
GROUPING COMPLEX SYSTEMS

FOR CLASSIFICATION AND PARALLEL SIMULATION

Thesis
submitted in fulfilment of the
requirements for the Degree of

Doctor of Philosophy
of Rhodes University

by

ISMAIL MOHAMED IKRAM

January 1997

Abstract

This thesis is concerned with grouping complex systems by means of
concurrent model, in order to aid in (i) formulation of classifications and (ii)
induction of parallel simulation programs. It observes, and seeks f~ furmalize

_ and then exploit, the strong structural resemblance between complex systems
and occam programs.

The thesis hypothesizes that groups of complex systems may be discrim­
inated according to shared structural and behavioural characteristics. Such
an analysis of the complex systems domain may be performed in the abstract
with the aid of a model for capturing interesting features of complex systems.
The resulting groups would form a classification of complex systems. An ad­
ditional hypothesis is that, insofar as the model is able to capture sufficient

. programmatic information, these groups may be used to define, automati­
cally, algorithmic skeletons for the concurrent simulation of complex systems.

In order to test these hypotheses, a specification model and an accom­
panying formal notation are developed. The model expresses properties of
complex systems in a mixture of object-oriented and process-oriented styles ..
The model is then used as the basis for performing both classification and
automatic induction of parallel simulation programs. The thesis takes the
view that specification models should not be overly complex, especially if
the specifications are meant to be executable. Therefore the requirement for
explicit consideration of concurrency on the part of specifiers is minimized.

The thesis formulates specifications of classes of cellular automata and
neural networks according to the proposed model. Procedures for verificati6If -
and induction of parallel simulation programs are also included.

Acknowledgements

I am very grateful to my research supervisors, Professors Peter Clayton
and Peter Wentworth, for their kind professional and personat as~istance.
Without their encouragement, guidance and intelligent criticism, the conduct
of my research and the writing of this thesis would have far less satisfying
experIences.

Thanks must also go to the many members - both staff and students -
of the Computer Science Department at Rhodes University, whom I had the
good fortune to befriend during my stay.

Contents

1 Introduction

1.1 Synopsis

1.2 Motivations and Background.

1.2.1 Introduction

1.2.2 Simulating Complex Systems

1.2.3 Classifying Complex Systems

1.3 Objectives and Outline of the Thesis

2 Prelude to Modelling

2.1 Requirements of the Model .

2.1.1 Introduction.

2.1.2 Abstraction .

2.1.3 Specification.

2.1.4 Interpretation

2.2 Approaches to Modelling Complex Systems.

2.2.1 Relational Modelling

2.2.2 Structural Modelling

2.3 Outline of the Proposed Model of Complex Systems.

2.3.1 Abstraction

2.3.2 Specification and Interpretation

3 Abstracting Complex Systems

3.1 Introduction

3.2 Specification Structure

3.3 Abstraction Towards Static Specifications.

1

4

4

7

7

7

9

10
'--

13

13

13

14

-- - .- 15

16

17

17

18

20

20

23

26

26

27

29

CONTENTS

3.3.1 - Introduction.

3.3.2 Objects ...

3.3.3 Operations ..

3.3.4 Topology and Operation Instances

3.4 Abstraction Towards Dynamic Specifications

3.4.1 Events.................

3.4.2 Orderings

3.4.3 Comparison of Communication Models

4 Specifying Complex Systems

4.1 Top Level Structure.

4.2 Objects

4.3 Topology.

4.4 Operations.

4.5 Events ..

4.6 Orderings

4.7 Correctness of Specifications

4.8 Conclusion.......

5 Specification Case Studies

5.1 Cellular Automata ...

5.1.1 Introduction ...

5.1.2 Development of a Specification

5.1.3 Some Examples ..

5.2 Hopfield Neural Networks

5.2.1 Introduction.

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

The Method.

Declarations .

Diagram ...

Functions and Constraints

Synchronization

6 Translating Specifications into occam Code

6.1 Introduction

r- •

0- ,,-_.

2

29

29

30

32

33

33

33

34

36

36

38

39

40

42

43

45

46

48

49

49

49

57
59

59

60

62

64

68

71

85

85

CONTENTS

6.2 Executing Specifications -.. "'.'

6.3 Step 1: Constructing Occam Skeletons

6.3.1 Introduction

6.3.2 Sequentialization

6.3.3 Treatment of Guards

6.4 Step 2: Generating Occam Programs

6.4.1 Introduction.

6.4.2 Declarations

6.4.3 Statements .

6.5 Improvements....

6.6 Algorithmic Skeleton Framework

6.6.1 Algorithmic Skeletons ..

-.

3

86

89
89
91
95
99
99
99

102

106
109
109

6.6.2 Programming Environment for Simulating Complex Systems 110

6.7 Conclusion . 113

7 Conclusion 114

A Symbols Used 116

Bibliography 118

Chapter 1

Introduction

Synopsis

This thesis presents a model of complex systems. Complex systems have been vari­

ously defined in the literature. These definitions are normally stated in general and

qualitative terms. Fox describes them as large collections of disparate,arla inter­

connected members which evolve over time[Fox92]. According to this usage, many

systems studied in the natural sciences, molecular systems and ecosystems for ex­

ample, belong to the class of complex systems. Weisbuch gives a similar definition,

insisting that the members of the system be of different types, rather than being of a

homogeneous character[Wei91J. In addition, other definitions require that the com­

ponents of the system have a simple internal structure and exhibit simple patterns of

behaviour.

In general, any modelling activity can be seen as being directed towards the pro­

duction of representations of systems. In computer science such target representations

are formal, in the sense of adhering to the predefined syntax and semantics of a lan­

guage. Just as, according to this terminology, models guide the writing of formal

representations or specifications, they equally guide the interpretation of formal rep­

resentations in terms of actual systems. Figure 1.1 illustrates the role of a model

as a way of facilitating the conceptual transition, or abstraction, from the domain

of actual systems into the domain of representations written in a language, and vice

versa.

This thesis defines a model that is in many respects specific to complex systems.

4

CHAPTER 1. INTRODUCTION 5

abstr.action

interpretation

Figure 1.1: A model of a real-world domain C (in the present case, the set of com­
plex systems of interest) consists of a formal specification language S (denoting the
set of formal specifications written in the language) equipped with abstraction and
interpretation mappings.

In the course of defining the meaning of various modelling aspects, this thesis pro­

poses guidelines for performing both abstraction and interpretation. The mQ,del itself

is understood to encompass a formal notation and its associated abstraction and

interpretation rules.

Fundamental to the given model is that groups of similar systems discerned in

the domain of complex systems should be expressed as a single instance of a special

kind of formal representation, a group specification. For example systems differing

simply in the spatial configuration of their components may be treated as au~it and

abstracted to a single specification. However the principal importance of grouping, as

will be noted shortly, lies beyond considerations of notational convenience. Stated in

terms of the above diagram, it should be possible to define many-to-one abstraction

relations where appropriate. The interpretation of such relations should likewise be

explained according to the model.

Grouping of specifications is essential to the dual aims of the thesis, classification

and parallel simulation of complex systems.

The language is so constrained that complex systems may be grouped only if

they are similar in terms of either their internal organizations or their patterns of

behaviour, or indeed both. Thus a group specification represents a class of systems

sharing characteristics that are meaningful in the domain of actual systems. The

CHAPTER 1. INTRODUCTION 6

- ability to formalize concepts of similarity ~llows classifications of complex systems to

be formulated.

Inducibility of parallel simulation programs is another property assigned to the

specification model. Essentially simulation programs are an alternative representation

of systems to the above formal specifications. The space of such programs constitutes

_ a separate domain into which abstraction from the domain of complex systems may

be performed, but practically this form of abstraction is more difficult to achieve

because of the wider gap between the concepts of complex systems and those of a

general purpose programming language.

The programming language in which simulation programs are to be generated is

occam (occam-2[INM88b] is the version of the language referred to in this thesis). For

this reason, the complex systems model needs to ensure that sufficient information is

- "embodied in specifications in order to derive occam programs satisfying those speci­

fications. However, this requirement should be balanced against the need to keep the

model specific to complex systems. The .choice of occam as the target programming

language helps to strike such a balance since, for example, the units of modularity in

occam - communicating processes - are analogous to the components'of complex

systems.

In this thesis, program induction may only be performed upon specific formal

representations of complex systems, and not upon the more abstract representations

named above as group specifications. Group specifications are nonetheless of great

practical importance because they define application-specific programming interfaces.

That is, they define not only the characteristics of a group of complex systems, as

explained earlier, but also the characteristics that need to be further specified in order

to describe an instance of that group.

In summary, the model presented here enables specification and interpretation of

both groups and instances of complex systems. The terms of reference of its specifi­

cation language correspond closely to those of the domain of complex systems. As a

result, group specifications constitute a classification of complex systems. Associated

with the language is a formal procedure which translates specifications into conform­

ing concurrent simulation programs in occam. This, in combination with the ability

to group specifications, offers a high level approach to programming simulations.

CHAPTER 1. INTRODUCTION 7

- 1.2 Motivations and Background

1.2.1 Introduction

The primary motive behind this work is to formalize the observati,9n that the process­

oriented approach to parallel programming exemplified by the occam language - that

- of constructing 'communicating process architectures'[INM88a] - is readily applied

to writing parallel simulations of complex systems. Evidence for this has come from

the experience of implementing simulations of complex systems using occam's par­

allel programming abstractions. Brinch Hansen's implementation[Han93] of cellular

automata in an occam-like language is an example in the published literature.

An approach to formalization which seems feasible is to define a program induction

_ ,procedure capable of accepting a description of any complex system and outputting an

occam simulation program for the relevant system. In order to demonstrate a strong

link between communicating process architectures and complex systems, the terms

employed in the input language should express the concepts of complex systems, 'and

not to any great degree those programming concepts which are irrelevant}.O"complex

systems.

The definition of a program induction procedure presupposes a formal language

in which input descriptions of complex systems are to be stated. Now the case for the

hypothesized link may be made even stronger if such a language is able to formalize

classifications of complex systems; that is, if closely related complex syste~~, when

represented in the language, yield syntactically similar formal descriptions.

1.2.2 Simulating Complex Systems

The evolution of the state of complex systems is of chief interest to researchers in this

field. Complex systems are so named because of the difficulty of predicting future

states of a system based on observations of previous state. The evolution of a complex

system is a collective phenomenon that results from the evolution of its components.

These components evolve in a mutually dependent manner; that is, the rules by which

a component is changed are dependent upon the states of other components. The

nonlinearity of such interactions explains the emergence of complex phenomena at

the system level from the lower level interaction between simple system components.

CHAPTER 1. INTRODUCTION 8

Complex systems of particular interest.in this thesis are paradigms of parallel com­

putation found in nature, for example cellular automata[Wo184], neural networks[HKP91],

genetic algorithms[For93] and immune networks[BV91]. Certain connections between

complex systems and parallel computing have been elucidated in the literature. For

example, Paton et al[PNS+91] note that several biological systems provide metaphors

_ for parallel problem solving strategies. A fundamental connection is made by Fox,

who holds that parallel computer software and hardware satisfy the criteria for being

considered as complex systems[Fox92]. Fox then suggests that the writing of com­

puter simulations of natural complex systems may be viewed as a series of mappings,

starting from the level of the natural system and proceeding to the level of the sim­

ulation running on a parallel computer. Intermediate mappings in this series include

one from the scientific model of the complex system to an appropriate numerical for­

mulation and a subsequent one from the numerical formulation to an implementation

in software.

Computer simulations of complex systems are vital research tools. Where ana­

lytical techniques exist to model complex systems mathematically, they are.typically

computationally expensive to solve. An alternative is directly to simulate complex

systems by computationally simulating individual components and their interactions,

and examining state changes as the simulation proceeds.

One of the main intentions of this thesis is to formalize a series of mappings from

complex systems to parallel simulations, so as to automate, to a large extent, the

process of constructing simulations. In particular, this thesis focuses on generating

simulation programs in the occam concurrent programming language. The choice of

this language is due to the close structural resemblance between occam programs,

which are networks of interacting processes, and complex systems.

A number of systems have been presented elsewhere for the parallel simulation of

well defined categories of complex systems. Taking neural networks for example, the

CuPit programming language[Pre94] is designed specifically for the purpose of writing

neural learning algorithms, and compiling such programs for efficient execution on

parallel computers. The Genesis system[BB92] is suited to simulating biologically

realistic neural networks, which are specified by a scripting language. Genesis has

facilities for distributed execution.

The Swarm simulation system[Bur94] (see section 2.2.2) is intended to simulate

CHAPTER 1. INTRODUCTION 9

- complex systems in general. The Echo ~Yfltem[F J94] is more limited in scope, and is

particularly suited to ecological simulation. It requires that complex system compo­

nents and interactions adhere to a limited number of prescribed forms. At the time

of writing no parallel implementations of either system are known to exist. However,

Swarm in particular has been designed to reflect the distributed ar[d~ concurrent nature

_ of complex systems, and therefore a distributed version incorporating message-passing

would seem straightforward to implement.

Constructing simulations using anyone of the abovementioned systems entails

the writing of some form of specification, for example a CuPit program or a Genesis

script. This step amounts to writing a formal representation of a complex system

that may then be input by the relevant simulation tool. The nature of what is ex­

pressed in specifications is dictated mainly by the model of complex systems addpted

by the simulation system. For example, the Echo model assumes that systems are

composed of resource-consuming and reproducing agents (system components) and

that interaction between agents is limited to a two-dimensional neighbourhood ..

1.2.3 Classifying Complex Systems

Returning to the proposed automated mappings from complex systems to parallel

computers, one of the main issues addressed by this thesis is the construction of a

model according to which complex systems may be formally represented. Comple­

mentary to the modelling issue is the consideration of an appropriate notation or

language for writing formal representations. It should be noted that the task of writ­

ing specifications, or of abstraction, relies on the understanding by the writer of the

complex system being specified, and of the model and its attendant notation. This

abstraction task itself is not thought to be open to formalization.

Recalling Fox's sequence of mappings, it is evident that, as the series progresses,

the terms of reference at successive levels become more removed from the original

complex system, while simultaneously approaching those of the target parallel com­

puter. The question then arises as to the appropriate level at which specification

writers should be expected to formalize complex systems. In formulating the model

and language, a reconciliation is necessary between the conflicting demands of the

writer, who wishes to express systems in terms specific to complex systems, and of

the implementor of the code generation system, the difficulty of whose task grows

CHAPTER 1. INTRODUCTION 10

- with the 'semantic gap' between the speqfication language and occam.

This thesis proposes, in addition to mechanisms for automating parallel simula­

tion of complex systems, a formal way in which classification of complex systems may

be performed. For this purpose, the inverse of the mapping from complex systems to

specifications, which may be called the interpretation of specifications, is employed.

_ By design, one of the characteristics of the specification language will be the ability

to capture groups of related complex systems as formal representations called group

specifications. Thus a group specification is to be interpreted as a collection of com­

plex systems. If it can be shown that group specifications are always interpreted as

groups or classes that are meaningful in the domain of complex systems, then the

specification language becomes a tool for creating system classification schemes. This

approach may be called interpretive classification, in contrast to abstractive classifi­

cation, whereby systems known to be related by common properties are abstracted

into a single group representation.

The capability to group specifications is also essential if the above proposal for

creating simulations is to be practical. Provided that group specifications m.ay be in­

stantiated to actual complex system specifications, then any group specification, once

written, may be used to create simulations of a variety of systems simply through

appropriate instantiation. Therefore a means of modelling commonality would sig­

nificantly simplify the task of modelling large numbers of systems through reuse and

adaptation of a general models.

1.3 Objectives and Outline of the Thesis

The objective of this thesis is to propose criteria for grouping complex systems in a

manner that facilitates both classification and parallel simulation of complex systems.

Both of these ends presuppose the existence of models of complex systems. Here, a

single formal model is shown to be sufficient. In the development of this thesis, the

overall objective is advanced through a sequence of three sub-objectives:

1. Modelling. Define a model of complex systems consisting of a formal speci­

fication notation, and rules for abstracting real complex systems and for interpreting

specifications. Define correctness of specifications and formal methods of verifying

correctness.

CHAPTER 1. INTRODUCTION 11

2. Classification. Extend the model to cater for specifications of groups of

complex systerris. Ensure that group specifications are interpreted as related complex

systems.

3. Parallel simulation. Define a mapping from specifications to conforming

occam simulation programs. Propose an application-class oriented simulation system
~~ -

for exploiting the generality of group specifications.

It is natural to construct models by considering only the abstraction relation (to

use the terminology introduced in section 1.1) in the first instance, by analysing the

domain to be modelled and extracting its conceptual entities. Thereafter a formal

specification notation may be defined so as to match symbols to domain concepts.

Finally, the rules for interpreting specifications may be stated. This thesis follows

such a sequence in developing its model.

The next three chapters are concerned with formalizing the concepts of complex

systems. They propose a model according to which abstraction and interpretation

of systems of interest may be performed, whether individually or in groups. A for­

mal specification language is also presented. The two chapters following thereafter

treat classification and parallel simulation, respectively, as tasks dependent upon the

previously presented model.

Chapter 2 explains what is required of a model in order to satisfy the aims of

the thesis. It considers various alternatives for translating informal concepts about

complex systems into formal representations. Methods given in previous literature

are examined, and an outline of the adopted method is presented.

Chapter 3 is an exposition of the adopted abstraction method. Individual complex

systems and groups of systems are considered.

Chapter 4 gives the format and notation of specifications. The interpretation of

each part of a specification is described. Formal methods for verifying correctness of

specifications are given.

Chapter 5 develops group specifications for cellular automata and Hopfield neural

networks. Actual examples are used to demonstrated the motivations behind some

of the earlier design decisions for the model.

Chapter 6 described the procedure for the induction of occam simulation programs

from specifications. An programming system for parallel simulation is outlined based

on the concepts of group specification and program induction.

CHAPTER 1. INTRODUCTION 12

Chapter 7, the concluding chapter, summarizes and assesses the contributions of

each of the preceding chapters of the thesis with reference to the stated objectives.

Appendix A gives the meaning of special symbols used in this thesis.

Chapter 2

Prelude to Modelling

Context

Chapter 1 explained that the aims of the present work are to propose methods for

modelling, classification and parallel simulation of complex systems. Modelling

was described as being fundamental to the achievement of the other two rums.

In section 1.2 the motivation for viewing complex systems as -com~unicating
process architectures was stated. This chapter determines the remaining broad

characteristics that a proposed model of complex systems ought to possess in

order to enable classification and parallel simulation (section 2.1).

Existing models are examined in section 2.2. Then a suitable model is outlined
. -- - .

in section 2.3. Chapters 3 and 4 expand upon this outline. Chapters 5 and 6

demonstrate some practical applications of the model.

2.1 Requirements of the Model

2.1.1 Introduction

In section 1.1 the construction of a model was equated with the definition of a formal

specification language and a pair of complementary mappings or relations called ab­

straction and interpretation. The two relations mediate between formal and informal

views of complex systems, that is, between the set of real complex systems and the

set of specifications written in a formal description language.

13

CHAPTER 2. PRELUDE TO MODELLING 14

The requirements presented here are named information preservation, directness,

syntactic grouping, parallel-program inducibility and verification.

As stated in section 1.3, it is the property of abstraction that will be examined first

with regard to modelling complex systems. Considerations of a specification notation

and its interpretation appear to be dependent upon the method of ~~straction adopted

by a model. The requirements that need to be met by a satisfactory abstraction, then,

- may be described first.

2.1.2 Abstraction

Abstraction effects a transition from one level of observation, or world view, for con­

venience referred to as the 'reality,' into another, called the specification, as depicted

in figure 1.1. Abstraction is carried out with the intention of representing in formal

terms interesting phenomena of the real world, In this case complex systems.

The required model of complex systems should facilitate abstraction in such a way

as to ensure information preservation and a directness of modelling. These charac­

teristics concern, respectively, the information content of the resulting specifications,

and the terms of reference used in presenting that information. Both are gi~en here as

qualitative factors, and the existence of neither one is intended to be proven formally.

Information preservation is motivated by the need for accuracy in modelling. It

means that any facet of informal knowledge about the system being modelled can be

formally encoded through abstraction. Usually this requirement is qualified so that

only knowledge that is relevant to the aims of modelling need be formalized .. H~wever,
since the modelling of all complex systems is meant to be addressed here, the model

should, by design, be general in purpose. Of particular importance to this thesis is

that the commonality found between similar complex systems must be reflected in

the formal domain.

In practice, abstractions are difficult to define whenever there is a significant diver­

gence between the terms of reference employed in the formal and informal domains.

Take, for example, an aspect of informal knowledge about complex systems, which

may be framed in terms of rules of interaction between system components. Then

according to some numerical model, that aspect may be formalized as a system of par­

tial differential equations. The rules for performing abstraction in such cases would

likely assume expertise in numerical methods on the part of the user of the model.

CHAPTER 2. PRELUDE TO MODELLING 15

_ Directness is a property of models _that do not exhibit divergences of this kind. It is

required in order to simplify the task of learning and applying the model.

Special-purpose models have a greater freedom to define direct means of perform­

ing abstraction. If a model is devoted to members of a well defined class of systems,

it would naturally be capable of making several assumptions cQIlcerning the infor­

mal domain. Then these assumptions may be incorporated into terminology of the

- model's abstraction relation. For example, a model of neural networks may assume

that system components divide into exactly two classes, neurons and connections; its

abstraction relation may then make direct reference to the number of neurons and to

their inter-connection network.

Directness is further promoted by support for declarative abstraction. The declar­

ative property is commonly associated with programming languages, where it stands

_ in contrast to the imperative mode of expression. The difference between the two

modes in the present context may be summarised as follows: where the behaviour

of a system is to be formalized, declarative methods describe the effects of the be­

haviour, while imperative methods describe the mechanisms used to achieve those

effects. Imperative abstraction relies upon the existence of a separate model' accord­

ing to which computations may be described. As such it detracts from the directness

of modelling.

2.1.3 Specification

In the domain of complex systems, broad classes of systems are informally known,

such as various classes of neural networks. With the aid of the property of information

preservation, as described in section 2.1.2, knowledge about the common character­

istics of groups of systems may be transferred into formal specifications.

A further requirement of the model, arising at the level of formal specifications, is

called syntactic grouping. This states that formal specifications may be designed and

written for members of a common class in such a way that the resulting specifications

possess similar syntactic features.

To be precise, for every class of actual complex systems, let S be a set of its

specifications (there is no requirement for there to be a unique S - abstraction

is not necessarily a one-to-one mapping). Also assume that members of S consist

of a fixed number, N, of sections uniquely indexed by integers taken from the set

CHAPTER 2. PRELUDE TO MODELLING 16

_ {I, 2, ... , N}. _Now S is said to vary under index i iff there exists a pair x, yES

such that the ith section of x differs textually from the corresponding section of y.

Then syntactic grouping exists iff S varies under at least 1 index and at most (N - 1)

indices.

Syntactic grouping enables abstractive classification (sectiop-- L2.3) to be per­

formed.

2.1.4 Interpretation

The requirements given here relate to the rules of interpretation defined by a model

for its specifications.

Parallel program inducibility is said to exist when sufficient information is available

in specifications in order to generate parallel programs that simulate the specified

systems. Moreover, formal procedures for inducing such programs should be defined.

Interestingly, such procedures can be thought to constitute interpretation mappings

into the domain of parallel programs, as distinct from the usual interpretations (see

section 1.1) into the domain of actual complex systems.
- .. ,-.-.

This requirement may be expected to conflict with the directness requirement of

section 2.1.2. Specifically, declarative abstraction and program inducibility can be

mutually antagonistic aims to achieve in a single model. Declarative abstraction,

aiming for directness, adopts terms from the domain of the systems. In contrast,

program inducibility may be achieved by incorporating a virtual parallel_n::achine

into the model, and requiring that abstraction of system behaviour be performed in

terms of that virtual machine:

Another requirement appropriate to the interpretation level of a model is the abil­

ity to verify the correctness of specifications. Correctness is considered here in two

senses. Firstly, specifications are said to be correct when they are interpreted as valid

actual complex systems; for example, a specification describing interactions between

a certain number, N, of components, while specifying an overall system consisting of

fewer than N components, would be incorrect due to inconsistency. In the second

sense, correctness is a property of specifications when interpreted as simulation pro­

grams; thus a specification inducing a deadlocking program, for example, would be

incorrect. The two sets of correctness criteria would be expected to overlap.

CHAPTER 2. PRELUDE TO MODELLING 17

2.2 Approaches to Modelling Complex Systems

2.2.1 Relational Modelling

Rashevsky proposed a mathematical formalism for describing biological systems that

seems suitable to complex systems in general [Ros72, Ros91]. ~hiS" method, called

relational modelling, aims to determine functional components of systems and their

organization. Components are modelled as mappings from input to output domains.

The description of a system's organization is given by forming a network, or relational

diagram, of its functional components; the network serves to relate the outputs of

certain components to the inputs of others. Abstract mappings can be defined in

order to represent compositions of simpler functional components.

Significantly, relational diagrams are not meant to depict the structural organiza-

- tion of systems. Nor do functional components-necessarily correspond directly to a

system's structural units. Indeed, the relational approach sets out to abstract away

such structural information. For example, a neural network may be modelled inde­

pendently of the relative configuration of its neurons and connections by representing

the neurons collectively as a single unit, and likewise the connections asa separate

unit. Then both units will be defined as functions transforming their input signal into

an output signal. The relational diagram for such a system may then be constructed

by letting the input of the neural unit be the output of the connective unit, and vice

versa. Such a high-level representation would constitute a description of the class of

neural networks. No reference has been made to the concrete structure of instances

of the class.

Relational modelling possesses higher-order relations which may be employed to

represent the dynamic nature of complex systems. That is, functional units may have

outputs which represent other functional units. This is a useful feature for modelling

systems that are capable of manufacturing new units. For example, a model of an

animal colony may define such a mapping as an abstraction of the birth of new

population members. Rosen presents a relational model of self-repairing systems

containing higher-order mappings[Ros72].

However, since there is a deliberate exclusion of state-based and structural con­

cepts, relational modelling seems overly abstract for the purposes of this thesis.

Grouping is handled well by its formalism, by transition from the level of groups

CHAPTER 2. PRELUDE TO MODELLING 18

of systems to instances is not treated. Behaviour of systems over time, for exam­

ple the order in which the relations are exercised, cannot be indicated in relational

diagrams either.

2.2.2 Structural Modelling

_ Computational View of Complex Systems' Behaviour

In contrast to relational modelling, structural modelling analyses systems into state­

carrying units or agents. It explicitly describes the structure of systems, for example

as data-flows between agents. This form of modelling has a close association with

methods normally used in computational modelling.

The observable behaviour of any system is the evolution of its visible initial state

_ over time. Both hidden and visible states are usually possessed by systems, but

observed behaviour is defined in relation to the states visible from outside the sys­

tem. Computation is the logical process by which new states are generated on ,the

basis of existing states. Therefore behaviour may be said to be the consequence of

computation. '

Algorithmically, complex systems are difficult to specify since they are usually

large assemblies of components, or agents, which possess independent local attributes

and communicate amongst themselves in intricate patterns. Much of the difficulty

in modelling them in conventional computational terms arises from their complexity

of their communications rather than in the computations upon state. The- intense

communication traffic implies an interdependence between agents. Their complex

behaviour is due to this complexity in interaction to a greater degree than in the

algorithmic logic of the agents themselves.

Almost without exception, agents are iterative entities. They repeatedly perform

a series of operations. Certain iterated operations are bound to be nondeterministic

with respect to the computations performed upon their internal state or with respect

to the communications made with other agents.

Agents are active simultaneously. Concurrent activity is possible because of the

distribution and independence of state information throughout the system.

Agents cooperate in small spatial groups, and only rarely in a global fashion.

Communication is performed by agents in order to transmit local information or

CHAPTER 2. PRELUDE TO MODELLING 19

to receive information concerning their environment. In many cases, concurrency

and nondeterminism combine to randomize the behaviour of complex systems. An

example of this is the possibility that the information received by agents from their

environment may be outdated. Such random phenomena contribute to the complexity

in analysing the behaviour of these systems. It is imperative that simulations be

capable of emulating the phenomena of randomization.

Concurrent Object Oriented Modelling in Swarm

A general simulation system suited to working with complex systems is Swarm[Bur94].

It adopts an abstraction of complex systems similar to the above. The Swarm spec­

ification method is explicitly modelled on object oriented concepts[Mey88]. Further­

more concurrency concepts have been added to the object oriented model. Algo­

"rithmic or coordination information for systems' agents are specified as local activity

schedules. The swarm system used such schedules to deduce concurrency informa­

tion which may then be used to distribute the simulation across multiple processors

or to run it in a concurrent fashion on a single processor. Explicit specifigation of

non-deterministic execution and synchronization are permitted. Communications are

defined to be synchronous, whilst asynchronous simulations have to be defined in

terms of synchronous primitives. Extensive support is provided for input and output

to facilitate interactive simulation and graphical display.

Statically, the agents are the units of specification. They are modelled in a state­

based object oriented fashion. Spatial aggregates of agents called swarms-are con­

ceptual entities that may be used to provide control over groups of agents without

necessitating global control mechanisms.

Support for dynamic execution is through the ability by agents to alter schedules

during run-time. To enable this, the Swarm system is implemented as a virtual

machine model capable of executing schedules. Schedules, are one mechanism through

which cooperative behaviour between agents is implemented, may be written in a per­

swarm basis. Swarm specifications are Objective C programs. Therefore the ordinary

constructs of this language, especially the 'main' function may be used to provide

additional way towards centralized coordination.

Component-level genericity of agents is achieved through the Objective C lan­

guage's class-based inheritance. Other forms of genericity are achieved through code

CHAPTER 2. PRELUDE TO MODELLING 20

libraries which implement features found to be common to a range of related complex

systems.

2.3 Outline of the Proposed Model of Complex

Systems

2.3.1 Abstraction

Combining Object Orientation and Process Orientation

As recognized by the Swarm system, there is a very obvious analogy between the

agents of a complex system and objects in an object oriented system. There is a simi­

larly close connection between agents and the process concept found in the Communi­

cating Sequential Process (CSP) model[Hoa85], and in particular, the communicating

process architecture model commonly associated with occam programming[Bur88].

The latter we name process orientation as being analogous to object orientation.

Agents are viewed as processes because they encapsulate private stat~and com­

municate with external entities by passing messages. In complex systems, agents are

rarely homogeneous, or of the same type, rather they are instances of different classes

of entity, speaking in object-oriented terms. A neural network, for example, may be

thought to contain instances of two entity classes, neurons and connections, each one

having quite different properties to the other.

Ob ject orientation provides a rich source of modelling concepts centred on the class

abstraction. Objects are the UIiit of modelling, and similar objects belong to the same

class, and are said to instantiate the class. Thus a class is a generic description of

a group of objects. Classes may be arranged according to the level of abstraction

in a property-inheritance hierarchy. This form of hierarchical modelling promotes

abstraction-based analysis. Objects encapsulate state in the form of attributes. En­

capsulated state may be manipulated only from within the object by local methods.

Cooperative operations between several objects is achieved by passing rriessages in

response to which remote objects may alter their local state. Although not one of

the fundamental object oriented concepts, parameterization enables the specification

of a set of classes having similar structure through a single entity, the parameterized

class. Commonality of structure so exploited is usually in the definition of attributes

CHAPTER 2. PRELUDE TO MODELLING 21

and methods.

Process orientation has analogues to s'uch object oriented concepts. Genericityof

a more restricted nature is achieved through the prototypical process specifications.

These are replicated rather than instantiated. More powerful modelling of common­

ality may be achieved by incorporating mechanisms such as inh,.eritance hierarchies

and parameterization. In the process oriented arena, encapsulation and locality of

- state are even more fundamental than they are in object orientation. Since there is

no common temporal reference between processes, it is absurd to describe a cooper­

ative task in global terms. In contrast, such object oriented programming languages

as C++ permit data access across object boundaries. In process orientation, coop­

eration between modelling units is strongly enforced to be through message passing

only.

Although process orientation has less powerful mechanisms with which to express

genericity, its fundamental abstractions, processes, are more suited to the task of

modelling the components and behaviour of complex systems. Complex systems. are

inherently concurrent and their constituent agents are independent entities whose col­

lective behaviour arises as the result of communication of information on whl~h basis

agents decide on their future state. This suggests that agents should be modelled

as concurrent processes having strict data encapsulation. Furthermore, in modelling

terms message passing appears to be strictly analogous to the methods of commu­

nication observed in complex systems. Another benefit of a concurrent modelling

formalism is the explicit treatment of nondeterminism. Situations abound where a

complex system's state and behaviour at a certain point in time cannot be feasibly

predicted in advance. In sequential object oriented terms, such behaviour may only

be modelled by conditional decision-making. However, process orientation offers in

addition very powerful modelling concepts in the form of alternation between mes­

sage sources and synchronous and asynchronous communication. These can directly

model the nondeterminism in complex systems which is often given rise to by the non­

determinism in the communications medium and in the pattern of message passing

between agents.

A suitable melding of object and process oriented terms into a coherent abstrac­

tion technique for complex systems is required. The common properties of state

encapsulation and message passing should be retained. However, message passing in

CHAPTER 2. PRELUDE TO MODELLING 22

process orientation offers a richer variety.of primitives, which are analogous to op­

erations occurrIng in complex systems. <Object orientation offers better 'facilities for

expressing grouping, or the commonality among modelling units. Concurrency and

nondeterminism should also be incorporated from process orientation.

Static and Dynamic Properties

A distinction can be drawn between properties of a system that either stay the same

or change over time. When abstracting complex systems, this distinction may be said

to be between static and dynamic properties, respectively, for obvious reasons.

Complex systems typically consists of agents that have identical static properties.

A group of agents having identical attributes in this sense may be said to belong to the

same class, to use the terminology of object orientation.· From the process oriented

view, each agent in such a group is a replica of the same prototypical process.

In modelling static properties, of chief interest are the state attributes of agents

and their interconnection topology as well as the operations that cause state changes.

Both object orientation and process orientation are unanimous in requi&ing sys­

tems' state to be totally distributed among the units of specification; the objects and

processes, respectively. That the state encapsulated within unit boundaries is also

fundamental to both models.

In process orientation, state-changing operations are likewise strictly defined in

terms of state local to objects. If an operation is activated within a certain object,

and state is required from a remote object, then the operation may only proceed

once the required state has been communicated to it through messages. This can

be considerably tedious to specify since communication is a synchronous activity

involving two processes, the sender and the receiver, thereby coupling intricately

their definitions.

On the other hand, models of operations in object orientation are not uniform.

Some of them define operations in similar terms to the one just described. Others

do not model objects as being active in a single object, but over the set of objects

constituting the arguments to the method. This latter approach is to be preferred

since it frees the specifier from having to define explicitly the messages necessary to

be communicated in order to communicate state. Especially since the identity of the

communicating agents and of the communicated state should be deducible from the

CHAPTER 2. PRELUDE TO MODELLING 23

operation specification.

Although it may seem more reflective of complex systems to allow the topology

to alter over time, it conflicts strongly with program inducibility as far as the static

nature of the occam language is concerned. For this reason, expediency dictates that

topology specifications be as general possible.

Dynamic properties refer to the sequence of state changes that take place over

- time, where such sequences may be either deterministic or nondeterministic.

The dynamic properties constitute an algorithmic view of the behaviour of the

system. The static specification speaks of the components of the system, of their

properties or attributes and of their potential avenues for change or operations. The

dynamic specification is required to describe the coordinated manner in which the

activity of the operations upon the attributes of the agents takes place temporally.

_ The essential abstractions here would be temporal in nature, that is the relative

timings of the activity of operations, whether such activities may take consecutively

or simultaneously.

2.3.2 Specification and Interpretation

Grouping

Once an abstraction approach has been adopted, for example as described in above

(section 2.3.1), it is possible to define a specification notation to capture the model

in a formal way.

Typical specifications in the present model will be generic, that is, they would

describe a collection of systems by virtue of being parameterized. They would be

termed generic specifications. Generic specifications equipped with all necessary ac­

tual parameters would constitute an instance specification.

The sole abstraction given for expressing generic concepts is the class. This

achieves generic expression with respect to the type of attributes, but not opera­

tions since operations are defined in a pairwise fashion, and not on a per-class basis,

unlike attributes. Nor does it achieve genericity in an algorithmic sense, that is, in a

sense related to dynamic specification, nor even in a topological sense.

The syntactic mechanism of parameterized specification will be adopted to perform

this role. Parameterized classes are a common object oriented abstraction, but the

CHAPTER 2. PRELUDE TO MODELLING 24

parameterization approach may be _generalized in the current model to cover all parts

of a specification, from topology to operation sequence definitions.

The syntactic grouping (section 2.1.3) requirement must be satisfied by a formal

specification language if it is to facilitate classification through parameterization. The

parts of a group specification that vary in instance specification woukl be denoted by

parameter names.

In describing the sections and symbols of the specification language, chapter 4

will also define the interpretation of specifications in terms of real complex systems.

Largely, this form of interpretation may be simply described in terms complementary

to the abstraction detailed in chapter 3.

Simulation

- Interpretation of specifications in terms of parallel programs, or the writing of simu­

lations, is less straightforward, as previously explained in connection with the direct­

ness requirement (section 2.1.2). An outline of the proposed simulation mapping now

follows. Since the model has been heavily influenced by communicating process archi­

tecture concepts, it is most natural to formulate such a mapping to the prOgramming

language occam.

The agents themselves would map directly to processes. The topology of agents

specified would map onto an assembly of processed interconnected by communication

channels corresponding directly to the edges in the topology. The topology is there­

fore equivalent to a high level specification of the system's communicating-process

architecture. Processes simulating agents may be simple sequential components or

may have nested parallelism, although permitting the latter may complicate formal

validation of generated code. In any case, the process assembly as a whole must be a

concurrent system.

The attributes and operations may be implemented as local variables and pro­

cedures respectively. With operations, there needs to be reconciliation between the

per-process approach enforced by occam's usage rules pertaining to locality and the

inter-object approach taken in specifications. This essentially means that two-way

communications have to be deduced from information only specifying one-way com­

munications. Furthermore, the unspecified low-level nature of communications, that

is, whether synchronous or asynchronous needs to be made.

CHAPTER 2. PRELUDE TO MODELLING 25

As far as the dynamic specification is concerned, the appropriate implementation

would be in the correct coordination of all the concurrent and cooperative activity in

the simulation. In occam coordination is achieved by means of algorithms embedded

within the process architecture through the mechanisms of sequence, synchronous

communication and alternation.

In general, once all parameters have been supplied to a specification, there is

- sufficient information to deduce implementation details in a language such as oc­

cam. The specific question also arises as to when non-deterministic choices allowed

in the specification are to be committed. If choices are 'hard-coded' into generated

programs, randomized run-time behaviour would not be observed. The intention in

specifying non-determinism is normally so that such behaviour, which is typical of

complex systems, will be exhibited in simulations. Therefore the preferred policy is

for commitments to a particular sequence of actions to be made at run-time, as near

as possible to the point where such decisions would take effect.

Chapter 3

Abstracting Complex Systems

Context

In previous chapters the utility of, and need for, formal specification of complex

systems was explained. In essence it is necessary to be able to write formal speciIi­

cations of systems, especially in a manner that captures the commonality found in

groups of similar systems. These specifications can embody syste~ clas~ifications

and are the base upon which induction of simulation programs may be performed.

A necessary preliminary to writing formal specifications is the abstraction tech­

nique according to which the relevant features of a system may be identified. The

aim of this chapter is to define completely the proposed abstraction outli~~d in

section 2.3.1.

Consideration of the actual notation used by specification, as well as their inter­

pretation, is deferred to chapter 4. Chapter 5 makes use of the model's capability

for abstraction in order to specify realistic groups of complex systems.

3.1 Introduction

The formulation of the following abstraction of complex systems has been motivated

by a need to specify interesting systems formally and precisely. It has been deliber­

ately furnished with a small number of concepts in order to facilitate two main aims:

firstly, in order to promote ease of learning and use; and secondly, to simplify the

definition of formal reasoning and manipulation procedures given in chapters 4 and

26

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 27

6.

It is assumed that an analysis of the'system to be specified is performed initially.

This analysis should uncover all relevant facts about the system and its behaviour,

by making use of the abstraction guidelines presented here.

The abstraction adopts both structural and temporal views. S,tru€turally, systems

are seen as networks of communicating entities. These entities are objects in the

- sense of traditional object-oriented modelling, i.e. they each have distinct identities,

encapsulate state information and are instances of some specific class of objects. In

addition, this some of the features of communicating process architectures are adopted

insofar as objects are seen to be operating concurrently and without synchronization

or a common clock.

Whilst the structural view indicates the static composition of the system, the

_ temporal modelling aspects describe the dynamic behaviour of the system. Behaviour

is viewed as the pattern of state change in the system over time. State changes are

viewed as events, and behaviour is modelled as restricted traces[Hoa85] over a suit~ble

alphabet of events. Complex systems, being concurrent, are likely to be such that at

any time, more than one object is actively altering its own state or- commu'~icating
with other objects.

Description of groups of complex systems is achieved at the notational level, by

writing parameterized specifications. Only those system aspects common to all mem­

bers of a group are represented formally, and the remaining aspect that vary between

members of the group are left undefined. Such under-specified group definitiGnsmay

be instantiated, i.e. used to specify a certain system, simply by textually substituting

system-specific formalizations for the parameter names.

The remainder of this chapter is devoted to a more detailed treatment of the above

concepts.

3.2 Specification Structure

The concepts of the given abstraction are employed as an aid to the analysis of

the complex system of interest. The written specification that results from such

an analysis should have a structure that serves the broad purpose of modularity.

Modularity of specifications would have two main benefits. Firstly, there should be

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 28

a separation of concerns between the static and dynamic elements of a specification

in order to mirror their conceptual separation. The dynamic aspects may only be

adequately analysed after the analysis of static aspects, and a separation of the two

sections of a specification would reinforce the specifier's awareness of this dependency.

Secondly, the two sections are independently reusable, meaning that given a number

of existing specifications, it is possible to write a new specification by adopting the

- static section of one existing specification and the dynamic section of another. Such

reuse depends upon the existence of group specifications, parameterized in such a way

as to make them adaptable to a diversity of systems.

Both sections of a specification may be parameterized independently to promote

independent reuse of sections. More common, however, would be the reuse of the

entire specification. There are two forms of reuse. Firstly, there is a form of reuse

akin to the object-oriented concept of interface inheritance, in that an existing group

specification may be specialized into a more restricted group specification, or even an

instance specification by the mechanism of supplying actual parameters. Secon_dly,

the reuse of parts of a specification to create another specification of a system that is

similar, but not normally a more specialized one. This is analogous to- implementation

inheritance or code inheritance in object oriented programming.

The conceptual tools given in the following are to be used in analysing and then

abstracting complex systems into their static and dynamic aspects. It will be noted

that they permit expression of structural and temporal views of systems, though

not of a detailed computational view. Computations are encapsulated by the opera­

tions concept described below. In the interest of directness of modelling (see section

2.1.2) their implementation is intentionally left out of the scope of system specifica­

tion, and it is assumed that they may be defined in the form of software modules

in some programming language (such as procedures in occam). However, modules

would be complementary to the specification, rather than being integral to it. The

implementation of each operation requires that one or more such modules be defined.

In programming language terms, each event is implemented by invocations of the

relevant modules (in occam, for example, as procedure calls).

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 29

3.3 Abstraction Towards Static Specifications

3.3.1 Introduction

The analysis of a system into objects is the first stage of specification. An alternative

would be to determine the state contained in a system, and thereafter to divide it

among objects. Such an analysis may be conducted at various levels of granularity.

At the finest level, each item of state information belonging to the system is assigned

to a separate object. At the coarsest level, the entire system is a single object, but

complex systems, being highly distributed, would seem to defy this 'centralized' form

of analysis.

Objects, their topology in the system, and operations performed upon them, are

the prime static components of a specification. These characteristics are taken to be

immutable over the lifetime of a system.

3.3.2 Objects
~ ..

An object in a complex system is any entity having state attributes that are subject to

change. The objects are denoted by unique names or identities. The set of identifiers

of objects constituting the system is called the object set.

For example, in cellular automata the cells themselves are the objects. Sim­

ilarly, in neural networks the neurons may be viewed as objects, howev~~ the

connections between neurons also have state which they serve to transmit from

one neuron to another, and so are objects as well.

The system topology is a directed graph whose node set is the object set, and

whose edge set is some subset of the square of the object set (i.e. the Cartesian

product of the object set with itself). An edge exists in the system's topology iff the

object denoted by the source node of the edge passes messages to (interacts with) the

destination node object. The source and destination of an edge may not coincide. A

message refers to the communication of the local state information of one object to

another. State information is private to each object and is made visible across object

boundaries solely through the passing of messages between adjacent objects in the

system's topology.

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 30

An object's state content is divided between a collection of one or more attributes.

Like objects, attributes are uniquely na;ned. Attributes possess values taken from a

set called the type of the attribute. The state of an object at a particular time is

given by the association of its attribute names with their respective values at the

given instant. r ~ •

An object's signature is the association its attribute names with their respective

- types. Objects having the same signature are said to be instances of the same class.

For example, in Conway's Game of Life cellular automaton[BCG82] the topol­

ogy is a two-dimensional grid of objects. Since each cell requires access to the

states of all its neighbours there are edges in the topology to each object from

all four neighbouring objects (disregarding smaller neighbourhoods at the edge of

the grid). According to the game a cell may be either alive or dead: this may be

abstracted so that each object possesses only one attribute, the type of which is

the set of two Boolean values, and whose current value indicates whether or not

the cell represented by the object is alive. In this abstraction, just one class ~of

objects exists.

Attribute values must belong to simple value types, for example, those built into

common programming languages such as numeric and Boolean types. In particular,

objects are not valid attribute values, and therefore the nesting of objects is not

possible.

3.3.3 Operations

The components of actual complex systems engage in typically iterative processes.

The number of fundamental kinds of operations, or state changes, performed upon

objects are small, but complex behaviour results from their repeated application, due

especially to the inter-dependence between components.

The abstraction relating to state changes is the operation. A operation is con­

sidered to be a uniquely named function whose input is the state just prior to the

change - the pre-state - and whose output is the state just following the change­

the post-state. In the manner of their definition, operations resemble the operation

schemas of Z specifications[Spi89]. Operations thus defined are restricted to causing

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 31

state change in a single object. Thus the p,ost-state of an operation refers to the new

state of exactly one object, whilst the pre-state refers to the immediate antecedent

state of that object.

It is often necessary for an operation to depend upon the pre-states of more than

one object. Indeed, it has already been noted that interaction between components is

a defining characteristic of complex systems. This is supported in' a' restricted form:

- such an operation is allowed to depend upon the pre-states of exactly two objects, and

furthermore, the post-state of the operation should refer to the one of those objects.

If the operation depends on the states of two objects, there must be an edge in the

system's topology between the two objects, directed toward the object undergoing

change.

This restriction of the number of objects involved in an operation to at most two

may necessitate the specification of artificial entities, in the form of extra attributes

and operations. These artificial attributes play the role of 'buffer variables,' which

are written to by appropriately defined artificial operations.

For example, consider a cellular automaton whose cells are arranged !~nearly

such that each cell interacts with two neighbours. Further, assume -that each

cell possesses a single state attribute, called the principal attribute. The state

updating operation for any cell depends upon the pre-state of that cell and of its

two neighbours. It is not possible to abstract this update rule as a single operation

since three objects are involved.

A solution is to add two extra 'buffer' attributes to the signature of allohjects.

In each object, these attributes will contain, respectively, the 'received' state values

of its two neighbours. Three operations are required. Two of these are artificial:

they serve to convey the principal attribute value of a neighbouring object to the

respective 'buffer' attribute of the local object. The third operation, involving a

single object, is responsible for applying the cellular automaton's update rule to

the three attributes of a single object in order to set the principal attribute's new

value.

The communication model assumed in specifications is a restricted form of shared

memory. However, communication is not an explicitly modelled concept, although it

is easily apparent that any operation depending on the state of two objects equates

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 32

with an unidirectional communication across an object boundary.

In chapter 6, rules are given to permit the deduction of message-passing informa­

tion from the shared-memory one abstraction given here. We work on the principle

that although message passing information is required for the targeted implemen­

tation language, occam, specifiers would prefer to express shared memory concepts

which are less verbose and less cluttered by considerations of the- integrity of ob-

- ject boundaries. By regulating the shared memory concept with the rule preventing

more than two objects from participating in an operation, information required by

the underlying model of unidirectional message passing is deducible, yet that model

is hidden from the specifier. The cost of so doing is to require specifiers to intro­

duce artificial entities into specifications in order to formalize the more complicated

operations.

3.3.4 Topology and Operation Instances

The system's topology, mentioned above, is a high level diagram of the process ar­

chitecture of the system. The topology defines for each object the set of objects (its

neighbours), possibly including itself, whose state it may examine ..

An operation instance is a less abstract concept of an operation. An operation

defines the manner in which the pre-state of one or two arbitrarily chosen objects

affects the system's post-state. However, in reality, it is useful to refer uniquely to an

operation acting upon specific, rather than arbitrary, objects. Such as reference to

an operation, or operation instance, is made by connecting the operation· definition

itself to the participating objects. In practice, this may be conveniently achieved by

stating the name of the operation and the identity of the participants involved in the

specific instance.

A complete specification of a system should include a declaration of all operation

instances.

The topology itself simply describes neighbourhoods but gives no indication as

to which edges are appropriate for specific operations. The topology thus contains

inadequate information to deduce the valid operation instances for a system. For

example given a certain operation, there is no justification for assuming an operation

instance for every edge in the topology; the system may be such that the operation

only finds instances for a proper subset of the edges. Instance information is also

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 33

_ absent from operation definitions" but this is so by the very nature of operations,

which are abstract and make no referen'ce to specific objects.

3.4 Abstraction Towards Dynamic Spec~fications

3.4.1 Events

The unit of behavioural description of complex systems is a specialization of the event

concept as described in the Communicating Sequential Process (CSP) model[Hoa85].

The events here share all characteristics of CSP events, namely atomicity and an

instantaneous nature. In addition to such CSP characteristics, the events are tied to

operations. An event is a specific occurrence of a state-changing operation. Moreover,

_ ,each event is defined so as to occur exactly once during the lifetime of a system. Each

event is given a unique identifier.

The alphabet of a system consists of all events occurring over the lifetime of the

system.

Since most specifications of complex systems describe iterative systems;' most if

not all operations will be repeated as the system runs. However, each operation is an

abstract entity that acts as a template for generating events. In order to enumerate

all the events that a particular operation gives rise to, two extra pieces of information

are needed. Firstly, the identity of the object, or two objects, as the case may be,

participating in the operation. Secondly, since such objects are likely to paI:ticipate

in the same operation repeatedly, art occurrence count. Enumerating all occurrences

of each operation instance in this way will yield the alphabet of the system.

Given the above definition of events, all traces over the system's event alphabet

containing exactly one occurrence of each event identifier would be possible candidates

for dynamic specifications.

3.4.2 Orderings

The mechanism used to express dynamic specifications precisely is the event ordering

relation. Effectively, it specifies all event traces that constitute valid behaviours of

the complex system being abstracted. In a purely sequential system, that is, one

whose events occur according to a known and strict order, there can only be one valid

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 34

trace representing the system's lifetime. Typical complex systems would not exhibit

completely sequential behaviour: in the presence of either parallelism or undefined

ordering, or both, there is bound to be more than one valid trace.

Defining the order of events in valid traces of a system poses a question of the

semantics of the lack of order between events, or of under-specification. Two possible
r~ ~

interpretations of unordered events exist, which will be referred to as indeterminacy

- and concurrency.

Indeterminacy is very common in systems exhibiting randomized behaviour, par­

ticularly complex systems, where it is sensible the restrict a certain set of events to

occur consecutively without having them adhere to a predefined sequence.

Concurrency is likewise fundamental to complex systems. This phenomenon is a

less restrictive form of indeterminacy permitting a set of unordered events to occur

~ simultaneously. Then by definition indetermina,cy is a special form of concurrency.

Since concurrency is the more fundamental interpretation, all events which are un­

ordered with respect to each other will be interpreted as concurrent events. Indeter­

minacy is indicated in specifications by saying that the events concerned are totally

ordered, while leaving unstated the precise definition of their ordering.
'.-

Therefore, lack of ordering denotes concurrency and incompletely defined ordering

denotes indeterminacy.

3.4.3 Comparison of Communication Models

It is noteworthy that the distinction between asynchronous and synchronous-commu­

nications has not been manifested either directly or indirectly in the given specifica­

tion model. This is in contrast to the other characteristics of the CSP communica­

tion model: unidirectionality and point-to-point nature, both of which are indirectly

manifested in the model. However, occasions arise where specifiers need to simulate

buffered communications using the existing concepts of the model, as explained above

in connection with artificial entities.

At the level of abstraction of specifications, the distinction between blocking and

non-blocking communications cannot appear. It is merely taken for granted that the

ordering relation between operations should hold true.

CHAPTER 3. ABSTRACTING COMPLEX SYSTEMS 35

According to the present model, the temporal context assumed by operation def-
- -

initions is that of the receiver. This is equivalent to a one sided specification of com­

munications, as distinct from the two sided model of CSP. Consequently, operations

implying a communication, or in other words, those operations whose effect depends

upon the states of two objects, are open to different interpretatio,llB in relation to the

consistency of data between the two participants.

Such an operation will naturally involve distinct transmitting and receiving ob­

jects, and will effect a state-change in the latter. Therefore an event corresponding

to such an operation will only be observed in the system as alterations to some of

the receiver's attributes. But how consistent should be the two components of the

operation's pre-state, the states of the transmitter and receiver? Since objects take

on the properties of CSP processes, running in independent temporal contexts, that

.is, having separate unsynchronized clocks, it is not possible from within the model to

state that the data arriving at the receiver must be identical to the current state of

the transmitter at the exact moment that the event occurs. This is the most desirable

interpretation of data consistency.

Chapter 4

Specifying Complex Systems

Context

Chapter 3 explained the facilities of the model relating to its abstraction relation.

This chapter concludes the presentation of the model by defining a formal notati{)n

for specifying complex systems. The notations assumed here for such it~ms as

function definitions and traces are given in appendix A. '

The interpretation of parts and constructs of a specification are also described.

Since the interpretation relation under discussion here is complementary to the

abstraction relation, chapters 3 and 4 are closely tied to each other.

Chapter 6 exploits the interpretation of the notation given here in order to

define a mapping from formal specifications to occam programs.

4.1 Top Level Structure

A group specification C[SF,DF,MF] is composed of two distinct parts: a static specifi­

cation section S[SF,MF] and adynamic specification section D[DF], where DF and SF

are lists of formal parameters (they may be read as 'static formals' and 'dynamic for­

mals,' respectively), and MF is a list of formal module names (section 3.2). S[SF,MF]

is composed of object, topology and operation declarations, while D[DF] is composed

of event and ordering declarations.

All declarations are of the form name: definition where name is a unique literal

and definition may be a set, a first-order logical predicate, a function definition or a

36

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 37

. trace declaration, depending upon context. Definitions in either section may contain
- -

names of free variables provided that such variables belong to the relevant list of

formal parameters; that is, definitions in a static specification S[SF,MF] may use free

variables from SF and MF (although module names may only occur in the operation

definitions of the static specification, as noted below), while definjtions in a dynamic

specification D[DF] may use free variables from DF.

An instance specification, C[SF,DF,MF][SA,DA,MA], supplies actual parameter

lists SA, DA and MA, to a group specification. Each member of an actuals list

denotes the value or name to be bound to the corresponding member of the relevant

formals list. By simple textual substitution of actual values or names to formal names

throughout the group specification, an instance specification is obtained.

Only an instance specification may be interpreted as an actual system. A group

.specification represents abstractly all those actual systems that are interpretations of

its instance specifications.

A group specification describes formally and in outline the organization (in the

static specification) and behaviour (in the static specification) of a group of systems.

In its static section, a group specification normally describes the. high~-level orga­

nization, without reference to specific system topologies and specific types of state

attributes. These aspects are denoted by formal parameter symbols that are to be

bound upon instantiation. What is normally defined in the static part of a group

specification is the structuring of the state in the system and its division among

objects.

The static section also states generically the potential operations upon state in a

object-wise or object-pairwise fashion, depending on whether one agent or two agents

are involved (section 3.3.3). The group specification is not explicit about the actual

computations upon state, just as it is not so concerning the qualitative nature (or

types) of the state. Computations will be defined as modules in external programming

languages (such as occam) and the relevant module names will be passed as actual

parameters upon instantiation. However, for each operation, the dependency relations

between the participating attributes (i.e. parts of a system's state, as given in section

3.3.2) are required to be defined generically.

In the dynamic section of a group specification is described the high level be­

havioural structure. This is not required to be expressed explicitly as a concurrent

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 38

algorithm, but rather through the event and trace abstractions introduced in section

3.4. This latter form for expressing behaviour permits generic expression through

judicious use of formal parameters. The behavioural aspect needs to be stated with

reference to the static nature of systems, since system behaviour is observed as changes

occurring within the system organization. What is specified concerning system be-
r ~ -""

haviour is the interaction and synchronization between the operations that take effect

- upon the system's objects.

4.2 Objects

Objects correspond to autonomous components of complex systems. They may be

identified as the smallest state-possessing structural units of complex systems. All

-the state information possessed by a system should be partitioned and distributed

among the attributes of constituent objects. The classes of objects in a system are

then declared by their respective objects' characteristic signature (section 3.3.2). The

declaration of a class, c, of objects having N attributes, for example, would include

the definition of a sequence of attributes:

c : < a1 : tb a2: t 2, ... , aN: tN >
where indexed (subscripted) a symbols stand for unique attribute names and corre­

spondingly indexed t symbols are types. Types are sets of values, but for convenience

they may be written as names of primitive types in occam, such as [NT or BOOL, if

required.

In a group specification S[SF]itis permitted to substitute a name taken from SF

for any type.

The object set of a system (section 3.3.2), n is declared as follows for a system

composed of M objects:

n {01 : Cll 02: C2, ... , OM: CM}

where indexed (subscripted) 0 symbols stand for unique object names and correspond­

ingly indexed c symbols are class names declared in the same specification.

n may be defined through set comprehension in order to take advantage of pa­

rameterization. For example, assuming that all objects in a system belong to a single

class, c, the following declaration may be made:

n {Vi E {1,2, ... ,O} • (Oi: cn

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 39

_ This declares C? uniquely named objects Of class c. 0 must be a formal parameter

given to the static specification.

The set of objects in the system, w, is derived trivially from the definition of n.
The former set is especially used in the ordering declarations of dynamic specifications

(see section 4.6). ~ ~ "

Operation declarations need to refer to the state of objects. The notation for

- associating an object with its state is a mapping from the name of the object to a

tuple containing its current attribute values. The order of values given in the tuple

respects the sequence of attributes given in the declaration of the object's class. For

example, the current state of an object, 0, belonging to class c:

c : < al : {1,2,3}, a2: {4,5} >
may be written as, say, (0 f-t (1,5)).

Speaking in terms of systems' dynamic aspect, prior to being first assigned, an

arbitrary value of the type is held by each attribute. It is further assumed that no

attempt will be made during the lifetime of the system to assign a value simult?-ne­

ously with one or more another assignments or simultaneously with one or more read

accesses. All other combinations of operations may occur simultaneously.

4.3 Topology

A system's topology is a specification abstraction in the form of a directed graph whose

set of nodes is identical to the object set, n. Edges indicate the direction of message­

passing between object pairs (section 3.operations). The topology declaration of a

system defines the edge set, E, of such a directed graph, where edges are ordered pairs

of object names.

E is not required to correspond to the smallest set of object interaction-pairs, as this

is required to be performed separately in connection with binary operation instances

(see section 4.4). The edge set that represents a bidirectionally fully connected graph

is a valid topology specification in all cases.

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 40

4.4 Op~rations

An operation is defined in the abstract as a change to a single object's state, that is,

to one or more of its attributes. The object undergoing change will be referred to as

the target of the operation. If the change is dependent upon attributes of an object
r~ -

that, topologically, is a neighbour (or 'partner') of the target, then it is called a binary

- operation. It is called an unary operation otherwise, that is, if it is dependent solely

upon the attributes of the target. No other kinds of operation are possible according

to section 3.3.3.

Due to the concurrent nature of objects, with binary operations there is no implicit

guarantee of temporal consistency between the attributes that exist in the two objects.

If such consistency is required, it should be indirectly stated as a synchronization

constraint in the dynamic specification.

Formally, an unary operation is declared as a mapping to the changed state of

the target from its prior state. A binary operation is declared as a mapping to the

changed state of the target from both its own prior state and that of its partner. Such

functions from pre-state to post-state are of the form:

U 0 ---t 0'
for an unary operation U, and:

BOP x 0 ---t C'
for a binary operation B. Above, C is the instantaneous current state of the class

(expressed as the set of its instances' current states as given in section 4.2) un?~rgoing

change and CP is that of the class of its partner. The notation in use by the Z

specification language[Spi89] is adopted, of attaching the 'prime' symbol to a set to

signify that it denotes the state of the set that arises once the operation is complete.

In the present specification approach only the state of the object subject to the

operation is found to be altered in the post-state set.

The precise definition of an operation should obey the form given above. It should

define the new state each attribute of the target object as either the identity function

or a module function, of the in-scope attributes. These attributes are simply those

that belong to the target and, if appropriate, to its partner. In a group specification,

all module functions would be expected to be unspecified. In fact, the specification

language itself does not set out to describe the detailed computations that are more

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 41

- appropriately qefined by programming languages. The only conception of such func-
-~ .

tions within the specification framework is that they are uniquely named, that they

are parameterized by attributes and that their results are to be assigned to attributes.

Module names are the only symbols pertaining to operations that may be signified

by formal parameters.

For convenience, the pre-state and post-state parts of an operation definition may

be referred to as its 'left' and 'right' sides, respectively.

Since an operation is an abstract function definition, it represent many possible

concrete operations. As many, in fact, as there are possible argument objects. An

operation that may be activated upon to one or two known objects, depending on

whether it is unary or binary, respectively, is known as an operation instance (section

3.3.4). They are still static specification entities since they do not refer to the active

transformation of system state in any concrete temporal context. They are, however,

the link between the static and dynamic conceptions of operations.

The formal notation used to refer to instances of operations U or B, above, given

specific target (t) and partner (p) objects is:

t H U.(t)
which is an instance of U, and

(p, t) H B.(p, t)
which is an instance of B. This means that, for every operation, there is a unique

operation instance corresponding to a particular ordered pair of objects. However,

especially for the latter case of binary operations, the converse interpretatiDii, that

is, that there is a unique operation instance for all possible ordered pairs of objects,

is not true. This is clarified below.

Unary operation instances are usually implicitly defined once classes and opera­

tions have been defined. However binary operation instances require explicit spec­

ification. This is obvious from the restricted spatial nature of interaction between

objects in complex systems. Most interactions are constrained by some concept of

spatial distance. In other words they are neighbourhood oriented. As noted earlier,

the topology provides only partial information about valid neighbourhoods. This is

because the topology is operation independent, it provides the most interconnected

possible interaction graph without discriminating between neighbourhoods for differ­

ent operations.

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 42

Information, concerning restriction of operation instances to subsets 9f the topol­

ogy on an operation-by-operation basis\; necessary in order to specify precisely the

set of valid operation instances. This is achieved by specifying, for each binary oper­

ation, a mapping onto that the subset of operation instances which contains all valid

instances. This is reminiscent of the function-inducing abstractioRs used in relational

modelling, since operation instances themselves are functions. Formally, the set, b of

- valid operation instances for a binary operation B would be declared from the valid

edge-set of the system's topology to the space of operation instances:

b f3E ~ E, "Ie EEl p = 7Tl.(e), t = 7T2.(e) • (p, t) 1-+ B.(p, t)}
where 7Tl and 7T2 are the projection functions (see appendix A).

Restricting the targets of unary operations may be similarly achieved through

mappings onto function space, but this is needless as a far simpler and readable

_ solution exists, which is to declare objects targeted by those operations to be of

a unique class, and then to use this class in the declaration of the relevant unary

operation.

4.5 Events

Events are an extension of operation instances into the temporal realm. An event

is simply the occurrence at a certain unique point in time of the action specified

by an operation instance, which is the change in state of one of the objects in the

system with reference to its previous state and under certain conditions that of a

neighbouring object as well.

The view of time of event occurrences is a purely relative one. Events correspond­

ing to the same operation instance are viewed as occurring in strict succession, without

any possibility of simultaneity. Under the event concept alone, there is no account­

ing for sequential relationships between events of different operation instances. Such

capability is necessary for specifying realistic complex systems, and is the subject of

the next section.

Having raised the subject of the dynamic nature of systems, it may be asked

what are the precise meanings of sequence and simultaneity. In the CSP model of

concurrency, events are considered to be strictly atomic entities that are instantaneous

and thus do not have any extensions in the temporal dimension. In this model we

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 43

relax this constraint. Since static s2ecificat-ions define each operation to be a mediator

between one pre-state and one post-state; their concrete aspects, events, are atomic

and do not conceptually encapsulate a sequence of computations. However it is still

possible to conceptualize them as consuming time, during which delay other events

may commence and possibly complete effecting state changes. Thi§jsJ:t1lowed with the

understanding that a system may not be legally specified to have multiple concurrent

- writes to the same object's state or to have a write concurrently with reads.

Given that events are simply unique occurrences of operation instances, it is possi­

ble to label them uniquely using a simple scheme that takes into account an occurrence

count. Thus, by convention, an instance of operation a upon object t occurring for

the 5th time is written at,s.

In instance specifications, each operation should be specified a finite maximum

limit on the occurrence count of its instances' events. This number may be substi­

tuted by a formal parameter name in group specifications for purposes of generality.

Consequently, in an instance specification, the number of events occurring during a

system's lifetime is effectively declared.

4.6 Orderings

More complex temporal relationships between events than simply the successive or­

dering of the previous section will be needed. A notation which can be used express

arbitrary temporal relationships between events would constitute a specificatiDn lan­

guage for arbitrary behaviour patterns. Furthermore, if it were generic to a whole

class of similar temporal patterns, it would constitute an algorithmic skeleton[Col89]

description language.

The abstraction used to specify temporal relationships between events is the event

ordering relation. This is declared as a transitive relation, <, over all events in an

instance specification. el < e2 specifies the requirement that event el occur strictly

prior to e2, in the same sequential fashion as, for example, two successive operation

instance events. Insofar as events may be thought of as having a duration, e2 may not

commence until the state change caused by el has taken effect. The relation being a

total one, it must be possible to establish for any two events in the dynamic part of

an instance specification, whether or not they are definitely sequentially ordered. The

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 44

specification is not ambiguous in this sense. Since the relation is transitive, ordering

is propagated through chains. In this~d other factors, this specification method

resembles the event structure formalism[Win89].

Other temporal relationships than strict sequence also hold in complex systems.

These are indeterminacy, that is, randomized ordering, and concurrency. However,

just the single primitive of sequential ordering is sufficient to discriminate unam-

- biguously between sequence, indeterminism and concurrency. A set of events will be

deduced as being mutually concurrent iff none of the events are ordered with respect

to any other. Concurrency is the least temporally constrained relationship between

events. A more constrained relation, though less so than sequence is indeterminism,

where sets of events are to be sequentially ordered, yet are permitted to occur in

any combination. Consideration of this will follow after the following discussion of

notation.

Practically, the binary relation < is at too Iowa level of expressivity to suit a

specification language. A notational and conceptual convenience is to adopt a higher

level language based on traces. The trace notation associated with CSP is ideal. To

employ trace terminology, the ordering relation defines the set of traces that are valid

observations of the behaviour of the system. For example, el < e2 for a certain

system is equivalent to saying that el precedes e2 in all valid traces of the system.

In addition, an event-pair-by-event-pair specification of < is apt to be done ar­

bitrarily and without rigour. With the aid of traces, a more systematic, operation

oriented, approach to specifying event orderings is made possible. This will-assume

the existence of a specification device in the form of a trace, say pre, of the lifetime of

the system leading up to a certain event's occurrence, say e. Since events are unique,

there will only be one such occurrence. Now the task of specifying orderings with

respect to e is in characterizing the pre trace in terms of its constituent events. The

precedences of every family of events should be accounted for in the dynamic speci­

fication, and this may be done by independently for each event family by specifying

the precedences for each family and connecting all such clauses into a conjunctive

form.

The notation for declaring precedences assumes that pre, the record of the system's

lifetime up to a certain point of interest, has been advanced by the occurrence of a

single event, denoted e. Then the task of writing a precedence declaration for events

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 45

_ belonging to a particular operation requires, firstly, the assumption that e belongs

to that operation, and secondly, the ch.~iacterization of pre under that assumption.

For example, these two declarations state that all events belonging to the operation

01 should be preceded by event d and that all events belonging to operation 02 are

preceded by event c:

e = 01 t •n ===} < d> in pre ('it E W, 1 S; n S; Nd
e = 02t•n ===} < c > in pr e ('it E w, 1 S; n S; N2)

Note that Nl and N2 are formal parameters to the dynamic specification. In the

above, they denote the number of occurrences of any instance of either 01 or 02, as

the case may be.

Given this form of specification, we may return to the consideration of indeter­

minate sequences. This will assume that a sequence, which may be left specified as

simply a formal parameter in group specifications, is to be committed as the actual

sequence of events to be followed. Such commitments of random, indeterminate se­

quences must happen at the time of a specification's instantiation. A finite sequence

of known size, say N, is a bijective function from ZN, the set of the integers}anging

from 1 to N, to the set of members of the sequence. Commitment of a cooice in this

context refers to the defining of such a function, say s. Then an event belonging to

an indeterminate set, and belonging also to an operation family 0, may be defined

by the following clause:

e = Ot.n = s.(i) ===} < s.(i - 1) > in pre ('it E w, 1 S; n S; N)
where, again, N is a formal parameter to the dynamic specification.

A constraint upon ordering declarations, considered as a whole, is that any event

that belongs to a binary operation family must be preceded by at least one other

event. This is necessitated by the program induction procedure of chapter 6 in order

to implement communications via channels.

4.7 Correctness of Specifications

The possibility of events occurring simultaneously, and by implication state changing

operations too, poses a difficulty in the form of mutual exclusion of operations from

shared data. Typical specifications will contain several operations that require access

to the same attributes. Where unordered events are occurrences of such operations,

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 46

_ and furthermore involve the same objects, then the same data item is being used

by several oper'ations simultaneously. This is harmless in the case where all relevant

operations merely read the value of the common objects' attributes. In all other cases,

that is when, at the same time, all relevant operations are ready to write or when

at least one is ready to write while others are ready to read, the resultant effect is

unpredictable.

Rather than giving a definite interpretation to such cases, it is decided that spec­

ifications that break the constraint of mutual exclusion are incorrect. These cases

arise due to underspecification of the ordering relation. However, given the labelling

scheme for objects and events presented in the next chapter, it is possible to verify

formally specifications with respect to mutual exclusion, and to identify precisely the

set of offending events in incorrect specifications. Although the model provides no

immunity against specifications that fail the mutual exclusion constraint, formal tools

can be constructed to assist in the repair of specifications that are incorrect in this

respect.

A specification is also rendered incorrect if it contains a deadlock conditi~n. This

is the case when the event ordering relation contains a cycle.

In verifying specifications in the presence of indeterminacy, all possible combina­

tions of events lying in indeterminate sequences should be checked for mutual exclu­

sion or deadlock.

4.8 Conclusion

The language used for representing a system to be simulated should be expressive of

both static and dynamic aspects. A notation has been introduced to represent each

of the properties identified as necessary for the modelling of complex systems, namely

state, state changing functions, message passing and deterministic and nondetermin­

istic event ordering. A significant departure from the occam programming philosophy

is the elimination of any direct representation of bidirectional message passing chan­

nels, in favour of a one sided communication model where only the receiving party

is explicitly involved in the communication. This is done in order to simplify the

concept of communication.

Class specifications model entire groups of related systems. A form of modularity

CHAPTER 4. SPECIFYING COMPLEX SYSTEMS 47

is introduced by structuring specifh::ations'into general and specific components. The

latter would c~nsist of specific information about the system to be simulated, as

opposed to properties 'inherited' from the class of systems to which it belongs. In
addition this component may also specify implementation related information such

as the topology of the processor network available for execution. r' -

Chapter 5

Specification Case Studies

Context

Previous chapters have developed a specification model for complex systems and

a specification language to permit its expression in a formal notation. The no­

tation and textual format adopted by the specifications in this chapterare not
"-" -

meant to conform strictly to those given in chapter 4. Rather they demonstrate

the application of the concepts of chapter 3 to the abstraction of actual complex

systems.

Of special importance to the present thesis is that specifications exhibit gen­

erality. The practical benefits of grouping, as a mechanism for simplifyi~g the

task of the specification writer, is demonstrated. Another benefit demonstrated

is the ability to exercise formal procedures for proving properties about specified

systems.

The application of the specification model as a descriptive tool, then, is the

main focus of this chapter. In chapter 6, its other role as means of defining a

program induction procedure is demonstrated.

48

CHAPTER 5. SPECIFICATION CASE STUDIES 49

5.1 Cellular Automata

5.1.1 Introduction

Many of the systems classed as complex systems may be shown to be equivalent

to cellular automata (CA) [Wo184]. This section presents a spedfitation of CA. A

specification of an extremely simple CA-like system is progressively refined to produce

a specification of a realistic CA. Then the generality of the specification language is

exploited to adapt the final specification to express particular CA-based systems.

Cellular automata (CA) are discrete models of dynamical systems that serve as

convenient computational frameworks for the study of complex systems. The model

of cellular automata presented here considers such aspects as system entities, state,

operations, neighbourhood communication, time and synchronization.

A CA normally consists of a regular graph of cells where each cell may be in any

one of a finite set of states at a particular time. The edges connecting each cell with

its neighbours represent channels of communication. Cells collectively perform state

transitions in discrete steps of time in the following manner: each cell inputs the

current state of its neighbours and then determines its new state by computing the

CA's update function. The update function relates the current state of a cell and that

of its neighbours to its state in the subsequent step.

Starting from an initial state, the CA iteratively passes through the phases of state

exchange and state update. Note that all cells are normally synchronized at the com­

mencement of an iteration and that such behaviour is termed bulk-synchronization.

5.1.2 Development of a Specification

A Simple Distributed System

As an initial specification to be refined in subsequent sections, a greatly simplified

form of a distributed, discrete-time system is introduced here.

Essentially, it is a CA consisting of a finite number of cells, to the exclusion of

both communication channels, and by implication, the concept of neighbourhoods.

To exclude any necessity for cells to communicate, bulk-synchronous updates are not

required. Thus, each cell simply updates its own state iteratively, without reference

to the states of neighbours. It is arguable as to whether the entire system may be

CHAPTER 5. SPECIFICATION CASE STUDIES 50

called iterative ,under such conditions, but' certainly it should be clear that the cells,

by themselves, behave iteratively.
-;: .

Consider this system to be a complex system. The system may be described in an

abstract sense by referring to the objects composing the system as members of a set,

Obj ect. Similarly, let the set of states in which an object may exist- be State. Both

Object and State are finite sets. Let the update function, defined to be from State

to State, be called U pdateState.

In order to associate objects with their state, an 'associative' function from Object

to State is introduced. It may be considered to be a total function, which is to say

that all objects have clearly identifiable states.

In this system the objects are expected to change their state. Since it is a dynamic

system, the formal description should be capable of expressing changes in the state

,of objects over time. To do so using the asso-ciative function (call it SystemF),

either index the members of Object with time or define a separate association for

each time step. The latter approach is to be preferred as it does not necessitate

altering the definition of Obj ect. For the present purposes, the number of instances

of SystemF may be reduced to just two by adopting the view of time supported by

the Z specification language[Spi89]: that is, to consider a pre-state and a post-state,

and describe the change in the system during a time step as a predicate relating

the pre-state to the post-state. Taking the notation from Z, label the pre-state as

SystemF and the post-state (another total function from Object to State) SystemF'.

For purposes of interpretation, it is to be understood that SystemF'hecomes'

SystemF' instantly upon the appearance of the post-state. To be more precise, recall

that in CSP terminology[Hoa85]' events (only state-update operations are events of

interest here) occur in a sequential order or trace. Now supposing that event el,

denoting an occurrence of the operation e, is the immediate predecessor of event e2

in the trace, the post-state SystemF' of el is taken as the the pre-state SystemF by

e2. This is for the simple case where the successor event e2 has a sole predecessor

event. In more complex cases a certain event may have more than one predecessor

event. Then the event's pre-state is defined to be the union of the post-states of the

predecessors.

Let System and System' be the sets of ordered pairs given by:

System = {\lob E Object. (ob, SystemF· ob)}

CHAPTER 5. SPECIFICATION CASE STUDIES 51

-<

State

Figure 5.1: U pdateState as a function mapping the set State to itself.

System

Figure 5.2: Diagram indicating the state and operations of the simple distributed
system.

System' = {Vob E Object. (ob, SystemF' . ob)}

Hereafter, System and System' will be used as equivalents of SystemF and SystemF'

to refer to pre- and post-states, respectively.

The only operation performed by cellular automata is the update of cells' state

according to some function of their current states. To illustrate the effeGt- of the

update operation upon the system's state, a diagrammatic notation is introduced as

a preliminary to a formal statement.

Figure 5.1 corresponds to the signature of the UpdateState function, taking State

as both its domain and range. It can be thought of as an attempt to capture the

dynamics of the system in picture form. Clearly, as time progresses and the system

iterates, individual states are transformed according to the update function.

It will be seen that a more effective picture of the manner in which the system is

altered, as it iterates, is the relabelled diagram, figure 5.2. Update is an analogue of

UpdateState as defined below.

The formal definition of the update operation is as follows:

Update: System ---+ System' : (ob 1-+ st) 1-+ (ob 1-+ UpdateState.st)

CHAPTER 5. SPECIFICATION CASE STUDIES 52

Update is to b~ interpreted as an operation that transforms the state st of an object

ob, as a function U pdateState of st. With respect to the Update function or operation,

ob 1---+ st is a member of the pre-state System, while ob 1---+ U pdateState· st is a member

of the post-state System'.

Neighbourhood Communications

The example in the previous section deliberately avoided the need to specify inter­

actions between cells. In this section, a system will be examined that builds on the

abstractions introduced earlier to address matters of communication and intercon­

nection between cells.

Let the new iterative system consist of cells that again have state, but let each

update itself based on its own state and the state of one other cell- its partner. The

manner in which a cell chooses a partner is left unspecified, indeed it may interact

with different partners over successive iterations, or even with itself.

Partnerships need not be mutual, so in the case where a cell d updates itself with

reference to a cell c2, it does not necessarily follow that c2 updates withl>eference

to d. This freedom is allowed in order to postpone consideration of synchronization

until the next section.

The sets Obj ect and State are exactly as defined above, and U pdateState is defined

to be a function from the product State x State to State.

In addition to the sets and functions mentioned earlier, a further set is required to

describe the topology of the system. For the present, fully connected, case-this will

simply be the product set Object x Object which will be called Topology. In general,

Topology will be defined as that subset of Object x Object whose elements represent

neighbouring objects.

As before the cells iteratively alter their state; in the diagram shown in figure 5.3,

the arrow Update is again used to indicate this fact.

However, the operation of updating is itself dependent upon the state of pairs of

neighbouring cells. One may also say that topological information about neighbour­

hoods is used to decide whether a pair of cells will take part in the update operation.

A 'meta-operation' is introduced, called Constraint, to limit pairings between objects

to those that are members of Topology.

Note that the diagram does not reflect Update as taking a product for its domain.

CHAPTER 5. SPECIFICATION CASE STUDIES 53

System
Constraint

EO • Topology

Figure 5.3: The Update operation shown to be determined by topological constraints,
as indicated by the function Constraint.

Diagrammatically, the Update arrow is identical to that shown in the previous ex­

ample (figure 5.2), and serves to indicate exactly that the post-state of System is

dependent on the pre-state of System alone.

The evidence for communication between objects comes from the Constraint

function. In the present example this is the primary role of Constraint, since any­

to-any interactions are permitted and there is no occasion to prevent any particular

partnership from forming.

The nature of Update is largely unchanged from the previous one:

Update: System x System ~ System' :

((ob f-+ st), (obn f-+ stn)) f-+ (ob f-+ U pdateState· (st, stn))

Take note that the state of the first member of the pair, ob, is being recomp~ted in

the operation; obn is the partner of ob. Update does not affect the state of the second

member. This is a convention for representing operations on object pairs.

Constraint maps Topology to the hom-set1 H((System x System), System'). Its

range is further specified in the definition:

Constraint: Topology ~ { Vedge E Topology, ~selJ, neighb E Systeml

7l'1 • edge = 7l'1 • selJ 1\

7l'2 • edge = 7l'1 • neighb.

(selJ,neighb) f-+ Update· (selJ,neighb)}

lThe set of all function from System x System to System',

CHAPTER 5. SPECIFICATION CASE STUDIES 54

where 71'1 and 71'2 are projection functions (appendix A). This is to state that the range
-~ ,

of Constraint is the set of all state-update operations performed on neighbouring

pairs of objects.

An instance of Constraint, given objects ob and obn where (ob,obn) is a member

of Topology, is:

(ob,obn) f--7 ((self,neighb) f--7 Update· (self,neighb))

where 71'1 • self = ob and 71'1 • neighb = obn; self, neighb E System.

It may be noted in passing concerning figure 5.3 that it strongly resembles a

relational diagram (see section 2.2.1), especially in possessing an arrow that denotes

a higher-order relation. Similar arrows arise in the neural network specification of

section 5.2. However, such higher-order relations are only used to indicate the natural

dependence of binary operations upon system topology. In section 4.4, topological

constraints are similarly accounted for, through operation instance declarations.

Specification of a Cellular Automaton

CA differ from the previous example in the following respects:

• Any regular topology is possible, not merely fully connected graphs.

• State update rules require knowing the state of all a cell's neighbours.

• Bulk-synchronous iterations are necessary.

The first two can be accounted for by modifying Topology and Constraint, re­

spectively, as will be shown further below.

Collective synchronization can be specified as a property of the trace of the sys­

tem. The use of traces here is in a simpler sense than in section 4.6, and is suited to

describing the relatively simple dynamics of complex systems. The trace of the exe­

cution of the system, or the sequence of the update events, must exhibit the following

pattern (stated in the notation given in appendix A):

CHAPTER 5. SPECIFICATION CASE STUDIES 55

where Cycle;, i.s a trace corresponding to the ith iteration of the system. Each

Cyclei is allowed to be any permutatio<n' of the N events correspondin~ to the up­

date of the N cells in the system. To express this in the notation of traces, first

let Event = {updateeell1"" ,updateeellN}, where the event updateeellj is the state

update operation performed on cell j. Then, for all i:

Cyclei E { Ve E Event*, Ve E Event I

#e = N 1\

e i {e} =< e> •

e}

Synchronized updates have an effect on the meaning of System' in that cells,

during Cyclei' make use of their neighbours' states, as they were in Cyclei-1, in

order to update themselves correctly. Therefore System' does not become System

until the completion of the current generation.

In CA, each event in a sub-sequence Cyclei generates a 'hidden' Sys~e,'m' that is

not expressed immediately as System. The hidden post-states generated by events

continue to accumulate until the final event of Cyclei has occurred, whereupon they

are combined by simple set union and expressed as the pre-state of Cyclei+1:

N

System = U Systemj
j=1

where N is the number of cells and Systemj the hidden state produced by the update

of cell j.

Turning to the state update function, given the degree of the interconnection

graph, it will be of the following form:

U pdateState : Statedegree+l -+ State

The diagram of a CA system will be identical to that shown in figure 5.3, as

again, the Constraint arrow will specify how the topology of the system determines

the update operations. The fact that updates are dependent on the state of all

neighbours rather than on one 'partner' will be shown in the detailed specification of

the Update and Constraint arrows.

CHAPTER 5. SPECIFICATION CASE STUDIES

Update: Systemdegree+1 ---? System' :

((ob, st), (obnl, stnl), ... ,(Obndegree, stndegree)) f--+

(ob, UpdateState(st, stnl, ... ,stndegree)) ~.

Topology, in CA, is expected to be the edge-set of a regular graph.

Constraint: Topology ---? { Vself E System,

An instance of Constraint is:

3neighbl, . .. ,neighbdegree E System,

3edgel, ... ,edgedegr~e E Topology I
7r1 • edgel ~ ... = 7r1 . edgedegree 1\

7r1 . edgel = 7r1 • self 1\

7r2 ·edgel = 7r1 • neighbi 1\ ... 1\

7r2 • edgedegree = 7r1 • neighbdegree •

(self, neighbl , ... ,neighbdegree) f--+

Update· (self, neighbl, . .. ,neighbdegree)}

(ObI, ob2) f--+ . ((self, neigbl , ... ,neighbdegree) f--+

Update(self, neigbl , ... ,neighbdegree))

56

(where 3el, ... ,edegree E Topology such that for i = 1 ... degree, 7r1 • ei = ObI =

7r1 • self 1\ 7r2 • ei = 7r1 • neighbJ

Note that ob2 above is a free variable, meaning that regardless of the object that

is the second component of the edge, that edge is mapped onto the state-update

operation for the first component object. This representation is redundant in having

degree maps into every operation where just one would suffice. An interpretation of

this might have been that the same update is to be performed more than once, with

the same pre-state being in effect on each occasion. However, the earlier explanation

CHAPTER 5. SPECIFICATION CASE STUDIES 57

- of synchronizatJon assured that each cell will be updated exactly once in a generation,

so the interpretation permitting redund~Jit updates is invalid.

To specify particular systems, all that is required is to state the function U pdateState

and the edge-set Topology. At a lower level, Obj ect and State need to be specified.

Obj ect may be taken to be a set of unique identifiers, e.g. the integers from 1 to the

number of cells in the system. State is clearly problem-dependent. Essentially, these

four abstractions would constitute a list of formal parameters to a group specification.

5.1.3 Some Examples

N-Body Systems

N-body computations involve all-to-all interactions between objects. An example

- -from physics is the mutual gravitational force -between bodies in space; another is

the electrical interaction between charged particles. Simulations of such phenomena

are known to be iterative, data parallel problems requiring quantities (forces, in the

above examples) to be calculated for every pair in the set of objects.

N-body systems may be approximated to CA systems according to the following

reasoning (using the gravitational case for illustration): associate each object in the

system with a unique cell in a fully connected CA graph; let the state of a cell be the

properties, including position, velocity and mass, of its object. Then the behaviour

of the system is given by a CA update function that updates the cell's state by

determining the resultant of all forces exerted upon its object by all other objects.

The required update operation, given N neighbours, is:

U pdateState: StateN+! ~ State:

(st, stn), . .. ,stnN) 1--4

N

f· r)force . (st, stni))
i=l

where st is the local state, stni is the state ofthe ith neighbour; force· (a, b) computes

the force between two bodies whose states are given by a and b; f recomputes the

local state as a function of the sum of forces.

CHAPTER 5. SPECIFICATION CASE STUDIES 58

CA, being qiscrete time systems, approximately model the behaviour of the con­

tinuous time physical systems. Obviously; the shorter the time interval simulated by

each generation of the CA, the closer the approximation to the continuous time case.

Parallel Genetic Algorithms

_ Genetic algorithms (GA) [For93] can be represented as a kind of CA by considering the

population of individuals to be structured. The structure may be a graph whose nodes

represent the individuals and edges define possible pairings of individuals during the

crossover phase. Where any two individuals may engage in crossover in a particular

generation, the graph is fully connected.

The concept of a population structure is slightly different in placing sites, rather

than individuals, at the graph's nodes. Each site contains an individual, and a

- 'crossover/replacement algorithm is performed at. each site as follows: the local string

is crossed over with an individual from a neighbouring site; one of the resulting chil­

dren may then replace the local individual depending on the replacement policy. This

is the approach adopted by ASPARAGOS[GS91], a highly parallel GA.

ASPARAGOS can be mapped onto a CA in a straightforward manner.'The nodes

and neighbourhoods of the population structure correspond directly to the cells and

neighbourhoods of a CA. The state of a cell is the individual residing in the corre­

sponding site (together with an extra component to be mentioned shortly). It only

remains to state the update function, given a CA graph of degree N:

UpdateState: StateN+! -+ State:

(ind, nind1 , ... ,nindN) ~

replace· (ind, crossover· (ind, sel ect . (nind1 , ... ,nindN)))

where ind is the local individual and nind1 .•• nindN are individuals in neighbouring

sites; select picks a neighbour that crossover is to operate on with ind, to produce

a pair of children; replace selects either ind or one of the children to be the updated

local individual.

Generally, selection, crossover and replacement are stochastic operators that re­

quire a source of randomness (a random number generator). To avoid conflict with

CHAPTER 5. SPECIFICATION CASE STUDIES 59

-- the functional definition of UpdateState, and in keeping with the localized nature of
-~ .

CA operations, such a source is taken as an extra component of the state of a site.

5.2 Hopfield Neural Networks

- 5.2.1 Introduction

The following is restricted to specifying the recall phase of the activity of the Hopfield

neural network. The specification primitives introduced here can be applied to other

neural network models, notably the popular Perceptron model[Lip87].

An artificial neural network (ANN)[HKP91] is a network of nodes called neurons

that are connected together by weighted connections called synapses. Synapses are

- -represented by weighted and directed arcs.

Operationally, synapses (hereafter called connectors) are unidirectional signal con­

ductors whose output is computed by multiplying the input signal (represented, for

example, by a real number in the range [0.0 ... 1.0]) by a weight that is sp"ecific to

the connector. Neurons are switching units whose output is obtained by summing

all input signals, subtracting a threshold value (specific to the neuron) from the sum

and applying a (typically) nonlinear function (the transition function) to the result.

A neuron is said to "fire" when it calculates the result.

It should be evident that connectors, being directed arcs in the network, take

input from a single neuron and pass output to a single neuron. Neurons take input

from an arbitrary number of connectors (perhaps none) and likewise, may output to

an arbitrary number of connectors. The signal output by a neuron is propagated as

input to all connectors that it projects. The signal output by a connector is fed into

its destination neuron as an input.

The architecture of a Hopfield network is simply a fully connected collection of

neurons (excluding any direct connections from a neuron back to itself). For any pair

of neurons, the two connectors linking them (one in each direction) should possess

the same weight value. Allowed neural output values are +1 and -1.

A Hopfield network is initialized by setting the neural outputs to an input pattern,

following which it passes through an iterative phase where neural outputs are recom­

puted based on the current outputs of all other neurons. This phase may proceed

indefinitely, although in practice it is terminated upon convergence to a stable state

CHAPTER 5. SPECIFICATION CASE STUDIES 60

_ (when outputs _remain static between c~nsecutive iterations).

Different versions of the Hopfield network exhibit different dynamical modes that

dictate when neurons recompute their state - referred to here as the dynamics of

the network. Sequential dynamics have neurons firing one after another. On the

other hand, parallel dynamics exist when neurons fire simultaneously. Essentially,

sequential dynamics mean that the effect of a neuron firing (i.e. its new output)

- is propagated to all its neighbours before they in turn may fire, while with parallel

dynamics this is not necessarily the case. Networks having parallel dynamics are

prone to oscillate between states and thus not converge to a stable state, whereas

sequential dynamics are guaranteed to converge.

Parallel dynamics may be divided into two forms: firstly, all neurons fire syn­

chronously with an external clock such that at time t given by the clock, each neuron

_inputs the state of neighbouring neurons (via connectors) for time t -1 and computes

its output accordingly; alternatively, each neuron may fire asynchronously, under the

assumption that all neurons fire at the same rate, as judged by an external observer

(fairness). Simultaneous firings are the cause of undesirable oscillation of states so

the latter, asynchronous, variety is more likely to converge to a stable output pattern.

Sequential firing dynamics may be effected by repeatedly recomputing the neurons'

state until convergence, either in a fixed order (d. round-robin polling) or III an

arbitrary order.

Figure 5.4 illustrates an example of each form of firing behaviour.

Connectors are assumed to recompute their output immediately upon the firing

of their source neurons. Thus a specification of the dynamics of neurons is sufficient

to specify the update dynamics of connectors in a Hopfield network.

5.2.2 The Method

The specification technique employed here is an extension of that presented in the

specification of cellular automata (section 5.1). The method of identifying and clearly

separating the data and operations in a complex system is preserved. Because of

their complex temporal behaviour, the specification of dynamic aspects of neural

networks require a more sophisticated approach than that used with respect to cellular

automata above. The notation for specifying dynamic aspects is largely as in section

4.6.

CHAPTER 5. SPECIFICATION CASE STUDIES 61

.<

0 5 10 15

I I I I
: 1 1 : 1

. } (il P"olld dya=ic, '2 2 '2

:3 3 :3
: (synchronous)

: 1 1 2 3: 1

: } (iii Pam/[d dyaamic, ·2 3 2

3
: (asynchronous)

: 1 2 3 1 2 3: 1 2 3
} (iii) Sequential dynamics

(round robin) .. '

-.'
1 2 3:3 1 2 3 2 1:

} (iv) Sequential dynamics

(arbitrary)

Figure 5.4: Comparative behaviour of four firing dynamics. The line at the top
represents time as measured by some clock external to the Hopfield network. The
network under consideration is composed of three neurons, labelled 1, 2 and- 3.' The
event of one of them firing is recorded by writing the label of that neuron under the
time at which it fired. Assume that the effect of a neuron firing at time t propagates
to all other neurons by time (t + 1). (i) shows parallel dynamics with synchronous
updates; (ii) parallel dynamics with asynchronous updates; (iii) sequential dynamics
with round robin updates, given a polling schedule of 1, 2 and then 3; and (iv)
sequential dynamics with an arbitrary update order chosen for every cycle of 5 time
units. Note that although (ii) and (iv) seemingly exhibit arbitrary patterns of firing,
all neurons fire at the same rate in the given sample of 15 time units (i.e. 1 firing per
5 time units). This may be qualitatively referred to as fairness.

CHAPTER 5. SPECIFICATION CASE STUDIES 62

In a mann~r similar to section 5.1, the present specification will be developed
-~ .

through the following stages:

• Declarations: the sets and functions that characterize the problem. These sets

and functions are primitives upon which the specification i~ b~sed.

• Diagram: a pictorial representation of the state of the system and of the oper­

ations that alter state.

• Functions and Constraints: annotations to the diagram to define the operations

upon state.

In addition it is necessary to specify the different firing modes mentioned above

in the form of information about synchronization:

• Synchronization: specification of the points of synchronization between opera­

tions.

5.2.3 Declarations

The following sets are employed in specifying the recall phase of the Hopfield network:

• Sets of objects that constitute the system.

. -- - .

Neuron: set of neurons in the system. Connect: set of connectors in the

system.

• Sets of states in which neurons may exist.

NSumln: set of values allowed for the sum of inputs.

NThresh: set of threshold values.

NOut: set of allowed output values.

• Sets of states in which connectors may exist.

CWeight: set of weights.

COut: set of allowed output values.

CHAPTER 5. SPECIFICATION CASE STUDIES 63

~ >

@-@

Figure 5.5: The Hopfield network composed of neurons NI, N2 and N3 and inter­
connected by three bidirectional connectors is represented by Topology as shown on
the right. Each member of Connect, CI ... C6, is a unidirectional connector. The
arrows signify 'data flow' channels between neurons and connectors. Topology is the
set of such channels, of which there are twelve in this case .

• Topology: set of edges corresponding to li-nks between neurons and connectors.

The five state sets above are numerical sets. With the exception of JlfOut, they

take values from the set of real numbers; NOut, as pointed out earlier, is {-I, +I}.
The implication of neurons having three state sets is that the instantaneous state

of a neuron must be taken from the product NSumln x NThresh x NOut. Similarly,

the state of a connector must be taken from CWeight x COuto

Topology is the set of connected pairs of objects in the system (see fig~r~5.5).

Topology is not identical to the neural network since it has both neurons and con­

nectors for nodes. It is therefore a directed, bipartite graph where connector nodes

are linked with one source neural node and one destination neural node; neural nodes

are linked with connector nodes as in the neural network.

Since the Hopfield network is fully-connected Topology may be given as a subset of

((Neuron x Connect) U (Connect x Neuron)) where for every element co of Connect,

there is exactly one elements of Topology, (co, nel), having co as the first member

of the pair, and exactly one element, (ne2' co), having co as the second member.

This restricts connectors to be one-to-one links. It should be added to the above

formulation that nel =I- ne2 so as to eliminate self-loops.

Turning to the declaration of functions that define Hopfield networks, the following

need to be specified:

CHAPTER 5. SPECIFICATION CASE STUDIES 64

• InitVal: Neuron -t NOut

• UpdateNOut: NSumIn x NThresh -t NOut

• UpdateCOut: NOut x CWeight -t COut

• UpdateSumIn: COut x NSumIn -t NSumIn

I nit Val sets the initial output of each neuron to one of a given set of values;

typically, such values would correspond to the input pattern that is to be classified

by the neural network.

UpdateNOut corresponds to the firing of a neuron. It computes a simple step

function that evaluates to -1 if the current sum of inputs is less than the threshold,

otherwise to + 1.

UpdateCOut models the flow of a signal through a connector. It multiplies a

signal value by a weight value.

U pdateSumI n is a cumulative summing function. The need for this function

arises when one attempts to specify the operation of summing the input signals to a

neuron. The number of signal sources feeding into any neuron in a Hopfi~ld network

of N neurons is, of course, N - 1; however for ANN in general, where networks are

not required to be fully connected, the number of input connectors need not be fixed

for all neurons in the network. In the general case, a single function to evaluate the

sum of inputs cannot be found as the arity of such a function can not be fixed. The
.. - - .

solution adopted here to support the summing of inputs in ANN generally, is to define

an accumulator for each neuron that takes its value from N SumI n. The function

U pdateSumI n is simply the addition function and is used to add incoming signal

values, as they become available, to the current value of the accumulator.

5.2.4 Diagram

The diagram (figure 5.6) shows the state of objects in the Hopfield network (neurons

and connectors) and how the objects alter each other's state. As in chapter 4 and

the above specification of cellular automata, functions are defined to associate each

object with its current state; in this case two functions are required, N System for

neurons and CSystem for connectors:

CHAPTER 5. SPECIFICATION CASE STUDIES 65

-<

CUpdate

CConstraint
NUpdateOut,

Topology

NConstrainl

NUpdaleln

Figure 5.6: A diagram of state changes taking place in a Hopfield -netwOrk. Nodes
are labelled in bold font and arrows in italics. Two nodes represent the state of each
component in the system at a particular time: N System denotes the state of each
neuron and CSystem the state of each connector. The node Topology represents
the structural state of the system, the channels of data flow between neurons and
connectors. The arrows from node to node denote operations that transform the
current state into the next one. The arrows stem from the type of objects -whose
current state determines the change, and point at the type of component undergoing
change. Thus the operation CUpdate determines the next state of connectors with
respect to the current states of connectors and neurons (the arrow has two stems). A
full explanation is given in the text.

CHAPTER 5. SPECIFICATION CASE STUDIES

NSystem: Neuron ---+ NSumln x NThresh x NOut

C System: Connect ---+ CWeight x COut

66

They have equivalent representations as sets of the form (object; stdte), where state

is a triple (for neurons) or a pair (for connectors). The association functions, in set

form, are represented as nodes in the diagram. An additional node is the previously

declared set Toplogy, which is discussed further below with reference to constrained

operations.

The role of arrows in the diagram is to indicate the state-changing operations

upon objects. The operations that are spoken of here are abstractions built upon the

functions declared in section 5.2.3. Primitive functions were declared earlier to model

- various aspects of Hopfield networks, such as neu-rons summing inputs and connectors

weighting inputs, without relating values (inputs, weights, etc.) to the state of objects

(neurons and connectors). At the present level of abstraction, the aim is to specify

how the operations, which are higher-order functions, apply primitive functions to

objects in order to alter their state. ~-'

The diagram is such that arrowheads point to the affected set of objects while

the arrow sources are those sets that determine the change. A traversal through

the diagram will serve to illustrate. Taking a neural object from N System, and by

following the arrow NlnitOut (effectively applying NlnitOut to that neuron), the

neurons's state changes so that output is set to an initial value (see section 5.2.5 for

formal definitions of N I nitOut and other operations)2. Choosing next to follow the

N I nit Sum arrow changes the neuron's state further so that its sum accumulator is

initialized. Then following NU pdateOut will set the neuron's output according to its

current sum of inputs and threshold value3
.

The abovementioned arroWs loop back onto the N System node because corre­

sponding operations determine the next state of neurons based solely on the current

state of neurons. The other two arrows in the diagram represent operations that

2In terms of operation pre-states and post-states, if N System is the state of all neurons prior to
applying N I nitOut then the post-state, N System' differs from N System in that the output of a
single neuron is now initialized (all other neurons are unchanged). It should be remembered that
the post-state generated by the operation becomes the pre-state of the following operation.

3It will be assumed that the neural thresholds and connector weights have been correctly set
beforehand during the learning phase.

CHAPTER 5. SPECIFICATION CASE STUDIES 67

__ require information from different classes of objects in order to effect st~te changes.

CUpdate and NUpdateln are operatio~.s· that update the output of connectors and

the input into neurons, respectively. Note that both arrows are pointed to by arrows

from Topology and so represent constrained operations. An operation is said to be

constrained by a set when elements of the set determine allowable -instances of the

operation4
• An instance of an operation refers to the actual application of an opera-

- tion to a specific object, so the total number of instances is equal to the size of the

operation's domain. It is this number that is reduced by constraining the operation.

In the case of CU pdate, the post-state output of a connector is computed by

multiplying its weight by the output of a neuron. There are as many instances of this

operation as there are neurons in the network, but only one of them is appropriate

since it is the output of the source neuron of the connector in question that is of

_ interest. Thus CU pdate needs to be constrained by Topology to indicate that a neuron

may output to a connector only if they are linked. The definition of CConstraint,

the constraining function, makes this constraint explicit.

Now to resume the traversal of the diagram, pick an object from N SY8~em and

follow the CUpdate arrow into CSystem. There are two novel aspects to,this arrow.

It has already been remarked how this arrow is constrained so that the operation

instances that it represents are valid, implying that, for the neuron that has been

picked, the number of allowed CU pdate instances is equal to the number of connectors

that propagate away from it. However, the other noteworthy point is that the arrow

has two sources, N System and C System, since an operation instance can- flot be

uniquely defined when the identity of the connector that is to be updated is unknown.

The operation requires information about both the neuron and the connector. As a

result, CUpdate updates the state of a specific connector given its source neuron.

So having picked a neuron from N System, it is necessary to pick a connector from

CSystem in order to follow the CUpdate arrow. Doing so effects a state change on

C System such that the output of the selected connector object is updated while the

other objects are unchanged.

Finally, one may pick a connector from C System and its destination neuron from

41n the cellular automaton specification (section 5.1), Update was constrained by Topology so
that cells were updated only with reference to neighbouring cells. Without the constraint, Update
by itself would allow a cell to update with reference to an arbitrary collection of cells.

CHAPTER 5. SPECIFICATION CASE STUDIES 68

NSystem and follow the NUpdateln arrow. The effect of this operation is to trans­

form the state ·of the selected neuron s~ch that its input sum accumulator is incre­

mented by the output of the selected connector. N updateI n is a constrained operation

(by the arrow NConstraint) that is also determined by both neural and connector

objects.

In summary, nodes in the diagram represent a set of objects of the same class

- having state, and arrows into nodes represent operations. Nodes at the origin of an

arrow are taken as the pre-state of the corresponding operation while the node at an

arrowhead is transformed by the operation into a post-state. The post-state of an

operation becomes part of the pre-state of its subsequent operation. An instance of

an operation is the operation together with arguments (objects) necessary to generate

post-state. Constraints are arrows into other arrows that define legal instances of the

_ operation corresponding to the destination arrow.

5.2.5 Functions and Constraints

In this section, the operations and constraining functions shown in the ~i~gtam are

defined. All operations update the state of neurons by applying the primitive func­

tions to current state values. Firstly, the three unconstrained operations are given

as:

NInitOut: NSystem ~ NSystem':

(ne 1--+ (sum,O,out)) 1--+ (ne 1--+ (sum,O,!nitVal. out))

NUpdateOut: NSystem ~ NSystem':

(ne 1--+ (sum, 0, out)) 1--+

(ne 1--+ (sum,O,UpdateNOut . (sum, 0)))

NInitSum: NSystem ~ NSystem':

(ne 1--+ (sum, 0, out)) 1--+

(ne 1--+ (O,O,out))

where sum,O and out denote the current sum of inputs, threshold and output, re­

spectively, of the neuron ne.

CHAPTER 5. SPECIFICATION CASE STUDIES 69

Constraine~ operations need to be defined in conjunction with their respective

constraining functions. The following f~rictions partly define the constrained opera­

tions:

CU pdate: N System x C System -+ C System' :~ -

((ne f--+ (sum, (),out)), (co f--+ (w,cout))) f--+

(co f--+ (w, U pdateCOut . (out, w)))

NUpdateln: CSystem x NSystem -+ NSystem' :

((co f--+ (w,cout)), (ne f--+ (sum, (), out))) f--+

(ne f--+ (UpdateSumln· (cout, sum),(), out))

where wand cout denote the current weight and output, respectively, of the connector

co.

Clearly, these definitions allow arbitrary neuron and connector -pairs-to update

each other's state, so the following constraining functions are required to complete

GUpdate and NUpdateln:

GConstraint: {Vedge E Topology I
11"1 • edge E Neuron /\

11"2' edge E Connect.

edge} -+ {Vself E CSystem,

3edge E Topology, source E N Systeml

11"1 • edge = 11"1 • source /\

11"2 • edge = 11"1 • self.

(source, self) f--+ CUpdate· (source, self)}

The domain of the function is the set of all links in Topology that are directed from

a neuron to a connector. The range is the set of operation instances of CUpdate that

CHAPTER 5. SPECIFICATION CASE STUDIES 70

__ update a connector with reference to its source neuron. The appropriate mapping
rule is: -~ .

CConstraint: (ne, co) 1--+ ((source, self) 1--+

CUpdate· (source,self))

where there exists an element edge of Topology such that 7fl • edge is ne, an element of

Neuron, and 7f2' edge is co, an element of Connect. Furthermore, self is a connector

object with 7fl • self = co and source is a neural object with 7fl • source = ne. The

rule is to be interpreted as saying that an instance of CU pdate is allowable if and only

if the corresponding neuron and connector pair are arranged in the neural network

so that signals flow directly from the neuron to the connector.

The constraint function for NU pdateI n is very similar but in a reversed sense:

the domain of the function is the set of all links in Topology that are directed from a

connector to a neuron and its range is the set of operation instances of NU pdateI n

that update a neuron with reference to a source connector:

NConstraint: {'ledge E Topology I

Similarly, mapping rule is:

7fl . edge E Connect 1\

7f2 . edge E Neuron.

edge} ~ {Yself E NSystem,

?Jedge E Topology,source E CSysteml

7fl . edge = 7fl • source 1\

7f2 • edge = 7fl • self.

(source, self) 1--+ NUpdateln· (source, self)}

N Constraint: (co, ne) 1--+ ((source, sel f) 1--+

NUpdateln· (source, self))

CHAPTER 5. SPECIFICATION CASE STUDIES 71

The meanings of source and self are inverted from the rule for CConstraint (source

is a connector object and self a neural< abject) and there is assumed to-be an edge

in Topology linking the connector to the neuron.

5.2.6 Synchronization

Discussion

In section 5.2.5, the operations that take place in a Hopfield network during recall

were specified in terms of the state changes they cause. They have, however, been

specified independently of each other so that there has thus far been no formal in­

dication of the manner in which operations are coordinated to produce a correctly

functioning system. In this section, matters of coordination between objects will be

specified.

Given a set of operations, their coordinated action may be specified by an algo­

rithm, a sequence in which those operations are to be carried out upon an initial

system state in order to obtain the req~ired behaviour (which is usually either- the

arrival at a desired final state or the evolution through a desired series of st;;t.tes). In

systems composed of replicated objects, such as ANN, an object orieIlted s'pecification

of coordination may be applicable.

An object oriented model considers the state of the system to be distributed among

its component objects. Objects may access external state by passing messages across

object boundaries. A connector, for example, needs to retrieve the state (output

value) of its source neuron in order to update its own state. It may do so hi sending

a message to the neuron, which in response returns the value. The unsuitability of

this model lies in that objects are used as passive managers of state information,

relying on some external source for direction, such as a special master object whose

purpose is to instruct each object in turn to update its local state.

A more suitable model is a data-parallel one wherein objects are viewed as active

units, or processes, that manipulate local state by following a local algorithm. Par­

allel activity of processes is the norm, whereas objects are usually associated with

a sequential mode in which only one message appearing in the entire system can be

responded to at a particular time. Parallelism, specifically data-parallelism, is a di­

rect model of biological neural networks from a computational viewpoint. As such, it

is a convenient model of both sophisticated (biologically realistic) and simple ANN

CHAPTER 5. SPECIFICATION CASE STUDIES 72

where parallelism (as well as sequence) may be directly expressed. In sequential mod­

els, parallel acfivity can only be indire~tly expressed by introducing the concept of

interleaving and by simulating nondeterminism.

The objects in this specification, the elements of sets Neuron and Connect, are

seen as processes in a data-parallel computation. The operations, on the other hand,
~ - ~

are specified according to a broader model since they may refer to state across object

- boundaries, e.g. in section 5.2.5 the operation CU pdate examines the current state

of a neuron and alters the state of a connector accordingly. Therefore at the level

of objects, implicit in the performance of certain operations are lower level message

passing operations.

Interprocess communication, however, is not treated in the specification because

it is desired that all relevant information be derivable from higher level specifications.

According to the CSP model, relevant information for defining a system consists of,

firstly, its processes, and secondly, the unidirectional point-to-point communication

channels between processes. The following observations are made with regard to the

two requirements:

• The processes correspond to the objects given by the sets Neuron aridConnect.

It is argued below that the statements of a high-level system specification may

be translated into a detailed process specification .

• If all operation instances (i.e. the operations together with the identity of

the participating objects) are mentioned in the specification, then the n~quired

channels of communication can be found by associating a separate channel with

each interacting pair of objects (or two channels, if the interaction is in both

directions). In the case of Hopfield neural networks all operation instances

are given in the set Topology: the constraining functions CConstraint and

NConstraint dictate that instances of the operations CUpdate and NUpdateln

(the only ones involving inter-object communication) must correspond to edges

in Topology in such a way that the connection pattern of the neural network

is respected. There is an isomorphism between Topology and the required

set of channels, mapping (neuron, connector) and (connector, neuron) pairs to

neuron-to-connector and connector-to-neuron channels, respectively.

CSP uses the trace abstraction to specify processes. The event is the unit of

CHAPTER 5. SPECIFICATION CASE STUDIES 73

system behavi~ur; a trace of a sys.tem's behaviour is a finite sequence that records

the order in which events appear to an~xternal observer. A process is said to satisfy

a trace (its specification) when in all cases it engages in events in the order given by

that trace. Both the duration of events and the possibility of two events occurring

simultaneously are ignored by this abstraction.

High-level specification statements will be used to express the order of operations

in the Hopfield network. What follows is an explanation of the meaning of these state­

ment and a justification of their ability to translate into specifications of processes

(traces). That such a translation is possible is a prerequisite for considering the ob­

jects presented here to be processes. It would enable specifications such as the present

one to generate specifications of parallel programs (in CSP notation) automatically.

The behaviour of the Hopfield network will be considered at the level of operations.

- -Operations will be considered as the events constituting the system, in the manner

described below. More detailed considerations that are not included here are those at

the level of parallel programming such as the nature and medium of communication

and the implementation of the given functions of section 5.2.3.

The strategy adopted here is to specify explicitly the order in which operations

are performed in the Hopfield network. To assist in this, the concept of the operation

instance is extended into the time domain. Recall that an operation is defined by

a function and that an operation instance is a function provided with all required

arguments (which are objects). It is now necessary to index operation instances by a

counter so that the instance, when first performed, is referred to by the indB)f 1, and

on the second occasion by 2, etc. Each indexed operation instance will henceforth be

equated with an event occurring in the system.

Given that the alphabet (events of interest) of the Hopfield network consists of

every occurrence of the operation instances defined in this specification, a complete

account of the behaviour of the network may be given by stating its trace. Such an

account would be unsatisfactory for two reasons: principally, it would be over con­

strained because a trace defines a quasi-ordering of its events (every event may be

strictly ordered with respect to every other), whereas in a data-parallel computation

the ordering of any two events is not necessarily significant (e.g. it may be decided

that two neurons may fire in an arbitrary order, and therefore that it is not important

CHAPTER 5. SPECIFICATION CASE STUDIES 74

- that either one _ of them fires before- the other); another reason is that it would be te­

dious to specify the trace, a task requiri~g' each event to be ordered with respect to all

other events. The objection that a trace can not express arbitrary ordering suggests

that the system may be specified by a set of traces where each element specifies a

possible 'course of events' from the beginning to the end of the s:ystem's lifetime.

Rather than rendering specification an even more tedious task, specifying a set

of traces should be much simpler than specifying a single trace. The approach taken

is to assume initially that all events may occur in an arbitrary order. Thus the set

of required traces is initially taken to be the set of traces that contain each event

exactly once. The specification is then responsible for identifying those event-pairs

that should be ordered. For each pair of events so ordered, traces that contradict the

ordering are considered to be removed from the set of required traces. Consequently,

- -a specification asserting that certain pairs of events are ordered defines a set of traces

respecting those orderings.

The set of allowed traces so derived defines a specification of the of the system

(viewed as a process). Note that a process is usually said to satisfy a specified trace

if in all instances its behaviour adheres to the given trace. A process maybe said to

satisfy a set of traces if in all cases, it satisfies an element of the set.

The concept of arbitrary ordering allows concurrency to be expressed with trace

sets, in the sense that events unordered with respect to each other might conceivably

occur simultaneously. This equation of nondeterministic order with concurrency,

however, does not hold in cases where the unordered events are actions that alter

the same data (the mutual exclusion problem). Take for example the NUpdateln

operations that consecutively adds input values to an 'accumulator'. They need not

be ordered because the eventual result of adding the inputs is independent of the order

in which the inputs were taken. However, concurrency is certainly not implied by this

form of nondeterminism as simultaneous updates would result in unpredictable values

in the accumulator. The approach taken here is to assume that nondeterministic order

does indeed permit concurrency and to enforce mutual exclusion, where required, by

explicitly ordering the conflicting events (see the treatment of NUpdateln below).

A systems specification given by a global trace set is easy to decompose into sub­

specifications of constituent objects. Given the set of allowed traces for the entire

system, the objects making up the system are considered to be subprocesses whose

CHAPTER 5. SPECIFICATION CASE STUDIES 75

specifications are derived from the~system· specification. For a particular object, its
-~ p

process is the system specification (set of traces) altered so that events not involving

the object are removed from each trace.

Against this background it only remains to specify the necessary event-orderings

for Hopfield networks. This takes the form of a list of statements-asserting for each

event the set of preceding events 5. Though not necessary, it is desirable to include

just those events that immediately precede the event in question. To include indirect

precedents would not convey further information. The set of precedents may not

include the event itself (self-reference) nor may the specification be contradictory

(e.g. to state that an event x precedes an event y and elsewhere that y precedes x).
The system employed to label events is:

operatiOn(objectl ,object2,' .. ,objectM,timelndex)
~ where operation is the name of the operation, object}, ... ,objectM are the M objects

participating in the operation and timeI ndex is the occurrence-count of the partic­

ular operation instance, including the present: So the above event represents. the

timeIndex-th occurrence of the operation instance represented by the function:

operation· (obj ect}, obj ect2 , ••• ,obj ectM) ,

Parallel Dynamics

Initially, the case of synchronous parallel dynamics will be considered. Let N be

a finite positive integer denoting the number of times each neuron should fire, and

systemTrace the trace of a Hopfield network containing events labelled according to

the abovementioned scheme.

Let systemTrace be constructed as follows (appendix A gives the meaning of the

trace operators used):

systemTrace = uAev

(#ev=l)

systemTrace contains a record of the behaviour of the network up to, and including,

the occurrence of some event of interest. The singleton trace ev denotes the event in

5 An alternative, but equivalent, method is to depict causal dependencies between events in the
form of a directed acyclic graph where nodes represent events and directed arcs represent binary
precedence relations between events. These are known as event structures.

CHAPTER 5. SPECIFICATION CASE STUDIES 76

question andu the trace of its preceding,eyents. Then the following statements define

the necessary event precedences for parallel dynamics by giving the constraints upon

u for all instances of ev. For an illustration of valid event precedences that satisfy all

of the following statements, it may be helpful to consult figure 5.7.

1. ev = (N InitOut(n,l)) ==> 0
(Vn E Neuron)

.
In u

The N InitOut operation takes places exactly once for each neuron, but there

are no events that must necessarily precede it. The consequent of this state­

ment is a tautology, indicating that the event may occur at any time (though

when read in conjunction with subsequent statements, this freedom is restricted

appropriately) .

An instance of N I nit Out is defined for every element of Neuron, but there is

only one event associated with each instance (i.e. the one having time index 1).

This is to state that each neuron's output must be initialized once.

2. ev = (CUpdate(c,n,l)) ==> (NlnitOut(n,l)) in u

ev = (GUpdate(c,n,i)) ==> (NUpdateOut(n,i_l)) in u

(Vc E Connect, Vn E N euronl(n, c) E Topology)

(1 < i :::; N)
.. -

CU pdate may be performed on a connector for the first time once the source

neuron has been initialized. On following occasions, the source neuron must

have updated its output a sufficient number of times to keep it 'in phase' with

the connector (i.e. the connector updates for the i-th time after the source

neuron has updated its output for the (i - 1)-th time). The apparent lag

between NUpdateOut and CUpdate, with respect to their time indices is to

correct for the initial neural output update effected by N I nitOut.

CU pdate events are defined for all connectors together with their source neu­

rons, and for all time indices from 1 up to N - the required number of neuron

firings.

3. ev = N I nitSUm(n,l) ==> 0 . In u

CHAPTER 5. SPECIFICATION CASE STUDIES 77

ev = NI~itSum(n,i) =} (NUpdateOut(n,i_l)) in u
-~ .

(Vn E Neuron, 1 < i :::; N)

The sum of inputs of a neuron must be reset by N I nitSum firstly when the

neuron is initialized and then periodically upon the neural output being recom­

puted:

Each neuron's sum of inputs is reset N times, prior to each firing, so N I nitSum

is defined for all elements of Neuron and for time indices from 1 up to N.

4. NU pdateI n increments the current sum of inputs of a neuron by the output of

an incoming connector. Thus for each input connector into a neuron, there is

an associated instance of this operation. The following is an initial, but faulty,

attempt to specify this operation:

ev = (NUpdateln(n,c,i)) =} (CUpdate(c,nlli)) III u/\

(NlnitSum(n,i)) in u

(Vn,nl E Neuron,VcE Connectl(c,n),(nl,c) E Topology)

(1 :::; i :::; N)

Given a neuron n and one of its source connectors c this states that between

successive updates of the sum of inputs of n by c, c is updated and n's sum of

inputs is reset. Note that nl represents the source neuron of c.

The difficulty arises, as pointed out earlier, in allowing unordered events to be

regarded as concurrent actions. The statement above (considered along with

the other conditions upon systemTrace) is seen not to impose any order be­

tween NU pdateI n events that update the sum of inputs of a neuron, say n.

Thus to be explicit that an order does exist, instances of this operation should

be forced to occur sequentially. To do this, a sequence6
(J' of all NU pdateI n

events is introduced into the specification. The choice of a sequence is certainly

6Sequences will be taken to be linear structures containing a fixed, finite number of unique
elements. Any sequence of N unique events, labelled eventl, event2, ... , eventN , can be represented
by the bijection:

0': {1,2, ... ,N} -+ {eventl,event2, ... ,eventN}
0'-1 is simply the inverse mapping from events to indices. The positional '(' and C)' notation of

traces applies to sequences as well.

CHAPTER 5. SPECIFICATION CASE STUDIES 78

an arbitr~ry one because all sequences containing NU pdateI n events for a neu­

ron n are equally valid (because NU pdateI n performs the arithmetic summing

function which is commutative). Therefore, it is convenient to define O'n here

as an arbitrary but fixed sequence for each neuron n, rather than introducing

it in section 5.2.3 along with the sets and functions that uniquely characterize

individual neural networks.

An arbitrary sequence of given events will be expressed by defining its range

set. Define an arbitrary sequence of all NUpdateln events upon neuron n with

time index 1 :$ i :$ N as 7
:

ran· O'n,i = {Ve E Connectl(e, n) E Topology. NUpdateln(n,c,i)})

Then the revised synchronization specification for this operation is:

ev = (NUpdateln(n,c,i)) = (O'n,i . 1) ===}

(CUpdate(c,nl,i)) in u /\ (NlnitSum(n,i)) III u

ev = (NUpdateln(n,c,i) =j:. (O'n,i . 1) ===?

(O'n,i . (O'~} . NUpdateln(n,c,i) - 1)) in u/\

(CUpdate(c,nl,i)) in u /\ (NlnitSum(n,i)) in u

(Vn,nl E Neuron,VeE Connectl(e,n),(nl,e) E Topology)

(1 :$ i :$ N)

The first clause accounts for the first event in the sequence, which has to be pre­

ceded by a NlnitSum event (to reset the accumulator). The second constrains

subsequent events to respect the ordering given in the sequence.

5. ev = (NUpdateOut(n,i)) ===}

(Ve E Connect, (e, n) E Topology I (NUpdateln(n,c,i)) III u)

(Vn E Neuron, 1 :$ i :$ N)

NU pdateOut events signify the firing of neurons. Their precedents are those

NU pdateI n events that accumulate the current sum of inputs.

NU pdateOut events are defined for all neurons in the network.

7Taken from the Z notation is the function ran which maps a function to its range set.

CHAPTER 5. SPECIFICATION CASE STUDIES

(i)

clr NIO(n, 1) ~ (c l ' n, i)

(ii)

NUO (n, i-I)

CU(.) ~ cl' n, I

~NIS(n'i)
(iii)

CU(c2,n,i) ~

~ NUl (n, c2 , i) ~ NUO (n, i)

NIS(n,i)

79

Figure 5.7: An alternative presentation of event precedence rules for the asynchronous
form of parallel dynamics. Operation names have been abbreviated: N I nitOut to
NIO, CUpdate to CU, NlnitSum to NIS, NUpdateln to NUl and NUpdateOut to
NUO. n E Neuron and Cl, Cz E Connect are such that Cz outputs to nand n"outputs
to Cl, i.e. (cz,n),(n,cl) E Topology. '

For convenience, the conjunction of all these constraints upon systemTrace may

be visualized as directed acyclic graphs with events as nodes and precedence relations

between event pairs as directed arcs. For example, see figure 5.7.

Such graphs resemble event structures[Win89], although here each node represents

any member of a class of events rather than a unique event. In the style of event

structures, each arrow in figure 5.7 points from an 'enabling' event to another event,

where it is known that the latter may only occur after the former. Events at the root

of a graph are initially enabled. An event having more than one enabling event can

not occur until all enabling events have occurred. The graph labelled (ii) refers to

any time index i greater than 1, while in (iii) i is any time index.

Note that the three graphs are meant to be consistent with each other, so for

example in graph (iii) substituting 1 for i does not imply that CU pdate(C2,n,l) is

initially enabled, since that is contradictory to graph (i).

The specification of synchronization constraints in this manner facilitates the con­

struction of proofs, especially negative proofs, of temporal properties of the system.

CHAPTER 5. SPECIFICATION CASE STUDIES 80

__ In order to pr,?ve that a certain sequence of events is not possible, it is necessary

to pick one of the latter events of the s~quence, considered as a singleton trace and

substituted for ev in the above formula for systemTrace, and deduce that one of the

hypothesized predecessors of the event cannot occur in u.

The above rules state a number of important temporal characieri.stics of Hopfield

nets, for example, that initialization events precede all other events; that periodically

- the sum of inputs is reset between successive output computations in all neurons; that

in neurons the sum of inputs is computed from the current outputs of source con­

nectors; and that connectors input the current output of their source neurons. These

last two observations imply that any object, be it neuron or connector, will compute

its next state by examining the current state of its source object(s). Neighbouring

objects synchronize when one of them communicates its state (output value) to the

_ .other.

Apart from this form of synchronous communication between neighbours there

has been no other synchronization constraint imposed thus far.

With the information already given concerning systemTrace, it is possible to

prove that certain important properties. For example, the synchronous version of

parallel dynamics can be said to be globally synchronized in that neurons fire once,

then pause until all other neurons have fired before firing again. The property of

neighbourhood synchronization just mentioned implies that the networks character­

ized by systemTrace are indeed globally synchronized, since Hopfield networks are

fully connected. Formally, it is necessary to prove that, given {nl' nz} ~ N e'lJ!ron and

1 :::; i :::; N, the following is not possible:

systemTrace i {NUpdateOut(n2.i+l),NUpdateOut(nl.i)} =

(NU pdateOut(n2.i+l) , NU pdateOut(nl .i»)

which is equivalent to proving that nz may not fire for the (i + 1)-th time until after nl

has done so for the i-th time. Let c E Connect be the connector leading from nl to nz

(i.e. {(nl,c), (c,nz)} C Topology). Then by statement 5 above, NUpdateOut(n2.i+1)

is preceded by NU pdateI n(n2.c•i+1)' This is in turn preceded by CU pdate(c.i+l) (state­

ment 4). Finally, the latter event is preceded by NUpdateOut(nl.l) (statement 2), re­

sulting in the required contradiction that NU pdateOut(nl.l) precedes NU pdateOut(n2.i+l)'

Another useful conclusion (proof not given) is that the sum of inputs is never reset

in such a way that the computation of the current sum is interfered with. Given a

CHAPTER 5. SPECIFICATION CASE STUDIES 81

__ neuron n, two successive N I nitSum oper-ations upon n will always be separated in
- -;; p

systemTrace by the NUpdateln operations required to compute the sum of inputs

into n.

Finally, it can be shown that for synchronous parallel dynamics, the above rules

constitute a sufficient definition. All NU pdateOut (i.e. firing) events with the same

time index are permitted to occur in any sequence (i.e. they may proceed in parallel),

- and since NU pdateOut events with time index i compute neural outputs from outputs

generated by NU pdateOut events with time index (i - 1) (i.e. firings do not interfere

with each other). The latter may be demonstrated by choosing a neuron nl and

one of its source connectors c, and the source of c, nz; then NUpdateOut(nl,i) for

some 1 < i ::; N is preceded by NUpdateIn(nl,c,i) (statement 5), which is preceded

by CUpdate(c,n2,i) (statement 4), which in turn is preceded by NUpdateOut(n2,i_l)

_ {statement 2). Thus n computes its activation at time iwith reference to the output

of other neurons at time i-I. There is no interference because a neuron firing at

time i does not affect other neurons firing concurrently; it affects them at time (i + 1),

as expected.

The asynchronous form of parallel dynamics requires a less demanding'precedence

rule for NUpdateln events. Statement 4 above induces a synchronous form of com­

munication between neurons where connectors act as synchronous message-passing

channels. Where asynchronous firings are permitted, connectors act as buffers.

The required modification is essentially to reduce the dependence of NU pdateI n

upon CU pdate. Again, given a- as in the synchronous case, statement 4 becarties:

ev = (NUpdateln(n,c,l)) = (a-n,l ·1) =}

(CUpdate(c,nl,l)) in u /\ (N InitSum(n,l)) III u

ev = (NUpdatelnCn,c,i)) = (a-n,i . 1) =}

(N I nitSUm(n,i)) in u

ev = (NUpdateln(n,c,i) =I- (dn,i . 1) =}

(a-n,i' (a-~} . NUpdateln(n,c,i) -1)) in u/\

(N InitSum(n,i)) in u

(Vn,nl E Neuron,VcE Connect/(c,n),(nl,c) E Topology)

(1 < i ::; N)

Successive NUpdateln events may take place with the interposition of an arbitrary

number of CUpdate events (or none at all) rather than exactly one CUpdate event

CHAPTER 5. SPECIFICATION CASE STUDIES 82

_ as was previou!3ly the case. The first occurrence of NUpdateln, however, must be
-c I

preceded by a CUpdate event, since the initial output of connectors is undefined.

Introducing asynchronicity into the system permits events to occur in less orderly

patterns than in the synchronous case. For example, neurons may fire at different

rates. Extreme cases where firing rates differ considerably are unaesrrable. These are

matters of fairness and are not treated here in detail.

Sequential Dynamics

Sequential dynamics, like parallel dynamics, demand that firings take place in

cycles where neurons fire once and wait until all other neurons have done so before

firing again. They differ in that it is now necessary for neurons to 'interfere' (as the

term is used above) with the 'concurrent' (i.e. occurring in the same cycle), firings

of other neurons. A firing sequence is given that includes all neurons. The sequence

- may be fixed for the entire lifetime of the Hopfield network ('round-robin', see section

5.2.1) or vary from cycle to cycle ('arbitrary').

The two kinds of sequential dynamics differ only in the order of firing per cycle.

Therefore, it is useful to formalize this distinction before giving the synchronizations

for sequential dynamics. Given a network that is to undergo N firings byeach of its

neurons, or N cycles, the firing sequence for the entire lifetime of the network may

be given by a sequence of N subsequences, that each give the order of firing for a

particular cycle. Let the sequence be ~, defined as:

~ = ~1~~2~ ... ~~N
where in the arbitrary sequential dynamics case, each ~i is an arbitrary seq{i~nce of

unique firing events in cycle number i. (Note that there is no relation between these ~

and the ~ used in statement 4 above to enforce an order among NUpdateln events).

Formally, for alII:::; i :::; N:

ran . ~i = {'in E Neuron. NU pdateOut(n,i)}

In the round robin case, all ~i are identical, thus in addition to the above statement

about the ranges of all ~i, it is necessary to state that the order in which neurons

fire in the first cycle is preserved in the following N - 1 cycles. Formally, for all

n E Neuron and 1 < i :::; N:

~11 . NUpdateOut(n,l) = ~i-l . NUpdateOut(n,i)

The synchronizations for sequential dynamics will be similar to those of syn­

chronous parallel dynamics, so only those previously given constraints that are in

CHAPTER 5. SPECIFICATION CASE STUDIES 83

. conflict with sequential dynamics will be pointed out and altered here. _ Firstly, the

order of firing (in both forms of sequentiaI dynamics), given as E, needs to be incor­

porated into the rule for NUpdateOut events. Thus statement 5 becomes:

ev = (NUpdateOut(n,l)) I\. E-l . NUpdateOut(n,l) = 1 ===?

(VeE Conneet,(e,n) E Topologyl(NUpdateln(n,c,l)) in u)r-

ev = (NUpdateOut(n,i)) I\. E-l . NUpdateOut(n,i) =I- 1 ===?

(Ve E Connect, (e, n) E Topologyl(NUpdateln(n,c,i)) in u)1\.

(E. ((~-l . NUpdateOut(n,i)) - 1)) In U

(Vn E Neuron, 1 :::; i :::; N)

The first clause concerns the very first firing to take place in the network, in which

case the rule is exactly as in the original form of statement 5. Otherwise (second

clause), that is for all firings excepting the first, it is additionally required that the

- immediately preceding firing event, as given by ~, has already occurred.

These alterations will ensure that all firings will be strictly ordered with respect

to each other. However, this is not sufficient for sequential dynamics. A form of

interference between firings taking place in the same cycle is required. Asqjrding to

a proof given above for synchronous parallel dynamics, there cannot be interference

in the sense that when a neuron fires in the present cycle, its output will only be

input by other neurons and finally affect their outputs in the following cycle. With

sequential dynamics, the output of the neuron firing at the present moment affects

the output of the very next neuron to fire (usually both firings will be in tl}~ same

cycle).

The chain of reasoning followed by that proof relied on connectors to buffer the

outputs of their source neurons until the next cycle. This is evident from figure 5.7

where the upper branches of graphs (ii) and (iii), taken together, form a path from

firing event NUpdateOut(n,i_l) to firing event NUpdateOut(n,i) (the n's need not be

identical) via a connector update event CUpdate(c,n,i)' The significant observation is

that the connector update event mediates the flow of information from cycle i-I to

cycle i. This is characteristic of parallel dynamics. There can be no connector update

event to convey information between two firing events that occur in the same cycle.

Sequential dynamics, on the other hand, require connectors to convey information

instantaneously between neuron firings. This is indicated by replacing the second

clause of statement 2 by two new clauses. Given M, the number of neurons in the

CHAPTER 5. SPECIFICATION CASE STUDIES 84

_ network and all O'i as described earlier in this discussion of sequential dynamics,

statement 2 becomes:

ev = (CUpdate(c,n,l)) =?

(N I nitOut(n,l)) in u

-c .

ev = (CUpdate(c,n,i)) 1\ NUpdateOut(n,i_l) = O'i-l . M ===?

(NUpdateOut(n,i_l)) in u

ev = (CUpdate(c,n,i)) 1\ NUpdateOut(n,i_l) =I- O'i-l . M =?

(NUpdateOut(n,i)) in u

(Ve E Connect, Vn E Neuronl(n, e) E Topology)

(1 < i :::; N)
The second clause states that the updating of connectors that emanate from the

neuron firing last in the previous cycle should be preceded by that firing. This case is

_ identical to synchronous parallel dynamics as the connector conveys information from

one cycle to the next. This is, however a boundary condition; the more general case

is given by the third clause which states that a connector should update immediately

(i.e. during the same cycle as) its source neuron fires.

-<

Chapter 6

Translating Specifications into

occam Code

Context

We have established a specification language for describing complex systems. The

language has been shown to be suited to the task of specifying systems of interest,

individually and in groups. In the previous chapter its application to the general

problem of classifying complex systems was demonstrated.

In this chapter we make use of one of the principal design aims of the specifica­

tion language, its implicit expressiveness of programmatic information in a generic
. -- - .

fashion, in order to automate the programming of parallel simulations of complex

systems.

The grouping of complex systems according to their similarities, which is en­

abled by the specification approach and notation, is made use of here to encapsulate

the program induction procedures within an algorithmic skeleton environment.

6.1 Introduction

The motive here is to reduce the human programmer's effort of simulating complex

systems. Special concern is directed at execution of simulations on parallel computers.

The effort referred to is that of manually designing and programming simulations,

such that the resulting programs are correct, meaning that they faithfully reproduce

85

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 86

the behaviour of the simulated systems, and reusable, in order that a sirrlUlation of a

certain system,- once written, may be us~d as a base from which to derive simulations

of related systems, with considerably reduced effort when compared to programming

'from scratch.' With respect to the correctness criterion, this is a programming

problem, or more accurately a class of problems because complex. systems constitute

a class of systems. The reusability criterion introduces a software engineering aspect

- into the general problem.

A further requirement of the simulations, subsidiary to the two above is that they

make intelligent use of parallel processing resources, principally in that computa­

tions may be manually distributed, according to programmers' hints, across available

processors. The problem of optimal resource usage in parallel machines involves a

balance in the load placed upon communication, processing and memory. Achieving

_ this balance is known to be very difficult even-in highly specific parallel program­

ming problems, in the general case it seems intractable. In anticipation of future

developments in automatic mapping of parallel programs to parallel computers, it is

adequate at present to develop simulations that are concurrent, yet dependent upon

human intelligence to guide the placement of processes onto processors. '

6.2 Executing Specifications

Parallel program induction from formal, application oriented specifications relies on

the availability of information which is usually implicit in the semantics of tile spec­

ification language and in the statements of a particular specification. The nature of

this required information is dependent on the lower level language in which state­

ments are to be generated. The lower the level of abstraction of the target language

with respect to the specification language, the greater is the burden on the formal

procedure concerned with translating from the higher to the lower level. This burden

is in the form of numerous points at which decisions need to be taken in translating

a high level declarative concept into one of many possible implementations.

In a previous chapter the problem of correctness of specification has already been

treated. It was established that the mutual exclusion from shared data and the

absence of deadlock may be deduced from instance specifications.

In the present case the target language will be occam, and specifically occam-2,

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 87

-- since it affords.a fairly close semantic ap~·roximation to esp, which in earlier chap­

ters was a foundation for the design of the specification language. However, occam

programs are structured quite differently to formal specifications of the kind under

investigation in this thesis. The most visible difference is the separation into static

and dynamic portions. Radically, the two languages differ in t1H~i1' model of com­

munication, occam offering two complementary primitives and specifications offering

only one (a discussion of this is given in section 3.4.3). In addition, specification

languages express algorithmic patterns in terms of an event ordering relation, whilst

occam relies on block-structured programming constructs and programming idioms.

The problems tackled by this chapter concentrate on reconciling these divergences

between the languages.

It should be borne in mind that the specification language is aimed at program

. ·skeleton description. The specification of detai-Ied computation is out of its scope.

In its use of software modules to specify actual computations upon program state, it

contains an interface to an external language. It would be desirable for such modules

to be passed to specifications as occam procedures, as they may then be directly

invoked by the generated occam code. .

The approach taken here towards simulation program induction is in the form

of information-adding transformations from an occam program containing minimal

application-specific information into an occam program that contains all the application­

specific information given in the specification. The specification is seen as a source of

information required to guide such translations, instead of as an initial syntactic form

upon which correctness preserving source-to-source transformations are performed in

order finally to yield an equivalent programmatic form.

Prior to presenting the method in detail, the underlying reasoning and an expla­

nation of terms follows. A structure known as an occam skeleton which is principally

a subset of occam syntax and semantics is central to the scheme[Ikr95]. It is meant to

be an alternative representation of the specified event ordering relation that, roughly

speaking, constitutes a parse tree of the kind of occam program ideally suited to

implementing or simulating complex systems.

That generic form of occam program is entirely constituted at the top level of

replicated sequential processes, each simulating a single agent. Process replication

in occam mirrors object instantiation in specifications. Therefore, while complex

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 88

- systems are vie.wed as assemblies of cooBe~ating agents at the specification level, they

are most naturally implemented analogously as communicating processes. Each agent

is implemented by a sequential process that is likely to be iterative, as explained in

the chapters on specification.

How is such a generic structure to be induced starting from tire information given

in a arbitrary instance specification? The problem of creating an occam skeleton

is largely one of sorting events based on the ordering relation. The initial occam

skeleton for any instance specification is the unsorted collection of its event alphabet.

For events, the sorting sequence is identical to their specified temporal ordering.

This initial form embodies none of the sequential information to be found in the

specification.

The initial form is refined through the incorporation ·of each sequential ordering

constraint in turn. In terms of sequential information, each refinement should be

strictly information-increasing yet information-preserving. That is, the addition of

new sequential information brought about by each refinement should not alter or

contradict the existing sequential information in the occam skeleton.

The sorting process resembles a topological sort of the acyclic graph where nodes

represent events and directed edges represent the event-precedence constraint.

The desired form of the final skeleton reflects the intended structure of the final

occam program, that is, sequential component processes composed in parallel. While

it is evident that such a structure will respect sequential constraints within processes

representing individual agents, sequential constraints between agents need to be rep­

resented in occam skeletons as synchronous communication events between processes.

At this level, communications are still one-sided and input-based, as explained in con­

nection with the concurrent model of complex systems.

The unfolding of single communications into input-output pairs is one of the main

concerns at the next step, which is the generation of valid occam code from occam

skeleton structures. In contrast to the previous step, this is, with the exception of

such interprocess communication considerations, largely a syntactic, source-to-source

correctness preserving transformation. Events are translated directly into procedure

calls. The procedures thus invoked are simply the modules supplied as parameters

to the instance specification that have been textually embedded within 'wrapper'

procedures.

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 89

-- 6.3 Step 1: Constructipg Occam Skeletons

6.3.1 Introduction

The following procedure is followed to construct the intermediate structure called the
r- ~

occam skeleton from the information specified in an instance specification which will

- be called I. The event alphabet of I may be generated as described in section 3.4.1

and is given by the set E(I).

An occam skeleton is a tree whose nodes may be either one of the constructs SEQ,

PAR or GUA, or a member of E(I). Each member of E(I) occurs at least once as a

leaf node in the tree, implying that there are at least I E(I) I leaf nodes. Members of

E(I) should not occur as non-terminal nodes. An arbitrary number of occurrences of

constructs is allowed, but they should occur only as non-terminal nodes. Child nodes

of constructs are given an order, that is, given that a non-terminal or construct node

has a set of children C, there is a bijective labelling function 0 : Zici --+ C, such that

0(0) is always referred to as the first child of its parent, while 0(1 C 1-1) is the -last

child. As a notational convention, an occam skeleton may be written as anested list
- -,.-_.-

using the prefix notation for trees.

The SEQ-skeleton [SEQ a bJ, where a and b denote events, is interpreted as a

program that performs a and then b. It is a valid intermediary form of the ordering

specification a < b. Where a and b represent subtrees, the skeleton is recursively

interpreted as the interpretation of a, followed by the interpretation of b. For ~~ample,

given that c, d, e and j are events, if a is [SEQ cd] and b is [SEQ e f] then the original

specification can be implemented by any program that consecutively performs the

operations denoted by the events c, d, e and j, in that order. After taking into

account all such subsumptions of nested SEQ-skeletons, leaf nodes must be unique,

with the exception of the rule for GUA-skeletons given below.

PAR-skeletons [PAR ... J, likewise may be interpreted recursively. They mean that

the operations corresponding to the subtrees of the PAR may be performed either

sequentially without regard to children's order, or simultaneously. Again; the leaves

of a PAR-skeleton must be unique, but this constraint is overridden for such leaves

as are shared with a nested GUA-skeleton.

An entire GUA-skeleton [GUA ... z] corresponds to the occurrence of the event

denoted by its last child, in this case labelled z. The significance of the children

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 90

-- preceding z in_ the order, which must be- events, is that of guards. l'hat is, z is
-~ p

enabled only after the occurrence of all its guarding events. An event may not act as

its own guard. Over an entire occam skeleton, guarding events are the only ones that

may occur multiply, for the obvious reason that a single operation may be required

as a prerequisite to several others. In allowing multiple occurrences in this special

case, the semantics of events as unique instances of operations is preserved since

guarding events represent pre-conditions to occurrences of guarded events and not

actual occurrences.

The occam skeleton generation procedure can be implemented as an iterative

refinement of an initial skeleton that is free of sequential information. This may be

constructed simply by having a PAR root with all the events in the alphabet attached

to it as leaf nodes in an arbitrary order. Meanwhile the event ordering relation < is

- to be viewed as a store of all ordered pairs (x, y) such that x < y. Then the iterative

procedure picks a remaining member of the store and alters the current occam skeleton

to conform to the single piece of ordering information represented by that member,

taking care to preserve the existing ordering information embodied in the~keleton.

The manner in which transformations are performed will be described shortly on an

case-by-case basis. This is repeated until the store is exhausted. At that point, the

skeleton would contain all the information present in the event ordering portion of

the dynamic specification.

In practice, the procedure outline above tends to produce skeletons whose struc­

ture is dependent upon the order in which the relations are selected from the store.

Moreover, they rarely take on the structure that was identified above as being natu­

ral to occam implementations of complex systems, that is, as assemblies of replicated

sequential processes corresponding directly to the structure of the topology given in

the static specification.

An alternative method that avoids these difficulties, and furthermore exhibits a

computational complexity of a lower order, is as follows. The initial skeleton is cast

into a structure that is broadly similar to the required final structure. This requires,

firstly, that events be discriminated into as many classes as there are objects in the

system, and thereafter, that each class of events be constructed into an independent

PAR-skeleton as was done for all events in the previous method, and finally, that the

separate trees thus obtained be composed under a single PAR construct to form a two

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 91

level tree. Semantically, this tree is equivalent to the initial skeleton of the previous

method, since PAR constructs subsume those subtrees that are simple PAR-skeletons.

It is now possible to formulate a sequentialization procedure that is guaranteed to

produce skeletons of the desired structure. The sequentialization may be performed

in two consecutive phases, the first being parallel and the second sequential. In the

first phase, the sequentialization of each subtree of the initial skeleton proceeds in the

- usual iterative manner, but only for those precedence relations that concern the local

object alone. Thereafter, the remaining precedences, that is, those between events

corresponding to operations across object boundaries, take effect.

The retention of the original structure of the skeleton is ensured by inserting a

SEQ construct node between the top level PAR node and each object-skeleton, in the

initial skeleton. Then, since the sequentialization rules under no circumstances either

_ extract events from SEQ-skeletons or eliminat~ existing SEQ nodes, the integrity

of object boundaries within the skeleton is assured throughout the sequentialization

process.

It is further necessary to label the abovementioned inserted SEQ nodes with-the

class name of the corresponding object. This may be determined by exami-ning the

event labels, which by convention include the name of the target object. Then the

class of the object may be determined from the static specification.

6.3.2 Sequentialization

The manner in which occam skeletons are altered to conform with preceddice rela­

tions may be called sequentialization, since every alteration inevitably involves the

addition of a sequential constraint between events and consequently, a restriction of

the parallelism previously represented in the skeleton.

Its correct implementation is required to be information-preserving. This requires

that transformations made to skeletons be sensitive to the context of the events con­

cerned prior to the alteration, and preserve that context in such a way that existing

relations are not affected by the alterations except where necessary. Such necessity

would arise in cases where the relation to be imposed causes new dependencies indi­

rectly, as a result of the transitivity of the precedence relation.

The following canonical transformation rules have been identified and incorporated

into a prototype implementation. The rules fall into two major classes: the first

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 92

contains one rule for the case when the lowest common ancestor (LCA) of the two

events (leaf nodes) is a SEQ-skeleton; the second contains ten rules applicable when

their LCA is a PAR-skeleton. The only rule falling under the first class is:

1) Condition: any. Action: none. Comment: the two events are already correctly

ordered relative to one another, therefore the selection of this rule corresponds to a
r - -

redundant sequentialization.

The rules falling under the second class always result in some alteration to the

existing occam skeleton when faced with the ordering relation on events e1 < e2:

2) Condition: e1 and e2 have the same parent (PAR node.) Action: Delete e2;

replace el with the SEQ-skeleton [SEQ el e2]. Comment: it would be equally valid

to delete el and replace e2, since only the order of the PAR node's children would

be changed thereby, which is semantically equivalent to the effect of the prescribed

_ action. Note that the initial siblings of the pair remain unordered with respect to the

paIr.

3) Condition: e1 and e2 belong to different PAR parent nodes; up to the root of

the their LCA, neither event node has a SEQ ancestor. Action: delete e1; replace e2

with [SEQ e1 e2]. Comment: absence of SEQ ancestors is required her~ta' prevent

existing orderings with respect ancestors of the 'moving' event el from being broken

and to prevent formation of spurious orderings between el and the ancestors of e2.

4) Condition: el and e2 belong to different PAR parent nodes; up to the root of

their LCA, only e1 has a SEQ ancestor. Action: delete e2j replace e1 with [SEQ e1

e2]. Comment: This is applicable when e1 possesses sequential relations tha~ §Lre not

shared with e2, such that the set of the sequential relations involving el is a proper

subset of the set of those involving e2. The action taken could quite possibly introduce

the unspecified constraint that e2 should precede some of the events subsequent to

el. Difficulty results from the translation of the relation el < e2 asserting that e2

should occur at some point after el, into the occam skeleton [SEQ el e2] which forces

e2 to occur prior to all other events subsequent to el. Two strictly correct alternative

actions would be either (i) to replace e2 by [GUA el e2J, which is the universally

valid action, or (ii) to replace el with [SEQ e1 [PAR e2 [SEQ ...]]], where the PAR­

skeleton maintains the concurrency between e2 and those other events (represented

by the innermost SEQ-skeleton) which are subsequent to e1. This latter SEQ-skeleton

would be constructed in a relatively non-local manner that requires analysis of the

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 93

__ highest SEQ-subtree, containing el, of the LCA.

5) Conditio~: el and e2 belong to d<ifferent PAR parent nodes; up to the root of

their LCA, only e2 has a SEQ ancestor. Action: delete el; replace e2 with [SEQ el

e2j. Comment: This case is symmetric to 4).

6) Condition: el and e2 belong to different PAR parent nodesi lip to the root of

their LCA, both have SEQ ancestors. Action: replace e2 by [GUA el e2j. Comment:

- In general, no alternative action is possible without resorting to global analysis.

7) Condition: e1 has a PAR parent; the skeleton [SEQ pre+<e2>+postj exists

(+ is the sequence concatenation operator), where pre and post are sequences of e2's

siblings; up to the root of the events' LCA, el does not have a SEQ ancestor. Action:

delete el; replace post with the skeleton [PAR <el>+postj. Comment: problem

noted concerning action of 4) applies here too, since elmay be needlessly brought

_ into sequential relation with certain events in the wider sequential context of e2. Such

events, if existing, would all lie below the highest SEQ-ancestor node of e2 within the

LCA.

8) Condition: as 7), but up to the root of the two events' LCA, el has at ~~ast one

SEQ ancestor. Action: replace e2 by [GUA e1 e2j. Comment: Unlike 7};no events

are displaced in the skeleton, therefore extraneous sequential relations cannot arise.

9) Condition: e2 has a PAR parent; the skeleton [SEQ pre+<e1>+postj exists,

where pre and post are sequences of el's siblings; up to the root of the events' LCA,

e2 does not have a SEQ ancestor. Action: delete e2; replace post with the skeleton

[PAR <e2>+postj. Comment: symmetric to 7).

10) Condition: as 9), but up to the root of the two events' LCA, e2 has at least

one SEQ ancestor. Action: replace e2 with [GUA e1 e2j. Comment: symmetric to 8)

11) Condition: e1 and e2 belong to SEQ parent nodes. Action: replace e2 with

[GUA e1 e2j. Comment: in this and other rules which call for the guarding of e2 by

e1, it should be noted that if e2 is already guarded, then no new GUA-skeleton is to

be created, instead e1 should be added as a new child of the existing GUA node, at

any position other than that of the last child (e2 would continue to be the last child.)

Sequentialization rules can be seen as skeleton-to-skeleton transformers that in­

corporate sequential information into an existing skeleton. During transformation,

the sequentialization rules using only local information that is explicitly represented

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 94

in occam skeletons. This information is localized in that the incorporation of one se­

quential relationship, say el < e2, requites only that the subtree rooted at the LeA of

el and e2 be examined and altered. The LeA of the pair of ordered events is of vital

importance in selecting of the correct rule for altering a particular occam skeleton.

The subtree rooted at the LeA can be viewed as the smallest skeleton containing all
r ~ ~

information necessary to order the pair. All changes to the existing skeleton will be

- made within the LeA-subtree, and the resulting skeleton retains all the information

that had been present prior to the alteration.

The danger in sequentializing beyond strictly the specified constraints is that

certain event pairs may inadvertently fall under a SEQ LeA and be ordered arbitrarily

as a result. This alone does not violate the specification of event orderings, since

arbitrary ordering is one valid interpretation of unordered events in specifications.

However, danger may arise in future if such anarbitrarily ordered pair is explicitly

required to be ordered in the reverse sense. Then according to rule 1) the later

ordering would be ignored thus leading to non-conformance with the specification.

A conservative strategy that avoids over"sequentialization is to define just two r'ules

for the second class: if neither el nor e2 possesses a SEQ ancestor node (lIp'to their

LeA), then this is equivalent to the conditions of rules 2) and 3) above, and the

action of rule 2) becomes appropriate; otherwise, e2 should be guarded by el, as in

rule 8), for example.

The description of sequentialization in terms of sequential contexts is instructive.

The term sequential context denotes a set constituted of all unguarded eve~~s ,lying

under a particular reference node such that at least one ancestor of those events, up

to but not including the distinguished node, is a SEQ node. Guarded events are not

included in sequential contexts because GUA-skeletons are free to express sequential

relationships with events lying beyond the subtree rooted at some distinguished node.

The information represented by GUA-skeletons thus generally does not possess the

locality of other skeleton forms.

The strategy of initially decomposing the system's alphabet into object-skeletons

(which are also SEQ-skeletons), as described earlier, effectively creates as many se­

quential contexts, with respect to the root of the skeleton, as there are objects in the

system. These initial sequential contexts are independent in two senses. Firstly, the

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 95

intersection of any two contexts is always the empty set, and secondly, the object­

skeletons are m-aximally concurrent relative to each other in that the LcA of any two

nodes lying in separate object-skeletons is the PAR root node of the skeleton.

6.3.3 'Ireatment of Guards

_ At this point a skeletal form of the parse tree for the required simulation program is

available. Before a transition can be made from the skeleton form to correct occam

source code, it is necessary to find a mapping from the skeleton's one-sided com­

munications model to occam's two-sided model. A descent from the high-level view

of inter-object communication that has been maintained thus far, to the lower-level

occam view of communications, is called for. This is done through the appropriate

handling of GUA-skeletons. The transition is achieved by post-processing the oc­

'cam skeleton generated into a form which explicitly represents communications as

understood by the occam model.

In skeletons the mechanism used to indicate dependencies between concurrently

operating sequential entities is the guard. The sequentialization rules make use of

guards via GUA-skeletons to indicate sequential dependencies in 'prefef~nce SEQ­

skeletons under certain circumstances. In order to order a pair of events el and e2

when it is known that el < e2, either the SEQ-skeleton [SEQ el e2] or the GUA­

skeleton [GUA el e2] are created. In the former case, the removal of either el or e2

is also required, whichever one happens not to lie in a sequential context, relative to

the pair's LCA. When both events lie in sequential contexts, removal of either one

would break the information-preserving character of the sequentialization process.

Therefore, under such conditions the creation of the GUA-skeleton is appropriate.

A sequential context in occam terms is a sequential process, while dependencies be­

tween these contexts are identical to sequential relations between two such concurrent

processes. Concurrent sequential contexts, that is, those lacking any inter-contextual

sequential dependencies, are temporally decoupled and can be understood to run

according to independent and unsynchronized clocks.

Anyone of two kinds of dependency may be encoded in the form of a GUA­

skeleton, either synchronization or data communication. In occam, synchronization

is implicitly achieved by communication over channels. Therefore channel-mediated

communications generally are the means of representing GUA-skeletons in occam

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 96

code. In skeletons, however, communications the point in time at which communica­

tions are to occur are given in terms of the receiving object-skeleton. In occam terms,

this method of describing communications is incomplete since reciprocal information

concerning the transmitter is underspecified.

The precise identity of the data to be communicated is ded,!-ceq from the event

labels, given that the conventional labelling scheme has been followed. Through the

- same means the identity of the two communicating objects is also evident. However,

due to the abovementioned underspecification of the transmitting side of communi­

cations, there is scope for making different interpretations as to when the output of

the data is to take place. On the other hand, the guarded event should always be

interpreted as occurring at the exact point that its parent GUA node appears in the

occam skeleton.

The difficulty in positioning the outputting side stems from the lack of communica­

tions primitives, input and output, from the specification language. These primitives

need to be inserted into the generated skeleton as 'hidden' events; hidden in the sense

that they are invisible, and deliberately so, to the viewpoint of the specification lan­

guage. In instance specifications, communications are implied by events Qelonging to

binary operation instances. Implied communications are tied to state change in the

receiving object because binary operations are always formulated as the setting of

the receiving object's state to some function of its own attributes and the attributes

of some neighbouring object, the outputting object. Thus events belonging to binary

operation instances signify change in the receiving object, and furthermore, se_qJlential

orderings involving them relate to the ordering of the state change relative to other

events.

The specified orderings therefore give no indication as to the ordering of hid­

den communication events that, at occam the implementation level, must be known.

However, it should be recalled that binary operations are specified as mappings from

the immediate pre-state of the class of the two objects involved, to the immediate

post-state of the class of the target object. Therefore implementations should ensure,

as far as is possible, that all communication of data takes place immediately before

the data is to be used. This may be trivially ensured from the receiving side of the

communication by inserting the relevant input event immediately prior to the binary

operation instance event.

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 97

The corresponding output event should be placed subsequently to the relevant

guarding event. Since this event and the guarded event lie in separate concurrent

sequential contexts, it only possible to determine at run-time when a piece of data

is required of a certain object by its neighbour. Such a demand-driven scheme may

be implemented using occam's channel input guards and ALT crons.truct. However,

occam skeletons as defined here do not possess sufficient expressivity to capture these

- concepts. Within the current limits, therefore, a suitable alternative implementation

strategy is needed.

The approach adopted by the prototype implementation is to treat outputs in

exactly the opposite manner to the treatment of inputs; that is, to insert the output

event immediately following the relevant guarding event. The hidden output ('To) and

input ('Ti) events should be seep. as being attached to the guarding (el) and guarded

.(e2) events, respectively, such that if an arbitrary event a is related in the specification

as a < el then it follows that a < 'To and a < 'Ti; also if a < e2 then a < 'Ti. Conversely,

if e2 < a then 'To < a and 'Ti < a; also if e1 < a then 'To < a.

Given the foregoing, the occam skeleton is processed in the following manner in

order to aid in occam code generation. Every GUA-skeleton is replaced, by" a SEQ­

skeleton containing two children, the second child being the guarded event, and the

first being a PAR-skeleton containing special input event nodes. There should be

as many such nodes as there were guarding events, in a one-to-one correspondence.

Each input event node is tagged with the identity of the outputting object as stated

in the label of the guarding event.

In addition, guarding events are similarly processed. Every guarding event is re­

placed by a SEQ-skeleton containing two children, the first child being the guarding

event, and the second being a PAR-skeleton containing special output event nodes

which are in one-to-many correspondence with the events guarded by the event con­

cerned. Each output event node is tagged with two items of information. Firstly, the

identity of the inputting object as stated in the label of the corresponding guarded

event, and secondly, the name of the attribute whose value is to be output. The

latter may be found by determining the relevant operation name from the label of

the guarded event, and then by inspecting the static specification to determine those

attributes of the outputting object which are used to generate the post-state of the

inputting object. For each such attribute, a separate output event node is created,

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 98

thus giving rise to the abovementioned one-to-many relation. In some cases, it will

be found that the operation is either on~ that does not input from the cu~rent object,

or is an unary operation. This means that the guarding relationship is to be inter­

preted as simply an inter-object synchronization without regard to the data being

transferred. Then the output event node should be tagged with an invalid attribute
r- ~

name.

As a result of this post-processing the skeleton will be changed into a structure

consisting solely of SEQ and PAR constructs, the QUA constructs having been elim­

inated, together with unique nodes for the entire event alphabet of the specified

system, in addition to the special communication events.

However, it should be borne in mind that the hidden events added to the skeleton

do alter implicitly the event ordering relation given in the dynamic specification.

_ .Moreover, the alterations made are such that the sequential relations embedded in

the skeleton have increased in number. Thus a verified specification may become

incorrect by the addition of hidden events. In particular, deadlock may arise. At

this stage it is appropriate to repeat the verification of the instance specification.

Assuming occam's synchronous model of communications, two new rel,ations may

need to be added to the specified event orderings for every input-output pair. The

addition will reflect the blocking character of synchronous communications.

If an output happens to occur prior to the complementary input, this prevents

a sequential process from proceeding after a channel output is committed until the

complementary channel input has occurred. Thus hidden input events ne~~ssari1y

precede the event immediately following their complementary hidden output event.

The former event can effectively be taken to be the guarded event. The latter is the

first event successive to the guard yet prior to the guarded event; should there be no

such event, there is no successor to the guard within the sequential contexts of the

guard and the guarded event (relative to their LCA), and therefore no new ordering

relation is to be added.

By applying the same reasoning to the case where an input occurs prior to the

complementary output, another sequential relation may also arise. Though the two

cases are mutually exclusive, the relative timing of inputs and outputs cannot be

established until run-time. For this reason, the conservative approach taking both

possibilities into account should be taken.

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 99

6.4 Step 2: Generating Occam Programs

6.4.1 Introduction

Having obtained an occam skeleton representation of the dynamic instance specifi­

cation, the next step is to generate an occam program conforming -to the structure

of the skeleton. The skeleton is a high-level parse tree of an occam program which

will simulate the specified complex system. The occam skeleton encoded as a tree is

translated into a textual program skeleton by traversing the tree in preorder, while

in most cases outputting an appropriate occam keyword or statement for each node

encountered. The level of indentation for any generated string of program text is ob­

vious from the depth of the relevant node. The process demonstrated in this section

requires only a single-pass traversal through the occam skeleton. Processing of nodes

- -is deliberately a localized one in the sense that the code to be emitted for most nodes

is dependent upon the contents of that node, regardless of its relation to other nodes.

In the present step the contents of the static specification are put to greatest use.

This data provides the declarative content of the generated occam program:.,

The semantics of the occam skeleton entities SEQ-skeletons, PAR-skeletons and

events, have direct correspondents in occam programming, in the form of SEQ con­

structs, PAR constructs and procedure calls, respectively.

6.4.2 Declarations

The required declarations are communication protocols, the names of variables and

channels, their types and protocols, respectively, and also the names, parameters

and implementations of procedures. In the textual placement of these declarations,

attention should be paid to occam's scope rules.

Each object will be implemented as a separate process. In the previous step, the

top level structure of occam skeletons has been deliberately cast into a form that

ensures that this program design policy will be followed. The variables that will

be in scope for each process will correspond directly to the attributes of the object

concerned. Each process therefore, will have local variables that are in scope over the

entire process body. All this assumes that the class of each object is known. However,

that information would have been recorded in the initial skeleton in specially labelled

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 100

SEQ nodes as mentioned earlier, and remains in the final skeleton. Upon encountering

such a node whilst traversing the skeleton, the text for the relevant local variable

declarations should be emitted. The name and type of these variables are taken from

the static specification.

Communications over channels are required to implement b9th-attribute access

between neighbouring objects and synchronization. Inter-process channels need to be

- declared globally since the generated skeleton structures are invariably 'fiat', that is,

there is no organization of object-skeletons based on communication neighbourhoods.

It is therefore the responsibility of the code generation mechanism to uphold the

occam usage rules regarding unidirectionality and two-sidedness of communications.

The maximum number of channels required is equal to the number of children of all

GUA-skeletons, discounting th~ last children of GUA nodes. The number of distinct

_ channels actually required will constitute a smaller number, and this will be discussed

in a later section. For each inter-object guard pair, the direction of the corresponding

channel should match that given by an edge of- the topology as set out in the static

specification.

According to the present scheme, code generated for inter-process communica­

tion requires that all attributes of the source object should be output sequentially.

Therefore, sequential protocols for all inter-process communication instances should

be declared. In the system's topology given in the static specification, every unique

instance of an edge leading from an instance of a particular class requires a unique

protocol. Thus in general, in a system composed of instances of N classes, at most N

protocols are needed, for example when the topology is a fully connected graph. The

lower limit for such protocols would be 0, in cases where no interaction occurs between

objects of distinct classes. The protocols should, naturally, be declared having unique

names. A scheme which ensures unique naming is to append the word 'Protocol' to

the name of the transmitting object's class. The sequence of types declared within

these protocol declarations is the same as the types of the given sequence of attributes

in the static specification.

Intra-process communications do not serve to transmit data, they are required

instead to implement synchronization between operations taking place within a single

process. This distinction between inter-process and intra-process communications is

discussed later in this chapter in connection with the translation of input events into

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 101

occam statements. As such a simple protocol for conveying values of a primitive type,
such as an INT protocol, is satisfactory: .

Assuming that the maximum number of channels will be declared, some unique

labelling scheme is required. A suitable scheme is to examine each tagged output

event node to determine the identity of both the guard and guarded .events. The two

event labels, when combined, will always yield a unique name. Channel protocols may

- be deduced by examining the tag of the input event node, which reveals the identity of

the relevant outputting object. From this, the appropriate communications protocol

to be employed is evident since there is a unique protocol for every class of outputting

object. However, where the outputting and inputting objects are identical, in other

words, when the channel does not cross an object boundary, it should be declared as

following a simple INT protocQl.

The generated occam procedures will contain-the main computational code for the

simulation. Essentially, the role of procedures will be to provide a superstructure for

the external software modules provided in the specification. It is assumed that these

modules are occam functions. Each operation declared in the static specification is

used to determine the format of a corresponding procedure of the same name. Since

an operation effects state changes to one or more attributes of a single object, in its

procedural form it may be declared locally to each class. In occam terms, a class would

be implemented via replicated PAR constructs and therefore the appropriate scope

of declaration of procedures would be restricted to such constructs. In the present

code generation strategy, however, instances of a certain class are not implemented

generically but through differentiated textual forms corresponding to object-skeletons.

An equivalent scoping effect may be achieved by reproducing procedure declarations

for every process corresponding to a separate object. That, though, will swell the

amount of code generated considerably.

It may be more appropriate to declare procedures singly at the highest scope, if

it is possible to ensure that they are named uniquely, to prevent name clashes, and

have access to the variables representing relevant attributes through procedural ar­

guments. The first requirement is automatically satisfied by the specification model

which dictates that operations be named uniquely. Thus operation names may be

adopted by their corresponding occam procedures. The second requirement, con­

cerning access to attributes, would have been automatically catered for during the

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 102

specification verification stage by checks preventing any single attribute from being

written to by several operations concurrently and from being written to and read

from simultaneously.

An unary operation will require access to a single object's attributes. Therefore

the formal parameters declared for its procedure will correspond to the attributes
r ~ •

of that object. A binary operation will access the attributes of two objects, which

- are therefore required as parameters. In both cases, all required attributes, with the

exception of those attributes altered by the operation, need to be declared as VAL

parameters, that is, the relevant actual parameters will be passed by value.

Strictly speaking, only those attributes that are used by an operation need be

given as parameters. This may be determined by examining the right-hand side of the

specification's operation definition. Attributes that are to be updated are identified

~ as having values in their respective slots that differ between the left and right hand

sides of the operation definition (slots are positions within a state tuple, as given in

section 4.2). On the other hand, attributes that need to be read are known by their

appearance in the form of arguments to modules or their appearance in slots other

than their own. It is possible for attributes to fill both roles. ,

6.4.3 Statements

The declarative framework having been erected, it is now possible to insert the actual

computational statements. These statements divide into two forms. On one hand,

the statements comprising the body of procedures, and on the other, those comprising

the body of the overall system process. The code generation strategy is such that

the latter group of statements will simply consist of calls to the operation-procedures

arranged under SEQ or PAR constructs. The former group of statements will define

the sequential process appropriate to each procedure.

The composition of procedures will be addressed first. The body of a procedure

will consist of a series of statements under a single SEQ construct. By inspecting the

right-hand side of corresponding specified operation, in particular the content of each

slot in turn, each member of the series is generated as follows. If the slot encountered

contains the same symbol as the corresponding slot in the left-hand side, then no

alterations are called for and attention moves to the next slot. If the slot contains a

symbol that, in the left-hand side, was found in a different slot, then the copying of

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 103

one attribute to another is require_d. The- final alternative is chosen should the slot

contain the name of a module function. 'If so, the relevant module function is invoked

along with arguments corresponding to attribute values given in the current slot.

In specifying operations, when the right-hand side slots refer to left-hand side

slots, the intention is to make use of pre-state values to compute the post-state.

Thus during the computation of the post-state, side-effects should not be allowed to

- corrupt the record of pre-state. For this reason, all assignments to attributes should

be made to temporary variables, and only upon completion of the procedure are the

new values to be committed to attributes. Temporary variables of the appropriate

types should be declared local to the procedure for each parameter representing a

mutable attribute, or in other words, for each parameter not declared as being a

value parameter.

The first statement generated in a procedure is a multiple assignment of all mu­

table attributes to corresponding temporary variables. Thereafter, code for each slot

changed by the operation is generated sequentially. Since separate attribute updates

do not interfere with each other, and each attribute is altered once by each operation,

it is natural to compose statements making up this second stage of code. generation

under a single PAR construct. As outlined above there are two possibilities as to the

mode of attribute update, either through copying attribute values or through gener­

ation of new values based on application of functions to attribute values. In the first

case, the generated statement is an assignment of the formal parameter correspond­

ing to the attribute to be copied, to the temporary variable shadowing the- formal

parameter corresponding to the current slot. The second case would generate an as­

signment to the same temporMY variable, but the source of the assignment would be

found from a function call. This function call would be derived simply by writing the

module name and, enclosed within brackets, the formal parameters corresponding to

arguments given in the operation specification, in identical sequence. The final stage

again consists of a single multiple assignment statement, but on this occasion the

sense of the assignment would be opposite to the multiple assignment written in the

first stage. This last statement represents the commitment of the newly-computed

values to their respective attributes.

It is now possible to generate the code for the process that will simulate the

specified system. The computations required to perform the simulation are achieved

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 104

by performing the operations given in the static specification, in the correct order

as dictated by -the dynamic specificati6'n: The occam skeleton constructed thus far

represents the information given in the dynamic specification in a tree structure.

This structure is really an abstract form of a parse tree of the required program. The

translation of the skeleton into source code, then, may be achi~ved by a simplified

reversal of the normal parsing process.

It is clear that SEQ and PAR nodes translate directly into identical keywords in

occam. These nodes represent occam constructs whose subordinate constructs and

statements are found in the skeletons in the form of descendant non-terminal and leaf

nodes. Skeletons are constructed in such a manner that non-terminals translate to

SEQ or PAR constructs, while leaf nodes translate to one of three kinds of statement,

either procedure calls, input statements or output statements.

Were all the non-terminals simply SEQ nodes, a correct program would consist of a

SEQ construct enclosing translations of all leaf nodes sequentially arranged according

to any left-to-right tree traversal, such as preorder. The other extreme skeleton form

would be one that contains only PAR non-terminals. Here, a correct program would

be a PAR construct enclosing an arbitrary sequence of all translated leaf nodes.

However, due to the abstract structure into which skeletons are cast, neither one

of these forms will result from the sequentialization phase. In general, skeletons will

have PAR roots, while nodes at the next layer will be SEQ nodes corresponding to the

the roots of individual object-skeletons. The object-skeletons themselves, typically,

are mixtures of SEQ and PAR non-terminal nodes.

The order of child nodes is only significant for SEQ non-terminals. For consistency,

however, the code generation strategy of the prototype implementation retains the

child-node ordering found in the skeleton. This permits a simple strategy that relies

upon a preorder traversal of the skeleton. During traversal, the translation of every

node encountered is emitted as a line of text. The depth of nesting of the generated

text is equivalent to the depth of the encountered node within the skeleton of the

corresponding node. By this means, the intended nesting of constructs is preserved

in the generated source code, as is the intended ordering of constructs subordinate to

SEQ constructs.

In the previous section, the declaration of channels and procedures was given as

being at the top level of the program, and consequently they are always global in

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 105

scope. Variables representing objects' attributes would be declared in the next level

so as to have scope over processes simulating the objects. Emitting code for these

declarations is triggered by encountering either root node or any of the nodes at the

next layer.

One other, very localized, form of variable declaration is also .required in the case

of temporary input variables. These declarations can be explained in the context of

- translating input events. Recalling that all input events occur in SEQ-skeletons of the

form [SEQ [PAR inputl input2 ... J guarded], where inputi and guarded are events,

it is clear that when an input is performed in order for the received data to be used

by the guarded operation, it is necessary for the data to be stored locally in variables

upon input, prior to being put to use. The most restricted scope of these variables is

the SEQ construct corresponding to the relevant SEQ-skeleton. The SEQ construct

that fulfills this role will be known as the input block.

Input events require the most care during the translation process. In addition

to requiring the extra declarations above, it should be noted that they may occur in

SEQ-skeletons prior to unary operations, in which case they serve only the purpose of

synchronization, as well as prior to binary operations, in which case theJZm'~y serve

a data transmission role in addition to synchronization.

The majority of leaf nodes encountered are not hidden events, that is, they are

neither input nor output events, but rather events explicitly specified in the dynamic

specification's definition of the system's alphabet. The translation of these events into

textual occam is performed in a uniform way, with one exception as will be-noted

concerning input events. In general these events translate to procedure calls. The

identity and arguments of the procedure call are derived by taking advantage of the

convention for event labelling. As stated earlier, procedure names are identical to the

names of corresponding operations, thus the name of the procedure is found trivially.

As far as unary operations are concerned, the argument list will simply consist of

all attributes of the object. Due to the nature of unary operations, this object will be

identical to the object of the current object-skeleton. This may be trivially found by

inspecting the event label for the name of the object participating in the operation

and then

The construction of argument lists when translating binary operations events

should take into account the fact that these events are always preceded by input

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 106

events. Input events are responsible for receiving attributes data from neighbouring

objects into local variables. Such localvariables, along with the current object's at­

tributes, need to be passed as actual parameters to the procedure implementing the

binary operation. It is assumed that the required temporary variables would have

been declared upon encountering the enclosing input block. The,lL the binary opera­

tion event would be translated into the required occam procedure call format, that

- is, the name of the procedure which is identical to the first component of the event's

label, followed by the argument list giving first the names of the local variables just

described and then the names of the local object's attributes.

Each inter-object input event is translated into a single input statement. The

channel concerned is the unique one devoted to the current communication, which

would have been declared globally, of an appropriate sequential protocol, as stated

_ in the previous section. The order in which attributes are passed through a channel

should, naturally, respect the declared protocol, but in addition both the concerned

input and output statements should agree as to the attribute connected to each

member of the sequential protocol. The convention is to follow the arbitrary order in

which attributes are given in the specification. ,

Intra-object communications serve only to synchronize operations and thus do not

require attribute values to be passed. For such input nodes in a skeleton, a single

value of some primitive type may be input and discarded immediately.

The treatment of output events for inter-object and intra-object communications

should be the reverse of the treatment of their input event counterparts. The same

channels and protocols should be used. Values output in the inter-object case should

be all the local object's attributes, while for the intra-object case only a single value

of some primitive type is to be output.

6.5 Improvements

Possibilities exist to improve the scheme set out thus far so as to reduce code size

and run-time memory consumption, to introduce distributed processing, to support

a more expressive set of programming abstractions and to incorporate deadlock-free

programming idioms. Certain improvements may be made by post-processing the

generated code, but most rely upon additions and alterations being made to the

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 107

overall scheme.

An obvious-refinement that generated occam code is open to is distributed pro­

cessing. Since the decomposition of any system into independent objects is a prime

requirement during specification, and since this decomposition is maintained through­

out the generation process, the most direct process distribution stf-ategy is to consider

the top-level processes (corresponding to the 0 b j ects of the system) to be the units of

- distribution. These processes do not share variables and access to data across their

boundaries is implemented through inter-process communication.

Recalling from section 1.1 that typical complex systems have simple agents, and

from section 2.2.2 that high communication traffic between agents is largely respon­

sible for the complexity of these systems, it is to be expected that a single agent­

process would be more efficiently executed on processors exhibiting relatively low

computation-to-communication ratios. Given coarse grained parallel computers, how­

ever, achieving efficient execution of generated programs would require the aggrega­

tion of neighbouring agent-processes into coarser grained units. It is with coarse

grained processors in mind that the program generation procedure has been designed

to maximize parallelism down to the level of the individual agent-process,"On the

other hand, modifying the given procedure to maximize parallelism at the sub-agent

level may improve execution performance only on very fine grained processors.

Should the program execution environment provide support for virtual channels,

then processes may be arbitrary assigned to available processors. Otherwise additional

software components would be needed, for example in order to multiplex-several

logical channels through a single physical link. In both cases, an adjustment to the

generated code may prove to be necessary for certain occam configuration languages.

This is to restrict the scope of channels mediating intra-object communications to

become local to the process representing the object itself, since channels declared

globally or at the topmost level my be misinterpreted by the process configurer as

being inter-process channels.

Having established that process distribution is possible, the problem of optimal al­

location of processes to processors remains an open one. Other skeleton programming

environments have used cost models and trial executions to choose good distributions

(for example [BFU93], [Bra93]). By its very nature, the distribution problem is nor­

mally tackled with the help of implementation platform specific information from

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 108

users, relating to the availability of resources.

Code size and memory allocated to Channels may be reduced by not declaring re­

dundant channels. Such channel declarations are made due to the policy of allocating

a separate channel to every complementary guard/guarded event pair. The number

of required channels may be pruned by 'collapsing' the role of a s~t 01 channels into a

single channel wherever it is possible to show that no two members of the set are used

- concurrently. Checking may be performed during the stage where a skeleton's guards

are converted into hidden events, following the sequentialization stage. Formally, the

requirements for two channels, cl and c2, to be collapsed as follows. Let el and e2

be the guard event and complementary guarded event, respectively, to which cl is

allocated. Let e3 and e4 be similarly related to c2. Then all four of the following

relations should be defined according to the dynamic specification: el < e4; e2 < e4;

_ el < e3j e2 < e3.

The main contributing factor towards code size in the present strategy is the rep­

etition of almost identical blocks of code. In occam programming, most instances

of this kind of code repetition are eliminated through replicated SEQ and PAR con­

structs, and through the WHILE construct. Interestingly, what is desired,he;e is the

exact opposite of the common code optimization of 'unrolling' loops. To be able to

'roll' similar blocks of code into a single construct would reduce code size significantly.

This is a problem in pattern detection that would preferably be tackled at the occam

skeleton level rather than at the more verbose occam source code level.

The characteristic of the sequentialization process which preserves SEQ-skeletons

has already been exploited to cast the topmost level of the generated occam programs

into a fixed format. The same characteristic may be put to use, in certain cases, in or­

der to enforce a desired format for code generated at the level of the individual object.

In particular, provably deadlock free structures such as IO-PAR may be enforced in

certain cases. It is known that a system composed exclusively of IO-PAR processes

cannot deadlock. These processes have the characteristic structure of two sequential

phases being iterated. All inter-process communications are performed concurrently

during the first phase. That is, inputs and outputs take place in parallel, therefore

the name IO-PAR. During the second phase no communications take place, just com­

putations upon the previously communicated values. Then the first phase resumes

prompting communications to take place again, and so on iteratively. However, in

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 109

order for generated code to be cast into such a structure, it is necessary to show that

communications and computations may be separated into consecutive phases in such

a manner and still conform to the system's dynamic specification.

6.6 Algorithmic Skeleton Framework

6.6.1 Algorithmic Skeletons

An open problem in parallel programming is the nature of abstractions which may be

used to program generics. Generics may exist at several levels. A certain algorithm or

operation may be generic in that it is applicable to various data structures. At a higher

level, a whole module of program code may be generic to a class of similar applications.

Another case would be a communications infr~structure such as a processor farm

harness that is suitable not only to a class of related programs but to a class of

related processor networks too.

In all these example classes, the bulk of the information relating to computing

structures is common to all members. This shared information may be referred to as

the skeleton of the class. On the other hand, information specific to individual mem­

bers is less voluminous. Should the skeleton have been implemented satisfactorily, it

is preferable to reuse the implementation rather than reimplementing it. It may be

assumed that programmers who are familiar with the domain of the class concerned

would also be familiar with the terms of reference used to describe the specific, extra

skeletal information. This may be exploited to construct menu-based or form-based

programming interfaces for entire classes.

Cole proposed the term algorithmic skeletons to describe a generic form of parallel

programming[CoI89J. Subsequent investigations have proved the usefulness of the

technique to expressing the generality present among a variety of instances of parallel

code. the field has widened to such an extent that certain the concepts integral

to algorithmic skeletons are no longer seen as such. New terms such as paradigm­

oriented programming and skeleton-oriented programming are in use to capture the

wider applicability of the algorithmic skeletons concept to parallel programming.

A skeleton offers a high-level domain-oriented programming interface. Indeed, it

is desirable for the interface to hide the parallel nature of implementation completely.

The concern of the user would ideally be limited to declaring the problem to be solved

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 110

on the domain-dependent terminology of the skeleton chosen. The internal mecha­

nisms of the skeleton are responsible for' using the given declarations to implement

a parallel program either in the form of code in an intermediate language or as ex­

ecutable code. These mechanisms exploit knowledge about the restricted domain of

the skeleton concerned in order to generate efficient yet portablerprograms.

The users input would be in the form of data and code parameters, such as the

- number of slave processes to be spawned and the function to be computed upon each

portion of data, respectively. In practice, the user would also be required to state

information regarding the target execution hardware such as the number and nature

of processors. Functional languages are popular programming interfaces to skeleton

programming systems, due to their support for higher-order functions.

Of crucial importance to the skeletons approach is that parallel programs may be

_ classified into groups whose essential implementation techniques are similar. A library

of such skeletons may be assembled, leaving to prospective users the choice of the

appropriate skeleton for their programming pro-blem. While this approach is natural

when the basis of classification is algorithmic, it is less so for application-oriented

classifications. It is quite possible for similar applications to be best- implemented in

different ways. This renders the construction of application-class oriented skeletons

difficult.

In the class of complex systems, commonalities exist to a lesser extent in algorith­

mic terms than in application oriented terms. The development of a unified skeleton

oriented programming system for this class would therefore more profitably-be con­

cerned with generating correct programs in a suitable existing programming language,

occam. Questions of efficiency and portability of programs are therefore absorbed into

the general research into occam. The programming system is thus responsible for all

level higher than occam programming, and will be a front end to an occam compiler.

6.6.2 Programming Environment for Simulating Complex Sys­

tems

Grouping was integral to the approach towards specifying complex systems. Since

simulation programs are derived on the basis of these specifications, an algorithmic

skeleton environment for simulating complex systems becomes feasible.

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 111

One method to implement algorithmio skeletons is to write the program frame­

work for a class of applications and prdvide a simple interface to aid in embedding

application-specific program code into such a framework. In the present instance,

however, it is not the generated code that is reusable, but rather the group specifi­

cation. We have not endeavoured to translate group specification~ directly into code.

Group specifications are a step removed, in a manner of speaking, from the stage of

- program inducibility, since they need firstly to be instantiated through full param­

eterization. By delaying the code generation phase until instantiation, the benefits

gained include that correctness-checking is enabled upon specifications rather than

upon bare occam code.

A programming system may be constructed around the given code generation

procedure, encapsulating it in such a way that the users of the system need only be

concerned with specifications, not with the occaIIl code or the method of its generation

and optimization[ICW96]. The system would be equipped with a range of group

specifications suitable for implementing various complex system classes. The concern

of the system's user is to select the appropriate group specification and to paramet~rize

it suitably in order to obtain the desired instance specification, which y.rould then

be submitted to those modules of the system responsible for the verification and

implementation of specifications.

Algorithmic skeletons, in general, are characterized by their ability to support

the implementation of a well-defined group of applications. Moreover, by design,

they resist adaptation to application areas that they are not intended to ~lJPport.

The projected framework for complex systems would possess these characteristics by

offering restricted choices for instantiating specifications. This restriction arises as a

result of the inability of parameters to alter fundamentally the structural properties of

any group specification. For example, by definition parameters may not substitute for

such structural entities as class definitions, operation definitions, in the static domain,

or for precedence rules, in the dynamic domain. The power of parameterization lies

instead in the ability, on one hand, to state quantitatively the required dimensions of

such abstractions as a system's topology and the number of its interactions. On the

other hand, parameterization can specify qualitatively the types of a class' attributes

and, via modules, the nature of state-change caused by operations.

This form of restricted expression must be combined with adequate documentation

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 112

__ in order to gui~e users to select appropriate group specifications for their problems,

and thereafter to guide the instantiatio~ of specifications. The distinction should be

made between the authors of the libraries of group specifications, who may be called

specification writers, and the users or clients who make use of these specifications for

the purpose of writing simulations. Formulation, refinement and- dvcumentation of

group specifications are the responsibility of specifications writers. Their task requires

- in-depth analysis of the application area in order to determine the common static

and dynamic characteristics, and also to test that common instance specifications are

verified. However, the results of this task, once completed, may be stored and reused

by clients of specification libraries.

Group specifications offer users, through the possibilities for parameterized in­

stantiation, a system-specific programming interface. Should it be desired to insulate

_ users from the notational and conceptual details of the specification language, then

the library browsing mechanism should extract and display only the informal por­

tions of group specification documents. In order to select and make use of a certain

group specification, users need only be aware of the kinds of applications that the

specification was designed to cater for, as well as the role of each formal parameter.

The simplest architecture for such a programming environment would be one

wherein the data flows are simple. For example, having composed by some means the

required instance specification, the user presents the result to an front-end module

that performs an initial verification. If successful, the specification is passed on to

a second module that constructs a conforming occam skeleton. The result, together

with the original specification are then input by a post-processing module that in­

troduces hidden events into the skeleton. Before proceeding, a revised specification

containing an updated dynamic specification that incorporates hidden events needs to

be presented to the verification module. Should the second verification be a success,

the specification and skeleton are processed by the final module which performs the

actual generation of code, through, for instance, the single-pass procedure described

earlier.

There is scope for improving such a simple system by introducing interaction with

the user in order to aid the user in writing correct instance specifications and to

aid the environment in generating correct and more efficient code. This requires the

verification module to report errors to the user, pointing out areas of the specification

CHAPTER 6. TRANSLATING SPECIFICATIONS INTO OCCAM CODE 113

__ which are faulty and suggesting appropriate corrective measures. For eX9n1ple, users

may be allowed to provide hints to th~ remaining modules regarding the course of

action to be adopted at various decision-points.

6.7 Conclusion

The procedure given is specifically aimed at implementing simulations of complex

systems insofar as it is designed to convert complex systems specifications into correct

occam code. However it is applicable to any system - not only those commonly

understood to be complex - that may be specified in the given notation.

The essence of the procedure is the construction of an abstract parse tree, or

skeleton, for an occam program from the information given in the formal specification,

- followed by conversion from the skeleton representation to an occam representation.

The latter step involves a reconciliation of between the models of message passing

present in the complex system specification language and in the occam paradigm.

The proposed simulation programming environment is based on the algorithmic

skeletons concept, however the environment is seen by users as supporting a set of

skeletons, each one implementing a distinct class of complex systems simulations,

rather than as a single algorithmic skeleton. A specialized notation for specifying

each class of complex systems is defined by group specifications.

Chapter 7

Conclusion

Here the fulfilment of the objectives of the thesis, as stated in the introduction, is

. assessed in the light of the findings of each chapter. It should be recalled that the

objectives were classed under the headings of modelling, classification and parallel

simulation.

Chapter 2 explained in detail the requirements for fulfilling the modeJling; objec­

tive. The reliance of the remaining two objectives of the thesis upon satisfactory

modelling was noted. Thereafter models formulated elsewhere were described. The

main contribution of this chapter was an outline of a concurrent model of complex

systems which constitutes a synthesis of object oriented modelling with the commu­

nicating process architecture philosophy of the occam language.

Chapter 3 further contributed to the modelling objective by detailing the proposal

for abstracting real complex systems into the formal domain. Consideration was

given to the abstraction of groups of complex systems, in anticipation of having to

classify systems. The need to reconcile an ideal model of complex systems with the

computational model of occam also arose in this chapter. The main result of this

chapter was a set of guidelines for performing abstraction in such a way that:

1. individual complex systems as well as groups of systems may be formalized; and

2. information for creating occam simulation programs (e.g. network of processes

and flow of control within each process) may be deduced.

In particular, investigation of the first point ensured that the objective of classifi­

cation would be met, through the use of parameterized specifications. Considerations

114

CHAPTER 7. CONCLUSION 115

- of the second point, which effectively means compatibility of the model with occam,
-~ .

did limit the power of the model to capture dynamic interconnections and non-local

communications. In these aspects the expressivity of the model is more restricted

than that of the Swarm system, for example.

Chapter 4 completed the definition of the model by providing lroilr the notation for

specifications and the set of guidelines for interpreting them. Correctness was defined

as the consistency of specifications with respect to the model. With a view to program

induction, formal verification procedures were given to test, at the specification level,

for the existence of undesirable conditions in generated programs.

Chapter 5 applied the model to formalizing two example complex systems, asyn­

chronous cellular automata and Hopfield neural networks. In its treatment of these

two classes of systems, the ability to write group specifications and to formulate clas­

- sifications was exercised. This chapter served to reinforce, by example, the findings

of previous chapters.

Chapter 6 defined a procedure to perform the specification-driven induction of

simulation programs in occam. The existence of this procedure enables spec,jfication

writers to work with the specification language instead of occam. The procedure is

open to improvement in many respects, especially as fundamental occam features

such as alternation and construct replication have not been exploited. The present

lack of external communications in the generated programs is a significant omission.

External communications are necessary in order to enable interaction by users with

running simulations.

This chapter also proposed a programming environment, inspired by the skeleton­

oriented programming paradigm, and directed towards exploiting group specifications

as units of specification reuse. The suggested environment would also offer specialized

programming interfaces for each group specification.

Appendix A

Symbols Used

Sets and Functions

Set Comprehension: the set of squares of the first 10 positive integers, for example,

may be written as:

Function Definition: name: signature: mapping-rule. E.g., the function sq from

integers to integers may be defined as:

sq : Z --+ Z : i I-t iZ

Function Application: the application of function f to x is written:

f.(x)

Projections: the projection functions ?l'l and ?l'z map ordered pairs to their first and

second components, respectively. E.g.:

?l'z.(l,O) 0

116

APPENDIX A. SYMBOLS USED 117

Traces

The following trace notation has been adopted from [Hoa85]:

Inclusion: s in t iff the subtrace s is included in t. E.g.:

(lunch, tea) in (breakfast, lunch, tea, supper)

Concatenation: denoted by the symbol ~:

(breakfast, lunch) ~ (supper) (breakfast, lunch, supper)

Length: denoted by the symbol #:

#(a,b,c) = 3

Restriction: denoted by the symbol r. Eliminates from a trace those events not

belonging to the restricting set. E.g.:

(a,b,a,c,d,c,a) i {a,b} = (a,b,a,a)

Star: A *, where A is a set of events, is the set of all traces taking events from A.

Bibliography

[BB92] U. Bhalla and J.M. Bower. Genesis: a neuronal simulation system. In F. H.

Eeckman, editor, Neural Systems: Analysis and Modeling, pages 95-102.

Kluwer Academic Publishers, 1992 .

. . [BCG82] Elwyn Berlekamp, John Conway, and Richard Guy. Winning Ways for

Your Mathematical Plays, volume 2, chapter 25. Academic Press, 1982.

[BFU93] Alexander Biriukov, Airat Fatychov, and Denis Ulyanov. Dynamo: A

processes-processors mapper for occam2 programs. In Reinhara Grebe,

Jens Hektor, Susan C. Hilton, Mike R. Jane, and Peter H. Welch, edi­

tors, Transputer Applications and Systems '93, volume 1, pages 312-323,

Amsterdam, 1993. lOS Press.

[Bra93] Tore A. Bratvold. A skeleton-based parallelising compiler for ml. In Pro­

ceedings of the Fifth International Workshop on Implementation vf Func­

tional Languages, pages 23-34, September 1993.

[Bur88] Alan Burns. Programming in occam 2. Addison Wesley, 1988.

[Bur94] Roger Burkhart. The Swarm multi-agent simulation system. Position

Paper for OOPSLA '94 Workshop, September 1994.

[BV91]

[Co189]

Hugues Bersini and Francisco J. Varela. Hints for adaptive problem solving

gleaned from immune networks. In Schwefel and Manner [SM91].

Murray Cole. Algorithmic Skeletons: a Structured Approach to the Man­

agement of Parallel Computation. Pitman, 1989.

118

BIBLIOGRAPHY 119

-- [FJ94]

[For93]

[Fox92]

Step.hanie Forrest and Terry Jones. Modeling complex adaptive systems
"~ .

with Echo. In R.J. Stonier and X.H. Yu, editors, Complex Systems: Mech-

anisms of Adaptation, pages 3-21. lOS Press, 1994.

Stephanie Forrest. Genetic algorithms: Principles of natural selection ap-
~- -

plied to computation. Science, 261:872-878, August 1993.

G.C. Fox. Parallel computers and complex systems. In David G. Green

and Terry Bossomaier, editors, Complex Systems: From Biology to Com­

putation, Amsterdam, 1992. lOS Press.

[GS91] Martina Gorges-Schleuter. Explicit parallelism of genetic algorithms

through population structures. In Schwefel and Manner [SM91], pages

150-159.

[Han93] Per Brinch Hansen. Parallel cellular automata: A model program for

computational science. Concurrency: Practice and Experience, 5(5):425-

448, August 1993.

[HKP91] J.A. Hertz, A.S. Krogh, and R.G. Palmer. Introduction to the Theory of

Neural Computation. Addison Wesley, 1991.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[ICW96] I.M. Ikram, P.G. Clayton, and E.P. Wentworth. A parallel programming

environment for simulating complex systems. In Hamid R. Arabnia, editor,

Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications, pages 1097-1105. CSREA, 1996.

[Ikr95] I.M. Ikram. A method to generate occam skeletons from formal specifica­

tions. In A.L. Steenkamp, editor, Proceedings of SAICSIT Research and

Development Symposium, pages 115-125. University of South Africa, 1995.

[INM88a] INMOS. Communicating Process Architecture. Prentice Hall, 1988.

[INM88b] INMOS. occam 2 Reference Manual. Prentice Hall, 1988.

BIBLIOGRAPHY 120

-- [Lip87]

[Mey88]

Richard P. Lippmann. An ip~roduction to computing with _neural nets.

IEEE Acoustics, Speech and Signal Processing Magazine, pages 4-22, April

1987.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
~ - -

1988.

[PNS+91] Ray C. Paton, Hyacinth S. Nwana, Michael J.R. Shave, Trevor J.M. Bench­

Capon, and Sheila Hughes. Transfer of natural metaphors to parallel prob­

lem solving applications. In Schwefel and Manner [SM91].

[Pre94] Lutz Prechelt. CuPit - a parallel language for neural algorithms: Lan­

guage reference and tutorial. Technical Report 4/94, Universitat Karlsruhe,

January 1994.

[Ros72] Robert Rosen. Some relational cell models: The metabolism-repair sys­

tems. In Robert Rosen, editor, Foundations of Mathematical Biology,vol­

ume 2, chapter 4, pages 217-253. Academic Press, 1972.

[Ros91] Robert Rosen. Life Itself Complexity in Ecological Systems. Columbia

University Press, New York, 1991.

[SM91] Hans-Paul Schwefel and R. Manner, editors. Parallel Problem Solving from

Nature, volume 496 of Lecture Notes in Computer Science, Berl~~, 1991.

Springer-Verlag.

[Spi89] J.M. Spivey. The Z Notation. Prentice Hall, 1989.

[Wei91] Gerard Weisbuch. Complex Systems Dynamics. Addison-Wesley, 1991.

[Win89] Glynn Winskel. An introduction to event structures. In J.W. Bakker, W.­

P. de Roever, and G. Rozenberg, editors, Linear Time, Branching Time

and Partial Order in Logics and Models for Concurrency, volume 354 of

Lecture Notes in Computer Science, pages 364-397. Springer-Verlag, 1989.

[Wo184] Stephen Wolfram. Cellular automata as models of complexity. Nature,

311:419-424, October 1984.

	IKRAM ISMAIL M TR 97-35-001
	IKRAM ISMAIL M TR 97-35-002

