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Abstract 
 

The need to intelligibly capture, manage and analyse the ever-increasing amount of 

publicly available genomic data is one of the challenges facing bioinformaticians today. 

Such analyses are in fact impractical using uniprocessor machines, which has led to an 

increasing reliance on clusters of commodity-priced computers.  

 

An existing network of cheap, commodity PCs was utilised as a single computational 

resource for parallel computing. The performance of the cluster was investigated using a 

whole genome-scanning program written in the Java programming language.  The 

TSpaces framework, based on the Linda parallel programming model, was used to 

parallelise the application. Maximum speedup was achieved at between 30 and 50 

processors, depending on the size of the genome being scanned. Together with this, the 

associated significant reductions in wall-clock time suggest that both parallel computing 

and Java have a significant role to play in the field of bioinformatics.   
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Glossary of Terms 
 

 

Codon  Block of three nucleotide residues, each of which specifies a 
different amino acid. 
 

DNA sequencing DNA sequencing is the determination of the precise 
sequence of nucleotides in a sample of DNA. 
 

Domain A portion of a polypeptide chain that folds on itself to form 
a compact unit that remains recognisably distinct within the 
tertiary structure of the whole protein. 
  

Eukaryote Organisms whose cells are compartmentalised by internal 
cellular membranes to produce a nucleus and organelles. 
 

Gene expression The synthesis of a normal, complete and functional 
polypeptide or protein from an appropriate gene. 
 

Genome The total genetic information contained in a cell, an 
organism or a virus. 
 

Homology modelling The use of the structural and functional characteristics of 
known proteins as a template for the generation of a 
hypothetical structure for a similar protein of unknown 
structure. 
 

In silico A process that is completed entirely by use of a computer. 
 

Molecular Dynamics Molecular dynamics (MD) simulation numerically solves 
Newton's equations of motion on an atomistic or similar 
model of a molecular system to obtain information about its 
time-dependent properties. 
 

Motif A protein motif, also called a secondary structure motif, is a 
sequence of secondary protein structures such that the 
sequence recurs in a variety of proteins and specifies a 
characteristic three-dimensional structure. 
 

Open Reading Frame A sequence within a messenger RNA that is bounded by 
start and stop codons and can be continuously translated. It 
represents the coding sequence for a polypeptide. 
 

Prokaryote Primitive single-celled organisms that are not 
compartmentalised by internal cellular membranes. 
 

Promoter A DNA sequence that can bind RNA polymerase, resulting 
in the initiation of transcription. 
 



 xi

Reverse translation The process of converting a protein sequence into a DNA 
sequence. 
 

Sequence alignment The arrangement of two or more amino acid or base 
sequences from an organism or organisms in such a way as 
to align areas of the sequences sharing common properties. 
The degree of relatedness or homology between the 
sequences is predicted computationally or statistically based 
on weights assigned to the elements aligned between the 
sequences. This in turn can serve as a potential indicator of 
the genetic relatedness between the organisms. 
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Chapter One 
 

1.1 Introduction 
 

The completion of the Human Genome Project in 2003 marked the conclusion of a 13-

year global enterprise concerned with mapping the entirety of our genetic makeup 

(Meloan, 2004). Also, over the past decade there has been a dramatic increase in the 

number of completely sequenced genomes resulting from the race of multibillion-dollar 

genome-sequencing projects. The results of these achievements have led to a flood of 

data in genome sequence databases such as EMBL, SWISS-PROT and GenBank, which 

has caused them to double in size almost every year (See Figure 1) (Janaki and Joshi, 

2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Graphical representation illustrating the growth of the GenBank database. The nature of 

the growth can be clearly seen as exponential. Taken from 
www.ncbi.nlm.nih.gov/GenBank/GenBankOverview.html 

 

 

There are two additional factors which have contributed to and are currently contributing 

to this ever-increasing volume of data. The first factor can be attributed to some of the 

larger genomic research facilities generating more than several hundred gigabytes of data 
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per day. The second factor is concerned with the development and implementation of 

high-throughput techniques for DNA sequencing and analysis of gene expression. The 

sheer volume of data and the analysis, which spans both multi-national pharmaceutical 

companies and academic collaborative networks, suggests that the completion of the 

work could not be achieved without the use of computers (Meloan, 2004 and Bader, 

2004). 

 

For example, SWISS-PROT is a protein and knowledge database that is renowned for its 

high quality annotation, usage of standardised nomenclature and its direct links to 

specialised databases and minimal redundancies. The current SWISS-PROT release (43.6) 

contains 153 320 sequence entries comprising 56 402 618 amino acids abstracted from 

117 067 references (Boeckmann et al, 2003). GenBank is a comprehensive database that 

contains publicly available DNA sequences for more than 140 000 organisms. GenBank 

is redundant in nature, and on February 2004 it contained approximately 37 893 844 733 

bases in 32 549 400 sequence records (Benson et al, 2004).  

 

In addition to SWISS-PROT and GenBank are databases concerned with complete and 

ongoing genome projects. One such database is GOLD (Genomes OnLine Database) 

which currently contains 194 published complete genome sequences, 508 ongoing 

prokaryote genomes and 419 eukaryote genomes (Figure 2) (Bernal et al, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Graphical representation of all genome projects (complete and incomplete) available in 

the GOLD database. The exponential growth trend, which can also be seen for the growth of 
GenBank (Figure 1), is also clearly noticeable. Taken from www.genomesonline.org 
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Subsequently there is an enormous amount of biological sequence data flooding into the 

sequence databases. This phenomenon drives the development of efficient tools for 

comparative genome sequence analysis. With the aid of analysis tools, mining the 

available genome sequence databases plays a major role in comparative and functional 

genomics. The resulting information from these analyses has various important 

applications in science such as structural and functional annotation of novel genes and 

proteins, elucidating the gene order in the genome, gene fusion studies and constructing 

metabolic pathways, to name a few (Janaki and Joshi, 2003). 

 

These studies are also invaluable for industries such as the pharmaceutical one, with 

particular reference to in silico drug target identification and new drug discovery. An 

example of this is the publication of the human genome sequence in February 2001. The 

release of the human genome will potentially result in more genes being identified as 

novel drug targets. Of the approximately 30 000 genes in the human genome, only a 

small number may lead to suitable drug targets. It has been estimated that the number of 

these targets ranges between 3 000 – 10 000 (Janaki and Joshi, 2003). According to 

Drews (2000), the set of drug targets available to the pharmaceutical industry has been 

estimated at only 483. When one compares the potential number of new targets to the 

existing number of drug targets this represents an order of magnitude increase (Reiss, 

2001). 

 

This flood of sequence data requires a system of representing, organising, manipulating, 

distributing, maintaining and finally using the information (particularly in a digital form). 

The comparatively new discipline of bioinformatics was born in an attempt to tackle the 

problems of this so-called ‘post genomic era’. The functional aspect of bioinformatics is 

concerned with the representation, storage and distribution of this data. The intelligent 

design of data formats and databases, coupled with the creation of tools to query these 

databases and the development of user interfaces that combine the various tools, provide 

the user with the necessary means with which they can ask complex questions about the 

data. The second and more scientific aspect of bioinformatics is concerned with the 

development of the analytical tools required to discover knowledge in the data (Gibas 

and Jambeck, 2001). 
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The resultant biological information is used on a number of different levels, for example, 

in the comparison of sequences to develop a hypothesis about the function of a newly 

discovered gene, breaking down known three-dimensional protein structures into 

segments that can aid protein folding predictions, as well as modelling how proteins and 

metabolites work together to enable the cell to function (Gibas and Jambeck, 2001). The 

task of mining information from vast data sets is a Herculean one, and has resulted in 

scientists relying more and more on computational (in silico) processes. 

 

The fields of bioinformatics and computational biology have been suggested to enable 

breakthroughs in basic biological research and improvements in the prevention, 

treatment and cure of diseases (Stewart, 2004). This project aims to highlight the use of 

computers with a particular emphasis on the role of parallel computing in the field of 

bioinformatics. According to David Bader in the November 2004 edition of the 

Communications of the ACM, the understanding of evolution and the basic structure 

and function of proteins are two grand challenge problems that can only be solved 

through the use of high-performance computing. 
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1.2 Project Proposal 
 

 

1.2.1 Problem Statement 
 

 

In the modern era, genomics is arguably one of the most rapidly developing areas in 

biology with data arising from sequencing projects increasing exponentially over the last 

five years (Bernal et al, 2001). Subsequently, there is flood of sequence data in databases 

such as EMBL, SWISS-PROT and GenBank. Coupled with this is a need to effectively 

capture, manage and analyse this data. As a result, bioinformaticians are presented with 

the challenge of developing specific analysis software packages which are required in 

order to extract useful information from the vast amount of sequence data (Janaki and 

Joshi, 2003). 

 

The analysis of large datasets of genome sequences using uniprocessor machines appears 

to be an impractical approach. However, due to the ‘embarrassingly parallel’ nature of 

most biological problems, a far more practical and effective approach incorporates the 

usage of parallel clusters of workstations (Augen, 2003). Advances in both computer 

hardware and software algorithms that have revolutionised computational biology further 

support this approach. The role of high-performance computing has also been credited 

in being the only solution for two of the grand challenge problems in biology, namely, 

the understanding of evolution and the basic structure and function of proteins (Bader, 

2004).  

 

This project aims to highlight the potential and effectiveness of parallel cluster 

computing as a viable option to mining large datasets of genome sequences as well as to 

further support the notion that the Java programming language has a role to play, both in 

the realm of high-performance computing and in the field of bioinformatics. 
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1.2.2 Research Hypothesis 
 

 

Parallel computing utilising networks of workstations is an efficient and effective tool in 

mining large genome datasets. 

 

 

 

1.2.3 Objectives 
 

 

• Design a genome-scanning program that scans through a whole genome 

sequence for a set list of regular expressions representing a variety of protein 

domain or motif signature profiles. 

 

• Develop and implement the genome-scanning program, utilising the Java 

programming language, to identify the list of regular expressions in complete 

genomes. 

 

• Execute the program on a single processor machine to serve as the benchmark 

for later speedup calculations. 

 

• Design the same genome-scanning program in order for it to utilise a varying 

number of clients (processors) thereby investigating the effects of parallelism. 

 

• Develop the genome-scanning program in conjunction with a suitable Java-based 

parallel framework to allow implementation in a parallel computing environment. 

 

• Investigate the speedup for a number of different size genomes in order to 

determine the impacts of parallelism. 
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1.3 Document Structure 
 

 

This section provides a brief summary of the content for the remaining chapters in this 

research report. 

 

Chapter Two contains an overview of the literature relevant to the research undertaken, 

including the following topics: In silico Biology, Parallel Computing, Networks of 

Workstations, Parallel Computing and Bioinformatics, Java for Scientific Computing and 

finally TSpaces. Chapter Three describes the design and development of the Serial 

genome-scanning program (SMS) and provides a description of the requirements of the 

program, namely, the genomes and the regular expressions (regex’s). 

 

Chapter Four contains a description of the design, development and implementation of 

the genome-scanning program for execution in a parallel computing environment. 

Chapter Five is concerned with the overall experimental design and the results for each 

genome scanned. The discussion, conclusion and future work are presented in Chapter 

Six.   
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Chapter Two 
 

Review of Literature 
 

 

This section provides an overview of the role of in silico biology, with particular emphasis 

on its role in bioinformatics. The key concepts of parallel computing are described, 

including the basic architectures and the type of memory systems available, to name a 

few. The role of parallel computing in bioinformatics is illustrated with a number of 

examples of past and current applications. The use of the Java programming language for 

scientific computing is covered with a number of current uses being highlighted.  The 

TSpaces parallel framework is also introduced as a means of providing the 

communication required for parallel execution. 

  

 

2.1 In Silico Biology 
 

 

Dramatic advances in Information Technology (IT) and computer sciences made the 

launch of in silico biology possible. As the field of in silico biology matured, researchers 

have become proficient at both defining biological problems using mathematical 

constructs and building the necessary computer infrastructure required to solve these 

problems (Augen, 2003). 

 
In the era of genome projects the goal of biologists is to develop a quantitative 

understanding of how living things are built from the genome that encodes them. The 

explosion of data being released into databases such as GenBank (now growing at an 

exponential rate) and as databases beyond DNA, RNA and protein sequence, are 

undergoing the same dramatic transformation. The simple managing, accessing and 

presentation of this data in an intelligible form to the users is now a critical task which 

has lead to an increasing reliance on human-computer interaction specialists to manage 

these staggering amounts of data (Gibas and Jambeck, 2001).  
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Due to the explosive growth being experienced in the biological world in terms of the 

amount and type of available data, the relationship between bioinformatics and computer 

science has become unique amongst technical disciplines. In the past, technical 

improvements in IT were the driving force with respect to growth, as they enabled the 

employment and testing of new algorithms for in silico molecular modelling, pattern 

discovery, sequence matching and various other complex problems. This trend has now 

been reversed and it is in fact in silico biology that is shaping the IT industry. 

Bioinformatics has now become a leading indicator for the computer industry (Augen, 

2003).  

 

The position of bioinformatics is due in part to a large and growing number of small but 

technically sophisticated companies with computing needs that often rival those of the 

largest research organisations. These companies consist of thousands of biotechnology 

and pharmaceutical organisations who are tackling some of the most computationally 

intensive tasks imaginable, such as biological simulation, molecular modeling and 

dynamics, large-scale pattern recognition and X-ray and NMR-based protein structure 

determination. These companies are driving the emergence of a new model that promises 

to completely reshape the world of high-performance computing due to their accelerated 

demand for increased computing power combined with the need to build extensible 

platforms that minimise the cost-to-performance ratio (Augen, 2003). 

 

The DNA, RNA and proteins of an organism, all of which are linear chains composed of 

smaller molecules, store information that provide an insight into an organism’s heredity 

and function. Each of these macromolecules are assembled from a fixed alphabet of 

well-understood chemicals, for example, DNA is composed of four 

deoxyribonucleotides (adenine – A, thymine – T, cytosine – C and guanine – G), RNA is 

composed of four ribonucleotides (adenine – A, uracil - U, cytosine – C and guanine – 

G), and proteins are composed of the 20 amino acids. Due to these macromolecules 

being linear chains of defined components, they can be represented as sequences of 

symbols. These sequences can then be compared to find similarities that suggest the 

molecules are related by form or function, or they can be searched (via pattern searching 

techniques) to find specific regions such as promoters, open reading frames (ORFs) and 

motifs (Gibas and Jambeck, 2001). 
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Presently there are number of analytical tools which have been developed to aid 

researchers in their quest for knowledge in the ‘post-genomic era’. These tools range 

from gene prediction programs, homology modelling programs which attempt to 

produce the structure of a protein based only on its sequence, multiple protein or 

nucleotide sequence alignment programs such as ClustalW and BLAST, gene expression 

analysis programs and other complex programs. 

 

With particular reference to the variety of sequence analysis tools, a large number of 

tools available for mining vast amounts of data available in databases rely on FASTA 

(Pearson and Lipman, 1988) and Smith-Waterman (Smith and Waterman, 1981) 

algorithms. However, the analysis of large datasets of genome sequences using the 

aforementioned codes is computationally intensive and tends to be impractical on 

uniprocessor machines. As a result, there is a need to improve the performance of these 

tools and a solution to this problem was found in the form of parallel cluster computers 

(Janaki and Joshi, 2003). 

 

Moreover, with time it has become increasingly clear that most biological problems lend 

themselves to being solved in a clustered environment after division into a large number 

of small pieces. Many biological problems are ‘embarrassingly parallel’ which implies that 

they can be divided easily into many small pieces in order to be solved (Augen, 2003).  

 

Generally speaking, bioinformatics problems cover two large technical categories, 

namely, floating-point and integer. Floating-point problems are computationally intensive 

in nature as they have adopted complex algorithms from physical chemistry and quantum 

mechanics. Molecular dynamics, protein folding and metabolic systems modelling are 

examples of floating-point problems. Integer problems are invariably based on 

algorithms that compare characters in sequences or search for matching phrases and 

terms. These problems range from gene sequence alignment to pattern discovery, and 

they are often as computationally intensive as floating-point problems. Both types of 

problems favour solution using a parallel computation environment as the operations 

they depend on are atomic in nature (Augen, 2003). 

 

Sequence homology and pattern discovery problems lend themselves perfectly to 

solution on clustered platforms. In most instances, a large number of sequences need to 
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be matched against a single genome or sequence database. There are two different 

existing approaches for dividing the problem amongst n number of machines. The first 

approach requires performing a different search on each node with the target sequence 

stored either locally or remotely in a central database. The second approach requires the 

division of the target sequence across the cluster and managing overlap at the boundary 

of each node. Although the latter is fundamentally more complex, it is well suited to 

situations containing a large target sequence and a small number of search sequences 

(Augen, 2003).  

 

On a cost-per-calculation basis, clustered solutions are far superior for problems that 

comprise a large number of isolated calculations, regardless of whether they are floating-

point or integer-intensive. In fact, virtually every problem in bioinformatics gains a cost-

to-performance advantage when engineered to run in a clustered environment (Augen, 

2003). The use of parallel computers for performing sequence database searches appears 

to be the most realistic when one considers the shift away from conventional 

supercomputers to cost-effective clusters of workstations and PCs (Janaki and Joshi, 

2003).  
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2.2 Parallel Computing 
 

 

Many of the concepts for parallel computing date back to the 19th Century. However, no 

one seems to agree when parallel computing actually began. From a practical point of 

view, the beginning of parallel computing is considered to be sometime around the mid-

1980s. It was during this period that parallel computers were beginning to be 

programmed as true parallel machines which could compete with the established 

supercomputers (Womble et al, 1999). 

 

The free on-line dictionary of computing (FOLDOC) describes parallel processing as the 

use of more than one computer to solve a problem (FOLDOC, 2004). According to 

Professor Hank Dietz, “parallel processing refers to the concept of speeding-up the 

execution of a program by dividing the program into multiple fragments that can execute 

simultaneously, each on its own processor” (Dietz, 1999).  

 

The field of high-performance computing (HPC) has traditionally focused on the 

availability of powerful machines, generally parallel supercomputers such as SGI/Cray 

T3E or the IBM SP2 (The UK JavaGrande forum, 1998). However, due to the 

exorbitant costs and long development times associated with these supercomputers, the 

demand for these machines has remained low since few institutions can afford them, 

their resources are limited and subsequently their use is restricted to a small number of 

important projects (The UK JavaGrande forum, 1998 and Sterling, 2001). The current 

advancements concerning high-speed networks and improved microprocessor 

performance have resulted in clusters or networks of workstations becoming an 

important tool in the era of cost-effective HPC (The UK JavaGrande forum, 1998). 

 

The analysis of large biological datasets using a variety of parallel processor computer 

architectures is a common task in bioinformatics. The proper handling of any 

redundancies present in these datasets, together with the implementation of the unique 

features of parallel computing architectures, can significantly improve the efficiency of 

analysis. Bioinformatics is faced with the problem of handling highly redundant datasets, 

which in certain instances requires very large computations to be performed in order to 

gain insights into the meaning of the data (Pekurovsky et al, 2004). Fortunately, most of 
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these problems can be readily divided into smaller pieces for solution. By building parallel 

infrastructures, bioinformaticians have been quick to design algorithms and programs 

that take advantage of these attributes, most often in the form of Linux clusters 

composed of commodity-priced machines. These clusters are now a dominant force in 

bioinformatics (Augen, 2003). 

 

As mentioned earlier, parallel processing is the use of multiple processors to execute 

different parts of the same program simultaneously, with the main aim of parallel 

processing being the reduction in wall-clock time (amount of time before achieving a 

solution). As the number of processors is increased, a characteristic speedup curve 

demonstrating the effects of the increase up to a threshold number of processors can be 

seen (Figure 3). Anything above this threshold may be counter-productive and can result 

in an increase in solution time. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Graph depicting the effects of increasing numbers of processors on the overall 
computational speedup. 

 

This simple theory of dividing the pieces of a solution amongst many processors 

represents both the power and the weaknesses associated with parallel computing. On 

one hand, as you increase the number of helpers (processors) for a given task a beneficial 

speedup is obtained. However, beyond the threshold limit any further increase in the 

number of helpers can be viewed as being counter-productive, which the supports the 

age-old adage that “too many cooks spoil the broth” (Cornell Theory Center, 2000).  
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2.2.1 Taxonomy of Parallel Computer Architectures 
 

 

Flynn proposed the following classification of parallel computer architectures in 1966. 

This classification scheme separates computer architectures according to two 

independent, binary-valued dimensions. This implies that neither of the two dimensions 

has any effect on the other and that each dimension has only two states. Flynn proposed 

that the two dimensions be Instruction and Data, and that the values for both 

dimensions be Single or Multiple. This led to four possible computer architectures: 

 

 

 Single Instruction, Single Data (SISD): 
 

SISD is the oldest style of architecture, and is still one of the most important. Most 

computers ever designed or built, until fairly recently, fit within this category. The 

SISD architecture refers to the fact that there is only one instruction stream being 

acted on by the CPU during any one clock tick, and that only one data stream is 

employed as input during any one clock tick. This class of architecture contains most 

commonly available computers including most personal computers, all single-

instruction-unit-CPU workstations, most mini-computers and mainframes. 

 

 

 Multiple Instruction, Single Data (MISD): 
 

There are few known working groups of this type of computer system, and as such, 

there are few examples of computers in this class.  

 

 

 Single Instruction, Multiple Data (SIMD): 
 

SIMD systems are an important class as they are capable of applying the identical 

instruction stream to multiple streams of data simultaneously. For data-parallel 

problems, this type of architecture is perfectly suited to bioinformatics as the data 

can be divided into many small pieces, and the multiple instruction units can all 
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operate on them simultaneously. Thus, this type of architecture lends itself to 

achieving very high processing rates. 

 

 

 Multiple Instruction, Multiple Data (MIMD): 
 

This class is the most general of the four, and an MIMD machine is capable of being 

programmed to operate as if it were any of the four. Multiple instructions streams 

are simultaneously applied to multiple data streams, and it is believed by many that 

this particular approach to parallelism will result in the next major advances in 

computational capabilities (Cornell Theory Center, 2000). 

 

SIMD and MIMD struggled for dominance in the late 1980s. In the struggle between the 

two approaches, SIMD appears to have fallen by the wayside. The more flexible and 

more general purpose nature of the MIMD approach has prevailed even though the 

SIMD approach can be cost effective for certain tasks (Womble et al, 1999). 

 

There are two basic ways to divide computational work among parallel tasks, namely, 

data and functional parallelism. Data parallelism requires that each task performs the 

same series of calculations, but applies them to varied data. Subsequently, each processor 

performs exactly the same operations, but works on different parts of a dataset. 

Functional parallelism requires that each task performs different calculations; that is, each 

task carries out different functions of the overall problem. This type of parallelism can be 

applied to the same data or to different data (Cornell Theory Center, 2000). 

 

There are a number of aspects to consider when approaching parallelism. The first is 

synchronisation which is required to coordinate information exchange among tasks, but 

which can consume wall-clock time as processor(s) sit idle waiting for tasks on other 

processors to complete. Thus, synchronisation can be a major factor in decreasing 

parallel speedup.  
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The second aspect, parallel overhead, is also important as this involves the amount of 

time required to coordinate parallel tasks. The three most commonly encountered 

coordination tasks are: 

 

1. The time to begin a task. This is concerned with the identification of the task, 

locating a processor to perform the task, loading the task onto the processor, 

placing the required data onto the processor and finally beginning the task. 

 

2. The time to end a task. In order for a processor to be made available for further 

tasks, all results need to be combined or transferred and the operating system 

resources need to be released. 

 

3. Synchronisation. As referred to earlier, synchronisation involves the 

coordination of information exchange among tasks (Cornell Theory Center, 

2000). 

 

Granularity, too, needs to be considered as it is a measure of the ratio of computation 

performed in a parallel task to the amount of communication. The scale ranges from 

fine-grained (nominal computation per communication-byte) to coarse-grained (extensive 

computation per communication-byte). As the granularity becomes finer, the need for 

synchronisation increases which leads to a greater limitation on speedup. The nature of 

the parallel system with regards to scalability is also important and this is dependent on 

some combination of the following components: hardware, parallel algorithm and the 

actual code (Cornell Theory Center, 2000).  

 

The type of memory to be utilised is also an important consideration. There are two 

types of memory usage to consider: shared and distributed. With a shared memory 

system (Figure 4), as the name implies, the same memory is accessible to multiple 

processors. Synchronisation of tasks is achieved by tasks’ reading from and writing to the 

shared memory. Whilst a concurrent task is accessing the shared memory location, 

another task must not be able to alter it. One of the advantages of shared memory is that 

the sharing of data amongst tasks (speed of memory access) is fast. However, it is limited 

by the fact that the number of access pathways to memory restricts scalability. A further 
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drawback is that the user is responsible for specifying synchronisation (Cornell Theory 

Center, 2000).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Graphical representation of the basic concept of a shared memory parallel system. 
 

 

 

The memory in a distributed memory system (Figure 5) is physically distributed among 

processors, each local memory being directly accessible only by its processor. Each 

component of a distributed memory parallel system is invariably a self-contained 

environment, which is capable of acting independently of all other processors in the 

system. Synchronisation is required to move data between processors, and this traffic 

along the communications network is the only link among the processors (Cornell 

Theory Center, 2000).  

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Graphical representation illustrating the basic concept of a distributed memory parallel 

system. 
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A major concern in distributed/parallel systems is that of data decomposition, and in 

particular, how to divide arrays of data among local CPUs to minimise communication. 

This represents one of the major distinctions between shared and distributed-memory 

computing. The data structure needs to be decomposed, i.e. divided into small pieces, 

assigned to a processor and physically sent to that processor, in order for the data to be 

processed. Whichever processor is responsible for the final result then requires that any 

results obtained by the other processors must be sent back to it so that it may coordinate 

the final result (Cornell Theory Center, 2000). 

 

Distributed memory is virtually synonymous with message-passing. Message-passing is an 

approach that requires that tasks communicate by sending packets to each other. The 

messages are discrete (they have a definite identity), and can be distinguished from all 

other messages. Parallel tasks are reliant on these messages to send information and 

request information among processors. The overhead is proportional to the size and 

number of packets, i.e. more communication means greater cost, since sending data is 

generally slower than accessing shared memory. Each message is individually 

constructed, addressed, sent, delivered and read, all before the information it contains 

can be acted upon (Cornell Theory Center, 2000). 
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2.3 Networks of Workstations 
 

 

The astronomical costs associated with the modern supercomputers, such as the Cray 

range and the Connection Machine, have meant that few programmers have had an 

opportunity to use these machines. The quest for ever-increasing computing power at 

minimal cost has led to several alternatives being examined and tested. Networks of 

workstations became an attractive alternative to the traditional supercomputers and 

parallel computing systems for high-performance computing in the early 1990s. There 

were a number of early projects, two of the most notable being the NASA Beowulf 

Project (Merkey, 2004) and the Berkeley NOW (networks of workstations) project 

(Culler et al, 1997). The Beowulf project is generally credited with being the first cluster 

computation project to be built using exclusively COTS (commodity off the shelf) 

elements.  

 

In 1994, Thomas Sterling and Don Becker, two researchers at the Center of Excellence 

in Space Data and Information Sciences (CESDIS), assembled a cluster computer 

consisting of 16 DX4 processors connected by channel bonded Ethernet. The success of 

the Beowulf machine was instantaneous and the idea of using COTS base systems to 

satisfy specific computational requirements rapidly spread through NASA as well as into 

the academic and research communities. Factors driving the ongoing success of the 

Beowulf project include improved performance in microprocessors and 

cost/performance gains experienced in the network technology (Beowulf Introduction & 

Overview, 2004 and Merkey, 2004).  

 

Furthermore, the ongoing development of publicly available software, in particular the 

Linux operating system and the MPI and PVM message passing libraries, allow for the 

development of hardware-independent software. A further consideration in the 

continued interest and research into cost-effective parallel computing systems is the 

increased reliance on computational science, which directly increases the need for high-

performance computing. The cost, effectiveness and Linux support for high-

performance networks for PC class machines has provided researchers with the ability to 

construct balanced systems built exclusively of COTS technology (Merkey, 2004). 
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2.4 Parallel Computing and Bioinformatics 
 

 

Due to the ever-increasing number of completely sequenced genomes becoming 

accessible to the public, currently available genome data is increasing exponentially 

(Bikandi, 2004 and Gao and Zhang, 2004). Subsequently, bioinformaticians are presented 

with the challenge of developing specific analysis software packages, which are required 

in order to extract useful information from the vast amount of sequence data. Of critical 

concern is the development of computational gene recognition programs for the 

annotation of vast amounts of uncharacterised DNA sequences (Gao and Zhang, 2004). 

In addition to this is the need for time-efficient processes. The apparent ‘embarrassingly 

parallel’ nature of most biological problems lends itself to the use of parallel computing 

(Augen, 2003). 

 

One of the most significant applications to date was the assembly algorithm used to 

construct the human genome from millions of fragments obtained through shotgun 

sequencing. The execution of this algorithm was computationally intensive, and now 

represents one of the most complex logical problems ever solved. Molecular dynamics 

simulations, gene sequence alignment and pattern discovery are further problems that 

lend themselves to solution in a parallel computing environment (Augen, 2003). 

 

The use of multiple alignments is a key procedure in bioinformatics because a sequence 

comparison by multiple alignment can provide vast amounts of information about 

structure-function relationships, such as evolutionary conserved residues or conserved 

hydrophobicity patterns. ClustalW, T-coffee and Praline are a few commonly used 

multiple alignment packages. Researchers in the Division of Mathematical Biology at the 

National Institute for Medical Research have looked at solving the problems associated 

with compiling large sequence alignments. They implemented parallel processing in the 

form of a SIMD system into the multiple alignment program, Praline, by using Message 

Passing Interface (MPI) routines. They found that the parallelised program performed up 

to ten times faster on 25 processors when compared with the use of a single processor 

(Kleinjung et al, 2002). 

 



 21

Researchers at the Bioinformatics Institute in Singapore further demonstrated the use of 

parallel computing in conjunction with the ClustalW (protein or nucleotide sequence) 

multiple alignment tool. They developed software that relies on an MPI library which 

runs on both distributed workstation clusters and traditional parallel computers. They, 

too, reportedly found that it is possible to speed up lengthy multiple alignments with the 

aid of parallel computing (Li, 2003).  

 

Applications harnessing the potentials of parallel computing include the automation of 

genomic data-mining processes, such as Sight, which is a package that provides a user-

friendly interface to generate and connect agents for automatic data mining for individual 

purposes (Meskauskus, 2004). Other commonly used applications involve small-scale 

research based molecular dynamics simulations, such as that perfomed by Zubrzycki 

(2002), in which the molecular dynamics simulation was shared over two processors. 

Parallel processing was also used in conjunction with pattern searching packages as 

demonstrated by Krishnan and Tang (2004), who utilised parallel computing to perform 

exhaustive whole-genome tandem repeats searches. They divided their pattern length 

evenly between 1, 5, 10, 25 and 50 processors and reported to achieve linear speedup. 
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2.5 Java for Scientific Computing 
 

 

Employees of a computer company called Sun Microsystems designed Java during the 

first half of the 1990s. The language was formally introduced to the public in 1995, and 

although Java is now commonly associated with the worldwideweb (WWW), it can be 

used in most programming areas. For this reason, Java is often referred to as a general 

programming language (Cornelius, 2001 and Russel, 2001).  

 

Java is a high-level programming language which means that it uses instructions that 

more closely resemble a written language (such as English) than machine language. One 

of the most important features of Java is that it is platform independent, as you can run 

Java programs on any operating system without having to rewrite or recompile them for 

each system. Java is also an object-oriented language as opposed to the more traditional 

procedure-oriented program that follows a logically ordered set of instructions. Object-

oriented languages, such as Java, have the added capability of encapsulating sets of 

characteristics and functions into classes (Russel, 2001).  

 

The Java language has many advantages over traditional scientific computing languages 

such as C, C++ and FORTRAN. These advantages are that Java is a small, simple, 

object-oriented language that is distributed and secure in nature. It is an architecturally 

neutral language that is also portable, dynamic, multi-threaded and robust. These 

advantages make Java a likely contender as the language of choice for the future 

development of scientific libraries and applications (The UK JavaGrande forum, 1998).  

 

Bull et al, (2001), state that the nature of many scientific applications makes them well 

suited to Java execution environments. This was based on the fact that scientific 

applications typically spend a large amount of execution time in a small number of user-

written methods. The use of Java is becoming increasingly popular and in 2003, 

researchers at the Sanger Institute for genetic study launched BioJava. BioJava, is an 

active open-source project dedicated to providing genomics researchers with a Java based 

developer’s toolkit. The facility is currently in use at major research and pharmaceutical 

centers in over 85 countries, and provides bioinformatics developers with over 1 200 

classes and interfaces for genomic sequence manipulations (Meloan, 2004).  
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2.5.1 Current Applications 
 

 

Java is still in its infancy in terms of its role in scientific computing, and to date most 

applications have revolved around developing Java-based frameworks for parallel 

programming on networks of workstations. JavaNOW, which is a parallel computing 

framework that creates a virtual parallel machine similar to the Message Passing Interface 

(MPI) model and also provides distributed associative shared memory similar to the 

Linda model, has been developed (Thiruvathukal et al, 2000). 

 

The Java Parallel Virtual Machine (JPVM) library has also been demonstrated as a 

software system for explicit message-passing based distributed memory MIMD parallel 

programming in Java (Ferrari, 1999). The JPVM library supports a Java interface in a 

similar manner to the interface provided by the Parallel Virtual Machine (PVM) library 

which matches the C and Fortran interfaces (Ferrari, 1999). 

 

A parallel library implemented on Java that supports the execution of massively parallel 

applications over the Internet, called JET, has also been developed. Java applets that are 

downloaded through a Web page are responsible for the execution of applications. This 

type of parallel approach can be implemented to solve long-running problems, thus 

diminishing the need for supercomputers (Pedroso, 1998).  

 

A number of researchers have focused on utilising the tuplespace model pioneered by 

David Gelernter and colleagues in the Linda programming system at Yale University 

(Gelernter, 1988). The tuplespace model presents an attractive means of co-ordinating 

objects across a distributed computing environment, which results in a different 

communication paradigm between parallel processors (Hawick et al., 2004 and Dente et 

al, 2004). A very simple set of operations is applied to a shared data collection, shared 

‘memory’ called Tuplespace, and is used for message exchange between processors. The 

Linda model provides a set of functions to access and modify the data stored in the 

Tuplespace (Dente et al, 2004).  

 

A tuple was devised as the unit of communication. There are two types of unit, namely, 

active and passive tuples. Active tuples were basically task-description, consisting of 
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elements and functions that had to be evaluated by the Linda server, and needed 

computation. Passive tuples were values stored in Tuplespace, which represented the 

results of computation. Once evaluated, an active tuple became a passive tuple. In order 

to synchronise the parallel process the Linda model provides a set of functions: 

 

 

- out(tuple) 

• Places a tuple into the Tuplespace. 

 

- rd(pattern-tuple) 

• Retrieves all tuples that match a given template from the Tuplespace. 

 

- in(pattern-tuple) 

• Retrieves and removes all tuples which match a given template from the 

Tuplespace. 

 

- eval(FUNCTION-TUPLE) 

• Creates an active tuple and evaluates it. The results are then stored as a 

passive tuple in Tuplespace (Dente et al, 2004). 

 

 

Sun and IBM have both attempted to provide developers with a Java-based distributed-

object architecture that includes a development platform, processing environment and 

addressing mechanism. Both companies have based their approach on the tuplespaces of 

the now famous Linda prototype, with Sun developing JavaSpaces and IBM, TSpaces. 

The objects of both JavaSpaces and TSpaces also borrow several other Linda-specific 

distributed database system solutions for storing collections of data for future 

computation, and for performing queries that are controlled via a form-driven interface 

which utilises value-based lookup tables. They are also both further inspired by Linda’s 

distributed computing concept which uses simple application functions to extend basic 

data typing mechanisms (IEEE, 2004).  
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2.6 TSpaces 
 

 

The TSpaces software package was designed as a communication package with the sole 

purpose of alleviating the problems associated with linking together disparate distributed 

systems. TSpaces is a global communication middleware component that incorporates 

database features such as transactions, persistent data and flexible queries. It is also an 

excellent tool for designing and developing distributed applications, since it provides an 

asynchronous and anonymous link between multiple clients or services (Lehman et al, 

2001). 

 

TSpaces was developed at IBM’s Almaden research centre to explore the possible use of 

Java in middleware systems, and was launched in March 1998. It represents a software 

package that provides a common set of services for a network of heterogenous 

computers and operating systems. The TSpaces model was based on the Linda model, 

and thus they share a number of key elements. The simple syntax, which was one of the 

most popular features of the Linda model, is also employed by the use of simple, 

intuitive and terse language that can perform a variety of tasks in the TSpaces model 

(IBM, 2004). 

 

 

 

2.6.1 TSpaces Model 
 

The TSpaces model is surprisingly simple; there are clients and there are servers. TSpaces 

servers can be run everywhere, such as locally to coordinate a few office machines or in 

department servers for wider range services. Any program that makes calls to the 

TSpaces server is known as a client program, where the clients read and write data to and 

from a server using simple method calls (See Table I) (IBM, 2004). The server contains a 

Tuplespace, which represents the model of interaction for building a globally visible 

communication buffer in which a Tuplespace represents a globally shared, associatively 

addressed memory space that is organised as a bag of tuples (Wyckoff, 1998).  
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The Tuplespace concept embodies three main principles: 

  

- Anonymous communication 

- Universal associative addressing  

- Persistent Data (IBM, 2004) 

 

 
Table I: Overview of some of the methods used for reading and writing tuples from or to a 
TSpaces server. 
Method Call Description Method Call 

Create the initial tuplespace Tuplespace ts = new TupleSpace 
(spaceName, serverName) 

Write some data, tagged “ClientsData” ts.write(“ClientsData”, dataInstance) 

Read the specific data record resultTuple = ts.read(“ClientsData”, 
dataInstance) 

Read ALL the records of that type resultTupleSet = ts.scan(String, 
dataInstance) 

 

 

 

The client interface is very simple. A client is required to create an instance of a tuplespace 

and then to use the methods of that instance to read and write tuples, which are merely 

Java vectors of fields. The field class is the most basic component of the Tuplespace data 

structure hierarchy and it contains a type, value and optional field name. Tuplespace 

methods are used to send and receive tuples from the shared network depository. As a 

result tuplespaces are seen as network communication buffers and can be accessed and 

modified utilising a simple API. There are a number of Tuplespace methods and a few of 

the interesting ones are:                       

 

- write(tuple) 

• Adds a tuple to TSpaces. 

 

- take(templateTuple) 

• Performs an associative search for a tuple that matches the 

template. If the tuple is found, it is removed from the space and is 

returned, otherwise null is returned. 
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- waitToTake(templateTuple) 

• As for take, except that it blocks until a match is found. 

 

- read(templateTuple) 

• As for take, but the tuple is not removed from the tuple space. 

 

- waitToRead(templateTuple) 

• Similar to waitToTake, but the tuple is not removed from the tuple 

space. 

 

- scan(templateTuple) 

• As for read; however, the entire set of tuples that matches is 

returned. 

 

- eventRegister(command, template tuple, callback routine) 

• Register for an event corresponding to the command and the 

template tuple. 

 

- countN(templateTuple) 

• Similar to scan except that it returns a count representing the 

matching tuples (Dente et al, 2004). 

 

 

The role of parallel computing in bioinformatics is to be investigated by developing a 

genome-scanning program using the Java programming language and the TSpaces 

framework. Since most tertiary institutions and research centres are in possession of 

networks of workstations, the use of an existing network of cheap, commodity PCs 

provides the necessary environment for parallel execution. 
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Chapter Three 
 

Serial Program Design, Development and Overall 
Program Requirements 

 

 

In order to determine the effects of parallelism and the subsequent role of parallel 

computing in bioinformatics, a program to execute the genome-scan in serial needs to be 

designed and developed. This is required as the search time or wall-clock time attained 

from the execution of this serial program serves as the benchmark for later speedup 

calculations. In addition to this, a number of genomes are required so that the effects of 

parallelism can be investigated using a range of different sized genomes. A number of 

regular expressions need to be created so that they may be scanned for within the 

selected genomes.     

 

 

 

3.1 Serial Motif Scan (SMS) 
 

 

The first challenge was to design, develop and implement a genome-searching program 

(later referred to as SMS) that could be executed on a uniprocessor machine. Utilising a 

suitable parallel framework, this would serve as the benchmark for comparison with the 

later development and implementation of the same genome-searching program. The first 

stage in the design of the program was to define the overall problem to be solved which 

entails the clear definition of the inputs, outputs and the processes of the program. The 

second stage was the actual design of the problem which requires that the program be 

broken into a logical sequence of steps and the actions to be executed clearly defined. 
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3.1.1 SMS Basic Analysis 
 

 

The overall problem was concerned with searching whole genomes for a pre-defined set 

of motifs or domains, and to return intelligible information regarding the total number of 

each pattern found as well as the relative positions (start and end) for each pattern found. 

As a result, the program would require a list of motif or domain regular expressions 

(regex’s) and a genome file as inputs, and it would also need to output the results 

obtained from the search together with the total search time. 

 

The process requirements were to read in a designated file containing the genome 

sequence and to read in the file containing the list of motif or domain regex’s. The 

genome would then be scanned and the results presented to the user. 

 

 

 

3.1.2 SMS Design and Development 
 

 

The program was required to receive as input from the user, the name of the genome file 

to be scanned. The genome file would be accessed and read into a String to serve as the 

template to be searched. Once the genome file was successfully loaded, the list of regex’s 

would be accessed and all patterns stored in a vector. A method utilising Java’s regex 

package would be required to receive as a parameter the current regex; the method would 

then scan the genome using the received regex. All matches, including their start and end 

position numbers and a corresponding match number, will be returned as a vector.  

 

The getFileName( ) method was written to prompt the user for the name of the genome 

file to be scanned. Once entered, the genome name is stored as a String and returned to 

the main method so that the genome sequence may be loaded. In order to obtain the 

genome sequence the Sequence class was created. This class contains two key methods, 

one to locate and read in the genome file and the other to return the string representation 

of the extracted sequence. The initialiseSequence(String) method was created to receive 

the name of the genome to be scanned as a parameter. This information is then used to 
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read the data from the desired genome file. A boolean value of true is returned once the 

genome sequence has been successfully loaded, whereas false is returned when the 

loading is unsuccessful. The sequence is then returned using the getSequence( ) method 

that simply returns the String representation of the genome file. 

 

The regular expressions representing the protein domain or motif profiles, were then 

loaded so that the genome may be scanned. A Patterns class was created that would 

firstly extract each regex from the list and then return all regex’s stored in a vector. Like 

the initialiseSequence( ) method in the Sequence class, the initialiseMotifs( ) method 

returns either true or false depending on the success in creating the vector of regex’s. The 

vector of regex’s is then returned to the main method so that each element may be 

extracted and searched for within the genome sequence, this being achieved by using the 

getMotifs( ) method that returns the vector containing all the regular expressions. 

 

A for-loop containing the patterns extracted from the list of motif or domain regular 

expressions was required in order to access each element (regex) from the vector. Every 

cycle in the loop would call the findMotif(String, String) method that performed the 

genome search and pass, as the parameters, the current element of the vector and the 

name of the String representing the genome to be scanned. The findMotif( ) method 

utilises the java.util.regex package to scan the genome. 

 

An instance of the Pattern class represents a regular expression that is specified in string 

form in a syntax similar to that used by Perl.  Instances of the Matcher are used to match 

character sequences against a given pattern. Since the findMotif( ) method is called within 

the for-loop, each regex is assigned as a String and compiled into a pattern. Invoking the 

pattern’s matcher method where the genome sequence is the input sequence, creates the 

matcher.  

 

The matcher’s find( ) method utilises a matching operation that scans the input sequence 

looking for the next subsequence that matches the pattern. Each resultant match is then 

appended onto the end of a results vector. A string is used to store results and a semi-

colon (;) is used to separate the results for each regex scanned. Where no matches were 

found ‘null’ is concatenated onto the results string, and where matches were found the 

string of matches is concatenated onto the end of the results string. The results from 
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each regex scanned would then be displayed and written to a file. These results include 

the total number of matches for each specific regex scanned as well as the sequence 

matched, and its start and end position numbers. 

 

In order to ascertain the time associated with searching the genome for a number of 

predefined patterns, the program recorded the time after both the genome file and the 

list of regular expressions were accessed and loaded. Once the for-loop extracting each 

pattern from the vector and the search results concerning each pattern were completed, 

the program would obtain the time and subtract the first time obtained from the last time 

determined in order to compute the total search time. The total search time was returned 

in milliseconds, since the System.currentTimeMillis( ) method returns a long data type in 

milliseconds.  

 

Note: The genome file and the list of motif or domain regular expressions are required to 

be located in the same directory that the program is stored in. 

 

The initial development of SMS utilised a file containing a short random sequence of 

DNA and a file containing four artificial regular expressions. Once the initial 

development was complete, the task of sourcing and downloading a number of motif or 

domain regular expressions as well as various size genomes began. 
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3.2 Genomes and Regular Expressions 
 

 

3.2.1 Genomes 
 

 

The objective of this project was to determine the effects of parallelism using various 

sized genomes. It was decided to download the first ten chromosomes from the human 

genome, and then to create a variety of ‘genome’ files using this data. The DNA 

sequences for the human chromosomes were sourced and downloaded from the 

Ensembl Genome Browser (Birney et al., 2004).  

 

The following files were downloaded and used for analysing the effects of parallelism:  

 

- 60 MB (Human chromosome 20) 

- 140 MB (Human chromosome 9)  

- 250 MB (Human chromosome 1) 

- 1072 MB or 1.072 GB (Human chromosomes 1 – 5) 
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3.2.2 Regular Expressions 
 

 

The use of regular expressions was decided on because all versions of Java since 1.4.0 

contained the regex package. This was employed as the method to scan the various 

genomes. The consensus patterns for 100 various protein motif or domain signature 

profiles were obtained from the PROSITE (Hulo et al., 2004) database. All motif or 

domain signature profiles obtained were in protein sequence and would thus need to be 

reverse translated from protein to DNA. The profiles were converted from protein to 

DNA due to the majority of published genomic data being that of DNA sequences. A 

selection of the motif or domain signature profiles obtained from PROSITE can be seen 

below in Table II. Since this project is concerned with searching whole-genomes it 

represents the most logical approach, as the process of translating a whole genome from 

DNA to protein could itself require a suitable parallel algorithm due to the nature of the 

problem. 

 
Table II: A selection of the motif/domain signature profiles obtained from the PROSITE 
database, prior to their reverse translation into DNA. 
 
Motif/Domain Protein Signature Profile 

Ubiquitin Consensus Pattern K-x(2)-[LIVM]-x-[DESAK]-x(3)-[LIVM]-
[PA]-x(3)-Q-x-[LIVM]-[LIVMC]-
[LIVMFY]-x-G-x(4)-[DE] 

Zinc Finger RING-type consensus pattern C-x-H-x-[LIVMFY]-C-x(2)-C-[LIVMYA] 

Hsp70 1 consensus pattern [IV]-D-L-G-T-[ST]-x-[SC] 

Hsp90 consensus pattern Y-x-[NQH]-K-[DE]-[IVA]-F-[LM]-R-[ED]

P53 family signature M-C-N-S-S-C-[MV]-G-G-M-N-R-R 
Note: The x indicates any amino acid single letter code and the number between braces, i.e. x(4), indicates 
the number of random amino acids in sequence. The [ ] brackets indicate that only one of the amino 
acids between these brackets can occur at this particular position, i.e. [LIVM]. 

 

 

A suitable tool to perform the reverse translation was sourced and the process of reverse 

translating and recompiling into suitable regular expressions began. The Sequence 

Manipulation Suite from the University of PennState’s Centre for Computational 

Genomics was used for the reverse translation. In order to prepare the sequences for 

reverse translation, all characters other than those representing the single letter amino 
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acids (highlighted in Table II) were removed, which resulted in an unbroken sequence of 

single letter amino acid characters. This unbroken sequence was then used as the 

template for reverse translation. 

 

The resulting DNA sequence was then converted into a regular expression based on the 

consensus patterns obtained from PROSITE. A selection of these can be visualised in 

Table II. A total of 100 different protein motif/domain profiles were selected from the 

PROSITE database and subjected to reverse translation prior to their conversion into 

DNA regular expressions. 

 

 
Table III: The DNA regular expressions for the five random protein motif/domain profiles 
highlighted in Table II. 
 
Motif/Domain DNA Regular Expression 

Ubiquitin 
Consensus 
Pattern 

AA[AG].*{6}[GATC]T[GATC].*{3}[GAT][GAC][GATC].*{9} 

[GATC]T[GATC][GC]C[GATC].*{9}CA[GA].*{3}[GATC]T[GATC] 

[GATC][GT][GATC][GATC][AT][GATC].*{3}GG[GATC].*{12} 

GA[GATC] 

Zinc Finger 
RING-type 
consensus 
pattern 

TG[TC].*{3}CA[TC].*{3}[GATC][AT][GATC]TG[TC].*{6}TG[TC] 

[GATC][ATC][GATC] 

Hsp70 1 
consensus 
pattern 

[GA]T[GATC]GA[TC][TC]T[GATC]GG[GATC]AC[GATC][AT][GC] 

[GATC].*{3}[AT][GC][GATC] 

Hsp90 
consensus 
pattern 

TA[TC].*{3}[AC]A[GATC]AA[GA]GA[GATC][GA][TC][GATC]TT[TC] 

[ATC]T[GATC][AC]G[GATC]GA[GATC] 

p53 family 
signature 

ATGTG[TC]AA[TC][AT][GC][GATC][AT][GC][GATC]TG[TC] 

[GA]T[GATC]GG[GATC]GG[GATC]ATGAA[TC][AC]G[GATC] 

[AC]G[GATC] 

 

 

It should be noted that the initial development and debugging of SMS utilised a short 

sequence of random DNA (approximately 0.5 megabytes/MB) to serve as the genome 

and a list containing four non-specific regular expressions, which represented imaginary 

DNA patterns.  
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3.2.2.1 Protein consensus pattern to DNA regex 
 

In order to create a list of DNA regular expressions, a number of protein consensus 

pattern sequences were obtained and subjected to reverse translation into DNA 

sequences. The task of creating the DNA regex from the protein sequence is 

compounded by the fact that there are four DNA bases (A, T, G, C) and each group of 

three bases (codon) can represent as many as 64 possible amino acids (4 x 4 x 4 = 64). 

Since there are only 20 amino acids, there is a high level of redundancy in the genetic 

code and some of the amino acids are represented by more than one codon. The flow 

diagram in Figure 6 highlights the required steps to successfully create the DNA regex’s: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Annotated flow diagram illustrating the steps involved in the creation of DNA regular 

expressions. 

 
L-M-A-[EQ]-G-L-Y-N 

 
 
 
 

LMAEQGLYN 
 
 
 
 
 

Amino Acid First Base Second Base Third Base
L T/C T G/A/T/C 
M A T G 
A G C G/A/T/C 
E G A G/A 
Q C A G/A 
G G G G/A/T/C 
L T/C T G/A/T/C 
Y T A T/C 
N A A T/C 

 
 
 
 
 

[TC]T[GATC]ATGGC[GATC][GC]A[GA]GG[GATC] 
[TC]T[GATC]TA[TC]AA[TC] 

Consensus pattern 
obtained from PROSITE 
for the ‘Homeobox’ 
engrailed-type protein  
signature. Remove all characters 

other than the single letter 
amino acid codes and 
paste sequence in reverse 
translate window. 

Output generated from 
the reverse translation 
includes the DNA base 
for each of the three 
bases constituting a 
codon. Where there is 
more than one DNA base 
per position the options 
are separated by a /. 

The output representing the 
nucleic acids for each amino acid in 
the protein sequence is then 
compiled into a regular expression 
based on the initial consensus 
pattern. The [ ] brackets indicate 
that there is more than one nucleic 
acid for the respective base. The 
area in bold represents the DNA 
sequence equivalent for. 



 36

On the successful development of the serial genome-scanning program, each selected 

genome is to be scanned using the list of regular expressions which have been created by 

obtaining a protein consensus pattern for a variety of protein domains or motifs. The 

protein sequence is subjected to the process of reverse translation to produce its 

corresponding DNA sequence, which is then formatted into a regular expression based 

on the initial protein consensus pattern. The wall-clock time is computed and saved in a 

file for later speedup calculations. 
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Chapter Four 
 

Design, Development and Implementation  
of the Parallel Algorithm 

 

 

The design and development of the parallel algorithm requires that the serial program be 

divided into a number of pieces such that more than one client may be involved in the 

program execution. The TSpaces parallel framework is used in the parallel program as a 

means of achieving the necessary level of communication required between the host and 

client programs. A Graphical User Interface is also required so that the user may enter 

the necessary information pertaining to each run, and then display the necessary results. 

 

 

 

4.1 Parallel Motif Scan (PMS) 
 

 

In order to implement the genome-searching program in a parallel environment the 

program would require a number of new methods, which would thus require that the 

steps associated with the design and development of the serial motif scanning program 

be repeated. 

 

 

4.1.1 PMS Basic Analysis 
 

The overall problem of searching a genome for a number of predefined DNA patterns 

remained unchanged from that of SMS. The desired inputs and outputs of the program 

were identical. However, in order for the problem to be developed for implementation in 

a parallel environment the basic processes would need to be redefined. In this case, both 

a client and a host program would need to be designed; the host would be responsible 

for accepting as input from the user, information regarding the genome file to be 
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scanned as well as the number of clients (processors) to be employed for the task. Once 

inputted, this information would need to be directed to the client programs so that they 

may extract a subsequence of the genome to scan, and then direct the output generated 

by the scan back to the host program.  The host would need to measure the total search 

time and assume responsibility for the output of the results in an intelligible form to the 

user. 

 

 

4.1.2 PMS Design 
 

The design of PMS required that two independent programs be designed, one to serve as 

the host program and the other to serve as the client program. The host was designed to 

receive as input via a Graphical User Interface (GUI) the genome file to be scanned as 

well as the number of clients to be employed. This information would need to be 

directed to the client machines so that they may process and execute the given task. The 

host program would need to remain active in order to receive the resultant data from the 

client programs. Upon arrival the data would be processed to ensure that there were no 

duplicate results. All processed data would be written to a file and sent back to the GUI 

so that the user may visualise the data. An additional task required of the host was to 

ensure that the total search time was measured and written to a file for storage. 

 

The client program would need to receive the information regarding the genome file to 

be scanned as well as the number of clients required. Based on the information received 

from the host, each client would know which genome file was to be scanned, the total 

number of clients required for the task and which client they were. They would then 

need to compute the start, end and seek positions in order to read the correct sequence 

of characters from the genome file so as to divide the work evenly amongst the available 

clients. In order to compute this, they required both the total number of clients and the 

actual client number (individual client ID). Once computed, the client would extract and 

load their desired subsequence and the list of regex’s to be scanned. They would cycle 

through the list of regex’s and scan each one separately. When the list was exhausted, all 

results would be directed to the host program for processing and final presentation. 
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The TSpaces framework developed by IBM was to be the framework of choice for 

enabling the desired communications via the GUI and the host program, and between 

the host and client programs. The communication between the GUI and the host 

program is required so that the information regarding the genome file to be scanned and 

the number of clients to be used can be directed to the host program. This is essential as 

the host program requires this information in order to generate the exact number of 

tuples as there are clients. Each tuple contains the name of the genome file, the total 

number of clients and finally a unique client ID. Communication between the host and 

the GUI is again required in order for the results that have been processed and formatted 

by the host program to be directed to the GUI so that the user may visualise the output. 

 

TSpaces is also required to ensure that the information, originally entered into the GUI, 

is relayed from the host to each client. Once each client has successfully scanned their 

specific section of the genome, which is calculated based on the client ID and the total 

number of clients, the results are then deposited back into the tuplespace so that the host 

program may collect them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Schematic overview of communication requirements for PMS. 

GUI 
 
 
 
 
 
 
 
 
 
 

Host 
 
 
 
 
 
 
 
 

Client 1 Client 2 Client 3 Client 4 Client 5 

Information entered by the 
user into the GUI is directed 
to the host program, and the 
subsequent results and total 
search time are directed back 
to the GUI on completion of 
the genome-scan. 

Information obtained from 
the GUI manipulated and 
directed to the client 
programs. On completion of 
each client scan, the results are 
directed back to the host for 
processing and formatting 
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4.2 PMS Host Development 
 

 
 It was decided that the host program would need to consist of the following steps, thus 

requiring that a class containing the necessary methods be written for each step. 

 

 

- Create a GUI to accept user input and to display results. 

- Receive the information from the GUI. 

- Send data including the genome file name, the total number of clients and 

the actual number to the client program. 

- Collect all results returned by the clients. 

- Combine and process the results to ensure that no duplicates are recorded. 

- Send all results including the total search time to the GUI. 

 

 

The first action of the host program (PMS_Host) was to create the GUI (Figure 8 

illustrates a screenshot of the GUI) that was to serve as a means of obtaining the 

information required by the client programs, and to display all results on completion of 

the experiment. Communication between the host and the GUI would be achieved by 

writing and reading tuples to and from the tuplespace located on a TSserver running 

locally on the network.  

 

The user would enter the name of the genome file to be scanned, as well as the number 

of clients to be used, in the text fields provided. Once this information was entered the 

user would need to click on the Scan Genome button in order to initiate the scan. In 

order for the user to receive and visualise the results from the genome scan, the Get Data 

button would need to be pressed. On completion of the task, the total search time was 

displayed in a text field in the bottom right of the GUI, and the message in the results 

text field would display ‘Genome Scan Complete’. The user was then able to visualise the 

results by selecting either the detailed or the simple results options. 
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Figure 8: Screen shot of the GUI used as the interface between user and the host program, 
PMS_Host, which allows the user to specify the number of clients required to scan the 

genome file entered. 
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4.2.1 GUI_Info 
 

The GUI_Info class was written to connect to the tuplespace and to take the tuple 

labelled “ClientInfo”. The information concerning the genome file and total number of 

clients was extracted, and two methods were written to return the relevant information to 

the host program. The following code was required to connect to the tuplespace and to 

take the desired tuple: 

 

TupleSpace ts = new TupleSpace("PMS",HOST)  
- Create an instance of the tuplespace called PMS, which is 

found at the server known as HOST (dell.ict.ru.ac.za). 
 

Tuple tempInfo = new Tuple("ClientInfo",new Field(String.class)) 
- Create a template tuple that will match any tuple with 

identical values in the respective fields. i.e. field(0) = 
“ClientInfo”, and field(1) = a string object. 

 

SuperTuple info = ts.waitToTake(tempInfo,300*1000) 
- Create an instance of a supertuple to store the matching 

tuple from the tuplespace. 
 

 

Once the tuple has been collected, the relevant information needs to extracted. This was 

achieved by retrieving the data that was stored in the second field, field(1), of the tuple 

since the first field, field(0), contained the unique id for the tuple. The following code 

was used to extract the string of data and then to split it into a String array: 

 

  String temp = (String)info.getField(1).getValue(); 
- Create an instance of a string object to store the string 

stored in the second field (field(1)) of the tuple taken 
from tuplespace. 

 

             String[ ] clientInfo = temp.split(","); 
- Create an instance of a string array to store each element 

which results from the split( ) method. The comma is 
used as the element separator. 
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GUI_Info 

- ClientInfo : String[ ] 

- HOST : String 

+ getHost( ) : void 

+ genomeName( ) : String 

+ clientTotal( ) : int  

Figure 9: UML Class Diagram for the GUI_Info class 
 

Two further methods make up the GUI_Info class which result in the genome file name 

to be scanned and the total number of clients being returned to the main method of the 

host program. The genomeName( ) method returns a string containing the genome file 

name, and the clientTotal( ) method returns an integer containing the total number of 

clients for the task. The genome file name and client total are then passed as parameters 

to a method within the next class written. 

 

 

4.2.2 ClientInfo 
 
The class known as ClientInfo was written in order to generate the information required 

by the clients. The void clientFile(String, int) method requires both the genome file and 

the client total as parameters and creates a one-dimensional String array with a length 

equal to the number of clients. A for-loop was utilised to create an equal number of 

String objects as there are clients. Each String object contains the file name to be 

scanned, an Integer object representing a unique client ID in the range of 0 to the total 

number of clients and the total number of clients. Each object is stored in a String array, 

and returned to the host program via the getFiles( ) method that returns the one-

dimensional array of client files. 

 

ClientInfo 

+ iTotal : int 

- myClients : String[ ] 

- strMyGenome : String 

+ clientFile(strMyGenome, iTotal) : void 

+ getFiles( ): String[ ] 

Figure 10: UML Class Diagram for the ClientInfo Class. 
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4.2.3 ClientTuples 
 
The ClientTuples class was written to receive the one-dimensional array of String objects 

containing the client information, extract each element of the array and place the string in 

a tuple labelled ‘ClientTuple’. The one-dimensional array as well as the total number of 

clients were received as parameters by the sendTuples( ) method. This method not only 

distributes the client tuples to the tuplespace, but prior to doing so, checks to see if there 

are any remaining tuples from previous genome scans. Any remaining tuples were 

removed prior to the program distributing the tuples for the clients. A final check was 

also done to ensure that the correct number of tuples was distributed; this was achieved 

by checking that the number of tuples sent corresponded with the total number of 

clients. In the event of there being a mismatch the program was designed to exit. 

 

ClientTuples 

- HOST : String 

- iClientNo : int 

- iClientTot : int 

- count : int 

+ allResults : String[ ] 

- strGenomeFile : String 

+ setCount( ) : void 

+ sendTuples(allResults, iClientTot): String[ ] 

Figure 11: UML Class Diagram for the ClientTuples Class. 
 

 

4.2.4 CollectClientResults 
 
Once all client tuples were distributed to the tuplespace for collection by the clients, the 

host program would then wait for the client results to be returned to the tuplespace. The 

CollectClientResults class was designed to collect each result tuple on its arrival in the 

designated tuplespace.  A collectResults(int, int) method was written to receive the total 

number of clients and regex’s to be scanned as parameters. This information would be 

required in order to create a two-dimensional String array to store all client results. The 

total number of clients would represent the number of rows and the total number of 

regex’s would correspond to the number of columns required to store all the client 

results. 
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CollectClientResults 

- searchResults : String[ ] 

- clientResults : String[ ] [ ] 

- iTotal : int 

- iRow : int 

- iCol : int 

- iClientID : int 

- iMotifTot : int 

- HOST : String 

+ collectResults(iTotal, iMotifTot) : void 

+ getClientResults( ): String[ ] [ ] 

Figure 12: UML Class Diagram for the CollectClientResults class. 
 

The total number of clients would also be required to ensure that the correct number of 

result tuples were received, i.e. that the number received corresponded with the number 

of clients employed. Once all results were received, they were combined and stored in the 

two-dimensional array. The getClientResults( ) method returns the populated two-

dimensional array to the host program for further processing and display of results.  

The final requirement of the PMS_Host was to ensure that there were no duplicate 

results, which may have arisen due to the 500-character sequence overlap between the 

clients, and then to display the results in a user-friendly format.  

 

 

4.2.5 SortResults 
 
The SortResults class was written to provide the necessary methods required for the final 

task. The first method within SortResults, namely Results(String[ ] [ ]), requires the two-

dimensional array containing all client results as its parameter. The only requirement of 

this method was to extract all the data from the two-dimensional array and combine it to 

form a one-dimensional array representing the final results for the genome scan. The 

second method of the SortResults class, sortResults(String [ ]), receives the one-

dimensional array of all client results as it is responsible for the removal of duplicates and 

formatting the results so that they can be viewed by the user on the GUI. Each element 

of the array represents the total number of matches found per regex scanned, with the 

first element, [0], representing all the results for the first regex in the list of motifs or 
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domains, and the last element of the array representing all the results obtained for the last 

regex in the list of motifs/domains. 

 

 

SortResults 

- vecTemp : Vector 

- vecMotifTotals :Vector 

- results : String[ ] 

- finalResults : String[ ] 

- iCount : int 

- iMatches : int 

+ sbSimple : StringBuffer 

+ sbDetailed : StringBuffer 

+ sbDetail : StringBuffer 

+ Results(clientResults) : void 

+ clientResults( ): String[ ] 

+ sortResults(results) : void 

+ simpleResults( ) : String 

+ detailedResults( ) : String 

Figure 13: UML Class Diagram for the SortResults class. 
 

 

The value of each element was either “null” where no matches were found, or it was a 

string containing details such as the start and end positions of all matches, with a comma 

(,) separating each match found. This method also reads in the file containing the list of 

regex’s in order to extract the specific name of the protein motif/domain for 

presentation with their corresponding results. Where matches are found they are 

separated using the split( ) method and placed in a temporary String array from where 

they are immediately placed in a hash set. A hash set was chosen to store the final results, 

as it presented a simple, yet effective, technique to ensure that no duplicate results were 

stored. The add(Object o) method achieves the removal of duplicates due its mechanism 

of action as it only adds the specified element to the set if it is not already present, and 

therefore ensures that no duplicates are stored and recorded in the results. 

 

The SortResults class formats the results so that the user has the option to view both a 

detailed and a simple set of results each time the program is run. The simple results 
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contain only the results for those regex’s that produced matches, and thus displays the 

number of the regex scanned (in this case a number between 1 and 100) and the total 

number of matches found for that particular regex. However, the detailed output 

contains the results for each regex scanned, whether or not any matches were found. 

Detailed output includes the number of the regex scanned, the name of the regex and 

whether or not any matches were found. In the case of no matches being found, ‘No 

matches found...’ was displayed, and where matches are found, all matches are displayed. 

The data displayed for each match consists of the total number of matches found, the 

specific match number and the start and end position numbers in the genome. 

 

 

4.2.6 Time 
 
A key requirement of PMS_Host was to assume the time-keeping responsibility for the 

genome scan. This was achieved by obtaining as the start time the system time in 

milliseconds as soon as all the client tuples were deposited into the tuplespace. The end 

time was computed by again obtaining the system time, and this occurred after all results 

had been received, processed and formatted. The start time was subtracted from the end 

time to calculate the total search time in milliseconds. The Time class was written to 

accept the search time in milliseconds and return the time in hours, minutes, seconds and 

milliseconds. The formatted time and the simple and detailed results were then written to 

three separate files, and sent to the GUI for display purposes. 

 

Time 

- lTimeTaken : long 

- iHr :int 

- iMin : int 

- iSec : int 

- iMilliSec : int 

- iTime : int 

+ getTime(lTimeTaken) : String 

Figure 14: UML Class Diagram for the Time class. 
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4.3 PMS_Client Development 
 

 

The client program (PMS_Client) was found to require fewer steps than the host 

program, since the client’s primary objective would be to load both the genome sequence 

data and the file containing the list of regex’s. The genome would then be scanned and 

the results sent back to the host. The following steps were required in order to achieve 

this: 

 

- Receive tuple sent from the host program. 

- Extract information from received tuple. 

- Compute subsequence of genome to scan. 

- Load subsequence and regex’s. 

- Scan genome. 

- Send results to host program. 

 

 

4.3.1 Tuples 
 

The Tuples class is responsible for the collection of the tuples deposited by the host 

program from the designated tuplespace. Each tuple contains a String object containing 

the genome file to be scanned, a unique integer ID (actual client number) and the total 

number of clients. The aforementioned data is represented as a single string with each 

element being separated by a colon (:). The colon is then used to split the data and place 

each element into a String array, which results in an array of three elements being 

formed. This array is then returned to the client program so that the information may be 

extracted and the scan can commence. In the event that the sequence is to be split by a 

factor that is larger than the number of clients, a do-while loop was incorporated that 

waits to collect tuples for a defined period of time; this allows each client to also process 

more than one job per experiment. 
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Tuples 

- clientInfo : String[ ] 

- ans : SuperTuple 

- HOST : String 

+ getClientTuple( ) : String[ ]  

Figure 15: UML Class Diagram for the Tuples Class. 
 

 

The information contained within the string array provides the client program with 

information relevant to the current experiment. The first element reveals the genome file 

that is to be read and searched, the second element contains the unique client ID, and the 

third element reveals the total number of clients to be employed in the given experiment. 

This information is crucial to ensure that the correct genome file is loaded as well as 

ensuring that the job is divided evenly between the available clients.  

 

 

4.3.2 ClientSequence 
 
A number of options were considered, developed and evaluated in order to divide the 

genome sequence evenly amongst the clients. The first option was to create a class to 

divide the genome sequence prior to each experiment. However, it was soon decided that 

this would not be a viable or efficient process and was soon replaced. The second option 

entailed each program reading in the whole genome file and then extracting a substring, 

using the substring(int beginIndex, int endIndex) method which returns a new string that 

is a substring of this string. This option again proved to be fruitless in that the memory 

requirements were excessive for large genomes. An increase in the Java virtual memory 

allocation proved to be an insufficient means of solving this problem even with an 

increase to the maximum value (i.e. from the standard memory allocation of 64 MB to 

the maximum of 512 MB).  

 

The third option, presented the ‘cleanest’ and most efficient means of solving the 

problem, and revolved around using a RandomAccessFile object to extract the desired 

sequence of characters from the genome file. The read(byte[ ] b, int offset, int length) 

method for a RandomAccessFile is utilised in order to divide the genome evenly. The 
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read method simply reads up to length bytes of data from this file into an array of bytes. 

The offset value may also be set and this is achieved by calling the seek(long position) 

method which enables the offset value to be adjusted according to client number. 

 

 

ClientSequence 

- lMySeekPos : long 

- strMyGenome : String 

- sbSequence : StringBuffer 

- strFileName : String 

- strClientFileName : String 

- iMyClientNo : int 

- iMyClientTot : int 

- iMyClientStart : int 

- iMyClientEnd : int 

- iSequenceLength : int 

- iCount : int 

- iSubSequence : int 

- iLength : int 

- iArraySize : int 

+ lMyStart : long 

+ strClientSequence : String 

+ iClientNumber : int 

+ iClientTotal : int 

+ iGenomeSize : int 

+ iMyStart : int 

+ iMyEnd : int 

+ getPositions(strMyGenome, iMyClientNo, iMyClientTot) : void 

+ getStart( ) : int 

+ getEnd( ) : int 

+ getSeekPosition( ) : long 

+ getFileSize( ) : int 

+ initialiseSequence(strGenomeIn, iStart, iEnd, iFileLength, lSeekPosition) : Boolean 

+ getFile( ) : String 

Figure 16: UML Class Diagram for the ClientSequence Class. 
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This resulted in the design and development of the ClientSequence class which was 

responsible for dividing the genome, computing the seek, start and end positions for the 

client and reading the desired set of characters from the genome file. The 

getPositions(String, int, int) method receives the genome file name, the unique client 

number and the client total. The size of the genome file is computed and then divided by 

the number of clients entered by the user, the result being the size of the file segment 

that each client should scan. 

 

The unique client ID is then used to compute the relative start and end positions, which 

are needed to calculate the length or number of bytes, to be read into the byte array 

storing the genome file characters. The start position is also used to serve as the seek 

position. Once computed, the desired segment of the file is accessed and stored as a 

String. The initialiseSequence( ) method receives information including the file name, the 

start, end and seek positions as parameters and returns true once the file has been 

successfully accessed and the sequence has been read into a string. False is returned in 

the event of an error in accessing or reading the file. A simple getFile( ) method is utilised 

to return a String representation of the genome sequence to the main method for later 

use. 

 

Once complete, the Patterns class is required in order to read in a file containing the list 

of regular expressions to be used in the genome scan. All regex’s found in the file are 

read in and appended onto the end of a vector, resulting in a vector of regex’s. Similarly 

with the initialiseSequence method, so too does the initialiseMotifs( ) return true in the 

event of successful extraction of the regex’s and false in the event of an error. The vector 

containing all regex’s is returned to the main method of PMS_Client so that the genome 

scan may commence. A for-loop is then used to extract each regex from the vector and 

passed along with the genome sub-sequence to be scanned to the findMotif(String, 

String) method which uses the java.util.regex package to scan the genome, as described 

for SMS. 

 

Once all regex’s have been scanned the string containing all the search results is 

deposited into the tuplespace so that the host program (PMS_Host) may combine and 

process all client results.  
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In order for the program to be executed in parallel, a host program was designed and 

developed primarily to create a GUI that enables the user to provide the name of the 

genome file to be scanned and the number of clients to be used. This information is 

required by the client programs that are responsible for extracting a particular section of 

the genome in question, and are using the list of regex’s as patterns to be searched for 

within the genome. The host program requires all results so that any duplicates can be 

removed which have arisen due to the overlap in sequences assigned to each client. Once 

all results have been processed and formatted they will be directed to the GUI for 

visualisation, and then written to file. 
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Chapter Five 
 

Results 
 

 

5.1 Experimental Overview 
 

 

In order to analyse the effects of parallelism and to highlight its possible role in the field 

of bioinformatics, it was decided to use a range of different sized genomes. The 

following size genomes were analysed using a varying number of clients: 

 

- 60 MB 

- 140 MB 

- 250 MB  

- 1 072 MB / 1.072 GB 

 

The effects of parallelism were assessed by calculating the level of speedup (S), where 

speedup is calculated by dividing the time the serial program takes to run (T1) by the 

time it takes to run the same problem with N processors (T(N)).  

 

S = T1 / T(N); 

 

Each genome file was initially executed using a single processor (i.e. 1 client). The 

number of clients was then incremented by a factor of five until the calculated speedup 

was found to plateau. For each genome scanned and for each number of clients tested, 

either three or five runs were repeated to ensure the statistical significance of the data 

collected. The various sized genomes were all initially run on a single processor machine 

so that a standard protocol for all experiments undertaken could be established. 

 

It soon became apparent that the most efficient serial algorithm which would serve as the 

benchmark for the calculating the speedup with each genome tested was, in fact, PMS 
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and not SMS. This was directly attributed to the memory demands being placed on the 

system when the size of the genomes increased above 60 megabytes (MB). The Java 

Virtual Machine Memory was increased to the maximum allowance of 512 MB. 

However, an OutOfMemoryError was thrown when SMS attempted to load the larger 

genome files (> 60 MB). This error is thrown when the Java Virtual Machine cannot 

allocate an object because it is out of memory, and no more memory can be made 

available by the garbage collector.  

 

In order for the genomes larger than 60 MB in size to be scanned using a single 

processor machine, the genome needed to be divided into smaller chunks so that the 

single processor may process a job in a series of steps. This alone indicates the necessity 

for parallel computing. The search time associated with the best “serial” algorithm was 

thus achieved by having one client program running and entering more than one client in 

the GUI. The single client would then process all tuples deposited into the tuplespace. 

 

 All files including the genome sequence files, the list of regular expressions, the Java 

source code for both the host and the client programs and the TSpace package files 

(tspace.jar, tspaces_client.jar, tspaces_fixes.jar) were stored in a common directory 

accessible by all the machines registered on the local network. A subdirectory was created 

for both the client and host source code. All machines required for a run executed either 

the client or host program from the /mnt/exports/takhurst/Clients/ or the 

/mnt/exports/takhurst/PMS_Host/ directory paths, respectively. 

 

 

 

5.2 PC Configuration 
 

 

The network of workstations consisted of a number of commodity PCs, all of which are 

in possession of an Intel Pentium 4 2.4 Ghz processor with 512 MB of RAM. A fast 

switch Ethernet network connection of 100 mbps is used to create the desired network. 

Each machine is utilising the Red Hat Linux 3.1 10 version as its operating system and is 

in possession of the Java 1.4.2_03 version. 
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5.3 Results 
 

5.3.1 60 MB Genome File: chromo20.fa 
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Figure 17: Average speedup achieved over a range of clients (processors) using the 60 MB file, 

representing human chromosome 20. 
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Figure 18: Graphical representation of the reduction in wall-clock time achieved for the 60 MB file. 
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The first ‘genome’ scanned was the 20th human chromosome which was 60 MB in size. 

Near linear speed was achieved up until 10 clients, the speedup increased steadily until 28 

clients, whilst after that any further increase resulted in little to no increase in speedup 

(See Figure 17). The average execution time using a single processor and the whole 

genome file was found to be 0h:16m:29s:303ms; this was significantly reduced to 

approximately 0h:0m:42s:320ms when utilising 28 processors. 

 

Figure 18 highlights the reduction in wall-clock time which can be seen to rapidly 

decrease from 0h:16m:29s:303ms to 0h:3m:21s:728ms when representing the reduction 

from using a single processor (client) to using 5 clients. There was a further significant 

reduction in wall-clock time between 5 – 10 clients, after which the wall-clock time 

gradually decreases to a minimum of 0h:0m:41s:397ms with 35 clients. 
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5.3.2 140 MB Genome File: chromo9.fa 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Graphical representation illustrating the speedup achieved using a genome of file size 

140 MB (megabytes), which represents the ninth human chromosome.  
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Figure 20: Graphical representation of the reduction in wall-clock time achieved for the 140 MB 

file. 
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The second ‘genome’ scanned represents the ninth human chromosome. Again near 

linear speedup is exhibited up to 10 clients (processors), after which the speedup can still 

be seen to increase until an optimal number of approximately 24 clients is reached. Any 

further increase in client number above 24 can be seen to have little to no effect on the 

speedup as the curve can be seen to plateau (See Figure 19). This represents a reduction 

in wall-clock time from approximately 33 minutes on a single processor machine and 

with the genome split into 3 smaller slices, to approximately 1 minute and 45 seconds 

using 24 machines. 

 

In a similar profile to that obtained for the first ‘genome’ scanned, the greatest reduction 

in wall-clock time can be seen between clients 1 – 10. This represents a decrease from 

0h:33m:53s:990ms to 0h:3m:56s:767ms with 10 clients. The wall-clock time then 

gradually decreases until a minimum, which was found to be with the use of 24 clients 

and equalled 0h:1m:47s:403ms (See Figure 20). 
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5.3.3 250 MB Genome file: chromo1.fa  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Graphical representation illustrating the speedup attained for the genome of file size 
250 MB, which represents the first human chromosome. 
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Figure 22: Graphical representation of the reduction in wall-clock time achieved for the 250 MB 

file. 
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A similar trend was observed for a larger file tested (See Figure 21), and as for the 60 MB 

and the 140 MB files, the 250 MB file exhibits near linear speedup. This is seen to occur 

up until about 15 clients whereby the speedup begins to increase less sharply until it 

starts to taper off around 25 clients. The slope can be seen to increase very slightly until a 

maximum speedup is reached around 35 clients. However, the optimal number of clients 

would appear to be in the region of 25 since any further increase in clients can be seen to 

have negligible effects on the speedup. This result represents a reduction in wall-clock 

time from approximately 1 hour and 5 minutes to approximately 3 minutes when one 

compares the execution time using a single client to that obtained with 25 clients. 

 

The wall-clock time associated with each number of clients tested can be seen in Figure 

22, and in this case the most dramatic reductions occur up until 15 clients. A gradual 

reduction in wall-clock time can then be seen up to about 25 clients after which the 

reduction in wall-clock time is negligible, if anything at all. The minimum wall-clock time 

was achieved with 35 clients, and this resulted in the scan taking 0h:2m:42s:42ms as 

opposed to the 1h:4m:47s:325ms obtained with the use of a single processor and with 

the genome divided into 5 pieces. 
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5.3.4 1072 MB Genome File: chromo1-5.fa 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23: Graphical representation illustrating the speedup attained for the genome of file size 

1072 MB, which represents the first five human chromosomes (approximately a quarter of 
the human genome). 
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Figure 24: Graphical representation of the reduction in wall-clock time achieved for the 1072 MB 

file. 
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The largest ‘genome’ scanned, and which represents a combination of the first five 

chromosomes, once again exhibited a similar trend to all the other ‘genomes’ tested in 

that it, too, achieves near linear speedup until 15 clients. The speedup can then be seen to 

gradually increase between 15 – 50 clients where the maximum speedup was attained. 

The addition of more than 50 clients can be seen to have negligible effects (See Figure 

23). An optimal number of clients would be in the region of 20 clients and this represents 

an overall reduction in wall-clock time from approximately 4 hours and 48 minutes to 21 

minutes and 25 seconds. The greatest reduction in wall-clock time can be seen for 50 

clients, in which the total search time was roughly 12 minutes and 30 thirty seconds. 

 

The reduction in wall-clock time also exhibits similar trends to those observed for the 

previous ‘genomes’ tested in that the greatest reduction can be seen between 1 – 15 

clients. This represents a decrease from an average scan time of 4h:48m:6s:606ms with 

one client (processor)  and the genome split into 20 pieces, to 0h:23m:50s:925ms with 

the help of 15 clients. The wall-clock time can then be seen to gradually decrease until a 

minimum was obtained with 50 clients, which corresponds to 0h:12m:27s:503ms (See 

Figure 24). When one compares the speedup attained with 15 clients with that attained 

using 50 clients, the wall-clock time can be seen to decrease by a further factor of 2.  
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Chapter Six 
 

Discussion and Conclusion 
 

6.1 Discussion 
 

The principle objective of this research project was to investigate the role of parallel 

computing in the field of bioinformatics. In order to achieve this, a suitable 

bioinformatics application needed to be decided upon, designed, developed and 

implemented. Subsequently, two further research objectives arose; these were firstly, to 

assess the role of the Java programming language in scientific computing, and secondly, 

to assess and investigate the use of a parallel framework based on the Linda model.  

 

All three objectives were found to fit neatly into the scope of the research project, since a 

suitable biologically based problem that would require parallel computing in order to 

reach a solution, would need to be defined. Once the problem was defined, a suitable 

programming language would be selected in order to develop and implement the 

program responsible for solving the problem. The choice of the programming language 

was a simple one in that Java possesses a large number of important features that make it 

a suitable candidate. In order to investigate the effects of parallelism on the program, it 

was decided to use a parallel framework based on the tuplespace model that was first 

introduced by David Gelernter and his research group at Yale University. They 

developed a system known as Linda, which represents a parallel programming language 

that is easy, efficient and portable (Gelernter, 1988). TSpaces was selected, which is a 

freely available parallel framework written in Java that was developed and actively 

maintained by IBM. 

 

One of the biggest challenges facing modern bioinformaticians has resulted from the 

dramatic increases being experienced in a number of genomic databases, such as EMBL, 

enBank and SWISS-PROT. These databases have been seen to almost double in size 

every year (Janaki and Joshi, 2003). There are two factors that have directly led to the 

explosion in publically available genomic sequence data. These factors can be attributed 
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firstly to a number of the larger genomic research facilities generating upwards from 

several hundred gigabytes of data per day, and secondly, to the development and 

implementation of high-throughput techniques for both DNA sequencing and analysis of 

gene expression (Meloan, 2004 and Bader, 2004).   

 

Subsequent to this growth in genomic sequence data, there is a need to intelligibly 

capture, manage and analyse the data so that important discoveries can be made. Thus it 

was decided to design, develop and implement a program that would scan whole genome 

sequences for a number of predefined motif or domain signatures in the form of regular 

expressions. When one considers that the size of the complete human genome is in the 

region of 4 gigabytes, it becomes increasingly clear that problems of this magnitude will 

require computational power in excess of that harnessed with the use of a single 

processor machine.    

 

The result was the development and implementation of a genome-scanning program, 

known as PMS (Parallel Motif Scan), which was written in Java and utilised the TSpaces 

parallel framework in order to achieve the desired communication required for parallel 

execution. The effects of parallelism were assessed using the DNA sequences from the 

first, ninth, twentieth and a combination of the first five human chromosomes. The sizes 

of the various chromosomes were 60 MB (chromosome 20), 140 MB (chromosome 9), 

250 MB (chromosome 1), and 1072 MB or 1, 072 GB (chromosomes 1 to 5).  

 

The aforementioned chromosomes were to serve as the range of ‘genomes’ to be tested. 

Each ‘genome’ was initially executed utilising a single client, which represents a single 

processor, to serve as the benchmark to calculate the speedup associated with parallelism. 

The use of an existing network of workstations provided the necessary environment to 

execute the program in parallel. Each ‘genome’ was executed with varying numbers of 

clients (processors) and the resultant speedup was calculated; the number of clients was 

increased until no further increase in speedup was obtained. 

 

An important finding when executing each ‘genome’ with a single client was that for 

genomes larger than 60 MB, the use of parallel computing is essential. This is supported 

by the fact that the 140 MB file needed to be split into three pieces, the 250 MB file into 

five pieces and the 1072 MB file into twenty pieces in order for these ‘genomes’ to be 
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scanned using a single processor. The single client would then search each piece until the 

entire ‘genome’ had been scanned. The reason that these ‘genomes’ required processing 

as a number of smaller pieces was due to limitations in the amount of memory as each 

client possessed a maximum of 512 MB of RAM. The result of this was that the Java 

Virtual Memory could only be increased to the maximum of the client which, as 

previously mentioned, was 512 MB.  

 

When the single client attempted to read in the genome files greater than 60 MB, an 

OutOfMemoryError was thrown which implies that the Java Virtual Machine cannot 

allocate an object as it is out of memory, and no more memory can be made available by 

the garbage collector. Dividing the problem into smaller pieces, which would not 

compromise the memory limitations of the individual clients, averted this error.  

 

The effect of parallelism for each ‘genome’ with respect to speedup was immediately 

realised, and can be seen in the respective figures illustrating the associated speedup for 

all number of clients tested with the various ‘genomes’. All ‘genomes’ tested exhibited 

near linear speedup for a total of 10 clients for the 60 MB (Figure 17) and 140MB (Figure 

19) and for a total of 15 clients for the 250 MB (Figure 21) and 1072 MB (Figure 23) 

genome files.   

 

The graphical illustrations representing the speedup for the various ‘genomes’ tested can 

be seen to follow almost identical trends for the 60 MB, 140 MB and the 250 MB 

‘genomes’ wherein, after the initial near linear speedup, the speedup in each case 

increases steadily until approximately 25 clients. Any further increase in clients after this 

number can be seen to have little to no significant effect on the speedup. A similar trend 

was found for the largest genome tested. However, the speedup was found to increase 

gradually up to 50 clients, with any further increase in clients resulting in a slight decrease 

in speedup. These findings suggest that above a threshold number of clients (processors), 

any further increase in the number of clients may, in fact, be counter-productive or, as in 

this case, result in negligible gains in speedup. 

 

An interesting finding was that the speedup attained for each ‘genome’ tested with 25 

clients was found to be greater than that obtained by Kleinjung et al (2002), who 

investigated the use of parallel computing for performing multiple sequence alignments. 
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Kleinjung et al  reported to have found that the parallelised program performed up to ten 

times faster on 25 processors compared to the single processor version. The computed 

speedups were found to be 21.3 for the 60 MB ‘genome’, 18.3 for the 140 MB ‘genome’, 

21.5 for the 250 MB ‘genome’ and 15 for the 1072 MB ‘genome’ when the program was 

executed on 25 processors. All these results are in excess of the speedups reported by 

Kleinjung et al (2002) for the same number of processors, albeit for a different 

application. 

 

The fact that all the ‘genomes’ tested produced similar profiles when the speedup was 

plotted against the number of clients utilised, together with the fact that they also all 

appeared to exhibit a similar number of clients as being the optimal, suggests that the 

limitation of the parallel environment may be due to the demands being placed on the 

network. The reason for this is that each client machine is running the genome-scanning 

program from the same-shared directory. The file for the ‘genome’ to be scanned is also 

located in this shared directory and, as such, each client is attempting to access the same 

file in the same directory at the same time. As a result there could be a bottleneck effect 

as each client is attempting the same task at the same time.  

 

This was particularly noticeable for the larger genome tested, and was perhaps due to the 

fact that the size the ‘smaller’ pieces are assigned for each client are in fact still rather 

large in terms of megabytes. This would mean that the time required to extract the 

desired section of the file is greater than is the case when the section is smaller, and thus 

each client takes slightly longer to extract their piece which in turn delays the other 

clients still needing to extract their particular section. In order to obtain concrete 

evidence for this, one could install network-monitoring software which would enable the 

user to monitor the demands being placed on the network due to each client attempting 

to extract their section from the centrally located directory. 

 

There are a number of options which one could employ in order to avert this problem, 

one of which revolves around each client having all the desired genome files stored 

locally. This, however, would not be a suitable solution as it would require that the user 

needs to ensure that each client is in possession of all the required genome files. A more 

logical solution may be in having the genome files stored in a handful of shared 

directories with an equal number of clients accessing each directory.  
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Associated with the speedup are the more definitive reductions in wall-clock time, which 

provide dramatic evidence supporting the role of parallel computing in bioinformatics 

applications. When the wall-clock time was plotted against the number of clients, 

distinctively similar profiles were obtained for all ‘genomes’ scanned. All files scanned 

exhibited the largest reductions in wall-clock time between 10 to 15 clients, and this 

correlates with the time at which the speedup attained was closest to being linear. After 

this point any increase in the number of clients can be seen to have slight gains with 

respect to reductions in wall-clock time. 

 

The reductions in wall-clock time associated with the 60 MB file can be visualised in 

Figure 18, wherein the greatest reduction is experienced with 30 clients and the initial 

scan time of 0h:16m:26s:303ms obtained with a single processor is reduced to 

0h:0m:41s:397ms, representing an overall reduction of wall-clock time by approximately 

95.81%. Figure 20 highlights the reductions in wall-clock time attained with the 140 MB 

and, as for the 60 MB, the overall reduction in search time was found to be 

approximately 94.7 % when the lowest search time achieved is compared with the search 

time obtained for the single processor. This represents a decrease in search time from 

0h:33m:53s:990ms with one client to 0h:1m:47s:403ms with 24 clients. 

 

Similar results were also attained for the two larger ‘genomes’ tested, the results of which 

are highlighted in Figures 22 and 24, for the 250 and 1072 MB genome files, respectively. 

The average search time for a single client scanning the 250 MB ‘genome’ was 

1h:4m:47s:325ms, and this was reduced to an average time of 0h:2m:42s:42ms with 35 

clients. This represents a percentage reduction from the initial wall-clock time of 

approximately 95.8 %. Likewise, the results attained using the 1072 MB ‘genome’ 

represented a reduction in wall-clock time of approximately 95.7 % computed from an 

initial search time of 4h:48m:6s:606ms with a single client to 0h:12m:27s:503ms with 50 

clients. 

 

These dramatic gains in wall-clock time attained through the division of a large problem 

into a number of smaller pieces, highlight the role that parallel computing can play in the 

field of bioinformatics. 
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The use of parallel computing has traditionally relied on programming languages such as 

C and Fortran. However, the advent of Java has resulted in an increased interest in the 

role that Java can play in scientific computing. Java has a number of key elements making 

it an attractive language for scientific computing, with the most important being its 

portability. Portability is especially important for high-performance applications; this is in 

part due to the life span of the hardware architectures being typically shorter than the 

application software. The platform independence of Java has resulted in it being referred 

to as the “write once, run anywhere” programming language. Java is also considered to 

be a better software engineering environment than both C and Fortran. This results from 

features such as the absence of pointers, automatic garbage collection and strict type 

checking which allows for rapid prototyping and leads to less buggy code and faster 

development time (Bull et al, 2001). 

 

It has also been proposed by Bull et al that the nature of scientific applications lends their 

solution to Java execution environments, since they typically spend a large amount of 

execution time in a small number of user-written methods. This makes them ideal 

candidates for just-in-time compilation and also less susceptible than other applications 

to poor implementations of the Java API. However, one of the major perceived 

shortcomings of Java in scientific computing by programmers is its performance. The 

research undertaken by Bull et al found that on Intel Pentium hardware, and especially 

with a Linux operating system, the performance gap is small enough to be of little or no 

concern to programmers. 

 

The fact that Java is rapidly becoming the language of choice for many mainstream and 

commercial applications, as well as it being a very popular teaching language in many 

institutions, has resulted in the major vendors expending significant resources on 

developing robust and efficient Java execution environments. This has resulted in one of 

the most apparent advantages of Java, that is the access to new resources, which includes 

a wide selection of class libraries and a growing number of trained programmers.  

 

Two such libraries are the java.regex package and TSpaces, which were developed by Sun 

Microsystems and by researchers at IBM respectively. The java.regex package, which is 

included in all Java versions post JDK 1.4, provides Java programmers with a simple and 

very clean interface to utilise the text manipulation features of regular expressions 
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(Marchal, 2004). TSpaces was developed in order to solve the problems associated with 

connecting together disparate systems. The TSpaces software package is a messaging 

middleware component that combines asynchronous messaging with database features. 

Having been written and implemented in Java, it has the ability to run on virtually any 

platform from very small devices, such as a palm device, to mainframes. Since TSpaces is 

a direct descendant of Linda, it utilises the Tuplespace system which operates more as a 

global communication buffer than a data repository. These systems are tailor-made for 

distributed programming where a general data delivery mechanism is needed (Lehman, et 

al, 2001 and Wyckoff, 1998).  

 

The TSpaces package provides a communication link that allows application builders the 

advantage of ignoring some of the harder aspects of multi-client synchronisation, such as 

tracking names and addresses of all active clients, communication line status and 

conversation status (Lehman et al, 2001). The tuplespace model provides a simple, yet 

powerful mechanism for interprocess communication and synchronisation. A process 

with data to share ‘generates’ a tuple and places it into the space. A process requiring data 

simply requests a tuple from the space. Although message-passing systems appear to be 

more efficient, tuplespace programs are typically easier to write and maintain (Wyckoff, 

1998). 

 

There are a few key factors that make TSpaces a suitable parallel framework, such as the 

ease of installation and implementation of the additional classes. The TSpaces server 

need only be installed on a machine visible on the local network, which all clients 

connect to in order to place or receive information in the form of tuples. Each client may 

interact with an arbitrary number of clients by interacting with them through a single 

space. However, a client is not restricted to a single space or even to a single server. Each 

client has the freedom to attach to servers and interact with spaces at will, since there is 

no ‘message channel’ set up required and there is no penalty for detaching from a server 

and reattaching later. 

 

The clients access tuples via a standard set of simple method calls that are located in a set 

of TSpace library files. TSpaces is also easy to install and use both for development and 

deployment. 
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6.2 Conclusions and Future Work 
 

 

The establishment of a computational cluster utilising an existing network of 

workstations was achieved, and the performance of the cluster in performing key 

bioinformatics tasks was investigated. 

 

The use of the Java programming language in conjunction with a third party library of 

classes allowed for the successful design, development and implementation of a genome-

scanning program to be executed in a parallel computing environment. The results 

attained for the various genomes in terms of the speedup associated with parallelism, and 

as a direct consequence of this speedup the significant reductions in wall-clock time, 

suggest that parallel computing has an important role to play in bioinformatics. The 

potential for Java to become a scientific computing language of choice has been 

demonstrated with a particular emphasis on performing string-matching searches. 

Networks of cheap, commodity workstations have also been highlighted as possessing 

sufficient combined computational power to tackle some of biology’s major challenges. 

They have also been shown to be efficient and cost-effective alternatives to the 

traditional supercomputer, which is a financial luxury few can afford. 

 

In order to complete this research a number of alternatives would need to be 

investigated. One of the most important future options may be to recompile PMS for 

execution in a parallel environment using a different parallel framework in order to assess 

the efficiency and applicability of the TSpaces parallel framework. PMS may also be 

linked to various databases that house a variety of domain or motif profiles and thus 

allow the user the freedom to select which patterns they wish to scan for. Another 

interesting investigation may be to recompile PMS to utilise either Hidden Markov 

Models (HMMs) or Positive Specific Scoring Matrices (PSSMs) as opposed to the regular 

expressions used in the current version of PMS. Both options would result in an increase 

in computational intensity whilst producing more accurate domain or motif recognition. 
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Appendices 
 

Appendix A: Average search times for all genome files 
scanned. 

 
Table AI: Average search times for all numbers of clients tested, using the 60 MB genome file.  

Number of Clients (Processors) Average search time 

0 0h:0m:0s:0ms 

1 0h:16m:29s:303ms 

5 0h:3m:21s:728ms 

10 0h:1m:51s:88ms 

15 0h:1m:23s:895ms 

20 0h:1m:3s:280ms 

22 0h:0m:55s:728ms 

24 0h:0m:48s:408ms 

25 0h:0m:46s:481ms 

26 0h:0m:45s:179ms 

28 0h:0m:42s:320ms 

30 0h:0m:41s:790ms 

35 0h:0m:41s:397ms 

 
Table AII: Average scan times for all clients tested with the 140 MB genome. 

Number of Clients (Processors) Average Genome Scan Time 

0 0h:0m:0s:0ms 

1 0h:33m:53s:990ms 

5 0h:7m:35s:166ms 

10 0h:3m:56s:767ms 

15 0h:2m:52s:408ms 

20 0h:2m:5s:878ms 

22 0h:1m:59s:512ms 

24 0h:1m:47s:403ms 

25 0h:1m:51s:492ms 

26 0h:1m:48s:807ms 

28 0h:1m:47s:612ms 

30 0h:1m:48s:287ms 
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Table AIII: Average genome scan times using the 250 MB genome file with a range of clients. 

Number of Clients (Processors) Average Genome Scan Time 

0 0h:0m:0s:0ms 

1 1h:4m:47s:325ms 

5 0h:13m:43s:269ms 

10 0h:7m:7s:775ms 

15 0h:4m:57s:429ms 

20 0h:3m:52s:412ms 

22 0h:3m:34s:235ms 

24 0h:3m:26s:334ms 

25 0h:3m:0m:423ms 

26 0h:2m:58s:62ms 

28 0h:2m:50m:943ms 

30 0h:2m:48s:812ms 

31 0h:2m:44s:16ms 

32 0h:2m:44s:559ms 

35 0h:2m:42s:42ms 

 

 
Table AIV: Average genome scan times for the 1072 MB genome using a range of clients. 

Number of Clients (Processors) Average Genome Scan Time 

0 0h:0m:0s:0ms 

1 4h:48m:6s:606ms 

5 1h:7m:13s:811ms 

10 0h:34s:5s:541ms 

15 0h:23m:50s:925ms 

20 0h:21m:46s:214ms 

25 0h:19m:2s:972ms 

30 0h:16m:52s:907ms 

35 0h:15m:20s:859ms 

40 0h:14m:3s:161ms 

45 0h:13m:15s:599ms 

50 0h:12m:27s:503ms 

55 0h:12m:48s:264ms 
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Appendix B: Average raw time in milliseconds and 
processed time in hr, min, sec, and millisec for each 
genome scanned. 

 
 
 
Table BI: Average raw (millisec) and formatted (min) times for the 60 MB file. 

Number of clients Raw Time (ms) Formatted Time (min) 

1 989303.3333 16.48838889 
5 201728.6     3.362143333 
10 111088.6     1.851476667 
15 83895.6 1.39826 
20 63280.6 1.054676667 
22 55728.6 0.92881 
24 48408.8 0.806813333 
25 46481.2 0.774686667 
26 45179.2 0.752986667 
28 42320.2 0.705336667 
30 41790.0 0.6965 
35 41397.8 0.689963333 

 
 
 
 
 
 
 
Table BII: Average raw (millisec) and formatted (min) times for the 140 MB file. 

Number of clients Raw Time (ms) Formatted Time (min) 

1 2033990.333 33.89983889 
5 455166 7.5861 
10 236767.6667 3.946127778 
15 172408.3333 2.873472222 
20 125878.6667 2.097977778 
22 119512 1.991866667 
24 107403.4 1.790056667 
25 111492 1.8582 
26 108807.4 1.813456667 
28 107612.4 1.79354 
30 108287.4 1.80479 
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Table BIII: Average raw (millisec) and formatted (min) times for the 250 MB file. 

Number of clients  Raw Time (ms) Formatted Time (min)

1 3887325.667 64.78876111 
5 823269.6667 13.72116111 
10 427775.3333 7.129588889 
15 297429.3333 4.957155556 
20 231412 3.856866667 
22 214235.4 3.57059 
24 206334.2 3.438903333 
25 180423.8 3.007063333 
26 178062.4 2.967706667 
28 170943 2.84905 
30 168812 2.813533333 
31 164016.8 2.733613333 
32 164559.8 2.742663333 
35 162042.4 2.700706667 

 
 
 
 
 
 
Table BIV: Average raw (millisec) and formatted (min) times for the 1072 MB file. 

Number of clients Raw Time (ms) Formatted Time (min) 

1 17286606.67 288.1101111 
5 4033811.2 67.23018667 
10 2045541 34.09235 
15 1430925.4 23.84875667 
20 1306214.4 21.77024 
25 1142972.4 19.04954 
30 1012907.4 16.88179 
35 920859.2 15.34765333 
40 843161.8 14.05269667 
45 795599.2 13.25998667 
50 747503.8 12.45839667 
55 768264.6 12.80441 

 


