
The Role of Parallel Computing

in Bioinformatics

Research Report

Submitted in partial fulfilment of the requirements for the
Degree of Master of Science.

By

Timothy John Akhurst

Supervisor: Professor G. C.Wells

January 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by South East Academic Libraries System (SEALS)

https://core.ac.uk/display/145055674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Abstract

The need to intelligibly capture, manage and analyse the ever-increasing amount of

publicly available genomic data is one of the challenges facing bioinformaticians today.

Such analyses are in fact impractical using uniprocessor machines, which has led to an

increasing reliance on clusters of commodity-priced computers.

An existing network of cheap, commodity PCs was utilised as a single computational

resource for parallel computing. The performance of the cluster was investigated using a

whole genome-scanning program written in the Java programming language. The

TSpaces framework, based on the Linda parallel programming model, was used to

parallelise the application. Maximum speedup was achieved at between 30 and 50

processors, depending on the size of the genome being scanned. Together with this, the

associated significant reductions in wall-clock time suggest that both parallel computing

and Java have a significant role to play in the field of bioinformatics.

 iii

Acknowledgements

I would like to thank the following people for their contributions towards this research

project:

• Professor George Wells, my supervisor, for his invaluable guidance and drive

during the duration of this research, and for providing an ideal environment for

research as well as for kindly proofreading this research report.

• The Computer Science Department for the unlimited access to their facilities and

openly welcoming me into their department.

• All the members of the Master’s Lab in the Computer Science Department for

providing an enjoyable atmosphere in which to work.

• The NBN and Biochemistry & Microbiology Department for their financial

assistance.

• My mother, for kindly proofreading and editing this document for which I am

extremely grateful.

• My final thanks go to Nina Carstens for all her encouragement, great sacrifices

and extreme patience.

 iv

Table of Contents

Abstract ...ii
Acknowledgements ..iii
Table of Contents ...iv
List of Figures ...vi
List of Tables...viii
List of Abbreviations ...ix
Glossary of Terms ...x

Chapter One ...1

1.1 Introduction ..1
1.2 Project Proposal..5

1.2.1 Problem Statement ...5
1.2.2 Research Hypothesis ..6
1.2.3 Objectives...6

1.3 Document Structure...7

Chapter Two ...8

Review of Literature..8
2.1 In Silico Biology..8
2.2 Parallel Computing ...12

2.2.1 Taxonomy of Parallel Computer Architectures..14
2.3 Networks of Workstations ..19
2.4 Parallel Computing and Bioinformatics ..20
2.5 Java for Scientific Computing...22

2.5.1 Current Applications ..23
2.6 TSpaces ..25

2.6.1 TSpaces Model ..25

Chapter Three...28

Serial Program Design, Development and Overall Program Requirements...................28
3.1 Serial Motif Scan (SMS) ...28

3.1.1 SMS Basic Analysis ...29
3.1.2 SMS Design and Development...29

3.2 Genomes and Regular Expressions ...32
3.2.1 Genomes ..32
3.2.2 Regular Expressions ...33

3.2.2.1 Protein consensus pattern to DNA regex ...35

Chapter Four...37

Design, Development and Implementation ..37
4.1 Parallel Motif Scan (PMS) ...37

4.1.1 PMS Basic Analysis...37
4.1.2 PMS Design ...38

4.2 PMS Host Development ...40
4.2.1 GUI_Info ...42
4.2.2 ClientInfo ...43

 v

4.2.3 ClientTuples...44
4.2.4 CollectClientResults..44
4.2.5 SortResults ...45
4.2.6 Time ..47

4.3 PMS_Client Development ..48
4.3.1 Tuples ...48
4.3.2 ClientSequence ..49

Chapter Five..53

Results ...53
5.1 Experimental Overview...53
5.2 PC Configuration..54
5.3 Results ..55

5.3.1 60 MB Genome File: chromo20.fa...55
5.3.2 140 MB Genome File: chromo9.fa...57
5.3.3 250 MB Genome file: chromo1.fa..59
5.3.4 1072 MB Genome File: chromo1-5.fa...61

Chapter Six..63

Discussion and Conclusion..63
6.1 Discussion..63
6.2 Conclusions and Future Work..70

References...71

Appendices ...75

Appendix A: Average search times for all genome files scanned.75
Appendix B: Average raw time in milliseconds and processed time in hr, min, sec,
and millisec for each genome scanned...77

 vi

List of Figures

Figure 1: Graphical representation illustrating the growth of the GenBank database. The

nature of the growth can be clearly seen as exponential. Taken from

www.ncbi.nlm.nih.gov/GenBank/GenBankOverview.html ...1

Figure 2: Graphical representation of all genome projects (complete and incomplete)

available in the GOLD database. The exponential growth trend, which can also be

seen for the growth of GenBank (Figure 1), is also clearly noticeable. Taken from

www.genomesonline.org..2

Figure 3: Graph depicting the effects of increasing numbers of processors on the overall

computational speedup. ...13

Figure 4: Graphical representation of the basic concept of a shared memory parallel

system. ..17

Figure 5: Graphical representation illustrating the basic concept of a distributed memory

parallel system..17

Figure 6: Annotated flow diagram illustrating the steps involved in the creation of DNA

regular expressions..35

Figure 7: Schematic overview of communication requirements for PMS.39

Figure 8: Screen shot of the GUI used as the interface between user and the host

program, PMS_Host, which allows the user to specify the number of clients

required to scan the genome file entered...41

Figure 9: UML Class Diagram for the GUI_Info class..43

Figure 10: UML Class Diagram for the ClientInfo Class...43

Figure 11: UML Class Diagram for the ClientTuples Class. ...44

 vii

Figure 12: UML Class Diagram for the CollectClientResults class.45

Figure 13: UML Class Diagram for the SortResults class. ...46

Figure 14: UML Class Diagram for the Time class...47

Figure 15: UML Class Diagram for the Tuples Class. ..49

Figure 16: UML Class Diagram for the ClientSequence Class. ...50

Figure 17: Average speedup achieved over a range of clients (processors) using the 60

MB file, representing human chromosome 20. ..55

Figure 18: Graphical representation of the reduction in wall-clock time achieved for the

60 MB file...55

Figure 19: Graphical representation illustrating the speedup achieved using a genome of

file size 140 MB (megabytes), which represents the ninth human chromosome.57

Figure 20: Graphical representation of the reduction in wall-clock time achieved for the

140 MB file...57

Figure 21: Graphical representation illustrating the speedup attained for the genome of

file size 250 MB, which represents the first human chromosome...............................59

Figure 22: Graphical representation of the reduction in wall-clock time achieved for the

250 MB file...59

Figure 23: Graphical representation illustrating the speedup attained for the genome of

file size 1072 MB, which represents the first five human chromosomes

(approximately a quarter of the human genome). ..61

Figure 24: Graphical representation of the reduction in wall-clock time achieved for the

1072 MB file...61

 viii

List of Tables

Table I: Overview of some of the methods used for reading and writing tuples from or to

a TSpaces server………………………………………………………………….26

Table II: A selection of the motif/domain signature profiles obtained from the

PROSITE database prior to their reverse translation into DNA………………....33

Table III: The DNA regular expressions for the five random protein motif/domain

profiles highlighted in Table II…………………………………………………...34

 ix

List of Abbreviations

CESDIS Center of Space Data and Information Sciences

COTS Commodity Off The Shelf

CPU Central Processing Unit

DNA Deoxyribonucleic Acid

FOLDOC Free OnLine Dictionary Of Computing

GB Gigabyte

GOLD Genomes OnLine Database

GUI Graphical User Interface

HMMs Hidden Markov Models

HPC High-performance Computing

IT Information Technology

JPVM Java Virtual Parallel Machine

MB Megabyte

mbps Megabytes Per Second

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MPI Message-Passing Interface

NASA National Aeronautics and Space Administration

NOW Networks Of Workstations

ORF Open Reading Frame

PC Personal Computer

PMS Parallel Motif Scan

PSSMs Positive Specific Scoring Matrices

PVM Parallel Virtual Machine

Regex Regular Expression

RNA Ribonucleic Acid

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SMS Serial Motif Scan

WWW World Wide Web

 x

Glossary of Terms

Codon Block of three nucleotide residues, each of which specifies a
different amino acid.

DNA sequencing DNA sequencing is the determination of the precise
sequence of nucleotides in a sample of DNA.

Domain A portion of a polypeptide chain that folds on itself to form
a compact unit that remains recognisably distinct within the
tertiary structure of the whole protein.

Eukaryote Organisms whose cells are compartmentalised by internal
cellular membranes to produce a nucleus and organelles.

Gene expression The synthesis of a normal, complete and functional
polypeptide or protein from an appropriate gene.

Genome The total genetic information contained in a cell, an
organism or a virus.

Homology modelling The use of the structural and functional characteristics of
known proteins as a template for the generation of a
hypothetical structure for a similar protein of unknown
structure.

In silico A process that is completed entirely by use of a computer.

Molecular Dynamics Molecular dynamics (MD) simulation numerically solves
Newton's equations of motion on an atomistic or similar
model of a molecular system to obtain information about its
time-dependent properties.

Motif A protein motif, also called a secondary structure motif, is a
sequence of secondary protein structures such that the
sequence recurs in a variety of proteins and specifies a
characteristic three-dimensional structure.

Open Reading Frame A sequence within a messenger RNA that is bounded by
start and stop codons and can be continuously translated. It
represents the coding sequence for a polypeptide.

Prokaryote Primitive single-celled organisms that are not
compartmentalised by internal cellular membranes.

Promoter A DNA sequence that can bind RNA polymerase, resulting
in the initiation of transcription.

 xi

Reverse translation The process of converting a protein sequence into a DNA
sequence.

Sequence alignment The arrangement of two or more amino acid or base
sequences from an organism or organisms in such a way as
to align areas of the sequences sharing common properties.
The degree of relatedness or homology between the
sequences is predicted computationally or statistically based
on weights assigned to the elements aligned between the
sequences. This in turn can serve as a potential indicator of
the genetic relatedness between the organisms.

 1

Chapter One

1.1 Introduction

The completion of the Human Genome Project in 2003 marked the conclusion of a 13-

year global enterprise concerned with mapping the entirety of our genetic makeup

(Meloan, 2004). Also, over the past decade there has been a dramatic increase in the

number of completely sequenced genomes resulting from the race of multibillion-dollar

genome-sequencing projects. The results of these achievements have led to a flood of

data in genome sequence databases such as EMBL, SWISS-PROT and GenBank, which

has caused them to double in size almost every year (See Figure 1) (Janaki and Joshi,

2003).

Figure 1: Graphical representation illustrating the growth of the GenBank database. The nature of

the growth can be clearly seen as exponential. Taken from
www.ncbi.nlm.nih.gov/GenBank/GenBankOverview.html

There are two additional factors which have contributed to and are currently contributing

to this ever-increasing volume of data. The first factor can be attributed to some of the

larger genomic research facilities generating more than several hundred gigabytes of data

 2

per day. The second factor is concerned with the development and implementation of

high-throughput techniques for DNA sequencing and analysis of gene expression. The

sheer volume of data and the analysis, which spans both multi-national pharmaceutical

companies and academic collaborative networks, suggests that the completion of the

work could not be achieved without the use of computers (Meloan, 2004 and Bader,

2004).

For example, SWISS-PROT is a protein and knowledge database that is renowned for its

high quality annotation, usage of standardised nomenclature and its direct links to

specialised databases and minimal redundancies. The current SWISS-PROT release (43.6)

contains 153 320 sequence entries comprising 56 402 618 amino acids abstracted from

117 067 references (Boeckmann et al, 2003). GenBank is a comprehensive database that

contains publicly available DNA sequences for more than 140 000 organisms. GenBank

is redundant in nature, and on February 2004 it contained approximately 37 893 844 733

bases in 32 549 400 sequence records (Benson et al, 2004).

In addition to SWISS-PROT and GenBank are databases concerned with complete and

ongoing genome projects. One such database is GOLD (Genomes OnLine Database)

which currently contains 194 published complete genome sequences, 508 ongoing

prokaryote genomes and 419 eukaryote genomes (Figure 2) (Bernal et al, 2001).

Figure 2: Graphical representation of all genome projects (complete and incomplete) available in

the GOLD database. The exponential growth trend, which can also be seen for the growth of
GenBank (Figure 1), is also clearly noticeable. Taken from www.genomesonline.org

 3

Subsequently there is an enormous amount of biological sequence data flooding into the

sequence databases. This phenomenon drives the development of efficient tools for

comparative genome sequence analysis. With the aid of analysis tools, mining the

available genome sequence databases plays a major role in comparative and functional

genomics. The resulting information from these analyses has various important

applications in science such as structural and functional annotation of novel genes and

proteins, elucidating the gene order in the genome, gene fusion studies and constructing

metabolic pathways, to name a few (Janaki and Joshi, 2003).

These studies are also invaluable for industries such as the pharmaceutical one, with

particular reference to in silico drug target identification and new drug discovery. An

example of this is the publication of the human genome sequence in February 2001. The

release of the human genome will potentially result in more genes being identified as

novel drug targets. Of the approximately 30 000 genes in the human genome, only a

small number may lead to suitable drug targets. It has been estimated that the number of

these targets ranges between 3 000 – 10 000 (Janaki and Joshi, 2003). According to

Drews (2000), the set of drug targets available to the pharmaceutical industry has been

estimated at only 483. When one compares the potential number of new targets to the

existing number of drug targets this represents an order of magnitude increase (Reiss,

2001).

This flood of sequence data requires a system of representing, organising, manipulating,

distributing, maintaining and finally using the information (particularly in a digital form).

The comparatively new discipline of bioinformatics was born in an attempt to tackle the

problems of this so-called ‘post genomic era’. The functional aspect of bioinformatics is

concerned with the representation, storage and distribution of this data. The intelligent

design of data formats and databases, coupled with the creation of tools to query these

databases and the development of user interfaces that combine the various tools, provide

the user with the necessary means with which they can ask complex questions about the

data. The second and more scientific aspect of bioinformatics is concerned with the

development of the analytical tools required to discover knowledge in the data (Gibas

and Jambeck, 2001).

 4

The resultant biological information is used on a number of different levels, for example,

in the comparison of sequences to develop a hypothesis about the function of a newly

discovered gene, breaking down known three-dimensional protein structures into

segments that can aid protein folding predictions, as well as modelling how proteins and

metabolites work together to enable the cell to function (Gibas and Jambeck, 2001). The

task of mining information from vast data sets is a Herculean one, and has resulted in

scientists relying more and more on computational (in silico) processes.

The fields of bioinformatics and computational biology have been suggested to enable

breakthroughs in basic biological research and improvements in the prevention,

treatment and cure of diseases (Stewart, 2004). This project aims to highlight the use of

computers with a particular emphasis on the role of parallel computing in the field of

bioinformatics. According to David Bader in the November 2004 edition of the

Communications of the ACM, the understanding of evolution and the basic structure

and function of proteins are two grand challenge problems that can only be solved

through the use of high-performance computing.

 5

1.2 Project Proposal

1.2.1 Problem Statement

In the modern era, genomics is arguably one of the most rapidly developing areas in

biology with data arising from sequencing projects increasing exponentially over the last

five years (Bernal et al, 2001). Subsequently, there is flood of sequence data in databases

such as EMBL, SWISS-PROT and GenBank. Coupled with this is a need to effectively

capture, manage and analyse this data. As a result, bioinformaticians are presented with

the challenge of developing specific analysis software packages which are required in

order to extract useful information from the vast amount of sequence data (Janaki and

Joshi, 2003).

The analysis of large datasets of genome sequences using uniprocessor machines appears

to be an impractical approach. However, due to the ‘embarrassingly parallel’ nature of

most biological problems, a far more practical and effective approach incorporates the

usage of parallel clusters of workstations (Augen, 2003). Advances in both computer

hardware and software algorithms that have revolutionised computational biology further

support this approach. The role of high-performance computing has also been credited

in being the only solution for two of the grand challenge problems in biology, namely,

the understanding of evolution and the basic structure and function of proteins (Bader,

2004).

This project aims to highlight the potential and effectiveness of parallel cluster

computing as a viable option to mining large datasets of genome sequences as well as to

further support the notion that the Java programming language has a role to play, both in

the realm of high-performance computing and in the field of bioinformatics.

 6

1.2.2 Research Hypothesis

Parallel computing utilising networks of workstations is an efficient and effective tool in

mining large genome datasets.

1.2.3 Objectives

• Design a genome-scanning program that scans through a whole genome

sequence for a set list of regular expressions representing a variety of protein

domain or motif signature profiles.

• Develop and implement the genome-scanning program, utilising the Java

programming language, to identify the list of regular expressions in complete

genomes.

• Execute the program on a single processor machine to serve as the benchmark

for later speedup calculations.

• Design the same genome-scanning program in order for it to utilise a varying

number of clients (processors) thereby investigating the effects of parallelism.

• Develop the genome-scanning program in conjunction with a suitable Java-based

parallel framework to allow implementation in a parallel computing environment.

• Investigate the speedup for a number of different size genomes in order to

determine the impacts of parallelism.

 7

1.3 Document Structure

This section provides a brief summary of the content for the remaining chapters in this

research report.

Chapter Two contains an overview of the literature relevant to the research undertaken,

including the following topics: In silico Biology, Parallel Computing, Networks of

Workstations, Parallel Computing and Bioinformatics, Java for Scientific Computing and

finally TSpaces. Chapter Three describes the design and development of the Serial

genome-scanning program (SMS) and provides a description of the requirements of the

program, namely, the genomes and the regular expressions (regex’s).

Chapter Four contains a description of the design, development and implementation of

the genome-scanning program for execution in a parallel computing environment.

Chapter Five is concerned with the overall experimental design and the results for each

genome scanned. The discussion, conclusion and future work are presented in Chapter

Six.

 8

Chapter Two

Review of Literature

This section provides an overview of the role of in silico biology, with particular emphasis

on its role in bioinformatics. The key concepts of parallel computing are described,

including the basic architectures and the type of memory systems available, to name a

few. The role of parallel computing in bioinformatics is illustrated with a number of

examples of past and current applications. The use of the Java programming language for

scientific computing is covered with a number of current uses being highlighted. The

TSpaces parallel framework is also introduced as a means of providing the

communication required for parallel execution.

2.1 In Silico Biology

Dramatic advances in Information Technology (IT) and computer sciences made the

launch of in silico biology possible. As the field of in silico biology matured, researchers

have become proficient at both defining biological problems using mathematical

constructs and building the necessary computer infrastructure required to solve these

problems (Augen, 2003).

In the era of genome projects the goal of biologists is to develop a quantitative

understanding of how living things are built from the genome that encodes them. The

explosion of data being released into databases such as GenBank (now growing at an

exponential rate) and as databases beyond DNA, RNA and protein sequence, are

undergoing the same dramatic transformation. The simple managing, accessing and

presentation of this data in an intelligible form to the users is now a critical task which

has lead to an increasing reliance on human-computer interaction specialists to manage

these staggering amounts of data (Gibas and Jambeck, 2001).

 9

Due to the explosive growth being experienced in the biological world in terms of the

amount and type of available data, the relationship between bioinformatics and computer

science has become unique amongst technical disciplines. In the past, technical

improvements in IT were the driving force with respect to growth, as they enabled the

employment and testing of new algorithms for in silico molecular modelling, pattern

discovery, sequence matching and various other complex problems. This trend has now

been reversed and it is in fact in silico biology that is shaping the IT industry.

Bioinformatics has now become a leading indicator for the computer industry (Augen,

2003).

The position of bioinformatics is due in part to a large and growing number of small but

technically sophisticated companies with computing needs that often rival those of the

largest research organisations. These companies consist of thousands of biotechnology

and pharmaceutical organisations who are tackling some of the most computationally

intensive tasks imaginable, such as biological simulation, molecular modeling and

dynamics, large-scale pattern recognition and X-ray and NMR-based protein structure

determination. These companies are driving the emergence of a new model that promises

to completely reshape the world of high-performance computing due to their accelerated

demand for increased computing power combined with the need to build extensible

platforms that minimise the cost-to-performance ratio (Augen, 2003).

The DNA, RNA and proteins of an organism, all of which are linear chains composed of

smaller molecules, store information that provide an insight into an organism’s heredity

and function. Each of these macromolecules are assembled from a fixed alphabet of

well-understood chemicals, for example, DNA is composed of four

deoxyribonucleotides (adenine – A, thymine – T, cytosine – C and guanine – G), RNA is

composed of four ribonucleotides (adenine – A, uracil - U, cytosine – C and guanine –

G), and proteins are composed of the 20 amino acids. Due to these macromolecules

being linear chains of defined components, they can be represented as sequences of

symbols. These sequences can then be compared to find similarities that suggest the

molecules are related by form or function, or they can be searched (via pattern searching

techniques) to find specific regions such as promoters, open reading frames (ORFs) and

motifs (Gibas and Jambeck, 2001).

 10

Presently there are number of analytical tools which have been developed to aid

researchers in their quest for knowledge in the ‘post-genomic era’. These tools range

from gene prediction programs, homology modelling programs which attempt to

produce the structure of a protein based only on its sequence, multiple protein or

nucleotide sequence alignment programs such as ClustalW and BLAST, gene expression

analysis programs and other complex programs.

With particular reference to the variety of sequence analysis tools, a large number of

tools available for mining vast amounts of data available in databases rely on FASTA

(Pearson and Lipman, 1988) and Smith-Waterman (Smith and Waterman, 1981)

algorithms. However, the analysis of large datasets of genome sequences using the

aforementioned codes is computationally intensive and tends to be impractical on

uniprocessor machines. As a result, there is a need to improve the performance of these

tools and a solution to this problem was found in the form of parallel cluster computers

(Janaki and Joshi, 2003).

Moreover, with time it has become increasingly clear that most biological problems lend

themselves to being solved in a clustered environment after division into a large number

of small pieces. Many biological problems are ‘embarrassingly parallel’ which implies that

they can be divided easily into many small pieces in order to be solved (Augen, 2003).

Generally speaking, bioinformatics problems cover two large technical categories,

namely, floating-point and integer. Floating-point problems are computationally intensive

in nature as they have adopted complex algorithms from physical chemistry and quantum

mechanics. Molecular dynamics, protein folding and metabolic systems modelling are

examples of floating-point problems. Integer problems are invariably based on

algorithms that compare characters in sequences or search for matching phrases and

terms. These problems range from gene sequence alignment to pattern discovery, and

they are often as computationally intensive as floating-point problems. Both types of

problems favour solution using a parallel computation environment as the operations

they depend on are atomic in nature (Augen, 2003).

Sequence homology and pattern discovery problems lend themselves perfectly to

solution on clustered platforms. In most instances, a large number of sequences need to

 11

be matched against a single genome or sequence database. There are two different

existing approaches for dividing the problem amongst n number of machines. The first

approach requires performing a different search on each node with the target sequence

stored either locally or remotely in a central database. The second approach requires the

division of the target sequence across the cluster and managing overlap at the boundary

of each node. Although the latter is fundamentally more complex, it is well suited to

situations containing a large target sequence and a small number of search sequences

(Augen, 2003).

On a cost-per-calculation basis, clustered solutions are far superior for problems that

comprise a large number of isolated calculations, regardless of whether they are floating-

point or integer-intensive. In fact, virtually every problem in bioinformatics gains a cost-

to-performance advantage when engineered to run in a clustered environment (Augen,

2003). The use of parallel computers for performing sequence database searches appears

to be the most realistic when one considers the shift away from conventional

supercomputers to cost-effective clusters of workstations and PCs (Janaki and Joshi,

2003).

 12

2.2 Parallel Computing

Many of the concepts for parallel computing date back to the 19th Century. However, no

one seems to agree when parallel computing actually began. From a practical point of

view, the beginning of parallel computing is considered to be sometime around the mid-

1980s. It was during this period that parallel computers were beginning to be

programmed as true parallel machines which could compete with the established

supercomputers (Womble et al, 1999).

The free on-line dictionary of computing (FOLDOC) describes parallel processing as the

use of more than one computer to solve a problem (FOLDOC, 2004). According to

Professor Hank Dietz, “parallel processing refers to the concept of speeding-up the

execution of a program by dividing the program into multiple fragments that can execute

simultaneously, each on its own processor” (Dietz, 1999).

The field of high-performance computing (HPC) has traditionally focused on the

availability of powerful machines, generally parallel supercomputers such as SGI/Cray

T3E or the IBM SP2 (The UK JavaGrande forum, 1998). However, due to the

exorbitant costs and long development times associated with these supercomputers, the

demand for these machines has remained low since few institutions can afford them,

their resources are limited and subsequently their use is restricted to a small number of

important projects (The UK JavaGrande forum, 1998 and Sterling, 2001). The current

advancements concerning high-speed networks and improved microprocessor

performance have resulted in clusters or networks of workstations becoming an

important tool in the era of cost-effective HPC (The UK JavaGrande forum, 1998).

The analysis of large biological datasets using a variety of parallel processor computer

architectures is a common task in bioinformatics. The proper handling of any

redundancies present in these datasets, together with the implementation of the unique

features of parallel computing architectures, can significantly improve the efficiency of

analysis. Bioinformatics is faced with the problem of handling highly redundant datasets,

which in certain instances requires very large computations to be performed in order to

gain insights into the meaning of the data (Pekurovsky et al, 2004). Fortunately, most of

 13

these problems can be readily divided into smaller pieces for solution. By building parallel

infrastructures, bioinformaticians have been quick to design algorithms and programs

that take advantage of these attributes, most often in the form of Linux clusters

composed of commodity-priced machines. These clusters are now a dominant force in

bioinformatics (Augen, 2003).

As mentioned earlier, parallel processing is the use of multiple processors to execute

different parts of the same program simultaneously, with the main aim of parallel

processing being the reduction in wall-clock time (amount of time before achieving a

solution). As the number of processors is increased, a characteristic speedup curve

demonstrating the effects of the increase up to a threshold number of processors can be

seen (Figure 3). Anything above this threshold may be counter-productive and can result

in an increase in solution time.

Figure 3: Graph depicting the effects of increasing numbers of processors on the overall
computational speedup.

This simple theory of dividing the pieces of a solution amongst many processors

represents both the power and the weaknesses associated with parallel computing. On

one hand, as you increase the number of helpers (processors) for a given task a beneficial

speedup is obtained. However, beyond the threshold limit any further increase in the

number of helpers can be viewed as being counter-productive, which the supports the

age-old adage that “too many cooks spoil the broth” (Cornell Theory Center, 2000).

 14

2.2.1 Taxonomy of Parallel Computer Architectures

Flynn proposed the following classification of parallel computer architectures in 1966.

This classification scheme separates computer architectures according to two

independent, binary-valued dimensions. This implies that neither of the two dimensions

has any effect on the other and that each dimension has only two states. Flynn proposed

that the two dimensions be Instruction and Data, and that the values for both

dimensions be Single or Multiple. This led to four possible computer architectures:

 Single Instruction, Single Data (SISD):

SISD is the oldest style of architecture, and is still one of the most important. Most

computers ever designed or built, until fairly recently, fit within this category. The

SISD architecture refers to the fact that there is only one instruction stream being

acted on by the CPU during any one clock tick, and that only one data stream is

employed as input during any one clock tick. This class of architecture contains most

commonly available computers including most personal computers, all single-

instruction-unit-CPU workstations, most mini-computers and mainframes.

 Multiple Instruction, Single Data (MISD):

There are few known working groups of this type of computer system, and as such,

there are few examples of computers in this class.

 Single Instruction, Multiple Data (SIMD):

SIMD systems are an important class as they are capable of applying the identical

instruction stream to multiple streams of data simultaneously. For data-parallel

problems, this type of architecture is perfectly suited to bioinformatics as the data

can be divided into many small pieces, and the multiple instruction units can all

 15

operate on them simultaneously. Thus, this type of architecture lends itself to

achieving very high processing rates.

 Multiple Instruction, Multiple Data (MIMD):

This class is the most general of the four, and an MIMD machine is capable of being

programmed to operate as if it were any of the four. Multiple instructions streams

are simultaneously applied to multiple data streams, and it is believed by many that

this particular approach to parallelism will result in the next major advances in

computational capabilities (Cornell Theory Center, 2000).

SIMD and MIMD struggled for dominance in the late 1980s. In the struggle between the

two approaches, SIMD appears to have fallen by the wayside. The more flexible and

more general purpose nature of the MIMD approach has prevailed even though the

SIMD approach can be cost effective for certain tasks (Womble et al, 1999).

There are two basic ways to divide computational work among parallel tasks, namely,

data and functional parallelism. Data parallelism requires that each task performs the

same series of calculations, but applies them to varied data. Subsequently, each processor

performs exactly the same operations, but works on different parts of a dataset.

Functional parallelism requires that each task performs different calculations; that is, each

task carries out different functions of the overall problem. This type of parallelism can be

applied to the same data or to different data (Cornell Theory Center, 2000).

There are a number of aspects to consider when approaching parallelism. The first is

synchronisation which is required to coordinate information exchange among tasks, but

which can consume wall-clock time as processor(s) sit idle waiting for tasks on other

processors to complete. Thus, synchronisation can be a major factor in decreasing

parallel speedup.

 16

The second aspect, parallel overhead, is also important as this involves the amount of

time required to coordinate parallel tasks. The three most commonly encountered

coordination tasks are:

1. The time to begin a task. This is concerned with the identification of the task,

locating a processor to perform the task, loading the task onto the processor,

placing the required data onto the processor and finally beginning the task.

2. The time to end a task. In order for a processor to be made available for further

tasks, all results need to be combined or transferred and the operating system

resources need to be released.

3. Synchronisation. As referred to earlier, synchronisation involves the

coordination of information exchange among tasks (Cornell Theory Center,

2000).

Granularity, too, needs to be considered as it is a measure of the ratio of computation

performed in a parallel task to the amount of communication. The scale ranges from

fine-grained (nominal computation per communication-byte) to coarse-grained (extensive

computation per communication-byte). As the granularity becomes finer, the need for

synchronisation increases which leads to a greater limitation on speedup. The nature of

the parallel system with regards to scalability is also important and this is dependent on

some combination of the following components: hardware, parallel algorithm and the

actual code (Cornell Theory Center, 2000).

The type of memory to be utilised is also an important consideration. There are two

types of memory usage to consider: shared and distributed. With a shared memory

system (Figure 4), as the name implies, the same memory is accessible to multiple

processors. Synchronisation of tasks is achieved by tasks’ reading from and writing to the

shared memory. Whilst a concurrent task is accessing the shared memory location,

another task must not be able to alter it. One of the advantages of shared memory is that

the sharing of data amongst tasks (speed of memory access) is fast. However, it is limited

by the fact that the number of access pathways to memory restricts scalability. A further

 17

drawback is that the user is responsible for specifying synchronisation (Cornell Theory

Center, 2000).

Figure 4: Graphical representation of the basic concept of a shared memory parallel system.

The memory in a distributed memory system (Figure 5) is physically distributed among

processors, each local memory being directly accessible only by its processor. Each

component of a distributed memory parallel system is invariably a self-contained

environment, which is capable of acting independently of all other processors in the

system. Synchronisation is required to move data between processors, and this traffic

along the communications network is the only link among the processors (Cornell

Theory Center, 2000).

Figure 5: Graphical representation illustrating the basic concept of a distributed memory parallel

system.

Interconnection

Memory

CPU1 CPU2 CPU3

Memory Memory

CPU1 CPU2 CPU3

Memory

 18

A major concern in distributed/parallel systems is that of data decomposition, and in

particular, how to divide arrays of data among local CPUs to minimise communication.

This represents one of the major distinctions between shared and distributed-memory

computing. The data structure needs to be decomposed, i.e. divided into small pieces,

assigned to a processor and physically sent to that processor, in order for the data to be

processed. Whichever processor is responsible for the final result then requires that any

results obtained by the other processors must be sent back to it so that it may coordinate

the final result (Cornell Theory Center, 2000).

Distributed memory is virtually synonymous with message-passing. Message-passing is an

approach that requires that tasks communicate by sending packets to each other. The

messages are discrete (they have a definite identity), and can be distinguished from all

other messages. Parallel tasks are reliant on these messages to send information and

request information among processors. The overhead is proportional to the size and

number of packets, i.e. more communication means greater cost, since sending data is

generally slower than accessing shared memory. Each message is individually

constructed, addressed, sent, delivered and read, all before the information it contains

can be acted upon (Cornell Theory Center, 2000).

 19

2.3 Networks of Workstations

The astronomical costs associated with the modern supercomputers, such as the Cray

range and the Connection Machine, have meant that few programmers have had an

opportunity to use these machines. The quest for ever-increasing computing power at

minimal cost has led to several alternatives being examined and tested. Networks of

workstations became an attractive alternative to the traditional supercomputers and

parallel computing systems for high-performance computing in the early 1990s. There

were a number of early projects, two of the most notable being the NASA Beowulf

Project (Merkey, 2004) and the Berkeley NOW (networks of workstations) project

(Culler et al, 1997). The Beowulf project is generally credited with being the first cluster

computation project to be built using exclusively COTS (commodity off the shelf)

elements.

In 1994, Thomas Sterling and Don Becker, two researchers at the Center of Excellence

in Space Data and Information Sciences (CESDIS), assembled a cluster computer

consisting of 16 DX4 processors connected by channel bonded Ethernet. The success of

the Beowulf machine was instantaneous and the idea of using COTS base systems to

satisfy specific computational requirements rapidly spread through NASA as well as into

the academic and research communities. Factors driving the ongoing success of the

Beowulf project include improved performance in microprocessors and

cost/performance gains experienced in the network technology (Beowulf Introduction &

Overview, 2004 and Merkey, 2004).

Furthermore, the ongoing development of publicly available software, in particular the

Linux operating system and the MPI and PVM message passing libraries, allow for the

development of hardware-independent software. A further consideration in the

continued interest and research into cost-effective parallel computing systems is the

increased reliance on computational science, which directly increases the need for high-

performance computing. The cost, effectiveness and Linux support for high-

performance networks for PC class machines has provided researchers with the ability to

construct balanced systems built exclusively of COTS technology (Merkey, 2004).

 20

2.4 Parallel Computing and Bioinformatics

Due to the ever-increasing number of completely sequenced genomes becoming

accessible to the public, currently available genome data is increasing exponentially

(Bikandi, 2004 and Gao and Zhang, 2004). Subsequently, bioinformaticians are presented

with the challenge of developing specific analysis software packages, which are required

in order to extract useful information from the vast amount of sequence data. Of critical

concern is the development of computational gene recognition programs for the

annotation of vast amounts of uncharacterised DNA sequences (Gao and Zhang, 2004).

In addition to this is the need for time-efficient processes. The apparent ‘embarrassingly

parallel’ nature of most biological problems lends itself to the use of parallel computing

(Augen, 2003).

One of the most significant applications to date was the assembly algorithm used to

construct the human genome from millions of fragments obtained through shotgun

sequencing. The execution of this algorithm was computationally intensive, and now

represents one of the most complex logical problems ever solved. Molecular dynamics

simulations, gene sequence alignment and pattern discovery are further problems that

lend themselves to solution in a parallel computing environment (Augen, 2003).

The use of multiple alignments is a key procedure in bioinformatics because a sequence

comparison by multiple alignment can provide vast amounts of information about

structure-function relationships, such as evolutionary conserved residues or conserved

hydrophobicity patterns. ClustalW, T-coffee and Praline are a few commonly used

multiple alignment packages. Researchers in the Division of Mathematical Biology at the

National Institute for Medical Research have looked at solving the problems associated

with compiling large sequence alignments. They implemented parallel processing in the

form of a SIMD system into the multiple alignment program, Praline, by using Message

Passing Interface (MPI) routines. They found that the parallelised program performed up

to ten times faster on 25 processors when compared with the use of a single processor

(Kleinjung et al, 2002).

 21

Researchers at the Bioinformatics Institute in Singapore further demonstrated the use of

parallel computing in conjunction with the ClustalW (protein or nucleotide sequence)

multiple alignment tool. They developed software that relies on an MPI library which

runs on both distributed workstation clusters and traditional parallel computers. They,

too, reportedly found that it is possible to speed up lengthy multiple alignments with the

aid of parallel computing (Li, 2003).

Applications harnessing the potentials of parallel computing include the automation of

genomic data-mining processes, such as Sight, which is a package that provides a user-

friendly interface to generate and connect agents for automatic data mining for individual

purposes (Meskauskus, 2004). Other commonly used applications involve small-scale

research based molecular dynamics simulations, such as that perfomed by Zubrzycki

(2002), in which the molecular dynamics simulation was shared over two processors.

Parallel processing was also used in conjunction with pattern searching packages as

demonstrated by Krishnan and Tang (2004), who utilised parallel computing to perform

exhaustive whole-genome tandem repeats searches. They divided their pattern length

evenly between 1, 5, 10, 25 and 50 processors and reported to achieve linear speedup.

 22

2.5 Java for Scientific Computing

Employees of a computer company called Sun Microsystems designed Java during the

first half of the 1990s. The language was formally introduced to the public in 1995, and

although Java is now commonly associated with the worldwideweb (WWW), it can be

used in most programming areas. For this reason, Java is often referred to as a general

programming language (Cornelius, 2001 and Russel, 2001).

Java is a high-level programming language which means that it uses instructions that

more closely resemble a written language (such as English) than machine language. One

of the most important features of Java is that it is platform independent, as you can run

Java programs on any operating system without having to rewrite or recompile them for

each system. Java is also an object-oriented language as opposed to the more traditional

procedure-oriented program that follows a logically ordered set of instructions. Object-

oriented languages, such as Java, have the added capability of encapsulating sets of

characteristics and functions into classes (Russel, 2001).

The Java language has many advantages over traditional scientific computing languages

such as C, C++ and FORTRAN. These advantages are that Java is a small, simple,

object-oriented language that is distributed and secure in nature. It is an architecturally

neutral language that is also portable, dynamic, multi-threaded and robust. These

advantages make Java a likely contender as the language of choice for the future

development of scientific libraries and applications (The UK JavaGrande forum, 1998).

Bull et al, (2001), state that the nature of many scientific applications makes them well

suited to Java execution environments. This was based on the fact that scientific

applications typically spend a large amount of execution time in a small number of user-

written methods. The use of Java is becoming increasingly popular and in 2003,

researchers at the Sanger Institute for genetic study launched BioJava. BioJava, is an

active open-source project dedicated to providing genomics researchers with a Java based

developer’s toolkit. The facility is currently in use at major research and pharmaceutical

centers in over 85 countries, and provides bioinformatics developers with over 1 200

classes and interfaces for genomic sequence manipulations (Meloan, 2004).

 23

2.5.1 Current Applications

Java is still in its infancy in terms of its role in scientific computing, and to date most

applications have revolved around developing Java-based frameworks for parallel

programming on networks of workstations. JavaNOW, which is a parallel computing

framework that creates a virtual parallel machine similar to the Message Passing Interface

(MPI) model and also provides distributed associative shared memory similar to the

Linda model, has been developed (Thiruvathukal et al, 2000).

The Java Parallel Virtual Machine (JPVM) library has also been demonstrated as a

software system for explicit message-passing based distributed memory MIMD parallel

programming in Java (Ferrari, 1999). The JPVM library supports a Java interface in a

similar manner to the interface provided by the Parallel Virtual Machine (PVM) library

which matches the C and Fortran interfaces (Ferrari, 1999).

A parallel library implemented on Java that supports the execution of massively parallel

applications over the Internet, called JET, has also been developed. Java applets that are

downloaded through a Web page are responsible for the execution of applications. This

type of parallel approach can be implemented to solve long-running problems, thus

diminishing the need for supercomputers (Pedroso, 1998).

A number of researchers have focused on utilising the tuplespace model pioneered by

David Gelernter and colleagues in the Linda programming system at Yale University

(Gelernter, 1988). The tuplespace model presents an attractive means of co-ordinating

objects across a distributed computing environment, which results in a different

communication paradigm between parallel processors (Hawick et al., 2004 and Dente et

al, 2004). A very simple set of operations is applied to a shared data collection, shared

‘memory’ called Tuplespace, and is used for message exchange between processors. The

Linda model provides a set of functions to access and modify the data stored in the

Tuplespace (Dente et al, 2004).

A tuple was devised as the unit of communication. There are two types of unit, namely,

active and passive tuples. Active tuples were basically task-description, consisting of

 24

elements and functions that had to be evaluated by the Linda server, and needed

computation. Passive tuples were values stored in Tuplespace, which represented the

results of computation. Once evaluated, an active tuple became a passive tuple. In order

to synchronise the parallel process the Linda model provides a set of functions:

- out(tuple)

• Places a tuple into the Tuplespace.

- rd(pattern-tuple)

• Retrieves all tuples that match a given template from the Tuplespace.

- in(pattern-tuple)

• Retrieves and removes all tuples which match a given template from the

Tuplespace.

- eval(FUNCTION-TUPLE)

• Creates an active tuple and evaluates it. The results are then stored as a

passive tuple in Tuplespace (Dente et al, 2004).

Sun and IBM have both attempted to provide developers with a Java-based distributed-

object architecture that includes a development platform, processing environment and

addressing mechanism. Both companies have based their approach on the tuplespaces of

the now famous Linda prototype, with Sun developing JavaSpaces and IBM, TSpaces.

The objects of both JavaSpaces and TSpaces also borrow several other Linda-specific

distributed database system solutions for storing collections of data for future

computation, and for performing queries that are controlled via a form-driven interface

which utilises value-based lookup tables. They are also both further inspired by Linda’s

distributed computing concept which uses simple application functions to extend basic

data typing mechanisms (IEEE, 2004).

 25

2.6 TSpaces

The TSpaces software package was designed as a communication package with the sole

purpose of alleviating the problems associated with linking together disparate distributed

systems. TSpaces is a global communication middleware component that incorporates

database features such as transactions, persistent data and flexible queries. It is also an

excellent tool for designing and developing distributed applications, since it provides an

asynchronous and anonymous link between multiple clients or services (Lehman et al,

2001).

TSpaces was developed at IBM’s Almaden research centre to explore the possible use of

Java in middleware systems, and was launched in March 1998. It represents a software

package that provides a common set of services for a network of heterogenous

computers and operating systems. The TSpaces model was based on the Linda model,

and thus they share a number of key elements. The simple syntax, which was one of the

most popular features of the Linda model, is also employed by the use of simple,

intuitive and terse language that can perform a variety of tasks in the TSpaces model

(IBM, 2004).

2.6.1 TSpaces Model

The TSpaces model is surprisingly simple; there are clients and there are servers. TSpaces

servers can be run everywhere, such as locally to coordinate a few office machines or in

department servers for wider range services. Any program that makes calls to the

TSpaces server is known as a client program, where the clients read and write data to and

from a server using simple method calls (See Table I) (IBM, 2004). The server contains a

Tuplespace, which represents the model of interaction for building a globally visible

communication buffer in which a Tuplespace represents a globally shared, associatively

addressed memory space that is organised as a bag of tuples (Wyckoff, 1998).

 26

The Tuplespace concept embodies three main principles:

- Anonymous communication

- Universal associative addressing

- Persistent Data (IBM, 2004)

Table I: Overview of some of the methods used for reading and writing tuples from or to a
TSpaces server.
Method Call Description Method Call

Create the initial tuplespace Tuplespace ts = new TupleSpace
(spaceName, serverName)

Write some data, tagged “ClientsData” ts.write(“ClientsData”, dataInstance)

Read the specific data record resultTuple = ts.read(“ClientsData”,
dataInstance)

Read ALL the records of that type resultTupleSet = ts.scan(String,
dataInstance)

The client interface is very simple. A client is required to create an instance of a tuplespace

and then to use the methods of that instance to read and write tuples, which are merely

Java vectors of fields. The field class is the most basic component of the Tuplespace data

structure hierarchy and it contains a type, value and optional field name. Tuplespace

methods are used to send and receive tuples from the shared network depository. As a

result tuplespaces are seen as network communication buffers and can be accessed and

modified utilising a simple API. There are a number of Tuplespace methods and a few of

the interesting ones are:

- write(tuple)

• Adds a tuple to TSpaces.

- take(templateTuple)

• Performs an associative search for a tuple that matches the

template. If the tuple is found, it is removed from the space and is

returned, otherwise null is returned.

 27

- waitToTake(templateTuple)

• As for take, except that it blocks until a match is found.

- read(templateTuple)

• As for take, but the tuple is not removed from the tuple space.

- waitToRead(templateTuple)

• Similar to waitToTake, but the tuple is not removed from the tuple

space.

- scan(templateTuple)

• As for read; however, the entire set of tuples that matches is

returned.

- eventRegister(command, template tuple, callback routine)

• Register for an event corresponding to the command and the

template tuple.

- countN(templateTuple)

• Similar to scan except that it returns a count representing the

matching tuples (Dente et al, 2004).

The role of parallel computing in bioinformatics is to be investigated by developing a

genome-scanning program using the Java programming language and the TSpaces

framework. Since most tertiary institutions and research centres are in possession of

networks of workstations, the use of an existing network of cheap, commodity PCs

provides the necessary environment for parallel execution.

 28

Chapter Three

Serial Program Design, Development and Overall
Program Requirements

In order to determine the effects of parallelism and the subsequent role of parallel

computing in bioinformatics, a program to execute the genome-scan in serial needs to be

designed and developed. This is required as the search time or wall-clock time attained

from the execution of this serial program serves as the benchmark for later speedup

calculations. In addition to this, a number of genomes are required so that the effects of

parallelism can be investigated using a range of different sized genomes. A number of

regular expressions need to be created so that they may be scanned for within the

selected genomes.

3.1 Serial Motif Scan (SMS)

The first challenge was to design, develop and implement a genome-searching program

(later referred to as SMS) that could be executed on a uniprocessor machine. Utilising a

suitable parallel framework, this would serve as the benchmark for comparison with the

later development and implementation of the same genome-searching program. The first

stage in the design of the program was to define the overall problem to be solved which

entails the clear definition of the inputs, outputs and the processes of the program. The

second stage was the actual design of the problem which requires that the program be

broken into a logical sequence of steps and the actions to be executed clearly defined.

 29

3.1.1 SMS Basic Analysis

The overall problem was concerned with searching whole genomes for a pre-defined set

of motifs or domains, and to return intelligible information regarding the total number of

each pattern found as well as the relative positions (start and end) for each pattern found.

As a result, the program would require a list of motif or domain regular expressions

(regex’s) and a genome file as inputs, and it would also need to output the results

obtained from the search together with the total search time.

The process requirements were to read in a designated file containing the genome

sequence and to read in the file containing the list of motif or domain regex’s. The

genome would then be scanned and the results presented to the user.

3.1.2 SMS Design and Development

The program was required to receive as input from the user, the name of the genome file

to be scanned. The genome file would be accessed and read into a String to serve as the

template to be searched. Once the genome file was successfully loaded, the list of regex’s

would be accessed and all patterns stored in a vector. A method utilising Java’s regex

package would be required to receive as a parameter the current regex; the method would

then scan the genome using the received regex. All matches, including their start and end

position numbers and a corresponding match number, will be returned as a vector.

The getFileName() method was written to prompt the user for the name of the genome

file to be scanned. Once entered, the genome name is stored as a String and returned to

the main method so that the genome sequence may be loaded. In order to obtain the

genome sequence the Sequence class was created. This class contains two key methods,

one to locate and read in the genome file and the other to return the string representation

of the extracted sequence. The initialiseSequence(String) method was created to receive

the name of the genome to be scanned as a parameter. This information is then used to

 30

read the data from the desired genome file. A boolean value of true is returned once the

genome sequence has been successfully loaded, whereas false is returned when the

loading is unsuccessful. The sequence is then returned using the getSequence() method

that simply returns the String representation of the genome file.

The regular expressions representing the protein domain or motif profiles, were then

loaded so that the genome may be scanned. A Patterns class was created that would

firstly extract each regex from the list and then return all regex’s stored in a vector. Like

the initialiseSequence() method in the Sequence class, the initialiseMotifs() method

returns either true or false depending on the success in creating the vector of regex’s. The

vector of regex’s is then returned to the main method so that each element may be

extracted and searched for within the genome sequence, this being achieved by using the

getMotifs() method that returns the vector containing all the regular expressions.

A for-loop containing the patterns extracted from the list of motif or domain regular

expressions was required in order to access each element (regex) from the vector. Every

cycle in the loop would call the findMotif(String, String) method that performed the

genome search and pass, as the parameters, the current element of the vector and the

name of the String representing the genome to be scanned. The findMotif() method

utilises the java.util.regex package to scan the genome.

An instance of the Pattern class represents a regular expression that is specified in string

form in a syntax similar to that used by Perl. Instances of the Matcher are used to match

character sequences against a given pattern. Since the findMotif() method is called within

the for-loop, each regex is assigned as a String and compiled into a pattern. Invoking the

pattern’s matcher method where the genome sequence is the input sequence, creates the

matcher.

The matcher’s find() method utilises a matching operation that scans the input sequence

looking for the next subsequence that matches the pattern. Each resultant match is then

appended onto the end of a results vector. A string is used to store results and a semi-

colon (;) is used to separate the results for each regex scanned. Where no matches were

found ‘null’ is concatenated onto the results string, and where matches were found the

string of matches is concatenated onto the end of the results string. The results from

 31

each regex scanned would then be displayed and written to a file. These results include

the total number of matches for each specific regex scanned as well as the sequence

matched, and its start and end position numbers.

In order to ascertain the time associated with searching the genome for a number of

predefined patterns, the program recorded the time after both the genome file and the

list of regular expressions were accessed and loaded. Once the for-loop extracting each

pattern from the vector and the search results concerning each pattern were completed,

the program would obtain the time and subtract the first time obtained from the last time

determined in order to compute the total search time. The total search time was returned

in milliseconds, since the System.currentTimeMillis() method returns a long data type in

milliseconds.

Note: The genome file and the list of motif or domain regular expressions are required to

be located in the same directory that the program is stored in.

The initial development of SMS utilised a file containing a short random sequence of

DNA and a file containing four artificial regular expressions. Once the initial

development was complete, the task of sourcing and downloading a number of motif or

domain regular expressions as well as various size genomes began.

 32

3.2 Genomes and Regular Expressions

3.2.1 Genomes

The objective of this project was to determine the effects of parallelism using various

sized genomes. It was decided to download the first ten chromosomes from the human

genome, and then to create a variety of ‘genome’ files using this data. The DNA

sequences for the human chromosomes were sourced and downloaded from the

Ensembl Genome Browser (Birney et al., 2004).

The following files were downloaded and used for analysing the effects of parallelism:

- 60 MB (Human chromosome 20)

- 140 MB (Human chromosome 9)

- 250 MB (Human chromosome 1)

- 1072 MB or 1.072 GB (Human chromosomes 1 – 5)

 33

3.2.2 Regular Expressions

The use of regular expressions was decided on because all versions of Java since 1.4.0

contained the regex package. This was employed as the method to scan the various

genomes. The consensus patterns for 100 various protein motif or domain signature

profiles were obtained from the PROSITE (Hulo et al., 2004) database. All motif or

domain signature profiles obtained were in protein sequence and would thus need to be

reverse translated from protein to DNA. The profiles were converted from protein to

DNA due to the majority of published genomic data being that of DNA sequences. A

selection of the motif or domain signature profiles obtained from PROSITE can be seen

below in Table II. Since this project is concerned with searching whole-genomes it

represents the most logical approach, as the process of translating a whole genome from

DNA to protein could itself require a suitable parallel algorithm due to the nature of the

problem.

Table II: A selection of the motif/domain signature profiles obtained from the PROSITE
database, prior to their reverse translation into DNA.

Motif/Domain Protein Signature Profile

Ubiquitin Consensus Pattern K-x(2)-[LIVM]-x-[DESAK]-x(3)-[LIVM]-
[PA]-x(3)-Q-x-[LIVM]-[LIVMC]-
[LIVMFY]-x-G-x(4)-[DE]

Zinc Finger RING-type consensus pattern C-x-H-x-[LIVMFY]-C-x(2)-C-[LIVMYA]

Hsp70 1 consensus pattern [IV]-D-L-G-T-[ST]-x-[SC]

Hsp90 consensus pattern Y-x-[NQH]-K-[DE]-[IVA]-F-[LM]-R-[ED]

P53 family signature M-C-N-S-S-C-[MV]-G-G-M-N-R-R
Note: The x indicates any amino acid single letter code and the number between braces, i.e. x(4), indicates
the number of random amino acids in sequence. The [] brackets indicate that only one of the amino
acids between these brackets can occur at this particular position, i.e. [LIVM].

A suitable tool to perform the reverse translation was sourced and the process of reverse

translating and recompiling into suitable regular expressions began. The Sequence

Manipulation Suite from the University of PennState’s Centre for Computational

Genomics was used for the reverse translation. In order to prepare the sequences for

reverse translation, all characters other than those representing the single letter amino

 34

acids (highlighted in Table II) were removed, which resulted in an unbroken sequence of

single letter amino acid characters. This unbroken sequence was then used as the

template for reverse translation.

The resulting DNA sequence was then converted into a regular expression based on the

consensus patterns obtained from PROSITE. A selection of these can be visualised in

Table II. A total of 100 different protein motif/domain profiles were selected from the

PROSITE database and subjected to reverse translation prior to their conversion into

DNA regular expressions.

Table III: The DNA regular expressions for the five random protein motif/domain profiles
highlighted in Table II.

Motif/Domain DNA Regular Expression

Ubiquitin
Consensus
Pattern

AA[AG].*{6}[GATC]T[GATC].*{3}[GAT][GAC][GATC].*{9}

[GATC]T[GATC][GC]C[GATC].*{9}CA[GA].*{3}[GATC]T[GATC]

[GATC][GT][GATC][GATC][AT][GATC].*{3}GG[GATC].*{12}

GA[GATC]

Zinc Finger
RING-type
consensus
pattern

TG[TC].*{3}CA[TC].*{3}[GATC][AT][GATC]TG[TC].*{6}TG[TC]

[GATC][ATC][GATC]

Hsp70 1
consensus
pattern

[GA]T[GATC]GA[TC][TC]T[GATC]GG[GATC]AC[GATC][AT][GC]

[GATC].*{3}[AT][GC][GATC]

Hsp90
consensus
pattern

TA[TC].*{3}[AC]A[GATC]AA[GA]GA[GATC][GA][TC][GATC]TT[TC]

[ATC]T[GATC][AC]G[GATC]GA[GATC]

p53 family
signature

ATGTG[TC]AA[TC][AT][GC][GATC][AT][GC][GATC]TG[TC]

[GA]T[GATC]GG[GATC]GG[GATC]ATGAA[TC][AC]G[GATC]

[AC]G[GATC]

It should be noted that the initial development and debugging of SMS utilised a short

sequence of random DNA (approximately 0.5 megabytes/MB) to serve as the genome

and a list containing four non-specific regular expressions, which represented imaginary

DNA patterns.

 35

3.2.2.1 Protein consensus pattern to DNA regex

In order to create a list of DNA regular expressions, a number of protein consensus

pattern sequences were obtained and subjected to reverse translation into DNA

sequences. The task of creating the DNA regex from the protein sequence is

compounded by the fact that there are four DNA bases (A, T, G, C) and each group of

three bases (codon) can represent as many as 64 possible amino acids (4 x 4 x 4 = 64).

Since there are only 20 amino acids, there is a high level of redundancy in the genetic

code and some of the amino acids are represented by more than one codon. The flow

diagram in Figure 6 highlights the required steps to successfully create the DNA regex’s:

Figure 6: Annotated flow diagram illustrating the steps involved in the creation of DNA regular

expressions.

L-M-A-[EQ]-G-L-Y-N

LMAEQGLYN

Amino Acid First Base Second Base Third Base
L T/C T G/A/T/C
M A T G
A G C G/A/T/C
E G A G/A
Q C A G/A
G G G G/A/T/C
L T/C T G/A/T/C
Y T A T/C
N A A T/C

[TC]T[GATC]ATGGC[GATC][GC]A[GA]GG[GATC]
[TC]T[GATC]TA[TC]AA[TC]

Consensus pattern
obtained from PROSITE
for the ‘Homeobox’
engrailed-type protein
signature. Remove all characters

other than the single letter
amino acid codes and
paste sequence in reverse
translate window.

Output generated from
the reverse translation
includes the DNA base
for each of the three
bases constituting a
codon. Where there is
more than one DNA base
per position the options
are separated by a /.

The output representing the
nucleic acids for each amino acid in
the protein sequence is then
compiled into a regular expression
based on the initial consensus
pattern. The [] brackets indicate
that there is more than one nucleic
acid for the respective base. The
area in bold represents the DNA
sequence equivalent for.

 36

On the successful development of the serial genome-scanning program, each selected

genome is to be scanned using the list of regular expressions which have been created by

obtaining a protein consensus pattern for a variety of protein domains or motifs. The

protein sequence is subjected to the process of reverse translation to produce its

corresponding DNA sequence, which is then formatted into a regular expression based

on the initial protein consensus pattern. The wall-clock time is computed and saved in a

file for later speedup calculations.

 37

Chapter Four

Design, Development and Implementation
of the Parallel Algorithm

The design and development of the parallel algorithm requires that the serial program be

divided into a number of pieces such that more than one client may be involved in the

program execution. The TSpaces parallel framework is used in the parallel program as a

means of achieving the necessary level of communication required between the host and

client programs. A Graphical User Interface is also required so that the user may enter

the necessary information pertaining to each run, and then display the necessary results.

4.1 Parallel Motif Scan (PMS)

In order to implement the genome-searching program in a parallel environment the

program would require a number of new methods, which would thus require that the

steps associated with the design and development of the serial motif scanning program

be repeated.

4.1.1 PMS Basic Analysis

The overall problem of searching a genome for a number of predefined DNA patterns

remained unchanged from that of SMS. The desired inputs and outputs of the program

were identical. However, in order for the problem to be developed for implementation in

a parallel environment the basic processes would need to be redefined. In this case, both

a client and a host program would need to be designed; the host would be responsible

for accepting as input from the user, information regarding the genome file to be

 38

scanned as well as the number of clients (processors) to be employed for the task. Once

inputted, this information would need to be directed to the client programs so that they

may extract a subsequence of the genome to scan, and then direct the output generated

by the scan back to the host program. The host would need to measure the total search

time and assume responsibility for the output of the results in an intelligible form to the

user.

4.1.2 PMS Design

The design of PMS required that two independent programs be designed, one to serve as

the host program and the other to serve as the client program. The host was designed to

receive as input via a Graphical User Interface (GUI) the genome file to be scanned as

well as the number of clients to be employed. This information would need to be

directed to the client machines so that they may process and execute the given task. The

host program would need to remain active in order to receive the resultant data from the

client programs. Upon arrival the data would be processed to ensure that there were no

duplicate results. All processed data would be written to a file and sent back to the GUI

so that the user may visualise the data. An additional task required of the host was to

ensure that the total search time was measured and written to a file for storage.

The client program would need to receive the information regarding the genome file to

be scanned as well as the number of clients required. Based on the information received

from the host, each client would know which genome file was to be scanned, the total

number of clients required for the task and which client they were. They would then

need to compute the start, end and seek positions in order to read the correct sequence

of characters from the genome file so as to divide the work evenly amongst the available

clients. In order to compute this, they required both the total number of clients and the

actual client number (individual client ID). Once computed, the client would extract and

load their desired subsequence and the list of regex’s to be scanned. They would cycle

through the list of regex’s and scan each one separately. When the list was exhausted, all

results would be directed to the host program for processing and final presentation.

 39

The TSpaces framework developed by IBM was to be the framework of choice for

enabling the desired communications via the GUI and the host program, and between

the host and client programs. The communication between the GUI and the host

program is required so that the information regarding the genome file to be scanned and

the number of clients to be used can be directed to the host program. This is essential as

the host program requires this information in order to generate the exact number of

tuples as there are clients. Each tuple contains the name of the genome file, the total

number of clients and finally a unique client ID. Communication between the host and

the GUI is again required in order for the results that have been processed and formatted

by the host program to be directed to the GUI so that the user may visualise the output.

TSpaces is also required to ensure that the information, originally entered into the GUI,

is relayed from the host to each client. Once each client has successfully scanned their

specific section of the genome, which is calculated based on the client ID and the total

number of clients, the results are then deposited back into the tuplespace so that the host

program may collect them.

Figure 7: Schematic overview of communication requirements for PMS.

GUI

Host

Client 1 Client 2 Client 3 Client 4 Client 5

Information entered by the
user into the GUI is directed
to the host program, and the
subsequent results and total
search time are directed back
to the GUI on completion of
the genome-scan.

Information obtained from
the GUI manipulated and
directed to the client
programs. On completion of
each client scan, the results are
directed back to the host for
processing and formatting

 40

4.2 PMS Host Development

 It was decided that the host program would need to consist of the following steps, thus

requiring that a class containing the necessary methods be written for each step.

- Create a GUI to accept user input and to display results.

- Receive the information from the GUI.

- Send data including the genome file name, the total number of clients and

the actual number to the client program.

- Collect all results returned by the clients.

- Combine and process the results to ensure that no duplicates are recorded.

- Send all results including the total search time to the GUI.

The first action of the host program (PMS_Host) was to create the GUI (Figure 8

illustrates a screenshot of the GUI) that was to serve as a means of obtaining the

information required by the client programs, and to display all results on completion of

the experiment. Communication between the host and the GUI would be achieved by

writing and reading tuples to and from the tuplespace located on a TSserver running

locally on the network.

The user would enter the name of the genome file to be scanned, as well as the number

of clients to be used, in the text fields provided. Once this information was entered the

user would need to click on the Scan Genome button in order to initiate the scan. In

order for the user to receive and visualise the results from the genome scan, the Get Data

button would need to be pressed. On completion of the task, the total search time was

displayed in a text field in the bottom right of the GUI, and the message in the results

text field would display ‘Genome Scan Complete’. The user was then able to visualise the

results by selecting either the detailed or the simple results options.

 41

Figure 8: Screen shot of the GUI used as the interface between user and the host program,
PMS_Host, which allows the user to specify the number of clients required to scan the

genome file entered.

 42

4.2.1 GUI_Info

The GUI_Info class was written to connect to the tuplespace and to take the tuple

labelled “ClientInfo”. The information concerning the genome file and total number of

clients was extracted, and two methods were written to return the relevant information to

the host program. The following code was required to connect to the tuplespace and to

take the desired tuple:

TupleSpace ts = new TupleSpace("PMS",HOST)
- Create an instance of the tuplespace called PMS, which is

found at the server known as HOST (dell.ict.ru.ac.za).

Tuple tempInfo = new Tuple("ClientInfo",new Field(String.class))
- Create a template tuple that will match any tuple with

identical values in the respective fields. i.e. field(0) =
“ClientInfo”, and field(1) = a string object.

SuperTuple info = ts.waitToTake(tempInfo,300*1000)
- Create an instance of a supertuple to store the matching

tuple from the tuplespace.

Once the tuple has been collected, the relevant information needs to extracted. This was

achieved by retrieving the data that was stored in the second field, field(1), of the tuple

since the first field, field(0), contained the unique id for the tuple. The following code

was used to extract the string of data and then to split it into a String array:

 String temp = (String)info.getField(1).getValue();
- Create an instance of a string object to store the string

stored in the second field (field(1)) of the tuple taken
from tuplespace.

 String[] clientInfo = temp.split(",");
- Create an instance of a string array to store each element

which results from the split() method. The comma is
used as the element separator.

 43

GUI_Info

- ClientInfo : String[]

- HOST : String

+ getHost() : void

+ genomeName() : String

+ clientTotal() : int

Figure 9: UML Class Diagram for the GUI_Info class

Two further methods make up the GUI_Info class which result in the genome file name

to be scanned and the total number of clients being returned to the main method of the

host program. The genomeName() method returns a string containing the genome file

name, and the clientTotal() method returns an integer containing the total number of

clients for the task. The genome file name and client total are then passed as parameters

to a method within the next class written.

4.2.2 ClientInfo

The class known as ClientInfo was written in order to generate the information required

by the clients. The void clientFile(String, int) method requires both the genome file and

the client total as parameters and creates a one-dimensional String array with a length

equal to the number of clients. A for-loop was utilised to create an equal number of

String objects as there are clients. Each String object contains the file name to be

scanned, an Integer object representing a unique client ID in the range of 0 to the total

number of clients and the total number of clients. Each object is stored in a String array,

and returned to the host program via the getFiles() method that returns the one-

dimensional array of client files.

ClientInfo

+ iTotal : int

- myClients : String[]

- strMyGenome : String

+ clientFile(strMyGenome, iTotal) : void

+ getFiles(): String[]

Figure 10: UML Class Diagram for the ClientInfo Class.

 44

4.2.3 ClientTuples

The ClientTuples class was written to receive the one-dimensional array of String objects

containing the client information, extract each element of the array and place the string in

a tuple labelled ‘ClientTuple’. The one-dimensional array as well as the total number of

clients were received as parameters by the sendTuples() method. This method not only

distributes the client tuples to the tuplespace, but prior to doing so, checks to see if there

are any remaining tuples from previous genome scans. Any remaining tuples were

removed prior to the program distributing the tuples for the clients. A final check was

also done to ensure that the correct number of tuples was distributed; this was achieved

by checking that the number of tuples sent corresponded with the total number of

clients. In the event of there being a mismatch the program was designed to exit.

ClientTuples

- HOST : String

- iClientNo : int

- iClientTot : int

- count : int

+ allResults : String[]

- strGenomeFile : String

+ setCount() : void

+ sendTuples(allResults, iClientTot): String[]

Figure 11: UML Class Diagram for the ClientTuples Class.

4.2.4 CollectClientResults

Once all client tuples were distributed to the tuplespace for collection by the clients, the

host program would then wait for the client results to be returned to the tuplespace. The

CollectClientResults class was designed to collect each result tuple on its arrival in the

designated tuplespace. A collectResults(int, int) method was written to receive the total

number of clients and regex’s to be scanned as parameters. This information would be

required in order to create a two-dimensional String array to store all client results. The

total number of clients would represent the number of rows and the total number of

regex’s would correspond to the number of columns required to store all the client

results.

 45

CollectClientResults

- searchResults : String[]

- clientResults : String[] []

- iTotal : int

- iRow : int

- iCol : int

- iClientID : int

- iMotifTot : int

- HOST : String

+ collectResults(iTotal, iMotifTot) : void

+ getClientResults(): String[] []

Figure 12: UML Class Diagram for the CollectClientResults class.

The total number of clients would also be required to ensure that the correct number of

result tuples were received, i.e. that the number received corresponded with the number

of clients employed. Once all results were received, they were combined and stored in the

two-dimensional array. The getClientResults() method returns the populated two-

dimensional array to the host program for further processing and display of results.

The final requirement of the PMS_Host was to ensure that there were no duplicate

results, which may have arisen due to the 500-character sequence overlap between the

clients, and then to display the results in a user-friendly format.

4.2.5 SortResults

The SortResults class was written to provide the necessary methods required for the final

task. The first method within SortResults, namely Results(String[] []), requires the two-

dimensional array containing all client results as its parameter. The only requirement of

this method was to extract all the data from the two-dimensional array and combine it to

form a one-dimensional array representing the final results for the genome scan. The

second method of the SortResults class, sortResults(String []), receives the one-

dimensional array of all client results as it is responsible for the removal of duplicates and

formatting the results so that they can be viewed by the user on the GUI. Each element

of the array represents the total number of matches found per regex scanned, with the

first element, [0], representing all the results for the first regex in the list of motifs or

 46

domains, and the last element of the array representing all the results obtained for the last

regex in the list of motifs/domains.

SortResults

- vecTemp : Vector

- vecMotifTotals :Vector

- results : String[]

- finalResults : String[]

- iCount : int

- iMatches : int

+ sbSimple : StringBuffer

+ sbDetailed : StringBuffer

+ sbDetail : StringBuffer

+ Results(clientResults) : void

+ clientResults(): String[]

+ sortResults(results) : void

+ simpleResults() : String

+ detailedResults() : String

Figure 13: UML Class Diagram for the SortResults class.

The value of each element was either “null” where no matches were found, or it was a

string containing details such as the start and end positions of all matches, with a comma

(,) separating each match found. This method also reads in the file containing the list of

regex’s in order to extract the specific name of the protein motif/domain for

presentation with their corresponding results. Where matches are found they are

separated using the split() method and placed in a temporary String array from where

they are immediately placed in a hash set. A hash set was chosen to store the final results,

as it presented a simple, yet effective, technique to ensure that no duplicate results were

stored. The add(Object o) method achieves the removal of duplicates due its mechanism

of action as it only adds the specified element to the set if it is not already present, and

therefore ensures that no duplicates are stored and recorded in the results.

The SortResults class formats the results so that the user has the option to view both a

detailed and a simple set of results each time the program is run. The simple results

 47

contain only the results for those regex’s that produced matches, and thus displays the

number of the regex scanned (in this case a number between 1 and 100) and the total

number of matches found for that particular regex. However, the detailed output

contains the results for each regex scanned, whether or not any matches were found.

Detailed output includes the number of the regex scanned, the name of the regex and

whether or not any matches were found. In the case of no matches being found, ‘No

matches found...’ was displayed, and where matches are found, all matches are displayed.

The data displayed for each match consists of the total number of matches found, the

specific match number and the start and end position numbers in the genome.

4.2.6 Time

A key requirement of PMS_Host was to assume the time-keeping responsibility for the

genome scan. This was achieved by obtaining as the start time the system time in

milliseconds as soon as all the client tuples were deposited into the tuplespace. The end

time was computed by again obtaining the system time, and this occurred after all results

had been received, processed and formatted. The start time was subtracted from the end

time to calculate the total search time in milliseconds. The Time class was written to

accept the search time in milliseconds and return the time in hours, minutes, seconds and

milliseconds. The formatted time and the simple and detailed results were then written to

three separate files, and sent to the GUI for display purposes.

Time

- lTimeTaken : long

- iHr :int

- iMin : int

- iSec : int

- iMilliSec : int

- iTime : int

+ getTime(lTimeTaken) : String

Figure 14: UML Class Diagram for the Time class.

 48

4.3 PMS_Client Development

The client program (PMS_Client) was found to require fewer steps than the host

program, since the client’s primary objective would be to load both the genome sequence

data and the file containing the list of regex’s. The genome would then be scanned and

the results sent back to the host. The following steps were required in order to achieve

this:

- Receive tuple sent from the host program.

- Extract information from received tuple.

- Compute subsequence of genome to scan.

- Load subsequence and regex’s.

- Scan genome.

- Send results to host program.

4.3.1 Tuples

The Tuples class is responsible for the collection of the tuples deposited by the host

program from the designated tuplespace. Each tuple contains a String object containing

the genome file to be scanned, a unique integer ID (actual client number) and the total

number of clients. The aforementioned data is represented as a single string with each

element being separated by a colon (:). The colon is then used to split the data and place

each element into a String array, which results in an array of three elements being

formed. This array is then returned to the client program so that the information may be

extracted and the scan can commence. In the event that the sequence is to be split by a

factor that is larger than the number of clients, a do-while loop was incorporated that

waits to collect tuples for a defined period of time; this allows each client to also process

more than one job per experiment.

 49

Tuples

- clientInfo : String[]

- ans : SuperTuple

- HOST : String

+ getClientTuple() : String[]

Figure 15: UML Class Diagram for the Tuples Class.

The information contained within the string array provides the client program with

information relevant to the current experiment. The first element reveals the genome file

that is to be read and searched, the second element contains the unique client ID, and the

third element reveals the total number of clients to be employed in the given experiment.

This information is crucial to ensure that the correct genome file is loaded as well as

ensuring that the job is divided evenly between the available clients.

4.3.2 ClientSequence

A number of options were considered, developed and evaluated in order to divide the

genome sequence evenly amongst the clients. The first option was to create a class to

divide the genome sequence prior to each experiment. However, it was soon decided that

this would not be a viable or efficient process and was soon replaced. The second option

entailed each program reading in the whole genome file and then extracting a substring,

using the substring(int beginIndex, int endIndex) method which returns a new string that

is a substring of this string. This option again proved to be fruitless in that the memory

requirements were excessive for large genomes. An increase in the Java virtual memory

allocation proved to be an insufficient means of solving this problem even with an

increase to the maximum value (i.e. from the standard memory allocation of 64 MB to

the maximum of 512 MB).

The third option, presented the ‘cleanest’ and most efficient means of solving the

problem, and revolved around using a RandomAccessFile object to extract the desired

sequence of characters from the genome file. The read(byte[] b, int offset, int length)

method for a RandomAccessFile is utilised in order to divide the genome evenly. The

 50

read method simply reads up to length bytes of data from this file into an array of bytes.

The offset value may also be set and this is achieved by calling the seek(long position)

method which enables the offset value to be adjusted according to client number.

ClientSequence

- lMySeekPos : long

- strMyGenome : String

- sbSequence : StringBuffer

- strFileName : String

- strClientFileName : String

- iMyClientNo : int

- iMyClientTot : int

- iMyClientStart : int

- iMyClientEnd : int

- iSequenceLength : int

- iCount : int

- iSubSequence : int

- iLength : int

- iArraySize : int

+ lMyStart : long

+ strClientSequence : String

+ iClientNumber : int

+ iClientTotal : int

+ iGenomeSize : int

+ iMyStart : int

+ iMyEnd : int

+ getPositions(strMyGenome, iMyClientNo, iMyClientTot) : void

+ getStart() : int

+ getEnd() : int

+ getSeekPosition() : long

+ getFileSize() : int

+ initialiseSequence(strGenomeIn, iStart, iEnd, iFileLength, lSeekPosition) : Boolean

+ getFile() : String

Figure 16: UML Class Diagram for the ClientSequence Class.

 51

This resulted in the design and development of the ClientSequence class which was

responsible for dividing the genome, computing the seek, start and end positions for the

client and reading the desired set of characters from the genome file. The

getPositions(String, int, int) method receives the genome file name, the unique client

number and the client total. The size of the genome file is computed and then divided by

the number of clients entered by the user, the result being the size of the file segment

that each client should scan.

The unique client ID is then used to compute the relative start and end positions, which

are needed to calculate the length or number of bytes, to be read into the byte array

storing the genome file characters. The start position is also used to serve as the seek

position. Once computed, the desired segment of the file is accessed and stored as a

String. The initialiseSequence() method receives information including the file name, the

start, end and seek positions as parameters and returns true once the file has been

successfully accessed and the sequence has been read into a string. False is returned in

the event of an error in accessing or reading the file. A simple getFile() method is utilised

to return a String representation of the genome sequence to the main method for later

use.

Once complete, the Patterns class is required in order to read in a file containing the list

of regular expressions to be used in the genome scan. All regex’s found in the file are

read in and appended onto the end of a vector, resulting in a vector of regex’s. Similarly

with the initialiseSequence method, so too does the initialiseMotifs() return true in the

event of successful extraction of the regex’s and false in the event of an error. The vector

containing all regex’s is returned to the main method of PMS_Client so that the genome

scan may commence. A for-loop is then used to extract each regex from the vector and

passed along with the genome sub-sequence to be scanned to the findMotif(String,

String) method which uses the java.util.regex package to scan the genome, as described

for SMS.

Once all regex’s have been scanned the string containing all the search results is

deposited into the tuplespace so that the host program (PMS_Host) may combine and

process all client results.

 52

In order for the program to be executed in parallel, a host program was designed and

developed primarily to create a GUI that enables the user to provide the name of the

genome file to be scanned and the number of clients to be used. This information is

required by the client programs that are responsible for extracting a particular section of

the genome in question, and are using the list of regex’s as patterns to be searched for

within the genome. The host program requires all results so that any duplicates can be

removed which have arisen due to the overlap in sequences assigned to each client. Once

all results have been processed and formatted they will be directed to the GUI for

visualisation, and then written to file.

 53

Chapter Five

Results

5.1 Experimental Overview

In order to analyse the effects of parallelism and to highlight its possible role in the field

of bioinformatics, it was decided to use a range of different sized genomes. The

following size genomes were analysed using a varying number of clients:

- 60 MB

- 140 MB

- 250 MB

- 1 072 MB / 1.072 GB

The effects of parallelism were assessed by calculating the level of speedup (S), where

speedup is calculated by dividing the time the serial program takes to run (T1) by the

time it takes to run the same problem with N processors (T(N)).

S = T1 / T(N);

Each genome file was initially executed using a single processor (i.e. 1 client). The

number of clients was then incremented by a factor of five until the calculated speedup

was found to plateau. For each genome scanned and for each number of clients tested,

either three or five runs were repeated to ensure the statistical significance of the data

collected. The various sized genomes were all initially run on a single processor machine

so that a standard protocol for all experiments undertaken could be established.

It soon became apparent that the most efficient serial algorithm which would serve as the

benchmark for the calculating the speedup with each genome tested was, in fact, PMS

 54

and not SMS. This was directly attributed to the memory demands being placed on the

system when the size of the genomes increased above 60 megabytes (MB). The Java

Virtual Machine Memory was increased to the maximum allowance of 512 MB.

However, an OutOfMemoryError was thrown when SMS attempted to load the larger

genome files (> 60 MB). This error is thrown when the Java Virtual Machine cannot

allocate an object because it is out of memory, and no more memory can be made

available by the garbage collector.

In order for the genomes larger than 60 MB in size to be scanned using a single

processor machine, the genome needed to be divided into smaller chunks so that the

single processor may process a job in a series of steps. This alone indicates the necessity

for parallel computing. The search time associated with the best “serial” algorithm was

thus achieved by having one client program running and entering more than one client in

the GUI. The single client would then process all tuples deposited into the tuplespace.

 All files including the genome sequence files, the list of regular expressions, the Java

source code for both the host and the client programs and the TSpace package files

(tspace.jar, tspaces_client.jar, tspaces_fixes.jar) were stored in a common directory

accessible by all the machines registered on the local network. A subdirectory was created

for both the client and host source code. All machines required for a run executed either

the client or host program from the /mnt/exports/takhurst/Clients/ or the

/mnt/exports/takhurst/PMS_Host/ directory paths, respectively.

5.2 PC Configuration

The network of workstations consisted of a number of commodity PCs, all of which are

in possession of an Intel Pentium 4 2.4 Ghz processor with 512 MB of RAM. A fast

switch Ethernet network connection of 100 mbps is used to create the desired network.

Each machine is utilising the Red Hat Linux 3.1 10 version as its operating system and is

in possession of the Java 1.4.2_03 version.

 55

5.3 Results

5.3.1 60 MB Genome File: chromo20.fa

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35
No. of clients

Sp
ee

d
U

p

Linear
Speed Up

Actual
Speed Up

Figure 17: Average speedup achieved over a range of clients (processors) using the 60 MB file,

representing human chromosome 20.

0

4

8

12

16

20

0 5 10 15 20 25 30 35

No. of clients

Ti
m

e
(m

in
ut

es
)

Figure 18: Graphical representation of the reduction in wall-clock time achieved for the 60 MB file.

 56

The first ‘genome’ scanned was the 20th human chromosome which was 60 MB in size.

Near linear speed was achieved up until 10 clients, the speedup increased steadily until 28

clients, whilst after that any further increase resulted in little to no increase in speedup

(See Figure 17). The average execution time using a single processor and the whole

genome file was found to be 0h:16m:29s:303ms; this was significantly reduced to

approximately 0h:0m:42s:320ms when utilising 28 processors.

Figure 18 highlights the reduction in wall-clock time which can be seen to rapidly

decrease from 0h:16m:29s:303ms to 0h:3m:21s:728ms when representing the reduction

from using a single processor (client) to using 5 clients. There was a further significant

reduction in wall-clock time between 5 – 10 clients, after which the wall-clock time

gradually decreases to a minimum of 0h:0m:41s:397ms with 35 clients.

 57

5.3.2 140 MB Genome File: chromo9.fa

Figure 19: Graphical representation illustrating the speedup achieved using a genome of file size

140 MB (megabytes), which represents the ninth human chromosome.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

No. of clients

Ti
m

e
(m

in
ut

es
)

Figure 20: Graphical representation of the reduction in wall-clock time achieved for the 140 MB

file.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

No. of clients

Sp
ee

d
U

p

Linear
Speed Up

Observed
Speed Up

 58

The second ‘genome’ scanned represents the ninth human chromosome. Again near

linear speedup is exhibited up to 10 clients (processors), after which the speedup can still

be seen to increase until an optimal number of approximately 24 clients is reached. Any

further increase in client number above 24 can be seen to have little to no effect on the

speedup as the curve can be seen to plateau (See Figure 19). This represents a reduction

in wall-clock time from approximately 33 minutes on a single processor machine and

with the genome split into 3 smaller slices, to approximately 1 minute and 45 seconds

using 24 machines.

In a similar profile to that obtained for the first ‘genome’ scanned, the greatest reduction

in wall-clock time can be seen between clients 1 – 10. This represents a decrease from

0h:33m:53s:990ms to 0h:3m:56s:767ms with 10 clients. The wall-clock time then

gradually decreases until a minimum, which was found to be with the use of 24 clients

and equalled 0h:1m:47s:403ms (See Figure 20).

 59

5.3.3 250 MB Genome file: chromo1.fa

Figure 21: Graphical representation illustrating the speedup attained for the genome of file size
250 MB, which represents the first human chromosome.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

No. of clients

Ti
m

e
(m

in
ut

es
)

Figure 22: Graphical representation of the reduction in wall-clock time achieved for the 250 MB

file.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

No.of clients

Sp
ee

d
U

p

Linear
Speed Up

Observed
Speed Up

 60

A similar trend was observed for a larger file tested (See Figure 21), and as for the 60 MB

and the 140 MB files, the 250 MB file exhibits near linear speedup. This is seen to occur

up until about 15 clients whereby the speedup begins to increase less sharply until it

starts to taper off around 25 clients. The slope can be seen to increase very slightly until a

maximum speedup is reached around 35 clients. However, the optimal number of clients

would appear to be in the region of 25 since any further increase in clients can be seen to

have negligible effects on the speedup. This result represents a reduction in wall-clock

time from approximately 1 hour and 5 minutes to approximately 3 minutes when one

compares the execution time using a single client to that obtained with 25 clients.

The wall-clock time associated with each number of clients tested can be seen in Figure

22, and in this case the most dramatic reductions occur up until 15 clients. A gradual

reduction in wall-clock time can then be seen up to about 25 clients after which the

reduction in wall-clock time is negligible, if anything at all. The minimum wall-clock time

was achieved with 35 clients, and this resulted in the scan taking 0h:2m:42s:42ms as

opposed to the 1h:4m:47s:325ms obtained with the use of a single processor and with

the genome divided into 5 pieces.

 61

5.3.4 1072 MB Genome File: chromo1-5.fa

Figure 23: Graphical representation illustrating the speedup attained for the genome of file size

1072 MB, which represents the first five human chromosomes (approximately a quarter of
the human genome).

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50 55

No. of clients

Ti
m

e
(m

in
ut

es
)

Figure 24: Graphical representation of the reduction in wall-clock time achieved for the 1072 MB

file.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55
No. of Clients

Sp
ee

d
U

p

Linear
Speed Up

Observed
Speed Up

 62

The largest ‘genome’ scanned, and which represents a combination of the first five

chromosomes, once again exhibited a similar trend to all the other ‘genomes’ tested in

that it, too, achieves near linear speedup until 15 clients. The speedup can then be seen to

gradually increase between 15 – 50 clients where the maximum speedup was attained.

The addition of more than 50 clients can be seen to have negligible effects (See Figure

23). An optimal number of clients would be in the region of 20 clients and this represents

an overall reduction in wall-clock time from approximately 4 hours and 48 minutes to 21

minutes and 25 seconds. The greatest reduction in wall-clock time can be seen for 50

clients, in which the total search time was roughly 12 minutes and 30 thirty seconds.

The reduction in wall-clock time also exhibits similar trends to those observed for the

previous ‘genomes’ tested in that the greatest reduction can be seen between 1 – 15

clients. This represents a decrease from an average scan time of 4h:48m:6s:606ms with

one client (processor) and the genome split into 20 pieces, to 0h:23m:50s:925ms with

the help of 15 clients. The wall-clock time can then be seen to gradually decrease until a

minimum was obtained with 50 clients, which corresponds to 0h:12m:27s:503ms (See

Figure 24). When one compares the speedup attained with 15 clients with that attained

using 50 clients, the wall-clock time can be seen to decrease by a further factor of 2.

 63

Chapter Six

Discussion and Conclusion

6.1 Discussion

The principle objective of this research project was to investigate the role of parallel

computing in the field of bioinformatics. In order to achieve this, a suitable

bioinformatics application needed to be decided upon, designed, developed and

implemented. Subsequently, two further research objectives arose; these were firstly, to

assess the role of the Java programming language in scientific computing, and secondly,

to assess and investigate the use of a parallel framework based on the Linda model.

All three objectives were found to fit neatly into the scope of the research project, since a

suitable biologically based problem that would require parallel computing in order to

reach a solution, would need to be defined. Once the problem was defined, a suitable

programming language would be selected in order to develop and implement the

program responsible for solving the problem. The choice of the programming language

was a simple one in that Java possesses a large number of important features that make it

a suitable candidate. In order to investigate the effects of parallelism on the program, it

was decided to use a parallel framework based on the tuplespace model that was first

introduced by David Gelernter and his research group at Yale University. They

developed a system known as Linda, which represents a parallel programming language

that is easy, efficient and portable (Gelernter, 1988). TSpaces was selected, which is a

freely available parallel framework written in Java that was developed and actively

maintained by IBM.

One of the biggest challenges facing modern bioinformaticians has resulted from the

dramatic increases being experienced in a number of genomic databases, such as EMBL,

enBank and SWISS-PROT. These databases have been seen to almost double in size

every year (Janaki and Joshi, 2003). There are two factors that have directly led to the

explosion in publically available genomic sequence data. These factors can be attributed

 64

firstly to a number of the larger genomic research facilities generating upwards from

several hundred gigabytes of data per day, and secondly, to the development and

implementation of high-throughput techniques for both DNA sequencing and analysis of

gene expression (Meloan, 2004 and Bader, 2004).

Subsequent to this growth in genomic sequence data, there is a need to intelligibly

capture, manage and analyse the data so that important discoveries can be made. Thus it

was decided to design, develop and implement a program that would scan whole genome

sequences for a number of predefined motif or domain signatures in the form of regular

expressions. When one considers that the size of the complete human genome is in the

region of 4 gigabytes, it becomes increasingly clear that problems of this magnitude will

require computational power in excess of that harnessed with the use of a single

processor machine.

The result was the development and implementation of a genome-scanning program,

known as PMS (Parallel Motif Scan), which was written in Java and utilised the TSpaces

parallel framework in order to achieve the desired communication required for parallel

execution. The effects of parallelism were assessed using the DNA sequences from the

first, ninth, twentieth and a combination of the first five human chromosomes. The sizes

of the various chromosomes were 60 MB (chromosome 20), 140 MB (chromosome 9),

250 MB (chromosome 1), and 1072 MB or 1, 072 GB (chromosomes 1 to 5).

The aforementioned chromosomes were to serve as the range of ‘genomes’ to be tested.

Each ‘genome’ was initially executed utilising a single client, which represents a single

processor, to serve as the benchmark to calculate the speedup associated with parallelism.

The use of an existing network of workstations provided the necessary environment to

execute the program in parallel. Each ‘genome’ was executed with varying numbers of

clients (processors) and the resultant speedup was calculated; the number of clients was

increased until no further increase in speedup was obtained.

An important finding when executing each ‘genome’ with a single client was that for

genomes larger than 60 MB, the use of parallel computing is essential. This is supported

by the fact that the 140 MB file needed to be split into three pieces, the 250 MB file into

five pieces and the 1072 MB file into twenty pieces in order for these ‘genomes’ to be

 65

scanned using a single processor. The single client would then search each piece until the

entire ‘genome’ had been scanned. The reason that these ‘genomes’ required processing

as a number of smaller pieces was due to limitations in the amount of memory as each

client possessed a maximum of 512 MB of RAM. The result of this was that the Java

Virtual Memory could only be increased to the maximum of the client which, as

previously mentioned, was 512 MB.

When the single client attempted to read in the genome files greater than 60 MB, an

OutOfMemoryError was thrown which implies that the Java Virtual Machine cannot

allocate an object as it is out of memory, and no more memory can be made available by

the garbage collector. Dividing the problem into smaller pieces, which would not

compromise the memory limitations of the individual clients, averted this error.

The effect of parallelism for each ‘genome’ with respect to speedup was immediately

realised, and can be seen in the respective figures illustrating the associated speedup for

all number of clients tested with the various ‘genomes’. All ‘genomes’ tested exhibited

near linear speedup for a total of 10 clients for the 60 MB (Figure 17) and 140MB (Figure

19) and for a total of 15 clients for the 250 MB (Figure 21) and 1072 MB (Figure 23)

genome files.

The graphical illustrations representing the speedup for the various ‘genomes’ tested can

be seen to follow almost identical trends for the 60 MB, 140 MB and the 250 MB

‘genomes’ wherein, after the initial near linear speedup, the speedup in each case

increases steadily until approximately 25 clients. Any further increase in clients after this

number can be seen to have little to no significant effect on the speedup. A similar trend

was found for the largest genome tested. However, the speedup was found to increase

gradually up to 50 clients, with any further increase in clients resulting in a slight decrease

in speedup. These findings suggest that above a threshold number of clients (processors),

any further increase in the number of clients may, in fact, be counter-productive or, as in

this case, result in negligible gains in speedup.

An interesting finding was that the speedup attained for each ‘genome’ tested with 25

clients was found to be greater than that obtained by Kleinjung et al (2002), who

investigated the use of parallel computing for performing multiple sequence alignments.

 66

Kleinjung et al reported to have found that the parallelised program performed up to ten

times faster on 25 processors compared to the single processor version. The computed

speedups were found to be 21.3 for the 60 MB ‘genome’, 18.3 for the 140 MB ‘genome’,

21.5 for the 250 MB ‘genome’ and 15 for the 1072 MB ‘genome’ when the program was

executed on 25 processors. All these results are in excess of the speedups reported by

Kleinjung et al (2002) for the same number of processors, albeit for a different

application.

The fact that all the ‘genomes’ tested produced similar profiles when the speedup was

plotted against the number of clients utilised, together with the fact that they also all

appeared to exhibit a similar number of clients as being the optimal, suggests that the

limitation of the parallel environment may be due to the demands being placed on the

network. The reason for this is that each client machine is running the genome-scanning

program from the same-shared directory. The file for the ‘genome’ to be scanned is also

located in this shared directory and, as such, each client is attempting to access the same

file in the same directory at the same time. As a result there could be a bottleneck effect

as each client is attempting the same task at the same time.

This was particularly noticeable for the larger genome tested, and was perhaps due to the

fact that the size the ‘smaller’ pieces are assigned for each client are in fact still rather

large in terms of megabytes. This would mean that the time required to extract the

desired section of the file is greater than is the case when the section is smaller, and thus

each client takes slightly longer to extract their piece which in turn delays the other

clients still needing to extract their particular section. In order to obtain concrete

evidence for this, one could install network-monitoring software which would enable the

user to monitor the demands being placed on the network due to each client attempting

to extract their section from the centrally located directory.

There are a number of options which one could employ in order to avert this problem,

one of which revolves around each client having all the desired genome files stored

locally. This, however, would not be a suitable solution as it would require that the user

needs to ensure that each client is in possession of all the required genome files. A more

logical solution may be in having the genome files stored in a handful of shared

directories with an equal number of clients accessing each directory.

 67

Associated with the speedup are the more definitive reductions in wall-clock time, which

provide dramatic evidence supporting the role of parallel computing in bioinformatics

applications. When the wall-clock time was plotted against the number of clients,

distinctively similar profiles were obtained for all ‘genomes’ scanned. All files scanned

exhibited the largest reductions in wall-clock time between 10 to 15 clients, and this

correlates with the time at which the speedup attained was closest to being linear. After

this point any increase in the number of clients can be seen to have slight gains with

respect to reductions in wall-clock time.

The reductions in wall-clock time associated with the 60 MB file can be visualised in

Figure 18, wherein the greatest reduction is experienced with 30 clients and the initial

scan time of 0h:16m:26s:303ms obtained with a single processor is reduced to

0h:0m:41s:397ms, representing an overall reduction of wall-clock time by approximately

95.81%. Figure 20 highlights the reductions in wall-clock time attained with the 140 MB

and, as for the 60 MB, the overall reduction in search time was found to be

approximately 94.7 % when the lowest search time achieved is compared with the search

time obtained for the single processor. This represents a decrease in search time from

0h:33m:53s:990ms with one client to 0h:1m:47s:403ms with 24 clients.

Similar results were also attained for the two larger ‘genomes’ tested, the results of which

are highlighted in Figures 22 and 24, for the 250 and 1072 MB genome files, respectively.

The average search time for a single client scanning the 250 MB ‘genome’ was

1h:4m:47s:325ms, and this was reduced to an average time of 0h:2m:42s:42ms with 35

clients. This represents a percentage reduction from the initial wall-clock time of

approximately 95.8 %. Likewise, the results attained using the 1072 MB ‘genome’

represented a reduction in wall-clock time of approximately 95.7 % computed from an

initial search time of 4h:48m:6s:606ms with a single client to 0h:12m:27s:503ms with 50

clients.

These dramatic gains in wall-clock time attained through the division of a large problem

into a number of smaller pieces, highlight the role that parallel computing can play in the

field of bioinformatics.

 68

The use of parallel computing has traditionally relied on programming languages such as

C and Fortran. However, the advent of Java has resulted in an increased interest in the

role that Java can play in scientific computing. Java has a number of key elements making

it an attractive language for scientific computing, with the most important being its

portability. Portability is especially important for high-performance applications; this is in

part due to the life span of the hardware architectures being typically shorter than the

application software. The platform independence of Java has resulted in it being referred

to as the “write once, run anywhere” programming language. Java is also considered to

be a better software engineering environment than both C and Fortran. This results from

features such as the absence of pointers, automatic garbage collection and strict type

checking which allows for rapid prototyping and leads to less buggy code and faster

development time (Bull et al, 2001).

It has also been proposed by Bull et al that the nature of scientific applications lends their

solution to Java execution environments, since they typically spend a large amount of

execution time in a small number of user-written methods. This makes them ideal

candidates for just-in-time compilation and also less susceptible than other applications

to poor implementations of the Java API. However, one of the major perceived

shortcomings of Java in scientific computing by programmers is its performance. The

research undertaken by Bull et al found that on Intel Pentium hardware, and especially

with a Linux operating system, the performance gap is small enough to be of little or no

concern to programmers.

The fact that Java is rapidly becoming the language of choice for many mainstream and

commercial applications, as well as it being a very popular teaching language in many

institutions, has resulted in the major vendors expending significant resources on

developing robust and efficient Java execution environments. This has resulted in one of

the most apparent advantages of Java, that is the access to new resources, which includes

a wide selection of class libraries and a growing number of trained programmers.

Two such libraries are the java.regex package and TSpaces, which were developed by Sun

Microsystems and by researchers at IBM respectively. The java.regex package, which is

included in all Java versions post JDK 1.4, provides Java programmers with a simple and

very clean interface to utilise the text manipulation features of regular expressions

 69

(Marchal, 2004). TSpaces was developed in order to solve the problems associated with

connecting together disparate systems. The TSpaces software package is a messaging

middleware component that combines asynchronous messaging with database features.

Having been written and implemented in Java, it has the ability to run on virtually any

platform from very small devices, such as a palm device, to mainframes. Since TSpaces is

a direct descendant of Linda, it utilises the Tuplespace system which operates more as a

global communication buffer than a data repository. These systems are tailor-made for

distributed programming where a general data delivery mechanism is needed (Lehman, et

al, 2001 and Wyckoff, 1998).

The TSpaces package provides a communication link that allows application builders the

advantage of ignoring some of the harder aspects of multi-client synchronisation, such as

tracking names and addresses of all active clients, communication line status and

conversation status (Lehman et al, 2001). The tuplespace model provides a simple, yet

powerful mechanism for interprocess communication and synchronisation. A process

with data to share ‘generates’ a tuple and places it into the space. A process requiring data

simply requests a tuple from the space. Although message-passing systems appear to be

more efficient, tuplespace programs are typically easier to write and maintain (Wyckoff,

1998).

There are a few key factors that make TSpaces a suitable parallel framework, such as the

ease of installation and implementation of the additional classes. The TSpaces server

need only be installed on a machine visible on the local network, which all clients

connect to in order to place or receive information in the form of tuples. Each client may

interact with an arbitrary number of clients by interacting with them through a single

space. However, a client is not restricted to a single space or even to a single server. Each

client has the freedom to attach to servers and interact with spaces at will, since there is

no ‘message channel’ set up required and there is no penalty for detaching from a server

and reattaching later.

The clients access tuples via a standard set of simple method calls that are located in a set

of TSpace library files. TSpaces is also easy to install and use both for development and

deployment.

 70

6.2 Conclusions and Future Work

The establishment of a computational cluster utilising an existing network of

workstations was achieved, and the performance of the cluster in performing key

bioinformatics tasks was investigated.

The use of the Java programming language in conjunction with a third party library of

classes allowed for the successful design, development and implementation of a genome-

scanning program to be executed in a parallel computing environment. The results

attained for the various genomes in terms of the speedup associated with parallelism, and

as a direct consequence of this speedup the significant reductions in wall-clock time,

suggest that parallel computing has an important role to play in bioinformatics. The

potential for Java to become a scientific computing language of choice has been

demonstrated with a particular emphasis on performing string-matching searches.

Networks of cheap, commodity workstations have also been highlighted as possessing

sufficient combined computational power to tackle some of biology’s major challenges.

They have also been shown to be efficient and cost-effective alternatives to the

traditional supercomputer, which is a financial luxury few can afford.

In order to complete this research a number of alternatives would need to be

investigated. One of the most important future options may be to recompile PMS for

execution in a parallel environment using a different parallel framework in order to assess

the efficiency and applicability of the TSpaces parallel framework. PMS may also be

linked to various databases that house a variety of domain or motif profiles and thus

allow the user the freedom to select which patterns they wish to scan for. Another

interesting investigation may be to recompile PMS to utilise either Hidden Markov

Models (HMMs) or Positive Specific Scoring Matrices (PSSMs) as opposed to the regular

expressions used in the current version of PMS. Both options would result in an increase

in computational intensity whilst producing more accurate domain or motif recognition.

 71

References

• Augen, J. (2003). In silico biology and clustered supercomputing:

shaping the future of the IT industry. Biosilico., 1, 47-49.

• Bader, D. A. (2004). Computational Biology and High-Performance

Computing. Communications of the ACM., 47, 35-40.

• Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. and

Wheeler, D. L. (2004). GenBank: update. Nucleic Acid Research., 32, D23-
D26.

• Bernal, A., Ear, U. and Kyrpides, N. (2001). Genomes OnLine Database
(GOLD): a monitor of genome projects world-wide. Nucleic Acids
Research., 29, 126-127.

• Bikandi, J., Millan, R. S., Rementeria, A. and Garaizar, J. (2004). In silico
analysis of complete bacterial genomes: PCR, AFLP-PCR and
endonuclease restriction. Bioinformatics., 20, 798-799.

• Boeckmann, B., Bairoch, A.., Apweiler, R., Blatter, M. C., Estreicher, A.,
Gasteiger, E., Martin, M. J., Michoud, K., O’Donovan, C., Phan, I.,
Pilbout, S. and Schneider, M. (2003). The SWISS-PROT protein
knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids
Research., 31, 365-370.

• Birney, E., Andrews, D. T., Bevan, P., Caccamo, M., Chen, Y., Clarke, L.,

Coates, G., Cuff, J., Curwen, V., Cutts, T., Down, T., Eyras, E., Fernandez-
Suarez, X. M., Gane, P., Gibbins, B., Gilbert, J., Hammond, M., Hotz, H. R.,
Iyer, V., Jekosch, K., Kahari, A., Kasprzyk, A., Keefe, D., Keenan, S.,
Lehvaslaiho, H., McVicker, G., Melsopp, C., Meidl, P., Mongin, E., Pettett,
R., Potter, S., Proctor, G., Rae, M., Searle, S., Slater, G., Smedley, D., Smith,
J., Spooner, W., Stabenau, A., Stalker, J., Storey, R., Ureta-Vidal, A.,
Woodwark, C. K., Cameron, G., Durbin, R., Cox, A., Hubbard, T. and
Clamp, M. (2004). An Overview of Ensembl. Genome Research., 14, 925-928.

• Bull, J. M., Smith, L. A., Pottage, L. and Freeman, R. (2001). Benchmarking

Java against C and Fortran for Scientific Applications. Proceedings of the
2001 joint ACM-ISCOPE conference on Java Grande.

• Cornelius, B. (2001). Understanding JAVA. Pearson Education Ltd, Essex,
England.

 72

• Cornell Theory Center (2000) Virtual Workshop Module: Parallel
Processing Concepts. Cornell University.
http://tc.cornell.edu/services/edu/topics/ParProgCons/more.asp

• Culler, D. E., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Chun, B., Lumetta, S.,
Mainwaring, A., Martin, R., Yoshikawa, C. and Wong, F. (1997) Parallel
Computing on the Berkeley NOW. JSPP ’97 9th Joint Symposium on Parallel
Computing., Kobe, Japan.

• Dente, E., Kopecky, J., Moyano, F. J. M., Roman, D. and Toma, I.

(11/29/2004). D21v0.1 Web Service Modeling Execution Environment
and Triple Space Computing.

 http://www.wsmo.org/2004/d21/v0.1/

• Dietz, H.. (1999). Parallel Processing using Linux.
http://yara.ecn.purdue.edu/~pplinux/

• Drews, J. (2000) Drug Discovery: A Historical Perspective. Science., 287.,
1960-1964.

• Ferrari, A. J. (1998). JPVM: Network Parallel Computing in Java. Proc.
ACM 1998 Workshop on Java for High-Performance Network Computing.
http://www.cs.virginia.edu/jpvm/doc/jpvm-java98.pdf

• FOLDOC (Free On-Line Dictionary Of Computing) (02/06/2004).
http://wombat.doc.ic.ac.uk/folder/foldoc.cgi?parallel+processing

• Gao, F. and Zhang, C. T. (2004). Comparison of various algorithms for
recognising short coding sequences of human genes., Bioinformatics., 20.,
673-681.

• Gelernter, D. (1988). Getting the Job Done. BYTE., 13(12), 301-308.

• Gibas, C. and Jambeck, P. (2001) Developing Bioinformatics Computer
Skills: Chapter 1 Biology in the Computer Age. O’ Reilly & Associates Inc.,
California, USA.

• Hawick, K. A., James, H. A. and Pritchard, L. H. (2004). Tuple-Space

Based Middleware for Distributed Computing. Technical Report DHPC-
128.

 http://www.dhpc.adelaide.edu.au/reports/128/abs-128.html

 73

• Hulo, N., Sigrist, C. J. A., Le Saux, V., Langendijk-Genevaux, P. S.,
Bordoli, L., Gattiker, A., De Castro, E., Bucher, P and Bairoch, A. (2004).
Recent improvements to the PROSITE database. Nucleic Acids Research.,
32, Database issue., D134-D137.

• IBM. (09/24/2004). IBM TSpaces User’s Guide.
 http://www.almaden.ibm.com/cs/TSpaces/html/UserGuide.html

• Janaki, C. and Joshi, R.R. (2003) Accelerating comparative genomics
using parallel computing. In Silico Biology., 3, 429-440.

• Kleinjung, J., Douglas, N. and Heringa, J. (2002). Parallelized multiple
alignment. Bioinformatics., 18, 1270-1271.

• Krishnan, A. and Tang, F. (2004). Exhaustive Whole-Genome Tandem
Repeats Search. Bioinformatics., Advanced Access published May 14, 2004.

• Lehman, T. J., Cozzi, A., Xiong, Y., Gottschalk, J., Vasudevan, V., Landis, S.,

Davis, P., Khavar, B. and Bowman, P. (2001). Hitting the distributed
computing sweet spot with TSpaces. Computer Networks., 35, 457-472.

• Li, K. B. (2003). ClustalW-MPI: ClustalW analysis using distributed and
parallel computing. Bioinformatics., 19, 1585-1586.

• Marchal, B. (12/16/2004). Regular Expressions in Java.

http://www.developer.com/java/other/article.php/1460561

• Meloan, S. (11/23/2004). BioJava – Java Technology Powers Toolkit for

Deciphering Genomic Codes.
 http://java.sun.com/developer/technicalArticles/javaopensource/biojava/

• Merkey, P. (06/02/2004). Beowulf Introduction & Overview.
 http://www.beowulf.org/intro.html

• Merkey, P. (12/13/2004). Beowulf History.
 http://www.beowulf.org/overview/history.html

• Meskauskus, A., Lehmann-Horn, F. and Jurkat-Rott, K. (2004). Sight:

automating genomic data-mining without programming skills.
Bioinformatics., Advanced Access published February 26, 2004.

• IEEE (09/08/2004), Sun's JavaSpaces and IBM's TSpaces, IEEE Internet

Computing Online, http://www.computer.org/internet/v2n5/w5tech.htm.

• Pearson, W. R. and Lipman, D. J. (1988). Improved tools for biological

sequence comparison. Proc. Natl. Acad. Sci. USA., 85, 2444-2448.

 74

• Pedroso, H., Silva, L. M. and Silva, J. G. (1998). JET: Massively Parallel
Computing with Java University of Coimbra, Portugal, Department of
Engenharia Informatica.
http://www.mpcs.org/MPCS98/Final_Papers/Paper.38.pdf

• Pekurovsky, D., Shindyalov, I. N. and Bourne, P. E. (2004) A Case Study of
High-Throughput Biological Data Processing on Parallel Platforms.
Bioinformatics., Advanced Access published March 25, 2004.

• Reiss, T. (2001) Drug discovery of the future: the implications of the
human genome project. Trends Biotech. 19, 496-499.

• Russell, J. P. (2001). JAVA Programming for the absolute beginner.
PrimaTech, California.

• Smith, T. F. and Waterman, M. S. (1981). Identification of Common

Molecular Subsequences. J. Mol. Biol. 147, 195-197.

• Sterling, T. How to build a hyper computer. Scientific American July 2001,
38-45.

• Stewart, C. A. (2004). Bioinformatics: Transforming Biomedical
Research and Medical Care. Communications of the ACM., 47(11), 31-33.

• The UK JavaGrande forum (1998). Summary.
http://dsg.port.ac.uk/~mab/HPJava/

• Thiruvathukal, G. K., Dickens, P. M. and Bhatti, S. (2000). Java on
networks of workstations (JavaNOW): a parallel computing framework
inspired by Linda and the Message Passing Interface(MPI). Concurrency:
Pract. Exper., 12, 1093-1116.

• Womble, D.E., Dosanjh, S. S., Hendrickson, B., Heroux, M. A., Plimpton, S.
J., Tomkins, J. L. and Greenberg, D. S. (1999). Massively parallel
computing: A Sandia perspective. Parallel Computing., 25, 1853-1876.

• Wyckoff, P. (1998). T Spaces. IBM Systems Journal., 37(3).

• Zubrzycki, I. Z. (2002). Homology Modeling and Molecular Dynamics

Study of NAD-Dependent Glycerol-3-Phosphate Dehydrogenase from
Trypanosoma brucei rhodesiense, a Potential Target Enzyme for Anti-
Sleeping Sickness Drug Development. Biophysical Journal., 82, 2906-2915.

 75

Appendices

Appendix A: Average search times for all genome files
scanned.

Table AI: Average search times for all numbers of clients tested, using the 60 MB genome file.

Number of Clients (Processors) Average search time

0 0h:0m:0s:0ms

1 0h:16m:29s:303ms

5 0h:3m:21s:728ms

10 0h:1m:51s:88ms

15 0h:1m:23s:895ms

20 0h:1m:3s:280ms

22 0h:0m:55s:728ms

24 0h:0m:48s:408ms

25 0h:0m:46s:481ms

26 0h:0m:45s:179ms

28 0h:0m:42s:320ms

30 0h:0m:41s:790ms

35 0h:0m:41s:397ms

Table AII: Average scan times for all clients tested with the 140 MB genome.

Number of Clients (Processors) Average Genome Scan Time

0 0h:0m:0s:0ms

1 0h:33m:53s:990ms

5 0h:7m:35s:166ms

10 0h:3m:56s:767ms

15 0h:2m:52s:408ms

20 0h:2m:5s:878ms

22 0h:1m:59s:512ms

24 0h:1m:47s:403ms

25 0h:1m:51s:492ms

26 0h:1m:48s:807ms

28 0h:1m:47s:612ms

30 0h:1m:48s:287ms

 76

Table AIII: Average genome scan times using the 250 MB genome file with a range of clients.

Number of Clients (Processors) Average Genome Scan Time

0 0h:0m:0s:0ms

1 1h:4m:47s:325ms

5 0h:13m:43s:269ms

10 0h:7m:7s:775ms

15 0h:4m:57s:429ms

20 0h:3m:52s:412ms

22 0h:3m:34s:235ms

24 0h:3m:26s:334ms

25 0h:3m:0m:423ms

26 0h:2m:58s:62ms

28 0h:2m:50m:943ms

30 0h:2m:48s:812ms

31 0h:2m:44s:16ms

32 0h:2m:44s:559ms

35 0h:2m:42s:42ms

Table AIV: Average genome scan times for the 1072 MB genome using a range of clients.

Number of Clients (Processors) Average Genome Scan Time

0 0h:0m:0s:0ms

1 4h:48m:6s:606ms

5 1h:7m:13s:811ms

10 0h:34s:5s:541ms

15 0h:23m:50s:925ms

20 0h:21m:46s:214ms

25 0h:19m:2s:972ms

30 0h:16m:52s:907ms

35 0h:15m:20s:859ms

40 0h:14m:3s:161ms

45 0h:13m:15s:599ms

50 0h:12m:27s:503ms

55 0h:12m:48s:264ms

 77

Appendix B: Average raw time in milliseconds and
processed time in hr, min, sec, and millisec for each
genome scanned.

Table BI: Average raw (millisec) and formatted (min) times for the 60 MB file.

Number of clients Raw Time (ms) Formatted Time (min)

1 989303.3333 16.48838889
5 201728.6 3.362143333
10 111088.6 1.851476667
15 83895.6 1.39826
20 63280.6 1.054676667
22 55728.6 0.92881
24 48408.8 0.806813333
25 46481.2 0.774686667
26 45179.2 0.752986667
28 42320.2 0.705336667
30 41790.0 0.6965
35 41397.8 0.689963333

Table BII: Average raw (millisec) and formatted (min) times for the 140 MB file.

Number of clients Raw Time (ms) Formatted Time (min)

1 2033990.333 33.89983889
5 455166 7.5861
10 236767.6667 3.946127778
15 172408.3333 2.873472222
20 125878.6667 2.097977778
22 119512 1.991866667
24 107403.4 1.790056667
25 111492 1.8582
26 108807.4 1.813456667
28 107612.4 1.79354
30 108287.4 1.80479

 78

Table BIII: Average raw (millisec) and formatted (min) times for the 250 MB file.

Number of clients Raw Time (ms) Formatted Time (min)

1 3887325.667 64.78876111
5 823269.6667 13.72116111
10 427775.3333 7.129588889
15 297429.3333 4.957155556
20 231412 3.856866667
22 214235.4 3.57059
24 206334.2 3.438903333
25 180423.8 3.007063333
26 178062.4 2.967706667
28 170943 2.84905
30 168812 2.813533333
31 164016.8 2.733613333
32 164559.8 2.742663333
35 162042.4 2.700706667

Table BIV: Average raw (millisec) and formatted (min) times for the 1072 MB file.

Number of clients Raw Time (ms) Formatted Time (min)

1 17286606.67 288.1101111
5 4033811.2 67.23018667
10 2045541 34.09235
15 1430925.4 23.84875667
20 1306214.4 21.77024
25 1142972.4 19.04954
30 1012907.4 16.88179
35 920859.2 15.34765333
40 843161.8 14.05269667
45 795599.2 13.25998667
50 747503.8 12.45839667
55 768264.6 12.80441

