
Extensibility in ORDBMS Databases: An
Exploration of the Data Cartridge Mechanism

in Oracle9i

A thesis submitted in fulfilment of the requirements for
the degree of

MASTER OF SCIENCE

By

Tulimevava Kaunapawa Ndakunda

Computer Science Department
Rhodes University

Grahamstown
South Africa

April 2004

Abstract

To support current and emerging database applications, Object-Relational Database Management

Systems (ORDBMS) provide mechanisms to extend the data storage capabilities and the

functionality of the database with application-specific types and methods. Using these mechanisms,

the database may contain user-defined data types, large objects (LOBs), external procedures,

extensible indexing, query optimisation techniques and other features that are treated in the same

way as built-in database features . The many extensibility options provided by the ORDBMS,

however, raise several implementation challenges that are not always obvious. This thesis examines

a few of the key challenges that arise when extending Oracle database with new functionality.

To realise the potential of extensibility in Oracle, the thesis used the problem area of image retrieval

as the main test domain. Current research efforts in image retrieval are lagging behind the required

retrieval, but are continuously improving. As better retrieval techniques become available, it is

important that they are integrated into the available database systems to facilitate improved

retrieval. The thesis also reports on the practical experiences gained from integrating an extensible

indexing scenario. Sample scenarios are integrated in Oracle9i database using the data cartridge

mechanism, which allows Oracle database functionality to be extended with new functional

components.

The integration demonstrates how additional functionality may be effectively applied to both

general and specialised domains in the database. It also reveals alternative design options that allow

data cartridge developers, most of who are not database server experts, to extend the database. The

thesis is concluded with some of the key observations and options that designers must consider

when extending the database with new functionality.

The main challenges for developers are the learning curve required to understand the data cartridge

framework and the ability to adapt already developed code within the constraints of the data

cartridge using the provided extensibility APls. Maximum reusability relies on making good

choices for the basic functions, out of which specialised functions can be built.

Table of Contents

Abstract. i

List of Figures v

List of Tables vi

Acknowledgements vii

Chapter 1: Introduction 1

1.1 Background and problem statement.. 1

1.2 Motivation 2

1.3 Focus and scope 3

1.4 Thesis organisation 4

Chapter 2: Extensibility in databases 6

2.1 The need for extensibility 6

2.2 Object-Relational features 7

2.2.1. An extensible type system 8

2.2.2. Complex data types 8

2.2.3 . Inheritance 9

2.2.4. Rules and triggers 10

2.3 Extensibi lity in Informix 10

2.3 .1 User-defined types 11

2.3.2 User-defined functions 12

2.3.3 Extensible indexing 12

2.3.4 Extensible optimiser. 13

2.4 Extensibility in Oracle 14

2.4. 1 Extensible type system 15

2.4.2 Extensible server execution environment 16

2.4.3 Extensible indexing 16

2.4.4 Extensible optimiser 17

2.5 Conclusions 18

Chapter 3: Test domain 20

3.1 Introduction 20

3.2 Content-based image retrieval model 21

3.3 Approaches to image retrieval 23

3.3.1 Feature extraction 23

11

3.3.2 Similarity computations 24

3.3.3 Feature indexing 25

3.4 Content-based image retrieval in ORDBMS 26

3.4.1 Informix Excalibur image retrieval datablade 26

3.4.2 Oracle image data cartridge 29

3.5 Conclusions 34

Chapter 4: A sample data cartridge: the type system 36

4.1 Introduction 36

4.2 Objectives 37

4.3 The data cartridge development process .. 38

4.4 The cartridge definition 39

4.4.1 Image object representation 40

4.4.2 Image content representation 40

4.4.3 Similarity metrics 42

4.5 Implementation of the cartridge components ... 43

4.6 Relational model implementation 49

4.7 The data cartridge vs. the relational implementation 51

4.8 Conclusions 53

Chapter 5: A sample data cartridge: indexing and query optimisation 54

5.1 Introduction 54

5.2 Objectives 55

5.3 Building the index 56

5.4 Query optimisation 65

5.5 Testing the data cartridge 71

5.6 Outlook on the design options 72

5.7 Conclusions 73

Chapter 6: A data cartridge for face recognition 74

6.1 Introduction 74

6.2 Objectives 75

6.3 The face recognition application 75

6.3.1 Content representation 76

6.3.2 Signature representation 76

6.3.3 The recognition process 77

6.4 Implementing the data cartridge 78

6.5 Observations 84

111

6.5.1 Using the cartridge object types 84

6.5 .2 Storing object collections 85

6.5.3 Storing object references 87

6.5.4 Handling domain specific data 88

6.5.5 Handling inheritance 89

6.5 .6 Handling collections of objects 89

6.5 .7 Handling object references 90

6.5.8 Handling objects on the application side 91

6.5 .9 LOB management 91

6.6 Conclusions 92

Chapter 7: An extensible data cartridge: integrating GiST.. 93

7.1 Introduction 93

7.2 Overview of the GiST architecture 94

7.3 Design and implementation ofthe INDEXTyPE 96

7.3.1 Implementing the database independent components 97

7.3.2 R-tree : Extending the database independent component 98

7.3.3 Implementing the database dependent components 10 0

7.4 Conclusion 102

Chapter 8: Summary and conclusions 104

8. I Motivation for the thesis 104

8.2

8.3

Aim 0 f the thesis 104

General observations 105

8.3.1

8.3.2

8.3.3

8.3.4

User-defined data types 105

User-defined methods 105

Server execution environment 106

Extensib Ie indexing 106

8.4 Other findings from integrating data cartridges 107

8.5 Conclusions 109

8.6 Future work 110

Appendix A: Outline ofCBIRC code 111

Appendix B: Outline of the face recognition cartridge code I 17

Appendix C: Outline of GiST code 121

Appendix D: External code installation instructions 122

References : 124

IV

List of Figures

Figure 2 - 1 : A classification of data applications .. 7

Figure 2 - 2 : Oracle data cartridge services (Based on Figure 1 - 1 [GIE02aj) 14

Figure 3 - 1 : The retrieval strategy of a standard content-based image retrieval system 22

Figure 3 - 2 : Representation of the student table 26

Figure 3 - 3 : Excalibur Image DataBlade (Based on Figure 1 - 2 [INF99j) 27

Figure 4 - 1 : The data cartridge development process - (Adapted from Figure 2 - 1 [GIE02j) 38

Figure 4 - 2 : Entities ofthe CBIRC .. 40

Figure 4 - 3 : Sample image ... 41

Figure 4 - 4 : Entity representation in the relational model 49

Figure 6 - 1 : The face recognition process .. 78

Figure 6 - 2 : Graphical representation offace recognition entities and relationships 79

v

List of Tables

Table 4 - 1 : The default Colour Space as proposed in sRGB41

Table 4 - 2 : Colours found in sample image 42

Table 4 - 3 : Creation of the signature of the sample image 42

Table 5 - 1 : Operators and implementing functions 57

Table 5 - 2 : Other INDEXTYPE methods .. 65

Table 6 - 1 : Java classes used to the face recognition data cartridge 78

Table 7 - 1 : Summary of the GiST interface methods 94

Table 7 - 2 : Classes used to implement the GiST Core 97

Table 7 - 3 : Classes for R-tree implementation 99

VI

Aclrnowledgements

'In all your ways, acknowledge Him. He will make your paths straight'

I am highly indebted to the following people who played a significant role in this research:

1. Prof. Dave Sewry and Dr. Alfredo Terzoli for their excellent supervision, faith in my

intellectual abilities and their absolute support throughout this research.

2. My fiance Toivo for moral support and for proofreading several chapters of my thesis.

3. My dear parents for their motivation and encouragement, and believing I can reach the

stars.

4. All my younger brothers and sisters for their inspiration.

5. All my friends and members of the Computer Science department for all their support.

VII

Chapter l:Introduction

This chapter introduces the work done in this thesis. The background to the problem is

sketched, and the application domain described. The objectives and the focus of the

research are also explained, and the outline of the thesis is set with a summary of the

contents of each chapter.

1.1 Background and problem statement

Traditionally, relational database management systems (RDBMS) were designed to manage small

and structured data types such as strings and dates. In recent years, however, application domains

that require large and complex data types have increased. A typical example of such applications is

found in the Computer Science Department at Rhodes University, which has collected many

multimedia data for a variety of users over the last few years. The search for mechanisms that better

support the design and integration of complex data in database systems is therefore a necessity

today.

So far, the RDBMS is the most widely used database system [RAGOO] [SUB98], and has many

attractive features, such as simplicity of the query language and advanced query processing

techniques. Storage and manipulation of complex data in these databases is accomplished with

opaque Binary Large Objects (BLOBs) or URLs to content stored directly in operating system files.

Experience has, however, revealed the inherent weakness ofthis approach: there is a mismatch

between the nature of data and the way users and the system interact with it. Relational operations

and queries require complex objects to be mapped to simple relational tables, and standard indexing

approaches cannot provide content-based queries to BLOB content.

Object-Oriented Database Management Systems (OODBMS), which support the development of

applications in an object-oriented manner, were developed as an alternative to managing complex

data applications [KAB97]. OODBMS add DBMS functionality to object-oriented programming

languages, to be able to store and provide query capabilities for complex, structured data and large,

unstructured data. Despite their powerful data abstraction and modelling capabilities, however,

OODBMS have not gained commercial success in the database industry [RAGOO]. Today, Object

Relational Database Systems (ORDBMS) are gaining in popUlarity for managing multimedia and

I

other complex data applications. ORDBMS simply add object orientation capabilities to RDBMS to

store persistent objects in relations. These databases maintain the simplicity and flexibility of the

relational model while at the same time providing support for objects in the database. In this way,

ORDBMS support a broader set of application requirements.

1.2 Motivation

Most RDBMS vendors have today incorporated ORDBMS functionality in their products, with

state-of-the-art ORDBMS such as Oracle and Informix providing facilities to support the storage,

retrieval and management of different kinds of multimedia and other complex data. Even with these

facilities however, the management of multimedia data, especially multimedia retrieval, remains a

challenge. Application domains that require new retrieval techniques are continuously emerging,

but state-of-the-art multimedia retrieval techniques are, in general, lagging behind the required

retrieval capabilities. Today, no single database system is able to encapsulate all the desired

retrieval functionality, and the search for improved techniques remains. As improved retrieval

techniques emerge, it is important to integrate them into existing database systems to enhance their

retrieval capabilities.

This integration could be achieved with ORDBMS' support for database extensibility. ORDBMS

enables user-defined data types and their associated functionality to be added to the database

system, and to be used in the same way as other built-in data types and functions . Even with this

possibility however, it is interesting to see that most developers continue to use the ORDBMS as a

relational database. This is a clear indication that the enhanced functionality of ORDBMS raises

several implementation challenges that need to be addressed. A number of benchmarks for

ORDBMS have been proposed to evaluate the usefulness of object-relational features in the

database. These benchmarks, such as BORD [LKKOO], Bucky [CWN+97] and MORD [STA03]

measure the performance oftypical DBMS functions that suppOli extensibility, but do not cater for

the user-defined extensions themselves. In order to effectively extend the database, it is essential to

understand the implications of using these extensions. This can be done by investigating the key

challenges that arise when extending the ORDBMS with new functional capabilities, and by

identifying how new application domains can be built rapidly and effectively to allow the developer

to exploit database extensibility to its full potential.

2

1.3 Focus and scope

This thesis explores the mechanisms to integrate additional functionality into ORDBMS. To do this,

an initial understanding of extensibility in current database technology was necessary. A study of

the object-relational features in existing ORDBMS was therefore done, highlighting commonalities

and demonstrating how individual features may be used to add new functionality to the database.

The explorations in this thesis use content-based image retrieval as the main test domain for

extensibility, and thus also require an understanding of content-based retrieval techniques. It also

used an extensible indexing scenario as an additional test domain.

A typical way to access multimedia data is to store the actual data in a database, along with a set of

keywords and textual tags that describe the content of the data. Data is accessed by manually

browsing the entire database according to subject categories and keywords, which are intended to

capture the context of each data item in the database, as used in applications such as Chabot

[OST95]. This approach, however, has several shortcomings: data items belonging in the same

category to one user may not necessarily belong to the same category according to other users .

Browsing the entire category can also become cumbersome and time-consuming as the amount of

data in the database or category increases. Querying data based on their actual content is, naturally,

a preferable solution and important feature for multimedia databases [WNM+95]. Retrieval based

on content is guided by the features extracted from the data itself, such as shapes or the

combinations of colours in images, for which today's technology does not provide sufficient

solutions [WEK99].

The thesis does not seek to provide novel solutions to either content-based retrieval or indexing

problems. Rather, it investigates how already developed techniques may be integrated into the

database. The actual implementations explore the suitability of available development tools, and do

not attempt to suggest radically new constructs of database extensibility. In this way, the thesis

evaluates the implementation effort required from the user and presents a real life test of the

extensibility mechanisms in ORDBMS, and more specifically in Oracle9i.

Oracle is one of the commonly used ORDBMS with multimedia management components, one of

which provides support for image retrieval applications. The shortcomings of this component

validate the importance of extensibility in databases. Realising the need for extensibility, Oracle has

provided, since version Oracle8i, the data cartridge mechanism, which is used to integrate the

various practical scenarios in this thesis. The data cartridge mechanism is used to demonstrate how

3

the database can be extended with additional functionality (such as user-defined data types,

additional indexing mechanisms and query optimisation techniques) and to explore the practical

implications of using such extensions.

This thesis reports on the opportunities and main challenges of extensibility in Oracle, as gathered

from our practical experiences with integrating sample image retrieval and indexing techniques.

The report is not intended to be an evaluation of Oracle DBMS , but rather an investigation of how

the extensibility mechanisms in Oracle may be exploited to bring many of the key benefits of

object-relational technology to user-defined components in the database.

1.4 Thesis organisation

The rest of the thesis is organised as follows:

Chapter 2 discusses the required features of an extensible database system. It motivates the need for

extensibility and provides the object-relational features found in commonly used ORDBMS, with

special emphasis on Oracle and Informix databases. The chapter is concluded with a discussion of

the opportunities and challenges offered by extensibility mechanisms in these databases.

Chapter 3 introduces image retrieval as the main domain for testing extensibility in this thesis. The

aim of the chapter is to provide the necessary background information to investigate issues that

arise in extending the database with retrieval functionality. The chapter first introduces a general

model for content-based image retrieval systems. It then discusses the specific approaches used in

content-based retrieval systems, making references to previous work in the area. A common

example is used to demonstrate the retrieval capabilities of image retrieval extensions in Informix

and Oracle databases. Finally, the chapter is concluded with comments on the state-of-the-art image

retrieval functionality.

Chapter 4 presents the development and integration of the first data cartridge. The aim of the

chapter is to show how the data cartridge mechanism can be used to add user-defined data types and

their operations to the database. The demonstrated data cartridge implements a very simple colour

based image retrieval technique. The chapter also demonstrates how the same retrieval functionality

can be achieved by extending the relational model. The chapter is concluded with a comparison

4

between the data cartridge and the relational implementation to highlight the benefits of using data

cartridges.

Oracle provides a set of interfaces to extend indexing and enhance query optimisation. Chapter 5

continues the integration of the data cartridge introduced in the previous chapter to explore the use

of these interfaces. A discussion on the extensibility of indexing and query optimisation is then

provided, focusing on the functionality of these interfaces.

Chapter 6 develops and integrates a more complex data cartridge. The cartridge implements a well

known face recognition algorithm that uses Eigen faces for recognition, with the aim of exploring

the data cartridge mechanism in greater detail. Initially, the chapter explains the architecture and

objectives of the cartridge. It then presents the implementation of the cartridge, describing it as a

mapping of a standalone Java application to a database application. The last section of this chapter

discusses the opportunities and limitations of the object-relational mapping and features presented

in this chapter.

Chapter 7 presents the final and most complex data cartridge implemented in this thesis. The

cartridge implements an extensible indexing system, with the aim of exploring the mechanism of

extensibility in the data cartridges themselves. Firstly, the requirement of the data cartridge is

presented. The next section then demonstrates how it is implemented. The last section discusses the

requirements for implementing extensible data cartridges and the issues that arise in extending

them.

Chapter 8 presents our experiences with integrating data cartridges into OracJe9i and summarises

the findings of the thesis . The chapter concludes with suggestions for future work.

5

Chapter 2:Extensibility in databases

Before extensibility in ORDBMS can be explored, it is important to understand the

unique requirements expected from ORDBMS. This chapter presents a review of the

extensibility mechanisms in ORDBMS, and introduces the themes that recur throughout

this thesis. It explores the functionality offered by the extensibility features in Informix

and Oracle databases and concludes with an informal discussion of the strengths and

limitations of extensibility mechanisms in these two databases.

2.1 The need for extensibility

The advent of complex and unstructured data applications such as multimedia applications, have

intensified the challenges faced by the DBMS. Unlike structured data, unstructured data are often

very large, cannot be decomposed into simple, standard components and thus require adroit

techniques to efficiently manage and access . As mentioned in chapter I, conventional RDBMS

store the pointers to this complex data inside the database, while the actual data is stored outside the

database, in operating system files [RAGa 0). Alternatively, data could also be stored inside the

database as undifferentiated Binary Large Objects (BLOB). This simplified solution however, does

not serve all the application requirements because BLOB contents are not interpretable by the

DBMS.

Major DBMS vendors have integrated independent software components to manage complex

application requirements and enhance the DBMS with additional capabilities. Notwithstanding the

good, interim solutions offered by these components, it is only obvious that they cannot act as a

panacea for all the required functionality. The revolution in information technology is continually

increasing the complexity of data, and hence demanding sophisticated models to handle these data.

It is thus essential for the DBMS to provide ways for users to extend it with new capabilities.

The impetus to extensibility is to add new functiona lity to the DBMS with user-defined data types

and functions. In this way, the database can be tailored to the needs of specific application domains.

The extensible architecture thus diminishes the need to develop large DBMS with multitudes of

data types that attempts to keep up with new demands of complex data applications. It also

6

increases the potential of building useful applications since the added functionality is built around

specific application requirements.

2.2 Object-Relational features

Research exploring database extensibility has been active since the mid eighties [CAR87], where

efforts such as [ST086] extended the database with user-defined data types and query optimisation

techniques for columns and operators in a relational database system. In defining what an extensible

DBMS is and the functionality that it should provide, a number of researchers used the two-by-two

matrix proposed in [ST096] and depicted in Figure 2 - 1, to classify applications according to the

complexity oftheir data and the query capabilities they require from the system. Although this

classification assumes only two discrete possibilities for each group (i.e. data is either simple or

complex, and applications either require query capabilities or they do not), it captures the essence of

the different applications requirements available today. The growing consensus ofwhat an

ORDBMS should provide in the database field is derived from the top right comer of this

classification, and, has even been used in the design of ORDBMS benchmarks such as Bucky

[CWN+97] and BORD [LKKOO]. According to [ST096], the four main characteristics of an

extensible DBMS, which are also used to explore the level of object-relational support offered by

Infonnix and Oracle database in this chapter, are:

}> An extensible base type system

}> Complex object support

}> Inheritance

» A rule system

Query e.g. emp - e.g. video
dept relations applications

e.g. text e.g. c++
processmg applications

No Query

Simple data Complex data

Figure 2 - 1: A classification of data applications

7

2.2.1. An extensible type system

Each DBMS comes with a set of built-in data types such as integers and strings that specify the

internal representations of the different kinds of data stored in the database. As already explained,

these data types are not appropriate for all kinds of applications. Thus, ORDBMSs allow new base

types to be defined as opaque types. Opaque types are defined in external languages such as Java or

C, and their implementation is hidden in routines so that database users will not know what they

look like. Access to base types is controlled by these routines, to prevent the type from being

corrupted accidentally. For each distinct opaque type, the type definition specifies its view to the

database using characteristics such as the storage format, constraints and valid range of data.

Since base types are semantically different from the built-in data types, they cannot, in general, be

manipulated with built-in functions and operators (such as + and -). Extensible databases should

therefore allow each base type to have its own defined behaviour that captures the individual

semantics of specific base types. The database must also allow the internal representations of the

data type to be encapsulated in the application so that it can be changed without affecting the entire

operation ofthe DBMS. The DBMS must also provide integration mechanisms required to allow

base types to be exported from the definition routines to the database.

Other required functionality that a DBMS should provide in terms of an extensible type system

includes:

o No limitations on the number of base data types and functions

o Security mechanisms to prevent user-defined functions from corrupting the database

o Flexible methods of adding and dropping types and functions

o Ability to use the data types in both the client and server environment

o Seamless integration of user-defined types and functions so that they are used in the same

way as built-in types and functions.

2.2.2. Complex data types

Complex types are constructed from source types such as build-in types or from other user-defined

data types (UDTs). Complex types have attributes that hold the state information of the object, and

methods, which implement the operations on the object type. Unlike base types, complex types are

8

implemented in a transparent manner, which means database users can view their implementation

details. Complex types are defined as collection types or row types, where collection types group a

set of values ofa single data type in a single column, and the row types take a group of varying data

types to store it as a single column. Each row type is declared by specifying a unique name for the

type being defined, along with its unique attributes and their corresponding data types. Collection

types on the other hand are declared using data type names only. As an example, a row type may be

defined as:

CREATE ROW TYPE r ow t (col l INTEGER , co12 VARCHAR(30» ;

and a collection type may be created as:

CREATE TYP E col t AS VARRAY(13) Of row_t ;

Each attribute in the complex type is stored using a known data type, and thus assumes the

operations and functions ofthat data type. As such, all the valid operations of the defining type are

also valid on the attributes of the same type in the complex type. However, methods that implement

the operations on the complex type as a single entity still need to be defined. These methods are

functions or stored procedures, which may be written in a language external to the database such as

C or Java.

Some of the required characteristics of a DBMS that supports complex types include:

o Definition of type constructors - the system should either automatically assign a constructor

method or allow the user to define one for each object type created

o Sets to allow objects to be compared using traditional set methods

o Arrays to allow users to store and access items at particular offsets

o Nested tables

o References to allow pointers to row objects to model association among objects and hence

reduce the need to use foreign keys

2.2.3. Inheritance

Inheritance is another necessary characteristic for extensibility in databases. Inheritance defines a

type of type hierarchies so that subtypes can be derived from supertypes previously defined. In

9

some databases, such as Oracle, a supertype should be declared using the keyword NOT FINAL in

order to permit subtypes or NOT INSTANTIABLE to prevent them from being instantiated. Types are

declared FINAL by default, which implies that they cannot have subtypes.

A subtype must not be allowed to be entirely different from its supertype. It is therefore necessary

that the inheritance link between the subtype and supertypes is maintained throughout the

inheritance hierarchy, so that any changes made on the supertype is also reflected on the subtype,

unless the subtype is re-implemented. To support inheritance, the DBMS must have capabilities to:

o add attributes that are not found in the supertype

o add new methods that are not found in the supertype

o allow method overloading

o allows subtype methods to override supertype methods

o provide security restrictions to ensure that the inheritance relationship is maintained.

2.2.4. Rules and triggers

The DBMS must allow the following features to support rules and triggers:

o Events and actions - Rules and triggers are used to ensure the consistency of the database.

Rules must provide the capability to execute a task just before or just after an event has

occurred, while triggers must support update, insert and delete queries as necessary.

o Integration of rules with inheritance and type extension

o Rich execution semantic for rules to support different kinds of actions

2.3 Extensibility in Informix

Informix has been one of the leading ORDBMS since its acquisition of the Illustra Server in 1996

[INF97]. Described as one of the most extensible databases [KOR99] [WEK99], Informix database

offers the DataBiade extension to provide an API that supports a wide range of object-relational

capabilities. A DataBlade Module is thought of as a software component that can be plugged into

the database to extend the server's functionality with new data types and their methods [INFOl].

DataBlade modules are completely integrated with the server, but can contain components that are

10

executed from the client side. Once a DataBlade module is built and plugged into the database

server, it is used at par with built-in server components. This section discusses the four main

extensibility components ofthe DataBlade Module API that can be enhanced to enhance Informix

database with new functionality.

2.3.1 User-defined types

There are three varieties of user-defined types in Informix, namely [INF97]:

• Distinct, which inherit their physical characteristics from existing types but can have

different behaviours. These types are usually used to tailor and give more meaning to the

application data type. For example, the definition of the Rand currency may be given as:

CREATE DISTINCT TYPE r and AS MONEY;

• Row data types, which stores a group of built-in data types into a single data type. Row

data types are used for data types whose individual fields require exclusive access. As an

example, a data type, student, may be created as :

CREATE ROW TYPE STUDENT (student_number INTEGER, name CHAR(40),

pho ne CHAR(15»;

• OPAQUE data types, which are structures (for example, C structures) used to create

indivisible objects whose actual structures are not transparent to the user. These data types

are used for large objects and objects whose representation should be hidden from users.

Each definition of an opaque type specifies the appearance ofthe data type (how it is

displayed to the user), its internal representation (how it is stored in the database), and its

standard functions (how the DBMS applies the standard SQL functions and internal

functions to the stored data type).

In addition, Informix supports single inheritance among named row types. Tables based on row

types can also become typed tables, and thus are part of the inheritance hierarchy.

II

2.3.2 User-defined functions

User-defined functions (UDFs) in Informix are used to define and implement routines, aggregates,

casts, errors and user-defined interfaces [JNF98]. The definitions specify the function name, the

input and output parameters, and particulars of how it might be activated. The implementation on

the other hand, specifies the actual operations of the function, and may be done using SQL, Stored

Procedure Language, C, C++ or Java. UDF can be called in SQL statements from any place where

built-in functions can be called.

2.3.3 Extensible indexing

Indexing methods in Informix are called access methods [KOROO)[JNFO I]. An access method

consists of a collection of purpose junctions, which are routines used to perform indexing tasks

such as inserting, updating and fetching data from the index. The access method can either be a

primary access method or the secondary access method. Primary access methods are developed

using a Virtual Table Interface (VTI), which is an extension to the DataBlade API, and are used to

manage external data as if it were stored inside the database. Secondary access methods on the other

hand, manage index data and are used to add new access methods to the database. These methods

consist of functions that the Informix Database Server calls to perform several index definition tasks

including creating, opening, scanning, closing, and dropping the index, and index maintaining

routines such as inserting, updating, and deleting index entries. The access method is created using

the following two steps:

• Define and code functions that implement the operations that are eventually associated with

the purpose functions. As an example, a method to create the index may be defined as:

crea e function i dx create (pointer)

returns in t

external name

'$IDXDIRj idx_demo.bld (ix_create) ,

language C;

The external name variable refers to the location and name of the library with the implementation

code for the function. This library, called idx_ demo. bId in this example, has a corresponding

function called ix create.

12

• Bind all purpose functions to their corresponding access tasks such as:

create s eco ndary a c c e s s me tho d i dx a m

a m create

am i n s ert

am_ spt yp e=' S I) i

ix_ cre ate.

ix_ ins e r t ,

The index is now ready for use. When a statement of the form "create ind e x .. . u sing

idx_am" is issued to the database, the server automatically executes the idx_ c r eat e UDF that is

registered for the a m c r eate task.

2.3.4 Extensible optimiser

Built-in data types have built-in relative cost functions and statistics routines, which are used to

calculate the cost and selectivity of executing built-in functions. For user-defined functions

however, user-defined relative cost functions and user-defined statistics can be defined. The relative

function costs is used to determine the order of processing the WHERE clause in a SELECT statement,

while the selectivity function is used to determine the number ofrows that might be returned by a

function , given the arguments. The routines with a lowest cost are performed first , and the most

expensive routines are performed last. In general , the cost of the routine is computed using the

formula [INFO I]:

Li nes o f c o de + (I/O operations * 10 0) ,

while selectivity is determined by computing the statistics on the data columns. However, optimiser

can only be extended for user-defined functions coded in C.

Informix Database Server also allows user-defined commutator and negator functions to be defined.

Commutator and negator functions are executed when the commutation or negation of the query is

much faster to execute than the original function. Commutator functions return the same results as

the original function , with arguments in the reverse order, while negator functions return the

opposite results with arguments in the same order.

13

2.4 Extensibility in Oracle

The data cartridge mechanism is Oracle database's main mechanism for extending its capabilities

[GIE02a). With data cartridges, the existing database functionality can be extended with new

functionality, by allowing new data types and their methods to be added to the database. The other

features that can be extended include the indexing system and the query optimiser as shown in

Figure 2 - 2 below.

Oracle9i Universal
Data Server

Type
System

Data Cartridge

Extensibility Interfaces

Server
Execution

Query
Processing

Database and Extensibility Services

Data
Indexing

Figure 2 - 2 : Oracle data cartridge services (Based on Figure 1 - 1 [GIE02af)

The main characteristics of data cartridges are the following [GIE02a):

> Data cartridges are server-based

The main cartridge components, such as the data types and their functions, are stored in the server.

Although other additional components, such as external libraries and other resources can be stored

outside the database server, they are primarily accessed from the server, where they are dispatched

as external routines.

> Data cartridges extend the server

The new data types and their methods introduced by the data cartridge are previously unavailable in

the server, and hence extend the server capabilities. User-defined functions can also be directly

added to the general database machinery, extending the capabilities of the overall database.

14

:;. Data cartridges are integrated with the server

Once new data types and methods are defined and loaded into the server, they can be used at par

with built-in data types and functions. New data types and functions are also integrated within the

server engine, so that the server mechanisms such as the query optimiser and the indexer can

recognise and respond to the new extensions in the same way it responds to built-in data types.

> Data cartridges are packed

Data cartridges can be packed as a unit, which can easily be installed in the database. Packing data

cartridges as a unit ensures that the necessary cartridge components are installed in the database

under the same schema and with the necessary privileges. It also ensures consistency among the

cartridge components in different databases.

The rest of this section briefly summarises the standard Oracle server services that can be extended

by the data cartridge developer to enhance the capabilities of the database.

2.4.1 Extensible type system

Apart from the standard SQL data types such as integers and dates, Oracle also offers support for

additional data types such as collections (V ARRAY and nested tables), internal objects (BLOB,

CLOB), References, external files (BFILE) and user-defined object types [GIT02]. The extensible

type system is the gist behind adding new user-defined object types to the database, which are

primarily defined using built-in data types and other user-defined objects previously defined. An

object type must have at least one attribute and can have methods that are used to manipulate the

object. The attribute specifies the name of the attribute and its type. The following example

illustrates how a new type is created in Oracle:

CREATE TY PE Student AS OB,TECT

StudentNumber NUMBER,

name VARCHAR2 (30),

MEMBER FUNCTION reg i ste"istud IN Student) RETURN NUMBER,

MAP MEMBER FUNCTION S udentTolnt RETURN Integer

) ;

15

The Student object declared above contains an attribute StudentNumber of type NUMBER and the

attribute name of type VARCHAR2, which holds variable characters. In addition, it has two methods

declared as MEMBER functions.

2.4.2 Extensible server execution environment

The components of the data cartridge may be developed using PLlSQL, Java or C. This offers two

main advantages. Firstly, it offers flexibility in the language that can be used to develop the

components. Secondly, it fosters code reuse as other applications that are not integrated with the

database can use the same code. Oracle's PLlSQL and Java are both interpreted languages, and thus

safely run in the database as the DBMS ensures that each statement is safe before executing it, at

the cost of restricting the power of the language. C on the other hand is compiled, and is not

considered safe to run in the database. As a result, code written in C is implemented as external

routines, which run outside the database's server space. This insulates the server's functionality

from program failures resulting from C routines . However, external routines incur a dispatch

overhead because they are executed outside the database.

2.4.3 Extensible indexing

Oracle has standard indexing methods such as text indexes, B-trees and Hash indexes. Oracle

cannot handle index values derived from user-defined data types and their operations, and do not

permit indexing column with LOB values. For data that require complex indexing techniques, the

user must define and implement the new access method in the database. Oracle provides an

extensible indexing API called Oracle Data Cartridge Interface Indexing (ODCIIndex) , which

allows user-defined indexes to operate in the same way as built-in indexes. The index can either be

stored inside the database as a database table, or outside the database as an external file . Regardless

of how it is stored, the user must define all the necessary indexing functions such as how the index

will be searched during query processing and how it should be maintained when new content are

inserted and during update operations.

Oracle also offers function-based indexes, which are used to improve performance on

computational intensive query expressions. The query expressions can be computed once and stored

in an index so that when access to the expression is required again, the values are already computed.

16

Function-based indexes can also be used to build indexes on object type columns and object

references, which standard Oracle indexing techniques cannot do.

2.4.4 Extensible optimiser

The optimiser determines the efficient way to process a statement. The choices available to the

query optimiser are also maximised in Oracle with the introduction of user-defined functions (UDF)

and new access methods. Oracle provides an interface called Oracle Data Cartridge Interface

Statistics (ODCIStats), which is used to extend the optimiser with user-defined selectivity and cost

functions. The optimiser considers the objects and conditions specified in the statement to process a

query, and thus require the knowledge of the defined functionality so that it can use it appropriately.

Optimising queries involves enumerating all the possible plans for evaluating the statements and

estimating the cost of each enumerated plan so that the plan with the least estimated cost can be

chosen. As such, statistics that quantify the data cost of accessing database objects such as tables,

columns, indexes and partitions must first be generated. Statistics are collected using the system

provided DBMS_STATS package. To optimise queries, Oracle stipulates that the optimiser must

evaluate the query expressions and conditions and transform the expressions into equivalent join

statements if necessary. The optimiser then chooses the cost-based or rule-based approach and

determines the goals of the optimisation i.e. whether the statement is optimised for best throughput

or for best response time. Depending on the goal, the optimiser then uses the collected statistics to

calculate the selectivity of predicates, estimate the cost of each execution plan and choose the path

with the least associated cost to execute the statement.

Although it is not mandatory to extend all the data cartridge extensibility services described in this

section, a data cartridge should, at minimum, define a single object type. If the extensible

component only defines new functionality without the definition of new data types, Oracle

recommends the development of stored procedures packed as database packages instead.

17

2.5 Conclusions

DBMS extensibility addresses the need for extending the database with new functionality. Both

Informix and Oracle database successfully present some degree of extensibility, and are therefore

potential databases for the integration of additional retrieval techniques. This chapter discussed the

features ofInformix and Oracle databases that can be extended to provide extensibility in four key

areas: user-defined data types, user-defined functions, index structures and the query optimisation

techniques, to meet the extensibility requirements discussed in [ST096].

In addition to the discussed features, Oracle and Informix databases also support extensions not

discussed in this chapter, including additional languages for writing database extensions and server

procedures (PLlSQL for Oracle and SPL for Informix), enhanced support for large objects and

support for access to external data. Oracle provides data cartridges as the extension packages that

allow user-defined functionality to be packaged while Informix offers datablades. All these features

are essential to enable ORDBMS to support a broader class of application requirements.

The extensibility provided by these two databases reduces the need to process complex data in

client application environments. Server-centric processing promotes code reuse, as most of the code

is stored in the DBMS server and can be shared among all applications accessing the database.

When extending database components, the actual functional implementations are decoupled from

the code interfaces, allowing the functional implementation to change without affecting the entire

database application. Extensibility mechanisms in these two databases therefore accrue the benefits

of modularity.

The number of object-oriented and relational features provided by both Oracle and Informix is

comparable. One of the differences between the two systems, however, is at the level of integration

with C functions . Informix datablades are more tightly integrated into the DBMS in comparison to

data cartridges. C functions are compiled and executed inside the database server space in Informix,

although some common language features are only used within certain limitations because their

implementation uses programming techniques that are not permitted in server-based routines. In

Oracle, C functions are stored as external procedures, and although called from the server, they

have to be dispatched and executed in an external address space. A main drawback of running

external routines outside the database is that, external routines are not covered by the DBMS's

support for concurrency and recovery. If the code is defective however, it does not crash the server.

18

With Infonnix DataBlades, flawed code may block other users, returning incorrect results or even in

extreme cases, bringing down the server.

Objects in these databases are still stored in tables, although in cases where data does not neatly fit

into tables such as BLOBs, only a locator to the actual data may be stored in a table. Just like

classes in object-oriented programming, objects similar in behaviour and attributes, are stored under

one type. Declaring an object type does not allocate storage, so, object types must be instantiated to

create object instances. The concept of types, sllpertypes and sub types allow for inheritance and

impose the abstraction for types just like classes in object-oriented programming. Intrinsically,

objects are represented as a collection of other objects, which ultimately when followed to the super

class object, ends up in a set of simple attributes stored in tables. Thus, the concept of an object type

in these databases is realised by nesting tables within other tables.

19

Chapter 3:Test domain

This chapter describes content-based image retrieval as a test domain for database

extensibility. Its discussion is aimed at providing a framework that is sufficient to

explore the integration of content-based image retrieval techniques into database

systems. A summary of the general approaches to content-based image retrieval

proposed in the literature is provided. The level of support offered by content-based

image retrieval extensions in Informix and Oracle9i is also explored using a common

example. The chapter concludes with a highlight of the limitations of content-based

image retrieval.

3.1 Introduction

In this thesis, database extensibility is investigated by exploring mechanisms that integrate content

based image retrieval techniques into the DBMS. In traditional RDBMSs, multimedia data such as

images are stored using a Binary Large Object (BLOB), along with textual tags that identify and

describe the relevant contents of the data. The database is oblivious to the actual BLOB content,

which is usually accessed by using the textual tags. Any BLOB processing is done in the program

application environments such as C++ or Visual Basic. Due to the many problems with this

approach, current database systems moved a step further from mere BLOB storage, by providing

components that offer multimedia data processing.

Using textual tags to retrieve images from large databases has several drawbacks. Apart from the

basic image attributes such as the width and height of the image, textual tags are usually added

manually by the annotator, as images do not come with accompanying textual information that

describe the content of the image. The annotation process thus does not only become cumbersome

and time consuming for large, heterogeneous image databases, but can also be very subjective, and

limited to the vocabulary of the annotator. In databases with complex image patterns, it is

sometimes extremely difficult to capture the meaning of images using keywords. This complicates

image querying, often resulting in keyword mismatches, especially when the database users are

from various domains of expertise.

20

Another alternative approach to image retrieval is by browsing the database manually. Browsing

allows images to be viewed one by one, increasing the likelihood of finding the required images

from the database. Browsing is, however time consuming for large databases. Recent image

retrieval techniques focus on techniques that attempt to provide content-based access to images.

Content-based image retrieval uses features that are automatically derived from the images

themselves, to compare and match images for similarity.

The aIm of a content-based image retrieval system (CBIRS) is to mImIC human recognition

capabilities when searching for a desired image in a large and varied collection. Various research

fields, including computer vision and pattern recognition, have combined in search of more

effective techniques that make image collections easier to search. The extent to which this

collaboration is currently being realised in various image retrieval technologies is discussed in this

chapter, using a demonstration of the functionality supported by image retrieval extensions in

database systems. In particular, the chapter demonstrates how image retrieval applications can be

built in Informix and Oracle9i using database-specific extensions. It highlights the functionality

offered by these extensions using a common example, and gives a summary of the limitations of

these image retrieval extensions. The chapter then concludes with comments on the state-of-the art

image retrieval techniques.

3.2 Content-based image retrieval model

Assuming a large number of images stored in the database, the main problem that content-based

image retrieval seeks to solve is as follows: "Given a query image, retrieve a set of images from the

database that are most similar to the query image". Several approaches have been proposed to

solve this problem. In general, these approaches all seek to:

• Identify the features that capture similarity between images

• Isolate and extract these features from the image

• Efficiently index the features to facilitate fast retrieval

• Compare and match stored features with query features

• Compute and determine image similarity

Content-based image retrieval systems define methods for defining and computing similarity in

images. This is better explained using the following general concept of image retrieval :

21

Assume I = (II '/2, h In) is a database containing n images. Each database image Ii must be

associated with a feature vector fi that captures the meaning of the contents of the image. If A is the

algorithm for extracting the feature description of the database image Ii, then the mapping from the

image data to the feature vector is described as:

A:I-+J

Given a query image I q, the aim is to retrieve images from the database that are most similar to I q.

To solve this problem, the image Iq is also mapped to a corresponding feature vector j'q using A. The

retrieval systems then determines the similarity between the two images Ii andIq by computing the

matching function dif;,Jq), which is a distance measure between the feature vectorsfi and f q. A

similarity threshold, which can be tuned to achieve the different levels of similarity, can also be

specified.

The image retrieval strategy explained above is depicted Figure 3 - 1.

C~
FebiinWeigts

Retriel'ei
image,

J==:>!lm.age
Database

Figure 3 - 1 : The retrieval strategy of a standard content-based image retrieval system

22

3.3 Approaches to image retrieval

Different approaches have been developed to implement the retrieval strategy of a content-based

image retrieval system. This section provides some of the methods used in feature extraction,

indexing structures and similarity computations.

3.3.1 Feature extraction

The features that describe the content in images are chosen in such a way that they capture the

desired similarity between the images, so that images that differ slightly correspond to a much more

similar representation than images that are completely different. Features are automatically

extracted from the image itself, and are stored in a feature vector. Some of the commonly used

features are:

:» Colour with/without spatial constraints - Literature describes several colour extraction

approaches [SMC96] [RCH99], but most are a variation capturing the content of different

colours within an image and constructing a representation technique that captures this

distribution. A comprehensive review of representative colour feature extraction methods

and their implications can be found in [RCH99], while some representative studies of colour

spaces and colour perception can are found in [WY A97].

}> Texture - Texture is another feature that can represent the content of an image. Texture

describes the low-level arrangement of structures that hold a common homogenous content

such as graininess, coarseness or smoothness. A variety of texture-based techniques

calculate the relative grey levels in pairs of pixels from each image, which are used to

determine certain textures features such as coarseness and roughness. A study of texture

features is found in [TMY78].

);> Shape - Various schemes for shape-based features have been proposed in literature, but

[MKL97] categorised them as information preserving (or unambiguous) and non

information preserving (or ambiguous) depending on their ability to reconstruct the

approximate shape from the extracted features. In general, shape segmentation techniques

are applied to database images to represent shapes using either boundary-based or region

based shapes. Boundary-based shapes consider the extreme borderline of the shape, whi le

23

the region-based shape considers the whole region covered by the shape. A discussion on

shape features is given in [MKL97].

> Combination of Colour, Texture, Shape and other features - A number of image

retrieval systems extract mUltiple features to describe the content in images. Some of the

most popular retrieval systems that use multiple features include Query by Image Content

(QBIC) which extracts colour and texture features [FS95), BlobWORLD which extracts

colour, texture and spatial information [CTB+99) and MARS which uses colour, texture,

shape and spatial location features [POM99) . Other features found in literature include

spatial and topological relationships, semantic associations such as aggregation and

generalisation and pattern recognition methods summarised in [AKJ02) and [RCH99].

3.3.2 Similarity computations

To determine the degree of similarity between a query and a set of database images, the features of

the query image must also be analysed and extracted. Similarity between the images is then

determined by matching the features of the query image against the features of the images in the

database. This similarity is usually determined using a similarity measure, which is a matching

function that computes the distance between the extracted features (also called signatures) ofthe

query and comparison image. The simi larity measure should be a metric with properties such as

symmetry, transitivity and linearity.

The distance similarity measures used depend on the features extracted from the image. As an

example, some of the image similarity measures used to compare images for colour similarity

include the LI-Distance, which calculates the sum of the absolute value of differences in colour

histograms, the L2-Distance, which compares the sum of squared differences of the colour

histograms, and the Quadratic Distance Metric, which assumes that the perpetual distance between

two points in the feature space corresponds to the Euclidean metric. The LI-Distance, commonly

for the query image q and the database image 1 is computed using the formula:

D(q ,i) = ~n I Hq _Hi I
color ~j=1 } J,

where Hj is the j th bin in the histogram.

24

The Euclidean Distance between the query image and the ith image on the other hand is calculated

as:

D(q,i) = ",n ~(Hq _ Hi)2
color L...j= l) }

Using the above distance measures, the distance between two identical images is zero (0). More

similar images have smaller values ofthe distance measure, while less similar images have bigger

values. To find the similarity between the query and all images in the database, the distance

measure must be applied between the query and all the images in the database. Distance values can

then be ranked in increasing order of importance so that more relevant images appear earlier than

less irrelevant images in the result set.

3.3.3 Feature indexing

The features extracted from the image are stored as points in a multidimensional feature space. For

smaller databases, image similarity can be computed by sequentially comparing the feature vector

of the query image to the feature vectors of all images stored in the database. Sequential access,

however, becomes time consuming as the number of dimensions and the size of the database

increases, requiring efficient methods to index and facilitate access to data. Typical access

structures used to support this indexing are known as spatial access methods and metric trees, and

include SS-tree [WHJ96] [FUT99], R-trees [GAG98], SR-trees [KAS97] and M-trees [CPZ97].

These access structures however, have exponential time and space complexity as the number of

dimensions increases, making them almost similar to scanning the database sequentially.

Multidimensional indexing is therefore still a major problem today.

In general, efficient indexing structures also depend on the features extracted from images.

Retrieval systems that use multiple features require a separate indexing structure for each feature,

such as colour and shape, to be built. Using this approach, however, does not sufficiently support

queries involving composite features such as queries that require both shape and texture features

simultaneously. These queries are therefore processed using a hierarchical approach, where each

feature is applied against the appropriate index and the similarity function is determined for each

feature. The results of individual feature types are then merged to answer the query.

25

3.4 Content-based image retrieval in ORDBMS

Image retrieval functionality is supported to varying degrees in commercial ORDBMS. To

demonstrate some of the functionality offered by these components, a simple student application

requiring content-based access to identify the student and retrieve particular student details (such as

student number, student name, course and current year of study) is used. This application is stored

using a single table shown in Figure 3 - 2 below:

Students

PK StudentNymb~[SHORT

StudentName CHAR(50)
Course CHAR(50)
StudentPhoto LONGBINARY
PhotoSignature LONGBINARY

Figure 3 - 2 : Representation of the student table

It is the implementation and level of support offered over the StudentPhoto and PhotoSignature

columns that are of particular interest in this section. While all the other columns can be stored

using common data types, the Student Photo and PhotoSignature columns (implemented as

LONGBINARY types in Figure 3 - 2) require a product specific data type in each database. The

following two sections describe implementation of the application in Informix and Oracle9i.

3.4.1 Informix Excalibur image retrieval DataBlade

Informix has several datablade modules to manage digital content. Available datablades include

modules for indexing and searching text information, for managing geospatial information, for the

management of time series and temporal data and for storing and managing image information. The

Excalibur Image DataBlade [INF99] and the Image Foundation DataBlade [INFOO] are the two

DataBlade modules used to manage images in Informix. In addition to storing and providing basic

access to images, the Image Foundation DataBlade module has functions to convert data among

several image formats using industry-standard CVT command functions. Image Foundation also

supports image transfonnation operations such as scaling, cropping, rotation and selection of

particular regions of interest from the image.

26

Content-based search in Infonnix is provided by Excalibur's Image retrieval module. Image

retrieval is perfonned based on colour, shape and texture attributes. The contents of the Excalibur

Image DataBlade Module are shown in Figure 3 - 3.

E ""aliIur Image DataDlade MIl du].,

DataT_ II SQL Furetions

Image d.escnpbr eaiul£! ExirCl:!tor FiJ.:t'Ction;

rse~~'1 m;,ge 110 ani
and bcation - Color oord:en t Unction in='puJ.tion = tines

- Shape content: - madlwrite
- TexilnE! content - typelromut

I Fea.1w2 Vectcns I
- Bugldress oordent OOrt\lelS D n;
- Colors buc\ure - sc~
- Aspect lation

'l¥ I

Figure 3 - 3 : Excalibur Image DataDlade (Based 011 Figure 1 - 2 [INF99/)

Assuming Infonnix Dynamic Server with Universal Server Option is installed with the Infonnix

Large Object Locator DataBlade Module and Excalibur Visual Retrievalware DataBlade product,

the steps to create, store and retrieve supported raster image fonnats in the database according to

Figure 3 - 2 are:

1. Create the table for storing the images.

CREATE TABLE student s

StudentNumbe r NUMBER PRIMARY KEY NOT NULL,

Stude ntName VARCHAil (50) NOT NULL,

Course VARCP-AR (50) NOT NULL,

Stude ntPhoto IFDIMGDESC NOT NULL,

PhotoSignature IFDFEATVECT

) ;

The Studentphoto is of type IfdlmgDesc, which is used to store image attributes including the

location, the fonnat, pixel type, pixel width and height, and other image-relevant parameters in

Infonnix. The PhotoSignature is assigned to the IfdFeatVect type, which stores the signature as

a combined feature vector and is used to perfonn content-based search.

27

2. Insert a record into the table.

INSERT INTO STUDENTS (ScudentNumber, StudentName , Co urse,

StudentPho t o) VALUES

(601 176 0 , 'Kandeshi ' , ' Doctor',Ifd lmgDes c FromFi le (' /imagedirectory/ka

ndeshi. g if ')) ;

Note that the PhotoSignature field holds a NULL value.

3. Populate the signature by extracting feature vectors from the inserted image.

UPDATE Students

SET phocosignature = GetFea c ureVector (student pho t o)

WHERE s tudent numbe r =6011 760 ;

The Ge tFeatureVe ctor function computes the image signature by extracting the following six

features:

• Colour content, that captures the colour and its location in an image

• Shape content, which measures the relative orientation, curvature and contrast of

lines within an image

• Texture, which measures the flow and roughness of an image

• Brightness structure, which measures the brightness at each point in the image

• Colour structure, which measures the hue, saturation and brightness of the image

and

• Aspect Ratio, which is a measure of width to height in an image

The signature returned by the GetFe ature Vector function is then used to store the signature into

the PhotoSignature column.

If several image records were inserted as shown in step 2, mUltiple image signatures can be inserted

by setting the WHERE clause as:

WHERE phocos ignatu re IS NULL;

28

4. Search the database for images similar to the image inserted in step 2.

SELECT c.studentname, RANK

FROM s tudent s c , students q

WHERE

q. s tuden tnumbe r = 60117 60

AND

RESEMBLES (c .pho cos i gnatu re, q . phot osignature, 0. 7 0 ,1 ,1,1 ,0 ,0,0,

r ank #REAL)

ORDER BY RANK;

The RESEMBLES function is of particular interest in this discussion because it performs content

based image retrieval. The function accepts the following arguments:

'r The signature of the comparison image

> The signature of the query image

;" The threshold parameter, which must be a real number between 0 and 1. Only images

that are above the threshold are considered similar to the query. Images with the

simi larity score less than the threshold value are therefore not included in the answer set.

~ A set of the features weights used in matching. The cumulative sum of weights should

not exceed 100. Features that do not contribute to the final resemblance score should be

set to O.

> An output variable that holds the final matching score

The above statement compares a query image (q) with the comparison image (c) already stored in

the database. Since a threshold of 0.7 is specified, only images with a match score above 0.7 are

returned as an answer to the query.

3.4.2 Oracle image data cartridge

Oracle has a single integral feature that can be used to store and manage media-rich content in the

database. This feature, called interMedia, is designed to manage specific multimedia data

applications including geographic location information, images, audio and video in an integrated

marmer with other standard data types [W AROI J. The services provided by interMedia include the

ability to store, manage and retrieve data. interMedia also supports web technologies and

annotation services for multimedia data.

29

interMedia provides various object types to manage different data types. One such data type is

Ordlmage, which supports the storage, management and retrieval of image data. Ordlmage data type

has an associated OrdlmageSignature type, which supports content-based image retrieval based on

colour, shape, texture and location. Colour captures the distributions of colours in the image

regardless of the location, but can be used in conjunction with location to capture the spatial

distributions of colour in an image. Texture represents the low-level structures such as graininess

and smoothness, while shape represents the shapes that appear in the image as characterised by

colour-based segmentation techniques.

Provided that Oracle9i has been installed with the interMedia option, it can support the student

table of Figure 3 - 2 using the following steps:

1. Create the students table with the necessary columns.

CREATE TABLE students

StudentNumber NU~1BER PRINARY KEY NOT NULL,

NOT NULL, studentName VARCHAR(50)

Course VARCHAR (SO) NOT NULL,

Student Phot o

PhotoSignature

) ;

ORDSYS.ORDIMAGE ,

ORDsys . ORDIMAGEsIGNATURE

StudentPhoto is stored using OrdImage data type, which contains basic image attributes such as

width, height, source location and the actual image data. Photosignature is stored under

OrdImageSignature type, which stores the image signature as a combined feature vector. Since

OrdImage and OrdlmageSignature are stored under the ORDSYS schema of the database, users from

other schemas must write these data types as ORDSYs. ORDIMAGE a nd ORDsys. ORDIMAGESIGNATURE

to specify their defining schema.

2. Create a directory that contains image files and grant read rights to users.

CREATE DIRECTORY IMAGEDIRECTORY AS 'C , \PHOTOS';

GRANT READ ON DIRECTORY I MAGEDIRECTORY TO PUBLIC;

30

The above statement only works when the specified directory resides in the server system, and must

always be in capital letters. If images from external sources such as a web server are used, an http

location must be specified. External file systems can alternatively use web forms to specify the file

locations using interMedia Java classes.

3. Use PLlSQL to insert a record in the table.

DECLARE

image ORDSYS . ORDTMAGE;

signature ORDSYS. ORDlMAGESIGNATURE;

ctx RAI'i (40 00) , =NULL;

BEGIN

I NSERT INTO STUDENTS VALUES

(6011760, ' Kandeshi', 'Doctor' ,ORDSYS.ORDIMAGE.INIT() ,

ORDSYS. ORD H1AGESIGNATURE . INIT ()) ;

SELECT Studentphoto, Photos.ignature

INTO image, signatur e

FROM STUDENTS

WHERE STUDENTNUMBER = 6011760 FOR UPDATE;

image.SETSOURCE('FILE', 'I~AGEDIRECTORY', 'kauna.gif');

image.setProperties;

image. IMPORT (CTX) ;

signature.generateSignature {image) ;

UPDATE Students

SET studentphoto = image , phot.osignature = signature

WHERE studenrnumber =6011760;

COMMIT;

END;

The first INSERT command in the above code initialises the studentphoto and the

photosignature columns with empty values (which is different from the null value, since columns

initialised with empty values can be selected for update while null value columns cannot). The

SELECT FOR UPDATE statement then locks the row for the student with student number 6011760 for

update, and sets the image source location using the SETSOURCE method ofthe Ordlmage object.

Before loading the image in the database, its properties are set using the setproperties method.

31

The image is then imported into the database using the i mport method, and the image signature is

created using the generateSigna t ure method,

• The generateSignature method creates the signature of the image using region-based

signatures. Region-based signatures are found by dividing the image into regions based on

colour, texture, shape and location. Location is used to describe the exact position of the

colour, texture and shape attributes.

The signature returned from generateSignature is stored in the photoSignature column.

Finally, the students table is updated with the new values stored in the Image and Signat ure

variables.

4. Create an index on the signature to speed up retrieval.

interMedia defines an index type called ORDIMAGEINDEX, to build and maintain an index for image

data. In the following statement, an index PHOTO INDEX is created on the student s table based on

the data in the photos i gnature column.

CREATE I NDEX PHOTO I NDEX ON STlJDENTS (PHOTOS IGNATURE) INDEXTYPE IS

ORDSYS. ORDIMAGEI NDEX

PARAMETERS (' ORDIMAGE_da t a Tablespace=<tabn ame > ,

ORD I MAGE_ I ndex_Tabl espace; <intname '>') ;

The tabname argument in the PARAMETERS function is the name of the tab l espace that will contain

the actual index data, while intname is the tablespace that will contain the internal index created

on the data.

5. Perform content-based retrieval.

Assuming that the studen ts table has been populated with a number of images, a query for images

that looks similar to the student with student number 6011760 can be issued using:

SELECT c.st udentname, c . studentph oto, ORDSYS . IMGScore (12 3) SCORE

FROfoi s t udent s C I students q

WH ERE q.s t udentnumbe r = 601 7 6 0 AND

32

ORDSYS . IMGS imilar (c . photos i g natur e. q . photosignatuce,

'COLOUR ="O.211 TEXTURE=" O. ll1 SHAPE = 11 0 . 4 " LOCATI ON="O . 3 " , , 10 , 123)=

1 ;

The IMGSimilar function, which performs content-based image retrieval, accepts the foIIowing five

arguments:

>- The signature (c .photosignature) of the image to compare

>- The signature (q .pho tos i gna ture) of query image

» A string with an arbitrary combination of the features weights used in matching. The

string assigns the weight to each feature specified feature, which ranges between 0 and

1. Unlike the RESEMBLES function which requires all feature weights to be assigned,

features that are not important to the search can be ignored in the statement. The total

feature weight should add up to 1.

» The threshold parameter, which determines the relevance of images to the query. Images

with a similarity score less than or equal to the threshold value are considered relevant to

the query, and are returned as matching to the query image. The threshold value ranges

from 0 to 1 00, with a threshold of 0 returning exact matches, while a threshold of 100

returns all images in the database.

» Optional value for auxiliary operator - this value must be the same in the IMGScore and

IMGSimilar operator to indicate that the matching score returned in both operators is the

same.

The query statement compares the query image (q) and the comparison image (c) already stored in

the database to find the student number, student photo, and the similarity score of students with

photos that looks similar to the image of a student with the student number 6011760. As

demonstrated with the RESEMBLES function, the similarity measures returned by the matching

function can be easily sorted in decreasing order of importance using the ORDER BY operator on

the score attribute of the select statement, so that images more similar to the query images appear

earlier than less similar images in the matched list. Since a threshold of lOis specified, only images

with a match score less than or equal to 10 are returned.

33

3.5 Conclusions

The previous section demonstrated how an application requiring content-based retrieval of images

might be built in Oracle and Informix. The demonstration used database-specific implementations

to give a summarised comparison of the retrieval capabilities offered by the image retrieval

extensions in these two databases. Apart from the attribute and method names used by the different

databases, the functionality offered by these two database systems is comparable.

Both Informix and Oracle image retrieval extensions are able to store and provide content-based

retrieval of images from the database. Content-based searches are performed on a feature vector,

which are constructed based on colour, texture and shape information ofthe image, although

Informix has additional features such as brightness and aspect ratio. However, the effectiveness of

these retrieval extensions ultimately depends on their ability to identify the required images from

the database when required by users. In this regard, the retrieval extensions in these databases are

subject to a number of shortcomings:

• Both retrieval systems use low-level features, such as colour and texture, to find

similar images, while users usually search for high-level features, such as the

presence of a particular object.

• Similarity retrieval is based on general features. No mechanisms exist by which to

specify individual characteristics within a particular feature. It is possible, for

example, to search for images similar in colour compositions, but a search cannot be

made for objects that look like the red object in a given image. Similarly, it is

possible to search for images with similar texture, but one cannot specify that the

desired similarity be in terms of graininess.

• There is no intuitive set of weights that guarantee satisfactory retrieval. The user has

to keep tuning the weights and the retrieval threshold, to achieve different retrieval

results.

• There is also no intuitive reason given as to why particular images are returned as a

match to the query. Because there is a difference between the perception of the user

and that of the system, this makes it difficult to structure queries .

34

• These retrieval systems are not capable of automatically classifying and recognising

individual objects in the images.

The above shortcomings are, however, not unique to image retrieval extensions in Oracle and

Informix databases. Research in content-based image retrieval has, in general, mostly concentrated

on identifying low-level features that describe the contents of images, allowing users to retrieve

images based on features such as colour, texture and shape. Users, however, usually want to retrieve

images based on high-level features such as occurrences of specific events, objects and

phenomenon, rather than low-level appearances. This weakness, described as the semantic gap

drawback in [SMC96] [SAJ98] and [SAJ99], is evident in almost all CBIRS available today. The

search for high-level features requires complex knowledge and reasoning capabilities, for which

current machine technology cannot provide to a satisfactory extent. In fact, [SAJ99] argues that

CUlTent content-based retrieval features will never represent sufficient degree of similarity for high

level features. As such, the mismatch between the capabilities of the content-based technology and

the needs of the users is not likely to be resolved in the near future, exemplifying the need for

extensible databases to integrate improved retrieval mechanisms into databases as they become

available.

35

Chapter 4:A sample data cartridge: the type system

This chapter demonstrates how the data cartridge mechanism discussed in chapter 2

can be used to integrate additional retrieval techniques previously unavailable in the

database. It uses a simple colour-based image retrieval technique based on the

framework set in chapter 3 to explore the cartridge development process and identify

the challenges that must be negotiated during the data cartridge development. As seen

in the implementation, there are multiple design decisions to make when integrating the

technique, partly because the cartridge shown here can be implemented by simply

extending the relational model with additional functions. The chapter discusses the

implications of using both the cartridge and the relational implementations.

4.1 Introduction

Oracle's image retrieval functionality discussed in chapter 3 requires obj ects in images to occupy

almost the entire image space or at least to occupy the same size and position on each image, to

guarantee successful matches [W AROl]. In real life, however, a scenario where the user may desire

to retrieve images containing extraneous objects with different sizes and occupying different

positions is not uncommon. Even when images are prepared in accordance with the criteria that

claim to guarantee successful matches, the user might still want to query the image with new

retrieval requirements, such as retrieving images based on specific colour compositions. Chapter 3

revealed that Oracle's image retrieval support does not have provisions for specifying the colour

compositions in this manner. As noted in chapter 2, however, extensibility capabilities can be

leveraged to integrate new retrieval mechanisms in databases. This chapter makes use of this

extensibility to demonstrate how the support required in specifying the colour compositions of the

retrieval scenario described above may be achieved.

The prototype data cartridge implemented in this chapter is called the colour-based image retrieval

cartridge (CBIRC). In addition to giving the guidelines on how to integrate a content-based image

retrieval cartridge in Oracle, the chapter also reports on the implications of the choices made to

integrate the cartridge. Even though the chosen retrieval scenario has sufficient data representation

to demonstrate the integration of a complex retrieval setting, it exhibits a high degree of simplicity

36

so that it can easily be implemented as an extension to the relational model. The chapter thus,

demonstrates how the implementation of the same scenario can be achieved under the relational

model, drawing attention to the relevant relational issues, such as stored procedures, which are used

to attain equivalent retrieval. The implementations discussed in this chapter cover the existing

development tools and coding tasks available to the data cartridge developer as outlined in

[GIE02aj to explore the suitability of the data cartridge in integrating new retrieval techniques.

4.2 Objectives

The aim of CBIRC is to retrieve images with particular colour compositions. In this context, the

cartridge is able to answer questions such as "retrieve all images that contains blue and black

colours" and "retrieve images that are mostly blue". The data cartridge can also be used to retrieve

images that have similar colours to the query image, and thus have the ability to answer queries

such as "retrieve all images that have the following colour compositions". When any query of the

above nature is issued, the cartridge retrieves all the images that satisfy the specified query

condition. The results of the query can then be sorted, so that images are retrieved in a decreasing

order of relevance, with the images more relevant to the query appearing earlier in the query

answer.

As noted earlier, the objective of building the CBIRC is to demonstrate how the data cartridge

construct may be used to integrate additional retrieval techniques in Oracle using existing tools . In

this context, the coverage of the implementation discussed in this chapter encompasses the steps

available to the data cartridge developer from the development to the deployment process as

explained in chapter 2 and the data cartridge developer's guide [GIE02aj. Section 3 of this chapter

briefly discusses the architecture of the cartridge using the retrieval framework set in chapter 3. In

section 4, a step-by-step implementation of the CBIRC is given. Section 5 demonstrates how

equivalent functionality to CBIRC capabilities can be achieved under the relational model. Finally,

section 6 describes the issues that must be addressed during data cartridge development and

concludes with an evaluation of the data cartridge development process.

37

4.3 The data cartridge development process

As explained in chapter 2, the data cartridge mechanism allows the database to be extended in four

key areas: the type system, the server execution environment, the indexing structures and the query

optimiser. In general, it is not necessary to extend all these services in a data cartridge; the optimal

approach to developing and assembling the cartridge components depends on the pa11icular needs of

the application. This section describes the main tasks that are necessary to develop data cartridges.

The entire cartridge development process is depicted in Figure 4 - 1.

Extend

No

Define new
indexes

optimiser I+-__ Y"--'-'es'-----<

Cartridge definition

ObjectTypes
specification

Definition of
Access methods

Yes

Use built-in
indexes

Complex
costs?

Use built-in
optimiser

Install the
cartridge

Figure 4·1 : The data cartridge development process - (Adapted/rom Figure 2·1 [GIE02f)

38

The first step to building a data cartridge is the cartridge task definition, which requires the new

features that the new cartridge will provide for end users to be specified. Once the cartridge

specification is defined, the object types and their methods can then be described and implemented

in the database using the allowed database languages such as Java and C. Since methods written in

CIC++ are executed in an external address space, their code must first be packaged into a DLL, and

an interface that defines the interaction between the SQL statements and these methods must be

defined. This also involves specifying the path and the file name of the DLL, along with the

function name that will be used as an alias to calling the library. Since using C/C++ functions

requires tedious and exhaustive database set up, the simplified set up process is given in Appendix

D.

After implementing the objects and their methods, access methods to be used to index the cartridge

data can then be defined. Applications with simple data types (such as queries requiring numerical

range queries) do not need user-defined access methods, as they can be indexed using built-in

indexing techniques. Applications requiring complex indexing mechanisms on the other hand, can

have indexing mechanisms defined for them. Finally, the optimisation requirements are determined,

with queries requiring complex optimisation techniques using user-defined optimiser and other

queries using the built-in optimiser. The test program that uses the cartridge can then be written to

debug and test the cartridge for usability and correctness before installing the cartridge.

The cartridge components must be installed in a schema, which has the same name as the cartridge

before they can be used from the database. Like other schema objects, cartridge components are

only accessible by the owner and by users to whom specific access privileges have been granted.

Cartridge components can also be declared as globa l, which makes them visible to all database

users. New error names and codes can also be defined for use in data cartridges. Oracle has reserved

the error codes in the range 20000 to 20999 to cartridge specific error messages, which cartridge

developers can use to define unique cartridge errors in the form ORA20000: xxx.

4.4 The cartridge definition

This section describes the components ofCBIRC. It describes how the image object is represented

in the database, how the content is extracted from the image and stored in the database, and

describes the similarity metrics adopted to realise the application-specific and the new functional

capabilities that the data cartridge intends to provide.

39

4.4.1 Image object representation

The content of the image in the colour-based image retrieval cartridge is represented as a collection

of colour features directly extracted from the image. The representation of the image object in the

database is better explained using the following model:

An image database table I = {i I, i2, i3, in} is assumed to store a set ofn images. When an image ij

€ I is added to the database, its basic attributes A = (a}, a2, a3 ... a7) (representing the seven attributes

such as width, height, etc as shown in Figure 4 - 2) are extracted. The amount of each of the 13

colours (shown in table 4-1) represented in an image is also calculated and stored as a 10-bin

histogram H = (h}, h2, h3 h lO), where hj is the j'h bin of the histogram. A complete image object is

thus represented in the database as:

I = 0 (D, A, H)

where D is the actual image data. The image database entities are depicted in Figure 4 - 2.

Signature

Signature

Source

Source location
Update_time
Data

Image

Width
Height
ContentLength
FileFormat
ContentFormat
Compression
MimeType

Figure 4 - 2 : Entities of the CBIRC

4.4.2 Image content representation

CBIRC uses colour to describe the contents of images, because colour is easier to extract than other

features. Colour is also widely used in retrieval systems because it is invariant to image size and

rotation, and partial occlusion [SWB91]. CBIRC uses the standard RGB colour space explained in

[SAC+96] to describe the content stored in images. When an image is initially entered in the

40

database, CBIRC computes the total numbers of pixels that correspond to each of the 13 colours

shown in table 4 - 1.

Colour Name Red Green Blue

White 255 255 255

Light grey 192 192 192

Grey 128 128 128

Dark grey 64 64 64

Black a a a
Red 255 a a
Pink 255 175 175

Orange 255 200 a
Yellow 255 255 a
Green a 255 a
Magenta 255 a 255

Cyan a 255 255

Blue a a 255

Table 4 - 1 : The default Colour Space as proposed in sRGB

CBIRC only uses 13 colours to avoid using a very high dimensional colour vector. The total

number of pixels for each colour are normalised to percentages and stored as the cumulative

frequency of the colours in a histogram, which is used to construct a signature to the image. This

signature is then stored as a IO-bin histogram, constructed using a Constant-Bin Allocation

discussed in [CHITO 1].

To explain the signature concept, consider the simple image shown in Figure 4 - 3.

Figure 4 - 3 : Sample image

41

The cumulative frequencies of colours can be extracted from the image according to the colour

descriptions of table 4-1 are shown in table 4-2 below:

Colour Amount

Red 19%

Blue 13%

White 31 %

Yellow 13%

Grey 6%

Green 18%

Table 4 - 2 : Colours found in sample image

Since there are 10 bins in the histogram, each bin holds a 10% capacity of the total colour

representation. Bin, B 1, for example records the colour percentage from 0 - 10%, while B 1 0 holds

90-100%. The sample image's signature is represented as:

Colour Amount
Histogram bins

61 62 63 64 65 66 67 68 69 810

Red 19% 0 1 0 0 0 0 0 0 0 0

Blue 13% 0 1 0 0 0 0 0 0 0 0

White 31 % 0 0 1 0 0 0 0 0 0 0

Yellow 13% 0 1 0 0 0 0 0 0 0 0

Grey 6% 1 0 0 0 0 0 0 0 0 0

Green 18% 0 1 0 0 0 0 0 0 0 0

Table 4 - 3 : Creation of the signature of the sample image

4.4.3 Similarity metrics

The similarity function between images is based on image signatures rather than the images

themselves. The comparison is defined using a distance metric measure between the two signatures

(feature vectors). CBIRC determines using the Ll-Distance measure, which is commonly used for

histogram comparison. Similarity between the query image q and the database image i is therefore

computed as follows:

42

D(q,i) = ,,10 I set(Hq
) - set(Hi

) I
color ~j=1 } } ,

where Hj is the jth bin in the histogram and set (Hj) indicates the bin whose value is set to a value

whose bin is being compared.

4.5 Implementation of the cartridge components

This section describes how object types are created to meet the retrieval scenario described above.

Since UDTs are arbitrarily defined, it is not possible for the database to provide all the required

types. Obj ect types are used to define UDTs, and consist of a specification and a body, which are

defined using SQL Data Definition Language (DDL). The specification is the interface to

applications: it declares the set of attributes and methods that the applications can call to manipulate

the object data. The body implements the specification ofthe object, and hence, provides the actual

definition of the methods [RUS02a]. Methods can be written in PUSQL or other extemallanguages

such as C, Java or C++. The type specification is decoupled from the body, so that the

implementation can change without affecting the entire operations of the object. Each cartridge

entity shown in Figure 4 - 1 is implemented as an object with relevant data structures and

operations, so that the attributes of the source and signature objects are defined using built-in

database types, while the image object uses a combination of built-in data types together with the

source object type. The implementation steps are described below.

1. Designing The Object Type Specification

All the information used by client programs is declared in the object type specification. It declares

the data structure and the methods needed to manipulate data. The following statement specifies the

source object type as Source_ type:

CREATE OR REPLACE TYPE Source_type AS OBJECT

sourcePath VARCHAR2 (4 000) ,

data BLOB,

updateTime DATE,

43

STATIC FUNCTION init (name VARCHAR) return Source_type,

STATIC FUNCTION init(content BLOB) return Source_type,

MEMBER FUNCTION getContent return BLOB,

MEHBER FUNCTION getUpdateTime return Date,

MEMBER FUNCTION getSourcePath return VARCHAR2,

HEMBER PROCEDURE setContent incontent BLOB),

HEMBER PROCEDURE setUpdateTimeindate Date),

MEMBER PROCEDURE setSourcePath inpath VARCHAR2)

) ;

"

The Source_type type declared three attributes (sourcePath, data, updateTime), two

constructor functions, three member functions and three member procedures. The constructor

functions, called init (), are used to instantiate the source object with a value specifying the source

path or a BLOB value. The member functions and member procedures are used as access methods

for getting and setting the type attributes respectively.

Similarly, the code fragment for image object is given as:

CREATE OR REPLACE TYPE Image_type AS OBJECT

source Source_type,

width NUMBER,

STATIC FUNCTION I mage_initiname VARCHAR2) retur n Image_type,

MEMBER FUNCTION getNuniller (attr VARCHAR2) return NUMBER,

MENBER FUNCTION getStringiattrb VARCHAR2) return VARCHAR2,

HEMBER FUNCTION getSource return Source __ typ e,

MEMBER PROCEDURE setNumber (nattr VARCHAR2, num NUHBER),

MEMBER PROCEDURE setString (sattr VARCHAR2 , str VARCPJU<2) ,

MEMBER PROCEDURE setSource isrc VARCHAR2)

) ;

The source attribute of Image_type type is of type Source_type specified earlier. Image _ ini t ()

is a constructor function for Image_type objects. The three member functions are used to return

the values of the attribute functions while three member procedures are used to set individual

attribute values.

44

Finally, the s igna t ure object type, which is used for content-based retrieval in CBIRC, is created

as:

CREATE OR REPLACE TYPE Signature_ty pe AS OBJ ECT

signat ure BLOB,

STATI C FUNCTION createSi gnature (content Sou r c e _ t ype) r etu r n

Sig nature_ t ype,

MEMBER FUNCTION areSimi l a r (q Si g nature_ t ype, c S ignatu r e_type)

retur n NUMBER ,

MEMBER FUNCTION f indco l o u rPe rcentage (q Signatur e_t ype , s

VARCHAR2) r e t ur n NUMBER,

MEMBER FUNCTION ima geContain s (q Signature_t ype, s VARCHAR2)

return NUMBER

) ;

The signature ofthe image is stored as a BLOB in the s i g n a ture attribute. Signature _type

object instances are initialised using the createSig nature () method, which accepts objects of

Source_type as parameters. The areS i milar () method compares two images for exact similarity,

while imag e Contain s () method simply determines whether an image contains the colours

specified in the s parameter. The fi n dCol ourPercentage () returns images with the colour

compositions specified in the s parameter.

If the Source_ type object is not declared before the Si g n a ture_type and Image_type are created,

declaring these two types will result in an error because they use attributes of type Source_type.

Nevertheless, these objects can declare and manipulate the object of type So urce_typ e without

knowing how the Source_ t ype represent data or implement its methods. As a consequence, the

Source_type type methods can be separately cbanged and implemented without affecting the other

obj ect types.

2. Designing The Object Body

The object body implements all the methods defined in the object type specification. Methods in the

object specification are declared using the MEMBER and STATI C keywords. The specification of

sig nature_type type above has 4 methods. Notice that the constructor functions are called

45

ini t (), and do not have the same name as the type name as it is commonly used in class

declarations in object-oriented languages. This is because Oracle9i creates a default constructor

function that accepts parameters corresponding to the attributes of the each created type, and does

not allow user-defined constructor functions to share a name with the type name. An example of a

desirable constructor function declaration would be:

STATIC FL~JCTION Image_typ e (name VARCHAR2) return Image_type;

However, the STATIC methods can be invoked on object types, and can thus be used as user-defined

constructor functions. MEMBER methods on the other hand, can only be invoked on the object

instances. In the Signature_type object, the function ereateSignature () is used as a constructor

function, while the remaining three MEMBER functions are used for content-based image retrieval.

The code outline for the body of the signature_type type is shown below:

CREATE OR REPLACE TYPE BODY Signature_type AS

STATIC FUN CTION ereateSign atu re (content So urce_type) return

Signature_type IS

BEGI N

neo n : = IS_COMPUTESIGNATURE(co ntent.getContent());

END createSignaturei

MEMB ER FUNCTION areSimi l ar (q Signature_ t ype, c Signature_type)

return NUMBER IS

ret val . - DBMS_LOB.COMPARE (q . signature , e . signature, amt ,l,l) ;

END areSimi lar ;

HEMBER FUNCTION find e o l ou r Percentage(c Signa ture_cype, s VARCHAR2)

r e t urn NUMBER IS

END fjndcolou r Percentage i

MEMBER FUNCTION imageContains (q Signature_type, 6 VARCHAR2J

return NUMBER IS

END imageCon t ains;

END;

46

The createSignature () method takes an Image_type object as a parameter, and extracts the

actual image data using the Image_type. getContent method. The BLOB value is the passed to a

function called IS_co mpu teSignature, which extracts the colour information from the image and

generates the image signature as a BLOB. The generated signature is then passed as a parameter to

construct and return an object of type S i gnature_t ype.

AreS i milar () method takes two signature_type objects and compares them for similarity. It

takes sign ature attribute of each S i gnature_type object and uses Oracle's DBMS_LOB

package, which is a built-in package called for processing LOBs, to compare the two parameters for

similarity. Findcolou rPercentage () method on the other hand is used to search the database for

images that have the same colour compositions as the query image. It takes the signature of the

query image and a set of weights specifying the desired colour compositions as arguments, and

compares the weights to the signature values to search for the desired combinations.

I mageContai ns () is used to detennine whether an image contains specific colours. It takes the

signature of the query image as first parameter, and the colours being sought as the second

parameter. If the desired colours are present, the function simply returns a Boolean value that

indicates whether a certain colour is present or not.

For simplicity, the implementation for Signature_type object methods is done Java. Developing

Java functions for use in the database involves the following steps:

o Create the Java Class

The Java class that contain the functions used in the Signature_type is developed as a standalone

application external to the database, and has the following code outline:

public class Image S igna t ure

publ ic sta tic BLOB computeSignatur e (BLOB b) throws IOExcepti o n,

SQLException {}

p ublic s tati c int f indComb i nat ion (SLOB C , String weights) throws

SQLExcept ion, I OExcept ion { }

public s tat i c int I mageCont a ins (BLOB C 1 Str i ng we i ghts) t h r ows

SQLException, I OExcept ion { }

p r i v a t e s tatic BLOB l c a dDat a (by t e [] s) thr ows SQLEx ceptio n,

IOExcept i o n { }}

47

The class is then compiled using the standard java compiler function, j avac, to create the class file

ImageSignature . class.

o Load the Java Class into the database

Before the Java class can be used in the database, it must first be uploaded into the database schema

to make it accessible to the Oracle JVM using the loadj ava command-line utility. The loadj ava

utility is used to upload Java source, class and resource files into system-generated schema object.

The schema object takes a full name of the Java class including the package names. When loaded as

source files, loadj ava can invoke Oracle's JVM compiler to compile the source file, which can be

edited and recompiled inside the database schema. When loaded as class files however,

modification and recompilations is done outside the database, and the class must be reloaded into

the database using the loadj ava utility to reflect changes in the database. In the following

command, loadjava loads the file ImageSignature. class as a class file into a database called

db, in the i mage_user schema:

loadjava -user image_user/i mage@db ImageSignature.class

o Publish the Java Class

The class methods that are directly referenced by Oracle objects are then published in the database

data dictionary through SQL call specifications, to make them callable from SQL. Other Java

classes that are only referenced by the Java class but do not have methods callable by Oracle objects

need not be published. The call specification defines the SQL arguments and return types for each

callable Java method. As an example, the IS_ComputeS ignature function used in

Signature_type is published from the Java class ImageSignature as:

CREATE OR REPLACE FUNCTI ON IS COMPUTESIGNATURE (name BLOB) RETURN

BLOB AS

LANGUAGE JAVA

NAME 'ImageSigna ture.computeSignature(oracle . sql.BLOB) return

oracle.sql .BLOB ';

48

The functions and specification for the Image_type and Source_ type are also specified in the

manner similar to Signature_type type. The code outline is shown in Appendix A.I to A.S.

4.6 Relational model implementation

There are no object types in the relational implementation: all object types are flattened to attributes

in tables. One way to implement these three entities is by normalising all their attributes into tables.

An Image_table table for example, may contain all the attributes of the Image entity plus all the

attributes ofthe Source entity. Alternatively, each entity can be stored as a table, and linked with

foreign key pairs so that the three entities are represented using Signature_table, Source table

and Image_Table as shown in Figure 4 - 4.

Image_Table
Source_Table PK,FK1 Soyrce Id Signature_Table

PK SQyr~e Id
FK1 Source_ld ... ~

I>'v1dth
SourceLocation Height

Signature UpdateTime ContentLength
Data FileForrnat

ContentFormat
Compression Format
MimeType

Figure 4 - 4 : Entity representation in the relational model

The appropriate methods are then created and stored as Java classes, which are also loaded into the

database as stored procedures, using the same loadj ava utility. Assuming the same function names

as in the cartridge implementation, functions such createSignature, areS imilar and

findcolourPercentage are then created from the Java classes using the CREATE FUNCTION syntax.

These functions now take different parameters since the relational implementation does not allow

obj ect types to be defined, and thus object types cannot be passed as parameters. As an example, the

new createSignature function is created as:

CREATE OR REPLACE FUNCT ION createSig~ature (name BLOB) RETURN BLOB

AS

LANGUAGE JAVA

NAME 'ImageS i gnature.compu teSignature(oracle . sql .BLOB) re t urn

o racle.sql.BLOB'i

/

49

An example of using this signature requires data to be inserted into the source_table first such as:

INSERT INTO Source_table (source_id , source_location, updateTime,

datal

VALUES (60 11760, 'C :\imagedir ', '03 / 03 / 03' , Ef1PTY_BLOB();

/

The data attribute of the source_table is then loaded with data from an operating system file,

called a BFILE in Oracle, as:

DECLARE

Src BFTI_E : = BFILENAME (, IMAGEDIRECTORY' , ' kauna. gif ') :

De!:> BLOB;

Amt INTEGER := 4000;

BEGIN

SELECT data INTO des FROM source table WHERE id 6011760 FOR

UPDATE;

DBMS_LOB . OPEN (Src,DBMS_ LOB .LOB_ READONLYl;

DBMS_LOB. LOADFROM FI LE (Des,Src,Amt):

DBMS_LOB . CLOSE (Src) :

UPDATE source_ table SET DATA

Commit;

END ;

DES WHERE id

A row can then be inserted in the signature table using:

•

6011760:

INS ERT INTO Signature_table VALUES (6011760 , EMPTY._BLOB () 1 :

Finally, the createSignature function can then be used to create and update the signature ofthe

Image as:

DECLARE

Des BLOBi

temp BLOB;

BEGIN

SELECT data INTO des FROM source table WHERE id = 6011760;

SELECT signature INTO temp FROM signa t ure_t able WHERE id = 601176 0

POR UPDATE;

temp := createSi gnature (des)i

50

UPDATE s i gnature_table SET signature

Commit ;

ENDi

temp WHERE id 6011760 ;

Assuming the function areSimi lar has also been created using the following code outline,

CREATE or replace FUNCTION are5irnilar (obj BLOB, o bj2 BLOB)

RETURN NUMBER AS

END ; ,

two images are compared for similarity using:

SELECT c . student_ n a me

FROM student_ table c, signature_tabl e s, s i gnature_ t able t

WHERE c.pho to_id < > t. s ource_ id AND

areS i milar (s . signature, s.signature) =l;

A collection of functions and stored procedures can be stored together in Oracle using packages. A

package treats functions, stored procedures, cursors and the variables they use as a unit. While

standalone functions cannot share the same name [RUS02b] , packages allow functions to be

overloaded. Packages also make the program components more manageable and maintainable

because they are organised and privileges can be granted more efficiently. However, packages

cannot inherit from each other, thereby limiting their potential usefulness in supporting objects.

4.7 The data cartridge VS. the relational implementation

As seen in the implementation, integrating additional functionality in the database presents a

number of implementation choices. The same application can be developed and integrated in

multiple ways and still achieve the same functionality. The example in this chapter demonstrated

the data cartridge implementation and extension to the relational approach. This provides a basis for

comparing the object-relational technology against the required extensibility functionality discussed

in chapter 2.

The relational implementation is not difficult to understand; it is straightforward and only requires

the usual mapping of entity elements to table attributes. Tables must be in the first normal form,

with every attribute limited to a simple atomic data type. This, however, offers limited flexibility to

applications that need complex data structures, as data types had to be flattened to fit into tables.

The relational approach is thus unsuitable for large applications and applications that require

complex object support. The cartridge implementation on the other hand allows multitudes of data

types and their methods to be combined to describe complex types. A table that uses these complex

types can contain relations that contain nested collections, thereby allowing objects with rich

internal structure to be stored in the database.

Tables in the relational implementation are linked by foreign key pairs to maintain relationships

among entities. Query statements involving mUltiple tables also require complex joins to process,

and thus becomes difficult to understand and slow to process, because the query plarmer has to

optimise complex joins. This also affects the performance of the query processor because there are

too many clauses to check. The use of object types in data cartridges on the other hand eliminates

the need for numerous joins and allows fast access paths to be defined for queries with the

quantification utilising these data types and their operators.

Another significant difference between the relational and data cartridge implementation is the

ability to define object methods in the cartridge implementation. As mentioned in chapter 2, this

feature is fundamental to the extensibility of a database system as it allows new functionality to be

added to the database. The relational implementation allows methods to be added to the database

with stored procedures and functions, which can be grouped together as packages for

maintainability and code reuse. In comparison to object methods, packages are stored as static

pieces of code, while object types and their methods are stored as templates for individual objects to

which instances can be applied. In this regard, packages do not make complex data more

manageable, and thus do not offer sufficient support for the retrieval model. While these packages

offer some form of encapsulation, they fail to adequately support inheritance, and hence do not

promote the necessary productivity offered by the cartridge model. Packages also do not support all

kinds of schema elements such as the definition of tables and the use of triggers. It is also extremely

difficult to model relationships between different packages.

The data cartridge approach on the other hand, divides the cartridge into a collection of services that

carry out different functions, thereby defining the components that can be extended during the data

cartridge design. The idea is to allow different services to be added and modified without affecting

52

other components, and hence allow the database functionality to be extended in a flexible way. As

seen in this chapter, it is possible to only extend and use the type service without implementing the

other services of the data cartridge. Similarly, it is possible to add new features without affecting the

existing functional operations of the type system. However, this approach lies in the assumption that

each service is developed independent of other services.

Summarising the findings, it is evident that integrating domain specific applications and the

relationships among them carmot be sufficiently captured in the relational model for complex

applications. Data cartridges were found to be more suitable for integrating these applications.

4.8 Conclusions

This chapter used an implementation of the colour-based image retrieval technique to demonstrate

how Oracle database can be extended with additional retrieval techniques. Prototype

implementations of the CBIRC using the cartridge construct and the relational model demonstrated

that similar functionality can be achieved with both implementations, and also allowed the

appropriateness and implications of using each approach to be evaluated under a common

framework. The relational implementation does not require the user to learn concepts about

designing data cartridges and thus appears to be simpler to understand and implement, especially

for simple applications. The advantage of using data cartridges is that, once the cartridge is

constructed, there is little extra complexity in trying to harnlonise the workings of the cartridge. The

integration of CBIRC has proven that data cartridges are a suitable way for integrating image

retrieval techniques in the database.

53

Chapter 5:A sample data cartridge: indexing and

query optimisation

Indexing and query optimisation techniques are some of the important tools available in

a DBMS to enhance efficiency. This chapter resumes the integration of CBIRC

discussed in the previous chapter to explore the indexing and query optimisation

extensibility services of the data cartridge mechanism. It uses the query rewriting

approach to demonstrate how user-defined data types and predicates may be supported

without modifications to the underlying indexing structures and database engine. The

integration revealed that extending new data types with existing indexing methods

greatly simplifies the development of both the index and query optimisation techniques,

and can even provide good performance. The chapter is then concluded with the

implications of using this approach.

5.1 Introduction

Extending the data cartridge with new object types as described in the previous chapter makes it

easier to model complex entities and facilitates the reusability of code to make data cartridges easier

to understand and maintain. Unfortunately, it does nothing to address how these types should be

organised so that queries can be resolved efficiently and relevant portions of data extracted quickly

during query processing and resolution. Using that implementation, the functions to compare

images for similarity are evaluated row by row, and the query optimiser has to perform a full table

scan in the evaluation plan to ensure that all relevant rows are retrieved. This results in poor

performance especially if only a small subset of the records is to be retrieved from the database.

As a so lution to the situation described above, DBMS provide indexing techniques to aid in

evaluating query predicates with index-based lookups. These indexing techniques, can, however,

only be used on table columns whose data types and query predicates are understood by the

database. Since Oracle provides limited indexing structures, the cartridge developer must define

indexing structures for unsupported data types. Different applications have different retrieval

requirements and thus require that information be indexed in different ways. It is therefore not

possible to define a single technique that is optimal for all applications. For that, user-defined index

54

structures that encompass unique application requirements are necessary. This chapter looks at the

impetus and implications of using user-defined indexes and their query optimisation techniques.

The index at the end of a book is a well-known example used to explain what an index is. Using this

index, it is possible to find the pages with the relevant information about a specified concept by

looking it up in the index, without searching entire book. Provided the index is clearly defined, this

does not necessitate comprehension of the contents of the index by the user, as long as the different

index tokens can be identified from each other and a location that maps to place where the required

information is stored is provided. Although this relaxed book-indexing scenario does not

necessarily apply to complex application scenarios such as image retrieval, it indeed captures the

ideal, required situation since image signatures are also stored in a way that cannot be easily

comprehended by all index users.

5.2 Objectives

Oracle neither permits indexing of columns containing LOB values, which are used to store large

data such as multimedia data, nor does it index attributes of column objects or elements of a

collection type. Indexing values derived from user·defined methods and operations is also not

supported in Oracle [GIE02a] . This implies that the provided index structures do not suffice for

image retrieval scenarios, where a query may require to compare the signatures of images derived

from signature computation operations, and may also be stored in BLOB columns. In addition,

efficient query execution cannot be achieved because query optimisers are not able to calculate the

cost of user-defined query predicates.

Oracle provides generic ' template' indexing and query optimisation interfaces that allow new

indexing structures to be defined arbitrari ly by the user, and to be associated with user-defined

object types. These interfaces enable the query compilers to recognise user-defined query predicates

and to know how the index can be searched to fully exploit user·defined indexing structures and

thereby facilitate efficient query execution. The aim of this chapter is to explore the implications of

extending the indexing and query optimisation structures of a data cartridge, and to highlight the

challenges that must be resolved during these extensions.

Designing indexing structures for use in an ORDBMS requires a good understanding of

concurrency and recovery protocols, and the actual integration requires the access method to

55

implement low-level database functionality including the lock manger and buffer page management

protocols [KOR99]. Data cartridge developers are often not database server experts, and therefore

possess limited knowledge ofthe internals of the database engine and thus cannot efficiently write

these methods. Giving such power to less knowledgeable users is also very risky, as it could lead to

malicious code to be run from the database server. As a simplification ofthis situation, this chapter

uses an approach that extends the indexing capabilities of the database through query rewriting.

Query rewriting transforms user-defined data types and query predicates that are not directly

supported by the underlying database indexing structures to be rewritten so that their operators can

be supported by built-in indexes. This requires mapping user-defined operators to the known

database operators to make them recognisable. The chapter describes how the operators of CBlRC

may be enabled to use the well-known B-tree indexing structure.

5.3 Building the index

As described in the previous chapter, CBlRC extracts the colour feature from each image and stores

it in a form of a vector that captures the content in histogram bins. Although this simplification has

greatly reduced the number of dimensions for the signature, it is still not trivial to define the actual

index structure in the database, as each index structure must extend auxiliary data structure for the

extensible indexing interface to implement the extensible user-defined indexing. The interface

allows the user to define the structure of the index and to specify how and where the index data will

be stored. It also allows the developer to define how the application manages, retrieves and uses the

index data dUl1ng query processing. To summarise, it defines the following three characteristics:

Content Identifier - to identify individual entries in the index set

Location - to indicate where the information with the specified identity may be located

Storage - to store both the identity and location information of the index

Since query comparisons in CBlRC are performed using image signatures, the index structure is

build on the signature attribute. According to table 4-3, an image can only contain a total of 13

colours. A simple way of identifying entries in the index is therefore to take each of the 13 colours

that appears in the image to be an entry in the index. As such, the index only contains the image

identifiers and its set of 13 terms and along with their corresponding colour values, which are stored

as histogram bins. The steps to implement the index are given below.

56

1. Designing the index operators and fnnctions

CBIRC allows users to issue queries for equality, contains and greater than operations. Because of

the way that the image signature is stored, these operators cannot be directly applied to the signature

data. These operators must therefore be implemented to meet the requirements of the cartridge. An

operator consists of the operator name and the functions that implement the operations on the data

type. When using the relational implementation, the operator function is the implementation that is

used when there is no index defined on the data. The names for the operators and their

corresponding functions in CBIRC are shown in table 5 - 1.

Operator Name Operator Function

Op_ColourlsPresent FunclsColourPresent

Op_ColourlsGreaterThanValue Func_lsColourGreaterThanValue

Op_lmagelsExact Func_lslmageExact

Table 5 - 1 : Operators and implementing functions

The Op_colourIsPresent () operator is used to check if a specific colour appears in an image,

while Op _ ColourIsGreaterThanVal ue () operator detemlines whether the specified colour is

greater than a specified value. Op_ ColourIsExac t () operator checks whether two images contain

the exact amount of colour compositions. All implementing functions retum a numeric value of 1 if

the condition is true otherwise they return O.

The functional implementation for the operator has to be written and compiled using any of the

languages allowed in the database. The function must then be registered or published in the

database as a user-defined function as explained in section 4.2. As an example, the following shows

the code outline for the implementation of the Func_IsImageExact function, which takes two

signature_type objects and compares them for similarity:

CREATE or. replace FUNCTION FUNC_IslmageExact (obj Signat.ure_type,

obj2 Sign ature_type)

RETURN NUMBER AS

amount INTEGER .- 130 ;

retval NUMBER;

BEGIN

57

/*compare the va l ues* /

retval : =

DBMS_LOB .COMPARE (obj . s i gnature,obj2 . signature,amount,l,1) i

END;

I F r etval = 0 THEN

RETURN 1,

ELSE

RETURN 0;

END IF i

Since the image signature is stored as a BLOB in the signature column, the function gets the

signature column of the signature_type type, and uses the compare () function of the

DBMS _LOB package provided by Oracle to compare the two signatures. The return value is then

set to the appropriate Boolean value, because the compare () function returns a value of 0 when two

LOBs are equal.

Each operator is then be bound to the corresponding function such as:

CREATE OPERATOR OP_ IsImageExact BI NDING I S igna ture_type ,

signature_ type) RETURN NUMBER USING FUNC_ Is ImageExact;

Similarly, the other two operators are bound to their corresponding functions.

2. Implementing index routines

The SQL-based extensible indexing interface provided by Oracle allows domain specific operators

and indexing techniques to be integrated with the server. The indexing interface has an IndexType

component that specifies all the required functionality to manage the user-defined indexing routines

such as how the index is stored, how it is maintained and how it is scanned during query operations.

A user-defined object that extends the indexing interface must therefore implement the methods of

the ODCIIndex interface, which contains the code for the IndexType component. These methods,

which include IndexCreate , IndexInsert, IndexDrop , IndexStart , IndexFetch,

IndexClose , IndexAlter and IndexUpdate, contains methods for defining, manipulating,

scanning and exporting the index and its data, and are later automatically invoked by the database

when executing the relevant SQL commands involving the IndexType. The IndexType object

CBIRC is implemented by the object IMGIDXMethods, and is created as:

58

CREATE OR REPLACE TYPE I MGIDXMethods

AS OBJECT

AUTHID CURRENT_ USER

curnum NUMBER,

STATIC FUNCTION ODCIGetInterfaces(ifclist OUT

SYS . ODCIOBJECTLIST)

RETURN NUMBER,

STATIC FUNCTION ODCIfndexCreate (ia SYS .ODCIINDEXINFO,

RETURN NUMBER,

parms VARCHAR2 ,

env SYS .ODCIENV)

STATIC FUNCTION ODCIIndexDrop (i a SYS .ODCI I NDEX I NFO,

env SYS.ODCIEnv)

RETURN NUMBER,

STATIC FUNCTION ODCr I ndexlnsert (ia SYS . ODCIINDEXINFO,

rid VARCHAR2,

newsig IN Signature_ type ,

env SYS. ODCIEnv)

RETURN NUMBER,

STATIC FUNCTION ODCIlndexUpda t e(ia SYS . ODCIINDEXINFO,

rid VARCHAR2,

oldsig IN Signature_type,

newsig IN Signature_type,

env SYS. ODCIEnv)

RETURN NUMBER,

STATIC FUNCTION ODCIIndexDelete(ia SYS.ODCIINDEXINFO,

rid VARCHAR2,

oldsig IN

Signatur e_type,

env SYS.ODCIEnv)

RETURN NUHBER,

STATIC FUNCTION ODCI l ndexStart(sctx IN OUT IMGIDXMethods ,

ia SYS . ODCIINDEXTNFO,

pi SYS . ODCIPREDINFO,

qi SYS . ODCIQUERY I NFO,

59

RETURN NUMBER,

s tr t NUMBER,

s t o p NUMBER,

q ue r ys i g I N I MGI DXr1e tho ds,

weightstrin g I N VARCHAR2 ,

env SYS . ODCIEnv)

MEMBER FUNCTION ODCIIn dexFe tch (n rows I N NUMBER,

d ds OUT SYS . ODCIRI DLI ST ,

env SYS .ODCI Env)

RETURN NUMBER ,

ME~lBER FUNC'PION ODCII nde x Clos e (e nv SYS. ODCI Env)

RETURN NUMBER

) ;

Since IMGIDXMe t h ods is defined as an object type, its member functions must be implemented

inside the CREATE TYPE BODY statement as shown in section 4.2. The first member function,

ODCIGetInte rfaees , is used to return the list of all the interfaces implemented by the

IMGIDXMe t h o ds type. The implementation ofthis function is given as:

STAT I C FUNCTI ON ODCIGet I n t e rf a ees(i fcl i s t OUT sys.ODCIObjectList l

r e t urn number is

BEG IN

if e li s t .

s YS . ODCIOb j ectList (sys. ODC I Ob j ee t (' SYS', ' ODC I I NDEX2 ' » ;

r e turn ODCICons t . Success:

END ODCI Ge t lnterf a c e sj.

•

where the returned' SYS ' , 'ODCIINDEX2 ' specifies the Oracle9i version of the ODCIINDEX

interfaces. The server invokes this function when an index with the type IMGIDXMe t h ods is created

or altered using the CREATE I NDEXTYPE statement.

The second method in the IMGIDXMethods object specification is ODCIINDEXCREATE, which is

called when a CREATE INDEX statement is issued to create an index oftype IMGIDXMe t hods . The

function creates objects to store and generate index data, and to store index data in index data tables

or files. Calling this function builds the index for the existing data in the indexed columns when the

60

table for which the index is created (also called a base table) is not empty, or simply creates an

empty table where the index data will be stored when the base table is empty.

The ODCIINDEXCREATE function takes SYS. ODCIINDEXINFO and SYS. ODCIENV object types along

with a user-defined VARCHAR2 as parameters. The ODCIINDEXINFO object contains information

about the indexed column, such as the index schema and index name, while the ODCIENV object

contains the information about the environment handle passed to the routine. The VARCHAR2

parameter specifies the information needed to create the index table, and must be interpreted by the

user.

The actual index table need only to consist of the row identifier of the signature in the base table,

the colours present in the image and their corresponding colour value. These values are directly read

and populated from the signature created using the signature_type above. Recognising that each

image contains 13 colours and 13 values at the maximum, an array type used to store 13 numbers is

created as:

CREATE TYPE COLOURGRID TYP AS VARRAY (13) OF NUl-mER;

The code outline for ODCIINDEXCREATE function is then given as:

STATIC FUNCTION ODCIIndexCreate (ia sys . odciind exinfo , p anns

VARCHAR2 , env sys . ODCI En v)

RETURN NUl-lEER

IS

/* Construct the SQL statement for c reating the index table */

stmt ,: 'CREATE TABLE' I I i a.lndexS chema I I .. I I
ia . IndexName I I '_imidx ' I I

, (rid ROWID, colcode COLOURGRID_TYP , col val

COLOURG RID_TYP) ';

END ;

where _imidx is the suffix to the name used for the table holding the index data.

As an example, assuming the colours in table 4-1 are numbered in ascending order from 01 to 13

and the image in Figure 4 - 3 has the number 1 as its row identifier, the signature is represented in

61

the index table as:

(1,colourg<id_ typ (06,13,Dl , D9,D3,lO) ,colou<grid_typ(19,1 3 , 31 ,13,6 , 1

8))

The ODCIINDEXDROP function drops the tables storing the domain index data when invoked using

the DROP INDEX statement. This function takes the ODCIINDEXINFO object containing the

infonnation about the indexed colunm, and the ODCIENV object containing the environment handle

passed to the routine as parameters. The code outline for dropping the table with the suffix _imidx

IS:

STATIC FUNCTION ODCIIndexDrop(ia sys . odciindexinfo, env

sys . ODCIEnv)

RETURN NUMBER is

/ • Construct the SQL statement for d ropping the t able. */

stmt , = 'd r op table ' I I ia . IndexSchema l1 ' , I lia . IndexName

I I ' _ imidx';

RETURN ODCICONST. SUCCESS;

END ;

If the table was successfully dropped, the function returns ODCICONST. SUCCESS .

The ODCIINDEXINSERT function is used to insert new index data in the index table or file. The

function is automatically invoked when a new row is inserted in any table that has the index defined

on it. In addition to the infonnation about the index and the indexed colunms stored in an object of

type SYS. ODCIINDEXINFO, the function also takes the row identifier of the new row in the base

table, the new signature to be indexed, and the environment handle passed to the routine as

parameters respectively. The code outline for the function is given as:

STATIC FUNCTION ODCIIndexInse<t (ia SYS . ODCIINDEXINf'O , rid

VARCHAR2, newsig IN Signa ture_type, env SYS.ODCIEnv)

NUMBER IS

j* Cons t ruct the sta tement. ~ /

RETURN

62

strnt := ' INSERT INTO' I I ia . Indexscherna I I ' , I I
ia. l ndex.Narne I I '_irnidx ' I I

, VALUES (: rr , : colcode, :colva l) ' ;

RETURN ODCICONST.SUCCESS ;

END ODCI I ndexInsert ;

The ODCIINDEXINSERT function also returns ODCICONST. SUCCESS if the row was successfully

inserted in the index table.

The ODCIINDEXUPDATE is invoked when a row in the base table has been updated with new values,

to update the index data for the updated row with the new values. In addition to the information

about the index and index columns, and the environment handle passed to the routine, the function

also contains information about the row identifier of the updated row and the old and new signature

values that must be updated. The code outline for this function is given as:

STATIC FUNCTION ODClI nde xUpda te (ia SYS.ODCIINDEXINFO, rid

VARCHAR2, o l dsig I N S i gna t u r e_type, news i g IN Signature_type,

env SYS .ODCIEnv)

RETURN' NU~lBER IS

/ * Delete o ld entr i es . * /

s tmt : = DELETE FROM ' II ia . I ndexSch e ma I I ' , II
i a . IndexName I I '_irnidx ' I I

I WHERE r =: r rr ;

/ * I nser t new entr i es. * /

stmt2 : = ' INSERT INTO ' I I
i a.lndexNarne I I 'yidx ' I I

i a.IndexSchema I I ' , II

VALUES (: rr , col code , : c o l v a 1) , ;

RETURN ODCICONST . SUCCESS;

END ODCIIndexInsert;

The ODCII ndexUpdate function returns ODCICONST. SUCCESS if the row was successfully updated.

63

The ODCIINDEXDELETE function deletes the index data from the index table or file when a row is

deleted from the base table. The function requires the base table information, and the row identifier

for the deleted row, the value for the deleted row and the environment handle passed to the routine.

The code outline for the function is given as:

STATIC FUNCTI ON ODCIIndexDelete(i a SYS . ODCIINDEXINFO, rid

VARCHAR2 , o ldsig IN S i gnature_type , e nv SYS .ODCIEnv) RETURN

NUMBER IS

-- Constr uct the s tatement.

stmt : = ' DELETE FROM ' I i ia . IndexSchema II ' , II
ia.lndexName I I '_imidx ' I I WHERE r=:rr';

RETURN ODCICONST. SUCCESS ;

END ODCIlndexDelete;

The ODCIINDEXSTART function is used scan the index for all the rows that satisfy operator functions

defined in the previous step. The code outline for this function is given as:

STATIC FUNCTION ODCllnde xStar t (sctx I N OUT IMGIDXMethods, ia

SYS . ODCI I NDEXINFO, p i SYS . ODC IPREDINFO, qi SYS.ODCIQUERYINFO, strt

NUMBER, stop NUMBER , weightstring IN VARCHAR2 , env

SYS. ODCIEnv)

RETURN NUMBER IS

END;

The ODCIINDEXSTART function is invoked when a query involving the index operator that can be

executed using the index is issued. As an example, a query that asks for all images that contain the

colour white causes the function to scan the second column of the index table to see ifit contains

the colour code 01 and return its value. The first argument in the function is a scan context, which is

used to maintain context between different query calls. The second argument contains the index

information, while the third argument contains information about the operator predicate. The qi

parameter contains information about the query. The fifth and sixth arguments specify the start and

64

stop values of the upper and lower bounds on the operator return values respectively, and thus

always have the same type as the return type ofthe operator. weight string specifies the colour

specified in the query that require the operator invocation. The last argument is for the environment

handle passed to the routine.

The next function is ODCIIndexFetch, which is continually invoked until all the rows that satisfy

the operator predicate have been retrieved. The last function, ODCIIndexCl ose, is used to round

up the processing of the index scan operations, and is usually invoked at the end of a processing

function. The code for this function is given as:

ME~IBER FUNCTION ODCIIndexClose (env SYS. ODCIEnv)

RETURN NUMBER IS

cnum INTEGER;

BEGIN

cnum := se l f. c urnum;

dbms_sql . close_ c urs or (cnurn};

RETURN ODCICONST.SUCCESS; ,
END ;

Other indextype functions not implemented above are shown in table 5-2.

Method

ODCllndexAlter

ODCllndexExchangePartition

ODCllndexMergePartition

ODC IlndexSpl itPa rtition

ODCllndexTruncate

Description

Modifies, rebuilds, renames and reorganises the index

Converts between partitioned and non-partitioned index

Merges data from merged partitions into a single table

Splits data from split partitions into a different tables

Truncates the index

Table 5 - 2 : Other INDEXTYPE methods

5.4 Query optimisation

There are often many ways to process an SQL statement. The goal of a query optimiser is to find

the most efficient way to execute a given query. This requires the optimiser to be able to enumerate

all the possible plans for evaluating query expressions and to estimate the cost of each enumerated

plan so that the plan with the least estimated cost can be chosen for efficiency. In order for the

query processor to provide this requirement therefore, it must know about all the possible query

operations and how to use them appropriately. Allowing new indexing and query processing

65

techniques to be defined for user-defined data types increases the possible query operations and thus

more evaluation options are introduced, thereby widening the choices avai lable to the query

optimiser. Finding a good plan for evaluating a query therefore poses a significant challenge to the

cartridge developer. This section discusses issues relevant to exposing user-defined indexes to the

optimiser and method selection optimisation as explained in [LUS02].

To optimise a query, the Oracle query optimiser considers many factors related to the objects

referenced and the conditions specified in the query. Queries can then be either optimised for best

throughput, whereby the path with the least amount of resources necessary to process all rows

accessed by the statement is chosen, or for best response time, which chooses the path that uses the

least amount of resources to process the first row required by the SQL statement. User-defined

query optimisation techniques extend the Cost-Based Optimiser (CBO) using the DBMS_STATS

package and the ANALYSE command provided by Oracle.

The DBMS _ STATS package is used to collect and invoke standard statistics on the metadata

information stored in the system data dictionary. This dictionary, which contains information about

each relation, index and view in the database, normally also contains statistics about relations and

indexes. The extensible optimiser can thus use this information to create and store statistics

collections, selectivity and cost functions for user-defined indexes and columns. This involves

defining representations for the statistics and their maintenance and implementing the functionality

for the selectivity and cost functions and, depending on the required functionality, implementing

some or all of the methods from the Oracle Data Cartridge Interface Statistics (ODCIStats)

interface. In CBIRC, the extensible optimiser is implemented using the following steps:

1. Creating the statistics table

The statistics about the colour distributions in individual image signatures in CBIRC are collected

and stored in a table ColorStatsTable. The table contains the following columns:

» The table and column for which the statistics are collected

" The colour for which statistics are collected

» The maximum value for the each colour over all images

>- The total number of images containing each specific colour

66

For simplicity, the statistics and optimiser routines described in this section are collected for user

defined statistics on an index only, and does not describe the statistics collected on individual

tables.

2. Creating the optimiser methods

The optimiser methods extend the ODCIStats interface to specify the methods that the extensible

optimiser uses to efficiently execute queries. The database server automatically calls these methods

when an implementation of the interface involving a CBIRC data type is registered with the server.

The methods are created using an object type called ColorStatistics, which will be called when

an ANALYSE command is issued used to collect and delete statistics or to evaluate the best execution

plan for a query. This object type is defined below.

CREATE OR REPLACE TYPE Col orStatist i cs AUTHID CURRENT USER

AS OBJECT

STAT IC FUNCTION ODCIGetInterfaces (ifel ist OUT

SYS.OD IOBJECTLIST)

RETURN NUMBER,

STATIC FUNCTION ODCTStatsCollect (ia SYS . ODCIIndex I nfo,

options SYS.ODCIStatsOptions , stats

SYS . ODCIEnv)

OUT RAh', env

RETURN NUMBER,

STATIC FUNCTION ODCIStatsDe lete (ia SYS . ODCIIndexInfo,

s ats OUT RAW, env SYS . ODCIEnv)

RETURN NUMBER,

STATIC FUNCTION ODCIStatsSelectivity(pred SYS.ODCIPredlnfo,

sel OUT NUMBER , a rgs S YS.ODCIARGDESCLIST, strt NUMBER, stop

NUMBER, sigeol IMGIDXMethods, qsig TMGIDXMethods, we.ighstring

VARCHAR2 env SYS.ODCIEnv)

RETURN NUt4BER ,

PRAGMA RESTRICT_REFERENCES(ODCIStatsSeleetivity, WNDS, WNPS)

) ;

67

The corresponding implementation of the object body is done using the CREATE TYPE BODY syntax.

The first function ODCIGetIn terfaces is implemented as:

STATIC FUNCTION ODCIGe t In t erfaces(ifcl ist OUT s ys . ODCIObjec tList)

RETURN NUMBER IS

BEGI N

ifcli s t ,=
s ys.ODCI ObjectList (sys . ODCI Ob j e c t (' SYS' , 'ODCISTATS 2 ') ;

RETURN ODCIConst. Success ;

END ODCI GetInterfaces;

The server to determine the type of interfaces implemented for user-defined statistics type by

invoking this function. The returned parameter' SYS' , 'ODCISTATS 2 ' specifies the Oracle9i version

of the ODCIS t a t s interfaces.

The second function collects statistics for indexes of type IMGIDXMethods. This function analyses

the domain index by simply analysing the table that implements the index. This function is

implemented as:

STATIC FUNCTION ODC I StatsCo l l e ct (ia sys. ODClIndexlnfo, o p tions

sys . ODCIStatsOptions , rawstats OUT RAW, env s y s.ODCIEnv)

RETURN NUMBER IS

s t mt , = 'ANALYS E TABLE' I I ia.lndex Schema I I . . I I
i a.lnde xName II '_imidx'

I I ' COMPUTE STATISTICS';

1* e xecute the statement * /

ENDi

The function is used to collect information on user-defined statistics on an index. The first

parameter specifies information for the index for which information is being collected, while the

options parameter lists the options passed to the ANALYSE statement. The returned parameter

STATISTICS, returns the collected user-defined parameters.

68

The next function deletes the statistics for the domain index by deleting the statistics table

implementing the index.

STATIC FUNCT I ON ODC I StatsDelete (ia sys . ODClIndexlnfo, statis t i cs

OUT RAW , env sys . ODCIEnv)

RETURN NUMBER IS

strnt ,= ' ANALYSE TABLE

ia . l ndexName I I '_imidx'

I I ia.IndexSc hema I I .. II

I I ' DELETE STATISTICS ';

END;

The first parameter specifies information for the index for which information is being collected,

while the statistics parameter contains the aggregate statistics for the index. The env parameter

in this case is used to obtain information about the number oftimes the server has called the delete

statistics function.

The last function in the type is used to estimate the selectivity of implemented operators and

functions. If a query asks, for example, for all images that are mostly blue, the selectivity of the

predicate function estimates the fraction ofrows of the table that satisfies this predicate, and

returning it as a percentage of rows. In our case, the selectivity may be computed when the

predicate is of the form:

Op« s ignature>,<colourcode~1 <col o urvalue>l

<operator><compareva l ue>,

Where the function Op returns a 0, I, or NULL. If the predicate does not meet the required form, the

optimiser makes a guess or simply returns an error. The code outline for the selectivity function is:

STATIC FUNCTION ODCIStatsSelectivity(pred SYS . ODCIPredInfo, sel

OUT NUMBER, args SYS.ODCIARGDESCLIST , sert NUMBER, stop NUMBER,

sigcol IMGIDXMe t hods, qs ig

VARCHAR2 , thresh

RETURN NUMBER IS

BEGIN

NUMBER , env

IMGIDXMethods, wstr

SYS.ODCIEnv)

69

IF (args(l) .Ar g Type != ODCIConst . ~rgLit AND

a r gs(l) .ArgType ! = ODCI Const.ArgNull) THEN

RETURN ODCIConst . Error;

END I F;

/* compute the s t o p value * /

I F (args (2) .ArgType ,= ODCICo nst .ArgLit AND

args (2) .ArgType ! = ODCIConst .ArgNul l) THEN

RETURN ODCICons t .Error ;

END IF;

/* determine selectivi t y f or t he thre e conditions, >=0, :> 1, NULL)

*1

RETURN ODCI Const.Succ essi

END;

The parameter pred specifies the parameter for which the selectivity is being computed, while sel

returns the computed selectivity as a percentage value. args parameter contains the list ofthe

arguments with which the function, the type method, or the operator was called. start and stop

specifies the lower and upper bounds of the function respectively, while sigcol specifies the

signature for which the function is called. wstr specifies weight string, which includes the number

and position of the colour value we are looking for. env contains the parameters about the

environment in which the routine is executing.

4. Associating methods with database objects

The user-defined statistics methods have to be associated with appropriate database objects for the

optimiser to use them. The following statement associates the statistics with the types, index types

and functions defmed in the CBIRC cartridge:

ASSOCIATE STAT I STICS WITH TYPES signature_t ype USING

ColorStatis t ics ;

ASSOCI ATE STAT I STICS WI TH INDEXTYPES I MGIDXMe t hods USING

ColorStatistics ;

ASSOCIATE STATISTICS WITH FUNCTIONS

Op_ Colour lsPresent

70

Op_ColourIsExact

Op_Colo urI sGreaterThanValue

Op_ ImagelsExact

USING Colo rStatistics;

5.5 Testing the data cartridge

The sUb-components ofthe CBIRC must be assembled into the server before they can be used for

image retrieval. This involves loading the Java source and class files in the Oracle JVM as

described in chapter 2, publishing and making the classes accessible from SQL and defining SQL

scripts for creating all object types and tables. Provided the sUb-components are installed in the

server, the cartridge can be used implement the Students application described in chapter 3 and

depicted in Figure 3 - 1 in the following way:

• Create the table for storing the images.

CREATE TABLE students

StudentNumber NUMBER PR1MARY KEY NOT NULL I

StudentName VARCHAR (50) NOT NULL,

Cour se VARCHAR (50) NOT NULL,

St udentPhot.o IMAGE TYPE NOT NULL,

PhotoSignature SIGNATURE_TYPE) ;

• Insert a record into the table.

INSERT INTO STUDENTS (StudentNumbe r, StudentName, Course,

Student Pho t o , PhotoS ignature)

VALUES

(60 117 60, 'Kandeshi ' , 'Doctor' , I mage_ t ype . in it (Sour ce_type. ini t (, 1 i ma

gedirector y / kandeshi .gif')) ,

Si gna tu re_type. i ni t (Sour ce_ty pe . init (' I i magedirector y I kandeshi . g .if'

))) ;

• Create an index on the signature to speed up retrieval.

71

CREATE INDEX PHOTO INDEX ON STUDENTS (PHOTOSIGNATURE) INDEXTYPE IS

I MGIDXMethods parameters (' test 1) ;

• Search the database for images similar to the image inserted in step 2

SELECT c.stude n t name

FROM students c, students q

WHERE

q.studentnumber 6 0117 60

AND

ARESIMILAR (c . pbo tosignature, q.pbotosignatu r e);

5.6 Outlook on the design options

The Extensible Indexing framework allows the cartridge developer to define the structure and

methods of the index used by the server to index user-defined data types. Each implemented index

type must define how and where the index is stored, how the index is maintained during index

update operations and how the index is searched during query processing operations. As such the

content and structure of the index is controlled by the user-defined extensions, giving power and

flexibility to the cartridge developer.

The extensible indexing framework does not restrict the location of the index storage, allowing the

actual index data to be stored inside the database in fonn of database tables or other user· defined

structures, or outside the database in the fonn of files. This, however, revealed different

implications for concurrency and recovery. While the data stored inside the database is protected by

concurrency mechanisms of the database, concurrency and consistency is not guaranteed for index

data stored outside the database. As an example, the index file was deliberately locked for updating

by an instance of the database that uses the CBIRC cartridge. Accessing this file led to a deadlock

because it was not possible to control the locking and unlocking of index file from the database.

Perhaps the main advantage of using the extensible indexing framework in a data cartridge is that,

once the index type is registered with the database, the maintenance and access of the custom index

structure is hidden from the user and thus the user does not have to worry about the maintenance

issues. The database knows about the existence of the index and can thus use it to manage all the

index related functionality. The index is completely integrated with the data, in such a way that

72

application can define routines that manage and manipulate index data in the same way as built-in

indexes to evaluate SQL queries. The database automatically invokes user-defined functions to

build and maintain the index functionality using the cartridge functionality. This way, all update on

the index table is automatically reflected on the index data, thereby guaranteeing that the index is

always consistent with the table data, and thus maintaining the integrity and correctness of the

database.

The extensible optimiser also has interfaces to enable them to recognise user-defined indexing. This

enables the optimiser to approximate the selectivity and cost of executing domain indexes.

5.7 Conclusions

Chapter 4 and 5 demonstrated most of the extensibility interfaces that can be implemented to extend

the capabilities ofthe database. It must, however, be noted that there is neither a minimum nor a

maximum number of components that should be implemented for the component to be considered a

data cartridge. A data cartridge can, for example, extend only the type system and the indexing

capabilities without the query optimisation features, etc. However, it is clear that Oracle's intent is

for the provided extensibility interfaces described above to serve as a guide for extending the

capabilities of the database.

Broadly speaking, data cartridges provide a sufficient platform to completely integrate new retrieval

functionality within the database server. The data cartridge approach also incurs many object

oriented paradigm benefits including application-based control and ability to modify data cartridge

components independent ofthe database. Once the data cartridge components are installed, users

define and manipulate cartridge components through SQL, while at the san1e time accessing

standard Oracle features. The only evident shortcoming is that the extensibility interfaces provided

by the Oracle do not reduce the complexity of developing data cartridge components. Rather, they

seem to be focused on guiding the database engine in accessing the implementations provided by

the cartridge developers.

73

Chapter 6:A data cartridge for face recognition

An important goal of extensibility is to improve the modelling of real-world entities in the

database using object technology. This chapter uses a face recognition application to explore

the implications of using an object-oriented approach in Oracle9i. The recognition

application is first developed as a standalone application in Java and then integrated as a

data cartridge. The integration revealed that most key object-oriented concepts are unusable

for objects types that contain LOB data types. It was also found that not all Java APIs

required for LOB and image processing are supported in the database server and the user

must avoid classes that use GUIobjects if successful integration is to be achieved.

6.1 Introduction

In an object·oriented environment, complex applications are better modelled as objects. It is no

surprise then that one of the motivations of extensibility in ORDBMS is the modelling of complex

data using the object-relational technology. As explained in chapter 2, however, not all ORDBMS

support the object-oriented capabilities to the same degree. Some of the approaches on how to

model objects in an object-relational environment are proposed in [SAH87] .

In this chapter, the support for object-orientation in Oracle is explored using a face recognition

application developed in Java. Due to the growing interest in biometric authentication, face

recognition has become a widely researched topic today and is widely used in numerous

applications such as airport and banking buildings for security purposes [SUB98]. Faces are

complex and cannot be easily described using simple shapes or patterns. As such, similarity

measures do not always perform accurate matching.

The face recognition cartridge is a more specialised and complex cartridge in comparison to the

CBIRC cartridge developed in the previous two chapters. This is because face recognition systems

work by firstly detecting faces in an image. As such, the system must know what a face looks like

and learn to recognise it among other faces. This involves training the recognition algorithm to

recognise known faces, which requires the signature of the faces to be regenerated every time a new

face is added to the database. The face recognition cartridge thus uses high-level information to

74

create the image signatures as compared to the low-level colour comparisons described in CBIRC.

In this thesis, the face recognition algorithm is firstly implemented as a standalone application. It is

then adapted and mapped to a database application, which requires a different integration

mechanism than the one used in CBIRC.

6.2 Objectives

The main reason to write the data cartridge described in this chapter was to explore how the

behaviour and structure of existing classes can be mapped to maintain complex relationships among

objects in the database. Mapping existing objects to databases can be problematic, because the

object structure, classes and behaviours are usually written in an object-oriented language such as

Java or C++. Databases such as Oracle, on the other hand, do not support all the functional

components of these languages and thus require a mapping layer to store Java and C++ objects in

the database. This has often resulted in what is well-known as the impedance mismatch [OLL98).

In this chapter therefore, the mechanisms that can be used to map existing Java objects to Oracle

object types are explored. Although the chapter reports on the experience of mapping Java objects,

the focus of the chapter is on the capabilities and limitations of the actual database engine in

supporting these objects, rather than the particulars of the Java language. The tradeoffs involved in

extending an ORDBMS using Java may be found in [GMS98j.

As discussed in [BUROlj, the object-oriented approach in Oracle presents a number of database

design and implementation options. According to [SUK99j, the principal challenges and

opportunities with object-oriented approach in ORDBMS include (i) handling domain specific data,

(ii) handling object behaviour, (iii) handling object references (iv) handling collections of objects

and (v) mapping and handling objects on the client side. Rather than attempting to present a state

of-art face recognition algorithm or introduce new face recognition techniques, this chapter

discusses the object-relational features pertaining to these key challenges and opportunities.

6.3 The face recognition application

This section describes the implementation of the face recognition algorithm, discussing the steps in

the recognition process and explaining how the algorithm is trained to classify and recognise faces

from a group of images.

75

6.3.1 Content representation

Each image is searched for "face-like" structures, because the only relevant object in an image in

this cartridge is a face. Like the images described in CBIRC, each image is stored in a physical

image file consisting of a header and an image data matrix. Images are thus still represented using

the Source_type and Image_type types described in the previous chapter, although the signature

type changes. The signature in this cartridge is aimed at the regions of the image where face-like

structures are found.

6.3.2 Signature representation

Assuming that each image in a training set of 2-dimensional n x n pixels images contains a face,

and the training set is exposed to the face detection algorithm, each image will occupy n2 points in

the 2-dimensional space. Assuming also that faces occupy almost the same size and position in each

image, faces will most likely not occupy the whole n2 space and they will be closely distributed in

this 2-dimensional space because they are similar in structure, making them easier to detect.

Similarly, images not containing faces should occupy different areas of in this dimensional space.

Faces can thus be described using a lower dimensional subspace.

The above idea is proposed in [TUP91], which presents an approach to train the algorithms to

recognise faces by projecting all face images to a dimensional feature space to construct the average

face of the entire image database. Using the same algorithm in this cartridge, the position of each

image in the space is described by finding the Euclidean distance between the points in the average

face and its Eigenvectors. The Principal Component Analysis (PCA), is then used to calculate the

Eigenvectors that best describe the distribution of faces in the face space, so that each unique image

occupies different points in the image space. The resulting feature space, which constitutes the

signatures of the faces, is stored along an image identifier, such as a row identifier, that associates

signature components to database image instances.

76

I
I

I
I

6.3.3 The recognition process

Recognition of faces is performed by comparing the query face to a set of images in the signature.

For each query image a set of eigenvectors is computed and is projected to the signature of the

training set. Moreover, it is possible to determine whether this image consists of a face since the

algorithm knows what a face looks like. It is also possible to determine whether a query face is

similar to a comparison face by specifying a threshold value that assumes that a query image is

similar to the comparison face if the value resulting from their comparison is below the specified

threshold. Assuming then that an image is a face, the distance between the query image and all

other images in the signature is calculated by projecting it onto individual entries in the signature.

Since similar images are closer to each other in the signature, the face is identified by finding the

nearest known face from the signature. However, even tiny changes in the size of the image, the

size of the face in an image or head orientation can cause the location of the image in the signature

to change dramatically, resulting in false matches. The steps that summarise the recognition process

as summarised in Figure 6 - 1 are given below.

1. Initialisation, where the entire image database set is exposed to the EigenFace extraction

algorithm to compute the average face.

2. Each new image is projected to the average face and its set of weights and EigenFaces are

detennined and stored in a feature space.

3. When a new image is submitted to the training set, the points in the image are compared to

check if it is close to the average face.

4. If it is close to the average space, it is most likely an image of a face. Thus, detennine

whether a similar face is already in the database or not.

5. If a similar image is already in the database, make another reference to where it may be

fow1d. Otherwise, add it as a new face.

6. If an image that is not close to a feature space is repeatedly found in the database, accept it

as a face and learn to recognise it.

77

;------{ Itmge training
Set

Define the
feature space

Yes

Irrage seen No
before?

No

IllPore
Yes

Proj eel face into
feature space

Image dose to
fea me space?

Yes

Face
knOml.?

No

Learn to
recogUze it

Figure 6 - 1 : The race recognition process

6.4 Implementing the data cartridge

As already explained in the previous section, the data cartridge was implemented by firstly

developing a standalone Java application that consists of the classes shown in table 6-1, and was

independent of the database. The signature of the training set is computed by the class

FaceSpaceComputation, and stored in a standard operating system file.

Class Name Description

FaceSpaceComputation Computes the face space

FaceSpace Signature with average space and Eigen faces of all images

FaceSpaceCreator Used for matching images

Table 6 - 1 : Java classes used to the race recognition data cartridge

The two basic entries of the face recognition cartridge are the image itself (source_image) and the

image signature (signature_type). Source_image can contain images of different types and thus

78

has a subtype called Image_type, which is used to classify the images that are interpretable by the

cartridge. An image of type image_type can have two types of images: an image containing a face,

or an image containing an unknown object. Since the face recognition cartridge only recognises

images with faces , the signatw-e is only created for images that contain faces. The entity and

relationships of the face recognition data cartridge entities is shown in Figw-e 6 - 2.

Figure 6 - 2 : Graphical representation of face recognition entities and relationships

The second part of implementing the face recognition data cartridge was to create object types and

their methods. This involved using the infrastructure to support the use of object data that matches

the data model used in object-oriented applications provided by Oracle. Part ofthis is Oracle SQLJ,

which is used in this cartridge to create object types and their methods. (SQLJ is a standard that

"allows SQL code to be embedded into Java code in a way that is compatible with the Java design

philosophy" [WRl02]). Together with JDBC, Oracle SQLJ provides sets of interfaces to access

SQL data from Java classes and persist Java objects in the database, with JDBC interfaces allowing

SQL types to be mapped to Java classes while Oracle SQLJ allows Java types to be mapped and

used inside the database. This allows for a real object-oriented architectw-e that treats each entity as

a single atomic unit in the database.

SQLJ classes are mapped to the database by extending the ORAData, SQLData or CustomDatum

interfaces provided by Oracle. These interfaces allow the SQLJ class elements to be accessible from

the server using standard SQL. The attributes of each SQLJ class are treated like column attributes

of standard object types and the corresponding class methods are treated like SQL object methods.

In the following code segments, the SQLJ classes that implement the required face recognition

functionality are presented. All the presented classes implement the oracle. sql . SQLData

interface. The first code segment outlines the implementation of the Source_I mage object.

79

public class Source_ Image implements SQLData

protected String sourcePath;

protec ted BLOB data ;

protected Date updateTime i

protected String sql_type;

public void readSQL(SQLInput stream, String stype) throws

SQLException {}

public v oid writeSQL(SQLOutput stream) throws SQLExcept ion {}

public stat i c Source_Image i nit () throws SQLException{}

p ublic static Source_ Image init(String s) throws I OException,

publ i c String getSourcePath () throws I OException {}

To demonstrate how inheritance is supported in Oracle, the Image_type object is implemented so

that it extends the Source_image type. The code outline for the Image_type is shown below:

pub l ic c lass Image_Type extends So urce_Image

pro tected int width;

protected int height ;

protected String fileFormat;

pro tected St r ing contentFormac;

protected St r jng compres s i o n;

protected l o ng length;

protected St ring sqltype;

p rotected SQLData data;

public Image_Type () {}

public Image_Type (String s) throws I 0 8xception, ImgException ,

SQLException { }

The face_type and unknown type inherits from Image_Type . The implementation for the

face_type is shown below. Since images with "unknown" states, (that is, they do not contain

faces) are not represented in the signature, the implementation of the unknown entity is ignored in

the rest of this chapter.

80

public class Face_Ty pe extends Image_Type

public BLOB face ;

public Face_Type () throws IOExc eption, SQLException { }

The signature for the set of database images is then created using the Si gnature_File class, which

has the following code outline:

publ i c clas s Signature_ File i mp l ements SQLData

public BLOB signature i

publ i c static v o id init (Resultset rs) throws IOException,

SQLException{ }

All the classes described above are first compiled using a SQLJ compiler. They are then loaded into

the database using the loadj ava command-line utility, together with the classes shown in table 5-1 .

However, the classes shown in table 5-1 are only used as a reference by the Si gnature_ Fil e to

generate the face space, and are thus, never published in the database. The three SQLJ classes

shown above are published to allow persistent storage of objects in the database using the CREATE

TYPE statement. Since Oracle SQLJ allows a one-to-one mapping ofthe Java classes to SQL object

types, where each attribute is mapped to the corresponding SQL types, the sou rce_file object type

is represented to the database as:

CREATE OR REPLACE TYPE Source_type

AS OB,JECT

EXTER.."NAL NAME I Sourc e_ Image I

LANGUAGE JAVA USING SQLData

sourcePath VARCHAR2(400 0) EXTERNAL NAME 'sourcePath',

data BLOB EXTERNAL NAME 'data',

updateTime DATE EXTERNAL NAME 'updateTime',

STATIC FUNCTION i nit r eturn So urce_Irnage _typ

externa l name I in i t () return So urce_Image',

81

STATIC FUNCTION init (name VARCHAR) return Source_Image_typ

external name ' i nit (java .lang.String) return Source_Image' I

NOT FINAL;

The EXTERNAL NAME clause identifies the Java class whose attributes and methods are mapped to a

corresponding type in the server and while the USING clause specifies the interface that describes

how the type is represented in the server.

As seen in the last line of the type declaration, the Source_type is declared as NOT FINAL. NOT

FINAL keyword in Oracle indicates that the type can have subtypes. All user-defined types are

declared FI NAL by default, and can thus not have sUbtypes. Methods can also be declared as FINAL

to prevent the subtype from altering them or NOT FINAL to allow the subtype to override them.

Another important keyword pertaining to inheritance that can be used with the object type is NOT

INSTANTIABLE, which means instances of the object type cannot be created. This allows correct

representation of abstract classes in the server.

To map the SQLJ class I mage_type in the database, the CREATE TYPE statement must indicate that

the type is a subtype by specifying the supertype using the UNDER parameter. The code outline for

the Image_type is shown below:

CREATE OR REPLACE TYPE I ma ge_ type

UNDER Sour ce_ t yp e

) ;

EXTERNAL NAME ' Type_ Ima ge '

LANGUAGE JAVA USING SQLDat a

WIDTH NUMBER EXTERNAL NAME 'width' ,

LENGTH NUMBER EXTERNAL NAME 'le ngth',

STATIC FUNCTI ON init ret u rn Type_Imag e_typ

external name 'ini t {) return Type_I mage',

The I mage_ type inherits all the attributes and methods of sour ce_type, and any changes made to

source_type are reflected in Image_ type as well. Once objects of type I mage_type have been

82

created, changes to source_type are restricted since the type contains subtypes that are dependent

on it. Apart from the overridden methods, Image_type and all its subsequent subtypes will, in

addition to new attribute and methods that the individual subtype introduce, accumulate all the

attributes and methods in Source_type. As an example the Face_type can be represented as:

CREATE OR REPLACE TYPE Fac e _ type

UNDER Image_type

) ;

EXTERNAL NAME 'Face_type'

LANGUAGE JAVA US I NG SQLData

fac e BLOB EXTERNAL NAME 'fa ce',

STATIC FUNCTION init return Face_type

exter nal name ' init () re turn Fac e _t ype ',

In addition to the attributes of I mage_type , Face_type also inherits all the attributes and methods

of Source_type, thereby allowing type hierarchy to be maintained among supertypes and subtypes.

This facilitates code reuse because the code does not have to be rewritten to make it available in

different object types in the type hierarchy. However, Image_ type is declared as a final type,

meaning that subtypes of I mage_type cannot be created. The Face_type can thus be simply

created using SQL as:

CR EATE OR REPLACE TYPE Fa ce_ t ype AS OBJECT

f a ce BLOB,

STATIC FUNCTION INIT (content Image_type) return Face_ type

) ;

Note that an SQL type such as Face_type described above, cannot inherit directly from the

I mage_type type, unless it is first declared as a SQLJ type that uses SQLData. The ideal situation

would have been to allow the SQL type Face_ type to be created as:

83

CREATE OR REPLACE TYPE Face_type

UNDER Image_type

face Bl,OB,

STATIC FUNCTION I NIT (content Image_ type) r eturn Face_type

) ;

However, SQLJ object types can only have SQLJ types as their supertype or sUbtypes. This implies

that inheritance is only allowed among object types with similar representation in the database, so

that SQLJ object types only inherit from SQLJ objects and SQL object types only inherit from other

SQL types.

6.5 Observations

This section presents some of the implications observed when mapping Java classes to Oracle

obj ect types.

6.5.1 Using the cartridge object types

Like classes in an object-oriented environment, type declarations do not allocate storage to objects.

The class must be mapped into a table to store object instances. One way to achieve this is by using

object tables. An object table is a special kind oftable in which each row represents an object. As

an example, an object table images that stores instances of Image_type is defined as:

CREATE TABLE images OF Image_ type;

The images table is treated as a single column table where each row represents an object of type

Image_type, allowing object-oriented operations to be directly applied to the table. The table

contains a combination of the attributes of Image_type and Source_ type and can be initialised

with an instance such as:

INSERT INTO images VALUES

('c, \ ear' ,emp t y_ blob!) ,null, 10,2 0,30, ' gif ' , 'gif', 'rleS') ;

84

However, when a table consists of a hierarchy of subtypes, the list of attributes becomes very long.

A better choice would seem to enable the table object to be instantiated using a constructor function

such as:

INSERT INTO images VALUES (Image_type . init(» ;

This, however, was not possible with all the types defined in this cartridge. Although the

constructor function returns an object of type Image_type, the attributes of images are stored as a

list of all the attributes of Image_ type, rather than as a single, atomic attribute called Image_ type,

causing the constructor function to return inconsistent data types when executed.

Another notable issue with an object table such as images is that an object table cannot be

instantiated with NULL values. This is because each object or row is referenced as an object, which,

as in standard object-oriented programming, must have an identity and a state. Oracle automatically

assigns an object identifier value (OID) to each individual row in an object table, which allows each

row object to be referred from other objects or relational tables. Assigning NULL values to objects

invalidates their state in an object table.

The images object table can also be treated as a multi-colunm table where each colunm is an

attribute of the object type Image_type, allowing relational operations to be performed on the table

such as:

SELECT width FROM images;

6.5.2 Storing object collections

The face recognition cartridge treats a set of face objects as a collection, which is stored in the

database as a set of images. Oracle allows sets of types to be stored as Collections, which can either

be nested tables or Variable Arrays (V ARRAYS). Collections define a unit that contains an

indefinite number of elements, all belonging to the same data type. The following example creates a

set of face objects based on the Image_ type type:

CREATE or replac e t ype face_array as VARRAY (l O) o f i mage_t ype;

85

The above statement declared an array collection of face images. As one would expect, an array

stores an ordered set of data elements, where each element has an index number corresponding to

the position of the element in the array. (The number lOin the brackets indicates the maximum size

of the array.) Since the array is declared as a type, it does not allocate storage space, and must be

used as an attribute of an object type or a data type of a table to allocate storage. The following

statements uses face_array as an attribute of an object type called face_ob j ec t .

CREATE OR REPLACE TYPE face_objec t a s OBJECT (face f a c e _ a r ray) ;

A preferable solution would be for Oracle to allow arrays to be used as a data type of a table as in

the following statement:

CREATE TABLE fac e _table s(id number ,fa ce f a c e_array);

However, the above statement only works when the array contains simple data types such as

numbers and strings. It does not work with face_array because face_ array is a V ARRAY of

type Image_t ype , which contains an embedded LOB.

Another collection type that can be used is the nested table collection, which contains an unordered

set of data elements. Nested tables can contain other nested tables to create a hierarchy of tables

within other tables. The following statement declares a nested table type, which nests tables of face

Images.

CREATE o r replace t ype f ace set a s TABLE OF i ma g e_type ;

The statement defines a type, and thus, does not allocate storage space. The nested table type can

again be used as an attribute of another object type or an attribute of a column in a table. Again, it is

not possible to store nested tables with columns containing embedded LOBs.

Because of the shortcomings with storing collections of columns containing embedded LOBs,

collections were not used to store the training set of the image recognition cartridge. Instead, each

image of the set is stored as an individual object in a standard table, whi le the signature, which is a

computed from the entire training set, is stored as a BLOB in the s i gna t u r e_type object.

86

6.5.3 Storing object references

As mentioned earlier, Oracle assigns an OID to every object stored in an object table to allow

objects stored in rows to be referred to from the relational tables and from other objects.

Specifically, the REF keyword is used to represent such reference objects, which in practice is

simply a logical pointer to a row object. References are also used to model associations among

objects, eliminating the need to use foreign keys and providing the means to navigate between

objects. An example of how the REF function works is shown below:

se l ect REF (P)

f rom Images P

where wi dth 7;

In the above example, the REF function takes uP" as input, which is an alias to the object table, to

return the actual OID for the row object selected. The query returned the following results:

REF (P)

00002802095C3AD6AD3B3C4 CD7 BOSOA49C97BACD9835619CD6E25C49F8AC8879791

B3DA8F0040F0590 0 02

This value by itself is not useful, as it does not give the actual value of the row object. A

dereferencing function, called DEREF, is provided to return the actual object instance

corresponding to the REF. As an example, the DEREF function may be used as:

select DEREF'(REF(P))

from I mages P

References can either be scoped or dangled, with scoped references constrained to references to

specified object tables while dangling references can refer to objects that do not exist. Despite the

many potential benefits of the referencing and dereferencing functions, these functions can also not

be applied to object tables that use columns with embedded LOBs, making them unusable in the

face recognition data cartridge.

87

6.5.4 Handling domain specific data

It was not possible to create object types on the fly within Oracle; they had to be created and stored

in the database using languages such as PLlSQL, Java, and SQLJ before they could be used and

shared by other programs. Once object types were defined, they are used as row objects in object

tables, or as column objects, which are attributes of a table.

As seen in the implementation, the object-oriented view of Oracle eliminates the impedance

mismatch between the applications and the database, allowing corresponding attributes and methods

of standalone applications to be effectively mapped and used inside the database. The data structure,

along with its corresponding functions, can be encapsulated in a Java class, and an interface that

presents the mapping between the actual Java class and the object type in the database can be

implemented using SQLJ. Like classes in Java, however, object types do not allocate storage to

object instances, and an object table or object type that uses the user-defined object must be defined

to allocate object storage.

For each user-defined object, Oracle implicitly creates an object type, which can be used to create

instances of that object type. Although user-defined constructor functions are also allowed, these

could only be used with column objects or row objects whose types were implemented using

PLlSQL. Row objects whose types were implemented using SQLJ required the specification of a

value for all the corresponding attributes of the object type.

As expected, it was only possible to update object types that did not have dependents in the

database. Object dependents that are referenced in any schema objects such as tables, views and

other objects could not be updated, making it difficult for types to evolve once they were defined

and used. In such a case, the user could either define new objects using older objects, or first delete

all the object dependencies before updating the type.

Oracle provides MAP and ORDER methods that allow objects of the same type to be compared. (An

object type can only have one comparison function at a time.) MAP methods are applied to each

object individually, and their results are then compared. ORDER method, on the other hand, compares

two objects simultaneously and returns the results of the comparison. MAP functions can, however,

only be used with functions that return built-in data types, making them more efficient for

operations such as comparing numerical values. ORDER functions, on the other hand, can also be

used for functions that return complex objects . Since Oracle recommends that each object type

88

should have either a MAP or ORDER method defined (otherwise a field-by-field comparison of

attribute values is done when object comparisons are performed, which do not always imply

similarity), the function used to compare faces for similarity in this data cartridge was implemented

as an ORDER method, which provides a more natural way of comparing objects.

6.5.5 Handling inheritance

As seen in the implementation, object types could be declared as NOT FINAL to enable them to be

used as supertype for other object types. Although this gave power and flexibility to object types, it

also introduced a higher level of complexity and dependency. A typical example is on the depth of

the type hierarchy, where a subtype could be defined from a supertype either directly or through

mUltiple levels of other sUbtypes. As an example, Face_type was created under Image_type,

which was also created under Source_type. Although this is an advantage from the inheritance

point of view, it could prove difficult to evolve any ofthe supertypes in the type hierarchy,

especially if any of the subtypes has table dependencies. Oracle, however, provides the option of

declaring types as NOT INSTANTIABLE, which implies that they cannot be instantiated. To minimise

the difficulty of evolving types, therefore, supertypes that are most likely to change and do not

require direct table dependencies, could be declared as NOT INSTANTIABLE.

It was also noted that SQLJ object types that inherit from other objects are stored as unpacked

objects, where each of the attributes from all the supertypes is mapped to a column in the table

containing them. Consequently, it was not possible to instantiate a subtype with the constructor to

the supertype, as can be done with a call to super () in Java. Other observed characteristics of

handling inheritance in Oracle include the supports for only single inheritance, so that each subtype

can have exactly one supertype, although, a supertype can have more than one sUbtype. This was,

however, expected since Java also only supports single inheritance. Like Java, Oracle also supports

dynamic polymorphism, which allows the appropriate version of the method to be executed based

on the type of the object.

6.5.6 Handling collections of objects

As already mentioned, Oracle supports two collection types: VARRAYS and nested tables.

VARRAYS store a limited, ordered set of elements, where each element has a position that uniquely

89

identifies it in the array. Nested tables on the other hand are not ordered, and allow tables to be

embedded inside other tables. VARRAYS and nested tables could, however, not be effectively used

in this data cartridge because they do not support columns containing LOB objects. It was, however,

noted that indexes could not be created on VARRAYS. Nested tables, on the other hand, allow

indexes to be created, and can thus be used with more complex collections of data than VARRAYS.

6.5.7 Handling object references

As previollsly mentioned, objects are stored as row objects or column objects in Oracle. In addition

to columns corresponding to all the attributes of the object, row objects also store an additional

column that stores a unique, system-generated object identifier. Column objects on the other hand

are stored as scalar values, and thus do not have object identifiers. Once objects were stored as

column objects, they could only be accessed by selecting the columns they occupy. Object stored as

row objects, on the other hand, could be referenced using their object identifiers, via the discussed

REF function.

As noted in the implementation, however, the REF function also could not be used with object

types containing LOB columns. Usually, the REF function is used as a substitute for primary key

foreign key relationships, eliminating the need to perform the complex joins used in the relational

model. References also simplify object querying, because they support navigational access rather

than associative access. (Associative access is used with foreign keys, where the entries in one table

must be looked up from another table, while navigational access using multiple level of pointers to

retrieve complex objects.) An example of a preferable way where the REF function could be used

in the face recognition data cartridge would have been:

seJect REF (P)

from Images P

where width 7;

According to [SUK99], the "natural way to model relationships between objects" provided by

navigational access does always not guarantee optimal solutions ifreferenced objects reside in the

same table. Hence, associative access was used to model relationships, since object references could

also not be effectively used with objects containing LOB columns.

90

6.5.8 Handling objects on the application side

As discussed in the integration process, oracle provides the JDBC and SQLJ interfaces to provide a

mapping of objects between the server and the standalone application. In addition, data in relational

tables can also be retrieved and updated as ifit were stored as objects using object views, providing

a seamless interface for fetching of objects into a client side cache. Using JDBC and SQLJ, it was

possible to switch between the server and client side code without affecting the consistency of the

data, thus providing flexibility and different object schema representation using both the relational

and object view. The cartridge also demonstrated how JDBC and SQLJ facilitate a seamless

integration of already developed object-oriented applications into the database in section 6.4.

6.5.9 LOB management

Oracle provides support for four different kinds of LOBs: (i) BLOBs, which are unstructured binary

data, (ii) CLOBs, which are single byte large character data, (iii) NCLOBs, which are multiple byte

large character data and (iv) BFILEs, which are large binary files stored outside the database. Apart

from the BFILEs, the actual LOB data is stored inside the database table space (also called inline

storage), and thus participates in the transaction model of the database. This means that data stored

inline is protected by many of the database's features such as concurrency and recovery. BFILE

data on the other hand, does not participate in the transaction model, and any support for data

integrity and recovery must be provided by the application or underlying operating system. In this

data cartridge, actual face images were stored as BLOBs, while the signature was stored as a

BFILE.

The maximum length restriction for all column data and buffer size when processing SQL queries is

4KB. Only face images with a size less than or equal to 4GB could be stored as internal LOB (LOB

stored inside the database) because of the maximum size restriction stipulated by Oracle. Images of

greater size could have been stored outside the database as BFILEs, or they could also be

compressed so that they fit into 4GB, or be broken into chunks of less than 4GB that are stored as

separate columns or separate rows. Storing images this way, however, could further complicate the

development of the data cartridge. As a result, the data cartridge only used images ofa size less than

4GB.

91

6.6 Conclusions

This chapter demonstrated how existing Java classes might be integrated as a data cartridge in

Oracle, exploring how some of the important object-oriented concepts such as inheritance and

encapsulation can be realised in an object·relational environment. Although Oracle does not support

the object-oriented paradigm completely, it provides a reasonable level of support for it. Developing

the face recognition cartridge required a proficient understanding of the different extension

possibilities. The code was initially developed for a standalone application, and its integration into

the database required writing code that is harder to understand and maintain. Since most of the

important object-relational features could not be applied to LOBs, integrating this data cartridge

emphasised the need to extend the support of object-relational concepts to LOB data, otherwise

Oracle's object-relational engine are still viewed as having the same limitations as the relational

engine when dealing with LOB data.

92

Chapter 7:An extensible data cartridge:

integrating GiST

This chapter exits the image retrieval domain used to integrate data cartridges in

the previous two chapters, to demonstrate the integration of generalised search

trees (GiST) into Oracle, exploring extensible indexing interfaces in greater

detail. The GiST is implemented as an extensible data cartridge that provides

low-level indexing functionality to other data cartridges, simplifying their

development. The integration revealed that although the indexing extensibility

mechanisms of Oracle provides a set of interfaces that guide the data cartridge

developer in extending the database, it does not shield the developer from the

implementation of low-level details, and thus does not reduce the implementation

effort of user-defined functionality.

7.1 Introduction

The previous chapters described the implementation of data cartridges that solve domain

specific problems in the domain of image retrieval. An alternative to this approach is to

implement one "supercartridge" with an extensible architecture, which can be extended by

"sub cartridges" to specialise the functionality to the required domains. This not only reduces

the development time and makes the cartridge components more manageable and consistent,

but also facilitates code sharing and, generally, makes the software more reliable. This way,

the development of custom data types can be delegated to domain experts of the data type

while leaving the complicated data cartridge features to database developers.

This chapter moves out of the image retrieval domain to explore the extensibility of indexing

techniques in Oracle in greater detail. The implementation is based on the Generalised Search

Trees (GiST), a template indexing structure originally proposed in [HK.P95] and adapted for

better performance and concurrency and recovery mechanisms in [KORDD]. GiST has been

described as one of the most extensible indexing structures available today and has been used

to enhance the indexing capabilities of multimedia applications such as MPEG-7 Multimedia

93

Data Cartridge [KOS02], in image indexing and retrieval applications such as BLOB World

[CTB+99], and for investigating issues regarding concurrency and recovery protocols in

Informix Server in [KOR99].

7.2 Overview of the GiST architecture

The GiST framework provides template algorithms for building balanced index trees such as

the B-tree and the R-tree. Internal nodes and leaves have an index entry (k,ptr), where k is a

predicate used as a search key and plr is a pointer to another node for internal nodes and a row

identifier for leaves. The predicate key may, in principle, take any arbitrary predicates, and

needs not be ordered. This implies that GiST is not limited to any data type, making the

framework highly flexible and extensible in the kind of data it can index. Predicate keys are

categorised into different sub-categories using some user-defined characteristics. The

categorisations are then used to form a tree hierarchy, where each node stored under a

hierarchy belongs to a certain category. Queries issued against the GiST are conducted by

searching the index using the categorisations, which makes GiST extensible in the kinds of

query it can handle.

GiST provides all the required abstract methods for the search functionality in a single data

structure. When extending the GiST, the user only specifies the properties and characteristics

of the specific tree that distinguish it from other trees. These properties, which are a set of

methods for specific functions such as insertion, deletion and searching of data in a tree, are

summarised in table 7-1.

Method Description

Consistent Determines whether there is a possibility that data stored below a given node

may match the predicate.

Union Computes the union of a set of predicates

Compress Compresses the representation of the predicate

Decompress Decompresses the compressed representation of the predicate

Penalty Computes the penalty for inserting a new key into a specific node

PickSplit Split the page when there is an overflow

Table 7 - 1 : Summary of the GiST interface methods

94

The generic algorithms provided by GiST and the methods from table 6-1 that must be

implemented by the user to realise them are discussed below:

Search

Search transverses the tree to find entries that satisfy a specified search predicate. For

unordered nodes, the search recursively descends all the paths in the tree that contain a key

consistent with the predicate search key. For ordered domains, the algorithm returns the

minimum tuple in the tree that satisfy the predicate. Assuming the nodes are sorted in

ascending order from left to right, this is achieved by descending the left most branch of the

tree for the branch whose entries are consistent with the predicate search key, and returning

the first key in its leaf node. The interpretation and evaluation of this qualification for data

entries in the tree is implemented by the user-defined consistent () function, which takes a

query predicate and a page entry as arguments and return true if the entry matches the

predicate.

Insert

Insert is used to add new entries in the tree in such a way that the tree still remains balanced

after the insertion. Given an entry (k,ptr), and a levell, the algorithm finds a new single leaf

where to insert the entry and returns a new GiST resulting from inserting the entry at levell.

GiSTs allow overlapping search predicates, for which there might be more than one leaf at

level I where the new entry can be inserted. Before inserting the entry therefore, the user

defined penal ty () function, which takes the new key and page entry as arguments and

returns a penalty that reflects how much the tree needs to be expanded to accommodate the

new entry, might be computed. Since there is more than one leaf where the new entry might

be inserted, the path with the least penalty is chosen until the right place to insert the entry is

found. However, each leaf contains a limited number of elements, and inserting a new entry

may result in an overflow. In this case, case the leaf must be split using the user-defined

pickSplit () method. If the parent nodes do not cater for the new key, the tree must be

expanded from the root so that the new key is put at the right place. The user-defined union ()

function is then used to combine the new entry with the old entries in the tree so that the tree

can be updated.

95

Delete

Delete removes a key from the GiST in such a way that the balance of the tree is maintained.

This function works by descending the tree to locate the leaf whose key is specified in the

delete argument and removes it from the tree. Deleting an entry can result in underflows, so

the tree must be adjusted accordingly using the user-defined union () function to keep the

balance of the tree. This may result in the original tree being shrunken.

7.3 Design and implementation of the INDEXTYPE

The algorithms for implementing the GiST interface are given in both [HKP95] and

[KOROO], and the standard GiST code developed in C++ may be found at [BECOO]. This

code has been used in [DOK02] and [KOR99] to extend the Oracle and Informix databases

respectively with additional indexing techniques. Both [DOK02] and [KOR99] divided the

functionality ofthe index in three components: the GiSTCore, the index extension and the

user-defined data type. In [DOK02] , the GiSTCore component is stored as an external

database module that requires the database to be configured to recognise and use it.

I Index File I Table J
1

creates and maintains stores the index in

Extensible Indexing GistCore

t
extends extends

User Defined Index Gist Extension
Type

User Defined Data Gist Entry
Type

Figure 7 - 1 The GiST Implementation Approach

The code for GiSTCore in this thesis was developed in Java so that all the code is run from

inside the database, as opposed to the external procedure approach used in [DOK02]. The

implementation approach used in this thesis is shown in Figure 7 - 1.

96

The approach represented in Figure 7 - 1 consists of two major parts: the database dependent

part and the database independent part. The database dependent part is on the left side of the

figure, and is constituted by the User-Defined Data Types, the User-Defined Index Types and

the Extensible Indexing Interface. The database independent part is on the right side ofthe

figure, and is constituted by the classes that can run independently from the database. These

classes include the GiSTCore, the GistExtensions and the Gis tEntry. The

implementations of the constituents of the two parts are discussed in more detail in the next

sections.

7.3.1 Implementing the database independent components

The database independent components are the generic interfaces that must be extended by the

user to implement the functionality of GiST in the database. These interfaces implement the

GiST interface methods shown in table 7-l. The implementation consists of nine Java classes,

as shown in table 7-2. In addition, the table also shows the PageFile class, which is used to

layout the index pages in the index file. The index pages contain data for which the index type

issues queries to read, write and update.

Class Description

GistConstants Stores the library constants such as number of entries in the GiST

GistEntry Defines the predicate keys and their pointers

GistNode Defining GiST nodes

GistPenalty Defines the pena 1 tyO of implementing methods

GistPredicate Defines the consi stent 0 method

GistKey Defines the predicate key of the gist

Gist Creates a Gist tree

GistListNode Contains a list of nodes in the gist

GistList Maintains the position (such as front and real) of the Gist tree

PageFile Implements the storage manager for a tree

Table 7 - 2 : Classes used to implement the GiST Core

The classes in table 7-2 are developed outside the database and loaded into the database using

the 1 oadj ava utility. Since these classes are abstract classes that need to be implemented,

they are loaded as Java source classes to make them editable from the Oracle Enterprise

97

Manager Console. The main class for the index type is Gis t . java, and contains methods to

insert, search, delete and create the index file. The code outline for Gist . java is shown in

appendix c.l.

Gist. java creates and stores the index tree in a Random Access File outside the database or

in a database table. The implementation must thus include operations to issue commands to

write, scan and delete data stored outside the database when a statement that references the

GiST is issued. It must also incorporate the operations to create tables and files to store index

data. Upon invocation, the function parameters and the description of the index are used to

either build a new index or create indexed data in the new column.

7.3.2 R-tree: Extending the database independent component

The sample tree that extends GiST in this example is a balanced R-tree that uses an n

dimensional space represented as a square. As [HKP95] argues however, R-trees provides

only the Contains key predicate, and do not allow the specification of the PickSplit and

Penal ty algorithms introduced by the GiST. R trees were also found to lack optimisation

mechanisms for linearly ordered domains, providing limited extensibility in terms of the

features offered by the GiST architecture. Because of their simplicity, however, they are used

to demonstrate the extensions and usage of the GiST architecture in this example.

The keys in the R-tree are a set of integers, representing the lower left and upper right comers

respectively. As an example, a key given as (Xl, yJ, X2, Y2) represents (X I, YI) and (X2 ,Y2) on

the Cartesian plane. For simplicity, the key (XI, yJ, X2, Y2) is also used to represent the

predicate Contains((xl , YI, X2, Y2),q), where q is used as a free variable which represents the

search key. The tree is used to search nodes that intersect with a given rectangle, and alJ

rectangles that contain a given point. As such, the query predicates supported in this class are:

o Contains (key, q)

o Overlaps (key, q)

o Equals (key, q)

98

Initially, the Java classes that extend the GiST interface methods shown in table 7- 1 are

implemented. As explained in [HKP95], the implementations of the above operators is done

as follows:

o Contains ((Xul(I), Yul(I), Xlr(I),Ylr(I)), (Xul(2), Yul(2), Xlr(2),Ylr(2))) only returns true when

(Xlr(l) ;:;:, Xlr(2j) A (Xul(l) ;:;:, Xul(2)) A (Ylr(l) ;:;:, Ylr(2)) A (Yul(l) ;:;:'Yul(2))

o Overlaps ((Xul(I), Yul(I), Xlr(I),Ylr(I)), (Xul(2), Yul(2), Xlr(2),Ylr(2))) only returns true when

(Xul(l) ;:;:, Xlr(2)) A (Xul(2) ;:;:, Xlr(I)) A (Ylr(l) ;:;:, Yul(2)) A (Ylr(2) ;:;:'Yul(l))

o Equals ((Xul(I), Yul(I), Xlr(l),Ylr(I)), (Xul(2), Yu l(2), Xlr(2),ylr(2))) only returns true when

(Xul(l) = Xul(2)) A (Yul(l) = Yul(2)) A (Xlr(l) = Xlr(2)) A (Ylr(l) = Ylr(2))

As mentioned earlier, R-trees do not allow the specification ofthe Penalty and PickSplit

methods. Compress and Decompress methods are also optional implementations. So, of the

six GiST methods shown in table 7- 1, only two were necessary. These were then implemented

as follows:

o Consistent (E,q). For each entry E = (p,ptr), where p Contains (Xul(I), Yul(I), Xlr(l),Ylr(I))

and q either Contains, Overl aps or Equal s (Xul(2), Yul(2). Xlr(2),ylr(2)), return true only

when q Ov erlaps ((Xul(I), Yul(I), Xlr(l),Ylr(I)), (Xul(2), Yu l(2), Xlr(2), Ylr(2)))' This means that an

entry E is consistent with q if there is no doubt that the data stored below the pointer

ptr may match q.

o Union (Eq = ((Xul(I), Yul(I), XIr(I),Ylr(I)),ptr), .. . , En(xul(n), Yul(n), Xlr(n),Ylr(n))), return

(Min(xul(I), ... , Xul(n)), Max(Yul(I), ... , Yul(n)), Max(xlr(I), ... , Xlr(n)), Min(xlr(l), " ., Xlr(n)))

The implementation of the R-tree is summarised in the classes shown in table 7-3. Note that

this table also contains a class for the RtreeEnt ry, which defines the interface used to enter

new keys in the GiST tree. The RtreeEntry, corresponds to the GiST Entry in Figure 7 - 1.

Class Description Methods Implemented

Rtree Main class for the Rtree functionality

RtreePageFile Creates persistent storage for the index Extends page file

RtreeFile Keeps a record of used nodes Union

Rtreeentry Defines the Interface for the entry Insert

Rtreepredicate Defines query predicates Consistency

Table 7 - 3 : Classes for R-tree implementation

99

Since the user-defined object types that use the cartridge described in this chapter are already

defined in chapter 4, the next section proceeds to the implementation of the index type.

7.3.3 Implementing the database dependent components

As explained in chapter 5, the data cartridge mechanism provides a set of APIs that are used

in the extensibility framework (0 build different data cartridge components. One of these APIs

is the extensible indexing API, which provides a set of interfaces that must be implemented to

support user-defined indexing techniques in the database. Using this framework, different

indexing components can be developed independently of each other (for example, one can

create operators without creating the index type), which are later combined to enable the

database server to invoke them when executing SQL commands involving user-defined

operations. As seen in the implementation ofthe previous data cartridges, however, the

implementation is started afresh every time a new technique is required, making it complex

and time consuming because there are so many interfaces to implement and internal details to

take into account.. Using a generic indexing framework, such as GiST, has the potential of

specialising the data cartridge APIs to provide extensible indexing and operator interfaces,

that at the same time also allow different combinations of data types and operators to use

different indexing techniques. This section describes how the database independent

components were integrated with Oracle's extensible indexing interface to provide the

functionality for calling the appropriate generic index methods in the database.

The first step in integrating the database independent components in the database is to define

the index functions that use these components. Oracle provides a package called Oracle Data

Cartridge Interface package, also known as the oracle.ODC!.* package, which is a Java

based interface to allow domain specific operators and indexing schemes to be defined and

integrated into the server from standalone Java applications. This package has been used to

enhance the indexing capabilities of Oracle in I [DOK02], which, as mentioned earlier,

implements the actual indexing functionality as an external procedure. Oracle9i, however, did

not allow the user-defined Java classes to extend the oracle.ODC!' * package. Attempting to

extend the package gave the following error:

1 The author uses Oracle8i version

100

xxx , The method java . util.Dictionary getTypeMap (} declared in

nested claus xxx. Ctx cannot override the method o f the same

signature declared in class

sqlj.runtime . ref . Connect i onContextlmpl. They must. have the

same return type .

where xxx is the name of the class in the ODCI package. The error suggests that there are

some unresolved errors in the Oracle9i ODCI package, which could therefore not be used in

this case.

As a result, the index extensions were done using the SQL-based interface demonstrated in

chapter 5. Initially, PUSQL functions were created and bound to the Java functions in the

Gist. java file, to create an interface between the functions and the server. A s an example,

the function below is used to create and bind the function for inserting an entry in the index:

CREATE OR REPLACE FUNCTION GistCreate (minentries I N

BINARY_INTEGER, maxentri es IN BINARY_INTEGER) RETURN

BINARY_INTEGER AS

LANGUAGE JAVA

NAME ' Oist . Insert(GistEntry, java .lang.int) re turn

java . lang . int' ;

The corresponding indexing operation for the above functions is:

STATIC FUNCTION ODCIIndexCrea t e (ia

parros VARCHAR2,

SYS . O[)ClINDEXINr'O,

env SYS .ODCI ENV)

RETURN NUMBER,

stmt VARCHAR2(100Q);

crs NUMBER;

temp NUMBER;

min NUMBER := l ' ,

max NUMBER : = 10;

BEGIN

- - Construct the SQL s ta tement for creating the t a ble

stmt ,= ' CREATE TABI,E ' I I ia . IndexSchemal 1 ' , I I
i a . l ndexName I I ' ~idx' I I' (r ROWI[) , val GiSTEntry, pas

NUMBER) ';

101

- - Dump t he SOL statement_

sys.ODCIT ndexl nfoDump(ia);

- - Execute the statement .

era : = dbms_sql.ope n_cursor;

dbms_ sql.parse (crs , stmt, dbms_sql . native) ;

junk := dbms_sql.execuce (crs);

dbms_ sql.close_c ursor (crs)

Now crea te the GiST Fi le

temp = Gis tCreate(mi n, max) ;

RETURN ODCI CONST . SUCCESS;

END;

And the same is done for all the ODCI Interface methods explained in chapter 6.

7.4 Conclusion

Although Oracle provides interfaces to allow the user to control and define the content of the

index, it does not simplify the index development process. Oracle provides the Oracle

Database Indexing Interface (ODCI) and numerous examples in Oracle8i documentation that

shows how to extend the interface using Java. However, it was impossible to extend the

ODCI interface in Oracle9i using a Java application. As a result, it was also not possible to

build a general index inside the database that does not require the user to extend the ODCI

interface. To build a general index, therefore, the indexing techniques were divided into

database-independent and database-dependent components. This, in a way, removes the

flexibility of developing data cartridges because it forces the developer to follow the cartridge

development process discussed in chapter 4 (see Figure 4 - 1).

Building a general index could also increase the flexibility of the data types that can be

indexed using the same access method. The separation demonstrated in this data cartridge did

not completely eliminate the development of user-defined extensions, because the extension

still has to extend the numerous ODCIIndex interface methods. Nevertheless, it facilitated

code reuse since the already developed GiST library was used to integrate the ODClIndex

102

functionality. The preferable solution would have been for the index type to accept supertypes

to accommodate instances ofthe data types.

This chapter demonstrated the integration of the extensible GiST data cartridge, which was

tightly integrated with the database engine to provide a general, easy to use and performance

enhanced framework inside the database. GiST was implemented using a database

independent and a database-dependent component, allowing developers to extend it to support

different search trees both inside and outside the database. GiST allowed the developers to

concentrate on the semantics of user-defined predicates and functionality of the actual tree,

without being concerned with low-level details. This demonstrated that it is possible to reduce

the implementation effort of user-defined functionality by building extensible data cartridges.

103

Chapter 8:Summary and conclusions

This chapter summarises the findings in developing sample data cartridges in

Oracle9i and discusses the experience gained from it.

8.1 Motivation for the thesis

A major benefit of the object-relational technology is the ability to add user-defined

functionality to the database. Using this capability, the database can be enhanced with

functionality that was previously unavailable in the database to support a broader class of

application requirements. In the Oracle database, this possibility is offered by the data

cartridge mechanism, which allows user-defined data types and their indexing and query

optimisation to be integrated into the Oracle database model. The data cartridge mechanism,

however, presents a number of choices with implications that are not so obvious. There was

therefore a need to explore the key features ofthe data cartridge mechanism, to analyse the

implications of using them, and to discuss and suggest ways to improve the usage of these

features if efficient data cartridges are to be built.

Although there are numerous methods that could be used to respond to the above need, the

advantages and issues that come with the data cartridge mechanisms were explored by

actually integrating data cartridges into the database. The integration pointed out features that

might not be so obvious, and demonstrated how the capabilities of the underlying technology

may be properly used.

8.2 Aim of the thesis

The aim of the thesis was to explore the mechanisms that can be used to integrate additional

functionality in Oracle DBMS using the data cartridge mechanism. The thesis used a colour

based image retrieval technique, a face recognition algorithm and a GiST extensible

architecture as three practical scenarios to achieve this aim. Image retrieval was used as the

main domain for integration, but the principles and findings of this integration are applicable

to the integration of any application that stores data as BLOBs and uses Oracle data cartridge.

104

B.3 General observations

The scenarios listed above allowed the exploration of the data cartridge services provided by

Oracle to extend the database in four key areas: the type system, the server execution

environment, the indexing structures and the query optimisation techniques. This section

summarises the observations made when building data cartridges that extend these four areas.

8.3.1 User-defined data types

User-defined data types (UDTs) can be created from built-in or previously defined user

defined data types. It became apparent that object types cannot be created on the fly - they

had to be integrated in the database server before they could be used in applications. Object

types in Oracle are defined using PLlSQL, Java, or using C, where they are integrated as

opaque types.

Unlike the extensible indexing and query optimisation services of the data cartridge

mechanism, the type system does not have an SQL-based interface that facilitates the

integration ofUDTs. Although Oracle provides the interfaces such as ORADATA and SQLDATA

to map Java attributes to their corresponding SQL attributes, there is no extensible framework

that facilitates the integration ofUDTs. An interface could usefully guide the

implementation and integration ofUDTs, especially those that are developed in external

languages such as Java.

8.3.2 User-defined methods

The methods of the data cartridge can be written in PLlSQL, C, C++ or Java. PLlSQL and

Java methods have the advantage of running on any operating system, enabling only one

version to be released for different platforms. C and C++ code, on the other hand, requires

different compilations on different operating systems such as Windows and Linux, and

therefore requires extra configuration on different machines.

105

8.3.3 Server execution environment

PUSQL and Java run from inside the database because there is a PUSQL engine and an

Oracle JVM integrated with it. Running inside the system, these languages automatically

detect defective code such as buffer overflows or assigrunent of values to the NULL pointers,

and in the worst case catch the exception or exit with an error code, without causing any

damage to the system. C and C++ code, on the other hand, is run outside the database as a set

of external procedures, called from inside the database and dispatched and executed in an

external address space. A main drawback of this approach is that external routines do not have

the DBMS's support for concurrency and recovery. Still, if the code is defective, it does not

crash the database.

8.3.4 Extensible indexing

The extensible indexing extension of the data cartridge mechanism provides a set of interfaces

for implementing a new index structure. Although the developer writes the actual code and

defines how and where the code is stored, the actual indexing routines are automatically

managed by the database that calls appropriate interfaces during query processing. These

interfaces provide abstract functions for operations such as inserting an entry in the index,

starting a scan of an index, getting the next entry, updating or deleting an entry and closing

the index after a scan operation. The cartridge implementations in this thesis demonstrated

three alternatives to extending the indexing capabilities of the database.

o CBIRC extended the underlying database indexing capabilities to user-defined data

types by defining operators that were previously not directly supported by the

database. This allowed the data cartridge to apply existing indexing methods such as

B-tree to new data types, which already have the advantage of a tight integration with

the database, and do not require the definition of low level functionality in the

database engine, such as lock manager for locking index objects. Since CBIRC

mapped existing indexing structures to the required structures, the performance of the

index was not affected, due to the tighter integration of the indexing structured with

the database. The index was also much easier to write and implement because it did

not require additional modification to the underlying database engine.

\06

o The face recognition cartridge required advanced database indexing and therefore

could not be implemented using the indexing techniques offered by the database. This

cartridge requires the index to be reconstructed every time a new face is added to the

database, and uses more complex algorithms to create the signature. The cartlidge

required mUltiple search ranges, which are not based upon relational operators. Also,

the index in the face recognition cartridge was stored outside the database in an

operating system file, necessitating separate concurrency and recovery procedures.

o The GiST data cartridge is extensible in nature. In this thesis, the basic functionality of

the GiST was separated into a database-dependent and a database-independent

component. The database-independent component had to be implemented first. This

component contains the basic functionality for calling the appropriate generic index

methods inside the database, and thus provided a framework out of which the

ODClIndex interfaces used in the database were be built. The integration of GiST

demonstrated the storage of the index information using a file-based tree index

structure, which is accessed and managed by a table stored inside the database. The

GiST architecture could not work inside the database, however, without being

extended with user-defined data types and index type.

8.4 Other findings from integrating data cartridges

Simplicity of development

Conceptually, users are able to develop data cartridge components independently and

integrate them, once completed, into the database. As seen in the implementations, however,

different data cartridge components are much easier to develop and integrate ifthe type

system is integrated first, as very little can be done if the data types to be used in the data

cartridge are not defined. Already developed code such as Java classes that do not require

attribute-to-attribute matching between the Java classes and SQL object types defined can be

easily integrated in the database, but mapping such classes to equivalent SQL data types is

more complex.

107

Database stability and developers' productivity

Apart from increasing the complexity and richness of domain specific applications that can be

managed from the database, the support for objects is provided without compromising the

scalability and robustness ofthe relational database engine. The data cartridge mechanism

also allows the sharing of logic among database and client applications, thereby reducing the

time needed to design and deploy applications in the database, while reducing the number of

errors. Objects also accrue the benefits of caching because after the objects are accessed for

the first time, they are kept in memory, allowing significantly better performance inside the

database.

Ease of use

As demonstrated in chapter 5 and 7, the presence ofthe data cartridge mechanism and of the

ODCI API does not in itself simplify the actual development of the data cartridges. However,

once the data cartridges are integrated, they are treated in the same way as built-in database

components. As seen in the implementations, however, some of the extensibility features such

as Collections and REF functions could not be used with object types containing BLOB

columns, which imply that the current database features do not sufficiently support complex

data.

Main challenges for data cartridge development

The main challenge for the data cartridge developer is the learning curve required to

understand the cartridge development and integration to enable already developed code to fit

into the constraints of the data cartridge mechanism. Like other database extensions such as

DataBlades in Informix and Extenders in DB2, maximum benefits of the data cartridge

technology can only be realised if the appropriate data model and design choices are made

during the data cartridge integration. Provided developers understand the practical

implications of specific design choices, they can develop data cartridges and benefit from the

productivity gain and ease of maintenance offered by them.

108

8.5 Conclusions

This thesis developed and integrated a colour-based image retrieval cartridge, a face

recognition cartridge, and an extensible indexing framework to investigate the requirements

and implementation aspects of the data cartridge mechanism of Oracle9i. The investigation

was partially motivated by the continual improvement of retrieval techniques in the content

based image retrieval field, and by the appearance of new ORDBMS features that allow

databases to be extended with new user-defined data types and their methods. Although

Oracle ORDBMS offers many options for extending the database, the data cartridge

mechanism was found to be most suitable to integrate complex and fully functional

components in the database. The data cartridge mechanism allows the complete package of

user-defined types, operators, indexing and query optimisation to be integrated into the

database and to be transparently used by the end user.

Although Oracle provides a guide to developing data cartridges, it does not explain how much

extensibility is safe, and does not prevent developers from implementing the entire data

cartridge functionality, including low-level functionality, which may require a thorough

knowledge of database internals. The use of extensible architectures such as the GiST allows

knowledgeable data cartridge developers to develop low-level functions that require

knowledge of database internals, while novice programmers can use the provided database

interfaces for additional functionality. Even extensible data cartridges, however, do not

provide all the required support for all possible data cartridges, since data cartridge

requirements are arbitrarily defined by users. Building an extensible data cartridge relies on

making good choices for the basic functions; otherwise extensible data cartridges may restrict

the flexibility of sub cartridges to some extent, and may not even effectively accommodate all

the required functionality.

As noted in chapter 5 and 7, the mechanisms provided by the data cartridge simply define the

sequence of calls that the database must perform during query processing, thereby guiding the

database engine in accessing the implementations provided by the cartridge developers.

Although data cartridges facilitate installation and de-installation of database schema

elements, and guide the database engine in executing calls, implementing them is nevertheless

a complex and time-consuming task. Indeed, if data cartridges that achieve user-defined

functionality comparable to the provided database functionality are to be built, the provided

interfaces must be improved to better guide the user in building data cartridges.

109

8.6 Future work

Possible future directions of work are the following:

o Many attractive features provided by Oracle, such as V ARRA YS and REFERENCES,

can only be used with simple, structured objects that are stored in the database.

Considering the advantages and potential of these features, applications such as the

face recognition cartridge described in this thesis could probably benefit more from

the data cartridge mechanism if these features were extended to support large objects

(LOBs). There is therefore a need to analyse carefuJly the shortcomings of these

features, and to identify and develop similar techniques that can be used with large,

unstructured data objects such as BLOBs.

o What features of the data cartridge should be evaluated to establish sufficiently the

extensibility of Oracle database? It would seem necessary to establish what features of

an ORDBMS are worth evaluating to detemline the usefulness and capability of

different integration mechanisms and individual features in different ORDBMS. A

benchmark can then be designed to evaluate these features in different databases.

o Oracle provides other object-relational features such as object cache manager and

object type translators, which were not investigated in this thesis. Future work could

explore some of these features to produce a complete analysis of the implications of

using object-relational features in Oracle, and to demonstrate how they can be used

with the data cartridge mechanism to extend the database.

o Different ORDBMS have extensibility components with different strengths and

weaknesses. Limited, if any, research has been undertaken to compare these

components in different databases. The data cartridges presented in this thesis could be

tested with different ORDBMS to be able to compare and contrast them to Oracle

databases using a common framework.

110

Appendix A: Outline of CBIRC code

AI. Source_Image class code

}

public class Source_ Image implements SQLDat a

pro tected String sourcePath:

protected BLOB data;

protected Date updateT ime ;

protected String sql_ type:

public Source_Image() throws SQLException { }

publ ic sourcE_ Image(String s) throws IOExcepti o n,

SQLException {}

public So urce_Image(BLOB contI throVis I OExcep t ion { }

public Source_ lmage(String s, BLOB contI throws

lOException { }

pub l i c Soure _Image(S t ri ng s, BLOB cont, Date dj thr ows

IOException { }

public BLOB l oadData(String s) thro ws SQLExcept ion ,

l OException{)

public String getSQLTypeName () throws SQLExcept ion{}

public void r e adSQL(SQLlnput stream, String s type) throws

SQLExcep t i o n { }

publ i c void writeSQL (SQLOutput stream) throws SQLException { }

public static Source_Image i n i t () throws SQI.Exception {}

public static Source _Image i n it(S tring s) throws

I OException, SQLExceptio n { }

public stat ic Source_I mage ini t(BLOB h) throws IOExceptio n{)

public static Source_Image init (Stri ng 6 1 BI,OB b) throws

IOException{}

public String getSourcePath () throws IOEx ception{)

public BLOB getContent () throws IOException{}

public Date g etUpdateTime () { }

A2. Image_type class code

public class ImageFi le

publ ic static in t getWidth(String sl throws IOException {I

111

{}

public static int getHeight(Str i ng 0) throws IOException { }

public static long getLength(String s) thro\"s IOException {}

public static String get Format (String s) throws r OException

public stat i c Str i ng getContentFormat(String s) throws

IOException{ }

public static String getCompression(Str i ng s) t hrows

IOException { }

public static BLOB 10adDat.a(String s) throws SQLException,

I OException { }

public static String getPath(String s) throws IOEx ception { }

public static Date getUpdateTi me (String s) throws

IOException {}

A3. Signature_type class code

public class ImageSignature

public static BLOB computeSignature(BLOB b) throws

IOException , SQLException { }

public static int findCombination (BLOB c, String weights)

throws SQLException, rOExceptio n {}

public stat ic int. ImageContains(BLOB c , String weights) thcows

SQLExcept ion, IOException {}

priv a t e static BLOB loadData (byte [] s) throws SQLExcepti on,

IOException { }

}

A4. Image_type Body Code

CREATE OR REPLACE TYPE BODY Image_type AS

STATIC FUNCTION init (name VARCHAR2) return Image_ type IS

BEGIN

DECI,ARE

I IMAGE_ TYPE ;

T SOURCE._ TYPE;

b BLOB;

d DATE;

112

BEGIN

ENDj

N VARCHAR2(4000);

w NUMBER;

h NUMBER;

1 NUMBER;

ff VARCHAR2(400 0);

cf VARCHAR2(4000);

fc VARCHAR2 (4 000) ;

b .- I F_GETSOURCEFROMFILE (name);

d . - I F_ GETDATE (name);

N . _ I F_GETSOURCEPATH (n ame) ;

T : = SOURCE_ TYPE (N,b,d) ;

W : = IF_GETWIDTH (name) ;

h := IF_GETHE IGHT (name) ;

1 . _ IF_GETLENGTH (name) ;

ff . _ IF_GETFORMAT(name);

cf := IF GETCOMPRESSION (name) ;

fc := IF_GETFI LEFORMAT (n a me);

I . _ lMAGE_ TYPE (T ,w ,h , l,ff,cf,fc);

RETURN I ;

END Imag e _ initi

MEMBER FUNCTION getNumber(att r VARCHAR2) return NlIT~BER IS

BEGIN

IF (attr = 'WIDTH ') THEN

RETURN SELF .WIDTH;

END IF;

IF (at tr = 'HEIGHT ') THEN

RETURN SELF.HEIGHT;

END IF;

IF (att r = ' LENGTH') THEN

RETURN SELF . LENGTH ;

END IF;

END getNumber ;

113

14El4BER FUNCTION getStri:Ig (at trb VARCHAR2) return VARCHAR2 I S

BEGIN

IF (attrb = ' FILEFORMAT') THEN

RETURN SELP.FILEFORMAT;

END IF i

IF (attrb = 'CONTENTFORMAT') THEN

RETURN SELF.CONTENTFORMAT;

END IF;

I F (attrb = 'COMPRESSIONFORMAT') THEN

RETURN SELF . COMPRESSIONFORMAT;

END IF;

END GETSTRING ;

MEMBER FUNCTION getContent return BLOB I S

BEGlN

RETURN SOURCE.DATA ;

END GETCONTENT;

MEMBER PROCEDURE setNurnber (natt r VAR CHAR2, num NUMBER) I S

BEGIN

IF (na tr = I WIDTH ,) THEN

WIDTH := nattr i

END IF;

IF (nat t r = 'HE I GHT') THEN

HEIGHT . - nattr ; \

END IF;

•
IF (nattr = 'LENGTH') THEN ""-

LENGTH := nattri

END IF;

END SETNUMBER;

•

MEMBER PROCEDURE setString (sattr VARCHAR2, st r VARCHAR2) IS

BEGIN

IF (sattr = 'FI LEFORMAT') THEN

FI LEFORMAT ._ str ;

END IF;

114

IF (sattr = 'CONTENTFORMAT') THEN

CONTENTFORMAT .- str.;

END IF ;

IF (sattr = 'COMPRESS IONFORMAT ') THEN

COMPRESSIONFORMAT .- str;

EN D IF;

END SETSTRING;

•

MEMBER PROCEDURE s etSource(src VARCHAR2) I S

BEGIN

DECLARE

BEGIN

END;

T SOURCE_TYPE ;

b BLOB;

d DATil;

N VARCHAR2 (4000);

b :

d :

N :

=

=

=

IF_GETSOURCEFROMFILE(src) ;

IF_GETDATE (src) ;

IF_GETSOURCEPATH (src) ;

T ._ SOURCE_TYPE(N,b,d);

END S ETSOURCE;

END;

/

SHOW ERRORS ;

AS. Sample Functions for Image_type

A5. 1. IF GETCOMPRESSION

CREATE OR REPLACE FUNCTION "IMAGE_ USER" . "IF_ GETCOMPRESS ION"

(name VARCHAR) RETURN VARCHAR2 AS

LANGUAGE .TAVA

115

NAME 'ImageFile.getCompression (java.lang . String) return

j ava . lang . String 1 i

A5. 2. IF GETSOURCEPATH

CREATE OR REPLACE FUNCTION " I MAGE USER" ."IF GETSOURCEPATH" - -
(name VARCHAR2) RETURN VARCHAR2 AS

LANGUAGE JAVA

NAME 'ImageFile . getPath(java.lang . String) return

java.lang . String';

A5. 3. IF_GETSOURCEFROMFILE

CREATE OR REPLACE FUNCTION

" IMAGE_ USER". " I F_GETSOURCEFROMFILE"

(name VARCHAR2) RETURN BLOB AS

LANGUAGE JAVA

NAME 'Image Pile. loadData (j ava . lang . String) return

oracle.sql .BLOB';

11 6

Appendix B: Outline of the face recognition

cartridge code

Bl. Source_type code outline

publi c class So urce_Image implements SQLData

public Sourc e _ Image() throws SQLException{ }

public s ource_ Image (String s) throws IOException ,

SQLExcept ion{ }

publ ic Source_Image(BLOB cent) throws 10Exception (}

public source_Image (String s, BLOB c ont) throws

IOExcept ion { }

public sour ce_Image(String 6, BLOB cont , Date d) throws

I OExcept ion { }

public BLOB 10adData (String 5) throws 5QLException, ~

IOException { }

"

public St.ring getSQLTypeName () throws SQLExcepti o n{}

pub l ic void readSQL (SQLlnput stream, String stype) throws '

SQLException { }

public vo i d writeSQL(SQLOutput s tream) t hrows SQLExc eptio n{ }

public sta tic Source_ Image in i t() throws SQLExceptio n { }

public stat ic Source_Image init(String s) t hrows

IOException , SQLException{}

public static Source_ I mage init(BLOB b) throws lOSxception{ }

publ ic static Source_Image init(String s, BLOB b) t hrows

IOException { }

public String toString() { }

public String getSourcePath () throws IOException{}

public BLOB getContent() throws IOExce p tion { }

public Date g etUpdateTime () {}

B2. Image_type code outline

public class Image_Type extends Source_Image

117

public Image_Type () throws SQLException { }

public Image_Type (String s , String attrs) thro ws

IOException, SQLExc eption { }

public Image_Type (BLOB b l obs, int attrs) throws

IOException, SQLException{ }

public vo id rea dSQL (SQLlnput stream , String typeName) throws

SQLException{ }

public void writeSQL(SQLOutput stream) throws SQLExcepti o n{ }

public stat i c Sourc e_I mage ini t () throws SQLException { }

public static Source_ I mage init(String f, Se r ing s) throws

SQLException , IOException {}

public stat i c Source_ Image init (B.LOB bm, i nt a tr) throws

SQLExc e ptio Il, IOException { }

public String eOString () { }

public S t ring get SQI,TypeName () throws SQLEx ception {}

}

B3. FacespaceCreator code outline

publ ic class FacespaceCreator

(

public Face getMatch (Fac e f) throws IOException { }

I I Used to const r uct the face-spaces from the given faces.

public void readFaceSpaces (Fac e[] n) thro ws I OException,

ClassNo tFoundException { }

/ / Subm i t the traini ng set. and construct a face-space

object .

priv ate FaceSpace submitSet(Face[1 faces) throws

IOException, ClassNotFo undException { }

I ISaves the face-space object in <code>f< l code> file.

,

private void constructlndex(File f, FaceSpace bundle) throws

FileNotFoundExcept i on, IOExcept i on{ }

I I Read from the index object.

private FaceSpace scanlndex(File f) throws

FileNotFoundException, IOException, ClassNo tFoundException I }

IIConstr'uct the face - spaces from a given set

118

private FaceSpace createFaceSpace(Face[] faces) throws

IllegalArgumentException, IOException { }

public doubler] readlmage(Face f) throws Exception {}

B4. FaceSpace code outline

public class FaceSpace implements Serializable, Comparab l e

public FaceSpace (double [] avgF, double wk [] [] , double [] []

eigV) {}

II Submit an query agains t the face -space .

public void submitFace(byte[) face) { }

public void submi tFace (int[] face) {)

public void submit Face (doubl e [) face) {}

I I Clear the submitted image from the face-space object .

pub l ic void c l ear Face () {}

II The distance of how far away the submitted image is in

this face - space object .

public double distance () {}

IICompare this face-space bundle to another

public int compareTo (Object 0) {}

Il compute face

private void compute t) {}

static double max(double[] a) {}

sta t ic double sum(double[) a) {}

static voi d divide (double [) v, double b) {}

BS. FaceSpace code outline

/ /Computes an 11 face space" used for face recogni tion .

public class FaceSpaceComputation {

publ i c static FaceSpace submit (double [] [] face_v, int width,

int height) ()

}

1]9

B6. Face code outline

public class Face implements ORAData , ORADataFact o ry

{

publ ic static fina l String _SQL_NAME = n Face";

public static f i nal int _SQL_TYPECODE

Orac le1yPes . J AVA_STRUCT ;

public v o i d se t Connec tio nContex t (DefaultCont e x t ctx) thro ws

SQLExcepti o n{}

publ ic DefaultContext get ConnectionContex t() thro ws

SQLExcept i on {} ;

{}

public Co nnection getConnection () thr ows SQLException { }

public stat i. c ORADataFactory getORADataFa c t ory () {}

pro tec ted Face (boolean i nit) {}

public Face (I {)

pub li c Fa c e (Connection c) { }

pub l i c Face (BLOB content) hrows SQLException, I OException

pub l ic Datum toDatum (Conne ction c) throws SQLExcep t ion { }

pub l ic ORAData create(Datum d, i nt sql1yPe) throws

SQLException { }

public v o id setFrom (Face 0) t hrows SQLExceptio n { }

protected void setCo ntextFr om (Fac e 0) throws SQLException { }

pro tected void setContextFrom(Face 0) thro ws SQLExcept ion { }

protec t ed void se t ValueFrom(Fa ce 0) { }

pro tected ORAData create (Fac e 0 , Datum d, int sqlType) ,.

t hrows SQLEx ception {}

pub l ic BLOB getFaceContent () thro ws SQl,Except ion { }

pub l ic v o i d setFaceConten t (BLOB c ontent) throws SQI,Ex ception

{}

120

Appendix C: Outline of GiST code

Cl. GiST code outline

abstract publ i c class GiST implements GiSTconstants

public GiST (I II
public GiST(boolean isOrdered) II
public GiST (int mi nEntries , int maxEntries) {}

public GiST (boo lean isOrdered , int minEntr i es , int

maxEntries) II

{ I

public abstract GiSTnode CreateNode () ;

public GiSTnode getNode (GiSTentry E, GiSTnode N) II
public GiSTentry findHin (GiSTnode N, GiSTpredicate q) {I
public GiSTnode nextOnLevel (int level, GiSTnode N) I I
public GiSTnode prevOnLevel (int level , GiSTnode N) { }

public GiSTentry next (GiSTpred i cat e q, GiSTent ry E) {I
public GiSTli s t search (GiSTpredicate q) (I
publ ic void delete (GiSTentry E) throws Nu l lPo interException

pub l ic v o id cond e n seTr"ee (GiSTnode L) (I
public GiSTnode getRcot () II
public bcolean getlsOrdered() II
public i nt i nse rt (GiSTentry E, inc level) throws

NullPointe rException {I
pub 1 ic void adj ustKeys (GiSTnode N) (I
public GiSTnode chooseSubtree (GiSTnode R, GiSTentry E , i nt

level) {}

public GiSTentry searchMinPenalty (GiSTnode R, GiSTent ry E)

(I
public void s plit (GiSTnode N, GiSTentry E) {I

121

Appendix D: External code installation

instructions

Dl. Setting up the Oracle9i environment for external routines

1 . An external procedure needs a li stener process that connects and calls out to the

external routine. To configure the listener process, modify the file

"tnsnames.ora"

EXTPROC CONNECTION DATA = - -
(DESCRIPTION =

(ADDRESS LIST =
(ADDRESS = (PROTOCOL IPC) (Key

(CONNECT_DATA =

(SID = proc_PLSExtProc)

PLSExt Proc))

"

Please note that the entry "EXTPROC_CONNECTION_DATA" should not be changed, but should

remain as entered in the "tnsnames. ora" file. The specified key, in this case, "PLSExtProc"

and SID, in this case, "proc _ PLSExtProc" can be changed, but must correspond to the names

given in the configuration of "listener . ora" as shown in number 2 below.

2. Configure listener . ora to add an entry to the external procedure listener.

SID_ LIST_ex t-proc_ PLSExtProc

(SID_ LIST =

(SID_DESC

(PROGRAM = ExtProc)

(SID_NAME = proc_ PLSExtPro c)

(ORACLE_ HOME = /ORA/ORA90/bi n)

122

(DESCRIPTION

(ADDRESS = (PROTOCOL IPC) (!(EY PLSEx t Proc))

The entry for program must be "extproc", and as already mentioned, SID_NAME must match

the SID entry in the tnsnames. ora file. ORACLE_ HOME must be set to the directory name

where Oracle is installed, and the file that contains the external routine must, in this case,

reside in the /bin directory of ORACLE_HOME.

123

[AKJ02]

[BUR01]

[CAR87]

[CHITOl]

[CPZ97]

[CWN'97]

[DOK02]

References:

S. Antini, R. Kasturi, and R. Jain. A survey on the use of Pattern Recognition

methods for abstraction, indexing and retrieval of images and video. The

Journal of Pattern Recognition Society, Vol. 35, pp. 945 - 965, 2002.

Burleson, Donald (2001). The objectlrelationalfeatures of Oracle.

TechRepublic, Inc. http://www.dba-oracle.comlartoracleobj.htm

M.J. Carey(ed.). Special Issue on Extensible Database Systems. IEEE Data

Engineering BuUetin (10:2), 1987

V. Chitkara. Colour-based image retrieval using compact binary signatures.

Master's thesis, Department of Computing Science, University of Alberta,

2001.

P. Ciaccia, M. ParteUa, and P. ZezuBa. M-tree: An effiCient access method for

similarity search in metric spaces. In the Proceedings of the 23rd International

Conference on Very Large Databases, Athens, Greece, pp. 426 - 435, 1997.

C. Carson, M. Thomas, S. Belongie, J.M. HeUerstein, and J. Malik. Blobworld:

a system for region-based image indexing and retrieval. In Proceedings ofthe

3rd International Conference on Visual Information Systems, Amsterdam, pp.

509-516,1999.

M.J.Carey, DJ.DeWitt, J.F.Naughton, M.Asgarian, P.Brown, J.E. Gehrke and

D.N.Shah. The BUCKY Object-Relational Benchmark. In Proceedings of the

ACM-SIGMOD International Conference on the Management of Data,

Tuscon, Arizona, May 1997.

M. DoeUer, H. Kosch. Enhancement of Oracle 's Indexing Capabilities through

GiST-implemented Access Methods. Technical Report: Institute ofInformation

Technology, University Klagenfurt. April 2002.

124

[FS95]

[FUT99]

[GAG98]

[GIE02a]

[GMS98]

[HKP95]

[INF97]

[INF98]

[INF99]

[INFOO]

[INF01]

M. Flicker, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M.

Gorkani, J.Hafuer, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by

image and video content: the QBIC system . IEEE Computer, Volume 28. pp,

23-32, 1995.

Y. Fu, and J. C. Teng. Improving high-dimensional Indexing with heuristics for

Content-based image retrieval. In International Workshop on Integrated

Spatial Databases, Maine, USA, pp. 249 - 267, June 1999.

V. Gaede, and O. Guenther. Multidimensional access methods. Computing

Surveys, 30(2), pp.170 - 231. 1998.

W.Gietz. Oracle9i Data Cartridge Developer's Guide. Release 2 (9.2), Oracle

Corporation Documentation Part No. A96595-01, March 2002.

M. Godfrey, T. Mayr, P. Seshadri, and T. V. Eicken. Secure and Portable

Database Extensibility. In Proceedings of the ACM SIGMOD Conference on

Management of Data, Seattle, USA, pp.390-401,June 1998.

J.M. Hellerstein, J.F. Naughton and A. Pfeffer. Generalized Search Treesfor

Database Systems. Proceedings in the 21 st International Conference on Very

Large Databases (VLDB) Conference, Zurich, September 1995, pages 562-

573.

INFORMIX, Extending Informix Universal Server: Data Types, Inforrnix

Software Inc. Version 9.1. Part No. 000-3765A, March 1997.

INFORM IX, Extending Informix Universal Server: User-Defined Routines,

Inforrnix Software Inc. Version 9.1, 1998.

INFORMIX, Excalibur Image DataBlade Module User's Guide. Informix

Corporation. Part No: 000 - 5356. Version 1.2, March 1999.

INFORMIX - Image Foundation DataBlade Module User's Guide. lnformix

Corporation. Part No: 000 - 6902. Version 2.00, December 2000.

INFORMIX - DataBlade Development Overview, International Business

Machines Corporation Documentation Part No. 000-5403A, August 2001 .

125

[KAB97]

[KAS97]

[KOR99]

[KOROO]

[KOS02]

[LKKOO]

[LUS02]

[MKL97]

[OLL98]

[OST95]

W. Klas., K. Abarer. Multimedia and its impact on Database System

Architectures. In P.M.G. Apers, Multimedia Data and Perspective, Springer,

London, 1997

N. Katayama, and S. Satoh. The SR tree: An index structure for high

dimensional nearest neighbor queries. In the Proceedings of the ACM

SIGMOND International Conference on Management of Data, Arizona,

pp.365 - 380, May 1997.

M. Kornacker. High-Performance Extensible Indexing. Proceedings in the 25 th

Very Large Databases (VLDB) Conference, Edinburgh, Scotland, pp. 699-708,

1999.

M. Kornacker. Access Methods for Next-Generation Database Systems. PhD.

Thesis, University of California, Berkeley, 2000.

H. Kosch. MPEG-7 and Multimedia Database Systems. ACM Sigmond

Records, 31(2). June 2002. pp.34-39.

S.H. Lee, SJ. Kim, and W. Kim. The BORD benchmarkfor Object-Relational

Databases. Proceedings in the II th International Workshop on Database and

Expert Systems Applications, Greenwich, London, United Kingdom 2000.

L. Luscher, Oracle9i Database Peiformance Tuning Guide and Reference,

Release 2 (9.2) Oracle Corporation Documentation Part No. A96533-01,

March 2002.

B. M. Mehtre, M. S. Kankanhalli, and W. F. Lee. Shape Measures for Content

Based Image Retrieval: A Comparison, Information Processing and

Management 33(3), pp: 319- 337, 1997.

J. Olsson, A. Lassen, Experiences from Object-Relational Programming in

Oracle8. Centre of Object Technology. 1998.

V. Ogle and M. Stonebraker. Chabot: retrieval from a relational database of

images, IEEE Computing 28(9). pp 40-48. 1995.

126

[TUP91]

[POM99]

[RAG 00]

[RCH99]

[RUS02a]

[RUS02b]

[SAH87]

[SAJ98]

[SAJ99]

[SMC96]

M.A. Turk and A.P. Pentland. Face Recognition using eigenfaces. Proceedings

of the IEEE Computer Society, Conference on Computer Vision and Pattern

Recognition, Hawaii, pp. 586 - 59l. 1991

K. Porkaew, M. Ortega and S. Melu·otra. Query reformulation for Content

based multimedia retrieval in MARS. IEEE International Conference on

Multimedia Computing System. Vol. 2. pp. 509 - 516. 1999.

R. Ramakrishnan and J. Gehrke. Database Management Systems, McGraw

Hill, 2000.

Y. Rui, S-F. Chang, and T.S. Huang. Image Retrieval: Current Techniques,

Promising Directions and Open Issues. Journal of Visual Communication and

Image Representation, Volume 10, pp. 39-62, 1999.

J . Russell, Oracle9i Application Developer's Guide - Fundamentals, Release 2

(9.2), Oracle Corporation Documentation Part No. A96590-01, March 2002.

J. Russell, Oracle9i Application Developer's Guide - Fundamentals, Release 2

(9.2), Oracle Corporation Documentation Part No. A96590-01, March 2002.

M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A standard default

colour space for the Internet - sRGB. Version 1.10, November 5, 1996.

http://www.w3.orgiGraphics/Color/sRGB.html

M. Stonebraker, J. Anton, H. Hanson. Extending a database system with stored

procedures. ACM Transactions on Database Systems (TODS). Volume 12 ,

Issue 3 (September 1987). Pages: 350 - 376.

S. Santini and R. Jain. Beyond Query by Example. ACM International

Conference on Multimedia. pp 345 - 350.1998.

S. Santini and R. Jain. Integrated Browsing and Queryingfor Image

Databases, IEEE Multimedia Magazine, 1999

J. Smith and S.F. Chang, VisuaISEEK: afully automated content-based image

query system. In Proceedings of the 4th ACM Multimedia Conference, Boston,

MA, pp.87-98, 1996

127

l

[STA03]

[ST086]

[ST096]

[SUB98]

[SUK99]

[SWB91]

[TMY78]

[WAR01]

[WEK99]

[WHJ96]

T. Stakemire. Design of a Performance Evaluation Tool for Multimedia

Databases with Special Reference to Oracle. Masters Thesis. Computer

Science Department. Rhodes University. 2003.

M. Stonebraker, Inclusion of new types in relational database systems. In

Proceedings of the International Conference on Data Engineering, Los

Angeles, CA, pp.262 - 269, February 1986.

Michael Stonebraker. Object-Relational Database Systems: The Next Wave.

Morgan Kaufmann, San Francisco, 1996.

V.Subrahmanian. Principles of Multimedia Database Systems. Morgan

Kaufmann Publishers Inc., San Francisco, California, 1998.

M. Subramanian, V. Krishnamurthy, Performance Challenges in Object

Relational DBMSs. IEEE Data Engineering Bulletin. Volume 22(2). Pages 27-

31. 1999.

M. J . Swain, and H. D. Ballard. Colour Indexing. In International Journal on

Computer Vision, pp.11-32, 1991.

H. Tamura, S. Mori, and T. Yamawaki. Texturefeatures corresponding to

Visual Perception. IEEE Transactions on Systems, Man and Cybernetics 8(6),

pp 460 - 473,1978.

R. Ward, Oracle9i interMedia User's Guide and Reference, Release 9.0.1,

Oracle Corporation Documentation Part No. A88786-01, June 2001.

U. Westermann and W. Klas. Architecture of a DataBlade Module for the

Integrated Management of Multimedia Assets. Proceedings of the 1st

International workshop on Multimedia Intelligent Storage and Retrieval

Management, Orlando, Florida, October 1999.

D. A. White and R. Jain, Similarity indexing with the SS-tree. In proceedings

ofthe 12th International Conference on Data Engineering, Louisiana, pp.512 -

523, 1996.

128

[WNM'"95] J. Wu, A. Narasimhalu, B. Mehrtre, C. Lam and J. Gao. CORE: A content

based retrieval engine for multimedia information systems. ACM Multimedia

Systems, Vol. 3(1).I,pp. 25 - 41,1995.

[WRI02]

[WYA97]

B. Wright, SQLJ Developer's Guide and Reference, Release 2 (9.2), Oracle

Corporation Documentation Part No. A96655-0 I, March 2002.

J. Wang, Y. Yang, and R. Acharya. Color clustering techniques for color

content-based image retrieval from image database. In Proceedings of the

IEEE International Conference on Multimedia Computing and Systems

(ICMSC), Canada, pp. 442 - 449,1997.

