
"Implementing Non-photorealistic Rendering

Enhancements with Real-Time Performance"

by Ho/ger Winnemoller

in February 2002

Submitted in fulfilment of the requirements for the degree of Master of Science

of Rhodes University

Abstract
We describe qua li ty and performance enhancements, which work in real-time, to all well -known Non

photorealistic (NPR) rendering styles for use in an interactive context. These include Comic rendering,

Sketch rendering, Hatching and Painterly rendering. but we also attempt and justi fy a widening of the

established definiti on of what is considered NPR. In the indi vidual Chapters, we identify typical stylistic

elements of the different NPR styles. We list problems that need to be solved in order to implement the

various renderers. Standard solutions available in the literature are introduced and in all cases extended

and optimised. In particular, we extend the lighting model of the comic renderer to include a specular

component and introduce multiple inter-related but independent geometric approximations which greatly

improve rendering performance. We implement two completely different solutions to random

perturbation sketching, solve temporal coherence issues for coa l sketch ing and find an unexpected use for

3D textures to implement hatch-shading. Textured brushes of painterly rendering are extended by

properties such as stroke-direction and texture, motion, paint capaci ty, opacity and emission, making

them more flexible and versatile. Brushes are also provided with a minimal amount of intelligence, so that

they can help in maximising screen coverage of brushes. We furthennore devise a completely new NPR

style, which we call super-realistic and show how sample images can be tweened in real-time to produce

an image-based six degree-of-freedom renderer performing at roughly 450 frames per second.

Performance values for our other renderers all lie between 10 and over 400 frames per second on home

PC hardware, justifyi ng our real-t ime claim. A large number of sample screen-shots, illustTations and

animations demonstrate the visua l fidelity of our rendered images. In essence, we successfully achieve

our attempted goals of increasing the creative, express ive and communicative potential of individual NPR

styles, increasing performance of most of them, adding original and interesting visual qualities, and

exploring new techniques or existing ones in novel ways.

CR Categories

1.3.3 [Computer Graphics] Picture!Irnage Generation - Bitmap and framebuffer operations

1.3.3 [Computer Graphics] Picture/lmage Generation - Display algori thms

1.3.4 [Computer Graphics] Graphics Utilities - Paint systems

1.3 .5 [Computer Graphics] Computational Geometry and Object Modeling - Boundary representations

1.3 .5 [Computer Graphics] Computational Geometry and Object Modeling - Curve, surface, sol id, and

object representations

1. 3.7 [Computer Graphics] Three-Dimensional Graphics and Realism - Animation

1.3 .7 [Computer Graphics] Three-Dimensional Graphics and Realism - Color, shad ing, shadowing, and

texture

1.3.7 [Computer Graphics] Three-Dimcnsional Graphics and Real ism - Hidden line/surface removal

1.3.7 [Computer Graphics] Three-Dimensional Graphics and Realism - Virtual Reality

1.4.3 [Image Processing and Computer Vision] Enhancements - Geometric Correction

Additional Keywords
3D Texturing; Bro\'mian motion; Brush-stroke extensions; Comi c, Cartoon, Coal, Pencil , Chalk,

Hatching, Painterly rendering; Control-vertex acquisiti on & identification ; Edge-fading; Importance

functions; Level-of-deta il measure; Linear, hi-linear, tri-linear interpolation; Morphing; Natural media

simulation; Non-photorealistic rendering; Perspective-correct ion; Phong lighting; Projecti ve texturing;

Realistic rendering; Real-time; Reference-image acquisition; Super-realistic rendering; Temporal

coherence; Textured brushes; Tweening; Uncertainty-functions.

Acknowledgements and Legalities
I would like to sincerely thank my supervisor Shaun Bangay for his loyal support, his cool vote of

confidence and thought-provoking discussions; my girl-friend Danielle for her unconditional love and

support; my parents for furnishi ng me with great values and always believing in me; Col in Dembovsky

for years of excellent friendship; the Computer Science Department at Rhodes University for their

friendliness and openness to new and exciting ideas; and Rhodes University for its vision, support,

atti tude and morale.

The copyright for this entire document and all of its content lies solely with Holger Winnem611er.

Duplication of the whole document or parts thereof, by electronic, mechanica l or other means is gran ted

exclusively to Rhodes University and for educational purposes only, provided that no part of it is changed

or omitted. Wri tten pennission of the author is requ ired for all other purposes or by any other parties.

All models used in this project are publicly ava ilable (see Section 9.6 for source-references) in their

original form and have subsequently been modified to suit our requirements.

All images and figures arc created and copyright by Holger Winnem51ler, except where explicitly stated

otherwise.

Table of Contents

1 INTRODUCTION I

1.1

1.2

1.3

1.3.1

1.3.2

1.4

1.4.1

1.4.2

1.4.3

1.5

1.6

PROBLEM STATEMENT

A HISTORY OF GRAPHICS EVOLUTION ([I 03])

DEFINITIONS OF TERMS

Photorealism vs. Non-photorealism

I?eal-tj,ne

MOTIVATION FOR NON-PHOTOREALISTIC RENDERING.

Comic Style

Sketching ..

Painterly

DOCUMENT STRUCTURE

SUMMARY

...... 1

........ 2

. 2

. ... 3

..... 4

...................... 5

.. 6

.. 7

....... 9

................. 9

. 10

2 RELATED WORK 11

2.1 NON-PHOTOREALI STIC TECHNIQUES 11

..... II

... . 12

... 13

.17

2.1.1

2.1.2

2.1.3

2.1.4

2.1. 5

General

Comic Style

Sketching

Painting.

Others ...

2.2 TECHNICAL TERMS

Object Description..

Standard Vectors

.. 19

................ 20

.. .. 20

.21

2. 2.1

2.2.2

2.2.3 Edges 21

2.2.4 Faces, Triangles and Polygons

2.3 GENERAL T ECHNIQUES....

2.3.1

2.3.2

2.4

2.4.1

2.4.2

2.4.3

2.5

Custom Clear Operation

Hidden Line Removal with Background preservation

PERFORMANCE TESTING

Set-up ..

Objects.

Default Renderer

SUMMARY

.... 23

.. .. 24

.. 24

.. 26

... 27

.28

.. ... 29

.... . 31

............ . 33

3 COMIC STyLE 35

3. 1 INTRODUCTION

3.1.1 Definition

3.2 PROBLEMS

3.2.1 Problem Statement

.. 35

....................... 35

. 37

. .. 37

3,2.2 Implementa!ion -~pecific Problems

3.3 SOLUTION

3.4 STANDARD ApPROACH

3.5 OPTIMISATIONS

3.5. J Geometric Redundancy ..

3.5. 2

3.5.2.1

3.5.2.2

3 .5.2.3

3.5.3

Face-Orientation Determination

Perspective Correct ion

Qualitat ive Results for Face-Orientation Detennination .. .

Quantitative Resu lts for Face-Orientation Determination ..

Anti Aliasing.

3.5.4 Relative Rotation..

3.6 EXTENSIONS..................

3.6. 1 Extending the Lighting Model...

3.6.1.1 Qualitati ve Results for Lighting model extension ...

3.6.2 Using eXisting Colour Information

3.6.3 SilllOlIerte C%llr

3.6.3.1 Quantitative Results for using Silhouette Colour

3.6.4 Dealing with exisling Textures (Multi-texturing)

3.7 RESULTS

3.7.1 Comparison of Approaches...

3.7.2 Face-sorting vs. Displaylist in Extended Comic Renderer

3.8 SUMMARY

II

.... 37

. 38

. 39

..40

..40

............. 41

. 43

...... 47

...................... 48

..... 50

.. 50

.. 5 1

...51

.. 53

.. .. 56

............ 57

.... .. 57

.. 57

.. ... 59

.. 59

.60

.. 61

4 SKETCHING 63

4.1 I NTRODUCTION 63

4.1.1 Definitioll

4.2 PROBLEMS ..

4.2. 1 Problem Statement

4.2.2 Implementation-specific Problems

4.3 SOLUTION

4.4 STANDARD ApPROACH (RANDOM PERTURBATION SKETCHING)

4.5 OPTIMISATIONS

4.5.1 Level of Detail Optimisation

4.5.1. 1 Quantitative Resu lts for Level of Detail Optim isations

4.5.1.2 Qualitative Results for Level of Detail Optimisations .

........................... 63

.. 65

.. 65

......... 65

. ... 66

.... 67

.68

. ... 68

.. ... 68

.............................. 69

4.5.2 "Unconnected Triangles" Optimisation 71

............ .. . 71 4.5.2. 1 Quantitative Resu lts for "Unconnected Triangl es" Optimi~ation

4.5.3

4.5.4

4.6

4.6.1

Recursive Algorithm Optimisations

Object-segmentation approach..

EXTENSIONS

Pencil and Coal Sketching

..................................... .. 72

.. 75

.... 78

.. .. 78

4.6.2 Sketch shading.

4.6.2.1 Quantitative Results for Sketch Shading

4 .7

4.7.1

4.8

RESULTS

Comparison of Approaches ,.

SUMMARY

III

.82

.88

. 89

. 89

.. 90

5 PAINTING 93

5. 1 INTRODUCTION ...

5.1.1 Definition

5.2 PROBLEMS.

5.2.1 Problem Statement

5.2.2 Implementation-specific problems

5.3 SOLUTION.

5 .4 STANDARD ApPROACH (CONVOLUTION FILTERS)

5.4. J Reference-image acquisition/rom 3D models ..

5.5 OPTIM ISATION (TEXTURED BRUSHES)

5.5.1 The Brush.......

Qualitative Results for Number of Brushes ..

Quantitative Results for Number of Brushes ..

Quantitative Results fo r Object Speed

.93

.. . 93

.. 94

. ... 94

............................... 94

.. .. . 95

'" 95

. 97

..... 101

5.5.1

5.5.1.2

5.5. 1.3

5 .5 .1.4 Quantitative Resu lts for Respawning Behaviour

.. 101

.. .. lOS

.. 106

. .. 107

.. 110

111

111

... 11 4

.... .. 114

....... 116

.......... 116

5.5.2

5.5.3

5.6

5.6.1

5.7

5.7. 1

5.7.2

5.8

The Paint

The Technique

EXTENSIONS ',

Real-time Video Oil-painting

RESULTS

Qualilative Comparison of Approaches

Quantitative Comparison oJ Approaches

SUM MARy

............. .. . 117

.. ... 117

6 SUPER-REALISTIC RENDERING 120

6.1

6.1.1

6.2

6.2.1

6.3

6.4

6. 5

6.5.1

6.5.2

6.5. 3

INTRODUCTION

Definition

PROBLEMS

Problem Statement

SOLUTION

STANDARD A pPROACH

OPTIM ISATIONS

Interpolation of Samples

Control Vertex Acquisition ..

Generalisation 10 3D ...

.. .. 120

.. 120

. 120

. 120

120

. 12 1

.. 122

.. 122

..... 127

. 131

iv

6. 5.4 Cubic Interpolation ..

6 .6 E XTENSIONS

6. 6. I Motion Pictures and Special Effects (Morphing & Tweening)

. 131

.. 132

132

132

.132

6. 6. 2

6.6.3

Web Advertisement (Tweening} ...

Extreme Low Bandwidth Video COIlJerencing (fween ing) ..

6. 6.4 Facial Character Animation (Tweening)

6.6.5 Restoration of Video Material (Tween ing) ..

6.7 RESULTS.

6.7. I Comparison of Approaches

6.7.2 General comments on Factors influencing Results ..

..... 133

.133

......................... .. 134

6.7.2.1 Qual ity....

.. 134

.. 134

134

.. .. 135

..... 135

6.7. 2 .2 Performance

6.8 SUMMARy

7 SYSTEM INTEGRATION 137

7.1 SOFTWARE CONSIDERATIONS

7. I. I Virtual Reality API

7.1.2

7.1.3

7.2

7.3

7.4

Graphics API

Operating Systems (OS) ..

H ARDWARE CONSIDERATIONS ..

AVAILABILITY ISSUES

SUM MARy

. .. 13 7

... 137

..... 139

.. 139

.. 143

............... 144

..... 1«

8 CONCLUSION 146

8. 1 COMIC RENDERING

8. 1.1 General Problems and Solutions

8. 1. 2 Novel Concepts

8./. 3 Results

8.2 SKETCH R ENDERING

8.2.1 General Problems and Solutions.

8. 2. 2 Novel Concepts ...

8. 2.3 Results

8.3 PAINTERLY RENDERING

8.3. J General Problems and Solu tions

8.3.2 Novel Concepts

8.3.3

8.4

8.4. I

8.4.2

8.4.3

8.5

Results

SUPER-REALISTIC RENDERING

General Problems and Solutions

Novel Concepts ..

Results

EXTENSIONS AND FUTURE W ORK

. . 146

.. .. 146

................... 147

.................................. 148

.. 149

.. 149

.. " 149

.. 151

.. 151

151

.. 153

... 153

..... 154

.... 154

.. 155

. 156

....... 156

8.5.1

8.5.2

8.6

Standard Improvements

Expansion of Definition

CONTRIBUTION OF THESiS

v

... 156

....... 156

.. 157

9 REFERENCES 159

10

9.1 LITERARY REFERENCES 159

9.2 liST OF ANIMATIONS 165

9.3 TABLE OF FIGURES 166

9.4 TABLE OF LISTINGS 169

9.5 LIST OF TABLES. 170

9.6 SOURCES OF MODELS 17 1

APPEN DIX A - PHOTOREALISTIC TECHNIQUES 172

10. 1 PHOTOREALISTIC TECHNIQUES

10.1.1 Ray-tracing ([/OI})

10.1.2 Radiosity ({lOI})

10.1.3 Hybrid (Ray-tracing and Radiosity [I o I})
10.1.4 Local Illumination Model

10.2 REALISM ENHANCING TECHNIQ UES

10.2.1 Mapping Techniques

10.2.1.1

10.2.1.2

10.2.1.3

Texture Mapping ([101])

Bump Mapping ([101]) .. .

Environment Mapping ([101])

.. 172

.. 172

................ 174

.... 177

179

.180

. .. 180

. 181

. 185

. 187

(i/Up/a I I

1 Introduction

We use this Chapter to give a crisp definition of the problems addressed by this thesis and the goals which

we try to achieve. A short history of computer graphics helps establish a reference to the general graphics

developments that have taken place up to this point. We define the key-words that form the foundation of

this thesis and introduce the structure of this document.

1.1 Problem Statement

It is our goal to create or enhance Non-photorealistic (NPR) renderers that are able to perform in real-time

for interactive purposes.

While the main impulse of computer graphics for the last fe w decades has been to create ever more

realistic images in every shorter periods of time, a recent trend is moving in quite a different direction.

NPR rendering is interested in creating images that look anything but photorealistic (hence the name) and

relevant research results are published with increasing frequency. The key advantages of NPR rendering

have been identified ([42], [47], [49], amongst others) as:

Great creative and expressive potential

Great communicative poten tial

Possible render-speed improvements through abstraction of detail

We want to be able to harness this potential and use it where it can be most effective: in an interactive

context . Only through interaction can the expressive and communicative possibilities of NPR rendering

be tested to the fullest. To achieve smooth interaction, we have to supply a stream of images at interactive

rates, i.e. in real-time (for a more detai led discuss ion of interactivity and real-time, see Section 1.3.2).

With this in mind, we attempt to:

Enhance the performance of existing NPR renderers

Enhance the visual quality of existing NPR renderers, while remaining within real-time

constraints

Create new NPR renderers that perform in real-time

In order for our enhancements to be valuable and applicable, they have to achieve at least one of the

following points with respect to the NPR style which they are meant to enhance.

Increase its creative or expressive potential

Increase its communicative potential

Increase its rendering speed

Expand its definition (i.e. add visual qualities which have not yet been considered)

Employ new techniqucs or use existing techniqucs in new ways

ClwI'1f r I

It should be noted that while all of the above points mark desirable enhancements, some of these are

easier to verify than others (i.e. an increase in rendering performance is more readily measured than an

increase in communicative potential).

1.2 A History of graphics evolution ([103])

The development in computer graphics has in many ways paralleled if not induced similar developments

in computer hardware. One of the earliest accounts of computer graphics was probably the Whirlwind at

MIT in the 1960's, a set-up which used linear interpolat ion circuitry to produce very simple vector

graphi cs on a conventional cathode ray tube oscilloscope. 3D to 2D transformations and clipping

operations were so computationally expensive that the number of displayable objects and their complexity

was extremely limited. In 1968 Evans and Sutherland responded by developing a vector pipeline and

matrix multiplier to deal with these issues. A little later a cooperative effort between Sutherland and

Sproull resulted in a clipping divider. Even with these advancements in place some serious problems

remained: Storage of 3D objects was very expensive (as memory limi tations were severe), special ised

expensive hardware was necessary to update the display at a reasonable rate and only a few thousand

vectors could be displayed before serious fli ckering indicated the limitations of the oscilloscope. In the

late 1960's the so-called direct view storage tube was invented. Lines would be drawn and stored within

this special type of CRT, a lleviating the need for high-powered refresh facilities . Another advantage was

that this new device could more easily be interfaced with mini-computers (as they were called at the time,

despite their mostly enormous dimensions). The military, which up to that point had used physical scale

models and armies of servos, became increasingly interested in using computer graphics for flighl

simulation purposes. To become realistic enough for mission training though, the vector graphics of

earlier days had to be replaced by solid-shaded geometry. As a resu lt , the raster-scan device was invented.

Since no screen buffer was available due to the prohibitive cost of memory, pixels had to be produced in

scan-line order and also at a near constant rate even though real istically the processing load wou ld vary

greatly across each image produced. Even though complex and expensive, Watkins algorithm was used to

deal with hidden surface removal. The slowly decreasing price of memory then allowed the

implementation of a full-screen buffer (a llowing the generation of pixels in arbitrary order) and the

Painter' s algorithm could be employed for hidden surface removal (a lthough problems still prevail if

objects are allowed to intersect) . This problem was also overcome when fu rther price-drops for memory

all owed implementing a 2MBuffer approach. With the everMongoing advances in integrated circuit des ign

several of the traditionally CPU intensive graphics operations like cl ipping, shading and now even

transform and lighting operations have been offloaded from the CPU onto the graphics accelerator.

Considering dozens of megabyte of RAM, dedicated processors capable of several hundred billion

operations per second and sub-pixel accuracy in totally customi sable lighting equations, the pioneers of

computer graph ics would probably stand in awe at the sight oftoday's possibilities.

1.3 Definitions of terms

This Section is dedicated to introduce and (where possible) firmly define key terms of Non-photorealism

and real-lime, which are used throughout this thesis.

.1

1.3.1 Photorea/ism vs. Non-photorealism

The definition of an entire research subject as an exclusion of another is rather peculiar indeed and does

injustice to the great potential of NOIl-photorealism. What it docs do, is to show the stepchild-like role

that Non-photorea li sm has played until very recently. In addition, the current definition is also flawed by

its imprecise boundaries and we shall try to remedy this fact.

Figure 1 - What you see is not what you get: "The Treachery of Images" (1929), Rene Magritte

(1898-1967), Los Angeles County Museum of Art, Los Angeles, CA.

We imagine a family party and two invited artists. One is a photographer and one is a scholar of Fine Arts

with a drawing pad and a pencil. The photographer takes various photos of the family gathering, while the

artist draws line-art drawings of the event. Most people would agree that the developed prints of the

photographer are photorealistic (they are real in the sense that one can touch them or tear them up, but

they are not reality in the sense that a photograph of a cake is not a cake. A very famous example of this

notion was created by Magritte in Figure I - the caption reads "This is not a pipe. "). Similarly, many

people would agree that the artist's drawing is Non-photorealistic, because through the use of del iberate

penci l-strokes the artist has abstracted the visua l reality to a degree that is not photorealistic anymore. The

problem starts, when the photographer takes a photograph of the artist's drawing pad, or the artist through

years of experience and perfected technique replicates a photograph in such perfection that it is

indistinguishable from the actua l photo. The first case seems easier at first: we are faced with a

photorealistic reproduction of a non-photorealistic content. The second case seems unclear: the artist's

drawing is so good that we cannot distinguish it from the actual photograph. But what if we didn't know

about the photographer in the first case? Maybe the photo could be just a normal sketch on photographic

paper. While it is not our intent to draw the reader into a philosophical discussion about reality, it should

be clear by now that we need a more rigid definition for what we understand by photoreal ist ic and non

photoreal istic. Luebcke [46] has tried to find a unified approach to common NPR problems and states the

following: "Human Artwork typically consists of multiple separate strokes, ranging from dabs with a

paintbl1lsh to streaks of charcoal to lines with pen or pencil. Most NPR algorithms therefore cast

rendering as a process of selecting and placing strokes. These strokes are usually placed and rendered

with some randomness to imitate the unpredictability of the human artist ... ". In our expericnce with the

topic and in accordance with many researchers in the fie ld, we therefore statc that it is a matter of

technique and abstraction more than anything else (these cou ld be any of visual outcome, content, style

("'al'(~ r I lkfillililW\ o{,alJl\

and many others) that defines and distinguishes the current work on Non-photorealism. We would like to

stress the word current in this context, because by the very nature of the original definition there could be

any number of future rendering schemes that would force us to re-evaluate our current definition. In the

light of this poor naming si tuation, some authors have al ready taken to referring to artistic rendering or

art-based rendering instead of non-photorealistic rendering. We find that, although probably not ideal,

the name artistic rendering reveals more about the involved process and allows for a certain level of

qualitative measure (to the limited degree that one can measure artistic merit) .

In conclusion. the following points arc important in our understanding ofNPR rendering:

NPR artwork should exhibit an artistic quality. This is predominantly achieved through:

Abstraction (eli mination of superfl uous information)

An interpretation of reality through the eyes of the artist (or in our case the programmer,

which is not necessarily mutually exclusive)

NPR artwork should. in cases where it mimics human artwork, exhibit the same flaws and

imperfect ions as human art.

NPR should neither be defined solely as the opposite of other techniques, nor should it be limited

to the few established NPR styles that are commonly invest igated.

1.3.2 Real-time

The term real-time is a performance-measure and as it is used extensively throughout this thesis, we

should express clearly what we mean by it. Firstly, when we speak about performance, we invariably

mean the number of frames we can render in a given amount of time. Increasing performance means

rendering more frames in less time. Some absolute definition s found during our research range from 70

frames per second to 4 seconds per frame. The problem wi th defining real-time in absolute terms is that it

is actually application -dependent. Stewart (91] states that: "Real time does not mean fast; it means that a

system has timing constraints that must be met to avoid failure". In practice this means that the person

operating the ti ll in a super-market works with real-time constraints, even though he or she might only

serve one customer every minute, but the super-market system would fail if he or she took an hour to

serve a customer. Having gotten so far , we must identify what the time constraints in our system are.

While it is certainly nice to produce pretty NPR images for people to look at, it is much more interesting

to have them interact with these images, i.e. make the images react to a user 's input. We thus have to take

a digression to investigate lnteractivity.

For obvious reasons, in teraction deals with the reaction to an action. lnteractivity in tum deals with the

timing issues in volved in th is process. We ca ll the time between action and reaction the reaction-time or

latency and make this a measure of interactivity. The latency of an interactive process can have a

profound impact an a user. While some people might be slightly irritated by the long latency of their

favour ite word-processor, they can fee l physically sick and experience vertigo, for even shorter latencies

in an immersive environment. This is due to the fact that the effect of latency is strongly bound to the

sense by which the reaction is perceived (e.g. even a small latency between visual stimulation and

(l",p"'1 I .lI01;,.ul;011 lor YOlt pho(on'(I!i\/;(r"lldlTillC'

corresponding stimulation of the sense of balance can produce almost instant motion-sickness). Our NPR

scenes are to be perceived by the visual system of the human brain, so we will have a very brief look at

relevant issues.

There are two main factors that are important for humans to perceive motion from animation (which is

necessary to convert sti ll images into interactive scenes). One is called persistence of vis ion and is largely

physio-optical and the other one is called the phi phenomenon (attributed to Max Wertheimer, 1880-1943)

and is psychological ([38)). The former describes the ability of the retina to retain optical informat ion for

a short period of time even after the stimulus is removed (in the order of hundreds of milliseconds) . This

mean s that we can see the a complete image on a television set instead of a very quickl y moving

electronic beam. While this is important to eliminate fl ickering it bears no relevance with respect to

perception of motion (in the sense that the update of the screen-content and the update of the display

device can generally be decoupJed). The latter phenomenon allows our brain to fuse discrete still images

into flu id motion and is of greater relevance. As we produce discrete images of our NPR scenes as part of

a temporal sequence, we want the observer to fuse these images into a continuous flow of motion.

Depending on the environment, the scene under consideration and the distance between related objects in

consecutive frames this fusion occurs at between 4 and 10 frames per second (i.e. a latency between 100-

250 mill iseconds. See [99J and [66]). This is not to say that motion cannot be deduced from experience or

expectation at lower frame-rates , but this would have to happen consciously and with effort.

We now have narrowed our definition to the range in which motion ITom discrete images can be

perceived naturally, which is necessary in an interactive an imation context. Any further restriction will

depend on the application context, as discussed above, i. e. what the user will do with the percei ved

motion (e.g. just observe, or use the perceived information in decision-making processes, which in tum

might be more or less constrained by real-time considerations).

In compliance with various other authors, we fix our definition of rea l-time at the upper limit of the above

range, at 10 frames per second, and define this rate the minimum acceptable performance for any of our

renderers.

1.4 Motivation for Non-photorealistic rendering

Even though we deal in this thesis almost exclusively with technical issues of NPR, there exist various

non-technical NPR-related issues that have been studied. For examp le the question, why do we need

NPR? As the answer to this question might not be immediately obvious, but bears heavily on the

relevance of this thesis, we will use this Section to moth ate the most common NPR styles, which are:

Comic or Cartoon

Sketching (including Hatching)

Painting

(/ " I \J ,II allon 1", YOII pllOIOflill"", IllIft 1I11s,:

1.4.1 Comic Style

Many authors ([75], [71], [72] & [49] to name but a few) agree that the history of comics is as old as

human history itself. They argue that cave drawings of approx 3000 B.C. (Figure 2a) as well as the

sequential art (as comics are sometimes referred to) of historical pieces like the Baycux Tapestry (Figure

2b), dating hundreds of years back, are some of the prominent examples of early comics in the course of

history.

Figure 2 - Historical Comics (taken from 1721): a) Palaeolithic painting in the Altamira Cave,

Spain; b) A Section of the Bayoux Tapestry (William's Army attacks the castle of Divan)

The comic as we know it today has mainly taken shape in the last century and its development was

largely influenced by its perceived role in society, its commercial viabili ty and technological limitations.

Illustrated books like the popular "Max and Moritz" of Wi llhel m Busch were targeting children as their

main audience and for many years to come comics were frowned upon as kid's stuff, standing in the no~

man's land between distinguished li terature and acquired art. Only after newspaper sales increased due to

regularly featured comics and research showed that comics and cartoons are able to convey educational

and instructional messages much more clearly than words or photographs, did cri tics take serious notice

of the new medium. One such research was undertaken by the US Defence Department and concludes

that of a variety of possible mil itary training manuals (plain text, illustrated text, text with photos and

comic strips), the comic strip "proved most effective in getting the requisite information across. The

research sho't1!f!d fhat if is possible in comics fa convey enonnous amounts o/in/onnation in a very limited

space." [76].

A FEw ntOVSAN DS MILLIONS
ONE

Figure 3 ~ Abstraction as a tool for self~identification 1491

(IWpf('r I ,Hot;"uf;on for 'Y""-l'lwtort',,/I"f;C rl'm/frim:

The images in Figure 3 show increasing levels of abstraction from almost photographic to iconic. Below

each picture is shown how many people could be said to resemble the image. This means that as the

images become more abstract, more and more people are ab le to identify themsehes with the image (or

the portrayed character - McCloud [49) argues that thi s character-identification is even more pronounced

in children, which he concludes, is the reason why comics are so popular with them). In the same way the

level of abstraction greatly influences what information and deta il the viewer observes. On the left -most

picture one might wonder for example if the picture taken was for a passport and if the character is about

to embark on an important journey and what the journey's purpose might be. As the level of abstraction is

increased, the level of deta il is decreased. The last image merely shows what most people will percei ve as

a face: No Age, no Gender, no Race, no possi bl e resemblance to a real person - which is why it can be

used to represent a face-bearer of any Age, Gender or Race. The absence of concrete information in this

case does not deny its existence. A very commonly found appl ication of th is are the male/female figures

on bathroom doors. They are extremely abstracted. Were they to be photographs of actual people one

would most likely have thoughts like: "Is this a missing person?", "Does this Person live here?" or

similar. So jf we want to convey the idea of a man (as opposed to a college student having a passport

picture taken) we fare better to use some kind of comic-style abstraction. In addi tion to th is, work by

Hoffman [35] suggests that the process of seeing is an extremely involved one, which works in numerous

stages (edge-detection, shape-recogniti on, object-recognition to summari se just the major steps). The

inherent abstract ion that comic-style imagery provides thus naturally helps in the recognition process by

eliminating superfluous information and thus pre-processing information for the viewer.

Comics derive their attractiveness largely from two factors: they are simple (or at least simplified versions

of reali ty - even if they have a very complicated plot) and they are universal (through the use of simplis ti c

depiction, language barriers as well as age barriers can easily be broken). They have been publicised in

various print-media and connected to the motion picture industry from its very beginnings. It seems only

a natural progress ion to merge the creative potential of computer graphics with the express ive potential of

comic rendering. This development has in fact already started and by now computers play an important

role in classic cartoon animation production. From creating backdrops for movies such as Futurama [1 9] ,

Dilhert [I] or Rllgrats -the Movie [100] to full-length features li ke Final Fantasy [1 3] or Titan A.E. [98],

computers are an essential tool in increasing performance and productivity in loday's cartoon industry.

While this is truc, the application areas of computers so far mainly cover the design- and off-line

rendering stages.

Considering the huge expressive potential of comics, we are very interested in its use in Virtual

Environments and therefore need to uncover ways of producing images rendered in a recognisable comic

style in real-time.

1.4.2 Sketching

While the creat ive process of producing a sketch may seem hasty and mostly effortless, there are

indications that sketching communicates most intimately with the most basic fonn of visual processing in

human s. Hoffman [35] describes in his book (one of th e Chapters of which is appropriate ly called

CIWI'{{'f I H"(;l'Ufion p" _\"ou -l'/wwr"(lll\lit rClllft'ring

"Inflating an Artist's Sketch") the very involved processes that allow humans to see (i.e. to detect shape

and motion from images of various compositions and situations). He devises basic rules which are applied

to images by the brain and according to which object shapes and boundaries are detected. Many of these

rules rely on edge-detect ion processes in the eye and help identify the most basic geometry underlying a

given object. Attributes like shading, texture etc. are secondary clues in object identification (i.e. a cow

with a woollen sweater and leather pants would still be a cow; even though a rather peculiar one). One

might conclude from this that an inherent knowledge of these rules (if not in explicit form then at least in

the creative process: we draw lines until we ourselves recognise the object; i.e. until the most basic

recognition criteria are met) is applied when generating sketches and that this is the reason why they are

so helpful in conveying a definite (and purposefully limited) set of information. Figure 4 demonstrates the

enormous expressive potential of sketch ing. Figure 4a) is delicate, detailed and deliberate with every

single stroke, capturing the intensity and finality of the moment. Figure 4b) on the other hand is

minimalistic to the extreme, no superfluous lines clutter the image, yet the grace and poise of the animals

is depicted with life-like precision. No physically correct light interaction has to be modelled, nor millions

of fur-particles rendered in order to convey the intricate relationship between these creatures. Abstraction

proves to be a powerful tool in extracting relevant information.
~ •. -:-0-

.'

Figure 4 - Two extreme Examples of Sketching: a) "Woman on Her Death Bed" ((241);

b) "Two Lionesses" ((51)

As the visual form of sketches are much Jess rigorously defined in comparison to, for example, cartoons

they are avai lable as an expressive medium to a much larger audience. Almost all people wi ll in some

time in their life produce some form of sketch, be this to pass time on the telephone, to give directions to

a friend or illustrate complex relationships to colleagues. More advanced sketches are used throughout

professional and artistic communities to produce sketches for fashion-design, paintings, scu lptures or as

an end in itself. Yet more sophisticated and extremely forma lised sketches can commonly be found as

technical illustrations in manuals, medical books and architectural design. If we care to look, we can find

sketches in many aspects of our daily lives. This fam iliarity combined with the abstractive and creative

potential makes sketch rendering a prime candidate for many educational or design applications.

Automating the sketching process with the help of computers is therefore a logical and necessary step.

(hUfJ/l r 1 1)"1 '11111',,1 \1"" lur,'

1.4.3 Painterly

The motivation of painting from a psychological or sociological point of view is much more difficult than

for cartoon or sketching, because only very few people interact with paintings on a day-to-day basis and

they are not very useful to most people as they are usually expensive and take a long time to produce. As

paintings have been used since the beginning of man's creative awareness to preserve for generations to

come the moods and daily lives of man's existence it would be unthinkable to exclude them from any

complete discussion on NPR techniques.

What painting so far cannot do is change. They are cast in paint and imprisoned on canvas. Ifpeople can

be so fascinated by st ill paintings, even though they are not useful in many practical terms, we are

interested to see what an effect animated paint ings can have on the observer. Ifpaintings can be produced

in real-time and at sufficient quality, people can not only look at paintings, but even interact with them or

watch them tell stories. These incenti\es alone should warrant an investigation into implementing a rea l

time painterly renderer.

1.5 Document Structure

Th is first Chapter helps us set the scene for our thesis. A definitive problem statement is expressed,

clearly stating the fundamental problems that are addressed in this work. A short history of graphics

evolution explains the origins of computer graphics so that the current state of art, discussed later, is

placed into perspective. We follow this with motivations for each of our renderers and define the terms

forming the key-words of the title of this thesis.

Chapter 2 studies the current state of the art in NPR research and introduces general terms and techniques

used throughout this thesi s. Furthermore, the testing procedure for all our performance tests is explained,

so that it can be used as a reference for our individual NPR Chapters.

The following four Chapters introduce in turn each of our NPR renderers . We always start with a

definition of style or technique and from this form a general problem statement, which is then expanded

to include implementation-specific problems. A commonly accepted solution in the form of a standard

approach is then presented and based on th is enhancements are made which are ensured to work in real

time. With each of the modifications we make to the standard solution, we immediately provide

qualitative and/or quantitative results that show the effects in both visual fidelity and performance of our

enhancements.

Chapter 7 deals with general implementation issues and system integration . Hardware, and Software

considerations, as well as possible choices for graphics and programming languages are discussed. We

introduce our object-model and explain how this integrates with the greater virtual reality system of

which it is part.

("<11'11'1 / ,\fllllmury /1/

Chapter 8 concludes OUf thesis and summarises both the problems addressed as well as novel solutions

and contributions to each of our renderers.

1,6 Summary

In this Chapter, we defined the problem statement forming the basis of this thes is; listed important

milestones in general, non-NPR computer graphics; motivated the usefulness of individual NPR styles

and introduced the document structure.

1/

2 Related Work

In th is Chapter, we examine the current state of the art in NPR rendering. We divide our review of related

NPR work into the most commonly found NPR styles, but also consider the few publications that do not

fit neatly into Ollr categorisation . Some general but related technical terms are introduced, as well as

general techniques, which help with our NPR rendering, but could also be used in various other graphical

applications. We end this Chapter with an introduction to OliT performance test set-up, where we describe

the Hardware and Software that our tests are performed on, the objects that are rendered with our NPR

renderers as welJ as a default renderer, which is used for comparative analysis of our system's

performance.

2.1 Non-photorealistic Techniques

We notice with pleasure that interest in NPR work has picked up over the last few years. Undoubtedly

this is due partly to developments in the hardware sector that make customised rendering that much more

viable and affordable. Various individuals and groups have dedicated their professional interest in

creating non-photorealistic images. Most of the older work understandably is non-real-time, whi le

recently several papers have been published and efforts been undertaken to perform NPR rendering at

interactive frame rates. Examples of this work sha ll be introduced in the following Sections.

2.1.1 General

One very excit ing paper by Luebcke [46J addresses basically all known and common NPR renderers in

one uniform and high ly optimised framework. In the introductory Chapter, the author states that human

artwork typically consists of a multitude of separate strokes. The techniques and tools to apply these

strokes are what distinguish one artistic style fTom the next. The logical consequence for the author is to

place view-dependent particles on the surface of a given object mesh (much like Meiers approach [51]). A

multi -resolution mcsh is used to speed up rendering performance and create local regions of increased or

decreased spatial detail (for example near the viewer or on the silhouette). The un ified render ing

framework then works in four steps:

1) Particle adjustment: the mesh-structure and correlated particles are adjusted depending on view

parameters and detennine the stroke-density in the fina l image.

2) Opt ional Polygon Rendering: For some effects (like flat comic shading or depth-buffering) a solid

shape version of the model has to be rendered in one or more buffers

3) Transformation and lighting of particles: The OpenGL feedback mode is used to transform and light

strokes (as well as obtain other information like local nonnal vectors etc. if necessary) into screen

space. Depending on the host·platform, this process might be fully hardware accelerated (the authors of

[48] follow a similar object~space/screen-space hybrid approach, but never mention the possible use of

hardware acceleration)

Vo" lIllO/or, "("/1(I "ch"''1IH' 11

4) The output of stage 3 is used to place strokes in a user-defined manner. In fact, almost all steps involve

some kind of user-callback function that determines the visual appearance of the fina l result.

Frame-rates achieved vary between 10-30 frames per second on an SGI Onyx with InfiniteReality

Graphics. Whi le the performance could defin itely be higher for specia lised rendering routines it is the

great contribution of this paper to design a part ially hardware accelerated framework that enables the user

via a small set of user-defined callback fun ctions to achieve any style from pen-and-ink drawings. to

cartoon shading and even painterly strokes. No other paper we found was able to achieve such a diversity

of styles in sLi ch a consistent and effi cient framework. In addition to this, the important aspects of real

time performance and animati on coherence were successfully addressed.

2.1.2 Comic Style

Our firs t exposure to comic rendering was in the form of a tutorial demonstration by Lander {43] who

uses the technique described in Section 3.4. He renders objects with thick outl ines and flat or extremely

banded shading. producing an inexpensive but very convincing comic style look.

Lake et al [42], while demonstrating their work in an application using plugins (called Inkers) use very

much the same technique.

A notable deviation from the prevailing theme is offered by NVIDIA [86], who, with the introduction of

their latest GeForce class of hardware accelerated graphics adaptors, fea ture a mechanism called Vertex

Programs [39] (Microsoft refers to similar features in their DirectX 8.0 release as Vertex Shaders, which

NVIDIA argues is misleading, as shaders usually work on a fragment level and not a vertex level). These

basically allow the programmer of a graph ics system to wr ite special ised rendering-code, which is then

compiled into the nati ve machine language of the Graphics Processing Unit (GPU) and uploaded to its

working memory. Examples of this very powerful technique include a comic style renderer. By

employing a normalising cube map (for a short introduction to mapping techniques, see Section 10.2. 1),

which is oriented relative to the viewer and white on the front half and black on the back half, the authors

are able to produce a si lhouette of va rying width (a non-trivial task. as DirectX. the implementation

language chosen by the authors. does not support the corresponding glLineWidth command ofOpenGL).

Other special DirectX constructs (special per-pixel normal dot products) in combination with alpha

testing and multi-pass rendering allow the authors to produce comic style images which are 100%

hardware accelerated under Direct)(on a GeForce card. (Microsoft [52] publish a very sim ilar

demonstration to showcase their latest DirectX release and it appears that in fact this work is achieved in

collaboration with NVIDIA, so that we will not repeat the deta ils here).

Markosian et al present a paper [48] which extends their original paper on the topic [41] and produces

images of a very distinct look (in the original paper they tried imitating the style of Dr. Seuss [22]). They

introduce new graphical units called graftals and tufts. Graftals are stroke-based procedural textures (in

practice these are not textures in the technical sense, but fill ed triangle-strips with dark outline) that can

('hUl'f('r ~ 1.1

change shape and appearance to accommodate level of detail considerations. Tufts are structures that

determine the multiresolution behaviour of a group of graftals. While the original paper mostly deals with

placing and or ienting the grafta ls in the scene, there were major draw-backs, namely temporal

incoherence and visual popping resulting from graftals appearing and disappearing in the scene as the

viewpoints changes. In the more recent paper, the authors address temporal coherence by fixing graftals

to object·geometry (simi lar to Meier's [51] approach, but placing is performed at least partly manually,

not unlike Cohen et ai's [9]). Popping is avoided via a mixture of distance and time-based blending and

level of detail functions. It is surprising that even though interaction is des ired and problematic, all

graftals are rendered with lines (usual ly with anti -aliasing - an extremely expensive operation and seldom

hardware-accelerated for lines) and nothing is mentioned about the possibility of using billboards and

texture-maps. The visual output is nonetheless very artistic and close to the initially attempted style.

Hall [28J developed a method which incorporates features of both comic style rendering and hatch ing, so

that we will discuss it more closely in Section 2.1.3 .

There are other papers, like Opalacil et al. [63J (deals with squash and stretch effects that are commonly

found in animated cartoon strips), Correa et al. [14] (maps hand-drawn textures on simple geometry for

sophisticated cel animation), Petrovic et al. [67] (generates semi-automatic shadows from hand-painted

scenes and simple geometric information for cel animation) or ten Hagen et a!. [95] (performs facial

animation on cartoon characters to limit the effects of imperfect facial expression reproduction), which

deal with a large variety of related topics, but do not contribute to the actual rendering process of cartoon

style NPR.

2.1.3 Sketching

A var iety of people have produced sketch style renderers and apart from the universal real-time/non-real

time distinction, there is another classification that can be made:

Si lhouette Rendering

(Cross-) Hatching

While the first style is concerned mainly with the outlining of the si lhouette (and/or important features,

see Section 2.2.3 for details), the second style attempts to apply relatively nat shading (very similar to the

standard comic style, see 3.1) using simulated ink or pencil strokes. While various examples of both

styles exist it is interesting to see that very li ttle work has been done in combining the two.

Lake et al [42] use projective textu rin g with four different textures to implement their pencil stroke

(hatching style) inker. As textures can only be applied to complete geometric primitives (as opposed to

parts thereof), they have to implement a geometry sub-division algorithm. to align primitive boundaries

with shading boundaries. Unfortunately this process is processor intensive and not well suited for detailed

objects.

Raskar and Cohen [70] use "fattening aflines" (extending the back-facing polygon of an edge outwards)

and limited texturing to produce what they call "Image Precision Silhouette Edges". While their method

could more efficiently be implemented using texturing and thick lines (such as can be produced wi th

OpenGL) they take great care to avoid resolution problems associated with depth-buffers of limited bit

depth through processes called z-scaling and line-fatten ing. Even though edges are rende red smoothly and

precisely, they lack the sketched feel usually aimed for by this style.

Raskar later developed an extension of this approach in [69], where he shows how a standard rendering

pipeline can be modified to incorporate the generation of Silhouettes, Ridges, Valleys and Intersections.

As these geometric elements are used for a multitude of NP renderers it would be of great benefit to see

them implemented in hardware. Another great advantage of his approach is that no connect ivity

information is needed between polygons so that they can be submitted to the graphics pipeline in a

random fash ion. He achieves this by extending each submitted polygon outwards by attaching segments

at specific angles (the angles determine whether the extension creates a Silhouette, Ridge, etc.). The

depth-buffer then takes care to eliminate the unwanted extensions in the interior of the object.

As mentioned above, Hall [28] presents a technique which he calls "Comic-strip rendering", but wh ich

we categorise as a primarily hatching style. It involves a two-stage rendering scheme (intended for use

with raytracing applications, i.e. non real-time), in which the first part uses a well-established lighting

formula (e.g. Phong) to produce lighting information. A second stage then uses this information along

with three-dimensional, procedural textures (in fact, their method is slightly more general) to produce

grid-lines on th e surfaces of objects. In his paper, Hall deals with the problem of matching up grid widths

of different strengths and mentions ant i-aliasing artefacts that wi ll have to be dealt with. An interesting

deviation from most other sketching implementations is that his hatching lines follow the object shape.

This can be both desirable (it conveys three-dimensional shape information more clearly) and undesirable

(object contours that are drawn too exact will look unconvincing and computer-generated).

Markosian et al [47] introduce a system which can render in a variety of outlining styles (exact -

following object geometry, randomly perturbed and with texture attributes, hinting at pencil or chalk

lines). Their main innovation is a very rapid edge detection, which uses three key factors: probabilistic

identification of edges, inter-frame coherence of silhouette edges and fast visibility determination using a

modified version of Appel's hidden line algorithm [41] (for details see Section 2.2.3). The fact that they

perform visi bili ty determination in software (i.e. not using a hardware accelerated z-buffer) and still

achieve interactive frame-rates for objects of considerable polygon-count shows the efficiency of their

algorithm. Of all the sketching systems reviewed, theirs is the most flexible (with respect to sketching

styles implemented) and most impressive (with respect to the visual output produced).

Another very realistic system ""as devised by Sousa et al [88] , [89]. Their work achieves the realistic

simulation of a variety of in terrelated tools and techniques. Specifically they are able to model penci ls

with different hardness and surface-poin ts, paper of varyi ng texture and softness and the in teraction

between these two media. Furthem1ore, they develop a blender and eraser tool , both of which find regular

('/tuptt'r 1

usage in the manual crafting ofpenci! drawings. The input to their system is highly pre-processed in that

they assume information about visible edges, faces and shadows in nonnalised coordinate space readily

available. This explains why the topic of hidden line removal is not mentioned. With this in mind it seems

that their claim of interacti ve frame-rates is somewhat far-fetched (one example states rendering time

between 7-10 seconds for a 100 face, 300 edge object). Still, their visual results are very convincing and

the possibility of, for example, specifying a 2B pencil to draw on a semi-rough, medium-wei ght paper, is

compelling.

RossI and Kobbelt (73J use a three-stage system, which works on triangulated meshes to produce line-art

drawings in a technical style. The use of triangulated meshes allows them to apply their algorithm to a

large number of input objects and to obtain the necessary geometric data for their first (of three) algorithm

steps. In this step several properties (including vertex, nonnal, shading value, local surface derivative,

etc.) are stored in an enhanced frame bulfer (similar to the G-bulfer introduced by Saito et aJ. [77]) for

later reference. The second step segments the original object into regions with homogenous principal

direction fields. Some user-interaction is usually necessary in this step. The purpose of this segmentation

is to identify areas, where a certain style (detennined by the use of surface-lines and hatch ing-lines

amongst others) is to be applied. The third and last phase then performs the actual tone mapping by using

information gathered in the previous two steps to render quasi-parallel hatches of appropriate width onto

the surface of the object. The authors see their system as a tool to help convert 3D models into line-art

drawings and not so much as a fu lly automatic NP rendering system. Therefore they do not mention

performance issues. The visual output of their work is suitable for technical illustrations, but seems rather

limited in its stylisti c capabilities (strokes seem too regular and computer-generated).

Another rather technical approach by the same authors [74] is mostly concerned with surface topologies

and analysis of curvature gradients on these surfaces. Various parameterisations of triangulated meshes

are introduced so that line-strokes can move along lines of greatest curvature. Seed-points are then

distributed evenly over the surface of the object and grown into strokes from there based certain rules,

determining stroke-density and with that shading, form, etc. The resulting images again look too

computer-generated and resemble magnetic or electro-static field-lines more than a conventional line-art

rendering. It seems that artistic merit and the element of randomness associated with so many NPR

systems were sacrificed for mathematical discussion.

One of the few existing rea l ~time systems is both artistically pleasing as well as partially hardware

accelerated. Praun et al [68] use tonal art maps, which are intimately related to mip-maps (and are

implemented through these), to place artistic strokes (dots, single lines or hatches) on the surface of 3D

models. This is done in object-space (as opposed to the image-space approach followed by Lake et al [42]

and ourselves) to follow isoparameter curves on the surface of objects. The tonal art maps allow the

rendering to be coherent in regard to the distance to the viewer (strokes do not contract or expand as the

object moves away from or towards the object) as well as in a temporal sense (strokes are fixed on the

surface of the object and therefore avoid the notorious flickering or shower-door effects). Furthennore, art

maps of lighter shading (fewer strokes) are subsets of darker maps (more strokes), i.e. darker maps are

(,h IJ"f r : I~

generated by adding strokes to lighter maps. This facili tates the blending of various art maps to create a

desired tone or shade. In order to vary the hatching density and style across a single surface, Praun et al

use blending of 6 images (12 if consider ing mult iple mip-mapping levels), but show several ways of how

to optimise this lIsing modern graphics hardware. The result is visually extremely pleasant and can even

attempt to simulate textural properties such as short fur or the grooves an d patterns of a human hand if the

art maps are chosen and aligned carefull y. All of this can be achieved in real-time on a powerful PC with

modem graphics card (20-40 tps on PIlI 933 with GeForce2).

Another real-time system (between 2 and 10 frames per second on high-end sun workstations for medium

complex to simple objects) is proposed by Northrup and Markosian [59]. They use a hybrid algorithm that

works in both object and image space. Firstly. the silhouette of an object is detected in object-space as

described in earlier work by Markosian et al [47]. Then. the silhouette is projected into image-space and a

series of operations and decisions is performed to generate long. continuous curves from the polygonal

fragments comprising the visible silhouette in image space. The motivation for this is to more naturally

replicate an artists fluid motion as she moves over the drawing surface and to represent an outline with

long. detennined strokes instead of short and angled ones. The last step is to render the image space

silhouette curves with a variety of different styles. In order to allow for as large a variety as possible, the

authors suggest any combination of the following stroke modifiers: antialiasing. tapering, flaring,

wiggling, alpha fading and texture-mapping. The result here is not only very convincing (in the sense that

the produced images appear hand-drawn), but also allows simulating a great palette of drawing styles and

media (pen-and-ink, watercolour. pencil. etc.).

Deussen et al show a rather specialised use of a Pencil-and-Ink technique in [18]. Their main goal is to

render trees (but shrubs and bushes can also be produced) in a dist inct NPR style. With this in mind, they

devise a system that is able to abstract from the full geometric detail of a given model while retaining the

characteristics of the specific plant underlying the model. Stems are made up of cylindrical shapes and

cross-hatched to indicate shape and texture. Foliage is modelled either by user-facing discs or a series of

leaf-shaped polygons representing leaves from different views. Abstraction takes place automatically as a

function of distance to the viewer. but can also be user-adjusted. Altogether Deussen et al. produce a

system, which is capable of truthfully reproducing the style and feel of technically illustrated trees and

other plants for architectural and landscaping purposes. Temporal coherence for animation as wen as real

time performance were of no concern in th is paper (even though a frame-rate of about three was said to be

achieved for a low-resolution model on a high-end graphics station set to low graphics quality -

improvements pending)

Schlechtweg and Strothotte [80] contribute to the field by attempting a line-definition that combines both

artistic and mathematical backgrounds. They invest igate the use of lines in line-drawings (purposes may

be outlining, shading, but also to symbol ise transparency and other abstract metaphors) and devise a set of

measures that can be used to allot a certain amount of drawing resources to a specific object in a scene.

These measures include: overall line count, overall line length. object visibi lity and others. The del iberate

allocation of these measures can help to draw attention to parts of the scene or individual objects or to

r

· \'OTt ·plwlOI ('uti \ I i(' [",'cll n il/llt'\

limit the overall use of drawing resources (e.g. to adhere to performance constraints). Even th ough thei r

main contribution is the defin ition of measures for drawing resources and the development of a user

driven editor to allocate the resources, the produced images have a certain artistic appeal (style: technical

illustration).

In a paper by Salisbury et al [78], the authors use an augmented 2D image in conjunction with stroke

textures to simulate technical illustrations. The input to the system are a shade map indicating the desired

tonal va lue of the resulting image, a vector· field determining stroke-direction and finally stroke textures

that are placed in an iterative process onto the image until the pre-defined tonal va lues are achieved. in

the iterative process, blurred versions of th e strokes are subtracted from the base-image in order to

perform a kind of error-minimisation. This system, while working exclusively on 20 images (this is

considered a feature not a flaw) is almost identical to similar 3D systems like [51], [18], [73], [74], [68],

and [23] al1 of which use vector-fields or textured particles fixed to object-geometry (which the vector

fields achieve) or both to impl ement thei r various approaches. Still , visual qual ity of the rendered images

is excellent. Real-time results cannot be obtained with this method, due to its required user-interaction

and th e complexity of th e iterative rendering steps.

In addition to the work mentioned above, there are papers like Cohen [10], whi ch deal with the topic of

sketching (in this case using two-dimensional input devices to sketch three-dimensional object shapes) but

which are not concerned with the stylistic aspects of the rendering process and which are therefore not

discussed here.

2.1.4 Painting

Very little work has been done on real-time painting of three-dimensional objects. Most interest in th is

area is focussed on filtering of still images or video sequences. A variety of commercial applications are

available to produce painterly styles such as Oil , Pastel, Watercolour, Pointillism or Impressionism, to

name but a few. Since these applications are aimed at producing the highest possible quality of output,

real-time constraints are rarely of concern so that still images arc produced within several seconds, wh ile

an imated sequences take up to several hours or days to produce. Nonetheless there are a few examples of

real -time video filtering or non-real-time painterly renderers that should be mentioned.

Hertzman and Perlin [32], (3 3) developed a system, which uses brush strokes to modify video footage

into a painterly style. They use a large coarse brush to render an initial sketch of an image and, where this

coarse image differs significantly from the original, render detail with refined brushes following contour

lines. Time coherence is addressed by merely painting over the last frame (as opposed to re-rendering the

following frame entirely) and using motion-detection techniques to avoi d flickering of brush strokes. A

certain customisation of the output is possible though th e use of weight-maps (which allow a certain filter

to be applied to certain areas of the original image) and the parameters to the rendering process. A real

time vers ion of the system has been produced by the authors and is stated to take less than 4 seconds per

frame on a dual-processor Pentium II 500MHz machine (a rather relaxed usage of th e term real-lime, as

(""I"t r ~ /,\

discussed in Section 1.3.2). Nonetheless they argue that for the specific use of painterly rendering a

frame-rate which is too high can lead to flickering and a visual appearance that is too real. They state that

best visual resu lts are obta ined at rrame-rates between 10 and IS. Another interestin g result is that

audience acceptance of an installation featuring an interactive version of Hertzman's system was

generally high and that "participants seemed to immediately understand and accept the process".

Meier [51] presents a system capable of painting various painter ly styles. She places importance on two

common effects in brush-based systems: The shower-door effect, which occurs when brushes are fixed in

screen space and the rendered scene seems to slide beneath these brushes; and the excessive noise that is

created by totally random brush positioning. It is important to her to avoid both of these effects. The way

she achieves her goal is by special object representation. Objects are specified using parametric surfaces.

Depending on the painting style these are tessellated and brushes are actually fixed to positions on the

object's surface. The number of brushes is related to the relative area or a tessellation unit with respect to

the total surface area. Brush attributes such as colour. size. orientation and position are derived rrom

object geometry as well as a reference picture (this is a standard smooth shaded rendering of the image,

providing information such as lighting, colour etc.) and are stored ei ther with in the brush or as separate

reference pictures (one for each of colour, orientation, etc.). After the brush attributes have been

compiled, the brushes are transformed into screen-space and then depth~sorted (with respect to the

viewer). The painter's algorithm (actually referring to a hidden surface removal technique and not related

to painterly rendering) is then used to render the brushes onto the screen. As the brushes are fixed to the

object's surface, the shower-door effect is avoided as well as extreme flickering. Even though no

statements are given about the computational cost and other performance issues, the number of brush

strokes necessary to fill the entire scene, as well as the cost of generating re ference pictures and the fact

that particles arc manua lly sorted leaves us to bel ieve that his technique performs far from rea l ~t im e.

In the special context of a Virtual Environment, Klein ct al [40] present a very simple but interactive

approach. They model a given environment (in their paper an example was a vi rtual ga llery) by texture

mapping photographs of real rooms or other pictures as texture maps onto the walls and doors of their

virtual rooms. To achieve an NPR look, they apply image-filters (the like of wh ich can be found in most

modem image-processing packages) to the textures as a pre-processing step and draw non-planar edges

with thi ck lines. Their main contribution, according to the authors, is the concept of art-maps, which are

basically mip-maps of the textures at di fferent resolutions. Whereas normal mip-maps at di fferent level s

are blurred versions of previous levels, the approach here is to apply the same image-filter to a smaller

version of the previous level. This ensures that texture detail like brush strokes or other stylist ic elements

do not change in size as the viewer's distance towards the rendered obj ects change. Altogether this paper

offers no really new rendering techniques with respect to NPR, but rather shows how existing NPR

image-filters can be used in virtual environments to achieve a novel user experience.

Again there are other papers like Curtis et a!. [15] or Baxter et a!. (4) , which deal with specific aspects of

the computer-aided painterly process (in these cases the visually and physically correct simulation of

media like \Vatercolour and Painting Brushes respectively), but are not direct ly applicable when

('"upr,''' ! IY

rendering 3D scenes in NPR styles. This is due mostly to the fact that the described techniques are

developed for use in interactive painting systems though art ists and are computationally very expensive.

2.1.5 Others

The above-mentioned techniques cover the majority of existing NPR systems. Alternative systems are

few and far in between. If this is due to the fact that the above techniques describe most of the artistic

styles found in every-day li fe or that users can most readily identify with these techniques is not known.

Nonetheless there are some noteworthy exceptions.

Cohen et al [9] present not so much a NPR renderer as more an NPR world generation tool. Their main

drawing primitive is the Billboard (a textured quadri lateral, which is maximally exposed to a viewer) onto

which the user can draw and thus excludes the NPR rendering of standard 3D objects. The system is

gesture-driven and in that context-sensitive (the user can create a terrain by drawing on the ground, a sky

by drawing onto an enclosing sphere etc.). As the system reproduces exactly what the user enters in terms

of drawing strokes, the achieved style is mainly user-dependent. Their main contribution lies in the

specific use of Billboards and connecting Billboards (ca ll ed Bridges) to re-render a given scene from

novel viewpoints.

One of the only works that focus on dots for rendering is [17] by Oeussen et al. Their goal is to simulate

as close as possible the manually created pieces of art called Stipple Drawings. They argue that these

types of drawings are commonly used in technical and scientific illustrations and are by their very nature

easy to reproduce and inexpensive to print. As their starting-point they take half-toning values (a related

but distinctly different technique) to distribute an initial set of st ipp le poin ts. Voronoi-based dot

relaxation is then used iteratively to settle the points on the image. This is important to spread the points

in such a manner that no obvious patterns are visible while reta ining the intended distribution to suggest

form, shade and structure. While this work can help reduce the creation-time of realistic (i.e. very close to

manually produced) stipple drawings from days or even weeks to hours, it is obviously not a real-time

process and needs user-intervention at several stages.

Streit et al [93J use an adaptive halfloning technique to implement their NPR renderer. This work is an

extension of ear lier work by two of the authors on Importance Driven Halftoning [92J, which allows the

user to specify an importance function and the types of drawing primitives to be used. The importance

function can be specified in terms of an importance map (e.g. a secondary image) and in fluences the way

the halftoning is performed loca ll y. In an NPR context this importance map can well be derived from

geometric information of a 30 model. Surface derivat ives, the z-buffer and shading-values are but a few

possible importance maps. These, in connection wi th the user-defined drawing primitives then determine

the output of this particular renderer. In effect the authors show how 20 images of 3D models can be

half-toned in various ways by incorporating some underlying information of the 3D model into the

process.

(1111 I 1 If (t",h III I (/I"

Gooch et al [26J and [25J are not primarily concerned with artistic stylistic reproduction, but with the

illumination process of NPR technical illustrations. Consequently, they devise a modified lighting model

based on known lighting models like Phong shading to ensure that silhouette edges are always clearly

visible (and nol obscured by shading). Furthermore, the discovery of artists, that a light hue-shift to

shading helps imply shading without requiring a large dynamic range, is implemented. The paper

produces formulae to perform the lighting calculations and suggests how OpenGL could be used with

several light-sources to implement a compliant visual result.

In terestingly, a fair deal of research has invest igated the methods and uses of another rendering

mechanism) which is very much NPR in nature) but is not mentioned anywhere in the NPR literature. We

are referring to Stereograms or SIRDs (Single Image Random Dot Stcreograms), which are two

dimensional images, which , when viewed with the proper eye-technique, can give the illusion of a three

dimensional scene. This illusion is produced by the brain due to the same mechanism that allows humans

to derive depth cues from the slightly different images that the eyes perceive of a given scene. Some

webpages and various authors ([62], [108], [97], and [96] to name but a few) take interest in this topic.

Even though an implementation for our purposes would be fairly easy, we refrain from it because (along

with the authors) many people have great difficulty actually seeing these special types of images.

Nonetheless we believe that the classification of SIRDs as NPR in the classical sense is adequate.

2.2 Technical Terms

Apart from the defining terms for this thes is which are discussed in Section 1.3, there are other, more

technical terms, which are not directly relevant to rea l-time NPR rendering in specific, but which are

needed for our geometrical discussions. These are defined in the following Sections.

2.2.1 Object Description

The objects we consider all have th e same underlying geometr ical information and appearance attributes.

This in fact is one of the main considerations in developing our renderers: to be able to render one and the

same object in a variety of distinct styles without the need for augmentat ion of object-data. The objects in

our system are thus completely described by the following data:

A list of all the vertices making up the object

A list oftr iangies, comprised of the above vertices, defin ing object-primitives

A colour value for each vertex

A set of different textures

A list of texture indices and texture vertices for each triangle

It should be noted that while this set of attributes completely describes an object in our system) only the

first two are guaranteed to be defined for each object. Therefore default behaviour is defined and

implemented for objects lacking colour information or texturing.

('hup(t'r .2 I ,'{'h"it ul I ('flU'

2.2.2 Standard Vectors

During the course of this thesis vectors will play an important role in describing algorithms and

evaluating their complexity. We therefore would like to very briefly in troduce the vectors that will be

used extensively.

Viewer N Light

® R

Figure 5 - Vectors: a) definitions; b) Dot product

Figure Sa) shows the following vectors: V describes the view-vector and is spanned between the viewer's

position and the point p under inspection. The direction that the viewer is looking at, might be totally

different and is irrelevant for our renderers. N represents a normal-vector (in this case of a triangle, but

depending on the context it could also refer to the normal at a given \'ertex. Where the difference is

important, we will denote the normal at a vertex with Nv and the normal of a triangle as NT). L indicates

the direction of an imaginary light-source. We wi ll make the simpli fying assumption that the light source

is infinitely far away and thus casting para llel rays (this assumption, whi le reducing computational

overhead greatly, is not totally contri ved, as the sun for example - our primary source of light - is far

enough away from earth so that her rays can be considered parallel for rnost practical reasons). Finally,

there is R, which is the reflected light-vector. This is to say that light, bouncing off a perfectly smooth

surface with normal N, will reflect in the direction ofR.

Figure 5b) shows the dot product of two four dimensional vectors (the fourth coordinate is called the

homogenous coordinate). As we are using the dot product extensively to determine visibil ity and surface

exposure for customised lighting calculations, we wou ld like the reader to be familiar with the cost

involved in perforrning such a cornputation. In most cases we perform the dot product on three

dimensional vectors, thus incurring 3 floating-point mul tiplications and 2 floating -point additions for each

dot product.

2.2.3 Edges

Edges in many incarnations play an important role in a number of our renderers and so we shall provide a

more refi ned meaning to the different nuances of these. In general an edge is found wherever two vertices

are logically connected. Since a triangle is made up of three vertices, each pair of vertices makes up an

edge. As vert ices can be shared amongst adjacent triangles, so can the edges connecting these \crtices be

shared between triangles. If two such triangles lie in exactly the same plane (Le. their normals are

parallel), then we call the connecting edge an in/ace edge. In face edges are usually not of visual interest

I t'e/llliL til 1(1"111'

and so we fi lter them out when an object is loaded. In a well-defined and closed object each edge will

represent the boundary of exact ly two adjacen t triangles. In our discussions we will consider only such

edges. The edges that are of interest and their definitions follow:

Silhouette or Outline - these tellns define a group of edges that possess the property that one of the

adjacent triangles is facing towards the viewer, while the other one is facing away from the viewer.

Significant edge - this we define as an edge whose adjacent triangles exhibit a sharp ang le. While in

many cases they do not belong to the si lhouette category, this is not implied but in most cases they

represent object detail of considerable interest.

Various ways exist of determining the si lhouette condition and we introduce some here. In Figure 6a) we

show the physically correct method for perspectively projected scenes: A vector is constructed from the

viewer position to each of the triang les and dot products are computed between the normals of these

triangles and the individual view-vectors. With this method triangle b will face the viewer, while triangle

a will face away from the viewer. While this method produces the most accurate results, it involves re

evaluating the view-vector for each triangle - a large overhead.

6

Object Object

10 2

•
11 '----;---'

Figure 6 - Edge issues: a) Correct computation; b) Approximation; c) Artefacts

For objects of small dimens ions compared to the distance to the viewer, we can make the approximation

that all view-vectors will point in more or less th e same direction (due to its reduced computational

overhead, this is the method we use in our renderers). Figure 6b) shows how this approach will

incorrectly report both triangles a and b as front-facing. It should be noted though that we constructed this

example deliberately and that the viewer has to be placed extremely close to the object for the

approximation to fail. Figure 6c) shows a slice-view through some object with the viewer looking from

one side. Object lines thus represent triangles and numbers are aligned with edges (remember the slice

view). With tbis set-up edges 1,2,3,4,5,6 are on the front-side of the object (relative to the viewer), while

the remaining edges are on the back-side. The approximation test will therefore identify edges 4,5,6,7 and

8 as silhouette edgcs, while 2,3,9 and 10 are nonnal edges. Edges I and I I are not well defin ed, because

the bottom triangle is neither front- nor back-facing. We'd like th e reader to notice that silhouette edges

can appear on the contour of an object (from a given view-point) but al so anywhere on the front- or

('ltal'lt r 2 fl'c/mica! 1 .. ,.",\

backside of the object. The implicat ion of this is that one has to deal with Hidden Line Removal where

the need arises.

Microsoft [52] use another approximation which works well for fairly round and smooth objects. Instead

of considering the norma ls of the triangles adjoining an edge, they look at the normals of the vertices

making up an edge. They argue that if the angle between such a normal and the view-vector is (close to)

90 degrees, we are likely to deal with a silhouette edge. As the s implifying assumption can best be made

of round objects with a high spatial resolution (and we use low-resolution objects for performance sake),

we cannot easily make use of it.

Markosian et al [47] use yet another very innovative approach to rapidly detect edges, without the need

for exhaustive searching. They argue that by starting on a known silhouette edge and tracing along

adjacent edges, an almost complete silhouette can be found while testing only about I % of the total

number of edges. As they use a probabilistic approach, not all silhouette edges are guaranteed to be

found, but long ones (which they argue are most important) have a proportionally high probabil ity. They

also state that the probabi lity of an edge belonging to the silhouette is proportional to n-9, where 8 is the

dihedral angle of an edge. Therefore sorting of edges according to probabi lity will enhance the chances of

finding the correct ones. The silhouette edges found in the previous frame are always checked in the next

frame, thus exploiting inter-frame coherence. In addition to this, previous edges wi ll be used as starting

points for the previously mentioned silhouette edgeAtraversal. With all these optimisations in place

Markosian et al claim a fi ve-fold decrease in rendering time compared to the exhaustive search technique.

Sousa and Buchan an [90] descri be an edge buffer construct to facilitate silhouette rendering. A hash table

indexed by the lower vertex number of two connected vertices is used to store attributes such as /ront

facing or back-facing but it also extendible to hold user-flags. In practice we find that our own

implementation is fairl y similar. We use a linked-list in stead of a hash-table as random indexing is not

desired and therefore data-compactness more of a concern than look-up speed. Also, we store multiplied

angles rather than just sign-bits, as this allows us to introduce other edges (which we call significant

edges), which depend on the dihedral angle between adjacent triangles. Altogether, Sousa and Buchanan

introduce a possible data-structure whose apparent advantages over other approaches are not immediately

noticeable.

2.2.4 Faces, Triangles and Polygons

The terms/ace, triangle and polygon all refer to primitives making up an object. In most cases they are

used interchangeably. Three non-colinear vertices exactly define a triangle as well as a plane, which is

why any triangle lies in exactly one plane. The same cannot be said for general polygons and these can

therefore present mathematical problems as we ll as technical problems in the rendering stage, if they are

not well behaved. For th is reason all our objects are triangulated.

(haptf'" ~ (;,II('r,,1 {('(."IIII;III,,"'\

2.3 General Techniques

In this Chapter we would like to in troduce several techniques which we have developed or refmed and

which are not specific to any particular rendering style. These techniques aide in the general construction

of NPR scenes and in most cases can be used for a variety of rendering styles. The implementation

examples we give are as always in OpenGL, but no specific constructs are used wh ich would prevent a

straight-forward conversion to another graphics language.

2.3.1 Custom Clear Operation

A basic generic rendering loop for a simple double-buffered display may look something like this:

glClear (GL_ COLOR_BUFFER_BI T I GL_DEPTH_ BUFFER_ BIT
glPushMatrix(); / / ' . ' 1 ~

" " gl PopMatrix () ;
glFinish() ;
SwapBuffers () ; ::

,.
1 n

Listing 1· Standard Render Loop

.,,) i i t' c: ' ., ",: .1 .. ' l '

The four component colour va lue (red, green, blue and alpha) will have been set by a previous call to

glClearColor (float , float, float, float) . The resul t of the code in Listing I is an empty

background, filled with a uniform colour, a uniform alpha value (if an alpha buffer is present) and a depth

buffer that is reset to a value specified by the glClearDepth (float) command. To distract the consumer

of our NPR renderers as much as possible from the fact that our images are rendered by a computer, we

find it helpful to use non-uniform backgrounds (e.g. sketches appear much more convincing on paper,

paintings are naturally at home on canvas) , To implement th is while retaining the highest level of

performance, we designed the foll owing code fragment to replace the standard clear operation:

glClear(GL_DEPTH_BUFFER_BI T I ...);
glCallList(backGroundIrnagcList);

II do not c h 3.r the cc lor bu f fet'

where backGroundlmageList is a dispJayJist comprised of the following commands:

glNewList (backGroundIrnageList , GL COMPILE);
glPuShAttribfGL_ENABLE_BITIGL_POLYGON_MODE)i

glColor3 f (l.O ,l. O,l.O); If fu ll b right nl..l s 3 ('n q .lac.
glPolygonMode(GL_BACK,GL_FILL) ;
glShadeModel (GL FLAT);
glDisable (GL_CULL_FACE);
glEnable(GL_TEXTURE_2D) ;
gloisable(GL_DEPTH_TEST) ;
glDisablefGL LIGHTING);
glBindTexture (GL_TEXTURE_20, backGroundTexture); .I I 0 (: . " e t i .. · ~

t ex t. ur e
I I "E. want. t c rna ;':": 5ure ":.1: .). 1;. t he '1>'::(' 1.: vie p ..'l l ' . i !.. co';",nd wi t : . th is tex t ut"(~

glMatri xModefGL PROJECTION) ;
g l PushMatrix() ;-

glLoadldentity();
glMatrixModefGL_MODELVIEW);
glPushMatrix () ;

glLoadIdentity();
II now tha ~ t ~l c- rr .l. t r b : i::". Il C Y. is !F"I')"cd .J.nd n.~ '9C ~ , Wf..'" con t im. .. c

glBegin(GL_QUADS)i
glTexCoord2f{o . O,O .O) ;
gl Ve rtex2 f (-1. 0, -1 . 0) ;

(/raptl'r 2 (,l'Ill'rU/ 11'f..'llIIit/lu·\

tiling of t extur~

gIVertex2f(-1.O,1.O);
glTexCoord2f(REPEAT_fACTOR, REPEAT_fACTOR);
gIVertex2f(1.O,1.O);
glTexCoord2f (REPEAT_ FACTOR, 0.0) ;
glvertex2f (1. 0, -1.0) ;

gIEnd(}; /1 ql ... d
glPopMatrix(); / 1 rt..store ~.od ... l ·! i l.. wf.' :l t:rh·
glMatrixMode(GL PROJECTION);

glPopMatrix() J 7/ re !'J tot:e Proj ec. t. ionNat rix
glMatrixMode (GL MODELVIEW); // Re-en :lble: Mcc 8 1vi e w1"3.trh::

glPopAttrib() ;
glEndList () ;

Listing 2 - Custom Clear Displaylist

, .

At first glance this might seem like a lot of code to replace the GL_COLOR_BUFfER_BIT constant in the

glClear () ; command, but it should be noted that this is the most general version of the necessary code if

no assumptions can be made about the state of the rest of the system at the time of invocation of the

disp laylist. Lines 3 to 9 in Listing 2 for example are purely concerned with setting the OpenGL engine

into the most efficient state for a full-screen texture mapping (McReynolds and Blythe [50), Node 266,

argue that the number of state changes should be kept to a minimum. i.e. all scene elements requiring a

certain OpenGL state should be rendered together. Whi le this is certainly true. it should be contrasted

with the performance loss of rendering a fu ll-screen fill with unnecessary [depth test ing] or even

undesired [lighting] states enabled). Most of the remaining lines of code make sure that the correct matrix

stack is activated and that the state of all matrix stacks is reconstructable. If assumptions can be made

about the required state of the matrix stacks before and after the clear operation, we can delete these steps

from the displayli st as well. In the general case they are necessary to ensure that the desired background

image is guaranteed to fi ll the entire screen. independent of the orientation and position of the viewer or

the dimensions of the viewport.

-i
- "'"' --

Figure 7 - Custom BaCkground Clear:

a) tiJeabJe wrinkled paper texture; b) sketched camera on custom background

Figure 7a) shows a possible background texture. We created it by taking an actual piece of lined paper,

crunching it up, unfolding it and scanning it in. After adjust ing brightness, contrast and colour

distribution, we cropped the image into a square and applied a ti ling filter to the image (i.e. the resulting

image can be repeated horizontally or vertically without creating noticeable edges). Figure 7b) shows a

ellUI'/(I ~

camera in random perturbation style rendered onto this background. For an an imation of this technique,

see Animation A (Section 9.2).

2.3.2 Hidden Line Removal with Background preservation

As Figure 7b) of the previous Section convincingly demonstrates, the presence of a non-uniform textured

background can greatly increase the NPR appearance ofa certain renderer. A problem arises when certain

standard hidden line removal (HLR) techniques are used in connection with non-uniform backgrounds.

HLR is a well -understood topic and many solutions to the problem have been provided. One of the most

efficient ones is to use a z-buffer (if such is available). The basic algorithm for th is approach is as

follows:

Render object in line mode in a colour different from the background colour

Render object in fill mode in same colour as the background

This means that first all object lines are drawn (even those which are intended to be hidden). The depth

values for these lines will be written into the z-buffer. Next, the object is redrawn, but this time us ing

solid (filled) geometry. The reason this is done as a second step is to allow the depth buffer to reject such

parts of filled segments, were non-hidden lines are already present (if we reversed the order, the object

lines would be rejected by the z-buffer test). The depth value of hidden lines will be greater than those of

filled fragments on the front of objects and therefore be overwritten. The background colour is chosen to

fill the fragmen ts, because this way they will be indistinguishable from the background and hidden lines

will therefore be successfully erased. Figure 8a) shows this approach working well for a scene with

uniform background, but in Figure 8b), where a texture background is present, it fai ls. We therefore had

to modify the standard approach slightly to accommodate for non-uni form backgrounds.

In graphics systems where the depth test function can be set, we can reverse the two HLR steps. This is

possible by defin ing the test function to be GL_LEQUAL (instead of the standard GL_LESS), which will

pass for fragments that have a depth va lue which is not only strictly smaller than the one in the z-buffer,

but for equal ones as well. This means that we can effectively initialise the depth buffer even before a

line-object is rendered onto the screen. This means that instead of erasing unwanted lines, we prevent

them from being rendered in the first place. The next trick is to prevent the colour buffer from being

modified whi le the depth-buffer initialisation is taking place. This can easily be done in OpenGL, as there

exist write-masks for all important buffers. The command glColorMask(GL_TRUE, GL_TRUE, GL_TRUE ,

GL_TRUEI, will prevent any of the r,g,b and alpha components from being modified. With this technique

we are able to generate Figure 8c), a loy racing car wi th hidden lin es removed and background intact.

Chul'l('r ~
, .

-

-- -- "'--- -

Figure 8 - HLR: a) standard approach; b) if background is present; c) with colour-masking

It should be noted that with this technique the order of rendering objects becomes important. If distant

objects are to be visible through near ones, they have to be rendered first (Le. all objects have to be depth

sorted according to the current viewpoint and rendered farthest to nearest). If distant objects are to be

hidden by nearer objects, the situat ion becomes more involved. The initialisation of the z-buffer then has

to be decoupled from the line rendering. This is to say that first all HLR objects have to be rendered into

the z-buffer (the order here is unimportant, as the depth test will perform an inherent sorting), followed by

rendering of all lines (the order here is likewise un important, as the correct z-buffer va lues will already be

in place),

The HLR technique described here is not the most accura te one for all rendering styles, as we will discuss

next. The most efficient way of rendering the above-mentioned HLR object into the z-huffer is via a

displayl ist. This implies that the geometry of the object is static and does not change. Two of our sketch

renderers though, perturb the true geometry of objects to generate a sketchier look or to orientate strokes

towards the viewer. This means that the geometry of the lines and the geometry ofthe HLR object are not

identical (as is easi ly be verified by Figure 8b), where the HLR object is rendered in blue and slightly

smaller than the line object in order to preserve important lines). Markosian et al [47] take this as grounds

to implement a much more expensive, but accurate hidden line removal, which does not make use of a z

buffer. In pract ice (and Figure 8c) is a good example for th is), the resulting artefacts (e.g. the front left

spoiler) are barely noticeable and can in most cases be attributed to the deliberate imperfection ism

imitated by the given renderer. This is demonstrated in Animation A.

2.4 Performance Testing

In Chapters 3,4 and 5 we perform a variety of qualitative and quantitative tests . The qualitative tests aim

at demonstrating our techniques and design-choices and are different for each renderer. The quantitat ive

tests are standardised in order to allow performance comparisons between the different renderers. We will

therefore spend some time in explaining the general test set-up. The objects that are used for the testing,

with all the necessary detail, are introduced next, so that specific information is only re-iterated in the

individual Chapters where necessary. Finally, we will explain our definition of a defallit renderer, which

is considered the fastest possible renderer that is still capable of reproducing all given object-detail

(geometry, colour and texture).

I' nli'rllIIl1I c<' {e ~ 'ill!':

2.4.1 Set-up

For all performance tests, we fix the following rendering variables in order to eliminate their potential

effect on the results:

Hardware & Software (see Table I)

Window-size (620x500=31 0000 pixels)

Objects (see Section 2.4.2)

Position of Viewer and Object (see Table 2)

Orientation of Viewer and Object (see Table 2)

Any OpenGL settings outside the rendering loop of a given renderer (all renderers restore 100%

of affected state settings)

Thus only the difference between the various objects has an effect on the performance of the renderers.

Results are obtained by averaging performance values (in frames per second = ips) over at least 1000

frames for the comic and default renderers, at least 500 frames for the sketch renderers and at least 200

frames for the painterly renderer.

Hardware

CPU Intel Pentium II @ 500Mhz

Mcmor~' 192 MB

Graphics Card GeF orce D D R:

Clockspeed= 140Mhz

- Memspeed=360Mhz

- Resolution: 1152 x 864 (32 Bit)
---.--_.-
Harddisk Quantum FirebalilctlO 15Gb

Software

OS Windows 98 SE

OpenGL 1.3

Graphics Dri\'('r NVidia® for Creative Labs® Version 21.85

Table 1 - System Sel-up: Hardware and Software

Viewer Object

Position (3D Point) 12.73, 17.85, 12.52 0.0, 0.0, 0.0

Orientation (Quaternion) 0.866, -0.091, 0.490, 0.051 1. 0, 0.0, 0_ 0, 0.0

Table 2 - Test Set-up: Positions and Orientations

(hapter 2 'II

2.4.2 Objects

The objects used in our performance tests are level-of-detai l variations of one and the same base object.

The reason for this is to vary the number of triangles comprising the object, while keeping the fo llowing

as constant as possible:

Screen-footpri nt (percentage of screen-pixels occupied by object-pixels)

Euler 's Relation of Faces, Triangles and Edges [III]

While it is very difficult to keep all of these constant during a level-of detail reduction, we keep the

variations within certain bounds (13%, see explanation below). The level-of deta il reduction was

performed in such a way as to approximately halve the number of faces each time, while keeping the

above-mentioned ratios near constant. Table 3 lists the object-statistics that are relevant to most of the

ren derers. In the first colurrm we simply state th e object name, the second and third colurrms show the

number of vertices and faces, respectively. Columns four and five show how many faces are front-facing

and back-facing, respectively, and are view-dependent according to Table 2. It should also be noted that

correct view-vector calculations per triangle were used to detennine these numbers. In column six we list

the total number of edges of the object, while column seven lists the view-dependent silhouette edges

(again wi th correct perspective and no approximations). The eighth column shows how many of the total

window-pixels are occupied by the object. Finally, the last column details the above-mentioned Euler

relation expressed as a ratio (V+F/(E+2)), relating the number of edges to the sum of the vertices and

faces and we note, that this ratio keeps close to 1.0 with a range of 13% .

Name Vertices Faces Front Back Edges Silhouette Screen Euler's

Faces Faces Coverage (%) Ratio

DeerO 350 578 299 279 814 182 14.08 1.14

Deerl 502 870 461 409 1250 248 15 .20 1.10

Deer2 709 1284 632 652 1871 295 16 .08 1.07

Deer3 114 8 2162 1050 1112 3188 43 0 16 . 72 1.04

Deer4 2811 5488 2555 2933 8177 733 17 . 20 1.01

DeerS 5392 10648 4843 5805 15916 1098 17.26 1.01

Table 3 - Universally relevant Object Statistics

Figure 9 graphs 3 traces on a log-log scale. The legend reads" Vertices vs. Edges" for the first trace. This

places Vertices on the y-Axis and Edges on the x-Axis. The other traces are to be read accordingly. From

the straightness of the traces, we can deduce the near-constancy of the associated ratios.

l'rrlurmlllJ(" I nll1l:: .11/

Data Ratios

-- Vertices vs Edges ...
- .t. -. Faces vs Edges
-+- Faces vs Vertices 10000

1000

100 +---------~--_.------------_r----

100 1000 10000

Figure 9 - Data Ratios for Test Objects

Table 4 shows how the different objects compare visually. The images demonstrate the resolution of the

objects, as well as the relative positions and orientations of viewer and objects. It should be noted that the

given images are cropped to fit the table and that the actual output window-dimensions are, as stated

above, somewhat larger. We also would like to draw attention to the visual for DeerO. This image shows

the nose of the reindeer severed from the rest of the body as a result of the level-of-detai l reduction.

While this was not necessarily intended, it reveals that we make few assumpt ions about well-behaved

properties of our objects (i.e. our algorithms do not rely on objects being concave/convex or even

continuous). Some renderers may produce artefacts for open objects.

(l",pll',. 1 .11

Table 4 - Visual Comparison of Objects

2.4.3 Defaul t Renderer

In many situations, we reference a so-called default renderer. The performance of this renderer is defined

as 100% and, where des ired, our other renderers are measured against it. The fo llowi ng OpenGL settings

(we only list non-default settings) are characteristic:

Face Culling

Depth Testing

Lighting, I Light

2D Texturing, where applicable

For optimisation purposes and because the geometry of the objects do not change for the default renderer,

objects are compiled into displaylists and thereafter rendered fully hardware-optimised in a single pass. In

many cases we talk about both the default renderer and a standard renderer/approach and it is important

not to confuse the two. The default renderer has been explained above. The standard renderer/approach is

the basic or standard or customary implementat ion of any of our NPR renderers, before extensions or

optimisation .

Figure 10 depicts typical examples of objects rendered in the default style. The di ffuse lighting effect is

clearly visible in Figure lOa), as is the smooth shading applied to the object. Figure lOb) demonstrates

how texturing affects the rendering result.

Pl'r{orflllllh (' T('\lim:

Figure 10 - Defaul! Renderer Examples: a) DeerS; b) Barney

(IWl'lf t :

2.5 Summary

In this Chapter, we expanded on the current state of the art in NPR renderi ng. While we only found one

paper which details a possible frame~work for combining the most common NPR styles in one orthogonal

system, there exists a sizeable collection of work pertaining to individual styles.

Several comic rendering systems are introduced, most of which use the latest techniques in graphics

hardware configurabil ity to perform fu lly hard ... ,'are-accelcrated comic style rendering.

By far the !,'featest body of related research papers deals with NPR sketching. We identi fy the most

common implementat ions of

Silhouette sketching

Hatch-style sketching

The strengths and weaknesses of the individual approaches are assessed and noted. In comparison to the

comic style solutions, approaches to sketch rendering are considerably more diverse. Some authors work

in object-space, while other work in screen-space. Some use perturbation of object geometry to simulate

human imperfection while others use texturing. A few papers address physical media simulation like

penci l-shape and softness. Some systems introduce algorithmic optimisations to achieve real-time

performance.

A very limited number of papers deal with NPR painting and real-time performance is usually not a

concern, but interesting results wi th respect to placement of brushes are obtained. Other related work

investigates the physical modelling of realistic brushes and paints, but not necessarily in an NPR context

and definitely not in real ~ time.

Most NPR related work can very neatly be classified as one of the main NPR styles of comic, sketching

and painting, but a few in teresting exceptions exist. We list some of these and discuss their re levance to

our work.

Following this, we define some technical terms which are used in our geometrical approximations,

optimisations and general discussions, but which are not directly related to NPR or real-time

considerations.

Next, we describe some of our own techniques, wh ich help us with our NPR rendering, but are not NPR

in essence. The custom clear operation enriches our rendered scenes by supplying a custom backdrop

instead of the standard uniform clear colour. A sl ightly modified hidden line removal technique allows us

to hide unwanted object lines by us ing the z~buffer without affecting other scene elements.

(hupl,', ., S'III1I11t1ry 14

Lastly, th e set-up for our performance testing is introduced, which we use throughout this thesis to allow

for comparative analys is of the results obtained for our individual NPR renderers.

In sununary, we note with delight that NPR is gaining in popularity in recent years and as a result of this a

number of interesting and relevant publications are available. Various ideas and techniques of existing

work have helped us form a better understanding of NPR and were gainfully employed in many of our

renderers.

(halJ" r 3 111/1 mill t "fion .15

3 Comic style

3.1 Introduction

3.1.1 Definition

Figure 11 . Various Comic Styles 1751

Figure 11 shows a small glimpse of the large diversity of drawing styles that fall into the comic or cartoon

category (the dictionary defines a comic as a series of cartoons, but we shall use both terms

interchangeably) and due to this many authors define the comic rather by its purpose or ideology than its

visual appearance. Nonetheless, many popular comics share some common characteristics, as shown in

Figure 12. While the looks of possible characters are widely different and usually defining for a certain

cartoon (Futurama for example uses big round eyes and protruding lips on all thei r human characters), it

is the following common characteristics that tie most comics together:

A thick dark outline of the silhouette

Other thick dark lines detailing object characteristics

Uniform or very banded shading

While the concept of comics is undoubtedly larger than the sum of the above-mentioned stylistic

elements, we are interested in our work to create a rendering ofa typical comic look and are thus satisfied

to use schemata that most people wi ll identify as comic-style.

(},"I'lt r 3 1mI'm III, 1;011 .Ih

detail lines

Figure 12 - Typical Comic Style: A scene from Futurama 1191

It would go beyond the scope of this thesis to thoroughly analyse a representative amount of available

comics with respect to the above characteristics, so we will proceed to examine in some detail the above

(very common) look of Figure 12. We find that the silhouette is drawn approximately twice as thick as the

thinnest lines (many comics in fact only use one stroke-width, but we find that it enhances the comic

appearance to use a thicker silhouette). Furthermore, we investigated the co lour values of the different

shading regions, the resu lts of which are detailed in Table 5.

Bright Value Dark Value Del ta (%)

Detail Description H S B H S B IIH liS liB

Bender
191 28 90 191 34 74 0 6 -16

•
Body

Fry Hair 24 100 100 15 100 80 -2.5 0 -20

• Fry lacket 337 100 80 353 100 57 4.44 0 -23

~ Fry Pants 198 69 95 198 83 78 0 14 -17

I""

Leela Skin 348 25 100 344 30 91 -1.11 5 -9

-

""', Scooter 51 100 100 45 100 92 - 1.67 0 -8

Average: -0.14 4.17 -15.5

Table 5- Duo Shading Colour values for a given sample set

(lfUprl' .~ I'rohl,''''' 3-

We have chosen to give the colour values in the HSB (Hue, Saturation, Brightness) colour space, because

it is best suited to compare the dark and light regions of interest. By studying the table, we find that the

artist has chosen to use highly saturated colours except for skin regions (Bender's (the robot) skin is in

this case metal lic), which have a paler appearance. In this colour space, the Hue and Saturation values

very much determine the mood and atmosphere of the comic in the sense that diverse and highly satu rated

colours will convey a happy mood, while similar and earthy colour in low saturation wi ll yield a gloomy,

low-contrast look. In this case we are mostly interested in the light and dark regions of the two levels of

shading so that hue is actually of little concern . We find that in this case, that many light regions have

maximum brightness and dark regions are in average 15.5 percent darker. To establish whether these

values are specific to the Futurama comic style or applicable in a wider sense, we examined 35 further

samples from 12 different cartoons and found that brightness in dark regions decreases by (24.2±7)%,

while saturation increases by (12.0±9)%. These large deviations can be explained by the considerable

difference in style of our samples and it should be noted that variations within a given style are usually

much smaller. In summary, we can say that saturation may slightly increase for darker areas, and

brightness is usua lly decreased by a fair amount. We conclude from this, that a drop in brightness of

about 10-30 percent, with other colour values staying constant, should result in a reasonable comic

shading look.

3.2 Problems

3.2.1 Problem Statement

As becomes evident from Section 3.1.1 we need to be able to solve the following problems in order to

render objects in a recognisable comic style:

Identify the silhouette

Identify other important folds and creases in the object

Render these features wi th thick dark lines

Shade the surface of the object in a single colour or

Apply a heavily banded shading to the surface

3.2.2 Implementation-specific Problems

Identifying the silhouette and other important geometric features may be computationally expensive and

needs to be highly optimised to allow for interactive rendering behaviour.

There does not as yet exist a mode in OpenGL that allows the rendering of silhouettes or other specific

object edge-data (Raskar [69] proposes a feasible hardware-accelerated approach that could easily be

incorporated into OpenGL and other graphics APls). One can render objects in line or wire-frame mode.

but th at wi ll draw all lines, not solely those belonging to the silhouette.

C"CI"/~ r 3 .\0/111;""

Line-width in OpenGL can be specified with glLinewidth (), but need not be implemented in the GL

driver (as we find on some windows systems).

Uniform or flat shading can easily be accompl ished by only having one global light-source providing an

ambient lighting term and specifying glShadeModel (GL_FLAT), In order to implement heavily banded (i.c,

discontinuous) shading which is not limited to the boundaries of surface elements, we have to enable

some kind of interpolation across surface elements, The alternate glShadeModel option (GL_SMOOTH), wi ll

interpolate colours smoothly using Gouraud shading and is therefore not adequate. A suitable

interpolation scheme has to be found,

3.3 Solution

The solution we adopted for our system originates from Lander [43], and makes use of different rendering

modes in a multi-pass rendering scheme to achieve its goa l. The basic algorithm is shown in Listing 3:

Let L = Light Vector
Let Nx - Normal (at any of Vertex, Triang le. etc,
Let View .. Vie· Vector
Let Sf] _ Lookup table of Banded Shading Values

Render
" 1 . ' '

For each Vertex V do
compute N ,L

Next Vertex

/ / -' :: U I"' :':'

For each Back-facing Triangle TB do
Orawwire TB

Next Triangle

I f ::.: r.J f ~ .. ','.'1 '(

; i ' J..... _ .

For each Front-facing Triangle Tp do

I -r .. ' . ,

OrawFilled TF I! '.": t. '. ' ~ :.: :nq ~~ 'll

Next Triangle ! / ~, (' , 11 -j :. ' 0 ' f'

',: oj

/ : . ' lr ' ::: t ':l l .:I , , ' ••• ' P !'" • _

End Render

Listing 3 - Standard Comic algorithm

:' in

The working of the algorithm is as follows: Light~Intensi ty values are computed for each vertex. As a

rough but suitable approximation, these values are directly proportional to the dot product of the normal

at the vertex with the light-vector. The dot product of two vectors is proportional to the cosine of the

angle between them and therefore gives an indication of how directly a light vector hits a given surface, If

the normal vector and the light vector are anti-parallel exposure is maximal and the dot product is - I

(assuming the vectors are nonnalised), If the vectors are at right angles, the light passes parallel to the

plane of a surface element and no light hits the element. The dot product in th is case is O. The reader

should note that the dot product represents only the diffuse light component of the more complete Phong

reflection model. While this suffices to apply comic style shading, we experiment with the specular

component as well to achieve different visual effects (see Section 3.6,1 for details),

In the first rendering pass, all triangles are rendered in a wire-frame mode with thick dark lines. The

notion of thick in this case means that the three edges that define a triangle (Figure 13a - two adjacent

(hal'r, r 3 Srtlll{/un/ 11',,1"0111.."" IY

triangles are shown here) will be rendered into the frame-buffer with lines that are several pixels wide

(Figure J3b) and are intended to extend over the real triangle dimensions (Figure 13d) (this method is

explicitly used by [70] and extended in [69] and inherently available in OpenGL)

The second rendering pass then renders over the existing image. The triangles are rendered in their exact

geometric dimension in fill mode (Figure 13c). As this will eliminate all interior edges, we arrive at

Figure 13e), where the diagonal is not visible anymore, but the silhouette is drawn in thick dark lines.

The major advantages of this approach are that we do not need to identi fy silhouette edges explicitly, it

will work not only for the contour of the object but any edge that fulfils the edge-condition (as defined in

Section 2.2.3) and that we do not need to be concerned about perspective projection artefacts, because the

silhouette is generated in screen-space.

c)

Figure 13 - Comic two-pass rendering principle

To accomplish the banded shading, we use a look-up table with colour values (for a single colour all

entries will be equal, for two colours some percentage of the entries will have one value and the rest

another, and so on - see Figure 22a) for an example). This makes it possible to easily specify the number

afbands and the relative sizes of each. To fill a given triangle, the lighting-values of its three vertices are

used to index into the look-up table. We fill the interior of the triangle by interpolating between the vertex

lighting values and using the interpolated results to index into the table, thus allowing a shading boundary

to run smoothly through a triangle. In other words, not the colours are interpolated across a surface (as in

Gouraud shading), but the index-values. Since the number of distinguishable elements in the look-up

table is limited and fixed, the number of colours applied to the surface element is similarly limited

3.4 Standard Approach

Lander [43] implements the algorithm of Listing 3 in a slightly varied fashion to improve performance by

taking advantage of OpenGL specifics. Firstly, rendering front-faces and back-faces separately requires

identifying them (doing this manually is a considerable overhead and requires perspective correction, as

we discuss in Section 3.5.2.1). Instead, Lander first renders all triangles in fill -mode and instructs

OpenGL to cull back-Faces (this is not strictly necessary, but will improve performance). He also makes

use of the Depth-Buffer and initialises it with the first rendering pass. The look-up table discussed above

is loaded into OpenGL as a one-dimensional texture. Indexing is performed by specifying a texture-

(11111'11 r ~ Opti III; ""it"" /"

coordinate. In terpolation of colour-values across the surface of triangles is done automatically by the

OpenGL texture-unit. The shading-texture thus modulates the original surface colour and appears as

expected as banded shading.

In the second pass Lander again renders all triangles, but this time culls front-facing ones. Since no

lighting calculations need to be performed for the silhouette, he can usc a dispJaylist to greatly improve

the performance of the second rendering pass. By rendering triangles in line-mode and by using the

previously init ialised Depth-Buffer, Lander can render the silhouette into the existing frame-buffer

without disturbing the object interior (and actually rendering on ly a minimum of lines).

Figure 14 - Standard Comic rendering: a) Rocket; b) Dog

Figure 14 shows how this working in practice. Figurc 14a) demonstrates the two rendering passes (the

wire-frame of back faces on th e left, and the filled front faces on the right). Figure 14b) illustrates how

this techn ique allows us to generate a fla t-shaded object with one shade colour and one highlight colour.

To view a scene rendered with the standard comic renderer, sec Animation B.

3.5 Optimisations

In the fo llowing Sections, we discuss optimisations to the standard comic renderer with respect to both

performance and visual quality. The Section about Geometric Redundancy and the associated Perspective

Correction are quite detailed, but can be applied to other areas of computer graphics, where face

or ientation has to be established quickly and with an adjustable amount of accuracy.

3.5.1 Geometric Redundancy

Even though Lander' s implementati on works well and is fast, we notice a large degree of geometric

redundancy (due to the fact that the entire object is rendered twice). This does not matter much. because

modern graphics cards can render a triangle in the same order of magnitude of time as it takes to

determine approximate face-orientation. If we want to extend the lighting model. we have to perform

additional calculations on each vertex and these calculations soon become the dominati ng factor in the

rendering process. For thi s reason we decide to determine face-orientation with the following goal in

mind: Even though face-orientation detenn ination will introduce further load on the system. it would st ill

benefit us if this load were to be balanced by the decrease of vertices that have to be included in the

(hllpll r ~ 0(1timi\1l1iOll.\

lighting calculations as well as the decrease in tri angles that have to be rendered. To allow for

comparisons, we define the following relationship:

Tri = aVer
This means that each object has a fixed ratio of vertices to triangles (Euler's relationship [Ill] describes

this ratio including the number of edges for closed, convex, polyhedral objects - restrictions which we do

not strictly enforce). For most of our tes t~objects it holds roughly that a=2, i.e. there are about twice as

many triangles as there are vertices. While the exact number will vary from object to object, it is

important to note that in general there are many more triangles than vertices.

By lacking in formation about face-orientation, we have to compute lighting values for each vertex and

then render all tTiangles twice (once for the silhouette and once for the interior). The cost of the standard

algorithm is thus:

Ver {lighting values) + 2·Tri {rendering front&back} =

Ver + 2·a·Ver = Ver· (1+2 ·a)

3.5.2 Face-Orientation Determination

There are variolls ways to determine whether a surface element is pointing towards the viewer or away

from her. Some pointers on this topic have already been given in Section 2.2.3.

The correct way to establish face-orientation is to spawn a vector from the viewer's position to the centre

of the face under question and calculate the dot product of this vector with the nonnal to the face. I f this

dot-product is negati ve. then the face is front~facing otherwise it is back-facing. This method is

prohibitively expensive, because of the need to span a vector from the viewer to every surface element.

Our first approach was to usc an approximation and assume the view-vector to be constant (result ing

artefacts are discussed in the Section 3.5.2.1). We thus traverse all triangles of an object and mark each

face either front or back-facing. While doing so, we also mark the vertices defining a front-facing

triangle. Next, we traverse the vertex-list and compute the lighting values for marked vertices (i.e. for

those that are part of front-facing triangles). Finally, we render on Iy front-facing triangles.

Ifwe let b be the proportion of front-facing triangles and (I-b) the proportion of back-facing triangles,

we end up with the following cost:

Tri {Face orientation) + h·Ver {lighting values) + b·Tri {rendering front) +
(l~b) ·Tri {rendering back} .,

2·Tri + O. S·Ver = 2·a·Ver + O.S·Ver s Ver· (b + 2 ·a)

We make the assumption that the percentage of front-facing triangles b is equal to, or very close to, the

percentage of vertices that are part affront-facing triangles. We therefore reduce the cost compared to the

standard approach as long as b<l, i.e. as long as not all faces are front-facing.

Another, less obvious approach is to use the previous approach backwards. We see if a vertex is front or

back-facing and mark the attached triangles accordingly. The reason why we would want to do that is

('IIIlPll" 1 (Jplimi \(1 ti"" \

because in a well-behaved closed object, the number of vertices is much smaller than the number of

triangles. We discover that there are other advantages to this approach, but we first need to explain, what

the normal of a vertex is. As a vertex is a point in space it can, by geometric definition, not have an

orientation. Nonetheless, the vertices under consideration are part of an object-structure and their normals

are thus defined as: The normal of an object-vertex is the average of the normal s of all triangl es of which

this vertex is a part. Thi s is the reason why we can infer, to some extent , the orientation of a face from the

orientation of one of its vertices. Obvious ly, the normal of a vertex is in most cases not equal to the

nonnals of its attached triangles, but for finely tessellated objects the difference is small. This is

important, because we are more concerned about speeding up rendering for objects with many faces, as

smaller ones wi ll render faster anyway.

Our algorithm was then as follows: Traverse the vertex-list and determine the orientation of a vertex. If it

is front-facing, perform the necessary lighting calculations and mark the attached triangles as front-facing.

Finally, render only front-facing triangles.

The drawback of this approach is that many triangles can be attached to one vertex (the inverse relation is

much more well -defined, as a triangle can only ever consist of exactly three vertices) and so a lot of time

is spent on marking the same triangles as front-facing. Knowing the ratio of faces to vertices of a given

object, we tried to use a statistical approach in which only a certain percentage of attached triangles are

marked in the hope that other triangles will be marked by neighbouring vertices, but unfortunately this

can leave constant holes when an object-synchronised approach is taken. Using a randomised approach

leaves less holes, but produces clicking (sudden appearance and disappearance of holes). Another

problem is that triangles can be set front or back-facing by several vertices so that in a border situation we

can get the same triangle set front-facing by one of its vertices and back-facing by another, so that the last

processed vertex will dominate. This can obviously result in holes in the object and solving th e situati on

involves either a kind of majority approach, re-setting face-ori entation before each rendering pass to an

undefined value or usi ng what we call a large flag instead of a standard binary flag. None of these

solutions is really optimal, as the issue of accessing many triangles per vertex still remains.

We therefore abandoned the idea of marking triangles in the vertex-traversal. Rather, we check the

vertices, when triangles are rendered. Thi s has the added advantage that different rules can be applied to

the rendering phase that will result in var ied visual quality and performance. The rules we invest igated

are: All three vert ices of a triangle have to be front-facing for the triangle to be considered front-facing

(this is the most restrictive condition and will render the least triangles, resulting in the best performance

and the worst visua l quality); at least two vertices have to be front-facing and finally, only one vertex has

to be front-facing. The rule which is chosen can be changed dynamically at run-time and made dependent

on the distance of the viewer to the object as well as the maximum deviation ofa vertex normal from its

attached triangle normals (which can be established upon loading the object) .

(1Wl'I('r 3 0f',i",; \111;011.\ JI

The updated cost is therefore:

Ver {Orientat ion Determination incl . lighting} + b'Tri {rendering front} +
(I-b) 'Tri {rendering back} •

Ve r + Tri - Ver + a ·Ver - Ver ' (l+a)

Using our new approach to face-orientation determination we are able to achieve a significant increase in

rendering performance and introduce a level-of-deta il measure that allows for dynamic run-time

adjustment of rendering quality and performance. It should be noted at this stage that the above cost

calculations wi ll be slightly skewed when implemented. This is due to the fact that part of the algorithm

will nm on the host computer (e.g. custom lighting calculations and manual face sorting), while other

parts will be executed main ly on the graphics-card (i.e. rendering of triangles and face cull ing). We also

find that in some cases it might be faster to render more faces and using a displaylist optim isat ion than

rendering fewer faces without a disp laylist.

3.5.2.1 Perspective Correction

As already mentioned in the previous Section, we sort faces in to front and back-facing to min im ise

geomet ric redundancy (and consequently lighting calculations). One problem that exists with this method

and that has already been hinted at in Section 2. 2.3 is that of artefacts being introduced due to the

approximation made for determining the orientation of triangles.

Figure 15 - Face sorting without perspective correction

at different distances to the object

While this happens only rarely, it can produce undesired holes in an object (see Figure IS for an example)

and shou ld therefore be addressed. To recap briefly, we consider the same view-vector for all triangles

comprising an object in order to save the computational cos t of casting a view-vector from the eye to each

triangle individually. Technically, this si tuation holds only for a viewer infinitely far away from an object

(Figure 16b). The approximation is still fairly good for objects that are relatively far from the viewer but

fai ls when object and viewer arc in close proximity (Figure 16a). In the latter case we assume the true

(ItUI'll r 3 (Jl'rim i\,lfioll \

silhouette to be further back than it is perceived by the viewer under perspective projection . While thi s

example shows well how the approximation can break down, it is not the silhouette that we are concerned

about here primarily (the holes in the object are not due to the silhouette). Nonetheless, we will come

back to discliss this issue a little further, later.

view-rays from infini

• •

a) Viewer at finite
distance

11>
b) Viewer at
Infinity

Figure 16 - View rays at (a) finite and (b) infinite distance from the object

To fully appreciate the situation and the origin of the holes in the object as shown in Figure 15, we

illustrate the scenario in Figure 17. Firstly, we would like to point out the difference between the view

vector and the direction that the viewer is looking at. The latter certainly has an influence on how the

scene is displayed, but it is important to notice that it does not influence which surface elements point

towards or away from the viewer. This is solely determined by the viewer's position relative to the

surface element. This is why we usc the approximation to define the view-vector as

v=c-v
where C is the centre of the Bounding box of the object and V is the position of the viewer. lfthe viewer

is close to the object and near the edge of the bounding box, we can get the following situation: A surface

element S close to lhe edge of the Bounding box has a normal Ns lhat when compared with the normal of

the view-vector Ny appears to point backwards, where in reality it does point forward (a fact that can

easily be verified by drawing a vector from the viewer to the surface element).

Centre of
Bounding Box

(C) •

Viewer is
looking at

Figure 17 - Explanation for Object holes

(.It,,1'''· 3 (}p(iml'!{I(;oll' J5

In order to explain our solution to the problem, we use another schematic (Figure 18), which better shows

the angles involved. Here we place the viewer on the bottom edge of the Bounding box (the most extreme

position for the viewer) where she would be able to move towards or away from the object, thus changing

angle a in the process. (fwe now consider a surface element at the very bottom of the bounding box and

almost parallel to the lower edge (if it were indeed parallel , the viewer could not see it at all) , we see that

the surface element and the view-vector form an angle p whi eh is less than or equal to Ct. Thus, if we

include all faces that deviate by at most a from the standard front-facing criterion (Dot-product of view

vector with surface normal is negative) in the front-faces, we are able to fill any holes that might appear

due to our approximation . As can easily be verified from Figure 18,

. a
sma=lvl

where a is the side length of the Bounding Box (we take the largest side-length as the most conservative

measure, which is the reason why we drew the Bounding Box as square) and Y, as above, the view

vector. We call Ct the perspective angle or perspective correction angle, because we offset our

calcu lations by its value in order to counteract the effects of perspecti ve projection.

BOlUlcil11g Box

Center of
B oUllCting Box II

'-..-,----"---j

Surf.1ce Element

Figure 18 - Angles in an extreme case

The mean ing of offset is shown in Figure 19. Figure 19a) depicts the standard case. where the dot-product

of the view-vector and the surface-normal is shown as a cosine curve and negative values indicate front

facing surface elements. At OS 1t the two vectors are parallel (N.B. the x-units ofn).

/"
.. -~

_, 1
'-' .)

<'

I
i ,.

< • • , ~)

- +- Ne-.... Frott fa • .,u cut·eII

llllcrnlediate

Figure 19 - Determining Face orientation: a) Standard; b) with correction offset

('hU/II,.,. 3 Vplim;'Iflliml.'I ./1>

To accommodate for the perspective correction, we find the perspective angle a as described above and

take cos(7tl2 - a) (which is equal to -sin(n) thus saving an addition) as the new front-facing cut-off value

(instead of zero). This is illustrated in Figure J9b). We see that this results in more front-facing triangles

being detected, which is what we needed to achieve.

Now, as promised, we return to the issue of the silhouette problem, which is due to the same

approximation (and can therefore be remedied by the same approach), but which manifests itself in a

different manner. As we showed in Figure 16, the true silhouette will lie much closer to the viewer if she

is situated close to the object. The visual artefacts that appear in this case are shown in Figure 20a).

Figure 20 - Silhouette: a) Without perspective Correction; b) With perspective Correction

As we mentioned above, we could solve this problem with the same method and apply an offset of a into

the other direction in order to add more faces of the border region to the back-facing surface clements.

Instead, we use a displaylist to render all back-facing elements, which is more than we actually need, but

due to the hardware support for the dispJaylist still performs favourably. In the case where displaylists are

not available, the perspective correction for back-facing surface elements will produce correct results.

0.45

0.4

0.35

0.3

'" 15 0.25 >--c 0.2

'" 0.15

0.1

0.05

o
o

Border Region Faces

~

~
~'\.

"" ,,~
~ --- ~

2 3 4 5 6

Distance to Object (normalised)

Figure 21 - Border Region Faces vs. normalised Distance

- -DeerO

-- Deer1

Deer2

Deer3

- -Deer4

--Deer5

-+-sin

(IWl'lf'r . ~ O"rimi 'tllri,,",

The overa ll result is as expected: As we move from far away towards an object, the number of front faces

and the number of faces in the intennediate zone increase steadi ly. Figure 21 shows how the percentage

of Border Region faces closely follows the probabilistic curve determined by the perspecti ve correction

angle (Le. the sine curve). This means that as we get close to the object the total number of faces rendered

increases and rendering performance drops (of course largel y due to the fact that the object's screen

dimensions become bigger and more pixels have to be filled). Altogether our approach successfu ll y

remedies the artefacts, which occur in some situa tions by dynamically adjusting the threshold, which

decides if triangles are front- or back-facing according to the di stance between the viewer and an object.

While our method produces m in imal computational overhead, the rendering performance may s lightly

decrease as a response to an increase in triangles to be rendered. The effect of this must be weighed

against performing a perspecti vely correct face-orientation determinat ion or the loss of visua l quality if

artefacts appear.

3.5.2.2 Qualitative Results for Face-Orientation Determination

The face-or ientation determ ination methods discussed in Section 3.5.2, apart from varying in effi ciency,

also produce renderings of different quality. Table 6 and Table 7 detail our findings with respect to the

effects of the different orien tation methods on the visual quality. The fi rst row in these tables shows

whi ch geometric data is used to determine face-orienta tion (NT.View means the nonnals of the triangles

are used; Nv.View means the nonnals of vertices arc used). The next row is labelled OOT (Orientation

Determination Traversal) and indicated in which traversal the actua l orientation of the face is determined.

All of our approaches use multi-traversal techniques to min imise computational overhead so that

computation of data required for the orientation decision and the actual detennination may be located in

different traversal loops. The third row shows what condition is used to determine if a surface element is

front-faci ng or not. In the fourth row we specify the visual qua lity, which depends on the number of

visible ho les that are produced by a given approach. The last row explains which artefacts (if any) arc

apparent for a given method.

Method Ny. View Ny.View N\·.View N\,.View

ODT Triangles Triangles Vertices Vertices

Condition No persp. correction Wi th pers. Mark all in faces as Mark some in faces

correction front-facing as front-facing

Quality OK Perfect Perfect Bad

Comment Typical persp. No artefacts No artefacts Many holes andlor

correction artefacts fl ickering holes

T able 6 - Visual Quality vs. Face Orientation M ethods (\)

The first column in Table 6 shows the standard approach, which calculates face-orientation per triangle,

but wi thout perspective correction. The visual qual ity was specified as OK, because artefacts are few and

on ly visible for special views, close to the object and on special objects. Nonetheless, the artefacts do not

depend on object-resolution (apart from the fact that the screen-area affected wi ll be smaller for more

deta iled objects») i.e . will always be visible fo r the same object at different resolutions. We fi nd th is

unacceptable and therefore always use perspective correction for all our other approaches. As expected,

(/ttl/HCI ~ I~

the visual quality with the same approach but also using perspective correction is perfect (Le. no holes in

the object under any circumstances). The remaining approaches in this table and the next are based on the

Nv.View approximation (i.e. detennining the orientation of a face by the orientation of its vertices). The

thi rd column in Table 6 lists the results for marking all attached triangles ofa given ve rtex as front-facing,

if the vertex is front-facing (i.e. during the vertex traversal). As this is a very conservative approach, the

visual quality is aga in perfect. The statistical method used to reduce the number of triangles marked per

vertex on the other hand produces bad results with many holes for the static version and fewer holes (but

flickering) for the random version.

Method Nv.View Nv.View Nv.View

ODT Triangles Triangles Triangles

Condition All front-facing At least two IT At least one ff

Quality OK Almost perfect Perfect

Comment Some holes in low- One hole in lowest No artefacts

detai l objects detail object from

special viewpoint

Table 7 - Visual Quality vs. Face Orientation Methods (2)

Table 7 lists the visual results for calculating vertex-orientation in the vertex traversal loop, but

determining face-orientation during triangle traversal. The difference between the approaches listed is the

condition used to determine front or back-faces. The first column is the least conservative approach and

recognises a triangle as front-facing if all three of its vertices are front-facing. The visual quality is judged

OK, because artefacts appear only for low-resolution objects, for which the vertex-approximat ion is far

less accurate than for high-resolution objects. For high-resolution objects, the visual quality becomes

perfect. The second column 's condition is that at least two vertices of the triangle have to be front-fac ing.

This condition holds true for more tTiangles than in the previous column and produces an almost perfect

result: We could only find one hole in the lowest detail object from a special view-poin t. The most

conservative condition that only one of the triangle 's vertices needs to be front-facing produces perfect

results for all objects under any circumstances.

3.5.2.3 Quantitative Results for Face-Orientation Determination

In Section 3.5.2.2 we have looked at the qualitative effects of different Face-orientation determination

methods. In this Section we have a quantitative look at the number of triangles detected by any given

method and how each method performs in terms of frames per second.

(hUI"" 3 ()"tim; ,mit'''" IY

ODT Triangles Triangles Vertices Vertices

No persp.

Table 8 - Performance .s. Face Orientation Method (I)

Table 8 and Table 9 are aga in structured as in Section 3.5.2.2 and we included the Quality-verdict as a

remin der, but this time we extend the tables with two columns for each method listing the Front-faces

(FF) and frames per second (FPS) of each test-object.

Several fac ts are interesting about the number of Triangles determined as Front-facing. Comparing

methods 1 and 2, we find that using our perspecti ve correction approximation, we include between 33-

44% additional triangles, which is a large amount considering the relative size of artefacts on visual

inspection. We explain this large increase by having made the most conservative estimate about the

perspective correction . To show the flipside of this issue, we included a new column in Table 9 (first

column), which lists the values for performing correct view-vector calculations on each triangle. The

number of Front-faces listed here are therefore the true number of front-faces under perspective

correction not using any approximations. While we obtain the least number of front-faces, we also have to

dea l with the lowest frame-rate of all approaches. Even though less front-facing triangles have to be

rendered, the cost of establishing the orientation of faces is so high that it is faster to render additional

triangles. The idea is therefore not to strive for the lowest possible triangle-count, but instead to minimise

the number of triangles as much as possible with as little effort as possible. This is the reason why

methods 3 and 4 in Table 8 perform better than the previous ones, because calculations are performed per

vertex and not per triangle. We end up with a lot more triangles to be rendered, but we can determine

them a lot faster. Another interesting fact is that even though methods 2 and 4 are very close in face

count, their visual results are extremely different.

We quickly found out that in methods 3 and 4, a lot of time is spent on marking the same triangles as

front-facing, so we proceeded to mark only vertices and then decide at triangle traversal time whether a

given triangle is front-facing or not.

(IlIIpll'r 3 {){Jlimi"'lIfiOl'''' 50

Method NT VIew Nv.View Nv.Vlew Nv VIew

ODT Triangles Triangles Triangles Triangles

Condition View~ All front-facing At least two tT At least one ff

vectorlTriangle

Quality Perfect OK Almost perfect Perfect

FF FPS FF FPS FF FPS FF FPS

DeerO 299 212 . 19 387 4 2 0 . 26 503 417 . 70 558 412 . 10

Deerl 461 162 . 57 63 1 345 . 85 771 33 1 . 56 841 324 . 17

Deer2 632 119 . ·10 903 265 . 24 1094 254 . 7 5 1219 248 . 29

Deer3 1050 71. 33 1559 181. 70 1816 164 . 38 1997 1 68 . 92

Deer4 2555 31. 72 4133 81.32 4543 76 .28 4873 76 . 74

DeerS 4843 16 . 7 0 8019 44 . 00 8680 4 2 . 2 3 9222 41. 8 5

T able 9 - Performance vs. Face Orientation Method (2)

The resu lts of th is approach with the different orientation criteria are shown in methods 2-4 in Table 9.

We can see that all rendering times are fairly close but the face-count varies between 15~44%. As we

want to guarantee a perfect visual resu lt and the frame~rates are so simi lar, we have no trouble opt ing for

the most conservative case (method 4). In conclusion, we were able, by means of restructuring our

algorithm and using several approximations, to increase rendering speed by 94-151% (a greater speedup

gained for more complex objects), even though we increased the number of Front-facing triangles to be

rendered by 86-90%. This means that the cost of rendering a triangle is so low that the per-triangle

computat ional cost in our algorithm is considerable.

3.5.3 Anti Aliasing

Another (more visual) optimisation can be achieved by using anti-aliased lines with glEnable

(GL_ LINE:_SMOOTHJ. Unfortunately this operation is not always implemented and where it is, performance

usua lly suffers greatly as this opt ion is not widely used and therefore not usually optimised. An

alternative is the FSAA (Full Screen Anti Aliasing) which some graphics card support and which

smoothes the appearance of the whole scene and not just the lines. While a performance hit can certain ly

be expected while enabling this option, it seems that most graphics systems optimise their FSAA more

than the line anti-a liasing. The level at which the FSAA actually happens also appears implementation

dependent. In one of our experiments for example, anti-aliasing was performed on the screen output, but

was lacking from memory-shots taken from the colour buffer.

3.5.4 Relative Rotation

Instead of multiplying each normal with the current model ~view rotation to obtain the current orientation

of the normals (as was done in the or iginal code by Landers for ease of readability), we orientate the light

vector by the in verse rotation, in effect achieving the same resul t, without having to perform matrix

mullipl ication on each normal

(/tll/" I J "

3.6 Extensions

In the following Sections, we investigate various methods to extend the standard comic renderer to make

it visually morc interesting. More precisely, the existing lighting model is extended, the use of multi

coloured objects and si lhouettes is elaborated upon and we discuss the use of textured objects.

3.6.1 Extending the Lighting Model

I=kd I , + d:d [kd(N oL)+k,(RoV),]
o

RV = (L - 2(ili)N)V

Equation 1 - a) Phong reflection model ; b) computation of dot prod uct (R,V)

Next, we explore the effect of including a specular component in our lighting calculations. According to

the Phong reflection model (Equation 1 a) the specu lar component of light interaction is proportional to

the dot product of R and V (which in turn depends on N, L and V - see Figure Sa) for an explanation of

these Vectors) to the power of some number n, ca lled the shininess value. As becomes evident from

Equation I b) the computation of this value involves a vector add it ion, two dot products and two further

floating point multiplications (not including the additional overhead for the power of n). Altogether a

fairly large overhead considering that the equation needs to be evaluated for all front-facing vertices (see

Section 3.5.2 for a definition of this tenn). Fortunately, our optimised face-orientation algorithm helps us

in thi s case. By mUltiplying the right-hand side of Equation lb) out, we get

RV = LV - 2(N.i)(NV)

Equation 2 - Expanded R dot V product

The first term on the right-hand-side of Equation 2 is not vertex-dependent and can therefore be computed

once-off for a given rendering pass. The second vertex dot-product is our familiar N.L dot-product, which

we have already computed. The last dot-product is new, but exactly what we use to determine the

orientation of a vertex and therefore already computed. This means that what fi rst appeared as a major

overhead in tenns of extra computation, turns out to come for free with our new face-orientation

technique. It shou ld be noted that for large values of the shininess value n approximations or optimisat ion

should be used to limit the overhead of the power computation.

0.0 .R.V 1.0

IT 10

~ N.L ~

Figure 22 - a) 10 shade texture; b) 20 shade texture; c) example map

,

The way we make use of our extended comic shader is by using a 20 shading texture instead of a one

dimensional one. Examples of such a texture are depicted in Figure 22b) and c). Figure 23 shows how our

extension effects the rendering resu lt. Figure 23a) demonstrates how the Deer object looks with standard

OpenGL shading applied. Figure 23b) is shaded using a 10 texture (the texture was obtained from Figure

22c) by setting the R. V component to zero) and Figure 23c) shows how our lighting extension to the

standard comic renderer introduces specular highlights, while still maintaining its com ic-style appearance.

Animation B demonstrates the effect added by the specular component by showing the same object

rendered in both the standard and extended comic style.

Figure 23 - a) Standard OpenGL shading; b) standard comic style; c) extended comic style

Whi le we believe that the visual output of our extended style is more interesting and interactive (this is

due to the fact that the viewer's position en ters into the ligh ting equation - as opposed to the standard

approach, where the viewer's location is irrelevant), we can also achieve other visual effects with our

method by simply modifying the shade texture. Animation C illustrates both these facts, by demonstrating

view-dependtmce using a metallic shade-map. A variety of different effects can be produced in this

fashion by altering the shade texture without the need for alterations to the main (extended) algorithm,

which is listed in Listing 4.

Let L - Light Vector
Let Nx - Normal (at any o f Vertex, Triangle, etc.)
Let R(x,y) _ Reflection Vec t or of x on surface with normal y
Let view = View Vector

Render
.01' ' .'I'cJ. .:i ,1· .: nq

i! . . J. r t'I 2 'J r ,<:J ... ~: .'"

compute (L .View) // ' C 1 ' '] ~ in<1 c.l . .1 :':
',:j n

Compute angleOffset
For each Vertex V do

j..':'C .. ·' ;1.:.' (;0

If (Ny. View<angleOffset) //
cal culate(Nv.L)
calculate (R (L, Ny) . View
setFrontFlag (V)

Else
setBack Flag (V)

End If
Next Vertex

11 n.

For eac h Triangle T d o ;! 1.) 1' i I' ." .'

If (Condition (V2 (T) , V2 (T),vdT) I) /1 I :'

i / '. ,. '" rJ".. - t. !: "'. '"

n.

Dra w T
End If

Ne xt Triangle
/ / :.. ! _ ~ -·. 0 ;c c.. ::. • T o.' • L'

i/ ~:: rl - '. l l' '11 . ~ I~ '~ c.- } 1 1': . l 1" •

For each Triangle T do // ! " (

: . ~ :

("111'1(r 3

Draw T
Next Triangle

End Render

53

i . J ' 10' ' n " " ' * 1", :;', ,i~~ 1 I\. 1 ' n "
j v ' "L ' (d l' ':i~ . "j L~ " T'! n ,' ~p li.·· . t.o

Listing 4 - Extended Comic style Algorithm

There are several reasons why we draw each triangle for the silhouette and not just the back-facing ones,

We could easi ly extend the "if-statement" in the first triangle-traversal and add an else clause to render a

back-face otherwise. But as we discussed above, a perspective correction has to be applied to the back

faces as well, so a simple "else" would not suffice, Yet another condition would solve the problem, but

more importantly. a variety of state-changes would be necessary in order to switch the OpenGL engine

from our comic specific fi ll -mode to the si lhouette specific line-mode. OpenGL state-changes are very

expensive operations and should therefore be kept to a minimum. The next option would be to traverse

the triangles again, but perform a test to render only the ones that are back-facing, It turns out, that using a

displaylist, which renders all triangles, is approximately as fast as determining back-facing triangles

manua lly on our test set-up, In general, this fact has to be established for any given system and the fastest

method can be chosen.

3.6.1.1 Qualitative Results for Lighting model extension

By extending the lighting model of the standard comic renderer, we increased its computational

complexity and we had to use various approximations (as well as remedies for these approximations) in

order to make the extended comic renderer perform as well as the standard comic renderer , To justify all

these efforts, we now demonstrate the visual effect produced by the extension and compare it to a

physically more correct version.

Figure 24 - Extended Light Model: a) Diffuse Component; b) Shade-Map

In Figure 24b) we show a smooth shade-map with a red specular component and green diffuse

component. These are combined additive over the map to produce white at the point where specular and

diffuse components are at a maximum and black where both are zero. Figure 24a) therefore shows the

diffuse component only (specular component is zero), This diffuse component is only dependent on the

curvature of the object and the light direction, so that view-vector approximations will have no influence

on this component.

Figure 25 - Specular Component: a) Exact; b) Approximate; c)Difference

In Figure 25 we show the specular component only, with th e diffuse term set to zero. The shininess value

is set to 6, producing fairly sharp specular effects. Figure 25a) shows the more accurate version. which

uses an exact view-vector calculation for each vertex, Figure 25b) on the other hand uses our constant

view-vector approximation. As becomes evident from Figure 2Sc), where a difference-image of the two

versions is shown, the two results are not identical. Nonetheless, the visual difference is small enough that

the untrained eye would have difficulties deciding as to which vers ion is more accurate. As expected,

differences occur for any given shininess value, but the visual results are always simi lar.

. 5

Table 10 - Comparison of resuJts for various Shininess values

Table 10 shows the visual results for the correct view-vector calculat ion and our approximation side-by

side for different values of the Shininess value n. This va lue determines how glossy an object appears.

Our approximation works best on high curvature regions and fai ls completely on a perfect plane. This

explains why some surface areas of the approximate version resemble the correct version more closely

than others. From OUf experiments we find that OUf approximation suffices for any situation, where the

effect of specular reflection is important (as opposed to a physically more correct approximation) and for

objects that are non-planar.

Figure 26 - A Collection of Shade-maps (a-e)

Figure 26 shows various shade-maps that we have experimented with. Even though all of these are

greyscale, we have shown above (Figure 24) how a colour-shade-map can be used to simulate coloured

light-sources. Introducing black stripes into the shade-maps to separate the colours results in different

shade-regions being separated by black lines as shown in Figure 28a), which uses shade-map c. As

ment ioned above, a large variety of effects can be produced simply by altering the shade-map. Figure

27a) for example shows a monochrome, very flat rendering of the statue of liberty using map a, whereas

map e produces the metallic-si lver finish of Figure 27b). In the same Figure we can also examine how the

specular approximation works well for everything except the book that Liberty is holding. due to its

planar nature.

I. xt('JI.'Iioll'

Figure 27 - Statue of Liberty: a) Monochrome; b) Highly reflective Metal shading

The Blender in Figure 28b) uses map d, creating an interesting effect of shades crossing over, due to the

checkerboard layout of map d. In essence, we can re-produce anything from a close approximation of the

common Phong-shading model to a totally flat-shaded object through our shade-mapping technique.

Figure 28 - More examples: a) Tail of Slinky the Dog; b) A Blender

3.6.2 Using existing Colour Information

While the original algorithm by Landers uses one uniform colour for the whole object, we think that the

visua l result is much more interesting if we make use of existing colour-infonnation (see Figure 14b». By

setting the texture environment to modulate relevant pixels, we are able to use existing vertex colours (or

base-textures) and shade them accordingly. We make sure that each triangle is coloured with exact ly onc

colour (even if the three vertices of that triangle had different colours associated) to ensure that no colour

bleeding occurs across the triangle (this will ensure a flatter, more comic-stylish look).

(IU'I'" 3 r '(1,'11 '101/\

3.6.3 Silhouette Colour

Figure 29 - Silhouette Colour: a) Varied ; b) Single

Other simple var iations are easi ly implemented. Comparing Figure 29a&b) for example one can observe a

di fference in the silhouette style. The deer in Figure b) uses a plain black outline for the silhouette and

other edges, while the deer in Figure a) actually use a darker version of the object colour. Rendering the

edges wi th the colour of the defining vertices and sca ling the colour down by a certain factor very easi ly

achieves this.

3.6.3.1 Quantitative Results for using Silhouette Colour

The effects of the remaining visual enhancements are shown in Table 11, where we compare frame-rates

of the Extended Comic renderer with those of the Extended Comic renderer with Si lhouette colour and

Base-texture (multi-texturing) respecti vely. It turns out that using multiple colours for the silhouette

displaylist incurs a negligible penalty espec ially considering that the displayJi st could sti ll be optimi sed to

accommodate multiple colours. Using multi-texturing on the other hand results in a more severe

performance penalty as the frame-rate drops between 30-32%. Still , real-time performance is very

comfortably achieved even in this case.

Name Extended Comic Coloured Silhouette With Base Texture

DeerO 412.10 4 06.33 314. 12

Deer1 324.17 317.04 264 . 01

Deer2 248.29 242.04 199.72

Deer3 168.92 164 .8 2 135.21

Deer4 76 .74 75.09 57.69

DeerS 41. 85 41.07 31.04

Table II - Performance with Silhouette Colour and Multi-texturing ill FPS

3.6.4 Dealing with existing Textures (Multi-texturing)

Objects with simple colour schemes like the dog in Figure 14b) or the reindeers in Figure 23a&b) produce

a convincing and effect ive comic-style look. A large variety of objects which can be downloaded from the

5.\

internet or are available in commercial packets use textures instead of colour information (even though

the two are not mutually exclusive) to add detail to their geometric models. In fact the common trend

amongst game designers is to employ objects of mini rna I polygon count and furnish them with textures of

considerable detail - in most cases an adequate compromise. Naturally, our extended comic renderer

needs to be able to cope with the large number of objects in this class. The basic problem that needed

solving was that we already were using a shade-texture, so that an additional texture could not be applied.

The easy and straightforward solution we found is to use multi-texturing. OpenGL 1.2.1 (see [83], p.240)

defines the GL_ARB_multitexture commands (which up to that point were optional extensions) and at

least four texture units are supported by the GL engine (this does not mean that a specific vendor has to

implement this many - most multi-texture capable cards today only support two simultaneous texture

units). By enabling blending, assigning one texture unit to the rendering of the object texture and another

one to rendering the shade texture, we can in fact produce our comic style for textured objects. Of course

the same results could be achieved on systems without multi-texturing by performing a separate rendering

pass for each of the textures to be used. For this to work the depth-buffer has to be set to GL_ LEQUAL in

order to come through on the second pass. The incurred performance loss is then proportional to the

number of polygons that have to be rendered twice.

Figure 30 - Comic style with multi-texturing: a) Spider man; b) TIgger; c) Forklift

As we show in Figure 30, the quality of the output largely depends on the object's base texture. Figure

30a&b) have fairly flat textures to begin with so that the shading applied by the comic renderer

accentuates this fact in a complementing fashion. Figure 30c) on the other hand exhibits so much object

texture detail , that the subtle effect of our comic-shading gets lost (this is true for still images anyway,

animations are able to show how shadows and lights sweep over an object, so that the static object texture

can be distinguished from the dynamic shade texture) . We therefore conclude that for most effective

results in connection with rendering textured objects in comic-style these textures should be as flat and

corn ie-l ike as possible to begin with. One way of achieving this at run-time would be to decrease the

number of colours used in a texture via an image fi lter. The limitations of the image filter then determine

the visual outcome of this approach.

ChUI,ra I Rl""/" 5Y

As already mentioned in Section 2.3.1, the number of state changes should be kept to a minimum. As we

are faced with objects of various makes and origins, we cannot guarantee that all faces of our objects are

textured (even if some of them are). This poses problems when it comes to render ing these faces as no

texture or texture vertices may be defined for these objects. Several solutions exist to this problem:

Sort faces into textured and non-textured bins and render them separately

Define default (empty) texture and defau lt texture vertices for non-textured faces

Turn off base texture unit for each non-textured faces

The last method involves the most state changes and is therefore not advised. The second method

involves creating a further empty texture (which can be as small as possible, i.e, Ix! or 2x2, depending on

the exact interpretation of the OpenOL texture limitations), Frequent texture rebinding may create an

unnecessary overhead, which can be avoided ifnon-textured faces are rendered together. The first method

impl ies a slight modification in the rendering algorithm, but bin sorting can be performed at load-time, as

texture assignment of faces does not change at run-time. This solution requires the least state-changes and

multi-texturing can even be disabled for parts of the faces, which depending on the implemen tation, may

speed up renderi ng performance,

3.7 Results

3.7.1 Comparison of Approaches

In Table 12, we list the performances of the Defallit renderer (see Section 2.4 .3), the Standard Comic

renderer (Section 3.4) and our ExtefJded Comic Renderer (Section 3.6.1) in absolute as well as rela tive

tenns.

Table 12 - Performance Comparison of Default Renderer vs. Standard Comic and Extended Comic

The perfonnances for the Default Renderer are given in two variations: One being the fastest possible

version on our test-plat form, while the other textures our test-objects. The reason th is is mentioned is

because the deer-test-objects do not originally have a texture, but since both of the Comic renderers use

texturing it is only fair to compare their performance against the default renderer using texturing as well.

As can be seen from column 3 and 4 in Table 12, the difference between applying a texture and not is

fa irly small (between 2· 10%, with greater di fference for less detai led objects), but should be noted. In

(,(1

columns 5 and 6 we list the absolute performances of the Standard Comic approach and out Extended

Comic approach respectively. It is evident that the two perform equally (always within 10% of each

other), the Standard Comic renderer performing favourably for low-resolution objects, while the

Extended Comic renderer has a very slight advantage for high-resolution objects. We attribute this to the

fact that modem hardware accelerated graphics cards are so extremely fast. The Standard Comic renderer,

wh ich uses a brute force method to render triangles performs well if there are a limited number of

triangles to be rendered. The Extended Comic renderer uses various calcu lations to limit the number of

triangles to be rendered, the in itial cost of which diminishes its performance. For many triangles though

this technique pays off as the graphics pipeline gets saturated. This is the reason why we are able, with

our various improvements to the Standard Comic algori thm, to extend the standard lighting model by a

(theoretically) expensive, view-dependent component and sti ll perform basically as well as the standard

version. Similarly, we explain the results obtained in columns 7-10, where we compare the performances

of the Comic renderers against those of the Default renderer. As the Default renderer makes use of 100%

hardware acceleration, it is mainly limited by the speed and width of the graphics pipeline. The comic

renderers on the other hand have to perform various calculations per vertex and/or triangle. This is the

reason why their performance decreases with increasing number of faces. In absolute terms, we are very

pleased to see that both Com ic renderers fulfi l their goal of real-time performance.

3.7.2 Face-sorting vs. Disp/ay/ist in Extended Comic Renderer

We stated earlier, that on OLi r test-platform it is more efficient to render all triangles in order to generate

the silhouette instead of just back-facing ones. This is interest ing considering that the orientation

informat ion is already ayailable from the first rendering pass (drawing the fronts). It means that it is

roughly twice as expensive to check the orientation of a triangle and then submit it as to render it wi th the

optimised displaylist on the graphics card. We note though, that the factor is not exactly two, as there are

usually more than half of the faces back-facing (using our perspective correction) and the relative

perfonnance of the two approaches is not equal to one. In Table 13 we list the details of our tests.

Columns 3 and 5 show absolute frame-rates of the whole rendering stage, while columns 4 and 6 detail

the time (in milliseconds) to render only the si lhouette. Columns 7 and 8 show the relative performances.

The conclusion is that even though the display-list vers ion is usually slightly faster the overall

perfonnance is basically the same, indicating that the si lhouette rendering is a minor factor in the total

rendering loop.

(/luI" 3

DeerO 578 1. 42 0.76 1. 87

Deerl 870 0.97 0.85 1.14

Deer2 1284 1. 39 1. 17 1.19

Deer3 2162 1.72 2. 00 0.86

Deer4 5488 3.77 2 . 84 1. 33

DeeTS 10648 6.86 5. 21 1. 32

Table 13 - Compar ison of Face-Sor ting vs. Displaylist caching (Extended Comic renderer)

3.8 Summary

In this Chapter, we define the characteristics that we consider vital for recognisable Comic Art, namely a

heavy and dark silhouette as well as flat or very banded shading.

A problem statement is formulated, stating that a silhouette has to be identified and rendered as well as a

employing a shading method for banded shading. As the basis for our investigations we use an algorithm

by Lander [43J. We develop various optimisations and extensions to this standard algorithm. A generic

perspective correction approximation helps us to quickly determine orientation of faces and vertices. The

orientat ion determination itself is di scussed and we provide a very successfu l optimisation that improves

both calculations of the necessary lighting values and determination speed of the face-orientation in one

interl inked approach. The diffuse-only light ing model of Lander is extended to include a specular

component. Even though this component is view-dependent and involves surface refl ection, we are able

with our optimisations to reach between 90- 100% of the speed of Lander's basic approach. Extrapolating

our results we predict that for a large enough number of triangles (>10000 on our test-system) our

approach will actually outperform the basic approach. Both Com ic renderers perform within 25-86% of

the Default Optimal renderer meaning that even at the low-end of performance frame-rates of above 40

can be achieved. The drastic drop-off in performance for high-resolution objects is due to the

computational o\"erhead in performing custom lighting calculations. In the advent of graphics cards with

custom per-vertex shading capabilities this performance-loss will be severely reduced.

Apart from extending Lander's lighting modeJ, we also experiment with other visual extensions such as

multi-coloured silhouettes, comic shading on textured objects and vertex-colour information. The results

of these investigations are that vertex-colour can be used to greatly increase the visual appeal of comic

objects, a coloured silhouette provides an interest ing an pleasant alternative to the common black out line

and base-textures can easily be incorporated into our algorithm using multi-tex turing. It is also our

findin g that the effect of comic shading is easily hidden when base-textures are visually too complex.

(""1"'" .i ""miliary

In conclusion we have successfully implemented a high-quali ty real-time comic renderer capable of

render ing between 40 and 400 frames per second. In addition to that and through the inclusion of a

specular light componen t into the algorithm, we have created a generic shading-mapping method that

does not on ly cater for comic rendering, but is ab le to create a mu ltitude of oth er effects as well, all the

way up to the standard Phong shading, by mere choice of a suitab le shade-map.

(h"I"" .J I"" mllh (;011

4 Sketching

4.1 Introduction

4.1.1 Definition

Figure 31-Some sketch examples: a) Outline to be coloured in {Charcoal} ;

b) Composition exa mple {Ink} (both 1871)

('1

Sketching is used in many real- life situations (like illustrations on a chalk board, doodli ng on a paper,

sketching a map for directions, etc.) and in most cases represents a simplified, line-art version of reality.

Depending on the artist (novice, beginner, expert, etc), the drawing medium (pencil, pen, chalk, ink, etc.).

the paper medium (paper, foi l, chalkboard, canvas, etc.) and the purpose (demonstration, illustration,

explanation , etc.) the outcome of a sketch can vary widely indeed. Figure 31 and Figure 4 show both

common and extreme examples of sketching, respectively. As already mentioned in Section 1.4.2.

abstraction, apart from extracting relevancy. can be usefu l in the rendering process, because it very

extensively limits the necessary deta il to be reproduced on the screen. Figure 31 b), for example, shows

very few horizontal, vertical and diagonal lines, none of which are particularly straight or accurate. but

the concept of a sofa is understood immediately.

As with the comic style (Chapter 3) we therefore have to identify the key features that make a sketch

recognisable as such. It becomes evident that the above-mentioned variables of sketching are poor

qualifiers. We thus note the following features that are common to most sketches:

Drawn by hand (Randomness / Uncertainty-Factor)

Economy of line (little, but important object detai l)

Few colours used (monochrome)

The fact that most typical sketches are drawn by hand exposes itself in that they are usually imperfect.

Figure 32 illustrates this fact with a typica l sketching example. Straight lines are not perfectly straight,

I nl, odu(lum

lines do not always converge in common points and several lines may be drawn to approximate some

average line in between. This is no necessity; as for example technical sketches (even though produced by

manual means) may appear quite elaborate using rulers and compasses to produce exact geometric curves

and forms, but even those may fa il to reali stically converge on object boundaries.

)
No perfectly
straight lines

Figure 32 - Typical Sketch Example {Pencil} «(361)

to converge

/
Most sketches limit themselves to providing an outline of the real object with necessary detail where

appropriate. This implies that a wealth of secondary information (like shading, colour, texture and other

material properti es including refl ectivity and shininess) is reduced or discarded altogether in order to

draw attent ion to object detail that is considered of primary importance. An example that is often quoted

comes from LansdO\\11 and Schofield [44J and deals with the si tuation a car mechanic finds himself in. He

wants to repair an engine and therefore needs information about the structure and workings oflhat engine.

An image of photorealistic quality would help him little, as he has the real engine in front of him. Another

example would be directions to get to a certain location within a city. A photographic image from a

satellite will most likely be of less help than a layman 's sketch, where streets are simple lines and only the

ones to be taken en route are drawn. It is for these reasons that most sketches suffice with an approx imate

outline of an object and only a hint of shading, where the three dimensional shape of an object is

important.

4.2 Problems

4.2.1 Problem Statement

In accordance with Section 4.1.1, we must solve the following problems:

Convey a manual-production look

Idcntify important object detail (semi-) automatically

Render the specific object-detail with:

Deliberate Imperfections

Rudimentary hints at shading ifnecessary

4.2.2 Implementation-specific Problems

65

In general, object-data is accurate and physically correct implying that imperfections necessary to imitate

a manually crafted appearance are not part of the object-specifications. We therefore have to define and

apply what we call uncertainty functions to the existing object-data in order to emulate some form of

human error.

Due to the imperfection aspect of the sketch ing process and the animation aspect of the rendering process

we have to address the issue of time coherence. While it would be unrealistic to expect an unaided manual

sketch to render coherently between consecutive frames all the time, it will produce visually distracting

images if all consecutive frames differ from previous ones (this is usually perceived as flicker). A

compromise wi ll therefore have to be made to find an optimal update~rate of the uncertainty data

super imposed on object data. Alternatively, the uncertainty ftmction has to be chosen to be temporally

smooth. Hertzmann and Perlin [32], [33] state that an update-rate between 10- 15 frames per second

appears most natural to people. Whether this is due to the fact that the majority of people are used to these

frame-rates from experience with stop-motion animation, or whether there are more fundamental reasons

for this, is not mentioned.

As we stated above, the silhouette of an object is usually crucial to convey shape-information. Other fo lds

and creases might be of importance to specify detail within the si lhouette boundaries. Still. we do not

want to limit ourseh·es to these geometric measures and we therefore invent the concept of an

imporlance-/unction, which takes as input some object-data and produces as output how important this

data is. In this light, the silhouette condition is just a specific importance-function , even though a dynamic

and context-sensitive one (by bei ng view-dependent).

If we want to use the silhouette condition as one of our importance-functions, we have to compute it from

the object-data in an efficient manner. The reason why we cannot just simply use the silhouette generation

algorithm of the Comic renderers (Chapter 3) is because there the silhouette is generated as a by-product

of the OpenGL rendering process in image-space. In order to apply an uncertainty function, we need to

("UI"" J \0/111;01'

generate edge-information in object-space, before the OpenGL engine is engaged. In some cases other

defin itions of important object-data might be applicable (e.g. the different mechanical parts that make up

a machine). Here, usually some form of world-knowledge must be available and applied in order to

signify importance. Importance-function thus defined are generally stati c.

Rendering should be line-based in one form or other. Standard shading relies on colour-brightness

variation, so we have to find an alternative way to convey shape-information through the use of

appropriate line-placement, where necessary.

It is conceivable that any given solution to our problems might generate edges which should be hidden by

the body of the object (these are ca ll ed hidden lines). We must use some method of hidden line removal

to address this issue. Again this can be seen as another context·sensitive importance-function.

4.3 Solution

In order to produce Line-Art drawings of objects it is convenient to work with the edges of an object. We

therefore need to compute the importance function of the edges of an object for the current context. The

meaning of context may be as simple as the current relative positions and orientations of object and

viewer (i.e. view-dependence) but may also include information about parts of the object that should be

hidden or highlighted. We then render a line-art representation of the object by drawing the important

edges after randomisation (Le. one or a set of uncertainty functions) has been applied to it. Shading

information is best computed over faces (as opposed to edges) because the notion of a filled area is

usually associated with it. We therefore need to draw the faces of the object in some kind of line-shading

mode. We also may want to update the randomisation of the uncertainty functions every so often in order

to crea te a dynamically changing, animated look. These steps arc summarised in Listing 5.

Render
:' i .\ r _")' . [l .)\ • n:... ., .(- {". ('"I

Compute (importanceFunction (Object. E1))

.1/ '::"fj r ~ '.i. ! "-~ ,

For each Edge E do
If (important (E)) then

Draw randomised(El
End If

Next Edge

/:'
If (shadingRequired) then

For each Triangle T do
Draw T

Next Triangle
End If

1" f

1"! . '.:

'. ', .
If (randomisationAnimationRequired) then

Every nth frame do
update (randomSeed)

End Every
End If

End Render

i- L

Listing 5 - Generic Sketching Algorithm

\iuIIJ"rJ tpl'ruadl' RlII,Jom Pc'rlllrharioll SA,'/4 I"ng)

4.4 Standard Approach (Random Perturbation Sketching)

As a starting point we use the silhouette criterion as our importance function. This means that an edge is

important if it is located on the si lhouette (which in tum is context-sensitive, i.e. view-dependent).

Next we address the uncertainty function. Inspect ing a variety of manual sketches (see Figure 32 for a

prime example), we identify several obscrvables. In Figure 33, we define the following un certainty

features (which are consequently parameters in the rendering process):

a) Repeat

-+ ---... _-----
b) Pertmb

- - - -+ -----:..~ .. --,-. -= c) Offset

-+ ... ___ c_-_ d) Combined

Figure 33 - Uncertainty functions

One or several lines are drawn for each silhouette edge (a)

Lines are subdivided into smal ler fragments and randomly perturbed (b)

Start and Endpoints of original lines are offset randomly from their original position (c)

The number of times each line is rendered has a well defined upper limit, which is lowered according to

the total number of silhouette edges in an object and for a given view (as we use an exhaustive search

method to identify edges, this information is readi ly available).

The random perturbation of silhouette lines was inspired by an algorithm to generate semi-random coast

lines by Hill [34] and works in the followi ng simple and recursive manner:

1. Ifa line L is longer than a given maximum length go to step two, otherwise render the line

2. Divide the line into two segments Ll and L2 by generat ing some mid-point M (need or should

not be true geometric midpoint) so that LI = (StartPoint(L), M} and L2 = (M, EndPoint(L)}

3. Call step one recursively with LI and L2

Hidden line removal is performed easi ly and effort lessly with the background-preserving method

discussed in Section 2.3.2. A sample object rendered in th is style can be seen in Animation D.

(IIUI II J {Jprimi\llIwI,\

4.5 Optimisations

4.5.1 Level of Detail Optimisation

To limit the number of silhouette edges to be rendered, we implement two initialisation optimisations (i.e.

constant, non-context-sensitive importance functions). As mentioned in Section 2.2.3, in face edges are of

no visua l va lue (Markosian et a1 [47J wou ld argue that their probabi lity of being part of the si lhouette is

zero) and they are therefore filtered out immediately. Simi larly, we can filter out edges whose dihedral

angle is above a certain threshold value, which we call MaxAllgle. Furthermore, edges with lengths below

a certain threshold value, called MinLellgth, are also disregarded.

4.5.1.1 Quantitative Results for Level of Detail Optimisations

In Section 4 .5.1, we discuss two s imple level-of-detail (LOD) reduction methods:

Discarding edges if their lengths are below a certain threshold value (MinLength)

Discarding edges if their dihedral angle is above a certa in threshold value (MaxAngle)

In this Secti on we have a brief look at how suitable these optimisations are for our purposes. In Figure 34

we show the edge length distributions of our six test objects. To obtain the graphs, we created 20 equal

sized bins into which we placed edges according to length (the different maximal lengths fo r the different

objects were taken into account) . What we see for all of the graphs, is that there is an extreme sharp ri se,

which then tapers off slowly, meaning that most edges for any object are relatively short.

5'" '"" ". .,
>5'"

f ,

.'" ~!t \
"" "'" JIll .' \ \
"" "'" ''''

. \ \ \ ", u'" "" p :' '"' "" '" - \~

" >- "
"" ---.

" , • , ,
'"

,
"

, , , • 5

"· o"J1l · 0,,,1 o .. a I ~r3 - - -Oeer4 Oeer~ I

Figure 34 - Edge length distributions: a) DcerO-Deer2 ; b) Deer3-DeerS

Another look onto the same data is shown in Figure 35, where we graph accumu lative percentages

(lengths are given in total , but arbi trary units). All of these curves can be approximated wi th l _c·e-bx type

function s (in these cases with c= 1.1 and b between 0.7 and 1.4), which makes their shape fairly

predictable. Since the constants c and b depend on object-shape, optimisations already performed on the

object and many other variables, finding a general working formula to establish va lues for the constants is

unlikely. This makes it difficult to determinc a cut-off value that wi ll for example discard 10% of the

edges. Visual quality is another factor and is discussed later.

O,Jlimi\lIliol"

Edne Length Distribution

l0000Cl'Jr. ~ ... / ..--::- _- - i
9O.000"I0 , / ;;~::::, •• / "'-- I
80.000'4 1(. . / / / , 70.0(1)'4 // I/ • "''''0-. i """"

///
I /1
! 40 .ooO'Jlo , 30.000%

II

"'''''"'
f J

10.oo~

0.000"4 I , , 2 , • 5 , 7 , 9

Edge LenUlh

I "". "'""' ".~ ."'" ~5 1

Figure 35 - Edge length distributions, accumulative percentages

The MaxAngle measure is somewhat easier to work with, because angles have well-defined bounding

values (as opposed to the edge-lengths wh ich are only bound by the longest edge, a somewhat recursive

definition). Figure 36 shows two graphs, where we map number of edges against the angle between

triangle normals of the tri angles that define an edge. This is done because this measure starts with in face

edges at angle 0 degrees, whereas the dihedral angle would begin at 180 degrees, otherwise they describe

exactly the same thing. In Figure 36a) we can see that basically all edges are below 90 degrees. Figure

36b) is normalised in terms of total number of edges so that a comparison becomes easier. We can see

clearly that only the very low resolution objects have edges above 90 degrees. Also the slope of the traces

is basically linear (for all except the highest resolution object) up until about 25 degrees, which facil itates

adjustment of the threshold value to a sui table va lue.

Infoce Edll"

AIItl. h I"''' '' J,' .n g" ~o""th (i ' g)

1 0 .. 10 .. 0 .. ,1 • 0 ... 2 , 0 .. <3 __ 0." . 0 .. 61 1 0."0 o.t" ·-*- O .. ,l ,,",1 0 .. " 0,.<5 1

Figure 36 - Angle Distribution: a) Absolute Edges; b) Percentage of Total Edges

4.5.1.2 Qualitative Results for Level of Detail Optimisations

While the results in Section 4.5 .1.1 are interesting from a technical point of view, their practical

implications in terms of visual quality of the renderer are of greater relevance. Table 14 shows the visual

results for different values of Min Length and MaxAngle. We designed the test so that the largest

threshold values would disca rd exactly 90% of the edges. Th en we took 5 linearly interpolated samples

(i .e. 0%, 25%, 50%, 75% and 100% of 90%). In the images in Table 14 we did not make use of hidden

line removal in order to make sure that an edge that is not visible is non-existent (as opposed to hidden),

which is the reason why even the first (supposedly perfect image) looks somewhat strange. Also the

(IWI'ICr .J Oprimi"uioll ,

reader wi ll notice that the visual result for 0% is of course the same for both measures and mainly

included for comparative reasons.

\ \ \

\ I 1/
/ .

C3.f?' \ .

. r

Table 14 - Visual Comparison of Edge-reduction approaches

It is interesting to note that the two measures chosen by us seem to be fai rly complementary: The

MinLength measure discards object-detai l with very high curvature, because to approximate such a

curvature with straight line-segments. we need many short edges. Low-curvature object-detail on the

other hand is well -preserved. In contrast, the MaxAngle measure discards low-curvature detail, because it

assumes that such detail has less chance of fulfill ing the silhouette criterion. Figure 37 shows this fact by

combining both 100% samples, the MinLcngth version in red and the MaxAngle version in green.

Coinciding edges are marked in black and are very few.

, , .

Figure 37 - Combination of 100% MinLength and 100% MaxAngle

This shows us that a combination approach shou ld be employed when using these two measures and only

edges that are discarded by both measures should really be eliminated. This ensures that the

disadvan tages of any single measure are counter-balanced by the benefi ts of the other.

(JIIII"f I .J U",imi ,,,,illll\

4.5.2 "Unconnected Triangles" Optimisation

Owing to the fact that some edges are considered constantly unimportant due to th eir dihedral angle, we

can implement another optimisat ion. We know that an edge is defined by exact ly two triangles.

Therefore, we can disregard any triangle that is not part of any important edge in the tr iangle-traversal,

whi ch detennines edge-visibility. An interesting result here is that the number of connected triangles

remains high even for a relatively low number of important edges, so that this optimisation is not very

effective.

4.5.2.1 Quantitative Results for "Unconnected Triangles " Optimisation

As already briefl y mentioned in Section 4.5.1 , we tried another optimisation, the unsuccessful result of

which is so surprising, that we detai l it in the following. We believed the underlying idea sound enough:

As we discard edges through our two edge-reduction techniques, we are likely to be left with triangles

that are no longer connected to an y of the remaining edges. As these triangles do not have to be

considered for face-orientation purposes (which in tum determines the si lhouette condit ion for edges), we

could theoretically reduce the computationa l load on the system qui te considerably, by also discarding

those unconnected triangles. The relevant graphs in practice are shown in Figure 38. The first trace

represents the number of MaxAngle-edges as a percentage of the total number of edges for each of the

different test-objects. The second trace shows the number of Min Length edges in a similar fash ion. Both

Max-Angle and MinLength criteria were chosen to produce a decent visual quality and were the same for

all objects. The third trace shows the remaining edges that were left after edge-reduction. We can see that

in this particular case the MaxAngle reduction had a much more predominant effect on the reduction

procedure. The next trace shows the percentage of triangles that are still connected to remaining edges

after edge-reduct ion. We can see for the first four objects that even though as much as 35% of edges are

culled, the percentage of connected triangles remains as high as 93%. Only when the number of culled

edges in creases above 35%, do we detect an analogous decrease in connected triangles. The last trace

shows the time spent on the triangle computations, compared to that without the optimisation, and aligns,

according to expectations, with the Connected-Triangles-trace. We thus conclude that there is somewhat

ofa speed-up achieved by this optimisation , but it is not nearly as big as we hoped it would be.

Unconnected Triangles Optimisation

' :~~~: t==:=""::":":'-:-:';-:'"~"":"':-"="'.~"".="c::==_ -_::=.~=~~"::-=" :-'=:=~~':'~"'=":'="':.="'='"="'j--l!,-:-o====1
'" ! __ MuAngle Edg"

70 00% 1--"======--""'""'------'~_i\I· . -MmLen Edge,

60 00% ~ ... - Remaining Edgu ", /' Conn. Triangles
5000% +------- -----'--.L---__II
40 00% / ... -- TligtoDp Tim •

../ '-.
3000% t==~====~~~:::::::=========::~~ 2000%

10,00% +---------_-,~----=-=-,.="-----I
o 00% +-~~=~=r~=O;=-'-~--~---I

DeerO Deer l Deer2 Deer3 Oeer4 Deer5

Figure 38 - Unconn ected Triangles Graph

Opt; III; \(tf;fUl.\

4.5.3 Recursive Algorithm Optimisations

Several issues need to be acknowledged:

A recursive algorithm requires additional storage capacity and represents a computational

overhead

Comparing the length of segments requires many square-root operations

The first point, while being valid is not too significant with regards to storage capacity, as this can be

considered bountiful (all systems on which th is renderer is supposed to run have at least 64MB of user

memory available). The issue of computational overhead (saving and restoring the recursive function

stack as well as other related operati ons) would have to be compared with an equivalent modified linear

algorithm. The second point of this list is easy to deal with. By stating the maximum length in squared

form , we can get away with calculating only the squared lengths of the line segments.

Yet another optimisation we successfully experimented with is the use of displaylists to further rendering

performance. Displaylists are sets of OpenGL instructions, compiled into a li st (this involves conversion

of instructions and data into OpenGL-native structures, thus greatly decreasing execut ion overhead).

Usually displaylists are used in situations where geometry does not change (once a displaylist is

compiled, its arguments are static. This means, that vertices, rotations, texture information etc. cannot be

changed after the displaylist has been compiled). We investigated their use despite the fact that the

geometry of our RPS renderer alters on two levels:

The random perturbations themselves represent varying geometry

Edges belonging to the silhouette change with object rotation

We address the first point by compi ling a whole set of displaylists for a given view and object. This way

we can call the disp laylists in any given order and thus create the impression of randomness. Our

implementation keeps a list of displaylists, allowing repetition, and randornises this list every n frames. A

sequence of displaylist calls cou ld thus look like {3.2,2,1,3,1}. The effect is that of a semi-random

silhouette, very much like those of stop-motion animations in film and advertisements.

The second point can be exploited by recognising object rotation relative to the viewer and only updating

displaylists when this situation occurs. As we mentioned in Section 2.2.3, we do not take the relative

position of the viewer to the object into account, so that object translat ion will have no effect on the edges

being considered si lhouette. The same applies to scaling, so that of the object transitions to be

encountered only rotation needs to be considered. If we were to update our displaylists on each frame

when the object undergoes rotation, we would loose the benefit of using these displaylists, so we si mply

don't update them on each fram e. For an explanation why we can get away with this, we consider the

following. Figure 39 shows an arbitrary object that rotates relative to the viewer. Two views are shown in

each frame: onc from the side and one from the position of the viewer (front). The rotation is anti

clockwise in the side-view and upwards from the viewer's perspective. It is clearly evident whi ch edges

[

Ol'rimi,,,tioll' -.f

are visible, which ones fonn the silhouette and which oncs the object hides as it rotates: In frame a) both

edges are visible, none is considered silhouette. In b) the green edge marks the si lhouette, but both are

still visible. The situation changes slightly in c), where both edges are on the silh ouette, but only the red

one shoul d be visible. Finally, in c) the red edge represents the silhouette and the green one (faded) is

hidden by the object.

-v-" ~ I~" ~
, Side Fmult_I___ Side FrontV'

oj I dj

I~~b:> ~ , l),,~b:> ~
Side FrontV Side From V

Figure 39 - Silhouette Changes under rotation

Let us now consider the situation where we do not update the silhouette information for several frames,

i.e. we keep the silhouette information of b) as we rotate the object through posit ions c) and d). The effect

would be this: the green edge would be considered silhouette and therefore rendered (not so the red one).

In case c) th is does not matter as the two edges are in line with respect to th e viewer. In case d) we wou ld

incorrectly render the green edge instead of the red one. The error this si tuation generates we call the edge

error. We define the edge error as the distance between where an incorrect edge is rendered and where

the correct edge is located (in our example the vertical distance between the green and the red edge). It is

not entirely true that all incorrect edges can be considered as merely being at the wrong position ; some

may also be of different length or at a different angle, but for most smooth objects of reasonable

tessellat ion this assumption is fairly accurate. Even for an extreme object like a cube (in the sense that

angles are very large everywhere, making for potentially large edge errors), we can show the following; If

we assume an average viewing distance of several cube-lengths and an update rate of 10 frames per fu ll

rotation (a fairly conservati ve estimate, as this translates to a speedy 36 degree rotation per frame) , we

generate relative edge errors of 5% (relative meaning in relation to the side-length of the cube). As 5% is

roughly the uncertainty by which we perturb our edges, the edge error effect is not distingui shable from

the random perturbat ions deliberately produced by the renderer. We have thus shown in theory why

caching of edge-information can be used even under rotation . It is interesting to note that while this

optimisat ion works very well on some systems, it fai ls to show considerable improvements on others. Our

explanation for Ih is is that displayl ists, which we use as a caching mechanism, are not always equally

optimised on all graphics cards or their soft ware drivers,

With the above considerations in place, we devised the following algorithm for our random perturbation

sketch renderer:

Let D m array of DisplayLists
Let dis _ array to determine sequence in which D are used
Let Counter • indicates number of times Render has been called
Let Nx - Normal (at any of Vertex, Triangle, etc.)

(hlll"I'f .J Vptimi\lllia".\

Let View = View Vector

I"rac (Bdge)
If Edge->Length<minLenth

Draw Edge :'/
.'/

Else
Let Mid B MidPoin t (Edge)
Let E1 = Edge->Start .. Mid
Let E2 .. IHd .. Edge - ".End

, '
E-.1 ~ i . .. ·- ,

Jitter (E1-".Start ,E1->End,E2->Start,E2 - >End)
Frac (E1)
Frac (E2)

End If
End frac

GenerateAndDi splay(I..ist)
For each Triangle T do

calculate NT View
Next Triangle

For each Edge E do
If silhouet te(E) 1/

Repeat between 1 and 4 times
Frac (E)

End Repeat
End I f

Next Edge
End GenerateAndDisplay

Render
// I~. C'L j ~v:::. n ,.o -.:" . . D,.x : l: f \~:' :. r r F'vl.' ::! ";i. r 1'-'" r:: ..
call HLRDisplayList where HLRDisplayList i s

For each Triangle T do
Draw T

Next Triangle

E\'ery nth fra me do
Randomise (dis)
clear D

End Every

(,I F ::' ~ . 'r

(.' ,: .;. .~ .. r " (; . I ,

. /- . . r, {)

If justCleared(D[dis[counter) J}
GenerateAndDisplay{D[dis{counter)])

End If

call (D[dis(counter]])

Counter++
End Render

: .) r-:· · p :'. ' '~I ' (;.) ,

(-: , C ; " t :-1 . (. .) ,

Listing 6 - Random Perturbation Sketch Algorithm

Some examples of our random perturbation sketcher are displayed in Figure 40 a-d). The trained eye wi ll

be able to spot the Hidden Line Removal (HLR) artefacts discussed in Section 2.3.2 (HLR object may be

cutting through object lines due to the random perturbations) in the stairs of the diving board, the crown

of the chess piece and the head of the salesman. While these artefacts are extremely difficult to spot in

still images, they are more noticeable under animation, because the artefacts - due to the static nature of

the HLR object - tend to stay fixed, while the lines around them change appearance. The artefacts

themselves are also rather typical for the locations they occur in: The steps of the diving board are made

up of relatively fine geometry while the HLR object is quite heavily scaled which results in an incorrect

displacement of the HLR object relative to the rendered strokes. Similar applies to the crown of the chess

piece and the head of the salesman. As the HLR object is scaled towards the middle, they interfere

slightly with the upper extremities of the rendered objects. Again, as these issues are only noticeable to

the expecting eye, we argue that they can equally well be attributed to the sketching style itself.

(hll/'"'' I (Jplim""1ioll .'

t,·/I

;;~,.

~ ~ ,1j
~-,.*

/ u
Figure 40 - RP Sketches: a) Camera; b) Salesman; c) Chess Piece; d) Diving Board

4.5.4 Object-segmentation approach

Even though the recursive algori thm approach works wel l and its overall performance is very sati sfyi ng,

onc can observe a joltin g behaviour whenever displaylists are updated, because performance drops

drastically only to resume at full speed once the update is complete. While this is not visually unsettling

(as the viewer expects randomness and low update-rates [which are different from frame-rateD we

investigated other options to achieve the same visual and temporal effects with a more constant frame

rate.

Our modified approach, even though producing the same visual result, is radically different from our

initial approach. In essence we consider each edge not part of the object, but an object in its own right.

The idea for th is stems from the not ion of a Matrix-stack in OpenGL <and other APls). Depending on the

relative size, position and orientation of differen t objects in a given scene, the Matrix-stack is used to

group together related objects in order to synchronize thei r transformations. We thus perceive our single

object as a group or cluster of related objects that move in unison. The way we achieve this is shown in

Figure 41: We consider a given target edge and the unit vector on the x-axis (the latter is an arbitrary

choice, any constant and well -defin ed vector would do). We then establish the scaling, rotation and

translation (in that order) necessary to transform the unit vector into the desired target vector.

()pl;lII; Hllioll'

y y

~y

a)
/,

Unit Vector on x-Axis
Scale to desired length

• x x

y y

c)

/ d) /

Y::e
,.

/ Translate
x x

Figure 41 - Transforming Unit Vector to Desired Edge

Since any of the above-mentioned affine transformations can be represented using a 4x4 matrix, we can

multiply the scaling, rotation and translation matrices together to obtain one single transformation matr ix

that will transform the x-axis vector into our desired vector. This allows us to render the important edges

by transforming the x-axis unit vector into its correct position within the object and then drawing it. So far

we have not really achieved anyth ing we couldn ' t have done more straightforwardly. The crucial idea is

that we are not limited to rendering the x-Axis vector and transforming it. Indeed. we can render anything

in its place and perform the transformation just the same. In our case it makes sense to draw a sketchy line

instead of the straight unit vector and that is exactly what we do. In fact, to optimise performance, we pre

render several sketch-lines all of which are obtained by applying some combi nation of the uncertainty

functions defined in Figure 33 and storing them in displaylists. When it comes to actua lly rendering an

edge, we choose one of the displaylists according to a temporal-dependent semi-random value, transform

it and render it. The workings of this approach are shown in Listing 7. This means that instead of applying

the uncerta inty functions at run-time, we apply them once offand re-use them from then on. It also means

that we do not have to rely on inter-frame coherence to improve performance. In fac t, the object

segmentation approach is so much faster than the recursive-algori thm approach, that we allowed

ourselves to perform perspectively correct view-vector calculations instead of the approximat ions

discussed in Section 3.5.2.1.

Render
Ii '~r_ ~ . _~_ ,~.~ . r 1 I~ _'_L· ;:-

call HLRDisplayList where HLRDi s playList is
For each Triangle T do

Draw T i / 1 1-
Next Triangle

For each Triangle T do
calculate Nr.View(T)

! /(.1.1 ' _

1(" . 'J i·)

;" I • i <: ·J · .w a J... ~ I

1> . • r' l •) ,
(-) ,

(Iwpr"r .J.

Nex t Triangle

For each Edge E do
If si l houett e(E)

PushMatrixStac:k
/i
Ii

MultMatrixOn toStack
Draw Sketchy Li n e

PopMat rixStack .: j
End If

Next Edge
End Render

" ,
M(E)

.. ,

-
c

Ii .>
i / Dl

" p V CL .!. . ~. [.

Listing 7 - Object-Segmentation Algorithm

r- "

. ~\" •. 1', E ...

There are some issues with using pre-cached uncertainty functions instead of calculating them at run

time. In Figure 42 we show a cached sketch line being stretched longitudinally by various factors. While

the longest line seems almost straight, the shortest one looks a lot more perturbed, even though their

perturbation amplitudes are all the same. This is due to the fac t that the short line has a lot more

segmentations per unit length than the longer one. If we imagine several very short edges close to one

another (as is usua lly the case for regions of medium to high curvature), we'd get the result of extremely

segmented lines, whi le regions with lower curvature will look almost non-perturbed. To apply a more

homogenous appearance to the object, we create various bins, into wh ich we sort edges according to their

lengths. For each of the bins we create several display-lists. Short edges will have fewer segmentations

than long ones and any given edge can only choose a displaylist fTom its allocated bin.

Figure 42 - Different longitudinal Stretch-factors for a Sketchy Line

Another related issue is also concerned with scaling, and that is the amplitude of the perturbation

uncertainty function. All our pre-rendered sketchy lines are onc unit long and are then scaled in the x

direction by the length of the edges they are supposed to represent. The perturbations also have some

absolute amplitude on the unit scale, so they obviously also need to be scaled by some value before they

are applied to the object (otherwise a large object would look very straight and unperturbed, while a very

small object might be totally disc on figured by the perturbations). Our first approach was therefore to

make the amplitude linearly dependent on the length of the edge, with good resul ts, except when

encountering very long edges (as appear in many optimised objects) which would be overly perturbed

(this effect is all the more noticeable, since the perturbations themselves are an imated). Experimenting

with other relat ions than linear proved unsatisfying. Instead we found our solu tion in using a threshold

va lue that is dependent on the object's bounding box dimensions. Therefore, the perturbation amplitude

of an edge is linearly proportional to its length, un less the thus computed amp litude exceeds a threshold

value, in which case it is clamped to that threshold value. This approach produces visually pleasing

results for any size object and is also easy to implement.

(hfJplt r .J I It I, iOIl\ ,\

4.6 Extensions

4.6.1 Pencil and Coal Sketching

The previously discussed idea of pre~caching uncertainty informati on proved to be very effective and

efficient. To vary the visual appeal, we searched for ways of applying a certain width and texture to our

sketch strokes in order to create the illusion that the objects were drawn not only by hand but also with a

special tool or medium, like e.g. a pencil , coloured chalk or coa l. Without much difficulty we found the

answer in the quest ion: textures. By choosing and applying the correct textures, we could not only give

texture to our strokes, but th e textures themselves could produce all the randomness and imperfections of

a typical hand drawn stroke as we exemplified in Figure 43.

I..,
• • , IS

Figure 43 - Several Stroke textures

The challenges we were faced with by changing from sketchy~ l in es displayl ists to textures are listed as

follows:

Assignment of tex tures to edges

Orientation of edges

Scaling of textures

Appearance / Disappearance of Edges

Blending / Co-existence of edges

We decided for th is vers ion that we wanted a more static look (as opposed to th e constantly changing one

of the random perturbation sketcher). To achieve this, we load a variety of stroke textures into the system

and randomly ass ign one of these to each edge of the object. This assignment never changes during the

lifetime of the renderer. If an animation~ effect is wanted or needed, textures can easil y be blended to

change smooth ly from one texture to the next.

The idea that an edge should be oriented in a certain way is actually a strange if not logically impossible

one. The reason for this is that an edge by definit ion is just a line of zero width and just like a point that

cannot actually poin t at anything (another tragic misnaming) an edge has no welI ~defi n ed normal (as for

example a plane has). Obviously we cannot apply a texture to a zero-width edge, so we have to widen

each edge artific ially. To achieve a homogenous result, we use the same method that we employed to

scale the perturbation amplitude. After all, the amplitude of perturbations is in this case limited by the

width of the applied tex ture and the two are therefore equiva lent. The width of the extension is thus

proportional to the length of the edge limited by some cut~off value. The next question that ari ses now

that we have given width to our lines is how to or ientate them. If \\ e assign arbitrary orientations to th em

and leave them viewer-independent the result is a confusion of edges which change width as the object

undergoes rotation relative to the viewer (this is due to the fact that the viewer might look onto the edge

of an extended edge and thus again see nothing, as illustrated in Figure 44a)).

I
. ...Jk
I _./~
!/-

Figure 44 - Edge extensions: a) static solution ; b) view-dependent solution

Our solution uscs view-dependent orientation of edges and is demonstrated in Figure 44b). If the view

vector is V and the vector running alongside the edge is called E. we can use the cross product of these

two vectors to find a vector which is perpendicular to both of them (if both E and V are well-behaved, i.c.

neither of them is zero and they are neither parallel nor ant i-parallel - in these cases the cross-product

would yield the zero vector, which by definition is perpendicular to all other vectors, thus still complying

with our reasoning, but not being useful as an extension vector). This means that the exposure towards the

viewer is maximal (and is probably the reason why a slight variation of this technique is called

Billboarding - because in advertising the product has to be maximally exposed to the customer). The

special case mentioned above occurs when the viewer looks directly onto (in the direction of) an edge. It

can be argued that such an edge would not be visible anyway. An edge approaching such a condition in

fact turns smaller and then disappears when the condition is met exact ly. In practice we ca ll this a featu re

rather than a problem, because the visual effect is very smooth and deals nicely with these special edges

by shrinking them smoothly until they vanish. thus avoiding noticeable popping (sudden appearance or

disappearance of scene elements).

Next we had to deal with the issue of different length edges just like we did with the segmentation

approach. In this case it is not the pre-cached sketchy line that is either stretched or compressed, but the

texture itself, but the visual problem is exactly the same. Our solut ion on the other hand is slightly

different in this case. We define a measure dependent on the size of the object and scale our textures

according to thi s whi le allowing texture repetition to occur. This means that short edges might not be

mapped with a complete texture but only part thereof, while long edges may repeat a given texture severa l

times for a complete fill. This solution is easily implemented and produces pleasing and realistic results

(care has to be taken when generating or designing the textures so that tiling/repetition of textures cannot

be noticed easily). Seeing as the lengths of edges do not change, the texture-coordinates for each edge can

be stored as part of the edge information and recalled when necessary. This allev iates the need to re

calculate the length and texture-coordinates of an edge at run-time.

Another problem that we were faced with was that of edge popping caused by varying edges fulfilling the

edge-criterion. This criterion is either fulfilled (an edge is visibl e) or not (an edge is not visible) and since

the change for the condition is instant, edges may pop in or out of view and in extreme cases even flicker.

,\/1

For an animated renderer like the previous line-renderer where a lot of noise is generated in the image this

is not eas ily not iceable, because the randomness of the an imation conceals the edge-popping. For a noo

an imated renderer on the other hand this kind of effect is extremely easy to spot and also visually highly

unpleasant . OUf solution is as simple as it is effect ive: We fade in edges that are about to become visible

and likewise fade Qut edges that are abou t to disappear. The obvious question is how do we know when

an edge is about to appear or di sappear. The measure we use to determine this is the product of the dot

products between the nonnals of edge-adjacent faces and the view-vector.

i["""" +"r- ------J+ _ .. t--- -' -
L __ r _---J ___ .

V V
Figure 45 - The three possible edge configurations: a) silhouette edge; b) front facing; c) back

facing

The dot products are available anyway, since we use them to determine the silhouette condition. Figure

45 shows the th ree possible edge configurations: a) one of the edge-adjacent faces points toward the

viewer, the other one points away (negative and positive dot product respectively). The product of the two

dot products is necessarily negative. b) both faces are front facing. The combined dot product is positive

(because both dot products are negative). c) both faces are back faci ng. The result is similarly posi tive,

si nce both dot products are positive. With this in mind we get a curve similar to the red, solid cosine in

Figure 46 (In general the product of the dot products will not be a cosine and depend on the angle

between the two faces. We use the cosine func tion as a first approx imation to illustrate our approach

which will work with any funct ion exhibiting the above-mentioned features). Even though we cannot be

sure if the positive regions indicate front or back facing faces (indicated by the question marks), we know

that the silhouette condition is true for a negative result . We therefore construct a function that rises

rapidly as the cosine-like function approaches positive zero, reaches 1.0 (fu ll vis ibility) at zero and

remains 1.0 for any negative value. This user· defined function need not rise linearly and the ri sing-point

is also arbitrary. In fact we chose to implement the function in form of a look-up table to optimise speed

and flexibili ty in funct ion definition. The symmetry of the funct ion shown in Figure 46 is automatically

guaranteed, because the inverse cosine is only defined in the interva l [0 .. 7t] (N.B. the graph shown uses x

units of n). Of course the visibility-function defined here is a prime example of an applied importance

fun ction as defined above.

("tlllI, r I

y(I)

/
O.l

?

. -0.5 o

, , ,

,r--------J-------\ ~
" Visibility \ , '

I \?

, .
I

\ S~h(lUCtlC-
~ndl"On

-.

, ,
.~----T----2j

x(n)

Product of dot products

Figure 46 - Fading function for edges

SI

In our implementation we chose the rising value so that an edge fades in and out over a five-degree span.

The result is a total elimination of edge popping and a visua lly very smooth appearance (see Animation D

for a demonstration). Another interesting and enriching side effect is that faded edges are rendered much

fainter than fully vis ible edges. Visually it appears as if the person drawing the sketch was uncertain

about a specific line and rather just hinted at it (see Figure 47a through d for examples).

A depth-buffer related problem arises when actually rendering the edges. Extended edges that converge in

a single vertex (like at the corner ofa box) are almost guaranteed to overlap from the vantage point of the

viewer. If normal depth-testing and writing were enabled, the first edge to be rendered would write itself

into the depth buffer and thus prevent other edges from rendering to the shared pixels. This results in the

ends of edges being angled and cut-off abruptly - visually very displeasing. Our soluti on here is to keep

using the depth-test fo r hidden lin e removal purposes, but to disable depth-buffer writes with

glDepthMask (GL_FALSE l; . This allows edges to render over each other, which is not unrealistic, as the

same would happen if strokes were produced manually. For the above-mentioned method to work, the

stroke textures have to represent or contain an alpha channel, which prevents pixels from being generated

where the texture is white (no stroke) . A separate alpha-channel in the frame-buffer on the other hand is

not necessary.

- ... _----
Figure 47 - Charcoal sketches: a) Salesman; b) Chess Piece; c) Camera; d) Walker

As we show in Listing 8 the algorithm for our coal sketch renderer is very simple in design. In practice it

is also highly efficient and outperforms the recursive-algorithm sketch renderer by a wide margin (see

Seclion 4.7. 1 for details).

(Ituptt r J I. lit ,,'/O'IlI

Le t L - Light Vec t o r
Let Nx _ Normal (a t a ny of Ver t ex, Triangle, etc .)
Let View c View Vector
Let Q _ Bil l boarded Quadrilateral

Render
,I:' •. \on::..: .- ' ~ ..; :.. i. . : o ' r- 1 nJ''' '~ r · ·fJt
call HLRDi s pla y Li st where HLRDisp layList is

For each Tr iangle T do
Draw T /i :(, ex .' . (-), r r. (. r· t) ,

Nex t Tr iangle // ',, " ,1 i . J ("') , r:' '''I\':l { ,. ')J "',1 !' oe. (') ,

For e a ch Trian g l e T d o
cal c ul ate NT ' Vie w

Nex t Tria n g le

For each Edge E do
If silhouette (E)

Q = bil l Soard (E)
Draw Q

End If
Ne xt Edge

End Rend er

/r ' ' I. i -)

" "
r . n

Ii '): LL ii-i . :.
/; , . . . _ I- i , ' ! - i C

II ",',(i-)

Listing 8 - Algorithm for Coal Sketching

r I_oj •
, to) ,

In order to increase the variety of coal textures, other than physically creating more. we can combine

several existing textures via multi-texturing or blending. Another related effect can be achieved by

blendin g between different textures, thus allowing edges to change their texture at run-time whi le the

object remains at a more or less constant brightness level (i.e. is not flashing wildly each time the tex tures

are altered). In addition to this the colour andlor brightness of the textured quads can be varied to create

even more render variety by easy means.

4.6.2 Sketch shading

As already mentioned in Section 4.2. 1 there might be cases where shading is wanted or required to add

texture, form or depth to an object. So far we have only addressed rendering of edges and so we will now

discuss our method of shading objects with sketchy lines.

Figure 48 - Various hatching suggestions (124])

("lWJlff'r .J

Cross~hatch ing (or hatching for short) is a technique which uses roughly parallel strokes and/or crossed

strokes to indicate shading (see Figure 48 for examples). Most of the time the strokes do not follow object

geometry (but exceptions do exist, see Hall [28] and Praun et al [68]). This is due to the fact that a real

sketch is usua lly drawn on flat paper and it is easier to perform strokes in more or less the same general

direction. Additionally, the strokes themselves indicate shading thus indirectly hinting at the underlying

object shape. Following object geometry would therefore be redundant and require special effort.

Consequently, it is mainly done for stylistic purposes. Section 2.1.3 already introduced one possible

technique using geometry sub-division and a set of hatch ing textures (Lake et ai, [42]). We demonstrate

another approach not requi ring sub~ division of geometry, which can be extended in a multi-pass scheme

to allow the use of multiple simultaneous hatching textures. The individual issues we have to deal with

are:

Generation of planar hatching strokes

Conveying shading-information with hatching strokes

Multiple hatching textures and use of the comic algorithm

To ensure that hatching strokes are planar with respect to an imaginary image or paper plane, we use a

modified version of a more general projective texturing approach found in [50], Node 49. Without going

into unnecessary detail, the method works like this: OpenGL provides functionality to automatically

generate texture co~ordinates for a given geometric vertex. The generation~ functions have to be enabled

individually for each texture co-ordinate to be generated. The functions themselves can be specified in the

form of several default mapping functions or, as we did, the user can specify them directly in the form of

a matrix representing affine transformations. The mapping that is required for planar projection onto the

view plane from the eye-point of the viewer is identical to the mapping required to project the geometry

(a schematic for this is shown in Figure 49). The matrix used is therefore the identity matrix. The

following code shows the necessary steps to perform this projective texturing:

static GLfloat Splane[] (1 . Of,
static GLfloat Tplane [] { 0 . f ,
static GLfloat Rplane [] to. f.
static GLfloat. Qplane [1 . (o. f,

! :'
glTexGenfv (GL_S , GL - EYE - PLANE,
glTexGenfv (GL_T. GL - EYE - PLANE,
glTexGenfv (GL R, GL - EYE - PLANE,
glTexGenfv (GL_Q. GL - EYE - PLANE,

1/ . i t ('x'.; ' C" - . -:i':' ~t

glEnable(GL_TEXTURE_G EN_T) ;
glEnable(GL_TEXTURE_GEN_ S) ;
glEnable(GL_TEXTURE_GEN_Rl i

O. f, O. f,
1. Of, O. f I

O. f, 1.0f,
O. f, O.f,

Splane) ;
Tplane) ;
Rplane) ;
Qplane) i

Jlf't n

GLfloat mvm (l6) , pm [l6);
g lGet Floa t v (GL_MODELVIEW_MATRIX,mvml ;
glGetFloatv(GL_PROJECTION_MATRIX,pm)i
glMatrixMode(GL TEXTURE) ;

g l PushMatri;() ;
g lLoadldentity () ;

O. f), i r .• ' r. ... ~

O. f} i i '- ~ <..: L ~ '_ ,~ r ;: n
O. f), i .c i

1. Of),

g'. ' . .1 ' : /

~ 1: t' .;:. \ 11 11\ :. I
(' _ ng· :1r' : ' ; , l" . ", .
1 _· • (". '{ !.' .

(-',apf .. ,. ./ /. X/t'll \1011 ,

glRoeatef l tex_rotation_angle, O.Ot,O.Of,l.OfJ, /! 'l"

glScalef (tex_repeat_facto r, tex_repeat_factor, 1. f) ; !.I
glMultMatrixf(pm); // ~ r :. :. ' ,· .. · v . . ' •-'r i.
glMultMatri x f(mvm); // " t t l' -.. -

glTexpara meterE (GL_TEXTURE_ 2D, GL_ TEXTDRE_WRAP_S, GL_REPEAT} i
glTexparameterfIGL_TEXTURE_2 D, GL_TEXTURE_WRAP_ T, GL_REPEAT l i
glMatrixMode (GL_MODELVIEW_MATRI X) ; / ! c :· H; jf . i '. , : . /

Listing 9 - Using projective texturing

•

Apart from specifying the current perspective and model-view matrices - to be used to transform texture

co-ordinates - by copying them from the respective matri x stacks, several other operations can be

performed to change the appearance of the hatching strokes. Firstly, the texture representing the strokes

can be rotated to achieve angled strokes and secondly, we can scale the texture to repeat it more or less

often across the screen.

Object

v~

Figure 49 - Proj ective Texturing

If we now simply went ahead and app lied the project ive tex ture to the whole object indiscriminately, the

whole object would be textured and we wou ld not produce the desi red ligh t-dependent shading effect. We

therefore use transparency to determine where hatching strokes will be visible and where not. Our fi rst

approach was to vary the transparency at each vertex according to the Nv.Light product (which we

previously used in our Comic renderers). As this produces diffuse shading on the object, the resulting

images were too smooth and unconvincing, so we appl ied some thresholding and clamping in order to

enhance the contrast. The visual result and performance of this approach are excellent at least for static

scenes (see Figure 53a) through d». When the object rotated relative to the light-source on the other hand,

the thresholding becomes disturbingly obvious. Figure 50 shows images from a scene, where the light

was rotated every so sl ightly from one image to the next. We can see that the vertices marked by triangles

all exhibit constant transparency (all 0% except the right-most one, which is 100%).

Figure 50 - Per-vertex Transparency Shading

(1r.JI'ft" J .\'5

The vertices marked by circles on the other hand change their transparencies instantaneously. Since the

transparency values for the triangles defined by the vertices are interpolated linearly, we get an al/-or

nothing effect which presents itself in sudden appearance or disappearance of visible regions (usually

referred to as popping or clicking). It is evident that this effect's pronunciation is inversely proportional to

the density of the object tessellation, but we want our algorithms to work with any kind of object (not just

finely tessellated ones) and must therefore address this problem.

Lake et al [42J solve this problem by sub-dividing polygons until all vertices of a given polygon are in the

same shade region. This also allows different hatching textures to be app lied to different shade-regions

but is computationally extremely expensive.

Our solution is related to our previously discussed Comic renderers. Using shading-textures, we are able

to apply crisp, continuous shade-regions to our objects. We use the same principle here, as illustrated in

Figure 51. Firstly, we use a one dimensional shade-texture (similar to the one we introduced for the

standard com ic renderer, just with a softer gradient between the principal regions) as a transparency

component (instead of brightness). Just as in the comic renderer, it is indexed by the Nv.Light dot

product. This map is then combined with the hatching-texture, which itself also contain s an alpha-channel

(in order to mask out stroke-free regions). The combined textures are then applied to the object-geometry

and appear as cross-hatch shading in the image. The result is very smooth, because texture co-ordinates

are interpolated instead of direct transparency va lues, which allows for sharply defined shading contours,

without the heavy computational overhead of triangle sub-division. Animation E shows this effect, as

well as that of projective texturing, as the viewer moves relative to the object.

This method can be used with or without multi -texturing. If no multi-texturing is available, the different

texture layers have to be applied in multiple rendering passes, which obviously increases the load on the

graphics card immensely. In addition to that, a separate alpha-buffer has to be avai lable to store the

intermediate transparency values (this is not the case when using multi-texturing, because the textures are

combined intemally in the graphics card texture-units, before being appl ied to the object).

Applying different hatching textures to different shade-regions is also easily implemented with our

approach. The reason one might want to do this is to simulate brightness with stroke-density. For this to

look plausible, regions with fewer strokes (appear ing lighter) have to be sub-sets of regions with more

strokes (appearing darker) so as not to produce discontinuities. We then have to use a multi -pass

approach: The first pass initialises the alpha buffer and subsequent passes then render the different

shading regions with different cut-off values for the alpha-comparison-test (used by OpenGL to determine

whether a pixel is drawn or not).

(/tuplr'r .J I xf('JI""Il\

Transparency Light Texlure

Hntclung Texlure \vith
own .\lpha Chrumd

N
· \/

! I !

ReIl1ililung Hatching
Te:o..1tU'e appli~d lo object

/ / I '. ".,. V/ Object Geomdry

Figure 51 - Hatching-shading using Multi-texturing

Alternatively we can use a 3D texture (the logical extension ofa 2D texture) as shown in Figure 52. Ifwe

call the extra dimension depth, then the width and height of such a texhtre would represent our standard

hatching-texture. Along the depth-axis we vary not only transparency, but also the hatching-textures used,

so where we have less transparency, we also have less strokes (The first two textures in Figure 52 have 9

strokes, the next two have 5, the following has 3 and the remaining three none). Since 3D textures may be

linearly interpolated on any axis, we can not only achieve a sharp and continuous transparency gradient,

but also a smooth variation between darker and lighter versions of the hatching texture (see Animation F

for a demonstration of an angled plane rotating under a light-source using this method). The only

disadvantage to this method is the huge amount of texture-memory required l
, but apart from that, we are

able to apply banded hatch-shading with multiple hatch-textures in one single rendering pass and without

multi-texhlring (i.e. only using a single texture).

I For one normal quality hatching 3D texture, we need (height· width· depth· components)

128 ·128·32·4 bytes ~ 2097152 bytes ~ 2MB

U'Uf'l'" J ,I:

____ T_n_""_p"_'.·Ce:.c" c"'l'-' F:..I:.cU;;.IC-::ti;,O"ll_ -------.-Transparent

Transparency & Shading Level

Figure 52 - Using a 3D texture for sketch shading

Regardless of which method we choose for a given implementation, the basic algor ithm is shown in

Listing 10, where the ell ipses represent other pieces of code responsible for rendering important edges

(depending on which kind of edge-rendering we perform this might be done before or after the shading

stage and is main ly influenced by the order in which we want the z-Buffer to be initialised).

Render

i / 1: T :. 0 ' J " ~H!1'"'

For each Vertex v do
calculate Nv.Light

Next Vertex

For each Triangle T do
Draw_Transparency (T)
Draw T

Next Triangle

End Render

Ii '-... . r /1. ". 1 " . , j . ' ,!

i/ , , -

, '
,/ !.r"n "'

.,. . I t

/f r · 11 "" ~ .1' I" , 'r 7: ;: \, . ' r.q (_,) ,
// p ,) " (. ~, .~_ i '" ('.l.

:'! 1 ". . (..)

Listing 10 - Generic Hatch-Shading algorithm

Figure 53a) through d) shows the large variety of effects that can be achieved by simply varying the

hatching texture and/or blending mode, The Skeleton in Figure 53a) is created with a white and black

texture, the white creating a waxy-undercoat-effeet, especially with a custom background texture. Figure

53c) in comparison uses a pure alpha map so that the background remains totally intact where no strokes

are rendered. The statue of liberty uses another texture (th is time truly cross-hatched), which was scanned

(I1Ul"'" .J

from a manual penci l hatching. Smooth and relatively regular strokes were used to create yet another look

on the dog in Figure 53d)

Figure 53 - Cross-Hatch Shading: a) Skeleton; b) Statue of Liberty; c) Mouse; d) Dog

4.6.2.1 Quantitative Results for Sketch Shading

In Section 4.6.2 we introduced several alternative methods to ach ieve the same hatching style and

discussed how these methods affect the visual quality of the rendered object. To round this discussion off,

we need to expand on the relevant performance results. Figure 54 shows traces for both the vertex

transparency solution and the comic-style multi-texturing solution. We can see that while the vertex

transparency approach performs slightly better throughout, the alternative multi-texturing approach does

not lag far behind. For both solutions rates between 30 and 270 frames per second are achieved.

30)

250

",200
Q.
~

150

100

o
100

Hatching Performance , ,

.\
\,:\

' }\. ,

.~

".. ---.
i

1000 Faces 10000 100000

_ Vertex-Transpare ncy _- Mul1i·texture Transparency

Figure 54 - Performance Results for Hatching

(/rllPIIT .f Sy

Regrettably, performance results for the 3D texturing solution (which technically is by far the most

elegant) could not be obtained, because no graphics card in OUf laboratory would support 3D texturing in

hardware (see Section 7.3 regarding availabi lity issues) and software emulation is forbiddingly slow.

4.7 Results

4.7.1 Comparison of Approaches

In terms of absolute performance, the relevant graphs are shown in Figure 55. For these tests, we

deliberately use no level-of-detail reduction, so that all edges in the object are initially considered

important. Figure 55a) shows the results in terms of the total number of edges per object: The object

segmentation approach is clear overall favourite with the texturing approach coming second for less than

about 5500 edges, while the recursive-algorithm approach outperforms the texturing approach beyond

that mark. Results for the hatching sketcher are not repeated here, because we consider hatching a

complementary style as opposed to a rivalling one. In addition, the primary object primitives forming the

basis of the hatching style are different from those discussed here (faces instead of edges).

Sketch Renderers Performance
III .-...... --... --.. - .. --.-... -.--.-.--.--.----.--.--

'. ~t-------~--------------~

Sketch Renderers Performance
:llJ --.--.---.--.--.- ... -.-.... -.-.... - ... --.. ---., - -1 ,
"" +---"r-\--------------------i!
~I--~\~-----------~

'~.
~ 1~~--~~'~-----------~,

.... ' :, '
'00 I--"'----'''''~--------~
~ ~"

wl-----~~~~,~----------~
~"--. .. ~ , .. ~,.

Figure 55 - Sketch Renderers Performance: a) Total Edges; b) Rendered Edges

While the first graph correctly shows the absolute performance of the renderers for a given number of

edges, it does not truly represent their internal performance. What we mean by this is that each of the

renderers actually draws a different number of edges. The reason for this is obvious when we look at the

texturing sketch renderer: Here we fade edges in and out so that we end up rendering a large number of

additional edges to that of the other renderers. The object-segmentation renderer on the other hand

renders more edges than the recursive algorithm renderer, because it uses per-vertex view-vector

calcu lations. Even though the difference in number of edges is fairly small in the latter case (under 10%),

the correct view-vector calculation also incurs a higher computational overhead. It should be noted that

the actual number of rendered edges depends on the current relative position and orientation of the viewer

to the object and is said to be view-dependent. Thus taking into account the number of edges actually

rendered (i.e. using the same y-values as before, but different x-values resulting in a horizontal shift of

traces), we arrive at Figure 55b) and the result is notably different. We can sec that the per-rendered-edge

performance of the texturing sketch renderer is actually highest (except for the lowest object detail),

whereas the relation between the two other approaches stays basically the same. That means that while

the texture sketcher renders each edge faster than the other approaches, it has to render a lot more of them

and as a result only performs second-best overall.

(}rUI,r('l' .f S IIlIIlIhl r"l '10

In this context and that oflevel·of·detail optimisations, it is quite interesting to have a look at the number

of edges that are actually rendered. Below, Figure 56 shows such a graph for a typical view·point. Even

though we did not perform any level·of-detail reduction on the objects, we observe a steady decrease of

rendered edges in relation to the total number of edges. This can be explained as follows: As we increase

the number of triangles per object, we also increase the total length of edges (i.e. the sum of the lengths of

all edges). To visualise this we can image a triangle that is dissected along an arbitrary axis to form two

triangles. In addition to the length of the edges of the original triangle, we now have to add in the

dissecting edge. So while the total length of edges increascs steadily, thc lcngth of edges describing the

silhouette does not. Of course it does change slightly, but here the effect is somewhat different: Seeing as

the silhouette is ideally a continuous curve, the effect of subdivision is that of dissecting the curve into

smaller parts, which, when added up form approximately the same sum as fewer, longer segments.

Comparison Rendered Edges

OeerO Deerl Deer2 Deer3 Deer4 DeerS

a Recursive Algorithm oObject-Segmentation . Texture Sketching

Figure 56 - Rendered Edges vs. Total Edges

Since the percentage of rendered edges is so low (maximally 35% for the lowest resolution object

rendered by the texturing approach) and can even be as little as 7%, one might make the assumption that

the images in Table 14 should look a lot better than they do. After all if we can discard 93% of all edges

and still get a perfect image, why do the screenshots in Table 14 look so discontinuous when only

discarding a maximum of90%? The answer is simple: because the plot in Figure 56 is view-dependent.

For a given view onto the object, we might only see 7% of the tota l number of edges and for another view

this number might be very similar, but the edges that comprise those 7% are likely to be totally different

ones. So while we might only see about 10% of edges at any given time, we are likely to see almost all

edges during a full spherical rotation of the object. In practice we found that for our test-objects we can

cull between 10-25% of the edges without impacting greatly on the visual quality.

4.8 Summary

We began this Chapter by listing the defining characteristics of manual sketch art:

Drawn by hand (Randomness / Uncertainty-Factor)

Economy of line (little, but important object detail)

Few colours used (monochrome)

Summary 'If

In order to reproduce these qualities with computer graphics, we identified the following problem-areas

that needed solving:

Convey a manually-crafted look (Uncertainty)

Identify and apply important object detail semi-automatically (Importance)

Render the specific object-detail with:

Deliberate Imperfections (Uncertainty, Randomness)

Rudimentary hints at shading ifnecessary (Monochrome)

From this li st we then derived two significant concepts that help us formalise our discussion of sketch

renderers: uncertainty-functions and importance-fu nctions. The latter allows us to discuss a more generic

sketch-al gorithm with out limiting ourselves by specifying expl icitly which edges have to be rendered and

which not . For our implementations however, we define the following concrete importance-functions:

Static importance-functions:

MinLength edges (edges below a certain length)

MaxAngle edges (edges whose dihedral angle is above a certain threshold value)

User-defined edges (edges that the user deems important and flags as such)

Dynamic importance-functions:

Edges that fu lfil the silhouette-condition as specified in Section 2.2.3

Edges that are hidden by the object's body

By analysing hand-drawn sketches, we carne up with a set of uncertainty-functions, which in combination

and through the va riation of their input-variables produce a large variety of sketchy lines (from

architecturally precise to artistically chaotic). The main fu nctions we identifi ed and used in our

implementations are:

Repetition (of edge lines)

Perturbation (of edges from their true geometry)

Offset (of starting and end-points from their true geometry)

In our first approach, we showed how a recursive sub-division algorithm can be used to implement all the

desired uncertainty-functions. An interesting contribut ion with regard to th is is that we show that edge

information on ly needs to be updated every couple of frames without degrading visual quality in an

animated renderer like ours . The reason for this is that the animated uncertainty~functions used by our

renderer produce enough noise to drown edge-errors.

Our next insight was that dynamic computation of uncerta inty-functions is computationally expensive and

that static sampling and caching of these uncertainty-functions can prove very beneficial for the

performance of our renderers. To this end we developed two renderers implementing this new approach.

The first approach, we call object-segmentation-approach and it uses displaylists of line-strokes to store

the results of the uncertainty-functions. In order to be able to make use of displayl ists for individual

(/", '/~ I Yl

edges, we have to consider each edge as an individual object, hence the name of the approach. This novel

method of sketching seems counterintuitive at first (due to the breaking-apart of the original object

structure) but redeems itsel f through its excellent performance and visual quality.

Our second approach stores uncertainty-information in the form of stroke-textures. We show how

standard edges can be extended and oriented using a bi llboarding-Iike-technique to maximise exposure

towards the viewer and thus present a surface for the strokes to be mapped unto. We solved the problem

of edge-popping (sudden appearance and disappearance of edges) in an easy to implement and

resourceful fashion by fading them in and out. Our method for this can be applied without knowledge of

when an edge is about to pop and is basically an extension of the edge-condition computation. Also the

fading-function is completely customisable in shape (linear, exponential, etc.) as well as extent (how

slowly or quickly edges are faded).

A common issue to these two approaches, regarding the perturbation uncertainty-function was discussed

and successfully addressed. We discovered that for a visually pleasing look that is optically independent

on object-dimension, we must scale the random perturbations proportional to the edge-length of a given

edge, unless it is longer than a threshold value, determined by the bounding-box of the object. If it is

longer, then the threshold value is used to scale the perturbation.

Next, we explained how cross-hatching can be implemented using projective texturing to allow for

sketch-style shading. One of our approaches is extremely easy to implement, by thresholding alpha

values, but proves to be visually displeasing under relative rotation of object and light. Our second

approach recycles the concepts of the standard comic renderer to produce heavily banded shading. In this

instance, we apply it to perform blending instead of brightness-variations without the need for expensive

surface-subdivision. We illustrate, how we can achieve appropriate blending without an alpha-channel

and single-pass cross· hatching by using multi-texturing. We also discuss how multiple cross-hatch

textures can be employed in a multi-pass scheme. Finally, we show how the novel concept of 3D textures

is ideally suited to apply multiple cross-hatch textures with a customisable transparency-function in a

single rendering pass. Our hatching solutions all perform between 30 and 270 frames per second (3~

texturing performance could not be verified, due to lacking hardware support), rendering them suitable

for use in connection with other NPR styles (i.e. in combination with the outlining sketchers).

In Section 4.5.l.2, we show what visual effects our edge-reduction schemes produce and discover that the

combined employment of both schemes can guarantee a high degree of visual detail while reducing

unimportant edges as much as possible. In terms of performance, we prove that all our renderers can

perform between 20-275 frames per second for any of the test-objects, thus performing well within real

time constraints.

Int,otllld;Oll '1.1

5 Painting

5.1 Introduction

5.1.1 Definition

The enormous amount of radically different artwork that can be classified as Paintings, makes it

extremely difficult to define the notion of a Painting as such. If we start with the verb to paint, we might

be able to define a common ground onto which to build progressively. [30] defines to paint as : "to coat or

decorate with paint", or "to make a picture or portrait by us ing paint(s)" . It is obvious that the first

definition could be used in the context of painting (the walls of) a house, while the second one describes

the actions of an artist on some form of canvas. In actual fact and apart from the notion of artistic intent,

the two are actually very similar and a rough approximation of factors to consider could thus look like

th is:

Produced by h,od Deliberate spatial (and temporal) flaws
---- -*._ - _ ._.

Br ushes · Shape

• Size

~~ts/Colours · Palette

· Consistency (Watery, Oily, . .)

· Transparent/Opaque

· BJendinglMixing

T('chniqu~ · Choice of (Brush , Colour, Strokes)

· Strokes

· Direction, Length, Pressure

· Number

· Distribution

T able 15 - Fir st Approximation of Painterly Factor s

Whi le it would be extremely difficult to define the above va riables to such an extent that we can

accurately model and replicate the personal style of a given artist, we assume they suffice in order to

produce images that look painted. The visual output of our approach will val idate this assumption. It

should also be noted that it is not our intention to model physically realistic brushes or paints.

(hul"f 5 Q.J

5.2 Problems

5.2.1 Problem Statement

In accordance with the items listed in Section 5.1.1 we must be able to develop simple but efficient

models to simulate:

Brushes

Paints

to such an extent that will allow us to produce a variety of differen t styles and looks.

Furthennore, we have to develop an algori thm that describes the artistic technique to be applied. While

we do not attempt a rigorous analysis of existing styles and their reproduction, the algorithm should be

flexible enough to produce a \ariety of interest ing and visua lly pleasing styles in addition to resembling

manually produced paintings (ofany form).

Another important aspect to be addressed, which was only hinted at in Section 5.1.1, is temporal

coherence. As we intend to employ our renderer in an interactive environment, we have to deal with the

aspect of animation and its inherent discrete time-steps (in a technical sense any animation, either through

limitations in the recording process or limitations of the output-device has to deal with discrete time

steps). The challenge thus lies in producing discrete images at discrete times, which produce little

temporal noise, i.e. they are temporally coherent.

5.2.2 Implementation-specific problems

A multitude of implementation-specific problems are associated with th is type of renderer. The first task

we have to tackle is to define some form of relation between object-geometry and brush-strokes. As with

our other NPR renderers, there are no direct API calls that will allow us to set the graphics engine to

paint-brush mode and to generate pixels accordingly. While it would be conceivable to modify the

OpenGL pipeline at the rasterisation stage to allow for this kind of behaviour, we rather solve the problem

with a more general approach. As mentioned in Section 2.1.4, Meier [51] addresses th is problem by

sampling the higher-order surfaces that describe her geometry and affixing brushes at sample-points. She

thus replaces one representation of an object with another one, more suited for the purpose. Her approach

produces images of excellent visual quality, but is computationally rather expensive, because a large

number (geometry-dependent) of brushes have to be tracked and depth-sorted before the actual rendering

can begin. Her justification for doing so is to avoid the so-called shower-door-eJJect, which is created,

when brushes are fixed in screen-space as opposed to object-space. We therefore strive for a solution that

minimises the shower-door-effect, wh ile not being (overly) affected by the complexity or extent of the

object.

Apart from the object-geometry itself, there is other object-specific information (such as colour, texture,

material, etc.), which needs to be included into the fi nal image. A common approach here is to use a

reference-image, which is rendered in a rea listic fashion but usua lly at a much lower resolution than the

(. /rupler -' ,\olllfion 95

final image. Th is idea corresponds to an artist painting her interpretation from a live scene or a

photograph (even a mental image could be used for reference purposes). This means that we have to be

able to generate a reference-image of our object, without disturbing the current scene (i .e. the background

or other scene elements).

5.3 Solution

Our generic solution is extremely simple, yet versatile and efficient. We simply create a view-dependent

reference-image based on the object-data. We furthelmore define a style by appropriate configuration of

Brushes, Paints and Technique and finish by painting the reference-image in the given style. This process

is shown in List ing 11.

Render
Ref Image = Referencelmage(Object, Viewer)
Style = DefineStyl e(Brushes, Paints, Technique)
Draw (Ref Image, Style)

End Render

Listing 11 - General Painterly Algorithm

It should be noted that apart fi'om the generation of the reference-image, our algorithm is in essence two

dimensional (in fact, it takes some effort to ensure its proper working in a 3D context). This of course

means that it can easily be used in a conventional image-processing context as a highly customisable

image- fi Iter.

5.4 Standard Approach (Convolution Filters)

Painterly image effects are by no means new to computer graphics and have long been used in image and

video-processing applications. This means that a substantial variety of image-filters exist that will

transform bitmaps into painterly-looking images. All of the commercial image-processing packages we

are aware of implement these filters through convolut ion filters. What we mean by this is that images are

interpreted as a collection of neighbouring pixels and filters work on these pixels and their relative

positions, in order to achieve a given effect. In practice this means that most filters will visit each pixel of

an image at least once and also take into account a window of neighbouring pixels. This window-size

usually defines the Brush-size, while the traversal-algorithm and modulation-computations implicitly

defin e Technique and Paints. Thus, if the window-size is too small, the painterly effect might be barely

visible whereas if the window-size is too large, the number of pixel-calculations increases dramatically.

Th is might not be a major factor in standard image-processing, but becomes crucial, for obvious reasons,

in an interactive context. Listing 12 shows a generic convolution filtering algorithm with an unspecified

fi lter. For edge-detection purposes this filter cou ld simply be a convolution matrix. In order to apply an

oil-style effect, this filter implements a histogramming function.

GenericConvolusionFunction
Let r = half-width of convolution-window
Let func = filter function
Let I nput_Image_Data be some two-dimensional array of pixels
Let Output_Image_Data be some two-dimens ional array of pixels

func . lnitialise(r) II

For y .. 0 t o Height-l .Ii , " '::' f, i
For x .. 0 to Width-l ,I /

// r l.l; . <'.. _' : \ ' ':'' •. ~ \ -~1 it,_.""

xl CLAMP (x-r, 0, Widthl
x 2 _ CLAMP (x+ r -l, 0, Wid th)
yl CLAMP (y-r, 0, Height)
y2 ~ CLAMP (y+r-l, 0, Heig ht)
.Ii " ' / 1 C" '.· '-O '

For wy _ yl to y2

Fo r wx • xl to x2
if .I c[_ ,.'r· . n 1:1" i ::' - ".. ,: •. ·• . .i. e r. .'
II .t " J "j' :, ;",, (1"' '" ' ,1 ,v,,'e r '1)
func.Setoata(I npu t _Image_Oata{ wx , wy »

Next wx
Nex t wy

! / f · . :f" t

!f '. ' l r ~r '

Output_Image_Data(x,yl .. func.GetResult{)
Nex t x

Next y
End Gen ericConvo l usionFunction

Listing 12 - Generic Convolution Algorithm

Nonetheless, we implemented a standard version of our painterly renderer with th is common convolution

filte ring approach. The source code for the actual filter is taken from [lOS], and uses no MMX or Pentium

style assembler-code (These would undoubtedly improve performance, but arc too implementation

specific for the di scussion in this thesis).

Figure 57 - a) Originallmage2
; b) Video filter; c) Commercial Filter

Figure 57a) shows a sample image, which we will use as OUT reference-image. Figure 57b) shows the

above-mentioned video filter applied to the input image. The last image in Figure 57 shows the result of

commercial image manipulation soft ware with a comparable filter. Both of the latter images were

generated from the original in 0.5-1.0 seconds, i.e. between I and 2 frames per second, wi th a convolution

window of IOxl O pixels (i.e. equivalent to r~5 in Listing 12). The three main problems we find with this

(convolution) approach are:

Low performance ofa pixel-based algorithm (0(n2
) , where n dimension of image)

Low fl exibility of algorithm (most effects are hard-coded)

Lack of natural media artefacts (i.e. native brush-strokes)

2 Original Image <l:I G. Schulz

(;/1II1J(frJ 'pprou,"" (('OIU'0/UI;0I1 I ilr"n)

This means that while a convolution filter can indeed produce the desired visual effect, it is in general too

costly in terms of performance and the range of possible effects is too limited and/or too difficult to

implement.

5.4.1 Reference-image acquisition from 3D models

While Section 5.4 explained the common solution to filtering a given reference-image, we still need to

discuss how we can obtain this reference-image in our 3D context.

The basic strategy is simple: We render the object from the current viewpoint and capture the frame

buffer. This approach is as simple as it is flex ible (we could for example render the object in a comic style

and thus create a painted comic style), but several technical subtleties and performance issues need to be

investigated:

Minimising frame grab area

Co-existence with backgrounds and other scene elements

Suitable off-screen buffers

Several frame buffer grab operations exist in the OpenOL API, but they are rarely optimised and

considered very costly, We therefore developed a cheap but effective way to minimise the area of the

frame buffer that has to be grabbed. The method has to be cheap in a sense that it must speed up the grab

area by minimising it, while not being too complex itself, thus negating the optimisation. Our solution

therefore uses the bounding box of the object (a measure which is also used in other renderers and

therefore readily avai lable). Figure 58 illustrates how the bounding box of an object is projected into

screen-space (green circles). The maxima of these co-ordinates are then established to define a bounding

rectangle (red crosses) in screen-space. This bounding rectangle is then used to limit the screen-capture

area. Parts of the bounding rectangle that lie outside the visible screen area are clipped automatically to

screen dimensions. The glReadPixels command is then used to capture screen pixels. Programmer's

guides and reference manuals (53] stress the fact that various commands (namely glPixelStore,

glPixelTransfer, and glPixelMap) influence the pixel-transfer from the drawing context to client

memory, so that great care should be taken to place the GL engine in a state best optimised for a given

system, before the screen capture takes place. Adverse effects include type conversion, byte ordering as

well as LSB/MSB order conversion, which may be performed on each pixel and thus decrease

performance significantly.

SIuW/iII J Il'l'rtUJd, I('0111 01111;011 J- iI/f'r.'!)

PruJected \ [Axlma 1)1 Roundmg 130'1 .' " , o

o 9 _Rounding Box

• o

, 0 o •

SC REEN

Figure 58 - Minimising the capture area

After a certain portion of the screen has been captured in the manner described above, we can use it as the

input frame for our painterly style rendering. Artefacts occur if the background of th e grab area (pictured

white in Figure 58) is non-empty (due to a custom background or other scene-elements). In this case the

painterly filter wi ll be applied to both the object (desired) and the background (not desired). The rcsult of

such a rendering can be inspected in Figure 59. Our solution can be compared to the blue-screening

techn ique common ly used in the film industry. In this technique background pixels are specially marked

(i.e. have a uniform and strong colour - usually blue or green) so that non-marked pixels can eas ily be

detected. In order to mark these pixels, we have to set a uni foml background colour.

Figure 59 - NaIve implementation showing background artefacts

Since we speci fically do not want to upset any scene elements that might already be present, we use an

off-screen buffer for this task (this is basically any buffer, whi ch is not visible at the time of rendering.

Su itable buffers are discussed later). This off-screen buffer is first cleared with a specific masking-colour,

the original object is rendered into it and then grabbed (as before), but when the painterly rendering takes

place, only those areas of the captured buffer that have a colour different from the background colour are

affected .

Another possible approach (which seems less complicated, as it does not need an off-screen buffer) is to

simply use the stencil-buffer (th is buffer discards pixels fragments depending on a bit-mask test, wh ich

the user can specify). The stenci l buffer can be written to during the rendering of the original object thus

creating a stencil -mask of the exact shape of the object. Later, when the painting is drawn, the stencil-test

wi ll allow only pixels with in the original shape of the object to appear in the colour buffer.

(I",pl, r 5"

Figure 60 - Painterly Rendering using the Stencil Buffer

A demonstration of this technique is shown in Figure 60. What should be noted are the many exact edges

(on the dog's left foot, around his belly etc.). This is due to the exactness of the stencil buffer. We

actually have to force some brushes with background colour to come through to break up the very straight

object lines, as these lines appear unconvincing in a painterly brush-style. An advantage of this approach

is that the painterly re-rendering can be applied directly over the original reference-image without the

need for a previous buffer-clear operation and that the stencil-buffer can be used to distinguish between a

multitude of objects. In order to use the blue-screening technique mentioned earlier, we would have to

capture the stenci l-buffer as well as the frame-buffer, which constitutes another expensive frame-grab

operation.

Figure 6tb) shows the advantage oran off-screen -buffer: Ifwe consider for example the tail of the Mouse

in Figure 61a), wh ich is very thin we would have trouble applying a painterly effect on such a small area

with the stencil-technique. The off-screcn technique on the other hand enables us to re-render an object

from scratch so that no reference-image creat ion artefacts are visible.

Figure 61 - Painted 3D objects: a) Mouse in offscreen Buffer; b) Mouse in Screen Buffer with

Paper Background; c) Dog

For our off-screen technique, any available, non-vis ible buffer can be used. These include

GL_FRONT_RIGHT, GL_SACK_RIGHT (we assume that the left front and back buffers are used already for a

double-buffered display), GL_AUXi (where i is an integer between 0 and GL_AUX_BUF'FERS- l).

(hap', r i' /1111

Unfortunately the availability of stereo buffers (i .e. the set of right buffers) and auxiliary buffers is very

limited. The default behaviour of the systems we tested, when non-existing buffers were used for read and

write operations, is to use the last va lid colour buffer. This means that the same code will nm on all

systems, even though the output wi ll vary (for example the clear operation will affect the current colour

buffer, so that the standard buffer will be cleared, ifno additional buffers are available. Depending on the

context, this issue may need to be addressed - sec the use of stencil buffer above). Another possibility is

the use of pixel buffers (pbuffers for short). These are buffers that actually contain their own rendering

context (i.e. their own set ofOpenGL state va riables) , that can differ in size from that of the output device

context and which are located in server memory (allowing for accelerated drawing). As these are

inherently non-visib le surfaces, they are ideally suited for use as off-screen buffers (see [61]. page 513 for

details). Unfortunately. pbuffers are not yet widely available and their own set of state-variables

necessitates copying of the relevant matrix-stacks in order to preserve a correct view set-up.

Each of our described approaches works and produces the desired results. The choice of the most

appropriate solution depends on the given application and target system. Table 16 li sts the advantages and

disadvantages of the di fferent approaches and gives pointers as to when each approach might be gainfully

employed.

Method Advantages Disadvantages Best used, when •••

. Needs only one Need to capture Many objects are to

Clear-Buffer stencil-buffer for be rendered in a

operation per frame blue-screen masking painterly style

Easily works with May produce too

multiple concurrent exact edges

distinct objects

Widely available and

well implemented

Easy to implement Clear-Buffer State-variables

Same state-variables operations on large change often

throughout buffers

Very limited

availabi lity

Custom size (esp. Need to import state Few State-changes

smaller than visible variables (Matrix occur

Buffer) stacks & Lights) from Frame-grab

Never vis ible (i.e. Main rendering operations are very

Clear can be context expensive
I

performed when Fairly limited

convenient) availability

Table 16 - Pros and Cons of Background preservation Techniques

/11/

5.5 Optimisation (Textured Brushes)

We feel that part of the reason why the convolution painting approach is so expensive and inflexible is

because it presents a fa irly abstract sol ution to a very tangible problem. If it were more intuitive how the

design of the filter-function influences the resulting image, it would be fa r easier to construct the right

filter fo r a given purpose.

In order to overcome these limitations, we decided to approach the problem on a more basic level. By

moving away from a programmer's perspective and into an artist's viewpoin t, we immediately came up

with a totally different approach. We remember the con cepts of Brushes, Paints and Technique that were

somewhat merged and hard to distinguish in the convolution approach, and seek a more direct

implementation.

5.5.1 The Brush

We start by modelling the Brush. As with the sketch renderer, we use textured quads and blending to

produce the desired output. We therefore define a brush object with the fo llowing properties:

Posit ion (unity dimensions)

Rotation (in canvas p lane)

Size

Shape (texture)

For our purpose, we find it useful to extend the standard idea of brush-shape. which we depicted top-most

in Figure 62 and which is most closely related to th e cross-Section of the bristles of a brush. The next

image in Figure 62 is obta ined by moving the brush-shape over some surface. We call th is a brush-stroke.

To simulate colour draining from the brush onto the surface, we define a transparency mask, with

increasing transparency in the direction of the stroke. Fina lly, if we combine the transparency-mask with

the brush-stroke, we get the bottom-most image in Figure 62, which is our complete brush-stroke. This is

what we define as our brush-shape and which we use to render OUf images. That means that each brush

contains in itself not only the shape of the origina l brush , but also the stroke with which it is applied to the

surface as well as its capacity to hold and emit paint. Figure 68 convincingly demonstrates how our

brush-shape extension creates the ill usion of app lied brush-strokes.

(}puI't<'r 5

Pure Bmsh Shape

"= -

----+

. ,

. .
"

Pure
Bl1lsh-stroke

TraJlSparency
Mask

Complete Bl1lsh
Slroke

J II!

Figure 62 - From Brush Shape to Brush Stroke

By randomly distributing the brush positions inside a unit square, the brush position can be multiplied by

the dimensions of the input image and the correct input colour sampled. We then mult ip ly the brush

position by the dimensions of the output image and render it onto the output image (after a ll necessary

transformations have been applied). This yields a convincing painted look, but the static nattIre of the

brushes is visually uninteresting if not disturbing (i.e. this results in the above-mentioned shower-door

effect). To remedy the situation, we apply a pseudo-random Brownian motion to the brushes and therefore

extended their properties by the measures of speed and acceleration . This approach is depicted in Figure

63.

rr -=- t5
~

tff' ~ fI.. , ,r ,.,..
~\ • I~ \f.'t--..
-b ~ -..~~
Brushes move in

milt Square

Shape is
applied and

rendered

Color is

u~"~~ overlay and
blend in

output dimensions

Figure 63 - Oil Painting using Textured Brushes

A multitude of associated issues needs addressing:

Number and size of brushes

Edge difficulties (suicidal brushes) and invisible Brushes

(lfllJ'((r _" III

In general, the number and size of brushes should be chosen so that the stati stic coverage of the output

image is as high as possible (the visual quality of the output image is greatly compromised if background

pixels show through, so that the fill area should be maximised). Let us consider Figure 64. If we suppose

that the percentage of the captured frame area occupied by the object is for example 25%) then we can

assume that 25% of random ly distributed brushes are situated over object-pixels (as opposed to

background-pixels). If we use our blue-screen masking technique described above, it follows that only

25% of our brushes wi ll be rendered (Le. visible), even though we have to animate and distinguish all of

them. We must therefore keep the number of brushes over object-pixels as high as possible. We ach ieve

this by monitoring brushes and checking if they move out of a object-pixels region onto a background

region. Once this condition is detected, the brush's movement-direction is inverted until it finds itself

back in side a visible region or until a time-out pe ri od ("time to live ") has elapsed. The latter is used to

make sure that brushes do not spend too long finding thei r way back into vis ible regions. After a brush

has spent a given number of frames invisible, it is respawned (i.e. re-initiali sed) at a random location.

Section 5.5.1 .4 explains why the variable, which counts the time a brush is lost, should be initialised to a

random value less than the maximum time to live.

By determining the visibi lity of brushes, we easily obtain an accurate frame-to-frame count of how many

brushes are visible. By sampling the captured-frame area at regular intervals, we can establish an estimate

of the pixel-area covered by the object. These va lues together with the screen -size of the captured area

allow us to determ ine the necessary brush -size to guaran tee a desired statistical brush-coverage in screen

space. To recapture: Let PB be the percentage of visible brushes and PA the percentage of pixels occupied

by the object in the frame-capture area. Furthermore, let B be the number of brushes and A the area of the

frame-capture region, then

A =PA·A
B P.B

B

is the screen-area each brush should occupy in order to completely fill the object-area with brushes.

Because brushes are d istributed randomly this va lue should be scaled up slightly to increase the

probability that brushes overlap, thus creating a more seamless picture.

IIU

Caphue Area ~

Backgrotmd Pixel ,--+

Screen

Figure 64 - Definitions: Visible Brushes, Object-Pixels, Background-Pixels, and Capture Area

Another approach to maximise the fi ll area is to choose a different brush an imation function. If th is

function can guarantee that brushes do not overlap (for example if brushes moved around circles placed

on an evenly spaced grid), the statist ical fill -area increases and fewer brushes can be used. The

advantages of th is approach have to be weighed against the adverse effects of easily detectable pattern

motion and the overhead in implementing it.

As brushes move inside the unit square they will reach the unit boundaries and try to cross them (unless a

motion function is defined which implicit ly forbids th is). This situation can be resolved in a number of

ways:

The brush dies and is respawned at a random location inside the unit square

The brush bounces off the edge

The brush wraps around to the opposite side retaining its motion

As brushes have a fin ite speed, the second solu tion is problematic. Computing a proper re fl ection while

taking discrete time-steps into account is fa irly costl y for a large number of brushes. A naive approach

using offsets and not considering timing issues is likely to trap brushes along edges. To wrap brush

positions around the un it square may in some cases also result in problems, as the speed (and therefore

travelling direction) of our brushes changes dynamically. This can result in brushes flickering between

opposite edges, especially if the brush travels parallel and very close to an edge. We work this problem

into the same solution we discussed above and treat brushes that attempt to move over the unit-edges as

invisible. They are na'ivcly bounced off the edge and given a certain number of frame to re-appear in a

visible region, before being respawned, thus implementing a combination of the first two suggested

solutions.

(hupt"" -' 1115

If a large number of invisible brushes fail to reach visible regions within their given time to live (say x

frames), then they will all be respawned after that given period, resulting in the output fl ashing every x

frames (this effect wi ll be very pronounced during an initial stabilisation phase and then fade into

statistical noise). To avoid this flashing, we must initialise the counter, which keeps track of time spent

invisible, to random values. This will still see many brushes respawning in the initia lisation phase. but it

will happen desynchronised (i.e. in different frames and not simultaneously) (see Section 5.5.1.4 for

results). Listing 13 shows the general algorithm used in our painterly renderer wi th textured brushes.

update (Brush B)
B.position = MotionGenerator UpdatePosition (B) if rl"
If Not Visible(B) /1 : 1' '10 . ,,-' _~ ...

IfB.Visible-True / / -1. . :JC'<. i b ':'l..
B.Motion . Invert ()
B.visible : Fa lse

'~ '~ (1 r . ' ,-
1/ ",

B.TimeToLiv e '" MaxTimeToLive II e -f.- '1 :

Else
If B. TimeToLive . .. O /.1 T \:, :l ., t!

B.Respawn() // .,
Else

B. TimeToLive-
End If

// n e!:: r" , t.: ~n r~ i. ,. ,J

End If
Return Ii

End If
Brush.Visible:aTrue / 1

a.Style .. StyleManager UpdateStlye(B) /1
End Update

Draw (Ref Image, Style)
Let P z Projected BoundingBox
Let B m array of Brushes

ib'

, I n.

n

Let Reference_I mage = Pixel-array to hold reference image

TransFormToPosi cion (B1 i tBackPosi t ion (P)) Ii
For all Brushes i n B

Update(Blil)
If B Ii) . Vis ible

Draw B Ii)
End If

Next Brush
End Draw

/ I J ~'" 1..) .' ,I (-,) , ~ i J • I, i ,

1.1 ' , (J, ,-.J " _ • ()

p

Listing 13 - Painterly Rendering using Textured Brushes

, {l j) ,

c (.. j .

Animation G shows all of these effects in action (Brownian motion of brushes, home-seeking technique

of brushes, overall movement of brushes corresponding to object's screen-position, colour-averaging of

brushes. and self-adjustment of brush size)

5.5.1.1 Qualitative Results for Number of Brushes

The single most influent ial factor of this renderer in tenns of affecting both quality and performance is the

number of brushes that are rendered to replicate the reference-image. Seeing as we want to guarantee that

the total object is covered with brushes, ,ve have to increase the brush-size with decreasing number of

brushes. This results in loss of visual detail compared to the reference image. Conversely, increasing the

number of brushes allows us to decrease the size of each individual brush and finer object detail emerges.

This relationship is visual ised in Table 17. Personall y, we believe that objects re~painted with 2000-4000

brushes look most convincingly painted. If the brush count is considerably below that, too much object

/lih

detail is lost and repeti tion of si milar brushes may in cases be noticed (we usually only use three different

brushes, which is under normal circumstances well hidden by the blending operations). If the brush count

moves well above 4000, the painterly effect of the brushes is increasingly lost. In general, a user of our

system will have to decide on the desired resolution and adjust the number of brushes accordingl y. It

should be noted, that apart from the number of brushes, no other variables were changed, proving that our

automatic brush-size adjustment (as a function of visible brushes, screen-capture area and object-pixels in

that area) works seamlessly and produces visual ly coherent results.

4000 Brushes 5000 Brushes 6000 Brushes 1 (1000 Brushes

Table 17 - Object Resolution vs. Number of Brushes

5.5.1.2 Quantitative Results for Number of Brushes

As already mentioned earlier, the performance of our painterly renderer is only very sl ightly affected by

the complexity of the object used to generate the reference-image. Other factors playa much more

infl uential role . As we see in Figure 65, the indi vidual traces are fairly straight and almost parallel to the

x-axis, indicating their independence of the number of triangles. It should be noted that the increase in

number of brushes is constant except for the first trace and th e last two traces, the latter of which show

extreme values. The I-Brush trace behaves slightly erratically. which we reason is due to the random

posi tion of the one brush. As the brush is scaled to cover most of the object, its position determines how

much of it is visible and how often it becomes invis ible. Nonetheless th is trace defin es a fairly r igid upper

limit, the va lue of which is primarily affected by the cost of the screen-capture operat ion. Comparing the

performance of the painterly renderer with one brush to the standard renderer we find that in average the

screen-capture operation alone causes a rough ly 7-fold slow-down.

(IIIJI'/c r 5

60

55

50

45

40

~ 35
"-

30

25

20
15

10

-

-

100

Performance of Painterly Renderer

~ ~ -, I I -- -.

i , -
__ 500 Brushe s

I ,

.. . -" 1000 Brushes

I ~ - a . 2000 Brush es
- - - 3000 Brushes . - ~ a _____ -a~ ,

.. - .. -4000 Brushes ,
-- 5000 Brushes • -- - . .. • - 6000 Brush es

.l--.-
, - 10000 Brushes

- , - , --~ -- - 1 Brush , , - ~ - -, i ,
I

1000 Triangles 10000 100000

Figure 65 - Performance vs. Number of Brushes

Considering this , the effect of rendering more brushes on performance is actually not very large. As we

stated above, our personal opin ion is that reference-images re-painted with 2-3000 brushes look visually

most convincing. Figure 65 indicates that this allows for a comfortable refresh-rate of 25-30 frames per

second. Even for 10000 brushes the performance does not drop below 10 frames per second proving the

real-time performance claim of our painterly renderer.

5.5.1.3 Quantitative Results for Object Speed

In order to maximise the number of brushes that are hovering over object-pixels and are therefore visible

(as opposed to those that hover over background pixels and are in visible), we supply each brush with a

tiny amount of intell igence - just enough to fi nd their way home (i.e. over object-pixels). If a brush is

lost, i.e. marked invisible, due to moving into background-pixel regions, it wi ll try to retrace its way in the

hope that it will rediscover visible space. Fai lure to do so after a pre-determined amount of time wi ll

result in instant death, compensated by a similarly instantaneous re incarnat ion. It follows that for

stationary object-pixels, the home-finding task is relatively easy, whereas a moving target is much harder

to find . If the brushes were randomly distributed (as was the case before our optimisation) the chance of

any gi ven brush being visible would be equal to the ratio of object-pixels to tota l screen-capture pixels

(i.e. the objectfill-ratia) and independent of the object-posit ion inside the capture-area. By applying th is

optimisat ion, we create local regions of high brush-densities, which are dependent on the object-position.

As the object moves inside the capture-area, these high-density regions have to fo llow accordingly.

To illustrate this fact , we have performed a series of tests, in which an object (the dog) is rotated at

various constant veloci ties and measured the effects on the number of visible brushes, the number of

respawned bl1lshes and the object jill-ratio. Table 18 shows the resu lts of these tests. The top-most trace

in each graph represents the number of visible brushes. The middle trace represents the object fill-rat io

and the bottom-most trace represents the number of brushes that have to be respawned . The hori zontal

axis measures units of time and is scaled to show a full rotation (i.e. the slower rotations will have many

more samples).

(IIlIJlfl'r 5 Opfimi,c.tf;OI1 (fr'(wret/ IJrl,-,It~·,) J //,\

The first graph shows the results for a stationary object. Several interesting facts become apparent.

Firstly, the object-fill ratio is constant as we would expect, because neither the dimensions of the screen

capture area change, nor do the number of pixels representing the object. The object (from the starting

orientation of the rotation) fills 22% of the capture area. The visible brushes step up towards, but never

reach 100%. This means that brushes will find their way into the visible region and then try to stay there.

In accordance with theory, at the beginning, when brushes are totally randomly distributed, only about

22% of them are visible. The spikes in the respawn-trace show that every 10 frames an exponentially

decreasing number of brushes have to be respawned. 10 frames is the lime [0 live for a lost brush in these

tests. These spikes appear as flashes in the rendered image and are visually disturbing. This issue will be

addressed in Section 5.5.1.4. We can note that with each respawning-spike, the number of visible brushes

surges upwards accordingty, indicating that at least a certain number of brushes have by chance relocated

to a visible area. As time progresses and almost all brushes are visible, almost no brushes have to be

respawned.

In the following graphs, the test-object is rotated at a constant, finite speed, indicated below the graphs (in

radians per frame). We can see that the object fill-rate trace is the same for all graphs. This is not

surprising, as th is measure is totally independent of the brushes, and rather a function ofa given object's

geometry and the current viewpoin t. The top-most trace, indicat ing vis ible brushes, has the same basic

shape throughout, but with more and more pronounced dips as the speed increases. The general shape of

the curve is a function of the geometry of the object and its rotational axis, whil e the amplitude of the dips

is related to the speed of the brushes (i.e. how fast they can find their way back) and the speed of the

object (i .e. how fast it can loose them). We identify a simi lar behaviour for the respawned brushes. The

basic shape of this trace is the same throughout, but with amplitudes rising slightly as the object's

rotational speed increases.

()pl;mi\ut;,,11 {/c\wrt.',1 Brll\h",j lll~

100" 1 ,,,.
! '0% ... --_.

'" .. , VisIble B I1l ~hes

'" '" • 0> I ...
so. I ".

I ~~ .~::~~:'.:~~~p. ~~~
... ."
'" 1: ,,.
,,.

I
,o.

''''' I I I j ...
I[' Re.'q)lwned Brn;:hes '" •

Speed ~ 0.0 Radlf Speed ~ 0.002 Rad/f

,.,.. , ...
'" 1--.. -.--.. ------------ '" 1--.. ---- . -''1 90. _. .. ,
'" , .. 1,-. __ .

~ .o. ...
I .,.. so, ...

h.." IV"\fI'M.~"\>~~·."i"""· \~
... ~

;~~ ·,,,~V~-I;~E~-~ '"' '"
"" ro • ... ,,.

~r. - .. ; .. - --l ""
Speed ~ 0.004 Rad/f Speed ~ 0.006 Rad/f

100"11. _ 100"
! ... t--- -.--- =l '" ____ i

'''' --------- -1 , .. f--
10; t-----.-- ... -.... --------~ ". 1,---_. ----
• " I,. ~.------~ ... 1,-_._ - ---_ .

so • ._--------- -------
:~ - , ------=---=--==-1 .. , - 1
'" '. II'" ~Mo" ldir;;~.. /fw ~,\ .,\\,w ::: ~Ali'!:'w.. IJ!t.;. o.,)B. ~iJj ~ "J' p ' w qol ' ! " \r F~

- :::::1 1~ ~ ~. ... III .. "
Speed ~ 0.008 Rad/f Speed ~ 0.01 Radlf

Table 18 - Effects of Object Speed on Painting Behaviour

To show that our optimisation also works for extremely high velocit ies and to demonstrate long-term

behaviour, we performed another test with angular speed of 0.5236 Radians/frame (=30 Degrees/frame),

ensuring that any periodic behaviour resulting from the rotation lies beyond our arbitrary 10 frame time to

live mark (i.e. 360/30 ~ 12 frames per full rotal ion). Object symmetry may also create periodic behaviour.

but brushes have no information about this and can therefore not knowingly take advantage of this fact.

The traces for this test are shown in Figure 66. On the x-axis in th is Figure we show not just one, but 100

rotations. The object fill-ratio is, as expected, fully periodic and in fact just an extremely compressed

version of the equivalent traces in Table 18, repeated 100 times. Two very interesting facts emerge.

Firstly, the number of visible brushes still rises quickly and sett les around 70% ± 10%. This means that

despite the high angular velocity of the object and its constantly changing projection, brushes find their

way into regions of the capture-area that are visible most of the time. The improvement in visible brushes

of our method is st ill about 50%. Secondly, the respawn-trace sinks below the I % mark after only 5

(Iru!'" r 5 ()p';IIU\lI';OIl (I ('HUf('t/ Jlru,h,'V /Iii

rotations. Thi s means that brushes either move into regions, which are visible most of the time, or into

regions that are frequented often enough by object-pixels. In the latter case, high object speed will even

prove beneficial.

90%,---------------------- ------------------- ------.----,
BO% +-------------------.--,-.---.--,---- -- .. --.-----.. --------.----.--
70% +--------------
60%

50% ~ ·--~
40~o

30% 1---------·---------------··-------------·----------~
20%

O%~--_,---_r---~--~----,_----r_--_r----~--_,----~

o 10 20 30 40 50
Rotati ons

60 70

Figure 66 - Extremely High Speed

BO 90 100

To measure the success of our optim isation, we would like to define the desi rable resu lts. We want to

keep the number of visible brushes as high as possible. The greater the difference between the visible

brushes trace and the object fill-rate trace, the greater the gain of our optimisation. Respawning brushes is

not very expensive, but can create visual artefacts. For th is reason this count should be kept as low as

possible. Our tests prove that after a short initialisation period, our system becomes relatively stable and a

considerable gain in the number of visible brushes can be achieved even for very fast-moving objects. It

should also be noted that the worst case is a (non-practi cal) totally random distribution of object-pixels in

the capture area in each consecutive frame. In this case our system would exhibit the same characteristics

as a non-optimised system. As our optimisation is easily and efficiently implemented, its potential gain

far outweighs its incurred overhead in th is rather contr ived situation.

5.5.1.4 Quantitative Results for Respawning Behaviour

As mentioned in Section 5.5.1.3, the respawning-spikes, resulting from synchronous re-initialisation of a

large number of brushes, is visually noticeable and distracting. The very reason that this effect is so

noticeable is due to the large amplitude of the spikes. This in tum derives from the fact that re

initia li sation occurs synchronously every x frames, because all brushes are initialised with the same time

to live (e.g. 10 frames). Our solution is therefore simply to initialise brushes to random times to live upon

first creation. Th is desynchronises respawning, even though sti ll the same number of brushes is

respawned over the same period oftime (Le. the integral of the curves is the same). The effect is that the

traces for both the visible and the respa\VIled brushes exhibit a much smoother shape, equating to visually

much smoother animations.

('I"'!''''r -; III

, ...
100"" 1 ... ,

'''' "'" ." I
eO'

'"
I ",.

"" I ...
, ...
d Ii 1.1

, ..
,.0 '"" '-
'" I I .• I ". ,,' '"

- --

Figure 67 - Respawning Behaviour: a) Synchronised; b) Randomly desynchronised

5.5.2 The Paint

The idea ofa palette can easily be real ised by quantisation of the colours of an input image (see rule a in

Figure 69). This can be achieved with an appropri ate function or via a lookup-table to create effec ts such

as sepia-colouring, false colours and neon c%llrs to name but a few. A side-effect of this is usually

greater contrast in the output image so that individual strokes become more distinguishable. The opposite

effect can be achieved by averaging colour va lues over time (we do this by extending the brush properties

with a colour attribute and averaging over a given number of frames). We find that wh ile this produces a

un iform and smooth appearance, fast moving brushes can carry unwanted colour into regions, where this

colour is usually not foun d (see the brush-fading effect in Animation G). In cases this might be used to

indicate manual fla ws, in other cases it might be undesirable and the number of frames over which

averaging occurs should be decreased.

Transparency and thickness of a type of paint can be simulated by changing the transparency of the

texture maps lIsed to draw the brushes. Higher transparencies can be lIsed for watery colours, while lower

transparencies can simulate th icker colours like oil. The different bleeding and mixing characteri stics can

be approximated with different blending functions, and again transparency.

5.5.3 The Technique

The style produced by our method is mostly influenced by the fo llowing factors:

Brush shape

Palette

Orientation of brushes

Local choice of brushes

Different strokes imitate di ffe rent styles. This is why an image rendered wi th mostly long thin strokes will

look very di fferent from one that uses thick round blotches. A va riety of brushes can be used to produce a

rather homogenous appearance, whi le using just one brush may be used to imitate a style like Pointill ism.

The orientation of brushes is another important fac tor. Some artists might apply strokes in only one

direction (like in the cross hatching shading in Section 4.6.2), along object contours or arbitraril y. For

('hupl('r -' III

more sophisticated methods like the contour-tracing, filters (like edge-detection or convolution filters)

will have to be applied to the input image in order to orientate strokes accordingly. This is actually not as

costly an overhead as one might think. OpenGL for example provides numerous image man ipulation

functions In the form of Convolution Extensions (e.g. glconvolutionFil ter2DEXT (),

g lCopyConvolutionFilter2DEXT() , and glSeparableFi lter2 DEXT(); see [50], node 196 for details)

which work similar to the glDrawPixe l s () command, except that the convolution parameters are applied,

before rasterisation. Where these are not available, they can be emulated with the accumulation buffer

([50), node 195). Using these convolution filters a variety of filters can be implemented (see [50), node

167 for an overview; node 198 for line detection filters and node 203 for gradient detection filters.

Several others are given as well) , several of which we consider useful in applying painterly styles to our

brush strokes. If geometrical information about the content of the input image is available (as is the case

in Section 5.4.1) it can be used (instead or in addi tion to the output of convolution filters) to align brush

strokes along object geometry, take light direction into account and the like. Another possible variation is

the orientation of brush strokes according to brush locat ion (but independent of the input image). For

example a sine function could be used with the x-coordinate as the argument, thus creating brush waves

on the canvas.

Figure 68 - Landscape with various Brush Orientations): a) Random; b) Angled; c) C ircular

Figure 68 shows several brush orientation functions : a) orientation changes as an arbitrary function of

position, appearing random; b) orientation is constant (35 degrees); c) orientation is atan(y/x).

Simi lar to the localised choice for the orientation of a brush, the texture used for a given brush may

change according to location. This means that the outline of an object could be pain ted with different

strokes (textures) from other reg ions. The background could yet again use other brushes. As above, brush

shapes can also be chosen as a function of brush position or even local colour of the input image. We

demonstrate some of these ideas in Figure 69. Several rules have been applied to the image and three

different brushes used.

J Original Image © G. Schulz

('I'''WI\uliun (I CUt" (I IJru,h,'\) 11.1

Figure 69 - Demonstration of multiple effects

In the regions labelled a) (identified by being mainly blue), we quantise the brush's colour to simulate a

palette that contains only 10 shades of blue. resulting in some colour-bands in the sky areas. Additionally.

these regions are painted with the Spatter brush. Regions c) are mainly green. Here we apply the Stroke

brush and set the drawing angle at a constant 30 degrees. In addition. all blue and red colour-content is

eliminated, enhancing the saturation in that part of the image. In regions d), neither blue nor green colours

prevai l and we apply the Blotch brush after converting the brush's assigned colour to greyscale, except if

its brightness is above a certain threshold, as in Region b), in which case we apply a shade of red (i.e.

what used to be clouds). While all of these rules are totally arb itrary and of no particular artistic va lue,

they are very easily implemented and show the great creative potential, that can be realised with our

method. It should be noted that, while our rules were hard-coded in a few lines of code, they could easily

be made part of a scripting language, thus eliminating the need for fe-compilation of source-code and

facilitating the exchange of styles developed in this manner.

I \·/(11 ;1111'\ IU

Figure 70 - Brush Variations: a) Original'; b) Detail of Spotlight; c) Same Detai l with Dot-Brush;

d) Dot-Brush ; c) Stroke-Brush

Figure 70 shows the reference-image (a), a painterly re-rendering using our dot brush (d) and our stroke

brush (e). A detail of the highlights on both apple and pear (b) rendered with the dot brush is shown in (e).

Apart from demonstrating the creat ive possibilities of our renderer, we also would like to draw attention

to the dimensions of the in- and output images (the images in Figure 70 are scaled for layout purposes).

Image W,d,h HeIght PIxels

Original 383 249 95,367

Dot 620 519 321,780

Stroke 528 376 198,528

By using blending, bi-linear mterpolatlon (texture smoothmg) and variable brush sizes, we can

interactively change the size of the output image without affecting its quality. We can also work with a

constant brush size and increase the number of brushes to compensate increasing output dimensions,

again obtaining a perfectly rendered image every time. For most practical purposes the inherent loss of

fi ne image detai l allows us to use reference images of fairly low resolution.

5.6 Extensions

5.6.1 Real-time Video Oil-painting

Since we implemented our painterly renderer as a 20 filter approach, the reference image can come from

any type of 2D image sources - a fact of which we made use in the previous Section, by using the colour

bu ffer of a 3D renderer as the reference image. Static images have been used in Section 5.4, help ing to

describe our technique. Another popular application area is that of video special -effects (as can be found

.:I Image Source: Internet

(1Wl'1t" -' 1/5

in many popular video editing suites or in research, e.g. [32]). Vlhile commercial video software usually

app lies oi l-filters in off- line batch processes, Hertzmann and Perlin claim real·time results of about 4

seconds per frame. Our method is limited by two factors: the refresh rate of our video capturing (using

standard Windows API calls, this is usually 15 fps, mostly independent of the hardware) and resizing of

the input image to comply with OpenGL constraints if the input image is to initialise the output image

(both width and height have to be some integral power of two). Actually the byte ordering of our

particular capture driver also has to be changed, but this can be done as part of the image resampling.

Figure 71 shows our demo application rc·rendering a popular South African chil dren's television

programme at about 12 frames per second (the indicated 31 fps is target rate and can only be achieved in

overlay mode - i.e. by allowing the capture card to draw directly into the screen memory) , thus operating

at almost full capacity of the capture driver. As we discussed above the dimensions of the output

rendering can be decoupled from those of the input image and we could render the scene in the full screen

if we wanted to without much performance loss (the fi ll ·rate of the accelerator card is of greatest

influence here).

_"",,- I
c, *r 1

h· ... IlIo1P !

" 1<lA\1 I .J

P"- .::1
p ""'-- •

I: ,~) '"
r.c.et i r VI""") n.

flo I

Figure 71 - Video Oil Rendering

Some optimisation can be effected when performing live video oil rendering: The sample image

resolut ion can be adjusted to the minimum necessary. By taking ad vantage of inter-frame coherence (a

fact that is exploited by many video compression algori thms), we can spare the background clear, simply

render over the old scene and cut down on the number of brushes rendered. This provides a fu ll visual

without background artefacts. A lower brush count will update only part of a given scene, but motion

detection can be performed to detcct changing scene elements and concentrate the updating efforts in

those areas. The content of the video sequence is also of importance: Fine deta il like writing will most

likely not be readable. Fast moving content will also appear blurred and, depending on the number of

brushes used, produce confusing resu lts. In general though, our method can produce convincingly painted

scenes at interactive rates.

('/rUl'fl'r 5' ,,~

5.7 Results

5.7.1 Qualitative Comparison of Approaches

In Table 19, we show some examples of objects rendered with the default renderer (left column) and their

painterly equivalents (middle column = convolution filtering, right column = textured brushes). While it

is not for us to judge on the aesthetics of the results, we can note the following. The convolution filter

implementation has difficulty reproducing thin object detail. The arms of the cowboy in the second row

for example are totally cut-off.

Default Convolution Filter Textured Brushes

Table 19 - Visual Comparison of Painterly Approaches

Each column is rendered with a constant set of rendering variables to allow for better comparison

between objects. Nonethel ess, we can easily change the appearance of the textured brushes

implementation totally by only changing the brush shapes it uses. To achieve a similar effect with the

convolution filter implementation, we would have to re-design and re-compile its source-code.

_"/lln",ury IF

5.7.2 Quantitative Comparison of Approaches

As we noted above, the performance of the convolution filter approach is so low, that it cannot

successfully be used in an interactive context. For this reason, we refrain from a full comparison, and go

into more detail on the performance of our textured brushes approach in Section 5.5.1.2. The main reason

we included the convolution filte r approach in our in vestigation is its common usage in commercial

applications and the fact that alternatives, apart from ours and similar approaches, are few and far

between. It should suffice at this stage to state that the convolution filter approach performs at

O.363±O.021 frames per second in our test set-up.

5.8 Summary

In this Chapter, we have discussed the relevant issues pertaining to painterly rendering at interactive

frame-rates. Firstly, we found that it is most helpful to describe how paintings are created instead of how

they look. By doing so, we identified three main ingredients:

Brushes

Paints I Colours

Technique

We used the notion of a reference-image to dissect our painterly algorithm into several logical steps

(acquisition of reference-image, definition of style, re-rendering of reference-image in given style), which

allow it to be flexibly implemented and facilitate a filter-concept design. Thi s means that a variety of

input-sources can be processed into a painterly style without modifications to the main algorithm.

We demonstrate how image-processing filters are commonly implemented using a convolution approach

and commented on its disadvantages, namely:

High computational complexity = low performance

Hard-coded filter-design ~ low flexibility

Lack of natural media artefacts ::;:; mechanic look

Still, we were able to show how our painterly ingredients pertain as well to most convolution solutions.

We address the general problem of obtaining a reference-image from a 3D model. This is potentially an

expensive task due to some generally un-optimised operations (frame-grabbing). In order to maximi se the

performance of this stage, we minimise the frame-grab area by means of a projected bounding-box

approximation. Related to this topic, we introduce the various on and off-screen buffers that can be used

to implement the reference-image acquisition, discuss their advantages and disadvantages and give

general rules about the application-context that each buffer is best used in.

/1,\

Next, we introduce out version of a textured brushes solution to the problem, which implements the

painterly ingredients in a morc intu itive fashion. Brushes are modelled as textures, making their

appearance and contribution to the rendering process more accessibl e. Furthermore, we show how the

simple notion of a brush-shape can be extended to implement artistic strokes and supply each brush with

attributes such as:

Posi tion

Direction

Shape

Size

Paint-emission function

Opacity

These are easily defined and adjusted to suit the user's need in creating stylistic variations. Since static

screen-space brushes arc claimed to produce an undesirable effect, called the shower-door-effect, and

brushes fixed in object-space are associated with the requirement ofa large number of brushes as well as

a considerable depth-sorting overhead, we invest igate a new hybrid-approach. Our brushes are neither

fi xed in object nor screen-space, nor do they appear at random positions. Rather, they move smoothly in a

semi-random Brownian motion, guided by but not fi xed to, object-pi xels in the capture-area. We devised

various movement-rules that all ow brushes to fmd their way back over capture-regions occupied by

object-pixe ls (the ratio of which is the object fill-ratio), which we call visible regions. Brushes th at stay

invisible for longer than their pre-determined time-ta- Ii ve, expire and are respawned (re-in itialised) .

Consi dering that the percentage of visible brushes for a completely random distri but ion of brushes is

equal to the object fi ll -ratio, we eas ily obtain up to 99% vis ible brushes with our approach. This means

that we can use far fewer brushes to achieve the same fill-effect. We even showed that for fas t moving

objects, for which our approach is less effective, a cons iderable gain in the number of visible brushes can

be achieved.

Paints and colours are discussed in the form of palettes. which can be used to change the colour-mapping

of the reference-image. This can be implemented using functions or look-up tab les and its integration into

our implementation is straightforward.

In terms of the variables that affect the stylistic nature of our rendered images (Le. what we termed

previously as Technique), we consider the fol lowing:

Brush shape

Palette

Orientation of brushes

Local choice of brushes

('hUI'(tT .' ~\fllnm"ry IIY

and show examples of their effect on the produced output, thus demonstrating the large potential of

possible styles that can be achieved with our approach.

As an extension, we reveal how, owing to its fil ter-design, our implementation can easily be plugged into

a video-capture application to produce painterly images from a live-video feed in real -t ime. We also

present optimisations that can be applied in this context by exploiting temporal coherence.

Next, we veri fy the va lidity of our approach by list ing the qualitative and quantitative resul ts from our

standard test set-up running the painterly renderer. Amongst other results, we prove that our brush

movement rules are highly successful in obtaining the highest visible brush-count possible. In our tests

we achieved between 70-99% brush-visibility for slow to extremely fast-moving objects. We identified

the major cost-factor in our approach, namely the screen -capture operation and suggested that about 2-

3000 brushes are necessary to convey a realistic painterly looking visual. The performance in this region

of brushes lies around 25-30 ITames per second and even for a large number ofbrushes (10000) does not

drop below 10 frames per second.

In conclusion, we have shown that painterly rendering of 3D objects can be achieved at interactive frame

rates and with a convincing painterly look. Furthermore we have identified some key-aspects of painterly

rendering and managed to trans late these into tangible and adjustable variables. We in troduced several

optimisations like screen-capture minimisation, and brush-movement functions to maxi mise brush

visibility, that can easily be abstracted and lIsed in different contexts.

(I UI"l "

6 Super-realistic Rendering

6.1 Introduction

6.1.1 Definition

One of the main design considerations for all our renderers is real-time pcrformance and we show in

Chapters 3, 4, and 5 how non-photorealistic renderers can be designcd and implemented to adhere to such

rigorous constraints. It is on ly natural to investigate briefly the opposite and much more studied extreme

of rendering. Photorealistic rendering is discussed in-depth in Appendix A and wc note there that apart

from very few exceptions (e.g. [10 I]. [94] & [45]). true photorealistic rendering is not a real-time process.

yet. Images, which are produced by modem computer games, include more and more realism-enhancing

effects (like lens flares, shadow maps, light maps, etc.) but are sti ll far from reali stic. We therefore try to

solve the problem of interactively rendering an object in real-time that is not only as realistic as can be

expected by today's state of the art (i.e. computer games), but in fact truly photorealistic. We call th is

super-realistic and define that the resulting image quality should be comparable to that of video-footage.

6.2 Problems

6.2.1 Problem Statement

We want our solution to super-realistic rendering to be sufficiently complete as to not be limited to a

special subset of objects (e.g. only simple or un i-coloured objects). Specifically, we want to be able to

render objects that have hair or fur or other features that are very difficult to reproduce using standard

rendering techniques. As we stated above it is unreasonable to expect to find a solution to the problem in

standard photorealistic rendering techniques like raytracing or the Radiosity method. We thus have to find

a solution that

circumvents common limitations in object complexity

can be applied to a large enough group of objects

can be implemented to perform in real-time

6.3 Solution

A very recent development in computer graphics, especially in connection with photo-rea listic rendering

is that of image-based rendering (IBR) (see [81]. [57]. [84]. and [l6] for applied examples). The idea here

is that instead of creating all parts of a given scene from scratch, at least some of the scene elements can

be re-generated by modifying and transforming appropr iate sets of images. This is usually done for static

scene elements like skies, horizons or other very distant scene elcments (e.g. the panoramic images of

QuicktimeVR: [3]. [104]), but in fact even the very commonplace texture-mapping technique can be

considered a very special application of image Mba sed rendering.

CItUJ'11'r 6 121

In practical terms this means that if we have, for example, an airplane that fli es through the sky, we do not

necessarily need to render thousands of polygons, apply dozen s of materials and calculate complicated

light-interactions on every frame of our animation. It might be enough to render the ai rplane once and

then just move an image of the plane through the sky - or better even, not render the plane at all but just

take an image of a real onc. Of course this solution is compelling, but what happens if the plane decides

to bank or tum? In that case one image is not going to be enough, yet common sense will tell us that using

one image for every possible viewpoint of the plane is simply not feasible. OUT solution is therefore to

limit the number of available viewpoints to a reasonable sample size and interpolate between samples.

The followi ng Sections show how this can be implemented in real-time.

6.4 Standard Approach

Let us consider the common affine transformat ions that one is likely to encounter in any typical graphics

context (see Figure 72. Other transformations like ske""ing are acknowledged, but not considered typical):

Translation

Scaling

Rotation

We will have to be able to apply all of these transformations to our object. Most of these transformations

are easily accomplished by simply translating or scaling the image of the object and even a rotation in the

image plane is trivial. Other rotations are unfortunately only poss ible for spherically symmetric objects. If

we tried, for example, to rotate the airplane in Figure 72 about its longitudinal axis, we would expect the

wings to foreshorten and disappear at 90 degrees. In general, object detail can appear and vanish under

arbitrary rotation. We need to address this issue.

Translation

Scaling

U
Rotation
(prim~ry Axis)

'+. , I

I !
L-___ ___ i

Image of Airplane

+ ++
+

Figure 72 - Image-based rendering, affine transformations

(Irlll'l r I.J ()1'"",i"II;O/I\

To deal with this situation, we need more samples of the object) i.e. more images. As stated before) we

cannot possibly take one sample per viewpoint, as there are infinitely many. so instead we opt for regular

spherical samples as illustrated in Figure 73. At each vertex on the spherical grid we place a camera

pointing towards the centre of the sphere and take a snapshot. The density of the spherical mesh then

determines the number of samples to be obtained.

Figure 73· Geo-spherical sampling of a real-world object

It should be obvious that the number of samples is proportional to the probability of finding a suitable

sample for a given viewpoint. This means that we should have as many samples as possible. On the other

hand, each sample takes up memory· resources, so we should try to use as few samples as possible.

Another observation is important. If a viewpoint happens to fall exactly on a sample-point (i.e. vertex on

sampling mesh) then we can simply use that sample. It is much more likely though, that an arbitrary

viewpoint will fall between sample·points and we have to deal with this situation . The solutions available

are very simi lar to those of texture mapping (where sampling and aliasing are of equally great

importance):

Use the nearest sample (in tenns of distance on the approximated sphere)

Interpolate between several near samples

So far we have only found the first solution being considered [110] (QuicktimeVR), but we argue that the

second solution is far superior. For a visual comparison, watch Animation H and Animation K.

6.5 Optimisations

6.5.1 Interpolation of Samples

While the first solution is unquestionably the easiest, it will also produce the worst visual results: the

object will appear to jump between or ientations - smooth transitions are impossible. The second solution

takes into account not only the very nearest sample, but several near samples. Since the mesh in our

example is triangulated (sec Figure 73), we use the three vertices of the triangle in wh ich the current

(hal'/c'r 6 ()1'1I /IIi \mioJl'

viewpoint is located to interpolate a given orientation. We achieve this by using tri-linear or even higher

order interpolation. For the sake of this discussion, we introduce a modification to our original set-up. We

wi ll first look only at rotation around one arbitrary but fixed axis. This is equivalent to spanning an

arbitrary equator around the sampling sphere and placing samples exact ly on the circle formed by the

equator. This limits the first-order interpolation to simple linear interpolation, but everything else remains

the same. We wi ll then use bi-linear interpolation to improve on the interpolation result and show that the

generalisation step ITom bi-linear to tri-Iinear interpolation is easily achieved.

Our first attempt is to simply blend two images together. If we suppose samples are available at I5-degree

intervals (i.e. 24 samples) and we want to simulate a view of exactly 20 degrees, we can mix 2/3 of the

I5-degree sample with 113 of the 3D-degree sample. The resulting effect is a much smoother transition

between samples, but geometric detail still vanishes and appears from seemingly nowhere.

Figure 74 - Teapot sampling: a) 15 Degrees; b) 30 Degrees; c) Control-Points and Motion Splines;

d) Triangulation based on Control-points

If we look closer at Figure 74a) and b) we understand the problem: The spout for example moves down

and to the right, while the handle moves up and to the left. In addition to this the body of the pot hides

parts of the handle. Mere blending cannot simulate this behaviour. We actually have to move the pixels

corresponding to the spout to the correct location (and similar with all other features). It would obviously

be totally unfeasible to specify the movement of all pixels between each pair of samples. On the one hand

this would create another huge amount of information and on the other hand this information is simply

not available for all pixels (as we mentioned above with the handle). Instead, we specify key-positions,

called control-points, at easily identifiable positions in both images (e.g. the spout, the handle, the lid and

various spots on the body of the pot). This is shown in Figure 74c). We then move control-points along a

path from their staring-position in one image to their destination in the next. Figure 74d) shows how the

control-points of Figure 74e) are connected using a triangulation scheme after Delaunay (see [106], [107]

and [113]). Other schemes can be used as long as they guarantee an optimal triangulation (i.e. no

Of'r; m; ,,11;011 \

in tersecting triangles) and offer fast implementations. The next question is how to move the remaining

pixels around, so that we obtain a smooth transition between images. The answer in this case is as simple

as it is effective: Texture mapping allows us to specify texture vertices (in our case these are 20

coordinates inside an image) that correspond to geometric vert ices.

Figure 75 - Pixel Interpolation through texture mapping

Figure 75 shows two quadrilaterals, the one on the righ t being derived at by deformation of the left one.

Several facts should be noted. First ly, all we have done is move the defining vertices of the first

quadrilateral around and have obtained what appears to be the same quadrilateral moved into the page and

slanted slightly at an arbitrary angle. Of course the paper of this thes is is really flat and all we have done

is move some points around arbitrari ly, but our brain will tell us from past perspective experiences that

we are looking at a very three-dimensional looking checkerboard. The habit of our brain to interpret two

dimensional movements as three-dimensional (if this movement conforms in any way with past

experiences) is strongly exploited by our renderer. In fact all vertex-movement in our renderer is two

dimensional, but it complies with what we'd expect the corresponding three-dimensional movement to

look like. This is what adds depth to our rendered images and makes them look convincing under

animation. Secondly, we consider the checkerboard texture. To change one quadrilateral to the next, we

did not have to specify the movement of all pixels in the source or destination images. Instead, we set up

a rule of how the checkerboard texture is to be applied to the quadrilateral (th is is done by specifying

texture co-ordinates for each geometric vertex). This rule doesn't change when the quadrilateral is

deformed and so the same rule app lies, producing the deformed checkerboard on the right. In practice thi s

means that by defining a texturing rule and the movement of deformation, we can implicitly specify the

movement of all pixels contained wi thin the quadrilateral. Lastly, we should mention that the

quadrilateral shape was chosen for demonstration purposes only and the above discussion holds for any

polygonal shape that texture mapping can be applied to. To see the teapot rotate ITom 15-30 degrees using

our interpolat ion scheme, see Animation I (after watching several times, you might notice an artefact on

the lid of the pot ncar the handle. The selection of control-points here was not ideal).

1~5

Figure 76 - Linear interpolation in action

Figure 76 shows how we use these ideas for our super-realistic renderer. The left image is an original and

shows a teapot at 15 degrees rotation with triangulation applied. The right image is synthesised and

depicts the same teapot at 30 degrees with the same triangulation-configuration (this means that the same

vertices are connected by triangles, even though the connected vertices might have moved slightly). For

example, the vertices defining triangle al are the same as those defining triangle a2 (and similarly with

triangles b1 and b2), but these vertices have moved slightly between the two images. It should be noted

that similar to Figure 75, the texturing information of triangles al and a2 is the same, so that all pixels

contained in al are relocated to the corresponding location in a2. This is important and it means that by

deforming the vertices on the left to the vertices on the right, but using the same triangulation and

texturing information, we can deform the teapot on the left to the teapot on the right. This process is what

we call linear imelpolalion. If we now have another original image of the teapot at 30 degrees, we could

easily reverse the process and try to synthesize the 15 degree teapot. It should be obvious, that

interpolated images will look worse, the further they are removed from their source, i.e. if we have an

original at 30 degrees, then interpolations at 29 and 28 degrees will look very realistic, while

interpolations at 20 or 19 degrees will look a lot less realistic and at some stage the interpolation will

break down completely. Fortunately, we have another original at 15 degrees, so it makes sense to

interpolate the 15 degree or iginal towards 30 degrees and the 30 degree original towards 15 degrees and

blend the two results weighted by which side we are closer to. For example, for 20 degrees, we take 2/3 of

the 15 degree interpolation and 1/3 of the 30 degree interpolation. This bi-directional process is logically

called bi-linear intelpolalion. For a comparison between linear and bi-linear interpolation, study

Animation L.

The visual result of this new approach is almost perfect: Image transitions are extremely smooth and

object geometry moves instead of simply appearing. No additional information is necessary for this bi

linear interpolation, as control-points move along the same path, merely in opposite directions.

()/,timi.,1l1i"",

r<::-----",--.---------, """'----=-

\ ~
---+--~ / ' -,

/)/---.-

--,
I

Figure 77 - Triangulation Problems: a) Initial Triangulation; b) Control-point moves into

neighbouring triangle; c) Two possible triangulations of the same control-points

A visual artefact caused by the animated triangulation needs addressing. Triangles are computed based on

control-point information of a particular sample. As the control-points move towards their destination

location it can occur that triangles move into one another (see Figure 77a&b). Due to the necessary

blending operations, this results in overlapping areas being over-exposed, i.e. too bright (Figure 77b

shows the opposite effect for illustrative purposes). We found several solutions to this problem:

Mid-point triangulation

Per frame re-triangulation

Depth-Buffering

Triangulation can be computed based on the mid-position of corresponding control-vertices instead of the

start-posi tion. While this lowers the probability of triangle overlaps, it does not guarantee to eliminate it.

Triangles can be recomputed on each frame. This guarantees that no triangles will overlap, but is fairly

costly and results in yet another problem. Since any triangulation scheme has to decide how to connect

neighbouring vertices and these decisions are based on the relative distances between neighbours, the

connection layout can change instantaneously from one frame to the next. Figure 77c) shows two possible

triangulations of the same vertices. Since the triangulation has a direct influence on the texture-mapping

process, spontaneous triangle flipping will produce visual clicks (Le. temporal incoherence) .

The last solution uses the depth buffer to allow each pixel only to be written to once. As we have more

than one render pass (2 for bi-linear and 3 for tri -linear interpolation), this means that the depth buffer has

to be cleared after each rendering pass. This operation is also costly, but hardware-accelerated and

therefore feasible. Alternatively, each rendering pass can be layered on top of each other with slightly

decreasing z-value. While this is much more efficient, care has to be taken under perspective projection in

order not to cause foreshortening between layers. This means that sllccessive layers have to be very dose

to one another and depth buffer resolution has to be taken into account. Despite these issues, this method

produces no visual artefacts like the other two solutions.

(l"'I"f" () ('!'tim; \/IliOJl'

6.5.2 Control Vertex Acquisition

So far we have assumed the existence of suitable con trol-vert ices for use in the triangulation process, but

have omitted to reveal how these control -vertices can be acquired. This Section addresses this issue.

For testing purposes and adjustment of our main algorithms, we first selected control-vertices manually.

While this proved to be extremely reliable, we quickly realised that this task had to be automated.

Nonetheless we could identify tram our own experience the basic steps necessary to gather control

vertices.

Identify suitable control-Vertices (these include edges, contours and other recognisable

landmarks).

Find these control-Vertices in adjacent images

To implement the steps above we define the following set of rules that we adhere to in order to identify

viable control-points. For this discussion we define a cluster of image-pixels as a landmark (in our case a

rectangular area of pixels, the location of which is defined by its geometric mid-point). The rules are

listed in descending precedence so that a short-ci rcuit evaluation can be performed:

I. Landmarks may not lie too close to image boundaries (discontinuities)

2. Landmarks may not lie too close to one another (redundancy)

3. Landmarks must lie on regions of high frequency (it is implied that most of the landmarks are

enclosed by edges)

4. Normalised Cross Correlation (NCC)s value of surrounding Landmarks varies significantly from

Landmark under in spection (th is makes a correct match in the adjacent Image more likely)

5. Not more than a certain nllmber ofNCC matches may be found (uniqueness)

6. {Landmarks can be found in the original and ne ighbouring image (self-verification) }

To explain some of these steps in more detail, we devised the demonstration shown in Figure 78. Image

a) shows the original image and image b) depicts a modified but similar version of a) (as we would expect

in any practical situation). Compared to image a), image b) is translated up and to the right, scaled down

(shrunken in size) and slightly skewed at the top (i.e. top border is shorter than bottom border).

S NCC defines a window of pixels in source and destination images as well as a formula to determine the

similarity of intensities in these windows. A perfect match scores 1, while 0 signifies no correlation. For

more detail, see [6 5)

()I',i ",i,,, ';011' I!S

Figure 78 - Demonstration Set-up

The first ru le is easily implemented by only starting to look for suitable landmarks a certain distance away

from the image boundaries. To improve search performance, the second rule uses a temporary bitmap,

into which circles are dra\V11 for each valid landmark (i.e. flagging invalid positions). When traversing the

original image for a suitable location, we simply check the current location in this temporary bitmap for

validity. Rule three is enforced by performing an edge detection on the input image (Figure 79a) and only

allowing landmarks to be placed on locations of strong edges. This is done to place landmarks along the

contour of the object (to preserve its shape) as well as on important object detail (like the mouth, the nose,

the eyes, etc.). We also assume that recognition oflandmarks containing high-frequencies is easier than of

those with low fTequencies.

. (,
V\~ ~

I , ~.' . . - '"'J n

Figure 79 - Image analysis; a) Edge Detection ; b) a possible landmark; c) many possible matches

The workings of the Nee algorithm can be seen in Figure 79b&c). We manually selected a landmark in

the original image and tried to find the corresponding landmark in the adjacent image. The green dots

show regions with a good Nee match, while the red dot shows the correctly identified landmark. This

illustrates two facts. Firstly, in many cases the NCC will identify a very large number of probable

matches, i.e. many parts of the images look alike and secondly, it is usually quite good at identifying the

correct one within these matches. Of course the number of probable matches is also determined by the

threshold value defining a good match. If too many probable matches are found, the landmark is not

unique enough and we cannot assume that a correct match will be found. Rule five implements this

notion. Finally, ru le six states that if a landmark A was identified in the source image and found as

landmark B in the target image, then the reverse should also hold, i.e. when searching for landmark B in

(hllp/('r " lJ/u; Ill; \lIt;I'" \ I~f)

the original image, we should obtain the location of landmark A In practice this rule may lead to too

many false rejections and is very time-consuming, so that we do not make use of it,

Figure 80 - Automatic Landmark identification: a) source; b) target

It should be obvious that a large number of variables have an influence on the landmark identification

process (e.g. edge-detection matrix, NCe window size, minimum NCe score, maximum number of

matches, etc.) and their tweaking is as difficult as it is essential. Figure 80 shows the result of a

demonstration run. We can see on the left hand side that landmarks are indeed spaced evenly and located

around the contour of the object as well as important features (eyes, mouth and nose, as well as parts of

the hairline). This means that the fi rst three ru les are working as planned. Furthennore, it is evident that

all landmarks inside the face are correctly matched. Unfortunately, a large number of landmarks on the

contour are mismatched. If we consider Figure 81, the problem becomes obvious. Landmarks along the

contour are not very unique. Figure 81a) marks the location ofa proposed landmark. The naked eye has

difficulty identifying any recognisable spot along the neckline. Figure 81b) verifies this fact, by marking

the whole neckline as well as other parts of the face as possible match-sites. The actual match is incorrect,

but impressively close to the correct location. In all li kelihood, the variables detennining the behaviour of

rule four have to be adjusted. The obvious problem with choosing values for these variables is that they

should be strict enough to produce good landmarks and matches, while on the other hand not being too

strict so that not enough landmarks fulfi l the criteria. The time taken to find and verify a suitable

landmark is another important factor. For images of 256·256 pixels2
, and an NCe window-size of 11· 11

pixels2
, we are able to match a given landmark within 440 milliseconds on our test-system. This is to say

that a single landmark match through NCC takes 440 mill iseconds, but this does not incl ude the

computation of other rules such as the edge-ru le or the high-frequency-rule even though they have a very

definite impact on the choice of landmark placement. To demonstrate the fragi li ty and sensitivity of the

variables used in our automatic landmark identification and verification process, consider the following:

the results of Figure 80, i.c. 65 possible sites for landmarks along with matches in the neighbouring image

(about 10% of which are incorrect) were obtained within 135 seconds (i.e. over two minutes). These

results were obtained after a slight adjustment in one of the algorithm's variables (the exact variable and

amount are in·elevant here). Before this adjustment, we obtained a mere 15 landmarks, only 10 of which

were correct in 969 seconds (i.e. over a quarter of an hour). While the exact numbers are of no real

(IHlI'II r b (J{lrin" \II1WII' I)

concern, it should be noted that automatic landmark identification and verification is a non-trivial and

very time-consuming task.

Figure 81- Contour problems: a) proposed landmark; b) possible and incorrect matches

Another problem area is that of appearing and disappearing features of an object. These need to be carved

out of adjoining parts of the object, but by definition have no corresponding equivalents in neighbouring

images. These issues are part of an ongoing investigation into the matter. One possible direction that we

wi ll be investigating is to use spatial relat ionships of established landmarks in order to place and identify

additional ones in a boot-strapping process. This means that if we place a landmark between two

established landmarks in the source image, we can reasonably expect the equivalent landmark to be

situated in between corresponding landmarks in the target image. This might especially improve the

placement of edge-l andmarks for which shape, location and contour are better distinguishable than Nee
values.

Another possibility of selecting control-points, though not always applicable, is available if the geometric

shape of an object is known. The teapot in Figure 74, for example, has been rendered by a ray-tracer

using a 3D-object file . If this kind of information is known, we can easily deduce the necessary control

points to perform the interpolation. It is obvious that this is rarely the case, when taking pictures of live

elements li ke faces or people etc. Nonetheless crude 3D replicas could be constructed from which the

control-points can then be derived.

Motion detection schemes are used in video compression algorithms like MPEG-Video [109]. These

compression techniques rely heavily on inter-frame coherence and will try to find already encoded areas

of one frame in the following frame. Ifsuch an area can be found, then only the motion-vector needs to be

encoded instead of the area itself Unfortunately the task here is actually easier than in our case: Since the

whole image needs to be encoded, each area of the reference image is compared to the successor image.

Our method on the other hand requires identification of very few but important landmarks. After all . our

main problem is the identification of such landmarks and not their discovery in subsequent frames . In

additi on to th is, the video compression technique does not need to be concerned with the content of the

(hd/"I" (. ()plim;'flfWII , /II

encoded images. If we consider a very reflective teapot, then the video compression scheme could get

away with interchanging the real spout with a reflected spout and vice versa (this is because we only see

two successive frames and nothing in between). In our case on the other hand, we are faced with several

derived frames and so the movement of the real spout to the reflected spout and vice versa wou ld become

evident. This means that standard video encoding techniques are rather unsuitable for our purposes.

6,5,3 Generalisation to 3D

As promised above, we will take a moment and consider the implicat ions that our simpli fications have on

our solution. We have discussed linear and bi-linear sample-interpolat ion a long an arbitrary equator. In

the more general case we will not move along a line or circle with evenly spaced samples, but on a

surface. The difference is that instead of exact ly two nearest neighbours, we wi ll , in general, have more

than two. As we chose to triangu late the surface of our sampling sphere. we are usua lly faced with three

nearest neighbours as shown in Figure 82.

,
/ /

C 1 . ,,-
. -- - . -~_ J....
, \ ' .ll.

".m\ /7'" // .. /: 7l"

/

Figure 82 - Tri-Iinear sampling for ar bitrary rotations

This means that instead of the bi-Iinear interpolation we perform. we have to use tri -linear interpolat ion to

achieve the best visual resu lt . Figure 82 shows a typical set-up: On the surface of the mesh, the current

viewpoint (black dot) is somewhere on an arb itrary triang le (to visualise, our examples so far dealt with

view-points on mesh edges). As each pair of neighbouring sample-points has its own transformation

information, we basically have to perform three linear interpolations (indicated by the intersections of lhe

dotted lines with the mesh edges) and blend them accord ingly. Even by tripling the computations of each

frame, we can stil l perform well inside real-time constra ints.

6,5.4 Cubic Interpolation

So far we have only considered multi-linear interpolation. In most cases linear movement of object

features does not correspond we ll to the natural motion expected from an object under rotation . To

address this issue, we simply use cubic splines along which the control-points can move. The added

computational cost is minimal and the visual improvement justifies it easi ly.

('huI'rer h 1.11

6.6 Extensions

Even though we designed our super-realistic renderer to be integrated alongside several other renderers in

a VR context, we fbund that it implements two processes called morphing and tweening. Even though

these tenns are often used interchangeably in the literature, we make the fo llowing distinction:

Tweening - process of deriving intermediate frames in order to convert an object or scene in one

key-frame into a similar object or scene in an adjacent key-frame.

MorpMng- process of deriving intermediate fram es in order to convert an object or scene in one

key-frame into another object or scene in an adjacent key-frame.

In effect this means that neighbouring images for tween ing will have similar content, wh ile those in

morphing will genera lly have different content. This means that our super-realist ic renderer is based on

the concept of tweening, but we show in Animation M how morphing can be achieved just as easil y and

with exactly the same performance. As we have shown how to implement both of these techn iques in

real -time on home-PC level hardware, various industrial and commercial app li cations spring to mind.

6.6.1 Motion Pictures and Special Effects (Morphing & Tweening)

Many modern Motion Pictures and high-end commercials use computer special effects to draw audiences

and make the seemingly impossible a reality (at least on Celluloid). Movies where morphing and/or

tweening have been extensively used include Terminator II and more recently The Matrix. Even if the

texture-size and image quality of most 3D accelerator cards cannot compete wi th production quality

standards, we certainly believe that our system can aide in previewing and scene visualisati on.

6.6.2 Web Advertisement (Tweening)

The idea of using image-based rendering for product advertisement on the web is not new (110). A si te

visitor can get a very realisti c impression of the look and design of a certain product as she can

interactively rotate it and view it from different angles. So far this is only done using the nearest sample

techn ique. One might be tempted to think that this restriction is linked to bandwidth limitations. The

information necessary to tween between each neighbouring pair of images is comprised of one mot ion

spline per control-vertex, i.e. three 20 co-ordinates inside the image per cubic splin e. If we limit

ourselves to reasonable image-dimensions, we need a maximum of 16 bits per position, i.e. 12 bytes per

control-vertex. In our collect ion of tween-samples we register an average of 65 control-vertices (being

part of an average 114 triangles), resulting in roughly 800 bytes of tween ing-data. Compared to the

uncompressed size of our sample- input images of 192Kb this additional bandwidth is negligible. This

means that from a networking point of view our Super-real istic renderer is actually very efficient.

6.6.3 Extreme Low Bandwidth Video Conferencing (Tweening)

We studied a system in which our renderer is used to re-construct facial expressions II 14]. In this system,

a camera captures the image of a person. Using image analysis, the positi ons of eyebrows, lower eyelids,

nose, mouth and chin are determined and used for the selection of a corresponding facial expression

("~/'" b HI

(which include grimaces like laughing and frowning, but also mouth-pos itions when speaking certain

phonemes). The code for a certain facial expression is transmitted over the network to the remote side for

reconstruction . The remote side is initialised with an image of a neutral facial express ion, wh ich is

deformed according to expression templates. Several points should be noted with respect to this

appl ication:

Reconstructed images cannot correspond 100% with original images (features such as smi le

dimples, frown lin es etc. cannot be reconstructed)

Reconstruction is very easy and fast with our method

Expression evaluation may be relative expensive depending on the complex ity of the image

analysis, but has been shown to work in real -time [65].

6.6.4 Facial Character Animation (Tweening)

Another application concerns the animation of virtual characters. In many cases some form of motion

capture (Me) is used to give characters a more lively appearance. Me can be performed amongst other

methods using radio-trackers or video-evaluation but is in most cases expensive and time-consuming.

This is especially true for facial expressions since, if the express ion is formed on a purely geometrical

level, many vertices have to undergo transformati on and therefore have to be mot ion-captured.

We on the other hand bel ieve that if the facial express ion is performed at texture level (as with the Video

Conferencing above) we can map an entire expression on a much less detai led and much less animated

geometry, whi le still being able to smoothly vary between express ions or even combine them [56]. A

demonstration using linear and bi-linear in terpolations is available in Animation L. Animation J shows a

fu ll -body an imation.

6.6.5 Restoration of Video Material (Tweening)

When capturing live video material to be used in our animation sequences, we came upon another

possibl e application. Supposi ng video or fi lm material in genera l is damaged in such a way that many

frames are missing or of poor quality while other fram es are of acceptable quality. We can then try to

interpolate the healthy frames using tweening to reproduce the missing or damaged ones. We show this in

working in Animat ion N, where the right hand side shows the 8 frames of an original video source

(temporal and spatial resolutions intact) which might have been damaged, while the left hand side shows

an interpolation of the first and last frames of the or iginal source (all other frames could have been lost).

We can see that the temporal resolution is greatly improved compared to the original (we are able to

derive as many in-between frames as desired), as is the spatial resolution (automatic hardware-accelerated

bi-Iinear filtering through texture smooth ing). We also acknowledge that unique information that was

contained in the original frames (e.g. the shadow moving over the doll's face) cannot be reproduced with

our method, because no information of it is contained within the first or last frame.

1.1 I

6.7 Results

6.7.1 Comparison of Approaches

To measure the performance of different approaches and settings of our super-realistic renderer, we

tweened samples with a resolution of 256x256 pixel2 and 24 bit colour depth onto a screen area with the

same dimensions (this was done to better compare input vs. output quality and is unbeknown to the

renderer, i.c. this is not an optimisation). Table 20 lists the relevant results. First ly, the conventional

approach in the top-most row simply renders a single texture-mapped quadr ilateral and therefore performs

the fastest with 660 frames per second. Our fi rst approximation (l inear interpolation without

retriangulation, 2nd roW) renders an average of 64 triangles at about 570 frames per second. Re

triangulation per frame (3rd row) severely impacts performance and drops the frame-rate to 167. Adding a

second rendering pass to implement bi- linear interpolation (4th row) does not have a big influence on this,

as the difference is only 3 frames per second. This indicates that the retriangulation is considerably slower

than the rendering of triangles and we therefore strongly suggest to use either of the depth-buffer

solutions discussed in Section 6.5.1 to solve the overl apping triangles problem. Our suggested setting in

row 5 using bi-l inear interpolation and layered rendering performs at 450 frames per second. The

alternative depth-buffer solution (6th row) is slightly slower at 423 frames per second.

I

~,,,-

I I

',-TO, I

I

Buffer per

Clear Frame

660 Nearest Sample approach

* 570 Linear Interpolation (-R)

* * 167 Linear [nterpolation (+R)

* * * * 164 Bi-Linear Interpolation (+R)

* * * 4 5 0 Bi-Linear Interpolation (L)

• * • 42) Bi-Linear Interpolation (D)

Table 20 - Compara tive Resul ts for Super-realistic rendering

These results show conclusively that super-realistic rendering is not only feasi ble, but presents a very fas t

and powerful image-based rendering method, capable of producing great visual deta il with minimal

computational overhead.

6.7.2 General comments on Factors influencing Results

6.7.2.1 Quality

The single most important factor in terms of rendering quality is the number of samples that are available

for interpolation. The more samples are available the better the output, because less guesswork has to be

performed in tenus of what happens in between samples.

."iIlIllIlUJry 1.15

Image quality is another obvious factor. The quali ty of the output images is limited by the quality of the

input images. Since texturc~ interpolation and blending operations are applied to the input images, they

should exhibit a reasonable resolution with respect to the expected screen~dimen s i ons of the output. As a

rule of thumb, the input images should not have a considerably lower resolution than the ant icipated

output image.

We have discussed the use of blending operations and multiple rendering passes. While these help to

improve temporal coherence, they tend to blur the output and a compromise wi ll therefore have to be

made between temporal and visual quality.

6.7.2.2 Performance

Since real -time considerations were a main aspect of the design, we pause brie fl y and investigate the

performance issues involved.

Firstly, image acquisit ion, image evaluation as well as definition of control-vertices are non-trivial tasks

and computationally expensive, but call all be performed off- line, before the actual rendering. At run-time

the follow ing tasks have to be performed:

Translat ion of image position and rotation to a corresponding set of neighbouring Images.

Depending on the quality of output needed, linear, bi -linear or tri -Iinear interpolation of

neighbours; the speed of which mainly depends on the hardware~capab ilities of the system.

Depending on the way the images are stored, the translation step is largely trivial. In most of our

examples, we are dealing with about 30-80 triangles (a fai rly low number considering the processing

power of most modern 3D accelerators), which have to be rendered twice for bilinear interpolation. Even

for three render passes, this can easi ly be performed in real-time.

One important consideration remains, which is the one of texture memory. Even though we can

drastically reduce the amount needed for our renderer by using an interpolation scheme, we may sti ll fill

up texture memory rather quickly. This in tum may lead to thrashing if the amount of memory is too

small . Possible solutions are:

Using hardware texture compression offered by many modern graphics cards

Taking advantage of object symmetry

Decreasing degrees of freedom of object or observer (e.g. if a VR user is limited to wander the

surface of a flat world, the possible elevation range towards the object is limited as well)

Increasing interpolation span (which will in most cases result in loss of animation qual ity)

6.8 Summary

In thi s Chapter we have investigated the opposite extreme of non-photorealistic rendering, which we

dubbed super-realistic rendering and define as "in teractive rendering in television quality at real-time

... ; tllI1 /11 U 1")'

frame-rates". Image-based rendering, which forms the basis of our solution, is briefly introduced. We

then identify the affine transformations that need to be implemented in order to create a generally

applicable renderer. Most of these transformation s are trivial except for the general rotation. This problem

is addressed via geo-spherical sampling and sample-interpolation. The interpolation scheme we

developed is discussed in detail and related problems such as triangle overlapping are addressed

successfully. We continue by investigating the issues of control-vertex identification (which still needs

further research) and demonstrate the generalisation from planar rotations to arbitrary paths on the

sampling sphere. We discuss a further optimisations in the form of expanding the linear interpolation to a

cubic one. Following this , a \ariety of extensions in the form of possible applications are discussed. We

argue network efficiency issues by stating that in average a mere 800 bytes of data are necessary to

interpolate between two neighbouring sample-images. Finally, we prove that real-time performance of

well above 400 frames per second is easily achieved even for high-quality multi-pass blending schemes

and list the main factors influencing visual quality and perfonnance.

In summary. we successfull y implemented a super-realistic renderer which is capable, in real-time, of

producing interpolated images of highest quality to simulate 6-degree-of-freedom-transformations,

including convincing rotations.

("~/)I(,. -;

7 System Integration

While a variety of topics have been discussed pertaining to the specifics of different renderers and their

optimisations, there are further considerations to be entertained with respect to the hardware and software

archi tecture used for our implementation. Our design choices are mostly influenced by real-time

constraints, but a great emphasis is also placed on portability and system independency. System

integration issues relating to performance as well as portability are discussed in this Chapter.

7.1 Software Considerations

As with all real-time systems, all software components (from the Application layer down to the Operating

system and driver layers) arc considered critical and have to interact smoothly in order to achieve optimal

performance. The following Sections describe our design choices starting at the Applica tion layer and

work their way down to the low-level software components.

7.1.1 Virtual Reality API

The following design aspects were cr itica l in the choice of a suitable VR API:

Speed

Flexibi li ty

Portabi lity

And more specifically, the separation of object data from its visual representation.

All of these points are satisfied by CoRgi [112J, a virtual reality API which is being developed at Rhodes

University and wh ich by now is released in its fourth generation. It is written in C++ and makes use of all

the powerfu l features of object oriented programming to ensure the best possible combi nation of

flexibility and high execution speed. Portability is encouraged and supported by encapsulating hardware

and operating system dependencies in so-called device classes. These are usually highly platform

dependent, wh ile derived classes can rely on the common interface to base classes and are almost totally

platform independent. This level of hardware abstraction allowed us to port the CoRgi system completely

from a UNIX/IRIX environment to a Microsoft Windows environment with minimal effort. Conditional

compilation and the use of compiler macros allow one and the same code to be compiled on a large

variety of platforms while ensuring native code execution speeds.

The present object model of the CoRgi architecture supports different renderers to represent the same

object data without change. The relevant parts of the object model are shown in Figure 83. While the

abstract class ShapeDescription supplies the functional interface to the object data, the derived classes

ASEShapeDescription and O~~shapeDesciption provide format-specific data members and addi tional

related functionality. This group of classes is th us responsible for loading object data in different formats

(only the OFF implementation is shown) and for storing it interna ll y. The next group of classes is

(IWl'fCr ":' 1.1,\

responsible for disp laying this data and have as their parent the VisualRepresentation class. This class

is not abstract and in fact implements a standard renderer. It knows about va rious capabilities (like

smooth shading, lighting, double-s ided rendering and the like), which can be enabled or disabled in order

to achi eve a certain performance level (this is to ensure a specified minimum frames per second count).

Furthennore, three different displaylists can be defi ned for three levels of performance. Depending on the

implementation these can di ffer in object resolution (Le. by sub-sampling the object data) or in the

capabilities enabled. The Render function of thi s class is defined virtual and has to be defined by any

derived cl ass. It is this function that performs the actual graphical rendering of any object. The

NPRVisualRepresentation extends the fu nctionality of the Visual Representation. It provides a

common constructor to all the derived classes, but does not define a Render method (which is left to the

inheriting classes).

~ t "n
01' . ' ~ ~ . ..

I, " j - .C:>tt
101 1 .-.' Q ';

t-. ~. r . • ·~ I1!' · .. _----_._------

Com leVi. ualRep,u en lIr lion

cc.:.::..:.:.~ ~.!:. !_:... __ _
"' ,,(, .,

l" l ~ ~~. -. ,.
~, •• f

Com ic: u.IR.p" .. n lllon2

~ ,,"' ,,#!o-

, ~ . -,
, .'" oJ

R~ . <

(' •• ~ t· - < n.1
~ ~ ,_."

S~ ~IC~Vls v. IR .p'" u la",",

<. ~ ·L~ . 1. _' -- -- ---
"i~ . ~,

~,,~, ...

",".<1 ' 1

~' .. . ,..II , I
. : . '·t is

S •• leh"'.u.IRt p, . .. n •• 'on2

H.>." .: f ."
~)· ... -Tu ... , u' ___ __ 11
.. ,n
m~ , . ~."u "
.u '

. , -" ' I.

H.lehl~gYlr. u.IRep'" enlilion

-. ""~ I:.' ~ " I~
~~ .T~'~'_~'~' ______ _

I-- • ~
.r. e~u c· ,

61 ~nl'a'

Figure 83 - CoRgi Object Model (Relevant Part)

P.1n ", ,,.,1,11 ".IRlp,. un"'lio n

:: ~ " ~:7 :~\

Proc.n· .~e
0'
=te nd . ,

"" .. Iit " t "'I"I.,.", u.IRtp

~~'~.'---
tI,,, •••
"'". I\'u .~# •

• ." • • :! ' ..

~ ·f'
'"

From the NPRvisualRepresentati on we derive all NPR renderers. As can be seen in Figure 83, various

classes have class variables (in the member variable Section above the dashed line) called enumerators.

These ensure that class-resources like textures and tables are only allocated and initialised once (by the

first object of this ciass) as well as dea llocated properly (by the destructor of the last object of a given

class). It should be noted that not all semantica lly related classes are necessarily deri ved from each other.

For example, the ComicVisualRepresentation? is derived from the ComicvisualRepresentaeion, as it

provides a graphical extension to the parent class. The sketching classes on the other hand are so different

from an implementation point of view that they are not interrelated (apart from having the same parent).

The PainterlyVisualRepresentation provides all the necessary functionality to pre-render a given

object in default style (by calling the Vi sual Representation 'S Render method), capture it into a

(Iwpt'r - 10

memory-buffer, process the buffer information and re-render it via the Drawlmage method. This design

allows us to derive the ArtisticVisualRepresentation class (using brushes) from the

PainterlyVisualRepresentation class and only override the Drawlmage method (which becomes the

equivalent Render method of the Painterly classes).

This object model allows us to share object data between VisualRepresentations (i.e. one and the same

object could be rendered in a variety of ways, without the need to have multiple copies of the object data

committed to memory) in a flexible and efficient way. Care is taken to limit the necessary amount of

resources by making use of class variables guarded by enumerators.

7.1.2 Graphics API

At the moment (due to a welcomed level of standardisation, powered to a large extent by the gaming

industry) there are two commonly used 3D graphics APl"s: Direct3D by Microsoft and OpcnGL

(originally developed by Silicon Graphics). The functionality of these two API's is so similar that tools

exist to emulate one via the other (e.g. [82]). Many modern games and applications allow the user to

choose the API to perform the rendering. Avai lab ility of drivers for the two API 's and their

implementation might influence the choice in this case. As the Direct3D API is only avai lable on

Microsoft operating systems, we chose OpenGL as our implementation graphics API to ensure the

greatest level of platform independence.

7. 1.3 Operating Systems (OS)

Commonly used operating systems today include the Windows-family, Unix-fam ily and Mac-OS-family.

Due to the prior choices of programming language (C++) and graphics API (OpenGL), both of which are

avai lable on all of the above-mentioned operating systems, we ensure the greatest possible platform

independence in combination with the highest possible performance. Our system has been compiled and

tested successfully on SGI stations running IRIX, as well as Intel-class machines running LINUX,

Windows 98 and Windows 2000. While certain low-level object classes including devices and GUI

elements have to be re-written for every operating system, the render-specific classes dealt with in this

thesis (namely the Visual Representations) were converted without changes due to the operating

system. The components of an OS which have the greatest influence on graphics performance are:

Graphics Driver - A bad or missing implementation might mean falling back on software

emulation of features that are generally hardware-accelerated

Multi-threading - Even though not currently enabled, the CoRgi system introduced in Section

7.1.l is in essence multi-threaded, allowing for decoupled processing of individual system

components. The OS has to actually support multiple threads in order to take advantage of this

feature.

Multi-processor support - The ability of running different parts of a rendering system on

separate CPUs can improve overall performance by lessening the load on each individual cpu.
Profiling of our demo programs showed, for example, that Windows 2000 will run our main

("UP(('" - /III

execution module on a different processor to the OpenGL library. Not all OSs support multiple

processors (e.g. Windows 2000 does, while Windows 98 does not).

Others - Resource management and security policies also have a logical impact on program

execution, but their impact is considered small compared to earlier points.

To show how our renderers perform on various operating systems, but without going into unnecessary

detail, we performed a series oftests on a single machine with three different operating systems insta lled

(a more thorough profiling of code~segments on various machines was also carried out, but an appropriate

d iscussion would distract from the main technical rendering issues. Relevant figures can be obtained from

the accompanying CD or the author if required). Table 2 1 details the test configuration.

Hardware

CI'li Dual Intel Pentium III @ 500Mbz each

Memory 512 MB

1.2

Graphics nriH~r NVidia 12.51

Table 21 - Configuration for multiple OS Test

The tests were performed exactly as described in Section 2.4 and we list the relevant results here, grouped

by rendering style. Linux results are always blue, Windows 2000 (W2K) results are pink or red, and

Windows 98 (W98) results are green. The same rendering styles on different OSs have the same markers.

It should be noted that the test-machine has two processors installed, a fact of which only Linux and W2K

can take advantage.

Comic Rendering
1:0 ---- -------- - l
~ ~. I

- . .~ - - -- -. - - - I'

100 +-_-__ =_-__ -__ -__ -__ -_ ~_--_--~-:::o- _,.;~;,,_ S' __ ... "'~--~---.~~- ~=_= __ ~ __ - __ ~ __ = __ ~-_-_--l_1

.,"'- I -.,-', .

•
10+-------,-------.-----~

100 1000 Faces 10000 100000

--+- Unu)(Sid. --.···-W2k Sid --. -·- W98 Sid
Linux Ex\. __ W2k Ex!. . __ _ W98 Ed

Figure 84 - OS Comic Performance

(hap(f'I" - U/

Figure 84 shows results for th e comic renderers (Std. = Standard; Ext. = Extended). The fir st interesting

fact is that the performances of the two renderers are so close on all of the OSs that we had to apply

sligh tl y brighter colours to the Extended comic renderer results to make them distinguishable. This

conclusively proves the validity of our various optimisat ions that enable us to render a more sophisticated

lighting model in the same time as it takes to render a basic ligh ting model without these optimisations.

The second point of interest is that all OSs perform fairly close to one another and that the dual-processor

capabilities of Linux and W2K do not seem to have much an effect on rendering performance, otherwise

we would expect more of a gap between them and W98.

Sketch Rendering (1)
1000 ----

'" c.
~

100

10+-------~_r------------------_----------~

1000 Faces 10000

__ Unux RPS (R ec .)

_ Unux RPS (Obj. Seg.)

- . - \N2K RPS (Re c.) __ W98 RPS (Rec.)

W2KRPS (Obj. Se9.) _W98 RPS (Obj. Se9.)

Figure 8S - OS Sketch Performance (1)

Due to the large number of implemented sketch renderers and approaches, we list the results in two parts.

The first part, displayed in Figure 85, groups together the outlining sketch renderers. As expected, the

object-segmentation approach (Obj. Seg.) outperforms the recursi ve approach (Rec.) throughout. An

interesting result is that Linux stands the clear winner in this category, closely followed by W2K and

further afield, W98. We attribute this to what we believe to be superior displaylist performance under

Linux, which these renderers make ex tended lise of.

000

'" c.
u.

100

Sketch Rendering (2)

I I

10+-----.-------------------r------4
1000 Faces 1lUJ()

---0- Unux Coal _ W2KCoal --- 'W98 Coal
_ Unux Hatching _ __ W2K Hatching _._ Vl98 Hatching

Figure 86 - OS Sketch Performance (2)

(hilI'" r -

Sketch renderers using texturing as their main drawing element are tested in Figure 86. Both coal and

hatching styles lie closely together under Windows OSs, but Linux fares much poorer for the hatching

renderer than for the coal renderer. Even though this does not become obvious from Figure 84, because

the test-objects do not have base-textures, we have encountered similar situations that are suggestive of

the fact that multi -texturing, used in the hatching renderer, is not wel l supported in the Linux graphics

driver. Again, W98 performs the poorest.

Painterly Rendering

" ,----- ----
20

.---.-.. -.... _------
18

fr 16

"
"
10

100 lIlXl Faces IIXDJ IOXOJ

__ Unu~ Te~ Brushts _ .•. W2KTe~ . Bruthu _ .• __ W98 T. ~. Brushn

Figure 87 - OS Painting Performance

Performance values for painterly rendering are sho\-VTI in Figure 87. As expected, the number of faces has

no large impact on rendering, which is mainly influenced by the number of brushes (in this case 4000).

Surprisingly, Linux fares worst this time instead of W98, which comes in second place after W2K. This is

especially troublesome, as s ingle-texturing resu lts for the comic and sketch renderers under Linux are

equivalent to those for W2K, so that we fai l to find an obvious explanation. Sti ll, it is pleasing to see that

refresh-rates of over 10 frames per second are achieved under all OSs.

Apart from listing performance results fo r three different OSs, this Section conveniently brings together

performance figures for all our common NPR style implementations. One important result of this

invest igation is that all our renderers perform between 12 and 370 frames per second for our selection of

OSs. Another. very interesting conclus ion can be drawn by comparing Table I and Table 21, which list

the configurations of our different test-systems, in connection with the results obtained in this Section and

the individua l result Sections of the NPR renderers. While the system used in th is Section has double the

number of processors which are Pentium III chips instead of Pentium II, 320MB more of RAM, and a

more advanced graphics card (GeForce2 instead of GeForce), our other system (used for results in

Chapters 3, 4, 5, and 6) performs extremely competitively and in most cases even outperforms th e better

equipped system. This we attribute solely to finding the graphics card driver which best suits a given

graphics card, which we spent much more time on for our smaller test-system. Different drivers and even

different versions of the same driver can perform vastly different for the same card but different vendors,

i.e. an NVidia reference driver might perform perfectly well on a Creative Labs GeForce, while

producing poor results on an Asus GeForce. Ensuring that all components of a system work together

smoothly and efficiently can be more advantageous than simply buyi ng fas ter or better components.

/./ I

7.2 Hardware Considerations

The hardware used to run our system is of great importance to its performance. The hardware components

most influential aTe:

3D Graphics Accelerator

Processor Speed

Main Memory

Various factors determine the execution-speed benefits that can be derived from a 3D graphics

acce lerator. On one level there are the capabilities of the device. While most of the graphics commands

used in our renderers are so standardised that they can be considered guaranteed on all graphics cards,

there are other commands (like the multi-texturing used in the extended comic renderer) which arc not

implemented by all vendors. This does not mean that these commands or the result ing functionality

cannot be emulated in software (i.e. by the CPU of the host computer) or by performing multiple

rendering passes (i.e. rendering a scene or elements thereof several times and accumulating the effects

using blending or the accumulation buffer). but emulation always results in a rather heavy performance

loss. In principle a 3D accelerator card is not needed for any of our renderers, but real-time responses

cannot be expected without one. On another level the performance of the graphics card itself has a drastic

impact on the rendering performance of the system as a whole. The number of basic 3D elements (usually

triangles) that can be rendered per second as well as the fill-rate (screen-elements , i.c. pixels) are of great

importance here. In addit ion to this, more and more elements of the rendering pipeline are emigrated from

the host computer onto the graphics card. The latest generation of graphics cards for example even

performs the transform and lighting calculations on-board (a task which previously was performed by the

host CPU. For a technical brief on this topic, see [60]). The result of this development is that the host

system is becoming less important for the actual rendering process (in reality we can expect that the host

CPU will be more involved in other tasks like game Al etc.).

On systems where operations such as transform and lighting still are performed by the host CPU, its

speed is important to ensure that data in the graphics pipeline can now smoothly. In add ition to th is other

calculations (l ike customised lighting, edge-detection, etc.) may have to be performed no top of the

rendering calculations. A powerful CPU is therefore an advantage.

Main memory is only a min or factor. As with all applications, our system runs faster and smoother if

enough main memory is available to hold the entire program and associated data in memory as opposed to

swapping it out onto virtual memory. A more important factor is actuall y the memory on the graphics

board. Apart from having to contain various fu ll-screen butTers (usually RGBA and Z, but in some cases

also stencil or off-screen), the graphics card has to hold the textures to be mapped onto graphical

elements. lftexture memory is limited or too many or too detailed textures are used, these textures will be

swapped out to main mcmory. This process is costly and significantly affects rendering performance. The

negative effect of this can somehow be limited by using an AGP graphics card with the maximum bus-

(IUTI'lt I ~ I ""ilahilllr I\~'/(\ /u

bandwidth available. Texture-compression methods are also available. The number and size of our

textures are limited though, so that these factors should not have a great effect on the rendering

performance.

7.3 Availability issues

Availability is a very real concern with respect to our renderers as we try to provide solutions that are

widely applicable. Examples of features which are known to vary widely either in their actual availability

or implementation include:

Multi-texturing (number of supported units)

3D texturing (hardware and driver support)

Auxiliary Buffers (availabi lity)

Stereo Buffers (availability)

Pbuffers (availabi lity and driver support)

In all cases where availability is questionable, we provide alternative solutions, which will produce

equivalent visual results, usually at the cost of decreased performance. It should also be noted that even

though certa in features might be available it is not always guaranteed that they are optimised in hardware.

On our test-system for example both 2D texturing and 3D texturing are available, but on ly 2D texturing is

hardware-accelerated. As hardware-acceleration has a great impact on render ing performance, this issue

needs to be considered.

7.4 Summary

In this Chapter we examined performance and portability issues relevant to our NPR renderers. We

introduced and discussed our choice of VR API, CoRgi, into which we plug our renderer classes. An

object model of the visua l representation classes within this API is delivered, along with pertinent

member variables and functions.

Our motivation for choosing OpenGL as our implementation graphics language follows.

Operating systems, along with a limited discussion of their effect on our renderers, are also studied.

Several interesting results emerge, the most important of which is that all our NPR renderers perform

above the specified 10 frames per second limit on any operating system and in most cases even in the

hundreds of fram es per second. Secondly, our test-hardware for this series of tests being far superior to

that used in the rest of this thesis does not imply a necessary improvement in performance. This shows

that hardware-dependence is limited and implies that our renderers will perform very well on most

modem systems with a hardware-accelerated graphics card .

Further hardware issues are addressed in the next Section and it is our finding that the graphics card, more

than CPU speed or host memory, determin es rendering performance.

(hlll",'r\ullllllury JJ5

Availability of certain graphics features like multi-texturing, 3D texturing or various extension buffers, is

not guaranteed and we discuss related issues next. We find that while performance is usually negatively

affected, most unavailable features can be emu lated using available ones.

In conclusion, we look into both software and hardware dependencies of our NPR system, list the

ava ilable design choices and motivate our decisions. We perform a successful series of tests that tie

together the performances of all our common NPR renderers on an alternative testing platform to that

used in the rest of the thesis , the result of which is that real-time performance of our NPR enhancements

is not limited to one particular test set-up, but can be replicated on different hardware and di fferent

operating systems.

(hul"I''' S

8 Conclusion

When work began on this thesis about two yea rs ago, NPR renden"ng had just star ted to make a name for

itself and was starting to appear in the proceedings of well-known conferences, Real-time NPR rendering

was mostly st ill unheard of, but the raw computational power of modern graphics cards was highly

suggestive that this notion could be entertained. We therefore set Ollt to investigate how common NPR

styles could be implemented to adhere to rigorous constraints with respect to both pelformance and

quality. In practical tenns this meant that our renderers would have to perform interactively in real -time

(at least 10 frames per second) and that the visual qua lity be as convincing (resembl ing real-world

examples of the attempted style) and pleasing (especia lly in terms of tempora l coherence) as possible. In

order to tackle the problem of creating each of the different renderers, we were guided by the following

list of analytic steps:

Identify key-elements of the style (Definition of Style)

Defi ne a general problem statement (what problems have to be solved to implement the above

style)

Identify problems specific to: Real -time / Quality constraints, Hardware I Software limitations or

Graphics API (Implementation-specific)

Understand the standard approach taken by other authors

Identify possible optimisations and extensions (to improve visual quality or further performance

compared to the standard approach)

The main problems that had to be solved for each of the renderers, any novel concepts devised and

applicable results are discussed next.

8.1 Comic Rendering

The model solution to comic rendering is so standardised that only a handful of variations exist, all of

which produce the same visual output. Our challenge therefore lay in extending the boundaries of what is

genera ll y considered a solved problem.

8.1.1 General Problems and Solutions

Comics or cartoons in general almost unanimously make use of the fo llowing stylistic devices:

A thick dark outline of the silhouette

Other thick dark lines detailing object characteristics

Uniform or very banded shading

(hul't V (,,"Ul U. IIJ rill ' II

In order to implement a renderer replicating these devices, the following problems have to be solved:

Identi fy the silhouette

Identify other important folds and creases in the object

Render these features with thick dark lines

Shade the surface of the object in a single colour or

Apply a heavily banded shading to the surface

The first three problems are addressed using the conventional solut ion. The silhouette and other object

detail is not identified on a geometric level in object-space, but on a pixel-level in screen-space. A simple

two-pass algorithm can accomplish thi s. This approach is genera lly hardware-accelerated and thus

extremely fast.

Implementing totally flat shading is not considered a problem, as it is catered for by the graphics API.

Banded shading on the other hand needs to be si mulated. The standard solution computes lighting

information per vertex. More specifically, the diffuse light component is calculated. This normalised

lighting value is then used to index into a one-dimensional shade-texture. A shade-texture contains the

mapping of light-values to banded shading-value and can be seen as a quantisation-function. The reason

to implement this function by means of texturing is that textures-vertices are automatically interpolated

across surfaces, so that smooth shading boundaries can be achieved.

8.1.2 Novel Concepts

As stated in Section 8.1.1 , the standard soluti on to comic rendering only takes into account a viewer

indepen dent diffuse light component. Specular light interaction which is view-dependent and occurs on

shiny objects like plastic, metal or polished surfaces is not taken into account, yet it increases the visual

appeal in photorealistic contexts (e.g. raytracing) tremendously. We argue it can do the same in a non

photorealistic context.

While the lighting model for specular reflect ion is well -studied and understood, it has never been used in

connection with computer generated comic rendering before (some rea l-li fe artists introduce similar

lighting effects into their work , underlining the relevance of this contribution). We remedy this situation

by designing and implementing a specular light-component that is closely modelled on a physical

approximation but at the same time displays a very distinct but highly configurable cartoon quality.

Owing to the fact that the above-mentioned specular cartoon component presents a considerable

computational overhead due to its view-dependence, we have to address th is problem in the form of

various performance enhancements. Our solution is to approximate the view-vector to be constant for the

entire object, which allows liS to fe- wr ite the formu la of the specu lar component into a more efficient

form. Un fortunately. under perspective projection the approx imat ion is on ly correct fo r an infin ite

distance bctween the object and thc viewer and worse the closer th e two are . If the viewer is too cl ose to

the object. artefacts in the form of holes can appear in the object. We address this problem by applying a

ChupTer S liS

perspective correction. This means that we estimate the maximum error of our view-vector

approximation and draw more triangles than usually necessary to cover the front-side of the object to

counteract. This solution works very well , because the cost of dra\\ ing additional triangles is lower than

that of correct view· vector calculations per vertex.

To minimise the number of lighting calculations as well as triangles to be rendered, we sort faces into

front and back-facing. This is to a limited extent also done in the standard approach, but we identified a

new and fast way of establishing face orientation which also represents a flexible level·of-detail

adjustment. The main concept that makes our idea work is Euler's relation [Ill], stating that for closed,

convex polygons the number of faces is larger than the number of vertices (the actua l relation is more

specific than this). We therefore determine the orientation of vertices instead of triangles and then deduce

the orientation of triangles from the orientation of their defining vertices. In general vertices do not have

the same nonnals as the triangles they comprise, but for finely tessellated objects this approximation is

fairly good. This in turn is important, because it means that our approximation is better the more detailed

an object is , which usually implies that is takes longer to render so optimisations for this type of object

are particularly valuable. In practice, the level·of·detail adjustment mentioned above determines how

many vertices have to be front · facing in order for a triangle to be considered front·facing (either one, two

or all). Demanding that all vertices be front-facing before a triangle is marked as front-facing is the most

restrictive, resulting in the least amount of front·faces and the best performance. As we already

mentioned, our approximation work very well for very detai led objects, so that a great performance

increase can be achieved. The requirement of only one front-facing vertex per triangle is the least

restrictive and therefore results in the best visual results and worst performance. For low-detail objects

performance is quite good anyway, so that visual quality is of greater concern here. Since the viewer

object distance also plays into the determination of face·orientation, the number of vertices used can be

made dependent on it, allowing to trade performance against quality if the object is in the distance and

vice versa.

On top of the just-mentioned advantages, we can re-use the vertex-orientation calculations for the

specular light computations, in essence obtain ing the latter virtually for free. This fac t, even though most

convenient, does not restrict the applicability of either optimisation ~ both are valid and important in their

own right and can be exploited independently.

Other novel ideas include the use ofa coloured silhouette (instead of the standard black one) and comic

style base·textures to enhance the visual appeal of our renderer. Both of these extensions can easi ly be

implemented without greatly affecting performance.

8.1.3 Results

We have shown that comic rendering for our test·objects can be performed at between 40.450 frames per

second. For objects of more than 10,000 triangles our extended comic renderer, including the various

optimisations and extensions discussed in Section 8.1.2, even outperforms the standard renderer which

(IrLlp't r ,. 1./9

only incorporates a diffuse light component. We have therefore demonstrated the effectiveness of our

geometr ic approximations, which are in no way limited to comic rendering.

B.2 Sketch Rendering

Probably the largest variety of solutions to NPR rendering exist for sketch style rendering. Two main

approaches exist, which see sketching either as an outlining style or a hatching style. We do not

necessarily make this distinction and believe that both styles can easily complement each other.

8.2.1 General Problems and Solutions

While deliberately ignoring the conventional distinction of established sketching styles, we define a

typ ical sketch as implementing the fol lowing concepts:

Drawn by hand (Randomness I Uncertainty-Factor)

Economy of line (little, but important object detail)

Few colours used (monochrome)

Implementing these concepts requires solutions to the following set of problems:

Creation a manual-production look

Identification of important object detail (semi ~) automatically

Rendering the specific object-detail with:

Deliberate Imperfections

Rudimentary hints at shading ifrequested

Identification of important object-detail (especially the si lhouette) or manual tagging of such are problems

with well-established solutions. An edges can easily be considered belonging to the silhouette if one of its

defining faces is fTont-facing while the other one is back-facing. Stochastic methods and optimised edge

traversals are readily available in the literature and can be applied where necessary. More interesting for

us personally was the in troduction of deliberate imperfections, which make computer-generated sketches

look far more convincing and as if produced by hand. We follow two totally different paths, both of

which produce convincing and efficient sketches. Fi rstly, we devise a random perturbation sketcher which

actually modifies the underlying geometry of our objects and secondly, we use texturing to simulate

random disturbances.

The concept of hatch-shading through perspective texturing is borrowed from published work, but we

find new and more efficient ways of implementing it.

8.2.2 Novel Concepts

Firstly, we devise the ideas of importance-Junctions and uncertainty-fimctions to facilitate a generalised

discussion of the topic of sketch rendering. Importance-functions define which edges of an object are

considered for rendering purposes and we identify a small variety:

(IhlJ'l1 r Jj

Constant Importance~functions:

Edges above certain length

Edges with small dihedral angle

User-specified edges

Variable Importance-functions:

Edges belonging to the silhouette

Edges belonging to other important object-detail

I < Ii

Un certainty-functions simulate the desired manual production look and can be applied singularly or

concatenated in order to produce a desired effect. Some uncertainty-function identified by us include:

Repetition of Lines

Segmentation of Lines

Perturbation of Lines I Segments

Applying Offsets to Lines I Offsets

Any combination of the above

To implement these uncertainty functions, we first use a recursive sub-division algorithm, but the

additional cost of recursive programming negat ively effects performance. Instead we devise a new

method we call object-segmentation. Each edge in an object is considered a separate object and a

transformation-matrix is computed at l oad~time to transfonn a well-defined unit-vector into the edges

position and orientation. We then replace the unit-vector with onc of a selection of pre-perturbed (Le.

uncertainty~functions arc computed and applied once~off at load-time instead of continuously at run-time)

lines, which we store in optimised displaylists. This approach is highly efficient and even easier to

implement than the recursive version.

Our alternative solution using texturing stores uncertainty information in the form of stroke~textures,

which makes them highly customisable. Real penci l, chalk or coal-strokes can be scanned and converted

to textures to maximise the natural media look we strive for. Even though similar solutions have been

implied by some authors, we explicitly address the issue of temporal coherence associated with animation

of such a solution. The problem is that the convent ional silhouette condition is either met by an edge or

not. The transition is instantaneous, resulting in edges popping in an out of the scene, which is visually

distracting. Out solution graciously fades edges in which are about to become visible and those out, which

are about to disappear. All of this is done using an ingeniously simple but effective method : by

multiplying the dot-product information necessary to establish the s ilh ouette~condition we obtain a

continuous measure of the silhouette condition. We know that for negative values of this product the

edge~condition is met, so we design a function that increases as the multiplication product approaches

positive zero, stays constant (full exposure) in the negative interval and is symmetric about n. With this

approach, we do not need to be aware if an edge is about to appear or rather disappear, because the

function will work either way. The simplicity of the solution entai ls that performance is basically not

(/WI"1'f S 151

affected, except that more edges will be rendered (those which would usually produce the edge-popping)

which obviously results in a proportional slow-down.

Our hatch-shading sketcher uses projective texturing like other known implementations, but instead of

using expensive surface-subdivis ioning, we devise several very efficient texturing solutions. Our first

suggested solution employs multi-texturing. Hatching simulates light-intensity via density of hatching

strokes. This means that strokes of different densities have to be applied to different regions of the object

and the problem is allowing shading regions to run smoothly over s ingle surfaces. We achieve this by

including the banded-shading approach of the comic rendering solution as the bottom-layer in a multi

texturing scheme. For different shading regions, multiple passes are necessary because multi-texturing

capabilities are commonly limited to two texture units.

A still more innovative solution was found in the form of 3D texturing. While the concept of 3D textures

logically fo llows as an extension of20 texturing, it seems as ifvery few uses have so far been fou nd for

it . We remedy this fact by claiming that 3D texturing is an ideal candidate for hatch-shading. All the

different hatch densities required can be stacked into a 3D texture in layers. Projective texturing is then

applied as usual, but the lighting value indicating which hatch-den sity is to be used can directly index the

third dimension of the 3D texture. This novel way of hatch rendering allows us to render any amount of

hatch-densities, which smoothly blend into one another, in only a single rendering pass and without the

need for costly surface sub-divisioning or mUlti-pass rendering.

8.2.3 Results

Various applicable results were found. Firstl y, we showed conclusively that real-time sketch rendering

can be performed anywhere between 20-275 frames per second, depending on the rendering style used

and object complexity. Secondly, apart from demonstrating how natural-looking sketches can be

produced with either of two methods (random perturbation or texturing) we successfully dealt with

temporal issues, the solution to which can be applied to any situation where rendering of edges is

required. Abstraction to other rendering situations is also imaginable.

8.3 Painterly Rendering

Only very little work is published on real-time painterly rendering and the existing work is split into to

camps: Brushes that are fixed in object-space and brushes that are fixed in screen-space. Alternative

solutions not using brushes at all usually suffer from extremely poor performance in addition to lacking in

configurability. Once again our approach varies slightly from the established techniques and provides

surprising and interesting visual results.

8.3.1 General Problems and Solutions

The sheer number of different painting styles makes a classification extremely difficult. We therefore

resort to identi fyi ng key elements in the process of painting (and not limited to artistic painting):

(h'lJt/cr S 151

Produced by hand · Deliberate spatial (and temporal) flaws

Brushes Shape

· Size

Paints/Colours Palette

· Consistency (Watery, Oily, .. .)

· Transparent/Opaque

· Blending/Mixing

l'erhniquc · Choice of (Brush, Colour, Strokes)

· Strokes

· Direction, Length, Pressure

· Number

· Distribution

As with the sketching renderers, human imperfections and natural media reproduction play an important

role in this renderer. We can omit are-iteration ofproblerns demanding to be solved in this case, because

we need to methodically implement each of the above concepts of bl1lshes, paints and technique.

Painterly filters are considered standard content of almost any image processing package. These filters are

usually implemented using convolution filters and are thus computationally extremely expensive, which

rules them out for use in real -time applications. In addition to performance constraints, configuration of

these filters is commonly very limited and cumbersome. Reproduction or simulation of natural media is

almost impossible and rarely achieved.

Another standard solution exists which uses textured quadrilaterals to simulate brushes. These are then

either affixed to object geometry or screen co-ordinates. The former approach results in a much superior

temporal quality compared to the latter approach, because brushes move with objects. Unfortunately, the

number of brushes necessary to fill the screen are significantly higher and brush-management becomes

increasingly expensive with increased object-count or complexity. The alternative approach of fixing

brushes in screen-space is easy and efficient, but produces what is called the shower-door-eJJect. which is

very unconvincing under animation. Other approaches like total random brush positioning also tend to

suffer from the same effect in addition to producing a large amount of visual noise.

As brush placement is usually the main concern of work on real-time painting, such issues as paint and

technique arc often neglected. Papers dealing with these issues on the other hand are generally more

concerned with physically correct models as opposed to real-time performance. We do address these

issues and point out simple but effective solutions along with examples of most of our suggestions.

Reference images, which are used to select suitable colours for brushes and can aide in brush placement

and selection are rendered in real-time in our system (Le. not only is the reference image repainted in real

time, but the performance results include the manufacture of the reference image itself). In order to

(It"!,(('r tV 151

minimise expensive screen-capture operations and realise co-existence with other renderers or scene

elements, we discuss a variety of possible solutions, including

Auxiliary and Stereo Buffers

Stencil BufTer

Pixel Buffers (Pbuffers)

8.3.2 Novel Concepts

Even though textured brushes are the only real-time solution to painterly rendering to our knowledge, we

were able to extend the established implementation of a simple brush shape to that of elaborate brush

strokes, including properties such as;

Speed and Motion

Stroke shape and length

Paint capacity, opacity and emission

Paint texture (such as bristle lines or air bubbles one encounters on dried paint)

These extended brushes are neither fixed in object- nor screen-space in our renderer. Instead we

experiment with semi-random motion (on ly semi, because we also want to avoid the shower-door-effect).

We produce a solution that moves brushes in a pseudo-random Brownian motion in relation to object

position. This minimises the shower-door-effect while generating surprisingly soothing visuals.

In order to furth er minimise the amount of brushes necessary to completely fi ll the screen-extent of the

rendered object, we maximise brushes that are located over object-pixels, without fixating them. We

achieve th is through a technique similar to blue-screening or matting, which can easily be incorporated in

two of the reference-acquisition techniques. Brushes that are not located over object-pixels are said to be

invisible, because they will not be rendered (lest they upset other scene elements). Establishing visibil ity

of brushes is done via look-up in the screen-capture buffer and comparison with the matte-colour.

Brushes know when they are invisible and will try to find their way back into visible regions as soon as

possible. We do this via motion-inversion. If brushes fail to become visible within a pre-defined time-ro

live, they are re-initialised at random. Knowing the number of visible brushes at any given lime all ows us

to adjust their screen-size to always guarantee a given object fill-ratio.

8.3.3 Results

In a sta ti c situation our output images can compete with any commercially available convolut ion filter

approaches. in an animated context our solution presents itself to be pleasingly different from existing

ones in that brushes move smoothly and freely over objects as if guided by copious invisible hands while

not being limited to fixed positions on the geometry of these objects. Still, brushes will move in un ison

with the general movement of objects so as to minimise any possible shower-door-effect.

(""1 ft r .v I . J

As brush count has more impact on performance than object detai l, our solution is predictably

independent of object complexity (within reasonable limits). In excess of 10,000 brushes can be rendered

at more than 10 frames per second, but our personal preference of between 2-3,000 brushes (in terms of

output resolution achieved) renders well within 25-30 fram e per second.

8.4 Super-realistic Rendering

The inclusion of realistic renderers or even photo-realistic rendering within a thesis dealing with real-time

NPR probably needs justification. Our reasoning is that common photorealistic techniques are not as yet

real-time (given very recent and few exceptions) and real-time techniques are yet some ways from being

photo-realistic. A renderer which achieved photo-realistic qual ity in real-time is therefore more than

photo-realistic (we call it super-realistic) and therefore non-photorealistic. We also see a trend in the

somewhat neglected world of NPR to only include a very limited set of rendering styles (i.e. the ones

previously discussed) and want to challenge a broader view of what can and should be considered NPR.

In this light, ir standard NPR is on one side of normal rea l-time photo-realism (i.e. that or games) then

super-realistic rendering is on the exact opposi te side.

8.4.1 General Problems and Solutions

The very fac t tha t only about a handful of proper photorealist ic rendering systems exist (and that mainly

through advances in chip-technology as opposed to break-throughs in rendering algorithms) is an

indicat ion orthe complexities involved in such an undertaking. We calmly acknowledge this situation and

attempt a radica lly different approach, which is gaining popularity oflate. Image based rendering in broad

tenns means modifications of existing images to produce new ones. This may seem rather trivial , but it

implies that each frame of an animation or an interactive scene does not have to be re-generated from

scratch, but that the whole, or parts of, a scene can be cached and modified in order to complete the

rendering. Texture-mapping is an example of this: Instead of specifying a ridiculous amount of

geometr ical data along with vertex-colour information, we can simply app ly a pre-generated texture

containing all the necessary information.

Our general solution to the problem (equal to one developed at rough ly the same time, but independentl y)

is to display pre-generated images of objects instead of creating these objects at run-time. Since we have

total control over the input-images, we can defin e thei r quality at wil l. The obvious problem is that in an

interactive situation we will want to translate, scale and rotate a given object. As images are easi ly scaled

and translated, we need to address the issue of rotation. A general rotat ion of an object using only a single

object is impossible if the object is not perfectly spherically symmetrical. In the other extreme we would

need one image for every possible or ientati on of the object, another impossibility. One way out of the

problem is to use uniformly distributed (on the surface of a sphere surrounding the object) samples and

choose the nearest sample to a given or ientation. Th is is what we call the standard approach, because we

found one system that uses it (no other system known to us at the writing of this thesis attempt a simi lar

renderer). We on the other hand go beyond the nearest sample approach and implement a novel but yet

surprisingly fam iliar solution.

/55

OUf advanced solut ion relies on a multi-pass interpolation scheme. Related issues such as triangle

overlapping and triangle-fl ipping are addressed and efficiently solved using onc of two possible depth

buffe r solutions (multi-clear or layered rendering).

8.4.2 Novel Concepts

By interpolating between neighbouring sample images A and B, we can simulate and synthesise all the

missing samples between A and B. The in fannation necessary to perform such an interpolation are a few

but strategically well-placed control -points and paths along which these control-points move from their

or igin to their dest ination. The origin would be some object feature in image A, while the destination

would be the same feature in image B (but problems may arise when this feature is missing in image B. In

many cases it can be carved out of other image areas.). We achieve this by triangulating the complete set

of control-points and texturing these triangles with fixed parts of image A. As the control-points move

along their paths, image A is smoothly transformed into image B. We thus accomplish linear interpolation

of image-pairs. If we also apply the reverse process (move control-points from destinat ion to origin , with

the same triangulation, but di ffe rent texture co-ordinates) we get bi* linear interpolation, which greatly

improves visual quality wi th out any additional data required. The effect thus realised is ca lled tweening.

and usually considered a fairly complex task. With the same solution but by using neighbour ing images of

diffe rent content, we can easily create morphs in real-time, which would normally take severa l minutes to

produce. As mentioned above our solution is therefore not techn ically new, but its similarity with existing

techniques is accidental and its implementation seems to be rather novel (we could find no other

morphing or tweening system using our highly optimised and mostly hardware-accelerated method).

Acquisition and identification of control*verti ces is an interest ing and demanding topic in itself and our

system only approximates a complete solution. Nonetheless, we defined a set of rules which can be used

in a short-circuit evaluation scheme to place suitable control-points. We name pi xel areas where

appropriate control-vertices may be situated Landmarks. Our set ofrulcs reads as follows:

I. Lan dmarks may not lie too close to image boundaries (discontinuities)

2. Landmarks may not lie too close to one another (redundancy)

3. Landmarks must lie on regions of high frequency (it is implied that most of the landmarks are

enclosed by edges)

4. Normal ised Cross Correlation (NCC) ,·a lue of surrounding Landmarks varies significantly from

Landmark under inspection (this makes a correct match in the adjacent Image more likely)

5. Not more than a certain number ofNCC matches may be found (uniqueness)

6. {Landmarks can be found in the original and neighbouring image (self-verification) }

While some of these rules still need revising and tweaking of input parameters to these rules is di fficu lt.

we obtain promising results onto which fu rther work in this direction can be based.

, \/1'1";1111' IIlId 1'111",., " . ,.1. 15h

With the availability of a real-time super-realistic renderer we either implemented or propose a multitude

of novel application areas, which include:

Extreme Low Bandwidth video-conferencing

Facial Character Animation

Restoration of Fi lm and Video material

8.4.3 Results

We successfully demonstrated the superior visual quality of interpolated images compared to non

interpolated samples. What's more, we were able to implement a demonstration system, which can

perform high-quality bi-linear interpolation in excess of well over 400 frames per second. Interpolation of

these results demonstrate that even a more advanced system using further rendering passes can sti ll

perform well within real-time constraints.

8.5 Extensions and Future Work

In this Section we briefly expand on the possible, likely and theoretical extensions to our work as it

stands.

8.5.1 Standard Improvements

As with most implementations, we can always try to find fas ter or better ways of accomplishing certain

tasks. In order to be generally applicable most of our discussions did not include advanced

implementation-specific optimisations, such as assembler-level coding of critical and computationally

expensive algorithmic Sections. For example it seems common practice in the field of real-time

photorealistic rendering to include hardware-optimisations like Pentium III streaming instructions as

relevant work.

Another very real and promising development with respect to this is that of modern graphics card

techn ology, which are becomi ng every more customisable at ever lower levels. The concept of

programmable vertex shaders for example ([52], [39]) enables us already today to fully implement comic

shading in hardware. As the demand for these GPU (graphics processing unit) programming features is

high and rising, we expect the functionality of future graph ics card to be less restricted to photorealistic

approximation and more readily ava ilable for NPR implementations.

8.5.2 Expansion of Definition

We have already tried to stretch the common conception of NPR by including a super-realistic renderer

and mentioning SIRDs (Stereograms). Whi le the established NPR styles seem very much standardised,

we hope for an expansion of this implicit definition in order to completely exploit the full potential held

by NPR. We should try to develop new artistic styles which are not mere reproductions of known human

artwork, but are possibly only realisable in a computing environment (like to the animation of paintings).

(IWI"CI" tV 1.' .'

If we consider the term rendering, as it is used within this thesis, to mean the translation of abstract

(geometrical) information into a concrete physical representation on the screen of a display-device, then

we cou ld also expand the concept of NPR renderers to non-visual ones. While risking to sound

philosophical, we argue that anyone who has every dreamed would agree that an imagined scene can look

more realistic or much less realistic than anything they have ever experienced in real life. With this in

mind, we can imagine physiological, psychological or acoustic renderers to be invented and used. For

example, we could imagine a situation in which the user of an NPR system lies on a comfortable couch,

eyes closed and listens to a scene being rendered: "you are in a small room with a large panoramic

window on the west side ... ". Such renderers have the potential of producing, through relatively simple

means, a much larger sensory stimulation than those restricted to the visual sense.

8.6 Contribution of Thesis

In our problem-statement in Section 1.1 , we stated the following set of goals for this thesis:

I) Enhance the performance of existing NPR renderers

2) Enhance the visual quality of existing NPR renderers, while remaining within real -time

constraints

3) Create new NPR renderers th at perform in real-time

We furthermore defined what we consider to be a valuable and relevant enhancement with respect to any

NPR style:

a) Increase its creative or expressive potential

b) Increase its communicative potential

c) Increase its rendering speed

d) Expand its definition (i.e. add visual qualities which have not yet been considered)

e) Employ new techniques or use existing techniques in new ways

We will now conclude this thes is by confinning that all our original goals have been achieved.

We expanded the definition of the standard comic renderer by adding an additional lighting component

(2-d). We also added various optimisations that enable this enhanced version to render at almost the same

speed as the original version (I -c).

We invented new ways of rendering random perturbation sketches using object segmentation and the use

of uncertainty functions stored in displaylists (I-e). While providing the same visual output as the

standard solution, our new technique is considerably faster (I-c). We extended the visual quality of

standard coal sketch renderer by designing an cdge~fading mechanism that allows for smooth fading of

edges under animation (I-d). Hatch rendering was revolutionised by us ing 3D texturing, which was never

employed for this purpose before (I-e). As support for 3D texturing is limi ted we ingen iously recycled the

15S

standard comic rendering mechanism (I-e) to produce continuous and smooth hatching over arbitrary

triangulated surfaces, without the need for surface subdivision or multi-pass rendering.

We increased the creative and expressive potential of painterly rendering, but adding new properties to

standard textured brushes, allowing them to be used more creatively and with greater flexibility (2-a). We

also expanded the standard conception for positioning of brushes by allowing them to move pseudo

randomly but relative to the object, thus creating a new and interesting visual appearance (2-d).

Finally, we developed a completely new NPR renderer, which not only expands the definition of NPR

itself, but which also uses simple and readily available texturing and interpolation techniques in order to

achieve real-time performance (3, I-e). The communicative potential of this renderer is considerable, due

to its many interactive application areas, a great many of which we identity and describe (2-b) .

We have made real-time enhancements to every standard NPR style and even developed a new one. It can

therefore be stated V!·ith conviction that every single goal of this thesis has been successfully realised.

(/ltIptcr tI 159

9 References

9.1 Literary References

[I] Adams Scott, "Dilbert", Comic Strip and Television Series, Syndicated through Un ited Media.

[2J Appel A., "The notion of quantitative invisibility and the machine rendering of solids",

Proceedings of ACM National Conference, pp. 387-393, 1967.

[3] Apple Computers Inc., "Quicktime VR Authoring", http://www.apple.com/quicktime/qtvr/

[4] Baxter B., Scheib V., Lin M. c., Manocha D., "DAB: Interactive Painting with 3D Virllla!

Brushes", Proceedi ngs SIGGRAPH, 200 I.

[5] Bertram Anthony, "/000 Years of Drawing", Studio Vista Limited, London, 1966.

[6] Bier E.A , Sloan K.R., "Two-part textIlre mapping", IEEE Computer Graphics and Applications,

6(9),40-53, September 1986.

[7] Blinn 1. F., Newell M.E., 'Texture and reflection in computer generated images", Camm. ACM,

19 (1 0), 362-7, 1976.

[8] Blinn, J.f., "Simulation of wrinkled surfaces", Computer Graphics, 12(3),286-92, Proceedings

SIGGRAPH 1978.

[9] Cohen J.M., Hughes J.f . and Zeleznik R.C., "Harold: A World Made of Drawings", Proceedi ngs

ofNPAR,2000.

[10] Cohen Jonathan, "Systems for sketching in 3D", Undergraduate Thesis, Brown University,

Providence, RJ, May 2000.

[11] Cohen M.F., Greenberg D.P., "A radiosity solution for complex environments!!, Computer

Graphics, 19(3),31-40, July 1985.

[12] Cohen M.F., Greenberg D.P., Immel D.S., "An efficient radiosity approach for realistic image

synthesis", IEEE Computer Graphics and Applications, 6(2), 26-35, March 1986.

[1 3] Columbia Pictures, "Final Fantasy", Feature Film; by Columbia Pictures and Square Pictures; ©

200 1 final fantasy film Partners.

[14] Correa W. T., Jensen R. J. , Thayer C. E., Finkelstein A, "TexNlre Mappingfor Cel Animation",

Proceedings SIGGRAPH, July 1998.

(15] Curtis c. J. , Anderson S. E., Seims 1. E., Fleischer K. W., Sales in D. H , "Computer~Gelterated

Watercoloy', Proceedings SIGGRAPH, 1997.

(16] Debevec Pau l E. et ai, "Modeling and Rendering Architecture from Photographs: A hybrid

geometry- and image-based approach", Proceedings SIGGRAPH, pp. 11-20, 1996.

(1 7] Deussen 0., Hiller S., van Overveld C. and StTothotte T., "Floating Points: A Method for

Computing Stipple Drawings", Proceedings Eurographi cs, 19(3), 2000.

[18] Deussen 0., Strothotte T., "Computer-Generated Pen-and-Ink Illustration of Trees",

Proceedings SIGGRA PH, pp. 13--18,2000.

[19] FOX Television, "Flltllrama", Television Series, FOX Corporation,

www.fox.com/futuramalindex.h tOll

I MJ

[20] Gamasutra, "Ups and Downs' of Bump Mapping with DirectX 6", www.gamasutra.com/features

1 19990604 1 bump_O l.htm

[21] Gardener G.Y., "Visual simulation of clouds", Computer Graphics, 19 (3), 297-303,1985 .

[22] Geisel Theodor (Dr. Seuss), "The Lorax", Random House, New York, 197 1.

[23] Girshik A., Interrante V., "Real-time Principal Direction Line Drawings of Arbitrary 3D

Surfaces", Proceedings SIGGRAPH, pp. 271--271,1999 .

[24] Goldstein Nathan, "The Art of Responsive Drawing", Prenti ce Hall, Inc. N.J., 1977.

[25] Gooch A., Gooch B., "Using Non-Photorealistic Rendering to Communicate Shape", Course

Notes for SIGGRAPH Conference, 1999.

[26] Gooch A., Gooch 8., Shirley P., Cohen E., "A Non-Photorealistic Lighting Madel For Automatic

Technical Illustration", Proceedings SIGGRAPH, pp. 447--452, July 1998.

[27] Goral C. , Torrance K.E., Greenberg D.P., Battaile 8., "Modelling the interaction of light

between diffuse surfaces", Computer Graphics, 18(3), pp. 212--22, July 1984.

[28] Hall Peter, "Comic-strip rendering", Technical Report CS-TR-9512, Victoria University of

Wellington, 1995.

[29] Hall R.A., Greenberg D.P., "A testbed for realistic image synthesis", IEEE Computer Graphics

and Applications, 3(8), pp. 10--19, November 1983.

[3 0] Hawkins Joyce M., "The Oxford Paperback Dictionary", Oxford Uni versity Press, Third Edition,

1988.

[31] Heckbert P.S., "Survey of texture mapping", IEEE Computer graphics and Applications, 6 (1 1),

pp. 56--67, November 1986.

[32J Hertzmann Aaron, "Painterly Rendering with Curved Brush Strokes of Multiple Sizes",

Proceedings SIGGRAPH, pp. 453--460, 1998.

[3 3] Hertzmann Aaron, Perlin Ken, "Painterly Rendering/or Video Animation", Proceedings NPAR,

2000.

[34] Hi ll Francis S., Jr. , "Computer Graphics", Macmillan Publishing Company, 1990.

[3 5] Hoffman Donald D., "Visual Intelligence - how we create what we see", W*W*Norton ISBN: 0-

393-04669-9, February 2000.

[36] Holme Charles, "Pen, Pencil and Chalk - a Series of Drawings by contemporGlY European

Artists", The Studio Ltd., London, 1911.

[37] Immel D.S, Cohen M.F. , Greenberg D.P. , "A radiosity method for nan-diffusive environments",

Computer Graphics, 20 (4), 133-42, 1986.

[3 8] Jones Michael, "The Flick in Flicker: Persistence of Vision and the Phi Phenomenon",

www.flicker.orgmickerinflicker.htm. 1999.

[39] Kilgard Mark J., ''NV_vertex-program'', Proposed Specification Document, © NVIDIA

Corporat ion, September 2000.

[40] Klein A. W., Li W., Kazhdan M.M., Correa W. T., Finkelstein A., Funkhouser T. A., "Non

Photorealistic Virlllal Environments", Proceedings SIGGRAPH, pp. 527--534, July 2000.

[41] Kowalski M.A., Markosian L., Northrup J.D., Bourdev L., Barzel R., Holden L.S., Hughes J. ,

"Art-Based Rendering of Fur, Grass and Trees", Proceedings SIGGRAPH, pp. 433--438, 1999.

(IWl'll" 9 I ;l,'rwJ /(,/, /'(n, "\ 161

[42] Lake et aI, "Stylised Rendering Techniques For Scalable Real-Time 3D Animation", Proceedings

NPAR,2000.

[43] Lander Jeff {jeff1 @darwin3d.com}, "Game Developer Magazine Companion Source Page",

www.darwin3d.comlgamedev.htrn.

[44] Lansdown J. and Schofield S., "Expressive rendering: A review of nonphoTorealistic

Techniques", IEEE Computer Graphics and Applications, May 1995.

[45] Lengyel J. , Praun E" Finkelstein A., Hoppe H., "Real-Time Fu.r over arbitrary Surfaces",

Proccedings of Interactive Symposium on 3D Graphics, pp. 227--232, 2001.

[46J Luebke D., "View-Dependent Particles for Interactive Non-Photorealistic Rendering",

Procecdings of Graph ics Interface, 2001.

[47] Markosian L., Kowalski M., Trychin S., Hughes J, "Real-Time Nonphotorealistic Rendering",

Proceedings SIGGRAPH, pp. 415--420, August 1997.

[48] Markosian L., Meier B., Northrup J.D., Kowalski M.A., Holden L.S., Hughes l.F. , "Art-based

Rendering with Continuous Levels of Detaif', Proceedings NPAR, 2000.

[49] McCloud Scott, "Understanding Comics - The invisible Art", Harper Perenn ial, 1993.

[50] McReynolds Tom, Blythe David, "Advanced Graphics Programming Techniques Using

OpenGL", www.sgi.comrrechnology/OpenGUadvanced_sig98.html

[5 1] Meier Barbara 1., "PainteriyRenderingforAnimation", Proceedings SIGGRAPH, pp. 477--484,

August 1996.

[52] Microsoft Corporation, "Cartoon Rendering in DirectX 8 Using Verrex Shaders",

htlp:llmsdn.microsoft .com/library/techartlDXVertex.htm

[53] Microsoft , "Win32 Developer's References - OpenGL Programmer's Reference", Microsoft

Cooperation, © 1995. (Portions extracted from "OpenGL Programming Guide and the OpenGL

Reference Manuaf', @ Si licon Graphics, Inc.), 1995.

[54] Microsoft MSDN Collection, "Architectural Overview for

h tip: 11m sdn. m i cr oso ft . comll i brar y 'de fa u I t. asp ?url =/li braryl en -u sl dx 8 _ clh hi dx 8_ cI

graphics_understand_6ylv.asp

Direct3D",

[55} Mitchell D.P., "Generating antialiased images at low sampling denSities", Computer Graphics,

21(4), pp. 65--72,1987.

[56] Moore Gavin, "Talking Heads: Facial Animation in The Getaway", WV{w.gamasutra.coml

features! 200 I 04181 moore_O I.htm

[57] Namayu Kim et ai, "Photo-realistic 3D virtual environments using Multi-view Video",

Proceedings SPIE-EI-VCIP, 2001.

[58] Nishita T., Nakamae E. , "Continuous tone representation of three-dimensional objects taking

accollnt of shado"~ and interreflection", Computer Graphics, 19(3), pp. 23--30, July 1985.

[59] Northrup l. D., Markosian L. , "Artistic Silhouelles: A Hybrid Approach", Proceedings ofNPAR,

pp. 31--38, June 2000.

[60] NVidia Corporation , "Technical Brief- Transform and Lighting (PDF)", www.nvidia.com

[61] NVidia, "NVIDIA OpenGL Extension Specifications", NV IDIA Corporation, March 2001.

[62] Oi Jun, "An Easy Way to Make a STEREOGRAM", www.tcp- ip.or.jp/-junoi/ stereograms!

theory'! make.html

(IIIII'I"r IJ II>)

[63J Opalach Agata, Maddock Steve ,"Disney Effects Using Implicit Sulfaces", Department of

Computer Science, The University of Sheffield, September 1994.

[64] OpenGL.org, "Orthogonal lllwninalioll Maps", www.opengl.org / News / Special / oim /

Orth.html

[65J Panagou S. and Bangay S., "All Investigation into the feasibility of Human Facial Modeling",

Proceedings SATNAC, 1998.

[66] Perron Carin, "The Basics of Animation", www.writer2001.com/anirnprin.htm. 2001.

{67] Petrovic L., Fujito 8. T., Williams L., Finkelstein A., "Shadows for eel Animation", Proceedings

SIGGRAPH, pp. 511--516, July 2000.

[68J Praun E., Hoppe H., Webb M., Finkelstein A., "Real-Time Hatching' , Proceedings SIGGRAPH,

August 2001.

[69J Raskar Ramesh, "Hardware Support for Non-photorealistic Rendering", SIGGRAPH Graphics

Hardware, August 200 I.

[70J Raskar Ramesh, Michael Cohen, "Image Precision Silhouette Edges", Symposium on Interacti ve

3D Graphics, April 1999.

[71] Rehberger Reinhold, Fuchs Wolfgang, "Comics - Anatomy of a mass Medium", Little, Brown

and Company Boston Toronto, 1972.

[72] Robinson Jerry, "The Comics - An illustrated History of Comic Strip Art", G.P. Putnam's Sons,

New York, 1974.

[73J Rossi c., Kobbelt L., "Line-Art Rendering of 3D-Models", Proceedings IEEE Computer Society,

2000.

[74J Rossi c., Kobbelt L. , Seidel H.P., "Line Art Rendering of Triangulated Swfaces using Discrete

Lines ofCurval!lre", Proceedings WSCG '2000, pp. 168--175,2000.

[75J Sabin Roger, "Comic, Comix & Graphic Novels - A History of Comic Art", Phaidon Press Ltd.,

1996.

[76] Sabin Roger, quoted from "Adult Comics - An Introduction", (The Pentagon Press Office was no! able 10

give an exact reference for the research. but said it was undertaken by the US Army in around 198 1). Routledge

publishing, 1993.

[77J Saito T., Takahashi T ., "Comprehensible Rendering of 3-D Shapes", Proceedings SIGGRAPH,

1990.

[78J Salisbury M. P., Wong M. T., Hughes J. F., Salesin D. H. , "Orientable Temlresfor Image-Based

Pen-and-Ink IIllistration", Proceedings SIGGRAPH, pp. 401-406,1997.

[79J Samek M., Slean C. and Weghorst H. , "Texture Mapping and distortion in digital graphics",

Visual Computer, 2{5). 313-20,1986.

[80] Schlechtweg S., Strothottc T. , "Rendering Line-Drawing with Limited Resources", Proceedings

ofGRAPHICON'96, pp. 131--137, 1996.

[81J Schodl A., Szeliski R., Salesin D. H. ,Essa I., "Video Textllres", Proceedings SIGGRAPH, July

2000.

[82J SciTech Software, Inc., "GLDirect (Direct3D wrapper for OpenGL)", www.sciteehsoft.com/

[83 J Segal Mark, Akeley Kurt, "The OpenGL® Graphics System: A Specification (Version 1.2.1)",

Silicon Graphics, April 1999.

(IWI'fL'r " /1,1

[84) Seitz S. M. and Dyer C. R. , "View Morphing", Proceedings SIGGRAPH, pp. 21--30, 1996.

[85) Siegel R. , Howell J.R., "Thermal Radiation Heat Transfer", Washington DC: Hemisphere

Publi shing, 1992.

[86] Sim Dietrich, "Cartoon Rendering and Advanced Texture Features a/the GeForce 256 Texture

Matrix, Projective Textures, Cube Maps, Texture Coordinate Generation and DOTPRODUCT3

Texture Blending", NV IDIA Cotporation, 2000.

[87] Simpson Ian, "Practical Art School- Twelve lessons in Drawing, Painting & Sketching", Tiger

Books International, London, 1995.

[88] Sousa M.C., Buchanan J. W., "Computer-Genera ted Graphite Pencil Rendering of 3D

Polygonal Models", Proceedings Eurographics, 18(3), pp. 195--208, 1999.

[89] Sousa M.C ., Buchanan 1. W. , "Computer-Generated Pencil Drawing", Proceedings

SKIGRAPH, 1999.

[90) Sousa M.e., Buchanan J. W., "The edge bujJer: A data structure for easy silhouette rendering",

Proceedings NPAR, pp. 39--42,2000.

[91) Stewart David B., "Real Time", Embedded Systems Programming,

www.embedded.com/story/OEG20011 0 16S0 120, January 200 I.

[92) Streit L., Buchanan J., "Importance driven halftoning", Proceeding Eurographics, 17(3), pp. 207-

-2 17, 1998.

[93] Streit L., Veryovka 0. , Buchanan J., "Non-Photorealistic Rendering using an Adaptive

Halftolling Technique", Proceedings SKIGRAPH, 1999.

[94] Stuttard D. et ai, "A Radiosity system for Real Time Photo-Realism", Computer Graph ics:

Developments in Virtual Environments, pp. 71--81, June 1995.

[95] ten Hagen P. , Noot H., Ruttkay Z., "CharToon: a system to animate 2D cartoon faces",

Proceedings Eurographics, 1999.

[96) Thimbleby H. W., Inglis S., Witten I. H. , "Displaying 3D Images: Algorithms for Single Image

Random-Dot Stereograms", IEEE Journal Computer, 27(10), pp. 38--48, Oktober 1994.

[97] Tonnhofer T. , Groller E., "Autostereograms - Classification and Expe,imenlal Investigations",

12'h Spring Conference on Computer Graphics, 1996.

[98) Twentieth Century Fox, "Titan A.E.", Feature Film; Twentieth Century Fox Home

Entertainment; www.t itanae.com/index_frames .html

[99) Van Wallendael , "Gestalt Psychology F', University of North Carolina at Charlotte,

www.uncc.edu/l\ anwall/historyllec25-26.html. 2000.

[100] Viacom Incorporated, "Rugrats - the Movie", Feature Film; © Nickelodeon, ™ Viacom Inc.,

www.nick. comlall_nick! movies/ rugrats_pari s/ index.jhtml

(10 1) Wald I. , SILlsallek P., Benthin C., Wagner M., "Interactive Rendering With Coherent

Ray tracing", pp 153-164,20(3), Procecdings ofELlrographics 200 1.

[102] Wallace J.R. , Cohen M.F., Greenberg D.P., "A two-pass solution 10 th e rendering equation: a

synthesis of ray-tracing and radiosity methods", Computer Graphics, 21 (4), 311-20, July 1987.

[103] Watt A , Watt M., "Advanced Animation and Rendering Techniques", Addison Wesley, ACM

Prcss, 1992.

(104) Webpage, "Virtllal Reality fo r the rest of us", http://www. letmedoit.com/qtvr:index.htm l

[105] Webpage, BroadCast 2000, Real-time video-editing Software, http://heroines.sourceforge.net

Ibcast2000.php3.

[106] Webpage, "Delaunay triangulation", http://cage.rug.ac.be/-dclalhtrnVDelaunay.htrnl

[107] Webpage, '''Geometry in Action Delaunay Triangularion", wwwl. ics.uci.edu/-eppstein/ginaJ

delaunay.html

[1 08] Webpage, "Keith's Stereogram FAQ", keith@rhythm.com, www.rhythm .com/-keith!

autoStereoGrarnsl stereogram Faq.h tm 1

[I 09] Webpage, "MPEG4 Standards Definition", http://mpeg.telecomitaIia.com/standards/mpeg-

4/mpeg-4.htm

[I 10] Webpage, Olympus Digital, "3600 View of Camera C-20402" , www.olympus

innovation.com/C-2040/c2040q'vr.html

[I II] Webpage, The Geometry Junkyard, "Seventeen Proofs of Euler 's Formula: V-E+F=2",

wwwl .ics.uci .cdu/ -eppstein/ junkyard/ euler/

[112] Webpage, "Virtual Reality Special {nterest Group", Rhodes University,

www.cs.ru.ac.zafvrsig/#RhoVer

[113] Webpage, "Voronoi-Delaunay Applet", www.cs.comell.edulInfo/Peoplelchew/ Delaunay. html

[114] Winnem611er H., Bangay S., "Super-realistic Rendering USing Real-time 7\'veen ing",

Proceedings SATNAC, 2001.

(,1",1'(('" t) 1t.5

9.2 List of Animations

In order to show various aspects of our NPR renderers and system, we provide a variety of animations

that focus on these aspects. Many of these animati ons include a voice-track explaining the individual

issues addressed. For animations without sound, we briefly explain their significance in the following

listing.

Animation A :

Animation B :

Hidden Line Removal and Custom Background, 'oackground&HLR_w_sound avi"

Standard Comic style rendering and Extended Comic rendering, " comic_ w_ sound.av i"

Animation C : Specular Highlight Approximation wi th Chromemap. "specular_comic_w_sound ...
an

Animation D: RPS and Coal Sketchers, "Sketching_w_sound.av i"

Animation E : Hatching style sketch renderer, "Hatching_w_sound. avi"

Animation F: Hatching using a 3D-Texture, "3D_Texture_hatching avi" (Light source rotating over

angled plan e)

Animation G : Painterly Rendering with smart Brushes, "Painterly_w_sound. avi"

Animation H : Super-realistic rendering, "SR_Rendering_w_sound.a v i"

Animation I : Tweening of Teapot over 15 degrees, "Teapot_ Tweening. a v i"

Animation J : Animation of Character, "tweenl_cnn. avi"

Animation K : Comparison of Source images vs. Tweened source images, "Sear_side_by_side. avi"

Animation L :

(LHS: Nearest sample approach; RHS: Our Super-realistic rendering approach. Pink

dots mark original samples, all other frames are interpolated)

Express ion synthesis by image deformation, " expression_tweening_sad. avi" (LHS:

bi-Iinear in terpolation of two input images; RHS: linear interpolation of single input

image)

Animation M : Morphing using our Super-realistic renderer, "morphl_faces. avi"

Animation N: Tweening for Video restoration, "video_restoration .avi " (LHS: On ly first and last

frame are original, other frames tweened. RHS: original video materi al, quality and

temporal resolution)

CIIIIl'lc'r fI I a"'" (~r I i~II"(,\

9.3 Table of Figures

Figure I - What you see is not what you get: "The Treachery of Images" (1929), Rene Magritte (1898-

1967), Los Angeles County Museum of Art, Los Angeles, CA 3

Figure 2 - Historical Comics (taken from [72]): a) Palaeolithic painting in the Altamira Cave, Spain;

b) A Section of the Bayeux Tapestry (Will iam's Anny attacks the castle of Di van) 6

Figure 3 - Abstraction as a tool for self- ident ification [49]..... 6

Figure 4 - Two extreme Examples of Sketching: a) "Woman on Her Death Bed" ([24]); b) "Two

Lionesses" ([5]) 8

Figure 5 - Vectors: a) definition s; b) Dot product 21

Figure 6 - Edge issues: a) Correct computation; b) Approximation; c) Artefacts " " ... 22

Figure 7 - Custom Background Clear: a) tileable wrinkled paper texture; b) sketched camera on

custom background. ". " .. ".25

Figure 8 - HLR: a) standard approach; b) if background is present; c) with colour-masking.. . .. 27

Figure 9 - Data Ratios for Test Objects

Figure 10- Default Renderer Examples: a) Deer5; b) Barney

Figure I I - Vari ous Comic Styles [75] ...

Figure 12 - Typical Comic Style: A scene from Futurama [19].

Figure 13 - Comic two-pass rendering principle

Figure 14 - Standard Comic rendering: a) Rocket; b) Dog

. 30

. 32

.35

. ... 36

. 39

. . .40

Figure 15 - Face sorting without perspective correction at different distances to the objecl.. 43

Figure 16 - View rays at (a) finite and (b) infinite distance from the object "".44

Figure 17 - Explanation for Object holes 44

Figure 18 - Angles in an extreme case" " " "45

Figure 19 - Dctennining Face orientation: a) Standard; b) with correction offset45

Figure 20 - Silhouette: a) Without perspective Correction; b) With perspective Correction 46

Figure 21 - Border Region Faces vs. nonnalised Distance "

Figure 22 - a) ID shade texture; b) 20 shade (exture; c) example map ...

.46

. ... 51

Figure 23 - a) Standard OpenGL shading; b) standard comic style; c) extended comic style 52

53 Figure 24 - Extended Light Model : a) Diffuse Component; b) Shade-Map .

Figure 25 - Specular Component : a) Exact; b) Approximate; c)Difference

Figure 26 - A Collection of Shade-maps (a-e)

Figure 27 - Statue of Liberty: a) Monochrome; b) Highly reOective Metal shading

Figure 28 - More examples: a) Ta il of Slinky the Dog; b) A Blender

Figure 29 - Silhouette Colour: a) Varied; b) Single

Figure 30 - Comic style with mult i-texturing: a) Spiderman; b) Tigger; c) Forklift

.. 54

. 55

... 56

.56

. 57

. 58

Figure 31 - Some sketch examples: a) Outline to be coloured in {Charcoal); b) Composi tion exampl e

{Ink } (both [87]). 63

Figure 32 - Typical Sketch Example (Pencil) ([37]).

Figure 33 - Uncertainty functions ..

.64

.67

/I,'

Figure 34 - Edge length distributions: a) DeerO-Deer2; b) Deer3-Deer5 68

Figure 35 - Edge length distributions, accumulative percentages

Figure 36 - Angle Distribution: a) Absolute Edges; b) Percentage of Total Edges

Figure 37 - Combination of 100% MinLength and 100% MaxAngle

Figure 38 - Unconnected Triangles Graph

Figure 39 - Silhouette changes under rotation.. n ••••••••• •••••

.. 69

. 69

70

.... . 71

.73

Figure 40 - RP Sketches: a) Camera; b) Salesman; c) Chess Piece; d) Diving Board 75

Figure 4 1 - Transforming Unit Vector to Desired Edge 76

Figure 42 - Different longitudinal Stretch-factors for a Sketchy Line 77

Figure 43 - Several Stroke textures78

Figure 44 - Edge extensions: a) static solution; b) view-dependent solution. 79

Figure 45 - The three possible edge configurations: a) silhouette edge; b) ITont facing; c) back facing ... 80

Figure 46 - Fading function for edges 81

Figure 47 - Charcoal sketches: a) Salesman; b) Chess Piece; c) Camera; d) Walker 81

Figure 48 - Various hatching suggestions ([24]) 82

Figure 49 - Projective Texturing " u
Figure 50 - Per-vertex Transparency Shading

Figure 51 - Hatching-shading lIsing Multi-texturing ..

Figure 52 - Using a 3D texture for sketch shading ..

Figure 53 - Cross-Hatch Shading: a) Skeleton; b) Statue of Liberty; c) Mouse; d) Dog ...

Figure 54 - Performance Results for Hatching

. 84

............ 86

. ... 87

. .. 88

. 88

Figure 55 - Sketch Renderers Performance: a) Total Edges; b) Rendered Edges 89

Figure 56 - Rendered Edges vs. Total Edges90

Figure 57 - a) Original Image; b) Video filter; c) Commercial Filter 96

Figure 58 - Minimising the capture area98

Figure 59 - Nai've implementation showing background artefacts 98

Figure 60 - Painterly Rendering using the Stencil Buffer99

Figure 61 - Painted 3D objects: a) Mouse in offscreen Buffer; b) Mouse in Screen Buffer with Paper

Background; c) Dog..... 99

Figure 62 - From Brush Shape to Brush Stroke 102

Figure 63 - Oil Painting using Textured Bmshes 102

Fi gure 64 - Definitions: Visible Brushes, Object-Pixels, Background-Pixels, and Capture Area ... 104

Figure 6S - Performance vs. Number of Brushes 107

Figure 66 - Extremely High Speed1 10

Figure 67 - Respawning Behaviour: a) Synchronised; b) Randomly desynchronised III

Figure 68 - Landscape with various Brush Orientations: a) Random ; b) Angled; c) Circular..... 11 2

Figure 69 - Demonstration of multiple effects... 113

Figure 70 -Brush Variations: a) Origina l; b) Detail of Spotl ight ; c) Same Detail with Dot-Brush; d)

Dot-Brush; e) Stroke-Brush 114

Figure 71 - Video Oil Rendering.

Figure 72 - Image-based renderi ng. affine transformations .. .

.. l i S

.12 1

(1101'1"1"1

Figure 73 - Goo-spherical sampling of a real -world object 122

Figure 74 - Teapot sampling: a) 15 Degrees; b) 30 Degrees; c) Control-Points and Motion Splines; d)

Triangulation based on Control-points............ 123

Figure 75 - Pixel Interpolation through texture mapping.... 124

Figure 76 - Linear interpolation in action 125

Figure 77 - Triangulation Problems: a) Initial Triangulation; b) Control-point moves into

neighbouring triangle; c) Two possible triangulations of the same control-points 126

Figure 78 - Demonstration Set-up 128

Figure 79 - Image analysi s: a) Edge Detecti on; b) a possible landmark; c) many possible matches 128

Figure 80 - Automatic Landmark identification: a) source; b) target 129

Figure 8 1 - Contour problems: a) proposed landmark; b) possible and incorrect matches

Figure 82 - Tri-Iinear sampling for arbitrary rotations

Figure 83 - CoRgi Object Model (Rel evant Part)

Figure 84 - as Comic Performance

Figure 85 - OS Sketch Performance (I)

Figure 86 - OS Sketch Performance (2)

Figure 87 - as Painting Performance...

Figure 88 - Form factor geometry for two patches (after Goral [27])

Figure 89 - The four mechanisms ofl ight illumination (after [l 00]) ..

Figure 90 - Using a virtual environment to account for indirect diffuse il lumination

Figure 91 - An example mapping process

Figure 92 - Texture Mapping Spaces (after [l01]).

Figure 93 - Unfolding of a pyramid

.130

.13 1

.. 138

.. 140

.. 141

...141

.. .. 142

.. ... 176

.. 178

179

. 181

.. 182

.. 183

Figure 94 - Intermediate Surface Mapping Options: a) Reflected Ray; b) Objeet Normal; e) Centroid

Projection ; d) Intennediate surfaee normal (after [10 I]) 184

Figure 95 - Bump Mapping: a) Original Geometry; b) The height map; e) Length-Adjusted Nonnal

vectors; d) Bump-perturbed Nonnals (after [I Olll 186

Figure 96 - Example of Bump Mapping: a) Texture mapped Sphere; b) Same sphere wi th Bump map

(the bump map is a shifted grey map of the texture map) 187

Figure 97 - Environment Mapping: a) Object inside an environment; b) Quadrilateral View-frustum

(both after [10 I]) 187

(ItUl't« . fJ

9.4 Table of Listings

Listing 1- Standard Render Loop

Li sting 2 - Custom Clear Displaylist

Listing 3 - Standard Comic algorithm

Listing 4 - Extended Cornie style Algori thm.

Listing 5 - Generic Sketching Algori thm

Listing 6 - Random Perturbation Sketch Algorithm .

Listing 7 - Object-Segmentation Algorithm

Listing 8 - A lgorithm for Coal Sketching

Listing 9 - Using projective texturing

Listing 10 - Generic Hatch-Shading algorithm

Listing II - General Painterl y Algorithm

Listing 12 - Generic Convolution Algorithm

Listing 13 - Painterly Rendering using Textured Brushes

I bY

..24

.. 25

....... 38

53

.. 66

.. 74

.. 77

....... 82

.. 84

.. 87

. 95

.. ... 96

....... I ~

CllI.IJlltT IJ

9.5 List of Tables

Table I . System Set·up: Hardware and Software

Table 2 - Test Set-up: Positions and Orientations ,

Table 3 - Universa lly relevant Object Statist ics

Table 4 - Visual Comparison of Objects

Table 5- Duo Shading Colour va lues for a given sample set

Table 6 · Visual Quality vs. Face Orientation Methods (I)

Table 7 - Visual Quality vs . Face Orientation Methods (2) .. .

Tabl c 8 - Performance vs. Face Orientat ion Method (I)

Table 9 - Performance vs. Face Orientation Method (2)

rlJ

... 28

........... 28

. 29

.31

.. .. 36

.47

. .. .48

... 49

. .. 50

Table 10 - Comparison of resu lts for various Shininess va lues .. 55

Table II - Performance with Si lhouette Colour and Multi -textur ing in FPS 57

Table 12 - Performance Comparison of Default Renderer vs . Standard Comic and Extended Comic 59

Table 13 - Comparison of Face-Sorting vs. Displaylist caching (Extended Comic renderer). 6 1

Table 14 - Visual Comparison of Edge-reduction approaches

Table 15 - First Approximation ofPainteriy Factors

Table 16 - Pros and Cons of Background preservation Techniques

Table 17 - Object Resolution vs. Number of Brushes

Table 18 - Effects of Object Speed on Painting Behaviour

Table 19 - Visual Comparison of Painterly Approaches .. .

Table 20 - Comparative Results for Super-reali stic rendering

Table 2 1 - Configuration for multiple OS Test

....... 70

... .. 93

.. 100

......... 106

. 109

. 116

. 134

. 140

(/tUl'fl'r l) ,\our .. t'\ tl/ tlmf, /\ I I

9.6 Sources of Models

I\lodcJ ~1Imc Ori~inol Name- ,\utbor Source/Contact

Camera Camera Unknown www.3dup.com

Cow Cow Unknown www.3dup.com

Hand Hand Unknown www. 3dup.com

Skeleton Skeleton Unknown www.3dup.com

Comic Cat Billy the Cat D. Proctor dproc@ozemail.com.au

Comic Ant CuteAnt Hou Soon Ming ming@its-ming.com

Deer Deer Hou Soon Ming ming@its-ming.com

Horse Horse Ba itsiy Yuriy www.meta3d.com

Sheriff Sheri ff Baits iy Yuriy www.meta3d .com

Statue of Liberty LibertyStatue Mr. Voodoo www.meta3d .com

Mouse Mickey Unknown www.meta3d.com

Wrench Wrench Unknown www.zygote.com

Chess Piece Chess Renzo Del Fabbro renzo@sunrise.it

Racer RC_Car Niels 't Hart www.bart.nll- niels

Plane Biplane Ian D. West WEST I 0397@aol.com

(hUI'I'" /I) Pltofort'u/i.'Irit' I t'dllliq 11(',

10 Appendix A - Photorealistic Techniques

10.1 Photorealistic Techniques

Even though this thesis deals primarily with the algorithms, implementation details and performance

issues of NPR techniques, we feel that those topics need to be contrasted against the equivalent

photorealistic CPR) techniques. This is especia lly so, since the main dri ve of the computer graphics

community is towards more and faster realism. Only if the effort and energy is understood that goes into

the generation of standard, realistic images can we fu lly appreciate the tricks and subt leti es that have been

developed to make real-t ime NPR rendering a possibility. Not on ly does the NPR renderer li ve in the

somewhat litera l shadow of the PR renderer, but it also strives off it. Without the advancements in

technology and especially standardisation (of hardware and programming APls) that have been made to

further PR rendering it would be near impossible to implement NPR systems coming even close to real·

time. With this in mind we wi ll spend this Chapter discussing the details of the most common and

advanced photorealistic rendering techniques.

10. 1. 1Ray·tracing ([103J)

Ray-tracing is a technique that can be adequately used to model specular interaction (i.e. shiny and

perfectly smooth surfaces which reflect and/or transmit an incident ray in exactly one direction). Even

though any kind of scene can be produced with this method, it is noticeable that all of them will contain a

variety of very reflective objects, preferably spheres or mirrors and at least as many transparent objects

imitating any kind of (pure) glass. The downside of ray-tracing is its inability to deal with d iffuse

interaction (the number of rays having to be spawned at each level would be far too great for any feasible

practical implementation) and its general high computational cost. Its advantage is that it provides a

number of solutions to the global illumination problem:

Hidden surface remova l

shading due to direct (local) illumination

shading due to indirect (global) illumination (i.e. reflection and refraction)

shadow computation

Ray-tracing works entirely in object space. To minimise the number of rays having to be computed. they

are traced backwards and are thus emitted from the viewer's eye through a virtual screen positioned in

front of the viewer. The targeted screen resolution is then used to determine the number of in itial· or

view-rays spawned (naive ray-tracers might send one ray through the middle of each pixel. but this wi ll

result in aliasing artefacts). If a ray strikes the surface of an object (the search for this intersection in a

multitude of objects. each in tum with possibly non-trivial surfaces, is the most expensive operation of

ray-tracing and can be optimised) the colour for this point is calculated by the superposition of three

components:

('"11'1<'1" Ifl

the local surface colour (including ambient effect)

the contributi on of any light reflected onto this point (reflection)

the contribution of any light refracted onto this point (transmission)

The first component is dependent only on the objects properties, independent of its position and

orientation (absolute and relative to the viewer), while the other components depend on the object's

reflective and refracti ve propert ies, as well as its spat ia l arrangement. To detennine the contributions for

transmitted and reflected light, rays are spawned from the point of intersection with the first ray. It

becomes obvious that this method is naturally implemented in a recursive manner. The depth to which

this recursion takes place is another parameter in the ray-tracing process that can be optimised. Since the

complexity of the computat ion grows exponentially with depth, the contr ibution that is made by a ray

spawned at each depth has to be estimated and the rays terminated adaptively. Terminating after depth 1

implements an inh erent hidden surface removal for opaque objects.

Shadow computation is done by spawn ing additional rays (called shadowfeelers) from an intersection to

each of the light-sources. If a totally opaque object lies in between the light source and the surface, then

the local intens ity contribut ion is reduced to the ambient value. If the blocking object is partially

transparent, then the local intensity term is attenuated accord ing ly. Including refraction in the calculation

of the shadow-feeler rays cannot easily be achi eved without major modifications to the main algorithm. In

addition to this the number of light sources is limited in practice when computing shadows. It is found in

practice that main rays need only be traced to an average depth between 1 and 2 [29} before contr ibu tions

from reflected or refracted rays become negligible. But to compute accurate shadows, n shadow-rays have

to be spawned for each intersection , ifll is the number of light sources used. This implies that the cost for

the computation of shadows quickly dominates the total ray-tracing cost.

Optimisations

Bounding volumes

Determining the intersections between objects and rays is a non-trivial task for objects of arbitrary

geometry (the reason why ray-traced scenes preferably show spheres - for which the intersection test is

trivial). Bounding vo lumes of simpler geometry help the optimisation process and hierarchical structures

of bounding volumes can be used for clustered objects. Nonetheless, setting up the scene including the

bounding volumes then becomes a non-trivial task and is not easily automated. An intersect ion test for

arbi trary planar polygons is as fo llows:

obta ining an equation for the plane containing the polygon

checking for intersection with this plane

checki ng if the intersection is contained with in the polygon

(''''''Ier /II I 4

The last step listed here is trivial but may be computationally expensive as it depends on the number of

vertices that make up the polygon.

Space partitioning

Another approach is to divide object space into regions containing objects and those that do not. Initially

the object space is restricted to a cube-shaped region and marked either empty or non-empty_ If it is

marked non-empty the (recursive) process is taken one level further and the initial cuhe is divided into 8

sub-cubes of equal size. The process is then repeated for each of the sub-cubes until they are either empty

or contain only one object. Detennining whether an object lies within a given cuhe is trivially achieved by

testing each of the vertices to lie within the range dictated by the cube. Any given ray now only has to be

tested for intersection if it passes through a non-empty cube.

Dist,.ibution

Due to its recursive nature the ray-tracing algorithm can easily be distributed in a parallel computing

environment.

Anti-aliasing

Since a nai"ve ray-tracer will produce aliasing. To combat this, a non-uniform over-sampling approach is

suggested by Mitchell [55], which works in three steps:

A ray tracing solution is constructed at a low sampling density (e.g. one ray per pixel as in the

na'ive ray-tracer)

This solu tion is then used to determine areas that require super-sampling

An image is constructed from these non-uniform samples by an appropriate reconstruction filter

10.1.2Radiosity ([103])

The Radiosity method of light interaction was developed at Cornell University by Goral et al [27] as an

answer to the limited capabilities of the ray-tracing method (see Section 10.1.1) which can only deal with

specular light-interaction thus creating images with a shiny-plastic look to them. The radiosity method

divides all surfaces up in (Iargish - otherwise the computational complexity exceeds most practical limits)

patches that are assumed to exhibit constant physical properties. This limited amount of spatial resolution

makes it practically impossible to model specular interaction. The radiosity and ray-tracing method can

thus be considered mutually exclusive and complementary to each other. Attempts to unify both methods

have been made.

The radiosity method is based on conservation of energy, which places the rather artific ial constraint on

rendered scenes that they have to be inside a closed room through which no energy can escape. Energy is

input to the system through emitting surface patches. This allows any patch to act as a light emitter and

makes it possible to create light sources of virtually any conceivable shape.

'-

U'U/'".,. II/

Several natural phenomena that were previously not incorporated in any lighting model could now be

addressed:

colour bleeding from one surface to another,

shading with shadow envelopes, and

penumbrae along shadow boundaries

Since the radiosity method is an object-space algorithm which is concerned with screen-space projection

only in its last processing step. its main solutions can be re-used to create views from any possible

position and orientation. This means that a lot of effort goes into arriving at the above-mentioned

solution, but once this has been done, fe-rendering of the scene from different viewpoints becomes triviaL

The obvious assumption is that objects within the scenes are not animated.

Another assumption made is that all surfaces within the scene are perfect diffusers (or ideal Lambertian

surfaces). In general , radiosity B, is defined as 'the energy per unit area leaving a surface patch per unit

time' and is the sum of the emitted and the reflected energy:

B,dA, = E,dA, + R, J B/:/Aj

where the reflected energy is arrived at by multiplying the refl ectivity of patch i by the fraction of energy

ofpatchj that arrives at patch i. This fraction Fij is called the/orm/actor and its calculation is major part

of the radiosi ty computation. Siegel and Howell [85] state the following reciprocity relationship:

so that division by dA; gives:

Fiy'l; = FjjAj

B, = E, + Ri fBjF';j
j

By using a discrete environment with finite size patches while assuming constant radiosity for each patch

we can write the integral as a sum and arrive at:

Bi = Ei + Ri'LBjFij
j-I

where n is the number of discrete patches in the environment. Since an equation exists for each of the n

patches there exists a set of n simultaneous equations that can be written in Matrix notat ion:

I- R.F;. -R.FI2 -R1F;" B, E,

-R2Fzl 1- R,F21 -R2F2" B, E,

=

-R"F". -RIIF"2 I - R"F.", B, E,

In the above matrix the E; are only non-zero for the patches that act as light emitters thus providing

illumination and can be considered the input to the system. The Ri are either known from material

properties or can be calculated. The F ij are dependent on the geometry of the environment and need to be

calculated. Some simplificat ions can be made: For any plane or convex surface F;;=O since none of the

radiosity leaving the surface wi ll be able to strike itself. From the definition of the form factor it is evident

that the sum of any row of form factors is unity.

(hCll'ler I II

As was mentioned abO\-e the form factors are a function of the geometry only (and not view-dependent)

so that the solution obtained above produces a single value for each of the surface patches, the

information of which can be inserted into a standard Gouraud renderer to give an interpolated solution

across all patches_

The form factor is calculated by tak ing into consideration the relative or ientation between two patches

and their distance from each other. In physical tenns it is describing the radiative energy leaving surface

A,. that strikes Aj directly, divided by the radiative energy leaving surface Ai in all directions in the

hemispere surrounding Ai:

the graphical explanation of which can be found in Figure 88. In most practical situations the two patches

may be tota lly or partly occluded from each other so that an occlusion factor has to be included into the

calculation. Except for a few specific cases the above-ment ioned double integral is difficu lt to solve.

Figure 88 - Form factor geometry for two patches (after Goral [271)

For th is reason Cohen and Greenberg [I I] developed a numerical method for eva luating the form factors,

which approximates the hemisphere by a hemi-cube of finite resolution (the units of spat ial resolution

being called pixels which are not related to [he conventional use of the word). In their approach every

patch in the environment is projected onto pixels comprising the herni-cube. If two patches are projected

onto the same pixel, then the further one is ignored (similar to a z-buffer, except that at this stage no

intensities are depth-sorted, but instead the visibility of patches is determined for the calculation of the

form factors). With this approach several other simplifications can be made (e.g. use of look-up tables for

standard form -factors on areas of the hemi-cube) that allow for a significant speed-up. The modifi ed

radiosity algorithm then comprises the following steps:

Computation of the form factors, F I}

Solving the rad iosity matrix equation

rendering by injecting the results of stage 2. into a bi linear interpolation scheme

repeating stages 2. and 3. for each of the colour bands of interest

U'"/,'('r /II

Since the calculation of the form factors depend solely on the geometry of the environment, their va lues

can be used for different views (as mentioned above) but also for different values of Ri or E,. This means

that the material properties of the surfaces can be modified without affecting the form factors as well as

light sources be switched on or off at will. All that needs to be done is solving the matr ix equation of

stage 2 again. For different view-perspectives only stages 3 and 4 have to be repeated.

An upper limit on the practical complexity and accuracy of the scene is determined by the processing time

allowed and the storage resources available. For example the time to compute the form factors is of order

0(n2) in the number of patches. In turn each patch has a hemi-cube ofa certain resolution associated with

it. This resolution impacts on the computational complexity as well but is responsible for the projected

accuracy of the rendering (the higher the resolution, the better the image accuracy). Both the number of

patches and the resolution of hem i-cubes are limited by the memory available to the system.

Optimisations

Explicit shadow calculations

One optimisation by Nish ita and Nakamae [58] predicts the umbrae and penumbrae of light shadows

explicitly with shadow volume algorithms and use this information to adjust the surface division into

patches accordingly to that regions of high radiosity gradient are subdivided to a higher resolut ion than

other regions. With this approach they can concentrate the computing resources onto areas of finer visua l

detail.

Progressive refinement

This technique by Cohen et at [12] uses a first coarse radios ity solution to identify areas of large gradient

which may need further refinement. In successive re-iterations the desired degree of accuracy is achieved.

This approach makes use of the fact that as far as the radiosity solution is concerned, the cumulative

effect of elements of a subdivided patch is identical to that of the undivided patch. In other words, the

amount of light reflected by a given patch is not affected by it being super-sampled into several patches.

This enables the calculations to be performed as if only the patch under consideration is sub-divided,

while all other patches remain the same, which greatly reduces the number of patches to be considered. In

addition to this previously obtained patch-values can be re-used in the refinement process even if the

patches have been sub-divided in the process.

10.1.3Hybrid (Ray-tracing and Radiosity {I 03])

As was already mentioned in the discussions of Ray-tracing and Radiosity (Sections 10.1.1 and 10.1.2

respectively), these two methods are mutually exclusive and cater for only one type of either specular or

diffuse light- interaction. Any system claiming to realistically model light-interaction would have to

incorporate both. Some attempts in this direction have been made, but the computational costs involved

are usually proh ibitive.

(btllHI" I (J I'JIOIOt'f'uh,,;, ' I ({ '111"/111 \ I ,

Immel et al. [37] first extended the standard radiosity method to include specular interaction by

incorporating a bi-directional reflectivi ty functi on into the basic radiosity equation and adopting a view

independent solution for the specular interaction. While the diffuse illumination changes rather slowly

over a surface, this cannot be said about specular illumination. For this reason the surface-subdivision

necessary to model the specular component correctl y results in mass ive computational overheads for

anyth ing bUl simple scenes.

A two-pass approach was later developed by Wallace et al [102], of which the first pass (named the

preprocess) consists of an enhanced radios ity solution. This approach is based on Wallace's notion of four

mechanisms of illuminat ion, as illustrated in Figure 89.

)
I

/ -:,.

,
,.-;7,('-,

1 : i '~L __ L _ __ -'

(3) diffuse to diffuse

(c) diffuse to specular

(b) specula r to diffuse

(d) specular to specular

Figure 89 - The four mechanisms of light illumination (after 11021)

The mechanism labeled (a) is handled in the standard radiosity equat ion . Mechanism (d) is accounted for

in the ray-tracing method. Model ing mechanisms (b) and (c) is the achievement of Wallace's method. The

aforementioned enhancement in the preprocess is the inclusion of diffuse transmission (translucency) and

specular-to-diffuse transport, the latter of which happens when a diffuse surface patch sees another

similar patch via the specular reflection of a shiny surface. The hemi-cube method is sti ll used to

determine the form-factors, but another (back-facing) hemi-cube is used in order to determine ferm

factors for translucency. The diffuse intensity component due to mechanisms (c) {direct} and (d)& (b)

{indirect} are thus taken into consideration, resulting in a view-independent solution for these

mechanisms. The only specular surfaces considered are perfect mirrors and the additional possible paths

are taken into account by even more form-factors, this time derived from a virtual environment, as in

Figure 90.

(/ral't(I I (I 1'/IOIOIt U/r'"l I ('t IlIIiqllt ,

Virtual Environment Real Environment
.----------------

S ' B

A

Figure 90 - Using a virtual environment to account for indirect diffuse illumination

In Figure 90 we see the direct diffuse illumination of patch 8 onto A as green lines. but if there happens

to be a specular surface C, then the additional indirect diffuse illumination of A due to B can be modelled

by creating a virtual (miITored) environment with a virtual patch B', wi th the same properties as patch B.

These vi rtual environments are seen as the main disadvantage of the method, since the form-factor

calculations are mainly dependent on the complexity of the environment. Augmenting the environment

wi th addition al (virtual) environments is therefore a heavy burden on the computational complexity.

The second stage of th is approach is called the postprocessor and deals with the specular illumination of

the scene. Here, a view-dependent solution is calculated from the results of the pre-process. The fact that

the solution is view-dependent means tha t a ray-tracing approach can be utilised. The ray-tracer used by

Wallace is enhanced in that it uses a projection frustum rather than a naive infinitely thin ray of light

(similar to Figure 90). Incoming diffuse intensities contributing to each reflection frustWTI are calculated

by linear interpolation from the preprocess patch vertex intensities. The frustum is implemented as a

pyramid with square base of n by n 'pixels" where n is adaptively changed as a fun ction of recursion

depth. The incoming intensities that stream through each pixel are weighted and summed to model the

specular spread and shape of the specular interaction.

10.1ALoca/lllumination Mode/

It becomes evident from the above discussion that rendering techniques which take into account

reflections and refractions of diffuse and specular light components are extremely computationally

expensive and are not realisable in real-time on common hardware platforms. As a compromise (and a

furth er extreme simpli fication) the local illumination model (LIM) only takes into account the direct

interaction between a ligh t source and an object. All other objects are disregarded in the shading

computat ions. This means that light cannot be reflected off objects, it cannot refract through objects and

objects cannot cast shadows on other objects (in fact not even themselves). To clarify the matter, we are

not saying that these effects cannot be produced (in fact the following Sections dea l with creating such

effects), but that they are not part of the LIM. Several graphics APls (most commonly used are OpenGL

(""lit'., III

and Direct3D of the DirectX set of APls) implement the UM and the popularity of 3D games and other

3D applications have led to a well defined standardisation of the LIM on modem graphics accelerators.

lndependent of the implementation details (for detai ls on engine architecture, see [83J for OpenGL and

[54J for Direct3D) the following factors are common to most APls and represent the key to speedy

rendering:

The number of lights is limited (usually eight or fewer)

Shading information is only computed at vertices. Filling is performed by interpolating colour

information at vertices (this implies that for a flat surface to be properly lit , it has to be relat ively

finely tessellated)

Material properties are limited to ambient, diffuse and specular reflection coefficients, shininess

factor and emission value. These model surfaces such as plast ic or metal re latively well

While tl1i s set of fun ct ionality allows thousand of primitives to be rendered with basic smooth shading

and in real -time the objects rendered in such a marmer have a distinct plastic and computer-generated

quality to them. The methods and techniques that can be applied to emulate more realistic surfaces and

light interaction are discussed next. In general these can be considered coarse approximations intended to

please the eye rather than simulate nature in a realistic manner.

10.2Realism Enhancing Techniques

A variety of techniques have been developed to increase the realism of images produced by the LIM,

wh ile retaining as much performance as possible, Most of these techniques fall into the category of

mapping techniques, which are discussed next.

10.2. 1 Mapping Techniques

Mapping in the most general sense refers to some function f that maps ,'a lues from some input space I to

some output space 0, The dimensionality of the input and output spaces can differ.

fCio ,i" ... ,im) = (° 0 ,°, , .. . ,0,)

Eq uation 3- General Mapping

The generality of Equation 3 has two implications in a graphical context: The formula can be applied to a

large amount of problems and the implementation can be well standardised. One of these standardisations

is tha t we can usually think of the input values as contained inside a two dimensional image (whether the

pixels of the image represent , colour, alpha or vectors is not important at thi s point). Examples of more

dimensional input exist (e.g. 3D textures), but are rarely used.

('"UI''' I J IJ

GC>"rd ,jet ~

f (I f). II .~~::!:,)

Coct-d Set 1

I) L00k up S;')lU'C€'
vlI.lue lit Co d Set 1

::!) Look up uu);et vJlue
II.t Coc !Jet 2

Figure 91 - An example mapping process

3.) h pply :otll'ce
modlt'le' to ta~et

HI

Figure 91 shows a typical mapping process. The general mapping is broken down into sub-parts: A set of

input co-ordinates specifies the source and target locations. A modifier from the source location is

processed and applied to the target location. With this process targets are usually altered, rather than

overvvritten, meaning that some degree of feedback takes place. While the example shows texture

mapping, the same process can be applied to bump mapping and a number of other mapping techniques,

which are explained below.

10.2.1.1 Texture Mapping ([103])

This Section explains the workings of texture mapping. As some people actually consider texture

mapping a kind of super-class to other mappings such as environment or bump mapping, we go into some

deta il to show common characteristics and unique features of texture mapping.

Texture mapping is the process of transforming a texture onto the surface of a three-dimensional object.

Texture maps were originally employed to give three-dimensional objects a more complex and interesting

appearance. Up to that point objects would exh ibit a distinct plastic look, due to the Phong reflection

model generally employed and objects could mainly be di fferentiated by colour and shape. The

introduction of texture mapping allows objects to appear with different surface properties. These

properties are not limited to colour modulation, but may give the impression of surface modulation as

well (as for example a "bark ofa tree" texture might suggest).

According to Watt [103] there are three major considerations in texture mapping:

1. What attribute or parameter of the model or object is to be modulated to produce the desired

textural effcct?

The following is Watt 's modified version of the original classificat ion by Heckbert [31):

Surface colour (diffuse reflection coefficient(s»

Specular and diffuse reflection (environment mapping), first developed by Blinn and Newell

[7]. Considered a class of its own as opposed to a sub-class of texture mapping. One reason

given for this is that all texture mapping techniques fix a texture onto an object independent of

("UP/f r J" il, uti"" t:llhullcim,: t t'tlmiqllt'.\ JI1!

that object's position or orientati on. Environment mapping on the other hand takes both these

properties explicitly into considerat ion .

Normal Vector perturbation (Bump mapping)

Specularity. This was again invented by Blinn [8) but is not used often. The quantity modulated

is the surface roughness in the Cook-Torrance reflection model and could be used to generate

effects such as textured paints.

Transparency: Examples of this technique are given by Gardener [2 1]. Appli cations include

creation of clouds or chemically etched glass.

2. How is the texture mapping to be carried out?

Given that a texture is defined in a texture domain and an object exists as world space data, we need to

define a mapping between these domains.

According to Watt there are several possible texture domains, i.e. one-dimensional, two-dimensional or

three~dimensional (see figure below). Even though the two-dimensional domain is the most popular, the

other domains are claimed to be considerably easier to handle even though they are somehow restricted in

the textural effects producible.

Tc:.xtl lre SlJilC¢ Object Sl"'1 Ce :x."1'cen Sllt,ce

~--/ ~ ~
T(u) " " '\ '"
T(lw) (' • . Y. 7,) (x,. y.l

Figure 92 - Texture Mapping Spaces (after 11031)

The two major implementations used are:

I. mapping from texture space to object space (usually a 20 to 3D transformation) and then

performing the \-iewing projection to screen space.

2. mapping directly from texture to screen space (usually a 20 to 20 transformation).

In the latter case, the screen space is usually uniformly sampled and the inverse or pre-image of a pixel in

texture space is formed . The area thus produced in the texture domain is then sampled and filtered and a

texture va lue then returned to the pixel. Filtering methods are easier to implement for inverse mapping.

Difficulties arise in the general case, where the transformation from screen space to texture space is non~

linear resu lting in a pixel pre~image that is a 'curvilinear quadrilateral' whose shape varies as the pixel

position changes.

Texture mapping requires specia l anti~aliasing treatment because it tends to produce worse aliasing

artefacts than other techniques associated with image synthesis .

(h"I'I,'r /11 / S I

Mapping onto polygon mesh models

In the general case, where three dimensional objects are comprised ofa number of polygons which are to

be texture~mapped we need to find a way to parameterise the interior of these polygons in order to apply

the texture onto the polygons which are only defined by their vertices. This may result in distortions

andlor discontinuities, which, depending on the geometry of the object, may have to be dealt with.

Heckbert [31] fully describes parameterisation tec1miques and points out that a triangle is the easiest

polygon to parameterise. In addition to this it is always guaranteed that all vertices of a triangle lie in

exactly one plane so that for any point (x,y,z) on the object there exists a linear relationship with the

texture-cD-ordinates u and v:

(x,y,z) = (Axu+Bxv+Cx, Ayu+Byv+Cy, A,u+B,v+CJ

For polygons with more than three vert ices this parameterisation is not adequate as topological problems

may arise. How to deal with these problems is described next:

Unfolding the polygon mesh

A technique developed by Samek et al. [79] shows us how to map the surfaces of an object onto a single

plane, by unfolding adjacent faces. For this pivoting of each polygon in the object abou t the edge with its

neighbour to work properly, the object has to exhibit a single surface topology. Projection of the texture

space onto the unfolded object is said to be easily achieved so that an effective mapping of object vertices

into eu,v) texture-cD-ordinates takes place. An example of this can be seen in Figure 93, where a three

dimensional pyramid is unfolded, resulting in the 2D polygon structure on the right.

I .,

) .
, I

\ __ ..1-1/

3D-Doma in

- ,

Figure 93 - Unfolding of a pyramid

Already fi'om this example it should become evident, that discontinuities may occur during the mapping

process at certain edges of the unfolded object.

To make this technique work, adjacency infonnat ion is stored in a special data-structure. The angle

between polygon n (current) and polygon n-I (last) is established and incorporated into a rotation that

pivots polygon n around the common edge between itsel f and polygon n-I. resulting in both polygons

now lying in the unfold plane.

Two-part mapping

Another method restricts the object's topology less and is dependent only on the object's geometry as

opposed to its parameterisation, thus overcoming the above-mentioned difficulties. Introduced by Bier

and Sloan [6J this method uses an intermediate shape to initially project the texture on, simi lar to

environment mapping (for which it can also be used)

~~
" ~.<,,-,

'N/> \) I 1
. ~- /" ,

/ .
Obj<cl Objed Objed

/

Objeci

" '- -
I

Figure 94 - Intermediate Surface Mapping Options: a) Reflected Ray; b) Object Normal;

c) Centroid Projection; d) Intermediate surface normal (after (I03J)

The mapping process is divided into two steps:

l. Mapping ITam 2D texture space onto the intermediate 3D surface, which may be any adequate

shape of simple geometry (e,g, sphere, box, cylinder) for which a straight-forward mapping

exists. This is ca lled S mapping:

T(u, v)--'>T'(x',y',z'j

2. Mapping of the intennediate surface onto the actual object's surface. This is referred to as 0-

mapping

T'(X ',y',z'j--,>O(x,y, z)

As the geometry of the intermediate object should be chosen so that a well-known and inexpensive

parameterisation exists, the first step can be considered trivial. The second step can be performed in one

of several possible ways, as illustrated in Figure 94. The colour for a given point on the surface of the

object O(x,y,z) can be derived ITom:

the intersect ion of the reflected view ray with the intermediate surface

the intersection of the surface normal at (x,y,z) with T'

the intersection of a line through (x,y,z) and the object's centroid with T

the intersection of the line from (x,y,z) to T' whose orientation is given by the sruface nonnal at

(x' ,y' ,z')

Bier and Sloan identify three classes ofS-mapping and the li sted fou r classes ofO-mapping giving a total

of 12 possible combinations. They also menti on that not all of these combinations are useful, while they

given special names to others for the special purpose that they fulfil.

("upr,'" I (J I~.

10.2.1.2 Bump Mapping ([103J)

Developed by Blinn [8J this method enables a surface to appear as exhibiting a macroscopic relief

structure without the need to model this relief explicitly in geometry. Instead the effect is achieved by

perturbing the surface nonnal angularly according to information stored in a 2D bump map or

procedurally. Since in the local reflection model light- intensity is mainly a function of the surface normal ,

these variations of the nonnal vector trick the viewer into believing to see more detail than is acttlally

existent. This can become apparen t, when bump-mapped objects intersect or at object-edges; in this case

the cross-section produced will follow the geometric infonnat ion of the object without tak ing into account

the "virtual" bumps of the bump-map, creating an unrealistic impression.

Since the normal-vector perturbation must be independent of the position and orientation of the surface

(otherwise the bump-mapping would be inconsistent through animations), it must be based on the local

surface derivatives.

If we let O(u, v) be a parameterised function, representing the position vectors of points 0 on the surface,

then the normal to the surface at any given point is given by:

N~O. x 0 "

where Ou and Ov are the partial derivatives of the surface at point 0 lying in the tangentia l plane. Two

other vectors that lie in the tangential plane are:

A~N x 0 " and B~N X 0 .

If D is the perturbation vector, derived from components of these two vectors, then the perturbed vector

N'is

N'~N+D

In the coordinate system that is formed by A. Band N the vector D is independent of the global

orientation and position of the surface, which is what we wanted to achieve. Now we need to determine

the value of D.

D~B" A -B,. B

where BII and B.., are the partial derivatives of the bump map B(u,v). This means that we define a bump

map as a height-field (or displacement function) and use its derivatives at the points (u,v) to detennine D.

Ora!," r 1/1

a)

.,

cJ

,

/
I

/

0)

~ \ / ""

"~---~/

d)

Figure 95 - Bump Mapping: a) Original Geometry; b) The height map;

c) Length-Adjusted Normal vec tors; d) Bump-perturbed Normals (after (1031)

Blinn has identified several problems with this method:

Dependence on the scale of the object: If the surface definition function is scaled by a factor of

two then the length of the normal vector is scaled by a factor of four, while the length of D is

only scaled by two. This leaves the wrinkles smoothed out, which is undesirable. He therefore

suggests a scale-invariant version of D, namely:

D'= a' D, INI where a = ~ B 2 + B 2

IDI' "'

Anti-aliasing is another problem addressed by Blinn, which can be attended to by area filtering

of the bump map.

Another method to create perturbations is to use the height fi eld of the bump-map to actually distort a fine

enough mesh. As this is a rather expensive operation, since all the geometric detail of the perturbed object

has to be stored, this method should only be used to deal with the above-mentioned cross-Section artefact.

An extension to this method was created by Kaj iya (1985) and is called 'frame mapping'. The difference is

that instead of just the normal-vector a so-called frame-bundle is perturbed. A frame-bundl e (for a

surface) refers to a local co-ordinate system, given by the tangent, binonnal and normal to the surface.

Kajiya claims that with his approach a mapping of the directionality of surface features such as hair and

cloth can be achieved.

(hell'" I IIJ

Figure 96 - Example of Bump Mapping: a) Texture mapped Sphere;

b} Same sphere with Bump map (the bump map is a shifted grey map of the texture map)

Figure 96 shows several aspects of bump mapping very well: Firstly, the previously very smooth sphere

of Figure 96a) attains a very convincing macro~structure and secondly, this structure is not part of the

geometry itse lf. This is very noticeable at the perfectly straight silhouette edges and due to the fact that

not the geometry of the object is perturbed, but the normals of the surface.

Even though Blinn's method can be used with great effect, it is not supported (yet) by most hardware

(Blinn's method requires per~pixellighting calculations, whereas most hardware supports only per~vertex

lighting). There are some tricks to overcome this problem and some very interesting material is available

on the internet (see [20] and [64] for further information).

10.2.1.3 Environment Mapping ([103J)

Even though this technique is sometimes referred to as a texture mapping technique there is a significant

difference. In nonnal texture mapping the texture projected onto the surface of an object depends solely

on the geometry of the object. In addition to this, environment mapping is a funct ion of the position and

orientation of the object in the world space and (he relation to the viev..er (view~vector~dependence). In

essence environment mapping can be considered a simplification of ray tracing, where only the reflected

ray is traced and the recursive process is terminated at depth two.
\ iew IJoint

",.-'"

~~ _ _ • _' __ h • • _~-...

E
/ N "> , , , ,

/ V ,
/ V' '\

/ " .' .,
-ell . . \

I / 0- , , \ ,
I I

/"
I I \

;
\

\ !
\ , ,)/
"

", '\ ,
Objc=ct

'-,
./

---- ---~ .. Viewpoint

Figure 97 - Environment Mapping: a) Object inside an environment;

b} Quadrilateral View-frustum (both after 1103))

(""/",'r I II IXS

If 9 is the angle between the surface normal N and the view-vector V, then there exists a reflected vector

V'that can be described by

V'=V+2N cos 8 (as in Figure 97a)

If the object is placed inside an environment object (typically a sphere or box), then the reflected ray wi ll

intersect with this enclosing shape. The environment object will have one or more texture maps

associated with it so that a look-up can take place. The colour-value at point E where the reflected ray hits

the surface of the environment shape detcnnines the colouring of the point of reflection O. As in practice

we deal with finite size pixels, we are faced with four rays emitting from the viewpoint, as in Figure 97b).

In order to obtain the correct colour value for the pixel to be painted, we have to average the quadrilateral

area spanned and projected onto the environment map by the rays.

Another view of environment mapping is that of extending the limited (in number ofl ight sources) point

light source Phong illumination model. Here, the environment map represents an infini te amount (actually

depending on the resolu tion of the environment map) of light sources with the specific geometry of the

environment object. For example area light sources like long fluorescent lamps can be s imulated by high

intensity whi te va lues in the environment map.

In order to increase efficiency of this technique some assumpt ions can be made:

The reflective object is near the centre of the environment object

The reflective object is small compared to the environment object

With these assertions, the environment map can be pre-filtered and a direct look-up into a colour-table

can occur. 1n the case of a spherical environment object this would mean indexing a look-up table based

on the longitudinal and latitudinal direct ion of the reflected view-vector. This is a very efficient approach,

as the pre-filtering and mapping can be done once off. In some cases the environment information may be

re-used to texture-map the actual environment (rooms, horizon, etc.) and thus improve even more on

efficiency. It is stated though that for practical reasons, the geometry of a cube is easier computed than

that of a sphere of reasonable spatia l resolution. For example, to create a realistic horizon map, the images

being mapped onto the inside of the cube would have to be pre-distorted to create a spherical impress ion.

The avai lable mappings to achieve this are straightforward, but in many cases introduce discontinuities at

the cube edges and comers. The target visual quality will have to be traded off against processor usage.

There are also some disadV'Jn tages: The initial assumptions limit the applicabil ity of the process. Even

though the environment object can always be made big enough to va lidate the assumptions (which is

implied when using a parameterised environment-map) objects will not be correctly displayed close to

environment boundaries. In addition to this, it may be difficult to map certain environment geometries

onto a sphere. The alterna ti ve of using a box as the environment object has the advantage of naturally

modelling geometries like rooms. In this case, building the environment maps can simply be achieved by

taking actual photographs of all the walls of the room to be modelled, The disadvantage here is that the

look-up procedure becomes somewhat more involved. Miller and Hoffman have devised a system that

(hUI'/a III

uses a cube projection as an intermediate step in producing a latitude-longitude map. In any case it has to

be considered that under normal circlUl1stances the environment map will not include any objects inside

the envirorunent (including the reflective object) making it impossible to achieve self-reflect ion or

reflection of neighbouring objects. It is conceivable though to recursively add objects into tlle

environment map and thus allow self- as well as mutual reflection.

It is stated that environment mapping may even have some advantages to naIve ray-tracers in that several

filtering steps necessary for anti-aliasing may be dealt with once off while creating the environment map.

In addition to this some diffuse interaction can be simulated (not possible in generic ray tracing) by using

two environment maps, a diffuse and specular respectively. The diffuse map will be a blurred vers ion of

the specular one (which is the one discussed above). The blurring can be achieved by convolving the

specular map with a Lambert's law cosine function. lndexing this map is done using the surface normal N

instead of the reflected view-vector. Depending on the object's surface properties different ratios of

diffuse and specular illumination are then added to the p ixel's final colour va lue. As the diffuse map will

not contain any high frequencies, it may be stored at an extremely low resolution.

;;;~
['I ! ".1J\l£1l8 ' ~1 v\ ... ·I l.l n ; l. j

\:1 ~Il ~ R 't .
L 0 :)/1 I l
~ /Y
~~

