
Service provisioning in two open-source SIP

implementations, CINEMA and VOCAL

A thesis submitted in fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
of

RHODES UNIVERSITY

by

Ming Chih Hsieh

December 2003

Acknowledgments

I would like to thank the Internet Telephony Group at the Department of Computer

Science, Rhodes University, for working as a group towards shared goals. Thank you

especially to my supervisors Joshua Okuthe and Alfredo Terzoli for a fulfilling two years

of study and a lot of learning. Thank you to my friend Danny for listening to some

outrageous ideas and for correcting me when those ideas seemed out of range.

I am also grateful to my family for their personal encouragement via continuous emails

and phone calls. This communication helped me to remain in focus and determined to

finish my project.

Finally, I would like to acknowledge the importance of the financial support provided by

the National Research Foundation, South Africa, as wen as sponsorship for conference

trips provided by the Department of Computer Science.

11

Abstract

The distribution of real-time multimedia streams is seen nowadays as the next step

forward for the Internet. One of the most obvious uses of such streams is to support

telephony over the Internet, replacing and improving traditional telephony.

This thesis investigates the development and deployment of services in two Internet

telephony environments, namely CINEMA (Columbia InterNet Extensible Multimedia

Architecture) and VOCAL (Vovida Open Communication Application Library), both

based on the Session Initiation Protocol (SIP) and open-sourced.

A classification of services is proposed, which divides services into two large groups:

basic and advanced services. Basic services are services such as making point-to-point

calls, registering with the server and making calls via the server. Any other service is

considered an advanced service. Advanced services are defined by four categories: Call

Related, Interactive, Internetworking and Hybrid.

New services were implemented for the Call Related, Interactive and Internetworking

categories. First, features involving call blocking, call screening and missed calls were

implemented in the two environments in order to investigate Call-related services. Next,

a notification feature was implemented in both environments in order to investigate

Interactive services. Finally, a translator between MGCP and SIP was developed to

investigate an Internetworking service in the VOCAL environment.

/

The practical implementation of the new features just described was used to answer

questions about the location of the services, as well as the level of required expertise and

the ease or difficulty experienced in creating services in each of the two environments.

III

Table of Contents

Acknowledgments ii
Abstract iii
Table of Contents iv
List of Figures vi
List of Tables vii

Chapter I General Introduction 1
1.1 Internet telephony and SIP 1
1.2 Internet telephony and legacy telephony 2
1.3 SIP in relation to other protocols 6
1.4 Aim of the proj ect 7

"Where in the architecture can services be deployed?" 8
"What level of expertise is required to create services?" 8
"How easy it is to create a service?" ... 8

1.5 Structure of the thesis 8
1.6 Summary , 9

Chapter 2 Protocol Overview , 11
2.1 Overview of SIP 11
2.2 Terminology 12
2.3 Overview of SIP operations .. 14

The invitation sequence- 15
The telmination sequence-- 20

2.4 SIP message overview 21
2.5 Request messages .. 22

2.5.1 INVITE .. 23
2.5.2 ACK 23
2.5.3 OPTIONS 24
2.5.4 ByE 25
2.5.5 CANCEL. " 25
2.5.6 REGISTER 26

2.6 Response messages 26
2.7 Header field definitions 27
2,8 Status-code definitions , ... , 30
2.9 Summary , 31

Chapter 3 Two SIP Architectures ... 32
3.1 Introduction 32
3.2 The CINEMA environment 32

3.2.1 Installation process 33
3.2.2 User agent and Register server interaction 35
3.2.3 User agent and Proxy server interaction 39

3.3 The VOCAL environment 40
3.3.1 Installation process , 42
3.3.2 User agent registration diagram 43
3.3.3 User agent simple call diagram 44

3.4 Contrasting the architectures 45

IV

3.5 Summary 47
Chapter 4 Service Categories 48

4.1 Introduction 48
4.2 Basic Services 48
4.3 Advanced Services 50

4.3.1 Call-related services 50
4.3.2 Interactive services 51
4.3.3 Intemetworking services 52
4.3.4 Hybrid services 53
4.3.5 Composite services 54

4.4 Discussion 54
4.5 Summary 57

Chapter 5 Call-related services 58
5.1 Introduction 58
5.2 SIP-CGl... 58

5.2.1 Basic model 59
5.2.2 SIP-CGI actions 60

5.3 CINEMA and SIP-CGI.. 62
5.3.1 Simple call-blocking script 64
5.3.2 SIP-CGI HTML script 65
5.3.3 Usemame lookup service 67
5.3.4 Missed call service ... 69

5.4 Call Processing Language (CPL) 71
5.4.1 CPL model 71

5.5 VOCAL and CPL 73
5.5.1 Call blocking 74
5.5.2 Call screening 76
5.5.3 SMS missed call service 77

5.6 Call-related services discussion 81
Similarities- 81
Differences- 82

5.7 Summary 84
Chapter 6 Interactive Services 85

6.1 Introduction 85
6.2 CINEMA's voicemail service 85
6.3 VOCAL's voicemail service 87
6.4 CINEMA's reminder service 90

6.4.1 Alarm server (sipam) 93
6.4.2 Alarm Client. .. 98

6.5 VOCAL's reminder service 101
6.5.1 Alarm server (amserver) 102
6.5.2 Alarm Client. 103

6.6 Interactive services discussion 107
6.7 Summary 109

Chapter 7 Intemetworking Services 110
7.1 Introduction 110

v

7.2 CINEMA internetworking III
7.2.1 SIP323 Operation III

7.3 VOCAL internetworking 113
7.3.1 SIPH323CSGW Operation 114
7.3.2 Accessing services via SIPH3 23CSGW 116

Call Forwarding- 117
Call Screening- 118
PSTN Gateway Access- 119

7.4 Media Gateway Control Protocol (MGCP) 119
7.4.1 Introduction to MGCP 120
7.4.2 VOCAL MGCP implementation 124
7.4.3 SIPMGCP translator general architecture 125
7.4.4 SIPMGCP translator: a call from SIP to MGCP 127
7.4.5 SIPMGCP translator: a call from MGCP to SIP 133
7.4.6 SIPMGCP translator: termination of calls 140

Termination from SIP 140
Termination from MGCP 142

7.5 Internetworking services discussion 144
7.6 Summary 147

Chapter 8 Conclusions and Extensions 148
8.1 Summary 148
8.2 Conclusions 150

8.2.1 Call-related services 150
8.2.2 Interactive services 152
8.2.3 Internetworking services 153

8.3 Extensions ISS
Appendix A 157
Appendix B 160
Appendix C 165
Appendix D 167

References 171

List of Figures

Figure 1.1 A telephone network without switching 3
Figure 1.2 A telephone network with a human operator ... 4
Figure 1.3 Internet telephony 5
Figure 2.1 Call flow between Ming and Cspw 15
Figure 2.2 SIP message 21
Figure 2.3 Request and Response messages 22
Figure 3.1 CINEMA environment [Jiang et aI., 2002] .. 33
Figure 3.2 User interface for the CINEMA SIP user agent 33
Figure 3.3 Web interface for the CINEMA SIP server.. 34
Figure 3.4 Register sequence diagram 35
Figure 3.5 User agents and Proxy server call setup 39
Figure 3.6 VOCAL environment [Vovida, 2001a] 41

VI

Figure 3.7 VOCAL registration diagram 43
Figure 3.8 VOCAL simple call flow 44
Figure 3.9 Comparison of architectures 47
Figure 4.1 Advanced services chart ... 55
Figure 5.1 CINEMA SIP-CGI call flow 63
Figure 5.2 CINEMA HTML code output 67
Figure 5.3 CPL model 72
Figure 5.4 VOCAL call blocking 75
Figure 5.5 Cellphone missed call SMS 80
Figure 6.1 CINEMA voicemail system 86
Figure 6.2 Graphical user interface for CINEMA voicemail system 87
Figure 6.3 VOCAL voicemail ystem 88
Figure 6.4 VOCAL voicemail attachment.. 90
Figure 6.5 CINEMA reminder service messages 91
Figure 6.6 Iptel class diagrams .. 92
Figure 6.7 SIPEndpoint and SIPCall methods 93
Figure 6.8 CINEMA Alarm server output.. 98
Figure 6.9 CINEMA Alarm Client output.. 100
Figure 6.10 CINEMA sipc reminder service output.. 101
Figure 6.11 VOCAL devices class diagram 104
Figure 7.1 SIP323 (Netmeeting and sipc) operation .. 112
Figure 7.2 VOCAL SIPH323CSGW message exchange .. 116
Figure 7.3 S IPH3 2 3 CSGW call-forwarding scenario ... 117
Figure 7.4 Example MGCP call flow (for abbreviations, see list of commands in section

7.4.1) 122
Figure 7.5 Example MGCP function flow 124
Figure 7.6 SIPMGCP translator architecture .. 126
Figure 7.7 Call from SIP to MGCP ... 127
Figure 7.8 Functions flow from SIP to MGCP 129
Figure 7.9 Call from MGCP to SIP 133
Figure 7.10 Functions flow from MGCP to SIP .. 135
Figure 7.11 Screenshot ofSIPMGCP translator 144

List of Tables

Table 2.1 Header fields 28
Table 2.2 Warning codes 29
Table 2.3 Status codes 30
Table 8.1 Table of conclusions 154

VII

Chapter 1 General Introduction

1.1 Internet telephony and SIP

"Data has overtaken voice as the primary traffic on many networks built for voice.

Soon voice networks will run on top of networks built with a data-centric

approach." [Davidson and Peters, 2000]

IP telephony, or voice-over-IP (VoIP), is the use of IP data connections to exchange real­

time voice that have been traditionally carried by public, or private, switched telephone

networks. A closely related phrase, Internet telephony, used to refer more specifically to

the use of the Internet for carrying telephone traffic, as opposed to a private LAN within

an organization. Over time, however, IP telephony, YoIP and Internet telephony have

become equivalent and have been extended to embrace the transport, in real-time, not just

of audio or fax data but video and shared applications over IP networks [Rosenberg and

Schulzrinne, 1999].

Since the deregulation of the telecommunications industry, new operators regularly enter

the market. Often these operators use YolP in order to save on costs and be competitive

with already established operators.

The work reported in this thesis focuses on service provisioning for Internet telephony

using a protocol developed by the Internet Engineering Task Force (IETF) known as

Session Initiation Protocol (SIP). SIP is defined in RFC2543 of the MMUSIC (Multiparty

Multimedia Session Control) working group of the IETF [Gurle et aI. , 1999]. Since so

much interest was generated for this protocol a separate working group, the SIP charter

working group, was later formed. The SIP charter working group provides an open forum

where developers and other people interested in the protocol can discuss modifications or

extensions to it [SIPCharter, 2003] .

1

SIP began as part of a set of utilities and protocols developed for the MBONE (Multicast

Backbone) network. MBONE was established as an experimental multicast network used

to distribute multimedia streams in multimedia sessions. SIP was one of the components

used to invite users to multimedia sessions. Subsequently, SIP began to be used as a

signaling protocol to provide telephony over the Internet. SIP was built from established

protocols such as the Hypertext Transfer Protocol (HTTP) and the Simple Mail Transfer

Protocol (SMTP). This makes SIP easily compatible with today' s Internet operations

[Rosenberg and Shockey, 2000].

Indicating your willingness to communicate with another person is more complicated

than it seems [Rosenberg and Schulzrinne, 1998a]. This indication is called signaling. In

computer networks, signaling includes name resolution and user location. Name

resolution involves resolving the name utilized to call a friend into a resource that can be

contacted. For example, an alias or nickname used to refer to a friend must be resolved

into a unique identifier used to locate that person. 'User location ' determines the exact

location of the friend you are trying to communicate with and this can be quite complex.

Other factors also affect signaling, including media capabilities and the user's preferences

for communication. For example, if a user does not have the particular media capability

that you want to use in your communication then he or she might want to redirect you to

someone that has that capability. The user's preferences can also affect signaling; for

example, the recipient might want to accept calls only during office hours.

SIP seems able to effortlessly provide all the functionality required for a signaling

protocol in Internet telephony; thus, it was chosen to investigate service creation during

this project primarily for this reason.

1.2 Internet telephony and legacy telephony

Telephony started out as two telephones connected to each other with a pair of copper

wires. When other telephones were added, efficient ways to connect to each of the

2

telephones had to be found. At first, a human operator was introduced, to control a central

connector (switch board) to all phones in a group and to other groups.

Figure 1.1 illustrates what a traditional telephone network looked like before a human

operator was introduced.

Figure 1.1 A telephone network without switching

Figure 1.2 shows the traditional telephone network utilizing an operator.

3

Figure 1.2 A telephone network with a human operator

The human operator was later replaced by a mechanical switch and further improved

upon with an electronic switch. This type of network became known as the Public Switch

Telephone Network (PSTN). PSTN telephony is referred to throughout this thesis as

legacy or traditional telephony.

Introducing servIces into this type of network was difficult, partly because it used

specialized and centralized switches. The switch provided the network with a centralized

point of control where services could be created and controlled, but at the time the switch

was introduced third parties other than the carriers manufactured it. This meant that as

new services were created the switch manufacturer had to modify or replace them, since

the carriers themselves typically could not modify the switches. Service provisioning in

traditional telephony improved substantially with the introduction of the Intelligent

Network (IN).

This thesis is not intended to compare Internet and traditional telephony, and so IN is not

further discussed, beyond providing a few references relating to IN-Internet hybrid

4

systems later on. For the interested reader, an introduction to IN networks is available

through the International Engineering Consortium [IEC, 2003a and IEC, 2003b]. For a

review on existing techniques for creating services in IN see [Lennox et aI., 1 999b].

In contrast to traditional networks, IP networks are packet-oriented and distributed.

Connections are set up virtually in IP networks and this allows for multiple connections

to be set up on a single physical line, thus freeing bandwidth for other usages.

Figure 1.3 represents what Internet telephony typically looks like today.

Internet

wireless

Figure 1.3 Internet telephony

In general, endpoints in Internet telephony are much more intelligent than the endpoints

in traditional telephony and can handle signaling as well as the media component in a

sophisticated manner. For example, media data are usually compressed, to save on

bandwidth, a capability that is lacking in the endpoints of traditional telephony. One

advantage, in the context of service creation, to having endpoints that are more intelligent

is that many services that traditionally resided at the center of the network, because of the

5

availability of computing resources there, can be moved to the edge of the network

[Lennox et aI., 1999a].

Research has been done on the integration between Intelligent Networks (IN) and Internet

telephony. Services in IN can be reproduced in Internet telephony as shown in [Lennox et

aI., 1999a]. IN services can naturally be accessed from packet networks, as shown in

[Chapron and Chatras, 2001]. Research has also been done whereby the architecture of

IN is applied to Internet telephony resulting in IN-Internet hybrid systems. For an in

depth analysis on how the IN architectural framework can be applied to Internet

telephony see [Glitho, 2001]. [Andreetto et aI., 2001] provides an architecture on which

services can be developed for IN-Internet hybrid systems using an API-based approach.

Another approach towards IN-Internet hybrid systems is to use Mobile Agent

Technology, based on Distributed Object Technology, to create a unified service

framework for the Internet and PSTN as shown in [Chatzipapadopoulos, 2000]. [Anjum

et aI. , 2001] provides an innovative way of creating services whereby third-party software

components can be dynamically downloaded and installed from the network, as needed

for IN-Internet hybrid systems. This allows advanced services to be deployed and

delivered to users rapidly.

1.3 SIP in relation to other protocols

SIP is not the only signaling protocol for Internet telephony. H.323 is another major suite

of specifications for Internet telephony (in the latter's wider meaning, as defined in

section 1.1). H.323 was developed by the International Telecommunications Union

(ITU), a few years before SIP, and thus is more established than SIP, with support from

many vendors. A tutorial description of H.323 can be found at [lEC, 2003c].

There are numerous differences between SIP and H.323.

6

H.323 is a complete specification of the signaling, media capabilities and all other

components of the telephony system. This approach, whereby the protocol specifies

everything, gives the programmer the advantage of focusing just on service creation. SIP,

however, uses a modular approach towards Internet telephony. In this sense, it is directly

concerned only with establishing sessions among multiple participants and leaves issues

such media description to the Session Description Protocol (SDP) and Quality of Service

(QoS) issues to the Resource ReSerVation Protocol (RSVP). This modular approach also

relates to the ability of SIP to internetwork with other networks such as the PSTN. For

example, in order to internetwork, SIP can use another protocol to control media

gateways, namely the Media Gateway Control Protocol (MGCP). Media gateways are

gateways that convert media from one network to another, such as a gateway that

converts audio from the PSTN to audio in RTP packets for IP.

I-I.323 accommodates little room for change, flexibility or different architectures. For

example, the I-I.323 standard specifies that the Real Time Protocol (RTP) must be used to

transport audio and video media, while the SIP specification does not mandate it.

Detailed comparisons by [Wind River, 2002] and [Nortel Networks, 2000a] show the

advantages and disadvantages of SIP vs. H.323.

1.4 Aim of the project

Creating new services will make Internet telephony better. The aim of this project is to

investigate various ways to create services for Internet telephony in two specific and well

known SIP environments, namely CINEMA and VOCAL.

CINEMA (Columbia InterNet Extensible Multimedia Architecture) is the result of work

done at Columbia University (New York), and VOCAL (Vovida Open Communication

Application Library) is a SIP implementation from Vovida. Vovida is an organization

based on the Internet aimed at providing open-source communication software.

7

More specifically, an investigation into service creation should lead to answers to the

following questions:

"Where in the architecture can services be deployed? "

Asking this question is essential to the operation and management of the service and

relates to other questions such as "Should the service be at the edge or at the center of the

network?"

"What level of expertise is required to create services? "

The answer to this question determines what level of skill [s required from the

programmer.

"How easy it is to create a service?"

The answer to this question is very significant for developers.

The work reported in this thesis is part of the work done by the Internet Telephony Group

(ITG) at the Department of Computer Science at Rhodes University in South Africa. The

presence of this group was essential for practical experimentation with internetworking,

as one will see later in the thesis.

1.5 Structure of the thesis

The structure of the thesis is as follows:

• Protocol Overview (Chapter 2) gives a basic introduction to the structure of the

Session Initiation Protocol (SIP), including call flow diagrams detailing how SIP

messages are exchanged between different entities.

• Two SIP Architectures (Chapter 3) describes the two environments used to

deploy Internet telephony in order to investigate service creation. The

environments used were CINEMA and VOCAL. A section that contrasts the two

environments is also presented.

8

• Service Categories (Chapter 4) introduces the service categories used in this

thesis. Services were divided into four categories: Call-related, Interactive,

Internetworking and Hybrid. The subsequent three chapters focus on Call-related,

Interactive and Internetworking services, respectively.

• Call-related Services (Chapter 5) explains the standard mechanisms available to

create Call-related services. The mechanisms used in the project are SIP-CGI

(SIP-Common Gateway Interface) and CPL (Call Processing Language), and the

practical development of some services is reported to demonstrate the capabilities

of those mechanisms. A discussion that contrasts SIP-CGI and CPL is also

provided.

• Interactive Services (Chapter 6) begins with an investigation into how the

voicemail service, catagorizedas an interactive service, is implemented in the two

environments. The investigation into the voicemail service is used as a

springboard to implement a reminder service in the two environments. The

different implementation processes in the two environments are discussed.

• Internetworking Services (Chapter 7) reports first the investigation into the

mechanisms in each environment that are available to enable internetworking

between H.323 and SIP networks. A SIPMGCP translator is then described. This

translator was developed to provide SIP users in VOCAL access to an MGCP

network. Finally, the internetwork mechanisms in the two environments are

compared.

• Conclusions and Extensions (Chapter 8) provide a summary of the research and

answers the questions introduced as part of the objectives of the work. The

chapter also discusses possible extensions to the research.

1.6 Summary

This chapter introduced IP telephony, a phrase now used to mean communication using

any media over IP (Internet Protocol) networks. SIP (Service Initiation Protocol) and its

origins were described. We also briefly compared Internet telephony to legacy telephony,

9

and considered SIP relative to other protocols. Finally, the aim of the project and the

structure of the thesis were presented.

10

Chapter 2 Protocol Overview

2.1 Overview of SIP

The Session Initiation Protocol (SIP) is an application-layer control protocol that resides

in the 7th layer of the Open Systems Interconnect (OSI) model. The protocol can be used

for creating, modifying and terminating multimedia sessions. Examples of multimedia

seSSIons are:

• Internet multimedia conferences

• Internet telephone calls

• Any form of audio, video and data communications.

SIP supports five steps towards establishing and terminating multimedia communications:

• User location: determination of the end system to be used for communication;

• User capabilities: determination of the media and media parameters to be used;

• User availability: determination of the willingness of the called party to engage

in communications;

• Call setup: establishment of call parameters for both the called and calling party;

• Call handling: transfer and termination of calls.

SIP is designed as part of the overall Internet Engineering Task Force (IETF) multimedia

data and control architecture. The IETF multimedia data and control architecture

incorporates other protocols, such as Resource reSerVation Protocol (RSVP), Real Time

Protocol (RTP), Real Time Streaming Protocol (RTSP), Session Announcement Protocol

(SAP), for advertising multimedia sessions via multicast, as well as Session Description

Protocol (SDP) for media description [Handley and Jacobson, 1998]. SIP is defined in

RFC2543 (Request For Comments 2543) [Handley et al., 1999].

11

SIP uses terms and header fields from HyperText Transfer Protocol (HTTP) [Berners-Lee

et aI., 1997]. Terms such as client, server and proxy are common in HTTP and SIP. Also,

the basic operation of SIP is similar to HTTP.

SIP uses an email-likeaddressscheme.suchasuser@domainoruser@host.This allows

for easy location of a particular user by doing lookups on the domain or the host machine.

The actual addressing scheme is based on Uniform Resource Identifiers (URI) and

Uniform Resource Locators (URL) [Berners-Lee et a!., 1998]. In this work SIP addresses

are referred to as SIP URLs. A particular SIP address or SIP URL would be

sip:user@domain.com.

2.2 Terminology

The following simplified definitions are taken from RFC2543:

Call: A call consists of all participants in a conference, invited by a common source. A

SIP call is identified by a globally unique Call-ID. Thus, if several people invite a user to

the same multicast session, for example, each of these invitations wiII have a unique Call­

ID. A point-to-point Internet telephony conversation maps into a single SIP call. In a

Multiparty Conference Unit (MCU) call-in conference, each participant uses a separate

call to invite himself to the MCU.

Client: A client is an application program that sends SIP requests. Clients mayor may not

interact directly with a human user. User agents and proxies contain clients.

Conference: A conference is a multimedia session, identified by a common sessIOn

description. A conference can have zero or more members and includes the cases of a

multicast conference and a two-party "telephone caB", as weB as combinations of these.

Any number of caBs can be used to create a conference. A member is a participant in a

call.

"

12

Initiator, calling party, caller: These tenns indicate the party initiating a conference

invitation. Note that the calling party need not be the same as the one creating the

conference.

Invitation: An invitation is a request sent to a user (or service) requesting participation in

a session. A successful SIP invitation consists of two transactions: an INVITE request

followed by an ACK request.

Invitee, invited user, called party, callee: These tenns indicate the person or service that

the calling party tries to invite to a conference.

Location service: Location service is what a SIP redirect or proxy server uses to obtain

infonnation about a callee's possible location(s). Location servers offer location services.

Location servers may be co-located with a SIP server.

Proxy, proxy server: This is an intennediary program that acts as both a server and a

client for the purpose of making requests on behalf of other clients. Requests are serviced

internally or by passing them on, possibly after translation, to other servers. A proxy

interprets, and, if necessary, rewrites a request message before forwarding it.

Redirect server: A redirect server accepts a SIP request, maps the address into zero or

more new addresses and returns these addresses to the client. Unlike a proxy server, it

does not initiate its own SIP request. Unlike a user agent server, it does not accept calls.

Registrar: A registrar is a server that accepts REGISTER requests. A registrar is typically

co-located with a proxy or redirect server and may offer location services.

Server: A server is an application program that accepts requests and servIces them,

sending responses back to the requesting entity. There are proxy, redirect and registrar

servers.

13

Session: The SDP specification states: "A multimedia seSSIOn is a set of multimedia

senders and receivers and the data streams flowing from senders to receivers . A

multimedia conference is an example of a multimedia session (RFC 2327) [Handley and

Jacobson, 1998]." (A session as defined for SDP can comprise one or more RTP

sessions.) As defined, a callee can be invited several times, by different calls, to the same

session. If SDP is used, a session is defined by the concatenation of the usemame, session

id, network type, address type and address elements in the origin field.

SIP transaction: A SIP transaction occurs between a client and a server and comprises all

messages from the first request sent from the client to the server up to a final (non-1 xx)

response sent from the server to the client. The command sequence (CSeq) number

identifies a SIP transaction. The ACK request has the same CSeq number as the

corresponding INVITE request, but is a transaction of its own.

User agent: A user agent consists of a User Agent Server (UAS) and a User Agent Client

(UAC).

2.3 Overview of SIP operations

SIP signaling is based on the Client-Server protocol. The client issues request messages

while the server responds by issuing response messages. The user agent in SIP usually

contains a user-agent client and a user-agent server so that it is able to handle both

requests and responses.

Figure 2.1 diagrams call flow between two users, namely Ming and Cspw. Ming is the

initiator of the call, i.e. , the caller for the session. Cspw is the recipient of the call, i.e., the

callee for the session.

14

Ming Cspw

INVITE
100 TryIng

180 Ringing
20001(

ACK
Media
~

By.

20001

Figure 2.1 Call flow between Ming and Cspw

The actual messages indicated in Figure 2.1 are described next:

The invitation sequence--

1. The INVITE Message

Ming, the initiator of the call, sends an INVITE request message to

cspw@cspwnb.cs.ru.ac.za from ming@csmsc01.cs.ru .ac.za. The IP address for

csmsc01.cs.ru.ac.za IS 146.231.26.153 and for cspwnb.cs.ru .ac.za it IS

146.231.29.63.

INVITE sip:cspw@cspwnb.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UDP 146.231.26.153:5060

From: sip:ming@csmsc01 .cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru.ac.za

Contact: sip:ming@146.231.26.153:5060

Call-ID: 442388787@146.231.26.153

CSeq: 1 INVITE

15

Subject: testing

Expires: 3600

Content-Type: application/sdp

Content-Length: 133

v=O

o=ming 679139736425 1008247652 IN IP4 146.231.26.153

s=testing

c=IN IP4 146.231.26.153

t=O 0

m=audio 10000 RTP/AVP 0

This exemplifies the structure for an INVITE message. The message starts off with the

request message type, in this case INVITE, followed by the SIP Uniform Resource

Locator (URL) of the person to be called, followed by the SIP version number. There are

five other possible message request types: REGISTER, OPTIONS, BYE, CANCEL and

ACK.

The "Via" field indicates where the message originates from. It contains the IP address

and port number of the machine from which the message was sent.

The "From" field contains the SIP URL of the person calling.

The "To" field contains the SIP URL of the callee.

The "Contact" address field contains the various locations where the caller can be

contacted.

The "Call-ID" general-header field uniquely identifies a particular invitation or all

registrations of a particular client. It contains the Call-ID and the hostname (Call­

ID@host). Cali-IDs are cryptographically generated. The host part of the Call-ID can be a

fully qualified domain name or a globally routable IP address.

16

The "CSeq" (Command Sequence) general-header field contains a decimal number

followed by the request type. The decimal number is unique within the generated Call-ID

number.

The "Subject" header contains the subject of the session; it can be any alphanumeric

string.

The "Expires" entity-header field gives the amount of time for the validity of the

invitation. The amount can be indicated in seconds or in date/time format. In this case

3600 indicates the amount of seconds that the caller is willing to wait before the

invitation expires. The field can be used both in requests and responses.

Embedded inside the SIP message is the SIP message body. The SIP message body is

usually used to describe the type of session to take place. SIP uses the Session

Description Protocol (SDP) for this function, but it does not mandate it. The "Content­

Length" field is used to indicate the length of the SIP message body. The caller inputs the

codecs that it is able to handle, for the type of session to be undertaken, inside the SDP.

The content of the SIP message body will not be explained here.

2. The 100 Trying Message

The 100 Trying Message is sent by the callee 's user agent to indicate to the caller that it

has received the INVITE message and is busy processing it. The 100 Trying Message is a

response message.

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 146.231 .26.153:5060

From: sip:ming@csmsc01.cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru.ac.za

Call-ID: 442388787@146.231.26.153

CSeq: 1 INVITE

Content-Length: 0

17

Notice that there is no SDP inside this message.

3. The 180 Ringing Message

The 180 Ringing Message is sent by the callee's user agent to indicate to the caller that it

is in a ringing state and waiting for the callee's response.

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 146.231.26.153:5060

From: sip:ming@csmsc01.cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru .ac.za;tag=8321234356

Call-ID: 442388787@146.231.26.153

CSeq: 1 INVITE

Content-Length: 0

Notice that there is no SDP inside this message.

The "tag" parameter serves as a general mechanism to distinguish multiple instances of a

user who is identified by a single SIP URL.

4. The 200 OK Message

This is the response from cspw@cspwnb.cs.ru.ac.za when he decides to accept the

call. If he sends a 200 OK response message to the caller; this is how the message will

look:

SIP/2.0 200 OK

Via: SIP/2 .0/U DP 146.231.26.153:5060

From: sip:ming@csmsc01.cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru.ac.za;tag=8321234356

Contact: sip:cspw@146.231.29.63:5060

Call-ID: 442388787@146.231.26.153

CSeq: 1 INVITE

Content-Type: application/sdp

Content-Length: 137

18

v=O

0=g9610645877469378001 1008248918 IN IP4 146.231.29.63

s=testing proxy

c=IN IP4 146.231.29.63

t=O 0

m=audio 32770 RTP/AVP 0

Since proxies can fork requests, the same request can reach multiple instances of a user

(mobile and home phones, for example). As each device responds, there needs to be a

means to distinguish the responses from each device at the caller's end. The tag in the

"To" header field serves to distinguish responses at the UAC.

The SDP in this message contains the codecs that the callee is willing to use for the

session. These codecs are based on the SDP sent by the caller, meaning that the callee

must choose from the codecs that the caller is able to handle. If there are no codecs that

the callee is able to handle, the callee responds with a 400 Bad Request response message

with a "Warning: 304" header field.

5. The ACK Message

This is the ACK response message from the caller, to indicate to the callee that it has

received the 200 OK message.

ACK sip:cspw@cspwnb.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UDP 146.231.26.153:5060

From: sip:ming@csmsc01.cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru.ac.za;tag=8321234356

Call-ID: 442388787@146.231 .26.153

CSeq: 1 ACK

Content-Length: 0

19

6. Media flow

The media can now be flowing between the two participants for the session because the

session is now set up between the caller and the callee.

The termination sequence---

7. The BYE Message

In the example, callee cspw wants to terminate the session so he sends a BYE message.

BYE sip:ming@csmsc01.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UDP 146.231 .29.63:5060

From: sip:cspw@cspwnb.cs.ru.ac.za;tag=8321234356

To: sip:ming@csmsc01.cs.ru.ac.za

Call-ID: 442388787@146.231.26.153

CSeq: 1 BYE

Content-Length: 0

8. The second 200 OK Message

The caller must respond to the BYE message with a 200 OK message.

SIP/2.0 200 OK

Via: SIP/2.0/UDP 146.231.29.63:5060

From: sip:cspw@cspwnb.cs.ru.ac.za;tag=8321234356

To: sip:ming@csmsc01.cs.ru.ac.za

Call-ID: 442388787@146.231.26.153

CSeq: 1 BYE

Content-Length: 0

The above scenario involved a simple call flow between two endpoints that knew the

locations and IP addresses of each other. In instances where endpoints do not know each

other' s IP addresses, and also require the use of a proxy server, more messages are

naturally required.

20

2.4 SIP message overview

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding. SIP

is described in RFC2543 in Augmented Backus-Naur Form (ABNF) . Figure 2.2

emphasizes the fact that a SIP message is either a Request or Response message.

,

SIP-Message

Figure 2.2 SIP message

Figure 2.3 shows that the Request and Response messages can be further decomposed.

The Carriage Return and Line Feed (CRLF) characters are line terminators used to

indicate the end of a line and to separate Request line and Response line information

from the message body. The message body is used to indicate the kind of the session that

the sender wants to have. It usually contains SOP information.

21

Request-Line

CRLF

[message body 1

Status-Line

CRLF

[message body 1

Figure 2.3 Request and Response messages

2.5 Request messages

In this section Request messages are described in more detail. In Request messages, the

Request-Line statement can be further decomposed:

Request- Line Method SP Re quest-URI SP SIP- Ve rs ion CRLF

where Method can be one of the following methods:

Method UI NVITE " I 11 ACKfI I uOPTIONS u I 11 BYE I!

I 11 CANCEL It I I1 REGI STER "

(SP characters are spacing characters.) The Request-URI is a SIP URL that indicates to

which user the request is addressed; it is different from the "To" field in that a Request­

URI can be overwritten by proxy servers.

22

The SIP-Version indicates the version of SIP being used (the current versIOn IS

"SIP/2.0").

The various methods available in SIP and their functionality are described in the next

section.

2.5.1 INVITE

To invite a calIee to join a session the calIer uses the INVITE method. The message body

here contains a description of the session that the caIIer wants to have. The type of media

to be used in this session is included in the message body. SIP proxy, redirect and user­

agent servers as weII as clients must support this method. The foIIowing is an example of

an INVITE message:

INVITE sip:cspw@cspwnb.cs.ru .ac.za SIP/2.0

Via: SIP/2.0/UOP 146.231.26.153:5060

From: sip:ming@csmsc01.cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru.ac.za

Contact: sip:ming@146.231.26.153:5060

Call-IO: 442388787@146.231.26.153

CSeq: 1 INVITE

Subject: testing

Expires: 3600

Content-Type: applicationfsdp

Content-Length: 126

"Below contains the SOP"

2.5.2 ACK

The ACK method is used to indicate acknowledgment to the caIIee that the "200 OK"

response message has been received. The ACK method is used only in INVITE requests.

23

SIP proxy, redirect and user-agent servers as well as clients must support this method.

Below is an example of an ACK message:

ACK sip:cspw@cspwnb.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UDP 146.231.26.153:5060

From: sip:ming@csmsc01 .cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru .ac.za;tag=8321234356

Call-ID: 442388787@146.231.26.153

CSeq: 1 ACK

Content-Length: 0

2.S.3 OPTIONS

The OPTIONS method is used to query the server of its capabilities. A potential caller

can use this method to determine the capabilities of the callee before sending the actual

INVITE message. A callee can respond with a 200 OK containing the SOP of the

capabilities that it can manage, so that the caller can predetermine the INVITE with the

correct SOP to send to the callee [Collins, 2000]. Proxy and redirect servers simply

forward the request without indicating their capabilities. SIP proxy, redirect and user­

agent servers, registrars and clients must support this method.

Below is one example of an OPTIONS message:

OPTIONS sip:cspw@cspwnb.cs.ru.ac.za SIP/2.0

Via: S IP/2.0/UDP csmsc01.cs.ru.ac.za

From: sip:ming@csmsc01 .cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru .ac.za

Call-ID: 442388787@146.231.26.153

CSeq: 1 OPTIONS

Accept: application/sdp

Content-Length: 0

24

2.5.4 BYE

The BYE method is used to terminate a session. The person receiving the BYE message

should cease transmitting media to the person sending the BYE message. This method

must be supported by proxy servers and should be supported by redirect and user-agent

SIP servers.

Below is an example of a BYE message:

BYE sip:ming@csmsc01.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UOP 146.231.29.63:5060

From: sip:cspw@cspwnb.cs.ru.ac.za;tag=8321234356

To: sip:ming@csmsc01.cs.ru.ac.za

Call-IO: 442388787@146.231.26.153

CSeq: 1 BYE

Content-Length: 0

2.5.5 CANCEL

The CANCEL method can be used to cancel pending requests. For example, SIP proxy

servers can fork different INVITE requests for the various locations at which a callee can

be located. Once the callee has accepted the call from a particular location, the proxy

server can cancel the requests to the other locations. This method must be supported by

proxy servers and by all other SIP server types.

The following is an example of a CANCEL message:

CANCEL sip:cspw@cspwnb.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UOP csmsc01.cs.ru.ac.za:5060

From: sip:ming@csmsc01.cs.ru.ac.za

To: sip:cspw@cspwnb.cs.ru.ac.za

Call-IO: 442388787@146.231.26.153

CSeq: 1 CANCEL

25

Content-Length: 0

2.5.6 REGISTER

This method is used to register a person at a particular location. The "To" header field

(SIP URL) is the SIP address used to register the registrant. The SIP URL shown in the

message below shows another form that SIP URLs can take. It is possible for a visitor to

register for a different network using the Request-URI (Uniform Resource Indicator)

field. The Request-URI field is the field following the REGISTER characters. In the

following REGISTER message the Request-URI field is sip:cssip .cs.ru.ac.za. The RFC

recommends that all SIP servers support this method.

Here is an example of a REGISTER message:

REGISTER sip:cssip.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UOP csmsc01.cs.ru.ac.za:5060

From: Ming Hsieh <sip:ming@csmsc01.cs.ru.ac.za>

To: Ming Hsieh <sip:ming@csmsc01.cs.ru.ac.za>

Call-IO: 442388787@146.231.26.153

CSeq: 1 REGISTER

Contact: <sip:ming@146.231.26.153>

Content-Length: 0

2.6 Response messages

In this section we describe Response messages in more detail.

The Status-Line statement in Response messages can be further decomposed:

Status-Line SIP -version SP Status-Code SP Reason - Phrase
CRLF

The Reason-Phrase can be any humanly readable phrase that describes the status-code.

The Reason-Phrase is intended to give a short textual description of the Status-Code. This

26

is used to provide information to the caller that concerns his request, whether it was

successful or unsuccessful, and the reason for failure in the case of the latter.

The Status-Code can be further divided into:

Status - Code Informational

Success

Redirection

Client-Error

Server- Error

Global - Failure

Extension-code

The Status-Code is a 3-digit integer result code that indicates the outcome of the attempt

to understand and satisfy the request. The Status-Code works in ranges; for example, the

lxx series means values from 100-199.

Below is an explanation of the different ranges and their usages:

lxx: Informational -- request received, continuing to process the request.

2xx: Success -- the action was successfully received, understood, and accepted.

3xx: Redirection -- further action needs to be taken in order to complete the request.

4xx: Client Error -- the request contains bad syntax or cannot be fulfilled at this server.

5xx: Server Error -- the server failed to fulfill an apparently valid request.

6xx: Global Failure -- the request cannot be fulfilled at any server.

2.7 Header field definitions

Table 2.1 shows the different categories of header fields that are available for use in the
message structure of SIP.

27

Table 2.1 Header fields

GENERAL-HEADER ENTITY-HEADER REQUEST-HEADER RESPONSE-HEADER

Accept Content-Encoding Authorization Allow

Accept-Encoding Content-Length Contact Proxy-Authenticate

Accept-Language Content-Type Hide Retry-After

Call-ID Max-Forwards Server

Contact Organization Unsupported

CSeq Priority Warning

Date Proxy-Authorization WWW-Authenticate

Encryption Proxy-Require

Expires Route

From Require

Record-Route Response-Key

Timestamp Subject

To User-Agent

Via

The "General-header" fields apply to both request and response messages. The Call-ID

and the CSeq fields are closely related and are important to the signaling. Call-IDs are

used to identify calls while CSeqs are used to identify transactions within calls. For

example, a caller who might want to change the media being used in a call, rather than

tenninate the call and make a new call, can "re-INVITE" the callee with the same Call-ID

but with a different CSeq and a different SDP.

The "Entity-header" field defines meta-information about the message-body or, if no

body is present, about the resource identified by the request.

The "Request-header" field allows the client to pass additional information about the

request, and about the client itself, to the server.

28

The "Response-header" field allows the server to pass additional information about the

response, which otherwise cannot be placed in the Status-Line. The Warning field is used

to carry additional information about the status of a response. It consists of a 3-digit code

followed by some warning text. The digits start with "3" to indicate that the warning is

SIP related. Table 2.2 shows some warning codes that can be used in the Warning field.

Table 2.2 Warning codes

300 Incompatible network protocol :

One or mOTe network protocols contained in the session description are not available.

30 I Incompatible network address formats:

One or more network address fannats contained in the session description afC not available.

302 [ncompatible transport protocol:

One or morc transport protocols described in the session description afC not available.

303 Incompatible bandwidth units:

One or morc bandwidth measurement units contained in the session description were not understood.

304 Media type not available:

One Of more media types contained in the session description are not available.

305 Incompatible media format:

One or more media formats contained in the session description are not available.

306 Attribute not understood:

One or morc of the media attributes in the session description are not supported.

307 Session description parameter not understood:

A parameter other than those listed above was not understood.

330 Multicast not available:

The site where the user is located does not support multicast.

331 Unicast not available:

The site where the user is located does not support unicast communication (usually due to the presence

of a firewall).

370 Insufficient bandwidth:

The bandwidth specified in the session description or defined by the media exceeds that known to be

available.

399 Miscellaneous warning:

The warning text can include arbitrary infonnation to be presented to a human user, or logged.

A system receiving this warning MUST NOT take any automated action.

29

2.8 Status-code definitions

Table 2.3 lists some status codes that can be used in SIP Response messages.

Table 2.3 Status codes

INFORMATIONAL SUCCESS REDIRECTION CLI ENT ERROR SERVER ERROR GLOBAL
FAILURE

"100" Trying "200"OK "300" Multiple "400" Bad Request "500" Internal
"180" Ringing Choices '·40 I" Unauthorized Server Error "600" Busy
"J81"Call Being "301" Moved "402" Payment "501"Not Everywhere

Forwarded Permanently Required Implemented "603" Decline
"182" Queued "302" Moved "403" Forbidden "502" Bad Gateway "604" Does Not

Temporarily "404" Not Found "503" Service Exist
"303" See Other "405" Method Not Unavai lable Anywhere
"305" Use Proxy Allowed "504" Gateway "606" Not
"380" Altemative "406" Not Acceptable Timeout Acceptable

Service "407" Proxy "505" SIP Version
Authentication Not Supported
Required

"408" Request
Timeout

"409" Con fl ict
"410"Gone
"411" Length

Required
"413" Request

Message Body
Too Large

"414" Request-URI
Too Large

"4 I 5" Unsupported
Media Type

"420" Bad Extension
"480" Temporarily

Not Available

Status codes can be used with header fi elds to convey important session information to

the caUer. For example, if the callee is unable to accept the call due to the media types

wanted by the caUer, the callee can respond with a "400" Bad Request message (see

Table 2.3), and with the 304 Warning header fi eld (see Table 2.2), which means the

requested media type is not available.

The Status-Code "400" Bad Request message can be used to indicate a malformed header

fi eld in the request message, but it can also be used indicate that the media type in the

message body is not available by using the Warning header field .

30

The Status-Code "415" Unsupported Media Type does not indicate the same as above,

but rather indicates that the message body is in a format that the user-agent server does

not understand. The UAS returns this Status-Code along with the Accept, Accept­

Encoding and Accept-Language header fields to indicate to the UAC what it can accept.

The message body of a request can be encoded in a format that the UAS does not

understand; thus, the UAS must indicate to the UAC what encoding it can accept via the

Accept-Encoding header field.

2.9 Summary

This chapter has presented a brief overview of how the Session Initiation Protocol (SIP)

operates, summarizing the basic structure of the protocol and explaining the various

header fields and status codes.

31

Chapter 3 Two SIP Architectures

3.1 Introduction

During the search for suitable SIP architectures to employ for the research, two main

architectures appeared: the CINEMA architecture from Columbia University and the

VOCAL architecture from Vovida. Later, the SIPTREX™ system based on the JAIN™

SIP Specifications from the Java™ Community Process appeared appropriate, but that

system was not investigated due to its newness. Below, a brief introduction to the two

chosen environments is given followed by a discussion of their various components.

3.2 The CINEMA environment

The SIP protocol was co-authored by ProfH. Schulzrinne at Columbia University in New

York City. Columbia first developed a SIP stack, server and user agent. This was

developed as part of Columbia InterNet Extensible Multimedia Architecture (CINEMA),

which includes a voicemail server, a conferencing server and a SIP-H.323 translation

server. The stack and server were written in C language and the user agent was written in

Tcl!fk. The SIP server has a combination of functions: it is a Proxy, Redirect and

Registrar server. Figure 3.1 is a diagram of the CINEMA environment.

32

Tdepholle T
switch T

71 14

Department
PBX

7130

~

a1ice @cs
(softphone)

$4Jr.onf:
confcremng ::erver

~1ph323:

SIP-H323
ltanslawr

· .

Quicktime

.~ .
RTSP C ~ efIts

configwaLion

'" u _ _ H_'_"--,'-_. , .•

Figure 3.1 CINEMA environment [Jiang et aI. , 20021

3.2.1 Installation process

Since CINEMA's stack and server were written in C language they could be compiled

under Windows and Linux. The server was installed on an Intel Pentium II 4S0Mhz

machine running Windows 2000 server edition. The standard name of the server is sip d

(SIP Daemon server) . Columbia University also provided a web interface to this system,

in order to administer users and the server remotely. User agents are available for both

Windows and Linux. The installation process for the user agents was quite simple, as it

was automated. The standard name of the user agent is s ipc. The interface for the user

agent is shown in Figure 3.2.

Figure 3.2 User interface for the CINEMA SIP user agent

33

The setup process for the server involved three phases: compilation, installation and

testing. The compilation phase required knowledge of Microsoft Visual C++ 6.0. The

installation phase required knowledge of the MySql database and Apache web servers. A

database was created to store the various locations at which a user can be located. Users

were added to the system using the program "addsipuser". Once a user is added to the

system, the user can use his sipc user agent to register his location with the server. The

Apache web server was set up to give users the ability to modify their contact

information and to give the administrator access to modify the configurations of the SIP

server. The testing phase consisted of running the system and making sure that all

components worked properly.

Figure 3.3 shows the web interface provided by CINEMA for administering the users and

also the configuring of the SIP server.

F .. E<It " ... "" ... to. loolr ...

~ I>odt. . - ~ :::l~ ! ~. 1> lJ.j:~.0IU' 8- .j ~ . ..,fii!' ~ D
~-ltJlt>p:I/"--""" ,,·roJ-.oJ
Iris ~._ «1 O:'/l_' l_ tlVCGI.I.~!<JC>II:)oI~ ... ,.-.u 4tJCNw.VWu.,.(q90 I~;~ ... _ • .o)

IJ;.'EMA - Colwllbia InterNet Extensible Multimedia rchitecrure

Figure 3.3 Web interface for the CINEMA SIP server

34

..J.QJ.1l - ..
::J 2" 0

The s ipd server is run from the command prompt, with different options such as "-v"

for verbose output. sipd server is a proxy, redirect and registration server all in one and

no extra options are required to set the mode in which it runs.

3.2.2 User agent and Register server interaction

This section demonstrates successful registration of sipc with the Register server. The

Register server in this case is sipd. Figure 3.4 shows the messages required in order for

a user to register his location with the sipd server. In this diagram Ming is located at

csmscOlict.cs.ru.ac.za and the Registrar is at cssipict.cs.ru.ac.za.

,,' ,.
~egistra Ming

,,t, ...
401 Auth ...
200 OK

Figure 3.4 Register sequence diagram

SIP provides authentication mechanisms similar to that of HTTP. The sipd server

provides Basic authentication via the Authentication header field in the SIP REGISTER

message. In the example, Ming, the user, tries to register with the server

cssipict.cs.ru.ac.za; the server asks for a usemame and password by sending a "40 I

35

Authentication required" response back to the user Ming. This is shown below in the log

files for the user agent and the register server.

User Agent Log File

10/28/2002 12: 13:27.353999

Sent to: cssipict.cs.ru.ac.za:5060

REGISTER sip:csmsc01 ict.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UDP 146.231.123.15:5060

CSeq : 1 REGISTER

Expires: 3600

Contact: sip:ming@146.231.123.15:5060;q=0.1 ;action=proxy

From: sip:ming@csmsc01ict.cs.ru .ac.za

Authorization: Basic bWluZOBjc21 zYzAxaWNOLmNzLnJ 1 LmFjLnphOg==

Date: Mon, 28 Oct 200210:13 :27 GMT

Call-ID: 770215716@146.231 .123.15

To: sip:ming@csmsc01ict.cs.ru.ac.za

Content-Length: 0

The Basic authentication scheme used here is similar to the Basic authentication scheme

fo r HTTP. The Basic authentication scheme is based on the idea that the user must

provide a usemame and password for each realm that he wants to be authenticated with

[Bemers-Lee et aI., 1997). The realm is the domain with which the user wants to be

registered, and in this case Ming wants to register with the realm cs.ru.ac.za. The

Authorization header field has the form:

Authorization: Basic SP basic-cookie

The basic-cookie is a base64 encoded string of the usemame and password.

10/28/200212:13:27.554000

Recvfrom : 146.231.121.142:1336

SIP/2.0 401 Must authenticate with username ming@cssipict.cs.ru.ac.za

Via: SIP/2.0/UDP 146.231.123.15:5060

36

From: sip:ming@csmsc01ict.cs.ru.ac.za

To: sip:ming@csmsc01ict.cs.ru.ac.za

Call-ID: 770215716@146.231.123.15

CSeq: 1 REGISTER

Date: Mon, 28 Oct 200210:15:07 GMT

Server: Columbia-SIP-Server/1.0

Content-Length: 0

WWW-Authenticate: Basic realm="cssipict.cs.ru.ac.za"

In the prevIOus REGISTER message, Ming tried to register with the realm

csmscOlict.cs.ru.ac.za. Because the server does not recognize this realm, it sends a "401"

response with a challenge via the WWW-Authenticate header field, together with the

correct realm that the user must register with.

10/28/2002 12: 13:38.559999

Sent to: cssipict.cs.ru.ac.za:5060

REGISTER sip:csmsc01 ict.cs.ru.ac.za SIP/2.0

Expires: 3600

Authorization: Basic bWluZOBjc3NpcGljdC5jcy5ydS5hYy56YTptaW5nAA==

To: sip:ming@csmsc01ict.cs.ru.ac.za

Call-ID: 770215717@146.231.123.15

Via: SIP/2.0/UDP 146.231 .123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

Contact: sip:ming@146.231.123.15:5060;q=0.1;action=proxy

CSeq: 1 REGISTER

Date: Mon, 28 Oct 2002 10: 13:38 GMT

Content-Length: 0

In this REGISTER message the user Ming registers with the username

ming@cssipict.cs.ru.za and password mingo Notice that this has changed the

Authorization field from:

"Authorization: Basic b WluZOBjc21 zYzAxa WNOLmNzLnJ I LmFjLnphOg=="

37

to:

"Authorization: Basic b WluZOBjc3NpcGljdCSjcySydSSh Y yS6YTpta WSnAA =="

The Authorization field changed due to the base64 encoding.

10/28/2002 12: 13:38.75

Recvfrom: 146.231.121.142:1336

SIP/2.0 200 OK

Via: SIP/2.0/UDP 146.231 .123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

To: sip:ming@csmsc01ict.cs .ru.ac.za

Call-ID: 770215717@146.231.123.15

CSeq: 1 REGISTER

Date: Mon, 28 Oct 2002 10: 15: 18 GMT

Server: Columbia-SIP-Server/1 .0

Content-Length: 0

Contact: <sip:ming@csmsc01ict.cs.ru.ac.za>; expires="Mon, 28 Oct 2002 11 :26:37

GMT"; action=proxy; q=1.00

Contact: <sip:ming@146.231.123.15:5060>; expires="Mon, 28 Oct 2002 11 :15:18

GMT"; action=proxy; q=0.1 0

Expires: Mon, 28 Oct 2002 11 :15:18 GMT

Once the user is authenticated, the server sends a "200 OK" message back to the user. It

also lists the current available contacts at which the user has registered. The Contact

header field also contains the date and time when this contact will expire. The "q=O.1 0"

indicates the preference for where the user would like to be contacted. The "q" field is a

decimal number between 0 and I. Higher values indicate a higher preference for locations

where the user would like to be contacted.

The log file for the Registrar server side is the same in terms of the SIP messages

received and sent. The log file is given in Appendix A.

38

3.2.3 User agent and Proxy server interaction

This section explains the interaction between user agents and proxy servers. The example

depicts a successful call setup between two user agents, with the Proxy server as an

intermediate server needed to locate a user and for sending the INVITE on behal f of the

user. Figure 3.5 shows messages exchanged between those three entities.

" Ming' ~ Proxy ~96 1 0645

Invite
lDOTlJiI Invite

Figure 3.5 User agents and Proxy server call setup

The actual SIP messages are given in Appendix B. A notable feature here is that the ACK

message sent from Ming to g9610645 does not go through the Proxy server. One reason

is because, at this moment, Ming knows the location of g9610645, so he does not need

the Proxy server to send the ACK. Another reason is that the Proxy server is operating in

the stateless mode; that is, once it has set up the call, the rest of the transaction

mechanism is up to the user agents. Alternatively, stateful proxies keep track of the entire

transaction. Although this can be resource intensive when scaling the system to a large

base of users, it can be useful in services such as billing.

39

3.3 The VOCAL environment

VOCAL (Vovida Open Communication Application Library) is an open-source

application suite created by Vovida Networks and eventually acquired by Cisco Systems

in November 2000. Cisco concurs with the open-source philosophy of Vovida and

continues to support the Vovida Open-Source Initiative.

The philosophy behind open protocols and open-source applications is the idea that

customers are not bound by the constraints of proprietary software as characteristic of

closed protocols. Open protocol and open source also means flexibility, which is

especially needed in times of rapid change [Vovida, 2003].

VOCAL consists of three layers, namely Call Control and Switching, Operation System

Support and Services and Feature Creation:

• Call Control and Switching handles user registration, call initiation, call

modification and call termination.

• Operation System Support handles provisioning, network monitoring and billing

information.

• Services and Feature Creation contains features such as call forwarding, call

blocking, call transfer and call waiting.

The basic components needed to set up a VOCAL system are the Marshal server,

Redirect server, Feature server and User Agents:

• The Marshal server is an entry point into VOCAL. Marshal servers provide the

logical functions of the SIP proxy server and the SIP registration server.

• The Redirect server redirects the SIP requests depending on the features enabled

by the Feature servers. The Redirect server also provides Registration,

Redirection and Location services and functions . While the Marshal server

provides the logical functions for the registration process, the Redirect server

40

provides the physical functions, i.e., the Redirect server stores the actual location

of the user in its database.

o The Feature server is the service logic center for determining what services are

available to each user. There is a Feature server for each feature or service

available on the network. The Feature server provides features such as call

forwarding, call blocking and call return.

o User Agents: The initial functionality of the user agent was to test the SIP stack

that was developed in VOCAL. Slowly this progressed to a functional user agent

with limited capabilities. At the moment the user agent is able to make and

receive calls with limited audio support. The user agent is also able to register

with a registration server and use a proxy server to make calls.

Figure 3.6 is a diagram of the VOCAL environment.

Ma.,hal s.rver Marshal Server

Terminal

Figure 3.6 VOCAL environment IVovid., 2001'1

e
I
Clearing
House

Although the VOCAL architecture may seem complex, not all of the usual components

are required in order to set up a basic working SIP network. The components that were

used to install a basic SIP network at the Department of Computer Science are a Feature

server (fs), Redirect server (rs), Provisioning server (ps), and Marshal server (ms);

User Agents (ua) were also made available to the llsers. Redundant Marshal servers were

41

installed to provide scalability to the system. This required the installation of a Heartbeat

server to monitor the availability of each Marshal server.

3.3.1 Installation process

The version of VOCAL used for this project IS VOCAL-1.3.0. The hardware

requirements for this version are:

• 700 Mhz, Pentium III Intel-based PC

• 512MBRAM

• I GB hard disk space.

The software requirements for this version are:

• Red Hat Linux 6.2 or later version

• Apache web server

• JDK 1.2

• Web browser with Java 2 Runtime Environment Plug-in enabled.

The actual installation was on:

• 333 Mhz, Pentium II

• 256MBRAM

• 2 GB hard disk space,

with the following software installed:

• Red Hat Linux 7.1

• Apache web server 1.3.19

• JDK 1.3 .1

• Netscape browser with Java Runtime Environment 1.3.1.

The VOCAL software suite is provided open source, which requires the GNU Compiler

Consortium (gee) to compile and install the software. The compiled version of the

VOCAL source directory came to 1.5 GB. The whole VOCAL server suite could be

installed as a system service and can be started and stopped via the command prompt.

Log files for each server are also provided for diagnostics of the system.

42

3.3.2 User agent registration diagram

The registration sequence for registering a user with the system requires the interaction of

the Marshal and Redirect servers. The Marshal server is the entry point into VOCAL and

it forwards the requests from users to the Redirect server. Figure 3.7 depicts a simple

registration sequence with no authentication.

user M RS

REGlmR
REGISTER

,

200 OK
200 OK

User = 2000

MS = Marshal
server

RS == Redirect
server

Figure 3.7 VOCAL registration diagram

When authentication is involved the Marshal server contacts the provisioning server to

get the correct usemame and password (which is not shown in Figure 3.7). The diagram

shows the REGISTER message received by the Marshal server. The Marshal server

forwards this message to the Redirect server, which stores the regi stration information in

its database. The Redirect server returns a "200 OK" message to indicate that the

registration was successful.

43

This registration sequence is different from that of CINEMA. That is, in VOCAL more

messages are exchanged in order to register a user, because of the separation of the

registration and redirect server.

3.3.3 User agent simple call diagram

Once the user is registered with the system he or she is able to make calls to other users.

Figure 3.8 shows a basic call between two users using VOCAL. The user agents are able

to communicate with each other without the Marshal server (point-to-point

communication) if the users know each other's location beforehand.

ser A MS ~~ RS User S

INVITE
INVITE

•
302

INVITE
200 OK

200 OK

.&~IC
User A = 2000 ACK
User B "" 2001

MS "" Marshal Media server

~ ~ RS = Redirect
server I I

Figure 3.8 VOCAL simple call flow

Users in VOCAL are assigned telephone numbers. For example, user Alice gets the

number 2000 and user Bob gets the number 2001. The Marshal server forwards the

INVITE message from Alice to the Redirect server. The Redirect server checks its

database for possible locations of Bob and forwards this information to the Marshal

44

server vIa a contact header field in a "302 Moved Temporarily" SIP message. The

Marshal server uses that information to forward the INVITE to Bob. The "100 Trying"

and the "180 Ringing" messages are not shown in the diagram, although, for the purpose

of the example, they are being sent by the Marshal server and user Bob, respectively.

Note that in VOCAL the "200 OK" and the "ACK" messages still pass through the

Marshal server. This is different from what happens in CINEMA, wherein users can

directly send this information to each other, bypassing the proxy server. The same

process occurs for the "BYE" and the "200 OK" messages that are used for termination

of the session. In CINEMA these messages are sent directly to each other, whi le in

VOCAL these messages still pass through the Marshal server. More examples of call

flows with different call scenarios are available in [Vovida, 2001a] and [Johnston, 2001].

3.4 Contrasting the architectures

As one should expect, the CINEMA architecture and the VOCAL architecture have

strong similarities. Below, we compare their components.

Registrar, Redirect and Proxy servers:

The two architectures contain a server, or servers, for registration, redirection and proxy

functionalities. The central SIP server (sipd) in CINEMA contains the functionalities of

the Registrar, Redirect and Proxy servers and is similar to the combination of the Marshal

server and Redirect server in VOCAL. In VOCAL the registrar and proxy functionalities

are contained in the Marshal server, while the redirect functionality is naturally placed in

the Redirect server. Putting the functionalities of registration and proxy into the Marshal

server, and that of redirecting into the Redirect server, increases the distributed nature of

VOCAL. This means, for example, that the Marshal server and the Redirect server can

actually be put on separate machines. In that case, however, more SIP messages will be

exchanged between the two servers and so reduce the speed of a call setup. A more

detailed discussion of this difference between the two environments is given in Chapter 5.

45

Backend databases and web servers:

The following aspect provides for the storage of usemames and the maintenance of the

various servers for the two architectures, which is essential in the operation of a SIP

network. In CINEMA the MySql database and the Apache web server are used as the

backend storage and web interface configuration mechanism, respectively, while in

VOCAL a custom-made database is used for backend storage and Apache is used for the

web interface. The databases for both environments are used to store the contact locations

of users and also the configurations of the various servers. The web servers of these

environments provide an interface to these databases so that administrators of the system

can operate remotely and users can modify their settings or profiles.

User agents:

As expected, both these architectures provide user agents for users to communicate with.

However, the capabilities of their user agents differ. In CINEMA, a user agent called

sipc has the capability to execute scripts, which provide services. In VOCAL, the user

agent called ua is unable to execute scripts and at the moment is mostly used as a 'dumb'

tenninal to make and receive calls. Both systems can interact with any SIP-standard

compliant user agent.

46

N ot S IP specific

SIP speci fic

Not SIP specific

SII'323 ': ['um

sipd

SfPH 323CSGW V \1

':o,IP.; :!:; ~ :-'11' iB2.1
tfOllht \t,\f ,,'nH

.:; i'llm SIP 1 ,if:\·d
\h:~, l'·m,

Rc<I··· Ct,I ,uu!JW
~l "l, i \l:~hUC'

~lf"d '>U' n~ . lll(ln

'.~·n~ r

BlI.I>: - VOCAL
arcllitccturc

MS '" Mar~hal ~cr\"er

RS Rt'dircct s('rvcr

SIPH32.~CSGW SIP
HJ2J rransl:nor server

VM Voiccmsi l

Figure 3.9 Comparison of architectures

Figure 3.9 shows the essential SIP-specific similarities for both environments (grouped in

the middle). Each environment has various other servers with similar functionalities, such

as the H.323 to SIP translators and the voicemaiI servers; these are not classified as SIP­

specific. The essential elements required to set up an operational Internet telephony

environment are the SIP-specific elements.

3.5 Summary

This chapter introduced the two environments that were used to deploy SIP, namely

CINEMA and VOCAL. A detailed explanation was given on how the user agents for the

architectures interact with their systems and servers, and a discussion that contrasted the

two environments was provided.

47

Chapter 4 Service Categories

4.1 Introduction

The services chosen for the investigation into service creation in CINEMA and VOCAL

are those most commonly experienced by an average PSTN/PABX user, such as call

forwarding or voicemail. Services that allow intemetworking, and that may not seem to

fall into this category, are included because they allow a user to experience the wide

range, easy reaching of other users typical of traditional telephony.

The choice of these services is in keeping with the general theme of this thesis . While we

do not aim to establish if and why Internet telephony is better than traditional telephony,

we are interested in exploring the degree of difficulty in creating services that are seen

nowadays as common in traditional telephony in two different, relatively mature SIP

environments, CINEMA and VOCAL.

Before investigating service creation it is natural to attempt to categorize the services

themselves and this chapter is devoted to this task. A classification is never an easy task

and often has some arbitrary aspects . The classification proposed here has helped us to

organize our investigative work.

The actual operation of any telephony environment is permitted by mechanisms that can

be seen as services, such as the ability to make point-to-point voice calls . We will call

these basic services and list them in section 4.2. Any other service will be called an

advanced service. Our classification of advanced services is presented in section 4.3.

4.2 Basic Services

Below is a list of CINEMA' s basic services:

48

• Make calls point-to-point. Calls can be made using a sipc user agent connected

to any other SIP user agent. A definite SIP URL is required to make the call

(point-to-point). A SIP URL consists of a username plus the machine name of the

IP address where the callee can be contacted. A definite SIP URL consists of the

username plus the exact machine name where the callee is currently located.

• Register with the proxy server. Registration is considered a basic service because

it provides a central place whereby parties can inform each other about their

location. This is useful, for example, in terms of mobility: each time a person

registers from another location the call can be directed to him because the server

knows where he can be located. This suggests that each registration must contain

an expiry time and allow each user to re-register and de-register from a particular

location. The Expires header field in the REGISTER message enables the user

to specify the valid duration of his registration. For example:

Expires: Sun, 01 Dec 2002 16:00:00 GMT

means the registration is valid until I December 2002, 4 p.m. If the user does not

specify this field, the server rather will provide and display a default expiry date.

• Make calls via the proxy server. The information required to make a call under

this scenario is a normal SIP URL where the machine name can be the machine

name of the proxy server. Making calls using the sipd server provides basic

services such as user lookup and user location. For example, it looks up any

aliases for the concerned callee and also provides all the possible locations of the

callee.

Below is a list of VOCAL's basic services:

• Make calls point-to-point. The user needs to know how to modify a configuration

file for the user agent in order to make a call from point-to-point in VOCAL.

• Register with the system via the Marshal server. This service is essentially the

same as the register service in CINEMA described above.

• Make calls using central resources of the VOCAL system. To use VOCAL the

user needs to register with the system and use the proxy server in the system to

make calls. This operation is more difficult than in CINEMA because of the lack

49

of GUI support, forcing one to use the configuration file for the user agent. Other

changes that are required in the configuration file are the dial patterns. The user

must know how to modify the dial patterns for the user agent. The user agent in

VOCAL is modeled after a normal PSTN phone, whereby specific dial patterns

are required in order for the user to dial out. Dial patterns are like the quick dial

pads on Plain Old Telephone Service (POTS) phones. For example, one could

configure "I #" to a frequently used number. The VOCAL calling system is

closely modeled after the traditional telephony calling system wherein a number

representing an alias identifies each user. This eases the transition for users who

have no prior knowledge of SIP URLs. (VOCAL still uses SIP URLs, and the

numbers used in the dial patterns are treated as aliases.) CINEMA does provide

dial plans on the server side but those are used only to make calls to the PSTN

network.

The services listed in this section are assumed to be available at all times. Figure 3.9 and

section 3.4 provide an illustration and contrasts the architectures namely CINEMA and

VOCAL.

The user agent from CINEMA has audio, video and data capabilities. The user agent

from VOCAL is only audio capable at the moment. To make the comparison between the

environments significant, we assume that only audio will be available to the user agents

in both environments.

4.3 Advanced Services

4.3.1 Call-related services

Call-related services are services executed during the establishment of a session and do

not require the participation of the user during their execution, although user interaction

is required to set up the service prior to its execution. Call forwarding, call blocking and

50

call redirect are examples of call-related services. Services in this category require the

signaling capabilities of SIP.

Call fOlwarding and call blocking are implemented in both CINEMA and VOCAL using

scripting languages: SIP-CGI in the case of CINEMA, and CPL in the case of VOCAL,

as described in sections 5.3 and 5.4, respectively.

Using a scripting language as the service creation mechanism makes it easy to create call­

related services in Internet telephony. In VOCAL the process is further simplified by a

our interface that allows the user to customize the service according to his needs. This

naturally limits flexibility, but this is generally acceptable as long as the limitations are

not too extensive. VOCAL's approach also helps deal with the security issues concerning

scripting languages (see section 5.6).

4.3.2 Interactive services

Interactive services are services that require user interaction during the execution of the

service. A voicemail service that requires input from the user, such as "Press J if you are

satisfied with this greeting", is an example of an interactive service. Generally, this type

of service has a multimedia nature as well; for example, the voicemail service has to

handle G.723 or G.711, the typical audio formats used in telephony, to record voice.

However, whether or not the service has a multimedia nature is irrelevant to its

categorization. The services in this category also require signaling, but their signaling

capability is less important, in this context, than interactivity with the user.

The voicemail services for CINEMA and VOCAL are presented in sections 6.2 and 6.3,

respectively. Later in this work the voicemail services are used as a template to develop a

reminder service for both environments.

Creating services in this category usually requires intensive modifications of existing

components in the system (as demonstrated in sections 6.4 and 6.5 in regard to creating a

51

reminder service); thus, programmmg techniques that are more advanced than basic

scripting are required to develop interactive services. The service creation process is

further complicated by the need to anticipate user behavior and the need for catering for

endpoints with different capabilities. Users are generally unpredictable and this

unpredictability has to be taken into account by the programmer. Endpoints with different

capabilities need to be catered for by redirecting the user either to another user agent with

the appropriate capability or by providing an informative message.

4.3.3 Internetworking services

Internetworking services allow two or more different networks to interoperate and

communicate with each other, such as an H.323 network and a SIP network.

Bridging of networks can be done on a services-type level , wherein a gateway is

dedicated to each service to be intemetworked. For example, where a call-forwarding

service is resident on a H.323 network, a gateway could be developed so that SIP users

who want to access the service must use that specific gateway. This type of bridging has

the advantage of security because it forces SIP user agents to use a specific service-level

protocol to access the services on the H.323 network; thus, SIP user agents are not

indiscriminately allowed to access other parts of the H.323 network. The disadvantage in

this case is that the bridging will not scale well, as more and more services are exposed to

the SIP network more and more gateways have to be developed, deployed and

maintained. This, combined with the fact that the service must be correctly provisioned to

the correct users (so that only designated users are allowed to use the service), makes this

solution unviable.

Bridging can also be done on a protocol level whereby a translator is placed in between

the two networks and handles each of the calls directly, either from a H.323 or a SIP

standpoint. The translator cannot merely convert one H.323 message into a SIP message,

but must also remember which messages it has sent, which messages it must receive and

to which call the message belongs. This is due to the session nature of both protocols.

52

This more common approach to intemetworking is the approach followed in this thesis.

While this approach allows for any session to be established between H.323 and SIP,

security is however reduced.

Once an intemetworking service was established between H.323 and SIP, we began to

investigate whether or not a service that resides on a H.323 network can be accessed from

a SIP network. For example, at the Department of Computer Science at Rhodes

University, a SIP to H.323 Call Signaling Gateway (SIPH323CSGW) was set up so that

SIP users could access services on the H.323 network. Hence, services such as the Email

reader and the ISDN gateway (Open I SDNGw) that were already available on the H.323

network became readily available to the SIP network [Penton et a!., 200 I b]. For more

information about the setup of the H.323 environment see [Penton et a!., 2001a] and

[Penton and Terzoli, 2002]. Overall, SIPH323CSGW acted as a translator that allowed

sessions to be established between SIP and H.323. This service allowed users on the SIP

network to access the services on the H.323 network and vice versa.

In sections 7.2 and 7.3 we will explore the mechanisms available for intemetworking

between H.323 and SIP in CINEMA and VOCAL. A MGCP network was also set up

using VOCAL [Jacobs and Clayton, 2002]. Next, we used the available MGCP and SIP

stack in VOCAL to develop an intemetworking service between MGCP and SIP.

Developing, deploying and maintaining intemetworking services IS generally more

difficult than what is required for interactive services. To start with, the developer needs

to be knowledgeable of two protocols, and working with two APIs doubles the workload.

4.3.4 Hybrid services

Hybrid services are services that contain elements from more than one of the categories

defined above. For example, a voicemail service that contains a call-forwarding service

fits both the interactive and the call-related categories. (As an example: Perhaps one

would like phone calls from his boss to be forwarded to his voicemail address and calls

53

from his friends delivered directly to him.) Hybrid services are not discussed in this thesis

but their study is suggested as an extension to the work.

4.3.5 Composite services

Composite services are services that result from the concatenation of services in one of

the categories defined above. A hypothetical example of a composite service may be

named Call Catcher, comprising call-blocking and call-barring features: call blocking

would stop incoming calls and call barring would prevent outgoing calls. We consider

composite services a subcategory of each category of service defined above.

4.4 Discussion

Figure 4.1 depicts the classification of advanced services as proposed in this chapter. The

size of each region in the diagram does not reflect the number of services in each

category, as these can differ substantially. This choice of categorization does not

encompass all services, since there may be a service that does not fit in any of the above­

mentioned categories. As stated above, the main function of our choice of categories is to

organize the particular services created during the course of the research into a

conceptually satisfactory manner.

54

lI }blld

e.g ..
Call 101

Compnsnc

e.g..
Call I orv. ardmg

all Blol.kmg

Space of Services

e g.
U3 2J ·~IP

M ,CI'· IP

Figure 4.1 Advanced services chart

Composite Jm~:raC11\ e

eg ..
VOlct'n1Oll 1
k(,.'TIll l\\kr

There are other approaches to classifying services. For example, since some services are

harder to create than others, one could consider the dimension of complexity as a

foundation for classification. Interestingly, that would likely result in essentially the same

categories proposed and summarized above (see Figure 4.1): Call-related services are the

easiest to structure, requiring only basic knowledge of scripting languages; Interactive

services are more difficult to create, due to the unpredictability of user behavior and the

need to cater to different end devices; Internetworking services are the most difficult to

put together, because a developer must be proficient with two protocols. Even so, we felt

55

that using complexity as a basis for categorizations was unsuitable, because complexity is

transient or relative: once a standard framework is in place for any category of service,

service creation complexity will be immediately reduced.

However, we did consider another dimension, multimedia, whereby services would be

classified according to the amount and type of media support they required. We felt,

however, that this did not provide the necessary characterists to separate the different

servIces.

VOCAL categorizes services (called features) into calling or called [Vovida, 200Ia]. For

example, call forwarding is considered a called feature, while call blocking is considered

a calling feature. Again, we felt that this categorization did not provide the necessary

characterists for the organization of the service space explored in this thesis.

CINEMA's categorization of services is, in a sense, founded on a consideration of trust.

This is due to the fact that with SIP-COl one can run malicious scripts on the proxy

server, which can disrupt services. The amount of trust given to the service creator varies .

Service creators can be the owner of the server, a third-party service provider, or an end­

user [Lennox et aI., 1999b]. Administrators using SIP-COl scripts necessarily run mission

critical services; services from third-party providers may run some SIP-COl and CPL

scripts, while end-users will only use CPL scripts. Since the same approach to

classification did not cater for interactive services, it was not used in the present work.

[Anjum et a!., 2001] report another approach to categorization: determining whether the

service is public or user specific. For example, the 800-number (toll-free number) is a

public service provided through a central server. On the other hand, a speed-dialing

service that maps frequently dialed numbers to single digits is a user-specific service and

so is provided from the user's terminal. However, a voicemail service, which is both

public and user specific, is not accommodated by this categorization.

56

4.5 Summary

There are many services available in telephony today. The categorization of services is

regarded as a useful prerequisite to studying service creation in two SIP environments,

CINEMA and VOCAL.

We proposed an initial division into two groups, basic and advanced services. VOCAL

similarly splits up services, whereby basic services are known as "SIP-Based Call

Control and Switching," and advanced services are known as "Feature and Application

Creation" [Vovida, 2001aj. Although this type of partitioning is not evident in CINEMA,

the basic services discussed here are assumed to be fundamental to the CINEMA

architecture. We view basic services as ones that provide minimal functionality for any

telephony environment and are assumed to be available at all times, and advanced

services as those that need basic services in order to operate. Consequently, advanced

services are the focus of this thesis.

Advanced servlces have been assigned to various categories: call-related, interactive,

internetworking and hybrid (see Figure 4.1). Each category includes the subcategory

composite, where services that are the result of the concatenation of services in that

category are grouped.

Finally, a brief discussion explains the choice of categories, including other possible

approaches to categorization.

The next three chapters will investigate the three mam advanced servlCe categories,

namely call-related, interactive and internet working.

57

Chapter 5 Call-related services

5.1 Introduction

In this chapter we discuss call-related services as they were defined in Chapter 4. The

methods for creating this type of service are standard and widely used in the industry

today. The most popular methods for creating call-related services are SIP-CGI, CPL,

SIP Servlet API and JAIN™ API. The SIP Servlet API and JAIN API are being

developed within the JAVA™ Community Process. Here, we discuss only SIP-CGI and

CPL, since these are directly supported by CINEMA and VOCAL, respectively.

5.2 SIP-CGI

SIP-CGI is based on the Common Gateway Interface (CGI) for HTTP. CGI has been

used widely on the Internet to create services for the World Wide Web. CGI allows users

to input data onto a form and send the form to a web server. The web server invokes a

program to pass the data acquired from the user. The program will process the data and

send a response back to the user via the web server. For example, a form may be used to

get the list of fields that a user would like to view, and then pass this information to the

CGI script, which uses it to query a backend database. The script will retrieve the

information from the database and display it to the user. Web services were once created

using CGI. Since SIP is similar to HTTP, CGI was the likely candidate for creating SIP

services. SIP-CGI is defined in RFC3050 [Lennox et aI., 2001].

Since HTTP is based on a client-server protocol, a HTTP transaction usually consists of a

request and a response, while in a SIP transaction many responses can be generated from

one request. For instance, a SIP proxy server can proxy an INVITE message to the

various locations where a callee can be located. Each of these locations may respond with

either 'not here' or 'available and ringing'. The distinction between SIP-CGI and HTTP­

CGI is made at the level of the web server and SIP server. Notably, with HTTP-CGI the

58

spawned script is essentially running another program on the web server and can generate

more requests if it wants, but the requests that the spawned script generates need to be

handled by the script itself. This is not true for SIP-CGI. In SIP-CGI the script can

generate additional requests to various destinations, but the SIP server handles these

requests. This distinction is important to note because it confers restrictions on the type of

services we can create with SIP-CGI. The particular restriction pertains to the number of

requests, for the performance sake of the SIP server.

5.2.1 Basic model

SIP-CGI is modeled on the functionality of the SIP server. It tries to model what the SIP

server does by using CGI action lines.

The four basic functions of the SIP server are:

1. Proxying requests: When the server receives a request from a client, it must decide

whether or not to add new headers to the request and provide a list of servers to which it

must forward the request, and then do the actual forwarding of the request.

2. Returning responses: When the server receives a response from a request that it has

proxied, it must decide whether or not to add new headers to the response and then

forward the response back to the client where the request originated.

3. Generating requests: In this case the request originates from the server. The server

must compose the request in its entirety, including the headers and the message body, and

then forward the request to another server.

4. Generating responses: When the server receIves a request from a client it must

generate an appropriate response that includes the right headers and message body. Then,

the response must be sent back to the client.

59

S.2.2 SIP-eGI actions

The following are brief descriptions of typical SIP-CGI actions. These actions model the

functions of the SIP server described above. A SIP server supporting these actions is SIP­

CGI compliant.

1. Proxying requests: The action line for proxying a request IS supported by CGI­

PROXY-REQUEST. An example of such an action is:

CGI-PROXY-REOUEST sip:ming@csmsc01ict.cs.ru.ac.za SIP/2.0

Contact: sip:g961 0645@cspg34.ict.ru.ac.za

The example shows a typical output from a SIP-CGI script requesting to proxy the initial

request to a different SIP URL. The SIP server will receive this output and process it to

determine if it is a valid SIP-CGI output. Once it determines that it is a valid output, the

server will proxy this request to ming@csmsc01ict.cs.ru.ac.za, and adds the contact

header field with the contact g961 0645@cspg34.ict.ru.ac.za. The general form of a

proxy request is:

Proxy-Request = "CGI-PROXY-REOUEST" SIP-URL SIP-Version

The action line is similar to a SIP request line, which simplifies parsing.

2. Returning responses: Returning a response is more complex than generating a response

because a server can potentially receive more than one response as the result ofproxying

a request. Some sort of state is needed to maintain control over the SIP transactions. STP­

CGI uses a method similar to the HTTP-CGI cookies system. A unique cookie or token is

passed to the script as an environment variable for each response that the server has

received. The script uses this environment variable as a means to determine which

response is to be sent back to the client. The client is the user at the location where the

request originated. For example:

CGI-FORWARD-RESPONSE abcdefghij SIP/2.0

will return the response with the cookie labeled "abcdefghij" back to the client. Cookies

are thus stored on the server.

60

3. Generating requests: A SIP server can also be responsible for the process of generating

requests that originate at the server. for example in the case of multimedia conferencing

the server is responsible for inviting users to a particular conference. The server creates

requests on its own, including the message headers and the message body. It is also

responsible for processing the entire transaction. This is not discussed in the RFC since it

is outside the scope of SIP-CGI.

4. Generating responses: Simply using the status line of a SIP response will generate

responses. As a result, that status line will be considered an action line for a SIP-CGI

output, and the SIP server will generate the rest of the body of the SIP response. for

example,

SIP/2.0 200 OK

will create a "200 OK" response to the original request.

Other available SIP-CGI actions are CGI-SET-COOKIE and CGI-AGAIN. CGI-SET­

COOKIE sets the cookie or token described in CGI-fORWARD-RESPONSE. All

subsequent script invocations must use the cookie set here. CGI-AGAIN enables the

script to be executed again, after receiving subsequent requests and responses belonging

to this transaction.

Besides using the available SIP-CGI actions, SIP-CGI scripts can also modify header

fields. In the example of the CGI-PROXY-REQUEST (item #1 above), the "Contact"

header field was modified to contain the SIP URL of the person to be contacted. Other

available SIP-CGI header fields are CGI-REQUEST-TOKEN and CGI-REMOVE. CGI­

REQUEST-TOKEN assists in matching responses to a proxy request by passing a token

as a header field in a CGI-PROXY-REQUEST. Subsequent responses to the proxy

request will pass this token in a meta-header. The CGI-REMOVE header field allows the

script to remove certain header fields from the outgoing request or response.

61

SIP-CGI scripts can also be used to invoke other programs similar to that capability of

CGI for HTTP. This will be demonstrated in context of the call-related services

implemented for CINEMA (see section 5.3).

5.3 CINEMA and SIP-CGI

The entire CINEMA SIP server was written in C language, including the different

libraries it uses, such as the libraries libeine and libsip. The libeine library is responsible

for creating the network sockets, resolving host names to IP addresses, handling requests,

logging files and handling errors. The libsip library is responsible for authenticating SIP

requests, handling SIP requests and responses, parsing SIP messages and performing

basic database queries for user lookups.

Appendix C contains file listings from the libraries libeine and libsip and describes their

functionalities.

Figure 5.1 illustrates the internal components of the CINEMA SIP server. It is a basic

flow diagram showing how the server will handle a request. In this example, the server

simply proxies the request to another client. Udp.c contains functions such as

Recei veUDP that can handle the network connections. Request.c handles the different

SIP requests. Request.c uses the libdb++ library to check if the user who is issuing the

request is registered and what kind of request he is allowed to use. Method.c then

determines what kind of policy to use and calls execute_policy () which executes

the policy, while execute_policy () is contained in policy_core.c. There are four

types of policies that the policy _ core.c can execute, namely the cgi, proxy, redirect and

route policies. Each of these policies can spawn a thread to handle a SIP client; for

example, in the diagram, proxy.c spawns the client.c. The main job of client.c is to proxy

the request. The client.c is written as an explicit state machine that changes its state

depending on the response it receives after proxying the request. Each of the policies can

control the behavior of the state machine.

62

SIP Server

•
Figure 5.1 CINEMA SIP-CGI call now

The SIP-CGI scripting capability is built into cgi.c. Conforming to the RFC, SIP-CGI

scripts are executed when a message arrives. To do this, cgi.c must:

1. Load the environment variables that the script needs in order to execute.

2. Load the script, passing it the environment variables .

3. Execute the script.

4. Get the output from the script.

5. Parse the output from the script and validate it as proper SIP-CGI output. In order

for it to be recognized as proper SIP-CGI output, it must generate one of the

outputs defined in SIP-CGI actions .

6. Perform any header field changes required from the output. For example, the

script might require that the contact headers be changed in the SIP message (as

described above in the example of the CGI-PROXY-REQUEST, section 5.2.2).

The SIP server will then make the necessary changes on the outgoing SIP

message.

63

7. Finally, cgl.C will perfonn the action of the script output, and either proxy,

forward or send the message to the required SIP URI.

5.3.1 Simple call-blocking script

One advantage of SIP-CGI scripts is that they can be written in any scripting language.

Below is an example of a SIP-CGI script written in Perl:

n! C,/Perl /bln/ e rl
tt Reject messages whos 'From :' acches ' slp :ming@ ' by _e s pondl ng wI th
; 603 rej ect message .
print "SIP/2 . 0 100 Wait \ n \n ";
l f (d ef ined SENV{SIP_ FROM) && $8NV{SlP_FROM} :- "sip ,ming"")

r i nt "SIPj2. 0 603 I don ' t \-1ant t o ca k t o you\ n \ nl1;
}
else {

print "S- P/2.0 200 OK lets t alk\n\ n " ;

This is a simple script that has responded to the SIP request firstly with a 100 Wait

response message, then, once it had detennined that the person calling was ming, it

responded with a 600 I don't want to talk to you rejection message. If the person

calling were not sip: ming, then the defaul t action would have accepted the call. Notice

that the SIP-CGI action lines tenninate with "\n\n", to enable the server to detennine their

end.

The server executes the script. The output in this case is:

SIP/2.0 100 Wait

SIP/2.0 603 I don't want to talk to you

The server perfonns the required actions by generating these SIP messages:

SIP/2.0 100 Wait

Via: SIP/2.0/UDP 146.231.121 .130:5060

From: sip:g961 0645@146.231 .121 .130

To: sip:ming@cssipict.cs.ru.ac.za

Call-ID: 751008035@146.231.121 .130

CSeq: 1 INVITE

64

Date: Thu , 27 Dec 200110:25:46 GMT

Server: Columbia-SIP-Server/1.0

Content-Length: 0

SIP/2.0 603 I don't want to talk to you

Via: SIP/2 .0/UDP 146.231 .121 .130:5060

From: sip:g961 0645@146.231.121 .130

To: sip:ming@cssipict.cs.ru.ac.za

Call-ID: 751 008035@146.231.121.130

CSeq: 1 INVITE

Date: Thu, 27 Dec 2001 10:25:46 GMT

Server: Columbia-SIP-Server/1.0

Content-Length: 0

It is the server that generates these responses and sends them back to the caller. The caller

was ming@cssipict.cs.ru .ac.za and he was trying to call g9610645@cssipict.

cS.ru .ac.za. The server is cssipict.cs.ru.ac.za. CINEMA has provided some interfaces

for users to upload scripts onto the server. Users can either upload their scripts via the

web interface or via the sipc user agent. If users decide to use sipc they then upload

the scripts by sending a REGISTER message, containing the script, to the server. The

REGISTER sequence ensures that the uploaded script is from the authenticated user, but

it does not determine that the uploaded script is a valid script. The server will execute the

script; if the script times-out or produces an invalid output the server produces a 500

Server Error message to the caller.

5.3.2 SIP-eGI HTML script

To further demonstrate the capabilities of SIP-CGI, other scripts are provided below. The

first script allows the programmer to check the environment variables that are passed to

the script, and so are available to be used; for example, the programmer can use this

script if he or she wants to know what SIP fields can be accessed. This script also

demonstrates how one can add different content-types to the message body of the SIP

65

message and it shows the ability of SIP-CGI to generate dynamic content. This is similar

to CGI for HTTP.

!c , / pe rl/ bi n / pe r l -w
#pr i nt out s ome con e nt - type s tuff
$myenv = I1ming \ n II i

" forea ch $env (s ort keys " %ENV) (
$mye n v . = ll $env= \ " $ENvJ $env} \ '~\ n n ;

$body = "<ht ml>\n u
;

Sbady .= l1 <p > MCP.SI EH
Sbody . ~ " </p> \ n";
$ha dy .= $myenv ;

"\ n " ;

perl

Sbady ' . =
$body "< / html> \ n \ n " i

91 \n" i

print
print.
pr int
print

"SI P/2 . 0 600 We b stu ff\ n ";
"Content- t ype, t ext ! html\n " ;
"Content -Length , " leng t h (Sbody) ,
Sbody; •

1

~:

U\n\ n" ; ,
In the first part of this code there is a foreach loop that goes through the environment

variables and stores them in the array $myenv. $body contains some html code along

with the environment variables. This $body is printed as the body for the SIP message

response.

The response received on the client side is shown below:

SIP/2.0 600 Web stuff

Via: SIP/2.0/UDP 146.231.123.15:5060

From: ming@csmsc01ict.cs.ru.ac.za

To: sip:g9610645@cssipict.cs.ru.ac.za

Call-ID: 900645918@146.231.123.15

CSeq: 1 INVITE

Date: Wed, 13 Nov 2002 14:05:59 GMT

Server: Columbia-SIP-Server/1.0

Content-Length: 779

Content-Type: text/html

66

The body of the SIP message contains html code. With an html-enabled sipc user agent,

one that is able to view and display html, the body can be displayed as a web page. This

is shown in Figure 5.2.

~(:\My Documents\wl1tt'up\ pptjp!)\ lesUrtml - Mkro1o(lR InI~t f~'

- - - --
~£.¥ li) [1] a; t\search tiJ F~or_e$

Addr~ I~ (:\MY Docunents\writeup\,pptlpo\test.html IlM ~"(~. HotsnaiI ~Y~I' i"""I'l -_ !!1VOCAl.CcdforcsPQ34k:t.,uacz.

ming
CONTENT _LENGTH=lt l 29u

CONTENT _ TYPE="applica~on/5dp"
GATEWAY _INTERFACE='$IP-CGI/l.l"
REfVOTE_ADDR="146.231.123.15"
REQ..EST JVETHCO="INVITE"
REQLEST _LRI ="slp:g9610645@<:ssiplct.cs.ru.oo.za"
SER VER_NAM: ="cssiplct.cs .ru.OO .za"
SERVER_PORT ="5060"
SERVER_PROTOCOL='$IP/2.0"
SER VER_SOFTWAAE ='I:olumbia-SIP-Server /1 .0"
SIP _CALUD="900645918@146.231.123.15"
SIP_CONTACT ="sip:mlng@146.231.123.15:5060"
SIP_CONTENT _LEI\GTH="129"
SIP_CONTENT _ TYPE="appllcation/sdp"
SIP _CSEQ="1 INVITE"
SIP _DATE='Wed, 13 Nov 2002 14:03:22 GMT"
SIP _EXPIRES ="3600"
SIP JR,Ofv1=uming@CsmscOlict.cs,ru,ac,zau

SIP _PRIORITY='hormal"
SIP _SU3KT ="clecr msg"
SIP _ TO=''slp:g9610645@cssipict.cs.ru.ac.za''
SIP_VIA='$IP/2.0Jl,OP 146.231.123.15:5060"

Figure 5.2 CINEMA HTML code output

5.3.3 Username lookup service

The next script demonstrates how SIP-COl scripts can be used to do certain backend

operations, for example database queries .

I!c, /perl / bin/perl - w
#my S I P - CGl scnpt to test db a ccess
use OBI ;
#a subrouti ne to print ou errors
sub fail {

67

my($status, $reason) = til •
pnnt "SIP/2 . 0 $status $r~ason\n\n " ;
$sth- >firli sh;
$dbh - >dlsconnect ;
exit 0 ;

print "SIP/2.0 100 W it\n\n";

To access databases in Perl the DBI Perl module must be installed on the server. To

access MySql databases in particular, the DBI::MySql driver needs to be installed as

well. Once the module is installed, the statement "use DBI;" will load the right drivers

when executing the script.

~t ry to conne c t to database nd mak e a query
Sdatabase := "sip !!;
$hostname = nC ssiplct.cs . ru . ac .za lt

;

$uger = liming II ;

$password = "mysq12000" ;
:tuse "500 " response message t o print out errors from the server s ~de
$dbh:= DBI - >connect(nOBI:mysql : Sdatabase:Shostname ",
$user, $pa ssword)
or fail ("S0 0 " . "Can ' t conn- ct n);

Ssth = $dbh->prepare ("sel ect " from contac ts ")
o r fa i l("500 ", "Can ' t prepare ") ;
$s th- >execute ()
or fail {" 500 ", !'Can't execute ");
#if it gets pas- all hese stateillents
#to tell the tlSe r that he is c on.necte
print "SIP/2 .0 100 Passed a ll the sql

j ust print out a 100 message
to the database

stat emen s \ n \ n!l:

The name of the database is stored in the variable $database. The host name of this

database server is cssipict.cs.ru.ac.za. A user name and password are required to connect

to the database. The statements connect () , prepare () and execute () are SQL

statements employed to access the database. The print statement prints out a SIP

message, noti fying the user that he has successfully connected to the database.

nc heck i f the person ' ca l ling 1 8 in the contacts list
Smyuse rname = $ENV{SIP_CO~rACT} ;
$c hec kflag = 0;
tlget a r ow from the resul t and check. It
while($resp tr = Ssth - >Ee t chro w_ hashref ()
{

if «$resptr->{ " c ontact ") eq $myusername »
{

#call a ccep1:ed
:;checkflag = 1 ;

68

if ($check flag == 0)

{
fa i l (11 600 ", nyou are no t on the contacts Ii st: II) ;

)
#c l o s e the connectio n t o t he da t aba s e
Ssth - >hnish;
$dbh ->d isconne ct;

$myu s e rname is storing an environment variable, the SIP_CONTACT field. The

usemame is checked by a whi le statement that goes through the output from the SQL

query to see if the user is in the database, printing a SIP-COl error statement if the user is

not in the database. If the person calling is not on the list he or she is rejected and sent the

response (600 You are not on the contacts list) or else the call is accepted.

This SIP-CGI database query raises an issue that should be clarified. The database query

will require extra time to perform if the user database is large (in this scenario there were

only five users in the database). The time delay for the SQL statement to take place could

adversely affect the performance of the SIP server. The CINEMA SIP server is

responsible for establishing real-time communications, as the time it takes to establish a

session is important. Therefore, a time limit is placed on the execution of the script. If the

script times-out the server sends a 500 server timeout error to the client.

5.3.4 Missed call service

The next script demonstrates how SIP-COl can be used to interoperate with other types of

services. This script allows users to use the Short Messaging Service (SMS) gateway, set

up by Guy Halse at the Department of Computer Science, Rhodes University, to notify

themselves of missed calls. A user modifies this script to match his or her cellphone

number and uploads the script onto the SIP server.

~ ! C , / Pe~1/b1n/per l

#load t he correct modules
use Socket;
use M1 ME " Base64;
#a s ubroutine to print out e rrors
s u b f ail {

69

my($stat.us, $reason) ~ @_'
print. "51 P/2.0 $stat us Sreason \ n\n" ;
exit 0 ;

#colllpo s e the soap message
$username '= ' 5ms I ;

Spa ssword = ! sms f ;

SARGV[O) = '083681604 5 ' ;
#the person who is try i ng to ca ll you
$ARGV [l J ~ $ENV{SIP_CONTACT) ; ,''j:.
$AUTli= 'YXNobGVSOmFzaGxl eQ== ' ;

,
' ..

$msg Q: "<?xml version- \ 1I 1.O\ " e ncoding =\ l! i so- 8 65 9- 1\ " ?> \ n ";
Smsg . ~ " <soap , Enve lope xmlns,soa p= \ " h ttp , // "w.w3 . o rg/2001/1 2/soap-
envelope\ 'I >\ n " ; k<

$msg . = 'I <soap : 90dy> \ n "; ,;:
$msg . _ II <sms:sms
xml ns :sms =\ '' http: / / omni scient .lc t . r u , ac.za /sms/sms .xsd\ lI >\ nll;
H (defined ($ARGV [O]) && defi ned ($ARGV[l J)) { "

'i $msg . ::: 10 <8ms : sendsms>\n " ;
$msc .= II <sms:phone>$ARGV[O] </sms :phone ;. \ n ll

;

Smsg . - <s ms :rnessage.>$ARGV [l } <!sms : iP.€>ssage >\ n 1J
; .

$rnsg ._ ~/sms : sendsms>\nll ;

Smsg . = </ slns : sms>\n" i
$m5g .~" < /soap , Body>\n "; . II
Smsg ._ 1l </ soap : Envel ope> \n lli f 0:;

~se c: up a socket connec t:.ion and send the s o ap message
s ocket (T, PF _ I NET, SOCK_ STREAM, ge t protobyname (' c c p ')) o r f a il (" 500 " ,
lIsocket: $! ") i

connec t (T , s o c kaddr i n (80 ,
fa il("5 00 " , " connec t ~ $! II) ;

se l ect « se l e ct T) , $1 =l)[O J) ;

i ne t_aton ('owniscient. ict . ru . ac , za')))

pr f nt T , '1 POST http : //omniscient . ict . ru. ae . za/sms/
print T 1IJ',uthori za t ion: Basic " . $AUTHi
print T "Host : omn i scient.ict .ru . ac. za\ n ";
print T "Use r.-Agent: test-sms / O.l\n";
pr in T "Content - Length : " l e ngth($msg i
print T $msg , "\ n"; ' .. ;

HTT P/1 . 0\n";

';t

o r

The SMS gateway is set up using the interface Simple Object Access Protocol (SOAP).

SOAP is used to establish a common interface for other services to access the SMS

gateway. More information about SOAP can be found at the [SOAP, 2000] website;

information about how the SMS gateway was built is given in [Halse and Wells, 2002]. A

cellphone number and the message to be sent are contained within a SOAP message. The

SOAP message is then sent within a HTTP POST message.

#compose the me ssage to be s ent b ck t o the c l ient
Sbody = II <ht ml ">\n " ;
$oody . = II MCHS I EH sendi ng a SOl S t o the user\n "j
$bod y . = $msg ," \ n";

70

, .'!

Sbody . = 11 - - - - --- --- - - -- - - - - - - - - - - - - \n ll i

"get a l i ne from the socke t
Sbody <T > i
Sbady .= "</html '>\n" i
Sbody .= " \ nll;

" 'I

print.
pr int
prin
print

11 SIP/2 . 0 600 I canl t ta l k right now\n t,
;

HContent- t ype : tex t /ht ml \n ":
" c o m 'e nt - Len g t h , " l ength ($body) , " \n\ n"; , '51'
Sbo dy ; ~ t

When the script sends the SOAP message it is actually interacting with a HTTP server,

making a request to it and waiting for a response. The response from the HTTP server is

captured inside a html message and is sent inside a SIP response message. Executions of

this script can potentially time-out due to interaction with the HTTP server.

5.4 Call Processing Language (CPL)

Due to a number of problems associated with SIP-COl, mainly involving how a call is

established and security issues, SIP-COl is not suitable for end-users in telephony

services; therefore, a more restrictive language was needed. Call Processing Language

(CPL) was developed by the IETF as a solution to this problem [Lennox and Schulzrinne,

2000a and Lennox and Schulzrinne, 2000b]. CPL is used to describe and control Internet

telephony services. Although it is not a complete language (i.e. , it does not have loops or

variables to make it Turing-complete), it may be easily read and edited by users. The

eXtensible Markup Language (XML) was chosen to describe CPL. XML is a meta­

language used to describe other languages; it is extensible and allows developers to

define what data should be in a CPL document. That data is stored in nested structures

allowing other applications to use the data as they see fit. CPL is also protocol­

independent and can be used with SIP or H.323.

5.4.1 CPL model

The basic structure of CPL is that of a tree consisting of nodes and subnodes. The nodes

denote the actions to be taken when an event arrives; the subnodes can denote subactions

to be executed. The actions to be taken are divided into 4 groups: switch, location,

signaling and non-signaling. Sub actions focus each action; for example, within a switch

71

action other subactions are available, such as address, string, time or priority switch.

Figure 5.3 shows the basic structure of CPL. Incoming and Outgoing are top-level

switches. Incoming denotes the actions to be taken when a call arrives for a particular

callee. Outgoing denotes the actions taken to handle a caller's outgoing calls.

Figure 5.3 CPL model

Below is an example of CPL script showing some nodes and tags:

<?xml vers i on:" l. O" ? >
< ! DOCTYPE cp l PUBL I C "- //18TF/lDTD RFCxxxx CPL L O// EN" " c pl. dt ." >
<:cpl >

<9 bac tlon id="vo i ce ai ">
<l ocat ion ur l = "sip : jones@vo l c email . e xa mp l e. com!' >

<redirect / >
</location>

</suba tio n>
<l ncomi ng>

<addres s - s wi tch Eie l d=" origin H subfie ld=lI hos t ">
<address subdomaln-oE= lrexample . comu >

<loca t i on ur . "si p: jones@jonespc . e xample.com")­
<proxy timeout ="1 0 Il >

<bus y > <sub ref =" vo l cema il n /> </busy >

72

<noan swe r> <sUD re f= "voi cema i l" /> </noanswer:>
</proxy >

</ l oca t l on >
</add ress >

</addres s - swi t ch ~

< / ~ncoming> ~

</ epl> '

This sample CPL script is for Mr. Jones who works at example.com. He has written a

CPL script that will filter his incoming calls. Mr. Jones would like calls from his

company, example. com, to be immediately delivered to his Pc. If he is busy with another

customer or does not answer the phone, he would like his calls to be redirected to his

voicemail box. If none of the actions apply, the call is forwarded to Mr. Jones 's usual

location.

The script that he has written will filter depending on the origin address of the calls

(field="origin") and the host name portion of the address (subfield="host"). The

subdomain-of field will match those host names whose domain names contain

"example. com"; in this manner, calls from "sales.example.com" will match and so will

be processed. The location urI adds the SIP URL to the location set and this will be used

for proxying the request. The proxy action tag contains a timeout value to indicate the

amount of seconds to wait before the call is considered not answered. The subaction node

does the redirecting of the call to Mr. Jones 's voicemail box. If none of the actions have

taken place, a call is processed in the normal manner by being forwarded to Mr. Jones 's

usual location.

5.5 VOCAL and CPL

The feature servers in VOCAL use CPL scripts to describe the features of the system.

Features are the same as services. Features in VOCAL are classified into two categories,

namely Calling features and Called features. Calling features are those activated in an

outgoing call , such as Caller ID Blocking and Call Blocking. Called features are features

that are activated in an incoming call; examples are Call Forwarding and Call Screening.

73

The operation of a service or feature is as follows:

1. The user configures, via the web interface, a service.

2. This service is stored as a CPL script on the provisioning server. When a call

comes in or goes out the redirect server is contacted.

3. The redirect server queries the provisioning server to see if a feature is enabled for

that user, then determines to which feature server it must redirect the request.

4. The request gets redirected to a particular feature server.

5. A particular feature server queries the provisioning server to get the CPL script

enabled for that user, compiles it to an executable one and stores it in the cache so

that at the next request it need not query the provisioning server again. A call­

blocking feature server will store the call-blocking feature for the user while the

call-screening feature server will store the call-screening feature for the user. This

differentiates the various feature servers.

All of the operations of the serYIces described In the following sections follow the

sequence of steps just described.

5.5.1 Call blocking

Call blocking is a calling feature that is activated on an outgoing call. This service allows

users to restrict calls. For example, the service can be used to block long-distance calls.

Figure 5.4 shows the sequence of SIP messages for the call-blocking service. The

following explains the sequence of events depicted in Figure 5.4 :

1. The user agent sends an INVITE message to the Marshal server, because the user

is requesting a call to an external number.

2. The Marshal server proxies the INVITE message to the Redirect server.

3. The Redirect server responds with the message "302 Moved Temporarily", which

contains the URL ofthe Feature server that the Marshal server must try next.

4. The Marshal server acknowledges the message by sending an ACK message.

74

5. The Marshal server forwards the INVITE message to the Feature server. The

Feature server receives this INVITE message and contacts the Provisioning server

to get the CPL scripts for the particular caller.

6. The Feature server executes the CPL script and determines that the number that

the user is trying to call is out of bounds and sends a "403 Forbidden" message.

7. The Marshal server acknowledges the message by sending an ACK message.

8. The Marshal server proxies the message "403 Forbidden" back to the user agent.

The user agent will then respond by acknowledging this message.

VA I [Ms l I RS I r FS t

8

MS"" Marsha l server

RS = Redirect server

PS:: Provisioning server

FS :::: Feature server

UA '" User Agent

6

Figure 5.4 VOCAL call blocking

r PS I

Below is the CPL script generated by the Provisioning server. The output has been

formatted for easier reading:

<?xml vers i o:1= "1.0 " ? >
!DOC':'¥PE cpl SYSTEM "cpl. dtd " >

<cpl >
<sllbact~on id="re jectcall ">

<reject reason="feat.ure a t vated" status= "reject 'I >

</rejec t>
</subactio n >

75

<outgo i ng>
< ddress-swl.tch fl e Id=" orlg >na l - des t inat l on " s ubfield=" us r ll >

<addr e s s s ubdornain -of="1 900 ">
<s ub ref ="rejecccall t, >

</ s ub>
</ addres s >

address s ubdomain-of= "9 76 1t >

csub r ef ="re jec ca ll" >
</sub ,

</ adoress >
<address subdomain - o f ="i l1 >

<sub ref- "r-ejectcall. ">
</sub>

.::./ad ress>
<otherwise>

<l ookup cle r=lIyes " sour ce="regl.stration" Cl.meout= 1l 2 ">
<success>

.::.proxy or erin =" i rs c -only" >
</prox y > r

</ s ucc e ss>
<not fou..l1.d >

<sub re f=" r e j e ctcal l ll >
</ sub>

c/not f ound >
</ l o o kup , '

c/ot herwi s e >
c/address-switch>

</out.going>
</cpl

"

,

The CPL script generated by the Provisioning server uses address-switches in order to

filter outgoing calls. (Address-switches will switch depending on the address that is

received.) If the script sees numbers such as "1900286" and "97612345" then the call

will be rejected.

5.5.2 Call screening

Call screening is a user feature that screens incoming calls and allows the user to filter

out unwanted ones.

A SIP messages diagram for call screening would be similar to Figure 5.4 depicting call

blocking, except that the INVITE message could come from a user agent or from another

Marshal server. Also, the Redirect server may contact the Provisioning server to get the

contact list for the callee. The number of messages would remain the same, from the

76

callee's point of view, but if the caller had additional CPL scripts, for example the call­

blocking script, the total number of SIP messages for this transaction could double.

The CPL script for the call-screening feature is similar to the CPL script for call blocking,

except for the incoming node;

<ulcomi ng>
caddr ess - s wit6h f i e ld= "o rig i n "

<a ddress 8ubdoma i n - of", "200Q H>
<SlID ref _ "rejectcall " >

c::/ sub > ,'ff

</ad"res s > I~

'.
subfie ld =t' user " ~

This code segment will filter out calls coming from users whose identifier starts with

"2000".

5.5.3 SMS missed call service

This service is similar to the "Missed Call Service" implemented in CINEMA. It allows a

user to be notified, via SMS, of any missed calls. To do this, a new extension had to be

given to the CPL. The chosen extension was:

<Isms >

The chosen extension denotes the destination of the SMS via the destination attribute, and

the message to be sent is denoted via the msg attribute.

In order to make this extension to CPL, modifications were made on the CPL parser and

the feature server. Vovida CPL documents [Vovida, 2001b] explains how CPL scripts are

transfonned into finite state machines programmed in C++. It also explains what files

must be modified in order to extend CPL.

First, the SMS CPL extension was assigned to the category "Other actions" since no SIP

signaling messages are required for sending the SMS. Next, the extensions to CPL were

77

modified in CPLFeatureBuildeLcxx, which creates the Document Type Definition (DTD)

for CPL. These two modifications are shown below:

oF i le « "<!-- Other actions _ - ::o il « endl ;
/Imchs ieh ad ' ed sms
oFile « "<! ENTITY % Ot. erACtlCn Imail llog l sms l :;o il « end1 ;
oFile « e ndl;

oFile « "<! - - Simple Messagi ng : Simple Messag~ng - -:~ " « endl;
//rnchsieh required here to describe the no e
oFile « H< ! ELEMENT 8ms (%Node ;) > 11 « endl;
oFile « "<! ATTLIST sms" « endl;
oFil e « " de st i nation CDAT.Z\ #IMPLIED " « endl;
oFile « " msg CDATA #IMPL IED" « endl ;
oFile « II> " « endl;
oFile « endl;
oFi l e « endl;

Next, actual headers must be added for the CPL parser to parse the new CPL script This

was done in CallProcessingLaguage.cxx. The attributes of the SMS tag (destination and

msg) are added in this file.

const char' CPLNode5tr [J

"sms",//mchsieh sms tag

} ;

I/mchsi eh number of attributes for he 5MS tag
cons uns igne d inc smsAttrTableSize ::a 2;
const char* smsAt.tributesTable {] ;:;:

"dest i nation ", "msg lt

) ;

Next, the CPL parser must be told what to do when it sees a SMS tag. This was done in

CPLInterperter.cxx:

boo 1
CPLlnterpre er: :nodeStar t(int nodeFound, x ml NodePtr ptr)
{

case CPLNode5MS :
~etllrnValue - process5M (ptr) ; llmchsieh
break ;

78

When the interpreter sees the CPLNodeSMS it calls the processSMS function.

//mchs i e h the p roce ssSMS function
bool !

CPLlnterpreter : :processSMS(xmlNodePtr per

Spt r < CPLOpSMS > -' aNodeo ne'.-.I CPLOpSMS;
prc cessNodeAttributes(a Node, ptr ,

smsAttrTableSi ze) ; ~, ~
I/ Add l og o pera tor t o c urrent state machine
bo o l resu l t . rnyCplRuildStatus- >nodeEnt ry {

SimpleOp) ; ~

II F.dd default action if no node follo' s
if ((result 1= fals e) && (ptr- >child r en

return p rocessDefaultAction(ptr) ;
else
" re turn result;

~

smsAttr i butes'ra ble I

aNode, CPLBuil dStatu8::

NULL)

After that, processSMS creates a new node, the CPLOpSMS node, passmg it the

attributes smsAttributesTable and smsAt trTableSize.

Appendix D contains the code for the CPLOpSMS node. The functionality of the node is

to establish a connection to the SMS gateway, similar to what was done for CINEMA; it

will compose the SOAP message to be sent using the values from destination and

msg in the CPL script and then send the message via TCP.

VOCAL provides a useful test utility called "cpl Test" to test the validity of the CPL

script. cpl Tes t was used to test the following SMS CPL script:

<'?xml versio!"!= "l . O" ? 'i '< \If, 1W

<! DOCTYPE c p l PUBLIC "- I IIETF//DTD RFCxxxx CPL 1.O//EN" "c pl . c.t.d ll >

<cpl>
<subacti on id= " missed " ~

<6ms destination=11 083681 6 04 5 11

<I sms>
</subact.ion :--

c
msg=l1 Mi s sed Call I! >

1>
i ncomi ng > ¥! "Ii

<location url="sip:2 000@1 46 , 231 . 12 1 . 142 : 5060 ; user;;-phone ">
<proxy timeout= "S"> .\1 ' '>-, ;t,

< usy> . ~
"-----

79

,
</busy>
<noanswer >

<sub ref= "mi ssed "'></ sub>
< / noans· er >

<fai l ure>
<sub ref= "mi ssed" ></ s ub>

</failure>
</pro xy>

</ l ocati on>
/ i.n comi ng:>

</cpl>

This specific script will first proxy the request to

"sip: 2 000@146 . 231 . 121 . 142 : 5060; user=phone".

Depending On the result of the proxy, if the ca11 is not answered within 5 seconds it will

be considered not answered and an SMS wi11 be sent to "0836810645". This belongs to

the switch <noanswer>. If the user is busy or the ca11 can not be completed an SMS

will also be sent. This belongs to the <busy> and <failure > switches. Figure 5.5

shows the SMS that notifies the callee of a missed call.

Figure 5.5 Cellphone missed call SMS

80

5.6 Call-related services discussion

Both CINEMA and VOCAL provide excellent facilities to create call-related services.

CINEMA provides SIP-CGI so that users may write their own services; programmers can

create new services in VOCAL by making extensions to the CPL language and the GUI

allows users to personally customize the service. However, several significant similarities

and differences between the two environments exist.

Similarities-

Considering the architecture designs of CINEMA and VOCAL, we recommend that each

SIP endpoint be registered with the system and that all calls go through the sipd or

Marshal server, respectively. (Registering with CINEMA or VOCAL provides the user

agents with basic services such as directory services, whereby users can call each other

using aliases instead of IP addresses.) Accordingly, if all endpoints are registered with the

system and all endpoints have to use the s i pd or the Marshal server in order to make

calls, then only one SIP-CGI or one CPL script would be needed in order to service the

call-blocking or call-screening services, respectively.

However, the SIP RFC does not enforce the rule that all endpoints must use their servers

to make calls. In fact, users can bypass the servers and call each other directly, thus

avoiding the call-blocking or call-screening service enabled by callees.

The authors of the SIP RFC designed SIP to focus mainly on session establishment and

so use the Internet approach, in which is there is no central point of control; therefore, it

depends on the administrator of the network to enforce users to use a proxy in order to

make calls. This suggests the need to put a policy in place whereby all external calls

coming in or going out have to pass a Gateway Marshal Server (GMS). The GMS would

act like a firewall. The gateway would filter unwanted incoming calls from external

sources and it could also act as a proxy for outgoing calls. Then, it would depend on the

user to choose whether or not local calls are put through the GMS.

81

Differences-

Due to a lack of central control of the calling process, CINEMA has provided SIP user

agents with a mechanism whereby a user can load scripts directly to the user agents and

have them activated upon receiving a call (known as local scripting capability). This

ensures that the service is activated when the call is coming from an external source or

from the server. VOCAL does not provide such a mechanism.

The local scripting capability in CINEMA introduces the problem of mobility. For

example, if a user decides to move to another user agent, how would he or she move the

settings and script to the new user agent? Introducing a centralized script provisioning

and profile storage server for CINEMA could solve the problem. This would allow one to

log onto the server from any user agent and download one's own profile plus the script

that has been stored on the server. This would ensure that one script is available for the

client and the server. Of course, only user agents that are SIP-CGI capable would be able

to access this feature or service. This server could be introduced as another service.

In CINEMA's SIP server (sipd) there is currently no support for outbound SIP-CGI.

This means that users cannot upload a script onto the server that would block outgoing

calls. Various scripts were tried to see if scripts could be executed on outgoing calls,

including:

iI ! c: /perl/bi n /perl - w
#C Don 1 c a llow calls t o ' sip :g 96 1064 5@ ' by r espo nding wi th ",,'
If 600 Call i s not allowe d . 'r'

if (d e fined SENV {SIP TO) && $ENV(SIP_TO} = - ,, " s i p: g9 610 6 45@ ")
print "81P/ 2 . 0 60 0 Call is not allowed\n \ n"; I.

• I
eI."

This script, if executed, would match the 81 P _ TO field in the SIP message in order to

block outgoing calls. Although the script was uploaded onto a sipd server and sipc

user agent, neither of them were executed on outgoing calls, but only when an incoming

call arrived. Through correspondence with the researchers at Columbia University, we

established that the outgoing SIP-CGI capabilities had not been implemented but the call

blocking (outgoing) capability will be available when the CPL feature is incorporated

82

into CINEMA. In VOCAL, because CPL is supported, call blocking of outgoing calls is

already enabled.

In VOCAL approximately eight messages are required to complete the call-screening

service, as compared to four messages in CINEMA (see sections 5.5.2 and 5.3.1,

respectively). This is a substantial difference. The eight messages are viewed from the

callee's perspective, and the number of messages could increase if we included the

caller's features . For example, if the caller has enabled call blocking in regard to outgoing

calls, his call has to go through the call-blocking feature server before the Marshal server

can forward the call to the callee. This increases the number of messages by seven; each

of these messages must be processed on the server, potentially creating significant

perfolmance impact on the server and unwelcome delays for users. The distributed nature

of VOCAL is the factor responsible for introducing these extra messages. Yet, the

system's distributed nature provides scalability and these delays are acceptable in terms

of the extra number of users that VOCAL may provide.

In terms of the security of the system, SIP-CGI allows users to run basically anything on

the server and thus undermine the system's security. CPL provides a much more secure

service deployment model by restricting the user to a smaller, better-controlled set of

services. On the other hand, CINEMA provides a more flexible environment to create

services, because the user is not restricted to what is made available by CPL.

In terms of services control, VOCAL presents a centralized control model, as all the CPL

scripts are stored on a centralized server and the administrator can manage them from

there; in CINEMA the administrator has no control over which scripts are executed since

SIP-CGI scripts can be located on the user agents.

It seems that service creation in CINEMA is modeled closely on the Internet model, by

virtue of providing a facility for users to run scripts on the server and by virtue of

maintaining no centralized position of control. In VOCAL, an approach that more

83

resembles traditional telecommunications is used, as it centralizes the servIces and

provides control of these services to the administrator.

5.7 Summary

In this chapter we investigated two mam call-related service-creation mechanisms,

namely SIP-CGI and CPL; specifically they are the implementation of SIP-CGI for

CINEMA and CPL for VOCAL. Creating actual services has provided explicit examples.

Several issues regarding call-related service-creation were also discussed.

84

Chapter 6 Interactive Services

6.1 Introduction

Unlike call-related services, interactive servtces involve user interaction during the

execution of a service. Services in both categories require SIP signaling. Voicemail is one

example of an interactive service, since during the service the user is requested to record

a voice message and input any number of digits to confirm the message.

A voicemail service is vital to any telephony system. In this portion of the work we

investigate how the voicemail service is variously implemented in CINEMA and

VOCAL, in an effort to show how new interactive services may be provided. We also

describe in detail the creation of a notification service in both environments.

6.2 CINEMA's voicemail service

The CINEMA voicemail system is based on a SIP and Real-Time-Streaming Protocol

(RTSP) combination. RTSP is used to record, send and control recorded voice streams.

The basic architecture of the voicemail system consists of the SIP proxy server (sipd),

Unified Messaging server (sipum) and RTSP server (rtspd). The Unified Messaging

server is the voicemail server that is able to accept calls from users and record their

messages (voice messages in particular). The RTSP server is the multimedia server that

can be used to stream multimedia data over the network.

Users on the SIP network can register for the voicemail service by using a web interface.

The proxy server needs to know the location of sipum and rtspd, and this information

is given to the proxy via the administrator' s web interface.

85

A = user agent Alice
B = user agent Bob
P = Proxy server
V = Voicemail server
R = RTSP server

Figure 6.1 CINEMA voieemail system

Figure 6.1 illustrates the flow of SIP messages in a typical session using the voicemail

service in CINEMA. In this example:

1. Alice sends an INVITE message to Bob. The proxy server (P) handles this

message and finds that Bob has been registered at two locations, namely

Bob@machineB.com and Bob@voicemail.com. Bob has also configured P to

redirect his calls to voicemail ifhe cannot be reached at his first location.

2. P forwards the call first to Bob@machineB.com and the phone rings for 5 seconds

before it is terminated because no one has picked up.

3. P sends a CANCEL message to Bob@machineB.com.

4. P then forwards the call to Bob@voicemail.com and the call is established

between Alice and Bob@voicemail.com. essentially the same INVITE message

that was originally sent to Bob@voicemail.com.

5. Bob@voicemail.comis an automated response agent that sets up a connection to

rtspd (R) using the RTSP protocol.

6. Alice can now record her message with the R server; rtspd will record the

message.

86

7, Once Alice terminates her call with Bob@voicemail.com by sending a BYE

message, r t spd stores the message on the web server and sends an email

message to Bob to notify him of the voicemail message. Bob can use a web

browser or a suitable SIP user agent to retrieve this message.

Notably, in Figure 6.1 the media flow path (in blue) is between the RTSP server and the

user agent Alice. The difference in the media flow path in the voicemail services of

CINEMA and VOCAL is explained in section 6.3.

Figure 6.2 is a screenshot of the user interface for retrieving voicemail messages m

CINEMA, More information about the CINEMA Voicemail System can be found m

[Singh and Schulzrinne, 2000].

,Cl. 'EMA - Columbia InterNet Exten, ible Multimedia Architecture

1) h
l!r6 •
~ :v

11"$

:"! • ["~11 1 r~d~
~)Jl~

§ ~t> s

$ /
~

.,.,.

~Vukell1ail inbux rOl' g9610645@cssipkt.cs.J'U.ac.za

EJ 0· ,··· 1;' 4 " ~eckt'dnllll

r ,D .. te ~lle Se~,l!1' Sub!~r.1

,+ 12J,1&OOAM 6' (40K5;lJro ..,,'n8@.c ~cOhc:t t ~ ") atL! ~~ [aNtllall ""i <ls

r 120000 AM I2. (lW KBI ltlllIg@146 .>~1]23 15 In{omlall caddd

r 1117K!OOAM ~1 (.I KB)~)p!l;;!&@C:!'I1t:01J(!'~rng u~ !::mn.lllasJ:.\.!;

r IJ OO OOI'IM 6. (fjKB)'t~05 :::3 1 1 2:315 [~lrWl . calhrl.!1;

r 1l0000 AM ~' (41 KB)19m;ng@.rm$tO!ItI S! ru ?~ !.2.~il!~~
r I:l OOOOAM 4. (JI K8) 1):}'f1",udak:m5tO lict c~r"&(:2~ [llorfllaJ1 le~1

.,

Figure 6.2 Graphical user interface for CINEMA voicemail system

6.3 VOCAL's voicemail service

Unlike the voicemail service in CINEMA, the voicemail feature in VOCAL is separated

into two entities: the voicemail client (vmclient) and the voicemail server

(vmserver). vmclient is responsible for the signaling capabilities of the feature (i.e.,

it handles the call between the caller and the voicemail system). vmserver instructs

87

vmclient about the actions it must take, based on actions taken by the caller. For

example, if the user presses ")" to confirm the message she has recorded, vmserver

will instruct vmclient to store the message and terminate the session with the caller.

The signaling capabilities of the feature are stored in vmclient and the logic of the

feature is stored with vmserver. vmclient and vmserver communicate with each

other using a proprietary protocol developed by Vovida, known as VoiceMail Control

Protocol (VMCP). VMCP is a simple protocol with messages such as STARTPLAY,

STOPPLA Y, STARTRECORD and STOPRECORD. Figure 6.3 illustrates the basic

architecture of the VOCAL voicemail system.

7

6 A = user agent Alice

B = user agent Bob

MS = Marshal server

RS = Redirect sel'Ver

PS = Provisioning server

Vmclicnt = Yoicemail client

Vmserver = VoicemaiJ server

VMFS = Yoicemail Feature server

Figure 6.3 VOCAL voicemail ystem

The following describes the path of SIP messages using VOCAL's voicemail service in a

typical session (Figure 6.3):

1. Alice sends an INVITE to Bob. The Marshal server handles this message.

2. The Marshal server forwards the request to the Redirect server.

88

3. The Redirect server checks with the Provisioning server concerning what services

are enabled for Bob. The Provisioning server sends the information that Bob has

voicemail enabled.

4. The Marshal server forwards the request to the Voicemail Feature server, which

controls the feature.

5. The Voicemail Feature server will try to call Bob. If there is no response within

10 seconds, the Voicemail Feature server will send a CANCEL message to

terminate the request. (The Marshal server must handle all these messages.)

6. The Voicemail Feature server forwards the request to vrnclient . A session is

set up between vrnclient and Alice.

7. The RTP flow path is between Alice and vrnclient .

8. Once a session is established between Alice and vrnclient, vrnclient sets up

a connection to vrnserver. vrnserver and vrnclient will communicate

using VMCP. vrnserver will instruct vrnclient what to do: play and record a

message for example.

9. After a greeting message is played to Alice, Alice can record her message. The

RTP packets used for the media flows exist between vrnc 1 ien t and Alice.

10. Once the message is recorded, vrnserver sends the message as a .wav file

attachment to an email message that is addressed to Bob.

Figure 6.4 shows a screenshot of the email message containing the attachment (see item

#10, above) that is eventually sent in the scenario laid out in Figure 6.3. More

information about VOCAL's voicemail feature can be found at [Vovida, 2000].

89

A Voice Mail Message ..• ' . ..:=..lQJ~

. --;----:::-__ :--_....,..-_Itil I File Edit View Tools r-.-lessage Help j

j rl~ ~ ~'fl
I {1j ,
I

Reply Reply All Forward I Print ,

)< I ..().. »1
Delete previO~

From: 2002@146.231.121. 142

Date: Tuesday, January IS, 2002 11:02 AM

To: g9610645@campus.ru.ac.za

Subject: yolceMaii Message

Attach: I ~ YoiceMessage. way (55 . 1 KB)

Figure 6.4 VOCAL voieemail attachment

6.4 CINEMA's reminder service

The work in this section investigates the possible implementation of new interactive

services within CINEMA. A reminder service is created and used as a case study. The

reminder service is in fact an alarm clock service that reminds the user of a specific event

that is about to occur. Thus, the keyword alarm is used in various parts of the text and

code. This reminder (also alarm or notification) service may be extended to include other

services. For example, the service could be extended so that household appliances

connected to the Internet could notify one of other particular events. The reminder service

was implemented in CINEMA using essentially the same architecture as the voicemail

service (see Figure 6.1). However, an Alarm server (sipam) replaced the Voicemail

server (sipum). Also, the RTSP server (rtspd) was removed since the reminder service

90

would be text-based and no audio support was needed from that media server. The

required SIP message flow for the reminder service is shown in Figure 6.S.

Alice sipam

In vite

2000K

ACK

• • BYE

200 OK

End of transaction 1

Invite

Figure 6.S CINEMA reminder service messages

The TCP stream shown in Figure 6.S represents the communication medium that user

Alice and the Alarm server will use to transport text characters. s ipam required the

development of a server from the sample user agent that came with the CINEMA SIP

package, using the SIP C++ libraries in the package. This reminder service was first

presented at the South African Telecommunication Networks and Applications

Conference (SATNAC) [Hsieh et a!., 2001].

The C++ SIP library from CINEMA (libsip++) is built from the C SIP library (libsip) and

consists mostly of wrapper classes containing the original C functions . The basic generic

classes are the IptelEndpoint and IptelCa l l. IptelEndpoint is an

abstraction of a terminal or IP portion of a gateway or any other IP telephony entity that

has a fixed set of capabilities and local addresses for all calls . Ipte lCall is an

abstraction of a call: it contains methods to initiate a call, alert a remote party to a call,

91

accept an mcommg call, and more. Both IptelEndpoint and IptelCall are

abstract classes and can be used independently of the protocol. Both classes were used by

CINEMA to build S IP323, a signaling gateway. SIP323 translates SIP messages to

H.323, and vice versa. Figure 6.6 shows a partial list of methods for each class.

IptelEndpoint

. lsSe""rO

. lsRegistrarO
· AllocateNewCallObjectO
~etSe""rAddressO
~etLocalNameO
. SelLocalNameO
. GetRegislrarO
. SetRegistrarO
. GetConlactAddressO
. SelConlaclAddressO
. RegislerO

. . -

. UnregisterO
~etRegistralionCount()
~etRegistralionO
~nlncomingRegistrationO I
. OnlncomingUnregislral ionO

IplelCall
~Sess ionDescri pli on-s-e""Ws-e-ss--:i-on--I
GQSessionDescription remotesession

~nCaI IEstabi ished 0
. lsActi",O
. lnitiateO
. HangupO
. AlertO
. AcceptO
. RejectO
~nNewlnconingCaIIO
~nAlertingO
. WartF CYResponse()
~nCallEstabi shed 0
~nCaI IRejectedO
. OnHangupO
. WartF CYTerrnnationO

Figure 6.6 Iptel class diagrams

The protocol-dependent subclasses SIPEndpoint and SIPCall are derived from

IptelEndpoint and IptelCall, respectively. SIPEndpoint represents a SIP end

system, such as a SIP user agent; S I PCall represents a call between the local and

remote entity. Figure 6.7 lists the methods associated with each of the two subclasses.

92

· AllocateNewcaIIObjecl()
· Regisler()
· Unregister()
· OnRegistrationSuccess()
· OnRegistrationFailed()
~nRegislrationExpiredO
· OnAuthorizationNeeded()
· OnlncomingRegistrationO
· SetAuthorizalionO
· SuildAuthorizationHeaderO
· GetDefaultSessionDescriptionO
· SetDefaultSessionDescriptionO
~GetRemoteSessionDescriptionO
· SetOutgoingRequestHeaderO

SIPCall

· lnitiateO
, . AcceptO

. RejectO

. OnNewlncomingCallO
~OncaliEstablishedO

, ~Hangup()
~AlertO
~RedirectO
~AuthenticateO
~SetAuthorizationO
· OnAuthorizationNeededO
· OnPnoxyAuthorizationNeededO
~nAlertingO
~WaitForResponseO
~ncaliRejectedO
·OnHangupO
. WaitForTemnination()
· OnErrorO

I . IsOriginator()
, · GetcallidO

. Rein"teO

Figure 6.7 SIPEndpoint and SIPCall methods

Applications must derive from these classes and so implement the methods in order to

access the libraries. For example, in SIPCall the method OnNewlncomingCall ()

is activated when SIPCal l receives an INVITE message; the derived class must

determine what to do with this message.

6.4.1 Alarm server (sipam)

The Alarm server (sipam) starts by instantiating the classes MySIPCall and

MySIPEndpoint . MySIPCall and MySIPEndpoint are derived from SIPCall

and SIPEndpoint, respectively. MySIPCall is responsible for handling a new call

via the method OnNewlncomingCall () . This method is called when SIPCall

receives an INVITE message. The method will prompt the user when a new incoming

call is being received and then it will wait for the user's input. The user can accept or

reject the call. In the case of the Alarm server, this method will automatically accept the

call.

93

The program will determine from the SDP information contained inside the SIP message

whether the session required is a text-based session. (The Alarm server is only capable of

receiving and sending text messages from and to the caller.) The following segment of

code from the Alarm server contains the method OnNewIncomingCall () :

void MySIPCall , ,OnNewlncomir:gCall (lptel Endpoint & ep)
(,

//mchsieh getting the remote descri ptlon
SessionDescripclon *session;
/ * Get remote IP and port */
session = GetRemo teSessionDescription () ;
/ " Get remote sip u rJ (who 0 ca 11 back) * /
myaddress = sre ;

i f (seSSlon ! - NULL) {
cout « IIRemo SeSSlon is II « *s e ss :on « e ndl;
Mediarnf o rem_medi a ;

/ *- --- --- - - ---- ---- --- --- --- - Audio --- --- ---- --- - --- -- ---- - - -- - - -*/
//Oete r mi ne if the s e S S l n i s audio , if i t is start the audiot o ol

/*-- --- --- --------- -- ----- - Appl i cat ' on ---- ---- --- --- -- ---- -- -- --- --* /
/I tf the ses ion is tex t based then accep t t he c 11 and start the
/I tcpserver.
/ / The alarm server s ta'rts the t c _ ser ver on port 4 0000 .
/ /We also need to find the ipaddr es s and port number of t he cllent to
Iisent to.

if (sesslon->FindSess;on (r em_medl a ,
t-!ed iaInfo : :Re cel ve, Medialnfo: :Applicat~on ,

MediaInfo, ,UDP_.Transport)) {

//rem_addr sto res the remote media Ip address and port
I/number
Ipte IPAddress rem_addr;
rem_addr .,. rem_med I a . Gec RxAddress () ;

//mc hsieh d i splay remote media ip a ddress and port n umber
cout <:< IIremot e media i p a ddre s s and por number" «

rem_ador « end1 ;
I/mchs ieh dlsplay remote media por t number
int remport = rem_addr.GetPort() ;
c o ut. « "remot e media port number 11 « rempart « endl ;

/ * --- Set the self sessjon info to send back * /
session ~ new Sess~o.Description;
MedIa nfe media;
media . Se t Dire ct ion (Med ialnf o : : Rece l ve l ;
med ja. SetDa al'ype (Medla lnfo , ,Appllcati on) ;
media . Set Transpor t Type (~led iaInfo : : UDP _Transport) ;
/ * Set self. IP address and port number f o r the sess ion * /
!nedi . SetRxAddress (Iptel IPAddress (SIPLibrary , ,HostInAddr)) ;
//mchsieh using chat make them standa rd

94

med1a . Set RxPort (40000):
session- >AddSession (rnedla) ;
cout « li Se f Session is II « "session « en Ii
c al l - :>SetSelfSessionDesc ripti on{session);

cout « "Accepting the call .. . n « endl ;
IIAccept the call t hen startup t he ccpserver

~ int resul t = 0;
r esult=cal l->Accept () ;
If (r e sult -= 0)
(

e lse
{

}

cout « "MCHSIEH cal l accept succ ess " « endl ;
COUt « "8 arting the c c p s erver " « endl;
t cps e r.ver - :>StartTool(4 0000) ;
oAc c epted = t rue;

cou « "MCHSIEH cal l accept f ai l ure " « e nd1 ;

)llend if appllcation
}llend seSSl o n
e lse {

cout <'< IINo r emote sessio in I NVI TE" « end
}

}llend onne wincomi ng call

This code segment uses the method FindSession () to locate the right session for the

call. The method Accept () is used to accept the call (i.e ., send a 200 OK message

back to the caller). The tcpserver is a simple object that uses TCPIIP to interact with

the user regarding the time the user wants to be notified. This code segment is responsible

for the establishment of the session and for starting the tcpserver. Once the user has

finished interacting with the Alarm server, the user sends a BYE message to terminate the

session. The Alarm server has to catch this message in order to terminate the

tcpserver and start the sleeping process. The method OnHangup () must be used

to accomplish this. Thus, the method OnHangup () is called when the remote endpoint

wants to terminate the SIP session. The following code segment shows the method

OnHangUp () :

int MySIPCall , :OnHangup()
{ ~
I '

mchsieh
This f unct~on gets cal le~ · hen the r emote side terml nates the
session.

95

' I

Once the transaction is compl e ted the Transact i onComplet ed flag is
set t o true .
"my time " i s us d t o determine if the alarm server has called back the
user or not .

caut « "Cal l closed
oBusy = false;

by remote " « en 1:

call = NULL; \

Se ssionDescriptio n *session;
1* Get remote IP and POrt *1
session = GetRemoteSessicnDescri pt~on ();

Medialnfo rem_media;

/* audio session */
if (sess ion- >FindSesslon(rem_medla ,

Medlalnfo , , Receive, Media nfo, , Aud io)) (
audio- >StopTool () ;
SIPCall " OnHangup();

,
/ * end audio s ession "" /

/ * appli catlon session * 1
if (s ession->PindSessionl r em_mect " a ,

Medialnfo : : .eceive , Medialnfo :: Appll c acion ,
Me ctialnfo, ,UDP_"ransport)) {

1* check y time 0 see the al arm has called back or not *1
F LE* my f lle = fcpen (lI dserv r .txt "," r " };
l imy ime is a g loba variable
fscanf (tnyfile , II Time %d ", &mytime) ;
fc lose (myEile) ;
if (mytlme == 0)

(
oTransComp fa lse :

e l se
(

aTransComp

cout « "MCHS I EH I am in MySIPCa ll, ,OnHangUp () " « end I ;
Ilmc hsieh op the tcpserve r
tcpserver->StopTool () ;
oAccepted = fals e;

S:PCall, , OnHangu_ ();

/* end appl i cation session - /
r e turn OJ

The flag oTransComp is used to notify the Alarm server when to begin sleeping" The

code for sleeping is shown next:

96

110 the sleeping
FILE'" myfile = f open ("dserver . txt ", lI r w") ;
fsc nf(myfile , "Time %d ",&myt i mei ; llmytime is glob 1
f rintf (myfl.le, !'Time %d" , 0);
felose (myfll e) ;
cout « IIMCHSI EH my time = " « my time « endl;
Sleep(mytime + 000) ; l l s leep x s ees

rnyt irne is a global variable used to store the number of seconds that the process must

sleep until the event time arrives. The above code segment from the main function has

shown how this is done.

In the main function, once the Alarm server has waited out the duration specified by the

user, it calls the user back using the audio session. The following code segment shows the

statements that the Alarm server uses in order to compose an INVITE message to call

back the caller:

1* Ge t the destlnation URL *1
Ilrnyaddress is t he g l obal vanable
Ipt.elAcidress dest = myaddress ;
desc . Se t Scheme(Tlsip ll };
I istart the ca ll Object
MySIPCal l * yeall;
rnyeall = new MySIPCall(sip);
call . myca- l ;

/* 5e the s ess ion descrip ion info (or t he outgoin mes sage */
SessionDescr iption "s ess l.on:
Medialnfo medi ;
session = new SesslonDescrip lon;

media . Sec Direction(Medialnfo: :Recei ve) ;
med ia. SetOataType (t-1edialnfo : : A' dio) ;
IptelI PAddr ess rxaddr(SIPLibrary , ,EostInAddx) ;
media . SetRxAddres s (r'xad r) ;
media . SetRxPort(aucio-~GetSelfPort (}) ;
FormatInEo f(O);
media .AddFormat(f); 1* udio f or mat PCMU -I
session - >AddSession(medla) ;
co 't « "Self SeSS10 n " « *session cc endl;
mycall - >Se SelfSessi onDescriptlon (sess ion

I /rnchsieh Set the Subjec t
mycall - >SetSub j ect("Call from alarm clock ") ;

cout cc tl Calling II « dest « " from " «src <<; end1;

mycal - >lnitiate(dest , src) ;

97

oTransComp = fals e;

The variable myaddress contains the address of the caller and is set in the method

OnNewlncomingCall (). This variable is used to set the destination URL of the

person that the Alarm server should call. Figure 6.8 shows an output from the Alarm

server that was implemented in CINEMA.

Figure 6.8 CINEMA Alarm server output

6.4.2 Alarm Client

Certain modifications had to be made to the sample user agent from CINEMA in order to

add text support. The caller uses the sample user agent (sipua) to initiate the call. Once

the call is established, the method OnCallEstablished (), from the class

MySIPCall, is called. Then, the user agent is able to start the application to be used in

the session: audiotool for audio, tcpclient for text-based communication. The

98

code is similar to the code in the Alarm server; the relevant code segment from the

method OnCal lEst a bl i she d () is shown here:

/ *---- -- ----- -- - -- -- -- -- - - - Applicat i on ----- ----- ------ ---- -- ---*/
if {se~siol1- > Findsess i on(rem media , Medialnfo : : Rece i ve , .

- §1,"" Med i a Tnfo : :Appl i ca t i on, Me di a t n Eo : : UDP_ Tra nsport }) { \oj. 11
cout « "MCHSIEH I am i n appl j cation at t he mon:ent II « end l i

S , 1* g et t he I P address dnd ~ ort no * 1 b

J IptelIPAddress r em_add,- = r elll_ med i a ,Get RxAddr ess () ;
_cout « 'f remote !ned ' a :'p add r e s s and port number " « rem addr

<c endl : ~
st ruc t s o c kaddr_ in addr ;
/<It r emo e media ip address */
r em ad r.Getlp,~ddre s s (addr) ;
1* remot e me d i a port. no *1
addr . s i n_ port: = htons (re m_ med ia . Ge.t.RxPo r t () ;

!N !i.

/ * anothe r . way to gee the" i p addr ess , /
/ I r ern_ipaddress i s globa l
r e m i paddre ss = ine t. n t o a (addr . sin a dr) :
c out <<: "re mo te med i~ i p addre s s -n- -:::< r em_ i paddress « endl ;
/ / we r~eed t o gee the port numbe r as we ll
remyor no = r em_addr , Get Por t () ;
c ou «l'remo t e me dia po r t no " « remyo rt no « endl i

tcpc l i ent - >St.a r t Tool (r e rn_i padc.ress , r emyor t no) ;
OACKs ent = t I:ue ;

}I /end i f appli cation

When the Alarm Client sends the initial INVITE to the Alarm server, the seSSlOn

description has to be Media: : Applicat ion to specify that a text session will be used

for communication, This is shown in the following code segment:

media . SecDirection (Med i alnfo ::Recei v e) ;
media . Set Dat a Type (Me dia In f o : :l\pp l ica ti o n) i / / s e c t he ,t.ex t s essio n
rnedi a . Set Tr a n s p o r t Type {Media l nfo : : VDP_ Transpo rt } ;
I ptelI?Addres s rxaddr (SI PLib,-ary : : HostlnAddr) ;

'0 medi a , Se t RxAddres s (rxadd r) ; ."
med ia . Set RxPort (40000) ; !/40000 f o r chatt i ng '
s ession- >AddSession(medi a } : 1"
cove < <: "Self Session '1 « "ses sion « endl ;

Once the user has entered a time for notification, the user terminates the seSSlOn by

entering "bye", Figure 6,9 shows a screenshot of the output from the Alarm Client. The

99

reminder service also works with a graphical user interface, shown in Figure 6.10. This

was created with sipc v1 . 51.

Figure 6.9 CINEMA Alarm Client output

100

SIP(I.SI ... Coluntbta SIP User AQent lilrs~.o It

Mea~

0 - '

riJ rllJ w@

~ ~ ~

hello
'Welcome to the AIBlm Clock Ser er
Please enter correct time>
15 .,.,

Figure 6.10 CINEMA sipc reminder service output

Figure 6.10 shows the screen during a chat interaction between a caller and the reminder

service. Certain modifications were required in order to set the correct port numbers for

the chat program. Thus, this reminder service is generic and can be accessed via standard

interfaces. Any SIP user agent with a chat program can access the reminder service, and

the GUI provides a user-friendly interface with the service.

6.5 VOCAL's reminder service

The VOCAL reminder service is in fact an alarm clock service that reminds the user of a

specific event that is about to occur. Thus alarm, as a keyword, is used in various parts of

the text and code. Implementation of a reminder service in VOCAL required

modification of the voicemail server and the voicemail client into an Alarm server

(amserver) and an Alarm Client (amel ient), respectively. The architecture of the

system remained the same as that for the voicemail service as shown in Figure 6.3. A

101

protocol to be used between amserver and amcl ient had to be chosen. We kept the

original Voice Mail Control Protocol (VMCP) because this allowed the reminder service

extra functions, such as PLA YFILE and RECORD FILE. Thus, the reminder service in

VOCAL was given extra functionality, allowing the user not only the option to choose a

time to be alerted of an event but also to record a voice message that can be read back to

the user at notification time. The implementation of this service was discussed and

published in the proceedings of the South African Telecommunication Networks and

Applications Conference (SA TNAC) [Hsieh et a!., 2002].

6.5.1 Alarm server (amserver)

The Alarm server (amserver) communicates with the Alarm Client using Voice Mail

Control Protocol (VMCP). The Alarm server uses an explicit finite state machine to

control the behavior of the Alarm Client. (A basic understanding of finite state machines

is required in order to modify the voicemail server into an Alarm server.) No

modifications to VMCP are required for this service. In the original voicemai l server the

sequence of states is as follows: StatePlayGreeting -> StateRecordMessage­

> StateEndofSession. The name of the states describes each state's function. For

example, StatePlayGreeting plays the greeting message for the caller. A new state

was added for the reminder service: StatePlayGreeting -> StateRecordDtmf -

> StateRecordMessage -> StateEndofSession. The state StateRecord

Dtmf can record the time of an event inputted by the user via Dual-Tone MultiFrequency

(DTMF). The input string is of the form "time of event" followed by "#". Once "#" is

detected, amserver goes to the next state, StateRecordMessage. The code for

processing the DTMF is shown in the following code segment:

inc II. W ~

State RecordDtmf: :ProcessDTMF (pEvent ev)
{

using std: : fst reami
s~atic tring t hetime ;
cpLog (LOG_ DEBUG . " processcl t mf received D'l'MF.") ;
cpLog (LOG_DEBUG . " rece1ved etmf char %c " . (*evt - >I Parm (J 1 [0]) ;
c ha r r eceiveddtmf = (* evt->IParm () [0] ;

102

if (rece i veddtmf ~- ' #')
(

)
else
{

)

fiend of the i~pu s ring openlng a f il e to wr lte t he tlme to
s t d : :ofst ream t i mefi l e (II / t mp/time.t x t ");
if (timefile . is apen(11
{ -

t i mef11e c < "Ti me 'I;

time f i l e « t heti m i

t ime f ile c < endl ;
t i me fl le c < "Ca llerStr i ng ";
I/get the cal er's rl store ' t in a st r i ng
string callerstr = ({VmSes sion*)ge t Ses sion()) - >

ge t Li ne(I->getVmcp (1- >
getSessionln f o (I . CallerI . c_str () ,

timef11 e c < ca l1 ers t r ;
tlm f ile c endl;
cpLog (LOG_DEBUG , "recorded dcmf %6 t' , the t i me . c_st. r ()) i

t,mef i le .clase(l ;

fi end of StateRecar Ot mf gato StaceRe cordMess ge
St aceRecordMessage r ecordMessag e ("St ateRe cordNe ssag e ") ;
return re ordMessage .Process (gecSession {») ;

Il s t il l i nputt ing t he t i me cone at to t he t ime str i ng
thec l me .e tl. me ... rece ' vedd mE;
//here we must send the d ig l t s ba c k to ame l i nt for c onf i rma t ion
ge t Session () - >gec Line () - >getvmcp () - >s endOcmf (recei veddt mf 1 ;
r e t u rn Scate S t a y; //m hs i e h st ay i n the cu r rent sta t e

)I/end Proce ssOTMF

The use of DTMF in this system is important because it allows the service to be accessed

from PSTN networks. PSTN networks use DTMF tones to communicate the number to

be dialed. Other services such Interactive Voice Response (IVR) also use DTMF to

transport the user's input.

6.5.2 Alarm Client

The Alarm Client is based on the user agent code from VOCAL. More information about

the structure of the user agent can be found at [Vovida, 2001c].

The user agent from VOCAL consists of two sections, one section to model the behavior

of a phone and another to handle the devices controlled by the user agent. The user agent

103

uses an explicit finite state machine to model the behavior of a phone. The user agent can

handle different devices such as SoundCardDevice and VmcpDevice, which it uses

to communicate with vmserver. No modifications are required to the state machine for

the reminder service. However, a new device had to be added to implement the reminder

service: the name AlarmDevice was chosen.

SoundCardDevice

ResGwDevice I

. VmcpDevice

1~:Vmcp

'-r-J

RtpSession
I-

AlarmDevice
f<,------ -
~\11l : Vmcp

\)
r=-: -~

RtpSession

Figure 6.11 VOCAL devices class diagram

All the devices listed in Figure 6.11 are inherited from the Residential Gateway Device

(ResGwDevice). The complete class diagram for the user agent can be found at

[Vovida, 2001c). The AlarmDevice must communicate with the Alarm server using

VMCP and be able to send the digits for the time of the event. Both the VmcpDevice

and the AlarmDevice hold links to the RTP stack via the class RtpSession.

Modifications are required to the user agent to correctly use this new device . Options to

specify the location of the Alarm server are also provided in the configuration file.

The AlarmDevice is activated when the process () function is called. The behavior

of the device is determined by the VMCP messages that it receives from the Alarm

104

server. A switch statement is used to switch between the different VMCP messages.

When the AlarmDevice receives a VMCP CLOSE message it must remember to call

back by calling the function provideCallBack () , as shown in the following code

segment:

l.nt
AlarmDevice : :proce ss (fd_sec* Ed)
{

sWl tch (Msg i
{

ca se Vmcp :: Close:
(

}ll end s witch

cpLog(LOG_DEBUG, "yt.1CP:Close ") ;
repo~tEvent (sessionQ, DeviceEventHookDown);
hookSta eOf f hook = false;
am . send lose () ;
close (ss) ;

eviceMutex . unlock() ;

Ilmchsieh when it get s here the amserver i s t elling
lIthe amcli ent t o terminate the s e ssion wit:h he ua
Ilremember. ~o call back
p r ovide a llBack () ;

return 0 ;

}llend p roce s

Functions such as recvRTPDTMF () and provideDtmf () , for receiving and sending

DTMF tones, are included in AlarmDevice. The AlarmDevice receives DTMF

tones from the caller and sends DTMF tones to the Alarm server.

The function provideCallBack () must:

I. capture the device event;

2. read the event time stored in the file;

3. sleep for the required amount of time;

4. wake up and report the event DeviceEvent HookUp to the state machine;

5. compose the SIP URL for the calling destination and then report it;

105

6. set the PlayFile flag, so that once the session is established it can play the

recorded message.

Notice that reporting the event DeviceEventHookUp triggers the user agent to

initiate a call to a second party. The function provideCallBack () is given in the

following code segment; the comments included with the code segment explain what

each statement does, reflecting the six points stated above.

VOId

AlarmDevice , , provideCallBack ()
{

Ilcapture ,t he device event
Sptc < UaDevice Event > event = new UaDeviceEvent (sessi onQ
assert (event ! = 0) i

cLog (LOG_ DEBU , ItMCHS:EH i am in provideCal Bac y. '!);

1/=== =================== ========== =====================
//s i mple procedure to read in the ti me from he f ile
int myint t ime ;
string buffer , s leep · me. callerst r ing ;
i fstream timefi le read (" I tmp/ t ime. txt ") ;
if (! timefileread . is open())
{ -

cout « "Error opening file ";
exit 11);

}

~Ihlle (! t mefileread . eof ()
(

}

timef i leread » bu ff r;
if (buffer ~= "T ime")
{

timefileread » sleeptime;

if (bu f fer == "CallerS ring ")
{

timef~leread » cal ler strlng;

//convert from string to int
std: : istringstream inputstream(sleeptime) ; .. ~
input tream » mylnt ime ;
sleep(myinttime); // sleep for myinttlme seconds
cpLog (LOG_DEBUG , "MCHS IE:l repor t Event DevlceEventHookUp");
// _===== =~ _~===c.~========~_====== = . _======== __ ~====== =
//report the event DeviceEventHookUp
report Event (sessionQ. DeviceEventHookUp}i
hookS ta eOffhook = true;
event->cype = Devlce3ventHookUp ;

if (even - >type 1= DeviceEventUndetlned)

106

"

•
assert(sessionQ 1= 0) ;
event->callld = ca l l1d;

#ifndef WIN32
session - >add! event);
#else
Sptr <SipProxyEvent> proxyEven
. ro xyEven .dynamicCast (event);
sessionQ->add(pro xyEvent) :
#endif

Ilcompose t he destinat l On URL for example
II Da a newTex Ent r y ="sip: 6399@146. 2 1. 123.15 : 5060";
Oat ne rTe xtEntry =l1sip : tI + ca l lerstring T 11: 5060 (1;
cpLog(LOG_DEBUG , "URL is %s " , newTe xtEntry.getData ());

event - >type
event->tex t

Devi ceEventCallUrl;
ne'..trextEntry ;

i f (event->type 1- DeVlceEvent nde finedl
{

)

asse r t! sessionQ ! = 0) ;
event - >call d = call1di

#i fndef WIN32
sessionQ - >add(event) ;
#else
ptr <SlpProxy£ven "> proxyEvent i

proxyEv nt.dynamlcCast(event) ;
sessionQ- >ad (proxy2vent) ;
ff endif

11============== ================= == ============ == == ====
Il r emernbec t o set the PlayFile flag
Play?ile = true ;

)llend prov; eCal18ack

6.6 Interactive services discussion

Both CINEMA and VOCAL provide good APls for programmers to modify the user

agent. Programmers with a sound understanding of C++ can create their own interactive

services by modifying user agents.

The investigation into interactive service creation uncovers that there is no standard way

of creating interactive services. The standard mechanisms (see Chapter 5) SIP-CGI and

CPL are not applicable here because they are concerned with how a call is handled, such

107

as how to forward or block a call. Those mechanisms do not directly provide for

interaction whereby users can input data at the time the service is executed. One solution

would be to provide a predefined interface between the user agent and the server

supporting the services. User agents invoking client-related methods defined in the

interface would expect results from the server in a certain format, and, similarly, from the

server invoking the server-related methods in the interface. The interface would be valid

only for the media part of the session and would not relate to the signaling part of the

session, which is already handled by SIP-COl and CPL.

The interface suggested above would be designed to aid programmers creating interactive

services. However, a new language would be required for users to create interactive

services. This language would have flexibility and ease of use, as do SIP-CGI and CPL,

and it would have the interactive interface previously described. One foreseen difficulty

in designing a new language concerns trying to determine what the user's input will be

from the server side. For example, in creating the reminder service we necessarily had to

determine what kind of input the user would need to communicate with the server: would

it be DTMF rather than RTP or else a normal data stream using TCP? Choosing RTP

meant that all endpoints would have to be RTP capable, but this would restrict users

without a RTP-capable media agent. The same consequence would occur if the data

stream using TCP were chosen. RTP was ultimately chosen for creating the reminder

service in VOCAL, because the major benefit was that this service could be accessed by

users on the PSTN network via a SIP to PSTN translator. Designing a new language for

users to create interactive services can be a topic for future research.

Another extension to the study of interactive services would be an investigation into the

interoperability of interactive services with other services. For example, could a call­

forwarding service work with a voicemail service and notification service in general?

108

6.7 Summary

This chapter introduced interactive services, looking first at CINEMA and VOCAL

voicemail services. We used this as a starting point to investigate how new interactive

services may be implemented for CINEMA and VOCAL. As a practical exercise, we

implemented a reminder service for both environments. We concluded with a brief

discussion on interactive service creation, and proposed the creation of a generalized

interface for creating new interactive services.

109

Chapter 7 Internetworking Services

7.1 Introduction

An investigation into internetworking services is especially relevant in the context of

service creation because it can bridge the SIP, H.323 and MGCP networks, and so extend

the reach of basic services (see Chapter 4), and also because it gives each of the networks

the ability to access services on the other networks.

Many papers have been written comparing the various advantages and disadvantages of

the two competing Internet telephony signaling protocols, SIP and H.323. Notable are

those by [Dalgic and Fang, 1999], [Rosenberg and Schulzrinne, 1998b], [Nortel

Networks, 2000a] and [Wind River, 2002]. We sidestep this interesting debate by

focusing on the issue from an internetworking and service perspective. The importance of

internetworking is shown in [Glasmann et a!., 2003] where it is noted that since H.323 is

the more mature standard it has achieved smooth internetworking with the PSTN, with

clear advantages for IP telephony, at least in the short to medium term.

The Media Gateway Control Protocol (MGCP) is another important protocol in Internet

telephony. MGCP is a protocol used to control media gateways. In this chapter we also

focus on internetworking between SIP and MGCP.

Both CINEMA and VOCAL provide gateways that allow SIP and H.323 networks to

interoperate with each other; that is, they allow users from either network to

communicate with each other and possibly to access services on the other network. As for

SIP-MGCP translators, none was available in CINEMA while one was available in

VOCAL. The SIP-MGCP translator in VOCAL was in a developmental stage and so not

fully functional; hence, we decided to develop our own.

110

In this chapter we discuss the operation of the internetworking mechanisms already

available in CINEMA and VOCAL. After that, we introduce the MGCP protocol and

describe our development of an internetworking service between SIP and MGCP.

7.2 CINEMA internetworking

CINEMA's internetwork server is called SIP323. The internetwork server acts as a

signaling gateway between a SIP and a H.323 network, by working either with an

external H.323 gatekeeper or by using its own built-in H.323 gatekeeper. On the SIP side

of the network the signaling gateway acts as a SIP proxy. When the server starts up it can

be configured to register with a SIP registrar and a H.323 gatekeeper, thus acting as a

visible entity in both environments.

The internetwork server S I P3 2 3 uses the OpenH323 v2 library provided by

[OpenH323, 2003]. At the time of testing this server CINEMA had just discontinued free

licenses previously issued to academic institutions. Professor Henning Schulzrinne of

Columbia University, a co-author of the SIP RFC and a founder of the CINEMA project,

chose to release the software commercially to SIP Communications Ltd. (SIPCOMM).

Thus, the software suite from Columbia University was released for commercial

purposes. As a result, we were left with only a single call license version of the gateway.

7.2.1 SIP323 Operation

The call system for the internetwork server SIP323 is based on aliases. If a user were

registered on the SIP registrar as Bob@work.com then normally he would be given the

alias Bob on SIP323. (If the alias Bob were already taken, Bob@work.com would not

be able to register with the system, but would have to change his alias to register.)

Nonetheless, calls from the H.323 network directed at Bob will be redirected to

Bob@work.com, and vice versa from the SIP network. In this case S I P3 2 3 IS

configured to work as a H.323 gatekeeper using its built-in feature.

III

A successful call was set up between a single SIP endpoint and a single H.323 endpoint

using SIP323 as a signaling gateway. The signaling gateway was set up statically; that

is, all calls from the SIP side were directed to a H.323 endpoint specified beforehand, and

vice versa. This setup was done with the H.323 endpoint designated as

csmscO 1 ict.cs.ru.ac.za (146.231.123.15) and the SIP endpoint as edo.dsl.ru.ac.za

(146.231.112.1 07).

Figure 7.1 depicts a call between Netmeeting (a H.323 client) and sipc (a SIP user

agent). The figure shows that the H.323 endpoint is calling cssipict.cs.ru.ac.za

(146.231.121.142), which is the SIP323 server. In Netmeeting the SIP endpoint is

shown as ming@edo.dsl.ru.ac.za, which is the exact location for user Ming, while in

sipc the H.323 endpoint is shown as ming@cssipict.cs.ru.ac .za (the usemame in this

case is less important than the hostname, cssipict.cs.ru.ac.za, which is the location of the

SI P323 server).

SIP(1.60 -- (olunlbw SlP thft AQIml Mhnnw ~,

Cell VIe... Tools Help Cell Took I-ie!p

ming@rssipitlcs.ru.ar.2a 0 ---

"od, r.;~ rJJ r r ll r}8;
v,.". -i ,--,--- l : .r',----

~ ~

f1 mnohsleh
f1 s!p:nwog@ledo.dsl.ru.i!(, zo!!

Figure 7.1 SIP323 (Netrneeting and sipc) operation

112

SIP323 has a debugging option that shows the various messages exchanged during the

set up of the call. However, the output shows only the SIP messages exchanged between

SIP323 and sipc , as well as the API calls that were made in order to access the

CINEMA library (such as Initiate and WaitForRe sponse). No H.323 messages

output were available in order to verify what exact H.323 messages were sent. A possible

way around this problem is to set up a packet sniffer that is able to decode H.323 packets,

and capture the packets sent to and from SIP323.

Due to the limitations of the single-license verSIOn of the signaling gateway, no

experiments could be done to test service interoperability.

7.3 VOCAL internetworking

The intemetworking services in VOCAL are called translators. VOCAL provides these to

translate H.323 and MGCP messages to SIP, and vice versa, in order that H.323 and

MGCP endpoints may access the SIP network. Because the MGCP translator in VOCAL

was still under development, we decided to develop our own SIP-MGCP intemetworking

seTVIce.

VOCAL' s H.323 translator server is called SIPH323CSGW, a SIP-H.323 Call Signaling

Gateway. SIPH323CSGW uses the OpenH323 v4libraries [OpenH323 , 2003] .

SIPH323CSGW interacts with VOCAL in order to correctly provide access to the SIP

network. Users on both sides, SIP and H.323, must be correctly registered with VOCAL

in order to use the translator. (There are two possible views in the VOCAL provisioning

GUI, the Administrator GUI and the Technician GUT; the administrator generates the

users and the technician sets up the servers.)

The essential VOCAL components involved to set up intemetworking services are the

Marshal, Redirect and S I PH3 2 3 CSGW servers. The Marshal server proxies the SIP

requests to the Redirect server. The Redirect server has to be correctly configured via the

113

Technician GUI in order to redirect the requests to SIPH323CSGW. SIPH323CSGW

needs to be correctly set up so that it knows which SIP port number to listen to and to

which SIP URL to send SIP requests. The H.323 port numbers, on the other hand, are

standard and cannot be changed. The configuration process is explained in detail in the

next section.

7.3.1 SIPH323CSGWOperation

The following steps were taken to configure the translator (SIPH323CSGW):

I. Make certain that the executable siph323csgw are in the correct directory. This

involved compiling the correct project from the VOCAL project directory and

placing the executable in the directory /usr/local/vocal/bin together

with the configuration file siph323csgw. conf.

2. Configure the executable so that the server can run correctly. This involved

editing the configuration file siph323csgw. conf. The options configured

were gatekeeper !D, endpoint !D, SIP port and SIP remote IP address. The

S I PH3 2 3 CSGW will listen on SIP port number 5155, and the SIP remote IP

address is the address where S I PH3 2 3 CSGW will forward all requests from the

H.323 side. This address can be the address of the Marshal server or Proxy server.

3. Start VOCAL and SIPH323CSGW separately; that is, . /vocalstart start,

and then ./siph323csgw -f siph323csgw.conf.

4. Use the Administrator GUI for VOCAL to create a user for the H.323 endpoint;

for example, to associate the number 3000 to the endpoint 146.231.112.107, the

user 3000 was edited so that it uses Access List authentication type, and the IP

address of S I PH3 2 3 CSGW was entered as the server at which user 3000 must

authenticate.

5. Use the VOCAL Technician GUI to create a digital dial plan (as for 3000, to

continue the example above). Digital dial plans are similar to the dial patterns for

the user agents; they allow the Redirect server to redirect the calls to the correct

destination. For example, entering the options

Key: Asip: 1 07

114

Contact: sip:3000@146.231 .123.15:5155;user=phone

will forward calls with the usemame (or number) 107 in the SIP URL to

SIPH323CSGW, and the calls will be directed at the user 3000. Now, calls to

107@146.231.123.15 will be forwarded to 3000@146.231.123.15:5155.

This method ensures that the Redirect server will redirect calls to

SIPH323CSGW. Notice that the SIP port chosen is 5155. This differs from the

standard SIP port number 5060, because the Marshal server, which uses the port

number 5060, and SIPH323CSGW in the example are running on the same

machine and a conflict would occur if they both ran on the same POlt number.

6. Configure Netmeet ing (a H.323 endpoint) to use the gatekeeper to make calls

and to register with the gatekeeper (e.g., as the phone number 3000).

7. Configure the VOCAL user agent to register and proxy all calls via VOCAL.

Ensure that a user number has been set up for the user agent (e.g., a user with the

number 2000). Also, set up the dial pattern to use a number, for example the

number 107, to dial the H.323 endpoint. Thus, entering the option Dial_Pattern

string 2 A107 will make the call to 107@146.231.123.15, which will be

appropriately forwarded by the Redirect server.

8. Start Netmeeting and the VOCAL user agent and ensure that they have been

configured as previously described. To make a call from the user agent, type "a"

to go offhook, followed by "107" to call the number 107. To make a call from

Netmeeting type the number "2000".

Figure 7.2 shows the various messages exchanged during the set up of a call from a SIP

endpoint to a H.323 endpoint. The terms TCSAck and TCSet stand for Terminal

Capabilities Set Acknowledgement and Terminal Capabilies Set, respectively. The terms

OLC and OLCAck stand for Open Logical Channel and Open Logical Channel

Acknowledgement, respectively.

115

Endpointl s i phl 23c8gw Endpoint2
INVITE Setup

Ca 11 Proceeding
,

100 Trying Alerting , ,

Connect ,
180 Ringing TCSAck , ,

erSlaveDeterminationAck Mast

rCSet
,

OLC

200 OK OLCAck
, ,

ACK

•

Figure 7.2 VOCAL SIPH3 2 3CSGW message exchange

7.3.2 Accessing services via SIPH323CSGW

In this section we examine whether or not the services in VOCAL may be executed from

the H.323 network using the internetwork server. Users in VOCAL are usually assigned

with numbers, similar to telephone numbers. In the next few experiments, SIP users are

assigned numbers in the 2xxx range, while H.323 users are assigned numbers in the 3xxx

range (where "x" can be in the range 0-9). Figure 7.3 shows the general setup and the

different participants for the exercises described below.

116

'1---1 T

I T = SIPH323CSGW translalor

Figure 7.3 SIPH323CSGW call-forwarding scenario

Call Forwarding­

Calif rom fl.323 10 SIP

The first exercise involves a call from a H.323 endpoint to a SIP endpoint that has call­

fOlwarding service enabled. The intention was to successfully forward the call to the

second SIP endpoint. Here, the three endpoints involved are 2000 (SIP), 2001 (SIP) and

3000 (H.323). The experiment was set up by configuring the first SIP endpoint (2000) to

forward all calls to the second endpoint (2001). When a call was attempted from 3000 to

2000, the call was forwarded to 2001. The execution of the service in this scenario was

successful.

Calif rom SIP 10 fl.323

Since the H.323 endpoint is considered by VOCAL as another entity in its environment,

we examined whether or not call forwarding can be enabled for a H.323 endpoint via the

SIP network. The three endpoints involved were 3000 (H.323), 3001 (H.323) and 2000

(SIP). User 3000 was set to forward all calls to user 3001 in the SIP provisioning server.

A call was attempted, and set up, from 2000 to 3000. As expected, the call-forwarding

11 7

servIce was not executed. In order for VOCAL to correctly redirect the call to the

translator, a digital dial plan had to be used (sip:3000@146.231.123.15:5155;

user=phone); this essentially bypasses the feature server in the SIP network, which

contains the information about forwarding the call, and the service could not be executed

for user 3000. An obvious and principled solution to that problem would be to have a

gatekeeper on the H.323 network, to enable call forwarding (e.g., for user 3000).

Call Screening­

Calif rom H.323 to SIP

This scenario explores whether or not call screening can work from both networks. A

H.323 endpoint (3000) was configured to use SI PH32 3 CSGW to make calls to the SIP

network. A SIP endpoint 2000 was provisioned to screen out incoming calls from user

3000. A call attempted from the H.323 endpoint was successfully rejected by

SIPH323CSGW. The result of this experiment shows that call screening works with this

particular setup. The call was made from the H.323 endpoint and forwarded by the

translator; the translator forwarded the call to the Marshal server. As a result, the service

was executed because the call was redirected to the Feature server.

Calif rom SfP to H.323

A similar setup for the H.323 endpoint was used to see if the call-screening feature could

be provisioned for the H.323 endpoint. The H.323 endpoint (3000) was provisioned with

call screening enabled. User 3000 configured the call-screening feature, using the SIP

provisioning server, to screen out calls from the SIP endpoint 2000. Not surprisingly, the

result was the same as in the call-forwarding scenario above (calling from SIP to H.323):

the call was completed between the H.323 endpoint and the SIP endpoint, not the

intended result. This occurred because the call was redirected directly to the translator

and the Feature server was not being used. As before, an obvious and principled solution

would be to have call screening for user 3000 enabled in the H.323 network.

118

PSTN Gateway Access-

In this experiment we were able to use the H.323 translator to access a service in H.323

from SIP. The service in H.323 was an ISDN gateway. 81 PH3 2 3 C8GW was configured

to forward calls from SIP to PSTN via the ISDN gateway. This was accomplished by

Jason Penton, at the Department of Computer Science, Rhodes University, who

successfully set up the gateway Open18DNGw [Penton et aI., 2001 a]. The Open18DNGw

gateway was developed by Carlos Sevilla (csevilla@inf.uc3m.es) using the OpenH323

library. The gateway allows users on the SIP network to make calls to the PSTN network.

Special options were set in the VOCAL provisioning GUI for this service:

Key: Asip:0.{9}

Contact: sip:$USER@146.231.123.15:5155;user=phone

Similar changes were made to the dial-pattern configuration for the VOCAL user agent to

reflect this dial option. This forces the users to dial the "09" prefix before dialing a PSTN

number, in order to distinguish PSTN numbers from internal SIP phone numbers. The

ability for users to make calls to the PSTN is a good example of the usefulness of

internetworking services.

7.4 Media Gateway Control Protocol (MGCP)

MGCP is a protocol used to control telephony gateways from external control elements

called call agents. Telephony gateways are VoIP gateways that provide conversion

between signals on telephone circuits to IP packets on the Internet and vice versa.

Numerous examples of other types of gateways that can be controlled using MGCP are

provided in RFC2705 [Arango et aI., 1999]. A tutorial description of MGCP can be found

in [Allen, 2000].

MGCP was born out of the need for traditional telephony networks to inter-work with IP­

based networks. Signaling gateways, which handled the D-channel signaling in

traditional telephony, had to interact with media gateways that did the conversion of the

B-channel media in traditional telephony [Radvision Corporation, 2002]. Consequently, a

signaling gateway had to use a different protocol each time it needed to communicate

119

with a different media gateway. MGCP was introduced to solve this problem. Signaling

gateways interacted with call agents by using their base signaling protocol while the call

agent interacted with media gateways by using MGCP. This approach to intemetworking

closely follows the route of traditional telephony. The approach has also been used by

Nortel Networks [Nortel Networks, 2000b], whereby signaling is handled separately from

the media.

One advantage of using MGCP is that old technologies can be recycled. For example,

telephones with RJ-II connections can be used to connect with residential gateways and

make calls on an IP network. The residential gateway, which does the conversion of the

media and sends the signals or events to the call agent, can be controlled via MGCP

[Radvision Corporation, 2002]. The signals or events being sent to the call agent are:

phone off hook and on hook, and DTMF tones.

Due to the various capabilities of MGCP, such as the capability to access gateways in a

standard manner, a decision was made to provide a SIPMGCP translator for SIP users. As

a practical example, the translator could be used to allow SIP users access to the SMS

gateway setup. The SMS gateway was set up in the Department of Computer Science,

Rhodes University, by Ashley Jacobs [Jacobs and Clayton, 2002] . Since an MGCP stack

was only available in VOCAL, it was chosen as the development environment.

7.4.1 Introduction to MGCP

Call agents communicate with gateways, which in tum communicate with endpoints.

According to [Arango et aI., 1999], examples of possible endpoints that can be connected

to the gateways are:

I. Digital channels - provide SKhz'Sbit services as in ISDN lines.

2. Analog lines - classical telephony units, phones with RJ11 connections.

3. Interactive Voice Response (IVR) endpoints - provide access to IVR services, allow

special announcements to be played or allow users to record messages.

120

MGCP is a master-slave protocol where call agents act like the masters controlling the

media gateways, which are considered the slaves. Gateways communicate with call

agents using MGCP, while call agents communicate with the rest of the network using

any commonly known signaling protocols (usually SIP or H.323). There are eight

commands that can be used:

I. NotificationRequest or RequestForNotification (RQNT) - used by the

call agent to tell the gateway to notify it of specified events. This command is commonly

used to determine whether or not an endpoint is available.

2. CreateConnection (CRCX) - tells the gateway to create a connection on the

specified endpoint.

3. ModifyConnection (MDCX) - tells the gateway to modify a connection based on a

new session description.

4. DeleteConnection (DLCX) - usually issued by the call agent but can also be

issued by the gateway, if the gateway experiences problems with a connection to an

endpoint.

5. Not i fy (NTFY) - issued by the gateway to the call agent to notify it of an event that

occurred from one of its endpoints.

6. Audi tEndpoint (AUEP) - used by the call agent to determine the status of an

endpoint.

7. Audi tConnect ion (AUCX) - used by the call agent to retrieve the parameters

associated with a connection.

8. RestartlnProgress (RSIP) - used by the gateway to indicate to the call agent

that an endpoint or a group of endpoints will be taken out of service or be restarted.

Each command in MGCP must be followed by a response. This is usually a status code

message telling either party whether a command has been successfully or unsuccessfully

completed. This is usually a 200 ok message and can contain SDP information. More

information about other possible status code messages can be found in RFC2705 [Arango

et aI., 1999].

121

We use a normal call flow to explain how MGCP works.

c c

. ~.

• R Q N T 2 R Q N T •
3 N T , Y •

• • eRe x

2 0 0 o k • R Q N T • , a p

• NT F Y

? eRe X • 8 d p

• 2 0 0 o k , a p

• 9 M D C X , R !2 N T • , a p c , c , 1 1 • 9 e 0 ,
9 W 9 • , e w a y

• 1 0 R Q N T

1 1 N T F Y •
• 1 , OLe X 1 3 OLe X •

Figure 7.4 Example MGCP call flow (for abbreviations, see list of commands in section 7.4.1)

The steps depicted in Figure 7.4 are explained below:

Steps I and 2 are request notification messages; they are used to determine if there are

any endpoints attached to the gateways and to request the gateways if it detects any event

packages, such as hook up and hook down or OTMF tones. The usual response would be

a 200 ok status message to show that they are alive. (The command messages in this

diagram are usually answered with a 200 ok status message unless stated otherwise.)

In step 3, gateway I (gwl) detects an off-hook signal from one of its endpoints and sends

this information as an event package to the call agent.

In step 4, upon receiving this event package, the call agent immediately sends the

command Crea t e Connect i o n (CRCX) to the gateway instructing it set up the

connection and to play the dial tone. The gateway responds with a 200 ok message

containing the SOP with information of the media types and ports that it is listening on.

122

This 200 ok message is different from the other 200 ok mentioned previously, because it

contains SDP information.

In step 5 the call agent sends a RequestForNotification (RQNT) to gateway 2

(gw2). This will request the gateway to play the ringing tone on the specified endpoint

and will notify the call agent if the gateway detects any off-hook event.

In step 6 the off-hook event is detected, packaged and sent to the call agent. This means

that an endpoint attached to gateway 2 has answered the call.

In step 7 the command CreateConnection (CRCX) is sent to gateway 2 with the SDP

information from gateway 1. Gateway 2 responds with a 200 ok status message with SDP

information regarding the media types and ports it is listening to.

Step 8 is a notification request message to the gateway to notify the call agent if it detects

anyon-hook (hu) event.

In step 9 the SDP information from gateway 2 is sent to gateway 1 in a

ModifyConnection (MDCX) message. This is to notify gateway I what types of

media gateway 2 is willing to send and receive.

Step lOis a notification request message to the gateway to notify the call agent if it

detects anyon-hook (hu) event. At this point a call has been set up between the two

endpoints, each attached to their respective gateways, with the necessary media

information for the communication to flow between the gateways. It should be

emphasized that the endpoints do not communicate directly to each other, they

communicate via the gateways.

In step 11, gateway 1 detects an on-hook (hu) event and sends this to the call agent. This

means that the endpoint attached to gateway 1 has resolved to terminate the call.

123

In steps 12 and 13 , De l e t eConnection (DLCX) messages are sent to gateway 1 and

gateway 2 in order to terminate the call and the connection between the two gateways.

Call agents must manage many calls, and gateways must manage many connections,

simultaneously. The parameters Call ID and Connec t ion ldentifier are used in

MGCP messages to identify to which call and connection the messages belong.

7.4.2 VOCAL MGCP implementation

VOCAL has implemented the MGCP stack as a two-level stack. A low-level stack is

used to build, parse and encode messages while a high-level stack is used as a callable

programming interface or API [Vovida, 2001dj . The code was initially written in C

language and later ported to C++ [Dang et aI., 2002]. The example call agent provided by

VOCAL was written in C with function calls to handle the flow of MGCP messages.

Figure 7.5 diagrams the function calls that relate to the call flows diagramed in Figure

7.4; the endpoints have been omitted to avoid cluttering the diagram.

C .. q w 2

1.i.nitR tar t 2.ini t R • • t ll.r t
~ ~
i n i t II; P 0 n ... • i

4
" i t It e a p 0 n

3/ 4 . d i ... L i n q Co apl et e
~

co nn ectio nR . .. d Y .,

5. r ee liliv .. c a ll
~

.. 6 . r i n q i n q

7 I 8 . a n.. W 0 r •

9/lO ,c on n .. c te d
~

11/ 1 2 .diac o n n llc t 1 3 . c Le ar- Cal l

d i.- a con n e. C l it e oS P 0 n ... Q

~ ~
d iaconn e ctR e. a p ona.

~

ell _ e 41 L Il q& nt
q W 9 .. t e w .. y

Figure 7.5 Example MGCP function flow

124

As an example, the function ini tRes tart sends the RQNT message while the function

ini tResponse is called when the call agent receives the status message (200 ok) from

the gateways. The procedure is similar for the other functions and messages. The

functions will be discussed in detail in the implementation of the SIPMGCP translator

(see section 7.4.3).

7.4.3 SIPMGCP translator general architecture

Error! Reference source not found. illustrates the basic architecture that we have used

to implement the SIPMGCP intemetworking service. The translator in the middle is seen

by the MGCP network as a call agent and as a user agent by the SIP network. The

translator consists of a call agent and a user agent.

125

SIP

ua = user agent
ca = call agent

Translator

Figure 7.6 SIPMGCP translator architecture

gate­
way / 7

MGCP

A state machine was used to model the translator. This state machine had to model the

call from a MGCP perspective and SIP perspective. A decision was made to use the state

machine from the MGCP side to model the call for both SIP and MGCP. This state

machine was implemented using a data structure written in C. The valid states are Ini t,

Idle, NewCall, RingBack, IncomingCall, Ringing, Connected,

Disconnect and CallStateMax.

t ypedef enum Call State
{

I / @{
I II Imt
Init = 0 ,
II/ Idle
Idle,
III Ne w Outgo~ng Ca I
NewCal l ,

126

} ;

1/1 Ring Back
RingBack ,
III New r :1com' ng Call
Incomi ngCa ll,
II I Ri ngwg
Ringing,
III Connected
Connec ed,
III Half Di SCO!Ulect
Di sconnect ,
CallStateMax
I/@}

The state machine, call data and vanous other C typedef structures were used as in

VOCAL. To implement the translator, modifications were required on the MGCP

functions, including introducing some SIP functions . The rest of this section will explain

how the SIP messages will replace the ones in Figure 7.4 and which functions are used.

7.4.4 SIPMGCP translator: a call from SIP to MGCP

u • t r '" n a tor • w

::::;
•

INVITE • R Q N T •
• N T F '{

eRe X •
• 200 o k R Q N T •

A C K •
B Y 8

• w 9" at e way

• u • use r a q e n t

200 o k OLe X •
4

N T F Y

R Q N T •
Figure 7.7 Can from SIP to MGCP

Figure 7.7 shows the call flow from a SIP user agent to a MGCP endpoint. The user agent

initiated the call. The SIP INVITE is the first message that the translator receives from

127

the user agent. The translator sets up the call for the MGCP endpoint using steps 5-8 in

Figure 7.4 (and described in section 7.4.1). The SDP information from the INVITE

message is used in the command CreateConnection (CRCX) to the MGCP

endpoint. Once a call has been set up with the MGCP endpoint the response to the

INVITE message is sent using a 200 OK message that includes the SDP media

infOlmation received from the MGCP endpoint. The user agent responds with an ACK

message to complete the session setup. At this stage a call has been set up between the

SIP and MGCP endpoint, thus communication in terms of media streams can flow

directly between them. Later, the user agent decides to terminate the session by sending a

BYE message to the translator. The translator immediately sends the message 200 OK to

acknowledge this request. In regard to the termination process, there is no requirement to

check if termination has taken place correctly on the MGCP endpoint before sending the

200 OK to the user agent. This prevents delay due to the translator sending the command

DeleteConnection (DLCX) and necessarily waiting for the response from the

gateway.

To implement the call from SIP to MGCP various new functions had to be added to the

flow shown in Figure 7.5; these are depicted in Figure 7.8.

128

" .
= .,.

transla t or

11
, W

Inlt R t .. ~t

c a n n .. C tiD n til (I "tn 0 M C c: ..
~. c. ly. c: .ll

.. p~aC.".II,.

4
r l nq 1n 9

•

.. ~.i.II • • pon • • M GC.

• w

" .

Figure 7.8 Functions flow from SIP to MGCP

9 II t • '" /I. Y
user IIg- Q nt

The first function that is called is recei velnvi t eo The SIP stack in the SIPMGCP

translator receives SIP messages using the function recei veSIPmessage and

processes them using the function processSIPmessage. The latter determines what

SIP message has been received; if it IS an INVITE message the function

recei velnvite is called. Within recei velnvi te the CallData and the

connect ionld is set up. The state of the endpoint is changed to NewCall. The SOP

from the INVITE message is also copied, ready to be sent along with the CRCX message

to the MGCP endpoint, then connectionReadyDoMGCP is called.

II rece1velnvlte
II requ irements:
/1 proc e ss the i nvite message and creat.e ccnnectio t o mgcp
II precondi t,ons l
II va l id invite msg and endpoint pointer
II postcondi t,ons l
II call the f nc ion connectionReadyDoMGCP
void receivelnvite (Sp r<lnv it eMsg> i nvice . Endpoint · ep)
(

cout <. < "endpoint . exx rece ivelnvlte 11 « endli
II process:nv lte will process the invite message check that it has

a valld from sip urI and r e turn the sdp
Sptr<SipSdp > sdp = process Invi~e(invit e) ;

129

I idoing the mgcp part
CallData ' call = ne wCallData (ep);
sprintf (call - >ca.11!dent.ifier, "%X ", newCall l dent:tfier(») i

int destEpld ;
destEpld 0;
e p - >call = call; f

stateChange (ep, NewCa ll) ;

I/we need to set t he connectlonld and t he session descrip 10n t o be
s e n to the gw

strcpy (ca ll - >endpoint[O] oconnec t i onld . call - >call l dent l_ ier) ;
call->endpoint[OJ olocalConnect ion = sdp- >gecSdpDescriptor () ;

Iidebuggwg
/Icout « "ep - >id « ep - >id « e nd1 ;

connect~onReadyDo~GCP {e_) i

/ * rece ivelnvi te i< /

The function conne ctionReadyDoMGCP changes the state of the endpoint to

RingBack , sets up the destination endpoint and notifies it of the call event

Recei veCall.

II conneccionReadyDoMGCP
II requirements:
I I ch nge the state to RingBac k . setup destintat ion endpoint and not ify
the e ndpoi nt
int
connec tlonReadyDoMGCP (Endpoin t ' ep)
{

cout « "endpoin . cxx cormectionReadyDoMGCP < endli

stateChang e (ep . RingBack) ;

I lde'ugging
/Ieouc « ,r ep->id = 'I <c ep- ~id <c e ndl;

Cal lData* cal l I = ep- >cal
1* Warn Ong: No locking on shared endpoint and call data 'I

Endpoint· destEp = &eps[call l - >endpoint[OJ old J;
destEp->call - ca ll I ;

notifyEn point (deatEp . ReceiveCall) ;
ret rn 1;
1* connectionReadyDoMGCP *1

130

Call events are processed in the function p roc e ssEve nt ; if the event is

Recei veCal l then the function recei veCall is called. The r e cei veCall

function changes the state to IncomingCa ll , copies the requestldent i fier and

sends the command NotificationReque st or RequestForNot i fication

(RQNT message) to the gateway.

int ~

~eceiveCall (Endpoint ' ep)
(

cout « "endpol nt . cxx re ce i veCa 1 " « end l ;

stat e Change (ep . IncomingCal l) ;

sprlnt f (ep - >requestlde nc i f ier , "\X ", newRequestldentifier {)} i

MgcNotificationR q uest rqnt ("te s t I D". ep->r equestldentifier) ;
e p - >gw->sen (rqnt) ; h

i f (r qnt. getResponseCode() ~ - Tr an ac t 10nExecuted)
{

ringi ng (ep) ;

re tur n 1 ;
/ * receiveCal l * /

The ringing function is a simple function that just changes the state to Rin ging.

wt
Tlnging (Endpo i nc * ep)
{

cout « Hendpoint . c xx ring i ng II « endl;

s tateChange (ep . R' nglng) ;
re t urn 1 ;

1* r inging ' /

After a Not i fy (NTFY) message is received from the gateway, indicating that the

endpoint has accepted the call, the function answer is called. The function answer

creates a CRCX message with the necessary SDP information, sends this message to the

gateway and waits for a response. If the response IS 200 OK

(Tran s a ct ionExecuted) then it will send a RQNT message to the gateway. This

notification request message is to notify the translator of any events that could occur in

that connection. For example, if the endpoint decides to terminate the session, the

translator would receive an on-hook (hu) event.

131

int
answer (Endpo~nt · ep)

cout « lI endpoint.cxx an swer " « end;

cout « "ep ->id = " « ep->ld « endl;

CallData * call = ep - >cal l;
assert (ca l l);
MgcCreateConnect i o n c r c x ("t e stIO ", call - >callIdenti f ier .

"sendrecv") :
c rcx . setRemoteConnectionDescriptor

>endpo,nt[O) .1ocalCo~~ection) ;

e p ->gw->se d (crcx) ;

if (crcx . getResponseCode() == 1'ransact~onExecuted)
{

strcpy (call->endpoint[O) .connectionld.
(crcx .getConnect i onld ()) .data();

call- >endpoint [O) . 1oca lConnect ion
c r c x. g et LocalConnectl onDescriptor ();

notifyEndpolnt (eps [call->endpointlO) . id). Connect);

(call-

sprintf (ep - >request.ldent ifier , "!lX ", newRequestldentifier());
Mg Notification Request rqnt ("cestID", e p ->reques Identif i er) ;
ep->gw->send (rqnt) ;

if (rqnt.g tResponseCode() == TransactionExecuted)
{

stateChange (ep. Connected) ;

return 1;
/ * answer */

Once a response is received from the gateway for NotificationRe quest (RQNT

message) the function connec tToMGCP is called. The function connectToMGCP

constructs the 200 OK message to be sent back to the user agent. It also includes the SDP

information received from the endpoint and changes the state to connected.

!.:It

connectToMGCP (Endpoint· ep)
{

cout « "endpoint.cxx connected '* « endl;

CallData+ call = ep- >call;
assert (call) ;

//conflnnation the other par y has ac epted the call
//send the 200 OK for SIP

132

send2 OOOK (call , mS9);

stateChange (ep, Connected) ;

re turn 1i
/ * connectToMGCP * /

At this stage the user agent is connected to the endpoint via the gateway, and media

communications can flow between the two. From this point on, either the user agent or

the endpoint could resolve to terminate the session. We will demonstrate the termination

sequence after showing the call setup from a MGCP endpoint to a SIP user agent.

7.4.5 SIPMGCP translator: a call from MGCP to SIP

Figure 7.9 represents a call flow from a MGCP endpoint to a SIP user agent. We have

assumed that the endpoint is correctly set up; in other words the initialization sequence

has been completed. We also assume that all MGCP requests have 200 OK responses.

• w t ran ~ a tor " .
• ::::j = ,

~

IP , - n

NT F Y
~

~
eRe X I N V I T E

~

~
200 o k

M D C X
~

~
R Q N T A C K

~

NT F Y
~

• w gat e. \II &. Y
" . usa r a 9' e n t

• D L C){ • Y E
~

• 200 o k

Figure 7.9 Call from MGCP to SIP

The first message that the translator receives is NOTIFY (NTFY message), signaling that

the gateway has detected an off-hook (hd) event from one of its endpoints. The translator

acknowledges this message with a 200 OK message and sends CreateConnection

133

(CRCX message) to set up the connection on the gateway. The gateway responds with a

200 OK containing the SDP with the media streams that it is willing to listen on. The

translator sends the INVITE message with the SDP it has acquired from the gateway, on

behalf of the endpoint, to the user agent. If the user agent accepts the call it sends a 200

OK, with the SDP that the user agent is willing to listen on, back to the translator. The

translator uses the SDP information contained in the 200 OK to create a

ModifyConnection (MDCX) message to be sent to the gateway. If the response of

the gateway to MDCX is 200 OK, then the translator sends a NotificationRequest

(RQNT). This indicates that the connection has been set up and the translator is requesting

notification of events such as on-hook (hu) events from the gateway. Once this has been

completed, the translator sends the ACK message to the user agent to complete the SIP

session setup. Note that the translator does not immediately send the ACK once it

receives the 200 OK !i'om the user agent, because the MGCP endpoint could still elect to

terminate the call setup resulting in an incorrect call setup.

At this point a call has been set up between the MGCP endpoint and the SIP user agent

and media can flow directly between the two. From here on, either entity may opt to

terminate the call. In Figure 7.9 we represent the situation in which the MGCP endpoint

has decided to terminate the call. A NTFY message is sent to the translator to indicate that

the gateway has detected an on-hook (hu) event from the endpoint. The translator can

send the message DeleteConnection (DLCX) to tlle gateway without confirmation

from the user agent since the endpoint has already terminated the media. The translator

sends the BYE message and waits for the 200 OK from the user agent.

To implement the call flow indicated in Figure 7.9 various changes had to be made to the

functions flow first illustrated in Figure 7.5. The result of these changes is shown in

Figure 7.10.

134

• w

-,
t r II. n s 1 d tor

'--'

I .

1 n i t R • OJ II en ... ~

.. d i a li n q Co <) '" II 1 <I t <I

ec nn eCtiOn R 84dyCOS I P n d l nv it o III

.. eon n IlC1: T OSIP

i-J scon n oet S IP

.. p r oc statu ..

u •

• w
u •

Figure 7.10 Functions now from MGCP to SIP

gatQway
user agent

As in Figure 7.5, initRestar t and i nitRe spo n s e are needed to initialize the

endpoints that are attached to the gateways. The function dialingComp l ete is called

after the translator receives a NT FY message from the gateway. The function sets up the

endpoints that need to be called. In this particular case, since there is only one user agent,

the destination endpoint identity (des tEpId) is set to zero. The state changes to

NewCall and a CRCX is sent back to the gateway. If the transaction has been

successfully executed then the function connectionReadyDo SI P is called.

I I d i allngComplete
II p09 t condi t ions ,
II ass ume the l nlt i al e ndpo int has been lnit l ali zed
/I r equ,rements,
II s ecup the destId , change state and send CRCX
II p r econdit i ons,
I I cal l connectionReadyDoSIP
l nt
d,ali ngCompl e t e (Endpoi n t * ep)
{

II
cout « Il endpoint . xx dialingComp l ece II « endl;

CallData * cal l = newCa l lDa t a (ep) ;

135

sprintf (call->Cclll _dentlfle:: , l1%X", newCal l ldentlEier());
int dest EpI d ;
if (ep->i d == 0)
{

des tEpId = J ;

call ->endpoin [1) . i d - dest E Id;
e p - >oa11 = all;

stateChange (ep. NewCa ll) ;

MgcCreateConnection
usendrecv");

ep - >gw->send {cr x} ;

c rcx ("tes t IO " , ca ll - >ca l l I dentl fier.

if (crcx . ge tRespo nseCode() == Transaccio nExecute d)
{

strcpy (call - >endpoint [OJ .connect ionld.
(crcx .getConnect i onld ()) . data ()) ;

c l l - >endpoi .t [O) .1ocalConnect i on
crcx. getLocalConnec tionDescri ptor () i

connectlonReadyDoSIP (ep) ;
}
else
{

cout « lIfa il ed TransactionExecuted \ n"i

r e t urn 1;

1* dialingCompl ete ' I

connectionReadyDoSIP is a simple function that changes the state to RingBack

and calls the function sendlnvi teo Currently, the call method is very simple and uses

the parameters passed to the translator to determine where the user agent is located. An

improvement on this method is discussed at the end of this chapter (section 7.5).

II connecti onR adyDoSIP
II requirement s ,
/1 simple method of c ll i ng t he S IP user agent
I I passing I t as a pa rameter t o the translator
i nt
connec t ionReadyDoSI (Endpoint - epJ
{

cout « "endpoint . c xx connectionRea dyDoS I P I I « e ndl;

s t ateChang (ep, RingBack l ;

CallData* calll = e p->call;
IlsendInvlte does ,
I lconstruct the I NViTE message
Iladd the sdp information
I/send the me s sage

136

send lnvite(uaip, uaportno, l oca lSIPportno , call t) ;

r e t u rn 1;
I ~ cannee ionReadyDoSIP * 1

sendlnvi te constructs the INVITE message, adds the required SDP information and

sends the message. Constructing the INVITE message is a lengthy process involving

constructing the various objects that relate to the fields in the SIP message and then

getting the Invi teMsg object to point to them.

/ / sendlnvite
II constructs an Il\i'VITE message using the giv n pa!:"ameters
1/ sends them asyncronzo sly
II ualp = ip address of the SlP endpoint we re going to call
II uapor no = porcno of the sip e ndpo inc we are going to ca ll
1/ localSlPportno = portno local ly
void sendlnvite (char · uaj p, l nt uB.ortno, int localSIPportno, CallData *
calll)
(

SIPNewCall 1; .
II constrUCt a SIP TO URL for the message .
Sptr<S i pUrl> toUrl;
try
(

(

Data CoHos uaip:
Dat a toPort - apor no;
toUrl Knew SipUrl ();
t oUrl->setHost (toHost} ;
t oUrl ->setPort (a Port);

atch (Si pUrlParse rException e)

c out « "SipUrlParserException U « e:1dl;

,

II construct an lrlvite message using the toUrl , modi fy other f i elds
later

InvlteMsg msg (tOUrl) ;

SlpSubject subject ;
s ubject.set (UNew ca ll" j ;
msg . setSubject(subject) ;

II const ruct the fromUrl
SipFrom from", msg .getFro;n();
II t emporary display name
from. setDl splayName ("Bob Smi t h") ;
Da ta fro~Yost - l ocalhostname ;
Data fromPart ~ localSIpportno ;
Spt r<S,pUrl> fromUrl = new SipUrl();
fromUrl - >setHost(fro~lost);

fromUrl ->set Port (fromPort) ;

137

from . set UrI I fromUrl);
msg. se From (from) ;

II construct the via
S~pvi a via = msg.ge Vial);
via . setPortlloca l Slpportno);
msg. removeVla (0) ;
msg . setVia(via, O)i

II construct the Contact l ist
SlpContac t contact. = msg . getContact();
contact . setUrl lfromUrl) ;
msg. removeContact {O) ;
msg . setContactlcontact, 0) ;

II sdp will point :0 the SDP body i n the message. I f we change
II sdp , we change the SOP contents of the body.
Sptr<SipS p> sap;
sdp . dynamicCastl msg .getColltentOa a lO)) ;
II copy the sdp from the gateway
asser (sdp!= 0) ;
sdp- >setSdpDescripcor (cal l- >endpoint (OJ .1ocalConnecti on) ;

II now , we wi 1 send the INVITE mess ge
sipStack->sendAsynclmsg);
cout « "sendl.ng the INVITE message " « endl ;

} I ' s endlnvite ' I

The translator waits for the response from the user agent. The translator processes status

messages in the function process Status. Inside the function we determine if we have

received a 200 OK for the INVITE message by checking the command sequence

(ge tCSeq) associated with the status message. If the 200 OK is intended for the

INVITE then we call the function connectToSIP.

voi d processStaLus {S.tr<StatusMsg> stacus)
{

cout <: 11 processlng Stat us mes s ages " « endl;
int statusCodei
statusCode = s atus->getSt atusLine {} .getS t a usCode()i
cout « I'got status code: 11 « statusCode « endl;

if(statusCode < 200}
{

iflstatusCode =- lSO}
{

cow: « "Ring ing SIP si e " « endl;
}

if {statusC de 200)

138

MDCX

SipCSeq tescCSeq = status- >getCSeq() ;
if(testCSeq .ge tMethod () == "INVITE")
{

I/received a 200 ok for an invite t hat we have sent
c out « "call accep ed " « endl;
lithe 2000k contains sdp informat io~
Ilcopy the sdp from t h e 2 0 0 to ::he ep, this is to b e used for

Endpolnt * ep = &eps[O] ;
c o nnect ToSI P(status , ep) j

SIPNe wCall = 0 ;
localSta usMsg = status;

else i f(testCSeq . getMethod {) = ::1 "BYE")
{

//received a 200 ok for an bye "hat:. we ha ve sent
cout « "2 00 OK recei ve" for BYE message " « endl;
cout « "call cerminated " « end1 ;

connectoToSIP creates the MDCX message to be sent to the gateway where the CRCX

message originated. This modifies the connection information stored on the gateway

according to the media information from the user agent. With thi s information available,

the gateway identifies the type of media and the port number to use. If the MDCX message

is sent successfully, a RQNT message is also sent to the gateway to notify the translator of

any event such as on hook (hu). If the message RQNT is sent successfully it will call the

sendACK function.

In

c onnec t ToSlP (Sp r<Sta t u sMsg > s ta t us, Endpoin ' ep)
{

cout « "connected to sip user agent !! « endl;
Il create the MDCX message
MgcModifyConne tion mdcx ("test-IO " ,

call- ; ca illdentifier ,
call - >endpoint[O] . conn ctionId.
"sendrec v") ;

I/use a t e mporary SipSdp to hold the s ssian description
Sptr<SipSdp> tempSdp;

empSdp . dynamlcCast<status - >getContentData {O)) ;
mdcx.secRemoteConnectionDes c rlptor (tempSdp->get.Sdp esc r1ptor(}) ;
ep->gw->send (mdcx) ;
if (mdc x . ge ResponseCode () =. Transac tionExecutedl
(Ilif the transaction has executed sen d the RONT t o listen f o r

any events
sprlntf (ep - >requestldent.itier , "%X ", newReque stlde nt i fier(});

139

MgcNotifi c t i onReques r nt ("testIO", ep- >requestldenti f ler) ;
iJ> ep- >gw - >sen (rqn t);

if (rqn .getResponseCode () == Tran s accionExe cut e d)
(

stateChange (ep , onne c t ed) ;
sendACK (status) ;

return 1;
/* connec t ToSI P */

The sendACK function sends the ACK message back to the user agent to complete the

session setup for SIP.

vo id sendACK (Spt r <S t a c usMsg > status)
(

cout « II send_l ng ACK " « endl;
AckMsg a c k (*stat u s);
s ipStack - >sendAsyn (ac k) ;
cout < II connection estab ished f rom MGCP to SIp n <-<- e nd l ;

/ * eendACK */

Now we have reached a common point for both call flows (a call from SIP to MGCP and ,
from MGCP to SIP). Both calls have been successfully initiated and established. We are

now ready to move onto the next phase, the termination of the calls. This phase also

involves two parts, termination from the SIP side and termination from the MGCP side.

7.4.6 SIPMGCP translator: termination of calls

Termination from SIP

When the translator receives a BYE message from the user agent, it immediately sends a

200 OK back to the user agent and calls the function disconnectMGCP.

vo id processBye (Sptr<ByeMsg > bye)
(

cout « IIprocessi ng BYE" « end1 ;
send200BYE (b ye) ;
disc onnectMGCP (& eps [O]); ,

140

The function disconnectMGCP changes the state to Disconnect and notifies the

endpoint of the call event ClearCall .

l nc discorulectMGCP(Endpoint* ep)

stateChange lep , Disconnec t) ;
Ca lIDa a * call ep ->call ;
assert (call) ;
not l fyEndpo inc (&eps [call - >endpoi nt [OJ. id l , ClearCa ll);
return 1;

/ * dlsconnec MGCP ' j

The function processEvent processes call events; if it detects a ClearCall event

then it calls the function clearCal l. clearCall creates and sends the DLCX

message.

int
clearCa ll (Endpoint' ep)
{

dlcx

it ' l

cout « "endpoint. e x-x clearCal l II « endl;
stateChange (ep, Disconnect) ;
Ca llData - ca l l c e p->ca 11i
ass ert (call) ;
MgcDeleteConnect i onAgem dlc x (" t · scID ") ;
d lcx.setCal l ld (cal l->cai lldentl fler);
d cx.se t Connectl onId (call->endpolnt [OJ . connec i onId) ;
ep- >gw-> send (dlcx);
if (dlcx. gecResponseCode() == ConnecclonDeleted I I

dlcx. ge tResponseCode () == Transac ionEx c ted)

//clearing the cal l
callDa a ln i t (ep- >call) ;
ep- >cal l = NULL ;

l/clea rCall will not cal l disResponse MGCP i will only send t he

}

and wa i t for t he resp nse
/ lin pro cessEven t , once it:
ca 11 di sResponse~IGCP

return 1;
/ * clearCall */

receives he hangup event from ep [ll

Once the translator receIves the notification from the gateway that the endpoint has

replaced the hook, the on-hook (hu) event, it calls the disResponseMGCP function

that reinitializes the state and endpoint.

141

II disRespon s eMGC P
II gets c al led when the t r ans lator rece~ves notifIcation of line e vent
"hu l!
II from the gateway

disResponseMGCP (Endpo int· ep)
{

cout « fi end o in . cxx disResponseMGCP II c.:< e ndl;
sta teChange (ap. Init);
lnitRestar (ep) ;
return 1 ;

I · di s ResponseMGCP * 1

Termination from MGCP

The translator receives a NTFY message from the gateway notifying it of the on-hook

event at the endpoint. The function disconnectSIP is called. disconnectSIP

changes the state to Disconnect and creates the DLCX message. This message is sent

to the gateway to terminate the connection. If the message is sent successfully, then the

call data is reinitialized, followed by a call to disResponseSIP.

i nt
disconnectS I P (Endpoin t * ep)
{

co ·t < "endpoint . cxx d~sconnect II « endl ;
sta eChange (ep, Disconnec t) ;
Ca llDat a~ call = ep- >call;
a ssert: (call) ;
MgcDeleteConnectionAgent dlcx (IItes t ID") ;
d lcx.setCa l lld (ca l - >cailldent l fier) ;
d lcx. secConnect~onld (call - >endpoint [O] . conne ctionld):
e p -> w- >send (dlcx) :
if (d lcx . getResponseC de l) == ConnectionDeleted I I

dlcx.ge tRespons eCode{) =- Transact i onExecu e)

Ilclearing the c a ll
callDatalnlt (ep->call) ;
ep - >call = NULL;
di s ResponseSlP (ep) ;

return 1:
1* disconnectSI? * 1

disResponseSIP reinitializes the state and the endpoint followed by a call to

sendBye to terminate the session on the SIP side.

i nt

142

di sRe sponseSI ? (Endpoi nt · ep)
{

cout « " endpo ~nt . cxx di sccnnectRe sponse " « e nd l ;
s t a t e Ch<lIlge (ep, I ni t) ;
i nltRestar t (ep) ;
s endBye() ;
r e t urn 1;

/ * di s Res ponseS I P */

BYE messages in the VOCAL SIP stack can be constructed from status or ACK

messages depending on whether the SIP user agent was acting as the User Agent Client

(UAC) or the User Agent Server (UAS). If the translator initiated the call with the user

agent then the translator would have been acting as an UAC, hence it would use the status

message in order to construct the BYE message. If the call was initiated by the user agent

then the translator was acting as the UAS and it would use the ACK message to construct

the BYE message. The function sendBye handles both cases.

I/have t. o construc t bye from t atus 0 (' a c k, dependi ng on whethe r you
are the UAC o~ UAS
void sendBye (
{

if(loc l St atusMsg 1= O)I / we are t he u-c we d i d ~ecei ved a 2000k
{

co t « "send i ng BYE from uac " « end l ;
ByeMsg byeSta t us (" l oca l Sta t usMsg) ;
s i pScac k- >se ndAsyn c{byeSt t us) ;
local StatusMsg = 0 ;

i E{localAc kMsg ! - O) / / we are t he uas we dld r e ceived a ac k
{

couc « Ilsend i ng BYE from uas " « endl ;
ByeMs g b yeAck(*localAckMsg) ;
s ipSt ack- >sendAs ync(byellck) ;
loca l AckMsg = 0;

Figure 7.11 is a screenshot of the SIPMGCP translator in action.

143

Stop dial tones
Stop dial tones

110,,,,,,/27 10:04:33 C~lling sip:bohGl1.(L23L121 .lJO:5070

Stop local ringback
Estiblishing audio 'i.'l6'\>
thotening en port: 10078
Sending to host: spare.ict.ru.llc.za
Sending to por t: 6060

. ." .

11")o".0"·:"~43' ~ .. '~6 {08192] ERR : Sdploledia.cxx:474 for RTP,
within 1024 - 65536 and even

ll~~:~,,::::'::~i:;::~.alldio ~". II : 6060
146.231.121.1.30
10078'

to: stateAct.1veNoNorifi.ca tion s

Figure 7.11 Screens hot of SIPMGCP translator

The top window depicts the SIPMGCP translator, showing various function calls

including debugging messages. The bottom left window depicts the user agent from

VOCAL with no changes made to it. The bottom right window displays the example

MGCP gateway from VOCAL, also with no changes made to it.

7.5 Internetworking services discussion

In general, accessing another network even for a basic servIce such as call delivery

appears to be not an easy task.

VOCAL is an open-source software suite. Users from all over the world contribute to this

software. Study of the translator, or SIPH323CSGW call signaling gateway, has become

a popular project branching from the main VOCAL software suite. Programmers and

144

companies who once worked with H.323 software have contributed to the project in an

effort to ensure interoperability between the H.323 network and the SIP network. The

amount of on-going work aiming to produce an intemetworking service of industrial

strength is substantial. Companies that use H.323 software, possibly with plans for a

transition to SIP, might benefit from participating in this type of development.

SIPH323CSGW uses the latest OpenH323 libraries for the H.323 side of the gateway,

thus ensuring interoperability with H.323 networks.

As mentioned, due to the commercialization of CINEMA, which occurred midway

through the study, little experimentation was possible with S I P3 2 3 , the SIP to H.323

call signaling gateway. CINEMA has since improved SIP323 and its testing may

resume once licenses for the software are obtained.

Various design issues were contended with during the implementation of the SIPMGCP

translator. Although we could have implemented the translator by plugging a complete

user agent into it, this would have meant that the translator had to be in control of two

state machines (namely, the SIP user agent and the MGCP call agent) needing

synchronization. The current design is apt because it uses just one state machine to

control both the SIP and MGCP sides.

The example call agent was written in C language with functions handling the actual

MGCP messages. The example gateway, on the other hand, was written in C++ with

MGCP messages being handled by methods in a class. The VOCAL MGCP API was

originally written in C and later ported to C++. A logical progression towards improving

the translator would be to first port the call agent code to C++ before incorporating the

SIP portion of the service. This would entail restructuring the code of the call agent into

logical objects with classes and methods. Due to time constraints, this approach was

sidestepped. However, an investigation of that approach could extend to future work.

Porting the code to C++ has many benefits, one of which is extensibility: C++ would

allow for the translator to be extended easily.

145

Thus far, the SIPMGCP translator is a proof-of-concept implementation; improvements

are possible. For example, the function connectionReadyDoSIP uses a simple

method to call the user agent. One conceivable improvement would be to implement a

database by mapping numbers to the SIP URLs of the user agents.

c onnectionReadyDoSI P would call a function to listen for DTMF tones from the

gateway and look up the resulting SIP URL from the number that the user has dialed.

(DTMF tones are handled as line events in MGCP, thus a session need not be in place in

order to receive DTMF tones.)

MGCP provides a fine-grain control over the media resources and was designed

specifically to control media gateways [Radvision Corporation, 2002). We may have

chosen a signaling protocol, like SIP, to build our own media gateway, allowing SIP

users direct access to the gateway. However, a custom-made media gateway, using a

signaling protocol to control the gateway, would likely work for just one type of media

conversion. Then, as soon as a new network arrives, requiring a new media gateway to do

media conversion, a new custom-made media gateway would have to be assembled

(requiring time and effort on the part of the programmer). MGCP provides a standard

interface for accessing media gateways; with MGCP-compliant gateways readily

available in the market, when a new network arrives, all that is required is the purchase of

a MGCP-compliant gateway (which can do the required conversion of media and add it

to the current network).

Once intemetworking services are readily in place one may start investigating the

possibility of accessing advanced services on the other networks.

An ISDN gateway was available as a service on the H.323 network. This was set up by

fellow colleague Jason Penton [Penton et aI., 2001aj. We used the intemetworking

service from VOCAL, the SI PH323CSGW call signaling gateway, to successfully access

the ISDN gateway on the H.323 network. This allowed SIP users PSTN connectivity and

exists as an example of how an intemetworking service can be used to access a service on

another network.

146

Collaborative work with Ashley Jacobs produced an MGCP-compliant SMS gateway

[Jacobs and Clayton, 2003]. This is a service in MGCP. The SIPMGCP translator

developed for intemetworking (see section 7.4.3) could feasibly be used in conjunction

with the SMS gateway to allow SIP users to send SMSs.

Future work in the area of accessing services on another network could focus on

improving the translator to better support (many) other services. This approach would

mean updating the translator each time a new service arrives . Another approach could be

to constrain the services so that they can be accessed via the translator. Constraining the

services would mean reducing the number of messages that each service uses. The major

hindrance to a translator involves the number of messages that it must process from either

side. Consequently, reducing the number of messages that the service uses could allow

quicker services.

7.6 Summary

This chapter introduced intemetworking services. We examined how communication

between the SIP and H.323 networks was made possible in CINEMA and VOCAL. Once

this intemetworking service was in place, we went on to investigate whether or not

services on the other network could be accessed using the intemetworking service.

Next, a SIPMGCP translator was developed 10 order to investigate intemetworking

between the SIP and MGCP networks.

Finally, a discussion of intemetworking issues was provided.

147

Chapter 8 Conclusions and Extensions

8.1 Summary

This thesis began by providing a basic justification for an investigation into servIce

creation, in the context of multimedia real-time communication. The extent of Internet

expansion in the next stages will depend on whether it can establish itself as a real-time

multimedia-access network.

We cited the two dominant signaling protocols, SIP and H.323 , available for real-time

multimedia sessions over !P. SIP was chosen as the protocol employed to investigate

services for this study. Reasons for the choice and a basic introduction to the SIP protocol

were given in Chapters 1 and 2.

Among all possible implementations of SIP environments, CINEMA and VOCAL were

chosen (Chapter 3). These architectures were selected not only because the source code

was available, and therefore modifications were possible, but also because the author

supports an open-source philosophy whereby an individual is allowed to craft

modifications to the software, with these modifications becoming widely available to the

public. The CINEMA software suite was provided on an academic basis, while the

VOCAL software suite is open source.

Once the environments were deployed, the investigation into service provisioning began.

We proposed an initial division of services into basic and advanced. Basic services are

ones that provide the minimal functionality required by any telephony environment and

are assumed to be available at all times. Advanced services need basic services in order to

operate, thus these services have been the focus of the research. We further divided

advanced services into four groups: call-related, interactive, internetworking and hybrid

(Chapter 4), with each containing a composite subgroup for services that are a

concatenation of services in the larger group.

148

Next, we discussed examples of service creation for three of the advanced services

categories: call-related, interactive and internetworking.

In the category call-related we investigated the tools provided to implement services in

each environment (Chapter 5). SIP-CGI is used in CINEMA, while CPL is used in

VOCAL. Various services were implemented to exercise the capabilities of each

environment. Call-blocking, usemame lookup and missed call services were developed

for CINEMA using SIP-CGI. These services were developed with relative ease since

their creation required only basic knowledge of scripting languages. The service call

blocking used an available standard script, while the services username lookup and

missed call showed how well SIP-CGI can be used with backend systems and other

Internet protocols (namely the MySql backend database system and the SOAP protocol,

respectively) . Similar call-related services were developed for VOCAL using CPL. A

discussion was provided to contrast the similarities and differences for each of the call­

related service-creation mechanisms.

No standard tools are available for implementing interactive services; yet, we began with

an investigation into the implementations of the voicemail service in both environments

(Chapter 6). The voicemail service was used as a template to develop, in both CINEMA

and VOCAL, another interactive service, namely a reminder or notification service.

Services in the interactive category are more difficult to implement than call-related ones.

A discussion outlining the difficulties encountered in implementing interactive services

followed.

Work on the internetworking category of services focused initially on intemetworking

between H.323 and SIP; later we developed a service able to internetwork between

MGCP and SIP (Chapter 7). Various tests were carried out to probe the extent of

successful internetworking between H.323 and SIP in VOCAL. Less experimentation

was done in CINEMA, due to the sudden commercialization of the software used for this

environment during the course of the study. The results of the tests done in VOCAL show

149

that the services provisioned for the SIP endpoints may be executed when a call is made

from the H.323 endpoint, but understandably a complete H.323 network including a

properly configured H.323 gatekeeper is needed for the same functionality to occur on

the H.323 side as well. Next we successfully developed the service for internetworking

between MGCP and SIP, also in VOCAL.

The development of services in the internetworking category was relatively more difficult

in comparison to services developed in the categories call-related and interactive,

because the developer required knowledge of two protocols. Nonetheless, we discussed

the development of internetworking service for SIP and MGCP. This was followed by a

discussion concerning accessing services on the other network using the newly

fonnulated internetworking service.

8.2 Conclusions

The aim of the research was to answer certain broad questions related to service creation

in CINEMA and VOCAL, namely:

I. "Where in the architecture can services be deployed?"

2. "What level of expertise is required to create services?"

3. "How easy is it to create a service?"

We summarize the answers to these questions in the subsections below, organizing them

according to the services categories introduced in Chapter 4.

8.2.1 Call-related services

With respect to the question "Where In the architecture can call-related services be

deployed?", we found that scripts in CINEMA can be located at the server or at the client,

while in VOCAL all scripts are stored on the server. In CINEMA, it is up to the user to

make sure that his or her script, wherever it is located, is executed; in VOCAL the user

need not worry about the execution of the service because the scripts are centralized. Due

150

to centralization, the VOCAL administrator can easily manage scripts, whereas the

CINEMA administrator has control only over the scripts that are located on the server.

We proposed a solution to the management of scripts in CINEMA, introducing a central

repository to store scripts, from which a user could download them using a user agent.

The advantage of this solution is that a generic user agent can be used to access services

on the server. The greatest disadvantage is that users will be left with less flexible

services; another disadvantage is that the user becomes dependent on the availability of

the server.

With respect to the question "What level of expertise is required to create call-related

services in this environment?", we found that users with knowledge of a scripting

language can write services in CINEMA, while in VOCAL programmers with sufficient

knowledge of CPL are required to create new services. CPL can be used to describe

services in Internet telephony but CPL does not completely describe all possible services.

Whenever a service that cannot be described using the available set of constructs in CPL

is needed, extensions to CPL need to be made. This requires the programming skills of an

experienced programmer, who will make extensions to the CPL language, which require

modifications to the interpreter, using commonly avai lable tools. CINEMA, compared to

VOCAL, was limited by the lack of SIP-CGI support for outgoing calls. If the nature of

the service requires support for outgoing calls, then the programmer will have to contend

with the rather large job of extending the SIP-CGI framework.

With respect to the question "How easy is it to create call-related services III this

environment?", we found that services in CINEMA could be easily created using SIP­

CGI, and similarly in VOCAL using CPL. The scripting knowledge required to create

services using SIP-CGI can be more or less extensive depending on the service being

created. For example, the services call forwarding and call blocking were easier to create

compared to the services user name lookup and SMS missed call. Configuring services in

VOCAL is fairly easy using the GUI interface, while configuring services in CINEMA

requires editing the script for the service.

151

8.2.2 Interactive services

With respect to the question "Where In the architecture can interactive services be

deployed?", we found that for both environments, CINEMA and VOCAL, the interactive

services were best deployed onto interactive servers, which are separate from the core

servers. Logic suggests that the location of interactive servers is separate from the core

servers to provide modularity and ease of deployment and management. This is

consistent with current approaches in software development, whereby complex modules

are kept separate from the core. The actual location of the service can be centralized or at

the edge. If the service is centralized (i.e. , the interactive and the core servers together

can be seen logically as a central server), then it can be managed more easily by the

administrator. This type of deployment is exemplified by the current trend in telephony

whereby a user may utilize a centralized voicemail service. If the service is located at the

edge, then the service is vulnerable to the uptime of the user agent, which is in general

uncertain. Considering the voicemail service again, its location at the edge could result in

an inability to deliver the service and thus result in lost messages.

With respect to the question "What level of expertise is required to create interactive

services in this environment?", we found that experienced programmers are required to

create interactive services in both environments. Both environments also required in­

depth knowledge of the protocol , their system architecture, as well as the APIs for each

SIP stack.

With respect to the question "How easy is it to create interactive services m this

environment?", we found that in both environments, CINEMA and VOCAL, there is no

standard way of implementing interactive services, which makes their implementation

difficult. The standard ways of creating services using SIP-CGI and CPL in call-related

services cannot be applied to interactive services because interactive services require the

service to directly interact with the user at the time of execution; neither SIP-CGI nor

CPL support this, at least not directly. Naturally, once a standard framework is in place

152

for this category of services, this difficulty will be reduced. For example, one could

develop a language to describe interactive services. This language should offer flexibility

and ease of use, as SIP-CGI and CPL do, and it would support an interactive interface

with the user at time of execution.

8.2.3 Internetworking services

With respect to the question "Where in the architecture can intemetworking services be

deployed?", it is most natural , for both CINEMA and VOCAL, that signaling gateways

(translators) are located at the edge.

More specifically, in CINEMA, the sip323 gateway can be deployed with or without

H.323 gatekeeping or SIP proxying capabilities. In VOCAL, the siph 32 3 csgw

gateway, acts as a call-routed gatekeeper on the H.323 side, and as a SIP user agent on

the SIP side. The S I PMGCP translator was built as an intemetworking service for this

category of services and was modeled on the architecture of the siph3 2 3 csgw gateway

in VOCAL. The S I PMGCP translator was successfully seen on the MGCP side as a call

agent and on the SIP side as a SIP user agent.

MGCP is a master-slave protocol with entities such as gateways, call agents and

endpoints. The call agent acts as the master, where most of the intelligence is contained,

and the gateway acts as the slave that executes the commands provided by the master.

The endpoints in MGCP are lines or simple devices connected to the gateways, such as

PSTN lines or POTS phones. This is obviously different from H.323 and SIP, where

endpoints have PC-capable computational abilities. Thus, services in MGCP are limited

and the major reason for intemetworking with MGCP is to allow SIP endpoints the

ability to access the gateways in MGCP.

The approach to intemetworking used in this study IS at a protocol level. Other

approaches were considered, such as internetworking at a service level, whereby a

gateway is developed for each service. This approach has the advantage of being more

153

secure because users from other networks are only allowed to enter the network to access

a specific service, but it has the disadvantage of not being able to scale well, as more

gateways must be developed and deployed once more services are exposed to other

networks .

With respect to the question "What level of expertise IS required to create

internetworking services in this environment?", experienced programmers, for both

CINEMA and VOCAL, are required. Also the programmers must be knowledgeable of

the two protocols to be bridged in order to create internetworking services.

With respect to the question "How easy is it to create internetworking services in this

environment?", we could not provide an answer in regard to CINEMA, since no MOCP

stack or API was available. However, an MOCP stack and API were available in VOCAL

and the S I PMGCP translator was developed. Developing this service required a

substantial amount of analysis and design before implementation could take place.

Table 8.1 summarizes the questions and answers discussed in the conclusion.

Table 8.1 Table of conclusions

Question Environment Type of service

Call-related Interactive Internetworking

Where in CINEMA Server or Server Signaling gateway
the Client
architecture
can
services be VOCAL Server only Server Signaling gateway

deployed?

What level CINEMA User Experienced Not applicable
of expertise programmer
is required
to create

154

services? VOCAL Beginner Experienced Experienced
programmer programmer programmer

How easy CINEMA Easy Moderate Not applicable
is it to
create a

VOCAL Relatively Moderate Difficult service?
easy

8.3 Extensions

Our investigation into the intemetworking services for CINEMA was limited due to its

commercialization, which occurred during the course of this study. In the future, we

would like to investigate whether or not the experiments performed for the

intemetworking services in VOCAL will yield the same results in CINEMA. This will

simply require the CINEMA software license.

We noted that outgoing SIP-COl support is not available in CINEMA. It would be

interesting to investigate the level of difficulty in implementing this feature. New services

could result once outgoing SIP-COL is enabled.

An important extension to the work reported here will be a systematic investigation of

how services in each category might interact with other services in the same or a different

category. For example, imagine the following scenario: Alice has an outgoing call­

blocking service enabled, which does not allow her to make long-distance calls, while

Bob has decided to forward his calls to a distant number (he has the call-forwarding

service enabled). What would happen when Alice calls Bob? Would Alice's call be

blocked or would it be forwarded to the distant number? The traditional telephony

solution is that the call would be forwarded to Bob, while Alice would be charged the

local call rate while the long-distance rate would be charged to Bob. It should be noted

that it is not just a question of apportioning the cost of the call. For example, Alice might

belong to a country that allows calls only within its borders and this country wants to

155

strictly enforce its policy of no calls to foreign countries. This is just one example of how

the interaction of services is potentially problematic and illustrates that the outcome is not

always obvious. A possible general solution would be an intelligent policy server that

could solve conflicts arising from the sequential execution of services.

A fourth service category, hybrid services introduced in Chapter 4, was not investigated.

Hybrid services are services that contain elements from more than one of the other

categories. This service category could be investigated in future research.

A subgroup of each of the service categories was designated composite services. These

comprise services that are the result of the concatenation of services in one of the greater

categories. An investigation of such composite services could also extend the work

accomplished thus far.

Finally, we investigated services that can be created using CPL. Since CPL is protocol­

and platform-independent and can be used by both SIP and H.323, it would be interesting

to investigate whether a single CPL script can be used to deliver a particular service,

irrespective of the network hosting it. For example, if one CPL script is used to block

calls from within the SIP network, can the same CPL script be used to block calls from

within the H.323 network? If the answer is yes, this suggests the necessary creation of a

centralized CPL server to serve both networks. The centralized CPL server would act as

an agent for both networks. For example, when a CPL script needed to be executed, a

request would be sent to the CPL server, which will fetch and execute the CPL script.

This request would be contained within a H.323 or a SIP message, depending on the

network from which the request originates.

156

Appendix A

Registrar Log File

This is the log file for the Registrar server in the Registration sequence diagram.

ReceiveUDPO: received UDP packet (length 406) from 146.231.123.15:5060:

REGISTER sip:csmsc01 ict.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UDP 146.231.123.15:5060

CSeq: 1 REGISTER

Expires: 3600

Contact: sip:ming@146.231.123.15:5060;q=0.1;action=proxy

From: sip:ming@csmsc01ict.cs.ru.ac.za

Authorization: Basic bWluZOBjc21 zYzAxaWNOLmNzLnJ1 LmFjLnphOg==

Date: Mon, 28 Oct 2002 10: 13:27 GMT

Call-ID: 770215716@146.231.123.15

To: sip:ming@csmsc01ict.cs.ru.ac.za

Content-Length: 0

The registrar received this message from the user.

ResponseSendSocketO: Sending 383 bytes to socket 300 via UDP

SIP/2.0 401 Must authenticate with username ming@cssipict.cs.ru.ac.za

Via: SIP/2.0/UDP 146.231.123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

To: sip:ming@csmsc01ict.cs.ru.ac.za

Call-ID: 770215716@146.231.123.15

CSeq: 1 REGISTER

Date: Mon, 28 Oct 200210:15:07 GMT

Server: Columbia-SIP-Server/1.0

Content-Length: 0

157

WWW-Authenticate: Basic realm="cssipict.cs.ru .ac.za"

The registrar sends the response back to the user, requesting the correct usemame and

password. A challenge is made to the user agent using the WWW-Authenticate header

field with the correct realm that the user must authenticate with.

ReceiveUDPO: received UDP packet (length 410) from 146.231.123.15:5060:

REGISTER sip:csmsc01 ict.cs.ru.ac.za SIP/2.0

Expires: 3600

Authorization: Basic bWluZOBjc3NpcGljdC5jcy5ydS5hYy56YTptaW5nAA==

To: sip:ming@csmsc01ict.cs.ru .ac.za

Call-ID: 770215717@146.231.123.15

Via: SIP/2.0/UDP 146.231 .123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

Contact: sip:ming@146.231 .1 23.15:5060;q=0.1 ;action=proxy

CSeq: 1 REGISTER

Date: Mon, 28 Oct 2002 10: 13:38 GMT

Content-Length: 0

This is the second REGISTER message that the registrar receives from the user. Now, the

user has entered the correct usemame and password. This is encoded in the Authorization

header field.

ResponseSendSocketO: Sending 525 bytes to socket 300 via UDP

SIP/2.0 200 OK

Via: SIP/2.0/UDP 146.231.123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

To: sip:ming@csmsc01ict.cs.ru.ac.za

Call- ID: 770215717@146.231.123.15

CSeq: 1 REGISTER

Date: Mon, 28 Oct 2002 10: 15: 18 GMT

158

Server: Columbia-SIP-Server/1.0

Content-Length: 0

Contact: <sip:ming@csmsc01 ict.cs.ru.ac.za>; expires="Mon, 28 Oct 2002 11 :26:37

GMT"; action=proxy; q=1.00

Contact: <sip:ming@146.231.123.15:5060>; expires="Mon, 28 Oct 2002 11 :15:18

GMT"; action=proxy; q=0.1 0

Expires: Mon, 28 Oct200211 :15:18 GMT

The registrar server sends a "200 OK" message back to the user to indicate that the

registration has successfully taken place, along with a list of the current registrations that

the user has made.

This log file shows that the SIP messages exchanged between the user and the server are

the same. This simplifies the task of debugging the system since all one must do is check

that the messages are actually being sent or received from both sides.

159

Appendix B

CINEMA Proxy Sequence

This section, showing the interactions between user agents and proxy servers, relates to

Figure 3.5. The messages received and transmitted from the proxy server are shown here.

The messages shown here from the user agents are ones following "200 OK" from the

server. The caller Ming is located at sip:ming@csmsc01ict.cs.ru .ac.za, the proxy

server is located at cssipict.cs.ru.ac.za, and the callee g9610645 is located at

sip:g9610645@edo.dsl.ru.ac.za.

Proxy server log file:

ReceiveUDPO: received UDP packet (length 515) from 146.231.123.15:5060:

INVITE sip:g961 0645@cssipict.cs.ru.ac.za SIP/2.0

Via: SIP/2.0/UDP 146.231.123.15:5060

CSeq: 1 INVITE

Contact: sip:ming@146.231.123.15:5060

Expires: 3600

Subject: test

From: sip:ming@csmsc01ict.cs.ru.ac.za

Date: Fri, 01 Nov 200210:41:28 GMT

Call-ID: 837041375@146.231.123.15

Content-Type: application/sdp

Priority: normal

To: sip:g9610645@cssipict.cs.ru.ac.za

Content-Length: 124

v=O
o=ming 46407974952110361472881N IP4 146.231.123.15
s=test
c=IN IP4 146.231.123.15
t=O 0
m=audio 10000 RTP/AVP 0

This is the message that is received by the proxy server from the caller.

160

ResponseSendSocketO: Sending 274 bytes to socket 300 via UDP

SIP/2.0 100 Trying

Via: SI P/2.0/UDP 146.231.123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

To: sip:g961 0645@cssipict.cs.ru.ac.za

Call-ID: 837041375@146.231.123.15

CSeq: 1 INVITE

Date: Fri, 01 Nov 2002 10:43:22 GMT

Server: Columbia-SIP-Server/1.0

Content-Length: 0

This message is being sent back to the caller to show that the server is busy processing

the request.

SendRequestO: Proxying request to socket 372:

INVITE sip:g9610645@146.231.112.107SIP/2.0

Via: SIP/2.0/UDP cssipict.cs.ru.ac.za:5060; branch=3440148629-0

Via: SIP/2.0/UDP 146.231.123.15:5060

CSeq: 1 INVITE

Contact: sip:ming@146.231.123.15:5060

Expires: 3600

Subject: test

From: sip:ming@csmsc01ict.cs.ru.ac.za

Date: Fri, 01 Nov 2002 10:41 :28 GMT

Call-ID: 837041375@146.231.123.15

Content-Type: application/sdp

Priority: normal

To: sip:g9610645@cssipict.cs.ru.ac.za

Content-Length: 124

v=O
o=ming 46407974952110361472881N IP4146.231.123.15
s=test
c=IN IP4146.231.123.15

161

t=O 0
m=audio 10000 RTP/AVP 0

This INVITE message differs from the first INVITE message. Rather, this is the message

proxied to the callee.

ResponseSendSocketO: Sending 298 bytes to socket 300 via UDP

SIP/2.0 180 Ringing

CSeq: 1 INVITE

Contact: sip:g961 0645@146.231.112.107:5060

Subject: test

Via: SIP/2.0/UDP 146.231.123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

Call-ID: 837041375@146.231.123.15

To: sip:g961 0645@cssipict.cs.ru.ac.za; tag=889683254943.146.231.112.1 07

Content-Length: 0

The server receives and sends the "180" Ringing message from user g9610645 to user

Ming. The two messages are essentially the same.

ReceiveUDPO: received UDP packet (length 520) from 146.231.112.107:5060:

SIP/2.0 200 OK

CSeq: 1 INVITE

Contact: sip:g961 0645@146.231,112.107:5060

Subject: test

Via: SIP/2.0/UDP cssipict.cs.ru.ac.za:5060; branch=3440148629-0

Via: SIP/2.0/UDP 146.231.123.15:5060

From: sip:ming@csmsc01ict.cs.ru.ac.za

Content-Type: application/sdp

Call-ID: 837041375@146.231.123,15

To: sip:g961 0645@cssipict.cs.ru.ac,za; tag=889683254943.146.231.112.1 07

Content-Length: 129

162

v=O
0=g961 0645 8518464857951036147309 IN IP4146.231 .112.107
s=test
c=IN IP4146.231.112.107
t=O 0
m=aud io 1436 RTP/AVP 0

The server also receives and sends the "200 OK" message from user Ming to user

g9610645. The two messages are essentially the same, so they are displayed here once.

Log file from Ming's User Agent:

1110112002 12:41 :37.547000

Sentto: 146.231.112.107:5060

ACK sip:g961 0645@146.231.112.107:5060 SIP/2 .0

Via: SIP/2.0/UDP 146.231.123.15:5060

Contact: sip:ming@146.231 .123.15:5060

CSeq: 1 ACK

Subject: test

From: sip:ming@csmsc01ict.cs.ru.ac.za

Date: Fri, 01 Nov 2002 10:41 :37 GMT

Call-ID : 837041375@146.231 .123.15

To: sip:g961 0645@cssipict.cs.ru .ac.za; tag=889683254943.146.231 .11 2.107

Content-Length: 0

This ACK message is being sent from the caller (Min g) to the callee (g96 I 0645) in order

to complete the setup of the session.

11 /01 /2002 12:42: 12.057000

Recvfrom: 146.231.112.107:5060

BYE sip:g9610645@146.231.112.107SIP/2.0

Via: SIP/2 .0/UDP 146.231 .1 12.107:5060

CSeq: 2 BYE

Subject: test

From: sip:g961 0645@cssipict.cs.ru.ac.za; tag=889683254943.146.231 .112.1 07

163

Date: Fri , 01 Nov 2002 10:42:24 GMT

Call-ID: 837041375@146.231 .123.15

To: sip:ming@csmsc01ict.cs.ru.ac.za

Content-Length: 0

Ming sends this BYE message to tenninate the session with g9610645.

111011200212:42:12.797999

Sentto: 146.231.112.107:5060

SIP/2.0 200 OK

Contact: sip:ming@146.231.123.15:5060

Subject: test

CSeq: 2 BYE

Via: SIP/2.0/UDP 146.231. 11 2.107:5060

From: sip:g961 0645@cssipict.cs.ru .ac.za; tag=889683254943.146.231.112.1 07

Call-ID: 837041375@146.231.123.15

To: sip:ming@csmsc01ict.cs.ru.ac.za; tag=394468795226.146.231.123. 15

Content-Length: 0

Ming receives the "200 OK" message as a notification that the session has tenninated

properly with g9610645 .

164

Appendix C

CINEMA File List

Some files in libcine and their functionalities:

Base64.c: Conve11s given string to base64 encoding and decodes base64 strings to

normal strings. This function is used for the Authorization header field in the

REGISTER SIP sequence (described in Chapter 3).

Error.c: Error handling and debugging functions; useful when debugging the server.

Host2ip.c: Returns an IP address when given a hostname.

Http.c: Parses HTTP headers such as Content-Length, Content-Type, WWW-

Authenticate and other authorization headers.

Log.c: Provides logging functions; useful to capture one's errors to a file .

Parser.c: Parses RFC822 headers such as accept, allow and contact.

Tcp.c: Handles TCP connections; contains the functions ReceiveTCP and

ReceiveTCPRequests.

Udp.c: Handles UDP connections; contains the function ReceiveUDP.

Some files in libsip and their functionalities:

Authenticate.c: Authenticates the SIP client.

AuthenticateSIP.c: Authenticates SIP requests.

Client.c: Contains the code for a thread, which handles a SIP client.

Policy _ core.c: Executes the low-level core logic of a SIP transaction.

Request.c: Contains the functions to handle requests.

Response.c: Contains the functions to generate responses.

Sip.c: Parses SIP-specific headers.

The actual code contained in the project sipd:

Cgi.c: Handles SIP-CGI request.

165

Method.c: Handles all the SIP requests.

Proxy.c: Proxies a SIP request.

Redirect.c: Handles redirection requests.

Register.c: Does the registration sequence for a user.

Script.c: Handles the action related to scripts, such as uploading, adding and removing

scripts.

Sipd.c: The starting point for the operation of the server. It reads-in settings from the

configuration file and the arguments from the command line. The server can also be

run in the daemon mode.

166

Appendix D

VOCAL SMS Service
File: CPLOpSMS.cxx

Uinclude uCPLOpSMS . hxx"
Ilincludes for sms
#include <sys/ t ypes .h >
Uinclude <sys /socket . h>
#inc lude <net i nec/ i n . h>
ffinc l u e <arpa/inet .h>
Hinc lude <8 io . h / *
#lnclude <netdb .h> / ~

#inc lude <s tring . h> / *
ihnclude <st "li b . h > / *

10 socket () 01
1* soc ke t () '* I
1* sockadd~_'n *1
/ * sockaddr_ in +/
fdopen() 01
getprotobyname() *1
perror () *1
exlt () 0 I

I:fc.efine SMS_SERVER "omnisc i ent .l c t.ru.ac .za "
.define PROXY_SERVER SMS_S ERVER
#define PeRT 80
#de f i ne AlITH "YXNobGV50mFzaGxl eQ"="
III
CPLOpSM "CPLOpSMS()
{
hfdef MEM_TEST

c pLog (LOG_DEBUG, "CPLOpSMS [%xl ", th,s) ;
#endi f
} I/CPLOpSMS

III
CPLOpSMS, , - CPLOpSMS (
{
#ifde f MEM TEST

cpLog (LOG_DEBUG, "-CPLOpSMS [% xl ", his) ;
#endif
} /1-CPLOpSMS

hool
CPLOpSMS : : s e tAtcributes(c onst char'" type, cons t c har '" value)
{

if (strcmp(type , lI dest lna lon") .: = 0)
myDestination = va l ue ;

else
if (strcmp (t ype , "meg" 0)

myf-lsg = value;
e l se

return false ; IIUnknown att r ibute return
return t ru e;

cans t char· con s e
CPLOpSMS, ,name () canst
(

r eturn IICPLOpSMS ";

167

•

vo id
CPLOpSMS;; logData(void) const
{

cpl,og (LOG_ DEBUG , "%s dest,nat,on (%s) msg(%8) ",
myDestination . c _ s t r) , myt·1sg.c_ str ()) ;
) ,

bool
CPLOpSMS : : setNex tOperat o r (Sptr <Operator > anOpera tor,
CPLNodeEndofNodes}
(

addOperator(anOpe r ator);
::eturn t rue;

c ons Sptr < Sta t e >
CPLOpSMS: :pro cess(c o nst Sptr <Slp l? o xyEvent > anEve nt
(

IICode that sends an i nst ot message
inc s o ck ;
struct protoent 1< p!':'ot o ;
struc t sockaddr_ i n la, sa;
st r uct hostent wh ;
FI LE * stream ;
char buffer [1 024), soa p [02 4 J , message [1 02 4) :

I' gets ! P address of host *1
if « h = 9 thostbyn me(PROXY_ SERVSR))

perror (l'ge t hos byname lt
);

NULL) (

e x it (1) ;

)

I ' creates an
sa . sin_ family
memcpy { (char

i nterne t socket descr iption * /
h ->h_ drtype ;
*) &sa. s i n_addr , s _ addr ,

>h_ leng t h) ;
sa.9ioyort htons (PORT) :

1* bind any port numbe r ' I
la . s i n_family = AF_I NET;
la . sin_ add r . s _ addr = htonl(INADDR_ANY) ;
la . sin_por t = hto ns (O);

n a me (),

h -

1* we could juSt say 6 and avoid this call . b t getprotobyname() is
the rlght way to do it ' I

rotc = g e tprotobyname { II t c p ")i

/ * c reate a network socket * /
if « s o ck = socket <PF_ INET, SOCK_STREAM. p r ot o- >pyrot o »

perror (lI can no t c reate socket ") ;
exit (1) ;

1* b,nd the loc al a dress * 1
if (blnd (Boek, (strue t soeka ddr *) &la, slZeof(la)

perror ("ean no t bind ") ;

168

- 1) {

-1) {

exlt:(l);

/ * connect to the r emote ad ress *1
if (co •. nect (sock, (struct sockaddr '" &sa, sizeo: (sa »)

perror{"can not cormect lt
) ;

exit (l) ;

/ * aSSOCiate a stream with this socket */
if (stream = fdopen (sock, " a+ " i) == NULL)

perror{ "c n not associate stream with socket ");
exic (1) ;

- 1)

/* we should n ow e connected 0 the server . 90 we can pre pare a
message +J

spr i n

"

"
) ;

f {message , "%s%s%s%s%s%Sts%s" ,
< sms : sendsms 7.>0 \n" ,

<sms:phone >", myDestinati n, "c::/sms :phone >\n H ,

<sms:message>", myI'1sg, r'</sms:message>\ n ll
,

</sms:sen sms \ n ll

/ * encapsulate the message ~n some soap wi
spnntf (soap, "%s%s%s%s%s%s%s%s",

1I<:?xml vers'on- \ " l .O \ " encod ' 9 <= \"iso- 8859 - 1 \ " ?>\n " ,
" <90ap,Envelope xm ns , s o ap= \ "htt '//W'NW . w3.org/2001 /12/soap -

enve l ope \ ">\n" ,
" <soap : Body>\n" ,
"

xmlns : sms=-\llhttp://omnisc i ent . i ct .ru.ac . za / sms/sms . xsd
message .

) ;

II <Isms: 'ms> \ n".
II </soap : Body>\n ",
"c/ s oap : Envelo e>\n 'l

/* send the r eque st t o the web s erver * /

<sms:sms
n>\n " .

fpnntt(stream , " POST hnp,//%s/sms/ HTTP/l. O\n", SMS_ SERVER);
f rintf (s t ream, " Host! %s\n" , SMS_ SERVER) ;
fprintf (stream, "Content -Length: %d\n", strlen (soap)) i

fprintf (stream, "Authorization: BaSle %8\n", AUTH) ;
fpri n .f (stream, " Use r - Agent: ne tsms.c\n \ n "];
fpr intE (stream, U%8\n ll , soap);

/ * reclaim memo ry *1
free(soap) ; free(message);

/ * read the response from the web server */
while (fgets (buffer, sizeof(uf f er) , scream) 1= NULL)

printf(lI%s ll , buffer);

return CPLOpera or: : process (anEvent } i

169

File: CPLOpSMS.hxx

HfndeE _CPLOPSI4S_HXX
#define _CPJ"OPSMS_"XX
#include uCPLOperator , hxx ll

c l ass CPLOpSMS , publi c CPLOperator
(
pubLe ,

CPLOpSMS () ;
- CPLOpSMS() ; •
bool . e tAttr.ibutes{ const char* eype , const char* value) ;

c o nst Sptr < St ate > pro c e ss c onst Sptr
bool setNexcOperato r (S pc r <Operato r >

CPLNode Endo fNodes) ;
co at har * canst name{) c o nst;
void l ogData (void) cons t;

privat e : ~

string myDes 'inationi
string myf';lsg ; ,.;,

};
#endif

170

<Si.ProxySv ent > a n Event) ;
anOpe rator, int nodeld

, .

References
NB: Material on the Internet has been collected on an attached disc for easy retrieval.

[Allen, 2000]

[Andreetto et aI., 2001]

[Anjum et aI. , 2001]

[Arango et aI., 1999]

[Berners-Lee et aI., 1997]

[Berners-Lee et aI., 1998]

Allen, D. 2000. Megaco and MGCP. Cornrnweb Article.

http://www.commweb.com/shared/artic1e/showArticJe.jhtml?ar

ticleID=8702913

Andreetto, A., Canal, G., Lago, P. , Licciardi, C.A. 2001. An

architecture for IN-internet hybrid services. Computer

Networks, 35(2001): 537-549.

Anjum, F., Caruso, F., Jain, R., Missier, P. , Zordan, A. 2001.

CitiTime: a system for rapid creation of portable next­

generation telephony services. Computer Networks,

35(2001): 579-595.

Arango, M. , Dugan, A. , Elliott, L, Huitema, C. and Pickett, S.

1999. Media Gateway Control Protocol (MGCP) Version

1.0. Request for Comments 2705, IETF, October 1999.

Bemers-Lee, T., Fielding, R., Gettys, J., Mogul, J. and

Nielsen, H. 1997. HyperText Transfer Protocol ­

HTTP/ I.!. Request for Comments 2068, IETF, January 1997.

Berners-Lee, T., Fielding, R. and Masinter, L. 1998.

Uniform Resource Identifiers (URI): Generic Syntax.

Request for Comments 2396, IETF, August 1998.

171

[Chapron and Chatras, 2001]

[Chatzipapadopoulos, 2000]

[Collins, 2000]

[Dalgic and Fang, 1999]

[Dang et aI. , 2002]

[Davidson and Peters, 2000]

[Glasmann et aI., 2003]

[Glitho,2001]

Chapron, J.E. and Chatras, B. 200 I. An analysis of the IN

call model suitability in the context ofVoIP. Computer

Networks, 35(5): 521-535.

Chatzipapadopoulos, F., De Zen, G., Magedanz, T., Venieris,

1.S., Zizza, F. 2000. Harmonised Internet and PSTN service

provisioning. Computer Communications, 23(2000): 731-739.

Collins, D. 2000. Carrier-Grade Voice Over IP (2nd edition).

McGraw-Hill Professional, New York.

Dalgic, 1. and Fang, H. 1999. Comparison ofH.323 and SIP

for IP telephony signaling. Proceedings of Photonics East,

Boston, Massachusetts.

Dang, L., Jennings, C. and Kelly, D.G. 2002. Practical VoIP

Using VOCAL (l st edition). O'Reilly & Associates,

Sebastopol, CA.

Davidson, J. and Peters, J. 2000. Voice Over IP

Fundamentals (1 st edition). Cisco Press, Indianapolis, IN.

Glasmann, J., Kellerer, W. and Miiller, H. 2003. Service

architectures in H.323 and SIP - a comparison. IEEE

Communications Surveys and Tutorials, 5(2)

http ://www .comsoc .org/l i vepu bs/surveys/pub Ii c/2 003/ oct! ind

ex.html

Glitho, R.H. 200 I. Emerging alternatives to today's

advanced service architectures for Internet telephony: IN and

beyond. Computer Networks, 35(5): 551 -563.

172

[Gurle et aI., 1999)

[Halse and Wells, 2002)

Gurle, D., Hersent, O. and Petit, J.P. 1999. IP Telephony

Packet-based Multimedia Communications Systems (1st

edition). Addison Wesley Publishing, Boston, MA.

Halse, G. and Wells, G. 2002. A bi-directional SOAP/SMS

gateway service. Southern African Telecommunication

Networks and Applications Conference (SATNAC)

Proceedings, Champagne Resort, Eastem Cape, South Africa.

[Handley and Jacobson, 1998) Handley, M. and Jacobson, V. 1998. SDP: Session

Description Protocol. Request for Comments 2327, IETF, April

1998.

[Handley et aI., 1999)

[Hsieh et aI., 2001)

[Hsieh et aI. , 2002)

Handley, M. , Schulzrinne, H., Schooler, E. and Rosenberg, J.

1999. SIP: Session Initiation Protocol. Request for Comments

2543, IETF, March 1999.

Hsieh, M., Okuthe, J. and Terzoli, A. 2001. Deploying a SIP

environment in which to study service creation. Southern

African Telecommunication Networks and Applications

Conference (SA TNAC) Proceedings, Wild Coast Sun,

KwaZulu-Natal, South Africa.

Hsieh, M. , Okuthe, J. and Terzoli, A. 2002. An investigation

into multimedia service creation using SIP. Southern African

Telecommunication Networks and Applications Conference

(SATNAC) Proceedings, Champagne Resort, Eastern Cape,

South Africa.

173

[IEC,2003a]

[IEC, 2003b]

[IEC, 2003c]

[Jacobs and Clayton, 2002]

[Jacobs and Clayton, 2003]

[Jiang et a!., 2002]

International Engineering Consortium (IEC). 2003. On-line

tutorials: Intelligent Network (IN), last accessed November

2003: http://www.iec.org/online/tutorialslinlindex.html.

International Engineering Consortium (IEC). 2003. On-line

tutorials: International Intelligent Network (IN), last accessed

November 2003:

http://www.iec.org/online/tutorials/intern_inlindex.html.

International Engineering Consortium (IEC). 2003. On-line

tutorials: H.323, last accessed November 2003:

http://www . i ec.org/ onl ine/tutorialslh3 231.

Jacobs, A. and Clayton, P. 2002. Utilizing MGCP to design

an H.323 endpoint SMS service. Southern African

Telecommunication Networks and Applications Conference

(SATNAC) Proceedings, Champagne Resort, Eastern Cape,

South Africa.

Jacobs, A. and Clayton, P. 2003. Investigating call control

using MGCP. Southern African Telecommnunication

Networks and Applications Conference (SATNAC)

Proceedings, Fancourt Hotel and Country Club Estate,

Eastern Cape, South Africa.

Jiang, W., Singh, K. , Lennox, J., Narayanan, S. and

Schulzrinne, H. 2002. CINEMA: Columbia InterNet

Extensible Multimedia Architecture. Columbia University,

Technical Report Number CUCS-OII-02.

174

[Johnston, 200 I]

[Lennox et aI., 1999a]

[Lennox et aI., 1999b]

Johnston, A. 200 I. SIP: Understanding the Session

Initiation Protocol (151 edition). Artech House, London.

Lennox, J., Schulzrinne, H. and La Porta, T.F. 1999a.

Implementing Intelligent Network Services with the Session

Initiation Protocol. Columbia University, Technical Report

Number CUCS-002-99.

Lennox, J., Rosenberg, J. and Schulzrinne, H. 1999b.

Programming Internet Telephony Services. Columbia

University, Technical Report Number CUCS-OI 0-99.

[Lennox and Schulzrinne, 2000a] Lennox, J. and Schulzrinne, H. 2000a. Call Processing

Language framework and requirements. Request for Comments

2824, IETF, May 2000.

[Lennox and Schulzrinne, 2000b] Lennox, J. and Schulzrinne, H. 2000b. CPL: A language for

user control of internet telephony services, Internet Draft,

IETF, November 2000.

[Lennox et aI., 2001]

[Nortel Networks, 2000a]

[Nortel Networks, 2000b]

Lennox, J., Schulzrinne, H. and Rosenberg, J. 2001.

Common Gateway Interface for SIP. Request for Comments

3050, IETF, January 200 I.

Nortel Networks. 2000a. A comparison ofH.323v4 and SIP.

Nortel Networks, Technical Document S2-00505, Santa

Clara, CA.

Nortel Networks. 2000b. White Paper - The role of

Megaco/H.248 in media gateway control: a protocol

standards overview, Santa Clara, CA.

175

[OpenH323,2003]

[Penton et aI. , 2001a]

[Penton et aI., 2001b]

[Penton and Terzoli, 2002]

[Radvision Corporation, 2002]

OpenH323. 2003. The OpenH323 Project. Coordinated by

Equivalence Pty Ltd., New South Wales, Australia, last

accessed March 2003: http://www.openh323 .org.

Penton, J.B. , Terzoli, A ., and Wentworth, P. 2001a.

Deploying a feature-rich H.323 environment in which to

practice the creation of services. Southern African

Telecommunication Networks and Applications Conference

(SATNAC) Proceedings, Wild Coast Sun, KwaZulu-Natal,

South Africa.

Penton, lB ., Terzoli, A., and Wentw0l1h, P. 2001 b.

Retrieving emails via traditional PSTN telephones, an H.323

service. Southern African Telecommunication Networks and

Applications Conference (SA TNAC) Proceedings, Wild

Coast Sun, KwaZulu-Natal , South Africa .

Penton, lB. and Terzoli, A. 2002. CANS: Customizable

Alarm Notification System, an H .323 signaling service.

Southern African Telecommunication Networks and

Applications Conference (SATNAC) Proceedings,

Champagne Resort, Eastern Cape, South Africa.

Radvision Corporation. 2002. White Paper - Implementing

Media Gateway Control Protocols, Radvision Corporation,

New York.

[Rosenberg and Schulzrinne, 1998a] Rosenberg, J. and Schulzrinne, H. 1998a. The Session

Initiation Protocol: providing advanced telephony services

176

across the internet. Bell Labs Technical Journal, Oct.-Dec.

1998: 144-160.

[Rosenberg and Schulzrinne, 1998b] Rosenberg, J. and Schulzrinne, H. 1998b. A comparison of

SIP and H.323 for Internet Telephony. Proceedings of the

International Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV).

Cambridge, U .K, July 1998.

[Rosenberg and Schulzrinne, 1999] Rosenberg, J. and Schulzrinne, H. 1999. Internet

Telephony: architecture and protocols - an IETF

perspective. Computer Networks, 31(3), 237-255.

[Rosenberg and Shockey, 2000]

[Singh and Schulzrinne, 2000]

[SIPCharter, 2003]

[SOAP, 2000]

Rosenberg, J. and Shockey, R. 2000. The Session

Initiation Protocol: a key component for Internet telephony.

Commweb Article.

ht!p:llwww.cconvergence.comlsharedlarticle/showArtic

I e.j html? articl eID=87 00868

Singh, K. and Schulzrinne, H. 2000. Unified messaging

using SIP and RTSP. IP Telecom Services Workshop, page

7, Atlanta, Georgia, September. 2000

http://wwwI.cs.columbia.edul-knsl0/publication/vmail.pdf

STPCharter. 2003. The SIP-Charter Working Group at the

IETF, last accessed March 2003 :

http://www.ietf.orglhtml.charters/sip-charter.html.

SOAP: Simple Object Access Protocol. 2000. W3C Note,

8 May 2000, last accessed March 2003:

http: //www.w3 .orgITRiSOAP.

177

[Vovida, 2000]

[Vovida, 200 I a]

[Vovida, 200 I b]

[Vovida,2001c]

[Vovida,200Id]

[Vovida, 2003]

[Wind River, 2002]

Vovida. 2000. Voice Mail Feature, 28 February 2000:

http://www.vovida.orgidocumentlpd£'VoiceMail.pdf

Vovida. 200 I a. VOCAL System Architecture, 20 February

2001:

http://www.vovida.orgidocumentlTrainingl2_VOCAL_Archi

tecture.pdf

Vovida. 200 I b. Call Processing Language Feature Server,

5 June 2001:

http://www.vovida.orgidocumentlpdflfeature_server_CPL.pd

f

Vovida. 2001c. SIP User Agent, 30 May 2001:

http://www . vovida. orgl documentlpd fluser _agent. pdf

Vovida. 2001d. Media Gateway Control Protocol (MGCP)

Stack, 22 March 200 I:

http://www.vovida.orgldownloads/mgcp/README-mgcp-

1.2.0.txt

Vovida. 2003 . Why Open Source at Vovida.org?, last

accessed March 2003 :

http://www.vovida.orglfom-serve/cache/485.html

Wind River. 2002. White Paper - SIP vs. H323: a business

analysis, 12 February 2002:

http://www.windriver.com/whitepapers/sip.pdf

178

