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Abstract

It is well established that both learning and teaching programming are di�cult tasks.

Di�culties often occur due to weak mental models and common misconceptions. This

study proposes a method of teaching programming that both encourages high-�delity

mental models and attempts to minimise misconceptions in novice programmers, through

the use of metaphors and manipulatives. The elements in ActionWorld with which the

students interact are realizations of metaphors. By simple example, a variable has a

metaphorical representation as a labelled box that can hold a value. The dissertation

develops a set of metaphors which have several core requirements: metaphors should

avoid causing misconceptions, they need to be high-�delity so as to avoid failing when

used with a new concept, students must be able to relate to them, and �nally, they should

be usable across multiple educational media.

The learning style that ActionWorld supports is one which requires active participation

from the student - the system acts as a foundation upon which students are encouraged

to build their mental models. This teaching style is achieved by placing the student in

the role of code interpreter, the code they need to interpret will not advance until they

have demonstrated its meaning via use of the aforementioned metaphors.

ActionWorld was developed using an iterative developmental process that consistently

improved upon various aspects of the project through a continual evaluation-enhancement

cycle.

The primary outputs of this project include a uni�ed set of high-�delity metaphors, a

virtual-machine API for use in similar future projects, and two metaphor-testing games.

All of the aforementioned deliverables were tested using multiple quality-evaluation cri-

teria, the results of which were consistently positive. ActionWorld and its constituent

components contribute to the wide assortment of methods one might use to teach novice

programmers.
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Chapter 1

Introduction

1.1 Motivation

"It was found that students with viable mental models performed

signi�cantly better in the course examination and programming tasks than

those with non-viable mental models."

Ma, Ferguson, Roper, and Wood [6], on the subject of teaching novice

programmers.

This piece of information alone is enough to warrant investigation into what a viable

mental model is, how they are developed normally, and how they can be fostered. Ma et

al. [6] go on to say that �students must be supported to create new viable models�, which

is the issue that this work aims to address. In short, this work proposes a means to help

build high-�delity mental models amongst novice programmers.

There is no lack of evidence to support the statement that both teaching and learning to

program are di�cult. No single paper demonstrates this quite so well as that by Kelleher

and Pausch [4]: over a 40 year period, more than 80 di�erent fully functional systems

aimed at teaching programming have been published, with system releases becoming

more common from year to year. If one were to extrapolate this data, and assume that

for every game or system included in Kelleher and Pausch's survey at least one other was

not (either due to completion issues, language barriers or simply because the authors were

unaware of the program), then by 2015 there should be at least 200 di�erent systems all

attempting to make programming easier (an extrapolation based on these assumptions

1
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should be considered nothing more than an illustrative example). This abundance of

di�erent approaches and implementations is indicative of the fact that no one has been

able to nail down the `right' way to teach programming.

Most of the educational programming environments available follow a similar fundamental

formula: present users with a problem, ask them for code to solve the problem, and

compare the result of their program to the desired outcome. Some environments and

languages that work this way (not including any of those surveyed by Kelleher and Pausch)

include: Alice [7, 8], TurtleAcademy [9], Lightbot [10], RU-Bot [11], Core War [12] (an

interesting way to visualise and learn simpli�ed assembler-type programming), Scratch

[13, 14], Snap! [15] (an extended version of Scratch),and Hackety Hack [16]. What seems

to be missing from the assortment of teaching aids is one in which the user is required to

explain the meaning behind each line of an existing piece of code. This is the niche which

the proposed work aims to address.

It is widely recognized that one conceptual di�culty for many novices is that program

execution is not concrete or tangible, and requires considerable abstraction skills on the

part of the learner [17]. To address this, a number of authors agree that one of the best

ways to teach programming is to always show the user the state of their program and the

underlying data [1, 18, 19, 20]. Considering how important visualisation appears to be,

it was decided that it be combined with the �rst goal of creating strong mental models.

By combining the two ideas (programming through demonstration, and the importance

of visualisation), users would have to explain the code they are given through a relatable

visual medium.

A study performed by Lister et al. [21] demonstrates how, regardless of programming

language, there is a strong relationship between students' abilities to trace, to understand,

and to write code. This system attempts to strengthen tracing and understanding of code

with the ultimate goal of improving code-writing skills.

There is also a great deal of literature on the topic of conceptual hurdles or cognitive

thresholds (also known as troublesome concepts) which beginner programmers struggle

to overcome [22, 23, 24, 25, 26, 27]. In some situations the conceptual models that a

student builds to overcome such hurdles have to later be modi�ed or completely replaced

because the model they came up with was �awed. If students cannot adapt their weak

mental models, they might simply give up on programming altogether. Explicit attention

to building consistent and strong mental models may therefore have the potential to

reduce attrition rates in programming courses.
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Many authors address the issue of where students seem to struggle, however there seems

to be no true consensus: Bayman and Mayer [22] show that more than 50% of self-taught

BASIC programmers have trouble with simple ReadLines, while Götschi et al. [23] show

that more than 50% of �rst year students do not have viable mental models for recursion

(two concepts that are not at all similar regarding complexity). The wide range of troubles

that novices seem to have could be attributed to poor fundamental mental models of what

is actually happening.

The proposed system tries to address the various concerns by utilising information from

all the areas of research discussed above: this research aims to support the student's

learning through the use of visualisable metaphors that show the state of a program as

they actively manipulate the environment to re�ect the semantics of the associated code.

According to Clark [28], there is no one right approach to science or science education, but

rather several alternative valid methods - with that in mind, this dissertation attempts

to add to the pool of alternative methodologies.

1.1.1 Objectives and Deliverables Preamble

This sub-section serves as a pre-amble to the remainder of this chapter's contents. This

was done in order to give a broad overview of the various topics, before delving into more

detail. There where multiple objectives and deliverables established during the coarse of

this dissertation, and one might summarise this extensive list as follows:

• In order to help learners overcome barriers to learning caused by di�culty with

abstraction, it was asked whether a more visual teaching technique would be bene-

�cial.

• This teaching technique needed a set of high-�delity, easy to understand, interactive

visual metaphors to be created. This then became one of the primary project

deliverable.

• The aforementioned metaphors needed to be demonstrated and tested in some way.

As the metaphors needed to be interactive, it was proposed that a game be created

based on them, which could then be used for testing and development.

• After beginning work on the game, certain framework limitations began to show up

- in order to overcome these, a new objective was added whereby an API for the

game would be created (thus making it more framework independent).
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• In the interest of rigour, the creation of a separate test framework was also included

as a goal - this framework was meant to try and evaluate the metaphors (and the

proposed game), in as objective a fashion as possible.

1.2 Preliminary De�nitions

For the sake of clarity it is necessary to de�ne certain terms such as `manipulative' and

`metaphor', in the context of this project.

ActionWorld refers to the proposed system as a whole (rather than any individual com-

ponent). This name was derived from the fact that students have to take actions in a

virtual machine world, and the virtual machine that governs the state of this world makes

heavy use of Actions (void Delegates).

The terms `metaphor' and `analogy' are used interchangeably in this text, and mean

any sort of representation of a concept that �helps students join the dots� by decreasing

abstraction, generally by equating the concept in question to something in the real world.

In mathematics a `manipulative' is any physical object that encourages understanding of

a particular concept through manipulation [29]. One example would be a set of wooden

pieces that could be rearranged to demonstrate Pythagoras' theorem, or the equivalence

of the areas of two rectangles. A virtual manipulative is the non-physical (usually digital)

equivalent, for example, a program that lets the user adjust the coe�cients of an equation

and view its graph or interpretation.

A manipulative, in the context of this work, refers to any interactive version of the meta-

phors mentioned above (whether physical or virtual). For example, one theoretical meta-

phor of a variable could be a special box, and when implemented in a computer game as

a clickable sprite, one has a manipulative (the key di�erentiator is that one is theoretical

while the other is an interactive implementation).

1.3 Overview of Deliverables and Objectives

As explained in the preamble, this work aims to create several key deliverables, all of

which contribute to the larger goal of providing an alternative method of helping novice

programmers form stronger mental models. As many of the deliverables are referred to
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before they are fully elaborated upon, it is necessary to add context regarding their form

and function. This section provides a brief overview of the deliverables, without going

into the details of various design decisions, technical aspects, or other reasoning.

1.3.1 The Metaphor Set

The metaphor set is an attempt to create a platform independent collection of high-�delity

analogies that can be used to help novice programmers form strong mental models, and

overcome di�cult conceptual hurdles. A high-�delity metaphor needs to meet certain

criteria: it must give a fair representation of what it is trying to describe, but more

importantly it needs to remain valid when used in conjunction with other concepts. For

example, if one tried to explain variables using an analogy, and then later tried to liken

parameters to specialist variables, the original analogy needs to remain valid. Use of high-

�delity metaphors is critical to this work, as any mental models built upon a framework

of weak metaphors are likely to fail as soon as the metaphors they are built around begin

to break down.

The metaphors in question have additional requirements: they need to be usable on di�er-

ent mediums (for example: textbooks, games, and class rooms), they need to accurately

portray machine state, and �nally they need to be relatable (in that students must be able

to relate to them). Creating such a set of metaphors requires several other deliverables

for testing and demonstration purposes, which are elaborated on in the remainder of this

section.

1.3.2 The Demonstration-and-Validation Game Implementations

As a means of demonstrating medium-independence, usability, and �delity (among other

things), the creation of a `test game' built around the metaphors was proposed (where the

metaphors essentially visualise the state of program execution). A typical game-level is

comprised of two major parts: the code that the users are provided with, and the series of

metaphor interactions that the users need to undertake in order to demonstrate a detailed

understanding of every line of the given code.

For example, the code presented to users for a very simple level might be:

int x = 3 + 4;
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The user's interactions would need to demonstrate an understanding of three separate

ideas: declaring the variable x, evaluating the expression 3 + 4, and assigning the result

to the newly created variable. Each one of these actions would entail a separate interaction

with the environment.

The �nal versions of these test games also include a sandbox mode, where no code is

provided, and users can simply interact with the metaphors as they like (it was believed

this would encourage experimentation). Regardless of the mode being used, the state of

execution is always represented through the highly visual metaphors.

This student-as-interpreter model allows one to check whether or not a given student can

see a relationship between the code they are given, and the metaphors that they need to

interact with. A series of successful interactions is probably a positive indicator that the

metaphors meet the criteria described in Section 1.3.1 - while a student not being able to

explain a level may indicate that they do not understand the code, or that the metaphors

are not being understood, or both.

1.3.3 The Virtual Machine and its API

Any game implementation, such as those explained above, would require an underly-

ing execution engine, or virtual machine, to keep track of the user's progress through a

level (in addition to other state tracking functionality). It seemed reasonable to create

a separate component to serve this role. Its speci�cations and usage are presented as

an application programming interface (API). An API such as this would allow others to

easily create alternative implementations of the demo game, to test their own (or this

work's) metaphors, or for any other purpose which might require a code execution engine.

The functionality of the execution engine can be summarised as follows: it is sent a single

operation code, the operation is then performed inside the engine (without any further

input from the developer or player), and changes to the virtual machine's state are then

re�ected on the front-end which called the engine in the �rst place. This whole process

takes place with a single method call, making the API particularly easy to use from a

developers perspective.

The API that was created for this work is loosely coupled to the front-end games which

are built on it. One should also note that the novice programmers, whom ActionWorld

is trying to help, never see or interact with the engine directly (which is fairly technical):



1.3. OVERVIEW OF DELIVERABLES AND OBJECTIVES 7

their experience is limited to the point and click visual interactions with the metaphors

that they are presented with.

The execution engine is not strictly speaking a program execution engine, and can rather

be thought of as an instruction execution engine. The di�erence between these two terms

is that a program execution engine is optimized for speed of execution, where single-step

debugging is an additional (often di�cult to implement) feature. While an instruction

execution engine is built from the ground up as a single-step debugger. This shift in

focus bypasses the need to set up complex execution interrupts, callbacks, hooks, and

monitoring conditions.

1.3.4 The Test Framework

Each of the above deliverables is a multi-faceted component of a larger whole. Because of

the scale and complexity of evaluating such a system, it was deemed necessary to create

a clearly de�ned test framework with which to evaluate each deliverable. The framework

that was proposed is referred as a constituent evaluation framework, and was created

in such a way as to facilitate testing of components independently of one another. As this

framework is only really referred to again in Chapter 6, this synopsis should su�ce for

now.

1.3.5 Scope Delimitation

Four deliverables have been described so far: the metaphor set, a debugging engine and

its API, a game which uses them both, and a test framework. However, there are an

assortment of other aspects one needs to consider when creating a set of deliverables such

as these. For example, there is a need for boundaries which delimit where the metaphors

no longer need to hold (such as how novices are unlikely to gain any extra bene�t from

an analogy that can go so far as to explain multi-threaded programs). One also needs to

decide which concepts are most foundational, so as to ensure they make up the core of

the system, while concepts that confuse novices the most need to be identi�ed so as to

try to represent them most clearly.

The following concepts and structures were deemed to be within the scope of teach-

ing novices: values, local variables, expressions, conditionals, methods, global variables,

simple heap objects, and strings. The reasons behind the content of this list are covered

later, as they are fairly speci�c, and thus do not belong in an overview such as this.
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1.3.6 Methodology Used for Deliverable Creation

While not strictly speaking a deliverable in and of itself, the methodology used has a

signi�cant impact on the quality of the �nal deliverables (hence this overview):

Throughout this dissertation a design-based research paradigm was adhered to - this

paradigm makes use of an iterative technique where the �nal deliverables are initially

explained in very broad terms, and where multiple iterations make gradual improvements

on prior versions[30]. This technique allows one to have a �nal goal, and achieve said

goal, without necessarily knowing the best path to follow in order to achieve it from

the start. An example of where design-based research was particularly useful was in

improving the understandability of the metaphors created - the �rst iterations were not

easy to understand at all, while the �nal versions were clean and simple.

1.4 Limitations of the Study

One of the primary limitation of this work is due to its scale - due to the number of

deliverables created, and the amount of work that went into each one, it is impossible to

perform an object analysis of the system as a whole. Chapters 6, 7, and 8 attempt to set

up and utilise a framework one can use to evaluate the system (or individual components) -

from both a non-technical and technical perspective, respectively - however the application

of such an evaluation mechanism on one's own work cannot be done without a certain

amount of bias entering into the results. Section 7.4 goes into more detail regarding

speci�c test limitations.

The second key limitation of this dissertation is that the students involved are never

actually asked to write code - either before or after being exposed to the game. This

makes conclusions regarding the e�ect of this teaching technique on individuals hard (if

not impossible) to measure.

These limitations are overcome to a certain degree by the fact that this work is primarily

attempting to lay a technical foundation on which to perform future related work, rather

than focusing on the e�ects such a system actually has.
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1.5 Layout of the Dissertation

Rather than adhering to a strictly chronological organisation, this paper is laid out ac-

cording to a dependence hierarchy. The chapters are organised as follows:

Chapter 2 explains and discusses work from several �elds that strongly relate to this

project, including education theory, metaphors in computer science, and virtual

learning environments, among other things.

Chapter 3 de�nes the developmental and research methodologies adhered to during the

course of this work.

Chapter 4 provides a detailed description of the proposed metaphor set for teaching

novices, as well as a summary of the developmental stages it went through.

Chapter 5 elaborates on technical details regarding how various system components

were built, the rationale behind certain design choices, and a summary of the system

usability tests.

Chapter 6 explains the various ways in which one might evaluate a system such as ours,

and proposes a test framework one might adhere to (along with several sample tests).

Chapter 7 applies the less technical of the aforementioned tests to the proposed system,

and discusses the results.

Chapter 8 performs a more technical evaluation of the system, and discusses the results.

Chapter 9 details several ways in which the proposed system, and its various compon-

ents, could be enhanced in the future.

Chapter 10 reviews material covered in the paper, and presents the conclusions drawn

from the work.

1.6 Summary

This section laid out the motivation behind this work as having multiple sources, including:

the need to explicitly build strong viable mental models, the bene�ts of visualising data,

and an alternative student-as-interpreter perspective for teaching programs.
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This paper's deliverables hinge on the creation of a set of metaphors, which in turn can

be broken up into developmental and quality evaluation elements:

• Identi�cation of troublesome concepts.

• A brief survey of existing metaphors.

• A brief survey and comparison of existing games that teach programming.

• The creation of a set of high �delity metaphors, based on the three previous points.

• Development of a modular execution and debugging engine and its API for use in

the test game.

• An interactive implementation of the metaphors (the game itself) for execution and

metaphor validation purposes.

• Creation of a test framework for use in validating both the metaphors and the

illustrative game.

Most programming courses and approaches do not explicitly teach speci�c mental models.

They teach programming, and leave it up to the students to construct their own mental

models. Given the evidence that these are often poor or non-viable, this work might be

considered a �rst step towards a teaching approach that makes the mental models more

explicit.

Considering the aforementioned deliverables and objectives, this work attempts to con-

tribute to the body of domain knowledge in multiple ways. These range from the proposal

of a new programming teaching technique, and metaphors to go with it - to the creation

of an adaptable program and API to be used in applying and testing the proposed tech-

nique. Other, more technical, contributions are also present, and a complete list of these

can be found in Section 10.2.



Chapter 2

Related Work

In the previous chapter, mention was made of the bene�ts of visualisation, the poor

mental models that novices have, and the sheer volume of systems that attempt to teach

programming. This chapter elaborates on topics such as these in order to give a more solid

background for the work that will be based on them. This chapter gradually moves from

more broadly applicable topics, to more specialist work. For example, this chapter begins

with a description of some aspects of education theory, and concludes with a summary of

a programming game by Gilligan [5], which works via manipulation of in-game analogies

(Gilligan's work runs in parallel to, and occasionally overlaps with, this research).

2.1 Education Theory and Learning Styles

2.1.1 Constructivism

Constructivism asserts that all knowledge created by a learner is built on top of prior

knowledge (also called schemas), meaning that everything one learns is based o� of what

one already knows. Constructivism also states that engagement on the part of students

is always more bene�cial to the learning process than passively acquiring new knowledge

(such as through a lecture). And �nally, constructivism states that individuals actively

construct their personal representations of a shared reality. Most applied constructivist

methodologies attempt to guide students to knowledge creation.

Like most theories, constructivism does have its critics [31, 32] (for example, some critics

argue that o�ering minimal guidance to students while also encouraging experimentation,

11
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is less e�ective than simply o�ering strong guidance). Despite this, the proposed system

builds on constructivist theory by assuming that a student who can liken a new concept

to some pre-existing schema is likely to assimilate the new concept more quickly and

accurately than one who tries to learn via more traditional abstract means. To alleviate

the concerns of constructivism critics, one should note that while the proposed system

shares several attributes with constructivism, it also incorporates non-constructivist ideas:

for example, it tries to direct learners through gradually more complex levels (occasionally

going so far as to simply tell the user what to do, in an objectivist manner1) and has an

accompanying hint system.

To clarify, objectivism states that all knowledge takes the form of unchangeable non-

subjective facts that everyone must perceive in the same way, while constructivism says

that all learning is subjective and that any newly learnt concepts will rely (and build) on

an individuals prior experiences [33].

Kolb (an advocate of constructivism), has proposed a learning cycle which makes use of

what he calls �active experimentation� [34]. This paper attempts to build on the active

experimentation explained above. Figure 2.1 shows the Kolb Learning Cycle.

Figure 2.1: The Kolb Learning Cycle

2.1.2 Barriers of Traditional Learning

According to Coyle [35], a person develops and improves their ability to perform a task

by adding myelin to circuits in the brain (also referred to as �construction and assembly

of component proteins�). This process is most pronounced when people learn from their

mistakes (rather than, say, learning by rote). Because this process is best achieved via

practice and error-centric feedback, a game that is immediately able to tell the user that

1Objectivism and Constructivism are essentially opposing philosophies
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they made a mistake - as well as why it is a mistake - should in theory greatly increase

the rate at which a person is able to learn the subject matter (in this case programming).

Observations made by Carl Wieman [36] demonstrate how people who do not engage

with a given topic are unlikely to retain information about it - he found that only around

10% of lecture content is retained. This statistic alone suggests that most students are

unlikely to be able to learn to program if they do not engage with real code (and instead

simply, say, attend lectures). Another interesting idea derived from this is that a pro-

gramming environment that o�ers immediate feedback as well as forced engagement will

likely improve learning.

There are examples of fast feedback systems, such as the observable agent behaviour (or

misbehaviour) in systems such as the Logo [9] and Python [37] turtles, or the Snap! [15]

multi-form sprites. ActionWorld acts as a fast feedback system in a similar way to the

aforementioned systems.

Another interesting idea that can be taken from Wieman's observations is that �students

do not fail or succeed on the basis of what facts they can retain, but because of the

structure and organization they can bring to the content." [38] which implies that if one

can give students the necessary structures and organizational systems, or help them build

their own, their ability to learn programming (or anything else) should bene�t . Therefore

a sub-goal of the proposed system would be to help students build such a sca�old (in this

context, a sca�old is a temporary structure put in place in order to help students reach a

particular level of understanding, before later being removed).

2.1.3 Abstraction of Complexity

Teaching a subject without using �eld-speci�c nomenclature or syntax can be di�cult,

however when done correctly it can have numerous positive e�ects on learners. Consider a

student who is taught to program using only pseudocode. If that student is able to write

all the appropriate logic in pseudocode for a particular problem, learning any speci�c

language would be greatly simpli�ed as their fundamental understanding does not rely on

any language speci�c constraints. This process is often called abstraction of complexity,

and it is the process of hiding extraneous details that might otherwise overwhelm a novice.

A prime example of this teaching style can be found in the �eld of mathematics: Huynh

and Marchal [39] created DragonBox, a game that is able to teach the fundamentals of
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algebra to children of ages �ve and up. According to Shapiro [40] �of those students who

played at least 1 hour, 83.8% achieved mastery�, these numbers alone highlight just how

powerful this sort of technique can be.

DragonBox uses metaphors to (initially) simplify and sidestep the syntax of the maths,

and gradually replaces the concrete metaphors with more abstract equations as students

advance. While the proposed system does not gradually replace metaphors, it still follows

a similar pattern of metaphor manipulation. Figure 2.2 shows what a student would see

in DragonBox and how it might compare to an actual equation.

Figure 2.2: Two possible equations presented by DragonBox (Left), and their equivalent
equations (Right). Users drag terms around, and add new ones in, in order to cancel out
and simplify the equations.

Snap! [15] and Scratch [13, 14] (among others) employ a similar abstraction technique

by removing syntax and allowing students to drag and drop code chunks. All of the

aforementioned systems give visual (often immediate) feedback to students, which might

contribute to their success, and relates to what was explained in Section 2.1.2 regarding

error-centric feedback. This visual feedback can be both positive as well as error-focused

for example, as soon as the sprites in these systems do something, the users know whether

or not their logic was correct, and where it went wrong (if it did).
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2.1.4 Threshold Concepts and Cognitive Thresholds

Threshold concepts can be summarised as any concept that a student is likely to struggle

with, but which will result in them acquiring a deeper understanding of a subject upon

assimilation of the concept. Flanagan [41] demonstrates just how proli�c the theory

of threshold concepts has become, with applications in �elds ranging from journalism

to computer science, and engineering to geography. Such widespread acceptance and

application lends a great deal of credence to it.

Meyer and Land [42] explain that threshold concepts need to meet �ve criteria - they need

to be: transformative (in the sense that one looks at things di�erently), irreversible (in

the sense that one cannot �undo� the new insight), integrative, troublesome (something

that is �conceptually di�cult or counter-intuitive�), and often (but not always) bounded.

Bounding can refer to the notion of a discipline's boundaries, or it can also mean how

the barriers between one threshold concept and the next should not overlap (this second

meaning is less commonly applied).

Meyer and Land provide a simpler way to understand threshold concepts by likening

them to portals: it may be di�cult to pass through them, but once you do you end up

in a whole new area (from a cognitive perspective), and there's no going back once you

pass through. They pose an interesting problem from an educator's perspective, because

once they have been overcome it can be di�cult to remember how one thought before

the associated cognitive transformation, which makes explaining them to an `uninitiated'

student di�cult [43].

Rountree and Rountree [27], who focus more on threshold concepts in computer science,

describe concepts in general as being core concepts, threshold concepts, or both. They

describe a threshold concept as being an idea or way of thinking that is key to not only

understanding a subject, but to beginning to think like a practitioner of the subject. For

example, simply understanding how a computer scientist thinks is not the same as being

able to think like a computer scientist (this would be almost akin to knowing what logic

is, as opposed to being able to apply it).

Zander et al. [44] performed an interview of 36 di�erent computer science educators,

and they were unable to reach a consensus on what the key threshold concepts are when

teaching programming, although several came up more frequently than others (such as

recursion, pointers, and the di�erences - when present - between classes, objects, and

instances). Boustedt et al. [45] performed a study of 33 programming concepts that
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could be potential threshold concepts. An amalgamation of the most popular threshold

concepts in programming follows, drawing from work by Zander et al., McCartney and

Sanders [46], and Boustedt et al.:

• Object orientation

• Abstraction

• Levels of abstraction

• Procedural abstraction

• Pointers *

• Di�erences between classes, objects and instances *

• Polymorphism

• Recursion and induction *

Marked concepts can be represented in the proposed system. An example of how one might

represent one of these in this system follows: the di�erence between value and reference

types (i.e. pointers) can be made less troublesome by allowing students to visualise the

di�erence. One way that this can be done is to show the state of the computer's memory,

and allow students to then experiment with value and reference variables in order to better

understand their underlying di�erences.

Of Meyer and Land's [42] �ve criteria for a threshold concept, the proposed system aims

to be able to help students with at least three of them:

• Assistance with the transformative requirement by giving them an alternative per-

spective to see things from (which is almost exactly what the transformation is

meant to do in the �rst place).

• Irreversibility will hopefully occur when a student assimilates one of the metaphors

into their own mental models (whether pre-existing or not).

• And �nally, by carefully crafting the set of analogies to cooperate with one another

(by design rather than brute force or coincidence), the integrative criterion will

hopefully be addressed.



2.1. EDUCATION THEORY AND LEARNING STYLES 17

This system attempts to address the criterion of troublesome knowledge by giving it a

context in which it can be understood, as well as a clear representation - however, this

does not mean that the system can address all troublesome concepts. This paper does

not address the �nal `requirement' of threshold concepts (that of bounding) primarily

because it is a theoretical division between �elds, but also because it is not a hard and

fast requirement for threshold concepts. Even if one is not an advocate of the Threshold

Concept model, the aforementioned reasoning still applies to problems that are trans-

formative/troublesome.

More traditional education systems favour an objectives-based approach, however Roun-

tree and Rountree [27] explain that threshold concepts are an alternative way of perceiving

education. The proposed system can be used by educators to undertake computer science

education using either model.

Thomas et al. [47] have proposed a complementary practical-oriented idea, to go along

with the more theory-oriented threshold concepts: the idea of threshold skills. They state

that mastery of a subject requires both a theoretical understanding and the ability to

apply that understanding. For example, it is all well and good to understand recursion,

but being able to write a recursive method is a skill (and in context it is a threshold

skill). One of the primary requirements of a threshold skill (that it does not already share

with its associated threshold concept) is that it requires practice. There is more to say

about the di�erences between concepts and skills, however for the moment it is enough

to say that the system seems to almost bridge the two. The only unique requirement of

threshold skills is addressed by o�ering students a platform to practice on.

2.1.5 Multi-Modality

Glasser [48] and a number of other notable academics are often incorrectly quoted as giving

percentages relating the amount of information people retain based on how they learn

certain material, for example, �10% of read material is remembered while 90% of taught

material is retained�. It is believed that an unsubstantiated article by Treichler [49] in the

magazine Film and Audio-Visual Communication is the origin of these unsubstantiated

percentages [48]. While the validity of the quotes may be in question, the underlying

theory behind them is not: multi-modality encourages greater retention. In other words,

the more ways individuals learn a particular topic, the more likely those individuals are

to understand and remember it.
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Multi-modality is relevant to this work because while the system does not o�er a multitude

of di�erent representations for what it is trying to teach, it is not monomodal as both

images and text are used to encourage students to engage. Furthermore, multimodal

learning does not have be done using just one system, which means that if this system

were used in conjunction with more traditional teaching techniques, and conventional

programming exercises, it would result in a more varied (and thus hopefully more e�ective)

learning experience.

2.2 Importance of Visualisation

Victor [18] makes several compelling arguments about what constitutes a good program-

ming system, and concludes by referencing Tufte's [20] primary rule for understandable

environments. In short, this rule says that you must always show the data. The longer

(more amusing) explanation by Victor goes like this:

�If you are serious about creating a programming environment for learning, the

number one thing you can do - more important than live coding or adjustable

constants, more important than narrated lessons or discussion forums, more

important than badges or points or ultra-points or anything else - is to show

the data.�

Before concluding with Tufte's rule, Victor also explains that there are two major features

that any good programming system needs. The �rst of these is that the program needs

to �encourage powerful ways of thinking� in its users; this point is subject to individual

opinions about what a powerful way of thinking is - for example, is it better to be able

to think both iteratively and recursively, or is being able to abstract away extraneous

detail more `powerful'...what about being able to see how the individual components of

a program come together to make a whole? With regard to this point one could also say

that having high-�delity mental models of various programming concepts is a powerful

mental tool, and therefore that this work is in fact attempting to support this �rst point.

According to Victor the second goal of any good programming system should be to let

users see the execution of their code, as an aid to understanding it. This point is less

ambiguous than the �rst and relates directly to Tufte's rule about showing the data. While

the proposed system does not show users the execution of their code, it is still visualising
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program execution one step at a time - the major di�erence is that users are asked to

mentally perform the execution for themselves (and then demonstrate their understanding

of the resulting program state by manipulating the metaphors). With all of this in mind

one might restate Victor and Tufte's rules as �any good system for teaching programming

needs a step-by-step debugger and inspector that shows the data�.

Unfortunately, along with several other suggestions by Victor, most of the teaching

programs examined during the course of this paper ignore several simple yet essential

paradigms that could arguably aid in the learning process. Most importantly only a

minority show the user the state of the data that they are trying to manipulate via code.

This need for data visualisation may stem from the dynamic nature of program data (as

opposed to the static nature of data in, say, mathematics), which changes during execution

and is therefore harder to track.

However, one should carefully consider the long term implications of constant visualisa-

tion. The potential danger is that while one solves a short-term problem (that learners

cannot visualize the data or imagine what is going on), some would argue that this

approach is sidestepping the real issue: how is one to build good abstraction skills if

everything is always visualized or explicit?

Bostock [1] demonstrates the bene�ts of algorithm visualisation, and while his examples

are for very speci�c algorithms and are generally non-interactive, such visualisations do an

excellent job of illustrating macroscopic meanings and di�cult-to-spot output di�erences.

In short, while Bostock's focus is not on visualising general code, it would be di�cult to

dispute the usefulness of his proposed visualisations. Figure 2.3 shows an example of one

of his static visualisations (most are either animated or too large to include here, hence

the use of his easiest-to-understand static example).

One can see that the aforementioned bene�ts extend beyond just code visualisation, by

considering a simple image, juxtaposed against the image's serialized representation: one

can see that the image (which abstracts away the detail) is the less overwhelming rep-

resentation (despite actually having exactly the same amount of information). It was

proposed that this concept could be applied to how one might represent the potentially

overwhelming details of what happens behind the scenes during code execution. A de-

bugger is the ultimate means of representation in terms of both accuracy and �delity, and

allows users to inspect and accurately understand the low-level execution details. But

that level of detail can also be overwhelming (leaning more towards the serialized repres-

entation, than the holistic one), therefore approach taken was to combine this idea with
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Figure 2.3: Bostock's[1] static visualisation of a mergesort, where each line's angle rep-
resents the corresponding number's relative size, and each row represents the state of the
list after a new pass.

the importance of visualisation (as explained by Victor [18], Tufte [20] and Bostock [1]),

and the value of high-�delity mental models.

2.3 Metaphor Background

Of the 80 programs and games that Kelleher and Pausch [4] surveyed, 20 used physical

metaphors to assist with understanding in some way. Of those 20, only �ve were able

to incorporate all (or almost all) of the more fundamental programming constructs (con-

ditionals, loops, methods etc.), and not one was able to assist with code that was both

procedural and object oriented. While this does highlight something of a niche in the

area of educational programming games, it also shows that of the established metaphors

available, there does not appear to be any uni�ed sets that work across the board.

The breadth and diversity of metaphors for teaching programming is immense, this section

serves to illustrate just how varied metaphors can be by examining those used by two very

di�erent programming systems, as well as explain why caution should be observed when

teaching via analogy. The two systems in question vary both in teaching and programming

style, where Gilligan's [5] system is procedural (Pascal), and Hackety Hack [16] is object

oriented (as is Ruby).
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Figure 2.4: Program patterns as sewing patterns[2]

As a demonstration of this diversity, here are three examples of very di�erent stand-alone

metaphors:

1. The �rst and only mention of analogies in TurtleAcademy [9] is made in their lesson

on loops, likening nested loops to bird's nests within larger bird's nests. They

compare a loop inside another loop to a bird's nest inside of a larger bird's nest

(�Command[mama loop[baby loop]]�). Considering that this is the only place they

use metaphors for explanation, it may well have been done simply to explain the

term `nested', rather than to clarify the students' mental models. Regardless, this is

an interesting - if uninformative analogy - in that it can be applied to any nestable

structures.

2. Jiménez-Peris [24] propose that memory be explained by likening it to a locker

room: each locker represents a cell in memory with its number and matching key

taking on the roles of memory address and pointer. They explain how this analogy

is robust enough to explain why copying a pointer is not the same as copying its

value, memory leaks, uninitiated pointers, and more.

3. Figure 2.4 is a good illustration of just how far reaching (and often bizarre) some

analogies for programming are - this particular one likens di�erent programming

concepts to sewing patterns [2].
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2.3.1 System 1 - Gilligan's Analogies

Of all the systems surveyed during the course of this work, Gilligan's [5] system is the most

closely related. Sections 2.6 and 7.3.1 elaborate more on his system in general, for now the

focus is on describing some of his system-speci�c analogies. Gilligan has approximately 18

di�erent implemented2 metaphors in his system, with a one to one relationship between

metaphors and the concepts that they describe. This is far too many to detail in their

entirety (Gilligan's already-succinct description covers 16 pages), and so in the interest

of brevity this summary only includes a brief explanation of some of the more relevant

analogies (a good number of those not included are conditional-structure speci�c variants

of the same basic analogy).

Gilligan's analogies place the user in control of an o�ce clerk (who represents the com-

puter), and gives the clerk a worksheet (which represents a method) to work through.

The clerk follows the instructions to the letter until either the end of the worksheet (at

which point it is discarded, and any previously incomplete worksheets are returned to) or

until reaching an instruction that requires more details on how to complete it (at which

point another worksheet is printed and placed over the current one.) This broad descrip-

tion already illustrates an analogy for methods as stackable and disposable worksheets,

but also presents a potential problem: the clerk does not change rooms (or make any

other obvious scope changes) upon starting or �nishing a worksheet, thus the end user

might be mislead into thinking that the scope had in fact not changed (along with all the

rami�cations of such a misunderstanding).

In his system di�erent expression types (string, arithmetic, and boolean) each have their

own calculators, this arrangements has advantages and disadvantages: the biggest advant-

age is that users get a strong sense of variable type distinction, the biggest disadvantage

is that expressions comprised of more than a single operation type become complicated,

and maybe even impossible (for example: �x + 1 >= y/2� would require at least two cal-

culators). Another risk that this multi-calculator approach poses is that students might

misunderstand and think that no expression can use more than one form of arithmetic.

ActionWorld also had to take into consideration the di�erent bene�ts and drawbacks

of alternative calculator implementations - and concluded that o�ering two alternatives,

instead of forcing one, would be bene�cial (more on this in Section 4.1.3).

As ActionWorld purposely avoids in-code input/output (I/O) operations (such as the

presence of console operations in the code to be interpreted), only a brief description of

2Gilligan also describes potential analogies for more advanced concepts that did not get included in
the �nal system. Examples include: objects, pointers, abstraction, and �les.
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the three forms of I/O that Gilligan's system caters for follows: the computer-user divide

is likened to the walls of the clerk's o�ce, and the I/O devices (one each for text input,

text output and mouse operations) are computers inside the o�ce that display and then

print data (for input), and accept variables then display their content for output. This is

a fairly simple metaphor, however it requires that the user not ask questions such as �but

why is there a computer inside another one?� On the plus side, the associated analogies

appear to be fairly high �delity. In this context the avoided forms of input are those

that would alter the behaviour of a program, for example, ActionWorld does not allow for

programs that ask the user to enter a number.

As mentioned above, the analogy for methods (or subroutines as Gilligan calls them in

his procedural language) is that of a worksheet on a clipboard, what this analogy also

takes into consideration is the �nite memory of a computer: all discarded worksheets are

recycled in order to replenish the stack of blank pages on which they are printed. There

is an upper bound to the amount of paper available, and when the paper runs out, the

program crashes. ActionWorld did not take such a limit into consideration, primarily

because memory limits are less of a concern on modern machines than they used to be -

however, one could include a limit such as this by placing a �nite number of `bookshelf-

blocks' in the global scope (more on these in Section 4.1.5).

Many of Gilligan's [5] analogies are simple descriptions of how a particular programming

structure (such as a loop or conditional) is represented on the `work sheet' and how

the clerk has to handle them. These are not truly stand-alone metaphors, and are more

descriptions of the interactions that the clerk needs to perform with the actual metaphors.

ActionWorld avoids that issue by automating �ow-of-control, and hopefully focusing the

user on what happens with the data at each point in a program's execution.

Attempts to extend Gilligan's metaphors occasionally lead to them breaking down: for

example, if you want more than the three basic types, you somehow have to cater for

more than the three already present calculators (this `break' can be overlooked because

his system was designed to cater for a simpli�ed Pascal Dialect). Gilligan sidesteps passing

by reference by saying that his dialect simply does not allow for it. What this sort of

thing indicates, is that while his analogies are robust enough to handle his speci�c dialect,

they often cannot be applied to more general cases (which is something that this work

attempts to address). No mention is made of global variables, but including them in his

metaphor set appears unlikely to break anything.
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2.3.2 System 2 - The Hackety Hack Metaphors

Hackety Hack [16] is a system designed to teach Ruby, it follows the more traditional

approach of explaining and then presenting users with problems to solve. While the focus

of this particular system is not on metaphors, they are used frequently nevertheless.

Hackety Hack likens an algorithm to a �really big to-do list� that the computer needs to

follow in order. They make this analogy so as to drive home how unintelligent computers

are, and how they will blindly follow their to-do list without regard for the consequences.

This analogy is broad enough to almost never break down: one's to-do list can be as short

and simple or as long and contrived as needed, so long as the user follows it in order.

Conditional structures such as `ifs' can be easily accommodated into this analogy, where

a conditional contains items that can be skipped or done multiple times depending on

what the to-do list says about the current state.

As it stands, ActionWorld does not give the user a metaphor for whole programs, this is

something that can be achieved fairly easily using this analogy: the user could be told

that code to a computer is like a to-do list is to a person, and that it is their job to learn

how to read the computer's to-do lists (and eventually write their own).

Hackety Hack also makes a point of saying that programs are not like shopping lists, which

can be done in any order; this is an important di�erentiation as it could prevent some

users from executing code out of order (the idea of teaching via inapplicable analogies is

interesting).

Types are di�erentiated by relating them to one another and the concepts they represent,

rather than something more concrete. Their example compares the integer 2 to the

string �2�: they explain that the integer 2 is the same as the mathematical idea behind

the number, while the string �2� is the number written down on paper. This comparison

could both clarify and confuse things: if the user understands the di�erence they are likely

to equate strings with output and integers with theoretical numbers, however novice users

(especially young ones) might not see the di�erence between an idea and the representation

of the idea on paper (thus potentially confusing them).

Hackety Hack [16] explains types, and then immediately goes on to variables, seemingly

skipping out values (potentially blurring the distinction between values and types). They

use the common metaphor of variables being like boxes. There is nothing inherent in the

metaphor that indicates that a box can only contain one thing at any time.
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They explain method calls by comparing an expression to a sentence. Their example is

that of �Turtle.draw�: where Turtle is the noun (or object), and draw is the verb (or

method call), and while they do not mention it explicitly the `.' connector is equated

to a connecting word like `please'. The result is a sentence that reads as �Turtle please

draw something�. Continuing with their analogy of programs as to-do lists, they also

describe methods as sub-lists that need to also be done in order. Both of these metaphors

appear to be high-�delity, though the `expressions as sentences' analogy is of limited help

to novices who might not realise how carefully and precisely they need to structure their

`sentences'.

2.3.3 Potential Dangers when using Metaphors

Metaphors can be either bene�cial or detrimental to novices' mental models depending on

how they are taught, as well as the �delity of the metaphor in question. A poor metaphor

runs the risk of confusing matters, rather than clarifying the issues - this can be due to

the student having certain pre-existing ideas about the metaphor you are using. This

`baggage' runs the risk of confusing students and actually damaging their mental model

of a concept.

For example, methods in programming are often compared with functions in maths:

f(x) = 4x + 2;

The above would be compared to code such as:

private int f(int x){return 4*x + 2;}

This comparison seems simple, valid, and unlikely to confuse, provided the student already

understands the maths. However, an easy to miss misconception that might creep in as

baggage is the implicit multiplication sign between two terms separated only by brackets

in a maths equation. A student might think that f(x) means f * x, and try to transcode

that into the programming concept. (This case was observed with a struggling student.)

Another example of a metaphor that seems valid is one that describes scope and nested

structures as Russian nesting dolls - it's fair to say that one doll or structure �ts inside
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another, however this kind of metaphor runs the risk of saying that a certain doll or

structure cannot `see' things (such as variables) that belong to other structures or dolls,

when in fact scope rules often do allow this sort of thing. Another `baggage' induced �aw

in this analogy is that at some point you cannot make a doll any smaller (in the real

world), whereas code constructs can be nested arbitrarily deeply.

A di�erent type of limitation that metaphors need to take into consideration is that they

can and do break down under certain conditions. To continue with the Russian nesting

dolls metaphor: what happens when you need to consider how the dolls contain variables...

adjustments would have to be made to the metaphor so that a doll can contain more than

just another doll (for example, specialist mini-dolls to take the place of variables).

This brings the discussion to the �nal danger that metaphors need to take into consid-

eration: the creation of arti�cial limitations. If a student is taught a concept using a

metaphor that imposes certain constraints when followed literally, or without a certain

degree of understanding that the metaphor is limited, that student runs the risk of think-

ing that those same limitations apply to the programming concept that they are being

taught. For example, if one were to re-use the teaching of methods and functions via

mathematics equations, when moving on to recursion a student might try to construct

something like this for calculating a factorial:

f(x) = f(x-1)x;

There are multiple issues present with an equation like that, including lack of a base case

for the recursion, a lack of type limitations, and no bounds checking. This sort of issue

might not happen to a stronger student, who might know to represent the function instead

as:

f (x) =

 f(x− 1)x

1

x > 0

x = 0
where x ∈ Z+

However, as not all novice programmers know more advanced formulaic representations,

this sort of issue could cause students to think that recursion is not possible, or behaves

in hard to predict ways.

These three general dangers (extra baggage, false equivalence, and false limitations) need

to be taken into consideration if one is to create a set of metaphors that can be applied

to multiple concepts rather than just to one concept at a time.
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2.4 CommonMisunderstandings and Troublesome Con-

cepts

This section touches brie�y upon what concepts cause problems for novice programmers.

It can be shown that, in fact, anything can be misunderstood regardless of complexity -

and therefore only some of the most common troublesome concepts are listed below.

A study done by Bayman and Mayer [22] found that a group of self taught BASIC stu-

dents had trouble with even very simple statements: most of the test statements were

understood by less than 43% of the students in the study. Further examples include: only

3% understood what �input A� meant, while 27% understood "IF A < B GOTO 99".

While BASIC might be less verbose about the meaning of each line when compared to

something like C# or Java, the di�erence is not so extreme as to render this work irrelev-

ant. The major idea that one can take away from this study is that without the guidance

of an experienced programmer, students will often have little to zero understanding of

the language constructs, not to mention more complicated concepts such as mutable vs

immutable, or passing by reference rather than value.

A secondary point that can be taken away from Bayman and Mayer is that even the

simplest of statements could bene�t from more detailed explanations (which is where the

metaphors come in).

In a more recent study, which focused on students' understanding of recursion, Götschi

et al. [23] found that on average less than 50% of �rst year students held viable mental

models of recursion. Relating this to self-taught students (such as those in Bayman and

Mayer's study), shows (unsurprisingly) that there are bene�ts to having someone help

you learn, however it also shows that even after a year of tuition students will often still

have poor mental models.

Personal experience has demonstrated that some novice programmers will treat a series

of assignment statements more like simultaneous equations than a series of ordered com-

mands. For example, students see line 2 in Algorithm 2.1 and assume that variables x

and y are now one and the same, thus their �nal output is �x -> 7, y -> 7� rather than �x

-> 7, y -> 2�. Götschi et al. also observed mental models such as this, which they refer

to as an �algebraic model�.

What all of the above examples demonstrate is that students can misunderstand almost

anything, regardless of complexity. While some misconceptions are likely to be more com-

mon than others, it seems safe to say that by addressing the most fundamental concepts
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Algorithm 2.1 Simple assignment statements

int x = 2;

int y = x;

x = x + 5;

Console.WriteLine(�x -> {0}, y -> {1}�, x, y);

�rst (by creating high-�delity mental models for them), the later, more complex concepts

are less likely to cause problems because they have a �rm foundation to build upon. This

concept is used later in order to determine the developmental hierarchy that the meta-

phors follow (i.e. get the fundamentals well-established before adding anything more that

might depend on them).

The start of this section promises a list of some of the more common troublesome concepts,

however before providing one it is necessary to compare troublesome concepts to threshold

concepts. As explained in Section 2.1.4 all threshold concepts are troublesome concepts

(but not the other way around), therefore a list of the most common threshold concepts

is likely to also qualify as a list of the most common troublesome concepts as well -

additionally, the number of troublesome concepts has to be larger than the number of

threshold concepts. Therefore the amalgamated list of most-common threshold concepts

in Section 2.1.4, also quali�es as a list of some of the most common troublesome concepts.

As a reminder, they are: object orientation; abstraction; levels of abstraction; procedural

abstraction; pointers; polymorphism; recursion and induction; and �nally, the di�erences

between classes, objects and instances.

2.5 Virtual Learning Environments.

A virtual learning environment (VLE) is any program that strives to put the user in

control of a simulated system so that they can experiment with how certain changes

a�ect the environment. For example, an environment aimed to teach students the ideal

gas law (PV = nRT), might present users with a virtual box containing a simulated gas,

users would then be able to alter various properties of the box (its size, temperature, the

amount of gas it contains) in order to see how one change a�ects the others. Another

example is that presented by Trindade et al. [50], which presents users with a virtual

reality environment for understanding how water behaves at a molecular level.

As shown above, several subjects have had VLEs created for them, however there is a

shortage of environments like this that might illustrate the inner working of a program,
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or what happens behind the scenes in a simulated computer. It is not hard to imagine

why there is a shortage of this sort of programming VLE: it would only serve to assist

novices, but would be di�cult to present in a novice friendly manner without presenting

users with an overwhelming amount of detail.

ActionWorld is not quite a VLE such as those described above (where the user changes

something and the environment adapts to re�ect the change), but it instead puts the user

in control of the simulation and makes them change the environment based on the code

for a particular program.

According to Rutten et al. [51], VLEs can be useful tools, especially for laying solid

conceptual foundations for complex or abstract topics. Therefore it seems reasonable to

assume that a VLE which incorporates Victor [18] and Tufte's [20] ideas about how to

learn and teach programming (as explained in Section 2.2), and which places the role

of the computer in the hands of the learner, should be a viable alternative to the more

traditional approach of saying �this is the input, I want you to write code that will

transform it into this output�. Henceforth this alternative technique will be referred to as

the student-as-interpreter model.

2.6 Gilligan's System and Programming by Demonstra-

tion

Gilligan's [5] dissertation was only found and read near the end of this work - nevertheless,

despite not basing any prior research or developmental paradigms on their work, there are

several notable similarities. The most important is that their model aims to give learners

strong mental models of programming concepts by asking them to demonstrate code, and

attempts to do so via metaphors. Taking this broad statement in isolation one might

say that both projects are the same, this is in fact not the case. There are several key

di�erences that will be highlighted before going on to further explain Gilligan's work, the

most crucial di�erence is in how code demonstration is de�ned in the two systems.

2.6.1 An Overview

In order to lend context to the remainder of this section, it is necessary to brie�y describe

both Gilligan [5] and ActionWorld. More detailed descriptions of various components of
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each system can be found elsewhere, Sections 2.3.1 and 4.1 describe Gilligan's and this

work's metaphors respectively, while the remainder of the dissertation elaborates on the

details of the proposed system.

The proposed system presents users with ready-made code that they need to interpret:

in order to advance in the code users must interact with the appropriate metaphor in the

game world. Users receive immediate feedback about whether their action was correct or

not, and at no stage does the system attempt to generate code based on users' metaphor-

interactions. Figure 2.5 shows what a user would see upon starting a new level in this

system, metaphors not relevant to the current level can be hidden based on user preference

(for example, the memory robot, communication terminal, and the double notepad).

Figure 2.5: The WPF implementation of the proposed system at the start of a level. Left:
the code that the user needs to interpret. Right: the metaphor playground that users
must interact with. The Image has been cropped and compressed somewhat in order to
accommodate spatial limitations.

Gilligan's system also works via demonstration, however rather than presenting users

with pre-made code and asking them to explain it, the user is presented with several

interactive metaphors which they can combine however they choose (i.e. demonstrate

the desired program behaviour). Based on how the users interact with and arrange the

various metaphors, the computer then infers and displays the PASCAL equivalent (or its
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best guess). Figure 2.6 shows what users would be presented with when starting Gilligan's

system.

Figure 2.6: A screenshot of Gilligan's second prototype. Users drag objects from area C
onto the clipboard in area A, the corresponding code is then inferred and displayed in
area B.

2.6.2 Key System Distinctions

Both ActionWorld and Gilligan's system ask users to `demonstrate' through interaction

with metaphors or analogies, but what is being demonstrated and what results from

this demonstration di�ers signi�cantly. Gilligan's [5] system presents users with a form-

like environment and lets them experiment using assorted graphical user interface (GUI)

components. Upon interacting with an object, matching code is creating in their simpli�ed

PASCAL language. What this means is that users have no goals or limits, and the output

of their actions is actual code. ActionWorld takes the reverse approach. Users are given a

piece of code, and asked to demonstrate its meaning line by line via metaphor interactions

(except when this system is in sandbox mode, where no code is displayed at all, and
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users can simply experiment). One might be forgiven for thinking that this di�erence is

unimportant, however it more than just di�erentiates the two systems: it also shows that

both systems are taking a fundamentally di�erent approach to achieving the same goal,

and therefore cater to di�erent learning styles. This system's primary teaching style is

the acquisition of automaticity via linear learning (with sandbox mode, again, being the

exception), while Gilligan appears to focus entirely on exploratory learning.

In much the same way as this work, Gilligan also aimed to create something of a comple-

mentary set of analogies (i.e. metaphors that work well together). Section 2.3.1 explains

these in more detail, along with other established metaphors. The short version of his

analogy is that the computer is portrayed as being a clerk at an o�ce desk, and the user

takes on the role of the clerk.

Before actually reading Gilligan's dissertation a similar enhancement had already been

considered for ActionWorld: one to allow for reverse-mode activity, that is, code gener-

ation in response to the manipulations performed during sandbox play - however after

considering the various implications the idea was rejected. There were two main reasons

why the idea was rejected: the most important one was the risk that students who learn

to program in such a fashion (without conditional structures being presented to them

somewhere) might be more prone to write problem speci�c solutions rather than general

solutions. The second reason that the inclusion of reverse-mode code generation was de-

cided against, was that the metaphors and implementations had not been created with

that sort of functionality in mind, and thus such behaviour would likely appear out of

place or poorly catered for. Section 9.6.1 goes into more detail regarding reverse-mode

code generation as a potential future extension to the system.

If one were to judge Gilligan's system based entirely on what Kelleher and Pausch [4]

say about it, one might unfairly condemn the whole system as having no support for

variables. However, what Kelleher and Pausch fail to mention is that it was only one

of Gilligan's two implementations that did not support variables, and this was due to

time constraints preventing implementation completion. Their model as a whole in fact

supports three distinct variable types: numbers, strings, and Booleans. One might still

perceive this as something of a limitation because most modern languages have many

more fundamental types, a simple example would be the di�erence between integer and

�oating point numbers (which would have to be treated the same in Gilligan's system).

This work takes a di�erent approach, and allows users to declare variables and values of

any of the fundamental .Net types.
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2.6.3 String Type Implications

Gilligan's [5] handling of string types is a potentially interesting illustrative feature, de-

pending on whether their PASCAL dialect treats strings as mutable or immutable. Pas-

cal's original de�nition had a number of severe limitations with string types (a maximum

of 255 characters being just one of them). In modern dialects (such as Delphi) this has

led to the growth of a number of di�erently optimized string types to cater for short

strings, long strings, and strings that are concatenatable without copying-on-write over-

heads. Because of these limitations, there are currently moves being made to rationalize

and perhaps introduce immutable strings [52].

What this means is that if Gilligan [5] adopts a representation that treats strings like

the simpler number and Boolean types, it will almost certainly build an internal mental

model that may not be a good match for what the student subsequently encounters.

While if he intends to treat them as immutable, students are likely to be better equipped,

provided his in-game representation is su�ciently di�erent from those of the simpler types.

Considering the date of publication it is unlikely that Gilligan intended to represent strings

in an immutable form, which is a more modern (potential) development. This concern

might not have been relevant when Gilligan's [5] system was being made as programming

paradigms change so much over time, as Gilligan makes no mention of mutability.

2.6.4 The Interface

The only relevant weakness of Gilligan's system that has not yet been discussed, is that

it does not use images to enrich the user experience - instead it uses a GUI made up of

standard buttons and generic components (Figure 2.6 illustrates this). So even though

the metaphor for a variable is a box, there is no box to help the user construct the mental

imagery. Gilligan notes that the interface is something of a weakness, but goes on to say

that he wanted to focus on the functionality of the system rather than the aesthetics (a

design choice also adhered to in ActionWorld, as explained in Section 3.5). This could also

have been done partly due to technical limitations at the time (after all the program is

nearly 18 years old), nevertheless it is a point upon which ActionWorld is able to improve.
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2.6.5 The API and Gilligan's Virtual Machine

Gilligan refers to his underlying model as an abstract machine that is not concerned with

syntax, scope, and most other things that regular compilers need to take into consider-

ation. He goes on to say that his machine assumes that it is passed a valid program for

every run. Without explicitly intending to, the virtual machine created for this system

does something similar - it assumes that a program (or level) is valid and complete, and

then links the user to the virtual machine via the assorted metaphors. It appears as if

the key di�erence between Gilligan's [5] abstract machine and the one created for Ac-

tionWorld, is that his interprets a PASCAL dialect, while the new one interprets what

amounts to an intermediate language created specially for each level (in theory somewhat

like what C# code gets compiled down to, though not comparable at a functional level).

2.7 Summary

This section covered a wide range of topics, ranging from Constructivism theory to a

survey of existing games, and it highlights a number of important ideas:

• Education theory in general is a wide reaching topic with occasionally con�icting

theories (for example, creation of automaticity is best done through repetition, while

learning through exploration is believed to improve retention). Regardless of these

con�icts, the relevant theories can still be used to improve on ActionWorld's design

in order to increase its e�ectiveness.

• There are proven bene�ts to the visualisation of data and �ow of control.

• Learning to program is hard, often because foundational mental models are �awed

and need to be re-factored. One potential source of �awed concepts is the adoption

of `weak' metaphors as mechanisms to explain programming concepts.

• There is a huge variety of material aimed speci�cally at teaching programming, and

yet no single system has been able to conclusively say that they have found the best

way to teach. This means that an alternative system to the more common ones may

be bene�cial (in the very least because it adds variety).

This section showed that while ActionWorld is similar to Gilligan's [5] system, they have

several fundamental di�erences. ActionWorld appears to build on Gilligan's in much the
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same way that Snap! [15] builds on Scratch [14], which in turn builds on a system proposed

in 1986 by Soloway [53] where novices learn by combining algorithm components through

a simpli�ed medium.

Gilligan performed a brief analysis of their system based on programming fallacies presen-

ted by Eisenstadt et al. [19], and in order to compare the two systems using a similar

standard the same thing was done here. This is only elaborated on later, in Section 7.3.1.

The next chapter elaborates on the methodology used to develop and improve upon the

various attributes of this work.



Chapter 3

Methodology

The previous chapter provided some background from the �eld of education theory, as

well as several examples of systems which use metaphors to teach programming. This

chapter explains how the last chapter's theory in�uences development, along with all the

details regarding the design process followed during development of ActionWorld and its

constituent components. A description of the design based development paradigm used

is included, along with several design patterns aimed at improving quality (such as the

Model-View-Controller (MVC) architectural pattern).

3.1 De�ning Artefacts and Deliverables

This research will output at least two distinct artefacts for assisting in the education

process. The metaphor set is intended to be usable by both instructors and learners,

across multiple educational media including live lectures, videos, textbooks, and interact-

ive games. The second distinct artefact is that of the API, which will make the task of

creating educational systems such as ours easier. These two primary artefacts create a

need for several secondary ones: at least one implementation of the proposed game so as

to demonstrate the quality of the metaphors and the API, as well as a level editor which

allows educators to craft curriculum speci�c levels.

Due to time and scale constraints, thorough testing of all the aforementioned deliverables

is not feasible, therefore this work includes another secondary deliverable that one might

not consider a requirement, but does serve to improve quality: a testing and evaluation

framework for the primary artefacts.

36
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One could go further, and argue that this dissertation delivers a total of four separate

secondary artefacts (the two di�erent implementations of the game, the level editor, and

the test framework), and that they are usable by both teachers and students: the actual

game component is aimed more at learners, while the level editor can be used by anyone

to create custom lessons, and the test framework is geared towards academics who wish

to expand on this work.

The next few sections elaborate on the design and development process used during the

creation of the aforementioned deliverables.

3.2 Iterative Process

This work places a great deal of emphasis on iterative development, in fact one could

write several sections detailing all the iterations this work went through. For now it will

su�ce to detail the steps undertaken during the design and development process.

There are two separate iterative procedures that were followed, one for creating the set

of metaphors and one for developing the API and games. The latter process is broken up

into distinct phases.

3.2.1 Metaphor Development Methodology

The steps involved in creating the metaphors are as follows:

1. First one needs to list and explain the various concepts that one wants to be able

to represent and why each one is necessary. The list is then ordered according

to the necessity of each concept (for example, being able to show at least simple

methods should always be more important than being able to demonstrate recursive

methods).

2. Select a structure or concept that needs representation, generally starting with the

most fundamental of those which do not yet have representations.

3. Propose a metaphor or metaphor re�nement for the current structure or concept.
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4. Identify potential limitations of the proposed metaphor (without concern for com-

plications that the existing metaphors might introduce, see next step). Problems or

limitations here require that one goes back a step.

5. Consider how various existing metaphors would fare with the newest addition to the

set (and vice versa). If issues are found at this stage one must go back several steps

to identify whether there is a weakness in the existing metaphors or in the newest

one. A common issue at this stage is that a metaphor might be sound in isolation,

but a meaningful relationship could not be established with the other metaphors,

thus inclusion is not an option as it would not result in a uni�ed set of metaphors.

6. Once happy that all the metaphors so far mesh together (and are accurate enough),

the process is repeated from step one to include the concepts or structures that

aren't represented yet.

3.2.2 API Development Methodology

The process used for API development was a little more concrete, as it was known what

kinds of structures needed to be included almost from the outset. For example, a variable

class was essential, which in turn needed a value class. Bear in mind that these steps are

for a set of classes that are non-graphical, and essentially make up an abstract virtual

machine. Here are the basic steps followed during the development of the API:

1. Following a similar order to that used in developing the metaphors, the next struc-

ture that needs an API representation needs to be selected.

2. One would then create a class to represent the concept or structure in question.

3. Once the rough class is created, the question �what sort of non-basic functionality

would one expect from this class?� needs to be asked and answered. The answer

dictates the functionality that must now be added to the new class.

4. This step involves linking the new class to the existing ones wherever a link is

necessary. If at this stage two classes do not `mix well' for whatever reason, one or

both of them would have its structure revised. This only happened once or twice

during these iterations (more speci�cally with the calculator), and issues were more

to do with the metaphors being represented.
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5. Provided one does not yet have abstract representations for all the desired con-

structs, one would then go back to step two and repeat the process for those that

remain.

6. Once one gets to this point the API is nearing completion, and so it needs to have

simple (generally textual) tests run on it as a whole, to ensure that everything works

as expected. Any problems here would mean going back through previous steps of

this process (depending on the severity of the issue the number of repeated steps

and revised classes would change). Fortunately, during implementation, this step

seldom showed up any major issues.

If at any point in the development of the API a concept is encountered that has been

left out during metaphor development, or if anything else is discovered that has not

previously been considered regarding the metaphors, development goes back as many

steps as required to address the issue. In practice, this sort of alteration generally did not

mean that the API needed to be changed signi�cantly, as it is mostly independent of the

metaphors. To clarify this distinction, one can imagine the boundaries between a virtual

machine, and the front end one uses to communicate with it (not unlike the Java virtual

machine and the assorted develop environments that communicate with it ).

3.2.3 Game Development Methodology

Once the API was up to standard the next step was to create a functional game based

on both the API and metaphor set combined. If during the process of game development

it was found that something was missing from the API, development would go back to

the API phase to address the issue. If the issue was serious enough, development would

go back to the metaphor phase (this did actually happen with regard to calculators vs.

notepads, as described in Section 5.4).

The game development phase is only considered complete when one is no longer able to

signi�cantly improve the experience. This last stage is almost made up of sub-phases:

if there was a failure in any one of these sub-phases one could either go to an earlier

sub-phase or back to an earlier main phase (API or metaphor development). These are

the steps involved in the game development process:

• Add a visual representation of the next metaphor in the list of concepts to represent.
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• Test that it works correctly.

• Test that it interacts sensibly with the other metaphors.

• Criticise the layout and metaphor representation in order to try to improve the

experience that it might give a user.

• The process is then repeated from step one for the next concept.

3.2.4 Iterative Hallway Testing

During implementation, getting to this stage was an indicator that development had

reached the limit of what improvements could be made using `in-house' testing and de-

velopment. Therefore the very last set of development steps centre around user testing.

Rather than perform a full-scale user test that might be appropriate in an HCI project,

this phase used a relatively cheap and lightweight approach advocated by Joel, called

corridor or hallway testing [54]. The game prototype was set up in the undergraduate

computer laboratory during CS1 practicals, and users were invited to give the game a

try. Section 5.4 gives a more detailed account of the results of the corridor tests, and is a

good demonstration of the iterative methodology described above. These are the broad

testing steps undertaken (deviating from these steps is not a major issue):

1. The game would be presented to users, who would then be asked to play it.

2. Details of their experience would be recorded as they interacted with the game.

3. A set of question would then be posed, in order to get their opinions.

4. Finally if there was a signi�cant improvement to be made based o� of user feedback,

development would go back to the appropriate stage in order to implement it. This

could be as simple as re-arranging sprites in the game development phase, or altering

a metaphor to clarify its meaning (all the way back at step one).

By this stage the design and implementations of the game and the metaphors should have

stabilised to a point where development could comfortably move onto the next phase (that

of validation).
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3.2.5 Validation and Evaluation

The next phase is about validating the quality of the game, the metaphors, and the work

in general. The quality assessment stage is not as iterative as the other development

stages; instead it involves taking some form of quality assessment criteria and grading the

system accordingly.

Several quality evaluation and validation techniques have been proposed, including: an-

onymous qualitative surveys of novice and experienced programmers (both asking for

opinions on the metaphors and asking them to use the metaphors to demonstrate how a

piece of code should work); quantitative surveys of students based on their marks and use

of the game (this would require an amount of time that would exceed the scope of this

work); questioning focus groups of programmers to try and elicit responses that might not

be obtainable through surveys; one-on-one interviews with programmers of various levels,

as well as several more quantitative measures such as checklists, heuristics, and system

comparisons.

As there are so many potential measures of quality, of both quantitative and qualitative

natures, two separate chapters were created: the �rst (Chapter 6) gives an overview of

the most common evaluation techniques along with sample tests for each technique, while

the second (Chapter 7) elaborates on the results of the applied tests.

3.3 Design Based Methodology

So far two key design issues that this system adheres to have been explained: deliverable

artefacts, and an iterative approach. Several established methodologies rely on these

two ideas. Of these, this work's methodology aligns best with the so-called Design Based

Research (DBR) advocated by Juuti and Lavonen [30], and adheres to the majority of their

criteria. According to Amiel and Reeves [55], when creating an educational technology it is

important to not only consider the �nal artefact, but to also take the process of design and

re�nement into consideration. This process is something that the iterative DBR approach

addresses with a great deal of success: end users are consulted for feedback throughout the

process, it merges design principles with technological advances in order to better serve

the end user, and �nally it relies on a rigorous iterative cycle of design-test-re�ect-re�ne

in order to ensure quality and �delity [56].
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Figure 3.1: A block-based �ow diagram illustrating the iterative steps involved when
using a DBR approach [3]. De Villiers and Harpur did not state that the demonstration
phase is optional - this was included to demonstrate one of the steps that was occasionally
bypassed during the course of this work.

Figure 3.1 shows a general block-based �ow diagram, typical of most DBR projects,

as explained by de Villiers and Harpur[3]. Note the annotation regarding the optional

nature of the demonstration stage - it is the authors experience that after the design and

development stage, one often does not need to demonstrate the behaviour of the artefact

- perhaps because the outcome is already obvious. An example of this may occur near

the start of a project, where the researcher already knows that the artefact is not yet able

to solve the problem - in this situation one can go directly to evaluating the artefact's

shortcomings before returning to an earlier stage to rectify them.

During the course of this research, multiple di�erent artefact were created - each one with

its own �ow diagram. Due to the scope of the project, providing a comprehensive set of

�ow diagrams is infeasible. However, as there is very little variability between diagrams,

one has been included in Figure 3.2. It shows how most artefacts had at least three

di�erent types of testing and quality assurance applied to them (�delity checks, under-

standability checks, and Hallway Usability checks), these were occasionally performed in

an informal manner, while the majority of evaluation results were obtained through the

applications of the test framework explained in Chapter 6.

This �gure also demonstrates that there is occasionally deviance from the more generic

version shown in Figure 3.1. The primary di�erence shown is how the di�erent artefacts'

development �ows merge together, and often in�uence each other, through the forward

and backward propagation of changes made to rectify identi�ed issues (regardless of what

stage those issues were identi�ed in). A secondary di�erence between Figures 3.1 and 3.2

is that iterations could begin at almost any stage - rather than just the �nal two.
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Figure 3.2: The DBR �ow diagram used during the design and creation of the metaphors.
Notice that later stages in the development process feed into this diagram (or are fed by
it) - this can include the game development stage, test framework application, or even
the alteration of a related metaphor.

This cycle of problem identi�cation, recti�cation, and proliferation only ends when no

changes are made on a particular iteration - at which point the project shifts focus onto

the related (dependant) artefacts. As an example of how often this cycle occurred, consider

that no less than �fty di�erent potential metaphors were considered, built, and ultimately

rejected, before settling on a set of nine for use in the �nal program. The in-game

representations of those nine metaphors were then altered multiple times based on the

Hallway Usability Testing results (explained more in Section 5.4) before reaching their

�nal state.

3.4 MVC Build

Due to initial uncertainty around the �nal form that the metaphor set would take (in

turn based on which metaphors complement each other best, while retaining �delity and

encouraging consistent mental models) the popular Model-View-Controller (MVC) design

approach was used when implementing the game. An MVC approach allowed development

of the underlying API for tracking state and fundamental logic (the Model), to be done

separately from the visual metaphors and manipulatives that the end user is presented

with (the View). The model and the view then come together through the Controller.

Figure 3.3 illustrates how the MVC paradigm was applied to the system, and gives a good

idea of how interchangeability is encouraged via MVC.

This design and development methodology allows one to easily switch out components on

either the front end or the back end without any side e�ects. During the course of devel-
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Figure 3.3: An illustration of the MVC design the system used. View keeps track of
components such as sprites (and their associated details), the Model keeps track of the
state of the virtual machine, while Control manages user interaction and facilitates com-
munication between the View and the Model.

opment several components of the underlying API, as well as the displayed metaphors,

needed to be switched out and improved upon - especially once usability testing began (as

explained in Section 5.4) - this need for frequent easy switching proved the value of the

MVC approach that was used. A simple example of a change to the Model, would be to

alter the order in which actions needed to be performed (an example of this was in regard

to variable declaration and assignment as explained in Section 4.3). View re�nements

were generally made when a user did not understand something as expected, or when

users provided feedback about the interface lacking something or being unintuitive.

Most of the time changes to the Model component seldom a�ected the View (and vice

versa), however this was not always the case: when the decision was made to include an

alternative means of getting expression values from the user via notepads, both the Model

and the View needed to be altered.

Using the MVC paradigm not only makes development easier, it also makes the underlying

API more portable, thus allowing others to use the API as it is without making any

changes. The MVC decoupling makes it particularly easy to respond to feedback from

the users.
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3.5 Functionality over Aesthetics

As mentioned before, one of the primary goals of this project is to create a set of uni�ed

high-�delity metaphors, which can be used in various environments. With this in mind

the most important part of the metaphors described is not whether they look good in

any single implementation, but rather that they can be used in an assortment of di�erent

environments (for example, real-world class rooms, images in textbooks, XNA games,

or GUI applications) and more importantly that they accurately portray the concept in

question in a manner that is unlikely to confuse novices.

A good deal of e�ort went into the appearance of the two game implementations (including

images and layout), however without the resources to acquire the help of professional

graphic designers, occasional trade-o�s between functionality and aesthetics had to be

made. In these situations functionality was prioritized. For example, it is more important

that the user has a stream-lined understandable experience when assigning to a variable,

rather than one that looks good but risks causing distractions or misunderstandings.

Continuing with the variables example, a representation was created that looked better

than the �nal one, however it confused students and so it was replaced. This project is

not the �rst to put function over aesthetics, as shown by Gilligan [5], who acknowledges

his sub-optimal interface and justi�es it in much the same way.

Section 4.3, while being focused on metaphor optimisations, also has several good ex-

amples of visual changes that vastly improved the user experience without altering the

underlying metaphors.

3.6 Summary

This chapter explained the iterative methodology followed during the various stages of this

work: where any identi�ed issues or improvements would result in development returning

to an earlier stage, in order to implement the required changes. Two secondary design and

development paradigms were also explained: MVC and Functionality over Aesthetics.

The next chapter describes the proposed metaphor set, and then goes on to explain earlier

stages in the design of the metaphors. The description of earlier stages relates directly to

the iterative approach described in this chapter.



Chapter 4

The Metaphor Set

This chapter describes the �nal metaphor set after optimisations were made, some ex-

amples of the earlier metaphors before optimisations, alternative representations, poten-

tial enhancements, and �nally a look at the early developmental representations that the

system as a whole went through. Some of the �nal analogies did not change at all, even

after being presented to students (values on paper are a prime example), while others

underwent drastic alterations. When students seemed to not grasp a particular metaphor

during usability testing (see Section 5.4 for examples), the troublesome concept and as-

sociated metaphor were considered carefully and altered to address the issue, and it is

primarily the improved metaphors that are described here. Section 3.2.1 describes the

iterative development of the metaphors in more detail, while Section 5.4 contains more

details about what students struggled with and how the issues were addressed.

In general, all metaphors that indirectly represent a concept must eventually constrain

or misrepresent reality. Thus the metaphor design boundaries need to be informed by

the overall goal of the work: to support an introductory programming course. In this

work, elements like expression evaluation, variable declaration, assignment, strong typing,

reference types, value types, method calls, parameter passing, and values returned from

methods were considered core notions. Other more advanced ideas such as multi-threaded

programs, object instantiation, garbage collection, inheritance, method overriding, and

nested scopes were not prioritized, and the metaphors no longer need to hold in those

advanced situations.

This chapter is not arranged chronologically - if it were, it would start with various

early metaphor proposals, move on to the �nal metaphor set, and end with potential

future enhancements. Instead, it opens with the more important information (the �nished
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set), and everything that follows can be considered additional detail regarding stages of

metaphor development (as explained in the previous chapter) and future work.

4.1 The Finished Metaphors

4.1.1 Values

The most fundamental thing in any program is an individual value, either as actual value

or a reference to a location in memory (this would include integers, doubles, Booleans,

chars, and all other primitives). This particular concept is so fundamental that it applies

to almost all languages (including functional ones). As this is such a key concept, its

associated metaphor needed to be one of the most reliable and easy to understand: it was

concluded that a simple piece of paper with the value written on it would be suitable,

provided the paper was given some special attributes to cater for special cases (such as

value copying, and immutability).

Everyone can relate to pen and paper, you cannot erase pen from paper (meaning values,

not variables, become immutable), and if one were to imagine solving an expression in

their head the most sensible thing to do with the answer would be to write it down.

This representation of values laid the foundation for the remaining metaphors. Figure

4.1 shows an example of a value notepad, the user inputting a value, and �nally the user

holding the value1. The paper used for this metaphor is volatile - once it has been written

on and placed in a variable box it cannot be removed without being destroyed (this is to

ensure that learners do not make the mistake of trying to move a value around without

creating a copy).

4.1.2 Variables

Variables are represented by boxes with transparent lids that contain a single piece of

paper (in the same way that a simple variable can contain a single value). Reading of

a variable is done courtesy of the transparent lid: you simply look into the variable box

and copy the value o� the paper without changing the content of the box. Assigning to

a variable involves opening the box, disposing of the old value-paper, and then placing

1The writing utensil in this �gure might appear to be a pencil. It is, in fact, a pen!



4.1. THE FINISHED METAPHORS 48

Figure 4.1: A: An int value-notepad. B: User inputting a value. C: The user holding the
�nal value. D: Alternative value-notepads.

Figure 4.2: A variable box called counter, containing the integer value 12345678.

the new value (which you would be holding) into the box. The metaphors for both values

and variables can be extended to include type limitations: one potential way to do this

would be to use di�erent coloured paper and boxes for each type, or alternatively you

could have boxes and pieces of paper that are of di�erent shapes and sizes, so that one

type cannot �t into another type, or �nally you could make users use di�erent pens to

write down di�erently typed values. These potential extensions do not interfere with the

more advanced metaphors. Figure 4.2 shows one potential version of the variable box

metaphor. The representation of variables on the stack comes later, up to this point it is

enough for users to know that variables exist and how to imagine them.

4.1.3 Expressions, Arithmetic and Calculation.

Expressions of all kinds have two viable metaphors in the uni�ed set: users can either

be presented with an explicit calculator (which then requires special interactions and

operations) - or they can have expressions explained as being transient, and thus they

need to work the result out for themselves and only store the result. Good arguments can

be made for either case, and thus both metaphors have been included so that anyone who
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wants to expand on this work can make up their own mind - Section 4.3.4 goes into the

pros and cons of the two representations. Originally the explicit calculator metaphor was

used to explain expressions and evaluation - it worked much like a real-world scienti�c

calculator, where users could enter an expression and then go back and alter terms once

they had the required values. For example, a user might enter �x + 5� into their calculator,

they would then look at the local variables and copy the value from x onto a piece of value

paper, and that value would be fed into the calculator (almost like a fax machine, except

the paper is destroyed).

When the user asks to substitute into the place holder `x' in the expression, the calculator

would replace the variable in the expression and then wait for further instructions from

the user, or for the user to ask it to evaluate the answer. When the expression no longer

has un�lled `variables', the user would hit evaluate and the answer would be printed out

from the calculator onto a piece of paper. Figure 4.3 illustrates the sequence of events

when using the calculator metaphor.

One of the major downsides to this method is the number of steps involved in evaluating an

expression, for example, `x + y + z' would require: inputting the expression, three explicit

variable reads, three substitutions, and �nally evaluation. This number of steps might not

sound like much, but for a beginner every extra step runs the risk of distracting from the

code or confusing them. A secondary downside to using the calculator as an expression

evaluator is that the user would not need any understanding of types as the calculator

would simply output the correct type along with the answer. This issue could be addressed

by altering the metaphor so that users would have to be explicit about the type returned

upon evaluation (almost like a compulsory casting step). One should note, however, that

these drawbacks only occur when using the metaphor as a manipulative (such as in a

game) - if one is simply explaining expression through the analogy of a calculator, these

concerns are removed by the fact that the user no longer needs to perform the numerous

steps, and can instead simply imagine the procedure or have it explained.

The multiple calculators option used by Gilligan [5] is impractical, as there are so many

types in ActionWorld (whereas Gilligan's system has just three types).

The second, easier, technique for expression evaluation in ActionWorld removes extra

metaphors entirely by just asking the user to evaluate the expression outside of Action-

World - in their heads (or on paper, or on their real-world calculator) - in much the same

way as when users debug a piece of code. This second method poses fewer problems (for

example in requires only one in-game step, as opposed to several) but it is not perfect,
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Figure 4.3: The steps required to evaluate an expression using the calculator. A: the
calculator is blank and requires an expression. B: An expression has been entered and
now requires value-substitutions for every variable. C: A value has been substituted (this
requires a variable read �rst), this step is repeated 3 times. D: All values have been
inserted and the user has asked for the answer (which was printed onto a piece of value-
paper).

the biggest �aw is in fact one that it shares with the calculator metaphor: how to deal

with expressions that contain method calls, Section 4.4.1 goes into more detail regarding

this issue.

One might note that having multiple notepads is similar to Gilligan's calculators, and

it is therefore subject to the issue of too many types. This issue was overcome by only

presenting users with the more common types as notepads, and anything more complex

requires the use of the calculator instead - thus the two representations can be used side

by side.

4.1.4 Conditionals

In what has been described so far, values always end up being stored in a variable. But

in a conditional statement the Boolean test expression serves only to direct the �ow of

control, and the value is �consumed� in the process. Some mechanism had to be created

to allow for value �consumption�, when the value was not to be stored in any way.

While ActionWorld attempts to remove the responsibility of program �ow from the user,

it is still necessary to include some way of handling, or at least demarcating the locations

of, conditionals. This need is based on the fact that the result of a boolean expression

does not have anywhere to go or be put yet, thus leading to behavioural ambiguity about
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Figure 4.4: Two possible representations of the BoolEater conditionals mechanism.

Figure 4.5: Top: Barbed wire memory barrier. Bottom: Police tape memory barrier.

what needs to be done at a conditional. The answer to this simple need is an equally

simple mechanism: a Boolean value eater.

After a user has evaluated a boolean expression that is part of a conditional structure,

the resulting user-held paper-value is disposed of by feeding it to the BoolEater, whose

responsibility it is to direct conditional �ow. Figure 4.4 shows two example representations

of the BoolEater.

4.1.5 Local Variables and the Current Stack Frame.

The next step up the abstraction ladder is to delimit local and global scope using some

kind of uncrossable barrier (for example, a line of barbed wire, police tape, or even a fence

- Figure 4.5 shows two possible barriers), this barrier serves to separate the user space

(the local scope) from the memory space (the global scope, including the stack and the

heap). The global area, and everything in it, will be discussed later. Scope-delimitation

was mentioned here for clari�cation of the next concept to be described: how to represent

the current frame and all the variables that are stored within it, while still being relatable,

and without complicating the pushing of stack frames into the global scope.

Several di�erent possibilities for the local frame were discussed, and �nally something akin

to a jigsaw or Lego bookshelf was settled upon: users would start out without a bookshelf
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(provided there are no local variables yet), and a mechanism which dispenses bookshelf

`pieces' is always present. Whenever the user needs to declare a new variable they would

�rst have to extend the bookshelf so there would be enough space for it. Each space

on the bookshelf is able to contain one variable box. This metaphor might be slightly

less relatable than using a normal bookshelf, however a simple bookshelf runs the risk of

making the user think the current frame has a �xed size (which is not the case). Another

advantage to the expandable bookshelf metaphor is that if you want to teach students

about how variables can go out of scope (for example, when they are declared inside a

loop) the out-of-scope variables (and their associated bookshelf sections) can be removed

entirely.

If one is concerned about representing stack limitation (such as those imposed by memory

limitations), this metaphor can be adapted slightly to allow for their inclusion: the

bookshelf-block dispenser can be made to have a �nite number of blocks, that way if

it runs out of blocks a memory error can then be shown. When returning from a frame,

or deallocating local variables, the used pieces could then be returned to the dispenser.

The metaphorical bookshelf sits on top of a conveyor belt, this only becomes important

when the user is able to call methods, thus it is discussed in more detail in the next section.

Figure 4.6 shows what the user might be presented with depending on the current stack

frame state. Alternative methods of representing the stack and individual frames were

discussed and almost uniformly rejected for various reasons, Section 4.2 goes into more

detail on these.

4.1.6 The Stack and Methods

Once one understands how to interpret the representation of the current frame, one is

then also able to interpret the stack as a whole: just like a library usually has more than

one bookshelf, a stack usually has more that one frame - therefore one can cross the two

ideas and represent the stack as rows of bookshelves. This is also where the division

between local and global scope becomes important, as the stack is primarily located in

memory space rather than user space. When a new frame is created from a method call,

the conveyor belt moves the current (not new) frame-bookshelf across the memory barrier

divisor so that it now exists in memory space (thus allowing for reference variables to be

accessed in the same way as objects located on the heap, which is explained later). Figure

4.7 shows how the stack would expand into memory space after each method call, and

shrink after each return statement.
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Figure 4.6: Four snapshots of the current frame and local variables bookshelf - displayed
on top of the frame conveyor belt, and inside the user space. Demonstrating the various
states during the declaration of local variables `a' to `g'.

Figure 4.7: Changes in state and visualisation for the stack and the frames that correspond
to each method call. Read from left to right this shows the calling of each method,
while read from right to left it demonstrates returning back down the stack (pushing and
popping respectively).
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As mentioned in the previous section, the current frame's associated bookshelf is posi-

tioned on top of a conveyor belt; this allows bookshelves to be moved across the memory

barrier and into or out of the current user scope. This mechanism is important for method

calls and returns: the conveyor belt has two control buttons, the call button, and the re-

turn button. These two buttons move everything on top of the conveyor belt either toward

or away from the user space. So far it is not hard to imagine the moving of the conveyor

belt as matching up with the actual process of pushing and popping frames to and from

the stack; the tricky part of designing this section of the metaphor set is considering what

happens to frames that have been popped o� the stack, and where new frames come

from. Both situations can be explained in a similar way to overwritten variable values:

For popped frames and overwritten values the object in question no longer belongs any-

where and so must be destroyed, the paper value would be torn up or burnt, and a similar

thing would be done to the popped o� frame.

In the same way that paper values are prepared using notepads, it was decided that a

workbench could represent the creation of a soon-to-be-used frame:

After getting the student to name the method they are preparing to call, one has several

options for presenting the steps of method preparation., The most feasible two techniques

are as follows: the most initially-intuitive way is to ask users to name and assign para-

meters and arguments in much the same way as local variables (one at a time, with

types, name, and values all the explicit responsibility of the user). The second possible

presentation method provides more sca�olding for the user: they are given a selection of

available method signatures which they need to pick from, and then are provided with all

the parameters ready to receive values. The user simply slots argument values into each

place. Figure 4.8 compares these two method preparation techniques side-by-side. Section

4.3.7 explains how and why technique one was originally used, but was later replaced by

technique two.

For a void method no further explanation is really required for how the user leaves the

method (they simply press the conveyor belt return button). However, it might need

saying that a value-returning method works by simply making the user hold the return

value in their hand, that way the return value is in hand when they get back to the

previous frame, and thus they can use the value straight away. Student understanding

of this particular subset of metaphors seemed particularly good, as discussed in further

detail in the usability test results in Section 5.4.
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Figure 4.8: Left: Metaphor one for method preparation, where the user is responsible for
everything. Right: Metaphor two (signature-picking metaphor) for method preparation,
where the user is responsible for arguments and calling but nothing more. The stages from
top to bottom are: no method named, a method named but no parameters assigned or
declared, one parameter (a) named and assigned, all the parameters named and assigned
with the method ready for calling.
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Figure 4.9: A simple �xed-size bookshelf that holds the global variables. It is directly
accessible to the user.

4.1.7 Global Variables

Many of the more modern programming languages do not, strictly speaking, have truly

global variables any longer - instead they have class �elds. So in this context global

variables refer to class �elds of whatever context the user is currently in (although this

metaphor would still be valid when applied to more legacy languages). Firstly, because

global variables are always accessible, they need a representation inside the user accessible

space. Secondly, because they (often) exist almost from the very start of the program the

user need not be able to create more of them (unlike local variables with short lifetimes).

These two facts can be brought together with another bookshelf metaphor: a �xed size

bookshelf that has all the necessary variables already declared, but which is not part of

the conveyor belt stack. Aesthetically one can represent this sort of bookshelf in more

than one way, the proposed representations are shown in Figures 4.9 and 4.10.

A potential concern for some might be that globals should be created and initialized

explicitly much like locals, but the disadvantage to this is that code execution would have

to begin outside of any methods (something one might prefer a beginner not to do). This

is another example of an implementation speci�c preference: if one does use globals, they

are automatically provided for the student as sca�olding.
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4.1.8 Representing the Heap

The easiest thing to represent about reference types is what exists in the local scope:

a simple memory address written down as a value. Reference types were represented

this way to make it perfectly clear to end users that whatever they do to objects or

referenced variables goes through a memory address because the thing in question is not

local. Additionally it makes explaining aliasing much easier, for example, if the user is

presented with code such as:

object x = new object();

object y = new object();

x = y;

x.changeSomething();

When using the visualiser, users can see clearly that x and y are initially di�erent, then y

became just another name for x because their values are now the same memory address

(and its original value was lost), and then �nally, changes to one change the other. The

more challenging thing to represent about reference types is what gets stored in memory

(which the user can partially see over the memory-barrier). Without introducing a middle-

man or some other go-between mechanism there is no way for players to a�ect what exists

outside of the user space. To solve this issue a robot to represent the memory manager

was introduced, which is elaborated on in Section 4.1.9. For now it is su�cient to say

that the memory manager robot obeys instructions from the user, and carries them out in

memory space - taking values from the user and writing them to the heap, or vice versa,

depending on the instruction being carried out.

With the memory manager robot ready to interact with the global space on the user's

behalf, the next requirement is a way to represent the heap and access to the stack. Access

to the stack is fairly simple as a concrete metaphor for the stack itself has been established

(the rows of bookshelves): the memory manager robot simply takes the address he has

been given and goes between the bookshelves to interact with the appropriate variable

box.

The heap requires more thought. After considering that the size of the heap is in fact

�nite (determined by the available memory) in an actual computer, it was decided that

the heap metaphor could also be represented by a �nite, �xed-size structure. The easiest
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Figure 4.10: The heap bookshelf with two objects in it. If they were array objects they
would be of length 4 and 6 respectively. This heap can only contain 36 simple values, and
thus demonstrates how a compressed representation would be desirable.
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Figure 4.11: A compressed representation of the heap. A: an empty heap. B and C: one
array present on the heap, with details above. D: highlighting the free space. E: three
arrays on the heap, with ys being highlighted. G: a demonstration of what might happen
after a garbage collection when ys is no longer being used.

way to represent it without deviating from the existing metaphors is to have one super-

sized bookshelf, possibly with movable dividers, where unused space is represented by the

lack of a variable box. Figure 4.10 shows an example of this extra large bookshelf, and

also illustrates that in certain media the bookshelf representation falls slightly short due

to its space requirements. For this reason, in-game, the heap can instead be shown as a

compact series of squares (as shown in Figure 4.11). This alternative representation can

just be thought of as a compact version of the bookshelf shown in Figure 4.10. Objects

on the heap do not, strictly speaking, need labels other than their memory addresses,

however they do make it more clear to the user what is where.

There are some disadvantages to the compact representation, the primary one being that

the representation is not based in the real-world and therefore is likely to be less relatable.

If one is concerned about distinguishing between di�erent objects, colour can be used to

emphasise the area used by a certain object.

Representing objects that are more complex than arrays of values is where reference

types become particularly di�cult to represent: one cause of this is the wide variety

of `shapes' that objects can take, a secondary issue is that of constructors and when

instantiation actually occurs, and a �nal hurdle is that of objects having their own methods
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Figure 4.12: A small section of the heap bookshelf showing potential representations of
two non-array objects.

and associated code.

A simple non-array object such as a Random generator could be represented on the heap

as two numbers and something to point to the objects associated method code: in this

example the numbers would be the start Seed and the previous output (as pseudo random

numbers usually rely on previous output), however the instance's methods would have to

be seen only in the code that the students are following (thus risking a disassociation

between instance and method code). Another example would be a bank account with a

name, number and balance.

Figure 4.12 shows a potential representation of the heap with an instance of the Random

and Account classes, unlike Figure 4.10 the objects on this heap have their properties

labelled so as to make it clear to users that they are not just arrays of numbers. The

`name' property of the Account class would be a string, its contents on the heap would

depend on how one chooses to represent strings, as explained in Section 4.1.10.

The compressed representation of the heap is not particularly conducive to anything more

complex than simple arrays (simply due to labelling limitations), while the more explicit

bookshelf representation would allow for objects to have other objects as properties: the

object property would simply contain a memory address that points to another object on

the heap (however this could be included in the compressed version, the resulting visuals

would just not convey everything clearly).

4.1.9 Interacting with Objects and other Reference Types

Once one understands how the heap and various reference types are represented, commu-

nication with them becomes fairly simple to understand as well. The memory manager
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Figure 4.13: The memory manager robot (left) and the terminal used to communicate
with him (right). These images of memory space communication metaphors were geared
towards array communication, in the event of more complex object �O�set� might be
replaced by �Field name�.
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robot is responsible for all interactions in the memory space, he receives his instruction via

the terminal (which is located in user space). For writing to the heap values go from user

to terminal to robot to memory address (and the other way for reading from the heap).

In order to access data on the heap the user needs to provide the memory manager robot

with two things: the object's base address, and the o�set of the speci�c object-element

of interest. For non-array objects the `o�set' would instead be the name of the �eld or

property in question. Reference access to variables on the stack is done in much the same

way, except there is no need to provide an o�set - an address alone is su�cient.

In order to facilitate easier state recognition the memory manager robot can have several

ways of showing whether it currently has an address, o�set or value: either lights on its

torso can show up saying what it has (as shown in Figure 4.13), or it could hold visible

values. The robot and terminal do not require much explaining, however coming up with

them in the �rst place took several iterations. The same is true of the stack and the heap,

Section 4.2 contains more details about earlier unacceptable metaphor versions and why

they were rejected.

4.1.10 Strings

Strings deserve a special mention regarding their representation, this is because while

they are technically objects, their immutability means that treating them as value types

is unlikely to cause problems. For this reason it was decided that strings could have two

representations in the metaphor set, depending on the preference of the teacher: one can

either use the more accurate (but more bulky) option of treating them as objects on the

heap, or they can be treated as value types that reside on the stack. It is important to

note that while the system allows for multiple representations, neither one threatens the

�delity of the metaphor set as a whole.

If one chooses to represent strings as objects on the heap then they would be treated as

arrays of characters, with the special property of being read only after their initial declar-

ation (due to their immutability). When they are treated as value types the metaphors

do not break down: when one assigns one string variable to another one can treat them as

though they are copies rather than aliases. The following simple piece of code illustrates

how, while they are objects, their assignment to each other does not link them when

alterations are made later. It also shows how, just like normal value types, one cannot

change an isolated part of the value - if one wanted to make a change, one would have to

replace the whole thing (the last line shows this).
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string x = "Hello";

string y = "world";

x = y;

y = "hello " + y; //notice how x does not change, despite the alias

y[0] = `H'; //illegal as it's read only

As brie�y mentioned in Section 4.1.8, objects on the heap that have string properties

would have di�erent representations based on the choice of string representation: if one

uses the more accurate model with strings as objects, then string properties would contain

memory addresses, and the individual character arrays would exist elsewhere on the heap

as seemingly separate objects. If one uses the strings-as-value representation then string

properties become simple, with the strings clearly being inside the parent object.

4.2 Early Developmental Stages - how to Represent the

Game World?

This section describes the earliest forms and representations that were proposed (and

almost uniformly rejected) for visualisation of the system as a whole. The simplest concept

one might try to represent, before even considering persistent data, is how to demonstrate

�ow of control. As �ow of control structures are the most rudimentary concepts in code,

this is the �rst thing that this work attempted to visualise. Early examples of the proposed

visualisations were built around representing programs as mazes, and included:

• Representing a Switch-block as a corridor with a certain number of doors, of which

the user can only enter one.

• Simple conditionals that rely on a boolean (such as loops and ifs) could all be shown

as forks in the maze.

• Method calls required ladders that took the user up or down the stack into a new

scope (and resulted in the maze becoming 3D).

Representing the system using the aforementioned maze structures seemed simple to begin

with, however all possible representations require that users have some way that they

can access local and global variables (which complicated matters when representing the
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program as a maze). The author attempted to address this by making users carry local

variables in their backpacks, which are put down when any method-ladders need to be

climbed. Globals were more of a challenge: even when control enters a new method or

scope, the same globals still need to be present. A possibility was to represent globals

by a second backpack which users never leave behind, but this presents a problem when

trying to carry around objects that belong on the heap... one could carry references to

the objects, but how does one access and alter them? A portal-gun/teleport mechanism

was proposed, that took the user into `global space' and allowed them to handle objects

and reference types on the heap... but then one must ask what happens to primitives

that have been passed by reference (their actual values end up sitting in a backpack near

a ladder somewhere and are inaccessible).

The issue of changing scope is further compounded when one considers that methods

always have a single entry point, but can have an arbitrary number of exits (returns):

how does one represent a ladder that has only one path up but can have any number of

paths back down? Even if one can imagine something like this, one must consider how

congested and confused the maze around the return ladder (or ladders) would have to be.

It was at this point that the maze representation was scrapped entirely, and instead the

previously proposed idea for global space was examined and altered to see if it could be

used as a replacement for user space.

The result of altering the aforementioned global-space idea, was an open-plan area that

the user can move around freely in, which contains:

• Visible code.

• A section dedicated to global values.

• Another for locals.

• And several control structures that are used to govern �ow of control and data

alteration.

This new arrangement removed the need to represent code in a `walkable' structure (such

as a maze). It instead allowed �ow of control structures (such as conditionals) to be rep-

resented as value-consuming mechanisms which the user can interact with, the BoolEater,

which is present in the �nal system.

With this `playground' established in its most basic form, experimenting with certain

behaviours began, the �rst of which was what happens during a scope change (this was
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the �rst thing tested because it caused the most problems in the maze representation).

Without some sort of enhancement the simple playground could not handle scope at all;

to address this an `elevator' mechanism that shifts the playground up and down while

leaving certain things behind, such as local variables, was included. This meant that the

user could change scope and see non-local variables, however accessing them as references

was still troublesome.

To address the values-as-references issue, the arrangement of the playground's content

was altered, resulting in a section dedicated to the stack, which could only be accessed

via a communication robot. By now one might be able to see some similarities with the

�nal arrangement.

The stack robot resolved the reference issue and allowed the work to progress, however

before moving away from issues regarding scope, consideration was given to how globals

(and the heap) should relate to the stack...after all, they all reside in memory. This led

to the realisation that all objects that belong on the stack should be accessed in much

the same way as references to stack variables. This was addressed by creating a heap

structure in the memory space that is accessed in much the same way as references to the

stack. At this point the robot stops being a stack robot and instead becomes the memory

manager robot.

Now there is a clear segregation between the memory and the user space. At this point

alterations became more about how best to represent a particular concept, rather than

�how should the system be represented as a whole?� Discussion of some of the more

interesting concept-speci�c alternatives can be found in the next two sections.

4.3 Pre-Optimisation Metaphors and Functionality

This section explains the state that certain metaphors were in when presented to stu-

dents for hallway-testing (Section 5.4), and the improvements made based on the results.

The metaphors usually appeared perfectly �ne during development (to the experienced

programmers involved in alpha development) but fell short for some reason or other once

presented to novices. These short falls have various reasons, including: the fact that the

developers were no longer able to see things from an `uninitiated' student's perspective,

and that simple aesthetic issues were making things unclear. The perspective-induced is-

sues lend further credence to what the literature in Section 2.1.4 says about troublesome

concepts being irreversibly transformative.
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4.3.1 �What am I supposed to do next?�

The most common observation during testing was that student did not know where to

start, or what portion of a line of code had to be done next. This issue was not due to

a fault with the metaphors, but rather because novices often simply do not know where

to start on a given line of code. The response was to implement a more powerful code

highlighting mechanism; the original simply highlighted the entire line, while the enhanced

version highlighted exactly what had to be done next. For example, the line �int x =

meth(2 + y)� would have sections highlighted that correspond to:

• int x

• meth(

• 2 + y

• meth(x+y); //call

• x = //on return

4.3.2 The In-Game Hand's Function is Unclear

When representing the metaphors in test games as manipulatives, it is necessary to re-

place the student's real-world hand with a virtual one. This in-game hand is responsible

for letting students know exactly what they are currently holding (if anything), and is

essentially a stateful cursor. The �rst representation of the users in-game hand caused

issues because its state changes were not obvious: originally it always had a notepad

in hand, and it was up to users to decide if there was a value on the pad. To address

this, three hand states were introduced: empty, holding value, or interacting with another

metaphor that requires more than just a simple click (for example, user input). These

three states (as shown above in Figure 4.1) helped users realise when they were carrying

(or inputting) a value.

4.3.3 Never-Empty Variables

The very �rst representation of the variable box presented to students attempted to avoid

the issue of variables never being truly empty, by hiding the content until the user assigned
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to the variable. This led to issues when comparing the order of operations for �int x =

1� vs. �int x; x = 1�: in order to hide the content of x in the former case users were

expected to evaluate the expression before declaring and assigning in a single step.

This issue was addressed by automatically giving variable boxes a default value for their

content, two alternatives for this content exist: either �???� to represent that it hasn't

been assigned to, or whatever the actual default value would be (for example, 0, 0.0,

��, or null). Use of the �???� representation was decided upon, so as to avoid risking

the misconception that a local variable can be read from before it is assigned to. The

default values of object on the heap are also hidden, but that is more to do with heap

communication being represented through the memory manager robot.

4.3.4 Expressions Overwhelming Students

In Section 4.1.3 above, it was mentioned that there are two ways users can handle expres-

sions using the metaphor set: either via an in-game expression calculator, or as a simple

answer notepad, with calculations done manually outside of the game. This section ex-

pands on the experiences with the calculator during the testing phase and how it was

improved upon.

Generally when users were presented with an expression that had an operator in it, they

seemed unable to decide what needed to be done with it. Once given a hint that the

calculator should be used for expression evaluation, users got stuck with the order of

metaphor interactions that they needed to undertake:

• Some would start by trying to mark a variable for substitution, before reading the

value into the hand from the stack.

• Some would attempt to substitute values in an arbitrary order.

• Others still couldn't grasp what they had to do in order to substitute the value they

had read (and which they were holding) into the expression.

Despite hints and attempted optimisations, the majority of users still had trouble with

the calculator, thus it was decided that the whole mechanism should be replaced by a

simpler one: moving the expression evaluation outside of the game.
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Near the end of development an improved hint-system was implemented that highlighted

the next object users needed to interact with, rather than just giving a textual hint. In

fact it could go so far as to hide or dim objects that were not relevant to the current level

in order to minimise clutter and information overload. While this �nal hint mechanism

was not tested on users, its blatantness may be enough to overcome the aforementioned

confusion around calculator interactions for any future work regarding this metaphor.

4.3.5 Conditional Structures, and Boolean Value Disposal

Because the metaphors are more concerned with concept representation than �ow-of-

control-structure representation, the �nal metaphor set has a mechanism which accepts a

Boolean value from the user and then controls the code based on the resulting value.

However in an earlier version of the metaphor set, before introducing the BoolEater mech-

anism, users were having trouble knowing what to do when they reached a conditional

statement. The original way conditionals were handled in the test games, was that the

user needed to evaluate the Boolean expression, and then ignore the now-held value (the

code would automatically advance based on whether the acquired Boolean was correct) -

users almost uniformly failed to realise this.

By combining the aforementioned code highlighting with a new metaphor, that only

showed up when the user needed to give the computer information regarding the out-

come of a conditional, the intuitive nature of conditional structure operations thus was

improved. This particular issue was a combination of both aesthetics, and a missing

element in the metaphor set.

4.3.6 Unclear Scope Division

When using the original barrier between user and memory space (the barbed wire fence),

two concerns were raised: the �rst (less important) one was that the barbed wire was

unnecessarily intimidating; the second concern was that its purpose was not intuitively

clear. By altering the barriers image to one of police tape, with a visual message stating

clearly what it is and why it's there, users stopped trying to interact with things in the

global space. This issue was further addressed by the inclusion of a mouse movement

limiter: no matter what the user did, the in-game hand could never cross the barrier.
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These two alterations together, one to the representation of a metaphor and one to the

game itself, solved the issue of unclear scope. It also serves as an illustration that a

theoretically sound metaphor might not live up to its potential if implemented poorly;

in short, appearances can and do matter when working with actual students. However,

as explained in the Section 3.5, the primary focus of this work is on the theory, while

the more implementation speci�c details are left to future testers. These simple aesthetic

di�erences, and their implications, are similar to those explained above regarding the

states of the in-game hand.

4.3.7 The Method Mechanism

The metaphor which bene�ted most from optimisation through user testing was that of the

method calling mechanism (speci�c user test results can be found in Appendix C, while a

summary of the process and results can be found in Section 5.4). As mentioned above there

are two primary ways in which one can present users with the metaphor for method calls:

one can either make users responsible for everything, or just for assigning parameter values.

While the metaphor itself was not �awed, the pre-optimisation presentation mechanism

tended to be at too-low a level of abstraction, and tended to overwhelm students: either

they had no idea what needed to be done, or they would try to perform operations out of

order. This is understandable as there were no clear instructions saying �declare the �rst

parameter, then �nd and assign its value, and now move on to the next one�.

Not only did the original representation stymie most testers, but leaving this mechanism

as it was would run the risk of giving students an inaccurate mental model, where method

signatures are allowed to be arbitrary or dynamic. One should note that the aforemen-

tioned confusion was caused by the way the metaphor was presented, rather than the

metaphor being unclear - and after improving the presentation, users understood the

metaphor much faster.

4.4 Alternatives and Potential Enhancements

This section details some ways that the metaphors could be improved upon, or reasonable

alternative representations. As explained in Section 3.5, the focus of this work is on

functionality and theory rather than aesthetics, therefore no purely visual enhancements

will be elaborated on here (after all, almost every one of the metaphors could have a nicer

drawing made for them).



4.4. ALTERNATIVES AND POTENTIAL ENHANCEMENTS 70

4.4.1 Expression Enhancements

Expressions that contain method calls should be the �rst thing one enhances: as the

system stands, an expression such as �int x = 4 + nthPerfectNumber(6);� is repres-

entable using the calculator metaphor, though it isn't as intuitive (plus it would not work

at all in the games themselves, because of the expression-substitution mechanism the API

uses). Doing this sort of thing with the notepads instead of the calculator would not be

possible either using just the metaphors or in the actual games. This shortcoming has

been well addressed and carefully considered, and it was determined that the bene�ts

of trying to include a mechanism for this scenario were outweighed by the di�culties

associated with doing so:

• In order to properly represent this situation in a clean and understandable way (in

game) one would have to perform several deep alterations to the API.

• If one were to alter the API using the less-complex alternative of asking the user to

specify exactly what is replaced, the resulting behaviour would likely confuse users.

• There is no limit to the complexity that one can build into a single expression, and

so a line has to be drawn somewhere regarding what the system can and cannot

represent. Here are several legal examples that one might encounter, but which

novices arguably do not need to understand:

� int x = nthTriangle(nthPrime(fact(y)));

� x = f(m(3) + p(y - 2), b(x * Math.Pow(x + 1, 4))

� return n <= 1 ? 1 : fib(n - 1) + fib(n - 2);

• One can avoid the issue entirely by breaking more complex expressions up into

simpler ones, even when the expressions are recursive (such as the horrendously

ine�cient recursive Fibonacci number �nder above).

• Breaking long expressions down into a sequence of simpler statements has some

advantages: debugging and single stepping is easier, and it mirrors what happens

in the background of a real compiler (users normally do not see the temporary

variables, or the placement of temporary values on the stack).

This situation highlights a potential shortcoming with the use of notepads for expression

evaluation, and is one of the main reasons why the �nal metaphor set includes both the
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calculator and notepad analogies - when expressions become too complex for students

to work out on paper, they can revert to using the slower but more powerful calculator.

Fortunately this shortcoming is more to do with implementation limitations than with

the underlying metaphors.

4.4.2 More Distinct Variable and Value Types

One of the simplest extensions to the metaphor set is that of improving type di�erenti-

ation: at the moment there is no distinguishable di�erence between the variable boxes

and paper types associated with various value types, aside from having a textual label.

The textual label might not be enough for some students, and so an easy enhancement

would be to include a better di�erentiator. Option for this enhancement can include the

use of distinct colours, shapes, sizes, and more, to help users distinguish types from one

another, for example:

• A boolean type might be represented by a piece of paper with true and false written

on it, but with just one circled.

• A double might be written on a piece of paper divided in two (one half for decimal

digits and another half for the integer portion).

• The size of a piece of paper could be made proportional to the number of bytes

associated with a type (a short would use a smaller piece of paper than a long, but

a larger piece than a byte).

There are such a multitude of potential representations to choose from (that are all still

based around writing on a piece of paper) that one cannot claim a single one would be

consistently better than the rest, let alone list all the possibilities. For this reason, this

potential extension was left up to any future users of this system so that they might

choose the representation that best suits their needs (this work simply lays down the

foundation).

4.4.3 Non-Metaphor Heap Alterations

The metaphor used for the heap and objects is sound on its own and can in theory handle

more complicated objects, however as the API and current implementations stand they
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are only able to handle simple array cases. An example of a simple yet non-trivial object

on the heap might be a random number generator, which keeps track of a single number

(either the seed or the last unaltered number it generated), and pretty much nothing else

at a �eld level. This example object would be stored on the heap and a reference to it

would exist on the stack - when trying to access any object �elds the user would simply

need to let the memory manager robot know what part of the object they want access

to (along with a pointer to the object). The proposed analogies stand up in this case,

but the API and game implementations do not (they were intended originally as a test

framework for the metaphors rather than �nal deliverables).

4.4.4 Potentially Representable, Non-Novice Concepts

There are several concepts that were deemed too advanced for novices, and thus no

attempt to incorporate them into the metaphors was made. With a little tweaking, some

of these concepts could still be represented using the proposed analogies. For example,

enumerators and IEnumerable are a non-novice concept that the metaphors would be

able to represent with a bit of alteration: strictly speaking, enumerators are built around

instances of the IEnumerator class and therefore inclusion should (strictly speaking) be

done on the heap, however it is easier to explain this concept by relating it to regular

methods. One could represent enumerators by allowing users to either dismantle stack

frames (for normal method calls), or put them to one side so that they can be returned

to later (for enumerators).

This is just an interesting example of how potentially extensible the set of metaphors is:

even when including more complex concepts, they can be �tted in without breaking the

�delity of the existing metaphors.

Most users take for granted the way that the computer accesses speci�c objects in a

collection of some kind (whether it's a simple array, a list, a dictionary, or a hashtable) -

if one were interested in demonstrating to students the way these collections di�er under

the hood, one could include an extension that animates the process of accessing memory on

the heap (to whatever level of detail they consider appropriate), or a simpler way to do this

would be to present the user with the actual code behind these structures and ask them

to perform the lookups (whether it's through relative index addresses, binary searches,

or linear searches). This sort of thing would give the end user a greater appreciation for

the often-subtle di�erences between collections, however it is not recommended for use on

novices.
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Another example of a more advanced programming paradigm, that the metaphors could

be altered to represent, is that of event driven programming2. The user would perform

the same operations that they already do, but an additional metaphor could be included

that asks them to handle an event: users would have to �nish what they are doing, go to

the event queue metaphor, and deal with the event as if it were a method call.

One �nal example that would allow for a multiplayer mode, is that of threads: each

user would be on their own thread, but would have a shared global space. This sort of

thing would be able to illustrate race conditions, locks, and shared resources. Very few

alterations to the metaphors themselves would have to be done for this to work, the hard

part is in the implementation of a system like this.

4.4.5 Flow of Control Given to the Users

A most welcome extension to the proposed analogies would be one that allows users to

take more direct control of the �ow of a program. After various developmental stages and

early representations that unsuccessfully attempted to cleanly incorporate something like

this (as explained above in Section 4.2), it was eventually decided that the computer would

control code progression. This decision was made because all of the proposed visualisations

for user-controlled control �ow mechanisms became very messy, very quickly, however it

would still be nice to extend the metaphors to allow users more control over the code

than the small amount they are given by the BoolEater (explained in Sections 4.1.4 and

4.3.5).

4.5 Summary

This chapter explained the proposed metaphor set in its �nal form, detailed some of earlier

stages that the metaphors went through, and �nally explained some potential alternatives

and enhancements. The biggest takeaway from this chapter is the �nished metaphor set

- not only is it one of this work's primary deliverables, but those metaphors can be used

in a variety of system-independent contexts. For example:

2Event driven programming - when explained at a novice level - often glosses over details such as event
handler parameters, what happens in the event of simultaneous events, or the main loop event listener
and its associated callback functions. It is because of these details that events were deemed too advanced
to be represented in this system, and not because they cannot be taught to novices (which is not the case
at all).
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• Teaching children to program, especially so due to children's responsiveness to visual

stimuli [29].

• Assisting novice programmers who have di�culty dealing with abstract concepts (at

least until they can overcome those di�culties).

• Any individual attempting to create educational programming media (including

books, videos, or games) might use these metaphors to assist with visualising certain

concepts.

• Individuals investigating the e�ectiveness of traditional vs. non-traditional teaching

methods - for example, a class taught using these metaphors could be compared

against one taught in a more traditional manner.

• Researchers attempting to create their own set of metaphors might take ideas from

this set - they might also bene�t from being forewarned regarding some of the

described potential pitfalls (such as the counter-intuitive complexity of representing

expressions).

The metaphors described in this chapter are referred to in the following chapter, which

explains how the more technical deliverables (the API and test game) were designed and

implemented, and how they incorporate the metaphors as manipulatives.



Chapter 5

Implementation

The previous chapter discussed the various design iterations and choices for the meta-

phors. This chapter goes into some detail regarding the implementation of the technical

aspects of the system: the API, and the XNA game implementation. (The evaluation-

oriented Windows Presentation Foundation (WPF) version is discussed in Section 8.1).

This chapter starts out with several key design decisions, followed by details of the API.

It then goes on to describe implementing the game on top of the API, and �nishes with

corridor tests and the improvements made based on those tests. Sample screenshots

demonstrating sequences of in-game events can be found in appendix X.

5.1 Design Decisions

5.1.1 Register or Stack-Based Architecture

This question relates to how expressions and evaluation are presented to the user. In

computer architectures there are essentially two competing execution models: to use an

expression evaluation stack, or to use registers. The calculator metaphor in isolation of

any implementation details is simple enough that one does not have to consider how users

interact with it. But when one asks users to follow a strict sequence of operations in order

to evaluate an expression, order begins to matter more.

The simplest solution to this problem is that of notepads and external user evaluation:

getting users to do the evaluation externally, on their own calculator or notepad. By doing

75
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things this way almost all the responsibilities of expression handling are sidestepped in

this system. However, since the system kept its own calculator as an alternative expression

evaluation mechanism, it is necessary to de�ne how it works.

With the exception of the most primitive machines, register based systems require a

minimum of two registers [57] - the in-game hand could act as one of them, however there

is no space reserved for the second register (one cannot use the calculator as it is there

to keep track of the unevaluated expression). A di�erent, yet related, problem arises

when trying to de�ne the calculator as a stack-based one: the hand would have to no

longer hold a value, but instead point to the top of the stack; this would complicate the

representation of the stack by including more than just methods and scope.

An additional issue with attempting to accurately represent the system as purely stack-

based, is that method arguments are typically prepared as part of the current frame, and

some tricky call logic manipulates the stack so that the frame boundaries are repositioned

when the call takes place. This lack of clear separation between the calling frame and

the called frame could potentially lead to confusion, although it could be done with the

current metaphors.

If the system were built as a purely register based architecture, all the metaphors and

visualisations proposed so far for the stack and the local frame, run the risk of being invalid

due to the change in abstraction level: registers force the user to perform all operation

at an extremely low level (basically at an assembler level). For example, evaluating �x +

y * 2 - z� on a register only system would require users to perform an over-long series of

operations such as:

read reg1 y

read reg2 2

mul //overwriting reg1

read reg2 x

add

read reg2 z

sub

The calculator metaphor is a useful and familiar abstraction that can sidestep the archi-

tectural complexities of registers and stacks, and simplify the user's notion of expression

evaluation. By representing the calculator as an abstract hybrid one is able to overcome



5.1. DESIGN DECISIONS 77

the granularity with which users would have to interact otherwise. For example, if one

were to try and adhere to either of the aforementioned architectures, every operation in

an expression would require at least two distinct user interactions, making evaluation of

something as simple as �1+2+3� a four step process (at least).

5.1.2 Level Generation and Storage

A game level must encapsulate two key things: the program code for the level, and some

representation of what the code should do in the metaphor world. There are various ways

one can design this:

1. Fully compile and run the code so as to compare �nal results with just the expected

end state of the user's actions.

2. One could accept any valid program code, use re�ection to compile it down to

the .Net intermediate language (IL), and then interpret the IL to decide on the

corresponding metaphor operations on the �y.

3. Create a C# interpreter, that directly interprets the original program code (not

unlike Python, and similar in some ways to the previous option).

4. Manually annotate the code with some markup that describes what should happen

in the metaphor world. The annotated code can be stored in a simple Extensible

Markup Language (XML) format.

All of these options have potential drawbacks, some more than others. Using just the

output of fully compiled and run code is the easiest possibility to both implement and

eliminate, as it prevents users from knowing if or when they have gone wrong until the

end of the level (which they may not even get to). The two interpreter options are

highly complex, and would involve a great deal of additional work, plus they may not

be conducive to o�ering constructive feedback to users. An ancillary concern associated

with the �rst three options is that they limit the target audience to only C# users, while

pre-made levels allow for di�erent languages.

This leaves only one option, the creation of pre-made level �les. The advantage of this

option is that it could, in the future, be combined with one of the other options: the

interpreters would simply output a level �le in the already de�ned format, meaning the
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game could work with that level object and not be altered to accommodate a new format.

The disadvantage of the manual annotations is that level creation becomes more tedious,

but the advantage is that the author can determine exactly what level of detail to expose

the student to. In ActionWorld a a level editor tool removes some of the e�ort of level

creation.

5.1.3 Text, 2D, and 3D Visuals

Originally development was to be divided into three phases: a textual game, a 2D game,

and �nally, a fully 3D game. The textual stage was implemented without any trouble (its

primary goal was that of checking that the assorted API components were functioning

correctly). The 2D version, which was implemented next, was meant as a way of testing

both the metaphors and the API, as making changes to sprites (based on user feedback)

is far easier than changing 3D models. Due to the number of changes made to the sprites'

appearance and layout, the second stage lasted longer than anticipated. It was decided

that the extra e�ort involved in creating the necessary 3D models and animations was

not justi�ed by the potential bene�ts.

5.2 The API

5.2.1 Calculator Component Functionality

Expressions are a large part of programming, and thus the API's calculator component

needs to be appropriately powerful and accurate. This section details how and why it was

made the way it was, as it is one of the most complex components of the API (one can

see the actual `position' the calculator takes in the API as a whole, by referring to Figure

5.1).

At times it is necessary to programmatically infer the type of whatever the user has

entered, for example, when the game asks them for a �oat and they enter an integer.

There are two main ways one can do this: the simpler method is to analyse the string

they enter and infer the type from its format. This method works, but needs all sorts

of bounds checking (a simple example is that of exceeding the maximum size of a given

type), also it cannot be applied to unevaluated expressions.
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Instead, this was an area where the newer more powerful features of the framework were

exploited. The .Net framework provides the ability to generate source code for a C# class,

compile the source on-the-�y, and then load the class and instantiate objects. Compila-

tion on-the-�y is also useful for �nding errors in fragments of code that the user might

submit (although ActionWorld does not make use of this), for evaluating expressions and

providing functionality for the calculator, or for determining the type of something that

the user enters, as shown here. This powerful use of re�ection and the CodeDom compiler

allows delegation of the task of complete expression evaluation. This snippet shows a

small portion of the system's RuntimeCompiler class, where user input is textually sub-

stituted into uncompiled source code (using string formatting). The resulting code is then

compiled, and uses re�ection to infer the type entered by the user:

object result = {0};

return result.GetType().Name;

The actual method is signi�cantly larger, but it is these two lines that ensure correct type

interference. Without using the run-time compilation, the user's string must be parsed to

infer the type - and the associated parsing method with its exception handling and other

plumbing is closer to 40 lines. The runtime compiler technique is also used to obtain the

result of expressions: the only di�erence to the above code would be that GetType().Name

would be replaced with ToString(), which would produce the result rather than the type

of the expression. Catching and interpreting runtime compilation errors is more di�cult

when depending on on-the-�y-compilation - this issue was overcome by using an all or

nothing approach:

• When users input their expression it is assumed to be correct.

• The compiler attempts to evaluate the expression, if it fails the expression is marked

as unevaluatable.

• An unevaluatable expression is either caused by user typos, or from unsubstituted

variables. In either case the user is asked to check for these two scenarios (distin-

guishing the two should be easy enough for the user).

• When no error occurs during compilation the result is returned as a string, with a

corresponding type.
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5.2.2 Final API State

As shown in Figure 5.1, all of the API classes hinge around one central control class:

WorldTracker. Anyone making use of the API need not concern themselves with the

other classes (unless they are enhancing the API or building levels without the specially

made level editor). WorldTracker has too many methods to list here, so instead, only

some of the more important ones will be elaborated on:

• PerformOperation is where user opCodes are sent and executed. The opCodes have

to be assigned to each sprite by the current control class, but the behaviour for

each operation is governed autonomously by WorldTracker. Some example op-

Codes include: �return�, �garbageCollect�, and �evaluateCalculator�. A in-code

example might look like this: theWorldTracker.performOperation("return",

assignCurrentFrameSpritesAsAction, freePlay);

• A few `get' and `is' methods are necessary to display the game state to the user.

Examples of `get' methods include getStackSize, and getLocalVariablesCount, which

one would use to decide how many frame and variable sprites to draw, respectively.

Examples of `is' methods include isLevelComplete and isMethodNamed.

• The undoLastOperation method is called if the the user wants to take back an

action.

• Most of the remaining methods govern the behaviour of the virtual machine for indi-

vidual opCodes. For example, the opCode �return� will result in returnFromMethod

being called, and "assignvalue" will call assignStackVariableIO (which assigns the

players held value to a given variable).

Value is another noteworthy class, it is as central to the virtual machine as WorldTracker

is, but in a very di�erent way: all user data in this system is stored as an instance of

Value, thus any other class that stores or manipulates data will have to interact with

Value instances at some point.

To clarify things, here is a brief summary of the responsibilities and functionality of the

remaining classes:

There are only four classes that are ever instantiated more than once - Value, Variable,

Frame, and HeapSector (all on the bottom row of Figure 5.1). Of these, the role of heap

sector is probably the most obscure: A HeapSector is made up of one or more Values,
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Figure 5.1: A simpli�ed class diagram of the API. Note how almost all interactions go
through the WorldTracker class in some way.
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and in turn, the Heap is made up of one or more HeapSectors. A new Heap with nothing

but free space has a single sector. When the user adds an object to the Heap, that one

`empty' sector is divided into two pieces - one stores the new object, and the other is

left as `free'. The heap includes two space allocation options (�rst-�t and best-�t), when

placing new objects into a fragmented Heap, so as to potentially teach more advanced

memory management concepts (not necessarily to novices).

The Heap class was built around the concept of a File Allocation Table (FAT): the Heap

knows about the positions and sizes of each HeapSector (or cluster, to use the FAT

equivalent term), but does not know what their content is. WorldTracker generally does

not interact directly with the Heap, that task falls to the MemoryManager which takes

memory addresses, and o�sets in order to control how data is written to and read from

the Heap.

The system's MemoryManager class keeps track of free and occupied regions in the Heap.

Each region is represented by a HeapSector. The memory allocator will allocate heap

space for storing objects, and a simple mark-and-sweep garbage collector will free up any

heap objects that are no longer accessible from the user's program (this is either done

automatically, or on a user instruction, depending on the mode).

The key responsibility of the Frame class is to store local Variables associated with each

call of a method.

There are still three undiscussed classes: Calculator, Player, and MethodMechanism. All

Value transfers go through the Player (for example, assignments, passing parameters, or

return values). Player simply tracks what the user is currently holding, and is essentially

a container that can accept any Value type as well as track whether the Value has been

used or not. The tracking of Player Value usage is to prevent users from re-using a value,

as the hand (a bit like a variable) is never truly empty (although its contents can be

hidden from the user). The Calculator object is akin to a complex stateful arithmetic

logic unit (ALU): it tracks expressions, performs substitutions, and outputs results.

Finally, a MethodMechanism instance manages the state of partially complete method

calls: it tracks the name of the method, the names and values of it's various arguments,

and generates a Frame when it comes time complete the call. MethodMechanism has

two call modes, one where it is given the stack as an argument, and one which simply

returns a Frame so that the WorldTracker can push it onto the stack. There is only ever

a single instance of MethodMechanism at any one time, which is shared across di�erent

method calls. One could alter the API so that multiple MethodMechanisms can exist at
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once - this alteration might serve to better track nested method calls, for example, x =

fun1(fun2(y));.

5.3 The Game

5.3.1 Transitional Text-2D Stage

This was initially envisaged as a transitional stage between text-only, and the eventual

goal of a 3D animated game: in this stage sprites would be visible and would re�ect the

underlying state of the system, but that was all they could do. If the user wanted to

perform some operation it had to be done through what amounted to a debug menu.

During this stage new sprite interactions were gradually added, and eventually came to

completely replace the text menu interactions.

This stage simpli�ed the process of migrating to a more graphical version, as any later

additions could be compared against this stage's textual outputs. This allowed for quick

identi�cation of problems in the event that the results of two operations did not match

one another.

5.3.2 PIP Magni�er

A picture in picture (PIP) magni�cation area was created that tracked the cursor, so that

users could easily see more sprite details. By default, graphical-rendering targets and

draws its output on the screen. By rendering a small region of the `normal' output to an

alternate render target, one can create an enlarged image and then draw the image to a

portion of the screen. This magni�cation area made reading things easier, but possibly

also hinted at poor user interface (UI) design (perhaps a well designed UI shouldn't need

a magni�er in the �rst place.) Figure 5.2 demonstrates the magni�er.

5.3.3 Calculator State Machine

The �rst iterations of the in-game calculator required that the user specify whether they

wanted to enter an expression, substitute a value into a variable in the expression, or

evaluate the expression. A fairly simple solution to the problem was proposed that utilised
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Figure 5.2: A compressed screen shot demonstrating the magni�cation of the region
pointed to by the hand (top right), the call stack (top left), the variables accessible in the
current scope (bottom left), and the heap with two arrays present (top centre).

a �nite state machine, and `test' expressions evaluations. Figure 5.3 summarises the

calculator's �nite state machine (FSM). By examining the state that the logical calculator

is in, the calculator sprite can determine what it should display:

• When in �New� state, display the expression verbatim, do not have any printed

paper showing, and let the user know that their next click will either substitute a

value or evaluate the expression.

• When in �Simpli�ed� state, display result on a printed value paper, inform the user

that the next calculator click will move the content to their hand and clear the

calculator.

• When in �Unsimplifyable� state, display the expression, and notify the user that

they need to substitute variables before evaluation can occur.

A calculator feature that was not implemented, but which would have improved usability,

is the ability to select individual components of an expression and perform component

speci�c tasks. This sort of thing would allow for easier substitutions, term-speci�c hints,

and even nested one line method calls. Unfortunately the bene�ts of implementing such

functionality were outweighed by the complexity required to implement it (especially once

the alternative of getting the user to do external evaluation was suggested).
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Figure 5.3: A visual representation of the logic used to make the calculator more intelli-
gent, and thus more user friendly.
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5.3.4 Bypassing the XNA Guide

The initial implementation was build using the XNA game engine, because this would

provide the 3D functionality envisaged for the end product. But XNA does not provide

widgets like buttons, menus, text boxes or scroll bars for easy input. Instead, they provide

a type of collapsible �console� mechanism called the XNA Guide that can partially remedy

this. As will be described in the next section, users found the asynchronous XNA Guide

(shown in Figure 5.4) unfamiliar and an intrusive means of obtaining user input. To

eliminate use of the XNA Guide, alternative mechanisms were needed for two primary

kinds of input: menu selection from a pre-de�ned list of options, and text entry. For text

input, the Guide was bypassed by including a cursor lock (which prevents users from using

the mouse, thus forcing them to use the keyboard), and a �nite state machine to track

and accumulate what keys the user pressed. The input tracking FSM required that the

character-case of pressed keys be determined manually (for example, if the user presses

shift and `a' at the same time the stored character should be an `A').

The other type of input (selecting from a menu) was easier to implement: an auto-

generated collection of clickable sprites is displayed, all background sprites are locked, and

the clicked sprite calls a delegate with its content as the argument. For example, when

selecting a method to load, all sprites would know to call the prepareMethod delegate

with their content:

string[] methods = theWorldTracker.getTheCurrentLevelsMethods()

methodMenu.displayMenu(methods, prepareMethod);

Section 8.1.3 elaborates on how much easier obtaining input is when using WPF rather

than XNA.

5.4 Hallway Usability Testing

This section details how the program was presented to users, tested by them, and then

improved upon based on their critiques. The original plan for an evaluation and feedback

mechanism was to simply give the program to anyone who wanted to take part in their

free time and then automate the process of counting their mistakes and recording the

results. This method was abandoned before it was ever used on students (but not before
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Figure 5.4: The XNA asynchronous Guide: an intrusive tool that obscures the state of
the game.

a simple email-based version had been implemented), as it became clear that there were

several weaknesses with testing usability in this manner:

• Any students who did not understand something might simply stop, thus rendering

their test incomplete.

• Other students who got stuck for whatever reason might simply click around the

game experimentally until something happened, thus invalidating any error counts.

• Only mistakes could be counted, and thus no concrete feedback about what tripped

up students and why would be gained.

An alternative, less formal, usability evaluation technique is described by Spolsky [54]:

�Hallway Usability Testing�. This technique's name derives from the idea that one would

simply pull a prospective user from the hallway and ask them to test a program quickly.

This section elaborates on the process and outcomes of the hallway tests, starting with

how test levels were derived, and ending with improvements made based on feedback.

Hallway testing, by its very nature, can only be done in a semi-formal fashion, however

this does not detract from the usefulness of feedback obtained in this way.
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Figure 5.5: Fundamental Concept Dependency Graph. Illustrates what concepts rely on
other, simpler, ones. Arrows can be interpreted as saying �This one is depended on by
that which it points to�. Classes have not had their dependency de�ned, as it is in fact
unclear - this is because almost everything done in C# is within a class, even if the user
does not realise it.

5.4.1 Devising Appropriate Test Levels

As the goal of the corridor tests is not to gauge the skill of the user, but rather the

quality of the interface, the test levels need to be simple to understand while still having

multiple metaphor interactions. It is also necessary to have more than one test level so

as to allow for the evaluation of more speci�c concepts, as well as gradual introduction of

metaphors. A simplistic dependency tree was proposed that facilitated decisions regarding

the order that metaphors are introduced. The introductory order would always start with

more fundamental metaphors and concepts, before moving on to more advanced ones.

For example, a user that is being taught Boolean expressions should probably be shown

boolean variables and values before conditionals. Figure 5.5 shows the dependency tree.

Using this dependency graph the following test levels were created, which are listed from

simplest to most complex:

1. �Variables, Assignment and Operators� - Starts out with simple variable declaration



5.4. HALLWAY USABILITY TESTING 89

(type and name), moves on to expressions and assignment of values to the variable,

gradually increasing the complexity of the expressions to include multiple operators.

2. �Conditional Branches� - begins with a hard-coded conditional (if(3 > 2)) that

has no else part, and gradually increases the complexity by including elses, and

more advanced conditionals (up to x == y || x < 6).

3. �While Loops� - a very short level with a single while loop. The loop contains two

variable incrementing lines so that users can see that while loops do not exit as

soon as their conditional becomes false (i.e. mid iteration).

4. �For Loops� - similar to the previous level.

5. �Introduction to Methods� - this level presents users with method calls that gradually

increase in complexity, starting with trivial parameterless void methods, and ending

with a function that requires multiple parameters.

6. �All in one� - combines cases from all of the previous levels, starting with simple

variables and ending with method calls.

The �nal level proved useful for testing users who had prior experience, as there was less

level loading required, but the metaphors were still introduced in a sensible order. This

work's iterative methodology can be seen in the level designs: each level builds on the

last, but starts out with simpler examples than the previous level ended on, resulting in

a gradual increase in complexity and repetition of previously covered work.

The exact code for each of these test levels can be found in Appendix B.

5.4.2 The Test Process

This section describes the semi-formal procedure used during hallway tests, and goes on to

brie�y describe some sample responses. The comprehensive details of every participant's

responses can be found in Appendix C.

Participants were �rst asked what, if any, prior programming experience they had, then

the game and its purpose were explained. The tester would then open an appropriate test

level - this depended on the participant's experience, as well as which mechanisms were

in need of testing the most at the time. An example of this second step could be either
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that this is the �rst set of tests, or that the student has no experience at all, in which

case the simplest test level would be loaded (expressions, values, and variables).

During play, participants were encouraged to try and work out issues as they encountered

them without help from the tester, while explaining their experience as they do so - this

ensured that as soon as an issue appeared the tester could note it down and enquire

about the participant's opinion on how it might be improved. Once a level was deemed

complete, the tester would ask questions such as these:

• What seemed least intuitive to you?

• What mechanism did you �nd easiest to understand?

• If you could change one thing, what would it be and why?

• What would your biggest complaint be?

If a participant had no trouble by the end of a level, the next one would be opened

and tested as well so that more information could be gleaned from the subject. These

questions managed to elicit useful information not just about the metaphors, but about

almost all aspects of the game. The next section covers some of the changes made in

response to user feedback.

Hallway testing seemed very successful, with one particular example being the method

mechanism metaphor: the �rst set of testers were all unable to call methods, because the

interaction mechanism was so unclear at the time. By closely examining what they tried,

it was determined that a more informative layout was needed, as well as a more intuitive

call-initiation action. This led to a revised mechanism where users select the name of the

method to call from a list, and then �ll in the empty parameters as they get highlighted

by the system. This ultimately led to one of the more intuitive sets of interactions in the

whole system.

5.4.3 Important Changes

This section details some of the improvements made based on the hallway usability tests:

• The function and state of the hand needed to be made more obvious. This was done

by displaying three di�erent sprites based on whether the hand was empty, carrying

a value, or getting input.
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• Variable creation was originally done in a right to left, bottom to top order. This

threw users o� and was altered to be more in line with users' experience with reading

(top to bottom, left to right).

• The calculator was perceived as very unintuitive, and multiple improvements were

implemented to address the issue, including (but not limited to) a more intelligent

calculator, and the ability to simply work out and write down the answer without

using the calculator at all.

• A minimalist layout for new users was implemented to address the recurring issue of

users being overwhelmed by the number of objects on screen. This layout came in the

form of removing unnecessary sprites. Later iterations of this improvement included

dynamic sprite highlighting and hiding based on the next expected operations.

• The initial barbed wire was replaced with a less intimidating memory divider, to

reduce the risk that users perceive memory operations as dangerous, scary, or ad-

vanced.

• The XNA asynchronous Guide had to be replaced due to its intrusive appearance

(it would hide the state that the metaphors were trying to show).

• More speci�c code highlighting that could identify sub-parts in each line of code

was added to help guide users to perform operations in the correct order.

• The visibility of the code was improved, as users would occasionally not notice that

it was there until it was pointed out to them.

• When users had to enter the details for a method call themselves, users were almost

unanimously confused. However, with additional sca�olding (a menu allowing selec-

tion from a list of methods, with placeholders for arguments), users grasped what

they had to do faster than with any other metaphor.

• An introductory screen was included to explain the purpose of the game, and the

role of the user as interpreter (some users had trouble grasping that there was a

connection between the metaphors and the code).

5.5 Summary

This chapter covered various details regarding the implementation of various system com-

ponents - ranging from initial design decisions, to hallway tests and associated improve-
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ments. Several components and concepts described in this chapter have more general

applications. The virtual machine API can be used in a variety of contexts that need to

track and update the state of a virtual machine (regardless of whether that machine is

being used to teach, or makes use of metaphors at all). For example, if someone wanted

to develop a genetic algorithm that evolved assembler code for a speci�c problem, the

evolved code could be passed into the API for testing and visualisation.

Another example of a generalisable deliverable from this chapter is in fact a speci�c

component of the API: the calculator class - built around a powerful combination of

runtime re�ection and dynamic compiling - has the potential to be used in several systems

than need to evaluate user expressions as part of their behaviour (bypassing the need to

create a custom lexer, parser, and evaluator).

Now that implementation details of the various system components have been explained,

the next chapter covers how one might validate the quality of the aforementioned com-

ponents, and the system as a whole.



Chapter 6

The Test Framework

The previous chapter described the implementation of various system components (such

as the API and test game), this chapter focuses on how one might validate these compon-

ents. Surprisingly, perhaps, there appears to be no consensus regarding the `best way'

to evaluate either educational systems, or programs in general. This chapter reviews the

test landscape, and draw out several viable methods one can use to test this system.

Considering how modular this work is, an unusual method of utilising the following tests

was proposed: rather than testing a system as a whole, one can instead decompose the sys-

tem into its constituent components, and then use more targeted testing techniques. For

example, surveys might be best suited to evaluating the metaphors, while additional game

features or new front-end implementations would give further insight into the quality of

the API. Henceforth this testing technique will be referred to as constituent evaluation .

The purpose of the test framework is to take a �nal deliverable (one where the e�ort

required to improve the system no longer justi�es the diminishing returns) and to seek

veri�cation of the validity, �delity, and accuracy of both the deliverable in question and

the system as a whole. This work makes use of both quantitative and qualitative tests,

and this chapter has been divided based on the nature of the described tests and what

they are testing.

As testing and evaluation are such broad topics, no attempt was made to include all

the possible ways in which one might evaluate this system. Instead the focus is on a

select few (a comprehensive survey and explanation of potential testing techniques would

entail writing an additional survey-type paper). As an example of the myriad number

of potential techniques, simply consider a survey whose format and content will vary

93
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depending on: what material is actually being tested, the level of detail one hopes to

elicit from responses, whether the results are to be quantitative or qualitative, who the

survey is targeting, the desired number of responses, and the available testing pool. If

each of those factors has just two potential answers, one still ends up with 64 di�erent

sets of survey requirements.

The tests and samples explained and provided in this chapter are meant as formal means

of evaluation, in other words their primary purpose is to determine quality. For this

reason hallway (or corridor) tests have not been included in this chapter (or the next) as

their primary use was to quickly and informally identify potential areas for improvement.

Put di�erently, hallway tests aim to improve quality, rather than evaluate it.

6.1 Mark Driven Quantitative Evaluation

In most sciences, quantitative validation is usually preferable to qualitative evaluation. For

this system, such an evaluation could be done by taking a group of novice programmers,

splitting them into two groups, giving only one of the two groups access to the metaphors

and associated game, and then comparing the �nal marks of both groups against each

other.

One might partially alleviate the resource and time requirements of such an evaluation,

by allowing all students access to the system and logging the amount each user uses it (as

well as the way they use the tool). One might then draw a correlation between marks and

usage data. The recorded details would include (among other things): error frequency,

changes to that frequency, and what levels users used most. In order to mitigate errors

occurring due to students not needing a system like this in order to learn (and therefore

not using it as frequently as others, but still getting good marks), one might consider

changes in error frequency over several sessions.

Due to time and resource constraints, this particular test was not used: it would take

a minimum of three months to complete, require a fresh group of novice programmers,

and (depending on the manner of implementation) an extra lecturer. Fortunately there

are alternative quantitative tests with lesser resource requirements, including: checklists,

rubrics, heuristics, and one-on-one comparisons.

Due to the nature of this test technique, it would be very di�cult to include a test template

one might follow while performing it, nevertheless it is probably one of the most valuable

techniques that any future testers might use.
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6.2 General Qualitative Tests

This section broadly describes the most commonly used techniques for gauging qualitative

quality, in this context a general test is one that can be used on almost any of the system's

components (or the system as a whole). The general techniques include: surveys, focus

groups, and interviews. Some of the general techniques described here overlap somewhat

with the more speci�c tests that come later.

When done in the right way these techniques can be analysed in a quantitative fashion.

One popular mechanism is to have surveys that ask for user scores on a Likert scale.

Although the questions are qualitative, the analysis can be quantitative.

6.2.1 Surveys

One of the most tried and tested means of evaluating almost anything is through the use

of surveys. The usefulness of surveys varies depending on the survey itself. If one sends

out a long, complicated survey to a large group of people and gets maybe four replies,

one cannot really draw any general conclusions from that data [58]. However, if one sends

out simple, concise surveys the number of respondents may increase, but the amount of

information one can glean from the replies is likely to be limited.

There are several di�erent formats that a survey for a system such as ours could take:

• Here are some metaphors, what do you think of them?

• Here is some code, which of these analogies corresponds to the various components

of the code?

• Given this sequence of metaphor interactions, what do you think the user was trying

to achieve?

• Please match the metaphor to the associated code action?

• When do you think this metaphor stops being accurate?

An in-depth survey was created that attempts to elicit detailed opinions regarding speci�c

metaphors, which can be found in Appendix E. This survey was not actually used during

the course of this work due to time constraints, regardless it can still be used, either as is

or after alterations to better suit the tester's needs.
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6.2.2 Focus Groups and Interviews

Surveys have their place, however potential participants will often look at a survey and

decide not to take part because it looks too long, too complicated, or they simply have

better things to do with their time[58]. Focus groups and individual interviews sacri�ce

anonymity (and time to a certain degree), in order to ensure users respond to the questions

being posed. To clarify, a focus group might use the same questions as an interview, except

a group of people are questioned all at once and discussion between individual participants

is encouraged[59]. The questions that one uses in this sort of situation are unlikely to

be all that di�erent from those used in surveys (such as those explained above), however

participants are more likely to answer if there is someone there to guide them. Anyone

wishing to evaluate this system or its components using focus groups or interviews can

use the questions created for the sample survey evaluation as a starting point.

6.2.3 Evaluation through Experimental Extensions

Hornbæk [60] suggests that one might use usability tests as a method for idea generation

- something that Section 5.4.3 (changes made based on hallway testing) demonstrates

well. This section elaborates on how some of the concepts and ideas gained through

hallway usability tests during the course of this work, can be further used as a means of

extensibility evaluation.

This type of test relies on the tested component being in some way incomplete or extensible

- the basic idea is that one adds something new to it. For example, one might try to

incorporate new concepts into the metaphors, or a new piece of functionality into the

API or game. Through careful documentation of the process undertaken, one is able

to (subjectively) state that the system in question does or does not adhere to quality

criterion X because of design or implementation reason Y.

Throughout this dissertation mention has been made of possible extensions to the system

and its constituent components; here is a summary of the potential enhancements one

might try to implement as a means of quality evaluation:

• Extend the metaphors themselves to include: speci�c �ow-control structures, enu-

merators, delegates, generics, re�ection, bitwise operations, garbage collection, in-

heritance, interfaces and aggregation, read only data, threads, or structs. Successful
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inclusion of any of these non-novice concepts would demonstrate a high level of ex-

tensibility, and �delity.

• Alter an implementation, or the API, to improve the user's experience - the process

of doing this will indicate how modular, extensible, alterable, and understandable

the two systems are (or are not).

• Try to incorporate an alternative or new metaphor into an existing system. This is

another gauge of modularity and extensibility.

The above examples can be used by future testers. Several extensions were implemented

during development, the process and �ndings for each one is discussed in the next chapter.

The extensions included:

• Adding an undo button to allow easier user experimentation.

• Inclusion of the BoolEater metaphor, to accommodate issues users had with condi-

tionals.

• Inclusion of the notepads as an alternative to the calculator.

6.3 Metaphor Evaluation

There are several perspectives one can take when evaluating metaphors designed for teach-

ing: one can take the perspective of the student (�does this help to clarify things?�), the

teacher (�are these accurate and usable enough for one to teach with�?), or the academic

(�what makes these metaphors good, especially when compared to others?�). Each of these

perspectives is valid, and each one requires separate consideration. Most of the general

techniques explained above can be applied to metaphors; of those techniques, a detailed

sample metaphor evaluation survey was created and can be found in Appendix E. The

aforementioned survey was designed to be suitable for both novices and more experienced

programmers (provided the novices have gotten up to the concepts in question), and it

includes both qualitative and quantitative questions.
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6.4 API Assessment

API evaluation is particularly troublesome, not least of all because it is an �infrequently

researched topic� [61], but also because one must �rst decide what one is evaluating and

what matters most (which may vary based on the API being evaluated). For example, one

might need to rank and evaluate: extensibility, modularity, understandability, readability,

performance, re-usability, and general usefulness.

As ranking these criteria is completely subjective no attempt was made to do so, however

several means by which one might evaluate the criteria are proposed later. Most of the

tests explained here rely on experimentation and use of the API, usually through an

additional from-scratch game implementation. A `from-scratch' test involves taking the

API as it stands, and creating a secondary game implementation around it (preferably

using a new framework). During the process of re-implementation the tester is encouraged

to avoid looking at any previous code (aside from that of the API) - this is done so as

to avoid contaminating the development process with previously made code. The tester

should document any problems they had during the process, any alterations that needed

to be made to the API, anything about the API that made their task easier, and anything

else of note. This information can then be used to `grade' various aspects of the API.

This particular evaluation technique was used, and not only revealed information about

the API, but occasionally it also highlighted other interesting facts (for example, it was

found that the code interface required no modi�cation for this exercise). Section 8.1 goes

into more detail regarding the implementation of this technique. In short, the exercise

proved useful and allowed the author to gauge many di�erent things at once.

Another type of API evaluation technique is one that details the process involved in

implementing an entirely new feature into the API - one might call this an extensibility

test. The way this works is not all that di�erent from an extra implementation (it is,

however, much quicker): one must �rst establish and de�ne a new feature, and then

detail the process undertaken in order to implement the feature in both the API and

whichever game implementation it is included in. The steps involved are then analysed

and described in order to elicit details about the quality of the API and game. As several

such extensions were made to the API, an extension evaluation section was included

(Section 8.2.1).

Less experimental evaluation criteria can be used as well: a comprehensive set of unit

tests for the assorted components of the API would serve to evaluate the robustness of
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the system (the more tests that pass without issue the higher the overall quality), while

a series of timed tests could be used to evaluate performance. As performance never

presented itself as an issue, no performance tests were done. Unit tests were used during

early developmental stages they were used, however the quick prototyping and iterative

revision processes used here made them less useful later on.

Almost all of the more technical components (including API classes, interfaces, speci�c

implementations, and even the level editor) can have their quality demonstrated through

a simple process of show and tell: one simply shows how the original component was

designed, along with how that design fared throughout development, and then if necessary

explain why these two things come together as a demonstration of quality. There are

several examples of this technique in the next chapter, one of which is a demonstration

of the value of continuation style programming.

Ellis et al. [61] state that one of the biggest barriers to the usefulness of APIs is due

to their scale (potentially hundreds, or even thousands of classes per API makes them

very hard to learn). This can therefore be used as a criterion for measuring API quality:

the less interfaces and classes a user has to deal with, the higher the quality of the API

(generally). As explained in Section 5.2.2 the ActionWorld virtual machine API only

really requires the user to interact with two or three methods of a single centralised class

- this is a promising indicator of the API's quality.

6.5 Quantitative Game Tests

6.5.1 Checklists

Checklists have long been used as tools for evaluating the quality of all kinds of systems,

including educational programs. They have, however, fallen into disfavour for several

reasons, which Squires and Preece [62] summarise nicely:

• Check-lists are unsuitable for evaluating unique or original systems [63].

• They evaluate functionality more than socio-educational concept adherence [64].

• When comparing systems of a similar nature, check-lists tend to highlight similar-

ities, while obscuring di�erences [65].
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• Checklists cannot take into consideration alternative `o�-computer' uses for the

software in question [65]. For example, components of this system can be used in

textbooks or classrooms (other components can be used in almost unrelated systems,

such as the re�ective calculator). While other systems might not be usable that way.

• Di�erentiating the importance of individual points on a checklist can be challenging

[66].

• When two systems use di�erent educational strategies, they can become incompar-

able [66].

Nevertheless they still have their merits, and are easy to apply, while being totally ob-

jective: a checkbox is either checked or unchecked, and potentially subjective feelings

shouldn't change the result.

Kelleher and Pausch [4] created an exhaustive feature comparison table for 80 di�erent

educational programming games. This sort of comparative table can be used on any

system aimed at teaching programming: one would simply mark the features of the system

in question on the table and compare how that system does when compared to the others.

Because of the simplicity and relative objectivity of this particular test, it was applied to

ActionWorld. Section 7.1 goes into more details regarding the process and results.

If one wanted to perform further checklist-style evaluations, one could use the list proposed

by Victor [18], who concludes his analysis of what makes up a good teaching environment

by presenting a `checklist' of criteria that both the environment and the language need to

adhere to.

6.5.2 Rubrics

Squires and Preece [62] brie�y mention the use of rubrics and how they are better suited to

evaluation than checklists, as they o�er a more variable scale. They speci�cally mention

the California Instructional Technology Clearing House's criteria [67] as being well suited

to evaluating educational systems, however this resource could not be acquired despite

an extensive search. Squires and Preece say a great deal regarding rubrics and ultimately

conclude that while they are better, rubrics often boil down to being very granular check-

lists - they also say how the application of rubrics is occasionally a long, tedious process,

and they conclude that heuristics are a suitable substitute.
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Allen and Tanner [68] focus more evaluating students through the use of rubrics than

evaluating software - but they do state that extending checklists into rubrics is often

the easiest way to create them (a statement that lends weight to Squires and Preece's

granular-checklist perspective).

6.5.3 Heuristics

Heuristics, also referred to uno�cially as rules-of-thumb, can be applied to systems such

as ours in a less formal manner than checklists and rubrics. According to Squires and

Preece [62] this informality is not a disadvantage, but instead allows for �exibility during

evaluation. A well established set of software evaluation heuristics are the ten usability

heuristics of Nielsen [69], which could be applied to a system such as ours. However,

Nielsen's heuristics were designed for general software, rather than the very speci�c set

of requirements that educational programs have. With this in mind Squires and Preece

propose their own set of eight heuristics speci�c to the evaluation of educational software.

Squires and Preece's heuristics are applied in Section 7.2.

Reeves et al. [70] also proposed an extended version of Nielson heuristics, with a focus on

evaluating educational software. Their set is composed of �fteen di�erent heuristics (as

opposed to Squires and Preece's eight), and was deemed too extensive to include in this

dissertation.

6.6 Qualitative Game Tests

A qualitative game test in its simplest form is just user feedback about what they thought

of the game. Such an evaluation can be carried out using any of the general qualitative

measures explained in Section 6.2. Hallway testing is a valid, if informal, way one might

evaluate a program - the fewer problems users �nd, the better the quality. However, as

hallway tests are aimed more at improving quality than evaluating it, they have been kept

separate. Section 5.4 goes into detail regarding hallway testing of this system and what

it yielded.
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6.7 One-on-One System Comparisons

This type of evaluation takes a system similar to the one in question and performs a

detailed evaluation of one of the systems based on an already complete evaluation of the

older system (optionally both systems can be evaluated using an entirely new technique).

One-on-one system comparisons are done by taking the most similar components of two

systems and comparing them to one another side by side. The di�culty of performing

such a test di�ers based on the depth and detail that the tester chooses to go into during

comparison - this variable di�culty range means that performing such a comparison can

be done without going out of scope or exceeding time limitations. Section 7.3.1 compares

this system to that of Gilligan [5].

6.8 Summary

This chapter explained an unusual way one might test the quality of a complex system,

that of constituent evaluation: the idea behind this technique is that one can use specialist

tests on each of a system's individual components in order to evaluate the system as a

whole. The alternative would be to try to evaluate everything at once using a single

complex test.

Several sample tests for this framework were also included in this chapter (at least one

test per component type), for example:

• Surveys for metaphor validation.

• From-scratch game implementations for API validation.

• Checklists for game-feature quanti�cation.

• One-on-one comparisons with similar systems, as a means of whole-system valida-

tion.

Some of the tests are suitable for complete system evaluations (such as one-on-one com-

parisons), however the results of such tests are likely to be more valuable when applied

to speci�c system aspects. The next chapter describes some of the less technical results

obtained through the application of this chapter's proposed test framework.



Chapter 7

Non-Technical Test Results

The previous chapter laid the theoretical foundation for the constituent evaluation frame-

work, and gave several sample tests for the various evaluation techniques. This chapter

elaborates on the results obtained through the application of some of the aforementioned

techniques.

7.1 Checklist Evaluation - Kelleher and Pausch's At-

tribute Survey

As described in the previous chapter, checklists can be useful, especially when one con-

siders how objective they can be. With this in mind a checklist-style comparison of

multiple systems was performed, based on work by Kelleher and Pausch [4], in order to

evaluate the system as a whole, relative to other similar systems:

Kelleher and Pausch compared an assortment of programming education systems, as

brie�y described in Sections 2.3 and 6.5.1 above, which included a comparison of each

system's attributes and features. This section compares and contrasts the features of the

system to those systems analysed by Kelleher and Pausch. Figure D.1 of Appendix D

shows where in Kelleher and Pausch's categorisation model the proposed system belongs,

and Figure D.4 of Appendix D shows the more detailed feature analysis of this system

next to Kelleher and Pausch's original data (these �gures were relegated to appendixes

due to their size... as an illustration of their magnitude, the attribute frequency table has

over 4000 cells and covers three full pages).
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There are several logical divisions that one can use when comparing against the systems

in Kelleher and Pausch's survey:

• One can compare against all the systems (a general comparison).

• One can compare against various, more specialist, categories (such as the purpose

of the systems, or the way they try to represent things).

• Finally one can perform a one to one comparison.

7.1.1 General Feature Comparison

This sub-section performs a comparison of all the systems in the survey, and tries to

identify trends in feature combinations. As the systems analysed by Kelleher and Pausch

[4] are somewhat dated (with the most recently published system being from 2002), one

needs to consider historic changes in emphasis (such as a shift from procedural to object

oriented programming), as well as the fact that technical limitations of the time may have

prevented some systems from being implemented in a more modern manner (for example,

making a GUI system is much easier nowadays).

The results of comparing the proposed system to all the other systems analysed by Kelle-

her and Pausch shows that about 56% of systems promote a procedural style of program-

ming, while just 18% allow for object oriented styles - of all the analysed programs by

Kelleher and Pausch, only one (out of 80) allows for both procedural and object oriented

programming, therefore one can safely say that ActionWorld is contributing to an area of

educational games that did not have a lot of support at the time of Kelleher and Pausch's

study (ones which support both procedural and object oriented programming assistance).

Kelleher and Pausch's analysis of programming structure frequency shows that the two

most commonly included ones are conditionals (73%) and methods (63%). Interestingly,

of the systems that support methods, 30% did not allow for parameters. Iteration of

most kinds is poorly supported with only 37% of systems allowing even a while loop (for

and count loops are even less frequent). ActionWorld allows for all kinds of loops, simply

because it was easy to include them, given the dynamic nature of the virtual machine's

level interpreter.

A fundamental concept that novices need to come to terms with is that of variables, and

yet only 46% of the given systems had some kind of variable mechanism built in. As far
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as representation of code goes, 60% of programs used text, with pictures being the runner

up at 27%. This work's game belongs with the majority of other systems in this regard,

however the extensibility and versatility of the level representation system means that one

could (in theory) extend this system to allow multiple representations (no system o�ers

more than two simultaneous code representations).

More than half of the systems analysed by Kelleher and Pausch o�ered no help for under-

standing code at all, while ActionWorld o�ers two di�erent kinds (debugging and physical

metaphor) - the focus of such systems was often more on the way code was created, rather

than its meaning. This is understandable for the none-education systems, as they often

obfuscate code entirely1.

There is not much to be said about Preventing Syntax Errors, Designing Accessible Lan-

guages, and Help Systems (Support Communication) aside from the fact that statistics

here averaged at about 10% (meaning very little support from everyone). Kelleher and

Pausch's survey shows that a large number of systems (41%) simplify the language in

order to improve accessibility to novices. By contrast, ActionWorld can hide detail, but

is able to work with unsimpli�ed languages. In the case of this system, the level designer

can choose the constructs to expose and exercise in each level.

7.1.2 Specialist Category Comparison

Kelleher and Pausch [4] divide all the systems into two main groups based on their purpose:

do the systems aim to teach users to program for its own sake, or is their goal to improve

productivity by simplifying the task of programming? This system �ts into the �rst (more

academic) category, however the major di�erences between systems in the two categories

are di�cult to identify.

The largest di�erences between the two basic categories can be found in event-based

programming and choice of task mechanics: the systems designed for productivity im-

provements supported event-driven paradigms more than twice as often as those designed

for teaching programming fundamentals. Event driven programming is not something

that the proposed system supports, however the potential for inclusion of event driven

code has been discussed and is described as a potential advanced feature in Section 4.4.4.

1The none-education systems catalogued by Kelleher and Pausch are usually intended as tools for
simplifying certain tasks that would normally require programming knowledge to address (such as making
games).
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The other major di�erence between categories, is that the games which aimed to teach

programming for its own sake, prioritized education as the reason to choose a task 98%

of the time, while the tool categories' priority was usefulness (67% of the time). This is

not particularly surprising, and ActionWorld conforms to these numbers, re�ecting this

work's primary interest in teaching fundamental concepts.

7.1.3 Brief Comparison with Gilligan's System.

Using Kelleher and Pausch's [4] categorisation system, the game most similar to Action-

World is Gilligan's [5] `Prototype 2' (this is the second, more re�ned, implementation of

Gilligan's system). If one compares the two systems (just based on Kelleher and Pausch's

feature table), ActionWorld generally has more functionality. One of the key feature dif-

ferences is that Gilligan's system allows for reverse-mode code generation while ours does

not. Another example would be the language support of each system: this system can

work with most non-functional languages, while Gilligan's can only work with a simpli�ed

Pascal dialect.

The emphasis of ActionWorld is to make students understand operational aspects of the

individual components of the code that they are presented with. By the end of a level

they should understand what the code does (at various scales) simply because they have

run through it themselves. One of the overarching aims was to present a game that took

an alternative from the traditional perspective of �here is a problem, please solve it� and

instead takes on the goal of �here is some code, explain it� - therefore, in this regard,

ActionWorld is not actually lacking.

Kelleher and Pausch incorrectly classify Gilligan's system as having no support for vari-

ables. They were omitted from one of the prototypes due to time constraints, but were

catered for in the system as a whole.

7.1.4 Statistical Comparison

As the number of systems in question are so varied, both in style and feature sets, a

statistical analysis of feature frequency only has limited value. However, a rudimentary

one was performed nevertheless and demonstrated that on average the systems in question

had only eleven of Kelleher and Pausch's [4] features per system. Figure 7.1 shows a graph

plotting system feature count frequency. What can be seen from this data is that without



7.2. EVALUATION VIA SPECIALIST HEURISTICS 107

Figure 7.1: Frequency of total features per system. The proposed system quali�es for 14
of Kelleher and Pausch's [4] features, while Gilligan's [5] Prototype 2 quali�es for 10.

taking speci�cs into consideration this system has, on average, three more features than

other educational games in this survey.

When comparing against the systems that share a fundamental category, one will �nd

only two others (1996 ToonTalk and 1998 Prototype 2). The proposed system has two

and three more features than these two systems respectively. When continuing to compare

against 1996 ToonTalk and 1998 Prototype 2 the two biggest advantages are that this

system can support object oriented programming, and almost all of the programming

constructs of modern languages, whereas the other two cannot.

7.2 Evaluation via Specialist Heuristics

Squires and Preece [62] describe a number of di�erent ways one might evaluate software,

and explain the need to examine educational programs from a more learner-oriented per-

spective, rather than an expert or technical perspective. This section applies Squires and
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Preece's eight heuristics - mentioned in Section 6.5.3 - to the system as a whole, in order

to try and evaluate it from a more user-oriented perspective, and as an alternative to the

rigid checklist analysis described above. One should note that heuristic evaluation is typ-

ically performed by an objective third party with extensive experience in such evaluation

techniques. Unfortunately an individual such as this could not be found in time, and thus

the author performed the analyses himself.

7.2.1 Heuristic 1 - Matching Mental Models

The �rst requirement put forth by Squires and Preece [62] says that there must be "a

match between designer and learner models". In short, models portrayed in the software

need to strike a balance between accuracy and understandability - they need to be simple

enough to understand, but not so simple as to result in a super�cial mental model. This

has aligned closely to the philosophy and goals of this work from the outset: to give

the learner robust mental models that were consistent with those of an expert, while not

overwhelming the learner with details.

7.2.2 Heuristic 2 - Navigational Fidelity

Squires and Preece [62] go on say that there is a need for "navigational �delity": A system

with good usability will often sacri�ce the accuracy and complexity of its underlying

system in favour of a simpler interface. It is hard to say whether this has been done:

the system (as it was) did not seem highly usable, and yet a certain degree of underlying

accuracy was sacri�ced in favour of promoting understanding. One could almost interpret

this point as saying that just because a system hides some complexity, it does not make

it a bad system - and vice versa. A system that makes gratuitous use of multimedia for

navigation can distract users from the actual learning outcomes of the system.

As the proposed system changed more and more navigational complexity was hidden in

favour of usability, and this did occasionally result in better user interaction. An example

of this is the calculator which was removed in favour of simple notepads - this removed

a degree of accuracy (such as variable reading and substitution), however it compressed

a three or more step interaction into just a single step - it also had the added bonus of

forcing users to decide on the resulting values type.

A second good example of where this guideline came in, is in the use of the method calling

mechanism. It originally required that users type all the details of the method that they
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want to call themselves (often resulting in confusion regarding what was required). This

complex mechanism was replaced with a simple selection menu, which provided more

sca�olding for the learner, and drastically improved user navigation of method calls.

7.2.3 Heuristic 3 - Appropriate Learner Control

Once it was decided that the proposed system was at a standard where it could be

analysed in detail, it was felt that there was only partial conformity with the third heuristic

proposed by Squires and Preece [62]: good educational programs require an "appropriate

level of learner control", which means that a user needs to feel in control of a system in

order to feel in control of their learning. Existing features that seemed to allow some

degree of learner control included a sandbox level where learners could experiment, as

well as being allowed to choose whichever level they wanted to practice with.

These features alone did not seem to constitute a high enough level of learner control,

and so two extensions were proposed that could improve on this: the inclusion of an undo

button, and additionally (or alternatively) an enhancement of the Sandbox mode so that

sprite interactions would create code that learners could observe. It was decided that

the inclusion of an undo button would serve to improve the system in this area more

than the code generator - the implementation of the undo button is explained in Section

8.2.1.2, and Section 9.6.1 gives a brief analysis of what implementing a reverse-mode code

generator in the system would imply.

Implementing the undo mechanism was not entirely trivial. Reversing code execution is

di�cult, and keeping state snapshots at each step is costly. To move backwards by a single

step, the whole program was re-executed from initial conditions up until the previous step

- and then the state of the Model was re-displayed.

The resulting improvement in control and playability was quite dramatic: all of a sud-

den experimentation and exploration became easier, simply because an action could be

re-done until it was understood. This is a good example of the iterative development

methodology: despite nearing the end of development, when a potential weakness was

identi�ed, development went all the way back to the Model/API level in order to address

it.
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7.2.4 Heuristic 4 - Avoiding Tangential Complexity

The fourth proposed heuristic is that of �prevention of peripheral cognitive errors". In

short, systems need to minimise the occurrence of less important errors so that users can

focus on more important mistakes that they might be making. For example, a cluttered or

unclear interface might result in users accidentally clicking the wrong button by mistake,

despite knowing what the correct action was. Squires and Preece [62] elaborate on this

point by saying that, when possible, there should be a "novice version of an application".

The proposed system addresses this in multiple ways: the option is given for levels to

hide unnecessary sprites (minimising clutter, or information overload), and an optional

hints/tutorial mode where the next appropriate sprite interaction is highlighted is also

available. These two features can be combined as the designer chooses and result in 4

basic levels of complexity (but potentially more if one considers the various number of

shown sprites to be their own complexity levels): both, just one, or neither. What this

means is that the system can vary in complexity according to user needs, thus minimising

�peripheral cognitive errors".

The various hint features can be customised by the level designer as well as by the end

user, thus adding to their feeling of control, which pertains to the previous heuristic about

users needing to feel in control of their learning.

7.2.5 Heuristic 5 - Meaningful Metaphors

The next point (or at least some of it) is in fact one that every aspect of the proposed

system aimed to address from the start: the need for �understandable and meaningful

symbolic representation�. The �rst requirement of this point is consistency of interaction,

and intuitive icons and behaviour - consistency was addressed by ensuring that metaphors

change as little as possible between related concepts. Of course, the author acknowledges

that others may come up with more intuitive representations. Certainly for some concepts

(such as the method mechanism), it seems as if the proposed system meets the criteria for

this concern. The issue of intuitive interfaces is partially addressed during the usability

tests (which are explained in Section 5.4), which revealed gradually improving usability

after each interface improvement.
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7.2.6 Heuristic 6 - Personal Approaches

Squires and Preece's [62] heuristics have a point that is very broad, and which could be

interpreted in multiple ways: the need to �support personally signi�cant approaches to

learning�. This heuristic can be interpreted as being about o�ering support for multiple

learning styles (this refers to styles such exploratory vs. linear learning, or visual vs.

abstract learning).

Fortunately this particular point has one requirement which is not subject to interpreta-

tion: one must be able to identify the learning styles supported by the system, and how

they relate to one another. For this system this is fairly easy: support for visual learners is

o�ered throughout, and then either exploratory or linear learning depending on the game

mode being used (i.e. Sandbox or level mode respectively). The focus on visual learners is

not a drawback for the system as a whole, as being highly specialised should help learners

who do not have the abstract learning style which is arguably most conducive to learning

to program.

Some have suggested that abstraction abilities (especially in South Africa [71]) appear

to be on the decline, mainly evidenced by a decreasing quality of maths and sciences

in schools, therefore there are likely to be an increasing number of students who lack

abstraction skills and who would therefore bene�t from a visual style of learning (such

as the one this system aims to provide). Arguably one can reverse the cause and e�ect

regarding maths and abstraction skills to say that lack of abstraction skills causes trouble

with mathematics - if this is the case, the cause of the problem might be more deeply

seated [72]. Regardless of the initial cause, this system still aims to help users who have

abstraction problems.

There is a great deal more that can be said about supporting personally signi�cant ap-

proaches to learning, including:

• How the proposed system (and its constituent components) relate to Vygotsky's

mediation. In short, this is the idea that one's higher mental functions and per-

ception of the world are likely to vary greatly between individuals, based on their

upbringing (for example, the culture they grew up in, or the concepts presented to

the person as important during childhood development).

• To what degree the metaphors can be considered personally signi�cant to students

(this includes how they relate to the motivation of the user, and how relatable they

are).
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• Whether or not the attempt to limit concepts to a single representation could be

perceived as limiting rather than empowering.

• What degree of automaticity can be achieved through the more linear teaching style.

A thorough discussion of these points would be enough to �ll an entire chapter, thus

such a discussion has been deemed as being out of scope, however that is not to say that

someone couldn't perform such an analysis in the future.

7.2.7 Heuristic 7 - Fast Feedback

Squires and Preece's [62] second last point is deceptively simple. All it states is that a

good system will allow users to realise when they have made a mistake, �gure out what

they did wrong, why it was wrong, and �nally recover from the mistake by �guring out

the correct course of action. This system originally had two mechanisms in place to assist

with this cycle: a textual hint system to give them guidance about what needed to be

done next, and a bold feedback sprite that clearly noti�ed users about whether their

action was right or wrong.

One might argue that the sprite highlighting system and undo button o�er a certain

degree of support for this kind of thing, however the undo button o�ers far more in the

�eld of user control than it does for error recognition and recovery, while the highlighting

system is there to lower the learning curve of the tool. With these features in mind it

appears as if the proposed system o�ers a moderate amount of support for this point, but

would bene�t from more powerful mechanisms: the �rst potential enhancement would

be to show the user an action speci�c message that would tell them what their incorrect

operation would have done and what they actually wanted to do next. A second, more

di�cult to implement, enhancement would be to let the user take a single illegal step, lock

everything except the undo button, and ask the user to identify what about the current

state is wrong. Both of these enhancements have the potential to increase the score for

this particular heuristic, however neither one would be trivial to implement.

One possible down-side of providing instant right/wrong feedback, is that students are

not required to think ahead, which in turn can lead to them simply proceeding through

a level via trial and error. Therefore, when implementing a feedback system, it needs to

be carefully designed so as to avoid this sort of issue.
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7.2.8 Heuristic 8 - Custom Curricula

The �nal requirement proposed by Squires and Preece [62] is that of a �match with the

curriculum�. This point is somewhat vague regarding its requirements, but its emphasis

seems to be on teacher customisation and adherence to a particular curriculum. This

system allows for a great deal of customisation, especially with the inclusion of a level

editor, as teachers can customise every aspect of a level, including: the amount of code

highlighting used, the sprites shown, the hints presented, the programmatic structures

used in a level, and even the programming language used (provided it's within certain

reasonable boundaries, such as being a non-functional language).

7.2.9 Summary of Heuristic Adherence

To summarise the analysis based o� of Squires and Preece's [62] heuristics: they propose

eight requirements, of these the proposed system adheres well to six of them, while one of

them receives a reasonable degree of compliance. As the remaining point (�understandable

and meaningful symbolic representation�) is one of the major goals of the proposed system,

it is subject to debate and further analysis.

On the basis of the above criteria the author believes that the system scores well on

Squires and Preece's heuristics test.

7.3 A One-on-One Comparison of Systems

As explained in Section 6.7, a valid means of gauging quality is to compare against an

already established system of a similar nature, using whatever means of evaluation the

system used on itself, which is what is done in this section. This sort of comparison

serves to both compare quality and distinguish between systems (on the surface two sys-

tems might seem almost identical, while a closer inspection might show several important

di�erences).

7.3.1 Comparing against Gilligan's System

As brie�y mentioned back in Section 2.6, Gilligan [5] performed a quick evaluation of his

system by comparing against common fallacies inherent in teaching systems, as originally
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presented by Eisenstadt et al. [19]. The proposed system was analysed based on the same

criteria, in order to create a more quantitative comparison between the two seemingly

similar systems. Eisenstadt et al. uses the term `fallacies', however the author believes

that they are more akin to potential pitfalls, or criteria that need to be met (or avoided,

when appropriate).

The �rst issue presented by Eisenstadt et al. is that of educational systems attempting

to create a complete bug catalogue, and corresponding suggestion database, for every

`solution' that a user might attempt to create for a given problem. Gilligan says that this

is not an issue for his system as users do not create code themselves (and thus cannot

create syntactic errors), this same reasoning applies to the proposed system, and thus

both score equally for point one.

The next point is that of poor interfaces being a barrier to learning (a point elaborated

on by many other authors). Gilligan admits to not trying to avoid this potential pitfall

�because we chose not to focus on the user interface�. This work also followed the adage of

functionality over aesthetics, however a reasonable interface was still successfully created

(the primary drawback with this systems interface is the sprite artwork, because no one

involved in the project was a graphics designer). From this one can say that the proposed

system probably has a better interface than Gilligan (certainly the gradual introduction

of the assorted components tries to minimize the risk of overwhelming users). However,

neither system deserves full marks for this point.

Gilligan explains that they did not speci�cally address the next two issues, but that their

system could probably cope with them:

�Systems not scaling up from small toy examples� is the third cautionary note presented

by Eisenstadt et al.. This system was never designed to handle programs of 1000 or

more lines of code (though everyone's de�nition of toy examples will di�er), therefore,

like Gilligan, this work does not explicitly address the third point. One could attempt to

address the issue about scaling well as an exercise to further prove the systems quality:

one would have to create and test a large level that demonstrates various concepts all at

once. Regarding this third point, it is unclear whether the cautionary notes presented by

Eisenstadt et al. were ever intended for visualisation systems (which have very speci�c

requirements). It is the author's belief that code visualisers designed for novices only need

to handle very small examples, and that this point is thus less applicable.

The fourth and �nal potential pitfall presented by Eisenstadt et al., states that many

teaching programs seem to say that they know the best way to learn. This is one that
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this work does not claim to overcome, however this work does make a point of saying

that the system is a proposed alternative to existing models, but is not necessarily an

improvement or replacement. No such claims are made about whether any individual

system is the best, Gilligan also admits to not addressing the fourth problem explicitly

but suspects that they do not fall prey to it. It might be argued that simply mentioning

a point such as this means one is probably not falling prey to it, simply because an

awareness of the issue has been demonstrated. Anyone that wanted to make a claim such

as this would need an overwhelming amount of evidence obtained over several years using

controlled student test results.

The comparison of the proposed systems using these four pitfalls can summarised as

follows: the proposed system purposely avoids at least two of them, the third is potentially

inapplicable, and the fourth point is addressed by admitting that the system is simply

a proposed alternative to established systems. Gilligan states that they only attempt

to avoid one of the four, and go so far as to admit to failing at another one, while the

remaining two are undecided or unaddressed. It seems fair to say that Gilligan did in

fact avoid the pitfall of stating that they had found �the best way to teach and learn�,

simply because Gilligan consistently refers to his system as a prototype and never as a

replacement. This results in a �nal score of 3/4 vs. 2/4 (not including negative marking

for fallacies that are present). The proposed system outperformed Gilligan's in at least

one out of four points, and matched them on another one. However, all that can be said

about the system based on this is that for this set of tests it probably did better than

Gilligan. This is not proof of overall quality, but more of a comparison of relative quality

guideline adherence.

One might argue that such a comparison is without merit, simply because the work by

Eisenstadt et al. is not wholly applicable to either system. As only one point is not

applicable (and its inapplicability is arguable) such a comparison is in fact still valid,

even if all that it shows is that one system attempts to address more issues than the

other.

7.4 Test Result Limitations

Chapter 6 elaborated on a multitude of di�erent test techniques, several types of which

could not be applied due to time and scope constraints. Key factors that the partial

application of the proposed test framework did not test include:
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• Whether the system would have any impact on the learning experience of novices.

• Whether application is likely to create stronger mental models.

• How users respond to the system (or any of its components) - this could include user

experiences ranging from UI concerns to confusion regarding certain metaphors.

Fortunately these limitations do not detract from the system, as they are facets of a much

larger whole that could not be comprehensively analysed. In fact, such a comprehensive

analysis of one's own system may lead to concerns regarding objectivity. The user in-

teractions documented during hallway testing (Section 5.4), while not strictly speaking

a part of the test framework, can be referred to in order to at least comment on system

usability: over time the interface and usability of the system was improved, and could

probably be further improved with only minimal alterations to the metaphors, API, or

implementations (as demonstrated by the feature extension examples in Section 8.2).

7.5 Summary

In this chapter several evaluation techniques were applied to the proposed system, and

their results were elaborated upon. In general the results were fairly positive. Despite

some limitations to the scope of the tests, this chapter demonstrates that the proposed

constituent-evaluation framework is a valid means of determining quality (if it were in

fact invalid, none of the applied tests would have yielded usable results).

This chapter did not go into the more technical evaluation mechanisms, which are instead

elaborated on in the next chapter.



Chapter 8

Technical Evaluation and Enhancement

The previous chapter covered subjective validation techniques, while this chapter contains

more technical measures of quality, with a major focus on the extra WPF implementation.

It also includes the details involved in adding certain extra features to the API and game.

Readers with less technical interest can skip this chapter without loss of continuity.

8.1 A WPF Implementation and what it Demonstrates

As explained in Chapter 6, one can evaluate the quality of the API and metaphors via

a detailed analysis of the process one must undertake in order to create a secondary

implementation of the game: the original game was written using the XNA framework,

and the `evaluation implemention' was written using WPF.

This section takes a more technical (code-centric) approach to the evaluation of both the

API, and the implementation details of the prototype games. Originally it was planned

that there would be only one implementation of the proposed system, created in XNA.

Up to a point a single implementation is �ne, however when one wants to try and evaluate

a system's constituent components, having a single implementation limits comparability.

Therefore the �rst step taken toward a more technical analysis of the system was to

re-implement it using another framework, more speci�cally as a WPF program.

The WPF version does a good job of illustrating several critical design details, however it

also had a secondary e�ect of highlighting additional areas of interest that already existed

in the system (either in the XNA implementation or the underlying API).

117
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The originally goal of creating a WPF version of the system was to probe the resilience

of the underlying system-model API. By the end of the process the extra implementation

had demonstrated more that just MVC compliance: concepts covered ranged from the

merits of WPF over XNA, to minimising the e�ects of cross cutting concerns, and even

illustrating how a complex abstract system of interaction can actually make development

easier (this is in regards to passing delegates as event handlers, which themselves contain

delayed Model-method calls - Section 8.1.3 goes into more detail). This summary serves

to explain key examples established through the creation of the WPF version, as well as

some closely related technical features of the API that were simply brought into focus

during the WPF development.

As described in the methodology chapter, an iterative approach was used to create the

WPF version of the system. The development process was slightly altered from the

original XNA process due to fewer design uncertainties (which was due to the fact that

many of the uncertainties had already been addressed during the XNA implementation).

+

8.1.1 MVC meets WPF

Implementing an MVC compliant GUI application can be slightly tricky at design time:

the API forms a solid Model section, but it also has a class (WorldTracker) that can

masquerade or take on responsibilities of the MVC Control class if one is not careful when

using it. The WorldTracker class is primarily meant for telling all the sub-classes of the

API how they need to interact with each other, as well as allowing for easy communication

with a proper control class - in essence, WorldTracker is the main control class of the

Model classes, and acts as something of a communication interface when used in an MVC

context.

This observation regarding separation of concerns forces one to think very carefully about

exactly where all the responsibilities belong, especially so when creating the WPF version,

as its front-end (the WPF form) can already subsume much of the functionality of the

MVC View class, or alternatively take on a mix of Control and View responsibilities (not

unlike the main Game class in the XNA version). In order to separate responsibilities

and to keep the WPF layer as �thin� as possible, two new classes, named View and

Control, were created. They take on as much of their respective MVC responsibilities as

possible while using the WPF framework: The WorldTracker-Model class and View class

only ever communicate with Control, which itself acts as a central communication hub
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Figure 8.1: The assorted classes and their lines of communication in the WPF implement-
ation.

- Control has pointers to the WPF Form, the View, the WorldTracker (Model), and the

Level-Code interface classes. The WPF form also has a pointer to Control as everything

begins in the form (one could have changed the startup options so as to begin in Control,

and then create a child WPF instance, however this seemed unnecessary and would have

complicated things, such as testing and whether the form actually belongs to the View

class). Figure 8.1 shows a rough representation of the relationships between the MVC

compliant classes.

The relationship between the more abstract View responsibilities and the more concrete

WPF MainForm is interesting, as ordinarily one would create the assorted GUI com-

ponents inside the form before running the code, but the proposed system does things

di�erently: Control knows the startup details of the various uncreated sprites, it then

requests that the View class create and return the required sprites, which are then given

to the form by Control. This unusual chain of command means that any single component

can be replaced, without a�ecting any of the other components (provided the replacement

adheres to certain communication rules). While it wasn't necessary in the implementa-

tions, one could use interfaces and aggregation to make such interchangeability even safer

and easier.

8.1.2 MVC Compliance

After going through the various design considerations and distribution of responsibilities

issue - and then implementing it - the most important thing demonstrated was just how
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platform independent the underlyingModel API was: during the whole exercise of creating

a WPF version, not a single alteration to the API had to be made in order to make some

feature work (provided those features where already present in the XNA version). This

is a key ideal of MVC: that the three main classes should be replaceable without any

alterations to the other two (or at most, very minimal alterations).

Animations and MVC do not always seem to �t well together. In MVC, an event typically

updates the model, leading to a new view. But when animations are involved, an event

might trigger an animation (something that essentially belongs in the view) which should

only later lead to a change in the model, and to any other views that depend on the model.

(For example, care is required if the Memory Manager Robot has a lengthy animation

sequence to place a value in the Heap.) A good demonstration of the modularity in this

system, is the updating of the visual components when (and only when) the operation

attempted by a user is completed : in a less powerful or less `convenient' implementation

of the API one might need to poll the Model on a timer (regardless of its state), or make

the Model raise a special `action complete' �ag or event so that the controller would know

exactly what visual updates need to be made. In this implementation the Model is passed

an Action (a void delegate) parameter from the sprite being interacted with when the user

performs an operation, which is called upon completion of the Model's operation logic.

This same behaviour can be applied in reverse, where a lengthy animation noti�es the

Model when it is completed. Several such interactions can be strung together in order to

facilitate complex Model-View behaviours.

This design feature means that the Model class does not need to know anything about

the Control or View classes, instead all it needs to know is what Action to undertake

upon completing an operation (the Action is provided by the Control class). This also

means that the only object which needs to know about the action-to-perform is the sprite

in question, thus eliminating cross-cutting concerns while keeping things modular. As an

interesting point of note, this feature allows every interactive object to have a di�erent

�nishing-action to call when an operation is performed, meaning the potential for sprite

speci�c visual updates and other similar �ne grained control. This idea of asking a

component to do something, and also passing it a parameter that says �here is what to

do when you are done� is called Continuation-Passing [73] and has become a key part

of web-based programming, where developers often want to say �Fetch this resource, and

here is the code you need to execute when you have got it�.

Some might argue that this MVC-�Continuation-Passing� style has the potential to pre-

clude certain ways of working, for example triggering a Model update halfway through
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an animation might be di�cult. However this is in fact not the case: if one wanted to,

for example, add an animation to the players hand when he attempts to write a value

to a variable, it might take three steps: move the hand and paper towards the variable

box (�rst animation), update the model, and �nally start a concluding animation that

tears up the old value. Since, in this example, the call to update the model happens after

the �rst animation begins, subsequent calls and checks become slightly more complicated.

However one can work around this issue - continuing with the above example, one could

set things up like this: the user interaction triggers an animation call, the animation

(once complete) triggers an event to say that it is complete, this event would be where

one attempts to update the model (and possibly check for user error) which also has a

finishingAction passed to it, this particular finishingAction would be a trigger to

the start of the second animation. Here is a pseudocode example:

void animate(string animName, string opDetails, Action finishingAction)

{

//run the assorted things necessary for the animation

..

//Conclude with a call to the model

Model.performOperation(opDetails, finishingAction, freePlay);

}

animate(�openBox�, �assignvalue x�, ()=>{animate(�closebox�);})

If one wanted to perform Model checks before the �rst of the aforementioned animations

began, the API has features for querying the correctness of actions. One does not have

to limit oneself to using just Actions, and instead one could use more complex delegates

or even events to trigger this sequence of calls. Therefore the model of operation should

impose no limitations on a non-event-driven implementation such as one made in XNA,

due to the game loop constantly polling, which would allow for the simple raising of a

boolean �ag to indicate that some further operation needs to begin.

As the �nishingAction `feature' is there for convenience more than anything else, one can

safely say that it imposes no more limitations than any other more `standard' way of

implementing an MVC system. Instead of automatically calling a continuation method,

one would simply have to monitor for a raised boolean �ag, or some other signal, to begin

the next step. This applies to more than just the �nishingAction example: wherever
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Figure 8.2: A pictographic representation of how the existing Model API simpli�es View
method calls. Where Re�ectState is a general visual update method which belongs to
View, and is passed as a delegate down to the FinishingAction associated with a speci�c
sprite.

the underlying model uses continuation methods, they can be safely set to null without

a�ecting the functionality of the model.

Additionally the API also allows for two special Actions that one can specify, and which

will be called depending on whether an attempted operation was correct or not. When

present, one of these two actions is called after �nishingAction, and would allow for more

granular control if needed. One might set �nishingAction to null, and then specify a

sequence of events that needs to take place based on whether the user was right or wrong.

One might even consider going further and leveraging the Model classes to make use of

aggregation, re�ection, and generics - thus allowing almost anything to be passed as a

completion action (or continuation). This was not implemented, as it seemed like it added

far to much complexity for any potential bene�ts it might o�er.

Figure 8.2 gives a pictographic representation of how the event-action pairs example works,

and Algorithm 8.1 gives a snippet of code demonstrating an actual sprite declaration along

with its single call to the Model class. By using anonymous delegates (primarily through

lambda functions) code clutter was kept to a minimum, as the system does not need

an explicit global method declaration for every sprite's operations. This continuation-

style functionality was already, strictly speaking, present in the XNA version. However,

it was obfuscated somewhat by the fact that XNA is built on a game loop, and thus

the alterations that a polling-API-variant would have required would not have seemed

signi�cant.

One �nal example of modularity and MVC compliance is the implementation independ-
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Algorithm 8.1 An example of delegate usage to simplify control �ow. This is the de-
claration and inclusion of a Return Button sprite.

//theMainSpritesList is of type Dictionary<string, Sprite>

theMainSpritesList.Add("returnButton",

//parameters to do with positioning:

new Sprite("unpresseddownarrow.png", 100, 722, 528,

//This is the lambda to associate with the sprite click event:

(object senderx, EventArgs ex) =>

{

//reflectModelState will be called by Model at the

//end of the performOperation method call

Model.performOperation("return",reflectModelState, freePlay);

//'freeplay' determines whether or not sandbox mode is on

}));

ence of the code interface - and while it is not strictly speaking a result of the WPF

implementation, it was highlighted through the WPF development process. In short,

total integration of the code interface into the WPF version took under �ve lines of code,

making it a highly modular component - Section 8.2.2 gives more details.

8.1.3 XNA vs. WPF

After spending a great deal of time developing the original XNA version, the switch to

WPF seemed (at least initially) as if it would be a rather daunting task that would take

up far too much time and e�ort to implement anything more than the bare essentials.

After just two weeks of programming the WPF version, the new implementation was as

interactive as the original XNA version; the only things missing from the two-week version

were the ability to load and follow levels, and the ability to guide the user with a hint

system - implementing these two extra features took an additional week. The time-frame

alone might be enough to convince some that WPF is better suited to the development

of the 2D game, however one could argue that by implementing the XNA version �rst

the author already knew what to look out for and what was needed. Therefore more

detailed technical examples will be used to demonstrate how the WPF framework made

implementation easier.

As both XNA and WPF are both built on the same underlying framework they both

have access to the same features and functionality. However, there is a di�erence in the
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relative convenience of �ow of control for the programmer: XNA's game loop forces a

`�atter' approach, with more global variables and inverted logic encapsulated in classes -

while WPF seems to be able to bene�t more from the advanced power of delegation and

continuation styles. These are powerful control �ow and scope mechanisms, but they are

somewhat ine�ective in the `�at' control structures that XNA imposes via its game loop.

There is one particularly good example that illustrates how convenient developing in

WPF was: how more complex user input was handled via yet another application of

continuation-passing [73](such as calculator equation entry).

Creating a textbox-style input mechanism in XNA (which is driven by a game loop rather

than events) involves creating a new class and incorporating it into what quickly starts

amounting to a very complicated �nite state machine (especially when there is more than

one type of input behaviour that needs to be monitored). In the XNA implementation,

getting the user to input typed data without using the asynchronous XNA Guide requires,

among other things:

• 15 lines of specialist code in the Update method.

• A global Cursor-Lock-Check enumeration that gets referred to in 14 di�erent places

(in everything from anonymous delegates to the primary Update class). This is to

stop the user from interacting with other objects during input.

• A global string that keeps track of the user's input, which is also used in no less

than 14 di�erent places.

• A special method for checking the character-casing of user input (as XNA does

not do a good job of checking for multiple pressed keys at once automatically. For

example, Keys.Shift&&Keys.A needs to be interpreted as `A', not `a').

• And almost any other functionality one wants, which would already be built into

the WPF TextBox class (such as interpreting a backspace).

For an example of how much goes into handling live textual user input in XNA, one can

take a closer look at the buildUpValueInputString method, included in Appendix F (it

is approximately 27 lines of code, just to append the correct input character). One might

go so far as to say that this lack of UI components could be considered a weakness in the

XNA framework when used to develop an application such as ActionWorld.
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In the WPF implementation a pair of methods, called performOperationThroughTextBox

and performOperationThroughMenu, were created to handle advanced input. They work

by taking in positional data as well as the base information of the operation they needed

to eventually perform, for example one might say:

performOperationThroughTextBox(�declareVariable �,200,0,0) which would cre-

ate a text box in the top left corner that waited for users to enter data, and when

users pressed enter to complete the input process their �nal input would be appended

to the base operation string and passed on to the Model. The steps involved from the

presentation and execution perspectives are as follows:

1. The user clicks a sprite.

2. The Sprite's clickEvent is handled.

3. The clickEvent code calls the performOperationThroughTextBox method, using

the details stored by the sprite's event handler as parameters (the text box does not

exist yet).

4. performOperationThroughTextBox uses the View class to create a text box, and

then associates an event handler with the new text box's keyPressed event (which

will only trigger later).

5. The user focus is then placed on the newly created text box, and now the system

has to wait for the user to enter details and press enter.

6. When the user presses enter, the text box's event handler reads the information

inside the textbox, appends it to the base operation, and passes the operation

details to the Models performOperation method.

7. Finally the event handler disposes of its parent object (the text box).

All of these steps are accomplished in about 14 lines of code, as shown in Algorithm 8.2

which gives the actual code for the performOperationThroughTextBox method, as well

as a sample call to it. Once again, this makes use of the newer C# features of advanced

abstraction and delegation, and strengthens the case that these features can make user

interaction clean and almost e�ortless for both the programmer and the user.

Using the aforementioned numbers and code details, it appears as if the WPF version

requires approximately �ve times less code to implement `specialist' user input. This
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Algorithm 8.2 An example of delegate usage to simplify control �ow. This is the de-
claration and inclusion of a Return Button sprite.

//for brevities sake 'theMainSpritesList' has been shortened to `sprites'

//and performOperationThroughTextBox has been shorteneded to `performOp'

void performOp(string baseOp, int width, double xPos, double yPos){

TextBox temp = theView.addTextBox(width, xPos, yPos,

(object o, KeyEventArgs s) =>

{

if (s.Key == Key.Return)

{

string finalContent = ((TextBox)o).Text;

//The following two lines can be reversed, however this order

//ensures that reflectModelState happens after the

//new textbox has been disposed of.

parentWindow.canvas_Main.Children.Remove(((TextBox)o));

Model.performOperation(baseOp + finalContent, reflectModelState,

freePlay);

}

}); //end of addTextBox method call

//minor aesthetic details:

temp.Background = new SolidColorBrush(Color.FromArgb(10, 10, 10, 10));

temp.FontSize = 20;

temp.Focus();

}

//an example of performOperationThroughTextBox in use:

sprites.Add("intpad", new Sprite("notepadpencil.png", 150, 10, 389,

//parent referencing key press event handler:

(object senderx, EventArgs ex) =>

{

performOp("directhandwrite int ", 120,

sprites["intpad"].xCoord + 5, sprites["intpad"].yCoord + 30);

}));
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Figure 8.3: Left: non-intrusive built-in WPF menu. Right: intrusive custom XNA menu.

comparison should not be taken as a denouncement of XNA or game-loop frameworks in

general, but instead as an illustration that under certain circumstances there are easier

alternatives. Conversely the same is true of XNA over WPF in other situations - for

example, rendering a 3D model in XNA is easier than in WPF.

A similar comparison of input mechanisms can be made for menu selection, however as

the details of the WPF version do not di�er signi�cantly to the textbox input mechanism,

it is su�cient to say that the XNA version of a menu required even more work than the

version of textual input and wound up being far more intrusive than a dynamic WPF

menu. Figure 8.3 shows one menu beside the other, and demonstrates just how di�erent

they are.

The above examples of ease of extensibility are fairly speci�c to the WPF implementa-

tion, however there are other extensibility examples that are not implementation speci�c.

Details for these examples can be found in Section 8.2.

There are other less signi�cant advantages of WPF over XNA (such as being able to build

hints into the sprite's tooltips), however the author was only able to identify one serious

advantage of using XNA over WPF for 2D purposes: dynamic loading and changing

of sprite source images is easier in XNA than in WPF. The primary reason for this,

however, is not a framework design issue, but is instead an implementation problem -

when loading �les for use as sprite source images, the built in Uri class caused several

issues. The Uri class is supposed to be able to handle both relative and absolute �le

addresses simultaneously and correctly, however non-trivial relative addresses cause errors

regarding �les being incorrectly labelled as non-existent. After a great deal of e�ort was

spent identifying the exact cause of the error, a work around was devised that utilised the

System Directory class as a converter for relative addresses, as shown here:
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string finalAddr = Directory.GetParent(address).ToString() +

address.Substring(address.LastIndexOf('\\'));

bi.UriSource = new Uri(finalAddr, UriKind.Absolute);

If the Uri class worked correctly the following piece of code would have been the easiest

way to load image sources:

bi.UriSource = new Uri(address, UriKind.RelativeOrAbsolute);

A �nal illustration of just how much easier and more succinct the WPF framework made

things: when combining all the non-shared code for the two implementations (which is

essentially the View and Control classes and subclasses) the XNA version came to about

4800 lines of code, while the WPF version was closer to 1000. Also, the largest collection

of code overall - at approximately 4900 lines - was the combination of the model classes

(the API deliverable).

A secondary take away from the details discussed in this section is how the switch from

XNA to WPF opened the door to taking a higher-level abstract view of the control

mechanism.

8.1.4 Not using XAML in WPF, a Design Choice

XAML (or Extensible Application Markup Language) is a declarative approach to de�ning

the GUI, and is a central part of the WPF philosophy. But the WPF implementation

did not make use of XAML in any signi�cant way, this was done primarily to promote

portability: by implementing everything in the WPF version procedurally and using just

C# code to create GUI components, it ensures that the API could also be used by other

GUI toolkits, new or old. For example, the code created for the WPF version could

be altered to target a Windows Forms GUI, or perhaps GTK+ with relative ease (one

would only need to make a few framework speci�c alterations as all the logic is framework

independent) - an alternative example would be creating a web-based implementation of

the proposed system.

In short, not using XAML is a design trade-o�: by doing additional work in code, mi-

gration to other platforms such as the web, becomes easier. If the creation of the WPF
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version had been done using XAML, some of the future portability would have been sac-

ri�ced. Also, one particular scenario might have caused problems: when there can be

an arbitrary number of a particular sprite (such as the stack or variable sprites), imple-

menting the creation of these run-time-dependant sprite instances becomes awkward in

XAML.

8.2 Speci�c Technical Evaluation

This section gives speci�c examples from the API and game which demonstrate some

desirable quality or other. As explained in Section 6.2.3 above, one such way to do

this is to add a brand new feature to the existing system and explain and validate the

process undertaken to implement such an extension - this process is used to demonstrate

extensibility through the inclusion of the BoolEater and Undo-button features.

An alternative way of demonstrating program design quality is to take a speci�c (already

implemented) piece of code or system component, and demonstrate how its original design

proved its quality later in the development process. The code-interface form is a good

example of this, more speci�cally regarding the modularity with which it was designed.

8.2.1 Completely New Functionality

This section gives two examples of functionality that was not originally present, but which

was included later to improve the user's experience. Both examples also illustrate aspects

of system extensibility.

8.2.1.1 Adding the BoolEater

During the hallway testing phase described in Section 5.4, the need for a conditionals

mechanism became clear.

The implementation of this mechanism was a good test of the system's extensibility,

because it introduces changes on almost every level, including: new visual components,

new user interactions, control level alterations, and even changes to the API. Details of

the process to include this feature follow.
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The �rst step was to add the new sprite to the interactiveSpriteCollection object. It did

not yet have any interactive functionality, nevertheless the game then had an in-game

visual component in place that could be used for testing:

interactiveSpriteCollection.Add("booleater", new dynamicSprite...);

At the start of every level the sprites that are enabled are determined by the level in

question. Unless this new sprite is included in one of the modes, it will not be enabled

and thus will never draw or update. This feature also prevents invalid interactions when

in a `no-conditionals' level.

if (mode.Contains("conditional")

enabledKeys.Add("conditionals");

Now the sprite will draw to the screen, however it has no behaviour associated with it

yet. There are two behaviours that need to be exhibited by this sprite: it must only draw

itself when the next operation in the current level is a conditional, and when clicked it

needs to send a message to the world tracker (the control class) saying that it has received

an interaction request. Before altering the control class, a dummy delegate was set up to

check that the behaviour was correct - the enhancement to be made hides and shows the

sprite, and takes place where the new sprite is originally added to the sprite collection:

Predicate<string> operationIsBooleanConditional =

delegate(string key)

{

// Dummy temporary scaffolding:

return DateTime.Now.Second % 2 == 0;

//return theWorldTracker.isNextOperation("consumeBool");

};

interactiveSpriteCollection.Add("booleater", new dynamicSprite...

, operationIsBooleanConditional);
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The above code results in the sprite hiding itself every other second, the commented-out

line is what will be used later once the control class actually knows about the �consume-

Bool� operation. The next place holder delegate will eventually send messages to the

world tracker, like the previous delegate the actual message line is disabled as it would

send an unrecognised message:

Action consumeBool =

delegate()

{

Console.Write("clicks are working");

//theWorldTracker.performOperation("consumeBool", freePlay)};

};

interactiveSpriteCollection.Add("booleater"...

new interactiveRegion(... consumeBoolean...)...

, operationIsBooleanConditional);

If this sprite did not require an alteration to the more fundamental behaviour of the

system, the above enhancements would be enough to do a great deal already. However,

as the inclusion of this feature requires alterations to the way the API behaves, changes

need to be made in some other areas. The �rst step is to make the controller (the world

tracker) recognise �consumeBool� as a legal operation:

case("consumeBool"):

Console.WriteLine("No behaviour for this op yet");

//succeeded = consumeBoolFromHand(finishingAction);

break;

The above code �ts in the switch block of the controllers performOperation method, which

attempts to perform a given operation and return a boolean based on whether the opera-

tion was successful or not. The code does not have a de�nition for consumeBoolFromHand

yet, and there are two ways one can do it: either using delegates or a normal method

declaration. The important part of the controller's code for consumeBoolFromHand looks

like this:
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if (thePlayer.examineHeld().readType() != "bool")

return false; //attempted an illegal action

thePlayer.removeHeld();

finishingAction();

The above code is surrounded by some standard exception handling. By this stage the

new feature is almost complete, all that has to be done is to remove the appropriate

place-holder lines and uncomment the actual checks. Now when one clicks on the sprite

with a boolean in-hand, it will consume the boolean value and advance the current level

to the next operation. The sprite will only display when the next operation is one which

needs to consume a Boolean.

This enhancement took under 20 lines of actual code, spread over three areas. The only

steps not included here are those required to integrate the new functionality with the

existing levels and level editor (a minor task). This extension also had to be included in

the WPF version. Because of the API extensions explained above, there was very little

extra that needed to be included in the WPF version in order to include the BoolEater:

no extra tracking needed to be included, and the only `special' provision that had to be

made for the BoolEater sprite was the inclusion of a conditional statement which either

hides or shows the BoolEater depending on whether the user is holding a boolean value

or not. In short, the WPF version required slightly less implementation-speci�c code to

include the BoolEater than the XNA version did.

The takeaway from this feature addition: the system appears easily extensible down to

an API level, with this new feature requiring just 20 new lines.

8.2.1.2 Implementing an Undo Button

Following the advice of one of the hallway testers, an undo feature was provided to allow

users to take back an arbitrary number of actions.

Operations are not reversible in the API. The two obvious ways to implement UNDO are

to keep all intermediate states of the virtual machine after every step, or the more simple

method that was implemented: to record all user actions, and then replay all but one of

them to a newly initialized machine. Therefore the �rst extension step was to include

a list of completed operations in the WorldTracker Model class. The reason it is done
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here and not in the level class (which already contains a list of completed and yet-to-do

operations) is that this is a general piece of functionality that does not rely on the current

level, especially if it should also work in sandbox mode:

public List<string> completedOperations = new List<string>();

Whenever one undoes an operation the system will essentially have to re-initialise the

WorldTracker to its starting state and run through all the stored operations (except the

last one). Therefore an `undo' method needs to be included in the WorldTracker Model

class, which does all of this:

public void undoLastOperation(bool freeplay, Action completionAction)

{

if (completedOperations.Count > 0)

completedOperations.RemoveAt(completedOperations.Count - 1);

else

//optimization in case no changes have been made yet:

return;

initialiseFields();

//reload current level

currentLevel.restartLevel();

//most important part of the whole thing:

foreach (string op in completedOperations)

performOperation(op, freeplay);

if(completionAction != null)

//Perform the GUI update:

completionAction();

}
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Notice that the call to performOperation does not include a finishingAction parameter

(which defaults to null) - this prevents the GUI from being incrementally updated, the call

to completionAction at the very end updates everything at once. This feature prevents

the user from seeing a fast replay of their actions, and also prevents unnecessary update

tasks from impeding performance.

A set of delegates already exist that call set methods upon correct or incorrect operations,

therefore the only change needed in order to start including operation tracking, is to add to

the functionality of one of those. This could be done via the controller, however the better

option is to set the add-new-completed-operation method call inside of WorldTracker, this

way the undo functionality is built into the API rather than any single implementation.

This extension simply requires that addCompletedOperation(opAsString) be included

in two locations (one for sandbox play and one for regular levels)

At this stage the undo functionality is fully integrated into the model API, the only

remaining step is to include a way for users to call the undo undoLastOperation method

through a sprite or a button. This step is no di�erent from any of the other sprites:

it is simply added to the sprite collection and told that upon clicking it must call the

undoLastOperation method.

Overall this extension required just one new method, and three extra lines spread across

two Model methods, to incorporate it into the API, and �nally two implementation speci�c

lines to present the functionality to the user (closer to four lines for the XNA version). This

situation serves to further illustrate two points that have previously been demonstrated:

the proposed system is highly modular and easy to extend. Because of this extensibility

and modularity, the potential downsides of iterative re�nement and quick prototyping

(namely that one might have to make quite deep changes) are not time consuming or

costly.

8.2.2 The Code Interface Form, and the Modularity it Demon-

strates.

The XNA framework provides somewhat of a �least common denominator� approach to

its supported platforms: the Xbox , the PC, and some smaller mobile devices. But

ActionWorld targeted only the PC. Even with the XNA version of ActionWorld, there

was a hybrid approach that created a Windows Forms class called LevelCodeInterface.

Its sole responsibility was displaying level-code details to the user. This class was created
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outside of the XNA framework (and was thus not portable to an Xbox), because of how

di�cult implementing simple form functionality is in XNA. This hybrid design decision

turned out to have unforeseen advantages later.

As explained in Section 8.1.3, once all the basic user-interaction behaviour was in place

for the WPF version, level functionality needed to be included. But rather than creating a

WPF speci�c version of something that was already available, it was decided to once again

mix the di�erent technologies, and use the Windows Forms component together with the

WPF version. Creating the hybrid of WPF and the code interface (LevelCodeInterface), a

Windows Form class, took two lines to include and draw in the WPF version (with no real

functionality), two lines to add level loading functionality, and one line of code to make

the form re�ect the state of the current level and move along with the user's interactions.

By including only �ve additional lines of code, the just-functional shell - without purpose,

or guidance of any kind - was changed into a game with meaning, direction and goals.

While creating the WPF version the author had not pre-planned for the integration of

the LevelCodeInterface class, simply because the features could be added to the WPF

form itself, which means that no special provisions were made for its inclusion (this is

highlighted this to make it absolutely clear just how modular this particular class is).

Another point of interest relating to the LevelCodeInterface and level loading is that of

cross-cutting concerns (an issue explained best through Aspect Oriented programming

theory [74]): The LevelCodeInterface has no idea how to load a level, but does know

when a user clicks on the level-load menu button; the converse is true of the control

class, which knows exactly how to load a level from a given directory, but does not know

when to load a level. Rather than trying to give each class extra responsibilities (which

shouldn't belong to those classes anyway) the author was able to minimise the e�ect of

the level-loading cross cutting concerns by creating an event handler inside of Control but

associating it with an event that belongs to the LevelCodeInterfaces class. The following

piece of expanded code (present in the Control class as just two lines) is all it took

to include level loading functionality into the WPF implementation and avoid common

complications associated with cross cutting concerns:

textualInterface.openLevelToolStripMenuItem.Click += new EventHandler(

(object sender, EventArgs e) =>

{

clearCanvas();
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LoadNewLevel(textualInterface.levelToOpen, ref Model);

reflectModelState();

});

This modularity is something of a design trade-o�: the system needs two modules (Level-

CodeInterfaces and the main WPF window) instead of just one, as well as functionality

to facilitate communication - however what is bought for the price of this extra work

is additional separation of concerns. Once again, this seems to illustrate the recurring

theme that the extended C# power of events and delegates can substantially enhance and

simplify the coupling between components.

This last observation applies to both to the XNA and WPF versions of this system, and

simply serves to further illustrate the modularity and MVC compliance of the assorted

classes. The author believes that this design choice is ultimately worthwhile, as it means

that any future implementations can make immediate use of the existing class (even if

such usage is only temporary, while developers create their own version).

8.3 Summary

This chapter went into a fair amount of technical detail in order to demonstrate aspects

of the API and game implementations, which seem to be indicative of quality. The

techniques ranged from demonstration of MVC adherence to reduction of cross-cutting

concerns via continuation passing (a technique that could potentially be used in a variety

of other applications to simplify GUI development, and improve functionality).

The evidence gained from this system suggests that coupling the MVC architecture with

newer and more powerful features of delegates and events in C# has substantial ad-

vantages. Furthermore, it is not necessary to choose any single candidate between the

competing technologies like Windows Forms, XNA and WPF. The technologies can be

successfully intermingled, and each can be exploited for its strengths and should perhaps

be avoided for its areas of weakness when appropriate.

The next chapter elaborates on how one might extend ActionWorld even further (both its

theoretical and technical components).



Chapter 9

Future Work

There are a large number of ways in which this work could be altered, enhanced, or exten-

ded in the future. This chapter describes some of the ways one might extend the proposed

system, or parts of it.Section 4.4 elaborated on enhancements to the ActionWorld system

that had been attempted or investigated to a far greater degree than the ideas proposed

in this chapter. If an alteration or enhancement would require changes to multiple com-

ponents (for example, both the API and game implementation), its description will be

included in the more fundamental of the sections.

There are multiple possible future extensions that can be added to the system with varying

degrees of di�culty. For example, one could use this system with more than one language

(which would require no alterations other than the creation of new levels), one could alter

the display of code to be visual rather than textual (such as through �owcharts), or one

could alter the way players interact with the metaphors (either simply by changing the

appearance of the sprites, adding drag and drop interactions, or including more sprites to

allow for greater detail).

9.1 Enhancing the Metaphors

Alterations to the metaphors have been possible from the start, as demonstrated through

the use of an iterative methodology and hallway tests. These alterations could be purely

aesthetic, or they could attempt to incorporate more advanced concepts. A simple ex-

ample of a non-aesthetic enhancement would be to include polymorphic concepts, such

as inheritance, generics, and aggregation - this particular example would be useful up to

137
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a point, however, as the system targets novice programmers (and these concepts are not

at a novice level), their inclusion could be moot.

With the above example in mind, any enhancements to the metaphors need to be weighed

up against their usefulness given the target demographic.

9.2 Enhancing the API

There are multiple ways one could extend the system's API, a simple example of one such

extension could be a feature that allows users to deem a line of code invalid, and pass

over it. This sort of extension would not be di�cult to include, however it does run the

risk of causing students to believe that the language is interpreted or that the computer

can detect and skip invalid code at run-time. For these reasons this extension was not

included. According to Garner et al. [75], syntax errors cause the most problems for

novices. Provided students are warned at the outset that the code they are looking at

might not run on a real system, one might be able to provide a mode with invalid code

to strengthen syntax skills as well as semantic skills.

Another possible addition would be to allow starting a level in a partially complete state.

The existing undo mechanism is ideal for this: by pre-canning several opCodes that are

performed automatically when starting a level, the user could be asked to compare the

already executed code with the current state and draw conclusions from that. An example

where this might be useful, is to start a level with several iterations of a loop complete,

and then the user would have to gauge for themselves when the loop needs to quit based

on the state of whatever is being used as a conditional.

Certain simple operations could get tedious if done too often; one might overcome this

sort of issue by including macro-like operations: for example, once a user has proved that

they can do single line variable declarations, expression evaluation and value-variable

assignment (such as int x = y * 3;), they could click on a variable declaring shortcut that

would ask for the type, name, and value all in one step. Another example would be that

of method calling: once a user has proved that they can call methods with arguments, a

macro-sprite could be used to auto-assign values and perform the call all at once, after

the user has selected the method they want to call. Macros should only be included after

users have proved they are able to do a certain sequence of operations, otherwise the

meaning behind the metaphors could become unclear.
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9.3 Enhancing the Finished Games

During the course of this work a number of potential metaphors and manipulatives were

developed (and each one had various possible implementation methods), thus an enhance-

ment that allows di�erent sets of metaphors to be selected would allow for easy testing

of metaphor validity and �delity as well as allowing a change of perspective. This sort

of thing could be done in a purely aesthetic manner, where the only alteration is the

appearance of the sprites. The MVC design of the manipulatives API is highly conducive

to this kind of enhancement.

Several systems use non-textual methods of representing code, for example �owcharts and

images. With this in mind, and considering the modularity of the code interface class,

one could extend the system to allow for alternative methods of code representation. The

biggest bene�t to this kind of extension (if it could be done in such a way that users

can switch between representation), would be that if users get stuck on a particular piece

of code, they can simply swap representations in order to see things di�erently. Extra

representations could be generated procedurally (deriving representation from code), or

they could be done manually by altering the Level and CodeInterface classes to include

the extra representations. Procedural generation would be more technically challenging,

but would save time when it comes to creating levels.

9.4 The Test Framework and More Rigorous Evalu-

ation

A potential test that was not included in the framework would be to give the API (and

the accompanying metaphor set) to some intermediate game development students and

ask them to implement a simple version of the game: this would serve to further test the

robustness and ease of use of the API.

A valuable piece of future research (which relates directly to this work), would be the

performance of a rigorous marks-driven evaluation such as that described in Section 6.1.

Such a test would lend objective support to the applicability of this work in real teaching

environments, and on real students.
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9.5 Enhancing the Level Editor

While the implementation of a level editor has made the creation of custom levels much

easier than it was originally (where one had to create them one line at a time in an

XML �le), the process could still be improved upon: implementation of an automatic

code interpreter, as described in Section 5.1.2, would be the most obvious improvement.

An extension of this nature would allow not only experienced users to create levels, but

would also allow novices to step through code which they would like to understand via

the game. This extension could be relatively easy if one were to use the .NET Compiler

Platform (also known as �Roslyn�), whose design speci�cation includes Compiler as a

Service - this feature gives users direct access to semantic and lexical code analysis, and

dynamic compilation to CIL [76, 77]. Being able to create IL from arbitrary code, and

then interpret that IL as level opCodes, would e�ectively automate the creation of levels.

With the current generic nature of the metaphors and environment there is no real call

for any sort of procedural map or level generation, but perhaps generation of hints and

tips based on the next action could be included. If one were to implement a level-code

interpreter, and create an alternative representation of the game world (such as the earlier

code-as-maze representation), then procedural level generation would become a must have.

9.6 Other Enhancements

Another future enhancement (or even separate project), could be to include the mazes

and maps that were proposed during the early developmental stages; the focus of such a

project would be on teaching �ow of control over �ow of data. This sort of alteration would

greatly bene�t from procedural map generation, as explained in the previous section.

The survey of di�erent programming environments and languages performed by Kelleher

and Pausch [4] says a lot about the development of programming-oriented education

systems, however the most `modern' game they surveyed was released in 2002, and it

might be interesting to perform a similar survey of games released since then, in order to

better understand the developmental history of these systems. A survey of this nature

might also serve to highlight potential areas of improvement for systems such as this one.
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9.6.1 Reverse-Mode Code Generator for Sandbox Play

In short, this potential feature would try to generate code that corresponds with the user's

metaphor interactions while in sandbox mode. The idea behind this potential enhance-

ment is that it would encourage exploration of the various metaphors, and exploration is

an excellent way to learn. So far as the author could tell, no systems exist that allow the

user to both create code through graphical interaction, and interpret code using those

same actions (Gilligan's [5] system does the former, but not the latter), making this a

potentially very novel feature.

Unfortunately there are several major drawbacks to implementing something like this

with ActionWorld's proposed metaphors. The �rst and most obvious one is that not all

actions have a single code equivalent, for example int x = 3 + 3 would take three steps

in this system (when using the notepads rather than the calculator), of those three steps

the middle one (write the integer 6 on a notepad) would not generate code immediately,

and when it did the generated code would look like this: int x; x = 6; - the 3+3 part

is lost. Other more serious examples like this one would be �what is in the uncalled part

of an if-else?� or �does the Boolean the user just gave to the BoolEater belong to the

conditional of an if, a while, or a for?�. Gilligan encountered these issues, and tried to

avoid them by not including loops in the inferred code.

If one were to overcome these limitations, the resulting system could create even more

serious conceptual-risks for the user: because a student would be creating code for one

speci�c run of a program, without considering alternative conditions, all but the most

trivial of programs run the risk of encouraging students to program speci�c, rather than

general, solutions.

If investigated as a separate piece of work, rather than an extension to this system, the

idea might be worth investigating further (provided a powerful enough inference engine

could be created). After all, there are plenty of systems that let the user arrange objects

and use nice GUIs to simplify the process of creating unambiguous programs, but few (if

any) of them show the code that would match what the user has done, which is a learning

method through which some people might �ourish.
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9.7 Summary

This chapter explained a number of ways in which this system as a whole (and its constitu-

ent components), could potentially be enhanced or used in future related work. Potential

future work ranges from simply adding to (or enhancing) the proposed metaphor set, to

performing a more in-depth evaluation of the system as a whole in order to determine

it e�ectiveness at teaching novices. The next chapter summarised this dissertation, and

enumerates the various conclusions that where made based on the work.



Chapter 10

Conclusion

10.1 Introduction

There is ample evidence that weak mental models of how code executes leads to di�culties

in learning to program. Visualisation of concepts and data can be highly bene�cial (as

evidenced in Sections 2.2 and 2.5, among others). Metaphors are also a powerful and

widely used tool, but investigation showed that they are often designed in isolation and

only address a narrow version of the problem. For example, the simplest `variable as a

box' metaphor might represent variables well enough until the variable needs to be passed

by reference, at which point one has to somehow incorporate memory and pointers (see

Section 2.3 for more examples). The inherent risk of using `weak' metaphors is that they

can break down or mislead the learner when applied more generally, potentially leading

to �awed mental models.

By combining the visualization and use of interactive metaphors, the author set about

constructing a system that was believed could aid in the teaching of novice programmers.

It attempts to give learners a high-�delity mental model for various fundamental concepts.

The di�culties associated with learning to program (and how to teach programming)

are extensively documented, however no stand out solution to either problem has been

established yet. In was decided that the system should be built so that it emphasizes the

users' active manipulation of the concrete mechanisms of code execution.
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10.2 Contributions of the Dissertation

Through the developmental process of theoretical metaphor design, all the way to proof

of concept game implementations, several important artefacts, theories, and frameworks

were created:

• First and foremost this work proposed an unusual programming teaching technique:

visual demonstration of code from the perspective of the computer, in order to

improve mental models and understanding. This teaching technique encourages

�active participation� on the part of the students, which should hopefully improve

their engagement and thus their understanding. In theory this teaching technique

might also be applied to other subjects (however investigating that line of thought

would go well beyond the scope of this dissertation).

• A set of uni�ed metaphors was created. Of the literature examined, it appears as if

none of the authors in question have created or proposed a set of uni�ed real-world

metaphors for representing the state of an executing program. Gilligan [5] comes

closest to creating something like this, however potential weaknesses are present even

before one attempts to extend his metaphors, and even more appear after trying

to include extensions. See Sections 2.6 and 2.3.3 for more on Gilligan's set and

metaphor limits respectively. While this systems proposed metaphors are speci�c

to teaching programming, the theory behind them might also be applied to other

abstract subjects.

• A modular API (or virtual machine) was developed to simplify the task of imple-

menting alternative future versions of this system (whatever the purpose of those

implementations might be). Chapter 5 goes into the details behind the API's design

and implementation.

• Two complete, usable, games were created, which could be used by future research-

ers to test the impact of this sort of teaching mechanism and which also served

to demonstrate and improve both the metaphors and the API. Details regarding

improvement based on the early implementation can be found in Section 5.4.3, and

Chapter 5 elaborates on game design and implementation.

• A level editor which simpli�es things for future users, by making level creation almost

trivial. This allows for curriculum (and even language speci�c) customisation of the

game levels, and therefore also makes more rigorous testing easier.
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• The use of a `constituent evaluation' test framework, which Chapter 6 explains.

• A suite of sample tests that conform to the aforementioned test framework, and

which (simply through their successful application) serve to prove the validity of

such an evaluation technique. Chapter 7 elaborates on speci�c test results.

• The WPF game, and the underlying API, both demonstrated the potential power

of combining the newer, more advanced, features of C# with the older MVC ar-

chitecture. More speci�cally the reduction of cross cutting concerns brought about

through the use of continuation passing, as well as the ability to analyse and de-

velop at a higher level of abstraction. Chapter 8 contains several examples of how

continuation passing mixed well with MVC in order to simplify development.

• It was shown that one can take advantage of the strengths of certain technologies

(while bypassing potential weaknesses), through careful hybridization of those tech-

nologies. Section 8.1.3 gives examples of how one might take advantage of WPF in

order to bypass XNA's occasionally restrictive game loop (in order to improve the

user's experience), while Section 8.2.2 shows how Windows Forms can be merged

almost seamlessly with both XNA and WPF in order to add functionality that may

have been di�cult to include otherwise.

10.3 More Detailed Conclusions

10.3.1 The Metaphors

After following a well-de�ned iterative methodology, and discarding no less than 50 dif-

ferent potential metaphors, a set of nine distinct foundation-analogies were decided upon.

The process undertaken to �nalise these metaphors involved in-house experimentation,

extensions to pre-existing metaphors, and re�nements through user testing (Section 3.2.1

explains the development process in full). The �nal set of metaphors are platform inde-

pendent and have a certain level of customisability to cater for more specialist situations

(Section 4.1 describes the �nalised set in full).

When examining the metaphors, one is able to see their potential versatility, especially in

the area of incorporating more complex concepts which they were not originally designed

to accommodate (such as Enumerators). This capacity for complex extensions led to the
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conclusion that the fundamental metaphors o�er a high-�delity way of visualising program

execution (more examples can be found in Section 4.4.4).

While at times the proposed analogies sacri�ced accuracy for understandability (for ex-

ample, there is no use of registers), these compromises arguably did not detract from the

user's experience, and instead often enhanced it - Sections 4.3 and 4.4 go into more detail

regarding analogy alternatives and improvements. This leads to the conclusion that the

metaphors have likely achieved a good balance regarding detail levels, considering that

more detail (while usually more accurate) increases the risk of overwhelming users (but

at the same time nothing is completely hidden from the user, especially when it might

give them a simpli�ed understanding).

10.3.2 The API

The metaphors were demonstrated through two separate game implementations, both of

which were built on the same API: essentially a virtual machine that took on the role

of background state tracker. A thorough technical evaluation of the API - using tech-

niques such as `from-scratch' extra implementation, new feature inclusion, and paradigm

adherence analysis - led the author to conclude that the API met all of the following

criteria:

• Easy to understand (it is mostly self-managing, with a few key methods that need

to be called externally).

• Easy to use (a fully functional 2D game can be built on it in less than two weeks).

• Extensible (easy to add new features).

• Modular (components can be easily replaced).

For more details on the technical evaluation, see Chapter 8.

10.3.3 The Test Framework

Conclusions regarding the proposed student-as-interpreter teaching technique are hard

to come by without performing further tests. In order to address this, not only was a
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`constituent evaluation' technique used, but several sample tests were included which one

might undertake in order to further investigate the e�ects that the proposed teaching

method might have on students. Chapter 6 elaborates on the test framework itself, as

well as several samples.

Despite not applying comprehensive tests to every element of the system, several conclu-

sions could still be drawn out via the application of key tests from the test framework

(for more details on the application of these tests see Chapter 7). In short, the theoretical

test framework has been satisfactorily validated both in principle and in practice (insofar

as evaluating systems such as ours is concerned).

10.3.4 The Games

Much like drawing conclusion for the proposed metaphors, there is only so much one can

say about what the two game implementations might o�er students (at least without

performing more tests). What one can do regarding the games, is apply in-house tests

and perform comparative evaluations on them (as shown in Chapter 7). Based on tests

such as these, it was concluded that this system has more features than the majority of

those evaluated by Kelleher and Pausch [4] (Section 7.1). Of those system evaluated by

Kelleher and Pausch, the proposed system outperformed the one most similar to itself

(Gilligan's[5] system) on almost every applicable metric (see Section 7.3.1).

When looking at the two prototype games created for this dissertation as conceptual

demonstrators (rather than end-user games), one is able to conclude that they de�nitely

achieve that goal: they are able to demonstrate both the quality of the API, and the

fact that the metaphors are not only usable in games, but are also platform independent

(based on the static nature of the demo games). Therefore an unexpected conclusion

one might reach is that for the duration of this research, the games served more as in-

depth testing mechanisms than as actual games, especially considering how few people

played them during the course of this work. (See Section 5.4 on hallway testing for detail

regarding this).

10.4 In Closing

Both teaching and learning programming is di�cult, and as such there is an abundance

of material that aims to assist both teachers and students. Despite this, no single stand-
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out solution to these issues has emerged. To the �eld of programming education, this

work emphasizes an alternative teaching technique that neatly combines multiple teaching

theories. It also provides the tools required to implement, test, and further explore this

approach.
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Appendix A

In-Game Screenshots

Figure A.1: The start of a sample level. The user has not done anything yet, and is being

prompted to create a new integer variable `x' (highlighted in yellow on the left).
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Figure A.2: The user has succesfully declared the integer `x' which currently has no value.
The user is currently creating an integer value via the int notepad.

Figure A.3: The user is now holding the newly created value, and is about to assign it to
the integer variable `x'.
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Figure A.4: By this stage the user has declared and assigned values for the variable `y',
and is about to feed the newly created Boolean value to the BoolEater in order to move
into the body of the if().

Figure A.5: The user has complete all the steps required by the various conditional
structures and loops (all very similar), and has prepared an empty stack frame for calling
`sampleMethod'.
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Figure A.6: The user has created and assigned a value to the `num' parameter, and is
preparing to perform the method call by clicking the call arrow.

Figure A.7: The user has entered `sampleMethod', and has created a value based on the
expression `num/2'. They are preparing to return to the previous stack frame by clicking
the return arrow. Notice the cut-o� stack frame near the top of the image - this is the
frame of the method they will be returning to.
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Hallway Test Levels

This appendix contains the exact code presented to users during hallway testing. De-

pending on the students prior experience, they would either be presented with these

levels in order, or they would start with level 6 (which assumes the user has a bit more

background).

B.1 Level 1 - Variables, Assignment and Operators

int x;

x = 23;

int y = 2;

int z = x + 4;

y = x * 2;

y = y + 4;

z = x % 4;

z = z + x - y;

z++;

B.2 Level 2 - Conditional Branches

int x = 1;

if(3 > 2)

x = 5;
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if(x == 1)

x = x + 2;

if(x < 5)

x = 6;

else

x = 10;

int y = x - 2;

if(x == y || x < 6)

{

y = -10;

x = 10;

}

if(true && false || true)

x = x + y;

B.3 Level 3 - While Loops

int counter = 1;

while(counter <= 6)

{

counter = counter + 2;

counter = counter + 3;

}

B.4 Level 4 - For Loops

int sumToN = 0;

int N = 3;

//Ordinarily these 3 are on 1 line:

for(int i = 1;
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i <= N;

i++);

{

sumToN = sumToN + i;

}

B.5 Level 5 - Introduction to Methods

private int someMethod()

{

return 64;

}

private void anotherMethod(int x)

{

x = x + 2;

}

private int argumentMethod(int x, int y)

{

return x * y;

}

public void main()

{

int x;

x = someMethod();

anotherMethod(x);

x = argumentMethod(3, 4);

}

B.6 Level 6 - All in One

private int sampleMethod(int num)

{
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return num / 2;

}

int x;

x = 9;

int y = 1;

if(x < 10)

y = x + y;

else

y = x - y;

while(y >= x)

x = x + 1;

for(int i = 10; i > 9; i--)

y = y * 2;

y = sampleMethod(x + y);



Appendix C

Unabridged Hallway Test Results

This appendix contains all of the feedback obtained over the �ve separate hallway test

sessions.

C.1 Test Group One

Test group one was comprised of three students who had prior programming experience.

The reason these people were selected, was to ensure that misunderstanding of the code

did not interfere with their experience of the interface.Their feedback follows:

• When presented with �int x = 1�, all three tried to perform operations in the same

order as when presented with �int x; x = 1� (which is reasonable). At the time,

`empty' variables were being avoided by putting the value straight into the variable

from the hand, and not letting users see the intermediate state. This meant that

the `correct' order was: evaluate the expression, then declare and assign variable in

one step.

• One user noted that they found it confusing that values take their initial default

value from the hand.

• Participants did not �nd it obvious that the hand was acting as the go between for

transferring values.

• The primary complaint was about what to do with a statement like �if(x < 10)�.
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• Two of the three users complained that the mouse buttons should be reversed for

interactions with variables (originally the left mouse button was for read, and the

right mouse button was for write).

• One of the test subjects asked why there is no variable-value substitution when

dealing with for complex expressions (such as �x = x + y�). This was when the

game used a single pencil to declare all values, rather than a calculator.

• A single tester reported a minor inconvenience: the hint prompt, when entering a

value for the hand (�<type> <value>�), was inconvenient after it had been seen

once.

• No testers said so explicitly, however it seemed that none of them realized there was

a division between user and machine space.

• The testers appeared to not know what the purpose of the game was at all, or their

function in it.

• Once users got to the method mechanism, they were told to name the method for

calling. To do this they tried entering things such as: �functionName�, �function-

Name()�, �functionName(x)�, �functionName(int num);�. Once they were eventually

told to input the methods signature (without a semi colon), they had trouble �g-

uring out how to add a new parameter, or what they had to do at all (some went

straight for the method call button).

C.2 Test Group Two

The second group of testers were presented with an introductory screen that explained

their role in the game. This group of testers all had experience with C#, this was entirely

coincidental.

Subject one of group two gave this feedback:

• Wanted to know where to get values for expressions, such as �x = 1�. Which meant

he did not realize the function of the pencil.

• After having the pencil explained, had no trouble with �int x = 1�. This was after

making the operation order more consistent (per the feedback from group one).
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• Had trouble �guring out what to do on the if statement, more speci�cally he wanted

to know where to put the �true� once he had it in hand.

• No real trouble with the for loop, but did try to do the conditional �rst. That is

an issue more to do with his understanding than the UI.

• Had no trouble with the method mechanism, either for calling or returning.

Subject two had a number of comments regarding the program, as well as some unusual

behaviour:

• �I'd like the option to turn o� the magni�cation area.�

• �The conditional branches make no sense.�

• �I feel very restricted, I'm given the illusion of freedom when there is in fact none.�

• �Most games only show you what you need or what you've asked for.� - by which

he meant �hide the things I cannot use�.

• He was a very experimental subject, in that he tried clicking all sorts of things

erratically in order to see what did what. Because the Guide interfaces look very

similar, he would get them mixed up.

• Tried to enter �int x;� once (notice the inclusion of the semicolon). This is more to

do with programming habits than the UI.

• When presented with no format prompt for data entry (such as �<type> <value>�),

the subject tried to put just a value (for example, 1). This meant that the alterations

based on feedback from the previous group needed to be optional.

• Until it was pointed out, this subject did not notice the code interface on the left.

This meant a means of drawing attention to it was needed.

Subject three had these experiences:

• The purpose of the pencil was not obvious.

• Had trouble with the if, just like everyone seemed to.

• As with subject 2, when presented with no format prompt for data entry (such as

�<type> <value>�), the subject tried to put just a value.
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• Had no trouble at all with the for loop.

• Seemed �ne with calling methods.

C.3 Test Group Three

The third group of testers had �ve participants, four of which had programming experience

of some kind. Interestingly, the student with no prior experience only had trouble with

the �rst if, and after understanding it, he gliding through the while loop. The only

thing that These are some the recurring concerns taken from this group (there was very

little variability between individual participant's feedback):

• The relationship between the metaphors and the actual code is still not clear (the

only change, regarding this point, between this group and the last was an arrow

included in the introductory screen). It was decided that further improvements

could be made by enlarging the code, and providing a more verbose hint system

capable of highlighting sprites, and explaining how they relate to code.

• Most of these students had trouble deciding which part of a line needed to be done

next (with the biggest o�ender being for loops). This was addressed by including

more sensitive code highlighting.

• The context hints present during this test stage were occasionally misleading - for

example, �4+5� is listed as an expression, but it is not clear that the result of the

expression would be �int 9�. The help was changed to read �4 + 5 -> int 9�. This

may highlight a problem with students understanding of type inferencing.

• Between some operations (especially assignment statements), the state of the meta-

phor world does not appear to change. This was partially addressed by making

variables always display their contents (provided they had any). Another �x to the

apparent lack of state change was to remove the values from the hand once they are

used.

• �Once you get into how things work it becomes fairly easy� - this serves to promote

the idea of using tutorial levels, and an optional highly-verbose introductory help

system.
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• Despite attempts to improve the intuitiveness of conditional behaviours, students

still had trouble. It was at this stage that the decision was made to remove the

Boolean value from the hand once it is used in a conditional.

C.4 Test Group Four

This test `group' was comprised of a single student, and was done slightly di�erently:

rather than going straight into the �all in one level�, he was �rst asked to complete the

�rst two lines of level one (int x; x =1;). This �rst level used the new minimalist layout,

that only showed level-relevant sprites. Without any prompting at all he completed the

�rst two lines in under 20 seconds. The only thing that caused this student any problems

was the if statement, and after turning on the contextual help and highlighting the

example value declaration (�bool true�), he understood fairly quickly.

C.5 Test Group Five

By this stage of testing there were not many student left who had not already tried

the game, and who were willing to spend time away from their other work in order to

participate. The only `test' subject for this round was in fact a lecturer, nevertheless two

valuable points where brought up:

• The �rst qualm was regarding how the barbed wire barrier was unnecessarily intim-

idating, and gave the impression that what happens in memory space is something

to fear and avoid at all costs. Several alternatives were suggested, until in was

decided to use the `caution-tape' barrier with a custom message.

• The second suggestion was even more valuable than the �rst: having multiple pen-

cils was �ne, however the arrangement and behaviour at the time of testing was

unintuitive. For example, there were no signi�cant transitions between clicking on

a pencil, writing down a value, and then actually holding the value. Secondly this

subject believed that it was somewhat disconcerting that users somehow write on

the piece of paper it their hand, with the pencil that isn't being picked up in any

way. This might seem like an almost petty complaint, however, if one considers that

metaphors being presented in an unnatural manner could easily throw o� a novice,
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this sort of alteration becomes fairly signi�cant. The three stage hand sprite was

included based on this.
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Figure D.1: The �rst half of Kelleher and Pausch's [4] educational software categorisa-
tion taxonomy. The most suitable category for the proposed system is shown - next to
Prototype 2 and ToonTalk.
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Figure D.2: The second half of Kelleher and Pausch's [4] educational software categorisa-
tion taxonomy.
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Figure D.3: The �rst page of Kelleher and Pausch's [4] attribute frequency table.
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Figure D.4: The second page of Kelleher and Pausch's [4] attribute frequency table. The
proposed system has been inserted here, and is highlighted.
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Figure D.5: The �nal page of Kelleher and Pausch's [4] attribute frequency table.



Appendix E

Sample Survey

This appendix contains the complete sample survey that was devised in order to poten-

tially evaluate the quality of the metaphor set. Less formal language was used in this

survey to ensure user understanding.

E.1 Metaphor-Validity Survey

A quick summary of what this survey is all about: we are developing a set of metaphors

to aid novice programmers in establishing high-�delity mental models of fundamental

programming concepts - the metaphors created are intended to be usable across several

di�erent media including educational games, textbooks, and classroom environments. The

metaphors presented here have been through several rounds of internal testing, followed

by several rounds of user testing with students in order to identify and rectify potential

problem areas.

At this stage we are of the opinion that further testing through students will no longer

yield meaningful results as they cannot generally compare the metaphors being presented

to them with their own mental models of programming concepts (either because they

don't any or because they are inaccurate or incomplete), which is where this survey comes

in: We hope to draw on the knowledge and existing mental models held by experienced

programmers in order to further analyse, improve on, and validate the metaphor set we

have come up with.

So as to avoid `contaminating' test subject opinions, the questions for each concept-

metaphor pair are broken down into two sections: pre-questions about how the subject

177
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sees and imagines a concept, and post-questions which focus more on the metaphors we

are proposing.

The �nal questions for each section are perceived scores:

• Understandability - How easy is it to grasp what the metaphor is trying to explain,

and how it works?

� 1 - I couldn't understand it at all.

� 5 - I had to think about it but I got it in the end.

� 10 - Perfectly intuitive and easy to grasp

• Versatility - How widely used could the metaphor be, or how many concepts do you

think it could explain?

� 1 - I don't think it relates to the concept in question ever.

� 5 - I could use it to explain about half the scenarios I can think of.

� 10 - It works everywhere so far as I can see.

• Durability - How likely is this metaphor to fail or break down?

� 1 - This metaphor is so inaccurate it breaks down right out the gate.

� 5 - It won't break down for simple example.

� 10 - This metaphor seems as if it wouldn't fail in even the most complex

situations.

• Relatability - How well does the given metaphor relate to your own mental model

or understanding of a concept?

� 1 - It doesn't relate at all.

� 5 - It sort of relates but not across the board.

� 10 - It's almost like you read my mind.

• Accuracy - How well does the given metaphor compare to the way a particular

concept, structure, or function actually works?

� 1 - The two aren't remotely similar.

� 5 - The metaphor is a reasonable representation some of the time.

� 10 - The metaphor is a perfect representation of what happens behind the

scenes.
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Two Quick Pre-Pre-Questions:

Pre-Pre Question 1:

Approximately how many years of programming experience do you have?

Pre-Pre Question 2.

Please list your favourite programming languages from most to least favourite.

You should note that the concepts in question have been arranged from most fundamental

(and thus most important) to most complex (and thus least important). This means that

if you choose to submit a half �nished survey (which is �ne) the questions you already

answered were the more important ones anyway. HOWEVER If you want to stop halfway

you need to skip to the end of the survey and hit submit...Google Forms isn't smart enough

to save partial data.

Consent:

All information gathered is anonymous. I consent to the anonymous use of the information

I provide in this survey. Y/N

Values in a Programming Language

Pre-Questions

Values Pre-Question 1:

If you were to explain values to a student as a real-world metaphor, how would you do it?

Values Pre-Question 2:

Do you have a mental model for values, if so could you try to explain it?

Values Pre-Question 3:

Can you think of any scenario where your mental model or proposed metaphor for values

becomes inaccurate?
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Our Metaphor

The most fundamental things that code uses are individual values, either as actual values

or the value of a reference address (this would include integers, doubles, Booleans, chars,

and all other primitives). As this is such a key concept, its associated metaphor needs to

be one of the most reliable and easy to understand: it was proposed that a simple piece

of paper with the value written on it would be suitable. Everyone can relate to pen and

paper, you cannot erase pen from paper (meaning values are never `re-used'), and if one

were to imagine solving an expression in their head the most sensible thing to do with

the answer would be to write it down. Figure 1 shows an example of a value notepad, the

user inputting a value, and �nally the user holding the value.

Post-Questions

Values Post-Question 1:

How does the metaphor we give for values compare with how you imagine it working?

Values Post-Question 2:

Can you �nd fault with our metaphor for values, if so what would it be?

Values Post-Question 3:

If you could alter one thing about this metaphor what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10

Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10
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Variables in a Programming Language

Pre-Questions

Variables Pre-Question 1:

If you were to explain variables to a student as a real-world metaphor, how would you do

it?

Variables Pre-Question 2:

Do you have a mental model for variables, if so could you try to explain it?

Variables Pre-Question 3:

Can you think of any scenario where your mental model or proposed metaphor for variables

becomes inaccurate?

Our Metaphor

Variables are represented by boxes, with transparent lids, that contain a single piece of

paper (in the same way that a simple variable can contain a single value). Reading of a

variable would be done courtesy of the transparent lid; you would simply look into the

variable box and copy the value o� the paper without changing the content of the box.

Assigning to a variable involves opening the box, disposing of the old value-paper, and

then placing the new value (which you would be holding) into the box. Figure 2 shows

one potential version of the variable box metaphor. The representation of variables on

the stack comes later - up to this point it is enough for users to know that variables exist

and how to imagine them.

Post-Questions

Variables Post-Question 1:

How does the metaphor we give for variables compare with how you imagine it working?

Variables Post-Question 2:
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Can you �nd fault with our metaphor for variables, if so what would it be?

Variables Post-Question 3:

Can you �nd fault with our metaphor for variables, if so what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10

Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

Expressions, Arithmetic and Calculation

Pre-Questions

Expressions Pre-Question 1:

If you were to explain expressions and calculation to a student as a real-world metaphor,

how would you do it?

Expressions Pre-Question 2:

Do you have a mental model for expressions and calculation, if so could you try to explain

it?

Expressions Pre-Question 3:

Can you think of any scenario where your mental model or proposed metaphor for ex-

pressions and calculation becomes inaccurate?
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Our Metaphor

Expressions of all kinds have two viable metaphors in our uni�ed set: they can either

go through an in-game calculator, or the user can work them out in their head. Good

arguments can be made for either case, and thus both metaphors have been included so

that anyone who wants to expand on this work can make up their own mind. The original

technique for expressions and evaluation was the use of an in-game calculator, which

worked much like a real-world scienti�c calculator, where users could enter an expression

and then go back and alter terms once they had the required values. For example, a

user might enter �x + 5� into their calculator, they would then look at the local variables

and copy the value from x onto a piece of value paper, that value would be fed into the

calculator (almost like a fax machine, except the paper is destroyed).

When the user asks to substitute into the place holder `x' in the expression, the calculator

would replace the variable in the expression and then wait for further instructions from

the user (either for more instructions or for the user to ask it to evaluate the answer).

When the expression no longer has variables that need values, the user would hit `evaluate'

and the answer would be printed out from the calculator onto a piece of paper. Figure 3

illustrates the sequence of events when using the calculator metaphor.

An alternative technique for expression evaluation actually takes away extra metaphors

entirely by just asking the user to evaluate the expression in their heads (or on paper, or

with their real-world calculator), in much the same way as when users debug a piece of

code. Steps A, B and C in Figure 1 demonstrate how users would enter the answer to an

expression.

Post-Questions

Expressions Post-Question 1:

How does the metaphor we give for expressions and calculation compare with how you

imagine it working?

Expressions Post-Question 2:

Can you �nd fault with our metaphor for expressions and calculation, if so what would it

be?
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Expressions Post-Question 3: Can you �nd fault with our metaphor for expressions and

calculation, if so what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10

Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

Local Variables and the Current Stack Frame

Pre-Questions

Local Scope Pre-Question 1:

If you were to explain the current stack frame (perhaps think local scope) to a student as

a real-world metaphor, how would you do it?

Local Scope Pre-Question 2:

Do you have a mental model for the current stack frame, if so could you try to explain it?

Local Scope Pre-Question 3:

Can you think of any scenario where your mental model or proposed metaphor for the

current stack frame becomes inaccurate?

Our Metaphor

The next step up the abstraction ladder is to delimit scope and accessibility using some

kind of uncrossable barrier (for example, a line of barbed wire, police tape, or even a

simple fence - Figure 4 shows two possible barriers). This barrier serves to separate

the current frame (i.e. the local scope) from the other stack frames (as well as global

variables from heap variables). The non-local area, and everything in it, will be discussed
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later; scope-delimitation was mentioned here for clari�cation of the next concept to be

described: how to represent the current frame and all the variables that are stored within

it, while still being relatable, and without complicating the pushing of stack frames onto

the stack.

We represent the current frame as something akin to a jigsaw or Lego bookshelf: users

would start out without a bookshelf at all when there are no local variables, a mechanism

which dispenses bookshelf `pieces' is all that would be present. Whenever the user needs

to declare a new variable they would �rst have to extend the bookshelf so there would be

enough space for it. Each space on the bookshelf would be able to contain one variable

box. The expandable bookshelf metaphor allows you to teach students about how local

variables can go out of scope, for example, when they were declared inside a loop, the

out-of-scope variables (and their associated bookshelf sections) can be removed entirely.

The metaphorical bookshelf sits on top of a conveyor belt, this only becomes important

when the user is able to call methods, thus it is discussed in more detail in the next

section. Figure 5 shows what the user might be presented with, depending on the current

stack frame state.

Post-Questions

Local Scope Post-Question 1:

How does the metaphor we give for the current stack frame and local scope compare with

how you imagine it working?

Local Scope Post-Question 2:

Can you �nd fault with our metaphor for the current stack frame and local scope, if so

what would it be?

Local Scope Post-Question 3:

Can you �nd fault with our metaphor for the current stack frame and local scope, if so

what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10
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Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

The Stack, Without Method Functionality

Pre-Questions

Stack Pre-Question 1:

If you were to explain the whole stack (rather than just one frame) to a student as a

real-world metaphor, how would you do it?

Stack Pre-Question 2:

Do you have a mental model for the stack, if so could you try to explain it?

Stack Pre-Question 3:

Can you think of any scenario where your mental model or proposed metaphor for the

stack becomes inaccurate?

Our Metaphor

Once one understands how to interpret the representation of the current frame, one is

then also able to interpret the stack as a whole: just like a library usually has more than

one bookshelf, a stack usually has more than one frame - therefore we can cross the two

ideas and represent the stack as rows of bookshelves. This is also where the accessibility

divide becomes important, as the stack is primarily located of the directly accessible space.

When a new frame is created from a method call, all non-local stack frame bookshelves

are moved across the memory divisor so that they exist in memory space. Figure 6 shows

how the stack would expand into memory space after each method call, and shrink after

each return statement. For clarity the memory space includes the heap, the non-local

stack frames, and nothing else.
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Post-Questions

Stack Post-Question 1:

How does the metaphor we give for the stack compare with how you imagine it working?

Stack Post-Question 2:

Can you �nd fault with our metaphor for the stack, if so what would it be?

Stack Post-Question 3:

Can you �nd fault with our metaphor for the stack, if so what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10

Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

Methods and Method Functionality

Pre-Questions

Methods Pre-Question 1:

If you were to explain methods and their associated functionality to a student as one or

more real-world metaphors, how would you do it?

Methods Pre-Question 2:

Do you have a mental model (or more than one) for all things method-related, if so could

you try to explain it (or them)?

Methods Pre-Question 3:

Can you think of any scenario where your mental model/s or proposed metaphor/s for

methods becomes inaccurate?
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Our Metaphor

Now that we know what the stack looks like we can examine the metaphors governing

everything to do with methods.

As mentioned previously the current frame's associated bookshelf is positioned on top of a

conveyor belt, this allows bookshelves to be moved across the barbed wire and into or out

of the �x all. This mechanism is important for method calls and returns: the conveyor belt

has two control buttons, the call button, and the return button. These two buttons move

everything on top of the conveyor belt either toward or away from the directly accessible

space. So far it is not hard to imagine the moving of the conveyor belt as matching up

with the actual process of pushing and popping frames to and from the stack; the tricky

part of designing this section of the metaphor set is considering what happens to frames

that have been popped o� the stack, and where new frames come from. Both situations

can be explained in a similar way to overwritten variable values: For popped frames and

overwritten values the object in question no longer belongs anywhere and so must be

destroyed, the paper value would be torn up or burnt, and a similar thing would be done

to the popped o� frame. In the same way that we prepare paper values using notepads

we decided to use a workbench to represent the creation of a soon to be used frame.

After getting the student to name the method they are preparing to call, you have several

options for method preparation that you can present them with. The two proposed

techniques are as follows: the �rst way is to ask users to name and assign parameters and

arguments in much the same way as local variables (one at a time, with types, name, and

values all the explicit responsibility of the user); the second possible presentation method

is to give users a selection of available method signatures which they need to pick from,

and then automatically provide all the parameters ready to receive values, which the user

simply needs to �ll. Figure 7 compares the two main method preparation techniques

side-by-side.

Much like the two possible ways of asking students to evaluate expressions, these two

method mechanisms are both valid and the technique used will depend on the instructor

or implementation. For a void method no further explanation is really required for how

the user leaves the method (they simply press the conveyor belt return button). However,

it might need saying that a value returning method works by simply making the user

hold the return value in their hand before pressing the return button, that way the return

value is in hand when they get back to the previous frame, and thus they can use the

value straight away.
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Post-Questions

Methods Post-Question 1:

How do the metaphors we give for methods compare with how you imagine them working?

Methods Post-Question 2:

Can you �nd fault with our metaphors for methods, if so what would it be?

Methods Post-Question 3:

If you could alter one thing about this metaphor what would it be?

Methods Post-Question 4:

Of the two possible representations, which do you prefer and why?

Methods Post-Question 5: Initial usability tests have shown that students pick up the

signature-picking metaphor far faster than all the other metaphors explained so far, do

you have any opinions on why that might be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10

Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

Global Variables

Pre-Questions

Globals Pre-Question 1:

If you were to explain global variables to a student as one or more real-world metaphors,

how would you do it?
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Globals Pre-Question 2:

Do you have a mental model (or more than one) for global variables, if so could you try

to explain it (or them)?

Globals Pre-Question 3:

Can you think of any scenario where your mental model/s or proposed metaphor/s global

variables becomes inaccurate?

Our Metaphor

More modern programming languages don't strictly speaking have truly global variables

anymore, instead we have class �elds. So in this context global variables refer to class

�elds of whatever context we are currently in. This metaphor is more to do with their

representation than with access to then (which is covered later)

Firstly, because global variables are always accessible, they need a representation inside

the user accessible space. Secondly, because they exist almost from the very start of the

program the user needn't be able to create more of them (unlike local variables). These

two facts can be brought together with another bookshelf metaphor: a �xed size bookshelf

that has all the necessary variables already declared. Aesthetically one can represent this

sort of bookshelf in more than one way, our proposed representations is shown in Figure 8.

If the number of globals variables does not �t nicely on a regular (rectangular) bookshelf,

one could instead use the jigsaw representation used for the local stack frame. A potential

concern for some might be that globals should be created explicitly much like locals, this

point is debatable.

Post-Questions

Globals Post-Question 1:

How do the metaphors we give for global variables compare with how you imagine them

working?

Globals Post-Question 2:

Can you �nd fault with our metaphors for global variables, if so what would it be?

Globals Post-Question 3:
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If you could alter one thing about this metaphor what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10

Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

Representing the Heap, Objects and Instances (but not commu-

nicating with either just yet)

Pre-Questions

Heap Pre-Question 1:

If you were to explain the heap and objects (or reference types) to a student as one or

more real-world metaphors, how would you do it?

Heap Pre-Question 2:

Do you have a mental model (or more than one) for the heap and objects, if so could you

try to explain it (or them)?

Heap Pre-Question 3:

Can you think of any scenario where your mental model/s or proposed metaphor/s for

the heap and objects becomes inaccurate?

Our Metaphor

Reference types in the local scope can easily be represented by a simple memory address

written down as a value. The more challenging thing to represent about reference types

is what gets stored in memory (outside of immediately addressable space). Without any

additional metaphors there is no way for players to a�ect what exists outside of the
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directly accessible space, to solve this issue we introduce a robot to represent the memory

manager, which is elaborated on later. For now it is su�cient to say that the memory

manager robot receives messages from the user, and carries them out in memory space.

With our memory manager robot ready to interact with the heap and non-local stack on

our behalf, we now need a way to represent the heap and access to the non-current frames

on the stack. Access to the stack is fairly simple as we already have a concrete metaphor

for the stack itself (the rows of bookshelves): the memory manager robot simply takes

the address he has been given and goes between the bookshelves to interact with the

appropriate variable box.

The heap requires more thought. After considering that the size of the heap is in fact

�nite (determined by the available memory) in an actual computer, we decided that the

heap metaphor could also be represented by a �nite, �xed-size structure. The easiest

way to represent it without deviating from our existing metaphors is to have one super-

sized bookshelf, possibly with movable dividers, where unused space is represented by

the lack of a variable box. Figure 9 shows an example of this extra large bookshelf, and

also illustrates that in certain media the bookshelf representation falls slightly short due

to the size limitations. For this reason, in-game, the heap can instead be shown as a

compact series of squares (as shown in Figure 10), this alternative representation can just

be thought of as a compact version of the bookshelf.

Representing objects, that are more complex than arrays of values, is where reference

types become particularly di�cult to represent: A simple non-array object such as a

Random generator could be represented on the heap as two numbers and something to

point to the objects associated method code. For this example the numbers would be the

start seed and the current seed; however the methods belonging to the object would have

to be seen only in the code that the students are following. Figure 11 shows a potential

representation of the heap with instances of Random and Account classes, unlike Figure 9

the objects on this heap have their properties labelled so as to make it clear to users that

they are not just arrays of numbers. The `name' property of the Account class would be

a string, its contents on the heap would depend on how one chooses to represent strings,

as explained in the �nal section of the survey.

Post-Questions

Heap Post-Question 1:

How do the metaphors we give for the heap and objects compare with how you imagine

them working?
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Heap Post-Question 2:

Can you �nd fault with our metaphors for the heap and objects, if so what would it be?

Heap Post-Question 3:

If you could alter one thing about this metaphor what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10

Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

Interacting with Objects and other Reference Types

Pre-Questions

Reference Communication Pre-Question 1:

If you were to explain object referencing and communication with the heap to a student

as one or more real-world metaphors, how would you do it?

Reference Communication Pre-Question 2:

Do you have a mental model (or more than one) for object referencing and communication

with the heap, if so could you try and explain it (or them)?

Reference Communication Pre-Question 3:

Can you think of any scenario where your mental model/s or proposed metaphor/s for

object referencing and communication with the heap becomes inaccurate?
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Our Metaphor

Once you understand how the heap and various reference types are represented, commu-

nication with them becomes fairly simple to understand as well. The memory manager

robot is responsible for all interactions in the memory space, he receives his instruction

via the terminal (which is located in directly accessible space). When writing to the heap,

values go from user to terminal to robot to memory address (and the other way for reading

from the heap). In order to access data on the heap the user needs to provide the memory

manager robot with two things: the objects base address, and the o�set of the speci�c

object-element of interest. For non-array objects the `o�set' would instead be the name

of the �eld or property in question. Reference access to variables on the stack is done

in much the same way, except there is no need to provide an o�set, an address alone is

su�cient. In order to facilitate easier state recognition the memory manager robot can

have several ways of showing whether it currently has an address, o�set or value: either

lights on its torso can show up saying what it has (as shown in Figure 12), or it could

hold visible values. These two metaphors do not require much explaining as they are just

middlemen for communication with the metaphors of importance.

Post-Questions

Reference Communication Post-Question 1:

How does the metaphor we give for object referencing and communication with the heap

compare with how you imagine it working?

Reference Communication Post-Question 2:

Can you �nd fault with our metaphor for object referencing and communication with the

heap, if so what would it be?

Reference Communication Post-Question 3:

If you could alter one thing about this metaphor what would it be?

Understandability Score - Please score our proposed metaphor's understandability from

1 to 10

Versatility Score - Please score our proposed metaphor's versatility from 1 to 10
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Durability Score - Please score our proposed metaphor's durability from 1 to 10

Relatability Score - Please score our proposed metaphor's relatability from 1 to 10

Accuracy Score - Please score our proposed metaphor's accuracy from 1 to 10

Strings

Pre-Question

Strings Pre-Question:

If you could represent strings as either objects or value types (bearing in mind the trade-

o�s between usability and accuracy), which would you choose and why.

Our Metaphor

Strings deserve a special mention regarding their representation; this is because while

they are strictly speaking objects, their immutability means that treating them as value

types is unlikely to cause problems. For this reason it was proposed that strings could

have two representations in our metaphor set, depending on the preference of the user or

teacher: one can either use the more accurate (but more bulky) option of treating them

as objects on the heap, or they can be treated as value types that reside on the stack.

If one chooses to represent strings as objects on the heap then they would be treated

as arrays of characters, with the special property of being read only after their initial

declaration (due to their immutability). When they are treated as value types the meta-

phors do not break down: when you assign one to another you can treat them as though

they are copies rather than aliases. As brie�y mentioned when explaining the heap and

objects, objects on the heap that have string properties would have di�erent representa-

tions based on the choice of string representation: if we use the more accurate model with

strings as objects then string properties would contain memory addresses, and the strings

themselves would exist elsewhere on the heap as seemingly separate objects. If one uses

the strings-as-value representation then string properties become simple, with the strings

clearly being inside the parent object.
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Post-Question

Strings Post-Question

Given our explanation of strings as either objects or value types, would you change your

previous answer, why/why not?



Appendix F

Overlarge Sample Code

This appendix contains the code for a single method: buildUpValueInputString. This

method is approximately 27 lines long, and still does not cater for all possible user input

types (such as special characters or alt+ Unicode input). It serves to illustrate how much

easier it is to use pre-existing frameworks for textual input, rather than recreating them

in XNA.

private void buildUpValueInputString()

{

//Backspace functionality

if (builtUpUserInput.Length > 0 && isKeyPressed(Keys.Back))

{

//remove the last character:

builtUpUserInput = builtUpUserInput.Remove(builtUpUserInput.Length - 1);

return;

}

//This whole if can be compressed into a single line with in-line

//conditionals and lambdas...it just becomes hard to read

//Character case checking via Shift-key dependant delegates:

Func<string, string> caseConverter;

if (keyboardNewState.IsKeyDown(Keys.LeftShift) ||

keyboardNewState.IsKeyDown(Keys.RightShift))

{

caseConverter = delegate(string keyAsString)

{ return keyAsString.ToUpper(); };

//Can also be done with labdas, eg:

//(string x) => { return x.ToUpper(); };

197



198

}

else

{

caseConverter = delegate(string keyAsString)

{ return keyAsString.ToLower(); };

}

//Loop handles multiple simultaneous key presses:

var pressedKeys = keyboardNewState.GetPressedKeys();

foreach (Keys key in pressedKeys){

if (!isKeyPressed(key)) //if the key isn't pressed then do not use it

continue;

string asString = key.ToString();

//is it a normal letter?

if (asString.Length == 1){

builtUpUserInput += caseConverter(asString);

continue;

}

//is it a number off the normal number keys?

if (asString.Length == 2 && asString[0] == 'D'){

//no need to change the case if its a number

builtUpUserInput += asString[1].ToString();

continue;

}

//is it a number off the numpad?

if (asString.Contains("NumPad")){

//no need to change the case if its a number

builtUpUserInput += asString[6];

continue;

}

//Any extra characters desired can be included in this dictionary.

Dictionary<string, string> remainingConversions =

new Dictionary<string, string>()

{ { "Space", " " }, { "OemPeriod", "." }, { "Decimal", "." } };

if(remainingConversions.ContainsKey(asString))

builtUpUserInput += remainingConversions[asString];

}

}


