution

including single stepping, the ability to support a number of different

bit-slice families, and the ability to allow for changes in the format

(field definition) of the microword [CIBJ. SYSMW is capable of

supporting all these features.

The development of SYSMW can be divided into two distinct parts. The

first part concerns the specification of the microcode. The programs

involved here are Micro 1 and Micr02, and together they form a machine

independent microprogram development system. This system formed the

basis of a microprogramming exercise for the Computer Science Honours

class at Rhodes University. The second part describes a specific

microprogrammable machine built to encorporate the ideas of a user

friendly simulator while still providing the 'hands on' experience

obtained from working with actual hardware components. An assembly

language was developed to test the functions of the microprogram

(-24-) General Concepts and Scope

SYSMW Part 1

development system and the Triple-M microprogrammable machine. A small

assembler program was developed to facilitate assembly of this language

into machine readable opcodes.

A detailed description of the system components and how they operate

can be found in Part 2.

2 .2 : SYSMW in the Context of Table Driven Assemblers.

The idea of basing the SYSMW microprogram development system on

driven approach was obtained from a paper written by Clayton

a table

[CLA2] .

The paper discusses the implementation of a table-driven code generator

for converting intermediate codes (for a hypothetical machine) into

machine code. The system consists of two definition programs that

define the machine and define the code-skeleton. The third program is

the general table-driven code generator [CLA2].

SYSMW employs two programs to produce its object microcode. The first

of these, Micro 1 , is used to describe the target microprogrammable

machine, and the second, Micro2, defines the microcodes and then

assembles them into the binary microinstructions.

2.2.1 : Machine Description.

Given a micro programmable machine, two

performed before t he microcode can be

microinstruction format must be described,

architecture has to be described [MEZ1] .

operations.

(-25-)

basic operations must be

developed. Firstly, the

and secondly, the machine

Micro1 handles both of these

General Concepts and Scope

SYSMW Part 1

The first phase of machine description involves defining template

formats for the various micro-orders in a single microinstruction.

These templates divide the microinstruction into fields with each field

capable of holding one micro-order. For example one would define a

field to hold the control bits that instruct the ALU to perform a

specific arithmetic or logical function. In the case of the SYSMW's

microprogrammable machine (Triple-M) this field is three bits wide.

The second phase is concerned with defining the specific bit pattern

values for each micro-order. In most cases there would

functions that could use the same format template.

be many possible

Each of these

different functions or micro-orders is given a unique name and with

each name is associated a specific bit sequence. For the case of the

ALU function, one would be able to define eight different functions for

the three bit wide field. Each of these micro-order function

definitions would use the same format template.

Below is shown how a three bit wide template could be defined in a

microinstruction that is nine bits wide.

Format template name:

Format number:

ALU function

1

Template: 3x 3a 3x (ie xxxaaaxxx)

Now using this template one could define eight possible micro-code

definitions for the possible ALU operations. One such definition is

shown below.

Micro-order definition mnemonic: ADD

Binary value: 000

Format number:

The format template records and the microcode definition records can

(-26-) General Concepts and Scope

SYSMW Part 1

then be combined in an assembly phase to set up a table file . The

resulting entry in this file for the 'ADD' mnemonic using format number

1, is given below.

Micro-order definition mnemonic: ADD

Binary value: 000

Template: 3x 3a 3x

All the entries in the table file constitute the complete machine

definition,

associated

as each entry

binary value,

mi croi nst ruction .

contains the micro-order mnemonic,

and its precise pcsition in

its

the

SYSMW's Micro1 program leads the user through these stages of machine

description in an interactive, user-friendly manner. The layout and

content of the interactive session ties in very closely with the

specification sheets that are supplied wi th the chips, making the

machine description that much easier .

2.2.2 : Micro-code Development.

In comparing microcode to the code written in conventional high-level

programming languages, two major differences appear to make

microprogramming more difficult. The first of these, namely the low

pcwer of the microinstructions, arises out of the greater number of

compcnents to be considered in microprogramming. Here the limit to

man's short term memory plays a major role. The second difference lies

in the microcode's lack of features like block structures (and general

lack of structure), and the consequent high degree of mutual influence

between components [ZINJ. A microprogramming development system should

take cognisance of these facts and attempt to alleviate the associated

problems, as is done by SYSMW's Micro2 program.

(-27-) General Concepts and Scope

SYSMW Part 1

The Micro2 program allows the user to develop the microinstructions

using the micro-code mnemonics defined dur i ng the execution of Micro1.

Instead of trying to write all the microcode at once, the development

is divided up into small microcode segments. Each segment performs a

specific function, for example, a boot routine or a routine to emulate

one high level language instruction. In the case of emulating an

assembly type language, a microcode sequence is associated with each

macroinstruction opcode. For the fetch cycle (and other functions) that

has no associated opcode, the microcode sequence is termed a

microroutine.

This process of fragmentation simplifies the task of the

microprogrammer. It allows the system to be built up in small steps,

with the programmer adding more and more functions as the need arises.

In this way the system may be tested with perhaps a small subset of the

final architecture.

The number of microinstructions that can be associated with each

function is not limited, allowing the development of microcode segments

that are able to perform more high level language type functions. In

general, the more complicated the function to implement, the longer

will be the sequence of microinstructions necessary to emulate it.

Once the user has defined the microinstructions in symbolic form, they

can be assembled into the binary representation for loading into the

control store. SYSMW employs a two pass assembler to realise this

function.

(- 28-) General Concepts and Scope

SYSMW Part 1

2 . 3 ~ SYSMW and Microprogrammable Machines and Simulators.

Microprogrammable machines are usually built using discrete bit-slice

hardware components. These machines have associated high speed control

store sections and most systems run at clock speeds of around 20MHz.

The high speed and suitably tailored architecture enables the

microinstructions to emUlate the higher level instructions very

efficiently. Hardware systems, other than development systems, do not

have any debugging facilities and they assume that the microcode has

been tested and is correct. Development systems, such as AMD's SYS 29,

need large amounts of associated code to render the hardware

suffiCiently user friendly, so as to allow the development of the

microcode to be done relatively easily.

At the other end of the scale are the simulator programs. These

programs usually run on a host 'fixed instruction set' machine, and try

to emulate the action of the bit-slice hardware as closely as possible.

They are very user friendly and usually provide extensive features for

the simple debugging and testing of the microcode . Simulators lose some

credibility, however, in that they do not reflect the intricate timing

constraints of a high speed processor and there is no guarantee that

microcode developed on a simulator will run on the machine that it

supposedly simulates. There is also no sense of having gained 'hands

on' experience, as this can only be obtained by working with the actual

hardware.

SYSMW's Triple-M machine combines the user friendliness of a simulator

with the 'hands on' feel of a hardware machine. This was achieved by

dividing the microprogrammable machine into two parts. Half is

constructed with hardware components, while the other half is simulated

by software running on a host machine. There is no gain in execution

speed above that of a normal simulator, as the hardware is mostly

waiting for the simulator software to catch up. This dual nature of the

(-29-) General Concepts and Scope

SYSMW Part 1

Triple-M machine forms the fundamental difference between it and other

mi croprogrammable machines.

Triple-M's arithmetic and logic unit (ALU) is constructed using

components from AMD's Am2900 bit-slice family. The microprogram control

unit (MCU) and control store (CS) are simulated by 'TURBO' Pascal code

running on an IBM Personal Computer.

All microprogrammable machines have two types of memory. There is a

high speed control store that holds the microinstructions and there is

the conventional main memory that stores the user macroprograms. The

main memory is usually slower and is the same width as the data path

for that machine. The control store is the same width as the

microinstructions and is normally non volatile. The Triple-M machine

uses the same IBM memory to simulate the main macroprogram memory and

the control store. This effectively means that the control store is a

lot slower that the high-speed memory that is normally used, and it

also means that the microprogram is easily changed as it resides in

volatile random access memory.

2.4 ~ SYSMW testing and Inline Microcode.

The basic functions of SYSMW were tested by implementing a machine

language type architecture. This proved very satisfactory as the

microcode segments for each of the macroinstructions were of a

manageable size. Routines were also developed to test the operation of

the macro- and micro-status register flags . A detailed discussion of

the example language is given in Part 2.

The Micro 1 and Micro2 programs, forming a machine-independent

microprogram development system, were used as the basis for an exercise

(-30-) General Concepts and Scope

· SYSMW Part 1

in a post graduate course in microprogramming. The two programs were

used to develop microcode segments for a hypothetical machine. This

proved extremely useful as the author was able to gauge the success and

usability of the system. Many of the helpful points raised by the

students were used to upgrade the system and correct any bugs that

became apparent. Further details regarding this exercise are discussed

in Part 2.

The 'TURBO' Pascal language supports an interesting feature that allows

machine code instructions to be inserted directly into the program

text. The reserved word 'inline' is simply followed by one or more code

elements

concept

allowed

separated by slashes and enclosed in parentheses [TUR]. This

lead to the idea of having a micro programmable system that

inline microinstruction to be executed from within the emulated

macroprogram.

this means

In the example of the machine

that the assembler should

language type architecture,

allow the use of inline

microinstructions within the body of an assembly language program.

Inline microinstructions are a useful means of extending the existing

capabilities of the language, without having to alter the microprogram

in the control store. In the case where the microprogram resides in a

non-volatile ROM, this may be the only means of being able to develop

and execute ones own microinstructions. It is also useful for

experimenting with 'one-off ' microinstructions, that if proved useful,

could later be incorporated in an updated version of the microprogram.

The one important constraint is that of execution speed. A wide

microinstruction would take up several consecutive locations in main

memory, and it would take several clock cycles to build up the

microinstruction in a temporary latch, before it coul d be executed.

An alternative method for implementing inline microinstructions mi ght

be to include a few residual-control microinstruction registers. At the

start of the macroprogram one could then define all the inline

(-31-) General Concepts and Scope

SYSMW Part 1

microinstructions that are to be used within the body of the program.

The microinstructions would be loaded into the residual control

registers at the start of execution, to be used later in t he program.

The number of inline microinstructions that could be defined in this

way is limited by the number of residual control registers made

available. The advantage here is that the microinstructions only have

to be loaded in once and thereafter they can be used several times from

the residual control registers without any loss in execution speed.

SYSMW's Triple-M machine uses the former approach to implement the

inline microinstructions and further details on the implementation can

be found in Part 2.

(-32-) General Concepts and Scope

SYSMW Part 1

l ~ COMPARISONS WITH OTHER SYSTEMS.

~_ Microprogramming languages and Simulators .

The two distinct classes of microprogramming software support tools are

microprogramming languages and simulators [MEZ3J. Today many

microprogramming languages are available, varying from the usual

microassembler l anguages, which express absolute microcode by means of

mnemonic and symbolic representations, to the so called 'high level

languages', which allow the user to write microprograms in a

conventional and sequential and procedural fashion. Microprogram

simulators are a completely different kind of software support, used

mainl y for microcode verification. In most cases, the simulators are

machine specific, in order to increase their efficiency [MEZ3J. The

paragraphs that follow discuss microprogramming languages and then

proceed to describe various simulator packages . Where appropriate,

comparisons are drawn between the features of the other systems and

those of SYSMW.

3 . 1.1 ~ Microprogramming Languages.

The MPG system [BABJ consists of a high level microprogramming language

called MPGL, and a processing system called MPG . The microprogrammer

uses MPGL to write microprograms sequentially in a machine-independent

fashion, while MPG provides the facility to translate these

microprograms into efficient code, as well as debugging object

microprograms. The system has been tried on both vertical and

horizontal microinstruction designs and was found to produce very

efficient code [BABJ. This system seems more efficient than SYSMW, but

it does not provide the same interactive facilities that make SYSMW

much easier to use without having had much previous microprogrammi ng

experience.

(- 33-) Comparisons with other Systems

SYSMW Part 1

SUILVEN [SOM] is a high-level microprogramming language that generates

code for a 81700 computer . In contains no machine independent features

but the authors state that the programs may be altered so that SUILVEN

may be run on another machine [SOM] . SYSMW's microprogram development

system is totally machine independent and is therefore capable of

producing microcode for any microprogrammable machine.

Mbnchaud et al. [MON] have developed a low cost microprogram

development system and loader. The system uses an existing INTEL MCS 80

kit intended for use with the Intel 3000 series. The added 8255 110

chips and the availability of pre-defined

microinstruction are supplied at a cost of around

does not include the cost of the Intel MCS 80 kit.

SYSMW is in the region of R500.

fields in the·

$3000 [MON]. This

The total cost of

The SUMA [COR] microprogramming system is intended to fulfill the role

of a high level language programming system that can be easily tailored

to a specific target machine. The system requires a description of the

target machine, followed by a specification of the algorithm which must

be translated to execute on that machine. This system is similar to

SYSMW but it is not menu driven, and the machine definitions are quoted

as being 'time consuming' [COR] . In fact all machine independent, high

level language systems require a description of the target machine, and

in most cases this is a very tedious task. SYSMW, being a helpful, menu

driven interactive system, makes the task of describing the target

machine an easy one.

Skordalakis [SKO] proposes using an 'adaptive microassembly language'

and a 'meta-microassembly language' to solve the problem of producing a

more flexible micro language for bit-sliced microcomputers. For a

particular processor, the programmer has to customise the adaptive

microassembly language to its needs, using the meta-microassembly

(- 34 -) Comparisons with other Systems

SYSMW Part 1

language. The customised microassembly language can then be used to

write the required microprograms. An example is shown for a horizontal

type architecture where t he microinstruction is divi ded into fields and

subfields. The main design criterion here is that of lessening the

burden of learning and using the system, but it is still not

interactively menu driven [SKO].

The development aid programs suggested by Colard [COL] are designed

specifically for use with the Am2900 series only. The system contains a

general specification section while the microprograms are written in a

symbolic language. A simulation package is also included, along with a

small optimization program that checks for pairs of bits that always

have complementary values or single bits that always have the same

value. This implementation is however machine specific [COL].

REGTRAL, designed by Ballieu et al. [BAL] , is a microprogramming

language at the register transfer level. Its design objectives are

minimal prerequisite hardware knowledge and readable and structured

microprograms. The authors felt that they had to find a suitable

language for horizontal microprogramming which should satisfy the

following requirements: it must be easily readable, it must be

extensible and adaptable to future needs, it must be useful for a great

variety of applications, and it must allow full use of all the features

provided at the hardware level. It was for these reasons that a high

level language was not chosen, but rather the class of register

transfer languages, where there is a one to one correspondence between

register transfer instructions and microwords. (It is interesting to

note that the authors admit that high level languages are not suited

for microcode specification, in the face of the fact that many high

level language microprogramming systems have been developed and used.

Surely only those high level languages that explicitly support

concurrent constructs,

The basic construct

can be suitable for this type of application.)

in a register transfer language is the micro-

(-35-) Comparisons with other S¥stems

SYSMW Part 1

operation, which can perform one logical function. Fach

microinstruction consists of a set of micro-operations and it is the

microprogrammer's task to group the micro-operations together. The

microprogrammer must have some knowledge of the functional structure of

the computer and of the microword organisation. This system can only

run on the PDP 11/60 computer [BAL2].

MMDS [MEr] is a microprocessor based microprogram development system,

where special attention has been drawn to a user friendly inter face

design. The system, as described , depends heavily on the specific

features of the target machine used, but it can be adapted for use with

other systems. The microprogram production invol ves various tasks

including, an editor for the input and updat e of the source programs, a

compiler or assembler to produce the object code, a linker and loader,

a debugger, and an overal l t est system [MEl]. User friendliness is also

one of the main design criteria of SYSMW.

Mezzal ama et al. [MEZ1] describe a hierarchical integrated system aimed

at microcode development . The system is based on three different tools;

a microprogram meta-assembler, a general purpose microcode simul ator,

and a microprogram compiler to convert a high level language into

microinstructions [MEZ1] . This system, like SYSMW, is machine

independent and can be used to develop microcode for a variety of

machines.

AMDASM, first produced by Advanced MLcro Devices, is the most widely

used commercial micro-assembler system . Meta Step [DAT] speeds up the

AMDASM assembler and allows the user to write with case structures

instead of with low level symbols and bits. Metastep is considered to

be the fastest and most efficient assembler to date, at a cost of

around $23 000 [DAT]. AMDASM is supplied with AMD's SYS 29, which is

discussed later in this section.

C-36-) Comparisons with other Systems

SYSMW Part 1

Dimond et al. suggest a flexible development system for

microprogrammable microproccessors. A flexible prototyping unit is

constructed using a host minicomputer for use with a range of

microprogrammed processors. The host computer is interfaced to the

arithmetic logic unit (ALU) and to the microprogram control unit (MCU)

separately. 'BASIC', which is interpreted, is used to control the whole

system which therefore runs very slowly. The microprogram memory is

just an area in main memory and the system is able to execute a single

microinstruction at a time [DIMJ. SYSMW uses the popular IBM PC as its

host computer.

The 'AMD 2900 learning and evaluation kit' has various limitations as a

laboratory microprogram instruction kit. Inputs are entered via toggle

switches and the outputs are shown on a row of LEOs. The system only

caters for 16 words of 32 bit microprogram memory and the ALU is only 4

bits wide. Davies et al. [DAVJ have produced a system that improves the

user interface with the AMD 2900 kit by providing it with a simple

software monitor. SYSMW is far more useful in the laboratory

environment, in that it not only allows the user to experiment with

microprogrammed control, but it also provides a microprogrammable

emulator for higher level languages.

Mbrgan et al. [MORJ, at the Uni versity of York, have recently developed

an educational bit-slice microprogrammable tutor. The processor is

based on the Am2900 series and consists of an arithmetic logic unit and

a microprogram control unit. A host microcomputer based on an 8085 CPU

emulates a very slow microprogram memory. The inputs to the ALU are

controlled by a set of switches and the output is displayed on a row of

LEOs [MORJ. The system can therefore only be used to illustrate the

concepts of microprogramming and, unlike SYSMW, cannot emulate any real

life macroinst ructions.

Sridhar et al. [SRIJ suggest an automatic microcode generator for high

(-37-) Comparisons with other Systems

SYSMW Part 1

level language machines. The microcode generator takes as input the

description of language to be implemented, in the f orm of the BNF

productions for that language. A microcode compiler then generates the

microcode in terms of a microassembly l anguage. 'With modifications,

this can be used to generate the actual microcode which defines the ROM

bit fie lds ' [SRI]. The output is therefore just a brief description of

t he various hardware functions needed to accomplish a given task in a

certain language, and does not constitute the final microprogram.

3.1.2 : AMD 's SYS 29.

Advanced Micro Levices' SYS 29 is a complete development system that

encompasses all the tools needed, from microcode definition, assembly,

checking of the hardware, formatting of the microcode, through to

programming PROMs [ADV]. The system includes a mainframe, VDU, dual

flexible disk drives, and a comprehensive software package. The basic

configuration includes 2K of 64 bit words writeable control store and a

CCU microprogram controller card. The writeable control store can

operate at clock speeds of up to 18,0 MHz [ADV].

AMD's SYS 29, while on loan to fuodes thiversity, was used by the

author.

The host processor contains the Am9080 CPU which has the same fixed

instruction set as the Intel 8080 microprocessor. There is 32K of RAM

available to the user for the storage of various routines. It is on

this hardware that AMDASM, the resident microassembler, is run. AMDASM

allows microprograms to be written, assembled and loaded into the

control store .

Without the optional CCU card, the system only provides the control

store of a microprogrammable processor. Even with the extra CCU card,

<-38-) Comparisons with other S¥stems

SYSMW Part 1

the user still has to develop his own bit-slice ALU, on a prototyping

card, before the system can operate as a microprogrammable machine.

This makes it very di fficult for the user to test his ALU hardware.

Unless he develops a simulator, and is then able to use this to ensure

that any 'bugs' do not lie in the mi crocode itself, he is unable to

validate his hardware design.

The AMDASM system allows the target machine definition to be entered

into a definition file. The microinstructions are then written using

these definitions, with the system allowing one microinstruction per

line. The assembler takes this file of microinstruction mnemonics and

produces t he binary file for loading into the control store. This

process

taken

of microprogram development is very similar to the approach

in SYSMW. SYSMW however allows the definition of the target

machine and the microprogram, to be accomplished in an interactive,

menu-driven type environment.

3.1.3 : Simulators .

Microprogramming is difficult and error-prone and particular

difficulties are encountered in the testing and debugging of the

microcode. Some of these problems may be overcome by the use of a

simulator before introduction to the target machine. A simulator based

microcode development system may also become a valuable teaching and

training aid. The greatest potential benefit of microcode simulation is

in the scope it offers by removing the constraints of the real hardware

environment for the provision of testing and debugging aids. Charlton

et al. [CHA] discuss a microcode development system to assist in the

production of microcode for a range of 16-bit processors made from

Am2900 series bit-slice components. The system places emphasis on

interactive microprogram testing and monitoring, and because is it

simulator-based, it is inevitably machine-dependent. Features are

(- 39-) Comparisons with other Systems

SYSMW Part 1

included in the system to assist the programmer, designer or student to

manage the demanding intracacies of microcoding [CHA] .

Myers et al. [MYE2] suggest a simulator that interprets the

microprogram, providing exactly the same state changes and effects

(except for elapsed time) that would occur if the microprogram existed

in its actual environment. They list the following motivations for

using a simulator for microprogram testing and debugging: it allows

parallel microprogram and hardware development, it allows easier

debugging due to special facilities, it allows special error checks

(one does not normally have logic in the hardware to detect

microprogramming errors), it allows several people to use the simulator

in parallel to develop different parts of the microprogram, it is easy

to change the microprogram as you go, and one can implement the

calculation of performance statistics. The simulator can also be used

as a standard against which the hardware may be checked once completed

[MYE2] .

A strategy for simulating bit-slice based microprogrammable systems

gave rise to a system specifically orientated to the development of

highly horizontal microprogrammed machines [MEZ2]. The proposed

simulator has a 'certain degree of generality' although the specific

example sited is based on the Am2900 series. The description of the

machine structures is separate from the simulation procedures. The

system has powerful interaction capabilities between the user and the

simulated microprogram [MEZ2] .

Because the microprogram control unit in SYSMW's Triple-M machine is

simulated, the user is able to benefit from the advantages that this

provides. He is however not sheltered from the 'real world', in that he

s till has to control the Am2901 based ALU hardware. Control of both

sections is necessary for complete control of the system.

(-40-) Comparisons with other Systems

SYSMW Part 1

3.2 ~ Survey and Recent Developments in Bit- Slice components.

The following paragraphs on various bit-slice chips have been included

for completeness, and give the reader a brief glimpse of other

available bit-slice technologies.

The INTEL 3000 series was one of the first bit-slice families to become

commercially available [RAU]. The family consists basically of the 3001

sequencer and the 3002 processing unit, which is two bits wide but may

be cascaded to any desirable width.

Mbnolithic Memories' MMI 5700/6700 family consists of a microprogram

controller 57 11 0/67110, and a processing element called

microcontroller-5701 16701 [RAU]. The processor elements are four bits

wide and special features include a full internal carry look ahead and

an auxiliary Q register for multiply and divide implementations.

The Mbtorola 10800 processor famil y includes a

MC10800 four bit ALU slice [RAU] [MCG].

MC10801 sequencer and a

The M10800 family is

implemented in ECL technology and is therefore capable of very high

speeds.

Texas Instruments SN 74S481 is a four bit microprocessor slice

developed using Schottky bipolar technology [RAU] [MCG]. It is one of

the most powerful processing elements on the market, due to special

hi gh-level funct ions, multiport architecture and multioperation design.

The SN 74S482 is a microprogram sequencer that is capable of being used

with many of t he popular processing elements on the market.

The Fairchild F100220 fami l y was announced in 1980 and is implemented

using ECL bipolar technology [MeG]. The ALU slices and supporting chips

are all eight bits wide.

(- 41 -) Comparisons with other Systems

SYSMW Part 1

Advanced Micro Devices' Am2900 family is used as a basis for SYSMW's

Triple-M microprogrammable machine. The newer Am2903 is a very fast,

four bit microprocessor slice that performs all the functions of the

Am2901 , together with additional arithmetic functions [MeG]. These

functions allow multiplication and division to take place more

efficiently. Another key feature of the Am2903 is that the number

internal working registers may be expanded using the Am29705 external

register stack.

~re recently, Texas Instruments have developed the TMS 7000 series of

eight bit single chip microcomputers [TEX]. The TMS 7000 is hailed as

the world's first microprogrammable microcomputer that allows the

standard instruction set to be changed to suit the needs of a

particular application. The architecture has been optimised for fast

real time applications and is very powerful .

Hewlett-Packard's HP 3000 Series 37 is another recent example of a

microcoded processing unit [AME]. The microprocessor is very powerful

and fleXible, and this flexibility causes the microcode to be complex

and hard to understand. A translator is used to create a more readable

microprogram.

(-42-) Comparisons with other Systems

SYSMW Part 1

4 : DISCUSSION AND CONCLUSIONS.

4.1 Discussion. ---

During the last thirty years microprogramming has evolved through

several stages. It started as a concept for implementing the control

sections of processors, then an economical method for manufacturer

implementation of machine architecture, and more recently as a tool for

user applications for specific problems [RAU]. Advances in hardware

technology have made user microprogrammable machines a reality, and

support tools have simplified the tasks of the microprogrammer.

Hardware support tools for microprogram development have come a long

way but advances in software and applications aspects of

microprogramming are still in their infancy [RAU] . The SYSMW

development system attempts to satisfy some of the needs for further

research and development in this area.

The SYSMW microprogram development system is not intended for use in

areas where large amounts of microcode have to be produced. This task

becomes very tedious without the aids that a high-level

microprogramming language system can provide. One of the main drawbacks

of using a high-level compiler is the possible inefficiency of the

resultant microcode. Efficiency depends largely on the complexity of

the translation algorithms, how suited the high level language is to

mi croprogrammi ng constructs, and how well the user has defined the

target machine. The complexity of the translation programs will depend

the on the specific package used. In most development systems

definition of the target machine tends to be a very tedious

the user could therefore be tempted to use a simple, less

definition. The efficiency of the code produced by the

task, and

efficient

SYSMW

development system is user dependent as the definitions are made at a

very low level.

<-43-) Discussion and Conclusions

SYSMW Part 1

The choice of a suitable language to be used as a medium to develop the

microcode is paramount. Microprograms require an increasingly large

effort for their design, due to the requirement of maximum utilisation

of concurrently usable resources. (Microprograms become larger as more

and more software functions are vertically migrated.) A suitable

language should therefore allow the representation of all possible

parallel operations during the design process. Kerner [KERJ suggests

t hat there are some similarities between the demands of

microinterpreters and parallel computers and therefore looks at recent

solutions in this area for answers about the design of microprograms .

He suggests that the new 'data flow principle' appears to be suitably

adaptable to microprogramming. The underlying idea here is the use of

functional languages for the design of microprograms and microcode

interpreters. It seems certain that languages that do not explicitly

support concurrent constructs cannot be used effectively in the

definition of microcode segments.

One of the future trends in microprogramming could be the increased use

of microprogrammable machines that have been microprogrammed to execute

high level language instructions directly. The two main areas of

interest to date have been the implementation of 'FORTH' machines and

'LISP' machines. The LISP programming language has the same general

property as machine code in that data and programs are

indistinguishable [PUTJ. In most cases, the LISP instructions are

translated into some form of intermediate language, which is then

interpreted by the microprogram [PUTJ [DUEJ [GRIJ.

The topic of microcode optimisation has not been discussed i n this

report as it falls outside the scope of the project. Various methods of

optimisation have been suggested, mostly peephole optimisation on the

complete microprogram . Simple tests can be made for single bits that

always have the same value, or for pairs of bits that always have

(- 44-) Discussion and Conclusions

SYSMW Part 1

opposite values [COL].

4.2 : Conclusions.

SYSMW is a complete microprogram development system that allows the

user to experiment with most aspects of microprogrammed control. It is

ideally suited for use in an academic environment, to provide the

student with the necessary practical experience . vital to the

understanding df microprogramming techniques. The microprogram

development aids may be used to develop the microcode for other

micro programmable machines, while the Triple-M microprogrammable

machine may be used to experiment with new forms of machine

architectures. Research into viable intermediate language designs, for

fourth or fifth generation languages i s also possible. Mbre

specifically, it would be nice to implement a set of intermediate codes

to interpret a LISP (or LISP type language) based system. It would also

be possible to build up the primati ves for a language like FORTH, so

that the microprogram could emulate the FORTH primatives directly.

Raucher et al. recognise that microprogramming language techniques,

such as intermediate language design, interpretation, and optimisation

need to be applied and extended, specifically in the field of bit-slice

processors [RAU]. This leaves the field of possible research projects,

using a development system like SYSMW, wide open.

SYSMW has a distinct advantage over other systems described in this

report, in that it is very easy to get a new architecture design up and

running very quickly, using a subset of the final design. The testing

of a new system is therefore a lot easier, and it is possible to

develop the system in a logical, extensible fashion, until the final

goal is reached. There is a similarity between the stepwise refinement

(-45-) Discussion and Conclusions

SYSMW Part 1

techniques of software development and the techniques fostered by

SYSMW.

To support the claim that SYSMW has achieved its design goals, it seems

appropriate to quote from a few of the reports of the Honours Class

students, involved in the testing of the system. These quotes are

listed below:

'The system was remarkably easy to use and understand.'

'The simplicity of the system is commendable. '

'It is both a powerful and effective tool, and is a great aid to

understanding microprogramming. '

'The system has much potential in helping the user develop microcode. '

'One is conscious of the fact that the author has attempted to make the

system as user friendly as possible and I feel he has succeeded in

this. '

'I found the microprogram development system extremely helpful and

instructive from the point of view of someone who has only just started

microprogramming. '

'The development system is indeed a useful tool for the specification

of microcodes.'

The future of SYSMW, at least at Rhodes University, seems secure. It is

to be used as the basis for the practical component of a post graduate

course in microprogramming. Interest has also been shown in using the

Triple- M machine to run a small assembly type language, as part of an

undergraduate course in compiler design and code generation. Other

areas for research (such as investigating LISP intermediate-codes) have

been opened up by the SYSMW project, as there has previously been no

similar resource available. SYSMW is particularly attractive in that it

runs on the very popul ar IBM PC and can be produced for about R500.

(-46-) Discussion and Conclusions

SYSMW Part 2

PART 2

(- 47 -)

SYSMW Part 2

1 : DESIGN DETAILS.

1.1 : Introduction.

The overall design specifications of the SYSMW microprogram development

system are covered in the sections that fol low. It is assumed that the

reader has seen Part 1 and that he is familiar with the terms and

concepts involved in the implementation.

The whole system can be divided into two main sections. The first of

these deals with the development of the microcode. The programs

involved here are Micro 1 and Micro2. Together t hey form a flexible

microprogram development system which can be used to write

Format

Templates

Micro 1

Program

r
Definitions

)
Machine

Description

Figure 1.1

)

THE MICROCODE DEVELOPMENT SYSTEM

(- 48-)

Micro-codes

1
Micro 2

Program

Control

Store

Design Details

SYSMW Part 2

microprograms for any microprogrammable machine. The machine-

independence of the microprogram development system can be attributed

mainly to the low level at which definitions are made. Figure 1.1 shows

the basic layout of this system.

The second section involves the microprogrammable machine itself. The

'machine' is in fact part hardware and part software simulated. The

hardware consists of an arithmetic and logic unit (ALU) built using

components from AMD 's 2900 bit-slice family. The software emulates the

microprogram control unit (MCU) and also interfaces to the control

store (CS). The ALU, MCU and CS together form the microprogrammable

machine. A software simulator that produces the effect of the hardware

and therefore allows microcode testing to be carried out independently

of the hardware, is included for debugging purposes. Figure 1.2 gives a

general outline of the microprogrammable machine.

Main

Memory

MCU

Simulator

Program

Control

Store

Figure 1.2

THE MICROPROGRAMMABLE MACHINE

(-49-)

ALU

Hardware

Design Details

SYSMW Part 2

~~ The Target Machine definition Program.

Micro1, the first of the microcode development programs, enables t he

user to describe the target machine, ie. the machine on which the

microcode is going to run. This is done by setting up two files, called

the format fi le and the definition f ile. The only other vital

information required is the bit width of the microinstruction.

A third file is generated by the program and contains information from

both of the input files. This table file, containing the basic machine

definition, i s used as input to the second microcode development

program, Micro2. The basic file layout of Micro1 is shown in figure

1.3.

Format

Templa te

File

Definition

File

Micro 1

Program

Figure 1.3

THE MICR01 PROGRAM FILES

(-50-)

Mnemonic

Definition

File

Help

File

resign retails

SYSMW Part 2

The Micro 1 program is designed around the following basic algorithm:

Pegin

End.

Assign all the necessary files

Check to see if the helpfile is to be included

While it is not the end of the session do the following

Print out the main menu

Then either set up a new file

Or update an existing file

Or print out one of the f iles

Or set up the table file

Or ask for help

Or terminate the session

Close all the assigned files

A few preliminary functions have to be performed before the core of the

program code may be executed. The format, definition and table files

have to be linked to their real f ile names. The helpf ile facility may

then be included at the request of the user.

The main menu options, printed out along the top of the screen, help

the user to select the desired operation. When using the system for the

first time, new format and definition files would have t o be created.

The user is led through the various routines with the aid of prompts,

running under a menu driven system. The information in either of these

files can then be updated if necessary. These updates are carried out

on one record at a time (the record structures are discussed later in

this section) and again the user is led through the routines with the

aid of menus and prompts .

' TURBO ' Pascal [TUR], the language in which all the SYSMW software is

written, differs from standard Pascal in the way in which it handles

(- 51 -) Design Details

SYSMW Part 2

its files. In standard Pascal, the files may be opened for input only

or output only. In TURBO however, the files may be opened for both

input and output at the same time, and information in a record may

therefore be read, updated and re-written very easily. TURBO also

caters for the random access of records in the files using a 'seek'

function, and records are therefore easily found, read, updated and re

written to the files.

What follows is a brief outline of the composition of the three files

used during this phase of the microprogram development.

The format file consists of records that have the following structure:

(1) A format number, which is a unique number for each different

format.

(2) A description, which is a short string that helps the user to

identify the specific format.

(3) The actual format, which contains the information regarding

active bits, ie where the bit pattern using this format is to be

placed in the microinstruction. It therefore defines where the

various micro-orders are to be placed within the microinstruction.

(4) A delete field, which is a Boolean variable that records

whether the record has been deleted or not.

(5) An integer field, which holds the length of the active fields

for the format.

The fields of the formats entered by, and visible to the user, are

shown below:

Format number: 6
Description:

Format:

2901-alu-function

42x 3a 11x

(an x corresponds to a don't care field)

(-52-) Design Details

SYSMW Part 2

This implies that mnemonic definitions using this format, would have 3
bit wi de binary values that fit into a 56 bit wide microinstruction,

starting at position 43.

The definition file consists of records that have the following

composition:

(1) A format number, which is an integer which points t o the

format description that this mnemonic definition uses. This field

forms the connection between the records in the format file and

the records in the definition file .

(2) A mnemonic, which is a string that holds the mnemonic name.

These names would normally be chosen such that they clearly

reflect the function that is to be performed. This enables the

microcode to be understood more easily.

(3) A value field, which holds the binary value associated with

the mnemonic. This value field will be inserted in the

microinstruction at the micro-order position given by this

mnemonic's associated format.

(4) A delete fie l d, which is a Boolean variable that records

whether that record has been deleted or not.

These mnemonic definitions are generated by the user in the form given

below:

M1emonic: AND

Value: 110

Format no.: 6

This example mnemonic 'AND' uses format number 6 as a template and has

the binary value '110'. other mnemonics could also use the same format

template.

(-53-) Design Details

SYSMW Part 2

The structure of the table file records is given below:

(1) A mnemonic from the definition file.

(2) Its associated binary value from the definition file.

(3) The corresponding format from the format f ile. This format is

obtained by using the format number associated with the mnemonic

and then searching the format file to find the appropriate format

template as explained below.

The format and definition files may be listed to either the screen or a

printer , enabling the user to verify their contents. Once the user is

satisfied that the information contained in these files is correct, the

procedure to generate the table file may be invoked. This routine works

through the definition f ile one record at a time collecting the

necessary information for a table file record. The 'mnemonic' and the

'value' are obtained from the present definition f ile record, while the

'format' has to be looked up in the format file. The ' format number'

from the definition file record provides the necessary link to enable

the correct format to be inserted into the table file record. The

records are written to the table file one at a time, as they are set

up. Checks are made to see that the 'active' part of the format and the

length of the 'value' field are the same. An error is also reported if

the corresponding entry in the format file is not found.

For the example of the mnemonic 'AND', the table file entry would read

as follows:

Mlemonic: AND

Value : 110

Format: 42x 3a 11x

Whenever the mnemonic 'AND' is encountered in a microinstruction

definition, the value '110' will be inserted in the microcode starting

at position 43.

(-54-) Design Details

SYSMW Part 2

The first entry in the table file contains the width of the

microinstruction, completing the information necessary to describe the

target machine.

When input is required from the user during the execution of Micro 1 , an

option exists for invoking the help facility. The help message, read in

from a help file, is listed on the screen. A help facility implemented

in this way is particularly useful when there are numerous help

messages as it makes the program code more readable. Messages in the

helpfile are arranged in the order in which they are most likely to be

requested during a typical session, to keep search times to a minimum.

The help messages, when listed to the screen, overwrite the characters

that are in that section of the screen. When the message is erased, the

previous information in that section appears to have been lost. This

problem is solved by copying the information to another section of the

'screen'memory, corrupting the screen with the help message and then

copying the old information back to the active screen. (The

implementation of this idea is discussed later in more detail.)

Once the target machine has been described using Micro1, the microcode

for this machine can be developed using the Micro2 program. The table

file is used to convey the target machine information to the Micro2

program.

A listing of the Pascal code for the Micro 1 program is given in

appendix A.1 and A.2.

(-55-) Design Details

SYSMW Part 2

~~ The Microcode definition Program.

Micro2 is the second of the programs in the machine-independent

microprogram development system. It allows the user to write the

microcode more easily, using the mnemonics that were defined during the

execution of the Micro1 program.

The table file that was set up during Micro 1 , is used as input to this

program, along with the user generated file of microcodes . The program

produces several output files, these include a label file, a decode

file, a control store file and a hexadecimal instruction file. Refer to

figure 1.4 for a basic layout of the files used.

Decode

File

and

Label

File

Micro 2

Program

Figure 1.4

Control

Store

THE MICR02 PROGRAM FILES

(- 56-)

Help

File

Instruction

File

I:esign I:etails

SYSMW Part 2

The algorithm on which the Micro2 program is based is as follows:

Begin

Enter the name of the table file.

Then include the helpfile if requested.

While it is not the end of the session do

Print out the main menu

Then either assign the workfile

Or edit the work file

Or list the files

Or assemble the microcodes

Or ask for help

Or terminate the session

Close all the assigned files

End.

Before the main part of the program can proceed, a few precursory

functions have to be performed. The name of the table file, from the

Micro 1 program, has to be entered and all files have to be linked to

their real names. The inclusion of the helpfile facility may be

requested.

The user is able to select one of the options given in the main menu.

The first task would be to assign the work file name The work file is

the name given

microinstructions

collectively to

and the other files

the file

generated by

of user entered

this program. Ch

using the system for the first time one would have to set up the file

of microinstructions. This file is created using the user-friendly,

menu driven editor resident in Micro2. The microcodes entered in this

way are stored in memory in the form of a dynamically linked list. TWo

physical files are needed to store the information on disk and these

are called the code file and the micro file. The code file consists of

records that contain the macro-instruction mnemonic, the number of

(-57 -) !:esign !:etails

SYSMW Part 2

microinstructions for this macro-instruction and various other fields.

The macro-instruction would be a command in the language that the

microprogram is intended to emulate.

The micro file holds all the microcodes, stored in such a way that if

the first macro- instruction has five microcodes then the first five

records in the code file hold these microcodes . If the second macro

instruction has three microcodes then the next three records in the

micro file hold these microcodes and so on. Figure 1.5 illustrates this

structure. These two files are collectively referred to as the macro

instruction definition file. The updating facilities allow the contents

of this file to be inspected and altered if required. The 'random

access' facilities of TURBO Pascal were used to simplify this operation

as is described in the section on the Micr01 program.

Code file Micro file

LDA 3E (1) Microcode mnemonics

3 PTR (2) Microcode mnemonics

(3) Microcode mnemonics

STA 4F (4) Microcode mnemonics

2 PTR (5) Microcode mnemonics

(6) Microcode mnemonics

AND 20 (7) Microcode mnemonics

4 PTR (8) Microcode mnemonics

(9) Microcode mnemonics

Figure 1.5

LAYOUT OF THE CODE AND MICRO FILES

(-58-) Design Details

SYSMW Part 2

Once the microcodes have been entered correctly they can be assembled

into binary micro-instructions for loading into control store. The

assembly is performed by a two pass assembler. It accepts input from

the table file and from the macro-instruction definition file. A jump

table file is used by the micro-assembler to patch forward references

during a second pass. The decode file, also generated during the

assembly, acts as the look up table when the microprogram is running,

as it allows the opcode to be exchanged for an address in the

microprogram where the

to be found. The

microcode sequence

hexadecimal file

for that macro-instruction is

contains the microcodes in

hexadecimal form, as this is sometimes easier for de bugging purposes.

The assembler reports errors if duplicate labels have been defined or

if there is a jump to an undefined label within the microprogram.

What follows is a brief outline of the structure of the 6 files used

during this phase of the microprogram development.

The table file has already been discussed in the section on the Micro 1

program.

The macro-instruction definition file consists of records that have the

following composition:

(1) A string field holding the name or mnemonic of the macro

instruction or the micro-routine. A macro-instruction is a command

in the language which the micro-code is to emulate

micro-routine would be an associated function needed

while a

in that

language ego a startup or boot routine or a fetch cycle in an

assembly language implementation.

(2) The actual hexadecimal opcode associated with this macro

instruction mnemonic. A micro-routine has no associated mnemonic.

(3) A delete field, which is a Boolean f lag that records whether

the record has been deleted or not.

(-59-) resign retails

SYSMW Part 2

(4) An integer field that stores the number of microinstructions

for this macro-instruction or micro-routine.

(5) A pointer to the first microinstruction in the sequence of

microinstructions for this macro-instruction.

Each of the microinstructions are held in records that have the

following structure:

(a) A microcode field that contains the micro-order mnemonics for

this microinstruction. These mnemonics were defined by the user

during the execution of the Micro 1 program.

(b) A position field that holds the random access position of the

micro-order mnemonics in the table file.

(c) A pointer that points to the next microinstruction for this

macro-instruction or micro- routine.

The information in these records is presented to the user in the

following format:

Macro-instruction: LDA

Hexadecimal opcode : 3E

Micro-codes:

Areg il0f/Jf/Jf/J & Breg il0f/Jf/Jf/J & RAMA & ZB & ADD & CO= 1 & I - U & YB- AR

DR-DB & DZ & OR & Breg ilf/Jf/Jf/J1 & RAMF & I-M & CY

NOP & J UMPADDR iI fetch & NOINCR & UNCOND

The system assumes that the micro-order mnemonics that form one

microinstruction are all on the same line.

The structure of the records in the decode file is shown below:

(1) A mnemonic field that contains the macro-instruction mnemonic.

(2) An opcode field that stores the opcode associated with the

mnemonic.

(3) A microaddress which is an integer that points to the position

in the control store where the microcode for that instruction

(-6f/J -) Design Details

SYSMW Part 2

starts.

When listed, the information in these records appears as follows :

Mnemonic: LDA Opcode: 3E Address: 19

The label file is a temporary file used by the two pass micro-assembler

and each record contains the name of the label and its corresponding

address.

The instruction file, which contains the hexadecimal equivalents of the

binary microinstructions, is simply a file of text.

The binary file

consisting of 31

of microinstructions is a file of arrays,

bytes. The first byte contains the width of

microinstruction while the remaining 30 bytes forms a string of

bits which holds the microinstruction.

each

the

240

The macro-instruction definition file, the hexadecimal file of

microinstructions, the binary control store file, and the decode file,

may all be listed to either the screen or the printer.

During the execution of Micro2, when input is required from the user,

an option is available to invoke the help facility. The help facility

has been implemented in the same way as described for the Micro1

program .

A listing of the Pascal code for the Micro2 program is given in

appendices B.1 through B.3.

(- 61 -) Design Details

SYSMW Part 2

~~ The Development System in Use.

The Micro l and Micr02 programs together form a machine-independent

microprogram development system that can be used to develop microcode

for any microprogrammable machine. This applies to both vertical and

horizontal microinstruction designs. The extent of the flexibility of

the system is demonstrated by the fact that it could even be used to

assemble fixed -instruction set mnemonics for a monolithic machine.

As has been shown, Microl is used to describe the target machine while

Micr02 is used when developing the actual microcodes. These two

programs

Computer

were used as the basis of a practical assignment, for the

Science honours class at Rhodes University.

The assignment involved the writing of a few microinstructions for a

simplified computer processor. The students were told to assume that

any requirements for branching within the microprogram may be neglected

and that all timing requirements for preventing race conditions had

been satisfied. The assignment was to be accomplished using Micro 1 and

Micr02 and involved three stages. Firstly the schematic diagram of the

hypothetical processor had to be studied and suitable formats for all

necessary micro-orders had to be deSigned . Secondly students were to

use the micro-order tables provided, to define mnemonics for the codes

that they would require in their micro-order files. The tables were of

the type found in the standard data sheets which accompany bit-slice

chips, and so made the exercise more realistic. Thirdly they were to

use their mnemonic definitions to write microprogram segments to

perform an 'instruction fetch cycle', a 'load immediate value into the

accumulator', and a 'load the value found at a given address into the

accumulator'.

On the whole the students managed to familiarise themselves with the

microprogram development system easily, and most of them were able to

(- 62-) Design Details

(j)
n
::I: M:icropr~ram

t'l

~
>-cl

Control

lhit
H
n MCU
t:j
H
~
(")

~

::x:l

I
~

0'>
3: ;:2

w
I

0 (Jq
'T) C

f
Control

..,
::r!

(1)

t'l

'" 0'>
::x:l
0 n

~
::x:l

n
H
::x:l
n c::

In' H

en >-cl
.....
'§

In'
c1"
\ll
en

,

~

"

L-

Macro-instruction

Register

MIR

~

>Gc~v
~

Microprogram

Counter

MPC

1
Control

Store

t
Microinstruction

Register

UIR

COntrol
~

Array

of

16

Re~isters

J ~

Ery3
""-

G-~t~ ~lat~

I ,.,,"' I

7' Gentrol

r
Micro-status

Register

~

Control -----i

j,

~
~ J

r-

I ,-.,~ I
J,

Flags Zero

Macro-status Overflow

Register Carry

Negative ,

r
I=l
L:J~'

Address ~

Re:;ister I

t-

l1>in

~ry

(j)
>-<

~
iii' ..,
c1"

I\)

SYSMW Part 2

complete the prescribed tasks.

Figure 1.6 is a copy of the schematic diagram of the 2901 based

processor circuit that was used in the exercise.

The students were then asked to write a 'discerning article on a user's

view of the microprogram development system'. A summary of the main

points raised, in the seventeen articles received, is given below. In

the case of suggested system changes, brief reasons are given as to why

these were implemented or not .

Points which received favorable comment:

(1) The double check at the end of an update session to see

user was sure that he wished to delete the records was

safeguard.

(2) The help files were very useful.

if the

a good

(3) The help messages appeared on the same screen from which they were

called, making the interpretation of the help messages a lot

easier.

(4) The option of being able to list files to either the screen or the

printer and the check to see if the printer was ready, was good.

(5) The prompt menus were very useful and quite self explanatory.

(6) The good menu layout and s i mple hierarchy of the system made it

easy to use.

(7) The error messages were very useful and it was good that some

checks were made before actual assembly.

(8) This was an excellent way to be introduced to actual microprogram

writing.

(9) It was found that the development system was extremely useful for

someone who has only just started microprogramming.

(10)It was a good tool for the specification of micro-codes.

(11)The simplicity of the system was commended.

(-64-) Design Details

SYSMW Part 2

Criticisms and general suggestions that were worth implementing.

(1) The programs aborted if the input files were not found. This has

been changed to report a non-existing file . If no file name is

entered, the program now terminates normally.

(2) The help message sometimes erased part of what was already on the

screen. A system of screen copying had t o be implemented to

alleviate this problem. A more detailed explanation of this

feature follows at the end of this section.

(3) One should have been able to insert and delete microinstruction

lines during the update routines. This has been implemented.

(4) If a duplicate format was entered, nothing was said as to what

action had been taken. The system now reports the error and

ignores the duplicate.

(5) The system needed a user manual to elaborate on the system

functions and the sometimes cryptic hel p messages. A user's guide

appears as a section in this report .

(6) There should have been a system start screen that would give the

user some introductory information. A page giving the name of the

program and the details of the author appears on the screen at the

start of each program. This is followed by a brief explanation of

the program including information on the files needed for that

program.

(7) One should have been able to stop assembly by pressing a key.

Holding the space bar down now halts assembly . The user is then

asked if he wishes to abort or continue the assembly.

Criticisms and general suggestions that were not worth implementing.

(1) Only one line of micro- order mnemonics per microinstruction was

allowed . It was felt that this was not a serious constraint. Some

form of line extension symbol would have made the micro-codes less

readable.

(2) Files could only have records inserted at the end. This has no

influence on the smooth running of the system and was only

(-65-) Design Details

SYSMW Part 2

suggested for aesthetic reasons.

(3) The system needed to be more user friendly. There is a balance

between user friendliness for the new user and the tedium of

having too much text on the screen for the more experienced user.

The user's guide, not available at the time, should also assist in

complementing the sometimes cryptic help messages.

(4) One could not change the microinstruction width from within the

programs . It would be dangerous to allow this kind of change as

the width of the microinstruction is a fundamental quantity and

should be decided upon before embarking on microcode development.

(5) There were no checks to see if the binary numbers entered amongst

t he micro-order mnemonics were the same length as their associated

format fields defined earlier. The system would be significantl y

slowed down if such a check were implemented, as a further file

would have to be searched and records checked .

(6) There should be no distinction between upper and lower case. This

is a contentious point as some feel there should be a distinction

and others do not. It was decided to leave the decision to the

user who could use either upper or lower case for the mnemonic

names.

(7) The questions needed to be more user friendly . Again there is a

playoff between user friendliness and too much text.

(8) More help information in the help messages was necessary. The

user's guide should provide the necessary extra information.

(9) Another kind of separator between the micro-order mnemonics should

have been used instead of the '&'. This is a personal preference

and it was therefore decided to leave the '&'.

This broad cross se?tion of suggestions has been included in this

report to give a general idea of the usability of the system.

The screen copying system, that allows the help messages to be listed

on the same screen from which they were called, deserves further

(- 66 -) Design Details

SYSMW Part 2

explanation. The 'IBM PC' reserves space in its memory for four

screens . Normally only screen 0 is used as this is initialised as the

active screen on which all operations are performed. Screen 0 starts at

address $B8000 and screen 1 starts at address $B9000 . By defining two

arrays on top of these reserved areas in memory, using the 'absolute'

command in TURBO Pascal [TUR] , one can gain access to them. Before the

help message is printed out, screen 0 is copied across to screen 1.

Screen 0 can then be partially overwritten by the help message. When

the space bar is pressed by the user to clear the help message, the

information in screen 1 is copied back to screen 0 and the original

data is therefore returned to the active screen. The cursor also

returns to the point from which the help message was invoked.

Having developed the necessary microcodes, they can be verified through

interpretation on a microprogrammable machine.

~~ The Microprogrammable Machine.

The following sections form a discussion of a micro programmable machine

called Triple-M (Mike's Microprogram Machine) built around the 'IBM'

Personal Computer.

In general a microprogrammable CPU consists of three main parts, namely

an arithmetic and logic unit (ALU), a microprogram control unit (MCU)

and a control store (CS) . This general layout has been discussed in

Part 1.

The Triple- M's CPU consists of the usual ALU hardware but is unique in

that the MCU and CS are simulated by software running on an 'IBM PC'.

One of the main features of this particular configuration is that the

control store memory and the normal user memory are both in the same

(-67-) Design Details

SYSMW Part 2

physical memory space . The ALU hardware and MCU software communicate

with each other via three Intel 8255 Programmable Peripheral Interfaces

(PPI 's). These PPI 's each have 24 programmable Input I CUt put lines

giving a total of 72 communication links.

The system is implemented with a single pipeline register called the

Micro-Instruction Register (UIR). The microinstructions are loaded from

the control store into the UIR and are then executed. The control

signals for the MCU are therefore readily available while the ALU

control signals have to be sent via the 8255 interface. The address in

the control store of the next microinstruction to be executed is held

in the Micro-Program Counter (MPC). Except in the case of a branch

within the microprogram, the MPC is usually incremented to enable the

next microinstruction to be fetched. It is possible to load the UIR

form the Micro-Latch instead of from the control store. This Micro

Latch is used in the implementation of 'inline' microcode which is

discussed in more detail in section 2.2 . Here the Micro-Latch value is

loaded from the main memory via the Data Register .

Figure 1.7 is a schematic diagram of the control paths of the Triple-M

machine.

The data paths involve access to the main memory and access, via the

interface system, to the ALU. An Address Register (AR) and Data

Register (DR) have been implemented as buffers for the main memory and

they can be seen as acting as the address and data busses of a

conventional machine. If the value in the Data Register is an

instruction, it is loaded into the Macro-Instruction Register (MIR) .

The system then decodes this instruction (using the i nformation in the

decode file from the Micro2 program) to calcul ate an address in the

control store where the microcode sequence, to emulate this

instruction, begins. The address is loaded into the MPC and the

corresponding microinstruction is read into the pipeline register, UIR.

(-68-) Design Details

Control

Store

Address

Register

Micro

Latch

Mi croprogram

Counter (MPC)

t

t

Pipeline

Register

(UIR)

Data

Register

t
Main Memory

Figure 1.7

)

SYSMW Part 2

Microprogram

Control Unit

Software

1
8255 PPI

Interface

1
Arithmetic

Logic Unit

Hardware

CONTROL PATH SCHEMATIC OF THE TRIPLE-M MACHINE

(- 69-) Design Details

Address

Register

1

"-

--

Microprogram

Contro l Un it

Softwar

f
Macro-instruction

Register (MIR)

'l'-
I

Data

Regist er

1
Main memory

Figure 1.8

SYSMW Part 2

D-buffer Y-buffer

1

r
8255 PPI

Interface

r
Arithmetic

Logic Unit

Hardware

DATA PATH SCHEMATIC OF THE TRIPLE-M MACHINE

If the value in the Data Register is not an instruction, t hen it is

either loaded into the Micro- Latch or, more usually, into the D-buffer.

(- 70-) r:esign r:etails

SYSMW Part 2

The D-buffer is the input buffer to the ALU. CXlce the ALU has per formed

the required operation, t he result (if any) can be picked up on the Y

buffer. This Y-buffer value may then either be loaded into the Address

Register or the Data Register. Figure 1.8 is a schematic diagram of the

data paths of the Triple- M machine.

Although the Triple-M machine is a unique microprogrammable processor,

the procedures in the MCU software have been designed to enable other

types of hardware ALU's to be used with the system. Such an

implementation would involve a certain amount of programming and the

construction of the ALU itself. The procedures in the MCU software

that control the sequencing functions could also be changed to simulate

other controller/sequencers.

The present version of the MCU requires the first 24 bits of the

microinstruction to be reserved for its functions. These functions have

been

those

designed with

provided by

the Triple-M machine in mind but were

Advanced Micro Devices ' Am291il9 and

based on

Am2911il

controller/sequencers.

below and one should

'actions' listed.

The Triple-M controller functions

refer to figures 1.7 and 1.8 t o

are tabulated

clarify the

~ field to hold ~ jump address or ~ constant value:

11 to 112 Action ----
Binary address Specified by 114 and 115

Increment the Micro-Program Counter:

113 Action

Increment

No increment

(-71-)

M1emonic

None

M1emonic

1NCR

NOINCR

Design Details

Branching:

114 115 ----
00

01

10

11

M=mory access:

116 117 118

Action

No Branch

Unconditional

Conditional

Constant field

Action

No memory access

Data register -> D-buffer

Y- buffer -> Address register

Y-buffer -> Data register

Data register -> Micro Latch

Micro Latch -> UIR

000

001

010

011

100

101

110

111

Data register -> MIR and decode

Data register -> Address register

Clock field:

119

o

Free:

120 to 124

Not used

Action

Don't send a clock pulse

Send a clock pulse

Action

None

(-72-)

SYSMW Part 2

M'lemonic

NOBRN

UNCOND

COND

CONST

M'lemonic

NMA

DR-DB

YB-AR

YB-DR

DR-VIR

MPC-AR

DR- MIR

DR-AR

M'lemonic

CN

CY

M'lemonic

None

Design Details

SYSMW Part 2

The rest of the microinstruction is available for control of the ALU

hardware . The Triple-M machine's ALU, constructed around four Am2901

processor slices, requires a further 32 control bits giving a total

microinstruction width of 56 bits. The layout of this microinstruction

format is given in figure 1.9. This format was decided upon with the

aid of the tables of functions that accompanied the Am2900 family of

bit-slice chips. An abridged copy of these tables is given in appendix

F for completeness.

32 bits

I
24 6 7 2 3 I 3 3 4 4

I
MCU 2904 2901 's

r
56 bits

Figure 1.9

THE MICROINSTRUCTION FIELDS

1 .6 : The Arithmetic Logic lklit hardware.

The ALU hardware is constructed using components f rom AMD's Am2900 bit

slice family. The heart of the ALU consists of 4 Am2901B bipolar

microprocessor slice. Each of them is four bits wide giving a 16 bit

wide processor . An Am2902A high-speed look-ahead carry generator i s

used to provide the look ahead over the 16- bit word. An Am2904 status

and shift control unit replaces most of the other medium scale

(-73-) Design Details

SYSMW Part 2

i ntegrat i on circuits that are normally required around the ALU .

The Am2901 B slice

intended for use

is designed as a high speed

in CPU's and for other

cascadable element

applications . The

microins truction f lexibility should allow efficient emulation of almost

any digital computing machine. The Am2902A look-ahead carry generator

has been designed for use with up to four pairs of carr y propagate and

carry generat e signals and is therefore i deally suited for use with use

D-bus

Am2901

Y-bus Clock

f
Control Flag

T
, .

- - - - - - - - --- - - - -- ,

Am 2901 Am2901

- - - -

1 t
Am2902 Am2904

Figure 1.10

SCHEMATIC DIAGRAM OF THE ALU

(- 74 -)

I

I

I

Am2901 I

I

I
I
I

- - - - - - - - "

I/~ -

Desi gn Det ails

SYSMW Part 2

with the four 2901 ALU slices. The Am2904 i s designed to perform all

the miscellaneous functions which are usually performed in MSI (medium

scale integrated circuits) around the ALU . These include the generation

of the carry-in signal to the ALU, the various types of shift linkages

and the storage and testing of the ALU status flags. There are two

separate status flag registers, a microstatus register and a machine

status register [ADV] .

IBM 1/0 slot

u
8255 PPI 8255 PPI 8255 PPI

1- __
---'

1 r 1 1 r
D-bus Y-bus Clock Control Flag

Figure 1.11

CONNECTIONS BETWEEN THE ALU AND MCU

(- 75-) Design Details

SYSMW Part 2

These chips are connected in the s tandard way suggested in each of the

chip specifications and figure 1.10 represents this basic layout.

Detailed circuit diagrams are given in appendix H.

Three Intel 8255A Programmable Peripheral Interface (PPI) chips were

used to connect the ALU hardware to the MCU software. The Intel 8255A's

are general purpose programmable Input/Output devices designed for use

with Intel microprocessors [GOLJ.

The various connections between the ALU and the MCU are shown

schematically in figure 1.11. The PPI's are accessed at addresses $3E0

to $3EB which are free in the I/O address space [IBMJ. These address

are decoded using a NAND gate and a few NOT, NOR and OR gates . The

decoding circuitry is given in appendix H along with more detailed

circuit diagrams of the interface hardware.

rigure 1.1 2

THE BREAD BOARD ALU

(-76-) Design Details

SYSMW Part 2

The ALU and interface hardware was initially built on 5 experimental

bread boards giving rise to the 'birds nest' shown in figure 1. 12. The

circuit as shown actually worked very well but proved unsatisfactory as

t he connections were so easily distur bed.

The final circuit was wire wrapped, using a 'just wrap' wire wrapping

tool, on an IBM prototypi ng board . This proved far neater and more

reliable. Figures 1.13 shows t he ALU board which easily plugs into any

one of the 1/0 slots in the IBM's mother board.

Figure 1.1 3

THE WIRE WRAPPED PROTOTYPING BOARD

(-77-) Design Details

SYSMW Part 2

Figure 1 .1 3

THE WIRE WRAPPED PROTOTYPING BOARD

(- 78-) Design Details

SYSMW Part 2

Figure 1.14 gives a break down of how the 1/0 lines of the three PPI 's

were assigned . There are three 8-bit wide ports A, Band C for each of

the PPI 's. Ports lA , lB, lC and 2A give the required 32 bits needed for

the hardware control s ignals. The lower nibble of port 2C i s an input

8255 PPI ports

lA

~ 1 B
Am2904 13 lines

lC" - Am2901 19 lines

2A

72 lines 2C r- Clock and CT

2B

- D-buffer 16 lines
3A

3B

- Y-buffer 16 lines
3C

Figure 1.1 4

PORT ASSIGNMENT DIAGRAM

(- 79-) Design Details

SYSMW Part 2

buffer used t o read the status flag return signal from the Am2904 . The

upper nibble is used to send the clock pulse to the hardware . Ports 2B

and 3A are used for the 16-bit wide D-buffer and ports 3B and 3C for

the 16-bit Y-buffer.

The software t hat controls the PPI's is described in the section on t he

MCU emulator.

1 .7 .:.. The Microprogram Control Unit emulator.

Cont r o l Progfile
Store

/ ~
Emula tar

~
Help

Program File

/
Main Decode

Memory File

Figure 1.15

THE EMULATOR PROGRAM FILES

(-80-) Design Details

SYSMW Part 2

The Emulator is the software that produces the effect of the

microprogram control unit (MCU). It also contains the routines that

allow easy debugging and controlled execution of the microprogram.

Microinstructions are loaded from the control store file into the

pipeline register (UIR) and executed. The emulator assumes that the

macro-program to be run has already been assembled, and is resident in

a file called the progfile. The program instructions or opcodes are

read from this file into main memory. Main memory is a file of integers

Simulating a 16 bit wide memory. Each address used to access the file

therefore locates one 16 bit memory location. The decode file, set up

by the Micro2 program, is used to find the micro-routine in control

store for each macro-instruction or opcode. Figure 1.15 shows the basic

layout of the files used.

The Emulator program is based on the following algorithm:

Begin

Include the helpfile if requested

Assign the control store and decode files

Ask whether the user wishes to simulate the hardware

Ask for the name of the macro-program to be run

Load the macro-program into the 'main memory'

While it is not the end of the session do

Begin

Write out the main menu

Then either run the program

cr single step through the program

cr edit the micro-codes

cr trace the execution

Or look at specific register values

Or change the D-bus value

Or change the MPC

(-81-) Design Details

Or peek memory locations

Or ask for help

Or terminate the session

SYSMW Part 2

End

Close all the assigned f iles

End.

A few preliminary functions have to be performed before the main

program

request

linked

may commence. The helpfile facility may be included at the

of the user. The control store and the decode files have to be

to their real file names. The user may also choose whether to

simulate the hardware or not, and thereafter provide the name of the

macro-program to be run. The system loads the macroprogram into the

main memory file, starting at address 2000.

The main program allows the user to select one of the options given in

the main menu. The trace function may either be active or inactive. The

address at which the macro-program begins should be entered using the

'D-bus' command so that the program counter may be initialised. In most

cases this will be 2000 as this is where the loader puts the

macroprogram in main memory. A 'startup' routine in the microprogram

should be designed such that it takes the value on the 'D-bus' and

places it in a hardware register that is to be used as the program

counter. This proved to be the easiest and most logical way of

initialising or updating the program counter. The value of the Micro

Program Counter (MPC) should then be changed to point to the 'startup'

routine in the microprogram. It is possible to either single step

through the microinstructions or to let the program run without

intervention. The user may edit the microcode by changing one

microinstruction at a time. These microinstructions may be executed

again by changing the value of the MPC to point to the 'startup'

routine and putting the appropriate program counter value on the 'D

bus '. The emulator also allows the user to look at specific register

(- 82-) Design Details

SYSMW Part 2

values which proves very usef ul when debugging . A peek option has been

i ncluded to enable the user to examine specific main memor y locations.

He is thus able to check that macroprogram values have been stored

correctly . The memory l ocations may only be viewed and cannot be

updated using this opt ion.

The structure of the control store and the decode files . has already

been discussed in the section on the Micr02 program. The progfile is a

file of integer values in accordance with a 16-bit wide memory.

The helpfile facility is available when input is required from the user

and has been implemented in the same way as described in the section on

the Micro 1 program.

More should be said here about the code that performs the function of

the microprogram control unit. There are five fields in the

microinstruction that control the MCU . The first is a jump field that

may either hold a jump address in the microprogram or it may hold a

constant value. There is an i ncrement f ield that indicates whether or

not the Micro-Pr ogram Counter (MPC) is to be incremented. A branching

field that determines t he type of action to be taken on t he jump

address . A memory access field that controls t he Address Register (AR),

Data Register (DR) , D-buffer, Y-buffer and the Macro-Instruction

Register (MIR) . Finally t here is a clock f ield that indicates whether

or not the hardware is to be accessed. Tables of these functions are

given in appendix F.

To execute one microinstruction the program isol ates each of t hese

micro-orders from that microinstruction and then follows t he algorithm

below: (The reader may refe r t o figures 1.7 and 1 .8)

(-83-) Design Detai ls

SYSMW Part 2

Begin (* execute one microinstruction *)

If the branching field is

'00' then do nothing

'01' then put the jump address into the MPC and load the

microinstruction at this address into the Micro-Instruction

Register (UIR)

'10' then if the tested flag is TRUE do the same as '01' above

else increment the MPC by 1 and load the microinstruction

at that address into the UIR

'11' t hen load the constant from the jump address field into the

D-buffer.

If the memory access field is

'000' then if the clock field is 1 then send the control signals

to the hardware; this operation is performed in the

functions below where the word 'clockfield' is written

'001' then read from main memory at the address in t he address

register and put the data from the data register onto the

D-buffer and clock field

'010 ' then clockfield and put the value from the Y-buffer into

the address register

'011 ' then clockfield and put the value from the Y-buffer into

the data register and store this data at the address

found in the address register

'100 ' then put the value from t he data register into the Micro

Latch at the position given by the value in t he jump

address field, and clockfield

'101 ' then put the value in the Micro Latch into t he UIR and

clock field

'110' then put the data register value into the M3.cro-

instruction register and decode the macro-instruction to

give an address in

microinstruction and put

the microprogram; fetch

it into the UIR; clockfield

that

'11 1' then put the data register value into the address register

(-84-) Design Details

SYSMW Part 2

and clockfield.

If the increment the Micro-Program Counter (MPC) is

'0' then increment the MPC and put the microinstruction at that

address into the UIR

'1' then do nothing.

Ehd (* execute one microinstruction *)

Note that if the system is in 'single step' mode, it will wait until a

command is given before executing the next microinstruction.

Sending the control signals to the hardware is performed by a procedure

containing the interface code that drives the Intel 8255 PPI's. The D

buffer value is also sent and the clock pulse then tells the hardware

to execute those microcodes on the control lines. After the

microinstruction has been executed, the Y-buffer value is read in and

the test flag result (CT) from the Am2904 is obtained. The following

algorithm shows how these events are scheduled.

Begin (* interface code *)

Pull the clock line high

Send the ALU control signals

Send the D-buffer val ue

Bring the clock line low

Read the CT test flag result

Pick up the Y-buffer value

Pull the clock high

End (* interface code *)

The ALU control signals and the D-buffer value are held in the output

buffers of the 8255's. The falling edge of the clock signals the ALU to

perform the desired functions. The ALU performs the operation so

quickly that the test flag result (CT) and the Y-buffer value are ready

long before the program issues the next command to read them in. This

(-85-) Design Details

SYSMW Part 2

effectively means that no handshaking lines are needed to assist the

communication.

Two execution modes have been supplied, namely the 'single step' and

the 'run' modes. In single step mode, the user is presented with

debugging information on the screen. The microinstructions are listed

as they are executed and various register values are given if the trace

mode is active. The user may also employ the 'look' option the view the

.Am2901 register array values. At any point during the execution,

control may be swapped to the main menu where other options may be

chosen before returning to the single step mode to continue t he

execution.

In run mode, the user has no access to debugging facilities. (If the

trace mode is active, the screen will be corrupted and the user will

not be able to clearly see any I/O that the macroprogram is

attempting.) Upon initiating the execution, the screen is cleared and

the user is presented with the normal "external" view of the machine.

He must now perform the usual input/output functions to monitor the

program execution. The option does exist to hold the space bar down in

order to gain a sneak re-entry to the main menu.

The f irst 2000 memory locations in the 'main memory' (addresses 0-1999)

are mapped onto the active screen. Storing characters in these memory

locations causes them to be echoed on the screen . If one of these

memory locations is read by the program, then the system waits for the

user to enter a key from the keyboard . This system provides the user

with a crude form of input/output, without the need for explicit I/O

drivers in the Triple-M machine. Using these ideas the user should

easily be able to perform normal I/O functions.

A· listing of the Emulator program code is given in appendix C.l and

C. 2.

(-86-) r:esign r:etails

SYSMW Part 2

1 .8 : The ALU Simulator.

The Simulator forms a small part of the Emulator software and is

included to allow testing of the microprogram to be done independently

of the hardware. The Simulator therefore produces the effect of the

arithmetic and logic unit hardware.

All the ALU functions are provided, except the complex shift linkage

routines made possible by using AMD's Am2904 in the hardware. Most of

the functions provided by this chip would not be necessary in a normal

programming environment.

The corresponding portion of the micrOinstruction, in this case the

last 32 bits, is passed t o the Simulator, which isolates the various

micro-orders and performs the associated functions. The

controller/sequencer is not aware of whether the micro-orders are being

executed by the ALU hardware or the ALU Simulator because the calling

routine passes the same 32 bits in either case. Dependi ng on whether

the hardware is to be used or not, the bits are either sent to the

hardware or to the Simulator. The Simulator is totally independent of

the controller/sequencer, this being a desirable feature of a true

simulator. The Simulator's registers are implemented as global integer

variables, while the ALU status flags are of type Boolean.

Of particular interest is the implementation of the overflow flag and

the carry flag. These can be set by looking at the values of the

arguments presented to the ALU and the resulting answer. If arguments

of opposite signs are added then there is no overflOW, but if numbers

of the same sign are added and the answer is of the opposite sign, then

an overflow has occurred. The carry flag requires a more complicated

algorithm to compute. If two positive numbers are added then there can

be no carry but if two negative number are added there is always a

(-87 -) Design Details

SYSMW Part 2

carry produced. Adding operands of opposite signs gives a carry if the

answer is positive and gives no carry if the answer is negative. The

same rules apply for subtraction. The two's complement of t he second

argument is added to the f irst argument and the same checks made.

The Simulator program code is listed in appendix C.2.

{-88-} Design Details

SYSMW Part 2

2 : EXAMPLE .

2 . 1 : Introduction.

SYSMW as a whole is perhaps best seen in terms of a practical example.

It was deci ded that assembly language instructions would best

illustrate all aspects of the system.

The two principal types of computer architectures in widespread use are

the stack type architectures and the register architectures [AMEJ. In

the example described below, a minimum set of machine language

instructions was developed to emulate a single register architecture.

An early step in all design implementations is the creation of the

target machine description. In the case of this example the target

machine was SYSMW's Triple-M machine. The Micro1 program was used

initially to define all the format templates for the micro-orders, and

later to define the micro-order mnemonics. Listings of the resultant

format and definition files are given in appendix G.1 and G.1 .

The format and definition files were used to create the table fi le

which contains the complete machine definition. Although it is not

normally necessary for the user to be able to list this file, a copy

has been included in appendix G.3 to afford the reader a view of its

structure.

The Micro2 program was employed to create the necessary microcode

segments to emulate the desired macroinstructions.

All computer systems require some form of boot routine either to

the operating system or to initialise various key registers. In

start

this

example, the 'startup' routine is a microcode sequence that initialises

the value of the program counter. Of the sixteen internal registers in

(-89-) Example

SYSMW Part 2

the Am2901 based ALU, the first was chosen as the program counter,

while the second was used as the general accumulator. The startup

routine reads as follows:

Micro- routine: startup

Micro- codes:

Breg t/!lJ000 & DZ & OR & RAMF & CY ; assume PC is on the D-bus

NOP & JUMPADDR tlfetch & NOINCR & UNCOND & KF

The first microinstruction assumes that the value of the program

counter is present on the D-bus, and this value is loaded into the

register at address '0000'. The user must ensure that the desired

program counter is loaded onto the D-bus using the commands provided by

the Emulator program. The second microinstruction performs a jump to

the 'fetch' routine which is the first of such calls in the long line

of fetch-execute cycles.

The fetch micro-routine gets the next opcode from main memory and it is

shown below:

Micro-routine: fetch

Micro-codes:

Areg t/!lJ000 & Breg t/!lJ000 & RAMA & ZB & ADD & CCl=l & I-U & YB-AR & CY

NOP & DR-MIR & NOINCR & KF

The first microinstruction highlights the ability of horizontal designs

to perform various functions in one microinstruction . The program

counter is put out on the Y-bus and then transferred to the Address

Register. At the same time, the program counter is incremented by one

and returned to its location. The second microinstructions reads from

main memory at the address given in the Address Register and puts this

Lil.ta Register value into the t-Bcro Instruction Register (MIR). This

instruction is then decoded (using the information in the decode file)

(-90-) Example

SYSMW Part 2

to give an address in the microprogram where the microcode segment for

that instruction resides. This address is put into the Micro Program

Counter (MPC) which simulates a jump to that address in the control

store .

In all of the microinstructions developed for this system, there is

either a 'I- U' or 'I-M' or 'KF' mi cro-order. The I-U instruction l oads

the test flags (zero, carry, sign, and overflow flags), set by the ALU

operation, into the Micro Status Register, while the I-M instruction

loads the flags into the ~cro status Register. Only the ~cro Status

Register flags should be visible to the macroprogram and it is these

flags that are tested in the conditional branch macroinstructions. The

KF micro- order must be included if one of the load flag instructions

is not used, to keep the Micro and ~cro status Register flag values

from being overwritten.

The 'CY' micro-order is used to indicate to the system that the ALU is

involved in that microinstruction. If CY is not included then the ALU

will not be accessed. This has been implemented to increase the

efficiency of the system so that time is not wasted in sending signals

to the ALU via the involved interface routines, unless this is

necessary. The user should therefore ensure that the CY micro- order is

included if there are other micro-orders in that microinstruction that

require the ALU.

The user may

system, not

employ the branching facilities, made available by the

only to jump to the fetch routine at the end of every

microcode sequence, but also to execute a sequence of microinstructions

in a procedural way .

It is also possible to have looping structures within the defined

micro-routines. The example below decrements a register until its value

is zero. This example could be used as a delay micro-routine.

(-91-) Example

Macro-instruction : DELAY

Hexadecimal opcode :FF

Micro-codes:

:LABl Breg 111111 & ZB & SUBR & NOP & I-U & CY

NOP & u5 & CY & KF
NOP & JUMPADDR IILABl & NOINCR & COND & KF

NOP & JUMPADDR IIfetch & NOINCR & UNCOND & KF

SYSMW Part 2

Note that the Micro Status Register is used to store the flags, and it

is the 'micro zero flag' that is tested in the conditional jump. If the

zero flag is not set, the control returns to the first microinstruction

and the register is again decremented. Once the register is zero, the

last microinstruction is executed, being the usual jump to the fetch

micro-routine.

In all cases labels have to be preceded by a ,. , A ';' denotes the

start of a comment field.

2.2 ~ The Machine Language Instructions.

The macro-instructions developed for the single register type

architecture are listed below:

LDAII ;load an immediate value into the accumulator

LDA ;load the acc from the address in the next memory location

STA ;store the acc at the address in the next memory location

ADDII ; add an immediate value to the acc

ADD ;add the value at the given address into the acc

SUBII ;subtract an immediate value from the acc

SUB ;subtract the value at the given address from the acc

(-92-) Example

SYSMW Part 2

NOT ;invert the accumulator

AND# ;logical AND of immediate value with the acc

AND ;logical AND of the value at the given address with the acc

OR# ;logical OR of immediate value with the acc

OR ;logical OR of the value at the given address with the acc

SHL ;arithmetic shift left of acc

SHR ;arithmetic shift right of acc

JMP ;unconditional jump

JMZ ;jump if zero flag set

JMNZ ; jump if zero flag clear

JMNEG ; jump if negative flag set

JMOVR ; jump if overflow flag set

CMP# ; compare immediate value with ace, set flags, acc unchanged

CMP ;canpare the value at the given address with the acc

A full list of these instructions and their associated microinstruction

segments is given in appendix G.4. MOst of these instructions require a

further memory access to fetch an operand. In these cases the

microinstruction shown below is included as the first in the sequence.

Areg 1~000 & Breg & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY

This is identical to the first microinstruction in the fetch micro

routine, and accesses the memory location following the opcode while

incrementing and storing the program counter.

One further macroinstruction that has not been mentioned is the 'INL'

instruction. This is an extension to the normal assembly language type

instructions and its concept is motivated in Part 1. Briefly, this type

of instruction could prove very useful if the microprogram has been

fixed in ROM and the user then decides that he wishes to implement a

specific operation in microcode. These exotic microinstructions may

then be included in the macroprogram as 'inline' microcode.

(-93-) Example

SYSMW Part 2

The 'INL' macroinstruction and its associated microcodes are given

below:

Macro-instruction: INL

Hexadecimal opcode: 01

Micro-codes

Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO= 1 & I-V & YB-AR & CY

DR-VIR & JUMPADDR 11000000000000 & KF ;DR-LAT

Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=1 & I-V & YB-AR & CY

DR- VIR & JUMPADDR 11000000000001 & KF ;DR-LAT

Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=1 & I-V & YB- AR & CY

DR-VIR & JUMPADDR 11000000000010 & KF ;DR-LAT

Areg 110000 & 8reg 110000 & RAMA & ZB & ADD & CO=1 & I-V & YB-AR & CY

DR-VIR & JUMPADDR 11000000000011 & KF ;DR-LAT

MPC-AR & KF & NOINCR ;LAT-VIR

NOP & JUMPADDR #fetch & NOINCR & VNCOND & KF

Figure 2.1 gives a closer view of the parts involved in the

implementation of this extension.

The first eight microinstructions, in the INL description, are

responsible for loading the inline microinstruction data from main

memory into the Micro Latch. The position in the latch into which the

data is to be loaded is given by the value in the 'jumpaddress' field.

The ninth microinstruction loads the Micro- Instruction Register (VIR)

from the Micro Latch and does not increment the MPC (microprogram

counter). The next microinstruction to be executed is therefore the

'inline' one . This inline microinstruction should allow the MPC to

increment and fetch the next instruction in control store which will be

the tenth one in the sequence shown above. This microinstruction

performs the usual jump to the 'fetch' micro-routine that occurs at

the end of all the microcode segments.

(-94-) Example

Microp rogram

Counter (MPC)

t
Microprogram

Control Un it

Address

Regis ter

\

Data

Register

I
Ma in Memo ry

Figure 2 . 1

)

SYSMW Part 2

Contro l

Store

j
Pipeline

Register

or UI R

Mi c ro

La tc h

THE INLINE INSTRUCTION DATA PATHS

(- 95-) Example

SYSMW Part 2

Listings of the macroinstruction, decode, instruction and control store

files, for this example are given in appendices G.4 through G.7.

The Mini Assembler Program.

A simple assembler was written to facilitate the writing of the

macroprograms. Strictly speaking, it does not form part of SYSMW, as it

has very little to do with the design or execution of microcode.

The assembler, called AssemMW, is a two pass assembler that accepts as

input a

output

text file containing the macroprogram mnemonics. It produces an

fi le containing the machine instruction opcodes and their

associated operands. The decode file from the Micro2 program is used to

provide the opcode values for the mnemonics in the program to be

assembled. Figure 2.2 gives a general layout of the files used.

The algorithm on which the program is based is

Begin

Ehter the name of the control store file

Ehter the name of the source program to be

While it is not the end of the session do

Print out the main menu

Then either edit the object code file

Or assemble the source code

Or print the object code file

Or ask for help

Or terminate the session

Close all the assigned files

Ehd.

(-96-)

as follows:

assembled

Example

Source

File

AssemMW

Program

Object

File

Figure 2.2

THE ASSEMMW PROGRAM FILES

SYSMW Part 2

Decode

File

Although the user is requested to enter the name of the control store

file, it is actually the decode file of the same name, that is used by

the program. The source program to be assembled has to have been

previously entered and must be assigned to a f ile with the extension

'.SeE'. The assembled version of the program will be written to an

object code file with the extension '.OBJ '.

The user is able to select one of the options available in the main

menu. An existing object code file may be edited thus allowing the user

to put values into the main memory when this program is loaded. The

(-97-) Example

SYSMW Part 2

assemble command initiates the two pass assembler that converts the

source code into the object code instructions. The print option lists

the object f ile to either the screen or the printer.

A listing of an example input file is gi ven below:

j Program Test

LDAiI 2 jload 2 into acc

: LAB1 SUBII 1 j subtract 1

JMZ LAB2 j jump if zero to lab2

JMP LAB1 jjump to lab 1

: LAB2 INL

o
8432

1470

256
jEhd Test

jan inline microinstruction fol lows

As in the case of microinstruction definitions, labels have to be

preceded by a ':' and a ' j ' denotes the start of a comment field. The

inline microinstruction shown is one that complements the accumulator

and the decimal values given are converted into the microinstruction

below:

00000000000000000010000011110000000001011011111000000001

The main memory is loaded with the assembled vers i on of the program and

for the example above, the memory locations would read as follows:

(-98-) Example

SYSMW Part 2

M2mory address Value

2000 16

2001 2

2002 64

2003

2004 97

2005 2008

2006 96

2007 2002

2008 1

2009 0

2010 8432

212111 147121

212112 256

Note that the addresses start at 21211210, as this is where the Emulator

program will load all object code segments. The jump addresses are

therefore also calculated with an offset of 212100.

A listing of the AssemMW program code is given in appendix D.

(-99-) Example

SYSMW Part 2

3 : A USER'S GUIDE. ---

~~ Introduction.

This user's guide is divided into four main sections. The first two

concern the programs involved with microprogram development. The third

covers the Emulator and the Triple-M machine's associated functions

while the last briefly discusses the AssemMW program, a macro program

assembler.

Section 3.2 discusses the operating procedures of the Micro1 program

which deals with the definition of the target microprogrammable

machine. Section 3.3 deals with Micro2, the microinstruction definition

program. Section 3.4 describes the operation of the Emulator program

which forms part of the Triple-M microprogrammable machine. Finally

section 3.5 discusses the AssemMW program which is a simple assembler

used to compile the example language developed to test the functions of

the microprogram development system and the Triple-M machine.

3.2 ~ Micro1 Program.

After the start of the Micro1 session, the user is required to supply

the name of a workfile and then has to decide on the inclusion of the

help messages.

For convenience, the work file name is associated with the three

related format, definition and table files. Each of these is assigned a

different extension by the program. For the format file this is '.FMT',

for the definition file it is '.DEF ' and for the table file, '.TAB'.

If the help facility has not been included, only the help message

(-100-) User's Guide

SYSMW Part 2

number is listed and not the help message itself. The user i s required

to consult the helpfile listings to find the corresponding help

message. The information contained in the help messages appears in this

manual and is list ed in appendix E with its corresponding numerical

index. The program response time to a help request is better if the

help messages are excluded.

Main menu:

(N) (U) (P) (S) (?) (ESC)

1 ~
Set up a new file: Print a file:

(F) (D) (?) (ESC) (F) (D) (?) (ESC)

1/
Device:

(S) (P) (?) (ESC)

Update a file:

(F) (D) (?) (ESC)

.1/
Record operations:

(I) (D) (U) (R) (7) (ESC)

Figure 3.1

MICR01 MENU HIERARCHY

(-101-) User's Guide

SYSMW Part 2

Micro1 is menu driven and displays the active menu at the top of the

screen . Figure 3.1 shows the hierarchical layout of the prompt menus.

The main menu is:

(N)ewfile (U)pdate (P)rint (S)etup (?)Help (ESC)Quit

The sub-sections that follow explain each of these options in more

detail.

3.2.1 (N)ewfile option.

On using the system for the first time the user has to set up new

format and definition files.

(N)ewfile allows the user to set up a new format file and/ or a new

definition file. These files are stored under the same workfile name

with different extensions ie.

respecti vely .

SET UP A NEW FILE:

'workf ile.FMT' and 'workfile. DEF'

(F)ormat file (D)efinition file (?)Help (ESC)Quit

If the files already exist, they may be overwritten. (ESC)Quit gets you

back to the 'main menu'.

Usually, the format file option would be chosen first. This option

results in the following menu being printed on the screen.

EDITOR:

«)MJveleft

(ESC)Quit

(>)MJveright « -) Delete

(- 102-)

(Ins)Insert on/off

INSERT ON

(?)Help

User's Guide

SYSMW Part 2

The standard editing keys control cursor movement. The left arrow moves

one character to the left and the right arrow one character to the

right. The delete a character key deletes the character to the left of

the cursor and the Ins key changes between insert and overstrike modes.

(ESC)Quit gets you back to the 'set up a new file' menu.

These editing keys

follow. The first

are active for all the input operations which

of these is a prompt for the user to enter the

microinstruction width.

The width of the microinstruction is an integer value representing the

number of bits that each microinstruction contains. Its value must be

decided upon in the early stages of a new system development.

Once the width of the microinstruction has been entered, the user will

be prompted to enter a numeric identifier (format number), description

and format template definition for each unique microinstruction format.

For example:

Format number:

Description:

Format:

1

2901 ALU

1x 2a 3x

The format number is a distinct integer valued identifier. Records in

the format file are stored according to the format number and checks

for duplicate records are made by comparing format numbers. The user is

responsible for assigning a different format number to each distinct

format. An error is reported if this is not done.

The description is a string expression. It should be chosen to assist

t he user in identifying the format at a later stage, eg o '2901 ALU'.

This field is not used by the system and the user, although it is not

(-103-) User's Guide

recommended, may leave it blank.

improving the readability of the

referencing more convenient.

SYSMW Part 2

It is present for the purpose of

format file and making lat er

The format definition is a templ ate describing the funct ion of the

individual bits in the microinstruction. The letter 'x' represents a

don't care field . Any other letter represents the 'active' part of the

format. For example '1x 2a 3x' corresponds to 'xaaxxx ' . The active

field in this exampl e compri ses bits 2 and 3 . Normally many micro-codes

would use the same format templ ate , as i n t he case of the different

possible ALU functions.

The cycle of entering the format number, description and format

definition is repeated until all format definitions have been recorded .

When the prompt is given to enter the next format number, t he <ESC> key

may be typed to terminate the entries. If <ESC> is typed during a

cycle, the current format definition record is discarded but previous

ones are retained .

The next step

choosing the

is to enter t he definition file records which is done by

(D)efinition file option from the 'SET UP A NEW FILE'

menu. The user will be prompted to enter a mnemonic identifier, value

and format number for each distinct micro-order mnemonic definition.

For example:

Mnemonic:

Value:

Format number:

ALU AND

1010

The mnemonic is a string expression which stores a name to be

associated with a specific bit pattern and format. Each mnemonic must

be unique as the records in the definition file are ordered according

to this field. The mnemonic is therefore the name of a micro-order

(-104-) User's Guide

SYSMW Part 2

which will be used later during the definition of the

microinstructions.

The value field is a binary number representing the bit pattern with

which the above mnemonic is to be associated,

binary number will be substituted for

for example '1010'. This

the mnemonic when the

microinstructions are assembled into binary fields for loading into the

control store. 'N' or 'n' may be typed instead of a binary number, if

the user wishes to insert the binary value into the microinstruction

during the macro-instruction definition stage in the Micro2 program.

The format number is stored as an integer. It specifies the format with

which the mnemonic is to be associated and therefore forms the

connection between the records in the format and definition files.

binary value must be the same size as the active field in the

format. The system checks for this when the table file is

created.

The

given

being

The cycle of entering the mnemonic , value and format number is repeated

until all the mnemonic definitions have been recorded. The <ESC> key

may be typed when the next mnemonic is requested, to terminate the

input session.

3.2.2 (U)pdate option.

Once the format and definition file records have been entered they may

be altered or corrected by selecting the (U)pdate option from the main

menu.

(U)pdate allows the user to change the records in an existing format

and /or definition file. One should not attempt to update records in an

empty file or a file that does not exist.

(- 105-) User 's Guide

SYSMW Part 2

UPDATE A FILE:

(F)ormat file (D)efinition file (?)Help (ESC)Quit

The available updating options are given on the lower level menu .

(ESC)Quit gets you back to the 'main menu'.

Updating the format file puts the following list of allowed operations

on the top of the screen.

RECORD OPERATIONS:

(I)nsert (D)elete (U)pdate (R)etrieve (?)Help (ESC)Quit

(I)nsert allows the user to insert a new format. Inserting

format asks for the format number, a description

definition, in the same pattern as when setting up a new

(D)elete allows the user to delete an existing format.

(U)pdate allows the user to change an existing format.

(R)etrieve allows the user to get a deleted record back.

(ESC)Quit. gets you back to the 'update a file' menu.

and a

format

a new

format

file .

If the (D)elete, (U)pdate or (R)etrieve options are selected, the

system responds by asking for the appropriate format number.

The (U)pdate option presents the record information in the fol l owing

way:

Format number: 1

Description:

Format:

2901 ALU

1x 2a 3x

One is only allowed to change the description and the format

definition, using the editor provided by the system.

(- 106-) User's Guide

SYSMW Part 2

The updating session may be terminated by pressing the <ESC> key. If

records have been deleted during the session, the system will ask the

user if he is sure that he wishes to delete the marked records. If not

the system will go through the records marked for deletion and attempt

to retrieve them. If this however results in a duplicate record then

that record is deleted anyway.

The updating of the

much the same way.

appropriate prompts

records in the definition file is handled in

The same record operations are allowed with

worded differently. This is shown by

corresponding help message given below.

You are updating the definition file.

(I)nsert allows the user to insert a new mnemonic definition.

very

the

the

(D)elete allows the user to delete an existing mnemonic definition

record.

(U)pdate allows the user to change an existing mnemonic definition

record.

(R)etrieve al lows the user to get a deleted record back .

(ESC)Quit gets you back to the 'update a f ile' menu.

3.2 .3 (P)rint option.

(P)rint, the third option in the main menu, enables the user to list

the format and definition files.

The print menu is:

(F)ormat file (D)efinition file (?)Help (ESC)Quit

Both the format and the definition files may be output to either the

screen or the printer as shown in the 'device' menu . (ESC)Quit gets you

back to the 'main menu'.

(-107-) User's Guide

SYSMW Part 2

DEVICE:

(S)creen (P)rinter (?)Help (ESC)Quit

If either of

printed out

get the next

listing.

t he files are listed to the screen, the records

one at a time and the user has to press the space bar

record. The <ESC> key may be typed to terminate

are

to

the

If either of the files are to be listed to the printer, the user is

asked if the printer is ready. One must ensure that the printer is

switched on and is connected before answering, to allow the listing of

the whole file to proceed.

3.2 .4 ~ (S)etup option.

The (S)etup option in the main menu sets in motion the procedures to

construct the table file from the data in the format and definition

files. The table file contains the target machine definition and is

used as input to the Micro2 program.

The '(ESC)Quit' option may selected from the main menu to terminate the

session and exit the Micro 1 program. If the format or definition files

have been changed, the system will ask i f the user wishes to set up the

table file. One may answer 'no' if for some reason one does not wish

t he (S)etup routine to be executed, for example, i f the format and

definition file inf ormation has not been completely entered or the

table f i le has just been created.

(- 108-) User's Gui de

SYSMW Part 2

3.2 .5 .:.. Error messages .

Below is a list of the error messages encountered during execution of

the Micro 1 program, with a brief explanation of each of them.

Error 1

Error 2

Error 3

Error 4

Error 5

Integer value expected. The system expects the input to be an

integer and must therefore contain no non-numeric characters.

Invalid format . Various checks are made to see if the formats

entered are valid. The number of bit s specified must tally

with the widt h of the microinstruction and there must be at

least one active field in the format .

Binary value expected. The system expects the number to be

expressed in binary and it should therefore only contain 0's

and 1 ' so

Duplicate format. TWo records that have the same format

number are not allowed.

Duplicate mnemonic. The micro- code mnemoni cs must be unique.

Duri ng the (S)etup option the following error messages may appear.

(1)Error with mnemonic: XXXX. Format number XX not found. Here the

format to be associated with a mnemonic definition does not exist .

(2)Error with mnemonic: XXXX. The binary field of the mnemonic and the

active part of the format are not the same length. This record is not

included in the table file and the error should be rect ified and the

routines run again.

(3)The file(s), XXXX.FMT and or XXXX.DEF do not exist. Both of these

files are necessary for thi s (the Setup) procedure. The format and

definition files must be present in order for the table file to be

created.

(-109-) User's Guide

SYSMW Part 2

3.3 ~ Micr02 Program.

At the start of the Micr02 program session, the user is required to

supply the name of the table file that was set up during the Micr01

program. The system assumes that the fi lename given has the extension

'. TAB' and so only the file name stem has to be entered. The user may

then select whether he wishes to include t he help messages. The help

messages are listed in appendix E.

Micr02, like Micr01, is menu driven and the active menu is displayed at

the top of the screen.

Main menu:

(W) (E)

/
Record operations:

(N) (I) (D) (U)

(P) (A) (?)

(R) (?) (ESC)

Printer menu:

(C) (I) (?)

11
Device menu:

(S) (P) (?)

Figure 3 .2

MICR02 MENU HIERARCHY

(ESC)

(ESC)

(ESC)

(- 110-) User's Guide

SYSMW Part 2

The main menu is:

(W)orkfile (E)ditfile (P)rintfile (A)ssemble (7)Help (ESC)Quit

Figure 3.2 shows the hierarchical layout of the prompt menus. The sub

sections that fo llow explain each of these options in more detail.

3.3.1 (W)orkfile option.

(W)orkfile sets up a working file on which all operations are

performed. The macro-instruction definition files are given the

extensions ' .COD' and '.MIC' , the instruction file is given the

extension '.INS' , the control store file ' .BIN' and the decode file

, . DEC' .

The editor menu is printed out along the top of the screen when the

user is requested to enter the name of the workfile.

EDITOR:

«)t1:lveleft

(ESC)Quit

(»t1:lveright « -) Delete

INSERT ON

(Ins)Insert on/off (7)Help

The standard editing keys control cursor movement and these editing

keys are active for all the input operations that follow. The editor

commands are the same as explained in section 3 .2.1 .

The work file name is therefore the name of t he fi le that contains the

user's list of macro-instructions and their associated micro-codes. It

is also the name given to all the files produced by the Micro2 program

with each file having a different extension.

(- 111 -) User's Guide

SYSMW Part 2

3.3.2 (E)ditfile option.

(E)ditfile allows the user to set up a new macro-instruction definition

file or to change an existing one. Inserting new records or changing

existing records, proceeds one record at a time. Each record contains

the macro-instruction mnemonic, a hexadecimal opcode and the

corresponding microinstructions.

If the workfile has not been entered then it will be requested before

record operations may proceed as given in the following menu.

RECORD OPERATIONS:

(N)ewfile (I)nsert (D)elete (U)pdate (R)etrieve (?)Help (ESC)Quit

The first operation that would have to be performed when using the

program. for the first time, would be to create a file using the

(N)ewfile option. (N)ewfile allows the user to set up a new macro

instruction definition file. If the file already exists it may be

overwritten. When a new file is specified the system reports that it

already exists. This is because it has been assigned using the

(W)orkfile option and it therefore has a valid entry in the directory.

The user is prompted to enter all the macro-codes in the form

macro-instruction mnemonic, a hexadecimal opcode, followed by

appropriate microinstructions. For example:

Macro-instruction or micro-routine mnemonic: AND

Hexadecimal opcode: 2F

Micro-codes, one line per micro-instruction:

of a

the

Areg IM000 & DZ & AND & RAMF & I-U & CY ;the first instruction

Breg IM001 & AB & OR & RAMA & I-M & CY;this is the second

; this is just a comment line

JUMPADDR #fetch & UNCOND & NOINCR ;jump to ' f etch' micro-routine

(-112-) User's Guide

SYSMW Part 2

The macro-instruction is a mnemonic that is associated with a series of

microinstructions. Each macro-instruction mnemonic must be unique. The

micro-routine is a name associated with a sequence of microinstructions

that do not have an associated opcode, for example, a 'fetch' routine.

The opcode is a two digit hexadecimal number representing an 8-bit

macro-instruction in memory. Each opcode for a sequence of

microinstructions must be unique . If this field is left empty, the

system assumes that what follows is a micro-routine and not a macro

instruction definition. Both the macro-instruction mnemonic and the

opcode fields are key fields for the file and both fields therefore

have to be unique. One cannot have two mnemonics with the same opcode

or two opcodes with the same mnemonic.

The micro-codes, also called a micro-routine or micro-code segment, are

the microinstruction mnemonics associated with a certain macro

instruction. One line of micro-orders makes up one microinstruction.

One or more microinstructions form a micro-code segment. The micro

orders are strung together with the sign '&'. Any binary fields that

have to be included here should be preceded by a ' #', for example:

LATER #10101 where LATER was defined as a micro-order with the value of

'N' or 'n'.

A 'i' denotes the start of a comment field.

The editor menu discussed previously is printed along the top of the

screen and the associated functions apply. If the <ESC> key is typed at

the end of a line then that line is ignored but previous lines are

accepted. TYping the <RET> key at the end of a line accepts that line

and automatically jumps to a new line. In this way all the

microinstructions are accepted until an empty line is entered

signaling the end of the micro- codes for that macro-instruction.

(- 113-) User's Guide

SYSMW Part 2

The system then requests the next macro-instruction mnemonic, opcode

and associated micro-codes and in this way all the macro-instructions

are entered. The input is terminated when the <ESC> key is pressed.

The rest of the record update operations are only meaningful after the

(N)ewfile option has been used.

The (I)nsert command inserts a record into the existing macro

instruction definition file. This information is gathered in the same

form as explained above, but this time only for one record ie. one

macro-instruction mnemonic, its opcode and associated micro-codes.

The (D)elete option deletes a record from the workfile.

(U)pdate allows the user to update a record in the workfile.

(R)etrieve allows the user to get a deleted record back.

(ESC)Quit gets you back to the main menu.

The (D)elete, (R)etrieve and (U)pdate options act on one record at a

time and they prompt the user to enter the desired macro-instruction

mnemonic.

The (U)pdate option presents the record information in the format shown

below.

Macro-instruction or micro- routi ne mnemonic: AND

Hexadecimal opcode: 2F

MicrO- Codes, one line per micro-instruction:

Areg 1~000 & DZ & AND & RAMF & I-U & CY ;the first instruction

Breg 1~001 & AB & OR & RAMA & I-M & CY;this is the second

;this is just a comment line

JUMP ADDR Ilfetch & UNCOND & NOINCR ; jump to I fetch I micro-routine

An enhanced editor is now used to update the microinstruction in this

micro-code segment. The menu is given below.

(-1 14-) User's Guide

SYSMW Part 2

EDITOR: INSERT ON

«)Mbveleft (»Mbveright «-)Delete (Ins)Insert onloff (?)Help (ESC)Quit

(UP ARROW)Insert line (DOWN ARROW)Delete line

The Mbveleft, Mbveright, Delete and Insert functions operate in the

manner previously described. The Insert line and Delete line functions

have been added. The (UP ARROW) key inserts a line above the present

cursor line. The (DOWN ARROW) key deletes the line that the cursor is

on. Lines are automatically inserted if one is at the end of the text.

The <RET> key must be typed at the end of each line to accept the

changes. Pressing the <ESC> key will terminate the update session.

3.3.3 : (P)rint option.

(P)rintfile allows the user to list the Micro2 files.

The print menu is:

(M)acro-instruction (I)nstruction file (D)ecode file (C)ontrol store

(?)Help (ESC)Quit

(M)acro-instruction lists the user's workfile of macro-instruction

definitions. The records may be listed to either the screen or the

printer.

(I)nstruction file, lists the hexadecimal file of microcodes. This

information is the same as is contained in the control store file but

it is presented in a different format, ie. hexadecimal instead of

binary.

(D)ecode file, lists the look-up table of the opcodes and their

corresponding addresses.

(C)ontrol store, lists the binary control store file. This file can be

listed on the screen but is difficult to read and should therefore

(-115-) User's Guide

preferably be listed to the printer.

(ESC)Quit, gets you back to the main menu.

SYSMW Part 2

Once a file has been selected for printing, the following 'device' menu

is listed. Files may be listed to either the screen or the printer.

DEVICE:

(S)creen (P)rinter (?)Help (ESC)Quit

If the files are listed to the screen, the records are presented one at

a time and the user has to press the space bar to list the next record.

If the <ESC> key is typed, the listing is terminated.

If the files are listed to the printer, the user is asked to ensure

that the printer is ready before proceeding with the operation.

3.3.4 (A)ssemble option.

The forth option in the main menu is the (A)ssemble option, which sets

in motion the procedures to produce the control store file from the

file of macro-instruction definitions.

The "don!t care" fields in the microinstruction are those that are not

used for that specific micro-operation. Not all the fields are used in

every microinstruction and the user may select whether these are to be

filled with 0's or 1 'so

The system informs the user that he may terminate the assembly process

by holding the space bar down.

Once the binary or control store file has been satisfactorily produced,

the user may select the (ESC)Quit option from the main menu to exit the

(-1 16-) User's Guide

SYSMW Part 2

Micro2 program.

3.3.5 : Error messages.

The following error messages may appear during the use of the Micro2

program.

Error 1

Error 2

Error 3

Error 4

Error 5

Error 6

Overlapping fields. This means that two micro-orders in that

microinstruction are competing for the same bit position or

positions. This is obviously an undesirable state.

u-Instruction not found. Here the micro-order mnemonic has

table not been defined and can therefore not be found in the

file. Please note that the system as defined is

sensitive and will therefore distinguish between

instructions, 'add' and 'ADD'.

case

the

Duplicate macro-instruction or duplicate opcode. These are

both key fields in the macro-instruction definition file and

duplicate records are therefore not allowed.

Invalid hexadecimal number. The system expects the number

given to be a two digit hexadecimal number. The letters 'A'

to 'F' should be entered as capital letters.

Undefined label or microroutine. A jump within the microcode

can only be made to a defined label or microroutine.

Duplicate label definition. Jump labels within the microcode

must be unique.

(-117-) User 's Guide

SYSMW Part 2

3.4 ~ Emulator Program.

After the emulator program session has been initiated, the user is

requested to select whether he wishes to include the help messages.

This help facility operates in the same way as explained for the Micro 1

program. The user is requested to input the name of the control store

file, the one set up by the Micro2 program, and has to decide whether

or not to simulate the action of the ALU hardware. Finally the user is

prompted to enter the name of the file that contains the high-level

program to be run. This macroprogram is then loaded into the main

memory.

The Emulator is menu driven and the active menu is displayed on the top

of the screen. Figure 3.3 shows the hierarchical layout of the prompt

menus in this program.

Main menu:

(R) (S) (E)

J
Run menu: -
(G) (ESC)

(D) (M) (P) (?) (ESC)

Single step menu:
(G) (L)

Figure 3.3

EMULATOR MENU HIERARCHY

(-118-)

(ESC)

User's Guide

The main menu options are given below.

MAIN MENU:

(R)un (S)ingle (E)dit

(?)Help (ESC)Quit

(D)-bus (T)race (L)ook

SYSMW Part 2

TRACE = FALSE

(M)PC (P)eek

The sub-sections that follow explain each of these options in more

detail.

3.4.1 (R)un option.

(R)un executes the program in pseudo real time. The ALU hardware is run

very slowly so at to keep in step with the Emulator software. Once the

(G)o option has been selected, the screen is cleared and the user is

presented with the normal view of the machine. I/O is now needed to

monitor the execution. The user should ensure that the trace mode is

inactive before using this option, as this prevents the debugging

messages from being listed on the screen.

The microinstructions are executed as quickly as possible and the user

may halt the execution by holding the space bar down.

3.4.2 (S)ingle option.

(S)ingle allows the user to single step through the program. The

microinstructions are executed one at a time after each (G)o command is

given. Each microinstruction that is being executed is listed to the

screen. Further instructions within this level are outlined bel ow.

(G)o executes one microinstruction.

(-119-) User's Guide

SYSMW Part 2

(L)ook allows the user to look at the specific register values. This is

discussed further in section 3.4.6.
(ESC)Quit terminates the execution and returns control to the main

menu.

3.4.3 (E)dit option.

(E)dit enables the user to alter the microinstructions in the control

store file.

The user is requested to enter the address of the microinstruction, in

the control store file, that is to be updated.

EDI TOR:

«)t-bveleft

(ESC)Q.lit

(»t-bveright «-) Delete (Ins)Insert on/off

INSERT ON

(?)Help

The above editor menu is printed out along the top of the screen for

the microinstruction address request and the subsequent updating. The

editor commands are the same as explained in section 3.2.1. The <RET>

key must be typed to accept the changes. The user should note that

changes made here will dissapear if the microprogram is re-assembled

from the Micro2 program. Permanent updates would have to be made to the

microinstruction definitions.

These editing keys are active for all the input operations that tollow.

3.4.4 (D)-bus option.

The (D)-bus command is used to change the D-bus value. The old value is

printed out and the user is requested to enter the new value. The D-bus

(- 120-) User's Guide

SYSMW Part 2

value is the buffer that is used as input to the ALU.

3.4.5 (T)race option.

The (T)race command alters the trace mode in a toggle fashion. The

status of the trace mode is given in the top right hand corner of the

screen. When the trace mode is active, the values of vari ous registers

are printed out after the execution of each mi croinstruction.

3.4.6 (L)ook option.

The (L)ook option allows the user to view specific register values

within the ALU . This option is specific to the type of ALU hardware

that is used with the system. For the present Am2901 based ALU, the 16

working registers are listed to the screen.

3.4.7 (M)PC option.

The (M)PC command is invoked to change the MPC value. The old value of

the MPC is printed out and the user is requested to enter the new

value . The MPC is the Micro-Program Counter, that i s, the control store

program counter.

3.4.8 (P)eek option .

The (P)eek command affords the user a view of the main memory. To

examine the contents of a memory location, the address is entered and

the system responds by printing the contents of main memory at that

address. The memory location value cannot be changed with this command.

(- 121-) User's Guide

SYSMW Part 2

The <ESC> key may be typed from the main menu to terminate the session

and exit the Emulator program.

3.4.9 : Error messages.

The only error message here, is one to inform the user that an integer

value was expected, and that the input entered contained non-numeric

characters. The system also issues a warning if the user is attempting

to access a control store address that does not contain a valid

microinstruction.

3.5 ~ AssemMW Program.

After the AssemMW program has been initiated, the user is requested to

enter the name of the control store file. This is the file that was set

up by the Micro2 program. Thereafter the name of the macroprogram fi le

has to be entered. The system assumes that the file containing the

macro-instruction mnemonics has already been input and exists in a file

with the extension '.SCE'.

AssemMW is menu driven and the active menu is displayed at the top of

the screen.

The main menu is:

(E)dit (A)ssemble (P)rint (?)Help (ESC)Quit

(- 122-) User's Guide

SYSMW Part 2

3.5.1 (E)dit option.

The (E)dit option enables the user to change the value at a chosen

memory location in the object file. The user is prompted to enter the

address of the location that is to be changed and that address is then

displayed along with the old value. This value may be changed by simply

entering the new value as shown below:

5 16 (type new value)

3.5.2 (A)ssemble option.

The (A)ssemble command sets in motion a two pass assembler that

converts the source file, XXXX.SCE, into the object file, XXXX.OBJ. It

is the object file that contains the actual hexadecimal opcodes and

operands, and is used as input to the Emulator program.

3.5.3 (P)rint option.

(P)rint allows the user to list the object file to either the screen or

the printer.

The <ESC> key may be typed from the main menu to exit the AssemMW

program.

(-1 23-) User 's Guide

SYSMW

BIBLIOGRAPHY.

[ADV] Advanced Micro Devices: The Am2900 Family Data Book with

Related Support Chips; AMD, (1979).

[AGR] Agrawala Ashok K. Rauscher Tomlinson G. Foundations of

Microprogramming; Academic Press, (1976).

[AME] Amerson Frederic C. Simplicity in a Microcoded Computer

Architecture; Hewlett-Packard Journal, September, (1985), pp.7-12.

[BAB] Baba T. Hagiwara H. : The MPG System: A Machine-Independent

Efficient Microprogram Generator; IEEE Transactions on Computers,

Volume C-30 , Number 6, (1981), pp.373-395.

[BALl] Balakrishnan M. Madan B.B. Bhatt P.C.P. A &!rvey of

Microprogramming Languages;

Volume 17, (1986), pp. 19-28.

Microprocessing and Microprogramming,

[BAL2] Ballieu G. Lewi J. Williams Y. D. A Microprogramming

Language at Register Transfer Level; Microprocessing and

Microprogramming, Volume 8, (1981), pp.179-188.

[BEH] Behr P. Goli W.K. Gueth R. Education in Firmware

Engineering and Microprogramming; Microprocessing and Microprogramming,

Volume 8, (1981), pp.153-166.

[CHA] Charlton C.C. Elliot D. , Leng P.H. : An interactive Software

System for Microcode Development; Microprocessing and Microprogramming,

Volume 13, (1984), pp. 105-114.

[CHR] Chroust Gerhard: Guest Editors Preface; Microprocessing and

Microprogramming, Volume 8, (1981), pp.137-1 40 .

(- 124-) Bibliography

SYSMW

[CLA 1] Clayton Peter G. Microprogramming and Bit-Slice Logic;

Department of Computer Science, Rhodes University, (1984).

[CLA2] Clayton Peter G. A Code Generator Synthesiser for the Non-

Specialist; Software - Practice and Experience, Volume 16(8), (1986),

pp.751-760.

[CLA3] Clayton Peter G. Hands-On Microprogramming for Computer

Science Students; Department of Computer Science, Rhodes University,

(1986) .

[COL] Colard D. : Development Aid Programs for Bit-Slice Based Systems;

Microprocessing and Microprogramming, Volume 7, (1981), pp.58-65.

[COR] Corcoran Peter The SUMA Microprogramming System;

Microprocessing and Microprogramming, Volume 7, (1981), pp.37-45.

[OAT] Dataweek : Meta step Assembler Speeds Bit-Slice Coding; Dataweek,

Volume 9, No 8, April, (1986).

[DAV] Davies A.C. , Ibrahim D. : A Basis for Laboratory work with Bit -

Slice Micoprogrammable Microprocessors; The Challenge of

Microprocessors, Editors Hartley Michael J. and Buckley Anne;

Motnchester United Press, (1979).

[DUE] wetsch L. P. Experience with a Microprogrammed Interlisp

System; Xerox Corporation, CA, (1978), pp.128-129.

[DIM] Dimond K.R. King J.A . A Flexible Development System for

Microprogrammable Microprocessors; The Challenge of Microprocessors,

Editors: Hartley Michael J. and Buckley Anne; Motnchester Un ited Press,

(1979).

(-125-) Bibliography

SYSMW

[EDE] Edel W. The 8(/)(/)2 Universal Microprocessing Development Aid

System; Euromicro, Volume 5, (1979), pp.25-3(/).

[EGG] Eggebrecht Lewis C.

Howard W. Sams, (1983).

Interfacing to the IBM Personal Computer;

[FLE] Fletcher William I.

Prentice-Hall, (198(/)).

An Engineering Approach to Digital Design;

[GIB] Gibson Ray: Microprogramming and Microprocessors: Investigation

of Development Systems; The Challenge of Microprocessors, Editors

Hartley Michael J . and Buckley Anne; Manchester United Press, (1979).

[GOL] Goldsbrough Paul F. : Microcomputer Interfacing with the 8255 PPI

Chip; Howard W. Sams, (1979).

[GRA] Grant Richard P.J.S. Microcomputer Interfacing; Department of

Physics and Electronics, Rhodes University, (1986).

[GRI] Griss M.L. Swanson M.R. : A Microprogrammed LISP Machine for

the Burroughs B1726; Computer Science Department, University of Utah,

Utah, (1978), pp . 15-25 .

[GRO] Grossman B. Kwee E. , Lehmann A. : Practical Experiences with

Vertical Migration; Microprocessing and Microprogramming, Volume 12,

(1983), pp.185-192.

[KER] Kerner Helmut Microprogramming by Data Flow; Microprocessing

and Microprogramming, Volume 12, (1983), pp. 181-1 84.

[IBM] IBM Personal Computer Technical Reference; International Business

Machines Corporation, (1981).

(- 126-) Bibliography

SYSMW

[KRA] Kraft George D. Toy Wing N. Microprogrammed Control and

Reliable Design of ::mall Computers; Prentice- Hall, (1981).

[KRU] Krutz Ronald L.

(1980) .

Microprocessors and Logic Design; John Wiley,

[LIE] Liebig Hans Microprogramming with Microprocessors;

Microprocessing and Microprogramming, Volume 12, (1983), pp. 43-52.

[LEW] Lewis T.G. Schriver B.D. : Special Issue on Microprogramming

Tools and Techniques: Introduction; IEEE Transactions on Computers,

Volume C-30, Number 7, (1981), pp.257-259.

[LUQ] Luque E. Ripoll A. Microprogramming:A Tool for Vertical

Migration; Microprocessing and Microprogramming, Volume 8, (1981),

pp.219-228.

[MeG] l'12Glynn Daniel R.

Wiley, (1980) .

~dern Microprocessor System Design; John

[MEA] Mead Carver, Conway Lynn

Wesley, (1 980) .

Introduction to VLSI Systems; Addison-

[MEl] Meith W.H. , Richter L. : MMDS - A Microprogram Development Tool;

Euromicro , (1981), pp .261-268.

[MEZ1] Mezzalama M. Prinetto P. Visintin I. A Hierarchical

Integrated System for Microcode Development; Euromicro, (1981), pp.251 -

258.

[MEZ2] Mezzalama M. , Prinetto P. : A Strategy for Simulating Bit-Slice

Based Microprogrammable Systems; Microprocessing and Microprogramming,

(-127-) Bibliography

SYSMW

Volume 7, (1981) , pp . 334-343 .

[MEZ3] Mezzalama Marco , Prinetto Paolo : Microprogram Simulat ion Using

a Structured Microcode Medel; Microprocessing and Microprogramming,

Volume 13, (1984), pp.299- 314 .

[MIC] Mick John, Brick James

McGraw- Hill, (1980) .

Bit-Slice Microprocessor Design;

[MON] Menchaud S. Prat R. A Low-Cost Microprogram Development

System Loader and Tester; Euromicro, Volume 5, (1979) , pp .225-234 .

[MOR] Mergan G. Pack R. Lala P.K. An Educational Bit- Slice

Micrprogrammable Tutor; Department of Computer Science, University of

York, YCS. 69 , (1984) .

[MUE] M.leller Robert A. Varghese Joseph Applying Algebraic

Simulation to Machine- Independent Microcode Synthesis; Microprocessing

and Microprogramming, Volume 11, (1983), pp .1 07-11 5.

[MYEl] Myers Glenford J .

Logic; John Wiley, (1980) .

[MYE2] Myers Glenford J.

Digital System Design with LSI Bit- Slice

Ibcker David G. The Use of Scftware

Si mulators in the Testing and Debugging of Microprogram Logic; IEEE

Transactions on Computers, Volume C-30, Number 7, (1981), pp.519- 523.

[OBR] Obrebska Menika Efficiency and Performance Comparison Of

Different Design Methodologies for Control Part of Microprocessors;

Microprocessing and Microprogramming, Volume 10, (1982), pp.163- 178.

[OPL] Opler Asher: Fourth Generation Scftware; Microprocessing and

Microprogramming, Volume 8, (198 1) , pp.146-1 48 .

(- 128-) Bibliography

SYSMW

[PUT] von Puttkamer E. A Microprogrammed Lisp Machine;

Microprocessing and Microprogramming, Volume 12, (1983), pp.9-14.

[RAU] Rauscher T.G. Adams P.M. Microprogramming: A TUtorial and

Survey of Recent Developments; IEEE Transactions on Computers, Volume

C-29, Number 1, (1980), pp.2-18.

[REN] Renyi I. Lovaszi M. Parallel Picture Processing Using

Microprogrammable Bit-Slice Microprocessors;

Microprogramming, Volume 9, (1982), pp .67-75.

Microprocessing and

[SCH] Schreiner- Novick N.A. 15th Workshop on Microprogramming;

Microprocessing and Micrprogramming, Volume 11, (1983), pp.141-162.

[SKO] Skordalakis E. Towards a Mbre Flexible Microlanguage for Bit

Sliced Microcomputers; Microprocessing and Microprogramming, Volume 7,

(1981), pp.46-57.

[SOM] Sommerville J. F. Towards Machine-Independent

Microprogramming; Euromicro, Volume 5, (1979), pp.219-224.

[SRI] Sridar R. ,Manwaring Mark L. : An Automatic Microcode Generator

for High Level Language Machines; Microprocessing and Microprogramming,

Volume 18, (1986), pp.263-268.

[STA] Stankovic John A. : Improving System Structure and its Affect on

Vertical Migration; Microprocessing and Microprogramming, Volume 8,

(1981), pp.203-218.

[TEX] Texas Instruments

(1985) .

The TMS 7000 family; Texas Instruments,

(-129-) Bibliography

SYSMW

[TSU] Tsuchiya M. : FREM:Firmware Requirements Engineering Methodology;

Microprocessing and Microprogramming, Volume 8, (1981), pp.167-178.

[TUR] TURBO Pascal version 3.0 Reference Manual; Borland International,

(1985) .

[VAX] VAX Hardware Handbook; Digital Equipment Corporation, (1980).

[WHI] White Donnamaie E.

Garland STPM, (1981).

Bit-Slice Design Controllers and ALU's;

[WIL] Wilkes Maurice: The Best Way to Design an Automatic

Machine; Microprocessing and Microprogramming I Volume

pp. 141-144.

Calculating

8, (1981),

[WIN] Winkel !:avid, Prosser Franklin

Prentice-Hall, (1980).

The Art of Digital Design;

[ZIN] Zincke G.D. Why is Microprogramming Difficult? Some thoughts

about a Generally Accepted Problem; Microprocessing and

Microprogramming, Volume 8, (1981), pp.149-152.

(- 130-) Bibliography

APPENDICES

Appendices Ii. to .!2.:.

Program listings may be obtained from:

The Secretary

Department of Computer Science

Rhodes University

Grahamstown

6140

South Africa

Phone 0461 - 22023

(-1-)

Appendices A to D

Pages A.1 to D.11

Appendix E.1

LISTING Of THE HELPfILE fOR THE MICR01 PROGRAM

#1
HELP

(N)ewfile allows you to set
up a new format file and/or
a new definition file.

(U)pdate allows you to update
the records in an existing
format and/or definition file.

(P)rint allows you to list
the format and definition
files.

(S)etup creates the table
file from the data in the
format and definition files.

(ESC)Quit, to end the session .

*
#2
HELP 2

(f)ormat file allows you to
set up a new format file.

(D)efinition file allows you
to set up a new definition
file.

(ESC)Quit gets you back to
the 'main menu' .
*
#3
HELP 3

The width of the micro
instruction is an integer
value representing the number
of bits that each micro
instruction contains.

(ESC)Quit gets you back to
the 'set up a new file' menu .
*
#4
HELP 4

format number is an integer

(- E. 1-) Micro1 helpfile

value. Each format must have
a different distinct format
number.
*
115
HELP 5

Description is a string
expression. It should help
the user to identify the
format at a later stage.

ego '2901 ALU'.

*
116
HELP 6

Format is the actual format
template. The letter 'x'
represents a don't care field.
Any other letter represents
the 'active' part of the
format.

ego '1x 2a 3x' ==>
the active field
bits 2 and 3.

*
1/7
HELP 7

xaaxxx
being

Mnemonic is a string
expression. Each mnemonic must
be unique. It is associated
with a specific bit pattern
and format.

eg. 'ALU AND'.

*
118
HELP 8

Value is a binary field. It is
the bit pattern with which the
above mnemonic is to be
associated.

eg . '1 010 ' .

'N' or 'n' may be typed here
instead, if the user wishes

(-E.2-)

Appendix E.1

Micro1 helpflle

to insert the actual value at
the macro-instruction
definition stage later.
*
119
HELP 9

Format number is an integer.
It specifies the format with
which the mnemonic is to be
associated.
*
1110
HELP 10

(F)ormat file allows you to
update the format file.

(D)efinition file allows you
to update the definition file.

(ESC)Quit gets you back to
the 'main menu'.
*
111 1
HELP 11

You are updating the format
file.

(I)nsert allows you to insert
a new format.

(D)elete allows you to delete
an existing format.

(U)pdate allows you to change
an existing format.

(R)etrieve allows you to get
a deleted record back.

(ESC)Quit gets you back to the
'update a file' menu.

*
1112
HELP 12

You are updating the
definition file.

(-E.3-)

Appendix E. 1

Micro1 helpfile

(I)nsert allows you to insert
a new mnemonic.

(D)elete allows you to delete
an existing mnemonic.

(U)pdate allows you to change
an existing mnemonic.

(R)etrieve allows you to get
a deleted record back.

(ESC)Quit gets you back to the
'update a file' menu.

*
1113
HELP 13

(F)ormat file allows you to
list the format file.

(D)efinition file allows you
to list the definition file.

(ESC)Quit gets you back to
the 'main menu'.
*
1114
HELP 14

(S)creen lists the file on
the screen.

(P)rint lists the file on the
printer.

(ESC)Quit terminates the
screen listing.
*
1115
HELP 15

Press the space bar to
continue the listing one
record at a time.

(ESC) terminates the listing.
*

(-E.4-)

Appendix E.1

Micro 1 hel pfile

Appendix E.2

LISTING OF THE HELP FILE FOR THE MICR02 PROGRAM

#1
HELP

(W)orkfile sets up a workfile
on which all operations are
performed.

(E)ditfile allows you to set
up a new codefile or to
change an existing one.

(P)rintfile allows you to list
the work file or the control
store file .

(A)ssemble creates the binary
control store file.

(ESC)Quit, to end the session.

*
#2
HELP 2

(N)ewfile allows you to set
up a new codefile.

(I)nsert, inserts a record
into the existing workfile.

(D)elete, deletes a record
from the workfile.

(U)pdate allows you to update
a record in the workfile.

(R)etrieve allows you to get
a deleted record back.

(ESC)Quit, gets you back to
the main menu.

*
#3
HELP 3

(M)acro-instruction lists the
user's workfile of macro
instruction definitions.

(I)nstruction file, lists the
hexadecimal file of
microcodes .

(-E.5-) Micro2 helpfile

(D)ecode file, lists the
look-up table of the opcodes
and their corresponding
addresses.

(C)ontrol store, lists the
binary control store file.

(ESC)Quit, gets you back to
the main menu.
•
114
HELP 4

(S)creen lists the file to
the screen.

(P)rinter lists the file to
the printer.

(ESC)Quit gets you back to
the printer menu.
•
115
HELP 5

The work file name is the name
of the file that contains the
user's list of macro
instructions and their
associated micro-codes.
•
116
HELP 6

The macro-instruction is a
mnemonic that is associated
with a series of micro
instructions. Each macro
instruction mnemonic must
be unique.
The micro-routine is a name
associated with a sequence of
microinstructions that do not
have an associated opcode
eg. the 'fetch' routine.
•
117
HELP 7

(-E.6-)

Appendix E.2

Micro2 helpfile

The micro-codes are the
microinstruction mnemonics
associated with a certain
macro-instruction. One line
of micro-orders makes up one
microinstruction. One or
more microinstructions form
a section of micro-code.
The micro-orders are strung
together with the sign '&'.
Any binary fields that have
to be included here should be
preceded by a '#'.
eg 'LATER #10101' where LATER
was defined as a micro-order
with the value of 'N' or 'n'.
A 'i' denotes the start of a
comment field.

*
#8
HELP 8

Press the space bar to
continue the listing one
record at a time.

(ESC)Quit terminates the
listing.

*
#9
HELP 9

The opcode is a two digit
hexadecimal number
representing an 8-bit opcode
in memory. Each opcode for a
sequence of microinstructions
must be unique.
If an empty field is entered
here the system assumes that
this is a micro-routine and
not a macro-instruction.
*

(-E.7-)

Appendix E.2

Micro2 helpfile

Appendix E. 3

LISTING OF THE HELPFILE FOR THE EMULATOR PROGRAM

#1
HELP 1

(R)un allows you to run the
program in pseudo real time.

(S)ingle step thru program.

(E)dit a microinstruction.

(D)-bus to change the D-bus.

(T)race mode toggle on/off.

(L)ook to view registers.

(M)PC to change the MPC.

(P)eek at memory locations .

(ESC)Quit to terminate.
*
#2
HELP 2

(G)o starts the execution .

Hold the space bar down to
stop execution.
*
#3
HELP 3

(G)o executes one
microinstruction.

(L)ook allows you to look at
specific register values.

(ESC)Quit to terminate the
execution.
*
#4
HELP 4

The editor commands are as
shown at the to p of the
screen. Press <RET> to
accept the changes.
*

(-E . 8-) Emulator helpfile

115
HELP 5

This is an address in the
Control Store of the micro
instruction that is to be
updated.
*
116
HELP 6

This is the value that is
input to the ALU.

*
117
HELP 7

The MPC is the Micro-Program
Counter, ie. the Control
Store program counter.

*

C-E.9-l

Appendix E.3

Emulator helpfile

Appendix F

Appendix F Micro-order function tables

The present version of the Microprogram Control Unit requires the

first 24 bits of the microinstruction to be reserved for its

functions. These functions have been designed with the Triple-M

machine in mind but were based on those provided by Advanced

Micro Devices' Am2909 and Am2910 controller/sequencers.

A field to hold ~ jump address or ~ constant value:

11 to 112 Action

Binary address Specified by 114 and 115

Increment the Micro-Program Counter :

113

o
1

Branching:

114 115 ----
00

01

10

11

r-E!nory access:

I16 117 I18

000

001

010

Action

Increment

N:> increment

Action

N:> Branch

Unconditional

Conditional

Constant field

Action

N:> memory access

Data register -> D-buffer

Y-buffer -> Address register

M1emonic

None

M1emonic

INCR

NOINCR

M1emonic

NOBRN

UNCOND

COND

CONST

M1emonic

NMA

DR-DB

YB-AR

{-F.1-l Micro-order function tables

011

100

101

110

111

Clock field:

119

o
1

Free:

I20 to I24

Not used

Y-buffer -> Data register

Data register -> Micro Latch

Micro Latch -> VIR

Data register -> MIR and decode

Data register -> Address register

Action

Don't send a clock pulse

Send a clock pulse

Action

None

Appendix F

YB-DR

DR-VIR

MPC-AR

DR-MIR

DR-AR

M1emonic

CN

CY

M1emonic ,
None

Advanced Micro Device's Am2904 status and shift control unit

functions are tabulated below [ADV].

Micro status register instruction codes:

I25 to 130 Action M1emonic

000000 MSR -> uSR MX-UX

000001 Set uSR 1-UX

000010 Register swap MX+UX

000011 Peset uSR 0-UX

000100 Load uSR from I's I-V
000111 Load with overflow retain I-Va

001000 Reset zero bit 0-llZ

001001 Set zero bit 1-llZ

(-F.2-) Micro-order function tables

Appendix F

001010 Reset carry bit 0-UC

001011 Set zero bit 1-UC

001100 Reset sign bit 0-UN

001101 Set sign bit 1-UN

001110 Reset overflow bit 0-UOVR

001111 Set overflow bit 1-UOVR

011000 Load with carry invert I-UO

Mlchine status register instruction codes:

125 to 130 Action t11emonic ---
000000 Load MSR from Y YX-MX:

000001 Set MSR 1-MX:

000010 Register swap UX-MX:

000011 Reset uSR 0-MX:

000100 Swap I'b and M:lVr I-MO

000101 Invert MSR MX:-MX:

001000 Load with carry invert I-MC

001111 Load directly fran I's I-M

Carry-in ~ntrol multiplexor instruction codes:

126 to 130, 136 , 137 Action t11emonic

0000000 Reset carry-in C0:0

0000010 Set carry-in CO=1

0000001 Load ex into carry-in CO:CX

0000011 Load uC into carry-in CO=UC

0010011 Load not uC CO:NUC

0000111 Load MC into carry-in CO:MC

0010111 Load not MC CO:NMC

(-F.3-) Micro-order function tables

Appendix F'

Shift linkage multiplexer instruction codes:

(Refer to the text for these seldom used instructions.)

Condition code output (CT) instruction codes:

125 to I30 Action M1emonic ---
000010 (uN-+uO) + uZ u0

100010 (uN.uO) . (not uZ) u1

010010 uN + uO u2

110010 uN • uO u3

001010 uZ u4

101010 not uZ u5

011010 uO u6

111010 not uO u7
000110 uC + uZ u8

100110 uC • uZ u9
010110 uC uA

110110 not uC uB

001110 (not uC) + uZ uC

101110 uC • (not uZ) uD

011110 uN uE

111110 not uN uF'

000001 (M1+M:» + ~ ~

100001 (M1.M:» • (not Mz) M1

010001 M1 +M:> M2

110001 M1 M:> M3
001001 Mz M4

101001 not Mz M5
011001 M:> M)

111001 not M:> M7
000101 f'-b +Mz M8

100101 f'-b Mz M9

(-F.4-) Micro-order function tables

Appendix F

010101 t-b MA

110101 not t-b MEl

001101 (not t-b) + Mz Me
101101 t-b • (not Mz) MD

011101 M1 ME

111101 not M1 MF

(The direct checks on the 'I' lines have not been included.)

Advanced Micro Device's Am2901 arithmetic and logic unit functions

are given below [ADV].

ALU source operand control:

140 to 142 Action M1emonic ---
000 R=A, S=Q AQ

100 R=A, S=B AB

010 R=0, S=Q ZQ

110 R=0, S=B ZB

001 R=0, S=A ZA

101 R=D, S=A DA

011 R=D, S=Q DQ

111 R=D, S=0 DZ

ALU function control:

143 to 145 Action M1emonic

000 R plus S ADD

100 S minus R SUBR

010 R minus S SUBS
110 R or S OR

001 Rand S AND

(-F.5-) Micro-order function tables

101

011

111

(not R) and S

REX-OR S

REX-NOR S

ALU destination control:

146 to 148 Action ----
000 F->O, Y=F

100 Y=F

010 F->B, Y=A

110 F->B, Y=F

001 F/2->B, Q/2->O, Y=F

101 F/2->B, Y=F

011 2F->B, 20->0, Y=F

111 2F->B, Y=F

(-F.6-)

Appendix F

NOTRS

EXOR

EXNOR

Mlemonic

QREG

NOP
RAMA

RAW

RAMQD

RAMD

RAMQU

RAMO

Micro-order function tables

File : proto 1

LISTING OF THE FORMAT FILE
==========================

Format number:
Description:
Format:

Format number:
Description:
Format:

Format number:
Description:
Format:

Format number:
Description:
Format:

1
2904-micro-stat
24x 6a 7x 2a 17x

2
2904-macro-stat
24x 6a 7x 2a 17x

3
2904-carry-in
25x 5a 5x 2a 19x

4
2904-shift-link
30x 5a 21x

Format number: 5
Description:
Format:

2901-alu-source
39x 3a 14x

Format number: 6
Description: 2901-alu-function

42x 3a 11 x Format:

Format number: 7
Description: 2901-alu-destination

45x 3a 8x Format:

Format number: 8
Description:
Format:

Format number:
Description:
Format:

Format number:
Description:
Format:

2901-Areg
48x 4a 4x

9
2901-Breg
52x 4a

10
2904-cond-code
24x 6a 26x

(-G.1-)

Appendix G.1

Format File

Append ix G. 1

Format number: 1 1
Description: 2904-s-carry-in
Format: 35x 2a 19x

Format number: 12
Description: ward2909-jump
Format: 12a 44x

Format number: 13
Description: ward2909-incr
Format: 12x 1a 43x

Format number: 14
Description: ward2909-branch
Format: 13x 2a 41x

Format number: 15
Description: ward2909-access
Format: 15x 3a 38x

Format number: 16
Description: ward2909-clock
Format: 18x 1a 37x

Format number: 17
Description: not CEu and CErn
Format: 37x 2a 17x

(-G.2-l Format File

Appendix G.2

File : proto 1

LISTING OF THE MNEMONIC FILE
============================

Mnemonic: AQ
Value: 000
Format no. : 5

Mnemonic: AB
Value: 100
Format no. : 5

Mnemonic: ZQ
Value: 010
Format no. : 5

Mnemonic: ZB
Value: 110
Format no . : 5

Mnemonic: ZA
Value: 001
Format no. : 5

Mnemonic: DA
Value: 101
Format no. : 5

Mnemonic: DQ
Value: 011
Format no. : 5

Mnemonic: DZ
Value: 1 1 1
Format no. : 5

Mnemonic: ADD
Value: 000
Format no. : 6

Mnemonic: SUBR
Value: 100
Format no.: 6

(-G.3-l Definition File

Appendix G.2

Mnemonic : SUBS
Value: 010
Format no. : 6

Mnemonic: OR
Value: 1 1 0
Format no. : 6

Mnemonic: AND
Value : 001
Format no. : 6

Mnemonic: NOTRS
Value: 101
Format no. : 6

Mnemonic: EXOR
Value: o 11
Format no. : 6

Mnemonic : EXNOR
Value: 111
Format no. : 6

Mnemonic: QREG
Value : 000
Format no. : 7

Mnemonic: NOP
Value: 100
Format no. : 7

Mnemonic : RAMA
Value: 010
Format no. : 7

Mnemonic : RAMF
Value: 110
Format no. : 7

Mnemonic : RAMQD
Value : 001
Format no . : 7

C- G.4 -) Definition File

Appendix G.2

Mnemonic: RAMD
Value: 101
Format no. : 7

Mnemonic: RAMQU
Value : 011
Format no. : 7

Mnemonic: RAMU
Value: 111
Format no. : 7

Mnemonic: Areg
Value: n
Format no. : 8

Mnemonic: Breg
Value: n
Format no. : 9

Mnemonic: 0-UZ
Value: 00010001
Format no. : 1

Mnemonic: 1- UZ
Value: 10010001
Format no. : 1

Mnemonic: 0-UC
Value: 01010001
Format no. : 1

Mnemonic: 1- UC
Value: 11010001
Format no. : 1

Mnemonic: 0-UN
Value: 00110001
Format no. : 1

Mnemonic: 1- UN
Value: 10110001
Format no. : 1

(-G.5-l Definition File

Appendix G.2

Mnemonic: 0-UOVR
Value: 01110001
Format no. : 1

Mnemonic: 1-UOVR
Value: 11110001
Format no. : 1

Mnemonic: MX-UX
Value: 00000001
Format no. : 1

Mnemonic: 1-UX
Value: 10000001
Format no. : 1

Mnemonic: MX+UX
Value: 01000001
Format no.: 1

Mnemonic: 0-UX
Value : 11000001
Format no . : 1

Mnemonic: I-UO
Value: 11100001
Format no. : 1

Mnemonic: I-UC
Value : 00011001
Format no. : 1

Mnemonic: I-U
Value: 00100001
Format no. : 1

Mnemonic: YX-MX
Value: 00000010
Format no. : 2

Mnemonic: 1-MX
Value: 10000010
Format no. : 2

(- G.6-) Definition File

Append ix G. 2

Mnemonic: UX-MX
Value: 01000010
Format no. : 2

Mnemonic: 0-MX
Value: 11000010
Format no. : 2

Mnemonic: MX-l-jX
Value: 10100010
Format no. : 2

Mnemonic: I-MO
Value: 00100010
Format no. : 2

Mnemonic: I-MC
Value: 00010010
Format no. : 2

Mnemonic: I-M
Value: 11110010
Format no. : 2

Mnemonic: CO=0
Value: 00
Format no.: 1 1

Mnemonic: CO=1
Value: 10
Format no. : 1 1

Mnemonic: CO=CX
Value: 01
Format no. : 1 1

Mnemonic: CO=UC
Value: 0000011
Format no. : 3

Mnemonic: CO=NUC
Value: 0010011
Format no. : 3

(-G.7-) Definition File

Appendix G.2

Mnemonic: CO=MC
Value: 0000111
Format no. : 3

Mnemonic: CO=NMC
Value: 0010111
Format no. : 3

Mnemonic: Z0Z0
Value : 00000
Format no. : 4

Mnemonic: Z1Z1
Value: 10000
Format no. : 4

Mnemonic: Z0ZMS
Value: 01000
Format no. : 4

Mnemonic: ZMcZS
Value: 00100
Format no. : 4

Mnemonic: ZMnZS
Value: 10100
Format no. : 4

Mnemonic: Z0ZS
Value: 01100
Format no. : 4

Mnemonic : Z0ZSQ
Value: 11100
Format no. : 4

Mnemonic: ZSZQS
Value: 00010
Format no. : 4

Mnemonic : ZMZQS
Value: 10010
Format no. : 4

(-G.8-) Definition File

Appendix G.2

Mnemonic: ZSZQ
Value: 01010
Format no.: 4

Mnemonic: Z1ZS
Value: 11010
Format no. : 4

Mnemonic: ZMZSQ
Value: 00110
Format no. : 4

Mnemonic: ZQZSQ
Value: 10110
Format no. : 4

Mnemonic: ZI+IZS
Value: 01110
Format no. : 4

Mnemonic: ZQZS
Value: 11110
Format no. : 4

Mnemonic: 0Z0ZS
Value: 00001
Format no. : 4

Mnemonic: 1Z1ZS
Value: 10001
Format no. : 4

Mnemonic: 0Z0Z
Value: 01001
Format no.: 4

Mnemonic: 1Z1Z
Value: 11001
Format no. : 4

Mnemonic: QZ0ZS
Value: 00101
Format no.: 4

(-G.9-) Definition File

Append ix G. 2

Mnemonic: QZ1ZS
Value: 10101
Format no. : 4

Mnemonic : QZ0Z
Value: 01101
Format no. : 4

Mnemonic: QZ1Z
Value: 11101
Format no . : 4

Mnemonic: SZQZS
Value: 00011
Format no. : 4

Mnemonic: MZQZS
Value: 10011
Format no. : 4

Mnemonic: SZQZ
Value: 01011
Format no. : 4

Mnemonic: MZ0Z
Value : 11011
Format no. : 4

Mnemonic: QZMZS
Value: 00111
Format no. : 4

Mnemonic: QZSZS
Value: 10111
Format no. : 4

Mnemonic: QZMZ
Value : o 1 1 11
Format no. : 4

Mnemonic : QZSZ
Value : 1 1 111
Format no. : 4

(-G.10-l Defini tion File

Appendix G.2

Mnemonic: Z 1 ZS1
Value: 11001
Format no.: 4

Mnemonic: JUMPADDR
Value: N
Format no. : 12

Mnemonic: INCR
Value: 0
Format no. : 13

Mnemonic: NOINCR
Value: 1
Format no. : 13

Mnemonic: NOBRN
Value: 00
Format no. : 14

Mnemonic: COND
Value: 10
Format no. : 14

Mnemonic : UNCOND
Value: 01
Format no. : 14

Mnemonic: CONST
Value: 1 1
Format no. : 14

Mnemonic: NOACES
Value: 000
Format no. : 15

Mnemonic: DR-DB
Value: 001
Format no. : 15

Mnemonic : YB-AR
Value: 010
Format no.: 15

C-G.11-l Definition File

Appendix G.2

Mnemonic: YB-DR
Value: 011
Format no. : 15

Mnemonic: DR-VIR
Value: 100
Format no. : 15

Mnemonic: MPC-AR
Value: 101
Format no. : 15

Mnemonic: DR-MIR
Value: 110
Format no. : 15

Mnemonic: DR-AR
Value: 11 1
Format no. : 15

Mnemonic: CN
Value: 0
Format no. : 16

Mnemonic: CY
Value: 1
Format no. : 16

Mnemonic: u0
Value: 000010
Format no. : 10

Mnemonic : u1
Value: 100010
Format no. : 10

Mnemonic: u2
Value: 010010
Format no. : 10

Mnemonic: u3
Value: 110010
Format no. : 10

(-G.12-) Definition File

Appendix G.2

Mnemonic: u4
Value: 001010
Format no. : 10

Mnemonic: u5
Value: 101010
Format no.: 10

Mnemonic: u6
Value: 011010
Format no. : 10

Mnemonic: u7
Value: 111010
Format no.: 10

Mnemonic: u8
Value: 000110
Format no. : 10

Mnemonic: u9
Value: 100110
Format no. : 10

Mnemonic: uA
Value: 0101 H)
Format no. : 10

Mnemonic: uB
Value: 110110
Format no. : 10

Mnemonic: uC
Value: 001110
Format no. : 10

Mnemonic: uD
Value: 101110
Format no. : 10

Mnemonic: uE
Value: 011110
Format no. : 10

(-G.13-l Definition File

Appendix G.2

Mnemonic: uF
Value: 111110
Format no. : 10

Mnemonic: M0
Value : 000001
Format no. : 10

Mnemonic: M1
Value: 100001
Format no. : 10

Mnemonic: M2
Value: 010001
Format no . : 10

Mnemonic: M3
Value: 110001
Format no. : 10

Mnemonic: M4
Value : 001001
Format no. : 10

Mnemonic: M5
Value: 101001
Format no. : 10

Mnemonic : M6
Value: 011001
Format no. : 10

Mnemonic: M7
Value: 111001
Format no. : 10

Mnemonic : M8
Value: 000101
Format no . : 10

Mnemonic : M9
Value: 100101
Format no . : 10

(-G . 14-) Definition File

Appendix G.2

Mnemonic: MA
Value: 010101
Format no. : 10

Mnemonic: MB
Value: 110101
Format no. : 10

Mnemonic: Me
Value : 001101
Format no.: 10

Mnemonic: MD
Value: 101101
Format no. : 10

Mnemonic: ME
Value: 011101
Format no. : 10

Mnemonic: MF
Value: 111101
Format no. : 10

Mnemonic: KF
Value: 1 1
Format no. : 17

(-G.15-) Definition File

Appendix G.3

File : proto1

LISTING OF THE TABLE FILE
=========================

Mnemonic: instrlengt
Value: 56
Format: 0

Mnemonic: AQ
Value: 000
Format: 39x 3a 14x

Mnemonic: AB
Value: 100
Format: 39x 3a 14x

Mnemonic: ZQ
Value: 010
Format: 39x 3a 14x

Mnemonic: ZB
Value: 1 10
Format: 39x 3a 14x

Mnemonic: ZA
Value: 001
Format: 39x 3a 14x

Mnemonic: DA
Value: 101
Format: 39x 3a 14x

Mnemonic: DQ
Value: 011
Format: 39x 3a 14x

Mnemonic: DZ
Value: 1 1 1
Format: 39x 3a 14x

Mnemonic: ADD
Value: 000
Format: 42x 3a 1 1 x

(-G.16-) Table File

Appendix G.3

Mnemonic: SUBR
Value: 100
Format: 42x 3a 11x

Mnemonic: SUBS
Value: 010
Format: 42x 3a 11 x

Mnemonic: OR
Value: 110
Format : 42x 3a 11 x

Mnemonic: AND
Value: 001
Format: 42x 3a 11 x

Mnemonic: NOTRS
Value: 101
Format: 42x 3a 11 x

Mnemonic: EXOR
Value: 011
Format: 42x 3a 11 x

Mnemonic: EXNOR
Value: 111
Format: 42x 3a 11 x

Mnemonic: QREG
Value: 000
Format: 45x 3a 8x

Mnemonic: NOP
Value: 100
Format: 45x 3a 8x

Mnemonic: RAMA
Value: 010
Format: 45x 3a 8x

Mnemonic: RAMF
Value: 110
Forma t: 45x 3a 8x

(-G.17-) Table File

Appendix G.3

Mnemonic: RAMQD
Value: 001
Format: 45x 3a 8x

Mnemonic: RAMD
Value: 1 0 1
Format: 45x 3a 8x

Mnemonic: RAMQU
Value: 011
Format: 45x 3a 8x

Mnemonic: RAMU
Value: 111
Format: 45x 3a 8x

Mnemonic: Areg
Value: n
Format: 48x 4a 4x

Mnemonic: Breg
Value: n
Format: 52x 4a

Mnemonic: 0-UZ
Value: 00010001
Format: 24x 6a 7x 2a 17x

Mnemonic: 1-UZ
Value: 10010001
Format : 24x 6a 7x 2a 17x

Mnemonic: 0- UC
Value : 01010001
Format: 24x 6a 7x 2a 17x

Mnemonic: 1- UC
Value : 11010001
Format : 24x 6a 7x 2a 17x

Mnemonic: 0-UN
Value: 00110001
Format : 24x 6a 7x 2a 17x

(- G.18- l Ta ble File

Appendix G.3

Mnemonic: 1-UN
Value: 10110001
Format: 24x 6a 7x 2a 17x

Mnemonic: 0-UOVR
Value: 01110001
Format: 24x 6a 7x 2a 17x

Mnemonic: 1-UOVR
Value: 11110001
Format: 24x 6a 7x 2a 17x

Mnemonic: MX-UX
Value: 00000001
Format: 24x 6a 7x 2a 17x

Mnemonic: 1- UX
Value: 10000001
Format: 24x 6a 7x 2a 17x

Mnemonic: MX+UX
Value: 01000001
Format: 24x 6a 7x 2a 17x

Mnemonic: 0-UX
Value: 11000001
Format: 24x 6a 7x 2a 17x

Mnemonic: I-UO
Value: 11100001
Format: 24x 6a 7x 2a 17x

Mnemonic: I-UC
Value: 00011001
Format: 24x 6a 7x 2a 17x

Mnemonic: I-U
Value: 00100001
Format: 24x 6a 7x 2a 17x

Mnemonic: YX-MX
Value: 00000010
Format: 24x 6a 7x 2a 17x

(-G.19-) Table File

Appendix G.3

Mnemonic: 1-MX
Value: 10000010
forma t: 24x 6a 7x 2a 17x

Mnemonic: UX-MX
Value: 01000010
format: 24x 6a 7x 2a 17x

Mnemonic: 0-MX
Value: 11000010
format: 24x 6a 7x 2a 17x

Mnemonic: MX-MX
Value: 10100010
format: 24x 6a 7x 2a 17x

Mnemonic: I-MO
Value: 00100010
format: 24x 6a 7x 2a 17x

Mnemonic: I-MC
Value: 00010010
format: 24x 6a 7x 2a 17x

Mnemonic: I-M
Value: 11110010
forma t: 24x 6a 7x 2a 17x

Mnemonic: CO=0
Value: 00
format: 35x 2a 19x

Mnemonic: CO=1
Value: 10
format: 35x 2a 19x

Mnemonic: CO=CX
Value: 01
format: 35x 2a 19x

Mnemonic: CO=UC
Value: 0000011
forma t: 25x 5a 5x 2a 19x

(-G.20-l Table file

Appendix G. 3

Mnemonic: CO=NUC
Value: 0010011
Format: 25x 5a 5x 2a 19x

Mnemonic: CO=MC
Value: 0000111
Format: 25x 5a 5x 2a 19x

Mnemonic: CO=NMC
Value: 0010111
Format: 25x 5a 5x 2a 19x

Mnemonic: Z0Z0
Value: 00000
Format: 30x 5a 21x

Mnemonic: Z1Z1
Value: 10000
Format: 30x 5a 21x

Mnemonic: Z0ZMS
Value: 01000
Format : 30x 5a 21x

Mnemonic: ZMcZS
Value: 00100
Format: 30x 5a 21x

Mnemonic: ZMnZS
Value: 10100
Format : 30x 5a 21x

Mnemonic: Z0ZS
Value : 01100
Format: 30x 5a 21x

Mnemonic: Z0ZSQ
Value : 11100
Format: 30x 5a 21x

Mnemonic: ZSZQS
Value : 00010
Format : 30x 5a 21x

(-G . 21 -) Table File

Append ix G. 3

Mnemonic: ZMZQS
Value: 10010
Format: 30x 5a 21x

Mnemonic: ZSZQ
Value: 01010
Format: 30x 5a 21x

Mnemonic: Z1ZS
Value: 11010
Format: 30x 5a 21x

Mnemonic: ZMZSQ
Value: 00110
Format: 30x 5a 21x

Mnemonic: ZQZSQ
Value: 10110
Format: 30x 5a 21x

Mnemonic : ZI+IZS
Value: 01110
Format: 30x 5a 21x

Mnemonic: ZQZS
Value: 11110
Format: 30x 5a 21x

Mnemonic: 0Z0ZS
Value: 00001
Format: 30x 5a 21x

Mnemonic: 1Z1ZS
Value: 10001
Format: 30x 5a 21x

Mnemonic: 0Z0Z
Value: 01001
Format: 30x 5a 21x

Mnemonic: 1Z1Z
Value: 11001
Format: 30x 5a 21x

(-G.22-) Ta ble File

Append ix G. 3

Mnemonic: QZ0ZS
Value: 00101
Format: 30x 5a 21x

Mnemonic: QZ1ZS
Value: 10101
Format: 30x 5a 21x

Mnemonic: QZ0Z
Value: 01101
Format: 30x 5a 21x

Mnemonic: QZ1Z
Value: 11101
Format: 30x 5a 21x

Mnemonic: SZQZS
Value: 00011
Format: 30x 5a 21x

Mnemonic: MZQZS
Value: 10011
Format: 30x 5a 21x

Mnemonic: SZQZ
Value: 01011
Format: 30x 5a 21x

Mnemonic: MZ0Z
Value: 11011
Format: 30x 5a 21x

Mnemonic: QZMZS
Value: 00111
Format: 30x 5a 21x

Mnemonic: QZSZS
Value: 1 0 1 11
Format : 30x 5a 21x

Mnemonic : QZMZ
Value: 01111
Format: 30x 5a 21x

(-G . 2 3-l Table File

Appendix G.3

Mnemonic: QZSZ
Value: 1 1 1 1 1
Format: 30x 5a 21x

Mnemonic: Z 1 ZSl
Value: 11001
Format: 30x 5a 21x

Mnemonic: JUMPADDR
Value: N
Format: 12a 44x

Mnemonic: INCR
Value: 0
Format: 12x la 43x

Mnemonic: NOINCR
Value: 1
Format: 12x la 43x

Mnemonic: NOBRN
Value: 00
Format: 13x 2a 41x

Mnemonic: COND
Value: 10
Format: 13x 2a 41x

Mnemonic: UNCOND
Value: 01
Format: 13x 2a 41x

Mnemonic: CONST
Value: 1 1
Format: 13x 2a 41x

Mnemonic: NOACES
Value: 000
Format: 15x 3a 38x

Mnemonic: DR-DB
Value: 001
Format: 15x 3a 38x

(-G.24-) Table File

Appendix G.3

Mnemonic: YB-AR
Value: 010
Format : 15x 3a 38x

Mnemonic: YB-DR
Value: 011
Format: 15x 3a 38x

Mnemonic: DR-UIR
Value: 100
Format: 15x 3a 38x

Mnemonic: MPC-AR
Value: 101
Format: 15x 3a 38x

Mnemonic: DR-MIR
Value: 110
Format: 15x 3a 38x

Mnemonic: DR-AR
Value: 111
Format: 15x 3a 38x

Mnemonic: CN
Value: 0
Format: 18x la 37x

Mnemonic: CY
Value: 1
Format: 18x la 37x

Mnemonic: u0
Value: 000010
Format: 24x 6a 26x

Mnemonic: ul
Value: 100010
Format: 24x 6a 26x

Mnemonic: u2
Value: 010010
Format: 24x 6a 26x

(-G.25-l Table File

Appendix G.3

Mnemonic: u3
Value: 110010
Format: 24x 6a 26x

Mnemonic: u4
Value : 001010
Format: 24x 6a 26x

Mnemonic: u5
Value: 101010
Format: 24x 6a 26x

Mnemonic: u6
Value: 011010
Format: 24x 6a 26x

Mnemonic: u7
Value: 111010
Format: 24x 6a 26x

Mnemonic: u8
Value: 000110
Format: 24x 6a 26x

Mnemonic: u9
Value: 100110
Format: 24x 6a 26x

Mnemonic: uA
Value: 010110
Format: 24x 6a 26x

Mnemonic: uB
Value: 110110
Format: 24x 6a 26x

Mnemonic: uC
Value: 001110
Format: 24x 6a 26x

Mnemonic: uD
Value: 101110
Format: 24x 6a 26x

(-G.26-l Table File

Appendix G.3

Mnemonic: uE
Value: 0111H'l
Format: 24x 6a 26x

Mnemonic: uF
Value: 1 1 1 1 1 0
Format: 24x 6a 26x

Mnemonic: M0
Value: 000001
Format: 24x 6a 26x

Mnemonic: M1
Value: 100001
Format: 24x 6a 26x

Mnemonic: M2
Value: 010001
Format: 24x 6a 26x

Mnemonic: M3
Value: 110001
Format: 24x 6a 26x

Mnemonic: M4
Value: 001001
Format: 24x 6a 26x

Mnemonic: M5
Value: 101001
Format: 24x 6a 26x

Mnemonic: M6
Value: 011001
Format: 24x 6a 26x

Mnemonic: M7
Value: 111001
Format: 24x 6a 26x

Mnemonic: M8
Value: 000101
Format: 24x 6a 26x

(-G.27-) Table File

Appendix G. 3

Mnemonic: M9
Value : 100101
Format: 24x 6a 26x

Mnemonic: MA
Value: 010101
Format: 24x 6a 26x

Mnemonic: MB
Value: 110101
Format: 24x 6a 26x

Mnemonic: Me
Value: 001101
Format: 24x 6a 26x

Mnemonic: MD
Value: 101101
Format: 24x 6a 26x

Mnemonic: ME
Value: 011101
Format : 24x 6a 26x

Mnemonic: MF
Value: 111101
Forma t : 24x 6a 26x

Mnemonic: KF
Value : 1 1
Format: 37x 2a 17x

(-G.28-) Table File

File : proto1

LISTING OF THE MACRO-INSTRUCTION FILE
=====================================

Macro-instruction: fetch
Hexadecimal opcode:
Micro-codes:

Appendix G.4

Areg 110000 & Breg 110000 & RAMA & ZB & ADD & C0:1 & I-U & YB-AR & CY
NOP & DR-MIR & NOINCR & KF

Macro-instruction: LDA
Hexadecimal opcode: 11
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & C0:1 & I-U & YB-AR & CY
NOP & DR-AR & KF
DR-DB & DZ & OR & Breg 110001 & RAMF & I-M & CY
NOP & JUMPADDR # fetch & NOINCR & UNCOND & KF

Macro-instruction: LDA#
Hexadecimal opcode: 10
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & C0:1 & I-U & YB-AR & CY
DR-DB & DZ & OR & Breg 110001 & RAMF & I-M & CY
NOP & JUMPADDR # fetch & NOINCR & UNCOND & KF

Macro-instruction: STA
Hexadecimal opcode: 20
Micro-codes :
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
NOP & DR-AR & KF
Breg 110001 & ZB & OR & NOP & I-M & YB-DR & CY
NOP & JUMPADDR # fetch & NOINCR & UNCOND & KF

Macro-instruction: ADD#
Hexadecimal opcode: 30
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & C0:1 & I-U & YB-AR & CY
DR-DB & Breg 110001 & Areg 110001 & DA & ADD & RAMF & I-M & CY
NOP & JUMPADDR # fetch & NOINCR & UNCOND & KF

Macro-instruction: SUB#
Hexadecimal opcode: 40
Micro-codes:

(-G.29-J Macroinstruction File

Appendix G.4

Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
DR-DB & Breg 110001 & Areg 110001 & DA & SUBR & RAMF & I-M & C0=1 & CY
NOP & JUMPADDR #fetch & NOINCR & UNCOND & KF

Macro-instruction: JMP
Hexadecimal opcode: 60
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & C0=1 & I-U & YB-AR & CY
DR-DB & Breg 110000 & DZ & ADD & RAMF & I-U & CY
NOP & JUMPADDR #fetch & NOINCR & UNCOND & KF

Macro-instruction : JMZ
Hexadecimal opcode: 61
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
Areg 110000 & Breg #1111 & ZA & OR & RAMF & I-U & CY
DR-DB & Areg 110000 & Breg 110000 & DZ & ADD & RAMF & I-U & CY
NOP & M4 & CY & KF
NOP & JUMPADDR I~etch & NOINCR & COND & KF
Areg #1111 & Breg 110000 & ZA & OR & RAMF & I-U & CY
NOP & JUMPADDR #fetch & NOINCR & UNCOND & KF

Macro-instruction: startup
Hexadecimal opcode:
Micro-codes:
;this is the general startup routine which should be executed first
Breg 110000 & DZ & OR & RAMF & I-U & CY ;assurne the PC is on the D bus
NOP & JUMPADDR # fetch & NOINCR & UNCOND & KF

Macro-instruction: AND#
Hexadecimal opcode: 51
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
DR-DB & Breg #0001 & Areg 110001 & DA & AND & RAMF & I-M & CY
NOP & JUMPADDR # fetch & NOINCR & UNCOND & KF

Macro-instruction: OR#
Hexadecimal opcode: 52
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
DR-DB & Breg 110001 & Areg 110001 & DA & OR & RAMF & I-M & CY
NOP & JUMPADDR # fetch & NOINCR & UNCOND & KF

(-G.30-l Macroinstruction File

Appendix G.4

Macro-instruction: INL
Hexadecimal opcode: 01
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=l & I-U & YB-AR & CY
DR-UIR & JUMPADDR #000000000000 & KF
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=l & I-U & YB-AR & CY
DR-UIR & JUMPADDR 11000000000001 & KF ; DR-LAT
Areg 110000 & 8reg 110000 & RAMA & ZB & ADD & CO=l & I-U & YB-AR & CY
DR-UIR & JUMPADDR 11000000000010 & KF ; DR-LAT
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & CO=l & I-U & YB-AR & CY
DR-UIR & JUMPADDR 11000000000011 & KF ; DR-LAT
MPC-AR & KF & NOINCR ; LAT-UIR
NOP & JUMPADDR II fetch & NOINCR & UNCOND & KF

Macro-instruction: NOT
Hexadecimal opcode: 50
Micro-codes:
Breg 110001 & ZB & EXNOR & RAMF & I-M & CY
NOP & JUMPADDR #fetch & NOINCR & UNCOND & KF

Macro-instruction: JMNZ
Hexadecimal opcode: 62
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & C0=1 & I-U & YB-AR & CY
Areg 110000 & Breg #1111 & ZA & OR & RAMF & I-U & CY
DR-DB & Areg 110000 & 8reg 110000 & DZ & ADD & RAMF & I-U & CY
NOP & l'£ & CY & KF
NOP & JUMPADDR #fetch & NOINCR & COND & KF
Areg #1111 & Breg 110000 & ZA & OR & RAMP & I-U & CY
NOP & JUMPADDR #fetch & NOINCR & UNCOND & KF

Macro-instruction: JMNEG
Hexadecimal opcode: 63
Micro-codes:
Areg 110000 & Breg 110000 & RAMA & ZB & ADD & C0=1 & I-U & YB-AR & CY
Areg 110000 & Breg 111111 & ZA & OR & RAMP & I-U & CY
DR-DB & Areg 110000 & Breg 110000 & DZ & ADD & RAMF & I-U & CY
NOP & ME & CY & KF
NOP & JUMPADDR #fetch & NOINCR & COND & KF
Areg #1111 & Breg 110000 & ZA & OR & RAMP & I-U & CY
NOP & JUMPADDR #fetch & NOINCR & UNCOND & KF

Macro-instruction: ADD
Hexadecimal opcode: 31
Micro-codes:
Areg 110000 & 8reg 110000 & RAMA & ZB & ADD & CO=l & I-U & YB-AR & CY
NOP & DR-AR & KF
DR-DB & 8reg 110001 & Areg 110001 & DA & ADD & RAMF & I-M & CY
NOP & JUMPADDR IWetch & NOINCR & UNCOND & KF

(-G.31-) Macroinstruction File

Macro-instruction: SUB
Hexadecimal opcode : 41
Micro-codes:

Appendix G.4

Areg 1~000 & Breg 1~000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
NOP & DR-AR & KF
DR-DB & Breg 1~001 & Areg 1~001 & DA & SUBR & RAMF & I-M & CO=1 & CY
NOP & JUMPADDR IIfetch & NOINCR & UNCOND & KF

Macro-instruction: JMOVR
Hexadecimal opcode: 64
Micro-codes:
Areg 1~000 & Breg 1~000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
Areg 1~000 & Breg 111111 & ZA & OR & RAMF & I-U & CY
DR-DB & Areg 1~000 & 13reg 1~000 & DZ & ADD & RAMF & I-U & CY
NOP & M6 & CY & KF
NOP & JUMPADDR IFfetch & NOINCR & COND & KF
Areg 111111 & Breg 1~000 & ZA & OR & RAMF & I-U & CY
NOP & JUMPADDR IIfetch & NOINCR & VNCOND & KF

Macro-instruction: AND
Hexadecimal opcode: 53
Micro-codes:
Areg 1~000 & 13reg 1~000 & RAMA & ZB & ADD & CO=1 & I-U & YB-AR & CY
NOP & DR-AR & KF
DR-DB & Breg 1~001 & Areg 1~001 & DA & AND & RAMF & I-M & CY
NOP & JUMPADDR IIfetch & NOINCR & UNCOND & KF

Macro-instruction: SHL
Hexadecimal opcode: 70
Micro-codes:
Breg 1~001 & ZB & OR & RAMU & 0Z0Z & I-M & CY
NOP & JUMPADDR IFfetch & NOINCR & UNCOND & KF

Macro-instruction: SHR
Hexadecimal opcode: 71
Micro-codes:
Breg 1~001 & ZB & OR & RAMD & Z0Z0 & I-M & CY
NOP & JUMPADDR IIfetch & NOINCR & UNCOND & KF

Macro-instruction: CMPII
Hexadecimal opcode: 80
Micro-codes:
Areg 1~000 & Breg 1~000 & RAMA & ZB & ADD & C0=1 & I-U & YB-AR & CY
DR-DB & Areg 1~001 & DA & SUBR & NOP & I-M & CO=1 & CY
NOP & JUMPADDR IIfetch & NOINCR & UNCOND & KF

C-G.32-l Macroinstruction File

Macro-instruction: CMF
Hexadecimal opcode: 81
Micro-codes:

Appendix G.4

Areg IM000 & Breg IM000 & RAMA & ZB & ADD & CO=1 & I-V & YB-AR & CY
NOP & DR-AR & KF
DR-DB & Areg IM001 & DA & SUBR & Nap & I-M & CO=1 & CY
NOP & JUMPADDR I~etch & NOINCR & UNCOND & KF

Macro-instruction: OR
Hexadecimal opcode: 54
Micro-codes:
Areg IM000 & Breg IM000 & RAMA & ZB & ADD & CO=1 & I-V & YB-AR & CY
Nap & DR-AR & KF
DR-DB & Breg IM001 & Areg IM001 & DA & OR & RAMF & I-M & CY
Nap & JUMPADDR #fetch & NOINCR & UNCOND & KF

(-G.33-) Macroinstruction File

File : proto1

LISTING OF THE DECODE FILE
==========================

Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic

fetch Opcode:
LDA Opcode: 11
LDA# Opcode: 10
STA Opcode: 20
ADD# Opcode: 30
SUB# Opcode: 40
JMP Opcode: 60
JMZ Opcode: 61
startup Opcode:
AND# Opcode: 51
OR# Opcode: 52
INL Opcode: 01
NOT Opcode: 50
JMNZ Opcode: 62
JMNEG Opcode: 63
ADD Opcode: 31
SUB Opcode: 41
JMOVR Opcode: 64
AND Opcode: 53
SHL Opcode: 70
SHR Opcode: 71
CMP# Opcode: 80
CMP Opcode: 81
OR Opcode: 54

Address : 0
Address : 2

Address : 6
Address : 9
Address: 13
Address : 16

Address: 19
Address : 22

Address : 29
Address: 31

Address 34
Address : 37
Address : 47

Address : 49
Address : 56

Address : 63
Address : 67

Address : 71
Address 78
Address : 82
Address : 84

Address : 86
Address : 89

Address : 93

(-G.34-)

Appendix G.5

Decode File

File : proto1

LISTING OF THE MICRO-CODE FILE
==============================

fetch
0000A020138200
00098000060400

LDA 11
0000A020138200
0001C000060400
000060 F005 F601
000A0000060400

LDAII 10
0000A020138200
000060 F005 F601
000 A0000060400

STA 2QJ
00QJ0A020138200
QJQJQJ1 C0QJQJQJ6QJ4QJQJ
0000 E0 FQJ05B401
0QJ0A00QJQJQJ6QJ400

ADDII 3QJ
0QJ00AQJ2QJ1382QJQJ
00QJ060F0054611
QJ0QJA000QJQJ60400

SUBtt 4QJ
00QJQJA02013820QJ
00QJ060F0156611
0QJ0A000QJQJ6QJ400

JMP 6QJ
0QJ00A02QJ13820QJ
0QJQJQJ602QJQJ3C6QJ0
000AQJ00QJQJ6QJ4QJ0

JMZ 61
000QJA02QJ1382QJQJ
000QJ202QJQJ2760F
0000602003C6QJ0
QJ00QJ2024QJ6QJ40QJ
QJ QJ 0 CQJ 0 0 0 0 6 0 4 0 0
0QJ00202QJQJ276F0
0QJ0A0QJQJQJ060400

startup
0QJ0QJ202QJQJ3F6QJQJ
00QJA00000604QJQJ

ANDII 51

(-G.35-)

Appendix G.6

Instruction File

0000A020138200
000060 F0054 E11
000A0000060400

ORt! 52
0000A020138200
000060F0057611
000A0000060400

INL 01
0000A020138200
00010000060000
0000A020138200
00110000060000
0000A020138200
00210000060000
0000A020138200
00310000060000
00094000060000
000A0000060400

NOT 50
000020 F0Ql5BE01
000A0000060400

JMNZ 62
0000A020138200
0000202002760F
0000602003C600
000020A4060400
000C0000060400
000020200276F0
000A0000060400

JMNEG 63
0000A020138200
00002020027 6QlF
0000602003C600
00002074060400
000C0000060400
000020200276F0
000A0000060400

ADD 31
0000A020138200
0001C000060400
000060F0054611
000A0000060400

SUB 41
0000A020138200
0001C000060400
000060F0156611
000A0000060400

Appendix G.6

(-G.36-) Instruction File

JMOVR 64
0000 A020138200
0000202002760F
0000602003C600
0000 2 064060400
000C0000060400
000020200276F0
000A0000060400

AND 53
0000A020138200
0001C000060400
000060 F0054 E11
000A0000060400

SHL 70
000020F125B701
000A0000060400

SHR 71
000020 F005B501
000A0000060400

CMPII 80
0000A020138200
000060F0156410
000A0000060400

CMP 81
0000A020138200
0001C000060400
000060F0156410
000A0000060400

OR 54
0000 A0201 38200
0001C000060400
000060F0057611
000A0000060400

Appendix G.6

{- G.37- l Instruction File

a..lo.s 10 ..l. uoJ (- 8£·8-)

000000000L00000LLL00L00000000L0000000L0L0000000000000000 6~
0000000000L000000LL0000000000000000000000L0L000000000000 8~
L00000000LLLLL0LL0L000000000LLLL00000L000000000000000000 L~
0000000000L000000LL0000000000000000000000L0L000000000000 9~
00000000000000000LL0000000000000000000L0L00L000000000000 S~
000000000 00000000LL000000000000000000000L000LL0000000000 ~~
00000 0000L00000LLL00L00000000L0000000L0L0000000000000000 £~
00000000000000000LL000000000000000000000L0000L0000000000 c~
000000000L00000LLL00L00000000L0000000L0L0000000000000000 L~
00000000000000000LL000000000000000000000L000L00000000000 0~
000000000L00000LLL00L00000000L0000000L0L0000000000000000 6£
00000000000000000LL000000000000000000000L000000000000000 8E
000000000L00000LLL00L00000000L0000000L0L0000000000000000 L£
0000000000L000000LL0000000000000000000000L0L000000000000 9E
L000L0000LL0LLL0L0L000000000LLLL00000LL00000000000000000 SE
000000000L00000LLL00L00000000L0000000L0L0000000000000000 ~E
0000000000L000000LL0000000000000000000000L0L000000000000 EE
L000L0000LLL00L0L0L000000000LLll00000ll00000000000000000 cE
000000000l00000lll00l00000000l0000000l0l0000000000000000 lE
0000000000l000000ll0000000000000000000000L0l000000000000 0£
000000000ll0lLLLll00000000000l0000000l000000000000000000 6c
0000000000l000000ll0000000000000000000000l0l000000000000 8c
0000llll0ll0lll00l00000000000l0000000l000000000000000000 Lc
0000000000l000000ll00000000000000000000000Ll000000000000 9c
0000000000l000000ll0000000l00l0000000l000000000000000000 Sc
000000000Ll000llll00000000000l0000000ll00000000000000000 ~c
LLll00000ll0lll00l00000000000l0000000l000000000000000000 Ec
000000000L00000lll00l00000000l0000000l0l0000000000000000 cc
0000000000L000000ll0000000000000000000000l0l000000000000 lc
000000000lL000llll00000000000l0000000ll00000000000000000 0c
000000000L00000lll00l00000000l0000000l0l0000000000000000 6l
0000000000l000000ll0000000000000000000000l0l000000000000 8L
l000L0000lL00ll0l0l0l0000000llll00000lL00000000000000000 Ll
000000000l00000lll00l00000000l0000000L0L0000000000000000 9l
0000000000l000000lL0000000000000000000000l0l000000000000 Sl
l000l0000Ll000l0l0l000000000llll00000ll00000000000000000 nl
000000000l00000lll00l00000000l0000000l0l0000000000000000 El
0000000000L000000ll0000000000000000000000l0l000000000000 cl
l000000000l0ll0ll0l000000000llll00000lll0000000000000000 II
0000000000l000000lL0000000000000000000lLl000000000000000 0l
000000000l00000lll00l00000000l0000000l0l0000000000000000 6
0000000000l000000ll0000000000000000000000L0l000000000000 8
l00000000lL0lllll0l000000000llll00000ll00000000000000000 L
000000000l00000lll00l00000000l0000000l0l0000000000000000 9
0000000000l000000ll0000000000000000000000l0l000000000000 S
l00000000ll0lllll0l000000000llll00000ll00000000000000000 n
0000000000l000000ll0000000000000000000Lll000000000000000 E
000000000L00000lLl00l00000000l0000000L0L0000000000000000 c
0000000000l000000ll00000000000000000000LL00L000000000000 L
000000000l00000lll00L00000000l0000000L0L0000000000000000 0

=====================================
31I~ XHVNI9 3GOJ-OHJIW 3HJ ~O 8NIJSll

lO.o..ld aru

L • 8 Xl puaddv

a.Jo.s 10.J.uoJ (-6E· :) -)

0000000000l000000ll0000000000000000000000l0l000000000000 96
l000l0000ll0lll0l0l000000000llLL00000Ll00000000000000000 S6
0000000000l000000ll0000000000000000000lll000000000000000 h6
000000000L00000lll00l00000000l0000000l0l0000000000000000 E6
0000000000l000000Ll0000000000000000000000L0l000000000000 26
0000l00000l00Ll0l0l0l0000000LLlL00000Ll00000000000000000 l6
0000000000l000000ll0000000000000000000lll000000000000000 06
000000000l00000lll00l00000000l0000000l0l0000000000000000 68
0000000000l000000ll0000000000000000000000l0l000000000000 88
0000l00000l00ll0l0l0l0000000llll00000lL00000000000000000 L8
000000000L00000LLL00L00000000L0000000L0L0000000000000000 98
0000000000L000000LL0000000000000000000000L0L000000000000 S8
L0000000L0L0LL0LL0L000000000LLLL00000L000000000000000000 h8
0000000000L000000LL0000000000000000000000L0L000000000000 E8
L0000000LLL0LL0LL0L00L00l000LLLL00000L000000000000000000 28
0000000000l000000LL0000000000000000000000L0L000000000000 L8
l000l0000lLL00l0L0l000000000LLLL00000lL00000000000000000 08
0000000000l000000LL0000000000000000000llL000000000000000 6L
000000000l00000LLl00L00000000L0000000l0L0000000000000000 8L
0000000000L000000LL0000000000000000000000L0L000000000000 LL
0000LLlL0LL0LLL00L00000000000L0000000L000000000000000000 9L
0000000000L000000LL00000000000000000000000LL000000000000 SL
0000000000L000000lL0000000L00lL000000L000000000000000000 hL
000000000LL000LLLL00000000000l0000000LL00000000000000000 EL
LLLl00000LL0llL00L00000000000L0000000L000000000000000000 2L
000000000L00000LLL00L00000000L0000000L0L0000000000000000 LL
0000000000L000000LL0000000000000000000000l0L000000000000 0L
L000L0000LL00LL0L0L0L0000000lLLL00000LL00000000000000000 69
0000000000L000000LL0000000000000000000LLL000000000000000 89
000000000L00000LLL00L00000000L0000000L0L0000000000000000 L9
0000000000L000000LL0000000000000000000000L0L000000000000 99
l000L0000Ll000L0L0L000000000LLLL00000LL00000000000000000 S9
0000000000L000000ll0000000000000000000llL000000000000000 h9
000000000L00000LLL00L00000000L0000000L0L0000000000000000 E9
0000000000L000000LL0000000000000000000000L0L000000000000 29
0000LLLL0LL0LLL00L00000000000L0000000L000000000000000000 L9
0000000000L000000LL00000000000000000000000LL000000000000 09
0000000000L000000LL0000000L0LLL000000L000000000000000000 6S
000000000Ll000LLLL00000000000L0000000LL00000000000000000 8S
lLLL00000lL0LLl00L00000000000L0000000L000000000000000000 LS
000000000L00000lLL00L00000000L0000000L0L0000000000000000 9S
0000000000L000000LL0000000000000000000000L0L000000000000 SS
0000LLLL0lL0LLL00L00000000000L0000000L000000000000000000 hS
0000000000L000000LL00000000000000000000000LL000000000000 ES
0000000000L000000LL0000000L00L0L00000L000000000000000000 2S
000000000LL000LLLL00000000000L0000000LL00000000000000000 LS
lLLL00000LL0LLL00L00000000000L0000000L000000000000000000 0S

L·8 x,puaddV

Appendix H.1

Appendix H

Appendix H.1 contains the schematic circuit diagrams for
the arithmetic and logic unit hardware interface. The ALU
circuits themselves are connected in the standard way
suggested in the Am2900 family data book [ADV].

Appendix H.2 gives a step by step breakdown of the wire
wrapped circuit board. These diagrams should enable the
user to perform necessary maintenance and should also
provide the necessary information for the production of
further boards.

(-H.1-l Circuit Diagrams

,

t--

:J>
\'
c

~
-t
"1
<.

l7

"IJ b

:J:[<,rv1 rio (HAr-i NeL

[) 7"\ :p 0 :D :D b

l" t7 ~ ~ ~
)'

I

L
I

"
~

,
1>0'

........

p ~

~ ~ ..
(7+>
f" ~ & i' ,
t~ I"-I"

~I ~l DI
~ •

,
I>'l'

(-H.2-)

Appendix H.1

F
~

~
-\
iii
-p
11
:D
C1
\Tl

Circuit Diagrams

:»

"' :z.

(-H.3-l

~\

Appendix H.1

Circuit Diag rams

lL' L :. ~ .. ~ • .. . · ~
. ,1\-'

LL' • ,; •

.~
".,: r t .. c cs.:: : / ~ ."

J .. ,; " !....!...

l1.,.,;

" :' 0 •• " ':...1... " - .. ~

rJ ;r C •• I ": :: ,Il •• • "

'l
.2"101 ~

~
u.' .. ~

·,1

(- H.4-)

·~rl

Appendix H.2

>: n >:, ., .,
C!> () C!>

" >: n ...
0,
..... ..
0 en "0

" C!> "0 ., () " ... a. ...
(iOg en ...

a. -r ..
C!> f-f

If)

....t
~
vS

f
t:-

Ci r cu it Diag rams

Appendix H.2

~- ,
'<-0 ... · " . ~ · '!

~ " r 0 • 1 · ., ", .. (~,
· -"

· "
· " ., · .,

'" · '" 0 • ~"<o,.. ,-
'""'-

·

'-~
· "

· ' · -.
.I.~ _It"
·w., • '<
• 1Ioi\, · "'r

· (. ",
· "., • ... ,t

· .. ,-. · " ., ''''1

'r~, ".

~ n ~, .., ..,
" " " c
n ... ~
0 '"

..,
.... ..
0 en -0
c " -0 .., " '" '" 0. ...

0 en

~~~ 
... 
0. 

" 

~ 

V1 

:::i 
~ 

c...-..I. 

k: 
" (......-

.z ' 10 I 

~,~ ~'.' .... 

·.~J~JC.,. : ::' .. " •• J • 

........... ~ ... ~ .. -. 

( -H.5-l 
Ci rcui t Diagrams 



Appendix H.2 
~- .... 
r 

'~'" -'I ~ 
'- · " ~ "r - ..... ( 

"r ", 
' &(~, · '. · -.( ", 
." · ., 
", .0, 

0 • ~"< ,- > • ...... ........ 
· " ... ~ 

., .... · " 
• l OA. - II" 

... < .. " . 
• 1>1." • 4,,.. 

. ..... c..o .~ . 
· ".ot. , ''''J .... , . 0"'4 
• c ........ ..... 
• ".~J' " . 
''''' ", 
.r .... ., ."" '" ..... · 'I 
· e...1l• '''r-
• T/( " , 
."" ", 

'- '" • ",- '0, 
r -, . .." 
• 

.. - .. ~ . ~ .. -
:0:: n :0:: .... .... .... .., .., .., 
'" " '" c: 
n .... :0:: 
0 <' .., 
>-' " 0 en -0 
c: '" -0 .., " '" <' Co 

I"L::&.' ~ £' 
.... 

.;p 0 en ::s .... - Co 

~ C7 '" 
(II 

r. J. ; f ~ , ~ t J • r:: :: t 1;'" 11 • , I 

~ 
[) 
~ 
f , . ... 

, . ;. ...... . 

. . ~ ...... . 

(- H.6 -l Circuit Diagrams 



.... 
"., 
. ~~ 

. , .... 

.I.,A. 

·W.-. 
'-" .... ~ 
. 1)-./ 
."'.~ ., .... 

· ., 
. ... 
· 0:" <0 
_ "C'.., r 
· " · -, 
-/I" 
· " 
. /1, ... 

.... , 
'r~, . .. . 
·.oa.c ... , .... ~ ... , 
.~ ... .,. 
.~, . ." 

' ~'I.. ' ''t" 

'Vc '''" 
.~ ' ''1 

;:- '''( 

r ..... ~ - ''''' 
1- . ."... 

• 

I, .• ;; 5 ••• ' • 

• • ;; . . ... , • t ... - ... ... .. . 

( -H . 7- ) 

Appendix H,2 

b' .... 
o 
c ., 

n 
I"., 
D 
C 
l"
e< 

.: 
I"., 
eo 

~ ., 
-0 

" e. 
en 
l"
e. 
eo 

Circuit Diag rams 



Appendix H.2 

t- .~ 
r 

°.t...r .. 
~,~ (. 

'- · " ~ ·'r - ....... ... . ' . 
-'''at ", '. ", .... · ., .. , ." • • ""'ote 

~- .,,~ )-'-~~ · '. - ..... · " .1.-. - "'1 ... ,,, · " 
- Iw." -" .... 
' ' 'u .~. 
. fl.c./ -"" .... · "' . ..... . "" .... ~~ ... .... , '" ..... '" . ..., ." .... , .. , 
• ....,~. '''1' 

·V, .'( 
."" ", 

~- ", 
" '''' ~ - C"- • .",. 

lL,,~· ~t. .. ·a"I"-~"'''''' 

• 

It,.~., .... a."",,,,,.,,,,, 

:E: n :E: .... .... .... .., .., .., 
" () " c 
n .... :E: 
0 <" .., 
..... .. 
0 en 
c " '0 .., () " <" 0. .... 
;'<'0 en 
F?~ 

,.,. 
0. 

t. if " 
('> 
('\ 

0 

~ 
('\ 

? 
E. .. 

. .. -......... . 

. . ~ . ~. ~ . , 

... ~ .... , .... 
(-H.8- ) Circuit Diagrams 



f- .... 
'./' r 

-<o,r. 

~- · " ....... "r 
"r ", 
'~t.t. ", 
"'4 ". .... ." 
'., '0; 

• l,- ~"<(I,. 

- "c-..., ...... 
. ~ ..... · ' . 

· " · ' .... · I." - II" ...... · ' . 
• 1M" 

....... .... ~ .~ . 
· ~'" -"'f 
.~ • "'f 
"-.. -4,. 

' ,1~, ". .... , ", ...... '" 
• zq", - "7 
-&c..t, -., 
..... ~ -·r 
• I;f, . ,,( 

-"kc: ''''t 
:- '''l. 

• ... c~ -tt, 
\-
• 

Appendix H.2 

_. ~ ..... . 

0;: n 0;: .... ..... ..... .., .., .., 
" () " c 
n ..... 0;: 
0 ... .., 
..... II> 
0 '" "0 
C " "0 .., () " ... Co 

..... 
E 0 '" r :l .... 

Co 
:" " ~ O<::l 

N 
II") 
It) 

r , 
h.,:;;· .... ~. f 

II' 

.2.'\01 

Ir.,~.~ .... . 

h_, . ;; ...... ' 

C-H.9-l 
Circuit Diagrams 



~- .... 
. 4,· r ..... 

'- .. , 
~ "r ..... 

.-~ ", 
· to" e , .', .,. .', .... ·0, 
. " .... , ,- .c"<6 

- 'Ie-... ... ...... -., . ". 
., .... . " 
• 1° 4 - " II 

....... C"C 

. Il0l,, ' ~ 'r 

.... 'U - .... 

. ""./ . "" ........ ..... 
• c ........ " 

'''II,t, ... . 
• ..... C .~ 
.... .tu- '''r 

.~ ' ''''' 

. ~, · "1 
·~ · .. r 
. ~, ''''i 
. ~ · tlt 

:- '''.t ." .", 
~ _ c-_otp-

• 

Appendix H. 2 

1::7:~/~~i 

[>:<~~t~~ 

••• J • 

..: n ..: ..... ..... ..... ., ., ., 
" a " " n ..... ..: 
0 CT ., .... .. 
0 en 

" " "0 ., 
" " CT 0-..... 

t 
0 en 
:> ..... 

0-

" 
~ DC 

f I-' 
V, 

).9 0 1 
(/'1 

" ~ 
Ii' 

( -H . 1QI- ) 
Circuit Diag rams 



.... 
'., o .-

· ., 
·V 
• &"<& 
."~ J-• ...... ...... ...... 

.1 .. -., 

· ., · ., 
• II" 

·W ... '."1: .... " .... .. ..... (,; - ... . 
· 'ttl . "" 
• ""4.0 .... , 
........ "'I 
'.I"A.q,. ... . ...... , ... , 
'''.cu. . ft, 
'Z<t., '"'' 
'~I ' ~J 
.... -... • 'I .. 

'Vc: ''''1 
-<'trc.t: '''1 :.- ... ~ 
· "' ... - .", 

~- '''P' 
• 

).9°1 

.. ~ . ~ ..... 

. . " . .. . .. . .... .. . . 

( _H.ll-) 

Appendix H.2 

:c ... ., 
(\) 

b' ..... 
o 
c ., 

n ... .., 
" c ... 
" 

:c ... .., 
(\) 

:c .., ., 
(\) 

a. 

en .... 
a. 
(\) 

Circuit Diagrams 



t- ..... 
r ...... '" -- ", 
~ "r ..... 

""t ". ........ , · " 
'" '. .... ·t, 

' .. ." • - ."<.a I- e "c:." , ...... 
.~~ · " · " · ..... 
.1-4 - "1, 
• .. ·It ". · .. " ''''r .... ~ .~ . 
· ,." ''''1 ...... .~ . 
.' .... .... , 
'''«.t,. ". .... '" .,,,, '" ..... '" .- '" 
'~'''r 

· '" ", .... ," 
~- ". ... . ", 
~ - ... - . .., 
• 

Appendix H.2 

.~~· ~."' .. ~.I~.- ......... · 

.~~.& .. ~.J .". __ ........ 

I: 

I f 
' . ~ :tt,~, tt I:~;Z Ii' :." "\ 

,l.~OI 1.' 
~ 

t ............ , • , . -.......... 

I 
, , ;t~Jttf'::;IIiF:' ; ' ---------. 

,l.qol 
/. \. 

• , ~ • <. . .... . ......... ~ ~ 11 
r I~ '~~;~ .. ~~ \ . . .. ..' 

• , : t : . • t I J ,. ::- : :; ,. Ii J I • , I r 
2'101 

"~'~'''''I-'--'''''- ) 
J 

'I;ft,'L'JI::-:;''''''JI 

.2 "\0 1 
'1 
~ 

e-
o • ; . .... .. . .. -..... . 

(-H.12-) 

b' .... 
o 
c ... 

n .... ... 
" c .... ... 

r 
r--

.. 
Co 

'" ..... 
Co .. 

Circuit Diagrams 



~- .~ 
.~~ it r . ...,. 

"- · " " " r .z.t •• 
"r ", 
··l<l( · " 
"'( ", 
." · ., 

0 
'., ." 

l- - ~"<. 
_ "CO .. J>. ...... 

."'f ... ", 
· ...... · -, 
""" - II" 
.... <0; . <01( 

· """" . "'I' 
...... ~ .4,\ 

· I\(h • "" .... ~ .... ( 
.c ....... "Of 
'.r~, ... .. . ~{ ''', .... ~ ... ,. 
.~ ... ') 

'Zc..!, -., 
· .... "'" . "r 
'Vo; .",( 

. ~ -tl, 
:,_ 'of( .. , ..... 

• ~::~. t tf'::::'I;"~.J' 

~ L ~ ........ . 

f ""\ 
t . ,;~tJttrl:;:'t .. t.,s 

).901 1.' 
~ 

'L~LLI " " ~ -... ~ ...... 

( 
.~:: r::. ttr.: : ;, 10':.;' "\ 

.2.~ol 

.. ~ ........ ......... J?,,: .. :j 
I 2.10:l, .. --.. .. .. -

• ~:: ~ t t t t J':::::' ", t.; I 

2 '10 I 

.. :. .. ,~ .... -... -.... 

• ~:: r ~ .. , t S I:::! II," t. J I 

C-H.13- J 

Appendix H.2 

n 
o .... 
o 
" .., 

n -= .... ..... .., .., 
a co 

" .... -= " .., 
II> 

Ul "0 
co 
a co 

" "-..... 
0 Ul 
::s ..... 

"-
co 

t 

Circuit Diagrams 



t- .... , 
r ."". ." 
~- · " . or ..... --. ", 

-'tt.t. · " ...... ", ... .., 
'" ." 

0 ,- • c"ott .... ~ ,. ...... 
.~ .. , " ...... · " 
• I_ I.. • II" ...... • '< 
• 6<" -"'r .... " .' . 
· ·~tl · "'f 
' .... ' '', ...... · " ,/ 

-" •• /,>/# .... .... , ''', .... ~ ... , 
.~ ~ .. ') 

' ~I •• , 

·~··r 
'V( . ... 

_"'-< 0", :- . ,,( 
· ~ .. - .", 

~ - '''sY 
• 

Appendix H.2 

..: n "" .... .... .... 
'1 '1 ., 
<1> a <1> 

c 
' . ' ; J: 1;" c t J .: : : J "II :., I n .... "" 0 CT '1 .... .. 

0 en 
c <1> "0 
'1 a <1> 

CT a. .... 
-<. 0 en 
If' " ... 
F 

a. 
ro 

0 N f .P 
0 

.;:-

\, . ~ ; ....... . ~ , 
~ 
lI' 

+ 

'" i ..--
r-
f.-
Ir 

.. ~ ...... , 

....... ,. . ........ . 

(_H. 14- l 
Circuit Di agrams 



t- .... 
r ...... -./ 
,- · 0, 
" .or ..... ... · ., 

• .... t 
.0, ',. .0, 

• "< 'j, 

'., . ., 
0 • .. ·'<e 
~- .. "c;.. >-....... 
.~~ 

· ., 
.. .. "" · " 
.1_«,. .. "1) 

. ... II. •• ", 

• Ik" • "'C' 
. l6,.c.o ""', 
· 'It, . "'t 
• w",,-" '''' • 
• ~ ........ ' ''If 
' ,1-"., .,. • ..... , '''' ... ~ ... , 
.~ '"'' 
'~t ... # 
.~."f" 

'Vc '''f 
.. Ike '''t :- .... 
"40-r _ - '" 

~ - ""'" • 

r 

\.. 

Appendix H.2 

CSJ .. ···· "740,," ...... .... .. 

..: . n ..: 

lr I ""\ 
.... .... .... ... ... ... 
" 0 " c: 

•. ~:r~Jtts,=:;~\J'.,t n .... ~ 
0 <'" ... ..... ., 

).~O4- 0 '" c: " 
J.::: .... } ••• .............. ~ .. 

....... 
... 0 " <'" 0-.... 

° U> 

t =t' ( 
, . ~:~~.ttrl:;;I~Jt." 

;;< ::s .... 
0-

F " l'" 

E ..» 
0 

).'\01 'f 
~ 

-f"" 

r.-.. ,;; ..................... } 
p 
v 

.t;tt'tt$':~;t,Jt." 
+ 
II' 

:L~01 ,f" 
.... 

.. ~ ~ • ~. ,;. L • .. ............... 

f 
~ 

.t;~t.t'll::;'"~.,, v 

.2 '10 I 

.. ~ ... .. , . .. ............... 

1 r 
tJ:tr,.tC"::;I1;""I 

.2'\01 
'l 
~ 

~ .. ~ ...... ' . .. .. .. " ........ -

(-H.15- ) Circuit Diagrams 



I-
F -c..,.. 
,-
~ ...... ... 

: ..... , .,. 

, 

'''', " , 
. " 
"r . .. 
", 
", 

. , 
' 01 

' Or 

··f 
'1, 
'1, .. , . . ~ 

\ 

/ 

~ 

I"L~· '.~"L"~ . . • "'''''· 

•. ~~r'_~IJI~:~I~_'.J' 

82'>5"1.<\ 

I, ... ::· ..... ·I ~- .......... · 
~ 

lJ 

.~:rt'CCJI:::I I .:.J. 

g2">S' (,~ 

.. :;' ......... ,.-- .......... 

( 
t . ~:JtJ'tJ.::='t't.J, 

A~Olj. 

· .. ~ .... , .. " . · ................ 
J '\ t f. 

0 

1.',ft.""J' ,::::;:""I't'" 

).9°1 1:' 
~ · .. ~' ... , .... · ............. .. 

·~:t:;;lttr '::: ':::1"1;11':_;1 

).~ol 

· .. ~ . ~ , .:. .. · ............. -
---1 nqH::i 2.-'02 .. ~ .... .. .. -

• ~ :: t t; • t ( r '1: .::: t t;" ... , , 

I 
.2 '\0 I) i · . ~ .. ..... · ............. -

:/ 

'J;rtl'CJI: .:::,,, .... ,, 
.2''101 

'1 
~ 

e-
o • ~ • . .... · .. .... . .... . 

(-H. 16- ) 

Appendix H.2 

~ n ~ ..... ..... ..... ., ., ., 
(1) I) (1) 

c 
n ..... ~ 
0 <? ., 
~ .. 
0 en 
c (1) ., I) (1) 

<? 0-... 
0 en 

{- :s ..... 
0-

r (1) 

N 
~ 

0 
-r 
r. 
~ 
II' 

.. 
v 
r:-

'-t-
~ 

-5 
r-
'" 

Circuit Diagrams 



r- .... 
~., .. .. ...... 

~- ." 
'" ..... 

"r . .. 
.~ ... ", 
· .... ", .... · ., 
'*, .., 

0 

~-
• &"(t 
'''c;". ,. ...... 

.~~ · ", 

., .... · -, 
010,. · ", , 
....... ''''II' 
• 6111." ..... ,.. 
• ..... tJ .... , 

• 1)(" • "'f ... ~ ..... 
• c: ....... '''''' .".,., .... ..... , . ., ... ~ ... , 
.~ ... ., 
.~ '''1 
· ..... "" . 4,. 
· "'0; .... 
-""'c: '''1 :- ... ~ 

r • .... r-·,.' 
! - -.".,. 

Appendix H.2 

(
~ 72' .. ···· .. .. ~ 

. . .. ~ I t. C It.~, ;1'" "" 

..: n ..: .... ... .... 
~- .. -..... --/ ., ., ., 

'" () '" " b' .... ..: 

"" 
., • . .. ~'I;JtlJ'::~;Ir."' . J' 

.... .. 
0 tn 

" '" ., () '" "" Q. ... 
-!/ GO 

0 tn 

" .... - Q. 

~' ............... . 

~ '" f N 
-» 
0 
~ 

f 
0 
r--

r, , 
~ 

'" 

.2. '10 I 

.. ~ . ~. ~. , 

(-H.17- ) 
Circuit Diagrams 



t- ..... 
.. -c..,.. ' " '- . ., 
~ ..... "r .. ~ ", 

'&.(.'1. " 1 
• •• ~ "f ..... • 0, 

' ., o 
. ... 
• .. ·'(e 
-..... )-

,-...... 
. ~~ 
· ' .... · " . 

· " 
• lOll. - ftl' 
....... ''''1 
. 6t" . "'r 

. ... c.. ''''', 
· .'" . "'t . ....... -... ( 
.~...... ' '''1 
. .".~~ '''... , ... , 
"ol,u. '''' 
.~ '''7 

. ~ -"I 
• Ioto.w • "r 
-vc: '''4 
· "'c .,,~ 

:,- ... ~ 
• 4.. • 4, 

~ _ C-' • .",. 

• 

11\ 
• l : ~ t , t I; f • :: : .: , "1~ .. J • 

I gz.'s: ~~ 
• • :. ... .... l • -............... 

\ 
· .J;.J'l·tl'. :r: :' ..... , • 

g 2.S",S" . ~\ 

· . :: ....... .. .. ............... 

·J~f::'ttr.: : :' .. II': • .s1 

" VSS' (.~ 

· . ~' ... " ~ .. . .............. -
\..\ 

'\ 
' , J ::: r I; • t t 1 • ::' ::: :\t " I< I( • 1 • 

.. , ... ~: 
C~ 

.. ~ ..... . ... ... .. . . 

(-H.18-) 

Appendix H.2 

~ n :c ... ... ... ., ., ., 
'" () '" " n ... :c 
0 <"T ., .... " 0 en '0 

" '" ., () ct 
<"T a. ... 

.p 0 CJ) 

" ... - a. 

~ ,.. '" 
J> 
0 .. 
r 
l 
f .. 

Circuit Diagrams 



.~ 

C' ·I.l ,...... 
........ , 
., .... 
.I.A. 

• ~<'I. 

· "~I 
· ... U 
• OJl41 

'" ... ....... 

.. , 
'" - C"<a -.,..., ,.. 
· ' . 
· " 
-II" 
· ' . .... ,. 
.~. 

''''t 
'''', 
'" 

/ 'I 
.;: ~:;'ttJ .=:;1110'.'" 

8tS-~~ ~) 

'.I'~, .... , ". · " I. • • ~ • .o ' .. I • . .. ~ ...... ~ ... 
-'i r 

""-."" ..... .... ~ 
.t'. 
."" :-
· "(' .. 

~-• 

'0, r 
'0, 

· ., 
.', 
", ", 
'" '" ..... 

~ \,. 

'. ~ ;; t r;" • " . : ':;1110' •• " 

V--SZS"SJ\<\ 

(~ "',, ............. 

-~: ~~~ t t, '=':;':;&110':'''$ 

&2'>5' t') 

.&; ...... ,. ~ .. ~ .... ~ .. 
\,. 

~ 
~5::~r;"ttS.=:::&IIO&=.,.' 

"'Q04-

• • :: .... .o" • · ............. , 

_.s; J: ~ " J;l.t' I:;:r r.1I= unlrl,) 

___ ,2.'1°1 'r r V 
",~}.. 

~ 
· .. .. .... -

.t:t~~t fl:::r & : .; , 

,2. ::>1 

. '" : .... · .. .. ... .. . 

[~~~;~:j 
• , :: r ~ • t J I " : .:; ~ :. J I 

\2 '101 

lL!.!.1...: .' , . , .. . ...... 

• I : f r; • t J I " : .:;, ... . J , 

".t '\Pl1 

.. ':2 ...... . 

( -H . 19-l 

Appendix H.2 

~ <1 ~ .... .... .... 
'1 '1 '1 .. " .. 

C 
<1 .... ~ 
0 <T '1 .... '" 0 en '0 
c .. '0 
'1 " .. 

<T C. ... 
cP 

0 en 
::s ... - c. p .. ,. ,-N 
.1J 
0 

0 
0 

~ r-

r. 
~ 
\I' 

Circuit Diagrams 



t- .... 
• ,#'t r ...... 

'- · " " "r .... , ... 'or 
"'t't · '. 
' " ", .... · , . 
' .. '" 0 

~- ::::'; ....... ....... , · " · " ·t .... 

.I.~ -"" .... '" · ' . 

...... , ' '''r ... ~ " . 
· ~ ( t, ' /'It, ...... ..... 
.' .... · " ',1-. .. ". .... , " , ..... '" . ~ ... ., 
.~, -,., 
· .... ~ ·"'r 
• V, ''''f 
-I%c ' ''1 :- ... ( 
· '" -If, ;- ~Op - "v 

• 

Appendix H.2 

~ .. ....... . . 
s: n s: .... .... .... , , , 
" 0 " c 

~. ~:;rI;I'Ctl' ~= n .... s: 
0 " , .... .. 
0 en 
c " , 0 " " c. .... 
(jJ 0 en 

" .... .- c. 
~ " S-N 
t .D 

0 

f 
r-

\ 

r • 

C-H.20- ) Circuit Diagrams 



-., 
• ,, ::::.~ '-~~ . , .... 

.I0A. .... , 
06.(" .... ~ 
• 'lot" 

-..... 
-' ..... ..... ~, -... , -..... 

· '. · ., 
· "1, 
· " 
• .. ·r 
-~ . 
· "'t .... 
'" 
" . . ., 
'" . ~ ."? 

"Zc.t, -of# 

· .... ~·"r 
'Vo; .,,( 

-I%c: ·tf~ :,- .,,( .... ( - .", 
;- . ..,. 
• 

EEill' " '" 7~'.1ft. ...... ... . 

r~i;;~~i ........... . 

· . ,:r~'l"'%:~"' •• " 

SUS l<\ 

~6;~.""&' ~ .............. 

~ 
• ,;r:;:, tCI'!:::r iii":;"" 

&2SS: (,~ 

I , ~ ....... l • . .............. 

" . ':rl'lCII:::"'~'J" 

.2.904-

~,;& .... &. · .. ........... 

. ~ 

~ 1,_:: I: ~ j: Le, I =:;, .. ,;. 
" 

).'101 1: 
~ 

,.; ....... , ........... . 

',;f:;&tts.:;:;" , 
" ~ 

).901 

I, . ~ ! • ~ 6 ;. •• · .... . . 
r .. · .. J 2."'102-........... -

":~=ettll=::', • , -, 
.2. '\0 \ 

I 

•• ! . ..... . . ... ...... . 

.:;f) ·.;r"tl":::,,. . • 
'1 

290\ ~ 

e-
•. 1. I ............. · ........ 

(-H.21-) 

Appendix H. 2 

~ () ~ .... .... .... ., ., ., 
'" () " <= 
() .... ~ 
0 "" 

., ... " 0 '" "0 
<= " ., () " "" c. .... 

0 '" VJ :s .... 
c. .- " 

~ ~ .SJ 
0 -

l 
r r 

Ii' 

Circuit Diagrams 



-4" 
-', 
· " 

- ..... c ·"r 
· _.. . Ie 
. ..... t . IJ 

· -' t •• ~ .... 
-" 

-.. 
."" 

~- • ~ · '(ej. 

.""''' .-. ~ ... ...... · " 
· " 

• I_A. . 11" ....... ~ .", 

• Ikl' • "'r 
..... (0 ~ ... 

· ' • ., -"'r 
· " 't" · ... e 
......... "I 
'1 ... , ·11_ ...... , ... , 
" Au. . ",. ..... 
. z.c.c, . 41 .... " . 
·V< .... · -, 

;-
• 

.. ;; ..... . . 

:rr,.' ••• =::, ..... . " 

C-H.22-) 

Appendix H.2 

'" n ...... ., ., 
~ .g 
n ... 
o " .... 
o '" c co ., () 

" ... 

~~ , 
cr 
F 
II' 

'" ... ., 
co 

'" ., .. 
" " a. 

'" ... 
a. 
co 

Circuit Diagrams 



. ., 
··r .', 

".t., "J .. ~ ", .. , .. , .... 
~ -. = :~.<e> -.... 

---.... ::: . , .... . 1.-. -1ft, .... , .... 
• 6(" • "'r ..... " ..... 
· 'It., • "'I 
• w ......... 
. c'"'" '"'' '.r.c., ... ., 
.~, . .., 
.......... ·It, 
.~ '"'' 
.~, -·1 
'~'''r 
-v( ' ''. 
• "'c '''' :,- ... ~ 
• 4-(,_ .", 

~ - 'ot,Y 
• 

' .~:: rc. t ~11:t:::ll,.".J I 

• ': ~:;I: t 1J ':::1 c'" :i;, 

I I . , I 
I I 
! I 

(-H.23-l 

Appendix H.2 

:0:: n :0:: .... .... .... .., .., .., .. () .. 
" n .... :0:: 

0 "" 
.., 

fJ PI 
0 '" " .. '" .., () .. 

"" c. .... 

~~ '" .... 
c. .. 

\ 

0-
F 
'" 

Circuit Diagrams 


	WARD M J-MSc-TR87-43a
	WARD-TR87-43b

