
IP {, ''S'':' I.. ., 'f_j

"I

The Monitor and Synchroniser concepts

in the programming language

CLANG

Thesis
submitted by

ALAN GORDON CHALMERS

in fulfilment
of the requirements

for the degree

MASTER OF SCIENCE

Rhodes University
June, 1984

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and gratitude to my
supervisor, Pat Terry, for the encouragement given, and the
enormous effort undertaken with the reading of the rough drafts
of this thesis.

Thanks also to my friends and colleagues, David, for all the
advice and inspiration provided, and Vaughan, for the
constructive critiscism which arose from many a discussion.

I would also like to acknowledge the
Rhodes University, and the Council
Industrial Research.

financial support of
for Scientific and

My final thanks must go to my parents, without whom none of
this would have been possible.

contents

Table of contents

Chapter 1: Introduction

Chapter 2: Introduction to CLANG

Chapter 3: Fundamental problems of concurrency

Chapter 4: The Monitor concept

4.1 Problems associated with the monitor concept

4 . 2 The monitor concept in other languages

4 . 2 . 1 Concurrent Pascal

4.2.2 Edison

4 . 2.3 Modula - 2

4 . 2 . 4 Pascal Plus

4.3 Using and implementing monitors in CLANG -

1

7

1 1

21

24

33

36

41

45

54

practical details................................... 61

4.3.1 Conclusions on the monitor concept in CLANG 105

Chapter 5: The Synchroniser concept 106

5.1 The rendezvous concept in other languages 116

5. 1 .1 CHILL 117

5.1.2 Ada ... 123

5.2 Using and implement ing synchronisers in CLANG -

practical details 132

5 . 2.1 Conclusions on the synchroniser concept in CLANG. 153

contents

Chapter 6: The monitor and synchroniser concepts -

Comparisons and conclusions 155

6 . 1 Other concepts. proposed - a brie f summary 166

6 . 2 Where to we go from here? 171

Bibliography 175

Appendix A: User Manual

Appendix B: Listing

Chapter 1: Introduction

Sequence, n

Chapter 1
."

Succession, coming after or next,

set of things that belong next to

each other on some principle of

order, series without gaps.

Concurrent, a&n Running together, as parallel

lines; co-operating

The concise Oxford dictionary

An essential factor in the continuing use of computers is the

development of software. This software for a particular

application typically consists of one or more programs. There

are two main types of program.

A sequential program consists of a list of statements

that is executed sequentially; its execution is called a

process.

A concurrent program specifies a set of interacting (or

even totally independent) sequential programs that may be

executed concurrently as parallel processes.

In the last 15 years the state of the art of concurrent

programming has advanced significantly.

-1-

Chapter 1

Advances in hardware have increased the availability of

inexpensive processors, and thus made possible the construction

of distributed systems and multiprocessors which were

previously considered economically infeasible.

Along with these advances in hardware have come theoretical

developments by such people as Dijkstra (1968), Brinch Hansen

(1972, 1973) and Hoare (1974, 1978) which have led to new

programming notations for the easy and explicit expression of

concurrent process initialisation, communication and

synchronisation.

Of particular interest to this thesis are those constructs

developed for interprocess communication and synchronisation.

These have included the low level construct of the Semaphore

(originally developed by Dijkstra in 1968 [Dij68]) and two

higher level constructs: th e Monitor (developed independently

by Brinch Hansen in 1973 [Bri73] and Hoare in 1974 [Hoa74]),

and the Rendezvous (developed by Hoare in 1978 [Hoa78],

implemented in the programming language Ada, and adapted in

CLANG in 1983 by the author as the Synchroniser).

As the result of these developments in both hardware and

software, the art of concurrent programming is no longer

restricted to the designers and implementors of operating

systems; it has now become possible to contemplate using

concurrent programming for all kinds of applications: for

example, database management systems, large scale parallel

-2-

Chapter 1

scientific computations and real-time, embedded control

systems, to mention but a fe w.

However, to programmers schooled in sequential programs the

change to the concurrent way of thought is fa irly traumatic,

especially when this en t ails the learning of a whole new

language. The programmer then has to learn the involved syntax

of this new language, while at the same time trying to grasp

the concepts of concurrency.

Although the theoretical study of concurrent programming is

well advanced, actual languages that implement concurrent

features are not readily available; or if they are (eg . Modula-

2, but cf. Chapte r 4), their cost for procurement is generally

quite high.

It is for this reason that experimental simple languages have

been developed for the sole purpose of teaching students, at

both the undergraduate and postgraduate level, the concepts of

concurrency, without having the students floundering over the

syntax of a complex new language.

One of the first of these such languages was an extended

version of Wirth's Pascal-S, [Wir75], proposed by M. Ben-Ari in

his book, [Ben82], published in 1982 . (Pascal-S is a subset of

the language Pascal .) Ben-Ari modified the subset and

implemented concurrency based on the idea o f processes launched

- 3-

Chapter 1

by an explicit Cobegin .. Coend construct. Although Pascal-S is

designed to run on a single processor, the paralle l execution

of the processes in

switching between

steps. Semaphores

8en-Ari's extension is simulated by context

processes after a small random number of

are the only exclusion and protection

mechanism provided in this extension.

Experience with Pascal - S here at Rhodes University le ads us to

believe that it would require a fair degree of modification to

conver t Ben - Ari's system for use on a micro-computer.

Ben-Ari's ideas together with the ideas from an independent,

though

[Cha82] ,

similar, extension to Pascal-S by the author in 1982,

by Terry,

led to the initial development of the language CLANG

[Ter83] , as a poss ible vehicle for teaching

concurrency to students .

Further extensions to CLANG to provide the monitor and

synchroniser constructs form the pract ical basis for the

present study.

The aims of this project have been to implement a computer

language suitable for teaching both undergraduate and

postgraduate students about concurrent programming with special

reference to the high level constructs available for concurrent

process synchronisation and communication. These constructs

have to be readily distinguishable to the programmer and easy

to use.

-4-

Chapter 1

Another design goal for thi s extended version of CLANG is that

it had to be able to run reasonably efficiently on small micro

computers (such as the Apple II) so as to ensure its widespread

availability.

The experience gained in the design and implementation of the

monitor and synchroniser has been used to assess the potential

of simi l ar constructs in other programming languages and to

compare and contrast the advantages and disadvantages of these

mechanisms with those in CLANG, both from the programmer's

point of view and the ease of implementation .

The remainder of this thesis is arranged as follows:

Chapter 2: An introduction is given to the programmi n g language

CLANG, as most of the examples throughout the thesis are given

in CLANG notation .

Chapter 3: A discussion is given of the problems involved with

concurrency, namely the necessity for concurrent processes to

synchronise and communicate in order to co - operate. This

chapter also looks at one of the earliest solutions to these

problems, the semaphore, and shows how the difficulties with

t he semaphore evolved into a need for higher level constructs

such as the monitor and the synchroniser.

-5-

Chapter 1

Chapter 4: The

followed by an

problems of the monitor concept are outlined,

assessment of the monitor concept in the

languages: Concurrent Pascal, Edison, Modula-2 and Pascal Plus.

This is followed by a similar assessment of the monitor concept

as implemented in CLANG, so that the differences can be

contrasted. Also included is a description of how the monitor

concept was actually implemented. The description is done by

means of flow diagrams and worked examples; the listing of the

code can be found in appendix B.

Chapter 5: The synchroniser concept is tackled in a simi lar

manner as was the monitor concept in chapter 4. The languages

assessed and contrasted with CLANG are Ada and CHILL.

Chapter 6: Conclusions are drawn from chapters 4 and 5 as to

the potential of CLANG as a language for teaching concurrent

programming. The merits of both the monitor and the

synchroniser are debated in an endeavour to ascertain whether

there is a need for either (o r both) in a

programming language.

concurrent

Also under discussion in this chapter are other forms of

interprocess synchronisation not implemented in CLANG.

Finally the question is raised:

"Are there other (perhaps better) methods of expressing

interprocess synchronisation and communication not yet

discovered ?',

-6-

Chapter 2

Chapter 2: I ntroduction to CLANG

"The name CLANG (standing for Concurrent LANGuage) was

chosen as it had a pleasant ring to it"

P . D Terry [private communication]

CLANG is an experimental (very stripped

language developed at Rhodes University by

for teaching compiler design and

undergraduate students .

down) Pascal - like

Terry, originally

implementation to

It is based on ideas found initially in Wirth's "Algorithms +

Data Structures = Programs" [Wir76], with ideas for simulating

concurrency adapted from Ben-Ari's "Princip l es of Concur r ent

Programming" [Ben82] and "The Pascal - S Markl.HAC compi le rs" by

the author [Cha82]. Quite a lot of inspiration was obtained

from Wirth's Pascal - S [Wir75].

The language supports the usual WHILE and REPEAT loops

(including a REPEAT ... FOREVER infinite loop), FOR loops and

t he IF THEN . .. ELSE cons t ruct, PROCED UR ES and FUNCTIONS

(which may be nested, and dec l ared FORWARD). Concurrency is

initiated us ing an expl i cit COBEGIN . . COEND construct.

The ma i n restricti o n is in the fie l d of data typing .

Essentially only one type is supported - INTEGER. Only simple

integers and simple one - dimensional arrays may be declared and

at present arrays may not be passed as pa r ameters to

-7-

Chapter 2

subprograms. 1/0 is very simple, limited to the input of

integers or characters and the output of constant strings,

characters or integer expressions.

The advanced features of the monitor and synchroniser

implemented in CLANG have enabled CLANG to be used as a

language for teaching concurrent programming to postgraduate as

well as undergraduate students.

The language is compiled into intermediate P-codes by a

compiler written in high ly standard Pascal. This P-code is

then interpreted by a procedure which forms an integral part of

the compiler program .

Concurrency is simulated on single processor machines , for

which CLANG was developed, by letting each active process run

for a small random number of p-code steps, before switching to

the next ready process . (The random numbers are obtained by a

call to an external procedure.) Programs u sing concurrency may

be expected to behave differently each time they are run.

The high level constructs for concurrent process

synchronisation and communication, available in CLANG and

examples of their use may be found in appendix A: The User

Manual.

-8-

Chapter 2

Many of the remaining examples in this thesis are presented in

CLANG, but any reader familiar with Pascal should have no

difficulty in following the CLANG code.

The similarities between CLANG and Pascal can easily be shown

by means of the following example.

Example:

A program to find the factorials of integers from 0 to 8 may be

coded in Pascal as:

program FINDFACTORIALS(INPUT, OUTPUT);
var N: INTEGER;

function FACTORIAL(N: INTEGER): INTEGER;
begin
if N = 0 then FACTORIAL := 1
else FACTORIAL := N * FACTORIAL(N- l)

end; (*FACTORIAL*)

begin (*FINDFACTORIALS*)
READ(N);
while (N > 0) and (N < 8) do

begin
WRITELN('The factorial of I ,N, I = I ,FACTORIAL(N));
READ(N)

end
end. (*FINDFACTORIALS*)

-9-

An equivalent program may be coded in CLANG as:

program FINDFACTORIALS;
var N;

function FACTORIAL(N);
begin
if N = 0 then FACTORIAL : = 1
else FACTORIAL := N * FACTORIAL(N-1)

end; (*FACTORIAL *)

begin (*FINDFACTORIALS*)
read(N) ;
while (N > 0) and (N < 8) do

begin

Chapter 2

writeln(' The factorial of ',N, I = I ,FACTORIAL(N»;
read(N)

end
end. (*FINDFACTORIALS*)

-10-

Chapter 3

Chapter 3: Fundamental problems of Concurrency

Impart, transmit communicate v.t. & i

synchronise v.t. & i occur at the same time, be

simultaneous, co-ordinate

mutual a.

exclusive a.

by each to(wards) the other

shutting out; not admitting of

The concise Oxford dictionary

In order to co-operate, concurrently executing processes must

synchronise and communicate.

Communication allows the execution of one process to influence

that of another. Methods of interprocess communication include

the use of shared variables (ie. variables that can be

referenced by more than one process) and the sending and

receiving of messages.

The concurrent processes may be executing asynchronously and

thus synchronisation is often necessary so that the processes

may communicate safely. Synchronisation can be viewed as a set

of constraints on the ordering of events.

For example: If a variable must be updated by one process

before it can be used by another, then these two processes must

synchronise so that they can co-operate properly.

-11-

Chapter 3

The interleaving in time of the execution of concurrent

processes often makes it desirable that the execution of a

certain sequence of statements appears to be an indivisible

operat i on.

Consider this example:

Suppose initia l ly that the value of a shared variable 'X' is 0

and that both process I and process II execute a statement that

increments X by 1.

ie. X X + 1

It would be reasonable to expect the final value of X, on

completion of process I and process II's concurrent execution,

to be 2. However, this will not always be the case as

assignment statements are not generally implemented as one

indivisible operation and thus the value of X might be 1 or 2.

Although the two processes may not be executing exactly the

same statement this anomalous behavior arises from the fact

that both processes are accessing the same variable and so to

avoid this, the assignment statement for the shared variable

concerned must be "protected" so as to prevent its execution

being interleaved in time. This "protection" must mean that

while one process is executing the assignment statement, if

another process also wishes to execute a similar statement on

the same variable, then this other process must be delayed

until such time as the first process has finished executing its

statement.

-12-

Chapter 3

A sequence of statements that must appear to be executed as an

indivisible operation is called a critical section.

The term "mutual exclusion" refers to

executi on of critical sections.

mutually exclusive

Thus in the above example the assignment statement would have

to be guarded by some form of mutual exclusion mechanism to

ensure its correct execution.

Note: If two (or more) processes have no variables in common

then their execution need not be mutually exclusive.

One traditional solution for ensuring mutual exclusion to a

resource (eg . variables, data structures etc.) which needs to

be shared by several concurrent processes is via the use of

semaphores [D ij68J .

A semaphore is conceptually a non - negative integer valued

variable on which two operations are defined:

P (ie. wait) and V (ie . signal)

Given a semaphore S:

pes) will delay the process executing it until S > 0

whereupon S := S - 1 will be executed; the test and

decrement are executed as an indivisible operation.

-13-

Chapter 3

V(S) executes S ._ S + 1 as an indivisible operation.

To implement mutual exclusion each critical section is preceded

by a P operation and later followed by a V operation on the

same semaphore.

Another situation in which it is necessary to coordinate the

execution of concurrent processes occurs when a shared resource

is in a state inappropriate for executing a part icular

operation. Any process attempting such an operation should be

delayed until the state of the resource changes as a result of

other processes performing operations on the resource.

This type of synchronisation of processes we have termed

conditioned synchronisation.

In implementing conditioned synchronisation using semaphores,

shared variables are used to represent the condition, and a

semaphore associated with the condition is used to accomplish

the synchronisation (an example is given below) .

Although the semaphore is quite an elegant low level primitive

and can be used as a general tool for solving synchronisation

problems, a concurrent system built solely on semaphores is

courting disaster if even one occurrence of a semaphore

operation is mistaken anywhere .

- 14 -

Chapter 3

When using semaphores, a programmer might forget to incorporate

all statements that reference shared resources into critical

sections. This could destroy the mutual exclusion required

within these critical sections.

Another difficulty with using semaphores is that both

conditioned synchronisation and mutual exclusion use the same

pair of primitives. This makes it difficult to distinguish the

purpose of a given wait or signal operation. Since mutual

exclusion and conditioned synchronisation are distinct concepts

they should have distinct notations.

Even the correct usage of semaphores leads to obscure programs

(cf. first example below). This is because it is the

re sponsibili ty of the programmer to ensure that the critical

section is accessed in mutual exc l usion, by means of correct

usage of semaphores.

Therefore it follows that if the facilities to ensure th is

mutual exclusion were implicit in in the programming language

itself, the programmer would be relieved of the burden, and

furthermore the potential for compile time error checking would

be introduced.

The two high level constructs introduced into the language

CLANG to facilitate easy interprocess synchronisation and

communication, the monitor and the synchroniser, will be dealt

with in detail in the following chapters.

-15-

Chapter 3

The differences between these three constructs can easily be

illustrated (in CLANG programs) using a simple classic example,

the so-called warehouse problem. A warehouse can only store one

item at anyone time, and has to deal with requests from a

producer and a consumer (processes) who wish continuously to

deposit and remove items respectively. The problem is further

complicated by the need to prevent the consumer attempting to

remove a non-existant item or the producer trying to deposit an

item in the warehouse that might already be full.

Firstly the warehouse implemented by means of semaphores.

program CLASSICEXAMPLE;
const DEPOSIT = 1;

REMOVE = 0;
OCCUPIED = 1;
UNOCCUPIED = 0;

var INSIDE, SPACE, SHOP,
MUTEX, EMPTY, FULL; (*semaphores*)

procedure WAREHOUSE(var ITEM, OPERATION);
begin (*WAREHOUSE*)

wait(MUTEX); (*wait for mutual exclusion*)
INSIDE .- INSIDE + 1; (*no . in WAREHOUSE*)
if OPERATION = DEPOS I T then

begin
if SPACE = OCCUPIED then (*can't deposit yet*)

begin
signal(MUTEX) ;
wait(EMPTY)

end;
SPACE := OCCUPIED;

(*release exclusivity*)

SHOP := ITEM; (*deposit item*)
signal(FULL)

end
else

begin
if SPACE = UNOCCUPIED then

begin
signal(MUTEX); (*release exclusivity*)
wait(FULL) (*wait for a deposit *)

end;

-16-

ITEM := SHOP; (*r emove item*)
SPACE := UNOCCUPIED;
signal(EMPTY)

end;
INSIDE := INSIDE - 1;
if INSIDE = 0 then

signal(MUTEX) (*releas e exclusivity*)
end; (*WA REHOUSE*)

procedu r e PRODUCER;
cons t SWEET = 1;
var ITEM;

begin
repeat

ITEM := SWEET ; (*produce it em*)
WAREHOUSE(ITEM, DEPOSIT)

forever
end; (*PRODUCER*)

procedu re CONSUMER;
var ITEM , MOUTH;

begin
repeat

WAR EHOUSE(ITEM,
MOUTH := ITEM

forever

REMOVE) ;
(*consume item*)

end; (*CONSUMER*)

begin (*CLASSICEXAMPLE*)
INSIDE := 0;

Chapter 3

SPACE := UNOCCUPIED; (*warehouse initially empty *)
MUTEX : = 1 ;
EMPTY := 0;
FULL := 0;
cobegin

PRODUCER;
CONSUMER

coend
end . (*CLASSICEXAMPLE*)

Aside: It can be seen from the above that with a program that

makes sole use of semaphores great care must be taken to

avoid disaster .

- 17 -

Chapter 3

ego if the two statements

signal(MUTEX);

wait(EMPTY)

in the procedure WAREHOUSE had been reversed

wait(EMPTY);

signal(MUTEX)

deadlock (ie . disaster) would have resulted

The same warehouse can be coded as a monitor as follows:

program CLASSICEXAMPLE;

monitor WAREHOUSE;
(**)
(* The procedures DEPOS IT and REMOVE are *)
(* exportable from the monitor. This is signified *)
(* by prefixing their declaration with an *)
(* asterisk. *)
(**)
const OCCUPIED = 1;

UNOCCUPIED = 0;
var SHOP, SPACE;
condition FULL, EMPTY;

procedure *DEPOSIT(ITEM);
. begin

if SPACE = OCCUPIED then EMPTY.qwait;
SPACE := OCCUPIED;
SHOP := ITEM; (*deposit item*)
FULL.qsignal

end; (*DEPOSIT*)

procedure *REMOVE (var ITEM);
begin
if SPACE = UNOCCUPIED then FULL.qwait;
ITEM := SHOP; (*remove item*)
SPACE := UNOCCUPIED;
EMPTY.qsignal

end; (*REMOVE *)

begin (*WAREHOUSE*)
SPACE := UNOCCUPIED (*warehouse initially empty*)

end; (*WAREHOUSE*)

- 18-

procedure PRODUCER;
const SWEET = 1;
var ITEM;

begin
repeat

ITEM := SWEET; (*produc e item*)
WAREHOUSE.DEPOSIT(ITEM)

forever
end; (*PRODUCER*)

procedure CONSUMER;
var ITEM, MOUTH;

begin
repeat

WAREHOUSE.REMOVE(ITEM);
MOUTH := ITEM (*consume item*)

forever
end; (*CONSUMER*)

begin (*CLASSICEXAMPLE*)
cobegin

PRODUCER;
CONSUMER

coend
end . (*CLASSICEXAMPLE*)

Finally the warehouse may be coded as a synchroniser:

program CLASSICEXAMPLE;

Chapter 3

synchroniser WAREHOUSE ;
(**)
(* The sequential positioning of the accept *)
(* statements for a DEPOSIT and a REMOVE request *)
(* ensures that the order of these operations *)
(* is correct . *)
(**)
var SHOP;
entry DEPOSIT(ITEM) , REMOVE(var ITEM);

begin
repeat
accept DEPOSIT(ITEM) then

begin
SHOP . _ ITEM

end ;

- 19 -

accept REMOVE(var ITEM) then
begin

ITEM ._ SHOP
end

forever
end; (*WAREHOUSE*)

procedure PRODUCER;
const SWEET = 1;
var ITEM;

begin
repeat

ITEM := SWEET; (*produce item*)
WAREHOUSE.DEPOSIT(ITEM)

forever
end; (*PRODUCER*)

procedure CONSUMER;
var ITEM, MOUTH;

begin
repeat

WAREHOUSE.REMOVE(ITEM) ;
MOUTH := ITEM (*consume item*)

forever
end; (*CONSUMER*)

begin (*CLASSICEXAMPLE*)
cobegin

Chapter 3

WAREHOUSE; (*a synchroniser is an active process*)
PRODUCER;
CONSUMER

coend
end. (*CLASSICEXAMPLE*)

-20-

chapter 4

Chapter 4 : The Monitor concept

" a collection of associated data and

procedures is known as a monitor it is

essential that only one [sub]p rogram at a time

actually succeed in entering a monitor

procedure, and any subsequent call must be held

up until the previous call has been completed ."

C. A.R . Hoare [Hoa74]

The need for a construct , whereby the programmer would be

re lieved of the tedium of explicitly ensuring mutual exclusion

around a critical section, and the possibility of compile time

error checking could be introduced, led to Brinch Hansen

[Bri72] ,

monitor.

[Bri73] and Hoare [Hoa74] developing the idea of a

A monitor is a construct used local to a program. It is formed

by encapsulating data structures , which may be shared by

concurrent processes, with a set of procedures / functions

which access those structures . A monitor may also incorporate

other operations (such as initialisation code) which might be

needed on the data structure, but which must be hidden from the

processes which access the data structu r e.

- 21-

chapter 4

A process has exclusive access to the shared data while it is

executing a monitor procedure / function. This exclusivity is

provided by the monitor itself and relieves the programmer of

the burden of having to build his or her own exclusion code.

Monitors thus provide a high level construct for ensuring

mutually exclusive access to a shared resource. However,

monitors by themselves provide no means of conditioned

synchronisation, and thus must be supplemented by such features

as condition variables to facilitate this.

The queueing of processes is an essential factor of the monitor

concept. If simultaneous access is requested to a monitor by

several processes then some "fair" queueing must be effected at

the "entrance" to the monitor to ensure that only one process

has exclusivity to a monitor, and also to ensure that another

process will be granted exclusivity as soon as it becomes

available again. Simila~ly, with condition variables the

queueing of processes is necessary if the data structure is not

in the required state. Lastly, some form of "polite" queue may

be necessary, when a process signals another process waiting

(suspended) within the monitor, if this signalling process is

to be suspended until the signalled process has completed its

activities in the monitor.

Not all the procedures / functions of a monitor are available

to the processes that wish to access the data structure; those

that are, are typically flagged as such. In CLANG this flagging

-22-

chapter 4

takes the form of prefixing the declaration of the procedures /

functions concerned by means of an asterisk ('* ') (cf . chapter

3, the warehouse coded as a monitor).

These flagged

accessed by

procedures / functions are then

preceding the call with the name

corresponding monitor as in:

monitorname.subprogramname

- 23 -

typically

of the

section 4.1

4.1 Problems associated with the monitor concept

Deadlock utter standstill

Invariant unchangeable, always the same

The concise Oxford d i ctionary

The monitor construct ensures that only one process may be

active "inside" a monitor at anyone time. This process is said

to have exclusivity to that monitor.

When a process releases exclusivity to a monitor, that monitor

is accessible to any concurrent process. This exclusivity may

be released either as the result of the process finishing

within the monitor and thus leaving it , or as a r esult of the

process being suspended .

Should a process request exclusivity to a monitor and find it

unavailable, then the process is suspended on an implicit

"en tr y" queue associated with that monitor until such time as

the exclusivity becomes available.

Conditioned synchronisation is not provided by the monitor

construct itself, so if this is required within a monitor,

additional constructs are necessary. These constructs typically

consist of some sort of explicit condition queue on which a

process can WAIT, ie. be suspended, until it is given the go-

ahead to continue by some form of SIGNAL from another process.

- 24-

section 4.1

Thus a process can be suspended "outside" a monitor waiting for

exclusivity, or "inside" a monitor on some condit i on queue .

Due to the hierarchical structure of programs it is possible to

call a monitor procedure / function from within another monitor

declared after it . This is known as a nested monitor call.

For example

moni tor MON 1 ;

procedure *PROC1;
begin

(*some statements*)
end; (*PROC1 *)

begin
(*body

end;

(*MON1*)
of MON1*)
(*MON1*)

monitor MON2;
procedure *PROC2 ;

begin

MON 1 . PROC 1 ; <- - - nested monitor call

end ;

begin
(*body

end;

(*PROC2*)

(*MON2*)
of MON2*)
(*MON2*)

The nested monitor call implies that it is possible for a

concurrent process to be holding exclusivity to several

monitors when it is suspended . This possibility heralds a

problem area relating to monitors. ([Lis77], [Had77] , [Kee78] ,

[Par78], [Wet78])

- 25 -

section 4.1

Before discussing the problem, we must introduce some new

terminology:

A PLOXY point (standing for ~ossible Loss Of eXclusivitY) is a

point in the code of a monitor where a concurrent process might

be forced to suspend itself and, because of this, release

exclusivity to the monitors it occupied.

Just how many exclusivities are released will be detailed

shortly.

There are two types of PLOXY points:

A nested PLOXY point is a PLOXY point that results from a

concurrent process executing a nested monitor call .

A conditioned PLOXY point is a PLOXY point that results from a

concurrent process executing certain operations relating to a

condition queue.

The degree to which a programming language tackles the question

of which exclusivities are to be released by a concurrent

process at a PLOXY point shows the potential of the language

for solving the related problems of certain deadlock, potential

deadlock, and loss of parallelism.

- 26 -

section 4 . 1

Certain deadlock

The condition queues are themselves shared data structures to

be protected by the monitor . This implies that all the

operations on a condition queue, eg o Waits and Signals,

relating to a shared data structure must be loca l to the

monitor which encapsulates it .

This is sign i ficant because, if a process on being suspended

"inside " a monitor as the result of a WAIT operation on a

condition, does not release exclusivity to that monitor , then

deadlock will result, as no other process will be able to e n te r

the monitor to perform the corresponding SIGNAL . (Similarly, if

the language forces the signalling process to be temporarily

suspended if there is a process waiting on that condition , then

deadlock will again result if the exclusivity is not released

by the signalling process .)

Potential deadlock

A process can acquire a set of monito r exclusiv i ties by

performing a series of nested monitor calls .

Potential deadlock can exist if a process, on being suspended

at a conditioned PLOXY point, does not release all the

exclusivities it is holding.

- 27 -

section 4.1

Should a process, after a series of nested monitor calls, be

suspended in a monitor (say MON1) on a conditioned WAIT

operation then it must remain suspended until the corresponding

SIGNAL operation is forthcoming from another process. Suppose

this other process could not call the monitor MON1 directly,

but first needed to gain access to other monitors. If the

exclusivity to these other monitors is still held by the

suspended process, then deadlock will result as the SIGNAL can

then never be performed.

Loss of parallelism

When a process requests exclusivity to a monitor and some other

process is already busy inside that monitor then the requesting

process is suspended until such time as the other process has

released exclusivity to the monitor .

If, after a series of nested monitor calls, a process is

suspended at a PLOXY point without releasing the held

exclusivities then there is a potential loss of parallelism as

no other process will be able to gain access to those held

exclusivities for at least the duration of the suspension.

- 28 -

section 4.1

Differences in approach

It has been shown that failure to release exclusivities can

lead to the problems of deadlock and loss of parallelism, but

even the releasing of exclusivities can give rise to problems .

Released exclusivities should be reacquired before a

reactivated process be allowed to continue .

(Aside: This is not really necessary as a process only needs

the additional exclusivities when it leaves the monitor

for which the granting of exclusivity caused

reactivation. However for ease of implementation it is

generally preferable for all the desired exclusivities

to be reacquired before allowing the reactivated

process to be available, once more, for scheduling.)

This can lead to a reactivated process remaining delayed

waiting for the exclusivities that i t released and which other

processes might currently be holding .

Invariance of monitor variables

This possible delay with the release-and-reacquire approach is

a fairly minor problem when compared with the need to establish

the invariance of the monitor variables at the PLOXY points.

-29 -

section 4.1

A process on reacquiring a monitor's exclusivity after being

suspended might reasonably expect to find the values of many,

if not most, of that monitor's variables in the same state as

when the exclusivity was released. This, of course, might not

always be the case, as once the exclusivity is released other

process are free to gain access to that monitor and so alter

the values of the variables.

However, it is not always desirable to ensure all the monitor

variables are invar i ant. This can best be illustrated by means

of e xamples .

The first example shows a case where it is important for the

monitor's variables to be invariant, while the second example

shows a case where it is desirable for at least some of the

monitor's variables to be subject to alteration between the

time of releasing the exclusivity and when it is reacquired.

Example 1

monitor MONIT1;
var LOOP;

procedure *A;
begin

LOOP := 0 ;
while LOOP < 5 do

begin
LOOP := LOOP + 1;
--- PLOXY point --
(*some operations*)

end (*while*)
end; (*A*)

- 30 -

procedure *B;
begin

LOOP 6
end;

section 4.1

Should a process (say proce~s I) gain access to monitor MONIT1

and during the course of executing procedure A, be forced to

release the exclusivity at the PLOXY point, on reacquiring the

exclusivity the value of the variable LOOP may not be as

expected, but rather 6 if another process gained access to

procedure B during the interim of process I's suspension. This

might be totally unacceptable .

Example 2

monitor MONIT2;
var BUSY;
condition FULL;

procedure *A;
begin
while BUSY = 0 do

FULL.qwait; (*conditioned PLOXY point*)
(*some operations *)

end; (*A *)

procedure * B;
begin

BUSY : = 1;
FULL.qsignal

end; (*B*)
(*corresponding signal*)

begin (*MONIT2*)
BUSY : = 0 (* ini tial value of BUSY*)

end; (*MONIT2*)

A process (say process I) executing procedure A of monitor

MONIT2 would be suspended on the condition FULL as the value of

- 31 -

section 4.1

the variable BUSY has been initialised to 0 . When another

process (say process II) subsequently gains exc lusivity to

monitor MONIT2 and executes procedu re B, the value of BUSY will

be set to 1 and the cor re sponding qsignal desired by process I

will be performed .

Process I will be reactivated, but if the variable BUSY is

invariant, process I will still find its value to be 0, and

will thus agai n be suspended on the condition FULL.

Here it is desirable, i n order to circumvent the infinite loop

in procedure A,

alteration.

to have the variable BUSY susceptible t o

These examples may seem somewhat contrived, but they do serve

to illustrate the conflicting needs associated with monitor

variable invariance .

The following sections will examine the degree to which each of

the four languages, Concurrent Pascal , Edison, Modula - 2 and

Pascal Plus, all of which support monitor like facilities, deal

with the aforementioned problems.

This information will then be contrasted with the way in which

CLANG tackles the p ro blems .

- 32 -

section 4 . 2

4.2 The monitor concept in other languages

Having originated over ten years ago, it is only natural that

the monitor concept has been implemented to a lesser or greater

degree in a number of languages.

This section will be concerned with four of these languages ,

and more particularly the extent to which they endeavour to

overcome the problems outlined in the previous section .

Study of these languages has been greatly hampered by their

unavailabilit y (apart from Modula - 2) for practical evaluation

of certain questions relating to them.

The assessment of Concurrent Pascal, Edison and Pascal Plus has

been done from a purely theoretical knowledge gleaned from the

relevant articles and manuals published concerning them,

[Bri75J, [Bri77J, [Co179J, [Co180J, [Har77J; [Bri81J , [And83J ;

[Bus80J, [Bus 82J, [WeI79J, [WeI80J . The author admits that it

is possibl e that some of the conclusions may not be totally

valid on some implementations.

- 33-

section 4.2

Common features

Each of the four languages (and CLANG) supports a monitor like

construct which entails:

(1) A language construct that encapsulates the data structure

that may be "shared" by conc urrent processes;

(2) Subprograms, such as procedures or functions, contained

within this construct that will perform the desired

operations on this data structure: These subprograms may be

totally invisible "outside" the construct, or be flagged as

being accessible;

(3) Variables which effectively exist at the global level of

the program and which mayor may not be flagged as

exportable - possibly only in a "read only" capacity ;

(4) The identifiers that are accessible outside the monitors

are typically accessed by appending the identifier with the

name of the monitor in which it was declared separated by a

period - for example:

monitorname . identifier

(5) Initialisation code which will be performed on the

variables of this "monitor like" construct before any

processes attempt to access the data structure; and

-34-

section 4.2

(6) Some form of condition variable which can be used to

provide conditioned synchronisation within the construct .

Any deviations from these basic principles will be highligh te d,

otherwise they will be assumed part of each language's

constructs.

Example

The warehouse (as mentioned in chapter 3) may be coded as a

monitor:

monitor WAREHOUSE;
const OCCUPIED = 1;

UNOCCUPIED = 0;
var SHOP, SPACE;
condition FULL, EMPTY;

procedure *DEPOSIT(ITEM);
begin
if SPACE = OCCUPIED then EMPTY.qwait ;
SPACE := OCCUPIED;
SHOP := ITEM; (*deposit item*)
FULL.qsignal

end; (*DEPOSIT*)

procedure *REMOVE(var ITEM);
begin
if SPACE = UNOCCUPIED then FULL.qwait;
ITEM := SHOP ; (*remove item*)
SPACE := UNOCCUPIED;
EMPTY.qsignal

end; (*REMOVE*)

begin (*WAREHOUSE*)
SPACE := UNOCCUPIED (*warehouse initially empty*)

end; (*WAREHOUSE*)

-35-

I ' I .

I
section 4.2.1

4.2.1 Concurrent Pascal

Concurrent Pascal was developed by Brinch Hansen from 1975 to

1977. Being the first language to support the monitor concept

it provided a vehicle for evaluating monitors as a system

structuring device. The language has subsequently been used to

write several operating systems eg o Solo [Bri76J, [Pow78J.

A monitor can only be initialised once, by an init statement,

which allocates storage for the shared variables and performs

the initialisation of these. After initialisation the shared

variables of a monitor exist forever and are known as pe rmane nt

variables.

The parameters and local variables of a monitor procedure only

exist while it is being executed and are known as temporary

variables.

A monitor procedure can only acc e ss its own temporary and

permanent variables . These variables are not accessible to

other system components . Other components may only call

procedure entries (which are those procedures that are

explicitly designated as visible from "outside" the monitor) .

Only monitors and constants can be permanent parameters of

processes and monitors, which ensures that processes can only

communicate via monitors.

-3 6-

section 4.2.1

In Concurrent Pascal conditioned synchronisation is ach ieved by

means of a standard type QUEUE. A variable of type QUEUE may

only be declared as a permanent variable within a monitor type.

The operations that can be performed on a variable (say) Q of

type QUEUE are:

empty(Q)

delay(Q)

continue (Q)

True or false depending whether the queue is

empty or not.

The calling process is delayed on the queue Q

and loses its exclusive access to the given

monitor's data structure . The monitor can then

be accessed by other processes.

The calling process returns from the monitor

procedure in which the c on tinue operation was

performed. If another process is waiting on the

queue Q, that process will immediately resume

execution from its point o f delay . The resumed

process again has exclusive access to the

monitor ' s data structures.

- 37 -

section 4.2.1

Tackling the problems

To prevent deadlock of monitor calls and to ensure that access

rights are hierarchical, the prevention of a system type

calling its own procedure entries is enforced.

Concurrent Pascal uses the (so called) current monitor release

approach. A process will only release exclusion on the current

monitor in a chain of nested monitor calls when it performs a

delay operation . Similarly, for the continue operation only the

exclusivity to the monitor in which the operation is performed

is released (in any case the signalling process has to return

from the monitor immediately).

No attempt is made to release any exclusivities should a

process become blocked by a nested monitor call.

This approach has simplicity to recommend it, but as mentioned

in section 4.1, the problems of system's response degradation

and potential deadlock are raised.

By only releasing the current monitor in its chain of

exclusivities a process can at least be guaranteed the

invariance of the permanent variables of the monitors whose

exclusivitiy was not released. However, there does not appear

to be any provision for guaranteeing the invariance of the

permanent

release d.

variables of the monitor whose exclusivity is

- 38-

section 4.2.1

Additional advantages I disadvantages

Concurrent Pascal's facilities for conditioned synchronisation

have several flaws: basically a variable of type QUEUE is not a

queue .

The standard type QUEUE may be used within a monitor type to

delay and resume the execution of a calling process within a

procedure entry . However, at any time no more than one process

can wait on a single queue . (Aside: Nowhere in the literature,

[Bri75], [Bri 77], [Co179], [Co180], [Har77], is any mention

made as to what will happen if two (or more) processes attempt

to delay on the same queue - presumably some sort of run time

error will result).

This means that any mu ltiprocess queue will have to be

explicitly defined by the programmer as an array of single

process queues [Bri77].

eg o type MULTIQUEUE = array (. 0 . . qlength - 1 .) of QUEUE

where qlength is the upper bound on the number of concurrent

processes in the system.

The continue operation on a variable of type QUEUE makes the

calling process return from its monitor call . This implies that

any further statements following the continue will be ignored.

-39-

ego "statements"
if LENGTH = 0 then continue(Q);
"further statements - ignored"

end; "of monitor procedure"

section 4.2.1

This problem can be minimised by careful positioning of the

continue operation , but again the emphasis is on the programmer

to undertake this, (although there is no way the signalled

process can directly influence the signalling process).

-40-

section 4.2.2

Tackling the problems

The problems of which exclusivities to release to prevent

potential deadlock and the invariance of monitor variables do

not occur, as in Edison the technique used to contro l the

execution of the critical phases of when statements, is one of

global exclusion, ie. The execution of all when statements

takes place strictly one at a time.

A process executes a when statement in two phases:

(1) Synchronising phase: The process is delayed until no other

process is executing the critical phase of a when

statement.

(2) Critical phase: The Boolean condition is evaluated. If the

value TRUE is returned then the statements contained within

the when statement are executed and the execution of the

when statement is completed. If the value FALSE is

returned,

phase.

then the process returns to the synchronising

Each synchronising phase of a process only lasts a finite time

provided that the critical phases of all other concurrent

processe s terminate.

-42-

section 4 . 2.2

If several processes need to evaluate (or re - evaluate) the

scheduling conditions simultaneously, the implementation must

guarantee that they do so one at a time in some "fair" order

(eg . first-in-first-out).

There is thus no implicit manner available in Edison to prevent

several processes operating on a shared variable simultaneously

with generably unpredictable results. However, by restricting

the operations on shared variables to well defined disciplines

under the control of modules and when statements it is possible

for the programmer to formulate concurrent statements that make

predictable use of such variables .

In Edison the concepts of modularity, concurrency and

synchronisation have been separated. This admittedly results

in a more flexible language, being based on fewer concepts.

Also it is still possible to achieve the same security as in

(say) Concurrent Pascal, by the user adopting a programming

style that corresponds to the processes and monitors of

Concurrent Pascal.

ego A "monitor" can be constructed using the simpler

concepts of modules, variables, procedures and when

statements.

-43-

section 4 . 2.2

However the responsibility to ensure this security is placed

squarely on the shoulders of the programmer and there a r e few

or no safeguards to prevent the programmer breaking the

structuring rules and so writing meaningless programs with a

very errat i c behaviour.

-44-

section 4.2.3

4.2.3 Modula-2

The programming language Modula - 2is a descendant of its direct

ancestors Pascal and Modula. It was developed in 1979 by Wirth,

[Wir83], and includes all the aspects of Pascal with the

extensions of the module concept and multiprogramming. It has

been developed as a general, efficiently implementable, systems

programming language. Modula-2 was released for general usage

in March 1981 and is small enough to allow efficient program

development on 8 - bit microcomputers .

Modula-2 forgoes the high level multiprocessing concepts in

favour of lower level coroutines . Coroutines are procedures

which execute independently but not concurrently and which

communicate by transferring control to one another (rather than

by call - return). In a coroutine transfer, the transferring

coroutine becomes inactive and the transferred co r outine

resumes execution .

Thus the process (ie. coroutine) monopolises the processor

until such time as it wishes to relinquish it. This process

switch occurs when:

(a) a new process is initiated

(b) a SEND or WAIT operation is executed.

Process switching is thus, in its simplest form, entirely under

the control of the programmer and any suggestion of concurrency

- 45-

section 4.2.3

would appear to ~e absent . In this ease no monitor construct

seems necessary. Modula-2, however, does have the saving grace

in that the occurrence of hardware interupts can interfere with

the execution of a process and be made to effect a process

switch. This can be used to launch pseudo - concurrent

processes, for example by allowing each process to run for a

certain amount of time before a process switch is caused by a

clock interrupt [Sew84].

The specifications for the language Modula-2 do not contain any

concurrent features, but the library module facilities allow

these to be created by the programmer. In his book on the

language, [Wir83], Wirth suggests one such library module for

implementing conditioned synchronisation and so effecting a

process switch . This, together with the definition of a

process rin g (also to be contained in the library module), and

the specification of a priority in the heading of a module t o

control the interrupting of the executing process (an intrinsic

feature of the language), will r es ult in a " monitor like"

construct.

This suggestion is available in the Volition Systems'

implementation of Modula-2 (which is used at Rhodes University)

and so will be assessed here in the enviroment o f concurrent

processes being simulated by switching processes on the receipt

of a n interrupt.

-46-

section 4.2.3

Wirth's suggestion consists of the following operations which

can be performed on a condition (say) S:

WAIT(S) - appends the calling process at the end of the list

designated by S. A process switch is effected and

any process that is ready to run may gain control of

the processor.

SEND(S) - takes the first element off the list designated by S

and transfers control of the processor from the

sending process to that process.

Tackling the problems

The specification of the priority in a "monitor" module heading

is vital in ensuring mutual exclusion of that monitor's code.

The reason for the priority is that the seq uen tial exec ution of

any monitor procedure can only be disrupted by the occurrence

of an interrupt having a priority in excess of that as signed to

the particular monitor module. Thus a sufficiently high module

priority precludes the interruption of the execution of any

monitor procedure.

If the priority specified is not sufficiently high to p revent

an interruption of the pro cess in that module (and a consequent

process switch) there are no safeguards to ensure the mutual

exclusion of the monitor data.

- 47 -

section 4.2.3

Assuming the priority assigned to a module is high enough, if

the code within that module is extensive the loss of

parallelism amongst the processes could be significant as no

other process could proceed until the one currently executing

is either suspended or exits the monitor and renders the

program once more susceptible to interrupt.

This simplistic method of exclusion does remove the problem of

nested monitor calls being unsuccessful, but again the loss of

parallelism must be emphasised.

Implementing conditioned synchronisation by means of the WAIT

and SEND operations is fraught with dangers.

Although the WAIT operation will cause a process switch and

thus effectively cause the process performing such an operation

to "release" all its exclusivities, a process performing a SEND

operation is NOT assured of regaining the exclusivities it

transferred to the reactivated process as soon as this process

subsequently releases these exclusivities.

A break down of the mutual exclusion of a monitor module can

easily occur .

- 48 -

section 4.2.3

Consider the following example

Suppose a system consists of a monit or M and three processes.

Processes

If the process scheduling is done via a counter - clockwise

cyclic scan (a reasonable assumption) , then the use of WAITs

and SENDs in the following possible sequence of events can

cause the break down :

Process I enters the monitor M and performs

operation on some condition S in that monitor.

a WAIT(S)

The resulting process switch means that process II starts to

execut e . Process II now performs some operations until

interrupted by the clock, causing a process switch to process

III.

Process III gains access to the monitor M and somewhere ins id e

the code performs a SEND(S) operation thus transferring control

to the now reactivated process I.

- 49 -

section 4.2.3

When process I subsequently releases exclusivity to monitor M,

either by a subsequent wait operation or by leaving the monitor

and being interrupted, it is process II that gains the use of

the processor.

There is now nothing to stop process II from entering monitor

M, despite the fact that process III is still "suspended"

somewhere in there .

This situation is clearly contrary to the idea of a critical

section.

Note: It is not the scheduling algorithm that is at fault, but

r ather the carte blanche way in which a process releases

exclusivity

still be

exclusivity .

without concern for any process which

"temporarily suspended" waiting for

might

that

No attempt is made to ensure the invariance of any monitor

variables from the time the exclusivity to a monitor is

released by means of the WAIT or SEND operation, and when it is

subsequently reacquired.

The WAIT and SEND operations "work" in the limited enviroment

provided in the basic specifications of Modula -2, but as soon

as any form of concurrency (albeit pseudo concurrency) is

introduced by means of arbitrary process switching instead of

-50-

section 4.2.3

only at specific points, Wirth's suggestion falls well short of

what a programmer might expect in order to construct reliable

concurrent programs.

The library facilities of Modula - 2 do, however, give the user

the opportunity for developing other, perhaps better, methods

for expressing synchronisation and communication between

concurrent processes.

One su ch extension to Modula - 2, to provide a more Hoare - like

monitor has been implemented, albeit imperfectly (because of

other limitations in Modula - 2), by a colleague D. Sewry

[Sew84] .

In Sewry's extensions, concurrency is simulated by allowing

each process a small portion of processor time and using an

interrupt driven process switch by means of an internal clock.

(All this work was done on the Sage I V microcomputer which has

an internal clock.)

Mutual exclusion is achieved by compelling all monitor module

procedures, that are to be visible for access outside the

monitor, to execute, as their first statement, a call to a

routine to effect the gaining of exclusivity, and as their last

statement a call to a routine to effect the releasing of

exclusivity.

-51-

section 4.2 . 3

(A similar extension was undertaken with U. C . S . D. Pascal by

Boddy, [Bod83], [Bod84] .)

Should another process be busy in th e monitor, the p r ocess

attempting to gain access will be suspended until such time as

the exclusivity becomes available .

Conditioned synchronisation is provided by the

modified operations on some condition S;

follow i ng

WAITCONDITION(S) - suspends

operation

the process performing the

on a waitcondition queue

designated by S . Th e process releases

exclusivity to the monitor.

SENDCONDITION(S) - if there is no process waiting on the

condition S then this operation has no

effect, otherwise the process perfo r ming the

operation is suspended on a " polite " queue

and the process at the head of the cond i tion

queue regains exclusivity and cont i nues

execution . The process that performed the

SENDCONDITION will remain suspended until

the reactivated p r ocess releases exclusivity

to the monitor .

- 52 -

section 4.2.3

Note :

When the exclusivity to a monitor is released, it is not

immediately made available to any process, but rather the

" polite" queue and then the queue for processes waiting for

exclusivity, are scanned for any suspended process. The first

one found is granted the exclusivity. If no processes are

waiting, only then is the exclusivity made available for any

subsequent requests.

The main restriction in Sewry's extensions is that only one

monitor is allowed per program - this does away with the

problems relating to nested monitor calls.

There are no facilities to ensure the invariance of the monitor

variables during a process ' period of suspension.

What the extensions do show is the existing potential of

Modula - 2 for allowing a programmer explicitly to develop his or

her own constructs for allowing synchronisation and

comm unica tion between concurrent processes.

- 53-

section 4.2 . 4

4. 2. 4 Pa s c al Plus

The language Pascal Plus was developed in 1979 by Welsh and

Busta rd under the guidance of Hoare . While maintaining Pascal

as a subset, Pascal Plus contains major ex t ensions in the

fields of data abstraction and concurrency. Its design

objective was to provide tools which would encourage a

programmer to construct well engineered solutions to problems

on hand.

One of the major advances in Pascal Plus over the other

languages in the fields of processes and monitors, is that in

Pascal Plus processes and monitors may be defined as a type,

which allows " instances" of these types to be dec l ared,

[Bus80].

Another new feature included is that of initialisation and

finalisation code of a monitor, separated by what is termed an

inner statement (d enoted by '* * * ') . The inner statement of a

monitor also readies any proc esses, declared local to it , for

concurrent execution . It is the inner s t atement in the main

program which , when executed , act i vates all processes

"simultaneously". By this stage all the intialisation code of

the monitors will have been done. Once a ctivated all processes

proceed "simultaneously " (depending on whether the

implementation is on a single - or multiprocessor system) until

they all terminate .

-54 -

section 4.2.4

When all the processes have stopped the code following the

inner statement in the main program is executed followed by the

finalisation code for all the monitors. The drawback of

launching concurrency in this fashion is that for concurrency

to be launched more than once per program the inner statement

in the main program must be contained in some sort of loop and

if certain process are not to be launched every time additional

"fiddles" will have to be inserted into their code to achieve

this.

Those identifiers of a monitor which need to be visible from

outside the monitor are known as starred identifiers and their

declarations are preceded by an asterisk ('*'). All unstarred

identifiers are invisible and thus inaccessible outside the

monitor i n which they were declared.

Extensive

conditioned

facilities are

synchronisation.

provided

This

in

is

Pascal

achieved

Plus for

through a

standard monitor called condition, the underlying workings of

which are hidden from the user and only the interface given

below is visible. Associated with each instance of CONDITION

is an ordered queue on which processes may be temporarily

suspended until they are ab1e to continue.

-55-

section 4.2.4

monitor CON DIT ION;
type RANGE = 0 . . MAXINT;

procedure *PWAIT(PRIORITY:RANGE);
(* suspends the process calling it on the condition

queue with the priority specified by PRIORITY - a
low value ind icates a high priority status. The
suspended process is positioned behind all processes
with a higher or equal priority s tatus. *)

procedure *WAIT;
(* suspends the

queue with a

procedure *R ETURN;

process calling it on the
default priority of ' MAXINT

condition
div 2 ' *)

(* restores a process to a condition queue after it has
been activated temporarily *)

procedure *SIGNAL;
(* activates t he process at the head of a condition

queue . If the queue is empty a SIGNAL has no effect. *)

function *EMPTY:BOOLEAN;
(* returns TRUE if the condition queue is empty;

otherwise false. *)

function *LENGTH:RANGE;
(* gives the number of processes suspended

condition queue

function *PRIORITY:RANGE;

on a

(* returns the priority valu e of the process at the

*)

head of the relevant condition queue . *)

Tackling the problems

The designers of Pascal Plus believed that the monitors in a

program represent a potential bottleneck, and so every

precaution is taken to ensure that a process is never delayed

unnecessarily while executing monitor code. This has led to the

scheduling descision that a process in a monitor has a high

priority, overriding its run priority and thus a process'

execution of code in a monitor is allowed to run to completion

without it losing control of the processor.

- 56 -

section 4.2.4

The literature, [Bus80J, [Wel80J, states that mutual exclusion

in Pascal Plus can be implemented in one of two ways:

(1) On single processor machines, or multiprocessor machines

where very little time will be spent executing monitor

code, a global exclusion mechanism is used .

(2) On multiprocessor machines where monitor code might be more

involved, a separate exclusion mechanism semaphore is

maintained for each monitor.

(The author presumes the type of implementation is dependent on

the machine on which Pascal Plus is running .)

In the case of (1) the problems of deadlock and the invariance

of monitor variables relating to the nested monitor call do not

arise, (but see below for conditioned synchronisation), as the

global exclusion ensures that once one process is executing in

a monitor; no other processes are allowed to gain exclusivity

to any monitors and thus no nested monitor call can be

unsuccessful.

Should a nested monitor call be unsuccessful in case (2) , the

process performing such a call is made to wait but does NOT

release the exclusivity to any monitor it might already be

holding. Again the problem of invariance of monitor variables

does not arise and potential deadlock does not occur .

- 57 -

section 4.2.4

However, with both cases (1) and (2) the problem of loss of

potential parallelism is prevalent. The seriousness of this

problem depends (in case (1» on how long a process is busy

inside the monitors, or (in case (2» on how long a process'

nested monitor call is blocked and how many exclusivities that

process might hold.

With regard to conditioned synchronisation the following rules

relating to monitor exclusivities apply:

The PWAIT, WAIT and RETURN operations cause the release of all

exclusivities to monitors which the process performing the

operation might hold.

On performing

transfers the

a SIGNAL operation

exclusivity to the

the signalling process

monitor (in which the

operation takes place) to the process at the head of the

relevant condition queue . If the SIGNAL operation is the last

operation in a monitor procedure / function then the signalling

process can leave the monitor and continue to run, otherwise

the signalling process is delayed until the signalled process

subsequently releases exclusivity to the monitor, either by

leaving it or again being suspended via one of the conditioned

wait operations. Should the signalled process in turn perform

a SIGN AL then it is delayed in the same way.

- 58-

section 4 . 2.4

When a SIGNAL is complete, the exclusivity to the monitor

concerned is transferred back to the process that issued the

signal . The resumed process then continues executing from the

point where the signal was performed.

If there is no process on the condition queue then the SIGNAL

operation has no effect.

With the conditioned synchronisation operations there does not

appear to be any form of guarantee for the invariance of any

monitor variables. The problem does n ot only occur in the

monitor in which the conditioned synchronisation takes place,

but also in any monitors to which the signalled process might

have made successful nested monitor calls prior to being

suspended.

Additional advantages I disadvantages

Va riables of monitors which are declared as starred identifiers

may be inspected outside the monitor by more than one process

at a time. These variables may not be a l tered outside the

monitor, but only via a procedure or fu nction of the monitor in

which they were declared (ie. inside the monitor). Thus several

processes may be inspecting a monitor variable while another

may be modifying it. The hardware ensures that the inspecting

processes do not get a meaningless value, but it could be

either the value just before , or just after the modification.

-59 -

section 4.2.4

Once a process has entered a monitor by invoking a monitor

procedure / function it is then free to call any other

procedure or function of that monitor or even the initial

procedure / function recursively.

If deadlock occurs, the main program is reactivated and th e

execution of the monitor bodies is completed. This has the

advantage of recovery after deadlock, but it does mean that a

program could finish running and produce spurious results

propogated due to the processes' non-completion.

Apart from the non-guaranteeing of the invariance of the

monitor variables at conditioned PLOXY points, Pascal Plus,

more than any of those languages assessed so far, provides the

mutual exclusion and conditioned synchronisation facilities

necessary to ease the programmer ' s task of controlling

concurrent process synchron i sation and communication.

Many of the constructs in CLANG have been based on those of

Pascal Plus.

- 60 -

section 4.3

4.3 Using and implementing monitors in CLANG - practical details

This section will examine how CLANG deals with the p roblems

associated with the monitor concept. The examination will

consist of two parts:

(1) A look at the features available in CLANG for the

programmer to overcome these problems.

(2) A description,

diagrams, on

implemented.

illustrated by worked examples and flow

how the features shown in (1) were

The exact syntax of the monitor and its associated constructs

may be found i n the Appendix A: The User Manual, and a full

listing of the Pascal code making up the CLANG compiler and

interpreter may be found in Appendix B.

Monitors in CLANG may only be declared in the main block. This

differs from Pascal Plus which allows monitor declarations to

be nested inside other monitors. (Note : This is different from

a nested monitor call.)

-61-

section 4.3

There appears to be no need to declare monitors local to

another monitor block. This can be shown from one definition of

a monitor:

"A monitor is declared to ensure mutually

exclusive access to a critical region dealing

with the shared data structure" [Cha83J.

Only ~ concurrent process should be active inside a monitor

at any given time. If the nesting of monitor declarations was

allowed, the nested monitor declaration would provide mutual

exclusion in an area of code in which mutual exclusion is

already guaranteed.

Conditioned synchronisation in CLANG is achieved vi a condition

variables and the operations which can be performed on t h em.

Condition variables may only be declared local t o monitors and

are not variables in the "true" sense, but rather implicit

queues on which the operations qpwait(PRIORITY), qwait,

qSignal, queue and qlength can be performed. These operations

are essentially as those in Pascal Plus.

- 62 -

section 4.3

Tackling the problems

As CLANG has been designed as a possible language for teaching

concurrency, every effort has been made to address the problems

associated with the monitor and condition variables .

CLANG has been developed to run on single processor machines,

concurrency being simulated by " sharing" the processor by

allowing each process to run for a small random numbe r of steps

before effecting a process switch. A process can be i n one of

four states:

running - actually executing with control of the processor

ready - waiting to be scheduled

suspended - waiting fo r some event that will return it to the

ready state, and

terminated - finished execution

To minimise the loss of potential parallelism on a single

processor machine it is necessary for a process, on being

suspended, to release all the exclusivities it might hold.

The suspended process may not proceed until it has received the

go - ahead to continue by another process, releasing the desired

exclusivity or performing the necessary qsignal, and then has

reacquired all those exclusivities it released on suspension.

-63 -

section 4.3

This does mean there might be a delay before a reactivated

process is restored to the ready state, but, as will be shown

in the section on implementation, the use of priorities ensures

that this delay time is kept to a minimum.

What happens when a process performs a qsignal operation on a

condition variable is slightly more involved.

If there is no process waiting for the signal then a qsignal

operation has no effect .

If there is a process waiting then the signalling process is

temporarily suspended and the signalled process is reactivated.

The signalling process will remain suspended until the

signalled process releases the exclusivity to the monitor

concerned, either by leaving it, or by performing a subsequent

qwait or qpwait(PRIORITY) operation .

The signalling process is being "polite" in allowing the

signalled process to continue and therefore the signalling

process should be allowed to continue execution as soon after

the signalled process has released the exclusivity as possible.

Thus on being temporarily suspended, the process performing a

qsignal operation does not release all the exclusivities that

it might hold, but rather, only those which the signalled

process needs to return to the ready state and continue

executing.

.-64-

section 4.3

Even with the exclusivities transferred to it by the signalling

process, the signalled process may still not have all its

required exclusivities to continue. How the signalled process

acquires those exclusivities will be explained in the section

on implementation details; it suffices to say here that a

signalled process has the highest priority for acquiring its

desired exclusivities when other processes release them.

If the signalled process in turn performs a qsignal before it

releases the exclusivity of the monitor concerned, then it is

also temporarily suspended on the "polite" queue, in front of

the process which originally signalled it, which implies it

will regain the exclusivity before this process.

Invariance of monitor variables - methods

When a process regains the exclusivities it released on being

suspended, it might expect to find certain of the variables

internal to those monitors in a certain state.

The release-and-reacquire approach to monitor exclusivities,

adopted in CLANG, has made the ensuring of invariance of

monitor variables necessary .

As was shown in examples 1 and 2 of section 4.1, there are

conflicting desires when it comes to what monitor variables

need to be invariant .

- 65-

section 4.3

CLANG tackles this problem by dealing with each of the two

types of PLOXY point individually. The motivation for this is:

A programmer will be unable t o predict with any certainty

at a nested PLOXY point whether the nested monitor call

will be successful or blocked. On the other hand, a

conditioned PLOXY point is planned by the user to provide

points of synchronisation between concurrent processes.

At a nested PLOXY point

Due to the unpredictable outcome o f a nested monitor call,

should a process attempt a blocked nested monitor call, CLANG

ensures that the variables of the monitors whose exclusivities

are released, will contain the same values when those

exclusivities are regained, regardless of how many other

processes may gain access to those monitors in the interim.

This guaranteeing of invariance is implicit.

CLANG is seen as a teaching language, and as it is sometimes

desirable to demonstrate the effects of not ensuring the

invariance of monitor variables, a compiler directive has been

provided to override this invariance (cf. Appendix A: The User

Manual) .

-66-

section 4.3

At a conditioned PLOXY point

Any process performing either a qwait or the qpwait(PRIORITY)

operation on a condition variable is suspe nded and releases

exclusivity to any monitors that it might currently be holding .

Similarly any process performing a qsignal operation on a

condition variable is temporari l y suspended should there be

some other process waiting for that signal . Although the

signalling process might not transfer all its exclus i vities to

the signalled process, provision still has to be made for

invariance in those that are .

As these conditioned PLOXY points are planned to provide

synchronisation between concurrent processes, CLANG introduces

two explicit standard procedures SAVE(parameters) and RESTORE .

The standard procedure SAVE(parameters) allows the programmer

explicitly to state (as the parameters to the SAVE) which

variables of the monitor he or she wishes to make invariant (if

any).

Note: This choice is limited to the monitor in which the

conditioned PLOXY point occurs; any variables in the

other monitors that the suspended process holds will be

saved implicitly as per the nested PLOXY point (see

above) .

The RESTORE instruction re - establishes the monitor's variables

to their expected values.

-67 -

section 4 . 3

Due to the asynchronous nature in which the concurrent

processes are executed in relation to each other, it is

possible to execut e a program without ensuring any inva r iance

of monitor variables and still achieve the desired results .

Howeve r , without monitor var i able invariance it is not possible

to guarantee that the next time the program is run the results

will again be achieved .

Additional advantages / disadvantages

Monitor variables that are declared as starred identifiers may

be inspected, but their values may not be altered, from outside

the monitor in which they were declared. Thus several

processes may be inspecting a monitor variable while another

may be "inside" the monitor altering its value. The value that

the inspecting processes obtain could be either the value

before or after the alteration .

A program's global variables may be inspected, but their values

may not be altered, from within a monitor .

- 68 -

section 4.3

There are no safeguards to prevent concurrent processes

updating the global variables "simultaneously". The onus is on

the programmer to ensure that this does not happen. In CLANG

there is no distinct PROCESS type, processes are just

procedures called from within the Cobegin . . Coend construct , so

it is impossible for the compiler to ascertain at compile time

whether a procedure is accessing a global variable from one of

a set of concurrent processes or not.

- 69 -

section 4.3

Implementing monitors in CLANG - illustrated details

In the implementation developed to date, the language CLANG is

compiled int o intermediate P-codes by a compiler written in

Pascal. (This

"extens ions II

is UCSD Pascal, with use made of as few

as possible.) This P-code is then interpreted by

wh ich forms an integral part of the compiler a procedure

program . (The P-code set is based on that given in [Wir76].)

Extensive use is made of Pascal's POINTER and SET facilities in

imp lementing the various queues associated with monitors and

condition variables.

The language CLANG ha s come a long way since its original

inception as a program for teaching compiler construc tion.

Several earlier versions of CLANG exist, such as CLANG6 by

Terry [Ter83], and in these it is possible to const ruct

monitors explicitly by means of semaphores, similar to the way

shown by

[Bod83]

Ben -Ari [Ben82], or by the means shown

and [Bod84]. However these earlier versions

by Boddy

do not

attempt to tackle any of the problems associated with the

monitor concept (cf . section 4.1) and are best suited for

teaching the concepts of "simple" concurrency .

- 70 -

section 4.3

This section will be concerned with the latest version of

CLANG,

with

(CLANG 21.2C), and gives a description, in conjunction

flow diagrams (which should be studied with the

accompanying notes) of the implementation of:

(1) monitors,

(2) condition variables, and

(3) invariance of monitor variables .

(1) Monitors

The who le crux of the implementation of monitors is the

assigning of a unique number, by the parser, to each monitor as

it is declared . This enables easy identification at run time

as to which monitor is being referenced.

During run time there is a set, AVAILABLEMONITORS, which holds

the unique numbers of those monitors to which no process

currently has exclusivity.

It is necessary to establish exactly when a process requests

exclusivity to a monitor and when it is releasing it .

Exclusivity is only required when a process wishes to call a

starred procedure or function of a monitor. This is easily

detected during compile time:

ie. monitorname.subprogramname

- 71-

section 4 . 3

and thus at the P-code level a call to a starred procedure or

function is preceded by a P- code which requests exclusivity to

a particular monitor (identified by means of its unique number)

before the calling process can continue.

Similarly a process releases exclusivity to a moni t or on exit

from a starred procedure or function, and so the return

instruction is preceded by a P- code which will inform the other

processes of the particular exclusivity being released .

A process on being suspended is also compelled to release the

exclusivities it is currently holding. The possibility of

suspension due a blocked nested monitor call cannot be

established during compile time and so is dealt with implicitly

at run time . Only if a process is suspended wil l the

exclusivities be released . How this is achieved will be

detailed shortly .

Each active process in CLANG has its own entry in a (circularly

linked) Process Descriptor Table (PTAB) . Contained within this

process descriptor table are a number of fields which hold

information relevant for the execution of each process.

- 72-

section 4.3

Three new fields were introduced into PTAB for use in

connection with monitors.

PTAB array [PTYPE] of
record

EXCLUSSET, HELDSET: set of 1 . . MONMAX;
NOOFELEMENTS: 0 .. MONMAX;

end; (*PTAB*)

EXCLUSSET - holds the unique numbers of those monitors whose

e x clusivity the process has yet to relinquish.

HELDSET - is used to establish whether a pro cess, on being

reactivated after being suspended, has in fact

reacquired a ll its necessary exclusivities so as to

be allowed to continue execution.

NOOFELEMENTS - holds the number of exclusivities a process

released on being suspended .

The implicit queue for each monitor is aChieved by an ar r ay,

MONITORQUE, of dynamic structures, indexed by the unique

numbers of the monitors.

The delicate and involved nature of the proceedings when a

process requests or releases exclusivity require these

operations to be indivisible . This is achieved by making the

request for exclusivity and the release of exclusivity single

P- codes . (A process switch in CLANG can only occur after a

single P-code has been completely interpreted .)

- 73 -

section 4.3

Requesting exclusivity

The diagramatic representation of the actions performed when a

process requests exclusivity are shown in figure I.

Notes relating to figure I

(1) A process is able to determine whether another process

already has exclusivity to the requested monitor by checking

whether the monitor's unique number is in AVAILABLEMONITORS

or not.

(2) An examination of the contents of the EXCLUSSET field for a

process will establish whether or not a process has

exclusivity to other monitors .

(3) The process is queued on the implicit monitor queue with a

priority worked out by means of:

(the maximum number of monitors allowed per program) +

- (the number of exclusivities held by the process)

ie . MONMAX + 1 - NOOFELEMENTS

where MONMAX = 15 in the implementation of CLANG under

discussion.

The reason for this choice of priority on the implicit

monitor queue as opposed to a simple first - come - first - served

-74-

(,) "
the moni tor

available
?

YES

The monitor
is now no longer ·

dVdilable to
other processes

The process is
granted its

requested
exclusivity

Continue

figure I:

NO

ce,
he process NO

ave exclusivity > ___ -,
to any other

nitor ,

YES

Save tl'le
values of the

monitor
variables

(ef. Invariance)

(3)

(4)

Suspend the
process on tl'le

implicit
moni tor Queue

Release all the
exclusivities

held by the
process

Requesting exclusivity

section 4.3

strategy was based on the logic that the more exclusivities a

process has, the more will be released for other processes to

access, when that process finishes execution.

This priority also has important consequences f or minimising

storage requirements necessary for ensuring monitor variable

invariance, as will be shown later.

This priority strategy does mean that those processes with

few or no exclusivities re leased will take slightly longer

before they are granted the requested exclusivity, but the

possibility of indefinite overtaking is prevented as will be

shown in the example given below.

Processes with the same priority will be queued on a first

come-first - served basis.

Aside: The information that needs to be stored on the monitor

queue is: the process number (ie. the suspended process'

entry into the process descriptor table), the process'

priority and a pointer to the next process on the queue (if

any).

This can be represented graphically as:

MONITORQUE

. ,
n

- 75 -

section 4.3

(4) The actions taken when r eleasing exclusivities due to a

process becoming suspended are the same as when a process

releases exclusion by leaving a monitor, save that for a

process be i ng suspended the actions must be performed for

every exclusivity that the process holds, whereas f or a

process which exits a monitor, the actions are performed for

exclusivity to that monitor alone.

Releasing exclusivity

When exclusivity to a monitor is released, th e exc lusivity is

not simply added t o the set of available monitors, but rather,

a check is f irst performed as to whether any process might

already be queued waiting for the exclusivity. If there is a

process waiting, then that process is granted the exclusivity

and then it must endeavour to regain all its released

exclusivities so that it may continue execution.

The actions undertaken when execlusivity to a monitor is

released can be viewed diagramatically in figure II.

Notes relating to figure II

(1) A process is added to the " polite" queue (GETFIRST) as a

result of a qsignal operation on a condition var i able . This

will be shown in the section on implementing condition

variables.

- 76 -

YES

Add the
excluSI'flty to
those .Irudy
held by the

preens

YES

IIOnltOI"

NO

Add the mon i tOI"
to tile set of

u'll.blt
II'(In I tOI"S

NO

RtmQve tile process
(I"0Il the ·pol itt
QlIeue, but I eave

It SlIspended

figure II:

YES

NO

Tht process Is
given the
r"tqUtst~

excluslvl~y

Re.cthHe the
process·

nwte I trudy
for schedul i ng

YES

YES

NO

Add this tIN
eJlclushl ty to

til. process I set
o(cUl"l"tntly held
uclusl"ltJes

,
Give tne proctSS

b.ck UloSt
txclusi'fltle.s

YES

Get thOst 4v411able
and Queue tJ1e proce.s

on tl\e l"etlWlninq
IIIOnltol" Queues ..,Ith

pl"lol"lty 0

Releasing exclusivity

NO

Remve the
process frotl the
tile Queue but

lea'fe It
suspended

section 4.3

(2) The check is performed by examining the monitor queue indexed

by the unique number of the monitor whose exclusivity is

released. If this queue is empty then there is no process

waiting t o gain that exclusivity.

(3) The priority of 0 for a process at the head of the monitor

queue needs some explaining.

The formula for assigning priorities to a process on being

suspended (cf. note 3 relating to figure I), allows processes

to be assigned priorities in the range 1 to 16 - a low

priority value indicating a high priority status . A priority

of 0 is the highest priority a process can have on the

monitor queue . This priority is only assigned to a process

wh e n, having already obtained the exclusivity for which it

was originally suspended, it may st ill not proceed but must

be queued (with this priority of 0) waiting to reacquire all

its necessary exclusivities, that other processes currently

hold .

The top priority thu s ensures that such a process is delayed

for a short a time as possible .

(4) This can easily be seen by examining the contents of

EXCLUSSET. If EXCLUSSET is empty then no exclusivities were

released when that process was suspended.

-77-

,
I '

section 4.3

(5) Once a process is reactivated it must reacquire all the

exclusivities it released on being suspended. An examination

of EXCLUSSET and AVAILABLEMONITORS will reveal whether all

the desired exclusivities are available or not. If they are

then the process can reacquire them and be restored to the

ready state. For all those exclusivities that are

unavailable the process is suspended on the relevant monitor

queue with a priority of 0.

(6) Every time a react i vated, but still delayed, process

reacquires one of its necessary exclusivities, this

exclusivity is added to the HELDSET field of that process.

When HELDSET = EXCLUSSET that process has reacquired a l l its

necessary exclusivities and need be delayed no longer .

Additional Notes

If more than one process is suspended on a monitor queue with a

priority of 0 then these processes will be queued on a f irst -

in - first - out basis.

The release of exolusivity is an indivisible operation and

oannot be interrupted by other prooesses wishing to release

exolusivities or suspend themselves on monitor queues .

In CLANG it is possible to call a starred procedure or function

recursively or from another procedure or function declared

-78-

section 4.3

within t h e same monitor. These subsequent calls are performed

without requesting exclusivity again (which would result in

deadlock) and without releasing exclusivity to the monitor

until returning to t he point from where the original monitor

procedure or function was called. (This is ach ieved by the SKIP

field in a process ' descriptor table.)

Detailed example:

This worked example is designed to show the workings of the

various queues relating to monitor exclusivity. It is hoped

that by careful study of this example in conjunction with the

flow diagrams (figures I and II) the techniques used in

implementing monitors in CLANG will become clear to the reader,

thus making the understanding of actual Pascal code, supplied

in Appendix B, that much easier.

Consider the case of four monitors and five processes declared

in a program.

Initially the set up is:

monitor
1

monitor
2 ______ ~~

moni(or
4

unique monitor numbers

- 79 -

section 4 . 3

Note : The hierarchical nature of monitor declarations restricts

which monitors may be called from which other monitors .

eg o It is possible to call a procedure / function in

monitor 2 and 3 from within monitor 4, but no

procedure / function in any other monitor may be called

from within monitor 1.

Process descriptor table:

Processes A B C D E
EXCLUSSET <p <p <p <p <p

HELDSET <p <p <p <p <p

NOOF'ELEMENTS 0 0 0 0 0

Note: The characters for the processes are used purely for ease

of identification .

MONITORQUE

A

2 A

3 A

4 A

queues (indexed by the unique
numbers) are initially empty .

AVAILABLEMONITORS = [1, 2, 3, 4J

Processes ready for scheduling = (A, B, C, D, E)

monitor

There follows a trace of possible events and their effect once

concurrency has commenced .

Process A asks for and receives exclusivity to monitor 4.

- 80 -

section 4.3

Process C asks for and receives exclusivity to monitor 2 .

Picture so far:

A 8 c o E MON ITO RQUE

4 • A

• • 2 A

o o o 3 A

4 A

AVAILABLEMONITORS = [1 , 3J

Processes ready for scheduling = (A, B, C, D, E)

Process A from within monitor 4 asks for and receives

exclusivity to monitor 3 .

Process B asks for exclusivity to monitor 4 and is t herefore

queued with priority = (15 + 1 - 0) =16.

Picture so far:

A 8 C 0 E MONITORQUE
-

4,3 • 2 • • A

• • • • • 2 A

1 0 1 0 0 3 A

B
4

A

AVAILABLEMONITORS = [lJ

Processes ready for scheduling = (A, C, D, E)

Note: Process B has yet to gain an exclusivity.

- 81 -

I
I .
I .

section 4.3

Pr ocess E requests for exclusivity to monitor 4 and is

therefore suspended with pr iority = 16.

Process C requests and receives exclusivity to mon i tor 1.

Process D requests exclusivity to monitor 1 and is therefore

queued with priority = 16.

Picture so far :

A B c o E MON ITORQUE

3,4 1 , 2

2 A

2 a a a a 3 A

4

AVAILABLEMONITORS = []

Processes ready for scheduling = (A , C)

Notes:

(a) Process E is queued behind process B.

(b) Process D i s queued as process C requested the exclusivity

to monitor 1 first.

Process A now reques t s exclusivity to monitor 1 . The fol l ow i ng

events occur:

(1) Monitor 1 is not available so therefore process A

is queued for monitor 1 with priority = 16 - 2= 14 .

(2) Because process A is suspended it must release

the exclusivity to the monitors that it is

already holding, namely to monitors 3 and 4.

- 82-

section 4.3

(3) As monitor 4 has now become available , process B

is removed from the head of the queue, granted

the exclusivity and restored to the ready state.

Note: Even t s (1) to (3) all take place during the exec u tion o f

one P- code (the request by process A for e xclusivity t o

monitor 1).

Picture so far :

A B C D E MON ITORQU E
,----

3,4 4 1, 2 ~ ~

~ ~ ~ ~ ~ 2 A

2 2 a a 3 A

4

AVAILABLEMONITORS = [3J

Processes ready for scheduling = (B , C)

Notes:

(a) Process A is queued in f r ont of process D as process A has

the higher priority .

(b) Process E is now the first element on the queue for monitor

4 as process B has been removed .

(c) The exclusivities r eleased by process A are remembered by

that process.

- 83 -

section 4.3

Process C now finishes with monitor 1 and releas es t he

exclusivity with the following consequences:

(1) Monitor 1 is removed from process C'S EXCLUSSET .

(2) The queue for mon i tor 1 is examined - process A

is on top of the queue and so process A is given

the exclusivity to monitor 1.

(3) Process A needs exclusivity to monitors 3 and 4

before it can continue - are "these available ?

Monitor 3 is available so process A reacquires

the exclusivity to monitor 3.

The exclusivity to monitor 4 is not available so

process A is queued for this with priority 0 .

Note : Events (1) to (3) all occur as the result of one P - code

(the release of the exclusivity to monitor 1 by process

C) •

Picture so far:

A B C 0 E MON ITORQU E

1,3,4 4 2 ~ ~

1,3 ~ ~ ~ ~ 2 A

3 1 0 0 3 A
L--

4

AVAILABLEMONITORS = []

Processes ready for scheduling = (B , C)

-8 4-

section 4.3

Notes:

(a) Process A has the highest priority on the queue for the

exclusivity to monitor 4 and is therefore queued in front

of process E .

(b) Process A still has to get exclusivity to monitor 4 before

it can continue .

(c) Processes E and D are still unable to continue.

Process B now leaves mon itor 4 thus releasing the exclusivity.

The following occurs:

(1) The queue for monitor 4 is examined - process A

is at the front of the queue with a priority of

o .

(2) The exclusivity to monitor 4 is added to the set

of exclusivities already being held by process A

(HELDSET) and process A is removed from the

queue.

(3) A check is now carried out to see if process A

now has all its required

it does, so process

scheduling.

A

exclusivities. Indeed

can be readied for

Note: Again events (1) to (3) all occur as the result of the

execution of one P- code (process B releasing exclusivity

to monitor 4) .

- 85 -

section 4.3

Picture so far:

A B C D E MON ITORQUE

1 ,3 ,4 2 ~ ~ ~ EIl
~ ~ ~ ~ ~ 2 A

3 0 0 0 0 3 A

-
[]

4
AVAILABLEMONITORS =

Processes ready for scheduling = (A , B, C)

Notes :

(a) Process A now has all its desired exclusivities so its

HELDSET is set back to NULL .

(b) Process E will be the next process to be granted

exclusivity to monitor 4 .

The weakness of the priority queueing strategy can be seen from

the fact that processes D and E have yet to gain any

exclusivities, but as will be discussed in the section on

implementing monitor variable invariance, this consequence is

far outweighed by the amount of storage that would be wasted if

the priority strategy was not used.

- 86 -

section 4.3

(2) Condition variables

A unique number assigned during compile time is used to

identify the individual condition variables at run time.

These unique numbers are assigned to the condition variables as

they are declared and as each operation on a condition variable

has to be prefixed :

ie . conditionvariab l ename . operation

the unique number can be incorporated into the P- code for that

operation .

Associated with each condition variable is a queue on which

processes can be suspended . An array (CONDVARQUE) of dynamic

structures is used to implement these queues, indexed by the

condition variable ' s unique number.

Of the fiv e ope r ations allowable on condition variables,

qlength and queue are functions:

Qlength returns the number of processes suspended on a

c ondition variable queue . This is easily achieved by a simple

count of the number of processes on the queue .

Queue returns the value 0 or 1 depending on whether the queue

associated with the condition variable involved is empty or

not.

- 87 -

section 4.3

The priority value for the qwait or qpwait(PRIORITY) operations

is to be found on the stack fr~me of the process performing the

operation, while the unique number of the condition variable is

part of the P-code for that operation.

The process performing the operation is suspended on the

relevant queue behind any process with an equal or higher

priority . The suspended process then releases all its held

exclusivities (as shown in figure II).

The information that needs to be stored on a condition variable

queue includes: the process' index into the process descriptor

table; the priority of the process on the queue; and a pointer

to the next process on the queue (if any).

This can be viewed graphically as:

CONDVARQUE

n~
L:f ~

I

• I

n

The activities involved when a process performs a qsignal

operation on a condition variable are a little more

complicated.

In order to implement this operation another queue, the so-

called "po lite " queue (GETFIRST) was introduced.

-88-

section 4.3

(Aside: It would have been possible to use the existing queue

MONITORQUE and simply implement "politeness" by means of a high

priority (higher than 0, say -1) . Howeve r this was rejected in

favour of a separate queue, GETFIRST, so as clearly to

distinguish the "polite" queue from the exclusivity queue .)

As can be seen in figure II, a process on the GETFIRST queue

has the highest priority to gain the relevant monitor

exclusivity as that queue is checked before MONITORQUE.

GETFIRST is also indexed by the unique number of the monitor

whose exclusivity is being dealt with.

The actions involved when a process performs a qsignal

op eration on a condition variable can be seen diagrammatically

in figure III .

(The process performing the qsignal operation is termed the

signalling process, while the process at the head of the

condition variable queue that is reactivated by the qsignal is

termed the signalled process .)

Notes relating to figure III

(1) If the queue, indexed by the unique number of the condition

variable concerned , is empty, then the qsignal operation has

no effect.

- 89 -

(1)

(2)

(3)

Suspend tne
signdlllnq process

on tne uETFIRST
queue

Get thOse
recu l red

excl;Jstvl~jes
[Mt are
dY.1I1.!:tllt

Transfer a! I tne
common exclu~ivit:es
tMt tne 51gnallinq
precess milint hold

to ttle s ignal led
precess

(3)

Add the 5i<;;Odlll n9
O)rccess to the

GHFIRSr aUeue for
a II t~e

exc\usivities
tnns fe rred

NO

Ignore tile
(nstMJctlon dnd

contlnue execut ing

(4) Dces
,e SigOdIIe- NO

prcce5S :-: ,we d II '>-.:.:.::.....---------------,
ex cl!.:,>i '/l ties

contlr.'

YES

1

Transfer all the
common excluslvities
tnat these processes
mignt hold to the
signa lIed process

Add these processes
to :ne GfTFIPST
queue for thE:

excluslvlties tnat
were tr4nsferred

NO

YES (.(k[>
r<<----------------< orocess !'!dve all

exclUSlvitles

Remove the
signalled process
from the condition
variable queue

Restore the
signalled

process to the
reauy state

f i gu re I I I:

YES

t:y

Transfer a II ttl'!
common exclusivities
t~dt these precesses
might hold to the
s!gnalletl process

Add these processes
to the GnF! .~5T
Queue for the

exclusivities that
were transferred

Suspend the
signalled process
on the GETFIRST

Queue for al I its
outstanding

ex.clusivities

The qsignal operation

NO

section 4 .3

A signalled process may not proceed until it has reacquired

all the exclusivities it released on suspension. In order to

prevent deadlock the signalled process must be given those

exclusivities that it needs, from the processes that are

suspended but holding them. These processes must either be

temporarily suspended (eg. the signalling process) , or be

processes that have been reactivated but are as yet unable to

continue as all their necessary exclusivities (including the

monitor in which the qsignal operation is taking place) are

unavailable (cf . note 3 relating to figure II). Processes

that give up held exclusivities must have first option for

their return and so are added to the GETFIRST queue for the

relevant exclusivity. (Obviously no two processes can be

holding the same exclusivity.)

(2) The contents of AVAILABLEMONITORS is examined to see if any

exclusivities

available.

required by the signalled process are

(3) The process that just performed the signal is checked first

for any exclusivities it might have in common with those

required by the signalled process . (One of these will be the

exclusivity to the monitor in which the qsignal and the

qwait, or qpwait(PRIORITY) , operations took place .)

The signalling process is then added to the GETFIRST queues

indexed by those exclusivities it transferred .

- 90 -

section 4 . 3

(4) A process can check whether it has now holds all its required

exclusivities by comparing the contents of HELDSET with the

contents of EXCLUSSET.

(5) If this "pilfering" of the exclusivities from the signalling

process does not yield all the necessary exclusivities, the

signalled process examines the HELDSETs of other processes

that might be suspended on the same GETFIRST queue. These

could include signalled processes which, without f i rst

releasing exclusivity to that monitor, have themselves

performed a qsignal operation, and/or processes which have

been suspended on this queue as the result of transferring

the exclusivity concerned to a signalled process.

(6) If both (3) and (4) are still not enough, the signalled

process examines the processes that have been reactivated

elsewhere, but need to reacquire, at least, the exclusivity

of the monitor concerned in order to continue. (They will be

suspended on MONITORQUE with a priority of 0 .)

(7) Should the signalled process still not have reacquired all

its necessary exclusivities then it is added to the GETFIRST

queue for those exclusivities still outstanding and must

remain delayed until such time as they become available .

-91-

section 4.3

Detailed example

It is hoped that the careful study of the following example in

conjunction with flow diagram III will provide the reader with

some insigh t as to how the various queues relating to

operations on condition variables are manipulated .

In this example there are four monitors and six processes. A

condition variable, C1, has been declared in the second

monitor.

There follows a trace of possible events

consequences, from the launching of concurrency.

Picture so far

A

EXCLUSSET r:l
HELDSET 0

BCD E F

BB8BB
GETF IRST MON ITORQUE

A A

2 A 2

3 A 3 A

4 A 4

AVAILABLEMONITORS = [1, 2, 3, 4J

Processes ready for scheduling = CA , B, C, D, E, F)

- 92 -

and their

CONDVARQUE

l[J

section 4.3

Process A performs succesful nested monitor calls to monitors
,
I. 4 , 3 and 2.

Process D performs a succesful call to monitor 1.

Process E requests exclusivity to monitor 4 and is suspended.

Process A now performs a qwait operation on the condition

variable C1 in monitor 2 and is therefore suspended

and as a result of this process E is granted the

exclusivity to monitor 4 and reactivated; the

exclusivities to monitors 2 and 3 are added to

AVAILABLEMONITORS .

Picture so far

ABC D E F

BBBBEBB
CDNDVARQUE

lGhI3

GETF IRST MON !TORQUE

A A

2 A 2 A

3 A 3 A

4 A 4 A

AVAILABLEMONITORS = [2, 3J

Processes ready for scheduling = (B, C, D, E, F)

- 93-

section 4.3

Process E performs successful nested monitor calls to monitors

3 and then 2, but its nested monitor call to monitor

is blocked as process D currently has the

exclusivity . Process E is suspended waiting for

exclus ivit y to monitor

monitors 2 , 3 and 4.

and releases exclusivity to

Process F executes nested monitor calls to monitors 4 and 2 and

then performs a qwait operation on the condition

variable C1 in monitor 2 and is suspended and

releases exclusivity to monitors 4 and 2.

Process B requests and is granted exclusivity to (the now

available) monitor 2 .

Process C performs a successful monitor call to (the now

available) monitor 3 .

Process D leaves monitor 1 thus releasing exclusivity , which is

then granted to process E. Process E is able to

acquire exclusivity to monitor 4, which is available,

but must be queued, with priority 0, for monitors 2

and 3.

- 94-

section 4.3

Picture so far

ABC 0 E F CONDVARQUE

8fBGB
1,2
3,4

1,4 tB 1~rn

GETF I RST MON ITORQUE

" "
2 " 2

3 " 3

4 " 4

AVAILABLEMONITORS = []

Processes read~ for scheduling = (B , C , D)

Process B executes a qsignal operation on the condition

variable C1 in monitor 2. Process A is at the head of

the queue for C 1 so process A is reactivated and

process B is suspended on the GETFIRST queue for

monitor 2 . Process A must now reacquire all the

exclusivities it released, (remembered in EXCLUSSET),

in order to continue .

The exclusivity to monitor 2 is transferred from

process B (when the qsignal is performed). Process B

has no further common exclusivities and there are no

other processes suspended on the GETFIRST queue for

monitor 2, so MONITORQUE queue for monitor 2 is

checked for any processes with a priority of 0.

-95 -

section 4.3

Processes E is suspended on this queue with priority

o and so the exclusivity already held by process E,

(namely that to monitor 4) , is transferred t o process

A and process E is suspended on the GETFIRST queue

for exclusivity to monitor 4. The exclusivity to

monitor 3 is unavailable, (process C is busy with

it), so process A is suspended on the GETFIRST queue

for exclusivity to monitor 3.

The execution of one P- code (the qsignal on Cl) has changed the

queues as such:

Picture so far

A

R
EJ

BC D

BBB
GETF IRST

A

2
~

3

4

AVAILABLEMONITORS = []

E F

Ej' 2
3,4

1 B
MON !TORQUE

A

2

3

4 A

Processes ready for scheduling = (C, D)

- 96 -

CONDVARQUE

l~rn

section 4 . 3

Process C finishes with monitor 3 , releasing the exclusivity

which is given to process A. Process A is removed

from the GETFIRST queue for monitor 3 and as it now

has all its necessary exclusivities, is ready for

scheduling .

Process A now executes a qsignal operation on the condition

variable C1 in monitor 2 . Process F is at the head of

the queue and is thus reactivated. Process A is

temporarily suspended on the GETFIRST queue for

monitor 2, in front of process B, and the common

exclusivities to monitors 2 and 4, held by process A

and needed by process F, are transferred to process

F . Process A is th us also suspended on the GETFIRST

queues for exclusivity to monitor 4, in front of

process E. Process F now has all its required

exclusivities and is thus available for scheduling.

Picture so far

BC D E F CONDVARQUE

BaB fE
'2

3,4

1 ~ 18

-97-

section 4.3

GETF I RST MON !TORQUE

A A

2 ~
2

3 A 3

4 ~ 4 A

AVAILABLEMONITORS = []

Processes ready for scheduling = (C, D, F)

Note:

(a) When a process is ready for scheduling i ts HELDSET is set

to NULL. Only while a process is reactivated, but still

delayed, will its HELDSET contain the set of exclusivities

which it is currently holding.

Process F leaves monitor 2, releasing the exclusivity which is

given to process A (as process A is at the head of

the GETFIRST queue for monitor 2) . Process A is

removed from the GETFIRST queue for monitor 2, but

still needs the exclusivity to monitor 4 before it

may continue .

Process F now exits monitor 4, releasing the exclusivity which

is then given to p r ocess A. Process A is removed from

the GETFIRST queue for monitor 4 and as it now has

all its necessary exclusivities , is ready for

scheduling .

- 98 -

section 4.3

Picture so far

ABC D E F CONDVARQUE

f§6BBfBB 1[J

GETFIRST MONITORQUE

A A

2 B 2 E

3 A 3

4 §3 4 A

AVAILABLEMONITORS = []

Processes ready for scheduling = (A, C, D , F)

Process A leaves monitor 2 and the exclusivity is given to

process B which then has all its necessary

exclusivities and may therefore also be readied for

scheduling .

- 99 -

section 4 . 3

Picture so far

ABC D E F CO NDVARQUE

BfBBB Ej,z
3, 4

1 B 1[]

GETF IRST MON !TORQU E

A A

2 A 2

3 A 3

4 "-- ./' 4 A

AVAILABLEMONITORS = []

Processes ready for scheduling = (A , B, C , D, F)

Process B leaves monitor 2 and the exclusivity is given t o

process E as process E is sitting on MONITORQUE for

monitor 2 with a prio r ity of 0 and t here are no othe r

processes on the GETFIRS T queue fo r monitor 2 .

Process E still does not have all its r e quired

e xc lusivities and t hus remai n s delayed .

- 100 -

section 4.3

Picture so far

AB C 0 E F CONDVARQUE

tBBB8 fB
'2

3 , 4

1,2 B 10

GETF IRST MONITORQUE

" "
2 " 2 "
3 " 3

4 '-"
:,... 4 "

AVAILABLEMONITORS = []

Proc e sses ready for scheduling = CA , B , C, D, F)

Process A finishes with monitor 3 and the exclusivity is given

to process E wh i ch still needs exclusivity to monitor

4 before i t can be r eadied for s c heduling .

Process A finishes with moni t or 4 and the exclusiv i ty is g i ven

to process E which now, finally, has all its desired

exclusivities and can be readied for scheduling.

- 101 -

section 4.3

(3) Invariance of monitor variables

Invariance of monitor variables means that the monitor

variables must have the same values when a process reacquires

it exclusivities as when it was forced to release them on

suspension.

Concern for this invariance is only necessary when a process is

suspended either by executing a nested monitor call which is

blocked, or at a conditioned PLOXY point.

To facilitate this " backing up" of the values of monitor

variables a new field, VARSTACK, was introduced into the

process descriptor table (PTAB). This field contains a pointer

to a dynamically created list on which the values and addresses

of the monitor variables can be saved when the need arises.

Should a process be suspended as the result of a blocked nested

monitor call, all the variables of the monitors, whose

exclusivities that process is holding, are saved.

At a conditioned PLOXY point, only if the explicit instruction

SAVE(parameters) is used will any monitor variables be

invariant. These variables are those from the monitor in which

the conditioned PLOXY point occurs,

parameter list of the SAVE, as

which are specified in the

well as all the monitor

variables of the other monitors whose exclusivities that

process might be holding.

-102 -

section 4.3

Note: If the (*$B - *) compiler directive, with an answer of N)o

to the prompt " Nested Backup" (cf . appendix A), is used, then

no variables will be saved at a blocked nested monitor call,

and only those explicitly specified in the parameter list of

the SAVE instruction will be saved at a conditioned PLOXY

point .

In the case of a blocked nested monitor call, the "saved"

monitor variables will only be restored once t he process has

been granted the exclusivity for which it was suspended, and

has required all its exclusivities necessary to continue.

For a process suspended at a conditioned PLOXY point, the

monitor variables are only restored when the process executes

the explicit RESTORE instruction. (This is only possible once

the process is "running" again and will thus have reacquired

all its necessary exclusivities.) There are safeguards in the

form of warning messages during compile time for missing SAVE

and RESTOREs and a check during run time to ensure that, in the

event of a missing RESTORE, the variables still saved will not

also be restored at a subsequent RESTORE. (Note: This can only

be detected if the subsequent RESTORE is in a different

moni tor.)

-103 -

section 4.3

Reasons for using the same nodes

UCSD Pascal, under which CLANG operates, does not support the

DISPOSE(P) procedure where P is some pointer type . By using the

same dynamic structures, CLANG is able to reuse nodes already

used and finished with by other processes, perhaps on other

queues. This is achieved by keeping a queue of possible

reusable nodes and only creating a new node when there are no

more available .

One of the motivations for the priority strategy used . for

queueing processes waiting for exclusivity to a monitor (cf.

note 3 relating to figure I) was to minimise the number of new

nodes created , and hence reduce the amount of dynamic storage

required by the interpreter . A process holding several

exclusivities will have a number of monitor variables saved,

with one node per variable, so the delay before these nodes

can be rel eased (and thus reused), must be kept to a minimum.

Having the same node for several applications does mean that

sometimes, in the code, the field of the node does not seem to

correspond to what is being assigned to, but where they occur

these discrepancies have been commented.

ego VARSTACKA.PRIORITY ._ AD; (*address *)

(Aside: Use could have been made of variant records i n the

implementation of these nodes, but as the type of the fields

were the same for all the applications it was felt that this

added complexity was unnecessary.)

-104-

section 4.3.1

4. 3 .1 Conclusi on s on t h e moni t o r con cep t i n CLANG

The conclusions reached in this section apply to the monitor

concept in CLANG as opposed to the othe r languages assessed .

The analysis of the monitor concept in the realm o f concurrent

programming is dealt with in chapter 6 .

One of the explicit requirements of this thesis was the design

and implementation of the monitor concept in CLANG . Thus every

effort was made to accommodate all the possible permutations

that can a r ise when concurrent processes synchron i se and

communicate by means of monitors . He r e pe r haps CLANG differs

from the other languages in that in these languages the

features for concurrent process synchronisation and

communication were but one sma l l aspect in the broader design

requirements.

One criticism that could possibly be levelled at CLANG ' s in

depth considerat i ons, is that certain permutations should never

arise in a " real " e nviroment and indeed t h e languages

Concurrent Pascal, Edison, Modula - 2 a nd Pascal Plus are being

used in " real" enviroments (eg. the writing of operating

sys t ems) . If these permutat i ons are in fact purely of aca d e mic

interest, then they fall well within the scope of CLANG ' s

development as a teaching language. A student should not be

interested in being told:

-105 -

section 4.3.1

"Oh, that case is not catered for as it should

never occur in a I'real ll enviroment !t,

What after all is a "real " enviroment ?

One fact that has intrigued the author in the assessment of the

other languages is the apparent lack of consideration for the

in variance of monitor variables. Much time has been spent by

the author in considering whether this invariance is r eally

necessary . It is possible to declare a number of monitor

variables local to the monitor procedures of func t ions and thus

ensure their invariance, but there are some var i ables for which

this is not possible . To simply assume that it is not necessary

to ensure that these variables are invariant , but only that

they are accessed in mutual exclusion, is inviting disaster

(cf. example 1 of section 4 . 1), and thus limiting the potentia l

of the monitor concept .

In some instances, eg o Modula - 2 and Pascal Plus, the global

exclusion mechanism partially avoids the problem, and the

current monitor exclusion technique of Concurrent Pascal limits

the problem to a single monitor's variables, but the problem of

invariance has not been completely eradicated and further

complications of significant loss of parallelism and potential

deadlock have been introduced .

- 106 -

section 4.3.1

The conclusion reached is thus: the implementation of the

monitor concept in CLANG comes the closest, out of the five

languages assessed, to solving all the problems associated with

the monitor concept as a means of realising c oncurrent process

synchronisation and communication.

- 107 -

chapter 5

Chapter 5: The synchroniser c oncept

" a more natural approach to interprocess

communication results if data transmission and

synchronisation are considered to be two

inseparable activities ."

S.J. Young [You82J

A synchroniser is the name applied to the construct available

in the language CLANG for interprocess synchronisation and

communication by means of message passing, or more specifically

the method of rendezvous .

Message passing is based on the belief that data transmission

and synchronisation are two inseparable activities . In its

basic form it can be viewed as extending semaphores to convey

data as well as to implement synchronisation.

One particular method of message passing is known as the

rendezvous. In this method communicat ion and synchron i sa t ion

consist of processes sending and receiving messages.

Communication is accomplished because a process, upon receiving

a mes sage, obtains values from the sender process .

Synchronisation is accomplished because a message can only be

received after it has been sent, thus constraining the order in

which the two events can occur. During the "rendezvous" both

-108 -

chapter 5

processes remain synchronised and the message is transferred,

whereafter both resume their respective activities

independently.

The analogy can be drawn from human behaviour where two people

meet (with one possibly waiting for the other), perform a

transaction, and then go their separate ways again.

The original rendezvous model proposed by Hoare in 1978,

[Hoa78], implemented process interaction symmetrically by

treating both communicating partners equally. In Hoare's

proposed language CSP (Communicating Sequential Processes)

[Hoa78] , the concurrent processes must synchronise in a

rendezvous in order to transfer data. Whichever process issues

the transfer command first is delayed until the other process

issues its transfer command. Any actual data transfer is then

assumed to take place instantaneously and both processes then

proceed. This mechanism is symmetric in that both processes

must explicitly name the other in order to enter a rendezvous .

Symmetric communication poses the problem that it becomes

impossible to write a general purpose process to deal with

requests

For this

from any other process not necessarily known to it.

reason the alternative approach of asymmetric

communication

[Br i 78] and

was adopted by Brinch Hansen in his proposal

subsequently implemented as the method of

rendezvous in the languages Ada and CLANG .

-1 09 -

chapter 5

Asymmetric communication involves only one process (the so -

called "client " process) naming the other process (the so-

called "server" process) in order to perform a rendezvous .

An asymmetric rendezvous can be represented at the language

level by including an "accept" statement in the server process .

This accept statement generally takes the form:

accept REQUEST(parameters) then
begin

(*accept statement body*)

end

The actual data transfer is per f ormed in the same way as in an

ordinary procedure cal l , that is , the actual parameters

supplied in the request for rendezvous are bound to the formal

parameters supplied in the specification of the accept

statement .

The request for rendezvous consists of the client process

explicitly naming the server process as well as the service

required.

ie. server.REQUEST(pa r amete r s)

The two processes remain locked in rendezvous while the body of

the accept statement is executed . The body of the accept

statement is thus effectively executed as a critical section ,

which is necessary because the parameters to the accept

statement are to be strictly local to it .

- 11 0 -

chapter 5

An advantage of this kind of mechanism for concurrent process

synchronisation and communication is that the programmer can

never be uncertain as to the state of a process when a message

is sent to it; the proc ess must be executing a rendezvous

statement (req ue st or accept) and so must the process that sent

the message.

The simple use of accept statements to effect a rendezvous

results in a very "tight " form of synchronisation of processes,

prohibiting asynchronous behav i our and thus reducing the

potential parallelism of the processes in the system. This

problem is solved not by compromising the rendezvous principle,

but by introducing the poss i bility of non - deterministic

selection of accept statements. In addition to this certain

situations, depending on the state of the data structures , may

warrant c onditions being imposed on the selection of an accept

statement.

An additional construct may be introduced whereby a server

process can avoid executing an accept statement and thereby

committing

until a

additional

itself to wait for a client process to rendezvous,

client process is known to be actually waiting . The

conditions can be imposed by the use of guard

conditions, [Dij75J , embedded in this construct and associated

with the appropriate accept statements.

- 1 11 -

chapter 5

This construct typically takes the form of a "select" statement

consisting of a set of requests for rendezvous that the server

can handle (specified by accept statements) from which an

arbitrary choice can be made of one accept statement that will

not cause a delay.

A guard condition typically consists of a Boolean expression

p re ceding an accept statemen t. When a select statement is

entered all the guard conditions are evaluated and then only

those accept statements whose preceding guard conditions

evaluate to true will be considered as candidates for

selection . A missing guard condition is considered as

evaluating to true .

To illustrate the constructs used to implement the rendezvous

technique, consider again the classic example of the so - called

Warehouse problem (as mentioned in chapter 3) . The interactions

of the producer and consumer via a warehouse , which can only

store a maximum of one item at a time, can be coded using the

simple accept statement approach to rendezvous as follows:

program CLASSICEXAMPLE ;

synchroniser WAREHOUSE;
var SHOP;
entry DEPOSIT(ITEM), REMOVE(var ITEM);

begin
repeat
accept DEPOSIT(ITEM) then

begin
SHOP ._ ITEM

end;

- 1 12 -

accept REMOVE(var ITEM) then
begin

ITEM ._ SHOP
end

forever
end; (*WAREHOUSE *)

procedure PRODUCER;
const SWEET = 1;
var ITEM;

begin
repeat

ITEM : = SWEET (* produce i tem*)
WAREHOUSE.DEPOSIT(ITEM)

forever
end; (*PRODUCER*)

procedure CONSUMER;
var ITEM, MOUTH;

begin
repeat

WAREHOUSE .REMOVE(ITEM);
MOUTH := ITEM (*consume item*)

forever
end; (*CONSUMER*)

begin (*CLASSICEXAMPLE*)
cobegin

WAREHOUSE;
PRODUCER;
CONSUMER

coend
end . (*CLASSICEXAMPLE*)

chapter 5

In the above example it is not necessary to use the non -

deterministic select statement as the order in which the

producer and consumer interact is constrained (by the size of

the warehouse) to a deposit by the producer followed by a

remov a l by the consumer.

The more complex example of a warehouse of size greater than

one must make use of the select statement and guard conditions

to increase the parallelism between the producer and the

- 11 3-

chapter 5

consumer processes (and the warehouse synchronise r) and to

prevent the unacceptable occurrences of a producer attempting

to deposit an item in the warehouse that might already be full

or the consumer attemp ting to remove an non - existent item. The

modified warehouse might now be coded as:

synchroniser WAREHOUSE;
const NONE = 0 ;

LOWER = 1; UPPER = 6 ;
var SHOP[LOWER :UPPER], STOCK ;
entry DEPOSIT(ITEM), REMOVE(var ITEM);

begin ('W AREHOUSE ')
STOCK ._ NONE; ('warehouse initially empty')
repeat
select

STOCK < UPPER

STOCK > NONE

end (' select ')
forever

accept DEPOSIT(ITEM) then
begin

STOCK := STOCK + 1;
SHOP[STOCK] := ITEM

end;
accept REMOVE(var ITEM) then

begin
ITEM := SHOP[STOCK];
STOCK .- STOCK - 1

end

end; (*WAREHOUSE*)

Note: The two processes, the producer and the consumer, are

asynchronous and thus the additional active process, the

synchroniser, is needed to act as a buffer so as to

effect the transfer of the item from the producer to the

consumer.

- 11 4-

chapter 5

The rendezvous technique brings about an unification of the

concepts of synchronisation and communication. Conditioned

synchronisation is possible by means of simple

statements (as in the first example) or by means of the

conditions (as in the second) .

The interactions involved take place between t wo

accept

guard

active

processes (as opposed to the passive construct of the monitor)

and thus one consequence of the rendezvous method is likely to

be an increase in the number of concurrent processes in a

system .

The following sections will examine to what degree the concept

of the rendezvous has been developed in the languages CHILL and

Ada. This information will then be contrasted with the

synchroniser construct available in CLANG. Also included is a

description of how the synchroniser and its related features

were implemented in CLANG .

- 115 -

section 5 . 1

5.1 The rendezvous concept in other languages

The rendezvous concept arose from ideas proposed in 1978 by

Hoare, [Hoa78J, and Brinch Hansen, [Bri 78J, in which i nter-

process synchronisation and communication were regarded as

inseparable act i vities .

Being a reletively

introduced in 1974

new concept (the mon i tor

[Hoa74J), the rendezvous has

concept

only

was

been

introduced into only a handful of languages. Two of these

languages, which are assessed in this section, CHILL and Ada,

enjoy enormous support from the CCITT (Telecommunications

affiliate of the United Nations) and the Un i ted States

Department of Defense, respectively, but at the time of

writing, although their language designs are now fixed , fu l l

compilers are scarce.

Thus, as with the assessment of the monitor concept in other

languages (except Modula - 2), this assessment of the rendezvous

concept as implemented in CHILL and Ada is based solely on

information gleaned from the literature, [Fid83J , [Bra82J ,

[Bar8I21J , [Ich79J, [Uni81 J , [You83J, and not from any prac tical

experience .

- 1 16 -

section 5.1 . 1

5. 1 . 1 CH I LL

CHILL was based on the sequential languages Pascal , PL/ l and

Al gol 68, a nd developed in 1981 under the auspices of a CCITT

study group specifically for real- t i me enviroments as wel l as

for general systems and sequential programming [Fid83] .

Several mechanisms are pro v ided i n CHI LL for concu r ren t pr oces s

synchronisat i on and communication .

Event mode locations and the operations continue, delay and

delay case that can be performed on them enable explicit

synchronisation of processes . When declaring an event mode

locati on it is possib l e to specify the maximum number of

processes which can be delayed on that event at any time .

A process executing a delay statement is suspended on a queue

associated with the named event until another process executes

a continue operation on the same event .

a prio r ity when it is queued .

A process may specify

When a process executes a delay case statement it i s suspended

until a continue operation is performed on any of the named

events contained within the delay case statemen t. For each

named event it is possible to specify a different sequence of

statements to be performed by the suspended p r ocess upon

reactivation. It is also permissible for a process to specify

a priority status on being suspended when execu t ing a delay

-117 -

section 5 . 1.1

case statement. On reactivation a process may identify the

process which caused this.

Execution of a continue statement causes the reactivation of

the process at the head of the named event queue. If there are

no processes delayed on this queue then the continue statement

has no effect.

The second mechanism provided for interprocess synchronisation

and communication is that of the signal. These signals are used

in conjunction with send and receive case statements .

A signal is defined in a signal definition statement , may

optionally have a message part, and may specify which process

type can receive the signal.

Should a message part be included in the signal definition

statement then the signal send statement will transfer a list

of values to the named signal. Also optionally sent in the

signal

of the

send statement can be a priority and an identification

intended receiver . This identification must not

conflict with any specification given in the signal definition

statement.

A process can receive a signal by executing a receive case

statement, which specifies a list of signals which may be

received, each of which may have its own associated sequence of

statements.

- 1 18-

section 5 . 1 . 1

If none of the named signals is pending and no e l se clause has

been included in the receive case statement then the process is

delayed until one of the signals i s forthcoming .

Note: Unlike the continue operation on an event mode location,

the signals are persistent, which means that if no process is

currently waiting to receive the signal then it is saved

(becomes " pending ") until a process needs it .

If more than one app r opriate signal is pending , the signal wi th

the high e st priority is chosen; if several sign a ls share the

highest priority then the choice of these is implementation

dependent (eg . random, FIFO etc.).

Yet another method available in CHILL for interprocess

synchronisation and communication is provided by buffer mo de

objects and the ope r ations send , receive and receiv e case on

them. An object declared to be of type BUFFER must i n clude the

type of its elements and optionally the number of elements that

the buffer can hold.

The send operation causes a specified value to be p l aced i nto a

buffer location . If t he buffer is full, the process executing

the send statement is delayed, with an optional priority, until

a space becomes available or the value being sent is consumed .

- 119 -

section 5 . 1.1

A process executing a receive expression will obtain one value

from a set of values avai l able in the buffer and delayed

sending processes associated with that buffer (if any). If

there are no values available then the process executing the

receive expression is delayed until a value is sent to the

buffer .

The buffer receive case statement allows a process to obtain a

value from one of a number of named buffers and their

associated suspended sending processes (if any), with a

separate seq u ence of statements for each and an optional else

clause. If no values are available and no else clause is

specified, then the process executing the buffer receive case

statement is delayed until a va lue arrives . The identity of

the sending process may also be obtained.

Because the choice of value available to a process executing a

receive expression or buffer receive case statement includes a

value from the buffer as well as from any process that might be

delayed after perfo r mi ng a send to the full buffer, the

execution of such a statement will result in the reactivation

of a delayed sending process (if there are any) .

finally, t he CHILL concept o f a region makes available a means

of pro viding processes with mutually exclusive access to

locations. These regions may only be declared at the outer

level of a CHILL program (known as the "outer process "). A

- 120 -

section 5.1.1

region's visibility is controlled by the statements grant and

seize. Processes wishing to access locations declared in a

region may only do so by calling procedures,

recursive, defined within and GRANTed by the

which may not be

region. Objects

declared within a region, which are to be shared by processes,

may not be visible outside the region.

Any process attempting to access a region to which another

process already has access is delayed until the exclusivity is

released, either by that process leaving the region or being

delayed within the region. If more than one process is

suspended awaiting access to a region and the region is

released, a process will be selected according to some

algorithm which is implementation defined (eg. FIFO etc.) .

In all CHILL provides four different methods for concurrent

process synchronisation and communication. The reason for this

is that CHILL was developed by a committee with the result that

several alternatives were provided when unanimous agreement

could not be reached [Fid83].

This has resulted in some of the constructs being syntactically

almost identical, ego the signal receive case statement and the

buffer receive case statement, and yet they function

differently,

that they

ego the CHILL buffers differ from the signals in

enable the user to control the allocation of the

buffers explicitly, whereas the allocation for the signals is

performed "automatically" .

-121-

section 5.1.1

The facilities of the events, signals, buffers and regions seem

to clutter the language when it appears that either the signals

and modules (the data abstraction facility in CHILL) or buffers

and processes are sufficient to provide all the concurrency

requirements of a programmer [fid83]. Even the CHILL

introduction warns that:

" ... care should be taken not to mix the various

methods within one subsystem. " [Bra82]

One wonders how easy it would be for a programmer to learn the

concurrency features when faced with so many subtly different

constructs.

-1 22 -

section 5.1.2

5.1.2 Ada

In 1976 the United States Department of Defense drew up a set

of requirements they felt were desirable for a standard real

time programming language. They appreciated that the lack of a

single standardised language was resulting in high costs being

incurred not only in the development of new systems but also in

the maintenance of existing ones. An evaluation of existing

languages was undertaken to see if any of these could meet

their set of requirements.

The evaluation concluded that no existing language fully met

the requirements, although three languages (Pascal , PL/1 and

Algol 68) had sufficiently sound and well proven structures to

serve as the base for a new language design.

The design of this new language was then contracted out to

competing organisations . Seventeen tenders were received, of

which the language designed by Cii Honeywell Bull , primarily

based on Pascal, was eventually selected in May 1979 to become

the language Ada.

In 1981 the reference manual for Ada was published [Uni81], but

as yet few compilers for a full version of Ada have been

validated.

- 123-

section 5.1.2

Ada uses the word "task" for a program activity which proceeds

in parallel with others. A task is thus exactly synonymous

with a process. "Task " will be used in this report in keeping

with Ada notation .

A task consists of two parts: a specification and an optional

body . The specification may contain entry declarations (see

below) and a representation specification which may specify how

the entries or the task itself map onto the underlying

hardware. The task body may contain local declarations and

statements. Ada allows a task to be declared as a type ,

permitting multiple instances of the same task.

thus

The primary means of synchronisation and communication between

tasks are entry calls and accept statements .

The entry declarations specify the entries that other tasks may

call, and the formal parameters by means of which the

communication may take place.

The actions that are to be performed when a declared entry is

called are contained within the corresponding accept

statements.

A task can call an entry in another task by specifying the

entry name and the actual parameter list. If the task which

owns the called entry has yet to reach the corresponding accept

statement then the calling process is suspended. Similarly a

-124-

section 5 . 1 . 2

task executing an accept statement, prior to the occurrence of

any call to the named entry , is suspended until such a call

happens. Thus the use of entry calls and corresponding accept

statements always result in rendezvous .

The calling task remains suspended until the called task

completes the statements contained within the accept statement

(if any). After the rendezvous both tasks continue their

(independent) parallel execution .

It is possible to declare a " family " of entries with the same

name and parameters, with individual entries being accessed via

indices . Several entry calls to the same accept statement are

dealt with on a first - in-first - out basis; each rendezvous at an

accept statement removing just one calling process from the

queue. An exception is raised [Uni 81] if an attempt is made to

call an entry in a terminated task, or if the entry's family

index is out of range .

A task body may contain one or more accept statement per entry

declaration .

The accept statement enables a task to wait for some event to

happen - signified by the calling of the corresponding entry.

(Aside: An accept statement without parameters is purely a

point of synchronisation.) To wait for several events all to

have happened merely requires a sequence of accept statements.

- 125 -

section 5.1.2

To wait for one of several alternatives is not that easy and

for this purpose Ada has introduced the select statement .

Three different types of select statement are provided in Ada.

The selective wait statement allows two or more alternatives to

be named, each with an opt i onal condition which must be

satisfied before the associated alternative may be selected; an

else part may also be included.

The form of the selective wait statement is:

select
[when CONDITION =>]

ALTERNATIVE
or [when CONDITION =>]

ALTERNATIVE

[else
STATEMENTS]

end select;

An ALTERNATIVE may consist of:

(1) An accept statement plus other statements;

(2) A delay statement , which suspends the task for at least the

time interval specified, plus other statements ; and

(3) the reserved word TERMINATE which terminates the execution

of a task.

- 126 -

A selective wait

TERMINATE and may

TERMINATE. The USe

section 5.1.2

statement may only contain at most one

not haVe delay statements as well as a

o f TERMINATE or a delay statement precludes

the USe of the ELSE part.

As the Selective statement is entered each ALTERNATIVE is

examined to See if its associated When claUSeS evaluateS to

TRUE. If this is so then the ALTERNATIVE is considered to be

oPen.

Based on the results of this examination the following actions

may occur:

If there is one oPen ALTERNATIVE containing an accept

statement to which a corresponding entry call has been made,

ie. the called task will not be suspended, then it is chosen

and a rendezvous initiated. Should there be more than one open

ALTERNATIVE in this category then the choice is implementation

dependent (eg . random, cyclic etC.).

If there have been no corresponding entry calls to any of the

accept statements in the possible oPen ALTERNATIVEs then the

task is suspended until one of these entry calls o ccu rs.

Should the Selective wait statement contain an open ALTERNATIVE

with a delay statement then if an entry call is not forthcoming

before the time SPeCified in the delay statement then that

ALTERNATIVE will be eXecuted instead.

-127-

section 5 .1.2

An open ALTERNATIVE with a TERMINATE will only be selected if

the parent block in which the task has been declared is ready

to terminate or be left, and is only waiting for the

termination of its dependent tasks .

The ELSE part is only executed if no ne of the ALTERNATIVEs are

open .

The second type of select statement involves a conditional

entry call . In this select statement a call to an entry will be

made only if the r en dezvous is immediately possible; otherwise

the ELSE part is executed.

The form of this select statement is:

select
ENTRY CALL [STATEMENTS]

else
STATEMENTS

end select;

Finally the third type of select statement consists of a timed

entry cal l . An e nt r y call is only made if the rendezvous can

be performed with i n a certain specified time; oth e rwise t he

delay statement is executed.

select
ENTRY CALL [STATEMENTS]

or
delay statement [STATEMENTS]

end select;

-128 -

s<"ction 5.1.2

Ada programs might hav<" to m<"et real-t ime r<"spons<" constraints;

h<"nce this typ<" of s<"l <" ct statement is availabl<" to pr<"vent or

control the length of time a task is delayed .

One loop -hole existing in connection with the integrity of

variables during concurrency is that tasks may interact via

shared variables declared in the enclosing block - there is no

special mechanism provided for synchronising access to these

shared variables; the responsibility for their integrity is

left with the programmer. A more serious problem associated

with this "loop - hole " is the subtle sec u rity risk it poses in

the use of entries to ensure mutual exclusion . The parameters

in an entry call are evaluated before entry t o a rendezvous.

This means that two tasks can call an entry simultaneously

naming a single common shared variable as a va r iable parameter.

If that parameter is used as a key to ga in access to a resource

then both tasks may be given access to the resource

simultaneously because the initial value of the key is copied

into the entry before rendezvous .

Ada is a large and complex programming language intended mainly

for embedded computer applications, but it is also suitable for

a large variety of uses . [You82J

Its success is assured, not only because it has an

intrinsically good design which incorporates all the best ideas

of the last decade into a clean and uniform language framework ,

- 129 -

section 5.1.2

backed by the considerable influence of the United States

Department of Defense , but also because it will be part of a

complete software development system .

As well as a compiler , an Ada support system wil l p r ovide

standard editors, debugging tools, text formatters, li brary

management systems etc. Furthermore the entire system will be

standardised program and programmer portability [You82J .

The size and complexity does have its drawbacks. It seems

likely that tolerable compilation speeds will only be

aChievable on large minis and main frame computers . Some of the

methodologies used in Ada, e g o tasks mechanisms, may be

completely alien to the average programmer schooled in the

traditional high level language so that training a programmer

to a working competence in the full Ada language will be a

substantial problem compounded not only by the size of the

language, but also by the need to design programs the "Ada

wayll.

This consequence is not al t ogether surprising as the major

motivation for developing Ada was to improve existing so f tware

design and implementation practices [Ich79J, [Uni81J, a step

forward for which SUbstantial training costs and effort are

clearly unavoidable.

- 130 -

section 5.1.2

Here is perhaps where languages such as CLANG can fit in: as a

bridge between existing methodologies and the introduction of

new, hopefully better ideas.

It should not be surprising then that the constructs for

teaching the rendezvous technique, in CLANG, were modelled on

those availab l e ill Ada.

-131-

section 5.2

5.2 Using and implementing Synchronisers in CLANG - practical
details

The synchroniser is the message passing equivalent of the

monitor concept of synchronisation and communication via mutual

exclusion .

This section will examine :

(1) The semantics of the constructs available in CLANG f or

allowing concurrent processes to synchronise and

communicate by means of the rendezvous technique, and

(2) Illustrated detai l s of how these constructs were actually

implemented.

The actual syntax details of the synch roniser and its

associated constructs can be found in appendix A, while the

Pascal code comprising the CLANG compiler and interpreter can

be found in appendix B.

-1 32 -

section 5.2

Example:

The warehouse (as mentioned in chapter 3) may be coded as a

synchroniser as follows :

synchroniser WAREHOUSE;
var SHOP;
entry DEPOSIT(ITEM), REMOVE(va r ITEM) ; (*entry pOi n ts*)

begin (*WAREHOUSE*)
repeat
accept DEPOSIT(ITEM) then

begin
SHOP : = ITEM

end;
accept REMOVE(var ITEM) then

begin
ITEM SHOP

end
forever

end ; (*WAREHOUSE*)

The message passing methodology used in CLANG is a Many - to - one

rendezvous situation, where many "client" processes may request

rendezvous with one "se r ver " process .

A "client" process is any concurrent process that wi shes to

synchronise and communi c ate with the "serve r " process .

The "server" process is the synchroniser .

A synchroniser is an active process and as such must be

launched, as a normal process is, from inside a Cobegin .. Coend

construct . Being an active process it executes concurren tly

with the "client" processeS until a rendezvous is established .

- 133 -

s-=ction 5.2

Onc-= a r-=nd-=zvous is -=stablish-=d th-= "s-=rv-=r" and "cli-=nt"

proc-=ss-=s ar-= r-=ady to communicat-=.

Th-= list of r-=qu-=sts that a synchroniser can s-=rve ar-= termed

entry points and are d-=clared within synchronisers und-=r the

ENTRY declarations (along with the parameters via which th-=

communication is actually eff-=cted). These entry points are

the only parts of a synchronis-=r that are visible outside the

synchroniser (and bear a vague resemblance to forward

declarations of procedures).

A process wishing for a rendezvous with the synchroniser

performs a request to the requ i red entry po in t declared inside

the synchroniser by appending the named entry point together

with the necessary actual parameters, to the name of the

synchroniser separated by a period (' .').

ie. synchronisername.entrypoint(parameters)

(Aside: The entry point request is similar to a call to a

starr-=d procedur-= of a monitor .)

Th-= proc-=ss is then suspend-=d until the rend-=zvous is complete

aft-=r which both the "cli-=nt" proc-=ss and the synchron i ser

continu-= th-=ir concurr-=nt ex-=cution . Th-= section of code in th-=

synchroniser in which the actual communication takes plac-= is

contain-=d within an acc-=pt stat-=ment .

- 134 -

section 5.2

The entry point request and the accept statement form the point

of synchronisation between the "client~ and the "server"

processes.

If a synchroniser, during the execution of its code, should

reach an accept statement for which, as yet, there has been no

corresponding request, then the synchroniser is delayed until

such time as one occurs . Similarly if a process perfo r ms an

entry point req u est and the synchroniser, in which the entry

point is declared, has yet to reach t he corresponding

statement, then the process is delayed unti l the

statement is reached and the rendezvous performed

synchroniser.

accept

accept

by the

A request for rendezvous must match to an entry point declared

in the named synchroniser, which in turn must match to that

used in the corresponding accept statement . The formal and

actual parameters in all instances must correspond.

The parameters of an entry point are strictly local to the

accept statement for that entry point, and may be passed by

value or by reference.

Note: An entry point without parameters is purely a

synchronisation point .

- 135-

section 5.2

Many processes may requ~st one entry point and there may be

many accept statements, each with its own sequence of actions,

for that entry point declaration.

For examp le :

For the entry point DEPOSIT, there might be two accept

statements:

synchroniser WAREHOUSE;
var SHOP, TRUCK;
entry DEPOSIT(ITEM),

begin (*WAREHOUSE*)

accept DEPOSIT(ITEM) then
begin

SHOP .- ITEM
end;

accept DEPOSIT(ITEM) then
begin

(*pay the client*)
TRUCK . _ ITEM (*load item directly*)

end;

end; (*WAREHOUSE *)

The re quests for rendezvous for a particular entry point are

performed on a First -in-First - out basis. Each execution of an

accept statement deals with jus t one re quest.

If a synchroniser can never execute the corresponding accept

statement for a request then deadlock may result. Similarly if

a synchroniser executes an accept statement for which no

request is ever forthcoming then deadlock may again result .

- 136 -

section 5 . 2

The select statement in CLANG enables asynchronous behaviour in

a program and, increases potential parallelism by relax ing the

"tight" synchronisation of the accept statement and entry point

request.

The select statement grants a synchroniser a great deal of

flexibility in that it allows it to "choose", from a list of

possible requests to be serviced, a rendezvous for which there

is a "client" process already waiting, and thus avoid being

delayed.

The form of the select statement i s:

select
GUARD CONDITION1

GUARD CONDITIONn

[e lse
begin

STATEMENTS
end]

end; (*select*)

accept REQUEST1(parameters) then
begin

STA TEME NTS
end;

accept REQUESTn(parameters) then
begin

STATEMENTS
end;

Further control over which accept statements the synchroniser

may choose is exerted by the use of guard conditions preceding

each accept statement. A guard condition may consist of a

Boolean expression or the reserved word NOGUARD , which is

equivalent to a Boolean expression which always evaluates to

true.

- 137 -

section 5 .2

Only those accept statements whose associated guard conditions

evaluated to true on entering the select statement , will be

considered for selection, and of these only an accept statement

that does not caus e the synchroniser to delay will actually be

selected and the corresponding rendezvous performed . If there

are several accept statements in this category then the choice

will be random.

Should all the accept statements, with true guard conditions,

if they were to be executed, cause the syn c hroniser to delay,

then it is delayed, but only until the first request for

rendezvous for any of these accept statements occurs . Thus the

delay time is kept to a minimum; the synchroniser is

reactivated and this rendezvous request serviced. After the

rendezvous the synchroniser continues executing the statements

after the select statemen t .

All the guard conditions evaluating to false implies that there

are no valid accept statements from which the synchroniser can

choose. Should this be the case then the else clause is

executed if there is one;

occur.

if not then a run time error will

CLANG restricts the use of accept statements to within

synchronisers and thus a rendezvous may only occur between a

synchroniser and another process . This other process may not be

a synchroniser , as rendezvous requests are not permitted from

within a synchronis er.

-1 38-

section 5.2

Being an active process, the synchroniser's variables are not

subject to alteration by other processes, and thus the

synchroniser has mutually exclusive access to them all the time

and they can be used as a buffer in the transmission of

messages (in the form of data) from one process to another.

As with Ada there is no mechanism to prevent processes

(including synchronisers) from "simu ltan eously" altering a

program's global variables and it is thus up to the programmer

to ensure that this never happens .

- 139 -

section 5 . 2

Implementing synchronisers in CLANG - illustrated details

The parser and interpreter making up the compiler for the

language CLANG are integrated into one program written in

Pascal. (The current implementation is in UCSD Pascal, with use

made of as few "extensions" as possible .)

This section includes a description of how the synchroniser and

the associated constructs necessary to introduce the rendezvous

concept into CLANG were implemented. This description takes the

form of flow diagrams with accompanying notes and a detailed

example at the end of the section to show how the queues

associated with the rendezvous technique are manipulated. It is

hoped that the study of this section in conjunction with the

listing supplied in appendix B will give the reader insight

into how a rendezvous might be implemented.

When parsing a CLANG synchroniser, each entry point is assigned

a unique number . This number is used at run time to ascertain

at which entry point a rendezvous or an accept statement is

being performed.

Use is made of Pascal's pointer facilities to implement the

queue associated with each entry point. An array ENTRYQUE of

these queues was introduced, the individual queues for each

entry point being indexed by its unique number .

- 140 -

ENTRYQUE can be viewed diagramatically as:

unique numbers
of entry points

ENTRYQUE

2 tt~
• t

section 5.2

PN = process number. This is the index into the process

descriptor table for the process (or synchroniser) which is

suspended on the entry point queue concerned. This number is

assigned just before the concurrent execution of the processes

is launched by means of the Cobegin . . Coend construct .

SA = start address . This field of a node on an entry point

queue contains the start address of an accept statement for

this entry point and is thus used only when queueing

synchronisers .

One of the fields in the process descriptor table, HELDSET,

used for implementing monitor exclusion (cf . chapter 4 section

4 . 2.1) is also used for implementing the rendezvous concept.

HELDSET is used to hold the set of entry point queues on which

a synchroniser is suspended as the result of all the accept

s tatements, with guard conditions evaluating to true, causing a

delay .

- 141 -

section 5.2

Note: The field HELDSET may safelY be reused, as a synchroniser

may not be called from within a monitor and , although a

monito r procedure or function may be called from within a

synchroniser, it is not possible for a synchroniser to be

suspended on an entry point due to an accept s t atement

and be delayed waiting to reacquire exclusivities to

monitors simultaneously.

For the same reasons as given in chapter 4 section 4.3, the

same type of nodes are used for processes, including

synchronisers, which are suspended on an entry point queue.

This, however, does result in what appear to be obscure

statements in the interpreter:

eg o ENTRYQUE[U]A . PRIORITY .- PTAB[CURPR].P

where PTAB[CURPR] . P is the start address of an accept statement

and clearly has nothing to do with a priority. These apparently

confusing statements have been well commented.

An accept statement is the synchronisation point in a

synchroniser where the rendezvous will be performed. Figure I

shows diagramatically the actions undertaken by a synchroniser

on executing an accept statement .

- 142 -

section 5.2

Notes relating to figure I

(1) If there ha s yet to be a request for rendezvous on the entry

point corresponding to the accept statement concerned then

the queue, indexed in ENTRYQUE by the unique number of the

entry point, will be nil .

(2) When a synchroniser is suspended on an entry point queue it

is distinguished from other processes by setting the number

field of the relevant node to the process number of the

synchroniser plus the constant value PRMAX, which is the

maximum number of processes allowable per concurrent system.

The priority field of the node is used to hold the start

address of the accept statement causing the synchroniser to

delay . This is not actually needed in the case of a single

accept statement - the synchroniser program counter will

contain the correct value anyway - but is included for

uniformity, as it is necessary in the case of an accept

statement contained within a select statement, and thus when

a request for rendezvous is forthcoming no distinction need

be drawn as to which class of accept statement is being dealt

with.

(3) The synchroniser will be reactivated by a process executing

the P-code signifying a request for rendezvous.

II)

- 143 -

(cf. figure

f i gu re I:

(4)

(1)/ Is
/' tnere clny
corresponding

eQues t to be
ervlce

?

YES

Rem~mber Io/h leh
rendezvous is
being dedJt

with

Execute the
statements

constituting
the accep t
s td tement

Reacti vilte the
process [holt

performeCl tne
request -
reset its

std'" frame

NO

(2)

(2)

(3)

Suspend tne
synchron I se r
on the queue

- mdf!t the
fdet that it

is d

"",h,"~ " .'

Remember the
start dddress
of the accept

statement

/
I

The synchronlser \
remains delayed)
unti'! a" request

"
j s forthcom ing
cf _ figure II J

•
--l

Execut ing an accept statement

s~ction 5.2

(4) The entry point parameters to a rendezvous have to be

obtain~d, not from th~ stack portion of the synchronis~r

which is servicing the request , but from the stack portion of

the process which requested the rendezvous. Remembering the

rendezvous is thus necessary , a situation which has

necessitated the introduction of the LDE P- code when dealing

with entry point parameters.

A request for rendezvous must correspond to an entry point

declared within the synchroniser whose name is appended to the

entry po i nt concerned .

The actions taken when a process performs a request for

rendezvous can be seen diagrama t ically in figure II.

Notes relating to figure II

(1) A rendezvous request is very sim i lar to a procedure cal l and

so an effective stack frame is created to fac i litat e the

passing and receiving of parameters .

(2) A synchroniser can be detected as the number field of the

node examined will be greater than PRMAX (cf . note (2)

relating to figure I) .

(3) An examination of the synchroniser's HELDSET field will

reveal if the synchroniser was delayed in a select statement.

- 144-

figure I I:

(I)

(2)

s .. : ')0 StJC<
fr Jrr.e f~r
rellues t

'\(;11 the reqUest lng
process on the

queue JSsoc ldted
wi ttl the entry

pO i nt on d
F,I.F.O basIs

Is

NO

:;uspend [he
reQuesting ~ roc ess

until the
synchron iser has
cerformed the

reques t
cf fl ure

YES

Request for rendezvous

(3)

NO

(4)

(tedctivate the
synchron iser
(w i l l be at
the head of
the Queue)

"as
the

delay in d

se lect
taleme

YES

Remove the
synchrcni ser
frem all the
other entry
pOint Queues

section 5.2

(4) As in this case the synchroniser is only delayed until the

first one of the necessary rendezvous requests is

forthcoming, it must be remo ved from all the other entry

point queues on which it was also delayed (cf. note (5)

relating to figure III) .

The select statement allows the synchroniser to "choose", out

of a list of possibilities, a rendezvous to service, thus

permitting asynchronous behaviour and increasing the potential

parallelism of the system.

The SEL P-code which actually performs t he selection, occurs

right at the end of the P- codes constituting the select

statement . These P-codes are for the guard conditions, the

accept statements and the else clause (if any) .

On encountering a select statement, th e guard conditions must

all be evaluated before any accept statement can be chosen for

execution.

This is achieved at the P-code level by branching from guard

condition to guard condition , bypassing the P-code$

constituting the accept statements . After the last guard

condition has been evaluated (or if there is an else clause,

after thi s fact has been flagged), a branch occurs to the SEL

instruction which will perform the selection, possibly

resulting in the synchroniser being delayed.

-145 -

section 5.2

Th~ selection will r~sult in the program counter of the

synchroniser being set to the start address of an acc~pt

statement (possibly aft~r a delay) or, if all the guard

conditions evaluate to false, to the start address of the else

claus~ if there is one, otherwise the program status, PS, i s

set to SELCHK , flagging the run time error:

'NO VALID SELECT GUARD '

The flow of execution can be viewed diagramatically as :

(a) The evaluation of the guard conditions

flow
of

execution

/

I
I

"-

C
?
!
\
'--.

t statements before the select statement

GC guard condition

AS accept statement

GC

AS

AS
GC

AS

fl~ flag indicating presence of ELSE clause

EC ELSE clause
SEL P-code

statements after the select statement

Ta ble of P-codes

- 14 6-

,
i

section 5 . 2

(b) The execution of a n accept statement (or else clause)

,
GC

chosen AS
accept J statement

/--- ~GC'---l
./

eZ se -~
clause I

chosen'

'--)

AS

AS
GC

AS

fJ"fI

EC
~

I
I

statements before the select statement

guard condition

accept statement

flag indicating presence of ELSE clause

ELSE clause
SEL P-code

statements after the select statement

Table of P- codes

Figure III shows the actions undertaken when the SEL P-c ode i s

evaluated.

Notes relati ng to figure III

(1) The evaluation of the guard conditions prior to the execution

of the SEL ins t ruction has resulted in a " table" being built

up as part of the synchroniser ' s variables . For each guard

condition there are two entries in this "tabl e" ; one to hold

whether the gua rd condiLion is t r ue or false (lo r 0) , (o r if

it is the else clause, to hold the value 2) ; and the other to

- 147 -

(5)

eareh for dn
accept statement,
associated with a

valid guard
condition, which

won °t Cause a

cause a
deia,! ,

NO

suspend tne
syncnronl sel" On

the Queues of all
tne valid entry

points

figure III:

(1)

(2)

(Jut iJ uO d tJbie
uf ~J l.n1 'luaru

conl1 ltlons

".
ner!!' any NO guard COndl tton s'> ________ --y

tn,H ~ ... d luHe

YES

YES

(6)

(4)

to

Cnoose one of
tll"se r Jndom 11

t"~ dccep t
statement CdUS~
I'le syncllronisp

to delay
? .

NO

, Set the .program
counter of the

synch ron i ser to the
start acdress: of

the accept
sta ter.:ent

execute tne
aCcept s tdterr.ent

cf. figure I

Carryon
e)Cecut l r:q t~e

first stdte~ent
"fter the select

std terr.en t

The select statement

(3) Is
tnere an

ELSE clduse
to the'select

td temen

YES

execute
tl'le

ELSE
clause

NO

Run time error

'NO VALlO SELECT
GUARD"

section 5.2

hold the start address of the associated accept statement (or

in the case of the else clause, the start address of the

statements constituting the else clause).

Using these stored values a list, SELTABLE, is drawn up of

the start addresses of those accept statements that are

possible for selection.

(2) If this list is empty then all the guard conditions must have

evaluated to false.

(3) The value 2 at the end of the "table" of the results of the

guard conditions indicates that there is an else clause

present in the select statement. If all the guard conditions

evaluate to 0 (ie . false) then the program counter of the

synchroniser is set to the entry in the "table" associated

with the result of 2 ie. the start address of the else

clause.

(4) Once an accept statement has been selected the synchroniser

can ascertain whether its execution would cause a delay by

examining the relevant entry point queue. If this queue is

empty then there has yet to be a corresponding request for

rendezvous implying that the accept statement concerned would

cause the synchroniser to be suspended. If the queue is non

empty then there is at least one process already waiting for

that rendezvou s to occur and so the execution of the accept

statement concerned will not result in the synchroniser being

suspended.

- 148-

section 5.2

(5) The synch roni ser must be delayed until the first request for

rendezvous for any of the possible accept statements is

forthcoming. This is achieved by s uspending the synchroniser

on all the relevant queues - keeping track of what the queues

are by means of the HELDSET field in the process descr iptor

table. The information needed on the queue is the fact that

a sychroniser is suspended on the entry point queue (cf . note

(4) relating to figure I) and the start address of the accept

statement for that entry point.

If the re is more than one accept statement for the same entry

point amongst those available for selection, then only one of

these will be selected if the corresponding request is the

fir st to arrive . The choice for this selection is random and

is done at this stage by ensuring that only one sta r t addres s

is stored along with the synchroniser on the queue for the

relevant entry point.

(6) Only one accept statement (or the else clause) is chosen per

execution of the select statement . After the accept

statement (or else clause) has been executed the statements

after the select statement are executed. (Obviously the

process suspended while the rendezvous is performed will then

proceed concurrently with the synchroniser once again.) If

there are still more requests for rendezvous to be serviced

then the select statement must be contained within some sort

of loop. (It is the responsibility of the programmer to

ensure this.)

-1 49 -

section 5.2

Detailed example

Thi s example is designed to give the reader further insight

into how the queues relating to entry points are manipulated

when processes request and synchronisers service rendezvous. It

should be studied in conjunction with figures I, II and III .

Consider the system consisting of a synchroniser, S, in which

three entry points E1 , E2 and E3 have been declared, and three

processes A, Band C .

synchroniser S;
entry E1, E2, E3;

A

accept E1 then

select
NOGUARD

NOGUARD

accept E2 then

accept E3 then

end ; (*select*)

B

B B
C

B
There follows a trace of possible events and their consequences.

Process A requests a rendezvous at entry point E1. The

synchronise r S ha s yet t o reach the corresponding

accept statement so process A is suspended on

ENTRYQUE indexed by the unique number of the entry

point E1 (ie. 1).

- 150 -

ENTRYQUE

2 A

3 A

A

P r ocesses available for scheduling = (S, B, C)

section 5.2

Note: The process numbers are assigned to the processes just

before concurrency is launched. Assume for this example

that:

process A =
process B = 2

process C = 3

synchroniser S = 4

Synchroniser S reaches the accept statement for entry point E1

and performs the rendezvous request ed by process

A. Once the rendezvous ha s been performed (after

the accept statement), process A is reactivated

and is ready for scheduli ng once more.

Synchroniser S executes the select statement. Although both the

guard conditions evaluate to true (NOGUARDs)

there has yet to be a request for either accept

statement, so synchroniser S is suspended on

both the queue for entry point E2 and E3.

- 151 -

ENTRYQUE

A

2
r-~

3

S
HELDSET [2 ,3J

section 5.2

Processes available for scheduling = (A, S, C)

S . A = start address for the associated accept statement

Process C now performs a request fo r rendezvous at entry poi n t

ENTRY QU E

A

2 A

3

E3 . The queue for E3 is examined there is a

sychroniser there (number> PRMAX). Process C is

suspended and synchron i ser S is reactivated and

removed from all re l evant entry point queues .

HELDSET
s

[]

Processes ready for scheduling = (S, A, S)

Process C is only delayed as lo ng as it takes synchroniser S to

perform the accept statement for entry point E3 .

- 152 -

section 5 . 2.1

5. 2 .1 Conclus ions on th e synchronis er conce pt in CLANG

"Ada is a jungle of intertwined features; one

suspects it was designed as a challenge to

compiler writers, not as a tool for software

engineers "

J oel McCormack and Richard Gl e aves [McC83]

The synchroniser concept in CLANG is a simplified ve r sion of

the rendezvous facili t ies available in Ada. CLANG does not

support the conditional ent r y call or the timed entry call, but

other f eatu r es are available for possible usage in conjunct i on

with the synchroniser . These are t he ACTIVEINSYSTEM ,

RUNNINGINSYSTEM, STOPCONCURRENCY and SWITCH commands (see

appendix A: The User Manual , chapter 4) .

As the opening quote suggests Ada, and to a certain extent

CHILL, confront the user with a plethora of new concep t s and

constructs. These are immersed in a syntax wh ich, although

originally based on that of Pascal, is so complex and vast as

to appear only remotely similar to th e high level languages,

such as Pascal, with which the user might be familia r.

It is true to say that Ada and CHILL have inco r porat e d most of

the good ideas of the last decade, (and CHILL some o f t h e not

so good constructs as well), but it is just this o verwhelm i ng

flood of new constructs that will make the teaching and

understanding of just one aspect difficult and time consuming.

-153-

section 5 .2.1

Also the sheer size of Ada and CHILL makes their universal

availability only a remote possibility in the immediate future.

This is why experimental languages, such as CLANG, will be able

to hold their own. Although the rendezvous facilities of CLANG

are not as complex and complete as those of Ada, they are

clearly distinguishable to a programmer and are used alongside

notations fairly synonymous with those of Pascal (cf . chapter

2) . This should allow for the easy teaching and studying of the

synchroniser concept on available microcomputers so that when a

programmer is eventually confronted with Ada or CHILL , the

concept of the rendezvous will not be unknown. This should

enable the fairly rapid mastering of at least one (perhaps the

most important) aspect of these complex languages.

- 154 -

chapter 6

Chapter 6: The Monitor and Synchroniser concepts - Comparisons
and conclusions

" A programming language needs BOTH types of

constructs to support the spectrum of concurrent

applications"

w. Eventoff, D. Harvey and R. Price [Eve80]

The monitor and the synchroniser concepts arose from differing

ideas on how interprocess synchronisation and communication

might be performed.

The monitor concept is based on communication via passive

abstract data structures which are accessed in mutual

exclusion, whereas the synchroniser (or rendezvous) concept

follows the line of direct, synchronised transfer of messages

(in the form of parameters) between two active processes.

This section will attempt to highlight the areas of difficulty

associated with each concept (with special reference to the

implementation in CLANG) and endeavour to show that although

one concept may be a better choice for usage in certain

situations than the other, neither concept makes the other

r"dundant.

- 155 -

chapter 6

Conditioned Synchronisation

The passive monitor construct in its basic form does not

provide any means of conditioned synchronisation, which has

necessitated the introduction of condition variables . Both a

monitor and its condition variables need very involved queue

handling facilities to deal with Dusp e nded processes (cf.

section 4 . 3) .

Conditioned synchronisation in the active synchroniser concept

can be achieved by the placing of the accept statements, ei ther

sequentially or within conditional constructs . If asynchronous

communication is required then conditioned synchronisation can

be achieved by means of guard conditions in the sel ec t

statements . As can be seen in the implementation aspects for

the synchroniser concept (cf. section 5 .2) , the queue handling

facilities for dealing with rendezvous are fairly straight

forward.

Avoiding deadlock

The potential for deadlock exists (through incorrect usage)

with both the monitor and the synchroniser concepts, although

with the latter this can ta ke the form of a request for

rendezvous not forthcoming to a corresponding accept statement

(or vice - versa) , which is slightly more obvious than those

situations where deadlock can occur with the monitor.

-15 6-

chapter 6

Apart from the obvious cases associated with monitors, (such as

a missing qsignal operation for a corresponding qwait etc.),

condition variables have a further subtle problem associated

with their usage in that, unless there is advance knowledge

that a qwait operation will be performed before the

corresponding qsignal operation, associated Boolean expressions

will be necessary to prevent a qsignal operation (which is not

"remembered") from "missing" the subsequent qwait operation and

so causing deadlock.

Implications due to the nature of the constructs

The use of synchronisers, being active processes, can lead to

limitations on other processes in the concurrent system, which

are not prevalent with the use of monitors. This is because

the two constructs have different scheduling implications . The

synchroniser is executed as a separate entity, whereas the

monitor is executed on behalf of the calling process.

Each synchroniser launched means one more active process in the

system. Depending on the stack allocation algorithm fo r the

processes, this typically means that less stack space will

available for use by each process than in a similar system

making use of the monitor concept. If the number of processes

allowable in a system is limited (as in CLANG), then each

synchroniser will count against this limit while monitors do

not.

- 157 -

chapter 6

On a single processor using a cyclic scheduling scheme, (as in

CLANG) , the use of synchronisers will result, on average, in

more context switching than there would be in a similar system

making use of monitors . This will mean that the average time

lapse between a process gaining use of the processor will be

higher for a system using synchronisers. Also in large systems

where backing storage is required, this process switching may

be "expensive" in terms of the time wasted in the rolling in

and out of processes from backing storage.

The active nature of the synchroniser has further consequences

as the transfer of parameters between two active processes (the

synchroniser and the "client" process) during a rendezvous

involves the different stack sections of each process (this has

necessitated the introduction of the LDE P-code cf . chapter 5

note (4) relating to figure I) while the monitor procedures or

functions can be considered part of the calling process and

therefore their local variables are accomodated only in the

stack area of the calling process . The monitor variables are

effectively global and thus contained in the stack portion for

the main program (which is inactive during the concurrent

execution of the processes).

The passive nature o f the monitor concept makes it possible to

call a monitor procedure / function from within a synchroniser,

but an entry point request may not be made from within a

monitor.

- 158 -

chapter 6

Multiple instances

Another facet associated with the synchroniser which may

sometimes be construed as an advantage is that it is possible

to launch multiple instances of the same synchroniser from

within a single Cobegin .. Coend construct.

ego synchroniser WAREHOUSE(SIZE);
begin

end;

begin (*CLASSI CEXAMPLE *)
cobegin

WAREHOUSE(l); (* The parameters may allow the *)
WAREHOUSE(2); (* user to specify the size of *)

PRODUCER;
CONSUMER

coend

(* the warehouse. *)

end . (*CLASSICEXAMPLE*)

Although the synchronisers will be distinct, and seemingly

distinguishable to the programmer by means of parameters

(something which is not possible with monitors), exactly which

synchroniser will deal with a request for rendezvous may not be

obvious to the programmer,

ego WAREHOUSE.DEPOSIT(ITEM)

as the parameters to a synchroniser are not specified when a

request for rendezvous is made .

-1 59 -

chapter 6

In fact it is the synchroniser which reaches the corresponding

accept statement first which will perform the rendezvous. This

reduction in delay time may result in an increase in

parallelism, but additional care will have to be taken to

ensure the absence of deadlock.

Multiple instances of the same monitor are not permitted.

Favourable situations

In situations involving no contention, access to a monitor is

similar to a simple procedure / function call, while a request

for rendezvous still results in the requesting process being

suspended (involving a process switch), until the rendezvous

has been performed by the synchroniser.

On the other hand, in situations involving contention, a

process calling a monitor procedure or function might be queued

awaiting exclusivity to the monitor and once this has been

obtained may also be queued "inside " the monitor on a condition

variable. Even once the reasons for suspension have been

satisfied the process may still be delayed further, as it

endeavours to recover all those exclusivities released on

s uspen s ion, before it may finally proceed . The rendezvous

reque s t mechani s m r e quires that the requesting process be

suspended once, and remain suspended until its request has been

serviced, whereafter it will be free to proceed .

-160-

chapter 6

Flexibility of the constructs

The use of the select statement within the synchroniser permits

non-deterministic selection of which rendezvous requ est the

synchroniser wishes to service . This is not possible with

regard to the monitor, the choice being determined by the order

in which the calling processes are queued awaiting exclusivity .

The use of entry points, and the corresponding request and

accept operations on them , permits flexibility within the

synchroniser, as it is possible to have several accept

statements per entry point, allowing different actions to be

taken each time the corresponding request is made. This can be

simulated within a monitor by means of additional parameters to

the relevant procedures and then using these parameters in

conjunction with if ... then . .. else constructs to achieve the

desired r esults - not altogether satisfactory.

Availability of local variables

Monitor variables (and constants) do have one advantage over

those of synchronisers in that, should they be declared as

starred identifiers, they are accessible outside the monitor

block though only in a " read only" capacity . This allows

processes to inspect the values of monitor

actually having to enter the monitor,

variables wi thout

a f acility not

permissable with a synchroniser ' s variables. However, monitor

variables ca n run foul of the invariance problem, a factor to

which sychroniser variables are not subject .

- 161 -

chapter 6

Finite system problem

Another problem relating to the use of the synchronisers which

does not apply to the monitor, is what may be termed the

"finite system problem". This problem comes about in a system

where the concurrent execution of the processes only last a

finite length of time before they terminate, whereafter the

main program is reactivated and continues execution . This is

particularly true in a teaching environment where it is

desirable to demonstrate the effect of only a limited number of

requests to a particular entry point.

For example, to study the effect of just three deposits to the

warehouse synchroniser, the producer process may be coded as:

procedure PRODUCER;
const SWEET = 1;
var ITEM, NUMBER;

begin
for NUMBER := 1 to 3 do
begin

ITEM := SWEET; (*produce item*)
WAREHOUSE . DEPOSIT(ITEM)

end (*for*)
end; (*PRODUCER*)

In order to avoid deadlock the number of requests for

rendezvous by a "client " process must match the number of

corresponding accept statements in the synchroniser concerned.

The onus is on the programmer to ensure this. The problem may

further be complicated by having multiple instances of the

synchroniser or "client" processes, or by having the rendezvous

request within some form of conditional construct.

- 162-

chapter 6

For example:

Given the following section of code in t he PRODUCER process:

if DAY=MONDAY then
for NUMBER : = 1 to 5 do

begin
ITEM := SWEET; (*produce item*)
WAREHOUSE . DEPOSIT(ITEM)

end
else
for NUMBER := 1 to 3 do

begin
ITEM := SWEET; (*produce item*)
WAREHOUSE.DEPOSIT(ITEM)

end;

where DAY and MONDAY are declared local to PRODUCER, it would

not be possible for the programmer to calculate the values of

the matching loop for the corresponding accept statements in

the WAREHOUSE synchroniser unless prior knowledge is available

as to whether DAY = MONDAY or not.

Note: These problems will not occur in a infinite system or if

the system makes use of the passive construct of the

monitor .

In order to accomodate the finite system problem it has been

necessary to implement additional constructs to be used within

the synchroniser to control the execution of the accept

statements. These operations include ACTIVEINSYSTEM,

READYINSYSTEM, STOPCONCURRENCY and SWITCH (cf . chapter 4 of

appendix A: The User Manual).

- 163 -

chapter 6

Note: Similar constructs are available in Ada for the same

purpose, and include the DELAY statement and the

operation TERMINATE .

Conclusion

Of all the languages assessed, apart from CLANG, only the

language CHILL supports both types of concepts with its

regions, buffers etc. (cf. chapter 5 section 5.1 .1), but the

blurred boundaries separating them has resulted in a cluttered

language which can only confuse the programmer.

In a language supporting both concepts it is necessary to

define clear boundaries between them, and for their definitions

to be syntactically and semantically distinct. The concepts in

CLANG adhere to this .

CLANG supports both constructs, because as a possible teaching

language, with most of th e concurrent languages "available"

supporting one or the other,

have an understanding of both.

it is necessary for a stude nt to

As can be seen in the above discussion the ren dezvous concept

undoubtably overcomes some of the problems associated with the

monitor concept but still in certain Situations, such as one

involving no contention, the use of the monitor concept is more

suitable.

- 164 -

chapter 6

It is the conclus io n of this report that (in answer to the

opening quote by Eventoff et al.) until a concept is

forthcoming to replace those of both th e monitor and

synchroniser, the availability of both in a language will give

a programmer a greater flexibility and allow the choice of

concept to suite the situation the increase in system

performance will follow .

- 165 -

section 6.1

6.1 Other concepts proposed - a brief summary

Since the inception of the monitor concept in 1974 [Ho a74J ,

numerous people [Cam74J, [Ger77 J , [Kie83J , [Ree79J, have

proposed modifications.

One criticism levelled at the monitor concept [Cam 74J is that

synch ronisation of monitor operations is realis ed by code

scattered throughout the monitor, with some of this code, such

as the operations on condition variables, being visible to the

programmer, wh ile other code, such as that ensuring the

mutually exclusive access of the monitor, is not .

One of the most innovative solutions to this problem has been

that of the Path expression [Cam74J.

Path expressions are a synchronisation mechanism which enables

a programmer to specify in one place, in each of those modules

which will be su bject to concurrent access, all constraints on

the execution of operations defined by that module. The

implementation of the operations is separated from the

spec ification of the constraints, with the code for enforcing

these constraints being generated by the compiler.

One programming language that incorporates path expressions is

Path Pascal [Cam80J . In Path Pascal a module, using path

expressions to "protect" a resource, has a structure like that

of a monitor. Path expressions in the header of each module

-16 6-

section 6.1

define constraints on the order in which the relevant

operations on the resource will be performed . There is no code

for expressing synchronisation within the procedures

encapsulated within the module . Thus a path expression defines

all legal sequences of operations performed on a resource

[And83] .

However, whether or not an operation may be performed on a

resource may also depend on parameters to the operation and/or

state information in a way not directly related to the history

of operations already performed, and it is here that path

expressions flounde r. In order to express this conditioned

synchronisation addi tional mechanisms must be introduced, but

according to Andrews and Schneider [And83] ,

"Regrettably, none of these extens ions have

solved the entire problem in a way consistent

with the eleganc e and simplicity of the original

proposals "

In an endeavour to overcome the shortcomings he perceived in

the way the monitor and path expression concepts handled the

problem of conditioned synchronisation, Gerber [Ger77]

introduced the notation of (integer) counters which are

incorporated into the definitions of data objects shared by

several asynchronous processes.

- 167 -

section 6.1

This theory of counter variables is based on the belief that

the specification of the synchronisation of the shared data

object should not be i nclu ded as part of the procedures which

perform the required operations on the data objects , but

rather , the synchronisation should take place before the

desired procedure is entered.

This is achieved by the evaluation of a "when condition" (which

is equivalent to a Boolean expression on the count er variable)

prior to the execution of the procedure. If this "when

condition" evaluates to true then the execution of the

procedure may proceed and an implicit incrementing and/or

decrementing

the module

occurs

in which

of a specified subset of the counters in

the procedure was declared . If the

evaluation returns fa l se then the process attempting to call

the procedure concerned is suspended until, at procedure exit

by another process, an implicit "signal" operation reactivates

it .

These "when conditions" of Gerber are a variation on the

conditional critical region

[Hoa72] , and Brinch Hansen

originally

[Bri72],

·proposed

[Bri73].

by Hoare

Conditional

critical regions provide a structured notation for specifying

synchronisation where shared variables are explicitly placed

into "res o urces" with each shared variable in at most one

resource and only accessed in conditional critical region

statements. Mutual exclusion is provided by guaranteeing that

the execution of different conditional critical region

-168-

section 6.1

statements which name the same resource, are not interleaved in

time. Conditioned synchronisation is provided by explicit

Boolean conditions in these statements. The major drawback of

the conditional critical region is in their implementation, as

the conditions within them can contain references to local

variables. This means that each process must evaluate its own

conditions, which is "expensive" as a process must be

reactivated to check a condition which might still be false .

Condition critical region statements provide the

synchronisation mechanism in the programming language Edison

(cf. section 4.2.2) .

Path expressions and counter variables are just two of the

alterations to monitors proposed . (The rendezvous, being a

relatively new concept [Hoa7BJ , has yet to spawn various

extensions and subtle alterations).

A few other proposals include:

(1) Access-Right expressions, [KieB3J, are a form of protocol

specification , similar to that of a rendezvous, but between

a passive data structure and the active process wishing to

acct'ss it.

- 169 -

section 6.1

(2) Eventcounts and Sequences have been proposed , [Ree79J , as

abstract objects that allow processes, rather than using

mutual exclusion to protect the manipulations of shared

variables which control the ordering of events, to control

the o rd ering of events directly . The event count is a

communication path for signalling and observing the progress

of concurrent computation while the sequencer assigns an

order to the eve nt s occuring in the system .

- 170-

section 6 . 2

6.2 Where do we go from h e re?

"All too often people think they have found the

ultimate solution and give up searching, when in

reality the ultimate solution may have eluded

them."

The author during a moment of quiet reflection

Approximately five years separate each of the major mil es t ones

in the development of methods of expressing interprocess

synchronisation and communication; the semaphore [Dij68J; the

monitor [B ri72J, [Bri73 J and [Hoa74J ; and the rendezvous [Hoa

78J and [B ri78J.

If this trend were to have continued a new method would have

been due out in 1983 or 1984; as yet none has been forthcoming.

That each of the developments has been an improvement on what

was before there can be n o doubt , but as to whether the

successive developmen t s can be regarded as replacing the

existing one is anothe r question .

For example,

solving many

concept , but

the rendezvous technique goes a long way to

of the problems associated with the monitor

has in turn introduc ed its own problem areas,

which although maybe not as severe, still hamper the prospects

of the rendezvous concept replacing that of the monitor .

- 171 -

The flow

programmer

of development

of the burden

has

of

section 6 . 2

been towards relieving

explicitly controll i ng

the

the

" simultaneous " alteration of the data structures shared by

several process and also towards a more "natural" way of

expressing synchron isat ion and communication.

Perhaps the best way of extending this idea and possibly

achieving the "ul timate " solution, would be to examine further

the "natural" way in which animals and human beings synchronise

and communicate and then extend these observations into a model

for concurrent process synchronisation and communication. After

all we human beings are very adept at concurrent activities.

- 172-

section 6 . 2

One possibility that springs to mind is that of a Professor

Student model.

A student wishing to discover a solution to a problem will go

in search of a professor, possibly interrupting the professor's

own train of thought, and together they will solve the problem .

This could involve a scan of the professor's brain (ie .

variables or, if the professor is fixed in his ways

constants), or both processes going off to a library to find

out what is required .

The difference between this model and the rendezvous is the

actual looking for, and possible interruption of the looked for

process. The interruption could take the form of a flag in the

professor process' descriptor table which, when the professor

is about to be scheduled, would indicate the presence of the

interruption and allow the professor to take the appropriate

action . This is different from the rendezvous model where the

"interruptions" take place at predetermined locations specified

by the accept statements.

The nature of the interruption would be specified by the

student process which could result in a "jump" to the correct

position, possibly an explicitly declared procedure, in the

profes s or's code to deal with this request.

Non - deterministic selection would be implicit by the arbitrary

nature of the interrupts and here another improvem e nt over the

- 173 -

rendezvous model

associated with

interrupted by a

pretty girl).

section 6.2

would be the specifying of a priority

the interruption - a professor only being

student of a high enough priority (eg. a

(In t he rationale for the design of Ada [Ich79J , the speci fy ing

of a priority for rendezvous requests was suggested , but this

was dropped in the final language specifications .)

To prevent deadlock, the professor processes would not be

allowed to terminate before all the student processes (the

professors normally being the last to leave), although this

could result in the professor's "busy waiting".

will overcome the finite system problem

rendezvous model .

This technique

that dogs the

What interruptions could be dealt with by each professor would

be explicitly set up by the programmer and if several

professors could deal with one type of request, this request

could be put in a common location ("library") to be accessed in

mutual exclusion.

The professor - student model would consist of synchronisation

and communication between two active processes, with possibly

the passive construct of the "library". This is line with the

mor e "natural" approach sought by Hoare and Brinch Hansen .

- 174 -

BIBLIOGRAPHY

Bibliography

Bibliography

[And83] Andrews, G.R . and Schneider, F. B. "Concepts and

Notations for Concurrent Programming", ACM Computing

Surveys , Vol. 15 , No .1, pgs . 3-43, Mar ch 1983.

[Bar80] Barnes, J.G.P. "An overview of Ada", Software

Practice and Experience, Vol. 10, No . 11 , pgs . 851-887

November 1980.

[Ben82] Ben - Ari, M. "Principles of Concurrent Programming",

Prentice - Hall Inc., Englewood Cliffs, New Jersey, 1982 .

[Bea78] Beaumont, w.P. "An Imp lementation of St ructured

Multiprogramming", Software - Practice and Experien c e ,

Vo l. 8, No . 3, pgs. 313 -3 22 , May - June 1978 .

[Bod83] Boddy, D. E . " Implementing Data Abstraction and Monitors

in UCSD Pascal", ACM SIGPLAN Notices , Vol. 18 , No . 5,

pgs. 15 - 23, May 1983.

[Bod84] Boddy, D.E . "On the Design of Monitors with Priority

Conditions ", ACM SIGPLAN Notices, Vol. 19, No.2, pgs .

38 - 46, February 1984.

- 175 -

Bib liography

[B ra82] Branquart, P. , Louis , G . and Woden, P . "An Analytical

Description of CHILL, the CCITT High Level Language",

Lecture Notes in Computer Science 128, edited by G.Goos

and J.Hartmanis, Springer-Verlag, Berlin - Heidelberg- New

York, 1982 .

[Br i72] Brinch Hansen, P . "Structured Multiprogramming",

Communications of the ACM, Vol.

578, July 1972 .

15, No . 7, pgs. 574-

[Bri72] Brinch Hansen, P . "A Comparison of Two Synchronising

Conc ept s" , Acta Informatica Vol. 1, Sp ringer-Verlag,

Berlin-Heidelberg- New York, pgs . 190-199 , 1972 .

[Bri73] Brinch Hansen, P . "Operating System Principles",

Prentice -Hall Inc., Englewood Cliffs , New Jersey , 1973 .

[Bri 75] Brinch Hansen, P . "The Programming Language Concurrent

Pascal", IE EE Transactions on Software Engineering,

Vol. SE - 1, No . 2, pgs . 199-207, Ju ne 1975.

[Bri76] Br inch Hansen, P. "The Solo Operating System: A

Concu rrent Pascal Program ",

Job Interface" and "The

"The Solo Operating System:

Solo Operating System:

Processes, Monitors and Classes",

and Experience, Vol . 6, No.2, pgs.

1976.

- 176-

Software - Practice

141-200 , April - June

Bibliography

[Bri77] Brinch Hansen, P. "The Architecture Of Concurrent

Programs " , Prentice-Hall Inc. , Englewood Cliffs, New

Jersey, 1977.

[Bri78] Brinch Hansen, P . "Distributed Processes: A Concurrent

Prog r amming Concept", Communications of the ACM , Vol .

21, No . 11, pgs. 934 - 941 , November 1978 .

[Bri81] Brinch Hansen, P. "Guest Editorial: Introducing the

Edison Papers" , "Edison - A Multiprocesso r Lan g uage ",

"The Design of Edison " and "Edison Programs ", Software

- Practice and Experi ence, Vol. 11, No . 4 , pgs . 323 -

4 14, April 1981 . (See also "Programming a Personel

Computer " , Prentice - Hall I nc., Englewood Cliffs, New

Jersey, 1982 .)

[Bus80] Bus t a rd, D.W. "An Introduction to Pascal Plus" , Chapter

1, pgs . 1- 57, in "On the Construction of Programs "

edited by R.M. McKeag and A. M. Macnaghten , Cambridge

Unive r sity Press, Cambridge, 1980.

[Bus80] Bustard , D.W. "A User manual for Pascal Plus - Version

ld", Dept . of Computer Science, The Queen 's University

of Belfast, July 1980.

[Bus82] Bustard, D.W. "Pascal Plus Tutorial Guide : Draft 2 .1",

Dept . of Computer SCience, The Queen ' s University of

Belfast, 1982.

- 177-

Bibliography

[Cam74] Campbell, R.H. and Habermann, A.N. "The Specification

of Process Synchronisation by Path Expressions",

Lecture Notes in Computer Science 16, Springer - Verlag,

New York, 1974 .

[Cam80] Campbell, R.H. and Kolstad, R.B. "An Overview of PATH

PASCAL'S Design" and "PATH PASCAL Use r Manual", ACM

SIGPLAN Notices, Vol. 15, No.9, pgs . 13 -2 4 , September

1980.

[Cha82] Chalmers, A. G. "Pascal - S Markl .H AC Compilers",

B.Sc.(Hons) project, Dept. Computer Science, Rhodes

University, South Africa, 1982 .

[Cha83] Chalmers, A.G . "Concurrent Featu res in CLANG" ,

Symposium and Wo rksh op on Computer Science Theory and

Practice, Rhodes University , South Africa , November

1983.

[Co179] Coleman, D. , Gallimore, R.M., Hughes, J.W. and Powell,

M. S . "An Assessment of Concurrent Pascal", Software

Practice and Experience, Vol . 9, No . 10, pgs. 827 - 837,

October 1979 .

[Co180] Coleman, D. "Concurrent Pascal - an appraisal", Chapter

6 , pgs.

ed ited by

213-227

R •

in "On the Construction of Programs"

McKeag and A.Macnaghten, Cambridge

University Press , Cambridge, 1980 .

- 178 -

Bibliography

[Dij68] Dijkst r a, E.W. "Cooperating Sequential Processes ", in

"Programming Languages" , edited by F. Genuys , Academic

Press, New York, 1968 .

[Dij75] Dijkstra , E . W. "Guarded commands, nondeterminacy, and

formal derivation of programs", Communications of the

ACM, Vol. 18 , No.8 , pgs. 453 - 457, August 1975.

[Eve80] Eventoff, W. , Ha rvey, D. and Price , R. J. "The

Rende zvous and Monitor Concepts : Is there an Efficiency

Differe nce?" ACM SIGPLAN Notices , Vol. 15, No . 11,

pgs . 156 - 165 , Novembe r 1980.

[Fid83] Fidge, C. J . and Pascoe , R.S.V. " A Comparison of the

Concur rency Constructs and Module Facilit i es of CHILL

and Ada" , The Australian Computer Journal, Vol . 15, No .

1, pgs. 17 - 27 , February 1983 .

[Ger77] Gerber , A. J . "Process Synchronisation by Counter

Variables", ACM Operating Systems Review , Vol . 11, No .

4 , pgs . 6- 17, October 1977 .

[Gre8 2] Greiter, G . "Remarks on Language Concepts for

specifying Pr ocess Synchronisation", ACM SIGPLAN

Notices, Vol. 17. No . 9, pgs . 58 - 61, September 1982 .

- 179 -

Bibliography

[Har77] Hartmann, A.G . "A Concurrent Pascal Compiler for Mini

Computers ", Lecture Notes in Computer Science 50,

edited by G. Goos and J . Hartmanis , Springer - Verlag,

Berlin-Heidelberg-New York, 1977.

[Had77] Haddon, B. K. "Nested Monitor Calls" , ACM Operating

Systems Review, Vol. 11, No . 4, pgs. 18 - 23, October

1977 .

[Hoa72] Hoare, C.A.R. "Towards a theory of parallel

programming", in "Operating Systems Techniques", edited

by C.A. R. Hoare and R.H. Perrott, Academic Pr ess , New

York, 1972.

[Hoa74] Hoare, C.A.R . "Monitors: An Operating System

Structuring Concept " , Communications of the ACM, Vol.

17, No. 10 , pgs. 549 - 557 , October 1974.

[Hoa78] Hoare, C.A . R. "Communicating Sequential Processes ",

Communications of the ACM, Vol . 21, No.8, pgs . 666 -

677 , August 1978.

[How76] Howard, J.H. "Proving Monitors", Communications of the

ACM, Vol. 19, No.5, pgs. 273 - 279, May 1976.

- 180 -

Bibliography

[Ich79] Ichbiah, J.D., Heliard, J.C, Roubine, 0., Barnes,

J .G. P. ,

"Rationale

Language" ,

June 1979.

[Kau76] Kaubisch,

Krieg-Brueckner, B. and Wickmann, B.A.

for the Design of the

ACM SIGPLAN Notices, Vol.

Ada Programming

14, No . 6 , part B,

W • H. , Perrott, R. H. and Hoare, C.A.R.

"Quasiparallel Programming", Software - Practice and

Experience , Vol . 6, No.3, pgs . 341 - 356, July - September

1976 .

[Kee78] Keedy, J.L. "On Structuring Operating Systems with

Monitors", The Australian Computer Journal,

No.1, pgs. 5 - 9, february 1978.

Vol. 10,

[Kie83] Kieburtz, R . B. and Silberschatz, A. "Access-Right

Expressions" ACM Transactions on Programming Languages

and Systems, Vol. 5, No .1, pgs. 78-96, January 1983.

[Lis76] Lister, A. and Maynard, K.J. "An Implementation of

Monitors", Software - Practice and Experience, Vol. 6 ,

No.3, pgs. 377-385, July-September 1976.

[L is7 7] Lister , A. "The Problem of Nested Monitor Calls", ACM

Operating Systems Review, Vol. 11, No . 3 , pgs. 5 - 7,

July 1977.

- 181 -

Bibliography

[McG83] McCormack , J. and Gleaves, R. "Modula-2: A Worthy

Successor to Pascal", BYTE, Vol . 8, No.4 , pgs . 38 - 48,

April 1983 .

[N eh79] Nehmer, J . " The Implementation of Concurrency f o r a

PL/I-like Language", Software - Practice and Experience,

Vol. 9, No . 12, pgs . 1043- 1057, December 1979.

[Par78] Parnas, D.L . "The non - problem of Nested Monitor Calls " ,

ACM Operating Systems Review, Vol. 12, No.1, pgs . 12 -

14, January 1978.

[R ee79] Reed , D.P . "Synchronisation with Eventcounts and

Sequencers", Communications of the ACM, Vol . 22 , No . 2 ,

pgs . 115-12 3, February 1979.

[Sew84] Sewry, D. A. " Concurrency in Modula - 2", M. Sc. Thesis,

Dept . of Computer Science, Rhodes University, South

Africa, 1984 .

[Sto8 2] Stotts J r , P.D. "A Comparative Survey of Concurrent

Programming Languages" , ACM SIGPLAN Notices, Vol. 17,

No. 10, pgs. 50-61, October 1982.

[Sum80] Sumpter, A.G . and Quick, G.E. " Concurrency

Specification in High Level Languages ", ACM SIGPLAN

Notices, Vol. 15, No. 12, pgs. 75-81, December 1980.

- 182 -

Bibliography

[Ter83] Terry, P.D . and Chalmers, A.G. "CLANG - A Concurrent

Language", Symposium and Workshop on Computer Theory

and Practice, Rhodes University, South Africa, November

1983 .

[Tho78] Thorelli, E . " A Moni tor for Small Computers", Software

- Practice and Experience, Vol . 8, No . 4, pgs . 439 - 450,

July - August 1978 .

[Uni81] United States Department of Defense " The programming

language Ada " , Lecture Notes in Computer Science 106,

Springer - Ver l ag, Berlin-Heidelberg-New York, 19 81.

[VoI83] Manual for Modula - 2 on the Sage IV, Volition Systems,

1983 .

[WeI79] Welsh, J. and Bustard, D.W . "Pascal-Plus - another

Language for Modular Multiprogramming", Software

Practice and Experie nce, Vol . 9 , No. 11, pgs. 947 - 957 ,

November 1979.

[WeI80] Welsh, J. and McKeag , M. "Structured System

Programming", Prentice - Hall Inc., Englewood Cliffs, New

Jersey, 1980 .

[WeI81] Welsh , J. and Lister, A. "A comparative study of task

communication in Ada", Software - Practice and

Experience, Vol . 11, No . 3, pgs . 257-290, March 1981.

-183-

Bibliography

[Wet78] Wettstein, H. "The problem of Nested Monitor Calls

revisited", ACM Operating Systems Review, Vol. 12, No.

1, pgs. 19 - 23, January 1978 .

[Wir75] Wirth, N. "Pascal-S: A subset and its implementa tion ",

Berichte Nr. 12, Institut fur

Eidgenossische Technische Hochschule,

Informatik,

Zurich,

SWitzerland, 1975. Also in "Pascal - The Language and

its Implementation", edited by D.W. Barron, John Wiley,

Chichester, England, 1981.

[Wir76] Wirth, N. "Algorithms + Data Structures = Programs",

Prentice - Hall Inc. Englewood Cliffs, New Jersey, 1976 .

[Wir83] Wirth, N. "Programming in Modula - 2 and Report on the

Programming Language Modula-2", Springer-Verlag,

Berlin- Heidelberg- New York, 1983.

[You82] Young, S . J . "Real Time Languages - design and

development", Ellis Horwood, Chichester, England, 1982 .

[You83] Young, S.J. "An Introduction to Ada ", Ellis Horwood,

Chichester, England, 1983.

-184-

APPENDIX A

USER

MANUAL

appendix A cont ents

Table of contents

Introduction

Chapter 1: Mon i tors 4

1. 1 Ident i f i ers declared loca l to monitors 7

1 .1 . 1 Sta r red Iden t ifie r s 7

1. 1 . 1 . 1 Starred procedu r es / functio ns 8

1 . 1 . 1.2 Starred variables and accessing variab l es
outside a monitor 8

1.2 The body of a mon i tor 12

1 . 3 Condi tion variables 14

1.3.1 Declaration of con dition variables 14

1 . 3 . 2 Operations on condition variables 15

1.3 . 2 .1 QWA I T 15

1.3.2 . 2 QPWAIT(priority) 15

1 . 3.2.3 QSIGNAL •. 16

1 . 3.2 . 4 QUEUE 16

1 .3 . 2 . 5 QLENGTH 16

1 . 3.3 Providing conditioned synchronisation with
condi tion variables 17

1.4 The invariance of monitor variables 19

1.4 . 1 At a nested PLOXY point 20

1 . 4.1 . 1 The (*$3 - *) comp i ler directive 20

1 . 4 . 2 At a conditioned PLOXY point 23

1 . 4 . 2.1 SAVE(parameters) and RESTORE 23

1.4.3 Final notes and summary of invariance
of moni tor variables 25

Example programs 26

appendix A contents

Chapter 2: Sync hronisers 32

2.1 Entry poin t s 35

2.1 . 1 Entry point de c l arat i on 35

2.1 . 2 Requests fo r rende z vo us 36

2 . 2 The ACCEPT statement 39

2 . 3 The SE LECT stateme nt 44

2.3 . 1 Guard conditions and the NOGUARD c ondition 46

2 . 3 . 2 How the SELECT statement works 47

2.3 . 3 The ELSE clause to t he select statemen t 52

Example p r ograms 54

Chapter 3: Additional useful features 60

3 . 1 ACTIVE I NSYSTEM 60

3 . 2 READYINSYSTEM 62

3 . 3 STOPCONCURRENCY 63

3 . 4 SWITCH 65

Cha pter 4: Error and warning messages 66

4 . 1 Error messages relatirig to chapter 1 66

4 . 1.1 Compilation e r ror s 66

4.1 . 2 Run t i me e r rors 72

4 . 2 Error and warning messages relat i ng to chap t er 2 73

4 . 2.1 Compila t ion er r o rs 73

4 . 2 . 2 Wa r ning me s sages 78

4 . 2 . 3 Runtime e rr ors 79

Synta x diag rams 80

Running instruct i ons 88

appt~ndix A

Introduction

"A sequential
a list of
process. A
sequential
as parallel

program specifies sequential
statements; its execut i on
concurrent program specifies

programs that may be executed
processes. " [And83]

Introduction

execution of
is called a
two or more
concurrently

In CLANG a concurrent program is executed by allowing processes
to share one processor.

In order to cooperate, concurrently executing processes must
communicate and synch roni se.

Commun ication allows the e xecution of one process to influ en ce
the execution of anot her. Because these processes are executed
at unpredictable speeds, synchronisation is often necess a ry
when processes communicate. One can view synchronisa tion as a
set of constraints on the ordering of events. Thus a process
somet imes is delayed so that a s equence of events may occur in
a desired order.

To illustrate the need for communication and synchronisation
between concurrent processes, consider this example:

,,"-----v -...r--.
I ,_.

'-;.,\ '-)
'- .-' '-.

H II WILd

A common event in our daily lives is that of a
produces an item and delivers it to a warehouse,
consumer acquires the item and does with it what
best - consumes it .

- 1 -

producer who
from where a
consumers do

app~ndix A Introduction

The producer and the consumer can be represented by two
concurrent p r ocesses .

procedure PRODUCER;
begin

procedure CONSUMER ;
begin

while in business do
produce ITEM
deposit ITEM in warehouse

end

wh il e desire lasts do
remove ITEM from war ehouse
consume ITEM

end

Note: The actions of actually producing the ITEM
consuming the ITEM are totally independent of
However both the producer a n d the consumer have
access the warehouse: the producer to deposit the
consumer to r emove the ITEM .

and actually
each other.

a need to
ITEM and the

If we assume that only one ITEM at a time may be in the
warehouse and bea rin g in mind the independent speeds at which
each of the two processes operate, it can be seen that there
will come a time at which one of the processes will have to be
delayed, waiting for t h e other . The consumer may hav e to wait
for the producer to deposit the item before he can remove it,
or the producer may have to wai t for th e consumer to remove the
item before he can deposit the next one .

Thus
from
just

these two processes communicate in that the item passes
the producer via the warehouse to the consumer, and as

shown they synchronise.

As well as supporting the low level synchronisation primitive,
th e semaphore, CLANG supports two distinct high level
constructs for concurrent process communication and
synchronisation - the MONITOR and the SYNCHRONISER .

The difference be tw een the two is the manner in
interprocess communication is performed.

which

The monitor concept is based on
abstract data structures which
exclusicn.

communication
a r e accessed

The synchroniser concept is based on di r ect
transfer of messages (ie. parameters) between
processes, one of which is-fhe synchroniser itself .

via
in

passive
mutual

synchronised
two active

By having both types of high level constructs CLANG is able to
support a wide spectrum of concurrent applications .

-2-

appendix A Introduction

The fo l lowing two chapters provide a description and the
general form of each of th e two concepts and their associated
structures and components.

The third chapter contains descriptions of four useful
features available for use in conjunction with the monitor and
synchroniser concepts.

Examples of usage of each of the components will be found at
the end of their respective subsections .

Example programs illustrating the appropriate concept will be
given in their entirety , together with results, at the end of
the chapters.

The last chapter contains the list of error messages that can
occur when there is incorrect usage of any of the features
described in the first three chapters and an explanation of
what the error message implies and an example of how it might
appear.

- 3-

appendix A

Chapter 1 : Monitors

A monitor is a construct
by encapsulating data
concurrent prccesses,
which access that data.

chapter 1

used local to a program. It is formed
structures, which may be shared by

with a set of procedures / functions

A special property of monitors is that only one concurrent
process may be active "in" a monitor executing i-rs-procedures /
functions at any given time .

Monitors thus provide a passive high level construct for
implementing communication between concurrent processes via
mutually exclusive access to the shared data structures .

The general form of a monitor is:

monitor MNAME;
const declarations
var declarations

including starred identifiers (1 .1)

condition declarations (1 • 3)

procedure / function declarations

begin
body of monitor

end ;

Use of Mon itors

(1 • 2)

(1. 1)

(a) A monitor must be declared at the outer level of a program
after the global variable declarations. The monitor
declarations may be interspe rsed with the program's
procedure / function and synchroniser declarations.

Note: Monitors may not be declared local to procedures,
functions or synchronisers, nor may they be declared
local to another monitor. ie. Monitor declarations may
not be nested.

(b) The monitor identifier (MNAME) is signi fic ant to eight
characters and must be unique.

(c) There are no parameters to a monitor .

(d) The current imp l ementation restricts the number of
monitors that may be declared per program to 15.

- 4 -

appendix A chapter 1

Examples of monitors

The program segments shown in the following examples
reproduced as part of entire working programs at the end
this chapter.

are
of

The warehouse mentioned in the introduction to the user manual
may be coded as a monitor as follows:

monitor WAREHOUSE;
const FULL= 1 ;

EMPTY =Q);
var SHOP, SPACE;
condition AVAILABLE, FREE;

procedure *DEPOSIT (ITEM) ;
begin
if SPACE = FULL then

FREE . qwait;
SHOP := ITEM;
SPACE := FULL ;
AVAILABLE . qsignal

end;

procedure *REMOVE(var ITEM);
begin
if SPACE = EMPTY then

AVAILABLE. qwait;
SPACE := EMPTY;
ITEM := SHOP;
FREE.qsignal

end;

begin
SPACE

end;
EMPTY

- 5-

(1 • 3)

(1. 1)

(1 . 3)

(1 . 3)

(1. 1)

(1 • 3)

(1 • 3)

(1 • 2)

append ix A Example

A monitor to provide simulation facilities in t he form of
pseudo - TIME might be coded as follows:

monitor SIMULATION;
const *TIMELIM IT = 20; (*max length of simulation*)
var *TIME;
conditon ALARMCLOCK;

procedure *H OLD(DELAY) ;
(*d elay caller for DELAY of simulated time *)
var ALARM ;

begin
if DELAY > 0 then

begin
ALARM := TIME + DELAY;
ALARMCLOCK .q pwa i t(A LARM);
TIME := ALARM
(*when woken, advance ps eudoti me*)

end
end; (*H OLD*)

procedure *ADVANCE; (*keep waking up next job*)
begin

ALARMCLOCK.qsignal
end;

function *ENQUEUED;
(*a llow outside world to exam ine queue*)
begin

ENQUEUED : = ALARMCLOCK.qlength
end;

begin (*SIMULATION *)
TIME := 0 (*initial value of TIME*)

end; (*SIMULATION *)

- 6-

appendix A section 1.1

1.1 Identifiers dec l ared local to monitors

In this section identifiers declared local
constants, variables, procedures and

to a monitor include
functions (but not

condition variables (cf . section 1.3)).

1.1. 1 Starred Indentifiers

Any identifier declared local to a monitor which has its
declaraticn prefixed by an asterix ('*') is termed a starred
identifier.

The general form is:

'identifie r

An identifier may only be declared as starred at the outer
level of a monitor's declarations. Starred id ent ifiers may not
be declared local to procedures or functions. Monitors
themselves may not be starred.

A starred identifier is deemed to be globally
subject to the normal scope rule that it must
before it may be referenced.

accessible,
be declared

A starred identifie r is referenced (us ing a notation similar to
t hat used when accessing records in Pascal) by means of
prefixing the name of t he moni tor, i n which the identifier was
declared, to the name of the identifier, separated by a period
(, . ') .

The general form of accessing a starred identifier is:

Moni t orname.identifier

On ly starred identifiers may be accessed in this way .

Inside the monitor in which they were declared, starred
identifiers may be referred to either by prefixing them with
the monitor name or not. As in this case the prefixing is not
really neccessary it is perhaps better practice to leave it
out .

for example, given the following declaration

monitor MON;
var *IDENT;

the starred variable, IDENT, may be referred to in the monitor,
MON, by either

MON . IDENT or simply IDENT

When accessing a starred identifier from outside the monitor in
which it was declared the prefixing must be used.

-7 -

appendix A section 1.1.1 . 1

1.1.1. 1 Starred procedures / function s

Starred Monitor procedu r es or functions may have parameters,
bo th value and variable, associated with them , subject to the
current implementation limit of 25 . (This also ap plies to non
starred procedures / functions declared local to monitors.)

Indeed it is by means of these parameters that communication
between the concurrent processes is established .

1.1 . 1. 2 Starred variables and accessing variables from outside a
monitor

The values of a monitor ' s variables, both starred and
unstarred, are retained between act i vations of monitor
procedures / fun c tions. This means that a monitor ' s var i ables
are effectively at the global level although, the scope of
access is dete r mined by their point of declaration and whether
they are starred identifiers or not.

Starred monitor va ri ables may be accessed from outside the
monitor in which they were declared by the normal method o f
prefixing; however these monitor variables may only be accessed
in a "read only" capacity which implies the value o f the
starred monitor variables may not be altered , by any means,
outside the monito r in which t hey were declared .

The values of monitor variables , both starred and unsta rre d ,
may be altered within the monitor in whi ch they were declared .

The program ' s global va r iables a r e within the s cop e of the
monitors and so may be accessed from within the monitors , but
only in a "read only" capacity . ie. The values of global
variables may be examined, but not al t ered , within a monitor.
Thus the body of a monitor may not be used to assign initial
values to any variables declared-gTobally in the program . (cf .
section 1 . 2)

- 8 -

appendix A Example

To help clarify, consider the following example program . In
this program both valid and invalid usages of variab l es are
demonstrated and marked accordingly .

program DEMONSTRATION;
var Gl, G2; ("program's global variables")

moni to r MON 1 ;
var MV1A, "MV1B; (" monitor variables ")

procedure *M1PROC;
begin

MV1A . _ Gl VALID
end ;

begin (*MON1*)
MV1A := 0;
G 1 : = 0;

MV1B : = 0;
MON1.MV1B ._ 0;
read(Gl)

end; (*MON1*)

monitor MON2;
var *MV2A, MV2B;

begin
MV2B
MV2B

(*MON2")
:= MON1 . MV1B ;
: = MON1.MV1A

e nd; (*MON2*)

VALID
INVALID - global variables

read only
VALID
VALID
INVALID - may not alter va l ue

of global variables

VALID
INVALID - MV1A is not a starred

variab l e

begin (*body of program DEMONSTRATION*)
Gl : = MON2 .MV 2A ; VAL I D
read(MON2 . MV2A); INVALID - may not alter the

value o f MV2A
G2 : = MON2.MV2A * 2 * MON1 . MV1B VALID

end . (*DEMONSTRATION")

- 9-

appendix A Example

Further examples of accessing starred identifiers

To show how starred procedures are called consider how the two
processes of the producer and the consumer may be coded to
access the warehouse developed as a monitor. (cf.section 1)

procedure PRODUCER;
canst SWEET = 1;
var ITEM;

begin
while BUSINESS = GOOD do

begin
ITEM := SWEET ; (*produces item*)
WAREHOUSE.DEPOSIT(ITEM)

end (*while *)
end; (* PRODUCER *)

procedure CONSUMER;
var ITEM, MOUTH;

begin
while DESIRE = GOOD do

begin
WAREHOUSE.REMOVE(ITEM);
MOUTH := ITEM (*consume item*)

end (*while*)
end; (*CONSUMER*)

- 10 -

appendix A Example

In conjunction with the monitcr SIMULATION which provides the
simulation facilities for pseudo - time we have two processes ,
TICK and TOC K, wh i ch actually ope r ate t he "clo c k ".

procedure TICK ; (* keeps the clock going to
wake up jobs when comp l ete*)

begin
while (SI MU LATION.TIME < SIMULATION.TIMELIMIT)

or
(SIMULATION.ENQUEUED > 0) do

beg i n
i f rea dy i ns ystem = 1 then (*c f . c hap t er 3*)

SIMULATION.ADVANCE ;
end ; (*wh i le*)

e nd; (*TICK *)

procedure TOCK ; (*record th e passage of t i me *)
begin
while SIMULATION. TIME < SIMULATION.TIMELI MIT do

begin
SIMULATION . HOLD(l);
writeln(SIMULATION.TIME, ' seconds ') ;

end ;
end ; (*TOCK *)

- 11 -

s~ction 1.2

1.2 Th e body of a mon ito r

The body of a monitor is executed before the execution of the
body of the main program.

The genera l form is:

begin
statements

end;

If there is more than one monitor declared in a program then
the body of the first monitor declared is executed first,
followed by the body of the second monitor declared and so on
until the body of the final monitor declared is executed, then
the body of the main p r ogram starts to execute .

Diagramatica l ly the flow of execution is :

program DIAGRAM;

mo n i tor M1;

Start of execution --1 begin
body of M1

end;

/

I

End of execution -->

monitor M2;

begin
body of M2

end;
/

monitor Mn;

begin
body of Mn

(..~ nd ;

begin
body of main program

end.

-12-

appendix A section 1 .2

Notes:

(a) The monitor declarations may be interspersed among
procedure / function declarations; (hence the between
(for example) monitor Ml and monitor M2) .

(b) Obviously the flow of execut ion may be temporar i ly
sidetracked due to procedure or function calls and the
launching of conourrent processes.

Thus the body of a monitor may be used to give ini tial values
to the monitor variables and to set up the data structure
encompassed by the monitor before the execution of the body of
the main program starts ; hence the body of a monitor is
sometimes referred to as the "initialisation code" of a
monitor .

Example

In the monitor WAREHOUSE (cf . section 1) the body of the
monitor was:

begin
SPACE

end;
EMPTY

which ensures that the warehouse is initially empty .

-13-

appendix A section 1.3

1.3 Condit i on variables

Monitors offer a means of communication between concurrent
processes; however the only synchronisation they offer is in
the fact that only one process may be active in a monitor at
any given time and that other processes wishing for access to
the monitor are queued on a first - come - first - served basis. Thus
the monitor concept has been supplemented with condition
varia bles which can be used to provide a means of conditioned
synchronisation wi thin a monitor .

1. 3.1 Declaration of condition variables

Condition variables may only be declared local to monitors.

Condition variables are declared after the monitor ' s variable
declarations and before any procedure I function local to the
monitor.

The general form of declaration is :

condition CONDVAR1, CONDVAR2[M:N], .. ' CONDVARn;

Notes:

(a) The same rules for naming of identifiers apply to condition
variables .

(b) Condition variables may not be declared as starred
identifiers (cf . section 1.1 . 1) and therefore condit i on
var i ables are not accessible outside the monitor in which
they were declared .

(c) In the current implementation there may only be a maximum
of 25 condition variables per program.

(d) Arrays of condition variables may be declared, but every
array element counts towards the restriction of (c) above .

Examples of declarations of condition variables

cond i tion BUSY, fREE[1:4];

- 14 -

appendix A section 1.3.2

1.3.2 Operations on condition variables

Condition variables are not variables in the " true" sense, but
rather implicit queues on which concurrent processes can
suspend themselves, waiting for a n event to occur.

There are five operations available for the manipulation of
these implici t queues .

These are:

qwait, qpwait(PRIORITY), qsignal, queue, qlength

These operations are used by prefixi ng them with the name of
the condition variable to which they apply, separated by a
period (' .') .

The general form is:

conditionvariablename.operation

Condition variables may only be used in conjunc tion wi th these
operations.

1.3.2.1 QWAIT

The operation qwait de la ys a process on the implicit condition
variable queue with a default priority.

Example of usage

FREE[4].qwait

1.3.2.2 QPWAIT(PRIORITY)

The operation qpwait(PRIORITY) delays the process on the
implicit condition variable queue with a priority specified by
the expression " (P RIORITY) ". This priority must be in the range
1 .. MAXINT. A low priority value indica tes a high priority
status.

The default priori ty used for qwait is 10 .

Thus qpwait(PRIORITY), and qwait, can be used to influence the
order in which processes are queued on the condition variable
queues, waiting for an event to occur .

Examples of usage

BUSY.qpwait(12*AVAR) where AVAR is a variable

FREE[4] . qpwaiL(10) - is equivalent to - FREE[4].qwa it

-15-

app.ondix A 1.3.2.3

1.3.2.3 QSIGNAL

Th.o op.oration qsignal will r.oact ivate the process at the h ead
of the implicit condition variable queue, at the same time
temporarily suspending the signalling process. This implies
there may be more than one p r ocess "inside" a monitor, but only
one of these processes will be active.

If the queue for the associated condition variable is empty the
operation will have no effect.

Qsignal is used to signify that an event has ocourred and thus
reac tivate the processes suspended by qwait or
qpwait(PRIORITY). The process that executed the qsignal will be
suspended until the reactivated process has left the mcnitor in
question, and then it will proceed .

Examples of usage

1.3.2.4 QUEUE

BUSY .qsignal
FREE[4] . qsignal

The operation queue is used as a function as it returns the
ord(TRUE) ie . the value 1 (there is no Boolean type in CLANG)
if there lS at least one process on the implicit condition
variable queue, ord(FALSE), ie. "',otherwise.

Example of usage

If there are three processes suspended on the condition
variable FREE[4] then

I . - FREE[4].queue

will assign the value to the variable I.

1.3.2.5 QLENGTH

The operation qlength is used
number of processes suspended
variable queue (ie . . the "length"

as a function to
on th e impl icit

of the queue).

If the queue is empty the value'" is returned.

Example of usage

return the
condition

If there are four processes suspended on the condition variable
BUSY then

I : = BUSY. qleng th

will assign the value 4 to the variable I.

- 16 -

appendix A section 1.3.3

1.3.3 Providing conditioned synchronisation with condition variables

By themselves condition variables provide synchronisation of
the concurrent processes analogous to that provided by binary
semaphores. (Semaphores are not allowed in monitors.)

Condition variables reach their full potential when used in
conjunction with Boolean expressions (although there is no
Boolean type implemented in CLANG.) Used thus, condition
variables can provide conditioned synchronisation of the
concurrent processes accessing the monitor.

The general form is:

*

Boolean express i on *
condvar.operation

qwait, qpwait(PRIORITY), qsignal

Care must be taken, as it is the responsibility of the
programmer to ensure that the use of condition var i ables does
not lead to deadlock.

Example of usage

In the implementation of
seotion 1), reproduced
reference, conditioned
locations.

a warehouse by means of a monitor (cf.
here with line numbers for ease of
synchronisation is used at two

1: monitor WAREHOUSE;
2: const FULL = 1;
3: EMPTY = 0;
4: var SHOP, SPAC E;
5 : condition AVAILABLE, FREE; (*condition vars*)
6 :
7: procedure *DEPOSIT(ITEM);
8: begin
9: if SPACE = FULL then

10 : FREE.qwait;
11: SHOP := ITEM; (*deposit the item*)
12: SPACE : = FULL;
13: AVAILABLE.qsignal
14: end; (*DEPOSIT*)
15 :
16: procedure *REMOVE(var ITEM);
17 : begin
18 : if SPACE = EMPTY then
19: AVAILABLE.qwait;
20: SPACE := EMPTY;
21: ITEM := SHOP ; (*remove the item*)
22 : FREE.qsignal
23 : end ;
24:

-17-

appendix A section 1.3.3

25: begin (*WAREHOUSE*)
26: SPACE := EMPTY
27: end; (*WAREHOUSE*)

The ccnditioned synchronisation expression at lines 9 and 10

if SPACE = FULL then
FREE . qwait

will de lay the producer process (cf . seotion 1.1.1.2) from
depositing his item if the warehouse is full. (The consumer has
yet to remove the item .)

If SPACE <> FULL then the producer prooess is not delayed but
goes on to execute line 11 .

SHOP := ITEM; (*deposits the item*)

If the producer is delayed, it will remain so
comsumer process e xecutes the corresponding qsignal
22) .

until
(on

the
line

FREE . qsignal ie. after the item has been removed

A similar set up is used to ensure that the consumer process
does not try to remove an item until there is one available
at lines 18 and 19

if SPACE = EMPTY then
AVAILABLE.qwait

The corresponding "go ahead" signal from the producer when an
item is available is at line 13.

Note :

When a
releas e
process
section

AVAILABLE . qsignal

process is suspended on a condition variable
exclusivity to that monitor thus allowing
access . The ramifications of this are dealt

1. 4.

-1 8 -

it must
another

with in

appendix A section 1.4

1.4 The invariance of monitor variables

When a process is suspended it must release all of the
exclusivities to monitors that i t might hold .

A concurrent process, on reacquiring those exclusivities to
monitors it was forced to released before it had finished
inside them, might reason able expect most of the values of the
regained monitcr's variables to have the same values as when
exclusivity was released. This may , however, not always be the
case as, in the interim, other concurrent processes may gain
access to those monitors and possibly alter the values of the
variables.

This section will detail the constructs CLANG has available for
the solution of this problem. For further information
concerning the problem of invariance of monitor variables and
the terminology used to enlarge on it, the reader is refered to
chapter 4 of the assessment.

-19-

app,~ndix A section 1. 4 . 1

1.4.1 At a nested PLOXY point

When a concurrent process executes a nested monitor call and is
blocked it must release all its he ld exclusivities . In CLANG,
when the process reacquires all these exclusivities and may
proceed, the invariance of all the appropriate monitor's
variables is assured . Th is guaranteeing of invariance is
implicit and "automatic".

1.4.1.1 The (*$B- *) compiler directive

CLANG is seen as a teaching language and as it
desirable to demonstrate the effects of not
in variance of monitor variables to students,
oompiler directive has been provided .

is sometimes
ensuring the
the (* $B - *)

If this option is used anywhere in a user's program, each time
the program star ts to execute the user will be prompted as to
whether he or she wishes invariance of monitor variables, when
executing a nested monitor call, or not .

The general form of the prompt is :

Nested Backup?

To this the user replies "Y" for yes, or " N" for no.

This allows the same program to be run several times a nd the
effects of the invariance of monitor variables to be studied.

-20-

appendix A Example

Example of usage

(*$8- *) (*compiler directive*)
program DEMONSTRATION;

(*to demonstrate the effects of invariance
of monitor variables *)

monitor MONIT2;

procedure *TYUP;
var I;

begin
for I : = 1 to 1 (11(11 do

begin (*nothing*) end
(*makes the conditions ripe for a blocked

nested monitor call*)
end;

begin (*MONIT2*)
writeln('Body of MONIT2')

end; (*MONIT2 *)

mon itor MONIT 1 ;
var LOOP;

procedure *A;
begin

LOOP := (II ;

wri teln (' Ini tially LOOP is " LOOP) ;
while LOOP < 5 do

begin
LOOP := LOOP + 1;
MONIT2.TYUP; (*nested PLOXY pOint*)
writeln('The value of LOOP is " LOOP)

end (*while*)
end ; (*A *)

prooedure *B;
begin

LOOP := 6
end ; (*B*)

begin (*MONIT1*)
writeln('Body of MONIT1 ')

end; (*MONIT1 *)

procedure PROC1;
(*accesses procedure A of MONIT1*)
begin

MONIT1.A;
writeln('The end of PROC1')

end;

- 21 -

appendix A

pr ocedure PROC2;
(*accesses pro cedure B of MONIT1 *)

begin
for I : = 1 t o 30 do

begin (*delay *) end;

Example

(*de l ay so PROCl enter s MONITl first *)
MONIT1 . B;
writeln(' End of PROC2 ')

end ;

procedure PROC3 ;
(*to bloc k PROCl fr om entering MONIT2

immediately*)
begin

MONIT2 . TYUP ;
writeln(' End of PROC3 ')

end ;

begin (*DE MONSTRATION *)
writeln(' Start of ma i n p r og r am ');
cobegin (* launch con c urren t p r ocesses *)

PROC1; PROC2; PROC3
coe nd

end .

If, a f ter t he program has compiled and sta r ts to
answer to the prompt "NESTE D BACKUP? " i s given as
the following output results :

Body of MONIT2
Body of MONIT 1
Start of main program
I nitially LOOP is 0
End of PROC2
End of PROC3
The value of LOOP is 6
End of PROCl

execute ,the
"N " for no

If, however, the answer to the prompt is "Y" for yes then the
desired output is produced .

Body of MONIT2
Body of MONITl
Start of main program
Initially LOOP is 0
End of PROC2
End of PROC3
The valut.~ of LOOP is 1
The value of LOOP is 2
Th" value of LOOP is 3
The value of LOOP is 4
The value of LOOP is 5
End of PROCl

- 22 -

appendix A secticn 1 . 4.2

1 . 4.2 At a conditione d PLOXY po i nt

The loss of exclusivity to monitors due to condition variables
is planned by the user to provide s ynchronisatio n between
ccncurrent processes .

In this case it is not always desirable for all the
of a monito r to be invariant . Th i s is catered for by
an expl i cit scheme to allow the user to specify wh i ch
need to be invariant .

1.4.2.1 SAVE(parameters) and RESTORE

va r iables
providi ng
var i ables

SAVE(parameters) and RESTORE are explici t statements that a
user can use to b r acket a conditioned PLOX Y point to ensure
in variance of the desired monitor variables . The var i ab l es to
be made i nvariant must be spec i fied in the pa r amete r s of the
SAVE instruction.

The general form is:

SAVE(variab l e 1 , variable 2, . .. var i ab l e n) ;
condi t ioned PLOXY poi n t

RESTORE

Notes:

(a) SAVE(parameters) and RESTORE are an
pair and if either is omitted no
assured . Warning messages will appear
(cf. chapter 4)

explicit bra c keting
invariance will be
if this is the c ase

(b) SAVE(parameters) and RESTORE may only be used inside
monitors.

(c) Although there is nothing to preve n t SAVE(para mete r s) a n d
RESTORE from being used other than aro und a cond i tioned
PLOXY point , the y a r e redundant e l sewhere and it is
efficient programming to restrict their usage to s uch
points . (SAVE (parameters) and RESTORE may of course be
used around a nested PLOXY poi n t wi t h o ut redu ndancy if t h e
(* $B - *) option is being used (cf . section 1.4 . 1.1))

- 23 -

appendix A sectien 1. 4 .2

Mere abeut SAVE(parameters) and RESTORE

A whele ar r ay er in di vidual array elements may be made
invariant.

Fer example given:

moniter M1;
var A[1 :4];

SAVE(A) ;
---cendit i oned PLOXY point --

RESTORE

weuld ensure that every element of the array A would be
invariant, whereas

SAVE(A[1] ,AD]);
--- conditioned PLOXY point --

RESTORE

weuld enly ensure that elements 1 and 3 of array A would be
invariant.

The parameters te the SAVE may only be variables declared at
the cuter level ef that monitor in which the SAVE is used .

Aside :

(a) There is no need to "save" the global variables as they are
"read enly " inside the monitor and thus may not be altered.

(b) There is no need te "save" the variables decla r ed local to
the procedure in which the SAVE(parameters) is us ed as
these local variables will be invariant due te the fact
that each invocation of a procedure sets up its own "space"
fcr the lecal variables and parameters .

There is ne limit te the number of SAVE(pa r ameters) that may be
used befere a cenditiened PLOXY point .

ego SAVE(I); SAVE(J); - is equivalent to
- PLOXY peint -

SAVE(I,J) ;
-PLOXY po in t -

Only ene
variables
will have

RESTORE is needed te ensure the invariance
SAVEd befere the PLOXY point. Any further

ne effect.

of the
RESTOREs

There are ne parameters te RESTORE; enly those variables that
were specified as the parameters ef the SAVE wi ll be restered.

- 24 -

appendix A section 1.4.3

1.4.3 .inal not e s and summary on invariance of monitor vari a bles

Due to the arbitrary nature in which concurrent processes are
executed in relation to each other, it is possible to execute a
program without ensuring any invariance of monitor variables
and still achieve the desired results .

However, without monitor variable invaria nce it is not possible
to guarantee that the next time the program is run the desired
results will again be achieved .

Summary

When a process has to release exclusivity to its held monitors
as the result of a blocked nested monitor call the invariance of
all monitor variables concerned is "automatically" guaranteed
unless the (*$8 - *) directive is used .

When a process has to release its held monitor exclusivities as
the result of a qwait , qpwait(PRIORITY) or qsignal operation on
a condition variable the monitor variables, of the monitor in
which the operation on the condition variable takes place,
specified explicitly in the parameter list of the
SAVE(parameters) instruction, will be saved, as will all the
monitor variables of the other monitors that the process may
have acquired, and with which it is s t ill busy, as the result of
successful nested monitor calls. Following the execution of the
RESTORE ins truction, (once the process has reacquired all its
exclusivities), these variables will be restored and will thus
be guaranteed to have the same values as prior to the release of
the exclusivities.

- 25 -

appendix A Example programs

Example programs

Here th en ar e the full working programs,
from which segments have been taken to
ccncepts.

inc luding results,
illustrate various

Toy Compiler Mark 21.2C m cv s spr nb

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
2
2
2
2
2
2
3
4

12
16
19
47
49
51
51
52
53
61
64
69
96
98

100
100
101
102

(*$W - *)
(*$ S+ *)
program COMMONEVENT;

(********* **)
(* This program deals with the common event in our *)
(* daily lives, that of a producer who prod uo es an *)
(* item and delivers it to a warehouse, from where *)
(* a consumer acquires the item and oonsumes it. *)
(* *)
(* The warehouse is implemented by means of a *)
(* monitor and the producer and consumer by means *)
(* of t wo conourrent prooesses . *)
(***)

const GOOD = 1;
MAXTIME = 5;

monitor WAREHOUSE;
oonst FULL = 1;

EMPTY = 0;
var SHOP, SPACE;
condition AVAILABLE, FREE;

procedure *DEPOSIT(ITEM);
begin

(*cond ition variables*)

if SPAC E = FULL then FREE.qwait;
SHOP := ITEM;
SPACE := FULL;
writeln('Item has been deposited');
AVAILABLE . qsignal (*Item available for co nsumption*)

end ; (*DEPOSIT*)

procedure *REMOVE(var ITEM);
begi n
if SPACE = EMPTY then AVAILABLE . qwait;
SPACE : = EMPTY ;
ITEM := SHOP;
writeln(' Item has been removed');
FREE . qsignal (*space in the warehouse*)

end; (*REMOVE')

begin ('WAREHO USE ')
SPACE := EMPTY ('warehouse initially empty')

end ; ('WAREHOUSE*)

-2 6-

app,~ndix A Example programs

lV' 5
105 procedure PRODUCER;
106 const SWEET = 1; (* item that is being produced *)
106 var ITEM , BUSINESS;
106 begin
107 BUSINESS := MAXTIME;
110 while BUSINESS >= GOOD do
115 begin
115 ITEM : = SWEET; (*produce item*)
118 writeln(' Item has been produced') ;
145 WAREHOUSE.DEPOSIT(ITEM);
149 BUSINESS : = BUSINESS - 1
153 end (*while *)
155 end; (*PRODUCER*)
157
157 procedure CONSUMER ;
158 var IT EM, MOUTH , DESIRE;
158 begin
159 DESIRE := MAXTIME;
162 while DESIRE >= GOOD do
167 begi n
167 WAREHOUSE . REMOVE(ITEM);
1T0 MOUTH := ITEM; (*con sume item*)
174 writeln('Item has been consumed');
20 1 DESIRE : = DESIR E - 1
205 end (*wh ile*)
207 end; (*CONSUME*)
209
209 begin (*COMMONEVENT *)
209 writeln('About to start business ');
237 cobegin
237 PRODUCER;
239 CONSUMER
239 coend;
241 writeln('Business is closed for the day ')
274 end. (*C OMMONEVENT *)

- 27 -

appendix A Example programs

About to start business
Item has been produced
Item has been deposited
Item has been remcved
Item has been consumed
Item has been produced
Item has been deposited
Item has been removed
Item has been produced
Item has been consumed
Item has been deposited
Item has been removed
Item has been ccnsumed
Item has been produced
Item has been deposited
Item has been produced
Item has been removed
Item has been consumed
Item has been deposited
Item has been removed
Item has been consumed

Business is closed for the day

- 28 -

appendix A Example programs

Toy Compiler Mark 21.2C m cv s spr nb

o
o
o
o
o
o
o
o
o
o
o
o
o
o
2
2
2
3
3
4

10
15
17
17
18
21
22
22
23
23
23
23
23
24
24
24
25
29
30
37
4 1
45
45
47
47
48
49
51
53

(*$S+ *)
(*$W - *)
program SIMULATEUSERS;

(* ***)
(* This program simulates the actions of *)
(* three use r s of a multi-access system *)
(* Monitors are used to provide the *)
(* manager of t he system and also to *)
(* provide simulation facilities in the *)
(* form of pseudo - TIME. *)
(* ***)

mon itor MANAGER;
var NEXTJOB;

procedure *ASSIGNJOB(var ASSIGN);
(*assign a job an accounti ng number*)
begin

NEXTJOB := NEXTJOB + 1;
ASSIGN := NEXTJOB

end; (*ASSIGNJOB*)

begin (*MANAGER*)
NEXTJOB : = 0

end; (*MANAGER*)

mon i tor SIMULATION;
const *TIMELIMIT = 20; (*max. length of simulation*)
var *TIME;
condition ALARMCLOCK;

procedure *H OLD(DELAY);
(*delay caller for DELAY of simulated time *)
var ALARM;

begin
if DELAY> 0 then

begin
ALARM := TIME + DELAY;
ALARMCLOCK . qpwait(ALARM);
TIME := ALARM (*when woken, advance pseud o time*)

end
end ; (*HOLD*)

procedure *ADVANCE; (*keep waking up next job *)
begin

ALARMCLOCK . qsignal
end;

-29-

appendix A Example programs

53
54
54
55
59
61
61
62
65
66
66
67
68
72
72
81
81
87
88
89
89
90
91
96
96
99

1 1 5
116
117
117
118
1 1 8
118
11 9
122
123
126
133
167
175
179
198
199
219
220
220
220
220
223
225
227
228
228
230

function *ENQUEUED;
(*allow outside world to examine queue*)
begin

ENQUEUED := ALARMCLOCK.qlength
end;

begin (*SIMULATION*)
TIME : = 0

end; (*SIMULATION *)

procedure TICK;
begin
while (SIMULATION.TIME < SIMULATION . TIMELIMIT)

or
(SIMULATION.ENQUEUED > 0) do

begin
if readyinsystem = 1 then SIMULATION.ADVANCE

end (*while*)
end; (*TICK*)

procedure TOCK; (*reoord passage of time*)
begin
while SIMULATION . TIME < SIMULATION . TIMELIMIT do

begin
SIMULATION.HOLD(l) ;
writeln(SIMULATION.TIME, , seconds ')

end
end; (*TOCK*)

procedure USER(I);
(*simulate user of the system*)
var JOB, JOBTIME, JOBNUMBER;

begin
for JOB : = 1 to 5 do
begin (*for JOB*)

MANAGER . ASSIGNJOB(JOBNUMBER);
JOBTIME := random mod 6 + 1;
wrileln('Request job' ,JOBNUMBER,' to finish at '

JOBTIME + SIMULATION . TIME);
SIMULATION . HOLD(JOBTIME);
wri leln ('End of job " JOBNUMBER)

end; (*for JOB*)
wrileln('End of user ' ,I)

end; (*USER*)

begin (*SIMULATEUSERS*)
cobegin

USER(l);
USER(2);
USER(3);
TICK;
TOCK

coend
end. (*SIMULATEUSERS*)

-30 -

appt.~ ndlx A

Request job 1 to finish at 6
Request job 2 to finish at
Request job 3 to finish at
1 seconds
End cf job 2
Request job 4 to finish at 7
End of jcb 3
Request job 5 to finish at 5
2 seconds
3 seconds
4 seconds
End of jcb 5
Request job 6 to finish at 6
5 seconds
End of job 1
Request job 7 to finish at 11
End of job 6
Request job 8 to finish at 7
6 seconds
End of job 4
Request job 9 to finish at 12
End of job 8
Request job 10 to finish at 10
7 seconds
8 seconds
9 seconds
End of job 10
End of user 3
10 seconds
End of job 7
Request job 11 to finish at 15
11 seconds
End cf job 9
Request job 12 to finish at 18
12 seconds
13 seconds
14 seconds
End of job 11
Request job 13 to finish at 19
15 seconds
16 seconds
17 seconds
End of job 12
Request job 14 to finish at 21
18 seconds
End of job 13
Request job 15 to finish at 24
19 seconds
20 seconds
End of job 14
End of user 1
End of job 15
End of user 2

- 31-

Example p r ograms

appendix A chapter 2

Chapter 2: Synch ronisers

The synchroniser is the message passing equivalent of the
monitor concept (cf . chapter 1). When message passing is used
for communication and synchronisation, concurrently executing
processes send and receive messages.

Communication is accomplished because a process receives values
as part of a message from the sender.

Synchronisation is accomplished by the constraint that messages
can only be received once they have been sent.

Message passing in CLANG is a Many-to - One relationship where
many "c lient " processes requ est rendezvous with one "server"
process.

The "server " process is the synchroniser.

The "client" process is a concurrent prooess that wishes to
communicate and synchronise with the synchroniser.

Once a rendezvous has been established the " server" and
"c lient " processes are ready to communicate.

The general form of a synchroniser is:

synchroniser SNAME(parameters);
const declarations
var declarations
entry point declarations (2 . 1)

procedure / f unct ion declarat ions

begin
body of the synchroniser

end;
(2.2) & (2.3)

The synchroniser is an acti ve process, (it must be launched
from within a Cobegin . . Coend construct), and as such executes
concurren tly with the "client" processes until a rendevzous is
established . During this, the "client" process is suspended
while the "server" process (the synchroniser) performs the
rendezvous. On completion of the rendezvous both the "client"
and the "server" processes once more proceed concurrently .

If the synchroniser reaches a
"c lien t" processes
until one arrives.

are any
suspended

- 32-

point of rendezvous before there
available, the synchroniser is

appendix A chapter 2

Use cf synchrcnisers

(a) Synchronisers may only be declared
program after the global variable
may not be declared lccal to any
monitors or other synchronisers.

at the outer level of a
dec lara tions. ie. they

procedures , functions,

(b) Synchronisers are active processes so they count against the
number of concurren t processes allowed in a program at any
one time (which is 10 in the current implementation) .

(c) There may be more than one synchroniser per program, the
limit being determined by (b) above .

(d) As in standard procedures the parameters to synchronisers
are optional and may include both value and variable
parameters .. The limit to the number of parameters in the
current implementation is 25. Complete arrays may not be
used as parameters .

(e) Synchronisers may only be initiated
ccbegin .. coend construct and may not be
other position . They may be "called"
rendezvous request. (cf . section 2.1.2)

Example of usage

from within a
called from any

by means of a

The warehouse mentioned in the example to the user manual
may be coded as a synchroniser as follows:

synchroniser WAREHOUSE;
var SHOP;
ent ry DEPOSIT(ITEM), REMOVE(var ITEM); (2.1.1)

begin ('WAREHOUSE ')
while activeinsystem > 1 do

begin
accept DEPOSIT(ITEM) then

beg in
SHOP := ITEM

end ;
accept REMOVE(var ITEM) then

begin
ITEM := SHOP

end
end; (*while*)

stopccncurrency
end ; ('WAREHOUSE')

- 33 -

(cf . chapter 3)

(2.2)

(2.2)

(cf. chapter 3)

appendix A Example

The problem of several processes to deposit and remove values
from a buffer that is bounded in size may be dealt with by
means of a synchroniser as follows:

synchroniser HANDLER;
var BUFFER[0:7], SIZE, NUMBER;
entry DEPOSIT(X), REMOVE(var X);

begin (*HANDLER*)
SIZE := 0; (*buffer initially empty*)
for NUMBER .- 1 to 32 do

begin
select
SIZE> 0: accept REMOVE(var X) then

begin
GRAPHICS . DRAWB(SIZE , SPACE);
(*call to graphic routine')
X := BUFFER[SIZE];
SIZE : = SIZE - 1

end;
SIZE < 6: accept DEPOSIT(X) then

begin
SIZE := SIZE + 1;
BUFFER[SIZE] : = X;
GRAPHICS . DRAWB(SIZE,X)
(*call to graphic routine*)

end
end «select ')

end; «HANDLER<)

The call to the graphic ro utine allows the results to be
graphically displayed on a screen addressable SOROC terminal .
See the end of the chapter for the full working program .

- 34 -

appendix A section 2.1

2.1 Entry points

An entry point defines the point of rendezvous between the
" server" process (the synchroniser) and the "client" process
and specifies just how communication between the two processes
will be performed at this point .

2.1.1 Entry point declaration

Th e entry point declarations provide a visible list, to the
"client" processes, of requests that the "server " process can
service . These together with a formal parameter list, through
which the message passing will be performed, are declared in
the synchroniser under the e ntry declarations.

The general form is:

Notes:

entry REQUEST1(parameters) , REQUEST2(parameters) ,
REQUESTn(parameters);

... ,

(a) Entry points may on l y be declared at the outer level of
synchronisers. The entry point declarations must be after
the synchroniser's variable declarations and before any
local procedures or functions.

(b) The same rule for naming identifiers apply to entry points,
namely , eight significant characters.

(c) The parameters to the entry points are optional . The same
rules for parameters to procedures / functions app l y to the
parameters of entry points . An entry po int without
parameters is purely a synchronisation point.

(d) The current implementation restricts the number of entry
points that may be declared per program, to a maximum of
25 . There is no limit to the number of entry points per
synchroniser except in accordance with the above.

Examples of usage

entry DEPOSIT(ITEM), REMOVE(var ITEM);

entry REQUEST1, REQUEST2(A, var B, C);

- 35 -

appendix A

2.1.2 Requests for rendezvous

A process wishing
performs a "call "
suspended until the

for a rendezvous with the
to the required entry point

rendezv ou s is complete.

section 2.1.2

synchroniser
and is then

The call is made by prefixing the name of the synchroniser, to
which the request is directed, to the name of the request,
separated by a pe ri od ('.').

The general form is:

synchronisername.REQUEST(parameters)

Note : The parameter list of the synchroniser is not specified
even if there are parameters to the syn ch r on iser.

The entry point request may only be made from within a process
that is executing concurrently with the synchroniser .

A request for rendezvous may not be made from within a
synchroniser.

An entry point request must match exactly (in name, number, and
type of parameters to a n e ntry point declared in the
synchroniser whose name is appended to the request.

Note: The entry points are the only parts of a synchroniser
that are accessible ou tside the synchroniser.

Examples of usage

The two "client" processes,
warehouse example , coded in
coded as follows:

the producer and consumer, for the
section 2 as a synchroniser, may be

procedure PRODUCER;
const SWEET = 1;
var ITEM;

begin
while BUSINESS = GOOD do

begin
ITEM := SWEET; (*produce item*)
WAREHOUSE.DEPOSIT(ITEM)
(*request for rendezvous at the entry

point DEPOSIT*)
end (*while*)

end ; (*PRO DUCER *)

- 36 -

appendix A

Note:

procedure CONSUMER;
var ITEM, MOUTH;

begin
while DESIRE = GOOD do

begin
WAR EHOUSE. REMOVE(ITEM)

section 2.1.2

(*request for rendezvous at the entry
point REMOVE *)

MOUTH := ITEM (*consume item*)
end (*wh i le*)

end; (*CONSUMER *)

Notioe how the number of parameters to the request for
rendezvous correspond to the number of paramete r s to the entry
pcints declared in the synchroniser WAREHOUSE i n section 2.
However the names of the paramete r s need not cor r espond .

Aside:

The synchroniser WAREHOUSE and the two processes, PRODUCER and
CONSUMER, would be launched concurrently in the main pr ogram as
follows :

cobegin
WAREHOUSE ;
PRODUCER;
CONSUMER

coend;

- 37-

} order unimportant

ap~endix A Example

In the bounded buffer problem there are several proces s es
wishing to install items and one wishing to fetch them .

The common process for the installe r s could be coded as :

procedure INSTALLER(I) ;
var TIME, REQUIRED;

begin (*INST AL LE R(I) *)
for REQUIRED := 1 to 8 do

begin
for TIME := 1 to (100 + random mod 20) do

begin
(*manufacture product*)

end ;
GRAPHICS . DRAWP(I, PRODUCT[I]);
HANDLER.DEPOSIT(PRODUCT[I]);
GRAP HICS.DRAWP(I, SPACE)

end (*for REQUIRED *)
end; (*INSTAL LE R(I) *)

The fetcher process could be coded as :

procedu r e FETCHER;
var TIME , REQU I RED , ITEM;

begin
for REQUIRED : = 1 to 16 do

begin
HANDLER.REMOVE(I TEM);
GRAPHICS . DRAWC(ITEM);
for TIME := 1 t o (200 + random mod 100) do

begin
(*ca r ry item away*)

end;
GRAPHICS.DRAWC(SPACE)

end (*for REQUIRED*)
end; (*FETCHER *)

- 38 -

appendix A section 2 . 2

2.2 The ACCEPT statement

The section of code in the synchroniser, in which the actual
rendezvous or message passing takes place, is contained within
an accept statement.

The general form is :

accept REQUEST(parame t ers) then
begin
statements

end ; (*accept*)

The accept stat ement is a compound statemen t and encloses the
statements which involve the parameters (if any) wh i ch create
the communication .

An accept statement is the point in the synchroniser where the
"server " process will be delayed until there is a corresponding
request by a "client" process. Thus the rendezvous request in
the " client" process and the accept statement in the "server"
process prov i de the points of sync hronisa ti on between the two
proc ess es.

Notes:

(a) Accept statements may only be used within synchronisers .
They may be used in procedures / functions de c lared local
to the synchroniser.

(b) The number and type (ie. va lue or variable) of the
paramete r s in the entry-pQint declaration (cf. section
2 .1.1) must match exactly the number and type of the
parameters
However,
parameters

used in th e corresponding a ccept statement.
as with forward procedure declarations , the
need not have matching names .

eg o The following is legal

entry REQUEST(var A, B);

accept REQUEST(var I, J) then
begin

(c) The parameters of an accept statement are strictly local to
it.

(d) There may be more than one accept sta tement per entry point
declaration .

- 39 -

appendix A section 2.2

(e) Accept statements may not be nested. This implies that once
synchronisation has been establ is hed between the "server "
and "client" processes, the rendezvous must first be
completed before the "server" process can deal with
requests from other "client" processes.

(f) The requesting process will be delayed until the end of the
accept statement and then both the synchroniser and the
process, whose request has now been dealt with, will
proceed concurrently once more.

If the synchroniser can never execute the co rresponding accept
statement for the request then deadlock will result .

Simarly
request

if there is an accept statement for which there is
then deadlock will again arise .

Example of usage

no

The communication and synchronisation between the producer
process and the consumer process (cf. section 2 . 1.2) is
achieved by means of the accept statements in the synchroniser
WAREHOUSE reproduced here, as well as the producer and consumer
processes , with line numbers for easy reference.

1: synchroniser WAREHOUSE;
2 : var SHOP ;
3: entry DEPOSIT(ITEM) , REMOVE(var ITEM);
4 : begin (*WAREHOUSE*)
5: while activeinsystem > 1 do
6: begin
7: accept DEPOSIT(ITEM) then
8: begin
9: SHOP := ITEM

10: end;
11 : accept REMOVE(var ITEM) then
12: begin
13 : ITEM := SHOP
14: end
15: end (*while*)
16: stopconcurrency
17 : end; (*WAREHOUSE*)
18 :
19: procedure PRODUCER;
20: const SWEET = 1;
21 : var ITEM;
22 : begin (*PROD UCER*)
23: while BUSINESS = GOOD do
24: begin (*while*)
25: ITEM := SWEET; (*produce ITEM*)
26: WAREHOUSE . DEPOSIT(ITEM);
27: end (*while*)
28: end; (*PRODUCER*)

-4 0-

Example

29 :
30 : procedure CONSUMER;
31: var ITEM, MOUTH;
32 : begin
33: while DESIRE = GOOD do
34: begin (*while*)
35: WAREHOUSE.REMOVE(ITEM);
36: MOUTH := ITEM (* consume ITEM *)
37: end (*while*)
38: end; (*CONSUMER*)

Fi rst ly note that the entry points declared in line 3
correspond exactly in name, and number and type of parameters
to the accept statements on lines 7 and 11, and exactly in
name, and number of parameters to the requests for rendezvous
on lines 26 and 35 .

If no request from the producer process has arrived, implying
the producer process has not yet reached line 26, by t he time
the WAREHOUSE synchroniser reaches the accept statement on li n e
7, accept DEPOSIT(ITEM) then the synchroniser will be suspended
until such time as the request for rendezvous from the prod u cer
is forthcoming.

Notes:

(a) Should the request from the consumer process (at line 35)
be made during the time the warehouse synchroniser is
suspended, the only change in the state cf the processes
will be the suspension of the consumer process . The
consumer process will remain suspended until after the
warehouse synchroniser has executed the acceot statement
from line 11 to line 14. ie . dealt with th~ reques t to
remove the item .

When the request for rendezvous (at line 26) ar r ives from
the producer process, or if there was al r~ady a request
by the producer process by the time the warehouse
synchroniser reached line 7 , it is now dealt with by the
warehouse synchroniser . (The synchroniser is reactivated,
if it had been suspended, immediately the request comes
in .)

(2) The producer proce~s will remain suspended (it was
suspended immediately after executing its request for
rendezvous at line 26) while the synchronise r executes
lines 7 , 8, 9 a nd 10 . After the synchroniser has executed
line 10 (ie. at the end of the acc ept statement) the
produc~r process will be reactivated and proceed to execute
concurrently (from line 27) with the warehouse synchroniser
(and the consumer process , if active) once more .

-41-

Example

Aside:

Because the producer process is reactivated immediately after
the end of the accept statement (at line 10) additional lines
could have been inserted in the synchroniser betwee n lines 10
and 11 to allow the warehouse tc be "tidied" before the
comsumer's requ est is dealt with, while proceeding concurrently
with the producer (and maybe the consumer) process .

ego for TIME : = 1 to 20 do (*TIME a variable*)
begin

(*sweep floor*)
end ;

Having dealt with the request from the producer to deposit the
item , the warehcuse synchroniser now deals with the consumer
process' request to remcve the item (at line 11) .

Once again the warehouse synchroniser may either proceed to
deal with the request or is suspended, depending on whether the
consumer process ' request (at line 34) has been forthcoming or
not.

Having dealt with the consumer ' s request to remove the item, at
line 14 (ie. at the end of the accept statement), the consumer
process i s-reactivated (having been suspended after making the
request) and once more the synchroniser and the two processes
(warehouse, consumer and producer) proceed concurrently.

The while l oop (lines 5 to 15) now readies the warehouse to
deal with the producer again.

Synchronisation

The order in which the accept statements have been used in the
warehouse synchroniser, ie. accept DEPOSIT(ITEM) at line 7 and
accept REMOVE(var ITEM) later at line 11, has constrained the
order in which the producer and consumer request s are dealt
with . i e . alternatively, starting with the producer. This
provides the neccessary synchronisation between t he two
processes to prevent the producer process trying to deposit an
item in the warehouse that already has an item, or th e consumer
process trying to acquire a n item that is not yet in the
warehcus e .

- 42-

Ccmmunication

The "transfer" cf the item from the producer,
warehcuse, tc the consumer is achieved by the use
parameters to the accept statements cn lines 7 and 11 .

Example

via
of

the
the

The value parameter in the accept statement on line 7 accepts
the value of ITEM passed from the producer process by the
request fcr rendezvcus at line 26 . This value of ITEM is then
stcred in the variable SHOP , declared local to the synchroniser
and therefcre not susceptible to alteration from any other
processes, at line 9 ie . SHOP := ITEM .

The value cf SHOP is then passed across to the ccnsumer
process, by means of the variable parameter in the accept
statement on line 11, by the warehouse synchrcniser executing
line 13 ie. SHOP : = ITEM .

This can be shown diagramatically as:

line 13

Thus it can been seen that the accept statements in a
synchrcniser bring abcut the syncronisaticn and communication
between concurrent processes.

- 43 -

appendix A section 2. 3

2 .3 The SELECT sta tement

The very "tight" synchronisation of processes by means of the
accept statements prohibits any asynchronous operation and thus
prevents most of the potential parallelism in a program being
utilised .

The select statement solves this problem by giving the
synchroniser a great deal of flexibility in allow i ng it to
"choose " , from a selection of possible requests, which r equest
for rendezvous to deal with. This means that the synchroniser
(ie . the "server" process) can avoid executing an accept
statement and thereby committing itself to waiting f or a
"client " process to rendezvous, until a "client " is known to be
waiting .

The general form is:

Notes:

select
guard condition 1: accept REQUEST1(parameters) then

begin
statements

end;
gua rd condition 2: accept REQUEST2(pa rameters) then

begin
statements

end;

guard condition n: accept REQUESTn(parameters) the n
begin

s t atements
end

end; (*select*)

(a) Select statements may only be used with i n a synchroniser -
they may be used inside procedures / functions declared
local to a synchroniser .

(b) Select statements may not be nested and in fact
statement allowa b le in conjunction with a guard
is an accept statement (but cf . section 2 . 3 . 3) .

- 44 -

the only
condition

appendix A section 2. 3

After executing an
statement, the next
synchroniser is the
s elect .

accept statement within the
bit of code to be ex ecu ted
first statement after the end

Diagramatically the flow of execution is:

statements befcre the select statemen t

select

select
by the
of the

'-.-~some guard condition
(cf . secti on 2.3.1)

accept REQ UES Tx(parameters) then

1 b~~ ~n ,-______ __________ : en d;

end; (*select*)

statements after the select statement

- 45 -

appendix A section 2.3.1

2.3.1 Guard conditions and the NOGUARD condition

The guard conditions allow control to be exercised by the
synchroniser as to which r equest, or group of req uests , for
rendezvous, are more " favourable" to be dealt with than others .

The NOGUARD condition specifies that the request for rendezvous
which i t controls is always "favourable" for selection .

A guard
reserved
statement

conditicn consists
word NOGUARD and

by a colon (': ') .

of a boolean express i on
is separated from the

The general form is:

Boolean expression

or

NOGUARD

Notes:

cr the
accept

(a) The NOGUARD condition is equivalent to a guard cond i tion
that is always true .

(b) In the current implementaticn there may only be a
of 20 guard conditions (including NOGUAR Ds) per
statement.

maximum
select

(c) A guard condition can be considered to be equivalent to
accepting a request when a certain condition holds.

Examp les of usage

select
SIZE > 0

SIZE < 6

NOGUARD

accept REMOVE(var X) then
begin

X '- BUFFER[SIZE];
SIZE := SIZE - 1

end;
accept DEPOSIT(X) then

begin
SIZE := SIZE + 1;
BUFFER[SIZE] X

end;
accept ANYTHING then

begin
wri teln (' In here ')

end
end; «select<)

- 46 -

appendix A section 2 . 3 . 2

2. 3.2 How the SELECT statemen t works

When a select statement is encountered all the guard conditions
are first evaluated.

Two possible results can arise:

(1) If all the guard conditions evaluate to false (this would
imply that no NOGUARD condition had been used) then the
ELSE clause to the select statement (cf . section 2 . 3 . 3) , if
there is one , would be executed.

If there is no ELSE clause tha n the run time error

' NO VALID SELECT GUARD '

will be generated . This causes the execution of the program
to abort .

Example

Given that the value of a sync hroniser ' s var iable SIZE is
- 1, then the f ollowi ng select statement in the synchroniser
would generate the run ti me error

'NO VALID SELECT GUARD'

select
SIZE > 6 accept (* some request*) then

begin

end;
SIZE = 0 accept (*some request *) then

begin

end;
end

(*select<)

(2) If NOGUARD conditions a r e used and / or there are some
guard conditions that evaluate to true, then the
synchroniser will " choose" to execute one of the accept
statements controlled by a true guard condition .

The initial choice of an accep t statement,
possible ones, is random.

from the set of

If this in itial choice of accept statement would not cause
the synchroniser to be delayed, then it is executed;
However, should the initial choice of accept statement, if
it were to be executed , cause the synchroniser to be
suspended (ie . there has yet to be a request for rendezvous
for that particular accept statement) , then the set of
possible accept statements is sea rched from the initial

- 47 -

appendix A secticn 2.3.2

choice in a circular fashion until an accept statement is
found which would not cause the synchroniser to delay.

This accept statement is then executed.

The synchroniser is therefore able to "peek" at the
possible accept statements until a non-delaying one is
found, thus increasing potential parallelism.

If there are no accept statements, among the set of
possible ones, which would not cause the synchroniser to
delay, then the synchroniser is suspended until such time
as the first request for rendezvous, applicable to the set
cf possible accept statements, is received. The
synchroniser is then reactivated and executes the relevant
accept statement.

Note:

If there is more than one accept statement for a single
request among the set of possible accept statements, then
only one of these accept statements (chosen randomly) will
be executed, should that request be the first request
received.

Detailed example

The select statement is particularly useful for synchron i sing
concurrent processes when alternate synchronisation is not
really necessary ie. asynchronous communication .

This can be illustrated in the case of the warehouse, coded as
a synchroniser (cf section 2.2). If the warehouse could
accomodate more than one item at a time it would not be
neccessary for the warehouse synchroniser to ensure that it
first dealt with a deposit by the producer process followed by
a remove by the consumer process. Should the size of the
warehouse be bounded (say it can accomodate a maximum of 6
items) then it is still necessary to impose some limit on the
number cf producer's deposits that can be dealt with, before
there is a remove from a consumer, so as to prevent the
consumer from trying to remove an non-existent item or the
producer trying to deposit an item in the warehouse which is
already full. The role of ensuring this falls to the guard
conditions of the select statement.

- 48 -

appendix A Example

The warehouse synchroniser for this new case may be coded as
follows (wit h line numbers for easy referrence):

1: sy nchroniser WAREHOUSE;
2: const MAXSIZE = 6; (*maximum space available*)
3: var SIZE, SHOpe 1 :MAXSIZE];
4 : entry DEPOSI T(ITEM), REMOVE(var ITEM);
5 :
6: begin (*WAREHOUSE*)
7: SIZE:= 0; (*warehouse is initially empty*)
8: while activeinsystem > 1 do
9: begin (*while*)

10 : select
11: SIZE < MAXSIZE: accept DEPOSIT (ITEM) then
12: begin
13: SIZE : = SIZE + 1;
14: SHOP [SIZE] : = ITEM
15: end; (*deposit*)
16: SIZE> 0: accept REMOVE(var ITEM) then
17: begin
18: ITEM : = SHOP[SIZE];
19: SIZE := SIZE - 1
20: end (*remove*)
21: end (*select*)
22: end; (*while*)
23: stopconcurrency
24: end; (*WAREHOUSE*)

(the producer and consumer processes remain unchanged cf.
section 2.2)

Initially, as the value of the variable SIZE is set to 0 (at
line 7), only one of the two guard conditions (the one at line
11) in the select statement evaluates to true (ie. SIZE <
MAXSIZE) and so only a deposit r eq uest may be dealt with by the
warehouse synchroniser . Thus if the consumer process makes a
request to remove an item it will be suspended until such time
as at least one item has been deposited. If there has yet to be
a request by the producer to deposit an item then the warehouse
synchroniser will be delayed until such t ime as one arrives.

The producer process ' request to DEPOS IT an item is dealt with
by the warehouse synchroniser from lines 11 to 15.

Having dealt with the
synchrcniser executes is
select statement.

request, the next line that th e
line 22; the first statement after the

The while loop (lines 8 to 22) now brings the synchroniser back
to the start of the select statement (at line 10). Once more
both the guard conditions (en lines 11 and 16) are evaluated,
but this time, due to the fact that the value of SIZE is now 1
(the synchroniser having executed line 13), both the guard
conditions evalua te to true.

-4 9-

app~ndix A Example

Therefore now both DEPOSIT and REMOVE are possible requests
that can be dealt with by the synchroniser .

One of these is chosen arbitrarily (say REMOVE) .

If there has yet to be a request from the customer
item,
would

ie. by executing the accept statement the
~ obliged to delay itself, the state of

request is then examined (ie . circular search) .

to remove an
synchroniser
the DEPOSIT

If this too would cause the synchroniser to delay (there
yet to be a further request to deposit from the producer)
the synchroniser is suspended , but only as long as it takes
either request to come in . The first request that arrives
then dealt with.

has
then
for
is

If instead, the accept statement for the REMOVE request would
not cause a delay (ie . the consumer is already waiting to
remove an item) or if~e REMOVE request would cause a de l ay ,
but the DEPOSIT would not, then that request is dealt with and
the synchroniser is nct suspended.

Note:

By the guard condition on line 11 (SIZE < MAXSIZE) , there may
not be more than 6 items in the warehouse at one time (ie .
overflow the capacity of the warehouse) . This is because , after
six deposits without a remove the guard condition would
evaluate to false (the value of SIZE would now be equal to
MAXSIZE) and so the corresponding accept statement for a
deposit would fallout of the set of possible requests that can
be dealt with . Thus a further deposit request wou l d cause t he
producer to be delayed until such time as at least one remove
request from the consumer process had been dealt with and there
is space in the warehouse again .

Thus by means of the select statement the order in which the
producer deposits the items and the consumer removes them has
been rendered unimportant except for when the extremes are
encountered (ie . the warehouse is empty (SIZE = 0) or the
warehouse is full (SIZE = MAXSIZE)). This greatly improves the
potential parallelism of the program.

-50-

appendix it Example

Aside

The original case where the size of the warehouse was
be coded by means of a select statement as follows:

could

synchro nis e r WAREHOUSE;
var SIZE, SHOP;
entry DEPOSIT(ITEM), REMOVE(var ITEM);

begin (*WAREHOUSE*)
SIZE := 0; (*warehouse is initially emp ty*)
while acli vei nsystem do

begin (*while*)
select

SIZE < 1:

SIZE> 0:

accept
begin

SIZE
SHOP

end;
accept

begin
ITEM
SIZE

end
end (*select*)

end; (*whi le*)
stopconcurrency

end; (*WAREHOUSE*)

- 51-

DEPOSIT(ITEM) then

:= SIZE + 1;
:= ITEM
(*deposit*)

REMOVE(var ITEM)

: = SHOP;
:= SIZE +
(*remove*)

then

appendix A section 2.3.3

2.3.3 The ELSE clause to the select statement

If all the guard conditions to
false then, if there is ene,
statement will be executed and
after the select statement .

The general form is:

select

a select statement evaluate to
the ELSE clause to the select

followed by the first statement

guard condition 1: accept REQUEST1(paramaters) then
begin

Note

statements
end;

guard condition n: accept REQUESTn(parameters) then
begin

else
begin
statements

statements
end (*REQUESTn*)

end (*else clause*)
end; (*select*)

(a) The statements in an ELSE clause may not include another
select statement , but they may include any other statements
allowable in a synchroniser, including accept statements .

The ELSE clause is a much neater and concise way of imposing an
if . .. then ... else condition on a select statement.

The ELSE clause may thus be used to prevent the run tim e error
' NO VALID SELECT GUARD' from occurring and so allows recovery
shculd all the guard conditions evaluate to false. (If the run
time error occurs the program aborts execution .)

Note

The NOGUARD condition is equivalent to a guard condition which
always evaluates to true , so the ELSE clause is rendered
redundant if a NOGUARD condition is used in a select statement .
A warning mes sage to this effect will be generated if an ELSE
clause is used in a select statement where NOGUARD conditionG
are present.

- 52 -

append ix A Example

Example of usage

If the example of the producer , consumer and warehouse, where
the size of the warehouse is greater than 1 (cf. section
2 . 3 . 2), is extended to allow the user to read in the initial
number of items in the warehouse, some checks would have to be
made to ensure a valid initial number was received . This check
may easily be made by means of an ELSE clause to the select
statement, which can issue a relevant message info rmi ng the
user if the value input was incorrect .

The modified warehouse sy nchroniser might be coded as follows:

synchroniser WAREHOUSE;
const MAXSIZE = 6; (*max . size of the warehouse*)
va r SIZE, SHOP[l :MAXS I ZE] ;
entry DEPOSIT(ITEM), REMOVE(var ITEM) ;

begin (*WAREHOUSE*)
read(SIZE); (*user inputs initial no . of items*)
while activeinsystem > 1 do

begin
select

(SIZE> =0) and (SIZE<MAXSIZE) :
accept DEPOSIT(ITEM) then

begin
SIZE := SIZE + 1;
SHOP [SIZE] : = ITEM

end; (*deposit*)
(SIZE>0) and (SIZE<=MAXSIZE) :

accept REMOVE(var ITEM) then
begin

ITEM := SHOP[SIZE];
SIZE := SIZE - 1

end
else

begin

(*remove*)

writeln('T he input of ', SIZE,' is invalid ')
end (*else clause *)

end (*select *)
end ; (*while *)

stopconcurrency
end; (*WAREHOUSE *)

- 53-

app€ndix A Example pregrams

Example programs

Here then arlO the full working pregrams frem which segments
have b€€n taken te illustrate various concepts. Thes€ programs
that de net preduce grahic eutput have b€€ n included with their
results, th€ ether r€sults can be se€n when th€ programs are
€x€cut€d using a SOROC addressabl€ sc re en terminal .

Tey Compiler Mark 21.2C m cv s spr nb

o (*$w- *)
o (*$s+ *)
o pregram COMMONEVENT;
o
o (* **)
o (* This pregram deals with the cemmon event in our *)
o (* daily lives, that ef a preducer who preduces an *)
o (* item and delivers it to a warehouse, frem where *)
o (* a censumer acq uires the item and consumes it. *)
o (* *)
o (* The warehouse is implemented by means of a *)
o (* synchreniser and the producer and consumer by *)
o (* means ef twe concurrent processes . *)
o (***)
o
o censt GOOD = 1 ;
1 MAXTIME = 5;
1
1 synchroniser WAREHOUSE;
2 var SHOP, TIME;
2 entry DEPOSIT(ITEM), REMOVE(var ITEM);
2
2 begin (*WAREHOUSE*)
3 while activeinsystem > 1 do
7 begin (*while*)
7 accept DEPOSIT(ITEM) then
8 begin
8 SHOP := ITEM;

12 writeln('Item has been deposited')
38 end; (*DEPOS IT*)
42 accept REMOVE(var ITEM) then
43 begin
43 ITEM := SHOP;
48 writeln('Item has been removed')
73 end; (*REMOVE*)
77 fer TIME := 1 to 100 de
80 begin
81 (*ready wareheuse fer next item*)
81 end
81 end; (*whil e *)
83 stepcencurrency
84 €nd ; (*WAREHOUSE*)
85

- 54 -

appendix A Example programs

85 procedure PRODUCER;
86 const SWEET = 1; (*item that is being produced*)
86 var ITEM, BUSINESS;
86 begin
87 BUSINESS : = MAXTIME;
90 while BUSINESS >= GOOD do
95 begin
95 ITEM := SWEET ; (*produce item*)
98 writeln('Item has been produced') ;

125 WAREHOUSE . DEPOSIT(ITEM) ;
128 BUSINESS := BUSINESS - 1
132 end (*while*)
134 end; (*PRODUCER *)
136
136 procedure CONSUMER ;
137 var ITEM, MOUTH, DESIRE;
137 begin
138 DESIRE : = MAXTIME;
141 while DESIRE >= GOOD do
146 begin
146 WAREHOUSE . REMOVE(ITEM) ;
148 MOUTH := ITEM ; (*consume item*)
152 writeln(, I tem has been consumed ');
179 DESIRE : = DESIRE - 1
18 3 end (*while*)
185 end; (*CONSUME*)
187
187 begin (*COMMONEVENT*)
188 writeln(' About to start business');
216 cobegin
216 WAREHOUSE ; (*WAREHOUSE is an act i ve process *)
218 PRODUCER;
219 CONSUMER
219 coend;
221 writeln(' Business is closed for the day ')
254 end . (*COMMONEVENT*)

- 55-

appendix A

About to start business
Item has been produced
Item has been deposited
Item has been removed
Item has been consumed
Item has been produced
Item has been deposited
Item has been removed
Item has been produced
Item has been consumed
Item has been deposited
Item has been removed
Item has been consumed
Item has been produced
Item has been deposited
Item ha s been removed
Item has been consumed
Item has been produced
Item has been deposited
Item has been removed
Item has been consumed

Business is closed for the day

-56-

Example programs

appendix A Example programs

Toy Compiler Mark 21 . 2C m cv s spr nb

o
o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
1
1
1
2
2
2
3
3
4

10
25
26
26
27
27
47
47
48
48
58
58
59
59
79
79
80
81iJ
80
81
94

1 10
124
138
144
145

(*$S+ *)
(*$W - *)
program BOUNDEDBUFFER;

(***)
(* This is a solution to the bounded buffer *)
(* problem using a synchroniser and message *)
(* passing rendezvous. Also included is a *)
(* monitor which handles the pseudo graphics *)
(* to allow for graph i c output onto a screen *)
(* addressable SOROC terminal *)
(***)

const SPACE = 32;
ESC = 27;
STAR = 42;
DOWN = 124;

var PRODUCT[l : 2J;

monitor GRAPHICS;

(*ASCII equivalent*)
EQL = 61;
HASH = 35 ;
ACROSS = 45;

var PX[1:2J, PY[1:2J, CX, CY, BX[1 :6J, BY[1:6J, LC;

procedure GOTOXY(X, Y, CH);
(*writes CH to relevant screen position*)
begin

write(ESC$,EQL$); (*necessary start characters*)
write (32+Y$, 32+X$, CH$)

end;

procedure *DRAWP(I,CH);
(*draw production under producer*)
begin GOTOXY(PX[IJ, PY[IJ, CH) end;

procedure *DRAWC(CH);
(*draw acquired item under consumer*)
begin GOTOXY(CX, CY, CH) end;

procedure *DRAWB(I, CH);
(*draw buffer being modified*)
begin GOTOXY(BX[IJ, BY[IJ, CH) end;

procedure INITIALISE;
(*set up position arrays*)
var LC;

begin
for LC := 1 to 6 do BX[LCJ := 42;
for LC := 4 to 9 do BYCLC-3J LC;
PX[1] := 10; PYC1] := 4;
PX[2J := 24; PYC2J : = 4;
CX:=57; CY: = 4

end; (*INITIALISE*)

- 57 -

appendix A Ex ample programs

145
146
153
17 1
189
207
225
228
229
239
240
243
250
251
252
252
252
253
269
269
270
270
270
27 1
274
277
278
289
289
294
304
310
312
324
324
330
339
345
347
35 1
352
352
353
353
354
357
358
365
366
366
367
378
386
39 1
392

begin ("GRAPHICS")
write(ESC$, '" '); ("clear screen")
GOTOXY(5, 3, SPACE); write(' PRODUCER 1 ') ;
GOTOXY(20,3, SPACE); write('PRODUCER 2 ');
GOTOXY(38,3, SPACE); write('BUF FER ');
GOTOXY (53,3, SPACE); write('CONSUMER ') ;
for LC := 4 to 9 do

begin
GOTOXY(40,LC,DOWN); GOTOXY(44,LC,DOWN)

end;
fcr LC := 41 t o 43 do

GOTOXY(LC, 10,ACROSS);
INITIALISE

end; ("GRAPH ICS *)

procedure DEFAULT;
beg in write(ESC$, EQL$, 32+22$, 32+1$) end;

synch r oniser HANDLER ;
var BUFFER[0:7] , SIZE, NUMBER ;
entry DEPOSIT(X), REMOVE(var X);
begin (*HAND LER*)

SIZE := 0 ; (*buffer initially empty*)
for NUMBER := 1 to 32 do
select
SIZE> 0: accept REMOVE(var X) then

begin
GRAPHICS . DRAWB(SIZE, SPACE);
X : = BUFFER [SIZE] ;
SIZE := SIZE - 1

end; (*REMOVE ")
SIZE < 6 : accept DEPOSIT(X) then

begin
SIZE := SIZE + 1 ;
BUFFER[SIZE] := X;
GRAPHICS . DRAWB(SIZE , X)

end (*DEPOSIT*)
end ("select*)

end ; ("HANDLER *)

procedure INSTALLER(I);
var TIME, REQUIRED;

begin (*I NSTALLER(I) ")
for REQUIRED := 1 to 8 do

begin
for TIME := 1 to (100 + random mod 20) do

begin
(*manufacture product*)

end;
GRAPHICS . DRAWP(I, PRODUCT[I]) ;
HANDLER.DEPOSIT(PRODUCT[I]) ;
GRAPHICS . DRAWP(I , SPACE)

end ("for REQUIRED*)
end; ("I NSTALLER(I) *)

-58 -

appendix A Example programs

393
393 procedure FETCHER;
394 var TIME, REQUIRED, ITEM;
394 begin
395 for REQUIRED : = 1 to 16 do
398 begin
399 HANDLER . REMOVE(ITEM);
401 GRAPHICS.DRAWC(ITEM);
405 for TIME : = 1 to (200 + random mod 100) do
412 begin
413 «carry item away<)
413 end ;
414 GRAPHICS.DRAWC(SPACE)
417 end «for REQUIRED*)
418 end ; (*FETCHER *)
419
419 begin (*BOUNDEDBUFFER*)
419 PRODUCT[1] ._ STAR; PRODUCT[2] . _ HASH;
433 cobegin
433 HANDLER;
435 FETCHER;
436 INSTALLER(l) ;
438 INSTALLER(2)
439 coend;
441 DEFAULT (*put cursor at bottom of screen*)
442 end . (*BOUNDEDBUFFER *)

-59-

appendix A chapter 3

Chapter 3: Additional useful features

Chapters 1 and 2 describe the two high level constructs
available in CLANG for concurrent process synchronisation and
ccmmunication . This chapter details two useful "external "
function calls and two useful "external" procedure calls
available in CLANG for use with concurrent programming.

3.1 ACTIVEINSYSTEM

This is a function which will return the number of concurrent
processes currently executing . If ACTIVEINSYSTEM is used while
there are no concurrent prccesses active then the value 0 will
be returned.

Example

If four processes are launched concurrently, but by the time
one of them executes the ACTIVE IN SYSTEM call one of the
processes has finished its concurrent execution then the value
3 will be returned. It does not matter that the other two
processes may be temporarily suspended - they have as yet not
finished concurrent execution.

Example of usage

In the case of the warehouse example (cf. Introduction) coded
as a synchroniser (cf . chapter 2) ACTIVEINS YSTEM was used as
follows:

begin (*WAREHOUSE*)
while activeinsystem > 1 do

begin

(*deal with rendezvous requests")

for TIME : = 1 to 100 do
begin

("ready warehouse for next item*)
end

end ; (" wh i le loop")

- 60 -

appendix A secticn 3.1

This ensu red that the warehouse synohroniser would continue
dealing with the requests for rendezvous from the consumer and
producer processes until such time as the synchroniser (which
is an active process cf. section 2) is the only process active
in the system . ie. The other two processes in the system, the
producer procesS--and the consumer process , have both finished
execution.

Note:

The "for loop" :

for TIME := 1 to 100 do
begin

(*ready warehouse for item*)
end;

is a neccessary time delay so as to remove the threat of
deadlock as i t prevents the synchroniser from checking the
condition of the "while loop":

while acti vein system > 1 do

before the consumer process has fin i shed, because if the
condition is checked before such time, ACTIVEINSYSTEM will be 2
and so the synchroniser will proceed to execute the contents of
the "while loop". This means that the synchroniser will attempt
to deal with requests for rendezvous which will never be
forthcoming as both the producer process and the consumer
process have completed their execution - deadlock.

- 61-

appendix A section 3 . 2

3.2 READYINSYSTEM

This function call will return the number of ccncurrent
processes ready for schedul ing which includes those processes
which have not yet terminated or been suspended . If
READYINSYSTEM is used while there is no concurrency in progress
the value 0 i s returned.

Example

If four processes are launched concurrently, but at the
one of the precesses executes the READYINSYSTEM call , one
the processes has finished concurrent execution and anothe r
suspended waiting for an event to occur, the value 2
returned .

Example of Usage

time
of
is
is

The provision of pseudo - time by means of a monitor (cf .
1) and the process , TICK , to keep the " clock " go i ng to
jobs when complete (cf. section 1 . 1 . 1.2) made use
function call READYINS YSTEM as follows:

section
wake up
of the

begin (*TICK *)
if r eadyinsystem = 1 then

SIMULATION.ADVANCE;

end; (*TICK*)

This use of READYINSYSTEM ensures that once all the other
processes in the system, other than process TICK, are either
completed or suspended then pseudo-time can be advanced .

- 62 -

appendix A secticn 3.3

3.3 STOPCONCURRENCY

This "external" procedure call will do as its name implies: on
executicn it effectively ends the concurrent execution of all
processes , regardless of their condition, and reactivates the
main process ie . starts execution of the main program again,
after the relevant cobegin .. coend construct that launched the
now abcrted concurrent processes. If no concurrency is in
operation then this procedure call will have no effect.

Care must
procedure

be
call

taken with the use of the STOPCONCURRENCY
because of its carte blanche ability to stop

concurrency.

Example cf usage

The majcrity of usage envisaged for this "external" call wi ll
be when dealing with a finite state problem associated with the
synchroniser concept (cf. chapter 6 of the assessment), as it
can be used as a simple method, in conjunction with the
"external" function calls of ACTIVEINSYSTEM (cf . section 3.1)
cr READYINSYSTEM (cf. section 3 . 2», of controlling the number
cf executions of the " se rver" process without having to
calculate exactly the desired number of executicns required tc
deal with all the rendezvcus requests.

Thus in the coding o f the warehouse as a synchroniser (cf .
chapter 2) STOPCONCURRENCY was used as follows:

begin (*WAREHOUSE*)

while activeinsystem > 1 do
begin (*while *)

(*d eal with the requests for rende zvous *)
end; (*w h il e*)

stopconcurrency
end ; (*WA REHOUSE *)

This ensures that once the execution of the producer and
ccnsumer processes have finished (cf. secticn 3.1), concurrent
execut i on is stcpped and the main program resumes ie . The
warehouse synchroniser is no longer needed and so its
ccncurrent e xecution is aborted.

- 63 -

appt'ndix A sectien 3 .3

Nete:

Any statements between the STOPCONCURRENCY call and th e end ef
the precess (cr synchroniser) will be igncred as all
ccncurrency i s te rm inated immediately the STOPCONCURRENCY call
is enccuntered.

ie If the end of the warehcuse synchrc nise r had been co ded:

stepccncurrency ;
writeln('Finished with t he warehouse ');

end ; (*WA REHOUSE*)

The message ('Finished with the warehouse') would never be
written .

- 64 -

section 3.4

3.4 SWITCH

This "ext ernal" procedure call may be used to cause a process
switch .

Example of usage

SWITCH may be used instead of a "delaying for loop " at the end
of the while loop (cf . section 3.1), in the warehouse coded as
a synchroniser , to prevent the dead look that might othe r wise
cccur .

begin (* WAREHOUSE*)
while ACTIVEINSYSTEM do

begin

(*deal with rendezvous requests*)

s witch
end; (*while*)

- 65-

appendix A chapter 4

Chapter 4: Error and Warning messa ges

This chapter specifies the error messages, both compile time
and run t ime, as well as the warning messages, that arise due
to incorrect usage of the features described in chapters 1 and
2 .

As well as an explana t ion of the error message there i s also an
example showing how the error / wa r ning message might ar ise.

4.1 Error messages r elating to chapter 1

4.1.1 Compilat ion errors

CONDITION VARIABLES ONLY IN MONITORS

Condition variables (cf. section 1 . 3) may only be declared, and
operations (cf . section 1. 3 . 2) performed on them within a
monitor .

Example of occur re nce

This error will occur if an attempt is made to declare a
condition variable at a global level as f ollows :

program ERRORS;
const ONE = 1;
var I, J;
condition ALARMCLOCK ;

**** ACONDITON VARIABLES ON LY IN MONITORS

INCORRECT CONDITION VARIABLE USAGE

Only th e operations QUEUE and QLENGTH (cf . sec tions 1. 3 . 2 . 4 &
1 . 3 . 2 . 5) act as "function " calls and may be used as s uch in
conjun c tion with condition variables.

Simarly only the ope r ations QWAIT , QPWAIT(prio rity) and QSIGNAL
(cf . sections 1.3.2.1 - 1.3.2.3) act as "procedures" and may be
used as such in conjunction with condition variables .

Any attempt to deviate from this, or if any incorrec t operation
is used in conjunction with a condition variable, this error
will result .

- 66 -

appendix A section 4.1 . 1

Example of occurrence

This error will oocur if an incorrect operation is performed on
the condition variable BUSY as follows:

monitor MON 1;
var FULL;
condition BUSY;

procedure *CHECK;
begin
if FULL = 1 then

BUSY.DELAY;
AINCORRECT CONDITION VARIABLE USAGE

MONITORS IN MAIN BLOCK ONLY

Monitors may only be declared at the outer level of a program
(cf . section 1). Any a ttemp t to declare them at any other level
ie. local to procedures , functions, synchronisers or other
iilOrli tors, will resul t in this error ..

Example of occurrence

An attempt to declare the monitor MON1 local to the procedure
FIRST results in this error as follows :

program ERROR;
var I, J;

procedure FIRST;
monitor MON1;

**** A MONITORS IN MAIN BLOCK ON LY

- 67 -

appendix A s ec ticn 4.1.1

NO SEMAPHORES IN MONITORS

SynchrGnisatiGn is achieved within
ccndition variables (cf . section 1.3) .
low level synchronisation primitive,
monitor will result in this error.

Example of occurrence

monitors by means
Any attempt to use
the semaphore, in

of
the

a

An attempt to perform the low level synchronisation operation
WAIT on the semaphore SEMA within the procedure, LOC, local to
the monitor MON, results in this error as follows:

prog ram WRONG;
var SEMA;

monitor MON;
procedure LOC;

begin
wait(SEMA) ;

**** A NO SEMAPHORES IN A MONITOR

ONLY CURRENT MONITOR VARIABLES MAY BE SAVED

When using the explicit method of ensuring the invariance of
monitor variables, SAVE(parameters) (cf. section 1.4.2.2.1) ,
only those variables declared local to the monitor in which
SAVE(parameters) is used may be included as parameters to the
SAVE.

Example o f occurrence

Thi s error occurs in the following segment of code because an
attempt was made to include the global va riable, GLOB, as a
parameter to a SAVE used in a procedure, LOC, declared local to
the monitor MON.

program INCORRECT;
var GLOB;

monitor MON1;

procedure LOC;
begin

SAVE(GLOB) ;
A ONLY CURRENT MONITOR VARIABLES MAY BE SAVED

-68-

app<~ndl x A secticn 4.1 . 1

ONLY STARRED IDENTIFIERS ACCESSIBLE

Only an i dentifier (ccnstant, variable, procedure or function)
that is decla red as sta rred (cf . section 1.1.1) may be accessed
frcm cutside the monitor in which it was declared . Any attempt
to access an identifier that is declared local to a monitor but
is not starred will res ult in this error.

Example of occur renc e

In the following the variable I has not
starred within the monitor MON, so when an
access I outside th e monitor MON this error

monitor MON;
var I;

begin
I: =0;

end;

(*MON*)

(*MON*)

begin (*main program*)
if MON . I = 1 then

been declared
attempt is made
results.

**** A ONLY STARRED IDENTIFIERS ACCESSIBLE

STARRED IDENTIFIERS ONLY IN MONITORS

as
to

Starred ident ifiers (cf . section 1 . 1.1) may only be
the outer level o f monitors. Any attempt to
identifier as starred elsewhere will cause this
error to occur .

declared at
declare an
compilation

Example of oc c urre nc e

An attempt
procedu r e
error as
monitor .

to declare the variable WRONG as s tarred inside
PROC, decla red local to monitor MON, cause s

WRONG is not being declared at the outer le vel

monitor MON ;

procedure PROC;
var *WRONG;

the
this

of a

**** A STARRED IDENTIFIERS ONLY IN MONITORS

- 69 -

a~p~ndix A secticn 4.1.1

TOO MANY CONDITION VARIABLES

Only 25 conditi o n va r iables (cf. section 1. 3 .1) may be declared
per program . Any attempt to declare more than 25 cond i tion
variables per program will result i n this error. Ar rays of
cond i tion variables may be decla r ed, but every array element
counts against this limit .

Example of occur r ence

In the following program segment an a r ray, BUSY , of condition
variables , of 25 elements is declared. When the nex t cond i tion
variable is declared this error results as the limit of 25 has
now been exceeded.

monitor PROBLEM;
condition BUSY[1 : 25], fR EE ;

**** A TOO MANY CONDITION VARIABLES

TOO MANY MONITOR DEC LARATIONS

Only 15 monitors may be declared per program . An y attempt to
declare more monito r s will result in this error .

Example of occurrence

If 15 monitors had been declared prior to the declaration of
monitor MON16, then this error occurs as follows :

monitor MON16 ;
**** A TOO MANY MONITORS

- 70 -

appendix A section 4 . 1 . 1

SAVE/RESTORE ONLY IN MONITOR PROC/FUNC

The operations SAVE(parameters) and RESORE to ensure the
invariance of monitor variables (cf. section 1 . 4 . 2. 1) may only
be used within procedures or functions declared local to a
monitor . Any attempt to use them elsewhere will result in this
error.

Example of occurrence

If the operation SAVE is used in the body of a monitor (cf .
section 1.2) MON then this error will result.

monitor MON;
var I;

begin (*body of MON*)
SAVE(I) ;

*** * A SAVE/RESTORE ONLY IN MONITOR PROC/FUNC

- 71 -

appendix A section 4 . 1.2

4 . 1 . 2 Run time erro r s

Once the program starts to execute, certain errors, related to
incorrect usage of the features in chapter 1, which can not be
detected at compile time, will ~ause the program to abort.

PRIORITY < 0

If the value of the priority expression, specified in the
operation QPWAIT(priority) on a condition variable (cf . section
1 . 3.2.2), evaluates to less then 0 then this run time error
will occur.

Example of occurrence

If the program contained the following operation on the
condition variable CONDVAR :

CONDVAR.QPWAIT(6 - 7);

then this error will occur when that instruction is executed.

appendix A section 4.2

4.2 Error and warning messages relating to chapter 2

4.2.1 Compilation errors

ACCEPT EXPECTED

An accept statement must follow a guard condition . If any other
statement follows a guard condition (or NOGUARD condition) this
error will occur.

Example of occurrence

Because a compound statement is used after the guard statement
in the following select statement this error occurs.

synchroniser SYNC;
var SIZE;

select
SIZE> 6: begin

A ACCEPT EXPECTED

ENTRY POINT CALL IN ILLEGAL POSITION

Entry points may only be " called" fr om a process that is
executing concurrently with the synchroniser in which the
corresponding entry point was declared. Any attempt to " call"
an entry point from within a monitor, synchroniser, the body of
the main program or from within an accept statement, will
result in this error .

Example of occurrenc e

An entry point "call" to the entry point DEPOSIT, declared in
the synchroniser SYNC is made from the body of the program thus
resulting in this error .

begin (* body of the main program*)
SYNC . DEPOSIT(ITEM);

**** AENTRY POINT CALL IN ILLEGAL POSITION

- 73 -

appendix A sec tion 4 . 2.1

ENTRY POINT EXPECTED

If some other identifier other then a previously declared entry
point is used in an accept statement after the reserved word
"accept", then this error will occur.

Example of occurrence

In the following segment of code the function call, to
function FIND, has been used in an accept statement, after
reserved word "accept", instead of an entry point, hence
error .

function FIND ;
begin

end;

accept FIND then
•••• A ENTRY POINT EXPECTED

ENTRY POINTS ONLY IN SYNCHRONISERS

the
the
the

Entry points
synchroniser.
error occurs .

may only be declared at the outer level of a
If entry points are declared anywhe re else this

Example of occurrence

In the following segment of code the entry point DEPOSIT has
been declared in the procedure PROC, which in turn has been
declared local to the synchroniser SYNC. As DEPOSIT is not
declared at the outer level of SYNC this error occurs .

synchroniser SYNC;

procedure PROC;
var I;
entry DEPOSIT(ITEM);

•••• A ENTRY POINTS ONLY IN SYNCHRONISERS

- 74-

appendix A secticn 4.2 . 1

NO NESTED ACCEPT STATEMENTS

Accept sta temen ts may not be nested ie. there may not
accept statement within another accept-statement. Any
to dc so will result in this error.

Example of occurrence

be an
attempt

Here the
nested in
hence the

accept statement for the entry point DEPOSIT was
the accept statement for the ent ry point REMOVE,

error.

entry DEPOSIT(ITEM), REMOVE(var ARTICLE);

accept REMOVE(var ARTICLE) then
begin
accept DEPOSIT(ITEM) then

**** A NO NESTED ACCEPT STATEMENTS

NO NESTED SYNCHRONISERS

No synchronisers may be declared local to a synchroniser. If
the synchroniser ' s declarations are nested then this error
occurs.

Example of occurrence

Synchroniser SYNC2 has been declared local to synchronise r
SYNCl so this error re sults.

synchroniser SYNC1;
var SIZE;

sy nchr oniser SYNC2;
**** A NO NESTED SYNCHRONISERS

- 75 -

appendix A section 4.2.1

ONLY ENTRY POINTS ACCESSIBLE

An entry point is the only part of a synchroniser that is
accessible to other processes outside the synchroniser (unlike
monit o r identifiers (c f.section 1.1 . 1)). If an attempt is made
to "access" a part of a sychroniser other than an entry point
this error ar ises.

Example of occurrence

In this example an attempt was made to call the procedure
declared local to the synchroniser SYNC, fr om outside
hence the error.

synchroniser SYNC;

procedure PROC;

end; (*SYNC*)

procedure PROCES;
begin

SYNC.PROC;
*** * A ONLY ENTRY POINTS ACCESSIBLE

SELECT ONLY IN SYNCHRONISER

Select statements may only be us ed within a synchroniser.
may also be used in procedures / functions declared local
synchroniser .) If used anywhere else this error occurs.

Example of occurrence

PROC
SYNC ;

(They
to a

Here a select statement was used in the body of the main
program; hence the error.

begin (*body of main program*)
select

**** A SELECT ONLY IN SYNCHRONISER

-76 -

appendix A section 4.2.1

SYNCHRONIS ER ONLY IN MAIN BLOCK

Synchronisers (cf. section 2) may only be declared at the outer
leve l of a program. They may not be declared local to any
prccedures, functicns, mcnitors or other synch ronisers. If they
a re this error occurs .

Example of occurrence

The synchroniser SYNC has been declared local to the procedure
PROC so this error occurred.

procedure PROC;
var I;

synchroniser SYNC;
**** ~ SYNCHRONISER ONLY IN MAIN BLOCK

TOO MANY ENTRY POINTS

Only a maximum of 25 entry points are allowed per program. Any
further entry point declarations will generate this error.

Example of occurrence

entry REQUEST1, ... ,REQUEST26;
**** ~ TOO MANY ENTRY POINTS

TOO MANY GUARD CONDITIONS

The maximum number of guard (and NOGUARD) conditions al l owable
per select statement is 20. If more than 20 guard conditions
are used in a single select statement this error occurs.

Example of occurrence

When the 21st guard condition for the select statement is
enccuntered this error occurs.

select

SIZE < 6 : (*guard condition 21*) accept . ..
**** ~ TOO MANY GUARD CONDITIONS

- 77-

appendix A section 4.2 . 2

4.2. 2 Warning mes sages

Warning messages are used to inform the user o f a possible
problem that he / she may have inadvertantly over looked. Their
occurrence will not effect the compilation of the program, but
may give the user some hint of unforseen problems .

These warning messages may be "tu r ned off" by the use of the
(" $W - ") compiler directive.

MISSING RESTORE

Following a conditioned PLOXY point (cf . section 1 . 4 . 2) if
there is no RESTORE instruction this warning will be generated
to inform the user that the RESTORE is miss ing ie . any
variables that might have been SAVEd before the conditioned
PLOXY point will not be RESTOREd so invariance can not
guaranteed .

Example of occurrence

save(I) ;
BUSY . qwait; ("conditioned PLOXY point")
I : = 5;

"WA RNING" ~ MISSING RESTORE

MONITOR VARIABLES NOT INVARIANT

If there is no SAVE(pa r ameters) before a conditioned PLO XY
point (cf . section 1 . 4.2) then this warning message will be
issued to warn the user that, because the SAVE(parameters) is
missing the monitor's variables can not be guaranteed to be
invariant after the conditioned PLOXY point .

Example of occurrence

I : = 5;
BUSY . qsignal; (*conditioned PLOXY point*)

W ARNING ~ MONITOR VARIABLES NOT INVARIANT

- 78 -

appendix A section 4.2.3

4.2.3 Run time erro r s

Once the program starts to execute, certain errors, related to
incorrect usage of the features in chapter 2, which can not be
detected at compile time, will cause the program to abort.

CONCURRENCY NOT IN OPERATION

This run time error occurs when an attempt is made to perform
an accept statement (cf. section 2.2) while concurrency is not
in operation .

The error will also occur if an attempt is made to perform a
"call" to an entry point ie. a rendezvous request (cf. section
2 . 1.2) while concurrency rs-not in operation.

NO VALID SELECT GUARD

If all the guard conditions of a select statement evaluate to
false and there is no ELSE clause to the select statement (cf.
sections 2.3.2 & 2.3.3) then this run time error will occur.

Example of occurrence

The following select statement will cause this run time error
if the value of the variable SIZE were -1 .

select
SIZE> 0: accept DEPOSIT(ITEM) then

begin
(*some statements*)

end;
SIZE = 0: accept PLACE(ITEM) then

begin
(*some statements*)

end;
end; (*select*)

-79-

appendix A syntax diagrams

Syntax diagrams

There are currently several versions o f CLANG available . Below
are the syntax diagrams for the latest release (CLANG 21 . 2C),
which contains the monitor and synchroniser concepts . These
syntax diagrams are known to be inadequate in several respects
and should be studied in conjunction with the accomp an ying
notes .

Syntax diag rams

PROGRAM

-----+~ program --~) IDENTIFIER ---_a; ---.. , BLOCK

BLOCK

const I,*\. , CONSTIDENTIFIER -- = - CONSTANT

•

* £~\. • IDENTIFIER • var
('C [CONSTANT CONSTANT

<
; " \.

~ condition IDENTIFIER • ("= [CONSTANT CONS TANT

.- j < \.

-, entry ~ ENTRYIDENTIFIER ~

('C , PARAMETERLIST

~
\.

- 80 -

)

lj

lj
\

)

appendix A syntax diagrams

procedure \

functio n J

; +.-------- BLOCK ~~------------------

+. ___________ -<('forwa r d~~------
"-BLOCKJ

t:", • PROCIDENTIFIER
PARAMETER LI ST

monitor ------..... MONITORIDENTIFIER -----<.--------/1

synchroniser ------.. SYNCIDENTIFIER-~---~----r---~
PARAMET ERLIST

begin ----rC--p STATEMENT --)...----. end

; ---

IDENTIFIER (including all semantic variations)

Edigit j

----~~ letter -------~~-~.--_f------------~,

lette r

QUALIFIED IDENTIFIER

~.
NUMBER

~

(- digit "\ , •
CONSTANT

E
:_) C' NUMBER ----~~

-----------t~-r--------------~ QUALIFIED IDENTIFIER

ST RING

---------~~ , -----(4 charac te r \.J ______ • ' •

- 81 -

appendix A syntax diagrams

VARIABLE

---------. QUALIFIEDIDENTIFIER ~~~--------------+'--------------~~~

"-- [-----+. EX PRES S ION -----+.] J

PARAMETER LIST

• (-C-_-_-_-_-_-_-_-_-f>~_v_a_r_y~_-_-~~_-_-~~-,-~c_c _I_D_E_N_T_I _F I_E_R __ -_-_-_-_-_-_-_-_-_----.,-)-.) ---i>

CONDITION

-------~\---. odd ---_I (: INTEG ER EXP RESS I ON ----,) --J-,,--.... ~
------------------~- BOOLEANEXPRESSION ---------

EX PRESS I ON

~ SIMPLEEXPRESSION

• SIMPLEE~PRESsIOJ 1 t \ '\ I \
< <= >=
\. \. \. \.... \.

SIMPLEEXPRESSION

('+,
• TERM ~

\~

[TERM.))],
))

TERM

• FACTOR ~

l_ FACTOR •

'\ \ '\ '\
* / mod and

) L))

- 82-

syntax diagrams

FA CTOR CONSTIDENTIFIER ________ ~ ____________ ~i

V:~::::E---------------------~-~
FUNCT

act

re

(- EX

FUNCTIONREFERENCE

IONREFERENCE---~~
iveinsys t em ----.//

adyinsys t em -----~/

random

PRESSION -----) -_......//

~ QUALIFIEDIDENTIFIER

\:
•

C
• EX PRESSION

, .)
PROCEDURECALL

---. QUALIFIEDIDENTIFIER •
\:(

C' EXPRESSION

) '.
SYNCHRONCALL

IDENTIFIER ..
~ (• EXPRESSION

C)
, .

- 83 -

')

J %)

»7
;>

.)~
)0

appendix A syntax diagrams

ST ATEMENT

VARIABLE • : = I EXPRESSION /

PROCEDURECALL .J

beg in ~ STATEMENT ~ end /

\.)
j

~>SYNCHRONCAL L

cobegin) ~ PROCEDURECAL~ ~ c oend

C)
j~

whi le • CONDI TIO N • do . STATE MENT

r epeat C STAT~:ENT c until ~ CONDITION J
) .J , forever

~for-VARIABLE --i': = -. EXPRESSION ~ to T EXPRESSION _do _ STATEMENT ...!

downto
/

'?if • CONDITION - then .. STATEMENT / els e -- STATEMENT../

read-y (• VAR I ABLE c!\ .) .--/
C) [\.. readln , •

(EXPRESSION /~\.
write

(
j)./

"- r writeln 7~
halt STRING

"- ,"

signal . () VARIABLE ..) ./

wait • (• VARIABLE .) .

- 84 -

appendix A syntax diagrams

I'-------------------------~ ACCEPTSTATEMENT --------------------/

~select ?\l.,C ONDITION r: - ACCEPTSTATEMENT)\') I end

~ ~noguard .J else -..STATEM ENT
(

'-------- ----+save -------~~--------------~----------------~~-------'
'-. (---7' VARIABLE ---~))-/

1'---------------+ restore ---~

I'---------------------------------~ stackdump ----------------------------~ t ~ s topcurrency

--------------------~) swi tch ------------------'

ACCEPTSTATEMENT

---... ~ accept -o.ENTRYIDENTIFIER --"~--~~----77'"-' then --STATEMENT __
-'PARAMETERLIST

Notes

(1)

(2)

stackdump allows one
is used for debugging,
underlying architecture.

to examine the runtime stack.
but requires a knowledge of

It
the

random
day to
will no t

produces a random integer , based on the time of
seed the sequence. Thus programs using random
produce the same results ea c h time they run.

(3) It is not at presen t possible to pass complete arrays as
parameters.

(4) Concurrency is introduced by the Cobegin .. Coend construct .
At present concurrent processes may only be la unche d from
the main program, although they may call upon o th er
procedures thereafte r. A concurrent process is defined as a
procedure or synchroniser , and may have parameters.

(5) Semaphores are simple integer variables - there is nothing
at present to d is ti nguish them from integers, and it is the
programmer ' s responsibility not to abuse them . There are no
associated queues.

(6) Recursion is fully supported .

(7) monitor and synchroniser blocks may only be decla r ed in the

-85-

append ix A syntax diagrams

main program. It follows that they
oontain instanoes of one another,
syntax diagrams might suggest.

may not be nested,
ccntrary to what

or
the

(8) Starred identifiers in monitor bl oc ks are accessible
outside the monitor in read - only mode, using the "dot"
notation. Other identifiers in monitor blocks are totally
inaccess ible. Wi th in monitor blocks the global variables
of the main program block are read-only accessible.

(9) The $ f o rmat descriptors in I/O statements specify whether
the item is to be read/written in ASCII or INTEGER mode.
Thus, for example , r ead(A$, B) will read a single
character and assign to A the equivalent ASCI I value, and
will continue to read a single integer and assign it to B.

(10) accept statements may not be nested.

(11) The presence of a noguard option within a select statement
renders the else clause redundant.

Reserved words

The list of reserved words is as follows. Those given in
(brac ket s) are not currently used in a reserved sense, but are
reserved for possible future extensions, and should probably
not be used as identifiers.

accept activeinsystem and begin
(boolean) (char) cobegin coend
condition const do downto
else end entry (false)
for forever forward function
halt if (init) (integer)
mod monitor noguard odd
or procedure (process) program
qlength qpwait qsignal queue
qwait random read readln
readyinsystem repeat res tor e save
select (semaphore) signal stackdump
stop concurrency synchroniser then to
(true) until (value) var
wait while write writeln

- 86 -

appendix A syntax diagrams

Compiler directives

(*$S +*) Suspend process switching for duration of read and
write statements.

(*$S- *) Allow process switching for duration of r ead and write
statements . (DEFAULT)

(*$L+ *)
(*$L -*)

(*$T+*)

(*$0 +*)

(*$W-*)

Compiler
Compiler

Request

Request

Suppress

listing on (DEFAULT)
listing off (except for er r or messages)

symbol table dump (*$T - *) suppress it . (DEFAULT)

object code dump (*$0 -*) suppress it . (DEFAULT)

warning messages . (*$W+*) allow them . (DEFAULT)

(*$M+*)
(*$M-*)

Generate process tracing code for run-time debugging.
Suppress process tracing code generation . (DEFAULT)

(*$B+*) Prov i de inva r iance of monitor variab l es when
performing nested monito r calls . (DEFAULT)

(*$B -*) No guarantee of invariance of monitor variables .

Restrictions

Maximum number of p- codes that can be gene r ated
Maximum number of concurrent processes that can run
Maximum number of parameters for any procedur e/function
Maximum level t o which procedures may be nested
Maximum number of active identifiers during compilation
Maximum memory available for variables in pseudo machine
Maximum of monitors per program
Ma ximum number of condition variables per program
Maximum number of entry points per program
Maximum of gua rd conditions per select statement
Significant l ette r s in identifiers

Arrays may not be passed as parameters

Fatal compilation errors

Program incomple t e Sel f ev i den t

Sage IV

1500
10
24

5
100

3500
15
25
25
20

8

Symbol table overflow Limited to 100 accessible

Procedures too deeply rlested Limit is 5

Program too long Too many p- codes required

Too many parameters Limited to 24 per procedure

- 87 -

appendix A running instructions

Runn i ng instructions on the Apple/Horizon/Advantage/Sirius/Sage IV

Obtaill a copy of CLANG21.CODE.

2 From the command level X(ecute CLANG21 .

3 System prompts fo r names of Listing and Source files.
latter will usually have been prepared with the
E(ditor.

The
UCSD

4 After compilation , system prompts for names of Resu lt s and
Data files. (All these files may default to CONSOLE:)

5 The system
recompilation.
with the <ESC>

allows for repeated execution without
An executing program may be in terrupted

key.

- 88 -

APPENDIX B

LISTING

appendix B file UNIT20A unit TEXTFILES

unit TEXTFILES;
(*** ***)
(* Various machine dependent, but useful routines for the Sage IV *)
(* UCSD Pascal, developed by Pat Terry, 1982. Version A- 2.0 ucsd *)
(**)
interface

var RANDMSD : INTEGER;
INPUT: FILE ; (* untyped for BLOCKREAD in GETCH *)

procedure TEXTINPUT(PROMPT: STRING);
procedure TEXTOUTPUT (var output:text; PROMPT: STRING);
fu nction KEYPRESS: BOOLEAN;
function RANDOM: INTEGER ;

implementation
type

BYTES = 0 .. 255;
var

ALIAS: record
case BOOLEAN of

TRUE: (PT: AINTEGER);
FALSE: (INT: INTEGER)

end;

procedure TEXTINPUT (*Open INPUT from console or named file*);
canst

ESCAPE = 27 (*ascii for <esc>*);
var

FINISHED: BOOLEAN;
FILENAME: STRING;

begin
FINISHED := FALSE;

repeat
WRITE('What ',PROMPT,' file «RET> for CONSOLE:

- <ESC - RET> to abandon)? ');
READLN(FILENAME);
if LENGTH(FILENAME)=0
then begin FINISHED := TRUE; RESET(INPUT,'CONSOLE:') end
else begin

if (FILENAME[l]=CHR(ESCAPE» then EXIT(program);
(*$1- turn off IO-checks *) RESET(INPUT,FILENAME);
if IORESULT=0 then FINISHED:=TRUE

else if POS(' .text' ,FILENAME)+POS(' .TEXT' ,FILENAME)=0
then begin

end;
if not FINISHED then

FILENAME := CONCAT(FILENAME ,' .TEXT');
RESET(INPUT,FILENAME); FINISHED: =IOR ESULT=0

end

begin WRITELN; WRITELN('No such file. Try again ') end
until FINISHED (*$1+ turn 10 checks back on*);

end (*TEXTINPUT*) ;

append ix B file UNIT20A unit TEXTFILES

procedure TEXTOUTPUT (*Open OUTPUT to CONSOLE or named file*);
const

ESCAPE = 27 (*ascii for <esc>*);
var

FINISHED: BOOLEAN;
FILENAME: STRING;
CH: CHAR;
begin

r epeat
WRITE ('Wha t ',PROMPT,' file «RET> for CONSOLE:

-<ESC-RET> to abandon)? ');
FINISHED := TRUE; READLN(FILENAME);
if LENGTH(FILENAME)=0 then FILENAME:='CONSOLE:'
else if FILENAME[lJ ='*' then FILENAME := 'PRINTER:' else

begin
if (FILENAME[lJ=CHR(ESCAPE» then EXIT(program);
if POS(' .text' ,FILENAME)+POS(' .TEXT' ,FILENAME)=0

then FILENAME:=CONCAT(FILENAME,' .TEXT');
(*$ 1- turn off IO-checks *) RESET(OUTPUT,FILENAME);
if IORESULT=0

then begin
WRITELN;

end

WRITELN('File already exists - okay to overwrite? ');
repeat

READ(KEYBOARD,CH)
until CH in ['Y ', 'y', 'N', 'n'J;
CLOSE(OUTPUT); FINISHED:=CH in ['Y', 'y'J

end

until FINISHED (*$1 + turn 10 checks back on*);
REWRITE(OUTPUT,FILENAME)

end (*OPENOUTPUT *);

function KEYPRESS (*check to see whether CONSOLE: is ready*);
var BUF : array [0 .. 29J of INTEGER;
begin

UNITSTATUS(l, BUF, 1) ; KEYPRESS .- BUF[0J > 0
end (*KEYPRESS*) ;

fu nction RANDOM ;
var

HIWORD,LOWORD: INTEGER;
begin

TIME (HIWORD,LOWORD);
RANDMSD := 259 * RANDMSD + LOWORD mod 56;
if RANDMSD < 0 then RANDMSD := RANDMSD + MAXINT;
RANDOM := RANDMSD

end (*RANDOM*);

begin
RANDMSD := 0;

end.

:I
1.

I

appendix B f ile DEC20A unit DECLARAT IO NS

(*$S+*)
unit DEC LARATIONS ;
(**)
(* For the simple compiler with stack machine code generation *)
(* includes procedures, functions, value parameters and simple arrays *)
(* forward decla ration s , compound conditions, reference parameters, *)
(* simple concurrency, the monitor concept wi th starred identifiers *)
(* and condition variables, invariance of monitor variables is *)
(* provided by means of nested backup, save(parameters) a nd restore; *)
(* and the synch roniser concept including accept statements, and *)
(* select statements with optional else clauses. *)
(* *)
(* Authors : P . D. Terry and A. G. Chalmers - June 1984 Release 21 . 2C *)
(** **)

interface
uses (*$U :UNIT20A.CODE*) TEXTFILES;
const

HIGHEST =127; (*Ascii ord value*)
LEVMAX = 5 ; (*max static nesting*)
CODEMAX = 1500 ; (*Max size of code *)
PMAX = 24; (*Max number of parameters*)
PRMA X = 10; (*concurrent processes*)
MONMAX = 15; (*maximum number of monitors*)
CONDMAX = 25; (*maximum number of condition variables*)
DEFAULT = 10; (*default priority for waiting processes*)
ENTRYMAX =25 ; (*Max no. of entry points per program*)

type
FCT =(LIT, LDA, CAL, RET , STK,

WGT, SIG, CND, SWP, NEG ,
NEQ, LSS, GEQ, GTR, LEQ,
RND , PRC, NC , INC, ACT ,
CHK, ACC, EAC, LDE, SCL,

INSTRUCTION = packed record
F: FCT

var

L : 0 .. LEVMAX
A: I NTEGER

end;

INT,
ADD,
STO,
RDY,
SEL ,

IND,
SUB,
HLT,
SWI,
QLN ,

CBG,
MUL ,
INN,
SMK,
QPW,

SFL,
DVD,
PRN,
LMN,
QSG,

(*Function code*);
(*Level *);
(*Address*)

EFL,
MD ,
PRS,
EXC ,
QUE,

BRN,
OD ,
NL ,
SAV,
QWT

BZE,
EQL,
LDX,
RES ,

) ;

" OBCODE, OUTPUT: TEXT;
CH: CHAR (*Last character read*);
ERRORS,OBLIST: BOOLEAN (*position of last error*)
NEXTADDRESS: INTEGER; (*Code Location Counter*)
CODE: array [0 .. CODEMAX] of INSTRUCTION (*Generated code*);
MNEM ONIC : array [FCT] of packed array [1 .. 3] of CHAR; (*opcodes *)
MONICOUNT:INTEGER; (*For unique monitor number*)
CONDCOUNT:INTEGER; (*For unique condition var i able number*)
ENTRYCOUNT:INTEGER; (*for the unique entry point numbers *)
NOBACKUP,ASKBACKUP:BOOLEAN (*automatic nested backup*)
NOOFLINES:INTEGER; (*no. of lines compiled*)
MONIVARADR: array [1 .. MONMAX,1 . . 2] of INTEGER;

function BREAKIN : BOOLEAN;
procedure LISTCODE ;

(*addresses of monitor variables*)

appendix B

implementation

function BREAKIN ;
var CH: CHAR;
begin

if KEYPRESS

file DEC20A unit DECLARATIONS

then begin READ(KEYBOAR D, CH) ; BREAKIN
else BREAKIN := FALSE

CH = CHR(27) end

end;

procedure LISTCODE ;
var
I: INTEGER ;

begin
TEXTOUTPUT (OBCODE , 'OBJECT');
for I := 0 to NEXTADDRESS - 1 do

begin
if BREAKIN then EXIT(p r ogram);
with CODE[I] do

begin
WRITE(OBCODE, 1:10 , MNEMONIC[F] : 4);
if (F <= BZE) or (F> =LMN) then WRITE(OBCODE ,

end;
WRITELN (OBCODE)

end;
CLOSE(OBCODE, LOCK)

end;

end . (*dec l arations *)

, , L ' , , A)

appendix B file IN IT2Q1A

(*$S+*)
segment PROGRAMME;
un i t COMP ILER ;
(*for simple concurrent language*)

interface
uses (*$U :UNI T2Q1 A .CODE*) TEXTFILES,

(*$U :DEC2Q1A.CODE *) DECLARATIONS;
procedure PROGRAMME ;

implementation

procedure PROGRAMME;

canst
LOWEST = 0
NORW = 52
TXMAX = 1 QIQI
NMAX = 6
AL = 8
LEVMAX = 5

type
SYMBOL =

(*ASCII ord value*);
(*Number of reserved words*);
(*Length of identifier tab le*);
(*Max number of digits in numbers*);
(*Le ngth of identifiers*);
(*Max stat ic nesting*);

un i t COMP ILER

(NUL , IDENT, NUMBER, STRINGSYM, PLUS, MINUS, TIMES, SLASH, DOLLAR,
ODDSYM, ANDSYM, ORSYM , MODSYM, EQLSYM, NEQSYM, LSSSYM, LEQSYM,
GTRSYM, GEQS YM, LPAREN, RPAREN, COMMA , SEMICOLON , PERIOD, LBRACK,
RBRACK, COLON , BECOMES, BEGINSYM, ENDSYM, IFSYM, THENSYM, READS YM,
WHILESYM, HALTSYM, REPEATSYM, ELSESYM , UN TILSYM, STACKSYM, DOSYM,
WRITESYM, CONSTSYM, VARSYM, PROCSYM, FORWARDSYM, FORSYM, TOSYM ,
DOWNTOSYM, COBEGINSYM, COENDSYM, WAITSYM, RANDSYM , FOREVERS YM,
SIGNALSYM, CONDSYM, QLENSYM, QPWAITSYM, QSIGNALSYM, QUEUESYM,
QWAITSYM, SYNCSYM, ENTRYSYM, ACCEPTSYM, NOGARDS YM, SE LE CTSYM ,
ACTIVESYM, READYSYM, STOPCSYM , SAVESYM, RESTORESYM, SWITCHSYM);

OBJECT = (CONSTANT, VARIABLE, PROG , PROC , FUNC , MONI,CONDVAR,SYNC,EPOINT);
SYMSET = set of SYMBOL;
ALFA = packed array [1 .. 8 J of CHAR;
TRANSFERS = (NUMBERS , CHARS, STRINGS, NEWLINE, NEWCARD);
TYPES = (INTS , BOOLS, NOTYPE);

var
SYM: SYMBOL
ID : ALFA
NUM : INTEGER
CC : INTEGER
LL : INTEGER
CS : INTEGER
ERRPOS: INTEGER
LISTING, TABLES:
CLEANIO: BOOLEAN
PROCCALL: BOOLEAN
LINE: array [1 ..
STRINGTEXT: array
WORD: array [1
WSYM: array [1 ..

(*Last symbol read*);
(*Last identifier read*);
(*Last number read*);
(*Cha ract er painter*);
(*Line l ength*) ;
(*start of last symbol *);
(*position of last error*);

BOOLEAN (*Request tables *);
(*Request READ and WRITE to be indivisible*);
(*type of last statement*);

81J of CHAR (*last line read*);
[1 .. 8Q1J of CHAR (*last string read*);
NORWJ of ALFA (*reserved words *);
NORWJ of SYMBOL (*matching symbols *);

appendix B file INIT211lA uni t COMPILER

SSYM: array [CHAR] of SYMBOL (*one character symbols *) ;
BLOCKBEGSYS, STATBEGSYS, rACBEGSYS, CONSTBEGSYS, RELOPSYS: SYMSET;
TABLE: array [Ill .. TXMAX] of record (*symbol table entries*)

NAME: ALrA;
KIND: OBJECT;
LEVEL: III .. LEVMAX;
MIN: INTEGER;
SIZE: INTEGER;
ADR: INTEGER;
CANCHANGE, VARPARAM, DErINED: BOOLEAN;
REF: packed array [1 .. PMAX] of BOOLEAN;
ACCESS,INSIDE:BOOLEAN;
UNIQUE :I NTEGER ; (*monitor number*)

end;
CODEISTOBEGENERATED: BOOLEAN; (*Listing is not suppressed*)
NEWGLOBALS:INTEGER; (*So as not to lose monitor variables *)
PRESENT , PREV IOUS:INTEGER; (*For initialisation code sequence*)
ENDOrMAINVAR:IIl .. TXMAX; (*Last mainblock var entry in TABLE*)
STARTOrMAINVAR:IIl .. TXMAX; (*Table entry for start of main variables*)
GLOBALADDRESS:INTEGER; (*Monitor variables referenced from main base*)
MOREMONITORS:BOOLEAN; (*To update the stack frame correctly*)
MONCHK , NOWARN:BOOLEAN; (*so warnings are suppressed*)
INMONITOR:BOOLEAN; (*no semaphores in monitors*)
WANTEXCLUSIVITY:BOOLEAN; (*so as only to ask for exclusivity after

SYNCHRON,
IS ACCEPT ,
ISELSECASE,

parameters have been loaded *)
(*to ensure accepts,etc. in correct places*)

(*to prevent nested accepts*)
(*To prevent select in e lse clause*)

(*for warning if save mmissing*)
(* for indexing buffer*)

ISSAVE:BOOLEAN;
BLOCKNUMBER,BLENGTH:INTEGER;
BUFrER:PACKED ARRAY[IIl .. 111l23]
DONE :BOOLEAN;
MISSRESTORE :BOOLEAN;
OrrSET:INTEGER;

of CHAR; (*for new GETCH*)
(*whe n we have finished reading*)

(*to warn that RESTORE is missing*)
(*to determine the offset for each line*)

segment procedure HALT (S: STRING);
begin

WRITELN; WRITELN (' Halted' ,S); EXIT(program)
end (*HALT*);

(* ++++++++++++++++++++++++++ Source handler ++++++++++++++++++++++++ *)

segment procedure ERROR{ERRORCODE: INTEGER);
var

I: INTEGER;
procedure ERR 1 ;

begin
case ERRORCODE of
. ill: WRITE{OUTPUT,'OUT Or RANGE');

1: WRITE{OUTPUT,'STRING TOO LONG');
2: WRITE{OUTPUT,'; EXPECTED');
3: WRITE (OUTPUT, 'INVALID SEQUENCE') ;
4: WRITE{OUTPUT,'REDECLARED');
5: WRITE(OUTPUT,' UNDECLARED');
6 : WRITE{OUTPUT,'IDENTIrIER EXPECTED ');

appendix B file INIT20A

7 : WRITE(OUTPUT ,':= WRONG CONTEXT') ;
8: WRITE(OUTPUT, ' NUMBER EXPECTED') ;
9 : WRITE (OUTPUT, '= EXPECTED ');
10: WRITE(OUTPUT ,' J EXPECTED') ;
11: WRITE(OUTPUT, ' UNEXPECTED SUBSCRIPT ') ;
12: WRITE (OUTPUT, ' WRONG NUMBER OF PARAMETERS ');
13: WRITE (OUTPUT, ', OR) EXPECTED') ;
14: WRITE(OUTPUT , ' INVALID START TO FACTOR');
15: WRITE (OUTPUT, , [EXPECTED ') ;
16: WRITE(OUTPUT,' INVALID PROCEDURE REFERENCE ');
17 : WRITE(OUTPUT,') EX PECTED ');
18: WRITE(OUTPUT, ' (EXPECTED ');
19: WRITE(OUTPUT,': EXPECTED');
20: WRITE(OUTPUT,'INVALID ASSIGNMENT');
21: WRITE (OUTPUT, ':= EXPECTED') ;
22: WRITE (OUTPUT,'INVALID REFERENCE');
23: WRITE(OUTPUT, 'THE N EXPECT ED ');
24: WRITE(OUTPUT ,' END EXPECTED ') ;
25: WRITE(OUTPUT, ' DO EXPECTED ') ;
26: WRITE(OUTPUT, 'UN TIL EXPECTED');
end (*case*)

e n d (*ERR1*) ;

procedure ERR2;
begin

cas e ERRORCODE of
27: WRITE(OUTPUT,'INVALID FORMAT DESCR I PTOR');
28: WRITE(OUTPUT, ' CANNOT READ ');
29: WRITE(OUTPUT,'INVALID CONSTANT ');
30 : WRITE(OUTPUT,': EXPECTED');
31: WRITE(OUTPUT, ' INVA LID SUBRANGE ') ;
32: WRITE(OUTPUT,'INVALID SYMBOL AFTER A STATEMENT ') ;
33: WRITE(OUTPUT, ' TYPE CONFLICT ');
34 : WRITE(OUTPUT, ' BEGIN EXPECTED');
35: WRITE(OUTPUT, 'INVALID SYMBOL AFTER BLOCK');
36: WRITE(OUTPUT,'PROGRAM EXPECTED ');
37: WRITE(OUTPUT, '. EXPECTED ') ;
38 : WRITE(OUTPUT,' DISAGREES WITH EARLIER LIST') ;
39: WRITE(OUTPUT, ' CANNOT ALTER - READ ON LY') ;
40: WRITE(OUTPUT,'DECLARED AT WRONG LEVE L');
41: WRITE(OUTPUT, ' TO OR DOWNTO EXPECTED ') ;
42 : WRITE(OUTPUT ,' ON LY PROCEDURE CALLS ALL OWED') ;
43: WRITE(OUTPUT,'COEND EXPECTED ');
44: WRITE(OUTPUT ,' CONCURRENCY ONLY I N MAIN PROGRAM ') ;
45: WRITE(OUTPUT, ' TOO MANY CONCURRENT PROCESSES ');
46 : WRITE (OUTPUT, ' MONITORS IN MAINBLOCK ON LY');

unit COMPILER

47 : WRITE(OUTPUT, ' STARRED IDENTIFIERS ON LY IN MONITORS ');
48 : WRITE(OUTPUT, ' ONLY STARRED IDENTIFIERS ACCESSI BLE ') ;
50: WRI TE(OUT PUT,'TOO MANY MONITOR DECLARATIONS') ;
51: WRITE(OUTPUT,'CONDITION VARIABLES ON LY IN MONITORS ') ;
52: WRITE(OUTPUT,'INCORRECT CONDITION VARIABLE USAGE ');
53: WRITE (OUTPUT, ' TOO MANY CONDITION VARIABLES');
54: WRITE(OUTPUT,'NO SEMAPHORES IN MONITORS');
55: WRITE(OUTPUT,'ONLY CURRENT MONITOR VARIABLES MAY BE SAVED ') ;
57: WRITE(OUTPUT,'SAVE/RESTORE ONLY IN MONITOR PROC/FUNC ') ;

appendix B file INIT20A

60 : WRITE(OUTPUT, ' SYNCHRONISERS ONLY IN MAINBLOCK');
61: WRITE(OUTPUT,'ENTRY POINTS ONLY IN SYNCRONISERS');
62: WRITE(OUTPUT,'TOO MANY ENTRY POINTS');
63: WRITE(OUTPUT, 'ONLY ENTRY POINTS ACCESSABLE');

unit COMPILER

64: WRITE(OUTPUT,'ENTRY POINT CALL IN ILLEGAL POSITION');
65 : WRITE(OUTPUT,'NO NESTED SYNCHRONISERS');
66: WRITE(OUTPUT,'ENTRY POINT EXPECTED ') ;
67: WRITE(OUTPUT,'NO NESTED ACCEPT STATEMENTS');
68 : WRITE(OUTPUT,'SELECT ONLY IN SYNCHRONISER ');
69: WRITE(OUTPUT, 'ACCEPT EXPECTED');
70: WRITE(OUTPUT, ' TOO MANY GUARD CONDITIONS');
71: WRITE(OUTPUT,'SELECT STATEMENT IN ILLEGAL POSITION');

end (*case*);
end (*ERR2*);

begin (*ERROR*)
ERRORS := TRUE; CODEISTOBEGENERATED ._ FALSE;
if CS <> ERRPOS then

begin
if not LISTING then

begin
write(OUTPUT, '
for I : = 1 to LL do

end;

,) ;
WRITE(OUTPUT,LINE[I]); WRITELN(OUTPUT)

WRITE(OUTPUT, '**** " '~': CS+1+0FFSET);
if ERROR CODE < 27 then ERR1 else ERR2;
WRITELN(OUTPUT); ERRPOS := CS

end
end (*ERROR*);

(* Include files *)
(*$1 :DEC220A.TEXT *)
(*$1 :COM20A.TEXT *)
(*$1 :COM220A . TEXT *)
(* $1 : COM320A. TEXT *)

appendix B file DEC220A

procedure GETCH;

prccedure READNEXTBLOCK;
begin

DONE:=BLOCKREAD(INPUT,BUFFER,2,BLOCKNUMBER)=0;

unit COMPILER

BLOCKNUMBER:=BLOCKNUMBER+2; (*read in two blocks at a time*)
end;

begin
if CC = LL
then

begin (*new line*)
LL := 0; CC := 0; CS := 0; ERRPOS := -1; OFFSET:=0 ;
NOOFLINES: =NOOFLINES+1; (*no. of lines compiled *)
if LISTING then WRITE(OUTPUT, NEXTADDRESS:5, ' ');
if BLENGTH =0 then READNEXTBLOCK;
repeat
if (BREAKIN) then HALT('IC');
if (ord(BUFFER[BLENGTH]) =1 6 (*DLE*» then
begin (*offset left margin*)

BLENGTH:=BLENGTH+1;
OFFSET: =(ord(BUFFER[BLENGTH]) -32);
WRITE (OUTPUT ,' ' : OFFSET) ;

end
else
begin
if (crd(BUFFER[BLENGTH]) >=32) and (ord(BUFFER [BLE NGTH]) <=126)

then begin
LL:=LL+1;
LINE [LL] : =BUFFER [BLENGTH] ;
if LISTING then WRITE(OUTPUT,LINE[LL]);

end;
end; (*else*)

BLENGTH:=BLENGTH+1 ;
if BLENGTH > 1023 then
begin

BLENGTH:=0; READNEXTBLOCK;
end;

until ord(BUFFER[BLENGTH])=13;
if LISTING then WRITELN(OUTPUT);
LL: =LL+ 1 ; (*get passed EOLN*)
LINE[LL]:=' ';
if BLENGTH > 1023 then BLENGTH: =0;

end; (*newline*)
CC:=CC+1; CH:=LINE[CC];

end; (*GETCH*)

appendix B file DEC22(1)A unit COMPILER

(* ++++++++++++++++++++++++ Lexical Analyser +++ + ++++++++++++++++++++ *)

procedure GETSYM;
var

I, J, K, DEPTH: INTEGER ;
FOUND, ENDSTRING : BOOLEAN;

function NOTLETTER : BOO LE AN ;
begin NOTLETTER := not(CH in ['A' .. ' Z' ,'a ' .. ' z ']) end (*NOTLETTER*);

function NOTDIGIT : BOOLEAN ;
begin NOTDIGIT := (CH < ' (I) ') or (CH > '9') end (*NOTDI GIT ") ;

function DIGIT: IN TEGER ;
begin DIGIT : = ORD(CH) - ORD('(/)') end (*DIGIT*);

procedure OPTIONS;
begin

GETCH;
case CH of

' S I J 1 s '
IT I, I t I

I L I, I I'
' 0 ' ,1 0 '

' WI , ' WI

'M', ' m'
'B' ,I b '

begin
begin
begin
begin
begin
begin
begin

GETCH ;
GETCH;
GETC H;
GETCH;
GETCH;
GETCH ;

CLEANIO := CH = '+' end;
TAB LES := CH = '+ ' end;
LISTING : = CH = '+' end;
OBLIST ._ CH = '+' end;
NOWARN ._ CH = end ;
MONC HK ._ CH = '+' end ;

GETCH; NOBACKUP . _
end ;

CH = ' - '; ASKBACKUP: =N OBACKUP ;

end (*case*); GETCH
end (*OP TI ONS *);

begin (*GETSYM*)
repeat

while CH = ' , do GETC H (*Skip blanks *) ;
FOUND := TRUE ; CS .- CC (*for e r ror reporting*);
SYM : = SSYM[CH] ;
case CH of

'A', ' B ', ' e ', ' D ' , ' E', IF', 'GI, 'HI, 'I', I J I , 'K', ILl, ' M',
'N', '0', ' pI, IQ', ' H', 'S f, 'T', 'U', ' V ', ' WI , 'X' , 'yl, ' 2' ,
'a','b','c','d ' ,'e','f','g','h ' ,'i','j','k','l','m','n','O l ,'pl,
'q', ' r ', 's', 't ' , ' U i , 'v' , 'w', ' x ', 'y', 'z':

begin (*Identifier or reserved word*)
K : = 1 ; ID . - , , ;
repeat

if CH in [' a' .. 'z'] th en CH:= CHR(ORD(CH) - ORD('a ')+ORD('A ' »;
if K <= AL then begin ID[K] . _ CH; K : = K + 1 end ; GETCH

until NOTLE TT ER and NOTDIGIT;
I : = 1; J : = NORW;
repeat (*Binary search*)

K := (I + J) DIV 2;
if ID <= WORD[K] then J . _ K 1;
if ID >= WORD[K] the n I . _ K + 1

until I > J ;

appendix B file DEC2211JA

if I - 1 > J then SYM := WSYM[K] else SYM := IDENT
end;

'0' '1' '2' '3' ' 4' '5' ' 6 ' '7' '8' '9'· , , , , , , , , , .
begin ('number ')

K := IIJ; NUM := IIJ; SYM := NUMBER;
repeat

unit COMPILER

if K < = NMAX then NUM := 111J ' NUM + DIGIT; GETCH; K ._ K + 1
until NOTDIGIT ;
if K > NMAX then ERROR(IIJ)

end ;
I • I •

begin
GETCH;
if CH = ,-, then begin SYM
else SYM := COLON

BECOMES; GETCH end

end;
' <I :

begin
GETCH;
if CH = '=' then begin SYM := LEQSYM; GETCH end
else

if CH = ' > ' then begin SYM := NEQSYM; GETCH end
else SYM := LSSSYM

end;
I>' :

begin
GETCH;
if CH = ,-, then begin SYM
else SYM := GTRSYM

GEQSYM ; GETCH end

end;
I , 1 I •

begin ('Str ing')
NUM := IIJ; GETCH; SYM := STRINGSYM; ENDSTRING := FALSE;
repeat

if CH = "" then begin GETCH; ENDSTRING : = CH <> "" end;
if not ENDSTRING then

begin NUM : = NUM + 1; STRINGTEXT[NUM] := CH; GETCH end
until ENDSTRING or (CC = LL);
if CC = LL then begin NUM := IIJ; ERROR(l) end

end;
, (, :

begin
GETCH;
if CH = ,', then

begin ('ignore comments (even nested) *)
DEPTH := 1; FOUND := FALSE; GETCH;
if CH = '$' then OPTIONS;
repeat

if CH = ';' then WRITELN(OUTPUT,' ~':CC+6,'; INTENDED?');
if CH = ,', then

begin (*en d c f comment?')
GETCH;
if CH = ,), then begin DEPTH DEPTH -1 ; GETCH end

end

appendix B file DEC220A

else
if CH = ' (' then

begin (*nested comment?*)
GETCH;

unit COMPILER

if CH = ,*, then begin DEPTH .- DEPTH+l; GETCH end
end

else GETCH
un til DEPTH = 0

end
else SYM := LPAREN

end;
'*', '+', '-', 'fl', '=', ' I I, I)', 1[1, 'J',
'@"$""\"IIO/'I?!'II"t.". 1 ,., , ,10 ,., ,

, , , , f • I , " I , , '& I,

(*Implementation defined*)
begin SYM ._ SSYM[CHJ; GETCH end;

end (*case*) ;
until FOUND

end (*GETSYM*);

procedure INITIALISE;
var

C: CHAR ;

procedure RESERVREST;
begin

WSYM[1]:= ACCEPTSYM
WSYM[4J := BEGINSYM
WSYM[7J := CONDSYM
WSYM[10J:= DOWNTOSYM
WSYM[13J: = ENTRYSYM ;
WSYM[16J:= FORWARDSYM;
WSYM[19J:= IFSYM
WS YM[22J: = NOGARDSYM
WSYM[25J : = PROCSYM
WSYM[28J:= QPWAITSYM
WSYM[31J: = QWAITSYM
WSYM[34J:= READSYM ;
WSYM[37J:= RESTORESYM;
WSYM[40J:= SIGNALSYM
WSYM[43J:= SWITCHSYM
WSYM[46J:= TOSYM
WSYM[49J:= WAITSYM
WSYM[52J:= WRITESYM

end;

procedure RESERVEDWORDS;
begin

WORD[1] : = 'ACCEPT ' . ,
WORD[4 J : = 'BEGIN ' . ,
WORD[7 J : = 'CONDITIO ' ;
WORD[10J:= ' DOWNTO ' . ,
WORD[13J:= ' ENTRY , . ,
WORD[16J:= 'F ORWARD ' . ,
WORD[19J:= ' IF ' . ,
WORD[22]:= 'NOGUARD ' . ,

WSYM[2J:= ACTIVESYM ;
WSYM[5J:= COBEGINSYM;
WSYM[BJ:= CONSTSYM
WSYM[llJ:= ELSESYM
WSYM[14J:= FORSYM
WSYM[17J:= PROCSYM
WSYM[20J:= MODSYM
WSYM[23J:= ODDSYM
WSYM[26J:= PROCSYM ;
WSYM[29 J := QSIGNALSYM;
WSYM[32J:= RANDSYM
WSYM[35J:= READYSYM
WSYM[38J:= SAVESYM
WSYM[41J:= STACKSYM
WSYM[44J:= SYNCSYM
WSYM[47J:= UNTILSYM
WSYM[50J:= WHILESYM

WORD[2] : = 'ACTIVEIN' ;
WORD[5 J : = ' COBEGIN ' . ,
WORD[8 J : = 'CONST ' . ,
WORD[llJ:= 'ELSE ' . ,
WORD[14J := 'FOR ' . ,
WORD[17J:= 'FUNCTION' ;
WORD[20]:= 'MOD ' . ,
WORD[23J : = 'ODD ' . ,

WSYM[3J:= ANDSYM
WSYM[6J:= COENDSYM
WSYM[9J: = DOSYM
WSYM[12J:= ENDSYM
WSYM[15J:= FOREVERSYM;
WSYM[18J:= HALTSYM
WSYM[21J:= PROCSYM
WSYM[24J:= ORSYM
WSYM[27J:= QLENSYM
WSYM[30J:= QUEUESYM
WSYM[33J:= READSYM
WSYM[36J:= REPEATSYM
WSYM[39J:= SELECTSYM
WSYM[42J:= STOPCSYM
WSYM[45J:= THENSYM
WSYM[4BJ:= VARSYM
WSYM[51]:= WRITESYM

WORD[3 J : = ' AND ' . ,
WORD[6 J : = 'COEND ' . ,
WORD[9] : = 'DO ' . ,
WORD[12J:= 'END ' . ,
WORD[15J:= 'FOREVER ' . ,
WORD[18J := 'HALT ' . ,
WORD[21]: = 'MONITOR ' . ,
WORD[24J: = ' OR ' . ,

appendix B file DEC220A uni t COMPILER

WORD[25] : = ' PROCEDUR' ; WORD[26]:= ' PROGRAM ' . WORD[27] : = ' QL ENGTH ' . , ,
WORD[28]: = ' QPWAIT ' . WORD[29] : = ' QS I GNAL ' . WORD [30] : = ' QUEU E ' . , , ,
WORD [31] : = ' QWAIT ' . WORD[32]: = ' RANDOM ' . WORD[33]: = ' READ ' . , , ,
WORD[34] : = ' READLN ' . WORD[35] : = ' READYINS ' ; WORD[36]: = 'REPEAT ' . , ,
WORD[37]: = ' RESTORE ' . WORD[38] : = ' SAVE ' . WORD[39] := ' SELECT ' . , , ,
WORD[40] : = 'SIGNAL ' . WORD[41] := ' STACKDUM ' ; WORD[42] := ' STOPCONC' ; ,
WORD[43] : = ' SWITCH ' . WORD[44] : = 'SYNCHRON ' ; WO RD[45] := ' THEN ' . , ,
WORD[46] : = ' TO ' . WORD[47]: = ' UNTIL ' . WORD [48] := ' VAR ' . , , ,
WORD[49] : = ' WAIT ' . WORD[50]:= ' WHILE ' . WORD[5 1]: = ' WRIT E ' . , , ,
WORD[52] : = 'WRITELN ' . ,

RESERVREST;

end (*RESERVEDWORDS *) ;

precedure OPCODES;
begin

MNEMONIC[LIT]: = ' LIT'; MNEMON I C[LDA] : = 'LDA '; MN EMONIC[CAL]: = ' CA L' ;
MNEMONIC[INT] := 'INT ' ; MNEMONIC[BRN] := ' BRN '; MNEMON I C[BZE]: = ' BZE ' ;
MNEMONIC[IND] := ' IND '; MNEMONIC [RET] : = 'RET ' ; MN EMONIC[NEG] : = ' NEG ';
MNEMONIC [ADD] : = 'ADD '; MNEMONIC [SUB] : = ' SUB ' ; MNEMONIC [MUL] : = ' MUL ';
MNEMONIC[DVD] := ' DVD ' ; MN EMON I C[MD] := ' MOD '; MNEMON I C[OD]:= ' ODD ';
MNEMONIC[EQL]:= 'EQL ' ; MNEMON I C[NEQ]: = ' NEQ '; MNEMON I C[LSS] := ' LSS ' ;
MNEMONIC[GEQ] := ' GEQ '; MNEMONIC[GTR]: = ' GTR ' ; MNEMON I C[L EQ] := 'LEQ ' ;
MNEMONIC[STK]: = ' STK ' ; MNEMONIC[STO] := 'STO ' ; MNEMON I C[HLT]:= 'HLT ';
MNEMONIC[INN] := 'INN ' ; MNEMONIC[PRN] := 'PRN' ; MNEMONIC[PRS] := ' PRS ';
MNEMONIC[NL] := 'NL ' ; MNEMONIC[LDX]: = ' LDX'; MNEMONIC[SWP] := ' SWP' ;
MNEMONIC [SFL] := 'SFL '; MNEMONIC[E FL] := ' EFL ' ; MNEMONIC[CBG] := ' CBG ' ;
MNEMONIC[CND]:= ' CND '; MNEMON I C[WGT]:= ' WGT '; MNEMONIC[SIG]: = ' SIG ';
MNEMONIC[RND]:= ' RND ' ; MNEMONIC[PRC] : = ' PRC '; MNEMONIC[NC]: = ' NC ' ;
MNEMONIC[INC]: = ' INC'; MNEMONIC[LMN] : = ' LMN'; MNEMONIC[EXC]: = ' EXC ' ;
MNEMONIC[QLN] : = ' QLN ' ; MNEMONIC[QPW]: = ' QPW' ; MNEMONIC[QSG]:= ' QSG ' ;
MNEMONIC[QUE]: = ' QUE ' ; MNEMONIC[QWT] : = ' QWT '; MNEMONIC[CHK]: = ' CHK ';
MNEMONIC[ACC] := ' ACC'; MNEMONIC[EAC]:= ' EAC ' ; MNEMONIC[SCL] := ' SCL ' ;
MNEMONIC[LDE] := ' LDE '; MNEMONIC[SEL] := ' SEL ' ; MNEMONIC[ACr]:= ' ACT ';
MNEMONIC[RDY] := ' RDY ' ; MNEMONIC[RES]: = 'RES' ; MNEMONIC[SAV]: = ' SAV ' ;
MNEMONIC[SMK]: = 'SMK '; MNEMONIC[SWI]: = ' SWI';

end (* OPCODES*);

begin (* INITIALISE*)
WRITE L N(OUTPUT) ;
WRITELN(OUTPUT , ' Toy Compiler Mar k 21 . 2C m cv s spr nb');
WRITELN(OUTPUT) ;
RESERVEDWORDS ; OPCODES;
fer C : = CHR(LOWEST) to CHR(HIGHEST) do SSYM[C] : = NUL;
SSYM[' + '] PLUS SSYM[' - ']. - MINUS SSYM[' * ']. -
SS YM['I '] ._ SLASH SSYM[' ('] . - LPAREN SS YM[')']
SSYM[' ='] . _ EQLSYM SSYM[' ,']. - COMMA SSYM['. '] .-
SSYM[' < '] ._ LSSSYM SSYM[' > '] GTRSYM SSYM[' ; '] . -
SSYM['['] ._ LBRACK SSYM['] '] RBRACK SSYM[' : ']. -
SSYM[' $'] . _ DOLLAR

TIMES;
RPAR EN;
PERIOD;
SEMICOLON;
COLON;

RELOPSYS : = [EQLSYM, NEQSYM, GTRSYM, GEQSYM, LSSSYM, LEQSYM];
BLOCKBEGSYS : = [CONSTSYM , VARSYM, CONDSYM, PROCSYM, BEG I NSYM ,

FORWARDSYM, ENTRYSYM, SYNCSYM];

appendix B file DEC220A uni t COMPILER

STATBEGSYS ._ [IDENT, BEGINSYM, IFSYM , WHILESYM, REPEATSYM, HALTSYM,
FORSYM, COBEGINSYM, WAITSYM, SIGNALSYM, WRITESYM,
READSYM, STACKSYM, ACCEPTSYM, SELECTSYM,
STOPCSYM,SAVESYM, RESTORESYM];

FACBEGSYS := [IDENT, NUMBER , LPAREN, RANDSYM ,ACT IVESYM ,READYSYM];

CONSTBEGSYS := [PLUS, MINUS, IDENT, NUMBER];

LISTING := TRU E; OBLIST := FALSE; TABLES := FALSE;
ERRORS := FALSE ; CLEANIO : = FALSE ; NOWARN: =FALSE;
MONCHK := FALSE; NOBACKUP := FALSE; ASKBACKUP:=NOBACKUP;

C······"···'Initialise code generator""""")
NEXTADDRESS := 0; CODEISTOBEGENERATED := TRUE;

C""""""""" Initialise lexical analyser """"""""")
CC := 0; LL := 0; ERRPOS := 0; CH := ' '; DONE:=FALSE;NOOFLINES:=0;
BLENGTH:=0; BLOCKNUMBER:=2 ; C'skip passed header information')

GETSYM ;

PRESENT: =0;
ENDOFMA INVAR :=l ;
CONDCOUNT:=0;
ENTRYCOUNT:=0;
ISELSECASE:=FALSE;
PROCCALL: =FALSE;

end C' INITIALISE');

NEWGLOBALS:=0; STARTOFMAINVAR:=2;
MOREMONITORS := FALSE; MONICOUNT: =0;
INMONITOR:=FALSE; SYNCHRON:=FALSE;
WANTEXCLUS I VITY:=FALSE;ISACCEPT:=FALSE;
ISSAVE := FALSE; MISSRESTORE :=FALSE;

appendix B file COM20A unit COMPILER

(* ++++++++++++++++++++++++ + +++ Analyser ++++++++++++++++++++++++++++ *)

procedure ACCEPT(EXPECTED: SYMBOL; ERRORCOD E: INTEGER);
begin
if SYM = EXPECTED then GETSYM else ERROR(ERRORCODE)

end (* ACCEPT*) ;

procedure BLOCK(FOLLOWERS: SYMSET; LEV,TX: INTEGER; BL OC KKIND: OBJECT;
COMPLETING: BOOLEAN; BLOCKENTRY: INTEGER);

var
STARTBLOCK: INTEGER
ADDRESS: INTEGER
I , TX0: INTEGER
PARAMS: INTEGER
STAR:BOOLEAN;
SIZEREQUIRED:INTEGER;

(*Start address*);
(*Variable address index*);
(*Initial symbol table entry*);
(*Number of Parameters*);
(*Used fo r starred identifiers*)
(*get extra stack space for select statement*)

(* +++++++++++++++++ + ++++++++ Code Generator ++ + ++++++++++ + ++++++++++ *)

procedure GEN (X: FCT; Y,Z: I NTEGER) ;
(*Code generator*)
begin
if NEXTADDRESS > CODEMAX then HALT('LL');
if CODEISTOBEGENERATED
then
begin
with CODE[NEXTADDRESS] do begin F .- X; L .- Y; A .- Z end;
NEXTADDRESS .- NEXTADDRESS + 1

end
end;

procedure EMIT(X: FCT);
(*code generator wi th no add ress field*)
begin GEN(X, 0, O) end;

procedure OBTAINEXCLUSIVITY(U:INTEGER);
begin GEN(EXC,0,U); end;

procedure LEAVINGMONITOR(U:INTEGER);
begin GEN(LMN ,0,U); end;

procedure CONDVARCODE(X:FCT; B:INTEGER);
begin GEN(X,0,B); end;

procedure EMITACCEPT(U:INTEGER);
begin GEN(ACC,0,U); end ;

procedure EMITENDACCEPT(OFFSET,ADR:INTEGER);
begin GEN(EAC,OFFSET,ADR); end;

procedure ENTRYPARAMETER{OFFSET,ADR:INTEGER);
(*load address for entry point parameter*)
begin GEN{LDE,OFFSET , ADR); end;

appendix B file COM20A

prccedure SYNCCALL(OFFSET,ADR:INTEGER);
(*calling an entry pOint*)
begin GEN(SCL,OFFSET,ADR); end;

procedure EMITSELECT(OFFSET,ADR:INTEGER);
begin GEN(SEL ,OFFSET ,A DR); end;

procedure SAVEVARIABLES(U:INTEGER);
begin GEN(SAV ,0, U); end;

procedure RESTOREVARIABLES(U:INTEGER);
begin GEN(RES,0,U); end;

procedure SAVEMARKER;
begin EMIT(SMK); end;

procedure NEGATEINTEGER;
begin EMIT(NEG) end;

procedure BINARYINTEGEROP(OP : SYMBOL);
begin
case OP of
TIMES: EMIT(MUL);
SLASH: EMIT(DVD);
PLUS: EMIT(ADD);
MINUS: EMIT(SUB);
MODSYM: EMIT(MD)

end
end;

procedure BINARYBOOLEANOP(OP: SYMBOL);
begin
case OP of

ANDSYM:EMIT(MUL);
ORSYM: EMIT(ADD);

end
end;

procedure COMPARISON(OP: SYMBOL);
begin
case OP o f

EQLSYM: EMIT(EQL);
NEQSYM: EMIT(NEQ);
LSSSYM: EMIT(LSS);
LEQSYM: EMIT(LEQ) ;
GTRSYM: EMIT(GTR);
GEQSYM: EMIT(GEQ)

end
end;

unit COMPILER

appendix B file COM20A

precedure INPUTOPERATION(OP: TRA NSFERS) ;
begin
case OP of

NUMBERS: EMIT(INN);
STRINGS,NEWLINE: (*not used*);
CHARS: EMIT(INC) ;
NEWCARD: EMIT(NC);

end
end;

precedure STACKSTRING ;
var I: INTEGER;
begin
fer I := 1 to NUM do GEN(LIT, 0 , ORD(STRINGTEXT[I]» ;
GEN(LIT, 0, NUM)

end;

procedure OUTPUTOPERATION(OP : TRANSFERS);
begin
case OP of

STRINGS: begin STACKSTR I NG ; EMIT(PRS) end;
NUMBERS : EMIT(PRN);
NEWLINE: EMIT(NL);
CHARS : EMIT(PRC);
NEWCARD:

end
end;

procedure STACKCONSTANT(NUM : INTEGER);
begin GEN(LIT, 0, NUM) end;

procedure STACKADDRESS(OFFSET, ADR: INTEG ER) ;
begin GEN(LDA, OFFSET, ADR) end;

procedure DEREFERENCE;
begin EMIT(LDX) end;

procedure SUBSCRIPT(LIMIT: INTEGER);
begin GEN(IND, 0, LIMIT -1) end;

procedure ASSIGN;
begin EMIT(STO) end;

procedure OPENSTACKFRAME(SIZE: INTEGER);
begin GEN(INT, 0, SIZE) end;

procedure STORELABEL(var LAB: INTEGER);
begin LAB := NEXTADDRESS end ;

procedure JUMP(LAB: INTEGER);
begin GEN(BRN, 0, LAB) end;

procedure JUMPONFALSE(LAB: INTEGER);
begin GEN(BZE, 0, LAB) end ;

unit COMPILER

appendix B file COM20A unit COMPILER

procedure STARTfORLOOP (UP: BOOLEAN);
begin if UP then GEN(SfL, 0, 0) else GEN(SfL, 2, 0) end;

procedure ENDfORLOOP (UP: BOOLEAN; LAB: INTEGER) ;
begin if UP then GEN(EfL, 0, LAB) else GEN(EfL, 2, LAB) end;

procedure STARTPROCESSES;
begin EMIT(CBG) end;

procedure STOPPROCESSES;
begin EMIT(CND) end;

procedure CODEfORSIGNAL;
begin EMIT(SIG) end;

procedure CODEfORWAIT;
begin EMIT(WGT) end;

procedure CODEfORRANDOM;
begin EMIT(RND) end;

procedure CODEfORACTIVE;
begin EMIT(ACT) end;

procedure RDYCODE;
begin EMIT(RDY) end;

procedure TOGGLESWITCHING;
begin EMIT(SWP) end;

procedure PROCESSTRACE;
begin EMIT(CHK) end;

procedure PROCSWITCH;
begin EMIT(SWI) end;

procedure ENTERBLOCK(var LAB: INTEGER);
begin STORELABEL(LAB); JUMP(0) end;

procedure LEAVEBLOCK(BLOCKKIND: OBJECT; LEV: INTEGER;
PARAMS: INTEGER);

begin
case BLOCKKIND of

PROG: EMIT(HLT);
FUNC,PROC,SYNC: GEN(RET, LEV, PARAMS+1);
MONI:JUMP(STARTBLOCK) ;

end
end;

procedure CALL(OffSET, ADR: INTEGER);
begin GEN(CAL, OffSET, AD R) end;

procedure CODEfORODD;
begin EMIT(OD) end;

appendix B file COM20A

procedure CODEFORDUMP(LEVEL : INTEGER);
begin GEN(STK, 0, LEVEL) end;

procedure BACKPATCH(LOCATION, ADR: INTEGER);
begin CODE[LOCATION] .A := ADR end;

unit COMPILER

(* + +++++++++++++++++++ + ++++ DECLARATIONS PART +++++++++++++++++++++ *)

procedure TEST(ALLOWED, BEACONS: SYMSET; ERRORCODE: INTEGER);
begin

if not (SYM in ALLOWED) then
begin

ERROR(ERRORCODE) ;
while not (SYM in AL LOWED + BEACONS) do GETSYM

end
end (*TEST*);

procedure SKIP(EXCESS:SYMBOL);
(*to skip passed excess symbols*)
begin
while SYM=EXCESS do

begin
ERROR (3);
GETSYM;

end;
end;

procedure LISTABLE;
var

I: INTEGER;
begin (*L ist symbol table for a block*)

FOR I : = 1 TO TX do
with TABLE[I] do

begin
WRITE(OUTPUT,I: 10, NAME: 9);
case KIND of

CONSTANT: WRITE(OUTPUT,'CONSTANT': 10);
VARIABLE: WRITE(OUTPUT, 'VARIABLE': 10);
PROG: WRITE(OUTPUT,'PROGRAM': 10);
FUNC: WRITE (OUTPUT , 'F UNCTION ': 10);
PROC : WRITE (OUTPUT, 'PROCED URE' : 10) ;
MONI : WRITE(OUTPUT,'MONITOR' :10);
CONDVAR: WRITE (OUTPUT, ' CONDITION ' : 10) ;
SYNC: WRITE(OUTPUT, ' SYNC PROC': 10);
EPOINT : WRITE (OUTPUT, ' EPOINT ' : 10) ;

end (*case*);
if DEFINED then WRITE(OUTPUT, , DEF')

else WRITE(OUTPUT,' UND');
if ACCESS then WRITE(OUTPUT,' ACCESS ')
else WRITE(OUTPUT, ' NOTACC') ;

if CANCHANGE then WRITE(OUTPUT,' CAN ')
else WRITE(OUTPUT,' CANT ');

if INSIDE the n WRITE(OUTPUT, ' IN ')
else WRITE(OUTPUT, ' OUT ');

appendix B file COM211lA

WRITELN(OUTPUT, ' U=',UNIQUE:2, LEVEL:4, ' ,
ADR, ' " SIZE, ' " MIN)

end
end (*LISTABLE*) ;

precedure ISTARRED;
begin (*check fer sta rred identifiers*)

STAR: =FALSE ;
if SYM=TIMES then
begin
if BLOCKKIND=MONI then STAR: =TRUE else ERROR(47) ;
GETSYM;

end;
end; (*ISTARRED*)

precedure ENTER(OBJ: OBJECT) ;
var

I : INTEGER;
begin (*Enter object into table*)

unit COMPILER

for I .- TXIIl + 1 to TX do if TABLE[I] . NAME =ID then ERROR(4) ;
TX := TX + 1;
if TX <= TXMAX
then with TABLE [TX] do
begin

NAME := ID; KIND := OBJ ; LEVEL := LEV; SIZE := 1; MIN := Ill ;
CANCHANGE := TRUE; DEFINED := FALSE; VARPARAM : = FALSE;
INSIDE:=FALSE; ACCESS :=STAR;
if KIND=MONI then
begin

MONICOUNT:=MONICOUNT+l; UNIQUE:=MONICOUNT;
if MONICOUNT > MONMAX then ERROR(50); (*too many monitors*)

end
el se
if KIND in [PROC,FUNC] then

UNIQUE := TABLE[TXIIl] . UNIQUE
else

UNIQUE:=IIl;
end

else HALT('YY') (*symbcl table overflow*)
end (*ENTER*);

precedure SEARCHFORWARD(var T:INTEGER);
var Till: INTEGER;
begin
if TABLE[T] .K IND=SYNC then

TIIl:=TABLE[T].MIN (*as s ize field used fer parameters*)
else

TIIl:=TABLE[T] .SIZE;
if TIIl=1Il then T0:=TX; (*still in the m0niter*)
T: =T+1;
while (T< =TIIl) and (TABLE[T] .NAME<>ID) d0 T:=T+1;
IF T > Till then T:=IIl ;

end; (*SEARCHFORWARD*)

appt>ndix B file COM2Q1A

procedure MONITORIDEN TIFIERS(var T:INTEGER);
var M: INTEGER;

begin
M: =T;
if SYM <> PERIOD then ERROR(37)
else
begin

GETSYM;
SKIP(PERIOD) ;
if SYM = IDENT then

begin
SEARCHFORWARD(T);
GETSYM;
if not(TABLE[T] .ACCESS) then

begin

unit COMPILER

if (TABLE[TXQI].UNIQUE <> TABLE[M] .UNIQUE) then ERROR(48);
end;

end
else ERROR (6) ;
WANTEXCLUSIVITY:=«TABLE[T].KIND IN [PROC,FUNC]) and

(TABLE[T].UNIQUE <> TABLE[TXQI].UNIQUE))
end; (*else*)

end; (*MONITORIDENTIFIERS*)

procedure SYNCENTRYPT(var T:INTEGER);
begin
if SYM =PERIOD then
begin

GETSYM;
SKIP (PERIOD) ;
if SYM=IDENT then

begin
SEARCHFORWARD(T);
GETSYM;
if TABLE[T].KIND <> EPOINT then ERROR(63);

end
else ERROR(6);

end
else
begin

if (SYM<>LPAREN) and (SYM<>SEMICOLON) then ERROR(37);
end;

end; (*syncentrypt*)

function SEARCH(ID: ALFA): INTEGER;
var I: INTEGER;

FOUND:BOOLEAN;
begin (*Find identi fier in table*)

TABLE[QI].NAME := ID; I := TX; GETSYM;
repeat

FOUND: =TRUE ;
while TABLED] . NAME <> ID do I : = I - 1;

append ix B file COM20A

if (TABLE[I].INSIDE) then
begin
1: =1-1;
FOUND:=FALSE;

end;
until (1=0) or (FOUND);

SEARCH := I ;
end (* SEARCH*) ;

function POSITION(ID: ALFA): INTEGER;
var I: INTEGER ;

begin (*f ind identifier in table, insert if missing*)
I : = SEARCH (ID) ;
if TABLE[I] . KIND = SYNC then

SYNCENTRYPT(I)
else
if TABLE[I] .KIN D=MONI then

MONITORIDENTIFIERS(I)
else

if TABLE[I].KIND <> CONDVAR then
begin

SKIP(PERIOD) ; (*confused*)
if SYM=IDENT then GETSYM;

end;
if I = 0 then begin ERROR(5); ENTER(VARIABLE); I
POSITION := I

end (*POSITION *) ;

procedure GETCONSTANT(var C: IN TEGER; FOLLOWERS: SYMSET);
var I, SIGN: INTEGER;

un i t COMPILER

TX end;

begin (*parse constants, numeric or named, signed or unsigned*)
TEST (CONSTBEGSYS, FO LLOWERS, 3);
if SYM in CONSTBEGSYS then
begin

SIGN : = 1 ; C : = 0;
if SYM in [PLUS,MINUS] then

begi n if SYM = MINUS then SIGN ._ - 1; GETSYM end;
if SYM = IDENT then

begin
I : = POSITION(ID);
if I <> 0 then with TABLE[I] do
if KIND <> CONSTANT then ERROR(29) else C ._ SIGN * ADR

end
else
if SYM = NUMBER then

begin C : = SIGN * NUM; GETSYM end
else ERROR(8);

end;
TEST (FOLLOWERS, [], 3)

end (*GETCONSTANT *);

appendix B file COM20A

procedure CONSTDECLARATION(FOLLOWERS: SYMSET);
begin

GETSYM;
ISTARRED;
TEST([IDENT], FOLLOWERS, 6);
repeat
while SYM = IDENT do

begin
ENTER(CONSTANT) ;GETSYM;
if BLOCKKIND=PROG then

begin
STARTOFMAINVAR:=STARTOFMAINVAR+1;
ENDOFMAINVAR:=ENDOFMAINVAR+1 ;

end;
if SYM in [EQLSYM, BECOMES]
then

begin

unit COMPILER

if SYM = BECOMES then ERROR(7); GETSYM;
GETCONSTANT(TABLE[TX].ADR, FOLLOWERS+[COMMA,SEMICOLON]);
TABLE[TX].DEFINED TRUE (*value is obviously known*)

end
else ERROR(9);
ACCEPT(SEMICOLON, 2);

ISTARRED;
end (*while*);

TEST(FOLLOWERS, [ID ENT] + STATBEGSYS + BLOCKBEGSYS, 3)
until SYM <> IDENT (*silly error?*)

end (*CONSTDECLARA TION*);

procedure VARDECLARATION(FOLLOWERS: SYMSET);

procedure ENTERVARIABLE;
begin
if SYM = IDENT then
begin

ENTER(VARIABLE); GETSYM; TABLE[TX].ADR := ADDRESS;
if SYM = LBRACK then (*Arraydeclaration*)
with TABLE[TX] do

begin
GETSYM; GETCONSTANT(MIN, FOLLOWERS+[COLON,RBRACK]);
ACCEPT(COLON , 30);
GETCONSTANT(SIZE, FOLLOWERS+[RBRACK]);
SIZE := SIZE - MIN + 1;
if SIZE <= 0 then ERROR(31);
ACCEPT (RBRACK, 10)

end;
ADDRESS := ADDRESS + TABLE[TX].SIZE ;
if BLOCKKIND=PROG then ENDOFMAINVAR:=ENDOFMAINVAR+1;

end
else ERROR(6)

end (*EN TERVARIABLE *);

app(-ndix B file COM20A

begin (*VARDECLARATION*)
GETSYM ;
ISTARRED;
TEST([IDENT], FOLLOWERS, 6);

unit COMPILER

if BLOCKKIND =MONI then MONIVARADR[MONICOUNT,1] := ADDRESS;
repeat
if SYM = IDENT then
begin

ENTERVARIABLE;
while SYM = COMMA do begin GETSYM; ISTARRED; ENTERVARIABLE end;

end;
ACCEPT(SEMICOLON, 2); I STARRED ;
TEST(FOLLOWERS, [IDENT] + STATBEGSYS + BLOCKBEGSYS, 3)

until SYM <> IDENT (*Silly error?*);
if BLOCKKIND =MONI then MONIVARADR[MONICOUNT,2] := ADDRESS - 1;

end (*VARDEC LARATION*) ;

precedure CONDDECLARATION(FOLLOWERS :SYMSET);

precedure ENTERCONDITION ;
begin
if SYM=IDENT then
begin

ENTE R(CONDVAR) ;
GETSYM;
CONDCOUNT: =CONDCOUNT +1;
if CONDCOUNT > CONDMAX then ERROR(53) ;
TABLE[TX] . UNIQUE:=CONDCOUNT;
TABLE[TX] . ADR: =TABLE[TX0].UNIQUE ;
TABLE[TX].DEFINED := TRUE; (*so no warning appears*)
if SYM =LBRACK then (*array declaratien*)
with TABLE[TX] do

end
else

begin
GETSYM; GETCONSTANT(MIN,FOLLOWERS+[COLON,RBRACK]);
ACCEPT(COLON,30) ;
GETCONSTANT(SIZE,FOLLOWERS+[RBRACK]);
SIZE :=SIZE - MIN + 1;
if S.IZE <= 0 then ERROR(31);
CONDCOUNT := CONDCOUNT + SI ZE - 1;
ACCEPT(RBRACK,10);

end ; (*with*)

ERROR(6);
end; (*entercondition*)

begin (*cenddeclaratien *)
GETSYM; TEST([IDENT] , FOLLOWERS ,6) ;
repea t
if SYM=IDENT then

begin
ENTERCONDITION ;
while SYM=COMMA de begin GETSYM; ENTERCONDITION ; end ;

end ;

appendix B file COM20A

ACCEPT(SEMICOLON,2) ;
TEST(FOLLOWERS,[IDENT]+STATBEGSYS+BLOCKBEGSYS,3) ;

until SYM <> IDENT;
end; (*c0nddeclaration*)

unit COMPILER

pr0cedure PARDECLARATION(FOLLOWERS: SYMSET; PROCENTRY: INTEGER);
var I: INTEGER ;

procedure ENTERPARAMETER;
var REFERENCE: BOOLEAN;
begin

REFERENCE := FALSE (*Assume passing by value
if SYM = VARSYM then begin GETSYM; REFERENCE
if SYM = IDENT then
begin

ENTER(VARIAB LE) ; PARAMS := PARAMS + 1;

wanted*);
TRUE end;

if PARAMS > PM AX then HALT('PP') (* too many for ref ar r ay*);
if COMPLETING then

begin (*make sure no conflict with earlier declaration*)
if TABLE[PROCENTRY].REF[PARAMS] <> REFERENCE then ERROR(38)

end
else

TABLE[PROCENTRY].REF[PARAMS] : = REFERENCE (*type of passing*);
(*value parameters initialised*);
TABLE[TX] . DEFINED := not REFERENCE
TABLE[TX].VARPARAM . _ REFERENCE; GETSYM

end
else ERROR(6)

end;

begin (*PARDECLARATION*)
GETSYM; TEST([IDENT, VARSYM], FOLLOWERS, 6);
repeat
if SYM in [VARSYM, IDENT] then
begin

ENTERPARAMETER;
while SYM = COMMA do begin GETSYM; ENTERPARAMETER end

end;
ACCEPT(RPAREN, 13); TEST(FOLLOWERS, [IDENT, VARSYM], 3)

until not (SYM in [VARS YM, IDENT]) ;
f0r I : = 1 to PARAMS do (*Parameters have negative offsets*)

TABLE[TX - I + l].ADR := - I;
end (*PARDECLARATION*);

pr0cedure PROCDECLARATION;
var PROCKIND: OBJECT;

COMPLETING: BOOLEAN;
I: INTEGER ;

begin
if ID = 'F UNCTION ' then PROCKIND := FUNC
e lse if ID = 'MONITOR' then PROCKIND := MONI

else PROCKIND := PROC;
if (BLOCKKIND<>PROG) and (PROCKIND = MONI) then

ERROR(46); (*Declarcd in the wrong place*)

appendix B file COM20A

GETSYM; COMPLETING := FALSE;
ISTARRED;
if SYM = IDENT then

begin
I : = SEARCH(ID);

unit COMPILER

if (I <> 0) and (TABL E[I].LEVEL = LEV) and (PROCKIND<> MONI)
the n (*shou ld be forward*)
begin
if TABLE[I].DEFINED then ERROR(4) (*redeclared*);
BACKPATCH(TABLE[I].ADR, NEXTADDRESS);
COMP LETI NG := TRUE

end
else ENTER(PROCKIND)

end
else ERROR (6) ;
if PROCKIND =MONI then

begin
TABLE[TX].DEFINED:=TRUE; INMONITOR := TRUE;
BLOCK(FOLLOWERS, LEV, TX, PROCKIND, COMPLETING, I);

end
else

BLOCK(FOLLOWERS, LEV+l, TX, PROCKIND, COMPLETING, I) ;
if PROCKIND=MONI then

begi n
TX: =TX+NEWGLOBALS; (* Don't lose Monitor va riables*)
NEWGLOBALS:=0; INMONITOR:=FALSE;

end ;
TEST([SEMICOLON], FOLLOWERS, 2);
if SYM = SEMICOLON then GETSYM

end (*PROCDECLARATION*);

procedure SYNCDECLARATION; (*declaring of SYNCHRON procedures*)
var I:INTEGER;

begin
if SYNCHRON then ERROR(65);
if (BLOCKKIND<>PROG) then ERROR (60); (*only in mainblock*)
GETSYM;
if SYM =IDENT then

begin
I: =SEAR CH (ID) ;
ENTER (SYNC) ;

end
else ERROR (6) ;

SYNCHRON:=TRUE; (*dealing with a SYNCHRON procedure*)
COMPLETING :=FALSE ;
BLOCK(FOLLOWERS,LEV+l ,TX,S YNC,COMPLETING ,I);
SYNCHRON: =FALSE ;
TX:=TX +NEWG LOBALS ; (*adjus t symbol table*)
NEWGLOBALS:=0;
TEST([SEMICOLON] ,FOLLOWERS,2);
if SYM = SEMICOLON then GETSYM;

end; (*syncdeclaratio n*)

appendix B file COM21Z1A

procedure ENTRYDECLARATION(FOLLOWERS:SYMSET);
var TOP : INTEGER;

procedure ENTERENTRY;
var SAFE:INTEGER;
begin
if SYM=IDENT then
begin

ENTER (EPOINT) ;
TABLE[TX].SIZE:=IZI; (*no parameters as yet *)
GETSYM;
ENTRYCOUNT:=ENTRYCOUNT+1;
if ENTRYCOUNT > ENTRYMAX then ERROR(62);
TABLE[TX].UNIQUE:=ENTRYCOUNT;
TOP:=TX;
if SYM =L PAREN then
begin

COMPLETING:=FALSE;
SAFE:=PARAMS;
PARAMS: =IZI;

unit COMPILER

PARDECLARATION(BLOCKBEGSYS +[SEMICOLON,COMMA],TX);
TABLE[TOP].SIZE:=PARAMS;
TABLE[TOP].ADR:=IZI;
PARAMS: =SAFE;

end;
TX:=TOP; (*don't want to enter the parametrs at this stage*)

end
else ERROR(6);

end; (*enterentry*)

begin (*entrydeclaration*)
GETSYM;
TEST([IDENT] ,FOLLOWERS,6);
repeat
if SYM =IDENT then
begin

ENTERENTRY;
while SYM=COMMA do

begin
GETSYM; ENTERENTRY;

end;
end; (*if*)

ACCEPT(SEMICOLON,2) ;
TEST(FOLLOWERS,[IDENT]+STATBEGSYS+BLOCKBEGSYS,3) ;

until SYM <> IDENT;
end; (*entrydeclaration *)

appendix B file COM220A

procedure COMPOUNDSTATEMENT(FOLLOWERS: SYMSET); FORWARD;

procedu re STATEMENT(FOLLOWERS : SYMSET);
var I , TESTLABEL , STARTLOOP, THENLABEL: INTEGER;

ETYPE: TYPES;
HALTING: BOOLEAN;

unit COMPILER

AREWRITING:BOOLEAN; (*for problems of monitor functions*)

procedure EXPRESSION(FOLLOWERS: SYMSET; var EXPTYPE:TYPES);FORWARD;

procedure ADDRESSFOR(I: INTEGER);
var ETYPE: TYPES;
begin (*lo ad address for identifier at table entry I *)
with TABLE[I] do

begin
if UNIQUE =99 the n ('entry point parame ter*)

ENTRYPARAMETER(LEVEL , ADR)
else

STACKADDRESSFOR(LEVEL,ADR);
if SYM = LBRACK then (*subscript*)

begin if SIZE = 1 then ERROR(ll); GETSYM;
EXPRESSION([RBRACK] + FOLLOWERS, ETYPE);
if not (ETYPE in [NOTYPE, INTS]) then ERROR(33);
STACKCONSTANT(MIN); BINARYINTEGEROP(MINUS);
SUBSCRIPT(SIZE); ACCEPT(RBRACK,10)

end
else if SIZE> 1 then ERROR(15);
if VARPARAM then DEREFERENCE

end
end (*ADDRESSFOR');

procedure CONDUNIQUE(I:INTEGER);
var ETYPE :TYPES;

begin
with TABLE[I] do

begin (*with*)
STACKCONSTANT(UNIQUE) ;
if SYM =LBRACK then (*subscript*)

begin
if SIZE=l then ERROR(ll); GETSYM;
EXPRESSION([RBRACK] +FOLLOWERS,ETYPE);
if not(ETYPE in [NOTYPE,INTS]) then ERROR(33);
STACKCONSTANT(MIN);
BINARYINTEGEROP(MINUS);
SUBSCRIPT(SIZE) ;
ACCEPT(RBRACK ,10);

end
else
if SIZE> 1 then ERROR(15);

end; ('with*)
end; (*condunique*)

appendix B f ile CO~'2;:'IilA unit COMPILER

procedure PARAMETERS(FORMAL: INTEGER; FOLLOWERS: SYMSET;
PRENTRY: INTEGER);

var PTYPE: TYPES;
I, ACTUAL: INTEGER;

begin
ACTUAL := Iil;
if SYM = LPAREN then

begin
repeat
GETSYM;
if ACTUAL >= FORMAL then ERROR(12)
else

begin
ACTUAL := ACTUAL +1; if ACTUAL> PMAX then HALT(IPP');
if TABLE[PRENTRY].REF[ACTUAL] then (*var parameter*)
if SYM <> IDENT then ERROR(6) else
begin

I : = POSITION(ID);
if I <> Iil then with TABLE[I] do
if KIND <> VARIABLE then ERROR(22) else ADDRESSFOR(I)

end
else

begin (*value parameter*)
EXPRESSION(FOLLOWERS+[COMMA,RPAREN] , PTYPE);
if not (PTYPE in [NOTYPE, INTS]) then ERROR(33)

end;
end;

TEST ([COMMA, RPAREN], FOLLOWERS, 13)
until SYM <> COMMA;
ACCEPT(RPAREN, 13)

end;
if ACTUAL < FORMAL then ERROR(12)

end;

procedure EXPRESSION;
var RELOP: SYMBOL;

FTYPE: TYPES;

procedure CHECKTYPE(var A: TYPES; B,C: TYPES);
begin (*check A and B are of type C*)
if (A <> C) or (B <> C) then

begin
if (A <> NOTYPE) and (B <> NOTYPE) then ERROR(33); A: = NOTYPE

end
end (*CHECKTYPE*);

procedure SIMPLEEXPRESSION(FOLLOWERS: SYMSET; var STYPE: TYPES);
var ADDOP: SYMBOL;

FTYPE: TYPES;

procedure TERM(FOLLOWERS: SYMSET; var TERMTYPE: TYPES);
var MULOP: SYMBOL;

FTYPE: TYPES;

append i x B file COM220A unit COMPILER

pr0cedure FACTOR(FOLLOWERS: SYMSET; var FACTYPE : TYPES);
var I: INTEGER;

begin
TEST(FACBEGSYS, FOLLOWERS, 14);
FACTYPE := INTS;
while SYM in FACBEGSYS d0

begin
case SYM of

IDENT:
begin

I "- POSITION(ID);
if I <> 0
then with TABLE[I] do

case KIND of
CONSTANT: STACKCONSTANT(ADR) ;
VARIABLE :

begin
ADDRESSFOR(I); DEREFERENCE;
if ((not(DEFINED» and (LISTING»

and (not(NOWARN» then
WRITELN(OUTPUT,'*WARNING* "

, ~, : (abs(CS - 5+0FFSET», 'UNDE FINED? ')
end;

CONDVAR: begin
CONDUNIQUE(I);
if SYM <> PERIOD then ERROR(37)
else

begin
GETSYM;
SKIP (PERIOD) ;
if not(SYM in

[QUEUESYM,QLENSYM]) then
ERROR(52)

else
begin
case SYM of

QLENSYM : CONDVARCODE(QLN,0);
QUEUESYM: begin

end;
end ;

GETSYM;

EXPTYPE: = BOOLS;
CONDVARCODE(QUE,0);

end;
(*case*)
(*e lse*)

end; (*else*)
end ; (*condvar*)

appendix B

end;

file COM221ilA unit COMPILER

FUNC: begin
OPENSTACKFRAME(1) (*for value*);
PARAMETERS(SIZE, FOLLOWERS, I);
if WANTEXCLUSIVITY then
begin
if AREWRITING then TOGGLESWITCHING;
WANTEXCLUSIVITY:=FALSE;
OBTAINEXCLUSIVITY(UNIQUE);
if AREWRITING then TOGGLESWITCHING;

end;
if (UNIQUE = TABLE[TXIil].UNIQUE)

and (ACCESS) then
(*calling from the same monitor*)
CALL(LEVEL,(ADR + CO DEMAX »

else
CALL(LEVEL,ADR);

end;
PROG: ERROR(14);
PROC: ERROR(16)

end (*case*)

NUMBER begin STACKCONSTANT(NUM); GETSYM end;
RANDSYM : begin CODEFORRANDOM; GETSYM end;
ACTIVESYM: begin CODEFORACTIVE; GETSYM; end;
READYSYM : begin RDYCODE; GETSYM; end;
LPAREN: begin

GETSYM;
EXPRESSION([RPAREN] + FOLLOWERS, FACTYPE);
ACCEPT (RPAREN, 17)

end;
end (*case*);

TEST(FOLLOWERS , FACBEGSYS, 3)
end (*while*)

end (*FACTOR*);

begin (*TERM*)
FACTOR(FO LLOWERS + [TIM ES,SLASH,MODSYM, ANDSYM] , TERMTYPE);
whi le SYM in [TIMES , SLASH, MODSYM, ANDSYM] do

begin
MULOP := SYM; GETSYM;
FACTOR(FOLLOWERS + [TIMES ,SLASH,MODSYM,ANDSYM], FTYPE);
if MULOP = ANDSYM then
begin

BINARYBOOLEANOP(MULOP);
CHECKTYPE(TERMTYPE, FTYPE, BOOLS)

end (*ANDSYM *)
else

begin
BINARYINTEGEROP(MULOP) ;
CHECKTYPE(TERMTYPE, FTYPE, INTS)

end (*other mulops*)
end (*while *)

end (*TERM*);

appendix B file COM220A unit COMPILER

begin (*SIMPLEEXPRESSION*)
if SYM in [PLUS, MINUS] then

begin
ADDOP := SYM; GETSYM;
TERM(FOLLOWERS + [PLUS, MINUS, ORSYM], STYPE);
if not (STYPE in [NOTYPE,INTS]) then ERROR(33);
if ADDOP = MINUS then NEGATEINTEGER

end
else TERM(FOLLOWERS + [PLUS, MINUS, ORSYM], STYPE);
while SYM in [PLUS, MINUS , ORSYM] do

begin
ADDOP := SYM; GETSYM;
TERM(FOLLOWERS + [PLUS, MINUS, ORSYM], FTYPE);
if ADDOP = ORSYM then

begin
BINARYBOOLEANOP(ADDOP) ;
CHECKTYPE(STYPE , FTYPE , BOOLS)

end (*ORSYM *)
else

begin
BINARYINTEGEROP(ADDOP);
CHECKTYPE(STYPE, FTYPE, INTS)

end (*other addops*)
end (*while*)

end (*SIMPLEEXPRESSION*);

begin (*E XPRESSION *)
SIMPLEEXPRESSION(RELOPSYS + FOLLOWERS, EXPTYPE);
if SYM in RELOPSYS then
begin

RELOP := SYM; GETSYM; SIMPLEEXPRESSION(FOLLOWERS, FTYPE);
CHECKTYPE(EXPTYPE , FT YPE, INTS); COMPARISON(RELOP);
EXPTYPE := BOOLS

end
end (*EXPRESSION*);

procedure ACCEPTSTATEMENT;
var I ,TOP,UNIQ,LC:INTEGER;

SAFE:INTEGER;
begin
if ISACCEPT then ERROR(67);
ISACC EPT:=TRUE; GETSYM;
I :=POSITION(ID) ;
with TABLE[I] do

begin (*with *)
if KIND <> EPOINT then ERROR(66)
else

begin
EMITACCEPT(UNIQUE); UNIQ:=UNIQUE;

end;
end; (*with*)

appendix B file COM220A

TOP :=TX; (*Current top of symbol table*)
SAFE:=PARAMS;
if SYM=LPAREN then

begin

uni t COMPILER

COMPLETING:=TRUE; (*l ike a forward procedure*)
PARAMS:=0;
PARDECLARATION(BLOCKBEGSYS+[THENSYMJ,I);
COMPLETING:=FALSE;
for LC:=(TOP+1) to TX do
begin

TABLE[LCJ . UNIQUE:=99; (*sent inal -entry point parameter*)
end;

end
else
if TABLE[IJ.SIZE > 1 then ERROR(12);

if SYM = THENSYM then GETSYM
else begi n ERROR(23); if SYM =DOSYM then GETSYM; end ;
STATEMENT(FOLLOWERS+[ELSESYM(*in select*)J);
ISACCEPT :=FALSE ;
STACKCONSTANT(UNIQ);
EMITENDACCEPT(LEV,PARAMS+1) ;
TX: =TOP; (*collapse level of symbol table*)
PARAMS :=SAFE;

end; (*acc ept statement*)

procedure CONDITION(FOLLOWERS: SYMSET);
var ETYP E: TYPES;

begin
if SYM = ODDSYM
then

begin
GETSYM; ACCEPT(LPAREN, 18);
EXPRESSION(FOLLOWERS + [RPARENJ, ETYPE); CODEFORODD;
if not (ETYPE in [NOTYPE, INTSJ) then ERROR(33);
ACCEPT(RPAREN , 17)

end
else

begin
EXPRESSION(FOLLOWERS, ETYPE);
if not (ETYPE in [NOT YPE, BOOLSJ) then ERROR(33)

end
end (*CONDITION*);

appendix B file COM220A unit COMP ILER

precedure SELECTSTATEMENT;
const MAXGUARD=20; (*max. no. ef guards per select*)
var ENDSELECT: ARRAY[l . . MAXGUARD] of INTEGER;

START,STOP,SUB,LC,NEXTG:INTEGER;
ISNOGUARD:BOOLEAN;

begin
ISNOGUARD : =FALSE;
if ISELSECASE then ERROR(70);
if not(SYNCHRON) then ERROR(68) ;
SUB:=0; (*no. of guard conditions*)
START: =ADDRESS+l;
GETSYM;
while (SYM <> ENDSYM) and (SYM<>ELSESYM) do

begin (*while*)
ADDRESS:=ADDRESS+l;
if SYM = NOGARDSYM then

begin
ISNOGUARD:=TRUE;
STACKADDRESS(LEV,ADDRESS);
STACKCONSTANT(l);
ASSIGN;
GETSYM ;

end
else

begin
STACKADDRESS(LEV,ADDRESS);
CONDITION(FOLLOWERS + [COLON,ACCEPTSYM]);
ASSIGN;

end;
if SYM <> COLON then ERROR (19);
GETSYM;
ADDRESS:=ADDRESS+l;
STACKADDRESS(LEV,ADDRESS);
(*address of accept statement*)
STACKCONSTANT(NEXTADDRESS+3) ;
(*it must be nextaddress+3 to

take inte account the STO & BRN*)
ASSIGN;
TEST([ACCEPTSYM],FOLLOWERS + [NOGARDSYM,IDENT] , 69);
STORELABEL(NEXTG);
JUMP(- l);
SUB : = SUB + 1;
if SUB> MAXGUARD then
ACCEPTSTATEMENT;

(*backpatch later*)
('another guard condition<)
ERROR(70); (*too many*)

if SYM=SEMICOLON then GETSYM
else if (ne t (SYM in [ENDSYM,ELSESYM]» then ERROR(2);
STORELABEL(ENDS ELECT[SUB]);
(*accep ts continue after select*)
JUMP(- l); (*jump te after the select statement<)
BACKPATCH(NEXTG,NEXTADDRESS) ; «gua rds evaluated first<)

end ; «while<)

appendix B file COM220A

if SYM =ELSESYM then
begin

ADDRESS:=ADDRESS+1;
STACKADDRESS(LEV ,A DDRESS);
STACKCONSTANT(2);
ASSIGN;
if (ISNOGUARD) and no t(NOWARN) then

uni t COMPILER

WRITELN (OUTPUT, '*WARNING* , , ' A, : (abs (CS - 5+0FFSET)) ,
'ELSE REDUNDANT ');

ADDRESS: =ADDRESS +1 ;
STACKADDRESS(LEV,ADDRESS);
STACKCONSTANT(NEXTADDRESS+3);
ASSIGN ;
STORELABEL(NEXTG);
JUMP (-1) ;
GETSYM; (*get elsesym*)
ISELSECASE:=TRUE;
STATEMENT (FOLLOWERS) ;
SUB: =SUB+ 1 ;
if SUB>MAXGUARD then ERROR(70);
ST ORELAB EL (ENDSELECT[SUB]);
JUMP (-1) ; (*backpa tched*)
ISELSECASE:=FALSE;
ACCEPT(SEMICOLON,2) ;

end; (*else clause*)
BACKPATCH(NEXTG ,N EXTADDRESS) ;

(*address of statements*)

GETSYM;
STACKCONSTANT(START) ;
EMITSELECT(LEV,ADDRESS) ;
for LC:= 1 to SUB do

(*last guard must branch here*)
(*get rid of the endsym*)

(*start of guard conditions*)

begin
BACKPATC H(ENDSELECT[LC],NEXTADDRESS);
(*all accepts continue after the select statement*)

end;
BACKPATCH(SIZEREQUIRED , ADDRESS+1);
(*grab a bigger portion of stack*)

end; (*SELECTSTATEMENT*)

procedure IFSTATEMENT;
begin

GETSYM; CONDITION([THENSYM, DOSYM] + FOLLOWERS);
if SYM = THENSYM then GETSYM
else begin ERROR(23); if SYM = DOSYM then GETSYM end;
STORELABEL (TESTLABEL) ;
JUMPONFALSE(0) (*Incomplete*);
STATEMENT(FOLLOWERS + [ELSESYM]);
if SYM <> ELSESYM then BACKPATCH(TESTLABEL,NEXTADDRESS)
else

begin
GETSYM ; STORELABEL(THENLABEL) ; JUMP(0) (*incomplete*) ;
BACKPATCH(TESTLABEL, NEXTADDRESS);
STATEMENT(FOLLOWERS); BACKPATCH(THENLABEL, NEXTADDRESS)

end (*else parse*);
end (*IFSTATEMENT*) ;

appendix B file COM220A unit COMPILER

procedure WHILESTATEMENT;
beg in

STORELABEL(TESTLABEL); GETSYM;
CONDITION([DOSYM] + "OLLOWERS);
STORELABEL(STARTLOOP); JUMPON"ALSE(0) (*Incomplete*);
ACCEPT(DOSYM, 25); STATEMENT("OLLOWERS);
JUMP(TESTLABEL); BACKPATCH(STARTLOOP,NEXTADDRESS);

end (*WHILESTATEMENT*);

procedure REPEATSTATEMENT;
begin

STORELABEL(STARTLOOP) ;
GETSYM; STATEMENT([S EM ICOLON,FOREVERSYM,UNTILSYM] + FOLLOWERS);
while SYM in [SEMICOLON] + STATBEGSYS do

begin
ACCEPT(SEMICOLON, 2);
STATEMENT([SEMICOLON , FOREVERSYM, UNTILSYM] + FOLLOWERS)

end;
if SYM = FOREVERSYM then begin JUMP(STARTLOOP); GETSYM end
else

begin
ACCEPT(UNTILSYM, 26); CONDITION(FO LLOWERS) ;
JUMPONFALSE(STARTLOOP)

end;
end (*REPEATSTATEMENT*);

procedure OUTPUTSTATEMENT ;
var ENDING:BOOLEAN;
beg in

AREWRITING: =FALSE; (*for monitor function call*)
if CLEANIO then begin TOGGLESWITCHING; AREWRITING:=TRUE ; end;
ENDING := ID ='WRITELN ';
HALTING := SYM = HALTSYM ; GETSYM;
if SYM = LPAREN then

begin
repeat

GETSYM;
if SYM <> STRI NGSYM then
begin

EXPRESSION("OLLOWERS + [COMMA, RPAREN,COLON] , ETYPE);
(*Boolean expressions can be output as 0 o r 1 *)
if SYM = DOLLAR then (*deal with formatter*)

begin OUTPUTOPERAT ION (CHARS) ; GETSYM; end
else OUTPUTOPERATION(NUMBERS)

end
el s e

begin OUTPUTOPERATION(STRINGS) ; GETSYM end (*String*)
until SYM <> COMMA ;
ACCEPT(RPAREN, 13)

end;
if MON CHK then PROCESSTRACE;
if ENDING then OUTPUTOPERATION(NEWLINE);
if CLEANIO then begin TOGGLESWITCHING; AREWRITING := FALSE; end;
if HALTING then LEAVEBLOCK(PROG, LEV, 0)

end (*OUTPUTSTATEMENT*);

appendix B file COM22liJA

procedure INPUTSTATEMENT;
var ENDING:BOOLEAN;

begin
if CLEANIO then TOGGLESWITCHING;
ENDING;= ID='READLN '; GETSYM;
if SYM <> LPAREN then ERROR(18)
else

begin
repeat

GETSYM;
if SYM <> IDENT then ERROR(6)
else

begin
I := POSITION(ID);
if I <> IiJ then with TABLE[I] do

begin
if KIND <> VARIABLE then ERROR(28)
else

begin
if not CANCHANGE then ERROR(39);
ADDRESSFOR (I) ;

unit COMPILER

DEFINED := TRUE; (*known at run time*)
if SYM=DOLLAR then (*deal with formatter*)

end

begin INPUTOPERATION(CHARS); GETSYM; end
else INPUTOPERATION(NUMBERS)

end
end

until SYM <> COMMA;
ACCEPT(RPAREN, 13);

end;
if ENDING then INPUTOPERATION(NEWCARD);
if CLEANIO then TOGGLESWITCHING;

end (*INPUTSTATEMENT*);

procedure SEMASTATEMENT;
var WAITSEM: BOOLEAN;

begin
if INMONITOR then ERROR(54)
else
begin

WAITSEM := SYM = WAITSYM; GETSYM;
if SYM <> LPAREN then ERROR(18)
else

begin
GETSYM;
if SYM <> IDENT then ERROR(6)
else

begin

appendix B file COM220A

I := POSITION (ID);
if I <> 0 then with TABLE[I] do
begin
if KIND <> VARIABLE then ERROR(28)
else

begin
if not CANCHANGE then ERROR(39);
ADDRESSFOR(I) ;

unit COMPILER

if WAITSEM then CODEFORWAIT else CODEFORSIGNAL ;
end

end
end;

ACCEPT(RPAREN, 13) ;
end;

end; (*else*)
end (*SEMASTATEMENT*);

procedure CONCSTATEMENT;
var NPR : INTEGER (*Count number of processes*);

begin
NPR := 0; STORELABEL(STARTLOOP);
if (LEV <> 1) or (BLOCKKIND=MONI) then ERROR(44);
GETSYM; STARTPROCESSES;
STATEMENT([SEMICOLON, COENDSYM] + FOLLOWERS);
if PROCCALL then NPR:=NPR+1 else ERROR(42);
PROCCALL := FALSE ; (*in case next statement not procedure call*)
while SYM in [SEMICOLON] + STATBEGSYS do

begin
ACCEPT(SEMICOLON, 2);
STATEMENT([SEMICOLON, COENDSYM] + FOLLOWERS);
if PROCCALL then NPR:=NPR+1
e l se if SYM <> COENDSYM then ERROR (42) ;
PROCCALL := FALSE;(*i n case next statement not procedure call*)

end;
BACKPATCH(STARTLOOP , NPR);
ACCEPT(COENDSYM, 43); STOPPROCESSES;
if NPR > PRMAX then ERROR(45) (*too many*);

end (*CONCSTATEMENT*);

appendix B file COM221ilA

prccedure FORSTATEMENT ;
var I : INTEGER;

UP: BOOLEAN;
NOTALTER:BOOLEAN;

begin
GETSYM; I := Iil (*Index into table*);
if SYM = IDENT then
begin

I : = POSITION (ID) ;
if r <> Iil then with TABLE[I] do
if KIND = VARIABLE then

begin
if not CANCHANGE or VARPARAM then ERROR(39);

uni t COMPILER

if (LEV <> LEVEL) then ERROR(41il) (*Must be local*);
ADDRESSFOR(I)

end
else ERROR(22)

end
else ERROR(6) (*identi fier?*) ;
TEST([BECOMES], [TOSYM , DOWNTOSYM, DOSYM] + FOLLOWERS, 21);
TABLE[r].DEFINED := TRUE;
if SYM = BECOMES then

begin
GETSYM; EXPRESSION([TOSYM,DOWNTOSYM,DOSYM] + FOLLOWERS, ETYPE);
if not (ET YPE in [NOT YPE, INTS]) then ERROR(33)

end;
TEST([TOSYM, DOWNTOSYM] , [DOSYM] + FOLLOWERS , 41);
if SYM in [TOSYM, DOWNTOSYM] then
begin

UP := SYM = TOS YM; GETSYM;
EXPRESSrON([DOSYM] + FOLLOWERS, ETYPE);
if not (ETYPE in [NOTYPE , INTS]) then ERROR(33)

end;
ACCEPT(DOSYM, 25); STORELABEL(STARTLOOP);
STARTFORLOOP(UP); STORELABEL(TESTLABEL) ;
NOTALTER:=TABLE[I].CANCHANGE;
TABLE[I] . CANCHANGE := FALSE; STATEMENT(FOLLOWERS);
ENDFORLOOP(UP , TESTLABEL); BACKPATCH(STARTLOOP, NEXTADDRESS);
TABLE[I].CANCHANGE := NOTALTER; TABLE[r].DEFINED := FALSE

end (*FORSTATEMENT *);

prccedure PRIORITYWAIT;
begin

GETSYM; (*should be a lparen*)
if SYM=LPAREN then

begin
GETSYM;
EXPRESSION(FOLLOWERS+[RPAREN] ,ETYPE);
if ETYPE<>INTS then ERROR(33);
(*pricrity sh0uld be at t0P 0f stack*)
if SYM <> RPAREN then ERROR(17) ;

end
else

ERROR(18);
end; (*prioritywait*)

appendix B file COM221ilA

prccedure FORSTATEMENT ;
var I: INTEGER ;

UP: BOOLEAN ;
NOTALTER:BOOLEAN;

begin
GETSYM; I : = Iil (*Index into table*);
if SYM = IDENT then

begin
I := POSITIO N(ID);
if I <> Iil then with TABLE[I] do
if KIND = VARIABLE then

begin
if not CANCHANGE or VARPARAM then ERROR(39);

unit COMPILER

if (LEV <> LEVEL) then ERROR(41il) (*Must be loca l*);
ADDRESSFOR(I)

end
else ERROR(22)

end
else ERROR(6) (*identifier?*);
TEST([BECOMES], [TOSYM , DOWNTOSYM, DOSYM] + FOLLOWERS , 21);
TABLE[I] . DEFINED := TRUE;
if SYM = BECOMES then

begin
GETSYM; EXPRESSION([TOSYM,DOWNTOSYM,DOSYM] + FOLLOWERS, ETYPE);
if not (ETYPE in [NO TYPE, INTS]) then ERROR(33)

end;
TEST([TOSYM, DOWNTOS YM] , [DOSYM] + FOLLOWERS, 41);
if SYM in [TOSYM, DOWNTOSYM] then
begin

UP := SYM = TOSYM; GETS YM;
EXPRESSION([DOSYM] + FOLLOWERS, ETYPE);
if not (ETYPE in [NOTYPE, I NTS]) then ERROR(33)

end;
ACCEPT(DOSYM, 25); STORELABEL(STARTLOOP) ;
STARTFORLOOP(UP) ; STORELABEL(TESTLABEL);
NOTALTER: =T ABLE[I] .CAN CHANGE ;
TABLE[I] . CANCHANGE := FALSE; STATEMENT(FOLLOWERS);
ENDFORLOOP(UP, TESTLABEL); BACKPATCH(STARTLOOP, NEXTADDRESS);
TABLE[I] . CANC HANGE := NOTALTER ; TABLE[I].DEFINED := FALSE

end (*FORSTATEMENT *);

prccedure PRIORITYWAIT;
begin

GETSYM; (*should be a lparen *)
if SYM= LPAREN then
begin

GETSYM;
EXPRESSION(FOLLOWERS+[RPAREN],ETYPE) ;
if ETYPE<>INTS then ERROR(33);
(*priority should be at top of stack*)
if SYM <> RPAREN then ERROR(17);

end
else

ERROR(18) ;
end ; (*prioritywait*)

appendix B file COM220A

procedure SAVERESTOREVARIABLES;

procedure SAVEPARAMETERS ;
var I,LC:INTEGER;

ETYPE: TYPES;

unit COMPILER

WHOLEARAY:BOOLEAN; (*whether saving whole array with save*)
begin
I: =POSITION(ID);
if I <> 0 then
begin
with TABLED] do

begin
if (KIND =VARIABLE) and (no t (INSIDE» and (CANCHANGE)

and (LEVEL = 1) then

else

begin (* load address for identifier at table entry 1*)
WHOLEARAY: =TRUE;
STACKADDRESSFOR(LEVEL,ADR) ;
if SYM = LBRACK then (*subscript*)
begin

WHOLEARAY: =FALSE;
if SIZE = 1 then ERROR (11) ;
GETSYM;
EXPRESSION([RBRACK] + FOLLOWERS, ETYPE) ;
i f not (ETYPE in [NOTYPE, INTS]) then ERROR(33) ;
STACKCONSTANT(MIN); BINARYINTEGEROP(MINUS);
SUBSCRIPT(SIZE); ACCEPT(RBRACK,10)

end; (*if SYM=LBRACK*)
if SIZE> 1 then (*array *)

begin
if WHOLEARAY then (*save the whole array*)

begin
for LC := 1 to (SIZE - 1) do

STACKADDRESSFOR(LEVEL , ADR+LC);
end; (*if WHOLEARRAY *)

end; (*if SIZE> 1*)
end (*if legitimate*)

ERROR(55); (*only current monitor variables saved *)
end; (*with*)

end; (*if 1<>0 *)
end; (*SAVEPARAMETERS*)

begin (*SAVERESTOREVARIABLES*)
if not(TABLE [TX0] . KIND in [PROC,FUNC]) then

ERROR(57) (*only in proc/func*)
else

begin
if TABLE [TX0].UNIQUE < 1 then ERROR(57)
else
begin
if SYM=SAVESYM then

begin
MISSRESTORE:=TRUE;
ISSAVE:=TRUE;
GETSYM;

(*only in monitors *)

appendix B file COM221Z1A

if SYM <> LPAREN then ERROR(18)
else

begin
SAVEMARKER; GETSYM;
if SYM <> IDENT then ERROR(6)
else

begin (*else*)
SAVEPARAMETERS;
while SYM = COMMA do

begin
GETSYM;
if SYM <> IDENT then ERROR(6)
else SAVEPARAMETERS;

end; (*while*)
ACCEPT(RPAREN,17);

end; (*else*)
end; (*if SYM=LPAREN*)

SAVEVARIABLES(TABLE [TXIZI] . UNIQUE) ;
end (*if SYM=SAVESYM*)

else
begin
MISSRESTORE:=FALSE;
RESTOREVARIABLES(TABLE[TXIZI].UNIQUE) ;
GETSYM;

end;
end;

end;
end; (*SAVERESTOREVARIABLES*)

unit COMPILER

appendix B file COM320A unit COMPILER

begin (*STATEMENT *)
if SYM in STATBEGSYS
then

case SYM of
IDENT:

begin
I '- POSITION(ID);
if I <> 0
then with TABLE[I] do
case KIND of

FUNC, VARIABLE:
begin
if KIND = VARIABLE then ADDRESSFOR(I)
else
if LEV > LEVEL

then STACKADDRESS(LEVEL+l, - SIZE-l) else ERROR(20);
if not CANCHANGE then ERROR(39);
if SYM = BECOMES then GETSYM
else begin ERROR(21); if SYM = EQLSYM then GETSYM end;
EXPRESSION(FOLLOWERS, ETYPE);
if not (ETYPE in [NOTYPE, INTS]) then ERROR(33);
DEFINED := TRUE (*Will get value at run time*);
ASSIGN

end;
SYNC : begin

PROCCALL:=TRUE;

PROC:
begin

if (BLOCKKIND<>PROG) then ERROR(60);
PARAMETERS(SIZE,FOLLOWERS,I);
CALL(LEVEL,ADR) ;

end ;

PROCCALL :=NOT(INSIDE);
PARAMETERS(SIZE, FOL LOWERS, I) ;
if WANTEXCLUSIVITY then
begin

WANTEXCLUSIVITY:=FALSE;
OBTAINEXCLUSIVITY(UNIQUE);

end;
if (UNIQUE = TABLE[TX0] .UNIQUE) and (ACCESS) then
(*calling starred procedure from inside the same

monitor so set up flag to ignore the next LMN
instruction*)

CALL(LEVEL,(ADR + CODEMAX))
else

CALL(LEVEL, ADR);
end;

EPOINT: begin
if (TABLE[TX0].UNIQUE<>0) (*ie . in monitor*)
or (SYNCHRON) or (BLOCKKIND=PROG)
or (ISACCEPT) then

ERROR(64) ; (*illegal position*)
PARAMETERS(SIZE,FOLLOWERS ,I) ;
SYNCCALL(LEVEL,UNIQUE);

end;

appendix B file COM320A unit COMPILER

CONDVAR: begin
CONDUNIQUE (I) ;
if SYM <> PERIOD then ERROR(37)
else

begin
GETSYM;
SKIP(PERIOD) ;
if not(SYM in

[QPWAITSYM,QSIGNALSYM,QWAITSYM]) then
ERROR(52)

else
begin
if not(ISSAVE) and not(NOWARN) then

WRITELN (OUTPUT, '*WARNING* , ,
,A, : (abs (CS-5+0FFSET)) ,
' MONITOR VARIABLES NOT INVARIANT');

case SYM of
QWA I TSYM:begin

STACKCONSTANT(DEFAULT);
CONDVARCODE(QWT,0);

end;
QPWAITSYM:begin

PRIORITYWAIT;
CONDVARCODE(QPW,0);

end;
QSIGNALSYM: CONDVARCODE(QSG,A DR);

end; (*case*)
ISSAVE:=FALSE;

end; (*else*)
GETSYM;

end; (*else*)
end; (*condvar *)

CONSTANT, PROG: ERROR(22);
end

end (*IDENT*);
IFSYM IFSTATEMENT;
BEGINSYM COMPOUNDSTATEMENT(FOLLOWERS);
WHILESYM WHILESTATEMENT;
REPEATSYM REPEATSTATEMENT;
FORSYM FORSTATEMENT;
COBEGINSYM : CONCSTA TEMENT;
HALTSYM, WRITESYM : OUTPUTSTATEMENT;
READSYM : INPUTSTATEMENT;
WAITSYM,SIGNALSYM : SEMASTATEMENT ;
ACCEPTSYM : ACCEPTSTATEMENT;
SELECTSYM : SELECTSTATEMENT;
SAVESYM,RESTORESYM : SAVERESTOREVARIABLES;
STOPCSYM: begin GEN(RET,0, -1 (*sentinal*»; GETSYM; end;
STACKSYM: begin CODEFORDUMP(LEV); GETSYM end;
SWITCHSYM: begin PROCSWITCH ; GETSYM end;

end (* case *);
TEST (FOLLOWERS, [J , 32)

end (' STATEMENT') ;

app",ndix B fil'" COM320A

prvcedure COMPOUNDSTATEMENT;
begin

ACCEPT(BEGINSYM, 34);
STATEMENT([SEMICOLON, ENDSYM] + FOLLOWERS);
while SYM in [SEMICOLON] + STATBEGSYS do

begin
ACCEPT(SEMICOLON, 2);
STATEMENT([SEMICOLON, ENDSYM] + FOLLOWERS)

end;
if MI SSRESTO RE then writeln(OUTPUT, '*WARNING*',

unit COMPILER

, ' :(abs(CS- 5+0FFSET» , 'MISSING RESTORE');
ACCEPT(ENDSYM, 24);

end (*COMPOUNDSTATEMENT*);

begin (*BLOCK*)
PARAMS : = 0; TX0 : = TX;
if BLOCKKIND=MONI then ADDRESS :=GLOBALADDRESS
else ADDRESS := 3 (*First variable has vffset 3*);
ENTERBLOCK(STARTBLOCK);

if LEV> LEVMA X then HALT('Y Y') (*tvv deeply nested*);

case BLOCKKIND of
PROC,FUNC,SYNC: begin

if SYM = LPAREN then
if COMPLETING then

PARDECLARATION(BLOCKBEGSYS + [SEMICOLON] ,
BLOCKENTRY)

else
PARDECLARATION(BLOCKBEGSYS + [SEMICO LON], TX0);

ACCEPT(SEMICOLON, 2)
end;

MONI: begin
for 1 := STARTOFMAINVAR tv ENDOFMAINVAR do

(*Tv ma ke variables in mai n block read only to Mvnito rs*)
TABLE[I].CANCHANGE:=FALSE;

PREVIOUS:=PRESENT;
PRESENT:=STARTBLOCK;
ACCEPT(SEMICOLON,2);

end;
PROG: begin PREVIOUS:=PRESENT; PRESENT:=STARTBLOCK; end;

end; (*case*)

TEST(BLOCKBEGSYS, FO LLOWERS, 3);
if not COMPLETING then

begin TABLE[TX0] . ADR := STARTBLOCK; TABLE[TX0].SIZE : = PARAMS end
else if PARAMS <> TABLE[BLOCKENTRY].SIZE then ERROR(12) ;
if SYM = FORWARDSYM then

begin
if BLOCKKIND in [SYNC,MONI] then ERROR(3);
BACKPATCH(STARTBLOCK ,- l) (*sentinel address *);
if COMPLETING then ERROR(3); GETSYM

end

appendix B file COM320A

else
begin (*nQrmal block*)
if BLOCKKIND = PROC then
if COMPLETING then TABLE[BLOCKENTRY].DEFINED TRUE
else TABLE[TX0].DEFINED := TRUE;

repeat
if SYM = CONSTSYM then

CONSTDECLARATION([CONDSYM ,VARSYM ,PROCSYM,
BEGINSYM ,ENTRYSYM ,SYNCSYM]);

if SYM = VARSYM then

unit COMPILER

VARDECLARATION([PROCSYM, BEGINSYM,CONDSYM,ENTRYSYM,SYNCSYM]);
if SYM = CONDSYM then

begin
if BLOCKKIND<>MONI then ERROR(51);
CONDDECLARATION([PROCSYM,BEGINSYM]);

end;
if SYM=ENTRYSYM then

begin
if BLOCKKIND<>SYNC then ERROR(61);
ENTRYDECLARATION([PROCSYM,SYNCSYM,BEG INSYM]);

end;
if (BLOCKKIND =PROG) then GLOBALADDRESS:=ADDRESS;
while (SYM = PROCSYM) or (SYM =SYNCSYM) do

begin
if SYM =SYNCSYM then SYNC DECLARATION else PROCDECLARATION;

end;
if TABLES then LISTABLE (*for demonstration purposes*);
TEST([BEGINSYM], FOLLOWERS + BLOCKBEGSYS + STATBEGSYS, 34)

until SYM in STATBEGSYS+FOLLOWERS;

if (BLOCKKIND=PROG) or (BLOCKKIND=MONI) then
begin

BACKPA TCH(PREVIOUS,NEXTADDRESS) ;
PREVIOUS:=PRESENT;
TABLE[TX0].SIZE: =TX;

end
else

BACKPATCH(STARTBLOCK,NEXTADDRESS) (*Jump to code for this block*);
if BLOCKKIND=SYNC then TABLE[TX0].MIN:=TX;
('for searching forward, so we know where the synchroniser ends*)
if «BLOCKKIND =PROG) or (BLOCKKIND=MONI)) and (MOREMONITORS) then

begin
if (BLOCKKIND <> PROG) then OPENSTACKFRAME(ADDRESS -G LOBALADDRESS);

end
else

begin
if SYNCHRON then STORELABEL(SIZEREQUIRED);
OPENSTACKFRAME(ADDRESS) (*Reserve space fQr variables*);

end;

COMPOUNDSTATEMENT(FOLLOWERS) ;

appendix B file COM321l1A unit COMPILER

if (BLOCKKIND=MONI) then
begin ('to make variables read only')
for I : = (TXIlI+1) TO TX do

begin (*for *)
i f TABLE[I] . KIND =VARIABLE then TABLE[I] .CANCHANGE:=FALSE;
TABLE[I].INSIDE:=TRUE;

end ; (*for*)
for 1:= STARTOFMAINVAR to ENDOFMAINVAR do TABLE[I].CANCHANGE:=TRUE;
NEWGLOBALS :=TX-TXIlI;
GLOBALADDRESS:=ADDRESS;
MOREMONITORS:=TRUE;

end; (' to make variables read only*)
if (BLOCKKIND=SYNC) then

begin
for I:=(TXIlI+1) to TX do

TABLE[I] . INSIDE:=TRUE;(*can't access them*)
NEWGLOBALS:=TX- TXIlI;

end ;

if TABLE[TXIlI].ACCESS then (*For leaving a monitor procedure*)
begin
I: =TXIlI;
while (TABLE[I].KIND<>MONI) and (I<>IlI) do 1:=1 -1;
(*t he I <> III is for incorrectly declared starred procedures

that will generate compile errors but prevents a value
range error here*)

LEA VINGMONITOR(TABLE[I] . UNIQUE);
end;

LEAVEBLOCK(BLOCKKIND, LEV, PARAMS)
end (*normal block*);

TEST(FOLLOWERS + [SEMICOLON], [] , 35);
for I := TXIlI to TX do with TABLE[I] do
if (not(DEFINED» and (not(NOWARN» then

WRITELN(OUTPUT, 'WARNING ',NAME, ' may not be defined');
end (*BLOCK *);

begin (*PROGRAMME*)
INITIALISE;
ACCEPT(PROCSYM, 36);
if SYM = IDENT then GETSYM else ERROR(6);
with TABLE[l] do

begin ('Enter program name*)
NAME := ID; KIND := PROG; LEVEL := 0; SIZE := Ill; MIN := 0;
ADR := Ill; CANCHANGE := FALSE; DEFINED TRUE; INSIDE:=TRUE;
ACCESS:=FALSE ; UNIQUE:=IlI;

end;
with TABLE[0] do INSIDE: =F ALSE;
ACCEPT(SEMICOLON, 2);
BLOCK([PERIODJ, 1 , 1, PROG, TRUE, 1); ('Analyse program*)
if SYM <> PERIOD then ERROR(37);

end ('PROGRAMME*);

end ('COMPILER unit') .

appendix B f ile CONC20A

(*$S +')
program CONCOMPILER(INPUT , OUTPUT, OBCODE);

uses (*$U :UNIT2elA.CODE *) TEXTFILES,
('$ U : DEC2elA . CODE ') DECLARATIONS,
('$U :I NIT20A.CODE ') COMPILER ;

program CONCOMPI LE R

(*++++++++++++++++++++++++++++ Interpreter +++++++++++++++++++++++++++*)

segment procedure INTERPRET ;
const

STACKMAX = 3500;
STEPMAX = 8
MONMAX1 = 16;
P RMAX 1 = 1 1 ;

type

(' max size of the s t ac k')
(' max before switch');
(*MONMAX + 1')
(*PRMAX + 1')

TYPEOFQUE=(NORMAL,TEMPORARY); (*Getfirst temporary - mon i torq ue normal ')
PTYPE = 0 .. PRMA X1;
PTYPE2= 0 .. 20 ; (* 2'PRMA X ')
LINK=ADESCRIPTOR;
DESCRIPTOR= record

NUMBER : INTEGER ;
NEXT:LINK;

('holds the VA LUE for variabl e backup*)

PRIORITY : INTEGER; (' t he ADDRESS for variable backup ')
UNIK:INTEGER ; ('only for va riable backup - unique monitor')

end;
QUEUES=ARRAY [l .. MONMAX] of LINK ;

var
I NPRINPUT : TEXT ; ('input f ile fo r the i nterpretter')
PS : (RUNN I NG, FINISHED, STKCHK , DATCHK, EOFCHK, DIVCHK, INXCHK,

PRCCHK, DEDCHK, SEMCHK, PRICHK, CONCHK , SELCHK) ('Status') ;
S: array [el . . STAC KMAX] of INTEGER ('Stack memo ry') ;
L1 , L2, L3: INTEGER ('work variables*);
INCR (' stack increment as processes are launched*),
OLDT (' preserve top-of-stack'): INTEG ER ;
NPR (*Number of concurren t processes*) ,
PROCACTIVE ('numbe r of active processes'),
PREVPROC(*previous process'),CURPR (*current pr oces s*) PTYPE;
STEPS: INTEGER (*number of steps befo r e swi tch*);
SWITCHI NG, (*whether switching or not*)
PROCTRACING , TRAC I NG, ('for debugging')
PFLAG : BOOLEAN (' concurrent call fl ag') ;
AVAILABLEMONITORS :SET of 1 .. MONMAX;
ELEMENT:LINK;
MONITORQUE:QUEUES; ('queue waiting for execlusiv ity')
ENTRYQUE: ARRAY[1 .. ENTRYMAX] of LINK;
NEXTAVAIL : LINK; ('for the CR EATE and DESTROY r outines ')
GETFIRST:QUEUES ; ('temp . queue for signalling process')
CONDVARQUE : ARRAY[l .. CONDMAX] OF LINK; ('condition var i able queues <)
HEA P: AINTEGER ; ('to mark and release the heap')

appendix B file CONC20A program CONCOMPILER

PTAB : array [PTYPE] of
record

P, B, T: INTEGER(*Prog. counter, base, stack pOinter*);
DISPLAY: array [l . . LEVMAX] of INTEGER;
STACKEND: INTEGER;
SUSPEND: INTEGER; (*0 or index of semaphore*)
ACTIVE : BOOLEAN ; (*process active flag *)
EXCLUSSET,HELDSET: SET of 1 •• MONMAX; (*exclus. held *)
NOOFELEMENTS:0 .. MONMAX; (*no. of exclusivities held*)
SKIP: INTEGER; (*skip the next LMN instruction or not*)
RENDEZ:INTEGER; (*which rendezvous we are performing*)
VARSTACK: LINK ; (*queue for backing up of variables*)
SAVEMARK: 0 . . STACKMAX;

end (*PTAB*);

procedure INPRTEXTINPUT (var INPRINPUT:TEXT; PROMPT :STRING);
(*Open INPRINPUT from console or named file*)
const ESCAPE = 27 (*ascii for <esc>*);
var FINISHED: BOOLEAN;

FILENAME: STRING;
begin

FINISHED := FALSE;
repeat

WRITE('What ' ,PROMPT,' file «RET> for CONSOLE:
- <ESC - RET> to abandon)? ');

READLN(FILENAME) ;
if LENGTH(FILENAME)=0 then

begin FINISHED : = TRUE; RESET(INPRINPUT, ' CONSOLE:') end
else begin

if (FILENAME[l]=CHR(ESCAPE» then EXIT(program) ;
(*$1 - turn off IO-checks *) RESET(INPRINPUT,FILENAME);
if IORESULT=0 then FINISHED:=TRUE

else if POS(' .text' ,FILENAME)+POS(' .TEXT' ,FILENAME)=0

end;

then begin
FILENAME:=CONCAT(FILENAME,'.TEXT');
RESET(INPRINPUT,FILENAME);
FINISHED:=IORESULT =0

end

if not FINISHED then
begin WRITELN; WRITELN('No such file. Try again') end

until FINISHED (*$1+ turn 10 checks back on*);
end (*INPRTEXTINPUT*);

procedure CREATE(var AVAIL:LINK);
(*act as NEW unless space has been recovered *)
begin
if NEXTAVAIL=NIL then new(AVAIL)
else begin AVAIL:=NEXTAVAIL; NEXTAVAIL:=NEXTAVAILA.NEXT; end;

end; (*CREATE*)

appendix B file CONC20A

procedure DESTROY(CURRENT:LINK);
(*instead of DISPOSE-as not supported*)
begin
CURRENT~ . NEXT:=NEXTAVAIL; NEXTAVAIL: =CURRENT;

end; (*DESTROY*)

procedure CHOOSEPROCESS;

program CON COMPILER

(*from previous process sea r ch circularly for an active,
un suspended process *)

procedure ALTER;
begin

CURPR: =CURPR+1;
if CURPR > PRMAX then CURPR:=1;

end;

begin
ALTER;
while (CURPR<>PREVPROC) and «not(PTAB[CURPR] . ACTIVE»or

(PTAB[CURPR].SUSPEND<>0» do
begin ALTER; end;

if (CURPR =PREVPROC) and (not PTAB[CURPR] .ACTIVE) then PS:=DEDCHK
else

begin
PREVPROC:=CURPR;
STEPS: = random mod STEPMAX + 1;

end;
if TRACING then

WRITELN ('Choose ' ,CURPR, f for next ',STEPS, ' steps');
end (*CHOOSEPROCESS*);

procedure DECTBY(I:INTEGER);
(*Decrement stack pOinter*)
begin with PTAB[CURPR] do T T- I end;

procedure INCTBY(I :INTEGER);
(*Increment stack pointer*)
begin
with PTAB[CURPR] do

begin T : = T+I; if T > STACKEND-3 then PS
end;

procedure CHECKDATA;
(*Check "numeric" data for validity*)
begin

STKCHK end

while not EOF(INPRINPUT) and (INPRINPUT~=' f) do GET(INPRINPUT);
if EOF(INPRINPUT) then PS : = EOFCHK
else
if « INPRINPUT~<' 0') cr (INPRINPUT~>' 9' » and (INPRINPUT~<>' + f)

and (INPRINPUT~<> '-') then PS : = DATCHK
end;

appendix B

procedure POSTMORTEM;
begin

file CONC20A

WRITELN(OUTPUT); WRITE(OUTPUT, ,**** ');
case PS of

DIVCHK: WRITE (OUTPUT, 'Di vision by zero');
EOFCHK: WRITE(OUTPUT, 'No more data');
DATCHK: WRITE(OUTPUT,' In valid data');
STKCHK: WRITE(OUTPUT, 'Stack overflow');
IN XCHK : WRITE(OUTPUT,'Subscript out of range');
PRCCHK: WRITE(OUTPUT,'Missing routine');
DEDCHK: WR ITE (OUTPUT, 'Dead lock'); .

program CON COMPILER

SEMCHK: WRITE(OUTPUT, ' Semaphore with no concurrent processes');
PRICHK: WRITE(OUTPUT, 'Priority < 0 ');
CONCHK: WRITE(OUTPUT, ' Concurrency not in operation');
SELCHK: WRITE(OUTPUT,'No valid Select guard');

end;
WRITELN(OUTPUT , ' at " PTAB[CURPRJ .P- 1 : 1, ' in process' , CURPR: 1)

end (*POSTMORTEM*);

procedure STACKDUMP(MAX: INTEGER);
var LOOP: INTEGE R;

begin (*Dump stack and display - useful for debugging*)
with PTAB[CUR PRJ do
begin

WRITELN(OUTPUT) ;
WRITELN(OUTPUT,'Stack dump at " P-1:1, ' T= " T:1, ' B= ',B:1,

, Return address = " S[B+2J: 1, ' Process= " CURPR : 1);
WRITE(OUTPUT , 'Display');
f or LOOP := 1 to MAX do WRITE(OUTPUT, DISPLAY[LOOPJ, ' ') ;
WRITELN(OUTPUT) ;
for LOOP := 0 to T do
begin

WRITE(OUTPUT,LOOP:4, ':', S[LOOPJ :5) ;
if (LOOP+1) mod 8=0 then WRITELN(OUTPUT);

end;
WRITELN(OUTPUT)

end (*with*)
end (*STACKDUMP *);

procedure SIGNAL;
begin
if CURPR = 0 then PS := SEMCHK else
with PTAB[CURPRJ do

begin
L1 := SeT]; DECTBY (1); L2 := PRMAX+1; L3 := RANDOM mod L2;
while (L2 >= 0) ahd (PTAB[L3 J .SUSPEND <> L1) do

begin L3 := (L3+1l mod (PRMAX+1l; L2 := L2 - 1 end ;
if L 2 < 0 then S [L 1] : = S [L 1] + 1
else begin PROCACTIVE : =PROCACTIVE+1; PTAB[L3J . SUSPEND ._ 0 ;en d;

end;
end (*SIGNAL*);

appendix B

procedure WAIT;
begin

file CONC20A

if CURPR = ° then PS := SEMCHK e l se
with PTAB [CURPR] do

begin
Ll := SeT]; DECTBY(l) ;
if S[Ll] > ° then S[Ll] := S[Ll] - 1
else

program CONCOMPILER

begin SUSPEND ._ Ll; STEPS := 0;PROCACTIVE: =PROCACTIVE - l; end;
end;

end (*WAIT*) ;

procedure UNSTACKVARIABLES(PR:PTYPE; U:INTEGER);
var PNT :LI NK;

begin
with PTAB [PR] do

begin (*wi t h ptab*)
while (VARSTACK<>NIL) and (U =VA RSTACKA .U NIK) do

begin (*restore va r iables*)
PNT:=VARSTACK;
S[VARSTACKA.PRIORITY] : = VARSTACKA.NUMBER;
VARSTACK := VARSTACKA.NEXT;
DESTROY(PNT) ;

end;
while VARSTACK<>NIL do

begin (*clear queue - missing restore*)
PNT := VARSTACK ;
VARSTACK : = VARSTAC KA. NEXT;
DESTROY(PNT) ;

end;
end; (*with ptab*)

end; (*unstackvariables*)

procedure DEQUEUEPROCESS(U:INTEGER);
var

Pl,POINT,LASTP:LINK;
LC:l .. MONMAX ; (*loopcounter*)

procedure READYPROCESS;
begin
with POINT A do

begin
with PTAB[NUMBER] do

begin
if (VARSTACK<>NIL) and (VARSTACK A. UNIK=0) then

(*nested backup*) UNSTACKVARIABLES(NUMBER,0);
PROCACTIVE:=PROCACTIVE+l;
ACTIVE:=TRUE;
HELDSET:= [] ;

end; (*with*)
end; (*with POINT A*)

end; (*READYPROCESS*)

appendix B file CONC21ilA

procedure UPDATEQUEUE(QUE:TYPEOFQUE);
var DISP:LINK;

begin
if QUE=TEMPORARY then

begin
DISP:=GETFIRST[UJ;

program CONCOMPILER

GETFIRST[UJ :=DISpA . NEXT;(*act like a stack F.I.L . O*)
end

else
begin

DISP:=MONITORQUE[UJ;
MONITORQUE[UJ :=DISpA.NEXT;

end;
DESTROY (DISP) ;
PTAB[POINTA.NUMBERJ.HELDSET:= PTAB[POINTA.NUMBERJ.HELDSET+[UJ;

end;

begin (*DEQUEUEPROCESS*)
if GETFIRST[UJ <> NIL then

begin
POINT:=GETFIRST[UJ;
with POINT A do

begin
with PTAB[NUMBERJ do

begin
UPDATEQUEUE(TEMPORARY);
if HELDSET=EXCLUSSET then

READYPROCESS;
end;

end;
end (*getfirst<>nil*)

else
begin

POINT : =MONITORQUE[UJ;
with POINT A do (*P is not nil *)
begin (*with*)
with PTAB[NUMBERJ do

begin (*with ptab[numberJ*)
if PRIORITY =1il then

begin (*if*)
if EXCLUSSET = (HELDSET + [uJ) then

begin
UPDATEQUEUE(NORMAL) ;
READYPROCESS ;

end
else

UPDATEQUEUE(NORMAL) ;
end (*if*)

appendix B file CONC20A program CONCOMPILER

else
begin (*elsel*)
if EXCLUSSET=[] then

begin
UPDAT EQUEUE (NORMAL) ;
EXCLUSSET:=EXCLUSSET+[U] ;
NOOFELEMENTS : =NOOFELEMENTS+l;
READYPROCESS ;

end
else

begin (*else2*)
for LC:=l to MONICOUN T do
begin (*for*)
if LC in EXCLUSSET then
begin
if LC in AVAILABLEMONITORS then

begin
AVAILABLEMONITORS:=AVAILABLEMONITORS - [LC];
HELDSET := HELDSET + [LC] ;

end
else

begin
Pl:=MONITORQUE[LC]; LASTP:=Pl;
while (Pl <> NIL) and (P1 A.PRIORITY=0) do

begin
LASTP:=Pl;
Pl :=P1 A .NEXT;

end; (*while*)
CREATE (ELEMEN T) ;
ELEMENT A.PRIORITY:=0; ELEMENTA.NEXT:= NIL;
ELEMENTA . NUMBER : = NUMBER; (* p A . number*)
if LASTP=Pl then (*ie. at the front of queue*)

begin
ELEMENTA.NEXT: =Pl;
MONITORQUE[LC]:= ELEMENT ;

end
else

begin
LASTpA.NEXT:= ELEMENT ;
ELEMENTA.NEXT := Pl;

end;
end;

end; (*if lc in exclusset *)
end; (*for*)
if EXCLUSSET = HELDSET then

begin
UPDATEQUEUE(NORMAL);
EXCLUSSET:=EXCLUSSET+[U];
NOOFELEMENTS:=NOOFELEMENTS + l;
READYPROCESS;

end

appendix B file CONC20A program CON COMPILER

else
begin

EXC LUSSET := EXCLUSSET +[U];(*for fur t her priorities*)
NOOFELEMENTS:=NOOFELEMENTS+ l ;
UPDATEQUEUE(NORMAL);

end;
end ; (*else2 *)

end; (*e lsel *)
end; (*with ptab[number] *)

end; (*with point~*)
end; (*getfirst =nil *)

end ; (*DEQUEUEPROCESS *)

procedure QUEUEPROCESS(U,PR : INTEGER);
var POINT,LASTP : LINK;

beg in
CREAT E(ELEMENT) ;
ELEMENTA.NUMBER:=PR; ELEMENTA.NEXT:= NI L;
ELEMENT~.PRIORITY: =MONMAXl - PTAB[PR]. NOOFELEMENTS;
PTAB[PR].HELDSET: = []; (*release all monitors*)
POINT: =MONITORQUE[U]; LASTP := POINT;
wh ile (POINT <> NIL) and (POINT~.PRIORIT Y <= ELEMENTA . PR I ORITY) do
begin

LASTP: =POINT ;
POINT:= POINT~ . NEXT;

end ;
if POINT =LASTP then (*ie. queue empty or at the beginn i ng*)
begin
MONITORQUE[U] : = ELEMENT;
ELEMENTA . NEXT: =POINT ;

end
else
if POINT = NIL then (*i e . at the end of the queue*)

LAST pA.NEXT := ELEMENT
else (*ie. in the i n t erior of the queue*)

begin
LASTpA.NEXT := ELEMENT;
ELEMENTA . NEXT: = POINT ;

end ;
end; (*QUEUEPROCESS *)

procedure STACKVARIABLES(U:INTEGER; CW:BOOLEAN);
var LC: 0 .. MONMAX;

AD: INTEGER ;
PNT:LINK;

begin (*stac kvariables *)
with PTAB [CURPR] do

begin (*wi th ptab*)

appendix B file CONC20A program CONCOMPILER

if CW (' conditioned wait *) then
begin ('perform the conditioned as well as nested backup*)

for AD : = T downto SAVEMARK do
begin

PNT: =VARSTACK ;
CREATE(VARSTACK) ;
VARSTACK A .PRIORITY :=S [AD] ; (' add r ess *)
VARSTACKA . NUMBER:= S[S[AD]]; (*value*)
VARSTACKA.UNIK:=U;
VARSTACKA.NEXT: =PNT;

end; (*for adO)
T: =SAVEMARK - l ;

end ; (*if CWO)
if not(NOBACKUP) then
for LC: =l to MONICOUNT do
begin (*nested backup *)
if (LC<>U) and (LC in EXCLUSSET) then

begin (*for condit i oned backup - no t all of present monitor*)
for AD := MONIVARADR[LC , l] to MONIVARADR[LC , 2] do
begin

PNT: =VARSTACK;
CREATE(VARSTACK) ;
VARSTAC KA. PRIORITY := AD ; (*add res s *)
VARS TACKA.NUMBER:= S[AD];(*value*)
VARSTACKA.UNIK: =U;
VARSTACKA.NEXT:=PNT;

end ; (*for ad O)
end; (*if lc*)

end ; (*for lc ')
end; (*wi t h ptab *)

end ; (*stackvar i ables*)

procedure RELEASEEXCLUSIVITIES(PR:PTYPE) ;
var LC:l .. MONMAX;

begin
with PTAB[PR] do

begin
PROCACTIVE: =PROCACTIVE - l ;
ACTIVE : =FALSE ;
STEPS: =0;
for LC:=l to MONICOUNT do
begin (' for ')
if LC in EXCLUSSET then

begin (*if ')
if (MONITORQUE[LC] = NI L) and (GETFIRST[LC] = NIL). then

AVAILABLEMONITORS: =AVAILABLEMONITORS + [LC]
else

DEQUEUEPROCESS(LC);
end; (*if')

end; (*for*)
end; ('with')

end; ('releaseexclusivities *)

appendix B file CONC20A

procedure EXCLUSIVITY(U:INTEGER);
var LC:l .. MONMAX;

begin
if CURPR<>0 then (*ie. concurrency active*)

begin
with PTAB[CURPRJ do

begin (*with*)
if U in AVAI LABLEMONITORS then
begin

NOOFELEMENTS : =NOOFELEMENTS+l;
EXCLUSSET: =EXCLUSSET + [uJ;
AVAILABLEMONITORS : =AVAILABLEMONITORS - [uJ ;

end
else

begin
if (EXCLUSSET<>[J) then

program CONCOMPILER

(*nested monitor call - backup monitor variables *)
STACKVARIABLES(0,FALSE);

QUEUEPROCESS(U (*to index the monitor array*),CURPR);
RELEASEEXCLUSIVITIES(CURPR) ;

end;
end; (*with*)

end (* if cu rpr<>0 *)
end; (*EXCLUSIV ITY*)

procedure LEAVEMONITOR(U:INTEGER);
begin
if CURPR <> 0 then (· ie . concurrency active*)

begin
with PTAB[CURPRJ do

begin ('with*)
if SKIP> Ii) then (* ignore LMN instruc t ion*)
SKIP : = SK I P - 1

else
begin

EXCLUSSET := EXCLUSSET - [uJ;
NOOFELEMENTS : =NOOFELEMENTS - l;
if (MONITORQUE[UJ = NI L) and (GETFIRST[UJ = NIL) then

AVAILABLEMONITORS: =AVAILABLEMONITORS + [uJ
else

begin
DEQUEUEPROCESS(U);

end;
end; (*else - ie . SKIP > 0')

end; ('with*)
end; (*if curpr<>0 *)

end ; (*LEAVEMONITOR*)

appendix B file CONC20A

procedure LENGTHOFQUEUE(C:INTEGER);
var COUNT : INTEGER;

LAST:LINK;
begin

COUNT: =0; LAST:=CONDVARQUE[C];
while LAST <> NIL do

begin
COUNT:=COUNT+1;
LAST:=LAST~.NEXT;

end;
INCTBY(1); S[PTAB[CURPR] .T]:=COUNT ;

end; (*lengthofqueue*)

procedure CONDWAIT(PRIOR,C:INTEGER);
var POINT,LASTPOINT:LINK;

LC:1 .. MONMAX ;
begin

CREATE(ELEMENT) ;
with ELEMENT~ do

begin
NEXT := NIL; PRIORITY:=PRIOR;
if PRIORITY<0 then PS := PRICHK;

program CONCOMPILER

NUMBER:=CURPR; POINT: =CONDVARQUE[C]; LASTPOINT := POINT;
while (POINT<>NIL) and (POINT~.PRIORITY<=PRIORITY) do

begin
LASTPOINT: =POINT; POINT:=POINT~ . NEXT;

end;
if LASTPOINT =P OINT then

begin CONDVA RQUE[C]:=ELEMENT; NEXT:=POINT; end
else

begin LASTPOINT~.NEXT := ELEMENT; NEXT:=POINT; end;
end; (*with element*)

RELEASEEXCLUSIVITIES(CURPR) ;
end; (*condwait*)

procedure CONDSIGNAL(U,C:INTEGER);
var LC:INTEGER; (*loop counter*)

POINT:LINK;
PR:PTYPE;

procedure STOREPROCESS(NUM:PTYPE; POS:INTEGER);
begin

CREATE(ELEMENT) ;
ELEMENT~.NUMBER:=NUM; ELEMENT A. PRIORITY: =0; (*dummy*)
ELEMENTA.NEXT:=GETFIRST[POS]; (*act like a stack F.I.L.O*)
GETFIRST[POS] : =ELEMENT;

end;

procedure RESTARTPROCESS ;
begin

with PTAB [PR] do
begin PROCACTIVE:=PROCACTIVE+1; HELDSET:=[]; ACTIVE:=TRUE; end;

end;

appendix B

prccedure REMOVEITEM;
va r DISP: LINK;

begin

file CONC21ilA

DISP: =CONDVARQUE[C] ;
CONDVARQUE[C]:=DISpA . NEXT;
DESTRO Y (DISP) ;

end;

begin (*condsignal*)
if CONDVARQUE[C]<>NIL then

program CONCOMPILER

begin (*s ignal a process & temporarily suspend itself*)
PR: =CONDVARQUE[C]A.NUMBER;
with PTAB[PR] do

begin
PROCACTIVE:=PROCACTIVE-l;
PTAB[CURPR].ACTIVE: =FALSE; STEPS := Iil; (*suspend*)
for LC := l to MONICOUNT do

begin (* for*)
if (LC in PTAB[CURPR].EXCLUSSET) then

PTAB[CURPR].HELDSET:=PTAB [CURPR] .HELDSET+[LC];
(*so the signalling process will know when to continue*)

if (LC in EXCLUSSET) and (LC in AVAILABLEMONITORS) then
begin

AVAILABLEMONITORS: =A VAILABLEMONITORS-[LC];
HELDSET:=HELDSET+[LC];

end;
if (LC in EXCLUSSET) and (LC in PTAB[CURPR] . EXCLUSSET) then

begin
HELDSET: =HELDSET + [LC];
PTAB[CURPR] .HELDSET:=PTAB[CURPR] .H ELDSET - [LC];
STOREPROCESS(CURPR,LC);

end;
end; (*for *)

if EXCLUSSET =HELDSET then
RESTARTPROCESS

else
begin (*elsel*)
if GETFIRST[U]A . NEXT <> NIL then
begin

POINT: =GETFIRST[U]A. NEXT ;
while POINT<>NIL do

begin (*while*)
for LC:= 1 to MONICOUNT do

begin
if (LC in EXCLUSSET) and

(LC in PTAB[POINTA.NUMBER] .H ELDSET) then
begin

HELDSET:=HELDSET + [LC] ;
PTAB[POINTA .NUMBER].HELDSET:=PTAB[POINTA .NUMBER].HELDSET

- [LC] ;
STOREPROCESS(POINTA . NUMBER,LC) ;

end; (*if*)
end; (*for*)

appendix B file CONC20A

if EXCLUSSET=HELDSET then
P01NT:=N1L (*jump out of while loop*)

else
P01NT:=P01NTA.NEXT;

end; ('while*)
end; (*if getfirst[u]<>nil')

if EXCLUSSET =H ELDSET then
RESTART PROCESS

else
begin ('else2*)

program CONCOMP1LER

if (MON1TORQUE[U]=N1L) or (MON1TORQUE[U]A. PR10R1TY<>0) then '
begin

for LC:=l to MON1COUNT do
begin
if not(LC in HELDSET) and (LC in EXCLUSSET) then

STOREPROCESS(PR,LC);
end; ('for*)

end
else
begin (*get as many exclusivities as possible*)

POINT:=MONITORQUE[U];
while (POINT<>NIL) and (P01NT A.PR10R1TY=0) do

begin
for LC:=l to MONICOUNT do

begin
if (LC in EXCLUSSET)and(LC in PTAB[POINTA.NUMBER].HELDSET)
then
begin

HELDSET:=HELDSET + [LC];
PTAB[P01NTA.NUMBER].HELDSET:=PTAB[POINTA.NUMBER].HELDSET

- [LC];
STOREPROCESS(P01NTA.NUMBER,LC) ;

end;
end; ('for*)

if HELDSET=EXCLUSSET then
P01NT:=N1L (*jump out*)

else
POINT:=POINTA.NEXT;

end; (*while*)
if EXCLUSSET=HELDSET then RESTARTPROCESS
else

begin
for LC:= 1 to MON1COUNT do
if not(LC in HELDSET) and (LC in EXCLUSSET) then

STOREPROCESS(PR,LC);
end; (*else*)

end; ('e lse get as many exclusivities as possible')
end; ('e lse2*)

end; (*elsel*)
end; ('w ith ')

R EMOVEITEH ;
end; (*if condvarque[c]<>nil*)

end; (*condsignal ')

(*$1 :CNC220A. TEXT ') (* incl ude file*)

appendix B file CNC22Q)A program CONCOMPILER

procedure ACCEPTBLOCK(U:INTEGER) ; (*deals with accept statements*)
var PT:LINK;

begin
if CURPR=Q) then

PS:=CONCHK (*concurrency inactive*)
else

begin
if ENTRYQUE[U]=NIL then

begin (*s uspend process *)
CREATE(ENTRYQUE[U]);
with ENTRYQUE[U]A do

begin
NUMBER: =CURPR +PRMAX; (*fiddle - SYNCHRON procedure suspended *)
PRIORITY: =PTAB[CURPR] . P ; (*address of accept statement *)
NEXT:=NIL; (*on ly process on queue*)

end; (*with*)
PROCACTIVE: =PROCACTIVE -l ;
PTAB[CURP R].ACTIVE:=FALSE; (*suspend process*)
STEPS:=Q); (*switch processor*)

end (* if entry point queue empty*)
else

begin
PTAB[CURPR].RENDEZ:=U; (*ready to deal with rendezvous*)

end;
end; (*else*)

end; (*acceptblock*)

procedure ENDACCEPTBLOCK(I:INSTRUCTION);
var PT:LINK;

U:INTEGER;
begin
with I do
begin (*with*)

U:=S[PTAB[CURPR] . T]; (*unique no. on top of stack*)
DECTBY(l);
PTAB[CURPR].RENDEZ:=0 ; (*no longer dealing with rendezvous*)
PT: =ENTRYQUE[U] ; (*can ' t be nil*)
ENTRYQUE[U] :=P TA.NEXT;
with PTAB[PTA.NUMBER] do

begin
T: =B-A; (*same as RETURN -reset stack segment*)
B: =S [B+ 1] ;
PROCACTIVE := PROCACTIVE+l;
ACTIVE: =TRUE; (*reactivate*)

end;
DESTROY (PT) ;

end; (*with 1*)
end; (*endacceptblock *)

appendix B file CNC220A

procedure RENDEZVOUS(I:INSTRUCTION);
var PT,LPT,ELEMENT:LINK;

IMPLICITSIGNAL:BOOLEAN;
LC:INTEGER; (*loop counter*)
INDEX:INTEGER;

begin
with I,PTAB[CURPR] do
begin (*wi th*)
S[T+2]:=B; S[T+3] :=P;
B:=T+l;

program CONCOMPILER

T:=T+3; (*alter the stack-same as the INT instr*)
if T > STACKEND-3 then PS: =STKCHK;
IMPLICITSIGNAL: =FALSE;
PT: =ENTRYQUE[A] ; LPT := PT;
while (PT <> NIL) do

begin
if pTA.NUMBER > PRMAX then IMPLICITSIGNAL:=TRUE;
LPT:=PT;
PT:=PTA.NEXT;

end; (*while*)
CREATE(ELEMENT);
ELEMENT A.PRIORITY:=0; (*open to alteration?*)
ELEMENTA.NEXT:=NIL;
ELEMENTA.NUMBER:=CURPR;
if PT =LPT then (*queue empty*)

ENTRYQUE[A] :=ELEMENT
else

begin
LPTA.NEXT:=ELEMENT;
if IMPLICITSIGNAL then

begin (*react ivate synchroniser at head of queue*)
PROCACTIVE:=PROCACTIVE+l;
INDEX := ENTRYQUE[A]A .NUMBER-PRMAX;
PTAB[INDEX] .ACTIVE:=TRUE;
PTAB[INDEX].RENDEZ :=A;
PTAB[INDEX] .P:=ENTRYQUE[A]A.PRIORITY ;
if PTAB[INDEX].HELDSET <> [] then

(*sync suspended on a select-remove from all other queues*)
begin
for LC:= 1 to ENTRYCOUNT do

begin
if LC in PTAB[INDEX] .HELDSET then
begin (*remove from queue*)

PT:=ENTRYQUE[LC];
ENTRYQUE[LC]:=ENTRYQUE[LC]A. NEXT ;
DESTROY (PT) ;

end; (*if*)
end; (*for*)

PTAB[INDEX] .HELDSET:= [];
end (*if HELDSET<>[]*)

appendix B file CNC220A

else
begin

PT :=ENTRYQUE[A] ;
ENTRYQUE[A]:=ENTRYQUE[A]A . NEXT ;
DESTROY (PT) ;

end; (* ie . HELDSET=[]*)
end; (*if*)

end; (*e lse*)
PROCACTIVE :=PROCACTIVE - 1;
ACTIVE:=FALSE; (*suspend*)
STEPS:=0; (*process switch*)

end; (*with*)
end; (* rendezvous*)

procedure SELECTACCEPT(I:INSTRUCTION);

program CONCOMPILER

canst MAXGUARD=20; (*max. no. of guard conditions per select*)
var START,STOP:INTEGER;

SUB,LC,LC1,LC2:INTEGER;
SELTABLE : ARRAY[l .. MAXGUARD] of INTEGER; (*table of valid guards*)
FOUND:BOOLEAN;

begin
with PTAB[CURPR]do

begin
START := S[T] ; DECTBY(l);
STOP:=I.A;
LC:=START;
SUB:=0;
while LC < STOP do

begin (*find valid guards*)
if S[DISPLAY[I.L] + LC] = 1 then (*valid*)

begin
SUB : =SUB+ 1 ;
SELTABLE[SUB] :=S[DISPLAY[I .L] +LC+1]; (*address of the accept*)

end;
LC:=LC+2; (*move to the next guard result*)

end; (*while*)
if SUB <> Q) then
begin (*some valid guards *)

LC:= (RANDOM mod SUB) +1; (*choose an arbitrary valid guard *)
LC1 :=Q);
FOUND : =FALSE;
while not(FOUND) do

begin (*will the accepts cause a delay?*)
with CODE[SELTABLE[LC]] do

begi n
if ENTRYQUE[A]=NIL then (*wi ll cause a delay*)
begin

LC : =LC+ 1 ;
LC 1 : = LC 1 + 1 ;
if LC>SUB then LC: = 1; (*circular search*)
if LC1=SUB then FOUND: =TRUE;

end

appendix B file CNC22e1A program CONCOMPILER

else (*found an accept that won't cause a delay*)
begin

P:=SELTABLE[LC]; (*set PC to start address of accept*)
FOUND: =TRUE;

end;
end; (*with CODE[SELTABLE[LC]]*)

end; (*while not found*)
if LC1=SUB then (*all accepts cause a delay*)

begin
LC2 := (random mod SUB) + 1;
(*start at random place in SELTABLE - for i dentical accepts

only one chosen for queueing - arbitrarily*)
LC1 := 0;
while LC l < SUB do

begin (*suspend sync proc on all queues*)
with CODE[SELTABLE[LC2]] do

begin
CREATE(ENTRYQUE[A]); (*queue is nil*)
with ENTRYQUE[A]A do

begin
NUMBER: =CURPR +PRMAX; (*fiddle - synchroniser*)
PRIORITY :=SELTABLE[LC2]; (*address of ac oept*)
NEXT :=N IL;

end; (*with EN TRYQUE[A]*)
HELDSET:=HELDSET+[A];

end; (*with CODE *)
LCl : =LC 1+l; LC2:=LC2+1;
if LC2 > SUB then LC2:=1;

end ; (*while*)
PROCACTIVE: =PROCACTIVE -l;
ACTIVE : =FALSE; (* suspend*)
STEPS:=0; (*switch*)

end; (*if LC =LC1*)
end (*if SUB<>eI *)

else
begin (* Is there an ELSE clause 7*)
if S[DISPLAY[I.L]+STOP - l]=2 then

begin (*Yes - else clause to the select statement*)
P := S[DISPLAY[I.L] +STOP]; (*start address*)

end
else

PS: =SELCHK; (*r un time error*)
end;

end; (*wi th PTAB[CURPR] *)
end; (*se lectaccept*)

appendix B file CNC220A program CONCOMPILER

procedure CALL (I : INSTRUCTION) ;
begin
with I, PTAB[CURPRJ do

begin
if A > CODEMAX then
(*set up at compile time so as to skip the next LMN instruction

when calling starred procedure from inside the same monitor*)
begin

A := A - CODEMAX;
if CURPR <> 0 then SKIP := SKIP + l; (*ie. only if concurrency*)

end;
if not PFLAG then
begin

S [T+ 1 J : = DISPLAY [L+ 1]; S [T+2J B; S [T +3J
B := T+ 1; P := A; DISPLAY[L+1] . _ B;

end
else

begin (*mark for subsequent concurrent entry*)
NPR := NPR + 1; PROCACTIVE:=PROCACTIVE+1;
with PTAB[NPRJ do

begin

p. ,

B := PTAB[CURPR].T+1; P := A; DISPLAY[L+ 1J := B; T := B- 1;
S[T+1J := DISPLAY[L+1]; S[T+2J := B; S[T+3J ._ 0(*fiddle*);
STACKEND := T + INCR; ACTIVE : = TRUE;

end;
INCTBY(INCR)

end (*else*)
end (*with*)

end (*CALL*);

procedure RETURN(I: INSTRUCTION);
begin

with I,PTAB[CURPRJ do
begin

if A= - l then (*stop concurrency*)
begin

NPR: =0; PTAB[0J . ACTIVE: =TRUE; (*reactivate main program*)
PTAB[0J.T: =OLDT;

end
else

begin
T .- B-A; DISPLAY[LJ : = S[BJ; P := S[B+2J; B
if P = 0 then

begin
NPR : = NPR - 1; PROCACTIVE:=PROCACTIVE-1;
ACTIVE := FALSE; STEPS := 0;
PTAB[0J.ACTIVE := NPR = 0;
if PTAB[0J.ACTIVE then PTAB[0] . T OLDT

end
end;

end (*with")
end ("RETURN");

S[B+1 J;

appendix B file CNC220A program CONCOMPILER

procedure TRACEPROCESSES; (*for debugging - used with $M+ directive*)
var I : INTEGER;

A : array[BOOLEANJ of CHAR ;
begin
if PROCTRACING then

begin
A[F'ALSEJ := ' I '; A[TRUE] := 'A';
WRITE(OUTPUT, ' -- Cur Pr = ', CURPR, , ,);
for I := 0 to PRMAX do

begin WRITE(OUTPUT, A[PTAB[I] .ACTIVEJ);
if PTAB[IJ.SUSPEND= 0 then WRITE(OUTPUT,' -')
else WRITE(OUTPUT , PTAB[IJ .SUSPEND:3, '-') ;

end;
end;

WRITELN (OUTPUT) ;
end (*TRACEPROCESSES*);

procedure NEXTSTEP;
var LOOP: INTEGER;

I : INSTRUCTION; (*current*)

procedure MORE ; (*NEXTSTEP too long*)
var PRIOR,C :I NTEGER;

begin
if CURPR=0 then PS := SEMCHK
else (*only if concurrency is active*)
with PTAB[CURPRJ do

begin
C: =S[TJ; DECTBY(1);
with I do

case F' of
QLN: LENGTHOF'QUEUE(C);
QUE : begin INCTBY(1); S[TJ:=ORD(CONDVARQUE[C] <> NIL); end;
QPW,QWT : begin

PRIOR:=C ;
C:=S[TJ; DECTBY(1);
CONDWAIT(PRIOR,C) ;

end;
QSG:CONDSIGNAL(A,C) ;

end; (*case*)
end; (*with ptab[curp r]*)

end; (*more*)

appendix B fil" CNC2211JA program CONCOMPILER

begin (*$R - *) (*nextstep*)
with PTAB[CURPRJ do

begin
1:= CODE[pJ; P : = P+ 1 (*fetch*) ;
with I do (*execute*)
begin
if F>=QLN then MORE
else
begin
case F of

NEG: S[T] : = - S[TJ;
ADD: begin DECTBY(1) ;
SUB: begin DECTBY(l);
MUL: begin DECTBY(l);
DVD:

begin
DECTBY(l);

S[T] .
se T] .
s[T]

S[TJ+S[T+1J
S[TJ - S[T+1]
S[TJ*S[T+1]

if S[T+1J =1/) then PS
end ;

DIVCHK else S[TJ

MD :
begin

DECTBY(1) ;

end;
end;
end;

seT] div S[T+1 J

if S[T+1 J =1/) then PS : = DI VCHK else S[T] : = S[T] mod S[T+1 J
end;

OD : S[TJ : = ORD(ODD(S[TJ»;
EQL: begin DECTBY(1); S[T]
NEQ: begin DECTBY (1); S [T]
LSS : begin DECTBY (1); S [T] .
GEQ: begin DECTBY(1) ; S[T] .
GTR: begin DECTBY(l); S[TJ
LEQ: begin DECTBY(l); S[TJ .
STK: STACKDUMP(A);
PRN: begin WRITE(OUTPUT,S[TJ);
PRS:

begin

ORD(S[T J = S[T +1]) end;
ORD(S[TJ <> S[T+1J) end;
ORD(S[TJ < S[T+ 1J) end;
ORD(S[TJ >= S[T+1J) end;
ORD(S[TJ > S[T+1J) end;
ORD(S[TJ <= S[T+1J) end;

DECTBY(l) end;

for LOOP : = T- S[TJ to T- 1 do WR I TE(OUTPUT , CHR(S[LOOpJ» ;
DECTBY(S[TJ +1)

end;
NL : WRITELN(OUTPUT);
INN :

begin CHECKDATA; if PS =RUNNING then READ(INPRINPUT,S[S[TJJ) ;
DECTBY (1) end;

LIT: begin INCTBY(1) ; seT] : = A end;
LDA: begin INCTBY(l); seT] : = DISPLAY[LJ + A end;
LDX: S[T] : = S[S[TJJ;
IND: if (S[TJ < 1/) or (S[TJ > A) then PS : = INXCHK

else begin DECTBY(l); S[TJ : = S[TJ + S[T+1J end;
STO: begin S[S[T - 1JJ := SeT]; DECTBY(2) end;
INT: INCTBY(A);
HLT : PS := FINISHED;
BRN: if A < IIJ then PS := PRCCHK (*missing code*) else P . _ A;
BZE: begin if S[TJ=I/) then P : = A; DECTBY(l) end;

appendix B

SFL :
begin

Ll := S[T -l];

file CNC220A

if (1 - L) * (L 1 - S[T]) <= 0

program CONCOMPILER

then S[S[T - 2]] := Ll else begin DECTBY(3); P ._ A end
end;

EFL:
begin

Ll := S[S [T- 2]] + 1 - L;
if (1 - L) * (Ll - S eT]) <= 0

then begin S[S[T - 2]] := Ll; P := A end else DECTBY(3)
end;

RND: begin INCTBY(1); SeT]
RDY: begin INCTBY(l); SeT]
ACT : begin INCTBY (1) ; S [T] .
SWI : begin STEPS := 0; end;
WGT: WAIT;
SIG: SIGNAL;
CBG :

begin
PFLAG := TRUE; OLDT := T;

RANDOM end;
PROCACTIVE;
NPR ; end;

INCR := (STACKMAX - T) div A - PMAX;
if INCR < = 0 then PS := STKCHK

end;
CND: begin PFLAG := FALSE; PTAB[0].ACTIVE

CURPR:=(random mod NPR) +1;
STEPS:=(random mod STEPMAX)+l;
PREVPROC: =CURPR;

end;
SWP : SWITCHING := no t SWITCHING;
CAL: CALL(I) ;
RET: RETURN (I) ;

end;

FALSE;

PRC : begin WRIT E(OU TPUT,CHR(S[T] mod HIGHEST)); DEC TBY(l); end;
NC : if not EOF(INPRINPUT) then READLN(INPRINPUT)

else PS : =EOFCHK;
INC : if EOF(INPRINPUT) then PS:=EOFCHK

else
begin

READ(INPRINPUT,CH); S[S[T]] : = ord(CH); DECTBY(l);
end;

SMK: begin SAVEMARK: =T+l; end;
SAV : STACKVARIABLES(A,TRUE);
RES: UNSTACKVARIABLES(CURPR,A);
EXC : EXCLUSIVITY(A) ;
LMN : LEAVEMONITOR(A);
CHK : TRACEPROCESSES ;
ACC: ACCEPTBLOCK(A);
EAC: ENDACCEPTBLOCK(I);
SCL: RENDEZVOUS(I) ;
SEL : SELECTACCEPT(I);

appendix B file CNC220A program CONCOMPILER

LDE: begin (*for entry point parameters*)
if PTAB[CURPRJ.RENDEZ =0 then PS :=CONCHK
else

begin
INCTBY(l) ;
S[TJ:=PTAB[ENTRYQUE [PTA B[CURPRJ.RENDEZJA.NUMBER].B+A;

end; (*else*)
end; (*LDE*)

end (*case *)
end; (*else *)

end ; (*with 1*)
end (*with PTAB*)

end (*NEXTSTEP*);

begin (*INTERPRET*)(*$R -*)
MARK(HEAP) ;
NEXTAVAIL:= NIL ; (*for the CREATE and DESTROY routines*)
S[0J := 0; S[l] := 0; S[2J := 0; PS:= RUNNING;
WRITE('Trace? '); READLN(CH); TRACING := CH in ['Y ', 'y'];
WRITE('Process trace? '); READLN(CH) ; PROCTRACING := CH in ['Y' , 'y'J;
if ASKBACKUP then

begin
WRITE('Nested Backup?'); (*used with $B - directive*)
READLN (CH); NOBACKUP: = not (CH i n [, Y' , 'y' J) ;

end;
WRITELN(' Memory available' ,MEMAVAIL);
TEXTOUTPUT(OUTPUT,'RESULTS');
INPRTEXTINPUT(INPRINPUT, 'DATA');
with PTAB[0J do (*start main program*)

begin
(*initialise main stack frame*)
T := - 1 ; P := 0; B := 0 ; DISPLAY[l] := 0
SUSPEND := 0; ACTIVE := TRUE; STACKEND ._ STACKMAX; RENDEZ: =0;

end;
for CURPR := 1 to PRMAX do (*all processes inactive*)

with PTAB[CURPRJ do
begin ACTIVE := FALSE; DISPLAY[l] : = 0; SUSPEND := 0;

EXCLUSSET:=[J; HELDSET:=[J; NOOFELEMENTS:=0;
SKIP: = 0; RENDEZ: =0; VARSTACK:=NIL; SAVEMARK:=0;

end;
AVAILABLEMONITORS: = [J;
for Ll: = 1 TO MONICOUNT do

begin
AVAILABLEMONITORS := AVAILABLEMONITORS + [L1J;
MONITORQUE[L1J:= NIL;
GETFIRST[L1J: =NIL;

end;
for Ll :=1 to CONDCOUNT do CONDVARQUE[L1J :=NIL;
for Ll := 1 to ENTRYCOUNT do ENTRYQUE[L1J :=NI L;
CURPR := 0; PFLAG FALSE; NPR := 0; STEPS := 0; SWITCHING ._ TRUE;
PROCACTIVE :=0;

appendix B file CNC2211)A program CONCOMPILER

repeat
if TRACING then
with PTAB[CURPR] do

WRITELN(OUTPUT ,CU RPR, ' / ',P,' ', MNEMONIC[CODE[P].F']);
NEXTSTEP;
if BREAKIN then PS := FI NISHED;
if PS = RUNNING then
if PTAB[I1)] . ACTIVE then CURPR : = 11)
e lse if SWITCHING then
if STEPS = 11) then CHOOSEPROCESS else STEPS ._ STEPS - 1;

until PS <> RUNNING;
if PS <> FINISHED then
begin

POSTMOR TEM; PROCTRACING: =TRUE;
WRITELN(OUTPUT); TRACEPROCESSES ;

end;
CLOSE(INPRINPUT);
RELEASE(HEAP) ;

end (*INTERPRET *);

begin (*MAIN PROGRAM*)
TEXTINPUT(' SOURCE ') ; TEXTOUTPUT(OUTPUT ,'LISTING');
PROGRAMME ;
CLOSE (OUTPUT,LOCK);
if ERRORS then WRITELN(' Compilation errors ')
else

begin
WRITELN('[' , NOOFLINES, '] Lines Compiled Correctly') ;
if OBLIST then LISTCODE;
CLOSE (INPUT) ;
while TRUE do

begin
WRITELN('Executing');
INTERPRET;
CLOSE(OUTPUT,LOCK); CLOSE(INPUT)

end
end

e nd (*COMPILER*).

	CHALMERS TR85-09a
	CHALMERS TR85-09b
	CHALMRES TR85-09c

