

A GRID BASED APPROACH FOR THE CONTROL

AND RECALL OF THE PROPERTIES OF IEEE1394

AUDIO DEVICES

A thesis submitted in fulfilment of the

requirements for the degree of

MASTER OF SCIENCE

of

RHODES UNIVERSITY

by

PHILIP JAMES FOULKES

February 2008

 ii

Abstract

The control of modern audio studios is complex. Audio mixing desks have grown to the point

where they contain thousands of parameters. The control surfaces of these devices do not reflect the

routing and signal processing capabilities that the devices are capable of. Software audio mixing

desk editors have been developed that allow for the remote control of these devices, but their

graphical user interfaces retain the complexities of the audio mixing desk that they represent.

In this thesis, we propose a grid approach to audio mixing. The developed grid audio mixing desk

editor represents an audio mixing desk as a series of graphical routing matrices. These routing

matrices expose the various signal processing points and signal flows that exist within an audio

mixing desk. The routing matrices allow for audio signals to be routed within the device, and allow

for the device’s parameters to be adjusted by selecting the appropriate signal processing points.

With the use of the programming interfaces that are defined as part of the Studio Connections –

Total Recall SDK, the audio mixing desk editor was integrated with compatible DAW applications

to provide persistence of audio mixing desk parameter states.

Many audio studios currently use digital networks to connect audio devices together. Audio and

control signals are patched between devices through the use of software patchbays that run on

computers. We propose a double grid-based FireWire patchbay aimed to simplify the patching of

signals between audio devices on a FireWire network. The FireWire patchbay was implemented in

such a way such that it can host software device editors that are Studio Connections compatible.

This has allowed software device editors to be associated with the devices that are represented on

the FireWire patchbay, thus allowing for studio wide control from a single application. The double

grid-based patchbay was implemented such that it can be hosted by compatible DAW applications.

Through this, the double grid-based patchbay application is able to provide the DAW application

with the state of the parameters of the devices in a studio, as well as the connections between them.

The DAW application may save this state data to its native song files. This state data may be passed

back to the double grid-based patchbay when the song file is reloaded at a later stage. This state

data may then be used by the patchbay to restore the parameters of the patchbay and its device

editors to a previous state. This restored state may then be transferred to the hardware devices being

represented by the patchbay.

 iii

Acknowledgements

Many thanks go to my project supervisor, Professor Richard Foss, for continually guiding me

throughout the project! Many thanks also go to my colleagues for their assistance and support in

reaching the goals of the project.

To my family and friends, thank you for your support, encouragement, and for always believing in

me.

Thank you to the departmental sponsors: Telkom SA, Business Connexion, Comverse SA, Verso

Technologies, Stortech, Tellabs, Amatole, Mars Technologies, Bright Ideas Projects 39 and THRIP

through the Telkom Centre of Excellence at Rhodes University for the financial and technical

support they provided to undertake this research.

 iv

Table Of Contents

Abstract ... ii

Acknowledgements .. iii

Table Of Contents .. iv

List Of Figures ... viii

List Of Tables .. xi

List Of Listings ... xii

Chapter 01 ... 1

Introduction ... 1

1.1. Introduction ... 1

Chapter 02 ... 4

Hardware And Software Audio Mixing .. 4

2.1. Audio Mixing And Audio Mixing Desks .. 4

2.1.1. Shortcomings Of Modern Digital Audio Mixing Desks .. 9

2.1.2. Configuring A Digital Audio Mixing Desk Via Its Control Surface 13

2.2. Audio Mixing Desk Editors .. 16

2.2.1. 01V96 Editor .. 18

2.2.2. C-Mexx Visualizer for Yamaha 03D ... 21

2.2.3. Configuring An Audio Mixing Desk Via A Software Editor 25

2.3. Summary ... 26

Chapter 03 ... 28

Grid Mixing .. 28

3.1. Grid Patch-Bays .. 28

3.2. Grid Mixing ... 30

3.2.1. Matrix Mixer Routing Configuration ... 34

3.2.2. Adjusting Parameters ... 41

3.2.3. Summary Of Grid Mixing .. 47

3.3. State Persistence .. 47

3.4. Configuring An Audio Mixing Desk Via The Matrix Mixer .. 48

3.5. A Customisable Software Audio Mixing Control Surface .. 51

3.6. Summary ... 54

Chapter 04 ... 56

 v

Describing Audio Mixing Desks With XML .. 56

4.1. The Matrix Mixer Configuration Architecture .. 56

4.2. XML .. 57

4.3. The Matrix Mixer Configuration File ... 60

4.3.1. Describing Signal Processing Points.. 62

4.3.2. Describing Channel Pairs ... 64

4.3.3. Describing Signal Processing Point Parameters .. 66

4.3.3.1. Describing MIDI Messages .. 70

4.3.3.1.1. Describing Single MIDI Messages ... 70

4.3.3.1.2. Describing A Range Of MIDI Messages .. 71

4.3.3.1.3. Describing Groups Of MIDI Messages .. 74

4.3.3.2. Describing The Parameter Change MIDI Messages .. 75

4.3.3.3. Describing The Parameter Request MIDI Messages ... 79

4.3.3.4. Describing A Parameter Description .. 80

4.3.3.5. Describing Displayed Parameter Values .. 82

4.3.3.6. Describing Libraries Of Preset Values ... 85

4.4. An XML Schema For Describing Audio Mixing Desks ... 91

4.5. Summary ... 92

Chapter 05 ... 93

Studio Connections ... 93

5.1. Studio Connections.. 93

5.1.1. Open Plug-in Technology .. 99

5.1.2. Component Object Model .. 100

5.2. Providing Total Recall Functionality To The Matrix Mixer ... 101

5.2.1. Initialising And Un-initialising The Matrix Mixer .. 104

5.2.2. Initialising And Un-Initialising The Matrix Mixer Display....................................... 105

5.2.3. Receive MIDI Events ... 107

5.2.4. Send MIDI Events .. 109

5.2.5. Performing Total Recall ... 109

5.2.6. Loading And Saving Audio Mixer State.. 112

5.3. Summary ... 115

Chapter 06 ... 116

Double Grid FireWire Patching .. 116

6.1. Legacy Audio Systems Incorporating Hardware Patchbays ... 116

 vi

6.2. Digital Audio Networking With mLAN ... 119

6.3. Software Patchbays ... 121

6.3.1. List-Based Patchbays ... 121

6.3.2. Tree-View-Based Patchbays .. 123

6.3.3. Tree-Grid-Based Patchbays ... 125

6.3.4. Graphic-Based Patchbays .. 126

6.3.5. A Comparison Of Patchbays .. 128

6.4. A Double Grid-based Patchbay ... 129

6.4.1. Representing Devices On A FireWire Network .. 129

6.4.2. Representing The Soft Plugs Of mLAN Devices .. 131

6.4.3. Summary Of The Double Grid-Based Patchbay .. 132

6.4.4. The Double Grid-Based Patchbay Architecture ... 133

6.4.5. Learning About The Network Configuration And Representing It 134

6.4.6. Making A Connection .. 142

6.4.7. Breaking A Connection .. 143

6.4.8. Making Other Requests .. 144

6.4.9. Request Failures ... 144

6.5. Summary ... 145

Chapter 07 ... 146

Connection And Device Parameter Recall .. 146

7.1. Introduction ... 147

7.2. Providing Studio Wide Total Recall ... 149

7.2.1. Initialising And Un-Initialising The Double Grid-Based Patchbay 151

7.2.2. Initialising And Un-Initialising The Double Grid-Based Patchbay’s Display 152

7.2.3. Associating Device Editors With Devices ... 153

7.2.4. Displaying Device Editors ... 154

7.2.5. Receiving MIDI Messages ... 155

7.2.6. Sending MIDI Messages .. 156

7.2.7. Save State ... 156

7.2.8. Load State .. 157

7.2.9. Perform Total Recall .. 159

7.3. Summary ... 161

Chapter 08 ... 162

Conclusion .. 162

 vii

Appendix – An XML Schema For Representing MIDI Controllable Audio Mixing Desks 167

Bibliography.. 183

 viii

List Of Figures

Figure 1: The block diagram for the Yamaha 01V96 Digital Mixing Console 6

Figure 2: The Mackie 32-8 Recording Console ... 8

Figure 3: The Yamaha 01V96 Digital Mixing Console ... 9

Figure 4: The Yamaha 01V96 Digital Mixing Console 'Dynamics | Comp Edit' page 10

Figure 5: The Yamaha 01V96 Digital Mixing Console 'In Patch' page .. 11

Figure 6: The Yamaha 01V96 Digital Mixing Console Data Entry Section 12

Figure 7: The Yamaha 01X Digital Mixing Studio dynamics editing page 13

Figure 8: Using MIDI messages to automat audio mixing desks .. 17

Figure 9: The 01V96 Editor primary window ... 18

Figure 10: 01V96 Editor Selected Channel window ... 20

Figure 11: 01V96 Editor Patch Editor window ... 21

Figure 12: The C-Mexx Visualizer for 03D Primary window ... 22

Figure 13: The Visualizer for 03D EQ Editor Window ... 23

Figure 14: The Visualizer for 03D Dynamics Editor Window .. 23

Figure 15: The Visualizer for 03D FX Editor Window ... 24

Figure 16: The EtherSound ESControl program.. 29

Figure 17: The Otari ND 20B mLAN Control Software Routing Matrix ... 30

Figure 18: The block diagram for the Yamaha 01V96 Digital Mixing Console 31

Figure 19: The Matrix Mixer for 01V96 primary window – input patching 35

Figure 20: The Matrix Mixer for 01V96 primary window – bus sends ... 37

Figure 21: The Matrix Mixer for 01V96 primary window – output patching 39

Figure 22: The Matrix Mixer Parameter Adjust window for ‘CH1’.. 42

Figure 23: The Matrix Mixer Parameter Adjust window for ‘CH1-AUX1’...................................... 44

Figure 24: The Matrix Mixer Parameter Adjust window for ‘ST BUS’ .. 45

Figure 25: The Matrix Mixer Parameter Adjust window for ‘EFF1-1’ ... 46

Figure 26: The Mawzer with an empty control surface ... 52

Figure 27: The Mawzer's pluggable modules .. 53

Figure 28: The Matrix Mixer with its Custom Control Surface .. 54

Figure 29: The typical hierarchical structure of an audio mixing desk ... 59

Figure 30: Representing the select XML element .. 61

Figure 31: Representing the input, output and patch XML elements 62

 ix

Figure 32: Representing channelPair XML elements .. 65

Figure 33: Representing volumeParameter and muteParameter XML elements 68

Figure 34: The Matrix Mixer's use of parameter change MIDI messages ... 79

Figure 35: Representing a parameterHelpString XML element .. 81

Figure 36: Representing the parameterValues element for a continuous parameter 83

Figure 37: An example parameterValues XML element for a switch parameter 85

Figure 38: An example of the different types of effects with their parameters (Yamaha, 2004a) 86

Figure 39: The Parameter Adjust Window with effects processor (reverb hall) 88

Figure 40: The Parameter Adjust Window with effects processor (echo) ... 89

Figure 41: A Parameter Adjust Window showing two dynamics processors 90

Figure 42: Studio Manager 2 integration ... 94

Figure 43: Defining the Studio Manager 2 application’s workspace ... 96

Figure 44: The Studio Manager 2 host application .. 97

Figure 45: Studio Manager 2 host application hosting .. 98

Figure 46: The Confirm Total Recall Synchronization window .. 99

Figure 47: Matrix Mixer Studio Connections Total Recall use case diagram 103

Figure 48: Receiving MIDI messages via the IMPEventFilter interface 107

Figure 49: An example of how state is transferred from a software device editor to its associated

hardware device ... 111

Figure 50: The back panel of a hardware patchbay ... 117

Figure 51: Rerouting audio using a hardware patchbay .. 118

Figure 52: A small audio system with an analogue hardware patchbay .. 118

Figure 53: A small studio audio system connected via mLAN ... 120

Figure 54: The hierarchical structure of a FireWire network .. 121

Figure 55: The Yamaha mLAN Graphical Patchbay’s List View ... 122

Figure 56: The NAS Explorer Patchbay .. 124

Figure 57: The Otari ND 20B mLAN Control Software Routing Matrix 126

Figure 58: The Yamaha mLAN Graphic Patchbay .. 127

Figure 59: The double grid-based patchbay primary window ... 130

Figure 60: The double grid-based patchbay selected source and destination soft plugs window ... 132

Figure 61: The mCMS architecture ... 134

Figure 62: A portion of the double grid-based patchbay's object model ... 141

Figure 63: The visual representation of the double grid-based patchbay's objects 142

Figure 64: The double grid-based patchbay hosting .. 147

 x

Figure 65: The double grid-based patchbay hosting from within Cubase 148

Figure 66: Double grid-based patchbay hosting use case diagram .. 150

Figure 67: The initialisation of the double grid-based patchbay by a DAW application 152

Figure 68: Associating software device editors with hardware devices .. 154

Figure 69: Displaying device editors from the double grid-base patchbay 155

Figure 70: The double grid-based patchbay's state data format ... 157

Figure 71: Total Recall direction dialog window .. 160

 xi

List Of Tables

Table 1: Configuring an input patch within the Yamaha 01V96 Digital Mixing Console 49

Table 2: Configuring an output patch within the Yamaha 01V96 Digital Mixing Console 49

Table 3: Patching through to an auxiliary bus on the Yamaha 01V96 Digital Mixing Console 50

Table 4: Adjusting the equaliser and dynamics processor of the seventeenth input channel 50

Table 5: Saved state format, version one ... 113

Table 6: The number of mouse clicks to make a soft connection .. 128

 xii

List Of Listings

Listing 1: A simplified XML audio mixing desk description .. 60

Listing 2: Describing a single MIDI message .. 71

Listing 3: Describing more than one single MIDI message... 71

Listing 4: Describing a range of MIDI messages .. 72

Listing 5: Describing a non-continuous range of MIDI messages... 73

Listing 6: Describing groups of MIDI messages ... 75

Listing 7: An example parameterChange XML element used for a continuous parameter 76

Listing 8: Example on and off XML elements used for a switch parameter 77

Listing 9: An example parameterRequest XML element .. 80

Listing 10: An example of an effectsProcessorLibrary XML element 87

Listing 11: An example of an effectsProcessorType element .. 88

Listing 12: The IMPInitialise::MPConnect method ... 104

Listing 13: The IMPInitialise::MPDisconnect method .. 105

Listing 14: The ISpecificPropertyPages::GetPages method 106

Listing 15: The IPropertyPage::Activate method .. 106

Listing 16: The IPropertyPage::Deactivate method ... 107

Listing 17: The IMPEventFilter::MPOnEvents method ... 108

Listing 18: The IMPAsyncOutput::MPOutput method ... 109

Listing 19: The IMPServices::MPRecall method ... 110

Listing 20: The IPersistStream::Save method ... 112

Listing 21: The IStream::Write method ... 112

Listing 22: The IPersistStream::Load method ... 114

Listing 23: The IStream::Read method .. 114

Listing 24: The mCMS refresh request XML document ... 135

Listing 25: A portion of a 'refresh response' XML document ... 136

Listing 26: A portion of a 'refresh response' XML document used to describe a FireWire network

 .. 136

Listing 27: A portion of a 'refresh response' XML document used to describe the soft plugs

associated with an mLAN device ... 137

 xiii

Listing 28: A portion of a 'refresh response' XML document used to describe the plug layouts

associated with an mLAN device ... 138

Listing 29: A portion of a 'refresh response' XML document used to describe the wordclock outputs

associated with an mLAN device ... 139

Listing 30: A portion of a 'refresh response' XML document used to describe the synchronisation

sources that may be associated with wordclock outputs .. 140

Listing 31: A portion of a 'refresh response' XML document used to describe the soft connections

between mLAN devices ... 140

Listing 32: An example of a ‘connect request’ XML document ... 143

Listing 33: An example of a ‘disconnect request’ XML document ... 144

Listing 34: An example of an 'error notify' XML document ... 145

Listing 35: The ISM2Comp::ReSync method ... 160

 1

Chapter 01

Introduction

1.1. Introduction

Routing audio within modern audio studios and setting up parameters in audio devices has become

a complex task. Many current audio studios have done away with multiple analogue audio and

MIDI cables and the use of hardware routing to connect audio devices in favour of digitally

transmitted audio and software routing using high speed networking technologies such as FireWire

coupled with mLAN [Foss, 2006].

Modern digital audio mixing desks are difficult to master. The routing and signal processing

capabilities of these devices are not clear from the arrays of buttons and sliders presented on the

control surfaces of the devices. Often features of these devices can only be accessed by navigating

through a complex hierarchy of menus on a small LCD screen on the device.

Typically audio is routed from many audio producing devices (such as microphones and

synthesisers) to a central audio mixing desk. Within the audio mixing desk the signals may be

routed through many signal processing components (such as equalisers, dynamics and internal

effects processors). The tone of the audio signals may be adjusted at various signal processing

points as they flow through the audio mixing desk. The tone is adjusted by altering various

parameters that belong to the signal processing components. After that, the signals may be routed

onto various audio busses and through further signal processing components, and eventually out of

the audio mixing desk. The audio signals are then typically routed to external devices for additional

signal processing (for example, the signals may be routed to an external effects processor).

Software device editors have been created that allow for the representation and remote control of

audio mixing desks. These software device editors usually represent a device in a graphical format

that reflects the actual device and hence the complexities of such a layout. Due to the magnitude of

these devices, their associated device editors have cluttered layouts with controls being layered. A

grid approach to audio mixing has been developed. It aims to simplify the remote control of audio

 2

mixing desks by representing them as routing matrices. These routing matrices represent the signal

flows and signal processing points that exist within an audio mixing desk, allowing these devices to

be controlled in a more logical manner. The grid audio mixing desk editor uses XML as a

configuration tool. Audio mixing desks are described with XML documents and these are used to

configure the grid audio mixing desk editor to represent a specific audio mixing desk. This allows

the editor to quickly adapt to different audio mixing desks.

In modern audio studios that use digital networks to connect devices together, audio signals are

patched between audio devices using software patchbays. These devices have done away with

hardware plugs to receive and transmit audio and control signals. They now use software plug

abstractions. Software patchbays are used to expose the software plugs that exist on the audio

devices, and to route signals between the devices. There are various kinds of software patchbays

that exist. Each of these represents digital audio networks in a different manner. One such patchbay

is the grid-based patchbay where the inputs and outputs of devices form a grid. A variation of the

grid-based patchbay, a double grid-based patchbay, was developed with the aim of reducing the

complexity of exploring devices, and patching audio and control signals between devices.

There is a need for closer integration of software and hardware in music production systems

[Yamaha, 2005]. Normally, the setting up of audio software is done independently of the hardware.

The Studio Connections initiative [Yamaha, 2005], of which phase one has been identified as Total

Recall, has been introduced to offer a more convenient environment to make using audio software

and hardware easier. The Total Recall phase allows Digital Audio Workstations (DAW’s) to host

software plug-ins. These plug-ins allow for the persistence of hardware device state to and from

DAW native song files. Through the use of the Studio Connections – Total Recall SDK, the grid

audio mixing desk editor was implemented in such a way to permit state persistence of audio

mixing desks. This allows an audio mixing desk to be restored to a previous state. The double grid

based-patchbay was implemented such that it can be hosted by compatible DAW applications, and

such that it is able to host software device editors. These device editors may then be associated with

devices that are on the audio network. The integration of these software entities has allowed for

studio wide device control and recall to take place from a single software application: Devices may

be edited with their associated software device editors, connections may be made between devices,

and the state of the devices and their connections may be saved and restored through a DAW

application.

 3

Chapter 2 introduces audio mixing. It demonstrates the essence of audio mixing and it explores the

use of the control surfaces of analogue and digital audio mixing desks. This chapter also explores

software audio mixing desk editors that are used to remotely control audio mixing desks. The

strengths and weaknesses of the different approaches to audio mixing are discussed.

Chapter 3 examines the fundamentals of grid patchbays and proposes an audio mixing desk editor

layout based on the grid patchbay with the aim of simplifying the use of modern digital audio

mixing desks.

Chapter 4 describes how the grid audio mixing desk editor (described in chapter 3) has been

developed to be a generic audio mixing desk editor that is configurable via XML. XML elements

and attributes have been defined that allow for audio mixing desks to be described. This chapter

looks at how these XML element and attributes have been used to configure the editor.

Chapter 5 explores the Studio Connections project and how this project enabled the grid audio

mixing desk editor to be integrated into DAW applications to allow for audio mixing desk

parameter states to be saved and recalled.

Chapter 6 looks at various patching techniques used in audio studios. A hardware patchbay and

various types of software patchbays are analysed. The strengths and weaknesses of the different

software patchbays are compared. A FireWire patchbay is proposed with the aim of simplifying the

process of patching signals between devices in audio studios.

Chapter 7 brings together the preceding parts of the project and proposes an application that allows

for the total control and recall of the properties and interconnections of FireWire audio devices from

within DAW applications.

 4

Chapter 02

Hardware And Software Audio Mixing

The audio mixing desk is central to any audio studio. Its core function is to receive various audio

signals, route them through internal signal processing components, merge the various audio signals

into single mixed signals, and then assign the mixed signals to its outputs. Modern digital audio

mixing desks are becoming complicated to use, as they use layering and assignable controls in order

to perform audio mixing desk operations. Their control surfaces do not reflect the routing

capabilities and signal processing control points that exist within the audio mixing desk.

Software audio mixing editors that expose the layered parameters of audio mixing desks have been

created. These software editors allow for the emulation and remote control of audio mixing desks.

While the editors do expose more of an audio mixing desk’s functionality, they still remain complex

as the control surfaces of these pieces of software usually reflect the control surfaces of audio

mixing desks. The control surfaces of the software editors present a sound engineer with a dense,

cluttered layout of controls.

In this chapter, we shall look at the core function of audio mixing, view the control surfaces of

different audio mixing desks, have a look at the shortcomings of modern digital audio mixing desks

and conclude with a discussion on software audio mixing desk editors. The Yamaha 01X Digital

Mixing Studio [Yamaha, 2003a], Yamaha 03D Digital Mixing Console [Yamaha, 1997] and

Yamaha 01V96 Digital Mixing Console [Yamaha, 2004a] were all used as part of this study to gain

insight into the workings of digital audio mixing desks.

2.1. Audio Mixing And Audio Mixing Desks

The core function of an audio mixing desk is to:

• Receive various audio signals (these may be in analogue or digital form, and may come from

devices such as microphones and CD players).

• Route the signals through internal signal processing components such as equalizers, dynamics

processors and effects processors so as to shape and manipulate the sound.

 5

• Merge the various audio signals into single mixed signals.

• Assign the mixed signals to the various outputs on the same audio mixing desk (the output

signals present at these outputs may be in analogue or digital form). The outputs on the audio

mixing desk may be connected to external devices such as effects units or power amplifiers for

further signal manipulation.

Over the years, audio mixing desks have evolved. Early audio mixing desks were devices that were

mere summing networks for a group of microphones that had a single output. Later, equalizers were

added to each of the input channels, and then later still signal monitoring capabilities. As time

passed, there was a demand for more outputs with these then added to the devices. The functionality

of these devices has evolved to a point where audio mixing desks may be automated and controlled

digitally. Although analogue audio mixing desks may only have a limited amount of automated

parameters such as the volume faders and sub-grouping, digital audio mixing desks may have

nearly all of their parameters automated. This allows for the parameter values to be stored, recalled

and updated [Eargle, 2003].

In essence, within an audio mixing desk, audio signals are processed and routed at various key

points. This can be seen in the block diagram for the Yamaha 01V96 Digital Mixing Console,

shown in Figure 1:

1. The left hand side of the diagram shows the various audio signal sources. These signal sources

enter the audio mixing desk via its analogue and digital inputs and can come from devices such

as microphones and CD players.

2. The source signals are fed into the Input Patch block.

3. Within the Input Patch block, the signals may be patched through to the various input channels

that the Yamaha 01V96 Digital Mixing Console has. On some audio mixing desks, the input

signals are routed directly to the audio mixing desk’s input channels, and it is not possible to

select which input channels the incoming audio signals are routed to.

4. At each input channel, the signals may then be routed through various signal processing and

sound shaping components such as the volume faders, equalisers and dynamics processors. This

allows a sound engineer to manipulate each input signal to get a desired sound.

5. The manipulated signals from each input channel may then be patched through to various audio

busses.

6. On each audio bus, the individual incoming signals are merged into a single mixed signal. The

audio busses are shown on the block diagram by the vertical lines in the centre.

 6

7. The mixed signals leave the audio busses and may then be routed through further signal

processing and sound shaping components.

8. The manipulated signals are sent to the Output Patch block.

9. In the Output Patch block, the signals are patched through to the various physical analogue and

digital outputs on the audio mixing desk. These analogue and digital outputs may be connected

to devices such as external effects processors to allow for further signal manipulation, or they

may be connected to power amplifiers that amplify the signals so that they may be played

through loudspeakers.

Figure 1: The block diagram for the Yamaha 01V96 Digital Mixing Console

As shown in this block diagram, audio mixing essentially involves a series of stages. Each stage

usually involves:

• The processing and shaping of a source signal – for example, the individual signals that come

from the audio mixing desk’s input channels are fed through an equaliser to have their tonal

characteristics adjusted.

• The patching of a source audio signal through to a destination point – for example, the input

channels’ signals could be patched through to the audio mixing desk’s internal audio busses to

 7

be mixed together, or those mixed signals could be patched through to one of the audio mixing

desk’s outputs.

• The processing and shaping of the destination signal – for example, once the audio signals have

been mixed together, the overall mixed signals may be processed and manipulated further by an

equaliser.

The control surfaces of modern digital audio mixing desks may be much smaller than those of in-

line consoles, but they still retain most of the operational capability and flexibility of larger

consoles. These digital audio mixing desks layer channels. Analogue audio mixing desks have a lot

of controls on their surface – all functions are shown all of the time. In contrast, digital audio

mixing desks do not show all of their functions simultaneously. An engineer needs to acquire a high

level of confidence before attempts are made at even the simplest of mixing sessions [Eargle, 2003].

Figure 2 shows the Mackie 32-8 Recording Console [Mackie, 2007]. It is a thirty two channel, eight

bus analogue audio mixing desk. Each control on the surface of the device has a dedicated function.

Each channel strip has controls that allow for adjustments of volume, equalization, aux send levels,

panning, muting and bus sends, amongst others. All of the functionality of the audio mixing desk is

shown all of the time.

 8

Figure 2: The Mackie 32-8 Recording Console

Figure 3 shows the Yamaha 01V96 Digital Mixing Console [Yamaha, 2004a]. This audio mixing

desk is a forty channel, eighteen bus digital audio mixing desk. It is clear from this figure and the

previous one that the control surfaces of these two audio mixing desks differ substantially. Even

though the Yamaha 01V96 Digital Mixing Console has more functionality than the Mackie 32-8

Console, its control surface is much smaller. Most of the controls on its control surface do not have

a dedicated function. Their function depends on the mode that the audio mixing desk is currently in.

For example, the faders on the surface of the device may adjust the selected channel’s input levels,

the levels of the bus outs, or the aux send levels. The functionality of these faders depends on the

mixer layer and fader mode that is currently selected.

 9

Figure 3: The Yamaha 01V96 Digital Mixing Console

2.1.1. Shortcomings Of Modern Digital Audio Mixing Desks

Due to their feature richness and their compact control surfaces, modern digital audio mixing desks

are becoming complicated to use. Their control surfaces (see Figure 3 above) do not reflect the

routing capabilities and signals processing control points that may be found within the audio mixing

desk. Discovering the routing capabilities of a particular audio mixing desk is often done by a sound

engineer studying the block diagram (see Figure 1 above) of that audio mixing desk.

Once the capabilities of a digital audio mixing desk are known, navigating to the controls that allow

for parameter adjustments and routing configurations to be changed can be a tedious job. There may

be thousands of available parameters and routing configurations on a typical digital audio mixing

desk, and these are all adjustable via a limited number of physical controls on the control surface of

the device. Modern digital audio mixing desks typically present a sound engineer with a small LCD

 10

display that is used to display and adjust its parameters. The display shows the information required

by a sound engineer.

For example, on the Yamaha 01V96 Digital Mixing Console, a sound engineer might require

information about a dynamics processor for the currently selected channel. This will be the only

information that is displayed since the LCD display can only display a limited amount of

information. Figure 4 shows the LCD display of the Yamaha 01V96 Digital Mixing Console. Here

it is currently displaying the compressor’s edit page for the currently selected channel. The

annotations in the figure are explained below:

1. A parameter to allow for the positions of the compressor to be set.

2. A parameter to turn the stereo link on and off.

3. A graph showing the current compressor curve.

4. A field to display the type of compressor that is currently selected.

5. Meters that are used to indicate the levels of the post-compressor signals and the amount of gain

reduction.

6. A parameter that allows the dynamics processor to be turned on and off.

7. Parameters that allow for the compressor’s characteristics to be changed.

Figure 4: The Yamaha 01V96 Digital Mixing Console 'Dynamics | Comp Edit' page

In Figure 4, only eleven different elements relating to the dynamics processor for a particular

channel are being shown. Adjusting a large number of different parameters that may belong to

different channels can require that a sound engineer continually navigate through a hierarchy of

pages and parameter controls on the LCD display of the device to locate the required parameter

controls.

 11

On the Yamaha 01V96 Digital Mixing Console, input, input insert, effect, cascade, output, output

insert, direct out and 2TR output patching all happen via pages that are similar in nature to the In

Patch page shown in Figure 5. Sound engineers are capable of configuring patching by navigating

the cursor to the desired destination point and selecting the source for that destination point. The

signal sources are show by annotation 1 in Figure 5 and the signal destination points are shown by

annotation 2. Sound engineers are able to select which signal sources are patched through to

specific signal destination points. For example, the patch point shown at the top left of the diagram

indicates that the signal from the first analogue input is being routed to the first input channel.

Figure 5: The Yamaha 01V96 Digital Mixing Console 'In Patch' page

On the Yamaha 01V96 Digital Mixing Console, navigating to required parameter controls and

adjusting their values on the LCD display of the device may be performed via the Data Entry

Section, which is shown in Figure 6. The annotations in the diagram are shown below:

1. The Parameter wheel: The Parameter wheel is a rotary control and is used to adjust the

parameter that is currently selected by the cursor. If, for example, the Threshold parameter of

the dynamics processor shown in Figure 4 is currently selected, turning the wheel clockwise

will increase it value. Turning the wheel anti-clockwise will decrease its value.

2. Enter button: The Enter button is used to turn buttons on and off and to confirm the values of

edited parameters. For example, the signal sources shown in Figure 5 are adjusted by turning the

Parameter wheel. Once the required signal source is shown as being patched through to the

signal destination point, it is confirmed by pressing the Enter button.

 12

3. Dec and Inc buttons: The Dec and Inc buttons are used to decrease or increase the value of the

parameter selected by the cursor.

4. Left, Right, Up and Down cursor buttons: The cursor buttons are used to navigate the cursor

around the LCD display to select parameters for adjustment. They are used to move the cursor

to parameters that are adjacent to the parameter that is currently selected by the cursor.

Figure 6: The Yamaha 01V96 Digital Mixing Console Data Entry Section

The Yamaha 03D Digital Mixing Console displays its parameters on its LCD display, allows for

parameter control navigation, as well as for parameter adjustments to take place in a similar way to

the Yamaha 01V96 Digital Mixing Console. The LCD display for the Yamaha 01X Digital Mixing

Studio is shown in Figure 7. This figure shows the page that allows for the dynamics processor of

the currently selected channel to be edited. This digital audio mixing desk has a much smaller LCD

display than the two previously mentioned digital audio mixing desks. For the dynamics processor,

it displays seven parameters at a time. The maximum number of different parameters it may display

at once is eight. This gives an even more limited view of the audio mixing desk’s configuration.

The parameters displayed on the LCD display are adjusted with the knobs shown below the

parameter. This allows for the displayed parameters to be adjusted quicker as there is no need to

initially navigate to the required parameter with cursor keys.

 13

Figure 7: The Yamaha 01X Digital Mixing Studio dynamics editing page

Adjusting parameters via the LCD display of a digital audio mixing desk can become a tedious task.

If the parameters of signal processing components other than those currently being displayed need

to be adjusted, there is a continuous need to navigate to the pages that allow for the parameter

adjustments as the LCD display of the devices is small and only shows a limited amount of

information. Once the correct page is located, there may be a need to navigate to the correct control

on the page to allow the required parameter to be adjusted. Access to parameters may be slow. In

contrast, locating parameters on a typical analogue audio mixing desk is a case of locating the

required physical control on the control surface, and adjusting it.

2.1.2. Configuring A Digital Audio Mixing Desk Via Its Control Surface

The complexity of digital audio mixing is shown by way of an example for the Yamaha 01V96

Digital Mixing Console: assume that there is a microphone plugged into the first analogue input of

the Yamaha 01V96 Digital Mixing Console. The signal from that input needs to be routed to the

seventeenth input channel. The tone of the signal needs to be altered by routing it through the input

channel’s equaliser and by adjusting the equalisation parameters to shape the sound. The signal

needs to be routed through the dynamics processor to apply some compression to the signal. The

parameters of the compressor need to be adjusted to compress the audio signal appropriately. The

signal then needs to be routed onto the fourth auxiliary bus where it is to be mixed with the other

signals present on that audio bus. The mixed signal from the fourth auxiliary bus needs to be routed

to the first slot output located on the mini-YGDAI (Yamaha General Digital Audio Interface) card

of the device. The Yamaha 01V96 Digital Mixing Console allows for a mini-YGDAI I/O card to be

slotted into the device. These cards offer AD/DA conversions, and various analogue I/O options and

digital I/O interfaces. The MY8-mLAN card, for example, allows the audio mixing desk to receive

and transmit audio signals to and from an mLAN network.

 14

In order to set up the audio mixing desk via its control surface in such a way that it performs the

above routing and signal processing, a sound engineer would have to:

• Route the input signal from the first analogue input to the seventeenth input channel by:

• Pressing the ‘17-32’ Layer button.

• Pressing the ‘Patch’ button.

• Selecting the ‘In Patch’ page on the LCD display.

• Pressing the ‘Sel’ button for the seventeenth input channel.

• Turning the parameter wheel until ‘AD1’ is shown as being routed through to the

seventeenth input channel on the ‘In Patch’ page.

• Pressing the ‘Enter’ button in order to make the patch between the analogue input and the

input channel.

• Route the audio signal from the seventeenth input channel to the fourth auxiliary bus by:

• Pressing the ‘Aux 4’ ‘Fader Mode’ button.

• Pressing the ‘Enter’ button to make sure that the seventeenth input channel is routed

through to the fourth auxiliary bus.

• Raising the level of the first fader on the control surface to the desired level. This specifies

how much of the input audio signal is sent to the fourth auxiliary bus. Here it is mixed with

any other signals present on that audio bus.

• Route the audio signal present on the fourth auxiliary bus to the first mini-YGDAI slot output

by:

• Pressing the ‘Patch’ button.

• Selecting the ‘Out Patch’ page on the LCD display.

• Navigating to the first slot output patch with the cursor keys.

• Selecting ‘Aux 4’ so that it is patched through to the first slot output by turning the

parameter wheel until this is shown.

• Pressing the ‘Enter’ button to make the patch between the fourth auxiliary bus and the first

slot output.

• Route the incoming audio signal through the equaliser by:

• Pressing the ‘EQ’ button.

• Selecting the ‘EQ Edit’ page on the LCD display.

• Turn the equaliser on by navigating to the ‘EQ On’ ‘On’ button with the cursor buttons and

pressing the ‘Enter’ button in order to switch the equaliser on.

 15

• Navigating to the desired equalisation parameters with the cursor buttons and adjusting

them with the parameter wheel until the desired sound is heard.

• Route the audio signal through the dynamics processor by:

• Pressing the ‘Dynamics’ button.

• Pressing the ‘Comp Edit’ button.

• Turning the compressor on by navigating to the ‘On/Off’ ‘On’ button with the cursor

buttons and turning the compressor on by pressing the ‘Enter’ button.

• Navigating to the desired compressor parameters with the cursor buttons and adjusting the

parameters via the parameter wheel until the desired sound is heard.

From this example it is apparent that configuring a digital audio mixing desk via its control surface

can be a complicated task. The majority of the parameters that belong to the digital audio mixing

desk are shown via a set of hierarchical pages on the LCD display of the device. Each time a

different parameter is required, a sound engineer may have to navigate to the control that allows for

the adjustment of the parameter.

If the parameter is located on the same page as the one currently being displayed, the parameter is

selected by moving the cursor over the parameter via the set of cursor buttons. If, for example, the

‘Attack’ control shown in Figure 4 was currently selected, and a sound engineer wishes to turn the

dynamics processor on with the ‘On/Off’ button, s/he would have to navigate the cursor to the left

three times using the appropriate cursor key until the appropriate control is selected.

When locating parameter controls that belong to channels other than the channel that is currently

selected, sound engineers first have to select the desired channel, and then press the button that

represents the component that the parameter belongs to. Depending on the required parameter, it

may be immediately visible and selected, or may require that a sound engineer navigate through

further sub pages. Once the required sub page is located, the required parameter control may need

navigating to via the cursor buttons.

Sound engineers have to gain a firm understanding of these digital audio mixing desks and their

functionality in order to be proficient at using them to their maximum capacity.

 16

2.2. Audio Mixing Desk Editors

An audio mixing desk editor is software that is used to emulate and remotely control an audio

mixing desk. When the controls on a software audio mixing desk editor are adjusted, the editor

instructs the associated audio mixing desk to adjust the corresponding parameter. If, for example,

one of the graphical faders on the audio mixing desk editor is moved, the motorized fader on the

audio mixing desk will move in sync with the graphical fader. On the audio mixing desk, other

parameters may not have physical controls to represent them or the controls do not physically move,

but their values may be shown as being adjusted on the LCD display of the audio mixing desk.

Controllers on the audio mixing desk can also control a software editor’s controls. When the

parameters on an automated audio mixing desk are being adjusted via the controls on the audio

mixing desk, it may instruct an associated audio mixing desk editor to adjust its graphical

representations of these parameters and so reflect the state that the parameters are in. For instance, if

a fader on an audio mixing desk is adjusted, the corresponding graphical fader on the audio mixing

desk editor will move as well.

This mechanism allows a software audio mixing desk editor to be in sync with the represented

audio mixing desk at all times. It emulates the represented audio mixing desk. This mechanism

allows for audio mixing desk state persistence. Because the software audio mixing desk editor is in

the same state as the audio mixing desk at all times, it is capable of saving the state of the

parameters of the audio mixing desk. This allows the saved state of those parameters to be recalled

at a later stage, thus allowing the audio mixing desk’s parameters to be brought back to their

previous states.

Communication between an audio mixing desk and its software counterpart takes place with a

control protocol, such as MIDI. MIDI is a control protocol that is used by devices to send messages

to each other [MIDI Manufacturers Association, 2007]. MIDI can be used for applications that need

to transmit and receive real-time performance controls, timing references, as well as universal or

device specific parameters and data. In the audio mixing world, MIDI can be used to recall

snapshots of an audio mixing desk’s settings and can be used to adjust its various parameters.

This process is shown diagrammatically in Figure 8. When parameters are adjusted on a MIDI

software audio mixing desk editor (annotation 1 in the figure), it sends out MIDI messages that

 17

specify which parameters have been adjusted, and the new values of those parameters (annotation 2

in the figure). The associated audio mixing desk is able to pick up these MIDI messages and is able

to determine the new values of the adjusted parameters (annotation 3 in the figure). Every time a

parameter on an automated MIDI audio mixing desk is adjusted (annotation A in the figure), it will

send out a MIDI message that specifies the new value of that specific parameter (annotation B in

the figure). The corresponding software audio mixing desk editor is capable of picking up that

MIDI message, determining which parameter has been adjusted, and the value that the parameter is

now set to (annotation C in the figure). It is therefore able to update its representation of that

parameter.

Figure 8: Using MIDI messages to automat audio mixing desks

Typical audio mixing desk editors reflect the control surfaces of their represented audio mixing

desks and hence the complexities associated with the layout of controls. The next two sections will

discuss two such audio mixing desk editors. The 01V96 Editor and The Visualizer for 03D.

Audio Mixing Desk
Editor

Audio Mixing Desk

1. Parameter adjusted on
software audio mixing desk
editor via a graphical control

2. MIDI message sent
to audio mixing desk

3. Parameter automatically
adjusted on audio mixing
desk

A. Parameter adjusted on
audio mixing desk via a
physical control

B. MIDI message sent to
software audio mixing desk
editor

C. Parameter automatically
adjusted on software audio
mixing desk editor

 18

2.2.1. 01V96 Editor

The 01V96 Editor [Yamaha, 2004b] is an audio mixing desk editor that is designed to represent and

control the Yamaha 01V06 Digital Mixing Console. The primary window of the 01V96 Editor is

shown in Figure 9. From this, it is clear that the software editor presents the user with a user

interface that reflects the control surface of a typical audio mixing desk.

Figure 9: The 01V96 Editor primary window

The Yamaha 01V96 Digital Mixing Console layers its channels. The functionality of the controls on

each channel strip depends on the layer that is selected. It is possible to select only one layer at a

time. This device has four different layers. There are layers to represent input channels one to

sixteen, input channels seventeen to thirty two, the master channels, and a remote layer that allows

for the control of external equipment like Digital Audio Workstations (DAW) and other MIDI

 19

devices. This approach conceals the parameters of the channel strips that are not part of the selected

layer. In order to adjust these parameters, the selected layer has to be changed. This layering

technique is replicated on the 01V96 Editor software. Before sound engineers are able to adjust

parameters of a non-selected layer via the primary window of the editor software, they have to

select the required layer and then are able to make adjustments to the parameters.

However, the software counterpart does have a number of advantages over the hardware device that

it represents.

The parameters of signal processing components, such as the equalisers and dynamics processors,

on the Yamaha 01V96 Digital Mixing Console can only be viewed one channel at a time due to the

limited size of the LCD display. Navigating to the required parameters often involves a tedious

sequence of button pushes to locate the actual parameter. With the 01V96 Editor, it is possible to

view the current state of the equalisers and dynamics processors with the aid of the curves shown

for each channel on the main display. Each channel strip also provides access to the more common

parameters that belong to each channel, such as volume, panning, aux sends, and parameters that

allow the equaliser and dynamics processors to be turned on and off.

Parameter editing is also made easy with the aid of the Selected Channel window. The Selected

Channel window allows for the editing of parameters that belong to the currently selected channel.

This window is shown in Figure 10. It presents the user with a clear and uncluttered view of the

selected channel’s available parameters and allows for easy editing of these parameters. Navigating

to this window either involves selecting the desired channel first followed by selecting the Selected

Channel menu from the Windows menu, or by pressing Ctrl + 3, or by right-clicking anywhere on

the desired channel strip and selecting the ‘Open’ menu.

 20

Figure 10: 01V96 Editor Selected Channel window

Routing audio within the Yamaha 01V96 Digital Mixing Console is made possible by the Patch

Editor window, the use of the buttons and sliders available on each channel strip as well as the

buttons and knobs available on the Selected Channel window. The Patch Editor window is shown in

Figure 11. This window provides easier access to the patching facilities when compared to using the

controls on the surface of the 01V96 Digital Mixing Console. The Patch Editor window allows for

patching to happen simply but is limited in that it only allows patching for inputs, outputs, inserts,

effects, and direct outs. It does not provide a holistic view of the current audio routing

configuration. Patching is performed by simply selecting or de-selecting the cross points on the

routing grid between the desired signal source point and signal destination point. If, for example,

there exists a need to route the audio signal coming in on the first analogue input channel to the

seventeenth input channel, a sound engineer would select the point on the grid where the ‘AD IN 1’

label intersects the ‘CH 17’ label. This will instruct the audio mixing desk to make a patch between

the two points. Similarly, if the patch point between the two points needs to be broken, a sound

engineer would de-select the cross points between the two labels.

 21

Figure 11: 01V96 Editor Patch Editor window

The primary window of the 01V96 Editor displays a large number of parameters and provides

quicker access to them. This does however make the display look cluttered which can be quite

intimidating. This device editor still makes use of layering and thus does not display all of its

parameters simultaneously. Some of the controls are very small and this can make parameter

adjustments inaccurate. The Patch Editor window has a busy layout and as a result detracts the user

from its simplicity and capability.

2.2.2. C-Mexx Visualizer for Yamaha 03D

The C-Mexx Visualizer for Yamaha 03D [C-Mexx, 1998] was developed to represent and remotely

control the Yamaha 03D Digital Mixing Console. The primary window of the C-Mexx Visualizer

for Yamaha 03D is shown in Figure 12. As with the primary window of the 01V96 Editor (see

Figure 9), this primary window also reflects the control surface of a typical audio mixing desk.

 22

Figure 12: The C-Mexx Visualizer for 03D Primary window

The Yamaha 03D Digital Mixing Console has two different mixing layers which are only visible

one at a time. The Visualizer for Yamaha 03D displays both of these mixing layers simultaneously.

This is advantageous in that there is no need to switch between mixing layers each time a parameter

of a different mixing layer needs to be adjusted. This window also allows the state of common

controls to be viewed for all input and output channels in the same way that the primary window of

the 01V96 Editor does.

On the Yamaha 03D Digital Mixing Console, only a limited number of parameter controls are

visible on the LCD display at any one time and often only a single channel at a time. Signal

 23

processing components, like the equalisers and dynamics processors, are displayed one channel at a

time. The Visualizer for 03D does allow for limited access to some of the parameters of the

equalisers via the primary window. Complete access to the parameters of the equalisers, dynamics

processors and effects processors occurs via editor windows, but only one channel at a time. Each

signal processing component has its own dedicated window. These windows may be seen in Figure

13, Figure 14 and Figure 15.

Figure 13: The Visualizer for 03D EQ Editor Window

Figure 14: The Visualizer for 03D Dynamics Editor Window

 24

Figure 15: The Visualizer for 03D FX Editor Window

Whereas the 01V96 Editor has a Selected Channel window (see Figure 10) that displays all the

available parameters for the selected channel, the Visualizer for 03D has a different window for the

different signal processing components for the selected channel. It is difficult to get an overall view

of a specific channel as many windows need to be opened to display all of its parameters. But each

window does display its parameters in a clear, logical and uncluttered manner.

The primary window of the Visualizer for 03D also suffers from the fact that it is cluttered with

numerous controls. It does, however, provide controls for a lot of functionality that belongs to each

channel. It is clear from the primary window which functionality is available for each channel.

The primary window allows for audio routing to be configured. It presents the user with toggle

buttons to route audio signals to the busses and rotary potentiometers to allow signals to be sent to

the auxiliary and effects busses. This does provide a clearer view of the audio mixing desk’s

internal routing configurations, but still does not provide the current routing configuration in a clear

and logical manner.

 25

2.2.3. Configuring An Audio Mixing Desk Via A Software Editor

We shall return to the example given in section 2.1.2, but this time configuring the Yamaha 01V96

Digital mixing Console using the 01V96 Editor software. A sound engineer would have to perform

the following steps in order to set up the device as in the example of section 2.1.2:

• Route the input signal from the first analogue input to seventeenth input channel by:

• Selecting the ‘Windows’ menu and then selecting the ‘Patch Editor’ sub menu or by

pressing Ctrl + 5.

• Selecting the ‘Input’ tab on the Patch Editor window.

• Selecting the cross point on the routing grid where ‘AD IN 1’ source signal label intercepts

‘CH 17’ destination point label.

• Route the audio signal present on the fourth auxiliary bus to the first slot output by:

• Selecting the ‘Output’ tab on the Patch Editor window.

• Selecting the cross point on the routing grid where the ‘AUX 4’ source signal label

intercepts ‘Slot 1 CH 1 OUT’ destination point label.

• Route the audio signal from the seventeenth input channel to the fourth auxiliary bus by:

• Selecting the primary window of the device editor.

• Selecting mixing layer 17-32 by pressing the ‘17-32’ ‘Layer’ button.

• Patching the signal from the seventeenth input channel through to the fourth auxiliary bus

by selecting the auxiliary bus number.

• Setting the fourth auxiliary bus send level by dragging the fader of the fourth auxiliary send

of the seventeenth channel to the desired level.

• Route the audio signal through the equaliser by:

• Right-clicking on the channel strip for the seventeenth input channel.

• Selecting the ‘Open CH17’ menu to display the Selected Channel window for the

seventeenth input channel.

• Turing the equaliser on by selecting the ‘On’ button under the ‘Equaliser’ section.

• Adjusting the parameters of the equaliser by turning the graphical potentiometers until the

desired sound is heard.

• Route the audio signal through the dynamics processor by:

• Turing the compressor on by selecting the ‘On’ button under the ‘Compressor’ section.

• Adjusting the parameters of the compressor by turning the graphical potentiometers until

the desired sound is heard.

 26

Configuring the Yamaha 01V96 Digital Mixing Console via the 01V96 Editor software has several

advantages over configuring it via the control surface of the device as shown by the examples given

in sections 2.1.2 and 2.2.3. Because a computer monitor provides less space constraints than the

LCD display located on the device, there is less need to navigate between different screens to get to

required parameters. It is easier to access required parameter controls that belong to channels as

these may be displayed on the primary window of the device editor or may be displayed by

selecting the required channel strip and requesting to open the Selected Channel window. The

Selected Channel window is able to display a lot of the functionality that is available at the selected

channel, compared to only being able to display a limited amount of the functionality on the LCD

display on the hardware device. Navigating to the controls that allow for the parameter adjustments

is done with a computer mouse, so accessing the parameters is much quicker as there is no need to

navigate through the controls one at a time until the required parameter is located.

With the 01V96 Editor software, creating patches in the input and output patch blocks of the audio

mixing desk may be done by selecting the cross points on routing grids where the signal source and

signal destination points intersect. Selecting the signal sources for channels may also be done by

selecting the source signal for a specific channel at the top of the channel strip. Via the control

surface of the device, sound engineers have to navigate to the required signal destination points,

select the source signal by turning the parameter wheel until the required source is displayed as

being patched through to the destination point, and then pressing the ‘Enter’ button to create the

patch. Configuring patch points via the control surface of the audio mixing desk requires

significantly more steps than configuring them via the routing grids of the 01V96 Editor software.

The primary window of the 01V96 Editor software has a more traditional analogue audio mixing

desk look-and-feel to it. However, due to the feature richness of the Yamaha 01V96 Digital Mixing

Console, the primary window is cluttered with many controls, some of which are small making

parameters adjustments difficult.

2.3. Summary

This chapter introduced the concept of audio mixing at a high level. The Yamaha 01X Digital

Mixing Studio, Yamaha 03D Digital Mixing Console and Yamaha 01V96 Digital Mixing Console

 27

were used as part of this study to gain insight into the workings of audio mixing desks. From using

these devices it is apparent they are complicated devices to use via their control surfaces. Software

audio mixing desk editors have been created that allow for the emulation and remote control of

automated audio mixing desks, but these device editors tend to reflect a typical audio mixing desk.

From using the 01V96 Editor and The Visualizer for 03D, it is apparent that these software audio

mixing desk editors have an audio mixing desk look-and-feel, thus incorporating the complexities

of this kind of layout. Although the audio mixing desk editors expose more of the audio mixing

desk’s functionality in one screen (similar to how analogue audio mixing desks display all their

functionality all the time) this produces displays that are cluttered with many controls, some of

which are small and difficult to use. These pieces of software do, however, allow for parameter

editing of specific signal processing components via dedicated windows which provide clear,

logical, and uncluttered control layouts. The 01V96 Editor provides audio routing capabilities

through a pair of grid patch bays as well as via the buttons and sliders presented on its primary

window. The Visualizer for 03D provides its routing functionality through the use of toggle buttons

and rotary potentiometers on its primary window. These layouts have a disjointed feel because

configuring the internal routing of these devices happens via many different types of controls. This

also makes it difficult to gain insight into the internal routing configurations of the audio mixing

desk.

When comparing setting up the Yamaha 01V96 Digital Mixing Console via its control surface (see

section 2.1.2) against setting it up via the 01V96 Editor software (see section 2.2.3), it is apparent

that the software device editor provide much quicker access to the controls that allow for the

manipulation of the audio mixing desk. The parameter controls are easily accessible, reducing the

complexity of setting up the device as there is no need to navigate through the pages on the small

LCD display of the device to locate required parameters.

 28

Chapter 03

Grid Mixing

In the context of digital audio networking a software grid patch bay (or routing matrix) is often used

to patch audio signals from their source points through to various destination points. Audio mixing

is essentially a process of patching audio signals from one point to another within an audio mixing

desk as well as adjusting parameters at these various points. This gave rise to the idea of

representing audio mixing desks as visually simple, uncluttered routing grids. Signal source points

are represented along the left-hand-side of the grid and signal destination points are represented

along the top of the grid. The cross points on the grid represent the patch points that may exist

between the signal source points and signal destination points.

In this chapter, we shall look at the fundamentals of grid patchbays and propose an editor layout

that is based on a grid patchbay which simplifies the control of audio mixing desks. We shall then

propose a customizable software audio mixing desk control surface.

3.1. Grid Patch-Bays

Figure 16 shows the Audio Mapping window of the EtherSound ESControl program [EtherSound,

2007]. This program allows for the management of EtherSound devices on an EtherSound network.

The routing matrix shown in the diagram allows for audio routing between EtherSound devices to

be configured. The labels along the bottom of the routing matrix show the EtherSound devices on

the network and the outputs associated with these devices. The labels along the left-hand-side of the

routing matrix show the EtherSound devices available on the network and the inputs associated with

each of those devices. Configuring routing between the outputs and inputs of the EtherSound

devices happens via the grid. A route is configured by selecting the cross point on the routing

matrix where the output label of one EtherSound device intersects the input label of another

EtherSound device. The active patches are shown on the routing matrix as green crosses.

 29

Figure 16: The EtherSound ESControl program

Figure 17 shows the Routing Matrix of the Otari mLAN Control Software [Otari, 2005]. This

routing matrix is used to route audio signals from the outputs of Otari ND-20B units to the inputs of

other Otari ND-20B units on an mLAN network. The left-hand-side of the routing matrix shows the

devices along with their input channels. The top of the routing matrix shows the devices along with

their output channels. As with the routing matrix of the EtherSound ESControl program, in order to

change routing configurations between the Otari ND-20B units on the network, the cross points

between the signal source points and the signal destination points on the grid are selected or de-

selected to make or break connections between the devices respectively.

 30

Figure 17: The Otari ND 20B mLAN Control Software Routing Matrix

These visually simple software user interfaces allow for dynamic routing configurations between

signal source points and signal destination points to happen by simply selecting and de-selecting the

cross points on the routing matrix. Such grid displays provide a clear layout of the routing

configuration between devices.

3.2. Grid Mixing

Audio mixing console control essentially involves a series of:

• Routing audio signals from various audio sources within an audio mixing desk to various

destination points within the same audio mixing desk.

 31

• Adjusting parameters of signal processing components at the various signal processing points

(signal source points, signal patch points and signal destination points) within the audio mixing

desk to shape the audio as it travels through the device.

This can be seen in the block diagram for the Yamaha 01V96 Digital Mixing Console, shown in

Figure 18. In a typical situation for this audio mixing desk, sound engineers would route the source

audio signals from the analogue and digital inputs of the audio mixing desk (annotation 1 in the

figure) to the destination input channels of the audio mixing desk (annotation 3 in the figure). The

input patching happens in the input patch block (annotation 2 in the figure). The arriving signals are

fed through signal shaping and manipulation components such as volume faders and equalisers

(annotation 4 in the figure). These source signals are patched onto the audio busses (annotation 5 in

the figure) within the audio mixing desk where they are mixed with the other signals present on the

audio bus (annotation 6 in the figure). The signals from the audio busses are fed through signal

shaping and manipulation components (annotation 7 in the figure). These source signals are patched

(annotation 8 in the figure) through to the analogue and digital outputs (destination points) on the

audio mixing desk (annotation 9 in the figure).

Figure 18: The block diagram for the Yamaha 01V96 Digital Mixing Console

 32

When sound engineers determine the possible routing configurations and signal processing

capabilities of a digital audio mixing desk, they would typically study the block diagram of the

device. Once the routing and signal processing capabilities of the audio mixing desk are known

sound engineers then have the onerous task of locating the controls that allow for parameter

adjustments.

The Graphical User Interfaces (GUI’s) of current software audio mixing desk editors reflect the

control surfaces of typical audio mixing desks. The layout of controls do not give an insight into the

routing configurations possible within the audio mixing desk being represented by the software and

are often presented in a cluttered manner. The 01V96 Editor does provide a number of routing

matrices that allow for patching to happen within the Yamaha 01V96 Digital Mixing Console but

the routing is limited. They do not, for example, allow for audio signals to be routed onto the audio

busses found within the audio mixing desk.

The fact that audio mixing desk control involves routing audio signals gave rise to the idea that

audio mixing desks should be represented as simple graphical routing matrices. These should be

similar in nature to that of the EtherSound ESControl and the Otari mLAN Control Software

routing matrices shown in Figure 16 and Figure 17. Furthermore, the nature of the routing grids

should mimic the signal paths of an audio mixing desk as they are depicted in the block diagram of

the device. For example, in the block diagram for the Yamaha 01V96 Digital Mixing Console, the

signals flow from the left-hand-side to the right-hand-side of the diagram in a series of stages.

Usually input patching occurs, then audio signals are patched through to the audio busses with

output patching then taking place. Each stage of the routing process should be represented by a set

of routing matrices. The routing matrices should flow from the left to the right as the signals do in

the block diagram. This should let sound engineers view the possible routing configurations and

signal processing capabilities of the device as if looking at the block diagram of the device. The

routing matrices should also allow for control over the parameters of the device

These routing matrices should have the following characteristics:

• The signal source points that exist within the audio mixing desk should be represented along

the left-hand-side of the appropriate routing matrices with labels. Each label should give an

indication as to which signal source point it is representing (for example, ‘AD1’ to represent

the first analogue input).

 33

• The signal destination points that exist within the audio mixing desk should be represented

along the top of the appropriate routing matrices with labels. Each label should give an

indication as to which signal destination point it is representing (for example, ‘CH1’ to

represent the first input channel).

• The possible patch points that exist between the signal source points and signal destination

points within the audio mixing desk should be represented as the cross points on the routing

matrices.

• Creating and breaking patches within the audio mixing desk should be performed by selecting

or de-selecting the appropriate cross points on the appropriate routing matrix, respectively.

• Adjusting parameters available at the signal processing points should be done by selecting the

appropriate signal processing point and displaying graphical controls that represent the

parameters available at the point.

An initial version of this idea was implemented and the product named the Matrix Mixer [Foss and

Foulkes, 2006]. This implementation was created to represent and remotely control MIDI

controllable audio mixing desks. The software was developed to be a generic audio mixing desk

editor providing common audio mixing desk functionality. The initial implementation provided

features that allowed for the following parameters to be adjusted: routing, volume, panning, muting,

equalisation, dynamics and effects parameters. Each specific audio mixing desk is described using

an XML document. The XML document describes the functionality of the specific audio mixing

desk and the MIDI messages that are used to communicate with the audio mixing desk. When the

software is initialised it configures itself based on the information in the selected XML document.

Functionality has since been added to:

• Represent more parameters.

• Allow for state persistence and bidirectional state transfer.

• Allow for custom control surfaces to be created by the user.

• Be Studio Connections Total Recall [Yamaha, 2005] compatible.

The initial system was developed to represent the Yamaha 01X Digital Mixing Studio but it has

been further developed to represent the Yamaha 01V96 Digital Mixing Console as well.

 34

3.2.1. Matrix Mixer Routing Configuration

Different views of the primary window of the Matrix Mixer are shown in Figure 19, Figure 20 and

Figure 21. This specific instance is used to represent the Yamaha 01V96 Digital Mixing Console.

Unlike the primary window of the 01V96 Editor and the primary window of The Visualizer for

03D, the Matrix Mixer presents the user with visually simple and uncluttered graphical routing

matrices that represent the signal processing points that exist within an audio mixing desk.

In these figures, a red patch button indicates that an active patch exists between its corresponding

source and destination signal processing point. An orange button indicates that an inactive patch

exists between the corresponding source and destination point. A grey button indicates that an audio

route between the corresponding points is not possible or not explicitly selectable.

Figure 19 shows one of the routing matrices that allows for patching to happen within the Yamaha

01V96 Digital Mixing Console’s input patch block (shown as annotation 2 in the block diagram for

the device (see Figure 18)). This permits a sound engineer to instruct the audio mixing desk to route

audio signals from the analogue and digital inputs of the audio mixing desk to its input channels.

This happens by a sound engineer selecting the cross points on the routing matrix. The annotations

in Figure 19 correspond to the annotations shown in the block diagram in Figure 18, and are

explained below:

1. The labels along the left-hand-side of the routing matrix represent the analogue and digital

inputs that the audio mixing desk has. For this stage of the patching process, these are the source

signals.

2. The cross points on the routing matrix represent the possible patch points that may exist

between the analogue and digital inputs and the input channels of the device. These represent

the source signals being patched through to the destination points and may be selected or de-

selected in order to make and break patches, respectively.

3. The labels along the top of the routing matrix represent the input channels that the audio mixing

desk has. For this stage of the patching process these are the signal destination points.

 35

Figure 19: The Matrix Mixer for 01V96 primary window – input patching

Via the routing matrices that represent the input patching, sound engineers are able to view what

inputs and input channels the audio mixing desk has as well as the possible routing configurations

that may exist between these different source and destination points. They are also able to view the

current routing configurations and perform routing by selecting and de-selecting the cross points on

the matrices.

The main routing matrix of this instance of the Matrix Mixer (shown in Figure 20) allows for audio

signals to be routed from the audio mixing desk’s input channels to its various internal audio busses

where the audio signals are mixed together into single signals. The annotations in the diagram

 36

correspond to the annotations on the block diagram for the Yamaha 01V96 Digital Mixing Console

(see Figure 18) and are explained below:

3. The labels along the left-hand-side of the routing matrix represent the audio mixing desk’s input

channels. In Figure 19, they represent the signal destination points. Here they are the signal

sources for the next stage of the patching process.

5. The cross points on the routing matrix represent the patch points that may exist between the

signal sources and the signal destination points. Here it is possible to instruct the associated

audio mixing desk to route audio signals from the audio mixing desk’s input channels onto its

audio busses by selecting the appropriate cross points.

6. The labels along the top of the grid represent the audio mixing desk’s internal audio busses. At

this stage of the patching process they represent the signal destination points.

 37

Figure 20: The Matrix Mixer for 01V96 primary window – bus sends

From this routing matrix, sound engineers are able to learn what input channels and audio busses

the audio mixing desk has. They are also able to see what routing configurations are possible, the

current routing configurations that are in place, as well as make routing changes by selecting and

de-selecting the cross points on the routing matrix.

Figure 21 shows the routing matrix that allows for output patching to be performed within the

Yamaha 01V96 Digital Mixing Console. This routing matrix allows for audio signals to be routed

 38

from the audio mixing desk’s audio busses to the audio mixing desk’s analogue and digital outputs.

The annotations in the diagram correspond to the annotations in the block diagram for the device

(see Figure 18) and are explained below:

6. The labels along the left-hand-side of the routing matrix represent the audio signals that have

been mixed together into single signals on the audio busses of the audio mixing desk. At this

stage of the patching process they are considered signal sources.

8. The cross points on this matrix represent the possible patch points that may exist between the

signal source points and the signal destination points. It also shows the current routing

configurations that exist between the signal source points and signal destination points.

9. The labels at the top of the routing matrix represent the outputs that exist on the audio mixing

desk. These are the signal destination points.

 39

Figure 21: The Matrix Mixer for 01V96 primary window – output patching

From this routing matrix, sound engineers are able to learn what audio busses and outputs exist on

the audio mixing desk. It also shows the possible and currently active patch points that exist within

the audio mixing desk and enables sound engineers to change these configurations by selecting and

de-selecting the cross points on the routing matrix.

From the routing matrix shown in Figure 20, it is also possible to pair adjacent odd and even

channels. This allows the corresponding parameters of paired channels to work together. If, for

example, the first input channel was paired with the second input channel and the volume fader of

the first input channel was adjusted, the volume fader of the second input channel would move in

 40

tandem with the first channel’s volume fader. This allows two channels to be used together to create

stereo channels. The Matrix Mixer allows sound engineers to pair channels by selecting the patch

cable indicators to be found either to the left of the signal source labels or at the top of the signal

destination labels.

Below is the functionality of the routing matrices of the Yamaha 01V96 Digital Mixing Console’s

Matrix Mixer:

• Input Patch routing matrices: The first two routing matrices are used to patch the signals

coming into the input patch block through to the audio mixing desk’s input channels.

• Effect Patch routing matrices: The second two routing matrices are used to patch audio

signals through to the audio mixing desk’s internal effects units.

• Stereo Input Patch routing matrices: The next two routing matrices are used to patch audio

signals through to the audio mixing desk’s stereo input channels.

• 01V96 routing matrix: Once the input patching has taken place, the audio signals need to be

routed from the input channels onto the internal audio busses. This is done via the ‘01V96’

routing matrix.

• Output Patch routing matrix: Finally, the last routing matrix is used to route the audio

signals from the internal audio busses to the outputs of the audio mixing desk.

Each of the routing matrices allows a sound engineer to see the available signal source, destination

and patch points that are available at various parts of the associated audio mixing desk. With the

layout of the routing matrices, sound engineers would work from left to right setting up the signal

flows within the associated audio mixing desk in a logical way as depicted in the block diagram of

the device.

Representing the signal processing points of an audio mixing desk as labels and buttons takes up

less space than the channel strips presented on a typical audio mixing desk editor. This then in turn

has reduced the layering present on the actual audio mixing desk and its software editor. On the

Matrix Mixer for Yamaha 01V96 Digital Mixing Console, all the input channels, audio busses and

the patch points between these points are represented on a single routing grid. On the actual device

and on the 01V96 Editor, the input channels and audio busses are represented on three different

layers.

 41

3.2.2. Adjusting Parameters

There are a number of points within an audio mixing desk at which the signal present may be

manipulated (see annotation 4 and 7 in Figure 18). These signals are manipulated with various

signal processing and sound shaping components. The input channels, for example, may have

volume faders, equalisers and dynamics processors associated with them. These components allow

for the manipulation of the audio signal present at each specific input channel.

Each signal processing component has adjustable parameters that belong to it. The Matrix Mixer

allows for the manipulation of these parameters via graphical controls on a Parameter Adjust

Window which is displayed by selecting the required signal processing point on the appropriate

routing matrix. The Parameter Adjust Window only displays the graphical controls of the

parameters that are available at the selected signal processing point. Figure 22, Figure 23, Figure

24 and Figure 25 show four different examples of Parameter Adjust Windows. From these figures,

it can be seen that the window is constructed according to the parameters available at the signal

processing point. The Parameter Adjust Window shown in Figure 22 is the window that is

displayed when the first input channel is selected on the ‘01V96’ routing matrix. This channel is

represented by the ‘CH1’ label and is a signal source point. These parameters correspond to the

parameters shown as annotation 4 on the block diagram in Figure 18.

 42

Figure 22: The Matrix Mixer Parameter Adjust window for ‘CH1’

Via this Parameter Adjust Window shown for the first input channel of the Yamaha 01V96 Digital

Mixing Console, a sound engineer is able to:

• Adjust the volume level of the signal present at the selected point. This is performed by

moving the linear fader under the ‘Volume’ section.

• Adjust the equalisation parameters available at the selected signal processing point. These are

changed by adjusting the graphical rotary potentiometers under the ‘Equaliser’ section.

• Adjust the pan parameter available at the signal processing point. This is performed by

adjusting the rotary potentiometer under the ‘Pan’ section.

• Switch the mute parameter available at the signal processing point. The signal at this point may

be muted and un-muted by selecting and deselecting the button under the ‘Mute’ section,

respectively.

 43

• Switch the equaliser bypass parameter. This parameter allows the signal present at the signal

processing point to bypass the equaliser. This is performed by selecting and de-selecting the

button under the ‘EQ-ON’ section.

• Switch the dynamics processor bypass parameters. These parameters allow the signal present

at the signal processing point to bypass the available dynamics processors. This is performed

by selected and de-selecting buttons under the ‘GATE-ON’ and ‘COMP-ON’ sections.

• Group parameters together. This allows parameters to be grouped to work together with

parameters of the same kind. The Yamaha 01V96 Digital Mixing Console has various fader

and mute groups to which faders and mute buttons may be added. All the parameters in a

specific group work together. If, for example, the volume fader of the first and second input

channels were both in fader group A and one of the those faders is moved, the other fader in

the group will move relative to the fader being moved. The volume fader that is represented on

the Parameter Adjust Window is added to a fader group by pressing one of the fader group

buttons under the ‘Fader Group’ section. Similarly, the mute button being represented on the

Parameter Adjust Window is added to a mute group by pressing one of the buttons under the

‘Mute Group’ section.

• Select a specific type of dynamics processor. This is done via a library of preset dynamics

processors. Each of the dynamics processors shown under the ‘Gate - …’ and ‘Comp - …’

sections were selected from a library of present dynamics processors. The library of preset

dynamics processor values is presented with a combo box from which a library title is

selectable. Each library title is associated with a specific type of dynamics processor and a set

of preset parameters. In the diagram, the ‘Comp’ library title represents a compressor and the

‘Expand’ library title represents an expander. Selecting these will set the dynamics processor

to the type of dynamics processor the library title is representing. The ‘A. Dr. BD’ library title

also represents a compressor, but the values of the compressor’s parameters are different when

compared to the values of the parameters associated with ‘Comp’ library title. Once a library

title has been selected, the parameters associated with the specific type of dynamics processor

are displayed along with their preset values.

• Adjust parameters that allow the selected dynamics processor’s characteristics to be adjusted.

These parameters are adjusted via the rotary potentiometers under the ‘Gate - …’ and ‘Comp -

…’ sections. For dynamics processors that have a key-in parameter, the available values for

this parameter are selectable from the combo box under the ‘Key-in’ section.

 44

The window in Figure 23 is displayed when the patch point between the first input channel and the

first auxiliary bus is selected. This point corresponds to annotation 5 in the block diagram (see

Figure 18) and is considered as a signal patch point.

Figure 23: The Matrix Mixer Parameter Adjust window for ‘CH1-AUX1’

Via this Parameter Adjust Window a sound engineer is able to adjust the amount of signal present at

the first input channel that is sent to the first auxiliary bus. This is done by adjusting the linear fader

under the ‘Aux send’ section to the desired level.

Figure 24 shows the window that is displayed when the stereo bus signal destination point is

selected. This signal destination point is represented with the ‘ST BUS’ label.

 45

Figure 24: The Matrix Mixer Parameter Adjust window for ‘ST BUS’

With this specific Parameter Adjust Window, a sound engineer can adjust the same parameters as

described for the first input channel, except for panning and those parameters related to the gate

dynamics processor.

Figure 25 shows a Parameter Adjust Window with an effects processor component on it. This is

displayed when one of the effects processor signal processing points is selected.

 46

Figure 25: The Matrix Mixer Parameter Adjust window for ‘EFF1-1’

Via this Parameter Adjust Window, parameter settings pertaining to the selected effects processor

may be adjusted:

• On the Yamaha 01V96 Digital Mixing Console there are a number of types of effects. Each

effects processor may be set to a specific type of effect. For example, there are reverb and echo

effects. Each type of effect has a set of adjustable parameters associated with it. These can be

seen in Figure 25 by the rotary potentiometers on the Parameter Adjust Window. A specific

effect type is selected through the use of a library of preset effect settings. The library has a

number of library titles. Each library title represents a specific type of effect with its specific set

of parameters. A sound engineer wanting to change the type of effect that is selected would do

so from the combo box under the ‘Library’ section. Once a selection is made, the parameters

relating to the selected effect populate the Parameter Adjust Window. A sound engineer is then

able to adjust the effect’s parameters by adjusting the rotary potentiometers under the ‘Effects

Processor - …’ section.

 47

• Sound engineers are able to adjust the amount of balance between the amount of dry and wet

signal that is available at the specific signal processing point. This is done via the linear fader

under the ‘Mix’ section. Setting the parameter to 0% means that only the dry signal is heard

and setting the parameter to 100% means that only the wet signal is heard.

• Sound engineers are able to select the incoming signal to bypass the effects processor. This is

done by selecting the button under the ‘Bypass-EFF’ section.

As the graphical controls on the various Parameter Adjust Windows are adjusted, the Matrix Mixer

sends out MIDI messages to the associated audio mixing desk instructing it to adjust the

corresponding parameter. As parameters are adjusted on the audio mixing desk, the audio mixing

desk sends out MIDI messages to the Matrix Mixer which it uses to update the graphical controls

that represent the specific parameters. This is depicted in Figure 8.

3.2.3. Summary Of Grid Mixing

The routing matrices of the Matrix Mixer display the signal processing points that are available

within the audio mixing desk. The layout of these matrices mimic the signal flows as depicted in the

block diagram of the device and so alleviate the need to study such a diagram to figure out the

routing capabilities of the audio mixing desk. Sound engineers are able to use the routing grids to

configure routing between the various signal source and destination points. Parameters that belong

to signal processing points are logically accessed by selecting the required signal processing points

on the routing matrices. This displays the parameters available at the specific points allowing them

to be adjusted.

3.3. State Persistence

As the graphical controls on the Matrix Mixer are adjusted and as the Matrix Mixer receives MIDI

messages from the associated audio mixing desk, the Matrix Mixer keeps track of the parameter

changes. This allows the Matrix Mixer to emulate the associated audio mixing desk and allows for

the state of each of the parameters of the associated audio mixing desk to be saved to a file. This

allows the state of the Matrix Mixer and therefore the state of the associated audio mixing desk to

be restored to a previous state. This functionality is further explained in Chapter 05.

 48

3.4. Configuring An Audio Mixing Desk Via The Matrix Mixer

If we consider the example introduced in sections 2.1.2 and 2.2.3 but this time we set up the

Yamaha 01V96 Digital Mixing Console using the Matrix Mixer a sound engineer would perform

the following steps in order to achieve the required setup:

• Route the input signal from the first analogue input to the seventeenth input channel by:

• Selecting the ‘Input Patch-1’ tab on the primary window.

• Selecting the cross point between the ‘AD1’ audio source point label and the ‘CH17’ audio

destination point label.

• Route the audio signal present on the fourth auxiliary bus to the first slot output by:

• Selecting the ‘Output Patch’ tab on the primary window.

• Selecting the cross point between the ‘AUX4’ audio source point label and the ‘SLOT1’

audio destination point label.

• Route the audio signal to the fourth auxiliary bus by:

• Selecting the ‘01V96’ tab on the primary window.

• Selecting the cross point between the ‘CH17’ audio source point label and the ‘AUX4’

audio destination point label.

• Right-clicking on the same cross point to display the Parameter Adjust Window.

• Raising the graphical fader of the auxiliary send to the desired level.

• Route the audio signal through the equaliser by:

• Right-clicking the ‘CH17’ audio source point label on the primary window to display the

Parameter Adjust Window for that particular signal processing point.

• Turning the equaliser on by clicking the ‘EQ-ON’ button.

• Adjusting the parameters of the equaliser by turning the potentiometers under the

‘Equaliser’ section until the desired sound is heard.

• Route the audio signal through the dynamics processor by:

• Turning the compressor on by clicking the ‘COMP-ON’ button.

• Adjusting the parameters of the compressor by turning the potentiometers under the ‘Comp

– Compressor’ section until the desired sound is heard.

From the example used throughout the last two chapters, it can be seen that it has become

progressively easier to manipulate the Yamaha 01V96 Digital Mixing Console. Given below is a set

 49

of tables that each give the number of actions that a sound engineer would have to perform in order

to set up the Yamaha 01V96 Digital Mixing Console as described in the example.

Table 1 shows the number of actions that a sound engineer would have to perform in order to patch

the first analogue input to the seventeenth input channel. Setting up the input patch via the control

surface of the device involves navigating through sets of pages and components on the LCD display

of the device. With the software audio mixing desk editors creating the input patch is done via a set

of routing matrices. As can be seen, the use of the routing matrices reduces the number of steps

needed to configure the input patch.

Yamaha 01V96 Digital Mixing Console

control surface

01V96 Editor control

surface

Matrix Mixer control

surface

Button pushes Parameter wheel

turns

Mouse clicks Mouse clicks

4 16 4 2

Table 1: Configuring an input patch within the Yamaha 01V96 Digital Mixing Console

Table 2 shows the number of actions that a sound engineer would have to perform in order to patch

the signal from the fourth auxiliary bus to the first mini-YGDAI slot output. Via the control surface

of the device, a sound engineer has to cycle through the signal sources on the LCD display until the

required one is located. With the software device editors a sound engineer has to locate the correct

routing matrix and select the cross point between the signal source and signal destination point. This

requires fewer actions.

Yamaha 01V96 Digital Mixing Console

control surface

01V96 Editor control

surface

Matrix Mixer control

surface

Button pushes Parameter wheel

moves

Mouse clicks Mouse clicks

3 12 2 2

Table 2: Configuring an output patch within the Yamaha 01V96 Digital Mixing Console

Table 3 shows the number of actions that a sound engineer would have to perform in order to patch

the signal from the seventeenth input channel through to the fourth auxiliary bus. Here, once again,

the software audio mixing desk editors require fewer actions by the sound engineer. This is due to

 50

the fact that the controls for these parameters are immediately available from the primary windows

of the device editors.

Yamaha 01V96 Digital

Mixing Console control

surface

01V96 Editor control surface Matrix Mixer control surface

Button

pushes

Faders

moved

Mouse clicks Fader moves Mouse clicks Fader moves

4 1 2 1 3 1

Table 3: Patching through to an auxiliary bus on the Yamaha 01V96 Digital Mixing Console

Table 4 shows the number of actions a sound engineer would have to perform in order to set up the

equaliser and dynamics processor as required in the example. Controlling the equaliser and

dynamics processor via the control surface of the device requires more moves as there is a need to

navigate to each of the required controls with the cursor buttons. Through the software audio

mixing desk editors, the number of actions is reduced as each of the parameter controls is accessible

with the mouse cursor.

Yamaha 01V96 Digital

Mixing Console control

surface

01V96 Editor control surface Matrix Mixer control

surface

Button

pushes

Potentiometer

moves

Mouse clicks Potentiometer

moves

Mouse

clicks

Potentiometer

moves

14 * 4 * 3 *

* These will be the same for each approach if the same equalisation and dynamics parameters are

adjusted by the same amounts

Table 4: Adjusting the equaliser and dynamics processor of the seventeenth input channel

In the above example, both the 01V96 Editor and the Matrix Mixer offer similar values when

comparing the number of actions a sound engineer would have to perform to set the device up in

similar configurations. The primary window of the 01V96 Editor presents a lot of the functionality

of its associated audio mixing desk simultaneously thus creating displays that are cluttered with

many controls. The Matrix Mixer only displays signal processing points available within the

associated audio mixing desk. This allows a sound engineer to display the required controls by

 51

selecting the required signal processing points. This creates a display that is not cluttered with

different types of controls.

3.5. A Customisable Software Audio Mixing Control Surface

Modern audio mixing desks have continued to grow to the point where they can contain thousands

of parameters. An audio mixing desk such as the Yamaha 01V96 Digital Mixing Console is a forty

channel, eighteen bus audio mixing desk. Most of its channels have volume, pan, mute, attenuation,

delay, equalisation and dynamics parameters available to them. This is over twenty five different

parameters for each channel.

Some audio mixing desks have a dedicated control for each parameter (see Figure 2). This can lead

to the control surface of the audio mixing desk becoming cluttered with vast arrays of various

faders, potentiometers and buttons. This approach does, however, provide for easier access to the

controls. Each channel strip contains the controls that are to be used with that particular channel.

Some digital audio mixing desks have done away with having a dedicated control for each of their

parameters in favour of assignable controls (see Figure 3). The function of the controls depends on

the current mode that the audio mixing desk is in.

This presents two situations: Sound engineers are presented with a large number of controls - most

of which only occasionally need adjusting - or they have to search to find the specific control they

are looking for.

Software audio mixing desk editors like the 01V96 Editor and The Visualizer for 03D provide the

user with a more traditional analogue audio mixing desk look-and-feel and as such their graphical

displays become cluttered with controls. The Matrix Mixer’s approach to audio mixing presents

sound engineers with the various internal signal processing points that are found within an audio

mixing desk. This approach allows for simplified routing configurations to take place and for

parameter adjustments to happen by selecting the required control points. While this approach gains

from being able to instantaneously see the potential and current routing configurations of an audio

mixing desk, it hides the parameters of the signal processing points away from sound engineers.

Sound engineers have to select a signal processing point before they are able to see and adjust the

parameters that are available at a specific point.

 52

This problem was solved by implementing a customisable audio mixing desk control surface as part

of the Matrix Mixer. This idea came from a hardware MIDI controller know as the Mawzer

[Mawzer]. The Mawzer is a hardware MIDI controller that has a customisable control surface. The

control surface is made up of a collection of pluggable modules that are plugged into the surface of

the device allowing for the construction of a custom control surface. This allows for control

surfaces to be built up based on the specific needs. The main unit of the Mawzer is shown in Figure

26. This figure shows the Mawzer without any modules plugged into it. The bottom panel of the

main unit consists of a number of jack sockets into which the pluggable modules can be plugged.

Figure 26: The Mawzer with an empty control surface

Figure 27 shows some of the pluggable modules that are available to be plugged into the

customisable control surface of the Mawzer. From the side views of these modules, it is evident

they have jack plugs on the back of them. This allows these modules to be added or removed from

the surface of the device depending on the specific needs of the user. There are various different

modules available which have different controls on them. These include modules that are made up

of faders, potentiometers and push buttons.

 53

Figure 27: The Mawzer's pluggable modules

Following the Mawzer concept, a customisable control surface has been created for the Matrix

Mixer. This idea brings to the software world what the Mawzer brings to the hardware world. The

idea fuses the power and simplicity of the grid audio mixing approach provided by the Matrix

Mixer with the traditional analogue audio mixing desk look-and-feel. This allows sound engineers

to create control surfaces that suit their individual audio mixing needs. As such, there is no need for

unused controls to be displayed.

The custom control surface that was implemented as part of the Matrix Mixer is shown on the right-

hand-side of the routing grid in Figure 28. It is possible to build up a custom control surface by

dragging controls from a Parameter Adjust Window (shown on the left-hand-side of Figure 28 over

the routing matrix) onto the customisable custom control surface. The Matrix Mixer allows for its

graphical faders, potentiometers and push buttons to be dragged to the custom control surface. This

allows for controls that are frequently used to be viewed and adjusted quickly as they are part of the

Matrix Mixer’s primary window. It also reduces the amount of control-clutter that is evident on the

analogue style audio mixing desk editors.

 54

Figure 28: The Matrix Mixer with its Custom Control Surface

In much the same way as adding controls to the custom control surface, controls can also be

removed by simply dragging them off the surface and dropping them.

The Matrix Mixer allows for the current configuration of the customisable control surface to be

saved to an external file. This file is an XML file which contains information allowing for the re-

creation of the controls that are currently on display. This not only allows for custom control

surfaces to be created, but also for them to be used again. This in turn permits the control surfaces

to be used with other instances of the Matrix Mixer that represent the same audio mixing desk - a

specific control surface is not limited to working with only one instance of the Matrix Mixer.

3.6. Summary

This chapter introduced the idea of software grid patchbays that are often used to patch audio

signals between devices in digital audio networks. This idea has been used to successfully create a

generic patchbay-based audio mixing editor that presents a sound engineer with all the signal

processing points that exist within an audio mixing desk. This approach allows for routing

configurations within audio mixing desks to be set up by selecting and de-selecting the cross points

 55

that exist on the routing matrices. It also allows for parameter adjustments to happen by selecting

the signal processing points at which the required parameter exists.

The Matrix Mixer approach to mixing uses graphical routing matrices to display the signal

processing points that are available within an audio mixing desk. On the block diagram for the

Yamaha 01V96 Digital Mixing Console (see Figure 1) the audio signals flow from the left-hand-

side to the right-hand-side of the diagram and at various points along the way get routed to various

other points within the audio mixing desk. The Matrix Mixer mimics this signal flow with the way

the routing grids are laid out and thus alleviates the need to study such diagrams.

Due to the control-clutter evident on analogue-style audio mixing desk editors as well the hidden

nature of the controls on the Matrix Mixer, this chapter also proposed a customisable control

surface that was implemented as part of the Matrix Mixer. This allows controls from Parameter

Adjust Windows to be dragged onto the custom control surface in order to allow sound engineers to

build up control surfaces that suit their individual audio mixing requirements.

 56

Chapter 04

Describing Audio Mixing Desks With XML

There are a number of parameters that are common to most audio mixing desks. The Matrix Mixer

is a generic grid MIDI audio mixing desk editor that was built and designed to represent and control

these common audio mixing desk parameters. In order to facilitate its quick adaptation to multiple

audio mixing desks, specific audio mixing desks are described using XML documents. The Matrix

Mixer parses a specific XML document when it initialises itself, thus allowing it to build itself up to

represent and control specific audio mixing desks.

In this chapter, we discuss how XML has been used as the configuration tool for the Matrix Mixer.

4.1. The Matrix Mixer Configuration Architecture

There are a number of parameters that are common to most audio mixing desks such as patching,

volume, panning, muting, equalisation, dynamics and effects parameters. The Matrix Mixer was

designed and developed to be a generic MIDI audio mixing desk editor. The intention at the outset

was to develop a software audio mixing desk editor that was not tied down to work with a specific

audio mixing desk. The Matrix Mixer was developed to represent and control these common audio

mixing desk parameters. From the experience gained from using the Yamaha 03D Digital Mixing

Console, the Yamaha 01X Digital Mixing Studio and the Yamaha 01V96 Digital Mixing Console

these common parameters were defined as:

• Patching

• Volume and volume parameter grouping

• Muting and mute parameter grouping

• Panning

• Equalisation

• Dynamics processor parameters

• Channel pairing

• Effects processor parameters

 57

There was a need to allow the Matrix Mixer to represent and control specific audio mixing desks

quickly. It was decided that the Matrix Mixer should be configured to represent a specific audio

mixing desk using an external configuration file. The Matrix Mixer parses a specific configuration

file when it initialises itself.

From the configuration files the Matrix Mixer is able to determine:

• The various signal processing points (signal source, destination and patch points) that exist

within an audio mixing desk.

• The specific parameters that are available at each of those signal processing points (for

example, volume and equalisation parameters).

• The control messages that are used to communicate with the associated audio mixing desk.

The Matrix Mixer has been developed to work with the Yamaha audio mixing desks mentioned

above. These audio mixing desks are remotely controlled via the MIDI protocol and so the Matrix

Mixer has been developed to communicate using MIDI. The concept of configuring the Matrix

Mixer via an external configuration file is not limited to MIDI controllable audio mixing desks.

Audio mixing desks are fundamentally the same in terms of their functionality and architecture.

Thus, this concept may be adapted to describe audio mixing desks that are controlled with protocols

other than MIDI. The defined configuration file structure will remain fundamentally the same. It

will just need to be adapted to describe the control messages used to communicate with non-MIDI

controllable audio mixing desks.

4.2. XML

XML [Elliotte and Means, 2002] was chosen as the configuration file format for the Matrix Mixer.

XML is a standard that is used to describe a generic syntax that is used to mark up data with simple,

human-readable tags. All the data included in an XML document is represented as strings of text

surrounded by tags that describe what the data is. The specific elements and tags that an XML

document is made up of are not pre-defined. Users of XML are free to make up the tag and attribute

names that suit their individual needs.

 58

An XML document has a hierarchical structure and is described by its markup. Each document

starts off with a root element. The root element may have any number of child elements associated

with it, and each of those child elements may have further child elements associated with them, and

so on. Each element may have any number of attributes associated with it as well. It is possible to

see what elements are associated with other elements, and if the document is designed well, it is

possible to determine the semantics of the document.

The following are some of the factors that drove the decision to use XML as the file format for the

Matrix Mixer’s configuration files:

• Its rapid growth and acceptance as a data-storage format.

• The availability of XML parsers.

• The ability to easily store and retrieve data from an XML document.

• The simplicity of its syntax and its readability.

The hierarchical structure of XML documents is ideal for describing audio mixing desks as they too

have a hierarchical structure. Figure 29 shows the hierarchical structure of a simplified audio

mixing desk. It has two inputs and an output. The inputs each have a volume controller and an

equaliser. Each individual equaliser is made up of three equalisation bands. Each equalisation band

has three equalisation parameters. The output has a volume controller associated with it.

 59

Figure 29: The typical hierarchical structure of an audio mixing desk

The structure shown in Figure 29 can be translated to a hierarchical XML document. Each of the

individual components in the diagram can be described with an XML element. Properties associated

with each of the components, such as the name of an input, can be described using an XML

attribute. Listing 1 demonstrates how the structure in Figure 29 can be represented with an XML

document. The root XML element of this XML document is mixer. It, along with all its child

XML elements, describes the audio mixing desk. The mixer XML element has two child XML

elements, inputs and outputs. These XML elements contain further child elements that

describe the inputs and outputs of the audio mixing desk. Each input and output XML element

has a name XML attribute. The value of this XML attribute is used to name the specific input or

output. This pattern is continued until the hierarchical structure of the audio mixing desk has been

described.

Audio Mixing Desk

Input

Volume Equaliser

EQ Band

EQ
Parameter

EQ Band EQ Band

Volume

EQ
Parameter

EQ
Parameter

.

.

.

.

.

.

.

.

.

Input Output

 60

Listing 1: A simplified XML audio mixing desk description

4.3. The Matrix Mixer Configuration File

During the development of the Matrix Mixer XML elements and attributes were defined to describe

the common characteristics of audio mixing desks. Amongst others, XML elements and attributes

have been defined to describe:

• The signal processing points (signal source, patch, and destination points) that exist within an

audio mixing desk.

• The various parameters that may exist at each of these signal processing points (for example,

volume and equalisation parameters).

• The MIDI messages used to control the parameters.

<mixer>

 <inputs>

 <input name=”CH1”>

 <volumeParameter>

 </volumeParameter>

 <eq>

 <eqBand>

 <eqParameter>

 </eqParameter>

 ...

 </eqBand>

 ...

 </eq>

 </input>

 <input name=”CH2”>

 ...

 </input>

 </inputs>

 <outputs>

 <output name=”OUT”>

 ...

 </output>

 </outputs>

</mixer>

 61

The core function of the Matrix Mixer’s XML documents is to describe what features an audio

mixing desk has. The Matrix Mixer determines how to represent and control the audio mixing desk

described in a particular XML document.

Matrix Mixer XML documents start off with a root XML element called mixer. This element,

along with all its child XML elements are used to describe an audio mixing desk for the Matrix

Mixer. It has a single XML attribute, name. The value of name should be set to the name of the

audio mixing desk being described by the XML document. The Matrix Mixer could, for example,

use the value of the name attribute to name the primary window representing the audio mixing

desk.

The mixer XML element may have a number of select child XML elements. Each select

XML element is used to describe a routing grid. Visually, the Matrix Mixer represents each

select XML element by adding a tab to its primary window. Each select XML element has an

XML attribute called name that is used to name the specific routing grid. It is also possible to make

one of the routing grids the default routing grid so that it is displayed when the Matrix Mixer is

displayed. This is done by setting the specific select XML element’s default XML attribute

to true. Figure 30 shows:

• A Matrix Mixer XML document with two select XML elements.

• The Matrix Mixer’s primary display after it has parsed the XML document.

Figure 30: Representing the select XML element

The Matrix Mixer for the Yamaha 01V96 Digital Mixing Console has eight different routing

matrices. Each routing matrix represents a logical part of the routing process. For example, there are

separate routing matrices to perform input patching, effects patching and output patching. In the

<mixer name="01X">

 <select name="Input Patch">
 </select>

 <select name="01X" default="true">
 </select>

</mixer>

 62

XML document that describes the Yamaha 01V96 Digital Mixing Console for the Matrix Mixer,

each of these routing matrices is described with an individual select XML element.

4.3.1. Describing Signal Processing Points

Matrix Mixer XML documents may describe the signal processing points that exist within an audio

mixing desk. These signal processing points are described using input, output, and patch

XML elements. These elements are child XML elements of the select XML elements. This

allows multiple routing grids to be described in the XML document, each with its own signal

source, destination and patch points. Figure 31 shows:

• A portion of a Matrix Mixer XML document with input, output and patch XML

elements.

• The Matrix Mixer’s primary display after it has parsed the XML document.

Figure 31: Representing the input, output and patch XML elements

<select name="Input Patch">

<inputs>

 <input name="AD1" link="l1">
 </input>

 <input name="AD2" link="l1">
 </input>

 </inputs>

 <outputs>

 <output name="CH1" isBus="false"
alwaysHasASource="false">
 </output>

 </outputs>

 <patches>

 <patch name="AD1-CH1">
 </patch>

 <patch name="AD2-CH1">
 </patch>

 </patches>

</select>

 63

Each signal source point of a particular audio mixing desk is described using an input XML

element. The Matrix Mixer represents each of these XML elements along the left-hand-side of the

appropriate routing matrix. Each input XML element may have the following XML attributes:

• name: The value of the name XML attribute should be set to the name of the signal source

point being described. In the figure above, the two signal processing points described above are

two analogue inputs and have been named ‘AD1’ and ‘AD2’. It is the values of these XML

attributes that are displayed on the left-hand-side of the appropriate routing matrix.

• link: The link XML attribute is used to link the specific signal processing point with other

signal processing points. All signal processing points that have the same value for their link

XML attribute are linked together. This allows for parameters available at different signal

processing points to be shared. When a sound engineer wishes to display the Matrix Mixer’s

Parameter Adjust Window by selecting a specific signal processing point, but no parameters

have been defined for that specific point, the Matrix Mixer will display the parameters defined

for a signal processing point that has parameters associated with it and has the same value for

its link XML attribute.

Each signal destination point is described in the Matrix Mixer’s XML documents with an output

XML element. The Matrix Mixer visually represents each output XML element along the top of

the appropriate routing matrix, as seen in Figure 31. Each output XML element may have the

following XML attributes:

• name: The value of the name XML attribute should be set to the name of the signal destination

point being described. In the figure above, the signal processing point described is the first

input channel of an audio mixing desk, and has been named ‘CH1’. It is the values of these

XML attributes that are displayed on the top of the appropriate routing matrix.

• link: The link XML attribute is used to link the specific signal processing point with other

signal processing points. Its functionality is that same as described for the input XML

element.

• isBus: The value of the isBus XML attribute should be set to either true or false. If the

signal destination point being described by the output XML element is an audio bus, this

XML attribute’s value should be true. Otherwise it should be false. Audio busses may

have many signal sources patched through to them simultaneously whereas an analogue output,

for example, may at most have one signal source patched through to it. Setting this attribute

appropriately ensures that the Matrix Mixer adheres to this rule.

 64

• alwaysHasASource: This XML attribute has a value of either true or false. It specifies

whether or not the specific signal destination point always has at least one source signal being

patched through to it. If this XML attribute has a value of true, the Matrix Mixer will not

allow the number of signal sources being patched through to this signal destination point to

drop below one.

Each signal patch point is described within the Matrix Mixer’s XML documents with a patch

XML element. The Matrix Mixer visually represents the patch XML elements as cross points on

the routing matrices of the Matrix Mixer. This can be seen in Figure 31 above. Each patch XML

element has a name XML attribute that is used to name the patch point. The patch XML elements

need to be ordered from the element that represents the first signal source being patched through to

the first signal destination point to the last signal source being patched through to the last signal

destination point.

4.3.2. Describing Channel Pairs

On some audio mixing desks it is possible to pair two adjacent odd and even mono channels

together to work as a stereo pair. What this implies is that some of the parameters of the same type

that belong to each of the paired channels will always reflect the same value. For example, if we

paired input channel one and input channel two of an audio mixing desk together, and the fader of

the first input channel is adjusted, the fader of the second input channel will be automatically and

simultaneously adjusted as well. But, this may not be true for a pan parameter. A sound engineer

may wish to send the signal present at the first input channel to the left stereo bus and the signal at

the second input channel to right stereo bus in order to hear stereo sound. This would require that

the pan parameters work independently of each other even though their parent channels are paired

together.

Before two channels are paired together, the corresponding parameters of each channel may have

different values. When the channels are paired together, the corresponding parameters that work

together need to have their values synchronised. There may be a number of options available to the

sound engineer as to how the synchronisation takes place. For example, it could be possible to:

• Copy the parameter values from the odd channel across to the even channel.

• Copy the parameter values from the even channel across to the odd channel.

 65

• Reset both channels parameters to their default values.

The channelPair XML element is used to specify that two adjacent odd and even channels may

be paired together. The child XML elements of the channelPair XML element are used to

specify the pairing options available to the sound engineer and the channels that may be paired

together. Figure 32 shows:

• A portion of a Matrix Mixer XML document that describes a channel pair.

• The corresponding Matrix Mixer after it has parsed the XML document.

Figure 32: Representing channelPair XML elements

The channelPair XML element may be a child XML element to the inputs and outputs

XML elements. It contains child XML elements that describe:

• The channels that may be paired. These channels are described using their usual input or

output XML elements and are child XML elements to a channelsToPair element. The

channelsToPair must have exactly two of the appropriate child elements. On the Matrix

<inputs>

<channelPair name="CH1-CH2">

 <channelPairOnOptions>

 <channelPairOnOption name="CH1->CH2">
 </channelPairOnOption>

 <channelPairOnOption name="CH2->CH1">
 </channelPairOnOption>

 <channelPairOnOption name="Reset Both">
 </channelPairOnOption>

 </channelPairOnOptions>

 <channelsToPair>

 <input name="CH1">
 </input>

 <input name="CH2">
 </input>

 </channelsToPair>

</channelPair>

</inputs>

 66

Mixer, channels that may be paired are shown as having a cable like connector between their

labels, as seen in Figure 32.

• The channel pair options available to a sound engineer. These are listed with the

channelPairOnOption XML elements and are named with the name XML attribute.

When two channels are unpaired, and a sound engineer selects the channel pair button, the

channel pair options available to the sound engineer are displayed in a window. The sound

engineer selects an appropriate channel pair option and clicks the ‘OK’ button and the

associated audio mixing desk is instructed to pair the two channels.

In the above portion of XML, no control messages have yet been defined. Each of the channel pair

options will have control messages associated with them and these are described in the Matrix

Mixer XML documents (See section 4.3.3.2).

4.3.3. Describing Signal Processing Point Parameters

The select, channelPair, input, output and patch XML elements allow the routing

matrices of the Matrix Mixer to be set up. At this point, none of the parameters available at the

signal processing points have been defined. Only the signal processing points that exist within the

audio mixing desk have been defined.

Each signal processing point (signal source, destination and patch points) may have various

parameters associated with them. For example, the first input channel of the audio mixing desk may

have volume and equalisation parameters associated with it. Each input, output and patch

XML element may have a parameters XML element as a child element. The parameters

XML element is used to describe the parameters associated with a specific signal processing point.

Its individual child XML elements are used to describe the different parameters that the Matrix

Mixer is able to represent. Omitting a parameters XML element instructs the Matrix Mixer that

no parameters exist at the specific signal processing point.

Essentially, there are two types of parameters: continuous and switch parameters. Continuous

parameters are those that are represented with linear and rotary potentiometers, such as volume and

pan parameters. Switch parameters have two states and are usually represented with buttons. These

types of parameters include mute and bypass parameters.

 67

In this section, we will look at how to describe parameters in the Matrix Mixer XML documents. A

volume and mute parameter will be used as an example, unless otherwise stated. The principles

shown here may be applied to all the other parameters that the Matrix Mixer is capable of

representing.

A volume parameter is described with a volumeParameter XML element, and a mute

parameter is described with a muteParameter XML element. In order to describe these

parameters at a specific signal processing point, their corresponding XML elements are added as a

child element to the parameters XML element.

Figure 33 shows:

• A portion of a Matrix Mixer XML document with no parameters defined for the signal source

points, and a volume and mute parameter defined for the signal destination point (‘CH1’).

• The corresponding Matrix Mixer once it has parsed the XML document. Also shown are the

windows that are displayed when the various signal processing points are selected.

 68

Figure 33: Representing volumeParameter and muteParameter XML elements

The volumeParameter XML element instructs the Matrix Mixer that a volume parameter exists

at the specific signal processing point, and a muteParameter XML element instructs it that a

mute parameter exists at the specific signal processing point. In the above diagram, when a sound

engineer selects the ‘CH1’ signal destination point, a volume fader and mute button are displayed

on a Parameter Adjust Window. These are defined as existing at that point in the Matrix Mixer

XML document. At this point, none of the specific properties associated with these parameters (for

example, the MIDI messages used to control the parameters, and the values that the parameter may

take on) have been described, merely their existence.

As no parameters have been described for the signal source points (‘AD1’ and ‘AD2’) in the above

diagram, selecting one of these signal processing points displays a window specifying this.

<inputs>

 <input name="AD1">
 </input>

 <input name="AD2">
 </input>

</inputs>
<outputs>

<output name="CH1" isBus="false">

 <parameters>

 <volumeParameter name="Volume">

</volumeParameter>

 <muteParameter name="Mute">
 </muteParameter>

 </parameters>

</output>

</outputs>

 69

Similarly, there are XML elements to describe the following parameters in Matrix Mixer XML

documents:

• Pan parameters

• Equalisation parameters

• Dynamics processor parameters

• Fader and mute group parameters

• Effects processor parameters

• Patch parameters – these are available at patch signal processing points only

The presence of the specific XML elements used to describe the parameters instructs the Matrix

Mixer that the parameter exists at the specific signal processing point, as shown with the volume

and mute parameter in Figure 33 above. Thus, the Matrix Mixer makes these parameters graphically

available to a sound engineer. Each specific parameter has a pre-defined way that it is graphically

represented. For example, a volume parameter is represented with a linear fader, and the mute

parameter with a push button.

Each of the specific XML elements that represent the above mentioned parameters may have the

following XML attributes:

• name: The name XML attribute allows a custom name to be associated with the specific

parameter (such as ‘volume’, or ‘aux send’) which is displayed on the Parameter Adjust

Window. This can be seen in Figure 33 above: The value of the name XML attribute for the

volumeParameter XML element is set to ‘Volume’. This value (‘Volume’) is displayed

above the volume fader on the Parameter Adjust Window.

• worksWithPairedChannel: The worksWithPairedChannel XML attribute has a

value of either true or false. If this XML attribute is set to true, it instructs the Matrix

Mixer that the specific parameter should work simultaneously with the parameter of the same

type that belongs to the paired channel.

Each of the specific parameter XML elements (for example, volumeParameter and

muteParameter) may have a number of child XML elements that describe the properties of the

specific parameter. XML elements have been defined to describe:

• The parameter change MIDI messages used to control the parameter.

• The parameter request MIDI message(s) used to request the value of the parameter.

• A description of the parameter.

 70

• The display values that the parameter may take on.

We will discuss how the each of the above mentioned items are described within Matrix Mixer

XML documents, but first we will discuss how MIDI messages are described in general.

4.3.3.1. Describing MIDI Messages

Within Matrix Mixer XML documents, it is possible to describe MIDI messages at various parts of

the document. These may be described either as a single MIDI message, a collection of single MIDI

messages, or a range of MIDI messages. Typically, single MIDI messages will be associated with

switch parameters (such as a mute parameter), and a range of MIDI messages will be associated

with a continuous parameter (such as a volume parameter). For example, a mute parameter has two

states. It is either on or off. Each one of these states may be represented with a single MIDI

message. A volume parameter may have 128 unique values that it may be set to. Each of those

unique values may be represented with a unique MIDI message within a continuous range of MIDI

messages.

The midiMessages XML element is used to describe the MIDI messages in Matrix Mixer XML

documents. The nature of the MIDI messages described with this XML element may be one of two

types, specified by the value of the type XML attribute. This XML attribute may either have a

value of single or range. When this XML attribute is set to single, it instructs the Matrix

Mixer that the midiMessages XML element is describing a single MIDI message or a collection

of single MIDI messages. When the value of the type XML attribute is set to range, it instructs

the Matrix Mixer that the midiMessages element is describing a range of MIDI messages.

4.3.3.1.1. Describing Single MIDI Messages

Listing 2 shows an example of a description of a single MIDI message. In this instance, the value of

the midiMessages type XML attribute is set to single. The single MIDI message is

described with the value XML attribute of the midiMessage XML element. The actual MIDI

message being described (in this case a system exclusive MIDI message) is 0xF0 0x43 0x10

0x3E 0x7F 0x01 0x25 0x08 0x00 0x00 0x00 0x00 0x01 0xF7.

 71

Listing 2: Describing a single MIDI message

Listing 3 shows an example of a midiMessages XML element that is used to describe more than

one single MIDI message in a Matrix Mixer XML document. The value of its type XML attribute

is set to single, as in the previous example. Each individual single MIDI message of the

collection of MIDI messages is described by the value XML attribute of a midiMessage XML

element. The individual midiMessage XML elements collectively describe the collection of

MIDI messages.

Listing 3: Describing more than one single MIDI message

4.3.3.1.2. Describing A Range Of MIDI Messages

Listing 4 shows how a range of MIDI messages may be described in Matrix Mixer XML

documents. In this instance, the value of the midiMessages type XML attribute is set to

range. When describing a range of MIDI messages, they are ordered from the MIDI message that

sets a parameter to its lowest value, to the MIDI message that sets the parameter to its highest value.

<midiMessages type="single">

<midiMessage value="0xF0 0x43 0x10 0x3E 0x7F 0x01 0x25 0x08

0x00 0x00 0x00 0x00 0x01 0xF7"/>

</midiMessages>

<midiMessages type="single">

<midiMessage value="0xF0 0x43 0x10 0x3E 0x0E 0x02 0x0D 0x00

0x00 0x00 0x00 0x00 0x0B 0xF7"/>

<midiMessage value="0xF0 0x43 0x10 0x3E 0x0E 0x02 0x0D 0x00
0x01 0x00 0x00 0x00 0x0C 0xF7"/>

</midiMessages>

 72

Listing 4: Describing a range of MIDI messages

When describing a range of MIDI messages, the midiMessages XML element consists of child

XML elements that describe the different parts of the range of MIDI messages:

• midiMessagesStartPart

• midiMessagesVariablePart

• midiMessagesEndPart

These collectively describe the different parts that the MIDI messages are composed of:

• midiMessagesStartPart: When the midiMessages XML element is being used to

describe a range of MIDI messages, its first child XML element has to be

midiMessagesStartPart. The value XML attribute of this XML element is used to

describe the initial part of a MIDI message that remains constant over the entire range of MIDI

messages. The set of bytes in this part of the MIDI message may define things such as the type

of MIDI message (in this example it is a system exclusive MIDI message), the manufacturer

ID, and the specific parameter that the MIDI message belongs to. In the listing above, the initial

bytes of the range of MIDI messages are 0xF0 0x43 0x10 0x3E 0x7F 0x01 0x1B

0x00 0x00 0x00 0x00.

• midiMessagesVariablePart: Following the midiMessagesStartPart XML

element are one or more midiMessagesVariablePart XML elements. These XML

elements collectively describe the part of the MIDI messages that represents the unique values

of a parameter. Each of these XML elements’ from XML attribute describes the first set of

bytes in the range of bytes, and its to XML attribute describes the last set of bytes in the range.

It is assumed that the bytes increment or decrement by one each time a parameter is increased

or decreased by one respectively. In Listing 4 above the range of bytes starts at 0x00 0x00

and ends at 0x03 0x7F.

<midiMessages type="range">

<midiMessagesStartPart value="0xF0 0x43 0x10 0x3E 0x7F 0x01 0x1B 0x00

0x00 0x00 0x00"/>

<midiMessagesVariablePart from="0x00 0x00" to="0x03 0x7F"/>

<midiMessagesEndPart value="0xF7"/>

</midiMessages>

 73

In some instances it is necessary to describe a range of bytes with a break in continuity. This

may be described with the aid of further midiMessagesVariablePart XML elements.

Each midiMessagesVariablePart is used to describe a sub range of bytes in the range

of MIDI messages. Listing 5 shows an example of this. In this range of MIDI messages, the

first variable part byte will be 0x2C, the second 0x00, the third 0x01 and so forth.

Listing 5: Describing a non-continuous range of MIDI messages

• The midiMessagesEndPart: This XML element optionally follows the

midiMessagesVariablePart element(s). The value XML attribute of this XML

element is used to describe the last part that a MIDI message may be made up of. This part of

the MIDI message remains constant across the entire range of possible MIDI messages being

described. In this example, the midiMessagesEndPart value XML attribute is set to

0xF7, denoting the end of a system exclusive MIDI message. If the controls of an audio

mixing desk were being controlled with MIDI control messages, where the size of the MIDI

messages are known, the midiMessagesEndPart is omitted as there is no byte to indicate

the end of the MIDI message.

From the information contained within these elements, the Matrix Mixer is able to construct MIDI

messages as and when needed. If, for example, the Matrix Mixer required the first MIDI message

from the range of MIDI messages described in Listing 4, it will create it from the different parts that

were described:

• It will calculate the required bytes from the variable part of the MIDI message. In this instance,

it is the first set of bytes, so the required bytes are 0x00 0x00.

• The value calculated above is then concatenated together with the start and end parts of the

MIDI message.

• 0xF0 0x43 0x10 0x3E 0x7F 0x01 0x1B 0x00 0x00 0x00 0x00 is

concatenated together with 0x00 0x00 which is concatenated together with 0xF7.

• The resulting MIDI message is 0xF0 0x43 0x10 0x3E 0x7F 0x01 0x1B 0x00

0x00 0x00 0x00 0x00 0x00 0xF7.

<midiMessagesVariablePart from="0x2C" to="0x2C"/>

<midiMessagesVariablePart from="0x00" to="0x29"/>

 74

If, for example, the Matrix Mixer now required the third MIDI message from the range of MIDI

messages, it would:

• Calculate the required bytes from the variable part of the MIDI message. In this instance, the

bytes are incremented by three, and the resulting bytes are 0x00 0x02.

• Concatenate the value calculated above with the start and end parts of the MIDI message.

• 0xF0 0x43 0x10 0x3E 0x7F 0x01 0x1B 0x00 0x00 0x00 0x00 is

concatenated together with 0x00 0x02 which is concatenated together with 0xF7.

• Use the resulting MIDI message, which is 0xF0 0x43 0x10 0x3E 0x7F 0x01 0x1B

0x00 0x00 0x00 0x00 0x00 0x02 0xF7.

4.3.3.1.3. Describing Groups Of MIDI Messages

When some parameters are adjusted on an audio mixing desk, for each individual adjustment of

those parameters two or more MIDI messages are transmitted by the audio mixing desk. This may

be true of parameters that represent stereo channels for instance. On the Yamaha 01V96 Digital

Mixing Console, each time the volume fader of the stereo output channel is raised by one, it sends

out two MIDI messages to represent the state of the channel. In Matrix Mixer XML documents, it is

possible to group MIDI messages together. This allows the Matrix Mixer to send two or more MIDI

messages to its associated audio mixing desk each time a parameter is adjusted by one increment.

Listing 6 shows how the midiMessages XML elements may be grouped together with

midiMessagesGroup XML elements. In this example, the midiMessagesGroup XML

element contains two midiMessages XML elements which are of type range. When the Matrix

Mixer requires the first MIDI message within a group, it will, for each midiMessages XML

element generate the first MIDI message of each range.

 75

Listing 6: Describing groups of MIDI messages

4.3.3.2. Describing The Parameter Change MIDI Messages

Each parameter of an audio mixing desk may have a number of parameter change MIDI messages

associated with it. These allow for the remote control of the specific parameter. These MIDI

messages are sent to an audio mixing desk when the graphical controls representing the parameters

are adjusted in order to instruct the audio mixing desk to adjust the represented parameters. The

same parameter change MIDI messages are transmitted in the opposite direction as well. When

parameters are adjusted via the control surface of the audio mixing desk, the audio mixing desk

sends out parameter change MIDI messages. The Matrix Mixer is able to receive these and use

them to update its graphical representations of the parameters.

The parameter change MIDI messages associated with each parameter may be described in the

Matrix Mixer XML documents. These MIDI messages:

• Are sent to the associated audio mixing desk when the graphical controls on the Matrix Mixer

are adjusted.

• Are used to match up incoming parameter change MIDI messages with their respective

parameters.

Listing 7 shows an example parameterChange XML element that is used to describe the

parameter change MIDI messages associated with a continuous parameter. Each specific continuous

parameter XML element (such as volumeParameter) may have a parameterChange XML

<midiMessagesGroups>

<midiMessagesGroup>

<midiMessages type="range">

 ...

 </midiMessages>

<midiMessages type="range">

 ...

 </midiMessages>

 </midiMessagesGroup>

</midiMessagesGroups>

 76

element as a direct XML child element. The child XML elements to each parameterChange

XML element are used to describe the actual MIDI messages.

Listing 7: An example parameterChange XML element used for a continuous parameter

Listing 8 shows an example of an on and off XML element that is used to describe the parameter

change MIDI messages associated with a switch parameter. Each specific switch parameter XML

element (such as muteParameter) may have an on and off XML element as direct XML child

elements. The on XML element is used to describe the parameter change MIDI messages

associated with the specific parameter when it is turned on. The off XML element is used to

describe the parameter change MIDI messages associated with the specific parameter when it is

turned off. The child XML elements to the on and off XML elements are used to describe the

actual MIDI messages.

<volumeParameter name="Volume">

<parameterChange>

<midiMessagesGroups>

<midiMessagesGroup>

<midiMessages type="range">

<midiMessagesStartPart value="0xF0

0x43 0x10 0x3E 0x7F 0x01 0x1B 0x00 0x00 0x00 0x00"/>

 <midiMessagesVariablePart from="0x00 0x00"

to="0x03 0x7F"/>

 <midiMessagesEndPart value="0xF7"/>

 </midiMessages>

</midiMessagesGroup>

</midiMessagesGroups>

</parameterChange>

</volumeParameter>

 77

Listing 8: Example on and off XML elements used for a switch parameter

In this example, the actual parameter change MIDI messages being described are single MIDI

messages. It is also possible to associate a range of MIDI messages with the on and off XML

elements. If a range of MIDI messages is associated with the on and off XML elements, and the

parameter that is associated with those MIDI messages is turned either on or off, each MIDI

message that is part of the related range of MIDI messages is generated by the Matrix Mixer and

sent across to the associated audio mixing desk. Usually, there will only be a few MIDI messages in

the range.

Figure 34 shows an example of how the Matrix Mixer uses the parameter change MIDI messages

described in Matrix Mixer XML documents to communicate with its associated audio mixing desk.

Internally, signal processing point and parameter objects are assigned unique ID’s, and the

graphical controls that represent the parameters are assigned the ID of the parameter they represent.

<on>

 <parameterChange>

 <midiMessagesGroups>

 <midiMessagesGroup>

 <midiMessages type="single">

 <midiMessage value="0xF0 0x43 0x10 0x3E 0x7F 0x01

0x25 0x08 0x01 0x00 0x00 0x00 0x01 0xF7"/>

 </midiMessages>

 </midiMessagesGroup>

 </midiMessagesGroups>

 </parameterChange>

</on>

<off>

 <parameterChange>

 <midiMessagesGroups>

 <midiMessagesGroup>

 <midiMessages type="single">

 <midiMessage value="0xF0 0x43 0x10 0x3E 0x7F 0x01

0x25 0x08 0x01 0x00 0x00 0x00 0x00 0xF7"/>

 </midiMessages>

 </midiMessagesGroup>

</midiMessagesGroups>

 </parameterChange>

</off>

 78

Every time a parameter is adjusted on the Matrix Mixer (annotation 1 in the figure), the parameter

object with the same ID as the graphical control is located and the parameter change MIDI message

that represents the new value of that parameter is generated by the Matrix Mixer (annotation 2 in

the figure). The generated parameter change MIDI message is sent across to the associated audio

mixing desk and the parameter is adjusted (annotation 3 in the figure).

When a parameter is adjusted via the control surface of the audio mixing desk (annotation A in the

figure), it sends out parameter change MIDI messages representing the new values of the adjusted

parameter (annotation B in the figure). The Matrix Mixer receives these MIDI messages and is able

to use them to match them up to the parameter change MIDI messages described in the Matrix

Mixer XML documents (annotation C in the figure). Once the corresponding parameter object is

located, the graphical control with the same ID as the object that was located is adjusted to represent

the new value (annotation D in the diagram).

 79

Figure 34: The Matrix Mixer's use of parameter change MIDI messages

4.3.3.3. Describing The Parameter Request MIDI Messages

Parameter request MIDI messages are used to request the values of parameters: Each parameter

may have a set of parameter request MIDI messages associated with it. These MIDI messages are

used to request the value of a specific parameter from the audio mixing desk. Sending a parameter

request MIDI message to the audio mixing desk results in the audio mixing desk responding with a

parameter response MIDI message. From the parameter response MIDI message, the Matrix Mixer

is able to determine the value of the specific parameter and set it appropriately. Initially when the

Matrix Mixer starts up all its parameters are set to their lowest values. In order to get the Matrix

Mixer in same state as the audio mixing desk it is representing, it sends out the parameter request

MIDI messages associated with each of its parameters. The audio mixing desk responds to each of

1. A Sound
engineer
moves a
volume fader
on the Matrix
Mixer

2. The Matrix Mixer
generates the appropriate
parameter change MIDI
message based on the
fader position

Audio Mixing Desk

3. The Matrix Mixer
sends the generated
MIDI message to the
associated audio mixing
desk and the
appropriate parameter
is adjusted

A. A sound engineer
moves a volume fader on
an audio mixing desk

B. The audio mixing
desk sends the
appropriate parameter
change MIDI
message to the Matrix
Mixer

C. The Matrix Mixer
locates the volume
parameter that belongs to
the incoming parameter
change MIDI message

D. The volume
fader is adjusted
appropriately

 80

the parameter request MIDI messages with parameter response MIDI messages which the Matrix

Mixer uses in order to synchronise its state with the represented audio mixing desk.

In order to describe the parameter request MIDI messages for a particular parameter, a

parameterRequest XML element is added as a child XML element to the parameter XML

element. The child XML elements to the parameterRequest XML element describe the actual

parameter request MIDI messages. Listing 9 shows an example parameterRequest XML

element.

Listing 9: An example parameterRequest XML element

In the example above, the actual MIDI message being described is a single MIDI message. It is also

possible to associate a range of MIDI messages with a parameterRequest XML element. If,

for example, a range of MIDI messages is described for a particular parameter’s parameter request

MIDI messages, and the Matrix Mixer wishes to send the parameter request MIDI messages

associated with that particular parameter across to the associated audio mixing desk, it will generate

all the possible MIDI messages in the range. Typically, there will only be a few MIDI messages in

the range.

4.3.3.4. Describing A Parameter Description

Each parameter may have a textual description that is used to describe the functionality of the

parameter. This description is described with the value XML attribute of the

<volumeParameter name="Volume">

<parameterRequest>

 <midiMessagesGroups>

 <midiMessagesGroup>

 <midiMessages type="single">

 <midiMessage value="0xF0 0x43 0x30 0x3E 0x7F

0x01 0x25 0x00 0x00 0xF7"/>

 </midiMessages>

 </midiMessagesGroup>

 </midiMessagesGroups>

 </parameterRequest>

</volumeParameter>

 81

parameterHelpString XML element. In order to associate a description with a specific

parameter, a parameterHelpString XML element is added as a child XML element to the

parameter’s XML element. The Matrix Mixer uses this value to display the description of the

parameter when the mouse cursor is hovered over the graphical control that represents the

parameter.

Figure 35 shows:

• A portion of a Matrix Mixer XML document showing how a description of a parameter is

described for a particular parameter.

• A Matrix Mixer Parameter Adjust Window with the description of the parameter being

displayed once the Matrix Mixer has parsed the XML document.

Figure 35: Representing a parameterHelpString XML element

<input name="CH1">
<parameters>

<volumeParameter name="Volume">

 <parameterHelpString value="Input level."/>
 </volumeParameter>

 <muteParameter name="Mute">

</muteParameter>

</parameters>
</input>

 82

4.3.3.5. Describing Displayed Parameter Values

Each parameter has a specific value that is displayed at any one time. The displayed values of the

parameters are adjusted by moving the linear faders, rotary potentiometers or by pressing the

various buttons, depending on how the specific parameters are represented. Up until this point, no

displayed values have been associated with the parameters that have been described in the Matrix

Mixer XML document. The Matrix Mixer shows this by putting a ‘NA’ under the controls on the

Parameter Adjust Window, as seen in Figure 35 above.

It is possible to describe the displayed values associated with specific continuous and switch

parameters with the aid of the parameterValues XML element.

Figure 36 shows:

• A portion of a Matrix Mixer XML document showing a parameterValues XML element

along with its child XML elements for a pan parameter.

• The Matrix Mixer once it has parsed the XML document.

 83

Figure 36: Representing the parameterValues element for a continuous parameter

If the displayed values that a specific parameter may take on need to be described, the

parameterValues XML element describing these values is added as a child element to the

XML element describing the parameter. In the above figure, the displayed parameter values of a

pan parameter are being described.

The parameterValues XML element has one or more parameterValue child XML

elements. These child XML elements collectively describe the range of displayed values that a

specific parameter may have. For a continuous parameter, the displayed values are ordered from the

value that the parameter is set to when it is at its lowest level, to the value that the parameter is set

to when it is at its highest level. The number of displayed values in the range described with the

parameterValues XML element has to correspond to the number of MIDI messages associated

with the specific parameter.

There are two different types of parameterValue XML elements, and the specific type is

specified with the type XML attribute. The value of the type XML attribute may be set to either

single or range. When the value of the type XML attribute is set to single, this instructs

<panParameter name="Pan">

 <parameterValues>

 <parameterValue type="range" prefix="L" from="63" to="01"

incrementValue="-1"/>

 <parameterValue type="single" value="Center"/>

 <parameterValue type="range" prefix="R" from="01" to="63"

incrementValue="1"/>

 </parameterValues>

 ...

</panParameter>

 84

the Matrix Mixer that the parameterValue element describes a single displayed value in the

range of values. When the value of type is set to range, it instructs the Matrix Mixer that the

parameterValue element describes a sub-range of displayed values within the overall range of

displayed parameter values.

In the example shown in Figure 36, the first parameterValue XML element is used to describe

the range of displayed values from ‘L63’ to ‘L01’ with an increment of -1. The second

parameterValue XML element is used to describe a single displayed value, ‘Center’. The last

parameterValue XML element is used to describe a range of displayed values from ‘R01’ to

R63’ with an increment value of 1. Collectively these three XML elements describe the range of

displayed values: L63, L62 … L02, L01, Center, R01, R02 … R62, R63. The Matrix Mixer is

capable of converting the position of its faders and rotary potentiometers to parameter displayed

values. This conversion is done internally by a ParameterValues object. If, for example, the

pan potentiometer shown in Figure 36 is set ten notches up from its lowest value, the displayed

value of the parameter will be set to ‘L54’.

Figure 37 shows an example of the parameterValues XML element that is used to describe the

displayed values that a switch type parameter may have. This specific instance is used to describe

the displayed values of a mute parameter. A switch type parameter may only have two displayed

values, as the parameter may either be in an on state or an off state. The first value described with

the parameterValues element is the displayed value that the parameter is set to when the

parameter is in the on state, and the second value is the displayed value used when the parameter is

in the off state.

 85

Figure 37: An example parameterValues XML element for a switch parameter

4.3.3.6. Describing Libraries Of Preset Values

Some signal processing components (for example, effects and dynamics processors) have libraries

(consisting of a collection of library titles) of preset parameter values associated with them.

Selecting one of the library titles may set the signal processing component to a specific type of that

component. It also sets the parameters of the signal processing component to specific values. Each

library title may be associated with a specific type of the signal processing component. For

example, an effects processor may be capable of different types of effects. Some examples of

different effects are ‘reverb hall’, ‘reverb room’, ‘stereo delay’ and ‘flange’. Each of these different

types of effects may have a different set of parameters associated with them. Figure 38 shows

examples of different types of effects found in the Yamaha 01V96 Digital Mixing Console and the

various parameter types associated with each type of effect.

<parameterValues>

 <parameterValue type="single" value="On"/>

 <parameterValue type="single" value="Off"/>

</parameterValues>

 86

Figure 38: An example of the different types of effects with their parameters (Yamaha, 2004a)

The Matrix Mixer supports libraries of preset values for the dynamics and effects processors.

Listing 10 shows an example of how a library is described for an effects processor with the

effectsProcessorLibrary XML element. The effectsProcessorLibraryTitles

element has a number of effectsProcessorLibraryTitle child elements. These elements

collectively describe a library of preset values. Each of the

effectsProcessorLibraryTitle child elements is used to describe a title in the library.

 87

Listing 10: An example of an effectsProcessorLibrary XML element

The name XML attribute of each effectsProcessorLibraryTitle XML element is used

to name each specific library title, and it is this value that is displayed on the Parameter Adjust

Window. For each effectsProcessorLibraryTitle XML element representing a library

title, an item is added to a combo box on the Parameter Adjust Window from which a specific title

may be selected. A Parameter Adjust Window with an effects processor library displayed is shown

in Figure 39. Selecting a specific effects processor library title is done by selecting the title from the

combo box.

<effectsProcessorLibrary name="Library">

 <effectsProcessorLibraryTitles>

 <effectsProcessorLibraryTitle name="Reverb Hall" type="reverbhall">

 <on>

 <parameterChange>

 <midiMessagesGroups>

 <midiMessagesGroup>

 <midiMessages type="single">

 <midiMessage value="0xF0 0x43 0x10

0x3E 0x7F 0x10 0x04 0x00 0x01 0x00 0x00 0xF7"/>

 </midiMessages>

 </midiMessagesGroup>

 </midiMessagesGroups>

 </parameterChange>

 </on>

 </effectsProcessorLibraryTitle>

 ...

 88

Figure 39: The Parameter Adjust Window with effects processor (reverb hall)

Each effectsProcessorLibraryTitle has an on child XML element that is used to

describe the MIDI messages to be sent to the associated audio mixing desk when the library title is

selected. This instructs the audio mixing desk to recall a specific library title.

Each effectsProcessorLibraryTitle XML element has a type XML attribute. This is

used to specify the type of effect the specific library title is representing. Each type of effect is

described with an effectsProcessorType XML element, an example of which may be seen

in Listing 11.

Listing 11: An example of an effectsProcessorType element

The effectsProcessorType name XML attribute is used to name the specific type of effect

that it is representing. This value is displayed on the Parameter Adjust Window when this specific

effects processor is selected. The type XML attribute is used to specify the type of effect the XML

<effectsProcessorType name="Reverb Hall" type="reverbhall">

<effectsProcessorParameter name="REV TIME" type="revtime">

 …

</effectsProcessorParameter>

 …

</effectsProcessorType>

 89

element is describing. It is through the value of the type XML attribute that the effects processor

library titles may be matched up to their corresponding effect type. When a library title is selected,

the effect with the corresponding type is selected as the current effect. The specific parameters that

comprise the selected effect are displayed on the display. The effects editor shown in Figure 39

above shows the ‘reverb hall’ effect as being selected along with its associated parameters. Figure

40 shows the effects editor with the ‘echo’ effects processor being shown. These two diagrams

show the different parameters (along with their preset values) that are associated with each specific

type of effect.

Figure 40: The Parameter Adjust Window with effects processor (echo)

In Matrix Mixer XML documents, the specific parameters that belong to a specific effect type are

described with effectsProcessorParameter XML elements, as shown in Listing 11 above.

These XML elements are similar to all other parameter XML elements. They may have the same

child XML elements as discussed above for the volumeParameter and muteParameter

XML elements.

The same mechanism exists for the dynamics processors. The dynamics processors that exist at the

various signal processing points may be configured as different types. As an example, a dynamics

processor may be configured as a compressor or a noise gate. Each specific type of dynamics

processor has associated with it a number of parameters. Each dynamics processor library title is

 90

associated with a specific type of dynamics processor. Each dynamics processor described in the

XML document has a type specified with a type XML attribute. Thus, as with the effects

processors, when a specific dynamics processor library title is selected, the type of dynamics

processor that that library title is representing is matched up to the specific dynamics processor

type. The specific parameters that belong to the selected dynamics processor are then displayed on

the display. Figure 41 shows a Parameter Adjust Window with two dynamics processors displayed

on it. Displayed is the library associated with each dynamics processor, and the parameters

associated with the specific type of dynamics processor.

Figure 41: A Parameter Adjust Window showing two dynamics processors

 91

4.4. An XML Schema For Describing Audio Mixing Desks

Document Type Definitions (DTD) [Elliotte et al, 2002] and XML schemas [Elliotte et al, 2002]

are used as a means to formally specify the valid structures of specific instances of XML documents

for specific applications.

A Document Type Definition (DTD) is used as a means to specify precisely which XML elements

and entities are allowed to appear within an instance of an XML document. They also specify what

the contents of XML elements are, and the XML attributes they may have. They can be used to

specify which XML elements are child XML elements of specific XML elements and may also

ensure that specific XML elements contain certain XML attributes. A DTD is used to specify what

an XML document for a specific application may or may not contain. Different applications may all

have different DTDs depending on their individual requirements. A validating parser may be used

to compare a specific XML document against a DTD to check that it has the correct structure for a

specific application.

DTDs are limited. They are unable to specify:

• What the root element of an XML document is.

• The number of times that each element may appear in an XML document.

• What the character data inside an XML element looks like.

• The semantic meaning of an element. A DTD does not specify the length, structure, meaning,

allowed values, or any other aspects of the text content of an element.

An XML schema is an XML document that has a formal description of what comprises a valid

XML document. Compared to DTDs, schemas provide much finer control over the format and data

types that the XML elements and attribute values of an XML document may have. They also

provide for much finer control over the text content of XML elements and attributes. There are a

number of built in types, but schemas allow for new types to be declared, new types to be derived

from old types, and the reuse of types from other schemas. Schemas also allow for more explicit

restrictions to be placed on the number and sequence of child XML elements that may appear at a

specific point.

XML documents have been created that describe the Yamaha 01X Digital Mixing Studio and the

Yamaha 01V96 Digital Mixing Console for the Matrix Mixer. From creating these XML

 92

documents, XML elements and attributes have been defined that allow for the signal processing

points, along with their signal processing components, to be described. From the structure of these

two documents, an XML schema was generated and customised to provide a formal description of

the valid XML documents that the Matrix Mixer is capable of accepting. This mechanism allows

third parties to create XML documents that describe audio mixing desks for the Matrix Mixer. The

created XML documents may be validated against the XML schema before the Matrix Mixer reads

them in. The complete XML schema is shown in “Appendix – An XML Schema For Representing

MIDI Controllable Audio Mixing Desks”

4.5. Summary

In this chapter, we looked at how XML has been used as a configuration tool for the Matrix Mixer.

The Matrix Mixer was developed to be a generic software audio mixing desk editor which is able to

represent and control common audio mixing desk parameters. In order to allow the Matrix Mixer to

quickly adapt to different audio mixing desks, specific audio mixing desks are described using

XML documents which the Matrix Mixer reads in when it initialises itself. From the information in

the XML document, the Matrix Mixer builds itself up to represent and control a specific audio

mixing desk.

The Matrix Mixer was initially developed for the Yamaha 01X Digital Mixing Studio. Once this

was complete, and an initial set of elements and attributes were defined for the XML audio mixing

desk descriptions, creating an XML document for the Yamaha 01V96 Digital Mixing Console was

a quick process. In this time period, minor adjustments had to be made to the Matrix Mixer to

accommodate the nature of both these audio mixing desks. The simple, readable nature of XML

made the task of adapting the Matrix Mixer to another audio mixing desk easy to perform. A Matrix

Mixer XML document is built up to describe the features of an audio mixing desk and does not

concern itself with how these features are represented or controlled. The representation and control

of the features of the audio mixing desks is left up to the Matrix Mixer.

From the Matrix Mixer XML documents that were created for the Yamaha 01X Digital Mixing

Studio and the Yamaha 01V96 Digital Mixing Console, an XML schema was created to formally

describe the valid structures that Matrix Mixer XML documents may take on. This mechanism

allows third parties to describe audio mixing desks for the Matrix Mixer.

 93

Chapter 05

Studio Connections

Steinberg, one of the world’s largest audio software houses, and Yamaha, the world’s largest

manufacturer of professional audio equipment, have been leading a joint project known as Studio

Connections [Yamaha, 2005]. The aim of this project is to offer a more convenient environment to

make using audio hardware and software easier. This project came about as a result of a need for

closer integration between audio software and audio hardware in music production systems.

In this chapter, we will have a look at what Studio Connections is, and how it was used to make the

Matrix Mixer operate with Digital Audio Workstation (DAW) applications in order to offer the

capability of recalling audio mixing desk state (‘Total Recall’).

5.1. Studio Connections

Traditionally, music hardware and software have been set up independently of each other. For

example, a sound engineer setting up a small recording studio would first make connections

between devices, possibly using a patchbay like the Yamaha Graphic Patchbay (see section 6.3.4).

Then, each individual device may need to be set up. This can be done via the control surfaces of the

devices, or from software device editors that are able to represent and control those devices. Then,

recording software would need to be set up in order to record the signals generated from the audio

devices in the studio. Each of these processes happen independently of each other. That is, they are

not integrated with each other.

The first phase of the Studio Connections project has been identified as Total Recall. This phase of

the Studio Connections project allows for:

• The control of the settings of hardware devices from within DAW applications via software

device editors.

• The ability for audio hardware device states to be saved to DAW native song files allowing the

devices to be recalled later.

 94

This is achieved by DAW applications hosting software plug-ins. Each software plug-in allows for:

• The representation and remote control of a hardware device from within a DAW application.

• The persistence of hardware state. These plug-ins are capable of providing the state of the

hardware devices they are representing to the DAW application. The DAW application may

then save the state data to one of its native song files. When the DAW application loads itself

from the native song file at a later stage, it extracts the state data that was originally provided

by the plug-ins. This state data may then be passed back to the relevant software plug-ins. They

use this state data to set their parameters and the hardware parameters to the saved state.

Currently, Total Recall may be implemented within a DAW application by hosting the Studio

Manager 2 host component. Studio Manager 2 in turn hosts multiple software device editor plug-

ins. These software device editor plug-ins may then be opened from within the DAW application

that is hosting Studio Manager 2. Studio Manager 2 acts as a proxy between a DAW application and

the software device editor plug-ins. A simplified version of this architecture is shown

diagrammatically in Figure 42.

Figure 42: Studio Manager 2 integration

Typically, a software device editor provides capabilities for editing a particular device’s parameters

via a Graphical User Interface (GUI). Examples of these device editors are the Matrix Mixer and

the Yamaha 01V96 Editor. These software device editors provide for state machine emulation of

the hardware devices that they represent, and may allow for the transfer of the represented devices’

states between themselves and their associated hardware devices. This can happen via protocols

such as the MIDI protocol. Via Studio Manager 2, these software device editors may allow for their

 DAW

Studio
Manager 2

 Device
Editor

Hosts

Hosts Many

 95

state to be transferred to and from themselves and a DAW application. This allows the hardware

devices states to be saved to DAW native song files and later recalled.

Studio Manager 2 is a visually simple application. The main purposes of this application are to

instantiate and manipulate a collection of device editors. A sound engineer is able to select which

device editors (from a list of available device editors installed on the system) appear in its

workspace. Total Recall operations may then be performed on the selection of devices. This

approach allows sound engineers to define customised workspaces that are based on unique studio

setups.

Sound engineers are able to define their own workspaces via the Studio Manager 2 Setup window,

which is shown in Figure 43. This window is displayed when Studio Manager 2 starts up. The Setup

window lists all the available software device editors (left-hand column) installed on the system and

all the software device editors that are part of the user defined workspace (right-hand column).

Software device editors are added to the workspace by selecting them from the available software

device editors. If, for example, we had a recording studio with a Yamaha 01X Digital Mixing

Studio and a Yamaha 01V96 Digital Mixing Console in it, and we wished to control these devices

from within Studio Manager 2, software device editors that are able to represent and control these

audio mixing desks would be added to the ‘Workspace’ list, as shown in Figure 43.

 96

Figure 43: Defining the Studio Manager 2 application’s workspace

Once a sound engineer has finished setting up the custom workspace, each of the selected device

editors is instantiated, and the primary window of Studio Manager 2 is populated with icons that

represent each of the selected software device editors. The primary window of Studio Manager 2 is

shown in Figure 44. The devices shown in the workspace are those that were defined by the user via

the Setup window.

 97

Figure 44: The Studio Manager 2 host application

From the primary window of the Studio Manager 2 application a device editor may be displayed by

selecting its icon. This is shown in Figure 45 as annotation 2. Annotation 1 in the figure indicates

that the Studio Manager 2 host application is being hosted and displayed by a DAW application, in

this instance Cubase [Steinberg, 2007].

 98

Figure 45: Studio Manager 2 host application hosting

Studio Manager 2 allows its user defined workspace to be saved to a compound document format

session file in a form that suits it. Within this file, the following may be saved:

• The state of each device represented within the workspace.

• The display state of each device editor.

• The window position of each device editor.

• The device editor MIDI port selections.

Each device editor is responsible for saving data about itself. This allows this state data to be later

recalled, thus allowing the hardware devices to be recalled to their previous states.

1

2

 99

When the workspace of Studio Manager 2 is loaded from one of its saved files, it recalls its

workspace to the state it was in when the file was saved. Each of the software device editor plug-ins

is re-instantiated and the state of the parameters of the software devices editors are set to their saved

states. A sound engineer is then able to synchronise the software device editors with their associated

hardware devices. This may happen by either transferring the states of the parameters of the

software device editors across to their associated parameters in the hardware devices, or the states

of the hardware devices’ parameters may be transferred across to their associated software device

editors. Sound engineers are able to select in which direction the state transfer takes place via the

Confirm Total Recall Synchronization window (which is shown in Figure 46) under the ‘Select

direction of data transfer:’ section. Once the direction of state transfer has been selected, the state is

transferred in the relevant direction. This transfer could take place in the form of MIDI messages.

Figure 46: The Confirm Total Recall Synchronization window

5.1.1. Open Plug-in Technology

Studio Connections Total Recall is built on top of Open Plug-in Technology (OPT) [Yamaha,

2002]. Each device editor that is hosted by Studio Manager 2, as well as Studio Manager 2 itself, is

implemented as an enhanced OPT component. OPT provides in-house and third party software

developers with integrated enhancements to the feature sets of sequencer products. These

enhancements are considered necessary to cope with the increasing sophistication of MIDI devices

 100

and the possibility of these devices having extensions to the MIDI specification. This architecture

allows for the integration of custom plug-ins to support new hardware and MIDI extensions.

The OPT architecture is based on the Component Object Model (COM) architecture [Troelsen,

2000; Armstrong and Patton, 2000]. Each software device editor plug-in is implemented as a COM

in-process server. An in-process COM server is loaded into the same memory space as the client

application that loads it.

5.1.2. Component Object Model

COM is an object oriented interface-based programming architecture that may be implemented in

many programming languages. COM components are used to provide some form of functionality to

a software entity through an implemented interface. COM components are viewed as servers and

the software entities that use the COM components are viewed as clients.

COM components can be accessed from many languages. COM provides highly scalable, reusable,

and accessible binary objects. Client applications that use COM components are unaware of how

the object is implemented or in which language. Interacting with a COM object takes place through

an object’s set of interfaces. A user of a COM object is only ever aware of the object’s interfaces.

The interfaces define a set of methods and properties which describe how client applications may

interact with the object. The interfaces provide no state and no implementation. Classes that

implement COM interfaces provide the definitions for the declared interfaces. There may be many

different implementations of the same interface to provide specific functionality. COM objects are

able to load other COM objects in order to perform their tasks. All COM objects are packaged

together inside a “component housing”.

Each COM interface, class, type library and executable (and other COM items) are uniquely

identified with Globally Unique Identifiers (GUID’s). These GUID’s are entered into the system

registry. Under the GUID entry may be found specific information pertaining to the COM

component that the GUID is representing. The most important of these entries is the entry that

specifies the physical path to the COM server. This removes the need for client applications to

know the physical path to the COM objects that they require. They just need to be aware of the

GUID of the required object. This is known as ‘location transparency’.

 101

Each COM object has to implement an interface known as IUnknown. The IUnknown interface

defines three methods:

• QueryInterface: The QueryInterface method is used by client applications to get

pointers to the interfaces implemented by a COM object. If an object implements interface i1

and interface i2, and a client application has a pointer to interface i1, it may obtain a pointer

to interface i2 by calling QueryInterface on the pointer to interface i1. The client

specifies which interface pointer it requires by passing in the GUID of that interface. If the

COM object has implemented the requested interface, the requested interface pointer is

returned to the client application.

• AddRef and Release: AddRef and Release are used to manage the existence of a

particular object. Each time there is a new interface pointer to an object, AddRef should be

called on that object. This increases a reference counter that the object maintains. Once an

application has finished using an interface pointer, it should call Release on it. When

Release is called, the internal reference counter that the object keeps is decreased by one.

When the reference counter reaches a value of zero the object deletes itself.

The COM architecture was chosen for Studio Connections Total Recall as it is well suited to plug-in

components since each plug-in is presented in a binary format. A common set of interfaces for each

plug-in has been defined allowing Studio Manager 2 to communicate with each specific plug-in

implementation (each specific software device editor). The COM architecture also avoids any

problems associated with technology transfer and manufacturer-specific libraries as each COM

component is presented in binary form. It allows for the expansion of the defined set of interfaces,

whilst still allowing plug-ins using previous versions of the interfaces to work seamlessly with the

host application, but with possibly less functionality.

5.2. Providing Total Recall Functionality To The Matrix Mixer

Initially, the Matrix Mixer was developed as a standalone application. It was implemented with the

ability to save the state of its parameters to a file. In doing this, it saved the state of the audio

mixing desk that it was representing. The Matrix Mixer could then read in that file at a later stage

and recall itself to the saved state. The state that the parameters of the Matrix Mixer were in could

then be sent across to the associated audio mixing desk in the form of MIDI messages.

 102

The ability to save the state of an audio mixing desk is advantageous. If there is an audio mixing

desk in a recording studio, and the recording studio is continuously being used by different groups

of people, who all set the audio mixing desk to their own individual settings, each group could save

the state of the audio mixing desk and later restore it in a different recording session. This avoids

the need to have to manually set up the audio mixing desk every time that it had its parameters

adjusted by other groups of people.

The standalone version of the Matrix Mixer lacks any integration with any other audio software.

Consider a situation where we had a recording studio, and in that studio we were running a DAW

application, and had two Yamaha 01V96 Digital Mixing Consoles. We might have two instances of

the Matrix Mixer representing the two audio mixing desks. If we wanted to save our project created

with the DAW application, and the state of the two audio mixing desks, these would all have to be

done individually and independently of each other.

Currently there exist a number of software device editors that, with the aid of Studio Manager 2,

allow for the state of the device that they are representing to be saved to native DAW song files.

This functionality is provided to these programs through the use of Studio Connections Total

Recall.

The next phase of this project involved implementing the Matrix Mixer to be Studio Connections

Total Recall compatible. This allows the Matrix Mixer to be hosted by Studio Manager 2. This in

turn allows the Matrix Mixer to be opened from within DAW applications. It also allows for saving

and recalling the state that the Matrix Mixer is in (hence also the state of the associated audio

mixing desk) and allows that audio mixing desk to be later recalled to its saved state.

The high level functionality that had to be implemented in order to make the Matrix Mixer Studio

Connections Total Recall compatible is shown with the aid of a use case diagram in Figure 47. This

functionality is provided via a collection of programming interfaces that are part of the Studio

Connections - Total Recall SDK and also by Microsoft [Microsoft Corporation, 2005]. These

interfaces allow Studio Manager 2 to communicate with the Matrix Mixer and vice versa. Studio

Manager 2 is aware of these interfaces, and is aware of what is supposed to happen when the

methods of the interfaces are called.

 103

Initialise

Un-Initialise

Initialise Display

Un-Initialise Display

Perform Total Recall

Receive MIDI Events

Send MIDI Events

Load State

Save State

Studio
Manager 2

Figure 47: Matrix Mixer Studio Connections Total Recall use case diagram

Initially, the Matrix Mixer was implemented as a standalone executable. The initialisation of the

Matrix Mixer was driven via the main entry point to the program. Tasks such as saving the state of

the parameters of the Matrix Mixer was initiated with a sound engineer selecting the appropriate

menus from the display of the Matrix Mixer. The Matrix Mixer had to be modified such that it

could be dynamically loadable by a host application (for example, Studio Manager 2). It also had to

be modified such that it could be driven via the methods of the interfaces that are defined in the

Studio Connections – Total Recall SDK. The core interfaces that had to be implemented are listed

below:

• IMPInitialise: Via the methods of this interface, a client application is able to initialise

and un-initialise a device editor. The client application is also able to pass in pointers to its own

interfaces so that the device editor may communicate with the client.

 104

• IMPEventFilter: Through this interface, a client application is able to pass in its queued

events to a device editor. This allows the device editor to receive incoming MIDI messages

from its associated hardware device.

• IMPServices: The IMPServices interface allows a client application to control the Total

Recall operations of a device editor. Total Recall is the transfer of device state from either

hardware to software or from software to hardware.

• IPropertyPage: Through the methods of the IPropertyPage interface, a client

application is able to control the GUI of a particular device editor. It is able to perform actions

such as initialising and un-initialising the display, showing and hiding the display, and moving

the display around the screen.

• IPersistStream: The IPersistStream interface allows a client application to instruct

the device editor to save or load itself to and from a given stream, respectively.

5.2.1. Initialising And Un-initialising The Matrix Mixer

Once a sound engineer has chosen the devices for the Studio Manager 2 workspace from the Setup

window (see Figure 43 above) each of the selected software device editors needs to be initialised.

Initialisation of each device editor happens via the MPConnect method of the IMPInitialise

interface. Each device editor is responsible for providing an implementation of the MPConnect

method.

Studio Manager 2 obtains a pointer to each device editor’s IMPInitialise interface and then

calls their MPConnect methods (the MPConnect method declaration is shown in Listing 12).

Listing 12: The IMPInitialise::MPConnect method

Through this method Studio Manager 2 is able to:

• Provide each device editor with pointers to its interfaces. Studio Manager 2 provides pointers to

its IUnknown and IMPAsyncOutput interfaces to each device editor. Each device editor

should retain copies of these interface pointers as these allow the device editors to

HRESULT MPConnect(IUnknown* pUnkClient, IMPAsyncOutput* pAsync,

MPINITIALISE_MODE eMode, DWORD dwTimeContext, LPDWORD

pdwQueueFlags);

 105

communicate with Studio Manager 2. A device editor is able to obtain further interface pointers

from Studio Manager 2 through the QueryInterface method of the IUnknown interface

pointer passed in. The IMPAsyncOutput interface is used for the communication of MIDI

messages. This is discussed in section 5.2.4 below.

• Initialise each device editor.

When the Matrix Mixer’s implementation of the MPConnect method is called, it parses its XML

configuration file and builds up its internal objects to represent the specific audio mixing desk

described in the XML file. At this point, no user interface is displayed. In this state, and once its

MIDI settings have been set appropriately, it is able to receive MIDI messages from its associated

audio mixing desk (see section 5.2.3 below). From these MIDI messages it is able to extract

parameter values and set them appropriately in its internal objects. Once the Matrix Mixer is

initialised it waits for further instructions from Studio Manager 2 via calls to its interfaces methods.

There are times when Studio Manager 2 may wish to un-initialise any of the device editors that are

part of its workspace. For example, this could happen when a sound engineer decides to change the

software devices editors that are part of the workspace or when the application itself terminates.

When Studio Manager 2 wishes to un-initialise any of the device editors in its workspace, it calls

the MPDisconnect method of the appropriate device editor(s). Each device editor provides an

implementation of the MPDisconnect method (this method is defined as part of the

IMPInitialise interface). Each device editor is responsible for performing any un-initialisation

that is required. When the Matrix Mixer’s implementation of this method is called, it deletes all of

the internal objects that it used to represent the associated audio mixing desk and frees up any

resources it was holding. The MPDisconnect method declaration is shown in Listing 13.

Listing 13: The IMPInitialise::MPDisconnect method

5.2.2. Initialising And Un-Initialising The Matrix Mixer Display

When the Studio Manager 2 host application initialises each of its software device editors, their

GUIs are not displayed. The GUIs of the devices editors are only displayed on request. A sound

HRESULT MPDisconnect(void);

 106

engineer is able to display the GUIs of the device editors in the Studio Manager 2’s workspace by

selecting the icons representing them. This is shown as annotation 2 in Figure 45 above. Studio

Manager 2 is able to display its software device editors through the use of two Microsoft defined

interfaces. These are ISpecificPropertyPages, and IPropertyPage.

A COM object that implements the ISpecificPropertyPages interface indicates that it

supports property pages. The ISpecificPropertyPages interface has one method, namely

GetPages. This method declaration is shown in Listing 14. For Studio Manager 2, this method is

used to return the class identifier (CLSID) of the property page object that belongs to the specific

software device editor. Through the obtained CLSID, Studio Manager 2 is able to locate the

IPropertyPage interface of a particular device editor in its workspace.

Listing 14: The ISpecificPropertyPages::GetPages method

Through the use of the IPropertyPage interface, Studio Manager 2 is able to control the GUI of

a particular device editor. When a sound engineer selects an icon representing a software device

editor from the workspace, Studio Manager 2 creates a parent window and calls the Activate

method (shown in Listing 15) of the IPropertyPage interface for the selected device editor. As

an argument to the Activate method, a handle to the parent window that was created is passed to

the device editor. Here, the selected device editor creates its display window, and the states of the

components on that window reflect the state that the device editor is in. It is in the parent window

that the device editor places its window as a child window.

Listing 15: The IPropertyPage::Activate method

When the Matrix Mixer’s implementation of the Activate method is called, it creates its routing

matrices. Each of the patch buttons on the routing matrices reflect the state of the Matrix Mixer’s

internal objects that in turn represent the various patch points of the associated audio mixing desk.

When a sound engineer closes the parent window of a displayed device editor, Studio Manager 2

calls the Deactivate method (shown in Listing 16) of the IPropertyPage interface of the

HRESULT Activate(HWND hWndParent, LPCRECT prc, BOOL bModal);

HRESULT GetPages(CAUUID* pPages);

 107

particular device editor. When this method is called, the specific device editor destroys its display,

thus freeing the resources that it was utilising.

Listing 16: The IPropertyPage::Deactivate method

The IPropertyPage interface also declares methods that allow the device editors’ displays to be

moved around and hidden by Studio Manager 2.

5.2.3. Receive MIDI Events

All MIDI messages that are destined for the device editors in Studio Manager 2’s workspace are

received by the DAW application that is hosting Studio Manager 2. The DAW application is

responsible for routing MIDI messages so that they may be received by the device editors that are

part of Studio Manager 2’s workspace. This process is shown diagrammatically in Figure 48.

Figure 48: Receiving MIDI messages via the IMPEventFilter interface

DAW

Studio
Manager 2

Audio Mixing Desk

Device
Editor

The audio mixing desk
transmits MIDI messages
when its parameters are
adjusted

The DAW application
receives the MIDI
messages

Via Studio Manager 2,
the MIDI messages are
distributed to the device
editors through each
device editor’s
IMPEventFilter
interface

HRESULT Deactivate(void);

 108

A software device editor that wishes to receive MIDI messages has to implement the

IMPEventFilter interface. The IMPEventFilter interface provides methods to allow for

the communication of queued events (for example, fader moves and button pushes) from a DAW

application to a device editor. This interface is used to receive MIDI messages from a hosting DAW

application in real-time. Each device editor receives MIDI messages through the interface’s

MPOnEvents method. Each device editor provides an implementation of this method which

allows the device editor to process the queues of events. The MPOnEvents method declaration is

shown in Listing 17.

Listing 17: The IMPEventFilter::MPOnEvents method

Each time the MPOnEvents method of one of the device editors is called, a pointer to an

IMPEventQueue interface is passed in (through the pqInOut pointer). The IMPEventQueue

interface provides a set of methods used to access a queue of time ordered MPEVENT structures. It

is the MPEVENT structures that contain the MIDI messages that the software device editors use to

communicate with their associated hardware devices. Each device editor is responsible for

extracting the MPEVENT structures out of the queue and the processing the MIDI messages

appropriately.

The IMPEventQueue interface provides methods that allow MIDI events to be filtered out by a

port ID. Each device editor is set up to listen on a specific MIDI port for incoming MIDI messages

and the IMPEventQueue has methods to select only those MIDI events that came from a specific

port. If, for example, a sound engineer has connected the MIDI output port of a Yamaha 01V96

Digital Mixing Console to the ninth MIDI input port of a computer, and has selected that the Matrix

Mixer listen on the ninth MIDI input port of the computer, the filter is set to the port ID of the ninth

MIDI input port of the computer. This avoids device editors from processing MIDI messages

unnecessarily and avoids any unnecessary data copying.

HRESULT MPOnEvents(IMPEventQueue* pqInOut, REFMPQSTATUS

rqStatus);

 109

5.2.4. Send MIDI Events

When each device editor’s MPConnect method of the IMPInitialise interface is called to

initialise each device editor, Studio Manager 2 passes in a pointer to an IMPAsyncOutput

interface (see Listing 12 above). Each software device editor retains a copy of this interface pointer,

and through the MPOutput method of this interface each device editor is able to communicate with

its associate hardware device. The declaration of this method is shown in Listing 18.

Listing 18: The IMPAsyncOutput::MPOutput method

Each device editor is able to transmit MIDI messages through the MPOutput method. The specific

MIDI and MIDI port data is contained in MPEVENT structures which the MPOutput method takes

as an argument. The hosting DAW application receives these and sends the MIDI messages to the

associated hardware device via the specified MIDI port.

5.2.5. Performing Total Recall

The IMPAsyncOutput and the IMPEventFilter interfaces allow for MIDI messages to be

sent between the software device editors and their associated hardware devices. These lay the

foundation for Total Recall operations to be performed on hardware devices via software device

editors as they allow for the communication of state information.

The IMPServices interface provides methods that allow for the automation of a device editor’s

Total Recall operations. A device editor that wishes to support Total Recall has to implement the

methods provided by the IMPServices interface.

Total Recall occurs when either the state of a software device editor is transferred across to its

associated hardware device, or the state of a hardware device is transferred across to its associated

software device editor. This state transfer takes place via MIDI messages. With Studio Manager 2,

it is possible to save the state of the device editors in its workspace (see section 5.2.6 below). It is

then possible to later reload that workspace, and hence the software device editors, to their previous

HRESULT MPOutput(REFMPEVENT rEvent, MPASYNC_MODE eMode);

 110

state. It is then possible to transfer the state from the software device editors across to their

associated hardware devices.

Each device editor’s Total Recall functionality is controlled by Studio Manager 2 via the

MPRecall method of the IMPServices interface. Each device editor provides an

implementation of this method, which allows for the transfer of device state. Listing 19 shows the

method declaration for the MPRecall method. Studio Manager 2 is able to query a device editor

for a pointer to its IMPServices interface. Once obtained, it is able to request a device editor to

perform Total Recall by calling its MPRecall method. Studio Manager 2 is able to control the

direction of the state transfer through the use of the bUpload parameter. Passing in a value of

true indicates to the device editor that it should transfer its state to its associated hardware device

and a value of false indicates that the state of the hardware device should be transferred to the

software device editor.

Listing 19: The IMPServices::MPRecall method

Figure 49 shows an example of how Total Recall is performed. This example demonstrates how the

state of a software device editor is transferred across to its associated hardware device. A DAW

application may request that Total Recall be performed on a set of hardware devices. This may

happen after the DAW application has been loaded from one of its native song files. Studio

Manager 2 queries the user for the direction of state transfer. If the user requests that the state

transfer take place to the hardware devices, Studio Manager 2 requests that each of its device

editors transfer the state of their parameters across to their associated hardware devices. The state

transfer takes place in the form of MIDI messages. Each device editor sends out MIDI messages

that represent the state of its parameters to its associated hardware device.

HRESULT MPRecall (const bool bUpload, IMPClientProgressHandler *

progressHandler, DWORD details = 0x0000);

 111

Figure 49: An example of how state is transferred from a software device editor to its associated hardware device

When the Matrix Mixer’s MPRecall method is called and it is requested to send the state of its

parameters across to the associated audio mixing desk, the Matrix Mixer iterates through each of its

parameter objects and sends out the MIDI messages that represent the state that the parameters are

in. When the Matrix Mixer is requested to transfer the state from the hardware audio mixing desk to

the software audio mixing desk editor, it iterates through each of its parameter objects and sends out

the parameter request MIDI messages associated with each parameter object to the associated audio

mixing desk. The hardware audio mixing desk then responds with parameter response MIDI

messages, which the Matrix Mixer uses to set the values of its parameter objects.

Via the IMPServices MPRecallFeatureSet method, a software device editor is able to

provide a list of available Total Recall feature sets that it has. It is able to define different

granularities of Total Recall. A sound engineer is able to select a specific granularity when Total

Recall is performed. For example, a device editor may define two Total Recall granularities. One to

specify that all its parameters should have Total Recall performed on them, and another one that

Studio
Manager 2

Device Editor

Audio Mixing Desk

DAW 1. A DAW application
requests that Studio Manager
2 transfers its device editors’
states to their associated
hardware devices

2. Studio Manager 2
requests each device
editor in its
workspace to transfer
its state to its
associated hardware
devices via the
MPRecall method

3. Each device editor transfers it state across
to its associated hardware device in the form
of MIDI messages. The MIDI messages are
sent via the IMPAsyncOutput interface

4. The MIDI messages are sent
across to the associated
hardware device via the DAW
application

 112

specifies that Total Recall should only be performed on the volume parameters of the device. When

a device editor is asked to perform Total Recall, the Total Recall granularity is specified as well.

The Matrix Mixer does not define any Total Recall granularity features. It performs Total Recall on

all of its parameters.

5.2.6. Loading And Saving Audio Mixer State

When a sound engineer saves a project s/he is working on within a DAW application that is hosting

Studio Manager 2, the state of the device editors that are part of Studio Manager 2’s workspace are

saved as well. The DAW application will request that Studio Manager 2 save itself to a supplied

serial stream. Studio Manager 2 then in turn requests each device editor to save itself to the supplied

stream.

Each device editor is capable of saving and reloading its state to a serial stream with the aid of

Microsoft’s IPersistStream interface. Studio Manager 2 may obtain a pointer to each device

editor’s IPersistStream interface and request that a device editor save or load itself to or from

a stream via the Save and Load methods respectively. Each device editor provides an

implementation of each of these methods and is free to save and load its required data in a format

that suits it. The Save method declaration is shown in Listing 20.

Listing 20: The IPersistStream::Save method

The Save method is used to save an object to a specified stream. When Studio Manager 2 wishes

to save the state of the device editors in its workspace, it calls this method of each device editor and

passes in a pointer to an IStream interface to which each device editor may save itself. The

Write method of the IStream interface is used to write data to the stream. This method

declaration is shown in Listing 21.

Listing 21: The IStream::Write method

HRESULT Save(IStream * pStm, BOOL fClearDirty);

HRESULT Write(void const* pv, ULONG cb, ULONG* pcbWritten);

 113

When the Save method is called, the Matrix Mixer saves its state to the provided stream in the

following format:

Table 5: Saved state format, version one

The version field is used to keep track of which format version the stream was saved in. This

allows the Matrix Mixer to extract the saved data correctly. This provides backward compatibility

because it allows the format of the saved data to be changed over time, whilst allowing the Matrix

Mixer to work with previous formats.

Version one has the following format:

• The MIDI input port GUID field is used to save the GUID of the currently open MIDI

input port.

• The MIDI output port GUID field is used to save the GUID of the currently open MIDI

output port.

• The MIDI input port channel and MIDI output port channel fields are used

to save the channels that the MIDI input port listens on and the MIDI output port sends data on,

respectively.

• The number of MIDI bytes field is used to save the length of the parameter state data

(the MIDI messages that represent the state of the parameters).

• The rest of the stream has the actual MIDI bytes that represent the state of the parameters of the

Matrix Mixer.

Data Size

version unsigned long

MIDI input port GUID GUID

MIDI output port GUID GUID

MIDI input port channel int

MIDI output port channel int

number of MIDI bytes unsigned long

MIDI bytes

 114

Each device editor’s state data may then be passed to the DAW application hosting Studio Manager

2 which may then be saved to one of its native song files, along with a sound engineer’s project

data.

If a DAW application reloads a native song file to which the device editors’ states were written, it is

able to extract that state data and pass it back to Studio Manager 2. Studio Manager 2 is then able to

use the state data to restore its workspace, and the device editors that are part of the workspace. The

Load method is used to initialise an object from a stream where it was previously saved. The caller

of this method passes in a pointer to an IStream interface, from which the object can read data to

initialise itself. This method declaration is shown in Listing 22.

Listing 22: The IPersistStream::Load method

IStream’s Read method is used to read data out of the stream. The Read method declaration is

shown in Listing 23. For the Matrix Mixer, the data is read out of the stream in the format shown in

Table 5 above.

Listing 23: The IStream::Read method

When the Matrix Mixer’s implementation of the Load method is called, the Matrix Mixer

initialises itself from the supplied stream. The initialisation process is as follows:

• Initially, the Matrix Mixer reads the MIDI input and output port GUID’s out of the stream and

opens up the appropriate MIDI interfaces.

• Next, the MIDI input and output port channels are read out of the stream and set appropriately.

• Then, the stored MIDI bytes are read out of the stream and used to set the values of the specific

parameter objects. The MIDI messages that are read out of the stream are sent to the Matrix

Mixer via the same mechanism as the MIDI messages that are sent via a hosting DAW

application.

HRESULT Read(void* pv, ULONG cb, ULONG* pcbRead);

HRESULT Load(IStream * pStm);

 115

5.3. Summary

This phase of the project set out to explore the use of the Studio Connections Total Recall SDK.

This SDK allows the Matrix Mixer to be incorporated into DAW applications and thereby support

Studio Connections Total Recall functionality. Studio Connections Total Recall is built on the

COM architecture, which allows device editors to be implemented as software plug-ins and thus be

dynamically loaded at runtime as and when required. The Studio Connections Total Recall SDK

defines a set of interfaces that allows for device editors to:

• Be initialised.

• Be displayed.

• Transmit and receive MIDI messages.

• Have their state saved and loaded.

• Transfer state between themselves and their associated hardware devices.

An implementation of these interfaces to allow Studio Manager 2 to communicate with the Matrix

Mixer was created. This has allowed the Matrix Mixer to provide state information to a DAW

application hosting Studio Manager 2 and has allowed for the transfer of state between itself and its

associated hardware audio mixing desk.

 116

Chapter 06

Double Grid FireWire Patching

Legacy audio studios use hardware patchbays in order to patch audio signals between devices in an

audio studio. The cable clutter in these studios increases rapidly as devices are added to the studio

configuration. mLAN was created to, amongst other things, reduce this cable clutter by transporting

audio and control signals over FireWire networks. Patching signals between devices on an mLAN

network is performed via software patchbays that run on computers connected to the network.

In this chapter, we compare the configuration of a small legacy audio studio to a small mLAN

studio and compare the patching techniques used in these two types of studio. We will compare the

different types of software patchbays that are used to patch signals between mLAN devices and

propose a FireWire patchbay to simplify the patching between mLAN devices.

6.1. Legacy Audio Systems Incorporating Hardware Patchbays

In legacy audio studios, hardware patchbays allow sound engineers to access audio signals at

particular strategic points within an audio system [Robjohns, 1999]. Audio signals within an audio

system are all sent to a common location (the hardware patchbay) and from there routed to their

destination points. This allows for the routing configurations of an audio studio to be changed

easily. There is no need to re-run cables between devices each time a routing configuration needs to

be changed.

In typical legacy audio studios, the wires from the audio devices in the studio are connected to jack

sockets on a patchbay. These patchbays are wired for a typical configuration. Figure 50 shows the

back panel of a hardware patchbay. This panel contains two rows of jack sockets. In its typical

configuration, each top jack socket is connected to the jack socket that is directly below it. In the

figure, the two jack plugs plugged into the two top sockets (annotation 1 in the figure) are coming

from an audio producing device (for example, a CD player). The signals entering these jack sockets

are sent to the jack sockets directly below. An audio destination device (for example, an audio

mixing desk) is plugged into these jack sockets (annotation 2 in the figure). The jack plugs shown

 117

as annotation 3 in the figure are also plugged into an audio destination device, but in the typical

configuration there are no signals going to this device as there are no jack plugs plugged into the

jack sockets directly above them.

Figure 50: The back panel of a hardware patchbay

Figure 51 shows the front panel of the hardware patchbay shown in Figure 50. Via the front panel

of this patchbay, a sound engineer is able to re-route the audio signals entering it. The top row of

jack sockets allows a sound engineer to access the audio signals coming from audio source devices.

The bottom row of jack sockets allow audio signals to be sent to the audio destination devices that

are plugged into the bottom row of jack sockets on the back of the patchbay. To re-route an audio

signal to a different location, a sound engineer would a plug patch cable into the socket where the

signal sources exists. This may or may not interrupt the original signal flow, depending on the type

of patchbay. The other end of the patch cable is inserted into the jack socket going to the destination

point. This will interrupt the signal that is currently flowing to that destination point and create a

new signal flow.

1. From audio source

2. To audio destination 1

3. To audio destination 2

 118

Figure 51: Rerouting audio using a hardware patchbay

Figure 52 shows an example of a small studio audio system with a hardware patchbay. In this

figure, it can be seen that all the devices in the studio have audio cables running between them and

the patchbay. At the patchbay, the signals are routed to their destination devices. For example, the

stereo audio signals from the synthesizer being sent to the patchbay may be routed through to two

input channels on the computer. The output signals from the computer being sent to the patchbay

may be routed through to the audio mixing desk. If a sound engineer wanted to send the signals

from the synthesizer directly to the audio mixing desk, this would be configured via patch cables on

the patchbay.

Figure 52: A small audio system with an analogue hardware patchbay

PC

Patchbay

Synthesizer

Audio
Mixing
Desk

Analogue Audio

MIDI

Digital Audio

1. From the signal source device

2. To the signal destination
device

 119

Hardware patchbays allow for routing configurations in audio studios to be changed relatively

easily. All the devices in the studio are wired up to a patchbay, and semi-permanent routing

configurations set up. Routing configurations are changed from one central location with patch

cables. There is no need to run cables from source devices to destination devices each time a

configuration needs to be changed.

6.2. Digital Audio Networking With mLAN

mLAN (music Local Area Network) [Fujimori and Foss, 2003] is a networking technology that

allows for the transportation of audio and control data between audio devices present on the

network, and is built on the IEEE1394 [Anderson, 1999] (FireWire) standard. FireWire is a serial

bus architecture that allows nodes to transmit data between each other in a peer-to-peer fashion,

without the need for the intervention of a host system.

If we consider the example legacy audio studio given in Figure 52, it is apparent, even in a small

studio set up, that there are a lot of cables that are used to transport audio and control signals

(MIDI) between the devices that comprise an audio studio. Each individual audio signal has its own

set of cables, and own dedicated signal path from source device, to destination device. There are

different types of cable that are used to transport the audio and control signals. The audio may be

transmitted in analogue form or in a variety of digital forms. Each type of transmission standard

may require a different type of cable and connectors.

If we replace all the cables shown in Figure 52 with one FireWire cable, we are left with a situation

as depicted in Figure 53. In this figure, the devices in the audio system are daisy chained together

with FireWire cabling to form a network of audio devices. Between each device exists only one

piece of cable, and through this cable each device may send audio and control signals to the other

devices present on the network. All the devices on the network share a cable, and routes are not

determined by the physical path of the cable.

 120

Figure 53: A small studio audio system connected via mLAN

Traditionally, each device in an audio studio may have a number of physical input and output

sockets on it, through which audio signals are sent and received. For example, if a sound engineer

wanted to send an audio signal to the first input channel of an audio mixing desk from the output of

a synthesizer, it would require that a cable be plugged from the output of the synthesizer, to the

dedicated socket on the audio mixing desk for the first input channel (this may also happen via a

hardware patchbay). With mLAN, these physical plugs (‘hard plugs’) have been replaced with

software plug abstractions (‘soft plugs’). The soft plugs of the devices on the FireWire network are

revealed to a sound engineer via software patchbay applications that run on computers. In order to

allow audio and control signals to flow between specific soft plugs on specific devices, connections

in software (‘soft connections’) are established via these software patchbays.

The structure of a FireWire network is hierarchical in nature. On a small FireWire network with a

few devices, the network could consist of a single FireWire bus. A single FireWire bus may contain

up to a maximum of 63 devices. In order to add more than 63 devices to a FireWire network, the

network needs to be broken down into a number of FireWire busses. The FireWire busses are joined

together with FireWire bridges. Thus, FireWire networks form structures as depicted in Figure 54.

A FireWire network consists of one or more FireWire busses. Each FireWire bus may consist of up

to 63 FireWire devices. mLAN devices may each have a number of soft plugs. These soft plugs are

used to transmit and receive audio and control signals across the FireWire network to and from

particular mLAN devices.

PC

Synthesizer

Audio
Mixing
Desk FireWire

Analogue Audio

BOB

 121

Figure 54: The hierarchical structure of a FireWire network

6.3. Software Patchbays

In digital audio networks, such as mLAN networks, a software patchbay is often used to configure

audio routing between audio devices on the network. These patchbays display the devices on the

network, along with their associated input and output soft plugs, and allow sound engineers to make

and break soft connections between the soft plugs of the devices.

There are a range of software patchbay types which include list-based patchbays, tree-view-based

patchbays, tree-grid-based patchbays and graphic-based patchbays.

6.3.1. List-Based Patchbays

List-based patchbays display the devices on an audio network along with their soft plugs in the form

of lists. Sound engineers are able to select the source and destination soft plugs from the lists and

make soft connections between the two. Figure 55 shows the mLAN Graphic Patchbay’s List View

[Yamaha, 2004c]. This window shows the mLAN devices present on a FireWire network, their

Bus

Bus

Bus

Bridge

Bridge

Network

Device

 122

various audio and MIDI soft plugs, and the connection settings of the devices. The annotations in

the figure are explained below:

1. This list displays the various mLAN devices on the FireWire network, and the soft output plugs

present on those devices. These are the various signal sources present on the network.

2. This list displays the various mLAN devices on the FireWire network along with the soft input

plugs present on those devices. These are the various signal destination points that exist on the

network.

3. This list displays the soft connections between the soft plugs of the mLAN devices on the

FireWire network.

Figure 55: The Yamaha mLAN Graphical Patchbay’s List View

Via this list-based patchbay, making soft connections between the various soft plugs of the mLAN

devices is done by scrolling to the required signal source plug and selecting it (see annotation 1 in

the above figure), scrolling to the required signal destination plug and selecting it (see annotation 2

in the above diagram) and then selecting the ‘Connect’ button.

The soft plugs of connected devices will be shown as having connections between them by

displaying the destination device in the ‘Destination Connector List’ (see annotation 3 in the above

diagram) next to the source plug.

1

2

3

 123

6.3.2. Tree-View-Based Patchbays

Tree-view-based patchbays present the layout of the network in the form of tree structures. Figure

56 shows the NAS Explorer Patchbay [Chigwamba and Foss, 2007]. The tree views of this

patchbay are organized in such a way as to represent the hierarchical nature of the FireWire network

it is representing. This patchbay contains two tree-view structures: one to represent the signal

source plugs available on the mLAN devices, and one to represent the signal destination plugs

available on the mLAN devices.

The root node of each tree represents the entire FireWire network. Its child nodes represent the

various FireWire busses that make up the network. Each node representing the various busses of the

network has child nodes representing the mLAN devices present on the bus. Each node in the tree

representing the devices on the busses has child nodes representing either the soft input plugs, or the

soft output plugs of the devices, depending on the specific tree. This way, sound engineers can

logically locate the require plugs by navigating their way down the tree structure.

 124

Figure 56: The NAS Explorer Patchbay

The annotations in Figure 56 are explained below:

1. This tree-view represents the structure of the FireWire network along with the mLAN devices

and their soft signal source plugs, hierarchically.

2. This tree-view represents the structure of the FireWire network along with the mLAN devices

and their soft signal destination plugs, hierarchically.

3. Making a soft connection between a soft signal source plug and a soft signal destination plug

requires that a sound engineer first select the soft signal source plug.

4. The second stage for a soft connection requires selecting the soft signal destination plug.

5. Once the soft signal source and destination plugs have been selected, a soft connection between

the two plugs is made by right clicking on one of the selected plugs, and selecting the ‘Connect’

menu item.

 125

6. The NAS Explorer Patchbay displays a soft connection by making the connected soft plug a

child node of the soft plugs involved in the connection. Disconnecting the soft plugs is

performed by right-clicking this child node, and selecting the ‘Disconnect’ menu item.

6.3.3. Tree-Grid-Based Patchbays

Tree-grid-based patchbays display the devices on a network, along with their associated soft plugs,

along the axes of grids. The cross points on the grids allow for soft connections between the soft

plugs of devices to be made or broken by selecting or deselecting the points on the grids,

respectively. Figure 57 shows the Routing Matrix of the Otari ND 20B mLAN Control Software

[Otari, 2005]. This tree-grid-based patchbay displays Otari ND 20B units on an mLAN network,

their associated soft plugs and the soft connections between them. The Otari ND 20B units, along

with their soft plugs, are shown hierarchically on the axes of the grid with tree views. Making and

breaking soft connections is performed by selecting and deselecting the cross points on the grid.

The annotations in this figure are explained below:

1. The left hand column shows the names of the devices present on the network and the input

channels available on each device, hierarchically.

2. The top row shows the names of the devices on the network and the output channels associated

with each device, hierarchically.

3. The checkered section of the grid shows which output channels are routed through to which

input channels. Making and breaking soft connections is performed by selecting and de-

selecting the cross points on the grid where the required output channels intersect the required

input channels.

 126

Figure 57: The Otari ND 20B mLAN Control Software Routing Matrix

6.3.4. Graphic-Based Patchbays

A graphic-based patchbay represents devices on an audio network with the aid of icons. Each icon

represents a device and the soft plugs associated with it. The soft connections between the devices

are represented with cable-like lines drawn between the plugs. The Yamaha Graphic Patchbay

[Yamaha, 2004c] is an example of a graphic-based patchbay. This patchbay is used to make

connections between mLAN devices on a FireWire network. The primary window of this patchbay

is shown in Figure 58. The annotations in this figure are explained below:

1. The mLAN devices on the FireWire network are shown on the workspace with the aid of

different coloured icons, and each icon may contain detail pertaining to the particular device.

2. The soft input and output plugs on each device are shown on the side of the icons that represent

the different mLAN devices.

 127

3. The soft connections between the devices are shown with graphic cable-like connectors.

Different colours are used to distinguish the different virtual cables.

4. In order to make a soft connection between the soft plugs on two different devices, the ‘out’

section of one device, and the ‘in’ section of another device is selected. This displays two

Connector windows that display the relevant plugs available on the selected devices. A

connection is then made by selecting the required soft output plug, and then selecting the

required soft input plug. Soft connections are then visually shown with graphical cables between

the soft output plugs, and the soft input plugs.

Figure 58: The Yamaha mLAN Graphic Patchbay

1

1 1

2
2

3 4

 128

6.3.5. A Comparison Of Patchbays

As the number of devices on an audio network increases, the complexity of the patchbay

representing the devices on the network may increase as well. Besides the list-based patchbay

discussed above, all of the patchbays represent the network hierarchically. This hierarchical

representation reflects the structure of the network itself. This makes navigating to required devices

and soft plugs take place in a logical way. It also reduces the amount of clutter on the displays of

the patchbays, as sound engineers have the option of only displaying the information that they are

interested in.

Table 6 shows the number of mouse button clicks it would take a sound engineer to make a

connection between two mLAN devices on a single bus FireWire network, using the patchbays

discussed above. The table distinguishes between the number of mouse button clicks it takes to

navigate to the required plugs and to make the connection.

 List-based Tree-view-based Tree-grid-based Graphic-based

Navigate to plugs 0 (Scroll) 6 4 2

Make connection 3 4 1 2

Table 6: The number of mouse clicks to make a soft connection

With all the patchbays discussed above, a sound engineer is required to individually navigate to the

required source and destinations soft plugs to make a soft connection.

The patchbays discussed above, except the tree-grid-based patchbay, require that sound engineers

individually select the source and destination soft plugs before a connection can be made. Even

though the list-based patchbay has the least number of mouse clicks to make a connection, the

process of selecting the plugs could become tedious. The lists in which the plugs are listed may

grow to the point where each list contains literally hundreds of individual items even for a small

studio.

When making a connection with the tree-grid-based patchbay, there is no need to explicitly select

the soft plugs required for a soft connection. The connection between the two soft plugs is

performed by selecting the cross point on the grid that is used to represent the two plugs. The soft

plugs are implicitly selected.

 129

6.4. A Double Grid-based Patchbay

The abovementioned patchbays, apart from the list-based patchbay, represent the associated

FireWire network in a hierarchical form. This hierarchical structure reflects the hierarchical

structure of the actual FireWire network. Since it is a reflection of the network’s structure, finding

required soft plugs occurs in a logical manner. Sound engineers would first locate the FireWire bus

that the required device is on, then locate the required mLAN device on that FireWire bus, and then

locate the required soft plugs. The hierarchical approach also reduces the amount of clutter

presented on the display. Sound engineers have the option of only displaying the soft plugs that are

relevant to their needs.

It is also apparent that actually making soft connections between the required soft plugs of devices

may involve many mouse button clicks. Besides the tree-grid-based patchbay, making soft

connections between the soft plugs of devices involves selecting the source soft plug and selecting

the destination soft plug, which then makes the connection or a connection between the selected

plugs has to be requested.

This section describes a FireWire patchbay which is an extension of the grid-based patchbay. It uses

two grids in order to perform connection management and has the following goals:

• Represent a FireWire network hierarchically.

• Ease the navigation to the required source and destination soft plugs on mLAN devices in order

to make soft connections between them.

• Ease the process of making connections between the required source and destination soft plugs.

6.4.1. Representing Devices On A FireWire Network

The double grid-based patchbay represents the devices on the associated FireWire network

hierarchically in the form of grids. Figure 59 shows the primary window of the double grid-based

patchbay. The devices shown on this grid are the computer connected to the network, an evaluation

board, and two breakout boxes. The annotations in this figure are explained below:

1. The tabs along the left-hand-side of the grid represent the source FireWire busses available on

the associated FireWire network.

 130

2. The tabs along the top of the grid represent the destination FireWire busses that are available on

the associated FireWire network.

3. The labels along the left-hand-side of the grid represent the source mLAN devices that exist on

the associated FireWire bus selected by the source bus tab.

4. The labels along the top of the grid represent the destination mLAN devices that exist on the

associated FireWire bus selected by the destination bus tab.

5. The grid is used to display the soft plugs of the required source mLAN device and destination

mLAN device. In order to display the soft plugs, the cross point on the grid where the required

source mLAN device row intersects the required destination mLAN device column is selected.

The plugs associated with these devices are displayed (see 6.4.2).

Figure 59: The double grid-based patchbay primary window

If a sound engineer is working in an environment where all the devices on the FireWire network are

on a single FireWire bus, navigating to the required soft source and destination plugs of mLAN

devices will always require a single mouse button click. This is because navigating to the required

source and destination soft plugs is done by clicking on the cross point on the grid where the source

device row intersects the destination device column. The grid approach alleviates the need to

individually navigate to the required source and destination devices.

 131

6.4.2. Representing The Soft Plugs Of mLAN Devices

When one of the cross points on the grid of the primary window is selected (see Figure 59 above),

the source and destination soft plugs associated with the selected devices are shown. An example of

a window that shows the source and destination soft plugs is shown in Figure 60. The particular

window shown is displayed when selecting the cross point between the ‘mLAN Windows PC’ and

‘OGT – IOne Source’ labels. The annotations in this figure are explained below:

1. The label along the left-hand-side of the grid shows the source mLAN device that was selected

from the primary window.

2. The label along the top of the grid shows the destination mLAN device that was selected from

the primary window.

3. The labels along the left-hand-side of the grid show the source soft plugs that are associated

with the selected source mLAN device.

4. The labels along the top of the grid show the destination soft plugs that are associated with the

selected destination mLAN device.

5. Making connections between the soft plugs of the selected devices involves selecting the cross

points on the grid where the rows of the source soft plugs intersect the columns of the

destination soft plugs. Similarly, breaking a connection involves de-selecting the cross point on

the grid where the source and destination soft plug labels intersect on the grid. If, for example, a

sound engineer wanted to route the audio signal from the ‘Audio Out8’ output of the ‘mLAN

Windows PC’ device to the ‘AES1 L’ input of the ‘OGT – IOne Source’ device, the cross point

between these two soft plug labels would have to be selected, as shown with the circle in the

diagram.

 132

Figure 60: The double grid-based patchbay selected source and destination soft plugs window

On this patchbay, an active soft connection is shown with a red button, and an inactive soft

connection is shown with an orange button.

6.4.3. Summary Of The Double Grid-Based Patchbay

The double grid-based patchbay approach to representing a FireWire network is hierarchical in

nature. This allows for mLAN devices and their associated soft plugs to be located logically. This

approach avoids clutter as the patchbay only displays the devices, and their associated soft plugs,

that the sound engineer is interested in.

1

3

5

5

2 4

 133

With the patchbays mentioned in section 6.3, locating source and destination soft plugs happen

separately: First, the source device’s source soft plugs are located, and then the destination device’s

destination soft plugs. With the double grid-based approach to patching, once the correct busses

have been selected via the tabs, locating the required source and destination soft plugs is performed

by selecting the cross point on the grid where the source device label intersects the destination

device label. This action requires a single mouse button click.

Apart from the tree-grid-based graphic patchbay, making connections on the patchbays mentioned

in section 6.3 happened by first selecting the source soft plug and selecting the destination soft plug.

Making the connection either happens after the plugs have been selected, or a connection between

the two selected soft plugs has to be explicitly requested. With the double grid-based patchbay

shown in Figure 60, making a connection between the required source and destination soft plugs

requires that the cross point between source soft plug label and the destination soft plug label be

selected. Patching with a grid-based patchbay requires one mouse button click per connection.

In total, making a single connection (on a signal bus FireWire network) with the double grid-based

patchbay requires two mouse button clicks. When compared to the other approaches listed in Table

6, the number of mouse button clicks is reduced, yet it retains its hierarchical nature.

6.4.4. The Double Grid-Based Patchbay Architecture

The double grid-based patchbay is a client to the mLAN Connection Management Server (mCMS)

[Fujimori, Foss, Klinkrant and Bangay, 2003b and Chigwamba, et al, 2007]. The mCMS has been

developed to allow soft connections between the soft plugs of mLAN devices on a FireWire

network to take place. The server runs on a computer that is connected to the FireWire network and

client applications are able to connect to the server using the Internet Protocol. This architecture is

shown in Figure 61.

 134

Figure 61: The mCMS architecture

Once a client application is connected to the server, it may request that the server make soft

connections between the mLAN devices on the FireWire network connected to the server computer.

The server may then perform the requested actions, or respond with error messages.

Communication between a client and the server application happens via a defined collection of

XML documents [Networked Audio Solutions, 2004]. A client application may send specific

request XML documents to the server, and the server may respond with response XML documents.

6.4.5. Learning About The Network Configuration And Representing It

When the double grid-based patchbay application is started up, it is unaware of the configuration of

the network that it is meant to represent. In order for it to be able to represent the network, the

configuration has to be sent from the server at the request of the client application. Once the

patchbay is connected to the server, a ‘refresh request’ XML document is sent to the server. This

XML document is shown in Listing 24. This XML document requests the server to send the

configuration of the network to the client application.

Double Grid-Based
Patchbay (Client)

mCMS
(Server)

mLAN
Device

mLAN
Device

mLAN
Device

mLAN
Device

IP Connection

FireWire

 135

Listing 24: The mCMS refresh request XML document

The server responds with a ‘refresh response’ XML document which details the configuration of the

network. This XML document describes:

• The FireWire network.

• The FireWire busses that comprise the network.

• The mLAN devices on each FireWire bus.

• The input and output audio and MIDI soft plugs present on each mLAN device.

• The various plug-layouts available to an mLAN device.

• The various wordclock synchronisation sources present on each mLAN device.

• The wordclock outputs that are present on each mLAN device.

Listing 25 shows a portion of the ‘refresh response’ XML document that is sent from the server to

the client patchbay application detailing the configuration of the FireWire network. The actual

configuration specifics are described with XML elements that are child elements to the

mLANConfiguration XML element.

<mLANServerCommand version="1.0">

 <object name="patch" namespace="">

 <method name="refresh"/>

 </object>

</mLANServerCommand>

 136

Listing 25: A portion of a 'refresh response' XML document

Listing 26 shows the IEEE1394Network XML element. This XML element is a child to the

mLANConfiguration XML element (shown in Listing 25 above). This XML element is used to

describe the FireWire network that the server computer is attached to.

Listing 26: A portion of a 'refresh response' XML document used to describe a FireWire network

• The IEEE1394Network XML element is used to describe the FireWire network (attached to

the server computer) as a whole.

<mLANClientCommand>

 <object name="patch">

 <method name="refresh">

 <parameter name="configuration" value="Tue Feb 27 11:10:43

2007">

 <mLANConfiguration>

...

 </mLANConfiguration>

 </parameter>

 </method>

 </object>

</mLANClientCommand>

<IEEE1394Network>

<IEEE1394Bus bandwidthAvailable="2756" busName="3FF">

<IEEE1394Device GUID="0013f00400400011" firmware="DICE II OGT

0.1" model="DICE II Evaluation Board" nickname="IOne Connects-

left" nicknameIsWriteable="yes" numPossibleDeviceConnections="4"

vendor="WaveFront">

<mLANDevice>

 ...

 </mLANDevice>

 </IEEE1394Device>

 </IEEE1394Bus>

</IEEE1394Network>

 137

• Each IEEE1394Bus XML element is used to describe a FireWire bus. It has XML attributes

that allow the server to inform the client application how much bandwidth is available on the

specific bus (bandwidthAvailable), and to provide it with a name (busName).

• Each of the IEEE1394Device XML elements is used to describe a device present on the

relevant FireWire bus. The XML attributes associated with this XML element allow a Globally

Unique Identifier (GUID), a name (nickname) and other information to be associated with the

device.

• The mLANDevice XML element is used to describe information that is relevant to a particular

mLAN device.

Listing 27 shows how the soft plugs that are associated with a particular mLAN device are

described. Each soft plug (regardless of its type) is described with a plug XML element. The XML

attributes associated with each plug XML element are used to describe properties associated with

each soft plug. Included in these are XML attributes used to specify the direction of the soft plug

(whether or not it is used to send signals, or receive them) (direction), the type of soft plug that

it is (whether it is an audio plug, or a MIDI plug) (plugType) and a unique ID (id), amongst

other properties.

Listing 27: A portion of a 'refresh response' XML document used to describe the soft plugs associated with an

mLAN device

Each mLAN device may have a number of plug layouts associated with it. Plug layouts represent

mutually exclusive configurations for a particular device. Each plug layout that is available to a

device contains a set of different types of soft plugs and wordclock sources. mLAN devices may be

capable of transmitting signals at various sample rates. As this sample rate increases, the number of

<mLANDevice>

<mLANDevicePlugs>

<plug direction="out" id="0" isDangling="yes"

nameIsWriteable="no" plugName="AES1 L" plugType="audio"/>

<plug direction="out" id="1" isDangling="yes"

nameIsWriteable="no" plugName="AES1 R" plugType="audio"/>

...

</mLANDevicePlugs>

...

</mLANDevice>

 138

soft plugs of the device may be reduced. In this type of situation, it could be useful to define two

plug layouts; one for low sample rates, and another for high sample rates. The plug layout for low

sample rates will contain the plugs that are available to the device when it is using a low sample rate

(for example, the device may transmit on thirty two soft plugs), and the plug layout for high sample

rates will contain the soft plugs that are available to a device when it is using a higher sample rate

(for example, the device may only transmit on sixteen plugs).

Listing 28 shows how the plug layouts for an mLAN device are described in a ‘refresh response’

XML document. Each plugLayout XML element is used to describe a particular plug layout.

The XML attributes associated with this XML element are used to associate a unique ID (id) and a

name to each plug layout (plugLayoutName), amongst other properties.

Listing 28: A portion of a 'refresh response' XML document used to describe the plug layouts associated with an

mLAN device

It is possible that each mLAN device on the FireWire network may have a number of wordclock

outputs associated with it. A common wordclock is used to ensure that the devices on a FireWire

network all use exactly the same sampling rate. If a sending and receiving device do not sample an

audio signal at the same rate, the resulting audio signal could contain glitches as the receiving

device may sample incoming audio too slowly or too quickly. The wordclock output of a particular

device (master) is used to synchronise the wordclock outputs of other mLAN devices (slaves). Each

device’s wordclock outputs are described using the wordClockOutput XML element, as seen in

Listing 29. It has XML attributes that are used to:

• Describe the ID of the wordclock output (id).

• Associate it with a specific synchronisation source (currentSyncSourceID).

<mLANDevice>

...

<mLANDevicePlugLayouts currentPlugLayoutID="1" numPlugLayouts="2">

<plugLayout id="0" nameIsWriteable="no"

plugLayoutName="Low Sample Rate Pluglayout"/>

<plugLayout id="1" nameIsWriteable="no"

plugLayoutName="High Sample Rate Pluglayout"/>

</mLANDevicePlugLayouts>

...

</mLANDevice>

 139

• Specify the master wordclock output ID (masterWordClockOutputID) and device GUID

(masterGUID), if the wordclock output is acting as a wordclock slave.

Listing 29: A portion of a 'refresh response' XML document used to describe the wordclock outputs associated

with an mLAN device

Each wordclock output may have various synchronisation sources. The wordclock may be provided

internally by the device, or it may be generated by external devices. Each of these wordclock

sources is described with a syncSource XML element, as seen in Listing 30. Each

syncSource XML element has a number of XML attributes associated with it that allow for

properties to be described. Amongst these are XML attributes to describe:

• A descriptive name (syncSourceName).

• The sample rate at which the synchronisation source is currently set to

(currentSampleRate).

• An ID that is used to identify the synchronisation source (id).

• The sample rates that the synchronisation source is capable of supporting

(supportedSampleRates).

<mLANDevice>

...

<mLANDeviceWordClockOutputs numWordClockOutputs="1">

<wordClockOutput currentSyncSourceID="1" id="0"

masterGUID="0013f00400000011" masterWordClockOutputID="0"/>

</mLANDeviceWordClockOutputs>

...

</mLANDevice>

 140

Listing 30: A portion of a 'refresh response' XML document used to describe the synchronisation sources that

may be associated with wordclock outputs

The mLANConfiguration XML element also has child elements to describe the connections

that exist between the soft plugs of the mLAN devices on a FireWire network. These soft

connections are described using Patch XML elements. Each Patch XML element gives the

GUID (NODE_GUID) and the plug ID (MLAN_PLUG_ID) of the destination

(destEndPointLocator) and source (srcEndPointLocator) device involved in the soft

connection. Listing 31 shows a portion of a ‘refresh response’ XML document that describes the

connections that exist between devices.

Listing 31: A portion of a 'refresh response' XML document used to describe the soft connections between

mLAN devices

<Connections>

<Patch destEndPointLocator=

"NODE_GUID='0090270001b37283',MLAN_PLUG_ID='96'" srcEndPointLocator=

"NODE_GUID='0013f00400000014',MLAN_PLUG_ID='0'"/>

<Patch destEndPointLocator=

"NODE_GUID='0090270001b37283',MLAN_PLUG_ID='97'"

srcEndPointLocator= "NODE_GUID='0013f00400000014',MLAN_PLUG_ID='1'"/>

</ Connections>

<mLANDevice>

...

<mLANDeviceSyncSources numSyncSources="2">

<syncSource currentSampleRate="0000bb80" id="0"

nameIsWriteable="no"

supportedSampleRates="00007d00|0000ac44|0000bb80|

" syncMode="3" syncSourceName="Internal Clock"/>

<syncSource currentSampleRate="0000bb80" id="1"

nameIsWriteable="no"

supportedSampleRates="00007d00|0000ac44|0000bb80|

" syncMode="1" syncSourceName="SYT Clock"/>

</mLANDeviceSyncSources>

...

</mLANDevice>

 141

From the information contained within the ‘refresh response’ XML document, the double grid-

based patchbay is able to learn about the configuration of the FireWire network that the server

computer is connected to. The double grid-patchbay application is able to build up its internal object

structure, as depicted in Figure 62, to reflect the FireWire network described in the ‘refresh

response’ XML document. There exist objects that allow for the representation of the various

components that make up a FireWire network. At the bottom of the figure, the associations between

the specific plug objects represent the connections that may exist between them.

Audio Plug

Plug
id
isDangling
nameIsWriteable
plugName

MIDI Plug

MIDI Input Plug MIDI Output Plug

0..10..* 0..10..*

Audio Output PlugAudio Input Plug

0..10..* 0..10..*

Plug Layout

Wordclock Output
currentSyncSourceID
id
masterGUID
masterWordclockOutputID

Sync Source
currentSampleRate
id
nameIsWriteable
supportedSampleRates
syncMode
syncSourceName

11

IEEE1394 Bus
name
bandwidthAvailable

mLAN Device
GUID
firmware
model
nickname
nickNameIsWriteable
numPossibleDeviceConnections
vendor

Figure 62: A portion of the double grid-based patchbay's object model

From the information contained within the internal objects of the system, the application is able to

build up the patchbay displays to represent the FireWire network. This is shown via the following

annotations in Figure 63:

1. The IEEE1394 Bus objects are used to represent FireWire buses. For each IEEE1394 Bus

object that the IEEE1394 Network object has as a child object, a tab is added to the devices

window to represent these busses.

2. Each mLAN Device object is used to represent an mLAN device on a FireWire bus. For each

mLAN device that is part of a particular FireWire bus, a label is added to the source devices list,

and the destination devices list. In the figure below, the ‘Local’ FireWire bus has three different

devices on it.

3. The various soft plugs that each device has are represented with the specific instances of the

Plug class. On the window that allows for connections to be made between the soft plugs of

 142

devices, the source soft plugs of the selected device are shown as labels along the left-hand-side

of the routing matrix.

4. The destination soft plugs are shown as labels along the top of the routing matrix.

5. In the object model, a connection between two soft plugs is represented as an association

between the two specific plug objects. Visually, these connections are represented by activating

the relevant buttons on the routing matrix.

Figure 63: The visual representation of the double grid-based patchbay's objects

6.4.6. Making A Connection

When a sound engineer selects one of the cross points on the routing matrix (in order to make a

connection between the corresponding soft plugs), a ‘connect request’ XML document is generated

by the double grid-based patchbay and sent to the mCMS. An example of a connection request

document is shown in Listing 32. This XML document contains:

• A request to make a connection. This is specified through the use of the connect method (see

the method XML element) of the patch object (see the object XML element).

1 2

3

4

5

 143

• The soft plug information of the plugs that are to be connected. This information is described

with the use of the parameter XML elements. Specifically, the GUID’s of the source and

destination devices, the type of plugs being connected and the ID’s of the plugs being

connected are described with the parameter XML elements. This information was

previously obtained from the server via the ‘refresh response’ XML document. The server is

able to use the XML document to make a connection between the two soft plugs of the devices.

Listing 32: An example of a ‘connect request’ XML document

6.4.7. Breaking A Connection

As with making a connection between two soft plugs, when a sound engineer wishes to break a

connection between two soft plugs, the double grid-based patchbay application requests the server

to perform this via a ‘disconnect request’ XML document. An example of a ‘disconnect request’

XML document is shown in Listing 33. This XML document contains:

• A request to the server to break a connection. This is specified through the use of the

disconnect method (see the method XML element) of the patch object (see the object XML

element).

• Information about the destination device involved in the connection. The required information

is described with the use of parameter XML elements. Specifically, the GUID of the

destination device, the type of plug involved in the connection, and the ID of the destination

plug.

<mLANServerCommand version="1.0">

 <object name="patch">

 <method name="connect">

 <parameter name="sourceGUID" value="0013f00400000014"/>

 <parameter name="sourcePlugType" value="audio"/>

 <parameter name="sourcePlugID" value="6"/>

 <parameter name="destinationGUID" value="0090270001b37283"/>

 <parameter name="destinationPlugType" value="audio"/>

 <parameter name="destinationPlugID" value="102"/>

 </method>

 </object>

</mLANServerCommand>

 144

Listing 33: An example of a ‘disconnect request’ XML document

6.4.8. Making Other Requests

It is possible to request the mCMS to perform other actions as well, such as adjusting the current

plug layout of a device, setting a particular device to act as a global wordclock master, and setting

up individual master/slave wordclock relationships. These requests all happen via XML documents

that are similar in nature to the ‘connect request’ and ‘disconnect request’ XML documents

discussed above.

6.4.9. Request Failures

When a ‘connect request’ or a ‘disconnect request’ (or any other request) XML document is sent to

the server, it is possible that the requested action could fail. In this case, the server sends an ‘error

notify’ XML document to the double grid-based patchbay specifying the reason the requested

action could not be performed. An example of such a document can be seen in Listing 34. When the

patchbay receives such error notifications, the error message is displayed to the user.

<mLANServerCommand version="1.0">

 <object name="patch">

 <method name="disconnect">

 <parameter name="destinationGUID" value="0090270001b37283"/>

 <parameter name="destinationPlugType" value="audio"/>

 <parameter name="destinationPlugID" value="102"/>

 </method>

 </object>

</mLANServerCommand>

 145

Listing 34: An example of an 'error notify' XML document

6.5. Summary

The patchbays discussed in this chapter (except the list-based patchbay) graphically present the

audio network that they are representing hierarchically. The hierarchical representation allows for

logical navigation to required soft plugs, and avoids the displays of these patchbays becoming

cluttered. The hierarchical nature of these patchbays does however increase the number of mouse

button clicks a sound engineer has to perform in order to locate required soft plugs. The tree-grid-

based patchbay was identified as requiring less mouse button clicks in order to actually make a

connection between two soft plugs. A single click on the grid implicitly selects the required source

and destination soft plugs. The newly developed double grid-based patchbay uses a grid for

navigating to required soft plugs and for actually making the connections between the soft plugs.

This approach has reduced the number of mouse button clicks required to make connections, but

still represents the network hierarchically.

The double grid-based patchbay application was successfully developed to be a client application to

the mCMS. The server computer is connected to a FireWire network and has the task of actually

making the connections between the soft plugs of the mLAN devices. The client and the server

applications communicate using XML documents. The client application sends request XML

documents to the server, and the server application optionally responds with response XML

documents. Via the double grid-based patchbay, a sound engineer is able to make soft connections

between the soft plugs of mLAN devices.

<mLANClientCommand>

 <object name="error">

 <method name="notify">

 <parameter name="description" value="Failed to create the requested

connection"/>

 </method>

 </object>

</mLANClientCommand>

 146

Chapter 07

Connection And Device Parameter Recall

The software applications discussed in the previous chapters provide certain useful capabilities:

• The routing matrices of the Matrix Mixer allow for the remote control over the routing and

manipulation of audio signals within audio mixing desks.

• The Studio Manager 2 application allows for:

• The representation and remote control of audio devices from within DAW applications via

software device editors.

• The saving and restoring of the parameters of the hardware devices that the software

devices editors are representing.

• The double grid-based FireWire patchbay allows for audio signals to be routed between mLAN

devices on FireWire networks.

This chapter proposes a single connection management application that integrates a number of

studio control capabilities, namely:

• The representation and remote control of audio devices via software device editors, with the

ability to represent and control audio mixing desks with software routing matrices.

• The representation and remote control over the audio routing between the audio devices.

• The ability to save the state of the parameters of each software device editor, and hence the

hardware devices that they represent.

• The ability to save the state of the soft connections between the audio devices.

• The ability to restore the state of each software device editor, and hence the hardware devices

that they represent.

• The ability to restore the soft connections that existed between the audio devices.

• The ability for this representation, control and parameter saving and recalling to happen from

within DAW applications.

 147

7.1. Introduction

In order to allow for the representation, control, and state recall of IEEE1394 audio devices from

within DAW applications, the double grid-based patchbay was implemented in such a way that it

may be hosted by Studio Connections compatible DAW applications. The patchbay was also

implemented such that it is capable of hosting the various device editors that are available on the

host system. The role of the double grid patchbay is such that it:

• Performs the same tasks as Studio Manager 2 would. Specifically, it should:

• Host software device editors that allow for the representation and remote control of

hardware audio devices.

• Allow for the state of the parameters of the hardware devices to be saved and restored.

• Allow for connections between the audio devices that are represented on the patchbay to be

managed.

• Allow the connections between devices to be saved and restored.

The role of the double grid-based patchbay as a device editor host is shown in Figure 64.

Figure 64: The double grid-based patchbay hosting

The integration of the double grid-based patchbay, the Matrix Mixer and a DAW application is

shown in Figure 65.

DAW

Hosts

Hosts many

Device
Editor

Double grid-based
patchbay

 148

Figure 65: The double grid-based patchbay hosting from within Cubase

The annotations in Figure 65 are explained below:

1. When the DAW application is initialised, it hosts and initialises the double grid-based patchbay.

This patchbay may then be displayed from within the DAW application by selecting it from the

appropriate menu.

1

3

2

 149

2. Once the patchbay is displayed, it is possible to make connections between the soft plugs of the

mLAN devices being represented on the patchbay. This is done by selecting a cross point

between the required source and destination devices in order to display the source soft plugs of

the source mLAN device, and the destination soft plugs of the destination mLAN device. A

sound engineer is then able to make the required connections by selecting the cross points on the

displayed routing matrix.

3. It is possible to associate software device editors with devices that are represented on the double

grid-based patchbay. From the primary window of the double grid-based patchbay, a sound

engineer is able to display a device editor that is associated with a particular mLAN device by

selecting the appropriate label. Shown here is the Matrix Mixer being associated with the

‘01V96’ device. Via the device editor, a sound engineer is able to manipulate the device that it

represents. Associations between devices and device editors are set up manually.

With the aid of the double grid-based patchbay, a DAW application is able to save the state of the

soft connections between the devices its representing, as well as save the state of each one of the

devices. These states are saved to the hosting DAW’s native song file. When the DAW application

later reloads one of its saved song files, it is able to extract the state data from the song file. The

state data is passed back to the double grid-based patchbay. The patchbay is then able to use this

data to restore the connection and device states of the audio devices.

7.2. Providing Studio Wide Total Recall

This section will provide a description of how the capabilities shown in section 7.1 were designed

and implemented. The functionality that was implemented to:

• Allow the patchbay to be hosted by a DAW application.

• Allow the patchbay to host software devices editors.

• Allow for studio wide Total Recall.

is shown in Figure 66 in the form of a use case diagram.

 150

Initialise

Initialise Display

Un-Initialise Display

DAW

Sound
Engineer

Receive MIDI Message

Send MIDI Message

Save State

Load State

Perform Total Recall

Open Device Editor

Associate Device Editor
With Device

Un-Initialise

Device Editor

Figure 66: Double grid-based patchbay hosting use case diagram

Each device editor that Studio Manager 2 is able to host is implemented as an enhanced OPT

component. Studio Manager 2 itself is also implemented as an enhanced OPT component. These

components are built using the COM architecture and there is a set of defined programming

interfaces through which DAW applications may communicate with Studio Manager 2.

In order to allow compatible DAW applications to communicate with the double grid-based

patchbay (rather than Studio Manager 2) an implementation of these interfaces was created. The

nature of the interfaces implemented for the double grid-based patchbay is the same as the

interfaces that are implemented by the device editors. These programming interfaces were discussed

in “Chapter 05 Studio Connections”.

The core interfaces that had to be implemented by the double grid-based patchbay are listed below:

 151

• IMPInitialise: The methods of the IMPInitialise interface are used by a DAW

application to:

• Pass in its interface pointers to the double grid-based patchbay. This enables the patchbay

to communicate with the DAW application.

• Initialise and un-initialise the patchbay application.

• IPropertyPage: The methods of the IPropertyPage interface allow for the display of

the double grid-based patchbay to be manipulated. Most importantly, it allows a DAW

application to initialised, un-initialised and show the display of the patchbay.

• IMPEventFilter: The IMPEventFilter interface allows for the communication of

queued events from the DAW application to the patchbay application.

• IPersistStream: Through the methods of the IPersistStream interface, the double

grid-based patchbay is able to save and restore its state to and from a supplied serial stream.

• ISM2Comp: The methods of the ISM2Comp interface allows a hosting DAW application to

display the device editors that are hosted by the patchbay application, and it provides a way to

control the Total Recall operations of the patchbay.

7.2.1. Initialising And Un-Initialising The Double Grid-Based Patchbay

The initialisation and un-initialisation of the double grid-based patchbay is controlled through two

methods that are defined as part of the IMPInitialise interface. These two methods are

MPConnect and MPDisconnect.

When a DAW application wishes to initialise the double grid-based patchbay (for example, this

may happen when the DAW application is started up), it will query the patchbay application for a

pointer to its IMPInitialise interface. The DAW application may then call the MPConnect

method on that interface pointer. When the double grid-based patchbay’s implementation of the

MPConnect method is called, it connects to the mLAN Connection Management Server (mCMS).

Once a connection has been established, it sends a ‘refresh request’ XML document to the server

requesting the configuration of the FireWire network that is attached to the server computer. The

patchbay application is initialised and it waits for a response from the server. At this point as well,

the display of the patchbay application is not displayed and no interaction between the patchbay and

the devices editors has taken place. Once the server has responded with ‘refresh response’ XML

 152

document to the patchbay it builds up its internal objects, as shown in Figure 62 in the previous

chapter. This initialisation process is shown diagrammatically in Figure 67.

Figure 67: The initialisation of the double grid-based patchbay by a DAW application

When the DAW application that is hosting the patchbay wishes to un-initialise it (for example, this

could happen when the DAW application itself shuts down), it calls the patchbay’s

MPDisconnect method of the IMPInitialise interface. When the patchbay’s

implementation of this method is called, it disconnects itself from the mCMS and frees the

resources that it was utilising.

7.2.2. Initialising And Un-Initialising The Double Grid-Based Patchbay’s

Display

When a DAW application initialises the double grid-based patchbay, its display is not shown. The

display of the patchbay is only shown on request from the hosting DAW application. This may

happen once a user has requested the DAW application to display the patchbay (for example, this

may happen via one of the DAW application’s menus). The initialisation and un-initialisation of the

display happens via the Activate and Deactivate methods of the IPropertyPage

interface, respectively, of which the patchbay has an implementation.

DAW

Double
Grid-based
Patchbay

mCMS

1. The DAW application initialises the
double grid-based patchbay through the
IMPInitialise interface.

2. During the initialisation of the patchbay,
the patchbay application establishes a
TCP/IP connection with the mCMS

3. Once the patchbay has established a connection with the mCMS, it is able to
communicate with it by sending it ‘XML request documents’. The server may respond
with ‘XML response documents’.

 153

When the double grid-based patchbay’s implementation of the Activate method is called, the

primary window of the application is built up to reflect the internal objects of the system, as seen in

Figure 63 of the previous chapter. It provides a representation of the FireWire network, its busses,

and the mLAN devices that are on the FireWire busses. Once the display is initialised, the DAW

application may then visually display it by calling the Show method of the IPropertyPage

interface.

When a sound engineer closes the patchbay, the patchbay’s implementation of the Deactivate

method is called. It is here that the patchbay frees up any resources that the display was utilising.

7.2.3. Associating Device Editors With Devices

When the patchbay application is initialised, no software device editors are associated with the

mLAN devices that are represented on the patchbay. These associations have to be set up by a

sound engineer. A sound engineer is able to set the associations by selecting the device and

selecting the ‘Set device editor…’ menu item. Via the ‘Device Editor Setup’ window that is

displayed, a sound engineer is able to select which software device editor is associated with which

device. This window can be seen in Figure 68. This window displays the available devices on the

mLAN network, and the device editors that are installed on the computer system. From this

window, a sound engineer selects the required mLAN device (from the ‘Devices’ list) and the

device editor it is to be associated with (from the ‘Select Device Editor’ list).

 154

Figure 68: Associating software device editors with hardware devices

Once device editors have been associated with devices, each device editor is initialised. The

patchbay is able to initialise each device editor by querying it for its IMPInitialise interface

pointer. Once a pointer to this interface has been obtained, the double grid-based application will

call the MPConnect method on that interface pointer. This instructs the particular device editor to

initialise itself. After each device editor has been initialised, the patchbay awaits further instructions

from the patchbay application.

7.2.4. Displaying Device Editors

Once the mLAN devices that are represented on the patchbay have device editors associated with

them, it is possible to display them and use them to manipulate their corresponding hardware

devices. In order to display a device editor that is associated with an mLAN device, a sound

engineer would select the required device and then select ‘Open device editor…’ from the popup

menu. This then displays the device editor, as shown in Figure 69.

 155

Figure 69: Displaying device editors from the double grid-base patchbay

When a sound engineer requests the patchbay to display a device editor, the patchbay queries the

specific device editor for its IPropertyPage interface. Once the patchbay has obtained a pointer

to the particular device editor’s IPropertyPage interface, it calls the specific device editor’s

implementation of the Activate method. The device editor will then create its window to reflect

the state that the device editor is in. The patchbay then displays the device editor’s window by

calling the IPropertyPage’s Show method.

7.2.5. Receiving MIDI Messages

Any MIDI messages sent by hardware audio devices destined for their corresponding software

device editors are received by the DAW application that is hosting the double grid-based patchbay.

The DAW application routes the incoming MIDI messages to the double grid-based patchbay. The

patchbay is then responsible for routing the incoming MIDI messages to each individual device

editor that it has initialised. Each device editor is responsible for processing the incoming MIDI

message appropriately.

The patchbay provides an implementation of the IMPEventFilter’s MPOnEvents method. It

is through this method that the MIDI messages are passed from the DAW application to the

 156

patchbay. The patchbay application queries each device editor for its IMPEventFilter interface

and is able to pass the incoming MIDI messages to the device editors through each device editor’s

implementation of the MPOnEvents method. Each device editor processes the incoming MIDI

messages appropriately.

7.2.6. Sending MIDI Messages

When the double grid-based patchbay application is initialised via its MPConnect method, the

hosting DAW application passes in a pointer to its IMPAsyncOutput interface. The patchbay

application retains a pointer to this interface. The MPOutput method of this interface is used to

output MIDI messages. When each device editor is initialised (via its MPConnect method), a

pointer to the DAW application’s IMPAsyncOutput interface is passed to it. Each device editor

may then send MIDI messages to their corresponding hardware device via this interface’s

MPOutput method.

7.2.7. Save State

A DAW application may request the patchbay application to save itself to a given stream. For

example, this could happen when a sound engineer requests the DAW application to save the

project he is working on. The state data provided by the patchbay application may be saved to the

DAW application’s native song file. When the DAW application wants to save the state of the

connections between the devices represented on the patchbay and the state of the device editors, it

calls the patchbay’s implementation of the IPersistStream’s Save method. The Save

method requests the patchbay to save its state to a supplied serial stream.

When the patchbay’s implementation of this method is called, for each device that is represented on

the patchbay the following data is saved to the supplied stream (the numbers below correspond to

the annotations in Figure 70):

1. The position in the stream after the current device’s state data. Once the state of a device, and its

associated device editor, has been written to the stream, the patchbay application saves the

position in the stream where the next device’s state data is written to.

2. The GUID of the device.

 157

3. The model ID of the device.

4. The vendor ID of the device.

5. The ‘connect request’ XML documents that represent the connections from the soft plugs of the

device.

6. If there is a device editor associated with the device, the GUID of the device editor.

7. The stream position after the device editor’s state data.

8. The device editor’s state data, as saved by the device editor itself.

Figure 70: The double grid-based patchbay's state data format

Each device editor is responsible for writing its own state data to the stream (annotation 8 in Figure

70 above). The patchbay application cycles through each of the instantiated device editors and calls

their implementations of the IPersistStream’s Save method. Via this method, the patchbay

passes in a pointer to the stream and each device editor saves its state data to the stream.

7.2.8. Load State

A DAW application may request the double grid-based patchbay application to restore its state from

a supplied serial stream. The DAW application does this by obtaining a pointer to the patchbay’s

IPersistStream interface and calling the patchbay’s implementation of the Load method. This

method requests the patchbay application to restore itself to a previous state from the data which

may be obtained from the supplied serial stream. A pointer to the stream object is supplied to the

patchbay via the Load method.

The data is read out of the stream in the format that it was written to the stream (see section 7.2.7

above). Initially, for each mLAN device, the following data is read out of the stream:

1 2 3 4 5 6 7 8 1 …..

Device 01 Device 02

 158

• The position in the stream after the mLAN device’s state data (see annotation 1 in Figure 70

above).

• The GUID of the mLAN device.

• The model ID of the mLAN device.

• The vendor ID of the mLAN device.

The patchbay application will check to see if the mLAN device still exists on the network. This is

done by checking to see if the GUID read out of the stream matches the GUID of any of the devices

currently on the FireWire network. If the device is not found on the network, the patchbay

application checks to see if the device has been replaced with a device of the same type. For

example, a sound engineer may save the state of a Yamaha 01V96 Digital Mixing Console, remove

it from the network and replace it with another Yamaha 01V96 Digital Mixing Console. The

patchbay application is able to find a replacement device from the model and vendor ID’s that were

saved to the stream. The patchbay application cycles through each of its mLAN device objects to

check if devices with the same vendor and model ID’s have been placed on the network. If the

original mLAN device has been replaced with another mLAN device that has the same vendor and

model ID, the state data that applied to the original device will apply to the replacement device. If

more than one replacement device has been found, the application requests the sound engineer to

select which device should be the replacement device. If it is found that the mLAN device has been

removed, and no replacement device is available, the patchbay application skips over the data in the

stream that is related to the removed device, and reads out the data for the next device. The

patchbay application is able to use the initial value read out of the stream to skip over the state data

(see annotation 1 in Figure 70 above).

Once an appropriate device is found on the network, the ‘connect request’ XML documents

associated with the mLAN device are read out of the stream, and temporarily stored. The XML

documents need to be stored as it may be necessary to alter the device GUID’s that are contained

within the documents, as the devices may have been replaced with other devices. The application is

only aware of the replacement devices once the entire stream has been read.

Next, if a device editor was originally associated with a particular device, the GUID of the device

editor is read out of the stream. The GUID is used to locate the appropriate device editor from the

system registry and to instantiate it. Once the device editor is instantiated, it is associated with the

 159

appropriate mLAN device. If the device editor fails to initialise, the patchbay application skips past

the data relevant to the device editor and reads out the data for the next mLAN device.

If a device editor is successfully instantiated, the patchbay application obtains a pointer to its

IPersistStream interface and calls its implementation of the Load method. Through the

Load method, the patchbay passes in the pointer to the stream object. The device editor is then able

to read out its state data from the stream and use that data to restore its state to the state that was

written to the stream.

Once all of the relevant ‘connect request’ XML documents have been read out of the stream and all

of the device editors have been initialised, the GUID’s in the ‘connect request’ XML documents are

updated appropriately, if needed. Once all of the documents have been updated, the information

contained in them is used to set up the associations between the relevant Plug objects of the mLAN

Device objects (the associations denote connections between the plugs).

7.2.9. Perform Total Recall

Total Recall refers to the transfer of state from network to software, or from software to network. In

the context of the double grid-based patchbay, Total Recall takes place when the state of the

patchbay and its device editors is transferred across to the relative hardware devices, or the state of

the soft connections between devices and the state of the hardware devices is transferred across to

the patchbay application and its device editors. For example, if a DAW application has loaded a

particular song file, and it has restored the state of the double grid-based patchbay application and

its device editors, Total Recall would refer to the subsequent transfer of software state to hardware,

or to the transfer of state from hardware to software. This enables the software and hardware to

synchronise their states.

Total Recall is controlled by the DAW application hosting the patchbay through the ReSync

method of the ISM2Comp interface. The method declaration is shown in Listing 35. When this

method is called by a hosting DAW application, it is the responsibility of the patchbay to find out

which direction the state transfer should take place and then to perform the transfer of state.

 160

Listing 35: The ISM2Comp::ReSync method

When the method is called, the patchbay application displays a dialog window from which a sound

engineer may select the direction in which the state transfer should take place. The dialog window

is shown in Figure 71. From this dialog window, a sound engineer may select that the state transfer

takes place from the hardware devices to the software by selecting the ‘From Hardware’ button, or a

sound engineer my select the ‘To Hardware’ button to specify that the state transfer should take

place from the software to the hardware devices.

Figure 71: Total Recall direction dialog window

If a sound engineer requests that the state transfer takes place from the hardware devices to the

software, the patchbay:

• Requests the state of the soft connections between the hardware devices. This is done by

sending a ‘refresh request’ XML document to the mCMS. The mCMS responds with a ‘refresh

response’ XML document and the patchbay is able to find out the topology of the FireWire

network that the server computer is attached to, and what soft connections exist between the

mLAN devices that are on the FireWire network.

• Requests each device editor to transfer state from their hardware devices to themselves. For

each device editor that is associated with a device, its implementation of the MPRecall

method of the IMPServices interface is called with a request to transfer state from its

corresponding hardware device to itself.

If a sound engineer requests that the state of the software patchbay and its device editors to be sent

across to the hardware devices, the patchbay:

• Cycles through each of its objects used to represent the output soft plugs (Audio Output

Plug, MIDI Output Plug) of the mLAN devices. For each specific input plug object

(Audio Input Plug, MIDI Input Plug) that is associated with a specific output plug

HRESULT ReSync(HWND hWndParent);

 161

object (denoting a soft connection), a ‘connect request’ XML document is generated containing

the connection information. Each of the generated ‘connect request’ XML documents is sent

across to the server to request the server to make the connection.

• Cycles through each of the device editors that are associated with the mLAN devices being

represented on the patchbay. Each device editor’s implementation of the MPRecall method of

the IMPServices interface is called requesting the device editor to send its current state to its

associated hardware device.

7.3. Summary

Through the use of the interfaces of the Studio Connection – Total Recall SDK, it was possible to

implement the double grid-based patchbay application in such a way that it could:

• Be dynamically loadable, so that it can be hosted by a compatible DAW application.

• Dynamically load compatible software device editors.

• Provide the state data representing the connections between the mLAN devices it is

representing, and provide state data representing the devices to the hosting DAW application.

• Be able to restore itself from the state data provided by a DAW application.

• Transfer connection and device state from itself to the hardware devices, and be able to

transfer connection and device state from the hardware devices to itself.

Through the integration of compatible DAW applications, the double grid-based FireWire patchbay

and compatible software device editors, and with the aid of the Studio Connections – Total Recall

SDK, the goal of providing remote control and recall of the properties of IEEE1394 devices was

achieved.

 162

Chapter 08

Conclusion

The aim of this project was to provide remote control and recall over the various properties of

IEEE1394 audio devices via a series of graphical routing matrices. In order to reach this goal, the

project was broken down into a number of different phases, and the outputs of each phase were

integrated.

An audio mixing desk is central to most audio studios:

• It receives audio signals from the various devices that are in an audio studio (for example, the

output audio signals from microphones and effects units).

• It processes and mixes them (for example, each incoming input signal may be shaped by

equalisers and dynamics processors, and each of these signals mixed together to form a new

signal).

• It routes audio signals to external devices for further processing (for example, once the

incoming signals have been mixed together, the mixed signals may then be routed to an

external effects processor to have an effect applied to it).

Essentially, the task of an audio mixing desk is to route audio signals from its various analogue and

digital audio inputs, through its various internal signal processing components (for example,

equalisers and dynamics processors), onto various audio busses (where the audio signals are mixed

together) and eventually to the outputs of the same audio mixing desk.

The Matrix Mixer was developed in order to represent the various signal processing points and

signal flows that exist within audio mixing desks. The layout of the routing matrices mimics a

typical audio mixing desk block diagram. It allows for remote control over remotely controllable

audio mixing desks. It emulates the audio mixing desk it is representing. The Matrix Mixer consists

of a series of routing matrices that allow audio signals to be routed between the various signal

source and destination points that exist within an audio mixing desk. This is performed by selecting

the cross points on the routing matrices to enable audio patches, and de-selecting the cross points to

disable audio patches. The matrix design also allows for parameters that are available at the signal

processing points to be adjusted. Required signal processing points may be selected in order to

 163

graphically expose the parameters available at the specific points. A graphical control may be

adjusted in order to instruct the audio mixing desk to adjust the parameter associated with the

control.

In order to allow the Matrix Mixer to quickly adapt to different audio mixing desks, it was designed

and developed to be a generic software audio mixing desk editor. A number of parameters were

identified as being common to audio mixing desks, and the Matrix Mixer was developed to be able

to represent and control these identified parameters. Specific audio mixing desks are described

using XML documents, for which XML elements and attributes have been defined. Each Matrix

Mixer XML document has XML elements and attributes that are used to describe the various signal

processing points that exist within an audio mixing desk, the various parameters that exist at the

signal processing points, and the control messages that are used to remotely control the parameters

of the audio mixing desk. When the Matrix Mixer starts up, it will load an XML configuration file

for a specific audio mixing desk, and from that configuration file it is able to build up its internal

objects and routing matrices to represent the audio mixing desk.

The Matrix Mixer was implemented to be Studio Connections compatible. The Studio Connections

– Total Recall SDK provides a number of programming interfaces that may be implemented in

order to provide compatibility to software sequencers. The Matrix Mixer was converted to be

dynamically loadable and an implementation of these programming interfaces was provided. This

enabled the Matrix Mixer to be dynamically loadable by other software applications, such as the

Studio Manager 2 application. The Studio Manager 2 application may in turn be hosted by a

compatible Digital Audio Workstation (DAW) application. Through the Studio Manager 2

application, the Matrix Mixer is able to be displayed and manipulated from within a compatible

DAW application. It also allows the Matrix Mixer to supply the state of its associated hardware

audio mixing desk to the hosting DAW application. The DAW application may save the state data

to its native song files. When the DAW application reloads a native song file again, it is able to pass

the state data back to the Matrix Mixer and the Matrix Mixer is able to restore it parameters to a

previous state. The state of the Matrix Mixer’s parameters may then be transferred to the associated

hardware audio mixing desk in order to restore it to a previous state.

In digital audio networking, such as mLAN, a software patchbay is used to patch audio signals

between audio devices on a network. Traditionally, audio devices may have a number of hardware

sockets on them through which individual audio and control signals are sent and received by the

 164

device. With mLAN, these physical hardware plugs have been replaced with software plug

abstractions (soft plugs). The soft plugs that are present on a device are revealed to a sound engineer

through a software patchbay with runs on a computer. Through the use of these patchbays, a sound

engineer may patch audio signals between the soft plugs of the devices on the network. There are

various types of software patchbays available, and it was decided to implement a variation on the

grid-based patchbay, know as a double grid-based patchbay. The double grid-based patchbay

approach to patching was chosen due to the hierarchical nature of the grids (which reflects the

structure of the network it represents, thus allowing for ease of navigation to the required soft plug

of devices), and due to the fact that this type of patchbay requires less mouse button clicks by a

sound engineer to patch audio signals between devices. The buttons on the grids of these patchbays

each represent a signal source and destination pair, thereby alleviating the need to individually

select the soft plugs required for a soft connection.

The double grid-based patchbay presents a sound engineer with a graphical grid. Selecting one of

the cross points on the grid where the source device label intersects a destination device label

displays a second graphical grid. On the second grid, audio signals may be routed between the

displayed signal source and destination plugs by selecting the cross points on the grid between the

required soft plugs. The double grid-based patchbay application was successfully implemented as a

client application to the mLAN Connection Management Server (mCMS). The mCMS runs on a

computer attached to a FireWire network. The client application communicates with the mCMS

through a set of predefined request and response XML documents. Through the use of these XML

documents, the client application is able to discover the topology of the FireWire network attached

to the server computer, and request the mCMS to perform actions such as routing audio between the

soft plugs of the devices on the network.

In the final phase of the project, the previous phases were integrated in order to achieve the goal of

complete control and recall of an audio studio. At the outset, it was known that Studio Manager 2

can be hosted by a DAW application and that a Studio Connections compatible DAW application is

able to communicate with Studio Manager 2 through a set of defined programming interfaces.

These interfaces are provided as part of the Studio Connections – Total Recall SDK. An

implementation of these interfaces was provided within the double grid-based patchbay in order to

allow it to be hosted by a compatible DAW application, and to allow for communication between

the two entities. The double grid-based patchbay application was implemented in such a way that it

could host compatible software device editors, such as the Matrix Mixer, and display them (in the

 165

same way that Studio Manager 2 does). A DAW application hosting the double grid-based

application is able to request the patchbay to perform tasks via the implemented interface methods.

The patchbay application in turn is able to request its software device editors to perform tasks by

calling the methods of their implemented interfaces.

By virtue of the patchbay hosting and displaying software device editors, it is possible to provide

remote control over the soft connections between devices, and remote control over the parameters

of the devices. It is possible to associate available device editors with the devices that are available

on the associated FireWire network, and to display them by selecting the devices.

A hosting DAW application can request the double grid-based patchbay application to save its state.

When requested to do so, it passes the state of the soft connections between the associated mLAN

devices to the DAW application. Also, via each device editor that the patchbay is hosting, it passes

the state of the audio devices on the FireWire network to the DAW application. The DAW

application may then save the supplied state data to its native song files. When the DAW

application reloads its native song files, it can extract the state data and pass it back to the patchbay

application. The patchbay application may then use the state data to restore itself, and its device

editors, to a previous state. The DAW application may also request the patchbay application to

transfer state between itself and its associated hardware devices. For example, this could happen

once the DAW application has requested the patchbay to restore itself from the supplied state data.

The patchbay may either transfer its state from itself to its associated hardware devices or from the

hardware devices to itself. The transference of state from the patchbay to the hardware devices

allows for the audio studio to be recalled to a previous state.

Previous software implementations that allow for the control over the various parameters of audio

mixing desks have displays that are varying, cluttered and tedious to navigate. The graphical

interfaces of these software entities usually reflect the front panel of the device they represent. Inter

device connection management may be performed by software patchbays, each with varying user

interfaces. These software applications usually work independently of each other. This project has

demonstrated a common grid approach to both intra device and inter device routing. This has

happened through the integration of various software entities into a single application that may be

hosted by a DAW application. All routing and device parameter settings may be saved to the

hosting DAW application’s native song files. This allows the routing and parameter settings of the

audio devices to be restored at a later stage. It is the intention that this paradigm of grid-based

 166

patchbays will demystify routing within and between devices, thereby allowing for easier sound

system set up.

 167

Appendix – An XML Schema For Representing

MIDI Controllable Audio Mixing Desks

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!-- edited with XMLSpy v2006 sp1 U (http://www.altova.com) by Philip Foulkes

(Rhodes University) -->

<!--W3C Schema generated by XMLSpy v2006 sp1 U (http://www.altova.com)-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

 <xs:element name="mixer">

 <xs:complexType>

 <xs:choice maxOccurs="unbounded">

 <xs:element name="parameterGroups"

type="parameterGroupsType" minOccurs="0"/>

 <xs:element name="activeSense" type="activeSenseType"

minOccurs="0"/>

 <xs:element name="wordclock" type="wordclockType"

minOccurs="0"/>

 <xs:element name="select" type="selectType"

maxOccurs="unbounded"/>

 </xs:choice>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="parameterGroupsType">

 <xs:sequence>

 <xs:element name="parameterGroup" type="parameterGroupType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="parameterGroupType">

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="activeSenseType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 168

 <xs:attribute name="timeOut" type="xs:nonNegativeInteger"

use="required"/>

 </xs:complexType>

 <xs:complexType name="wordclockType">

 <xs:sequence>

 <xs:element name="samplingFrequencies"

type="samplingFrequenciesType"/>

 <xs:element name="mLANAutoWordclockParameter"

type="mLANAutoWordclockParameterType" minOccurs="0"/>

 <xs:element name="wordclockSelectParameters"

type="wordclockSelectParametersType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="samplingFrequenciesType">

 <xs:sequence>

 <xs:element name="fourtyFourPointOne"

type="fourtyFourPointOneType"/>

 <xs:element name="fourtyEight" type="fourtyEightType"/>

 <xs:element name="eightyEightPointTwo"

type="eightyEightPointTwoType"/>

 <xs:element name="ninetySix" type="ninetySixType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="fourtyFourPointOneType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="fourtyEightType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="eightyEightPointTwoType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ninetySixType">

 169

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="mLANAutoWordclockParameterType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 <xs:element name="off" type="offType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="wordclockSelectParametersType">

 <xs:sequence>

 <xs:element name="wordclockSelectParameter"

type="wordclockSelectParameterType" maxOccurs="unbounded"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="wordclockSelectParameterType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="selectType">

 <xs:sequence>

 <xs:element name="inputs" type="inputsType"/>

 <xs:element name="outputs" type="outputsType"/>

 <xs:element name="patches" type="patchesType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="default" type="xs:boolean"/>

 <xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="inputsType">

 <xs:choice maxOccurs="unbounded">

 <xs:element name="input" type="inputType"

maxOccurs="unbounded"/>

 170

 <xs:element name="channelPair" type="channelPairType"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="outputsType">

 <xs:choice maxOccurs="unbounded">

 <xs:element name="output" type="outputType"

maxOccurs="unbounded"/>

 <xs:element name="channelPair" type="channelPairType"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="patchesType">

 <xs:choice maxOccurs="unbounded">

 <xs:element name="patch" type="patchType"

maxOccurs="unbounded"/>

 <xs:element name="patchProcessorGroup"

type="patchProcessorGroupType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="patchProcessorGroupType">

 <xs:sequence>

 <xs:element name="patch" type="patchType"

maxOccurs="unbounded"/>

 <xs:element name="off" type="offType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 <xs:attribute name="alwaysHasOneSelected" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:boolean"/>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="inputType">

 <xs:choice minOccurs="0">

 <xs:element name="parameters" type="parametersType"/>

 </xs:choice>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="isBus" type="xs:boolean" use="required"/>

 <xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

 171

 <xs:complexType name="outputType">

 <xs:choice minOccurs="0">

 <xs:element name="parameters" type="parametersType"/>

 </xs:choice>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="isBus" type="xs:boolean" use="required"/>

 <xs:attribute name="alwaysHasASource" type="xs:boolean"/>

 <xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="patchType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="parameters" type="parametersType"/>

 </xs:choice>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="channelPairType">

 <xs:all>

 <xs:element name="channelPairOnOptions"

type="channelPairOnOptionsType"/>

 <xs:element name="off" type="offType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 <xs:element name="channelsToPair" type="channelsToPairType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="channelsToPairType">

 <xs:choice>

 <xs:element name="input" type="inputType" minOccurs="2"

maxOccurs="2"/>

 <xs:element name="output" type="outputType" minOccurs="2"

maxOccurs="2"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="channelPairOnOptionsType">

 <xs:sequence>

 <xs:element name="channelPairOnOption"

type="channelPairOnOptionType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="channelPairOnOptionType">

 <xs:sequence>

 172

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="parametersType">

 <xs:all>

 <xs:element name="patchParameter" type="patchParameterType"

minOccurs="0"/>

 <xs:element name="dynamicsProcessorGroups"

type="dynamicsProcessorGroupsType" minOccurs="0"/>

 <xs:element name="effectsProcessor"

type="effectsProcessorType" minOccurs="0"/>

 <xs:element name="volumeParameter" type="volumeParameterType"

minOccurs="0"/>

 <xs:element name="muteParameter" type="muteParameterType"

minOccurs="0"/>

 <xs:element name="panParameters" type="panParametersType"

minOccurs="0"/>

 <xs:element name="eq" type="eqType" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="patchParameterType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 <xs:element name="off" type="offType" minOccurs="0"/>

 <xs:element name="parameterRequest"

type="parameterRequestType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

default="false"/>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorGroupsType">

 <xs:sequence>

 <xs:element name="dynamicsProcessorGroup"

type="dynamicsProcessorGroupType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorGroupType">

 <xs:sequence>

 <xs:element name="dynamicsProcessorOnParameter"

type="dynamicsProcessorOnParameterType"/>

 173

 <xs:element name="dynamicsProcessorLibrary"

type="dynamicsProcessorLibraryType"/>

 <xs:element name="dynamicsProcessors"

type="dynamicsProcessorsType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

default="false"/>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorOnParameterType">

 <xs:sequence>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterValues"

type="parameterValuesType"/>

 <xs:element name="on" type="onType"/>

 <xs:element name="off" type="offType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

default="false"/>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorLibraryType">

 <xs:sequence>

 <xs:element name="dynamicsProcessorLibraryTitle"

type="dynamicsProcessorLibraryTitleType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorLibraryTitleType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

use="optional" default="false"/>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorsType">

 <xs:sequence>

 174

 <xs:element name="dynamicsProcessor"

type="dynamicsProcessorType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 <xs:element name="dynamicsProcessorParameter"

type="dynamicsProcessorParameterType" maxOccurs="unbounded"/>

 <xs:element name="keyInSources" type="keyInSourcesType"

minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="dynamicsProcessorParameterType">

 <xs:all>

 <xs:element name="parameterValues" type="parameterValuesType"

minOccurs="0"/>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType" minOccurs="0"/>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

use="optional" default="false"/>

 </xs:complexType>

 <xs:complexType name="keyInSourcesType">

 <xs:sequence>

 <xs:element name="keyInSourceGroup"

type="keyInSourceGroupType" maxOccurs="unbounded"/>

 <xs:element name="parameterRequest"

type="parameterRequestType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="keyInSourceGroupType">

 175

 <xs:sequence>

 <xs:element name="on" type="onType" minOccurs="0"/>

 <xs:element name="keyInSourceParameter"

type="keyInSourceParameterType" maxOccurs="unbounded"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="keyInSourceParameterType">

 <xs:sequence>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="effectsProcessorType">

 <xs:sequence>

 <xs:element name="effectsProcessorOnParameter"

type="effectsProcessorOnParameterType"/>

 <xs:element name="effectsProcessorLibrary"

type="effectsProcessorLibraryType"/>

 <xs:element name="effectsProcessorTypes"

type="effectsProcessorTypesType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="effectsProcessorTypesType">

 <xs:sequence>

 <xs:element name="effectsProcessorType"

type="effectsProcessorTypeType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="effectsProcessorTypeType">

 <xs:sequence>

 <xs:element name="effectsProcessorParameter"

type="effectsProcessorParameterType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="effectsProcessorParameterType">

 <xs:all>

 176

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterValues" type="parameterValuesType"

minOccurs="0"/>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="effectsProcessorOnParameterType">

 <xs:all>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterValues"

type="parameterValuesType"/>

 <xs:element name="on" type="onType"/>

 <xs:element name="off" type="offType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="effectsProcessorLibraryType">

 <xs:sequence>

 <xs:element name="effectsProcessorLibraryTitles"

type="effectsProcessorLibraryTitlesType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="effectsProcessorLibraryTitlesType">

 <xs:sequence>

 <xs:element name="effectsProcessorLibraryTitle"

type="effectsProcessorLibraryTitleType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="effectsProcessorLibraryTitleType">

 <xs:sequence>

 <xs:element name="on" type="onType"/>

 </xs:sequence>

 177

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="volumeParameterType">

 <xs:all>

 <xs:element name="addToParameterGroupParameters"

type="addToParameterGroupParametersType" minOccurs="0"/>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterValues"

type="parameterValuesType"/>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

default="false"/>

 </xs:complexType>

 <xs:complexType name="muteParameterType">

 <xs:all>

 <xs:element name="addToParameterGroupParameters"

type="addToParameterGroupParametersType" minOccurs="0"/>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterValues"

type="parameterValuesType"/>

 <xs:element name="on" type="onType"/>

 <xs:element name="off" type="offType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

use="optional" default="false"/>

 </xs:complexType>

 <xs:complexType name="panParametersType">

 <xs:sequence>

 <xs:element name="panParameter" type="panParameterType"

maxOccurs="unbounded"/>

 </xs:sequence>

 178

 </xs:complexType>

 <xs:complexType name="panParameterType">

 <xs:sequence>

 <xs:element name="parameterValues"

type="parameterValuesType"/>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="eqType">

 <xs:sequence>

 <xs:element name="equaliserOnParameter"

type="equaliserOnParameterType"/>

 <xs:element name="bands" type="bandsType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

default="false"/>

 </xs:complexType>

 <xs:complexType name="equaliserOnParameterType">

 <xs:all>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterValues"

type="parameterValuesType"/>

 <xs:element name="on" type="onType"/>

 <xs:element name="off" type="offType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

default="false"/>

 </xs:complexType>

 <xs:complexType name="bandsType">

 <xs:sequence>

 179

 <xs:element name="band" type="bandType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="bandType">

 <xs:sequence>

 <xs:element name="eqParameter" type="eqParameterType"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="eqParameterType">

 <xs:all>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType"/>

 <xs:element name="parameterValues"

type="parameterValuesType"/>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:all>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

default="false"/>

 </xs:complexType>

 <xs:complexType name="addToParameterGroupParametersType">

 <xs:sequence>

 <xs:element name="addToParameterGroupParameter"

type="addToParameterGroupParameterType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="worksWithPairedChannel" type="xs:boolean"

use="optional" default="false"/>

 </xs:complexType>

 <xs:complexType name="addToParameterGroupParameterType">

 <xs:sequence>

 <xs:element name="parameterHelpString"

type="parameterHelpStringType" minOccurs="0"/>

 <xs:element name="on" type="onType"/>

 <xs:element name="off" type="offType"/>

 180

 <xs:element name="parameterRequest"

type="parameterRequestType"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="parameterHelpStringType">

 <xs:attribute name="value" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="parameterValuesType">

 <xs:sequence>

 <xs:element name="parameterValue" type="parameterValueType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="parameterValueType">

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="range|single"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="value" type="xs:string"/>

 <xs:attribute name="prefix" type="xs:string"/>

 <xs:attribute name="from" type="xs:decimal"/>

 <xs:attribute name="to" type="xs:decimal"/>

 <xs:attribute name="incrementValue" type="xs:decimal"/>

 <xs:attribute name="postfix" type="xs:string"/>

 <!--single-->

 <!--range-->

 </xs:complexType>

 <xs:complexType name="onType">

 <xs:sequence>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="offType">

 <xs:sequence>

 <xs:element name="parameterChange"

type="parameterChangeType"/>

 181

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="parameterChangeType">

 <xs:sequence>

 <xs:element name="midiMessagesGroups"

type="midiMessagesGroupsType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="parameterRequestType">

 <xs:sequence>

 <xs:element name="midiMessagesGroups"

type="midiMessagesGroupsType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="midiMessagesGroupsType">

 <xs:sequence>

 <xs:element name="midiMessagesGroup"

type="midiMessagesGroupType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="midiMessagesGroupType">

 <xs:sequence>

 <xs:element name="midiMessages" type="midiMessagesType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="midiMessagesType">

 <xs:sequence>

 <!--single-->

 <xs:element name="midiMessage" type="midiMessageType"

minOccurs="0" maxOccurs="unbounded"/>

 <!--range-->

 <xs:element name="midiMessagesStartPart"

type="midiMessagesStartPartType" minOccurs="0"/>

 <xs:element name="midiMessagesVariablePart"

type="midiMessagesVariablePartType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="midiMessagesEndPart"

type="midiMessagesEndPartType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 182

 <xs:pattern value="range|single"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="midiMessageType">

 <xs:attribute name="value" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="midiMessagesStartPartType">

 <xs:attribute name="value" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="midiMessagesVariablePartType">

 <xs:attribute name="from" type="xs:string" use="required"/>

 <xs:attribute name="to" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="midiMessagesEndPartType">

 <xs:attribute name="value" type="xs:string" use="required"/>

 </xs:complexType>

</xs:schema>

 183

Bibliography

Anderson, D. FireWire System Architecture (2nd Edition). Addison-Wesley. 1999.

Armstrong, T and Patton, R. ALT Developer’s Guide (2nd Edition). Hungry Minds, Incorporated.

2000.

Chigwamba, N. and Foss, R. Enhanced End-User Capabilities in High Speed Audio Networks.

Audio Engineering Society. 2007.

C-Mexx Software. The Visualizer For The Yamaha 03D Mixing Console. 1998.

Eargle, J. Handbook of Recording Engineering (4th Edition). Kluwer Academic Publishers Group:

Boston. 2003.

Elliotte, R. H. and Means, W. S. XML In A Nutshell (2nd Edition). O’Reilly & Associates, Inc:

Sebastopol, CA. 2002.

EtherSound. EtherSound. 2007. Available: http://www.ethersound.com/ [Accessed 27/10/07].

Foss, R. Audio Engineering – Computer Science Honours Level Course Notes. 2006.

Foss, R. and Foulkes, P. The Representation of, and Control over Mixing Desks via a Software-

Based Matrix. Audio Engineering Society. 2006.

Fujimori, J. and Foss, R. A New Connection Management Architecture for the Next Generation of

mLAN. Audio Engineering Society. 2003a.

Fujimori, J., Foss, R., Klinkrant, B. and Bangay, S. An mLAN Connection Management Server for

Web-Based, Multi-User, Audio Device Patching. Audio Engineering Society. 2003b.

Mackie, Mackie. 2007. Available: http://www.mackie.com/ [Accessed: 14/09/07].

 184

Mawzer, Mawzer. 2007. Available: http://www.mawzer.com/ [Accessed: 11/09/07].

MIDI Manufacturers Association. MIDI Manufacturers Association. 2007. Available:

http://www.midi.org/ [Accessed: 17/09/07].

Microsoft Corporation. MSDN Library for Visual Studio 2005. 2005.

Networked Audio Solutions. mLAN Connection Management Server. Client-Server Communication

0.0.4. 2004.

Otari, mLAN Control Software Operation Manual. 2005.

Robjohns, H. Patchbays. Frequently asked questions. 1999. Available:

http://www.soundonsound.com/ [Accessed: 15/10/07].

Steinberg. Steinberg. 2007. Available: http://www.steinberg.net/ [Accessed: 31/10/07].

Troelsen, A. W. Developer’s Workshop to COM and ATL 3.0. Wordware Publishing Inc. 2000.

Yamaha. 01V96 Digital Mixing Console Version 2 Owner’s Manual. 2004a.

Yamaha. 01V96 Editor Owner’s Manual. 2004b.

Yamaha. 01X Digital Mixing Studio Owner’s Manual. 2003a.

Yamaha. 03D Digital Mixing Console Owner’s Manual. 1997.

Yamaha. mLAN Graphic Patchbay Owner’s Manual. 2004c.

Yamaha. Open Plug-in Technology Specification. 2002.

Yamaha. Studio Connections – Total Recall SDK. 2005.

Yamaha. Studio Manager for 01X Owner’s Manual. 2003b.

