
Classification of the difficulty in
accelerating problems using GPUs

Submitted in fulfilment
of the requirements of the degree of

Master of Science

of

Rhodes University

Uvedale Roy Tristram

Grahamstown, South Africa
December 2013

Abstract

Scientists continually require additional processing power, as this enables them to com-
pute larger problem sizes, use more complex models and algorithms, and solve problems
previously thought computationally impractical. General-purpose computation on graph-
ics processing units (GPGPU) can help in this regard, as there is great potential in using
graphics processors to accelerate many scientific models and algorithms. However, some
problems are considerably harder to accelerate than others, and it may be challenging
for those new to GPGPU to ascertain the difficulty of accelerating a particular problem
or seek appropriate optimisation guidance. Through what was learned in the accelera-
tion of a hydrological uncertainty ensemble model, large numbers of k-difference string
comparisons, and a radix sort, problem attributes have been identified that can assist
in the evaluation of the difficulty in accelerating a problem using GPUs. The identified
attributes are inherent parallelism, branch divergence, problem size, required computa-
tional parallelism, memory access pattern regularity, data transfer overhead, and thread
cooperation. Using these attributes as difficulty indicators, an initial problem difficulty
classification framework has been created that aids in GPU acceleration difficulty eval-
uation. This framework further facilitates directed guidance on suggested optimisations
and required knowledge based on problem classification, which has been demonstrated
for the aforementioned accelerated problems. It is anticipated that this framework, or a
derivative thereof, will prove to be a useful resource for new or novice GPGPU developers
in the evaluation of potential problems for GPU acceleration.

ACM Computing Classification System (CCS)

Thesis classification under ACM CCS (1998 version, valid through 2013) [1].

C.1.2 [Processor Architectures]: Multiple Data Stream Architectures—Single-instruction-
stream, multiple-data-stream processors (SIMD)
F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Design, Experimentation, Measurement

Acknowledgements

I give my thanks to everyone who has contributed in some way to the production of this
thesis.

I would like to express my sincere gratitude to my supervisor, Dr. Karen Bradshaw, for
the tremendous support and guidance she provided throughout this research, whilst still
giving me the freedom to find my own way. Her positivity, remarkable dedication, and
attention to detail have also been greatly appreciated.

I am thankful to Prof. Denis Hughes for his willingness to assist with my first case study
and his input on the related work.

I also thank my family and friends for their continued support and encouragement.

This work was undertaken in the Distributed Multimedia CoE at Rhodes University, with
financial support from Telkom SA, Tellabs, Genband, Easttel, Bright Ideas 39, THRIP,
and NRF SA (UID 75107). The authors acknowledge that opinions, findings and conclu-
sions or recommendations expressed here are those of the author(s) and that none of the
above mentioned sponsors accept liability whatsoever in this regard.

Contents

1 Introduction 1

1.1 Problem Statement and Research Goals . 2

1.2 Thesis Organisation . 3

2 Parallel Computing 4

2.1 Parallel Architectures . 4

2.1.1 Flynn’s Taxonomy . 4

2.1.2 Central Processing Units . 6

2.1.3 Distributed Computing . 7

2.1.4 Massively Parallel Architectures . 7

2.2 Parallel Programming . 9

2.2.1 Speedup from Parallelism . 9

2.2.2 Interprocess Communication . 10

2.2.3 Parallel Program Decomposition . 11

2.2.4 Parallel Programming Terminology 12

2.3 Summary . 13

i

CONTENTS ii

3 GPU Computing 14

3.1 Modern GPU Architecture . 14

3.1.1 Processing Model . 14

3.1.2 GPU Memory Model . 17

3.2 GPGPU Programming Frameworks . 21

3.2.1 CUDA . 21

3.2.2 C++ AMP . 22

3.2.3 OpenCL . 24

3.3 The GPGPU Performance Myth . 29

3.4 Existing GPU Kernel Classification . 31

3.5 Barriers to Entry . 32

3.6 Summary . 32

4 Experimental Design and Methods 34

4.1 GPU Problem Selection . 34

4.2 GPU Problem Acceleration . 35

4.2.1 Toolchain . 36

4.2.2 Performance Testing . 37

4.2.3 Identification of Performance Bottlenecks 40

4.3 Summary . 40

CONTENTS iii

5 Case Study 1: Hydrological Uncertainty Model 41

5.1 Pitman Hydrological Model . 41

5.2 GPU Implementation . 45

5.2.1 General Approach . 45

5.2.2 Creating the C# Implementation 45

5.2.3 Creating the OpenCL Implementation 46

5.3 Results . 47

5.3.1 Verifying the Results . 48

5.3.2 Optimisations . 48

5.3.3 Optimised GPU Implementation . 51

5.4 Summary . 52

6 Case Study 2: K-Difference String Matching 54

6.1 Approximate String Matching . 55

6.1.1 The Cut-Off Heuristic . 56

6.1.2 Bit Parallelism . 57

6.1.3 Existing GPU Solutions . 57

6.2 GPU Implementations . 58

6.2.1 Simple Dynamic Programming Matrix Implementation 58

6.2.2 Bit-Parallel Implementation . 60

6.2.3 Parallelisation Approach . 61

6.3 Results . 63

6.3.1 Optimisations . 64

CONTENTS iv

6.3.2 Optimised Results . 70

6.3.3 Impact of Problem Size . 76

6.3.4 Data Transfers . 78

6.4 Discussion . 78

6.5 Summary . 79

7 Case Study 3: Radix Sort 80

7.1 Radix Sort Algorithms . 80

7.2 GPU Implementations . 82

7.2.1 Simple Radix Sort . 82

7.2.2 MG Radix Sort . 82

7.2.3 Comparison Between GPU Sorts 85

7.3 Results . 88

7.3.1 Data Transfers . 89

7.4 Summary . 92

8 Discussion 93

8.1 Reflection on Required GPGPU Knowledge 93

8.1.1 Case Study 1: Hydrological Uncertainty Model 94

8.1.2 Case Study 2: K -Difference String Matching 94

8.1.3 Case Study 3: Radix Sort . 95

8.1.4 Implication of Required Knowledge 96

8.2 Important Problem Difficulty Factors . 96

8.2.1 Inherent Parallelism . 96

CONTENTS v

8.2.2 Branch Divergence . 98

8.2.3 Problem Size . 99

8.2.4 Required Computational Parallelism 100

8.2.5 Memory Access Pattern Regularity 102

8.2.6 Data Transfer Overhead . 103

8.2.7 Thread Cooperation . 104

8.3 Classification Framework . 105

8.3.1 Difficulty Categories . 105

8.3.2 Framework Design . 106

8.3.3 Classification of Accelerated Problems 107

8.3.4 Reflection . 112

8.3.5 Limitations . 112

8.4 Classification-Based Optimisation Guidance 113

8.4.1 Extensive Thread Cooperation . 113

8.4.2 High Data Transfer Overhead . 113

8.4.3 High Required Computational Parallelism 114

8.5 Summary . 114

9 Conclusion and Future Work 116

References 119

CONTENTS vi

A Classification Calculations 128

A.1 Required Computational Parallelism . 128

A.1.1 Case Study 1 . 129

A.1.2 Case Study 2 . 130

A.1.3 Case Study 3 . 132

A.2 Data Transfer Overhead . 132

A.2.1 Case Study 1 . 133

A.2.2 Case Study 2 . 134

A.2.3 Case Study 3 . 135

List of Figures

2.1 An illustration of Flynn’s Taxonomy. 5

3.1 A partial block diagram of the AMD Radeon HD79xx architecture. 15

3.2 The organisation of an AMD Southern Islands GPU compute unit. 16

3.3 An illustration of how branches are executed within a wavefront. 17

3.4 The memory hierarchy of Southern Islands devices. 18

3.5 The execution of kernels on a number of OpenCL devices. 25

3.6 An example of what a 2-dimensional NDRange looks like. 26

3.7 The OpenCL memory hierarchy. 27

4.1 The broad approach to GPU acceleration for the first two case studies. . . 35

4.2 An example of the output from a GPU performance counters profile. . . . 37

4.3 A summary of the performance counters given by CodeXL. 39

5.1 Conceptual process diagram of the Pitman model. 42

5.2 Software flow diagrams for the uncertainty version of the Pitman model. . 44

5.3 Comparison of the sequential and parallel implementations of the model. . 44

5.4 The approach to GPU acceleration. 46

5.5 Model performance comparison with a sample dataset. 47

vii

LIST OF FIGURES viii

5.6 Frequency distribution showing differences in model outputs. 49

5.7 The original data layout in memory compared to the optimised layout. . . 50

5.8 Model performance comparison with a sample dataset after optimisation. . 51

5.9 The GPU speedup when running 5,000 to 30,000 ensembles of the model. . 52

6.1 The dynamic programming approach to calculating the Levenshtein distance. 56

6.2 The dynamic programming matrix represented in fixed-sized blocks. 61

6.3 The baseline performance of two algorithms for short and long strings. . . 64

6.4 The impact of optimisations on the performance of the standard algorithm. 68

6.5 The impact of optimisations on the performance of the HBP algorithm. . . 69

6.6 Performance of the standard algorithm for short strings. 72

6.7 Performance of the standard algorithm for long strings. 73

6.8 Performance of the HBP algorithm for short strings. 74

6.9 Performance of the HBP algorithm for long strings. 75

6.10 The impact of problem size on the HBP algorithm. 77

7.1 A simple illustration of the steps performed in a radix sort. 81

7.2 The steps performed in Merrill and Grimshaw’s GPU radix sort. 83

7.3 A performance comparison between the CPU and GPU sorts. 89

7.4 The performance of the MG radix sort when only compute time is considered. 90

7.5 An illustration of overlapped transfer with kernel execution. 91

7.6 The performance benefit of using overlapped transfer with execution. . . . 91

8.1 An illustration of how the length of computational periods affects RCP. . . 100

List of Tables

3.1 Tahiti memory specifications. 19

4.1 System hardware specification. 38

4.2 System software specification. 38

6.1 Analysis of a linear relationship between problem size and performance. . . 78

6.2 The data transfer overhead for the HBP algorithm. 78

7.1 The data transfer overhead for the MG radix sort. 90

8.1 The problem difficulty classification framework. 107

8.2 Classification of the hydrological uncertainty model. 108

8.3 Classification of the k-difference string matching problem. 110

8.4 Classification of the MG radix sort. 112

ix

Listings

3.1 Naïve CUDA SAXPY program. 23
3.2 Naïve C++ AMP SAXPY program. 24
3.3 Naïve OpenCL SAXPY program. 28
7.1 An example of a tiered function hierarchy. 87
8.1 Simple C++ function illustrating the calculation of RCP. 101

x

List of Algorithms

6.1 Comparing input strings to a number of test patterns. 54
6.2 Populating the dynamic programming matrix. 55
6.3 Ukkonen’s cut-off heuristic. 56
6.4 The GPU implementation of the standard algorithm. 59
6.5 The GPU implementation of the HBP algorithm. 62
7.1 A basic sequential radix sort for 32-bit integers. 81
8.1 An algorithm with low inherent parallelism. 97
8.2 Transformed version of Algorithm 8.1 with high inherent parallelism. . . . 97

xi

Chapter 1

Introduction

Scientists continually have a need or desire for additional processing power, as it enables
them to compute larger problem sizes, use more complex models and algorithms, and solve
problems previously thought computationally impractical. In recent years, the graphics
processing unit (GPU) has become a powerful parallel processor that can be used for
general-purpose computation, in addition to its traditional function of graphics process-
ing [58]. With the high availability and cost-effectiveness of massively parallel GPUs,
these devices have become popular for the acceleration of applications that benefit from
such parallelism [48, 58]. This is demonstrated by the Cray XK7 (Titan) supercomputer,
featuring 18,688 NVIDIA K20 GPUs [61], placing second in the world for speed1 and first
for power efficiency2 (as of November 2013). However, while GPUs have been successfully
used to increase application performance by an order of magnitude (or even two), such
speedups are not possible for all applications [43, 48, 82]. The use of GPUs may even
result in a decrease in performance [15]. In addition to possible performance uncertainty,
extensive time, effort, and expert knowledge is sometimes required to develop a GPU
implementation with acceptable performance [10, 15, 67]. This presents a challenge to
scientists who are interested in accelerating their applications using GPUs, but are unsure
of the difficulty and performance gain of doing so.

A number of general-purpose computation on graphics processing units (GPGPU) per-
formance modelling and prediction solutions have been proposed that go some way in
addressing performance uncertainty [10, 15, 29, 40, 48, 73]. In addition to performance
prediction of current program code, several models even provide performance predictions

1http://www.top500.org/lists/2013/11/
2http://www.green500.org/lists/green201311

1

1.1. PROBLEM STATEMENT AND RESEARCH GOALS 2

for optimisations that would help eliminate identified bottlenecks [48, 73], which is of
particular benefit to novice GPGPU programmers. However, these models do not provide
any analysis of the difficulty involved in developing the accelerated solution. Even if a
prediction model were able to provide information on possible optimisations to address
identified bottlenecks, the developer would still be required to understand and implement
them for the target GPU.

1.1 Problem Statement and Research Goals

Given the large variance in the difficulty of accelerating different problems using GPUs,
a viable means of estimating the implementation complexity with respect to accelerating
existing models or algorithms on GPUs would be highly beneficial to those new to the
GPGPU paradigm. A survey of the literature indicates that no formal method for doing
this currently exists. Therefore, our objective is to make this possible through the creation
of a problem difficulty classification framework.

The creation of such a framework would first require the identification of algorithm at-
tributes that have a significant impact on GPU acceleration difficulty, and an analysis of
why these attributes contribute to overall problem difficulty.

The research goals of this thesis are threefold:

1. Identify the attributes of algorithms that have a significant impact on GPU acceler-
ation difficulty through the acceleration of three problems with varying difficulties.

2. Determine the reasons for the identified attributes’ contributions to problem diffi-
culty.

3. Construct a problem difficulty classification framework that uses the identified dif-
ficulty indicators to determine overall GPU acceleration difficulty.

Henceforth in this thesis, use of the term difficulty relates to the difficulty in accelerating
an existing CPU program using a GPU. The same interpretation is meant by the phrase
problem difficulty – the problem referred to is that of accelerating an existing program.
We also express attributes of problem solution as simply problem attributes.

1.2. THESIS ORGANISATION 3

1.2 Thesis Organisation

Chapter 2 introduces parallel computing and describes a number of important parallel
programming concepts.

Chapter 3 provides an overview of a modern GPU architecture and GPGPU frame-
works, and discusses the performance benefit from GPU acceleration.

Chapter 4 describes the experimental design and methods used in this study.

Chapter 5 gives a detailed account of how a hydrological uncertainty ensemble model
can be accelerated using GPUs.

Chapter 6 describes the acceleration of large numbers of k-difference comparisons using
two different algorithms.

Chapter 7 discusses the reimplementation of an optimised GPU radix sort and provides
a comparison with a naïve solution.

Chapter 8 presents an analysis of the accelerated problems, identifies and analyses the
most important problem attributes in determining problem acceleration difficulty,
and proposes a problem difficulty classification framework.

Chapter 9 summarises this thesis, presents the conclusions drawn, and identifies possible
future work.

Appendix A gives the supporting calculations for difficulty indicator measurements
used in Chapter 8.

Chapter 2

Parallel Computing

In traditional computing, a program is executed sequentially on a single processor. This
model of computation is highly restrictive since it constrains what can be achieved by a
program to the speed of a single processor. The availability of multiprocessor systems
has given rise to a new form of computing, parallel computing, where computational tasks
within a program are executed simultaneously (or in parallel) on multiple processors.
This form of computing can result in significantly faster program execution and allows
the computation of problem sizes previously thought infeasible. This chapter reviews
the history of parallel computing and gives a broad overview of fundamental parallel
computing concepts.

2.1 Parallel Architectures

Computer architectures can be broadly classified according to Flynn’s taxonomy [25],
which describes two types of parallel architectures. An overview of this taxonomy is
given, followed by a brief history of parallel architectures with emphasis on CPUs and
GPUs.

2.1.1 Flynn’s Taxonomy

The different architectures in Flynn’s taxonomy are described as computers that operate
on streams of instructions and data in different configurations [25].

4

2.1. PARALLEL ARCHITECTURES 5

Single Instruction, Single Data stream (SISD): An entirely sequential computer that
has a single processor executing instructions on a single data stream one datum at
a time [45]. The first personal computers are an example of this architecture.

Single Instruction, Multiple Data streams (SIMD): A computer in which multi-
ple data streams are acted upon by a single instruction stream simultaneously to
perform naturally parallel operations [45]. GPUs and vector processors use this
architecture.

Multiple Instruction, Single Data stream (MISD): An architecture in which a sin-
gle data stream is operated on by multiple instruction streams. This is not really
used in practice.

Multiple Instruction, Multiple Data streams (MIMD): Multiple processors oper-
ate independently and in parallel, executing different instruction streams on different
data [11]. Multi-core CPUs in modern desktop computers use this architecture.

Processor

Processor

Processor

Instructions

Results

Results

Results

Processor

Processor

Processor

Data

Results

Results

Results

In
s
tru

c
tio

n
 S

tre
a
m

s

Processor

Instructions

Data Results

Processor
Instructions

Data
Results

Processor
Instructions

Data
Results

Processor
Instructions

Data
Results

D
a
ta

 S
tre

a
m

s

SISD SIMD

MISD MIMD

Figure 2.1: An illustration of Flynn’s Taxonomy ([25]).

2.1. PARALLEL ARCHITECTURES 6

2.1.2 Central Processing Units

Multiprocessor computers with parallel computation capabilities first emerged in the 1960s
and were based on the MIMD architecture [22]. The first “true” symmetric multiprocessor
system is regarded by some as the Burroughs D-825 (released in 1962) [22]. These early
multiprocessor computers did not scale very well; one example cited by Enslow [22] re-
ported a 1.8x performance improvement with two processors, but only a 2.1x improvement
with three.

The 1970s and 1980s brought the first SIMD computers in the form of vector processors,
which operated on a vector of data with a single instruction [45]. The Cray-1 was one of
the earliest of these computers [24], and probably the most well-known. However, interest
in processors based purely on the SIMD architecture waned as MIMD processors became
significantly cheaper, making them a more cost-effective option. Vector processing was
later incorporated into conventional processors as an enhancement to reduce instruction
fetches on vector operations [37].

Uniprocessor personal computers became prevalent in the 1980s, and the performance
of these sequential computers doubled approximately every 18 months as a result of im-
provements in transistor and silicon technology [9]. While software architects continued
to use a sequential programming model, microprocessor manufacturers continued to in-
novate on sequential performance, even if these innovations were inefficient in terms of
transistor and power usage [9]. This trend ended when microprocessor manufacturers
were confronted with the power wall [9, 47], meaning that single-core frequency improve-
ments could no longer easily be made because of power and heat constraints [65]. The
industry was thus forced to consider new computing paradigms to sustain the regular
improvements in computing power, and it was concluded that the only way forward was
to replace power-inefficient processors with efficient multi-core processors [9].

Multi-core processors brought about a new era in parallel computing. Ordinary desktop
computers began to feature powerful multi-core CPUs, which required software developers
to embrace parallel programming strategies to make use of the additional processing cores.
In modern computing, multi-core CPUs are prevalent. The move to multi-core systems
has meant that parallel computing is no longer the domain of a niche community, but
something that needs to be considered by almost all application developers who require
high performance.

2.1. PARALLEL ARCHITECTURES 7

2.1.3 Distributed Computing

Distributed computing can be seen as a loosely coupled form of parallel computing. In
this model, the computational workload is distributed between multiple computers, or
nodes, connected through an interconnection network [45]. There is no shared memory
in a distributed system; each node has its own local memory. Consequently, data sharing
between nodes must occur by means of passing messages over the interconnection network,
commonly known as message passing [45]. The loosely coupled nature of distributed
computing allows these systems to scale to very large sizes relatively easily [21]. For this
reason, high performance computing centres use distributed computing in the form of large
compute clusters with fast interconnection networks for maximum performance [14, 20].

2.1.4 Massively Parallel Architectures

CPUs have been designed for general purpose computation and have thus focused on low
latency rather than high throughput computation. However, certain problems benefit
greatly from high throughput, massively parallel architectures. The need for such ar-
chitectures has given rise to devices such as graphics processors, massively parallel field
programmable gateway arrays (FPGAs), and network flow processors.

Graphics Processing Units

The early graphics accelerators of the 1990s comprised a fixed function pipeline that
greatly restricted what could be processed on these devices [58]. As the demand for better
graphics grew, these devices became increasingly programmable [58, 62]. The first device
to be labelled a GPU was the NVIDIA Geforce 256 launched in 1999 [58]. It featured a
configurable integer pixel-fragment pipeline as well as a configurable 32-bit floating point
vertex transform and lighting processor [58]. The NVIDIA Geforce 3, launched in 2001,
was the first GPU to feature a programmable vertex processor that executed vertex shader
programs [58].

GPUs were built to process graphics, and were thus designed to handle applications with
the following characteristics [62]:

• Large computational requirements. Real-time graphics rendering requires tens of
millions of pixels to be updated every second, and each pixel requires hundreds of
operations [62]. This requires a substantial amount of processing power.

2.1. PARALLEL ARCHITECTURES 8

• Throughput is more important than latency. As a result of the human perception
system being approximately six orders of magnitude slower than operations within
modern processors, a high degree of latency is tolerable [62]. This means that
throughput can be prioritised at the cost of latency.

• Abundant parallelism. Graphics operations typically require a number of small tasks
to be performed on large sets of data in parallel [62], otherwise known as fine-
grained data parallelism. With the large number of operations that need to be
performed, this creates an abundance of available parallelism for massively parallel
architectures.

These characteristics are not only found in graphics processing. Various other applications
were identified to have similar characteristics, making them desirable to run on GPUs.
With the development of the Cg language for programming GPUs, programmers were
finally able to use the power of graphics processors to accelerate other kinds of workloads,
marking the beginning of a new field of high performance parallel computation. How-
ever, the development of general-purpose programs for these devices was challenging, as
it was still a requirement to express non-graphics computations with a graphics appli-
cation programming interface (API) [58, 69]. This changed in 2006 with the launch of
NVIDIA’s Geforce 8800, the first GPU to feature a unified graphics and compute architec-
ture. GPGPU programs could then be written in a variation of C with extended syntax
using the compute unified device architecture (CUDA) GPU parallel programming API,
which greatly simplified the writing of general-purpose programs on the GPU. With the
addition of integer arithmetic, load/store memory access instructions with byte address-
ing, IEEE 754 floating-point arithmetic, thread arrays, shared memory, and fast barrier
synchronisations [58, 69], the use of GPUs for general-purpose computations became in-
creasingly viable and alluring. Researchers began to use GPUs to accelerate a range of
different applications, publishing hundreds of papers on GPU acceleration [58], thus fur-
thering interest in the field. The two biggest GPU manufacturers, AMD and NVIDIA,
now regard the compute capabilities of their GPUs to be an important consideration, and
are continuously working toward more compute friendly architectures [2, 60].

Other Parallel Devices

Field Programmable Gate Array: These devices contain a large number of programmable
logic blocks and interconnects that enable developers to create custom hardware con-
figurations [17]. With the flexibility to create custom hardware designs, developers

2.2. PARALLEL PROGRAMMING 9

can choose to create massively parallel architectures. However, high performance
FPGAs are more expensive than GPUs, and programming the hardware configura-
tion of these devices is costly and labour intensive [17, 74].

Network Flow Processor: There are a number of applications for on-line network flow
processing, such as secure socket layer inspection, OpenFlow routing, forensics, and
intrusion detection [57]. However, performing live flow processing on networks with
line speeds in the tens to hundreds of gigabits per second requires a substantial
amount of processing power. Network flow processors achieve this through massively
parallel throughput-oriented architectures [57].

2.2 Parallel Programming

Parallel architectures have introduced new challenges to programmers attempting to make
the best use of the processing power available to them. This section serves to introduce
basic parallel programming concepts, which form the foundation of GPU programming.

2.2.1 Speedup from Parallelism

As a consequence of programs containing inherently sequential code, parallelisation does
not scale program performance linearly. Amdahl’s and Gustafson’s Laws attempt to
predict the performance benefit of parallelism in a perfect environment given the portion
of the program that is inherently sequential.

Amdahl’s Law

Given that a certain fraction of a concurrent program is inherently sequential, it follows
that the addition of processors will only reduce the execution time of the parallel section
of the program provided the problem size is kept constant. If it is assumed that there is no
overhead from parallelisation, the speedup that can be achieved through parallelisation
can be found with Eq. (2.1), where the execution time of the best sequential version of the
program is ts, the sequential portion of the program is f , and the number of processors
is p.

Speedup(p) = ts

fts + (1− f)ts
p

= p

1 + (p− 1)f (2.1)

2.2. PARALLEL PROGRAMMING 10

Eq. (2.1) is known as Amdahl’s law [11]. The maximum speedup achievable by a program
according to this equation can be found by setting p to ∞.

Gustafson’s Law

Amdahl’s law makes the assumption that the problem size is constant, while the parallel
processing time changes with the number of processors in the system. Gustafson made
the argument that the selected problem size typically scales with the number of processors
in a system, and the parallel processing time is kept constant [11, 21]. He also made the
case that the serial portion of the program does not increase with problem size [11]. These
different assumptions resulted in Gustafson’s law, shown below.

Speedup(p) = p+ (1− p)fts (2.2)

These different assumptions mean that Gustafson’s law estimates considerably greater
speedups than Amdahl’s law. For example, if the serial fraction of a program is 1

10 and
there are 20 processors, the maximum speedup is 18.1x using Gustafson’s law and 6.9x
using Amdahl’s law.

2.2.2 Interprocess Communication

Many parallel programs require communication between the concurrent processes. Shared
memory and message passing are the two fundamental methods for achieving this [11, 21].

Shared Memory

Computers with a global memory that is shared by all processors are known as shared
memory systems [11, 21]. They have a unified address space, which means every memory
location has a unique address that is accessible by the processors in the system [11]. The
availability of memory that is shared by all processors allows interprocess coordination to
take place, and allows for the most general form of MIMD computing [21, 45].

2.2. PARALLEL PROGRAMMING 11

Message Passing

Message passing is typically used in multicomputer parallel computations where a global
shared memory is not available [21]. Communication between compute nodes is achieved
though message passing on an interconnection network [21]. Unlike shared memory sys-
tems, the communication between processes in a message passing system must be explic-
itly written into the software, which makes it harder to use than shared memory [21, 45].
However, message passing is seen as the only interprocess communication method that
scales efficiently with additional processors in a distributed parallel system [21]. To bring
the simplicity of shared memory programming to scalable message passing systems, hy-
brid distributed shared memory systems have been created. These systems use message
passing for communication between processes, but this is abstracted away by software
and made to look and behave like a shared memory system [21].

2.2.3 Parallel Program Decomposition

The available parallelism in programs can be expressed in a variety of ways. Three of the
relevant parallel decompositions are task, data, and instruction parallelism.

Task Parallelism

Task-level parallelism or function parallelism results from executing independent, related
tasks in parallel [19]. Pipelining is a form of this parallelism, since each task in the
pipeline can be executed concurrently. There is usually only a modest amount of task
parallelism available in a program, and it does not typically increase much with larger
problem sizes [19]. Since different tasks have different computational requirements and
scaling characteristics, it can be challenging to load balance task parallel applications
efficiently [19].

Data Parallelism

Data or thread-level parallelism (TLP) expresses parallelism by executing the same code
on multiple threads with different input data [11, 45]. This usually takes place at the
statement level of the program, thus making it fine-grained parallelism [45]. This kind of

2.2. PARALLEL PROGRAMMING 12

parallelism scales very well, and is typically found in massively parallel SIMD comput-
ers [11, 45], which are very well suited to data parallel computations. In these computers,
this form of parallelism is essentially implemented in hardware by executing the same
instructions on different data in lock-step [11, 45].

Instruction Parallelism

Instruction-level parallelism (ILP) results from concurrency at the instruction or state-
ment level [11]. For example, statements c = a+ b and d = e× f do not depend on each
other and can thus be executed in parallel.

2.2.4 Parallel Programming Terminology

We end this discussion by defining relevant parallel programming terminology.

Process: This is a completely independent program with its own personal memory
allocation, variables, and stack [11]. For a process to do any work, it must contain
at least one thread [21]. Different processes do not naturally share memory, but
memory can be shared between processes through system calls [11].

Thread: Sometimes known as a lightweight process, a thread is an independent sequence
of execution that resides within a process [21]. A process can manage many threads,
and the threads within a process share the memory space and global variables of
their parent process [11]. Threads are considerably faster to create than processes,
use less resources, and can be synchronised much more efficiently than processes
because of their access to shared resources [11]. Threads within a process can be
executed concurrently on different processors [21].

Critical Section: A region of code in which a shared resource is accessed that should
not be executed by more than one thread concurrently [11].

Semaphore: This is a basic synchronisation mechanism that ensures only a certain
number of threads perform a particular action (such as access a particular resource
or execute a critical section) simultaneously [8]. On a more fundamental level,
it is a non-negative integer variable, which is manipulated by two functions [8].
The first function atomically decreases the value of the semaphore if its value is

2.3. SUMMARY 13

greater than zero, and otherwise delays the executing thread until such a time as
it can be decreased [8]. The second function atomically increases the value of the
semaphore [8]. A semaphore that is initialised to one is commonly known as a binary
semaphore, while a semaphore that can be initialised to other values is known as a
general or counting semaphore [8].

Barrier: A synchronisation mechanism that prevents concurrent threads from proceed-
ing until all threads (or a specified number) have reached the barrier [11]. Once this
condition is met, all the threads at the barrier are awakened and continue execu-
tion [11]. This behaviour is useful in applications where threads need to share data
at set checkpoints while being in a common state [11].

2.3 Summary

In this chapter, we gave a brief history of parallel processing and described important
parallel programming concepts. We started off with a description of the types of parallel
architectures according to Flynn’s taxonomy, and followed this with a brief history of
how the parallel architectures evolved. This led into a discussion of massively parallel
architectures such as GPUs and FPGAs. Moving from hardware to software, we described
well known equations for estimating the speedup of an application attainable through
parallelism, and described methods for interprocess communication. This was followed by
a brief description of three types of parallel program decomposition. Finally, we provided
a list of pertinent parallel programming terminology and their associated definitions.

Chapter 3

GPU Computing

The massive parallelism and low cost of GPUs has made them appealing accelerators for
highly parallel programs. With the support of GPU manufacturers, general-purpose com-
putation on these devices has become an important field in high performance computing.
In this chapter, we provide an overview of a modern GPU architecture and GPGPU.

3.1 Modern GPU Architecture

The GPU used in this study is an AMD Radeon HD 7970, which belongs to the Southern
Islands series of AMD GPUs [3]. For brevity, this GPU is hereafter referred to as HD7970.
This section provides an overview of the architecture of this GPU to give context to
discussions on GPU performance. This is split into a discussion of the GPU’s processing
and memory models.

3.1.1 Processing Model

To provide a clear picture of how processing occurs on the HD7970, the organisation of
the processors is first given, followed by an explanation of how work is scheduled on these
processors.

14

3.1. MODERN GPU ARCHITECTURE 15

R
ea

d/
W

rit
ep

M
em

or
yp

In
te

rf
ac

e

Levelp2pCache

GDDR5pMemorypSystem

AsynchronouspComputepEngine
/pCommandpProcessor

AsynchronouspComputepEngine
/pCommandpProcessor

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

ScalarpUnit

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

4pVectorpUnits

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

LDS

IpC
ac

he
IpC

ac
he

IpC
ac

he
IpC

ac
he

S
C

pC
ac

he
S

C
pC

ac
he

S
C

pC
ac

he
S

C
pC

ac
he

S
C

pC
ache

S
C

pC
ache

S
C

pC
ache

S
C

pC
ache

IpC
ache

IpC
ache

IpC
ache

IpC
ache

Figure 3.1: A partial block diagram of the AMD Radeon HD79xx architecture that shows
the layout of the processing units, memories, and caches (adapted from [3]).

Organisation of Stream Processors

A block diagram of the HD7970 is given in Figure 3.1. The stream processors within
the HD7970 are distributed among a number of compute units [2]. Within each compute
unit (Figure 3.2), there are four vector (or SIMD) units and one scalar unit. Each vector
unit is comprised of 16 stream processors, giving each compute unit a total of 64 stream
processors. The purpose of the scalar unit is to handle branch instructions, constant cache
accesses, and other scalar operations [3]. The HD7970 is made up of 32 compute units,
giving it a total of 2,048 stream processors. These processors are typically clocked at 925
MHz, which gives the HD7970 a theoretical peak performance of 3.79 TFlops/s [3]. It
should be noted that the term stream processor is used interchangeably with stream core
and processing element in the literature [3]; we will only use stream processor (SP) going
forward.

3.1. MODERN GPU ARCHITECTURE 16

Figure 3.2: The organisation of an AMD Southern Islands GPU compute unit (taken
from [83]).

Scheduling

The HD7970 executes work tasks in groups of 64 work-items called wavefronts [2]. Work-
items can be thought of as lightweight threads. Wavefronts are distributed to the available
compute units for processing. As is the case with SIMD processing, the stream processors
within a vector unit all process the same instruction simultaneously. However, the different
vector units within a compute unit are able to process independent instructions, and thus
independent wavefronts [2]. It should be noted that SIMD units found on GPUs are
different to traditional SIMD units in that they allow the processing elements some level
of independent behaviour as well, such as processing separate code branches [59]. This has
resulted in the use of a new term for this architecture, namely, single-instruction, multiple
thread (SIMT) [59]. Since there are four times as many work-items in a wavefront as there
are stream processors in a vector unit, a single instruction in a wavefront is executed over
four cycles [3]. Each compute unit is able to schedule 10 wavefronts per vector unit, and
therefore 40 wavefronts in total. Vector units are able to swap between these wavefronts as
needed [3], which means the HD7970 can process up to 1,280 wavefronts or 81,920 work-
items concurrently. Supporting the aforementioned number of wavefronts is contingent
on the compute units having sufficient resources (i.e. registers and local memory) for all
of them. The limited maximum wavefronts expressed as a percentage of the hardware
maximum is known as GPU occupancy [3].

Although the stream processors within a vector unit all process the same instructions,
different work-items within a wavefront are able to execute different instruction branches.
This is achieved by combining all the instruction paths relevant to the wavefront and

3.1. MODERN GPU ARCHITECTURE 17

processing them serially [3]. To prevent stream processors from executing the instructions
of branches not relevant to their corresponding work-items, only the relevant stream
processors are enabled through the use of an execution mask [3]. This is illustrated
in Figure 3.3; the grey curved lines represent stream processors that have been masked
out. In the example given, the condition only applies to a single thread, which means only
12.5% of the SPs are active for that section of the branch. If this was the case for a full sized
wavefront of 64 threads, only 1.6% of the SPs would be active. Thus, while divergence
within a wavefront is possible, it can result in significantly reduced performance.

Before branch

If (x)

else

Active SP Inactive SP

Figure 3.3: An illustration of how branches are executed within a wavefront. The curved
lines represent stream processor threads of execution. Only eight threads are shown for
simplicity.

3.1.2 GPU Memory Model

The GPU memory hierarchy consists of four memories: register memory, local memory,
global memory, and constant memory [3]. These memories and their relationships are
depicted in Figure 3.4, and their specifications are given in Table 3.1. The purpose and
characteristics of each of the memory regions is given below, followed by a discussion on
the L1 and L2 caches.

3.1. MODERN GPU ARCHITECTURE 18

Compute Device

Local

Memory n

Local

Memory 1

Image / Constant Memory Data Cache (L2)

Global Memory
Constant

Memory

Device

Memory

(VRAM)

Registers Registers

Compute Unit 1

Stream

Processor 1

Stream

Processor n

Registers Registers

Compute Unit n

Stream

Processor 1

Stream

Processor n

PCIe
DMA

Host

L1 L1

Figure 3.4: The memory hierarchy of Southern Islands devices (adapted from [3]).

Registers

Each compute unit has a number of vector and scalar general-purpose registers (VGPRs
and SGPRs) that can be used by the scheduled wavefronts [3]. The VGPRs are distributed
between the four vector units, and are different from SGPRs in that they are replicated
for each of the stream processors. The SGPRs are typically used to store data that is
common to an entire wavefront, such as constant data and the execution mask [3].

Registers act as temporary private memory for the work-items, and are thus also referred
to as private memory [3]. The throughput of registers is 6x greater than any other kind
of memory on the GPU, which means efficient use of them is crucial to achieving high
performance for most applications. The number of registers usable by each work-item
changes depending on the number of wavefronts scheduled on the compute units (i.e.
occupancy). The HD7970 has 256 KB of VGPR register space per compute unit, which is
65,536 32-bit registers. If the maximum of 40 wavefronts are scheduled on each compute
unit, this only permits each work-item to use ∼25 32-bit registers. Higher register use thus
typically comes at the cost of decreased TLP, but this is often a worthwhile trade-off [80].
When register use is excessive and exceeds the available register space, external global
memory must be used instead. This is commonly referred to as “register spilling”, and

3.1. MODERN GPU ARCHITECTURE 19

Table 3.1: Tahiti memory specifications (sourced from [3]).

Memory Size Peak Read
Bandwidth

Peak Read Bandwith
/ Stream Core

L1 Cache 16 KB/CU 1.9 TB/s 1 byte/cycle

L2 Cache 768 KB 710 GB/s ~0.4bytes/cycle

Registers (VGPR) 256 KB/CU 22.7 TB/s 12 bytes/cycle

Local Memory 64 KB/CU 3.8 TB/s 8 bytes/cycle

Global Memory 3 GB 264 GB/s ~0.14 bytes/cycle

can have a substantial negative impact on performance given the order(s) of magnitude
differences between global memory and register memory bandwidth and access latency [3].

Local Memory

Like register memory, each compute unit has its own local data share (LDS), more com-
monly referred to as local memory [2, 3]. However, unlike register memory, it is shared
rather than private. This facilitates thread cooperation between work-items by allowing
them to write to and read from a common memory area. Such thread cooperation is also
possible with global memory, but local memory is over an order of magnitude faster (see
Table 3.1), making it preferable for such operations.

The compute unit on an HD7970 has 32 banks of local memory storage, each containing
512 32-bit entries, that can each serve one request per cycle [2]. The LDS typically serves
the requests from two different vector units per cycle, which means it is important to
ensure that the local memory requests from a quarter wavefront correspond to different
memory banks [2, 3]. This can be achieved through the use of a simple 4-byte linear
access pattern. When LDS bank conflicts do arise, they are serialised and serviced over
consecutive cycles, thus significantly reducing local memory throughput [3]. One note-
worthy exception is when all requests access the same bank – this results in a broadcast
of the requested data that carries no penalty [3].

3.1. MODERN GPU ARCHITECTURE 20

Global Memory

The HD7970 has 3 GB of global memory, making it by far the largest area of memory
on the GPU. As illustrated in Figure 3.4, it is located off-chip, unlike the previous two
memories. Consequently, it has a significantly higher memory access latency of between
400 to 600 cycles, as well as over an order of magnitude lower memory bandwidth [3].
Since global memory is used to store input and output data, its high access latency and low
throughput per stream processor can be a significant bottleneck for many applications. It
is thus crucial to design memory access patterns that utilise all of the available bandwidth.

Access to global memory is facilitated through 12 memory channels [3]. To maximise
throughput, memory access patterns should be designed to minimise channel conflicts.
This can be achieved by designing efficient memory stride patterns, where a memory
stride is, “the increment in memory address, measured in elements, between successive
elements fetched or stored by consecutive work-items in a kernel [GPU program]” [3]. A
one-unit memory stride, or coalesced access pattern, minimises channel conflicts on the
HD7970 [3], and usually provides the best performance for GPUs in general.

Constant Memory

Rather than having its own memory area, constant memory resides within the same
physical memory as global memory [3]. It differs from global memory in that it is read-
only and usually benefits from caching [3]. This makes it ideal for read-only data that is
common to all the work-items.

L1 Cache

Each compute unit has 16 KB of read/write L1 data cache that operates on a least
recently used replacement policy [2]. The cache lines are 64 bytes long, which means that
coalesced memory requests benefit the most from cache hits [2]. Cache misses are sent
back to the L2 cache [2]. Global memory writes are written through the L1 cache, and are
also eventually written back to the L2 cache when all wavefront stores have completed [2].

L2 Cache

The L2 cache is common to all compute units, and acts as a central point of coherency
for the GPU [2]. Like the L1 data cache, it is read/write, uses 64 byte cache lines, and

3.2. GPGPU PROGRAMMING FRAMEWORKS 21

operates on a least recently used replacement policy [2]. The cache size totals 768 KB on
the HD7970, but this is physically partitioned between the six memory controllers and
coupled with each memory channel [2].

Host-GPU Transfers

The transfer of data between the host and the GPU (global memory) takes place over the
PCI Express bus. The HD7970 supports PCI Express 3.0, which allows it to transfer up
to 16 GB/s to and from the host simultaneously [3]. This is over an order of magnitude
slower than global memory, and the transfer speed can be significantly lower if the host
does not support PCI Express 3.0, or does not have sufficient host memory bandwidth to
saturate the PCI Express bus. As a result, transfers between the host and the GPU can
be a significant performance bottleneck for bandwidth intensive applications [27].

3.2 GPGPU Programming Frameworks

A number of GPGPU frameworks have been developed to simply the creation of GPU
targeted general-purpose applications. These frameworks provide useful hardware ab-
stractions and a familiar programming environment that enable developers to spend more
time focusing on an efficient parallel decomposition for a problem [39, 59]. We briefly dis-
cuss two of these, CUDA and C++ Accelerated Massive Parallelism (AMP), before giving
a more detailed overview of OpenCL, which was the GPGPU framework used in this study.
To show the differences between the programming APIs, a naïve single-precision alpha X
plus Y (SAXPY) example is also given in each section.

3.2.1 CUDA

CUDA is a GPU architecture developed by NVIDIA that includes several components
designed specifically for GPU computing [59]. The general aim of CUDA is to make
general-purpose computation more practical on graphics processors whilst still giving the
programmer access to low-level features [59, 69]. The launch of CUDA and CUDA C
was a milestone for GPU computing; they no longer required users to express GPGPU
problems as graphics problems, and gave users access to specialised GPU features [69].
Furthermore, CUDA C is based on the familiar C language with added extensions to

3.2. GPGPU PROGRAMMING FRAMEWORKS 22

take advantage of the CUDA architecture [69]. An example CUDA program is given in
Listing 3.1 to show the level of abstraction provided by the programming API.

The CUDA C language and compiler have been designed specifically for NVIDIA’s CUDA
hardware [59]. This means that CUDA applications do not run natively on GPUs created
by other manufacturers, or any other kind of parallel processor. Although this enables the
programming API to closely match the targeted hardware, this is a significant restriction
given the availability of affordable high-performance GPU hardware from other manufac-
turers, and is the reason we opted not to use this framework. However, there have been
efforts to increase the portability of CUDA programs through just-in-time translation1

and compilation of the kernels into other instruction sets2.

CUDA introduced a number of terms to GPU programming that have become pervasive
in the discussion of GPGPU problems. Some of these are used in the discussion of GPU
solutions from other authors; we thus provide a brief description of the common terms:

Thread Block: A one-to-three dimensional grid of threads [59].

Grid: A one-to-three dimensional grid made up of a number of thread blocks [59].

Streaming Multiprocessor: A processing unit that is able to execute multiple thread
blocks concurrently, and through the use of a SIMT architecture, can also execute
the threads within a thread block concurrently [59].

Warp: A group of 32 threads that are executed together on a streaming multiproces-
sor [59].

3.2.2 C++ AMP

Unlike CUDA and OpenCL, C++ AMP is a relatively high-level GPGPU capable lan-
guage. It aims to simplify the task of writing programs that execute on data-parallel
hardware (such as GPUs) through abstraction [51]. Programs are predominantly written
in standard Microsoft Visual C++ with a few added keywords, but the data-parallel sec-
tions of code have added restrictions [51]. The comparative simplicity of developing GPU
programs using this framework is clearly seen when comparing the example C++ AMP
program in Listing 3.2 with the examples of the other frameworks in Listings 3.1 and 3.3.

1https://code.google.com/p/gpuocelot/
2http://www.pgroup.com/resources/cuda-x86.htm

3.2. GPGPU PROGRAMMING FRAMEWORKS 23

1 #inc lude <cuda . h>
2

3 __global__ void saxpy (f l o a t ∗a , f l o a t ∗x , f l o a t ∗y , i n t N) {
4 i n t id = blockIdx . x ∗ blockDim . x + threadIdx . x ;
5 i f (id < N) y [id] = a [id]∗ x [id] + y [id] ;
6 }
7

8 i n t main (void) {
9 f l o a t ∗a_h , ∗a_d , ∗x_h , ∗x_d , ∗y_h , ∗y_d ;

10 const i n t N = 1 << 18 ;
11 a_h = (f l o a t ∗) mal loc (N ∗ s i z e o f (f l o a t)) ;
12 cudaMalloc ((void ∗∗) &a_d , N ∗ s i z e o f (f l o a t)) ;
13 x_h = (f l o a t ∗) mal loc (N ∗ s i z e o f (f l o a t)) ;
14 cudaMalloc ((void ∗∗) &x_d , N ∗ s i z e o f (f l o a t)) ;
15 y_h = (f l o a t ∗) mal loc (N ∗ s i z e o f (f l o a t)) ;
16 cudaMalloc ((void ∗∗) &y_d , N ∗ s i z e o f (f l o a t)) ;
17

18 f o r (i n t i = 0 ; i < N; i++) { a_h [i] = i ; x_h [i] = i ; y_h [i] = i ; }
19 cudaMemcpy(a_d , a_h , N ∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
20 cudaMemcpy(x_d , x_h , N ∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
21 cudaMemcpy(y_d , y_h , N ∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
22

23 i n t b lock_s i ze = 256 ;
24 i n t n_blocks = N/ block_s ize + (N%block_s i ze == 0 ? 0 : 1) ;
25 saxpy <<< n_blocks , b lock_s i ze >>> (a_d , x_d , y_d , N) ;
26

27 cudaMemcpy(y_h , y_d , s i z e o f (f l o a t) ∗N, cudaMemcpyDeviceToHost) ;
28

29 f r e e (a_h) ; cudaFree (a_d) ;
30 f r e e (x_h) ; cudaFree (x_d) ;
31 f r e e (y_h) ; cudaFree (y_d) ;
32 }

Listing 3.1: Naïve CUDA SAXPY program.

Applications written with C++ AMP are runnable on any DirectX 11 or later hard-
ware [51]. While development of GPGPU applications using C++ AMP is typically
simpler than using CUDA or OpenCL, it requires the use of proprietary software3. Initial
empirical performance testing also revealed it to have lower performance than OpenCL
(similar to the results of others4).

3Microsoft Windows 7 or later and Microsoft Visual Studio 2012 or later
4http://codinggorilla.domemtech.com/?p=1135

3.2. GPGPU PROGRAMMING FRAMEWORKS 24

1 #inc lude <amp . h>
2

3 us ing namespace concurrency ;
4

5 i n t main ()
6 {
7 const i n t N = 1 << 18 ;
8 auto ext = extent <1>(N) . t i l e <256>() ;
9 std : : vector<f l o a t > a_h , x_h , y_h ;

10 a_h . r e s i z e (N) ;
11 x_h . r e s i z e (N) ;
12 y_h . r e s i z e (N) ;
13 array_view<f l o a t , 1> a (ext , a_h) , x (ext , x_h) , y (ext , y_h) ;
14

15 f o r (i n t i = 0 ; i < N; i++) { a [i] = i ; x [i] = i ; y [i] = i ; }
16

17 para l l e l_ fo r_each (ext , [=] (index<1> idx) r e s t r i c t (amp)
18 {
19 i f (idx [0] < N) y [idx] = a [idx] ∗ x [idx] + y [idx] ;
20 }) ;
21 y . synchron ize () ;
22 }

Listing 3.2: Naïve C++ AMP SAXPY program.

3.2.3 OpenCL

OpenCL is an open, royalty-free standard developed by the Khronos Group, aimed at
providing a single platform for parallel computation across heterogeneous computation
devices, such as CPUs, GPUs, and other parallel processors [39]. The original OpenCL
specification was released in 2008 [64], making it over five years old. In this time, the stan-
dard has gained a vast amount of support from both users and leading industry firms; the
OpenCL working group members list includes the likes of Apple, Intel, AMD, NVIDIA,
and IBM [64]. Since OpenCL is a standard, the burden is placed on parallel processor ven-
dors to write compatible OpenCL compilers and runtimes. There are presently OpenCL
compilers and drivers for mainstream vendors such as Intel5, AMD, and NVIDIA [3, 59].

The flexibility of OpenCL is made possible by a number of model abstractions. These are
the platform model, execution model, memory model, and programming model.

5http://software.intel.com/en-us/vcsource/tools/opencl-sdk

3.2. GPGPU PROGRAMMING FRAMEWORKS 25

foo() bar() baz() qux()

Device.0 Device.1 Device.2 Device.3

Command
Queue

Context
Kernels

Host

foo()
bar()
baz()
qux()...

Program

Platform
.

0
1

Figure 3.5: The execution of kernels on a number of OpenCL devices (adapted from [72]).

Platform Model

The platform model is a hardware abstraction. It specifies that there is a host that
manages OpenCL execution on a number of OpenCL capable devices, such as CPUs and
GPUs [26, 39]. Devices within a platform are made up of a number of compute units,
which are in turn made up of a number of processing elements (i.e. stream processors in the
HD7970). A host can have multiple platforms available; the different platforms typically
support devices related to a particular hardware vendor (e.g. AMD and NVIDIA). Once
a particular platform has been selected, an OpenCL context must be created to manage
the related resources. This includes the set of devices, the device accessible memory and
corresponding memory properties, and one or more command queues [39]. Command
queues are the mechanism OpenCL uses to schedule commands to be executed on a
specific device [39].

Execution Model

OpenCL code is executed by enqueuing kernels on an OpenCL device using a command
queue [39]. Kernels are essentially functions that act as entry points into an OpenCL pro-
gram. If multiple devices are available, multiple kernels can be launched simultaneously

3.2. GPGPU PROGRAMMING FRAMEWORKS 26

using different command queues, as illustrated in Figure 3.5. To schedule a kernel for ex-
ecution, the kernel’s NDRange must be specified, which is simply an index range that can
have between one and three dimensions [39]. Each index in the NDRange corresponds to
a unique thread of execution to be scheduled on the OpenCL device. OpenCL divides the
index space into groups known as work-groups, which are groups of work-items guaran-
teed to be executed together on the same compute unit in a series of wavefronts [39]. An
illustration of an OpenCL NDRange is provided in Figure 3.6. This division of work-items
into groups allows for divergent code to be executed efficiently by different work-groups,
otherwise known as single program, multiple data execution (SPMD) [39]. A kernel is
given access to data by specifying OpenCL buffers, images, or primitive variables as kernel
arguments [39]. OpenCL memory objects can be created to reserve memory on the host
or OpenCL device, or point to existing host memory [39]. When a kernel is run, each
OpenCL thread executes exactly the same kernel program, with the only difference being
its index in the NDRange. This index is used to differentiate thread behaviour, such as
selection of input data.

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

W
o
rk

-g
ro

u
p
 s

iz
e

 S
y

Work-group size Sx

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

NDRange size Gx

N
D

R
a
n
g
e

 s
iz

e
 G

y

Figure 3.6: An example of what a 2-dimensional NDRange looks like, and how it maps
to work-groups containing work-items (adapted from [39]).

3.2. GPGPU PROGRAMMING FRAMEWORKS 27

Figure 3.7: The OpenCL memory hierarchy (taken from [39]).

Memory Model

The OpenCL memory model, illustrated in Figure 3.7, maps closely to the memory model
of the HD7970. The largest area of memory available is global memory, which is accessible
by all processing elements. The next area of memory, constant memory, is similar to
global memory, except it is guaranteed to stay constant during kernel execution, and is
initialised by the host prior to kernel execution. Local memory is the next level of memory,
and is distributed equally among the work-groups to facilitate data sharing within work-
groups. Lastly, each work-item has its own private memory, which is often the smallest
and fastest memory available. Although the local and global memories can be used for
data sharing within a work-group by using synchronisation barriers, memory consistency
is never guaranteed between work-groups.

Programming Model

The language used for writing OpenCL programs is a variation of the C99 specification,
with added extensions for parallelism [39]. OpenCL programs can be written in a data-
parallel style, task-parallel style, or a combination of the two. The data-parallel style,
which is the most commonly used approach, expresses parallelism by executing the same
code on multiple threads with different input data. In the task-parallel style, parallelism

3.2. GPGPU PROGRAMMING FRAMEWORKS 28

is expressed by running different “tasks”, or OpenCL kernels, in parallel, and using vector
data types [39]. An example of an OpenCL program is given in Listing 3.3.

1 #inc lude "CL/cl.hpp"
2

3 us ing namespace c l ;
4

5 s t a t i c std : : s t r i n g CLCode =
6 "__kernel void saxpy(__global float *a, __global float *x, \
7 __global float *y, int N) { \
8 size_t id = get_global_id(0); \
9 if (id < N) y[id] = a[id] * x[id] + y[id]; \

10 }" ;
11

12 i n t main (i n t argc , char ∗∗ argv) {
13 std : : vector<Platform> plat fo rms ;
14 Platform : : get (&plat fo rms) ;
15 c l_context_proper t i e s cps [3] = {CL_CONTEXT_PLATFORM, (

c l_context_proper t i e s) (p la t fo rms [0]) () , 0} ;
16 c l : : Context context = Context (CL_DEVICE_TYPE_GPU, cps) ;
17 std : : vector<Device> dev i c e s = context . ge t In fo<CL_CONTEXT_DEVICES>() ;
18 CommandQueue queue = CommandQueue(context , d ev i c e s [0] ,

CL_QUEUE_PROFILING_ENABLE) ;
19 Program : : Sources source (1 , s td : : make_pair (CLCode . c_str () , CLCode . l ength ()

+1)) ;
20 Program program = Program(context , source) ;
21 program . bu i ld (dev i c e s) ;
22

23 f l o a t ∗a_h , ∗x_h , ∗y_h ;
24 Buf f e r a_d , x_d , y_d ;
25 const i n t N = 1 << 18 ;
26 a_h = (f l o a t ∗) mal loc (N ∗ s i z e o f (f l o a t)) ;
27 a_d = Buf f e r (context , CL_MEM_READ_ONLY, N ∗ s i z e o f (f l o a t)) ;
28 x_h = (f l o a t ∗) mal loc (N ∗ s i z e o f (f l o a t)) ;
29 x_d = Buf f e r (context , CL_MEM_READ_ONLY, N ∗ s i z e o f (f l o a t)) ;
30 y_h = (f l o a t ∗) mal loc (N ∗ s i z e o f (f l o a t)) ;
31 y_d = Buf f e r (context , CL_MEM_READ_WRITE, N ∗ s i z e o f (f l o a t)) ;
32

33 f o r (i n t i = 0 ; i < N; i++) { a_h [i] = i ; x_h [i] = i ; y_h [i] = i ; }
34

35 queue . enqueueWriteBuffer (a_d , CL_TRUE, 0 , N ∗ s i z e o f (f l o a t) , a_h) ;
36 queue . enqueueWriteBuffer (x_d , CL_TRUE, 0 , N ∗ s i z e o f (f l o a t) , x_h) ;
37 queue . enqueueWriteBuffer (y_d , CL_TRUE, 0 , N ∗ s i z e o f (f l o a t) , y_h) ;

3.3. THE GPGPU PERFORMANCE MYTH 29

38

39 Kernel clSAXPY = Kernel (program , "saxpy") ;
40 clSAXPY . setArg (0 , a_d) ;
41 clSAXPY . setArg (1 , x_d) ;
42 clSAXPY . setArg (2 , y_d) ;
43 clSAXPY . setArg (3 , N) ;
44

45 queue . enqueueNDRangeKernel (clSAXPY , NullRange , NDRange(N) , NullRange) ;
46 queue . f i n i s h () ;
47 queue . enqueueReadBuffer (y_d , CL_TRUE, 0 , N∗ s i z e o f (f l o a t) , y_h) ;
48

49 f r e e (a_h) ; f r e e (x_h) ; f r e e (y_h) ;
50 }

Listing 3.3: Naïve OpenCL SAXPY program.

3.3 The GPGPU Performance Myth

A number of academic papers have reported two orders of magnitude program speedup
achieved through GPU acceleration [23, 46, 66]. Performance improvements of this magni-
tude have created the impression that orders of magnitude speedups are the status quo for
GPU acceleration, and anything less is not particularly impressive. In response to this, Lee
et al. [43] from Intel Corporation authored a paper, titled “Debunking the 100X GPU vs.
CPU myth: An Evaluation of Throughput Computing on CPU and GPU” [43], in which
they challenged the credibility of the orders of magnitude speedups reported through
GPU acceleration. They did this by benchmarking commonly used throughput-oriented
applications that had previously been accelerated on GPUs with massive speedups, en-
suring that they had carefully optimised both the CPU and GPU implementations. The
benchmarked applications included GPU kernels for SGEMM, Monte Carlo simulation,
convolution, SAXPY, SpMV, sort, search, histogram, and ray casting. Their results
revealed significantly lower speedups through GPU acceleration than previous authors.
They made the argument that the CPU implementations of algorithms to which the GPU
implementations are compared are often not adequately optimised, and through optimis-
ing data-level parallelism and thread-level parallelism, the GPU’s speedup over the CPU
is substantially reduced to ∼2.5x on average [43]. Lee et al. [43]’s paper has been criticised
for comparing a previous generation 65nm GPU to a current generation 45nm CPU (re-
leased 16 months apart), omitting information such as die size and power consumption,

3.3. THE GPGPU PERFORMANCE MYTH 30

and for not providing enough detail about the datasets or implementations of the algo-
rithms tested [7]. Nevertheless, the core conclusion of the paper would still stand even if
the GPU was of the same generation as the CPU, since the average speedup of the GPU
would still be under an order of magnitude faster than the CPU.

Three other research groups have made notable contributions to this discussion. Vuduc
et al. [82] arrived at similar results to Lee et al. [43] regarding what should be realistically
expected from GPU acceleration, and note that it is important to consider more realistic
application contexts where there is a mix of irregular and regular computations. Gregg
and Hazelwood [27] highlight the importance of considering the location of program data
when performing GPU vs. CPU comparisons, and contend that many GPU performance
results are misleading for disregarding this information. They point out that the results
of GPU computations are only useful if they are further utilised. If not utilised by another
GPU kernel, the results must be fetched from the GPU, which is a step that is necessary
to include in benchmarking for more accurate speedup reports. In some of their own
tests, they found that the memory-transfer overhead of copying the data between the
GPU and the host system added a significant amount of time to most of the applications
they benchmarked. In a few cases, the combined memory-transfer and computation time
was 50x that of the GPU processing time.

Lastly, Anderson et al. [7] discuss the difficulties of cross platform comparisons and iden-
tify two divergent, yet valid, viewpoints of conducting performance comparisons. The
first viewpoint is that of the application developers, who have the goal of advancing their
applications within the bounds of certain constraints, such as power consumption, cost,
developer time, etc. The GPU performance results from application developers are likely
the result of comparing the newly developed GPU implementation to the original CPU
implementation, which may be sequential and lacking a similar degree of optimisation.
As such, these results should not be interpreted as direct comparisons of the GPU and
CPU architectures, but rather as the result of the developer effort involved in taking the
application from performance level x to performance level y [7]. The results of these
comparisons are particularly meaningful to other application developers in the field, and
should be viewed strictly from the context in which the speedup claims are made. The
second viewpoint is that of the architecture researchers, who are interested in the com-
parative performance of different architectures for a wide variety of applications spanning
multiple domains [7]. To provide meaningful results and conclusions, comparisons of this
kind need to consider a broader range of architectural features, such as die size, logic
implementation, silicon process used, and power consumption figures [7].

3.4. EXISTING GPU KERNEL CLASSIFICATION 31

In summary, it has been established that GPUs do not outperform CPUs by two orders
of magnitude for a range of common applications run on GPUs, or even an order of
magnitude in many cases. Given the diverse nature of these applications, it can be
induced that these findings apply more broadly to GPGPU in general. However, this
does not mean that reports of massive speedups achieved from GPU acceleration from
application developers should be discounted; they should rather be interpreted as the
result of developer effort in parallelising an existing application using GPUs.

3.4 Existing GPU Kernel Classification

A characteristic of GPU kernels that has been demonstrated to be highly relevant when
considering overall GPU performance is the data transfer requirements to and from the
GPU [15, 27]. To help identify and classify the different transfer requirements of different
problems, Gregg and Hazelwood [27] created a taxonomy for memory overhead, which is
reproduced below.

1. Non-Dependent (ND): Kernels that do not require data transfer to or from the
GPU, or the data transfer is negligible (e.g. single integer input or output).

2. Dependent-Streaming (SD): Kernels that do require data transfer to or from
the GPU, but this overhead is hidden with asynchronous streaming memory.

3. Single-Dependent-Host-to-Device (SDH2D): Kernels that require data trans-
fer to the GPU.

4. Single-Dependent-Device-to-Host (SDD2H): Kernels that require data trans-
fer from the GPU.

5. Dual-Dependent (DD): Kernels that require data transfer to and from the GPU.

A kernel may fall into multiple categories from this taxonomy depending on its use case.
For example, using a GPU sort kernel to order data sent from the host would result in the
kernel being classified as dual-dependent. However, if the data to be sorted was already on
the GPU as the output from another operation, it would fall into single-dependent-device-
to-host category. Further still, it could be classified as dependent-streaming if multiple
sorts are required. From a performance perspective, the taxonomy is numbered from least
to most performance impact.

3.5. BARRIERS TO ENTRY 32

3.5 Barriers to Entry

There are a number of barriers to entry into the field of GPU computing which can be
problematic for many scientists.

Required architectural knowledge: Unlike CPU programming, GPU programmers
are typically required to have a deeper understanding of the underlying architecture
to develop their solutions.

Massive parallelism: It can be difficult for some programmers to come to terms with
the massive parallelism of GPUs and how to write programs that use it effectively.

Debugging: The debugging tools for GPUs are not as mature and feature rich as those
for the CPU. Coupled with the massive parallelism, this can make GPU code de-
bugging challenging.

Problem dependent: The architecture of GPUs is not well suited to all kinds of parallel
problems (such as tree and graph problems [82]). It is not always clear how beneficial
the GPU acceleration of a particular problem will be, and it may be necessary to
use performance projection tools to determine whether the likely speedup is worth
the cost of development.

3.6 Summary

This chapter contextualised GPU computing by giving an overview of a modern GPU
architecture, relevant GPGPU frameworks, and expected GPU performance. The archi-
tecture of the HD7970 was discussed, which included an overview of the organisation of
its stream processors, the way in which work is scheduled, and its memory hierarchy. The
CUDA and C++ AMP GPGPU frameworks were briefly described to contrast them with
the GPGPU framework used in this study, OpenCL. CUDA is the prevailing framework
and provides users with a relatively simple programming API, whilst still giving access
to low-level functionality. However, the native use of CUDA is restricted to NVIDIA
GPUs. C++ AMP greatly simplifies GPGPU development, but this comes at the cost of
platform dependence and lower performance. OpenCL is similar to CUDA in the level of
abstraction it provides, but is considerably more flexible with regard to the hardware on
which it can run.

3.6. SUMMARY 33

The large speedups claimed by application developers though GPU acceleration has been
subject to some debate. Through extensive testing of well-known problems, it was found
that the GPU speedups of these problems were significantly lower than advertised by pre-
vious studies as a result of more balanced comparisons where the CPU implementation is
also optimised and data transfer overhead is included in benchmarking. It has been sug-
gested that the speedup from unbalanced comparisons between CPUs and GPUs should
be better contextualised. Finally, a GPU kernel classification framework was described
that provides a simple way to categorise the data transfer requirements of a GPU kernel,
and the typical barriers of entry into GPGPU were listed.

Chapter 4

Experimental Design and Methods

The first goal of this research was to identify problem attributes that can be evaluated to
determine the overall problem difficulty. This chapter outlines how the experiments were
designed to achieve this goal by describing the methods for GPU problem selection and
problem acceleration. We include details about performance testing and identification of
performance bottlenecks, as well as a listing of the tools used in this study.

4.1 GPU Problem Selection

The GPU problems accelerated in this study were selected for their perceived benefit
from GPU acceleration, perceived acceleration difficulty, and lack of a freely available
GPU solution with good performance. The final radix sort problem is an exception with
regard to the lack of an existing GPU solution, as it was based on an efficient CUDA
solution. This was simply because an algorithm of similar GPU acceleration difficulty
would have been too time consuming to accelerate without prior work.

The first problem (Chapter 5) was selected for the perceived ease with which it could
be accelerated on a GPU, the second (Chapter 6) for its perceived moderate acceleration
difficulty, and the third (Chapter 7) for its perceived high acceleration difficulty. Since
the selection of the moderate and hard difficulty problems followed the acceleration of the
previous problem, the experience gained in GPGPU simplified the identification of prob-
lem characteristics that increased acceleration difficulty. Problems of increasing difficulty
were selected to demonstrate the differences between hard and simple problems, and to
enable testing of the resulting classification system’s ability to distinguish problems of
different difficulties.

34

4.2. GPU PROBLEM ACCELERATION 35

4.2 GPU Problem Acceleration

The approach to the acceleration of the first two problems is broadly depicted in Fig-
ure 4.1. The CPU code was first converted to OpenCL without making any changes to
improve GPU performance. This was to measure any speedup obtainable from GPU ac-
celeration with a minimal amount of effort and applied GPGPU knowledge. Performance
bottlenecks were then identified, followed by the implementation of optimisations in at-
tempt to address some of these bottlenecks. The program was then re-benchmarked and
the process repeated until a satisfactory speedup was obtained.

This approach was selected as it is likely the simplest and fastest method for obtaining
a satisfactory speedup, presuming this is possible without significant code restructuring.
This is in recognition of the fact that practitioners interested in GPU acceleration often do
not have the time or expertise to completely redesign an existing program to complement
the GPU architecture [55]. Once the required optimisations had been implemented, the
solution was benchmarked on other criteria, such as its performance with different problem
sizes and the influence of host-to-GPU data transfer time on overall performance.

Convert CPU code

into OpenCL,

restructuring only

when necessary

Benchmark
Performance

satisfactory?

Identify

performance

bottlenecks &

optimise

No

Yes
Further

benchmarking

EndStart

Figure 4.1: The broad approach to GPU acceleration for the first two case studies.

The final problem, radix sorting, warranted a different approach since the problem’s
difficulty would have prohibited a worthwhile solution within a reasonable amount of time
for this study. Instead of creating a new GPU solution, a naïve and a highly optimised
solution were reimplemented in OpenCL from other GPGPU languages and compared.
The comparison provided similar insights into the optimisations and knowledge required
to arrive at a solution with satisfactory performance.

4.2. GPU PROBLEM ACCELERATION 36

4.2.1 Toolchain

The set of programming tools that are used in the development of software is known as the
toolchain. The tools that comprised the toolchain for problem acceleration and evaluation
are described below.

Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment for application de-
velopment. Visual Studio 20101 was used for the creation of the GPU programs, and
Visual Studio 20122 was used to create the CPU versions of the radix sort for Chapter 7.
The streamlined integration of both the AMD and Intel OpenCL debugger made it an
appealing integrated developer environment for OpenCL programming.

AMD CodeXL

CodeXL3 is a suite of tools aimed at assisting OpenCL program development on CPUs,
GPUs, and APUs. It consists of tools to aid in CPU profiling, GPU profiling, GPU
debugging, and static OpenCL kernel analysis [4].

The GPU profiling tool, a facet of which is shown in Figure 4.2, extracts useful perfor-
mance information from the execution of GPU programs. The output it provides includes
information such as GPU occupancy, register usage, local and global memory usage, and
stream processor usage [5].

The GPU debugging tool makes it possible to perform online OpenCL kernel debugging
from any of the active GPU threads, which was used to identify problems in the GPU
kernels. The debugger includes the ability to view the contents of global memory objects.

The static OpenCL kernel analysis tool enables the user to compile a kernel for a number
of GPU architectures. Compilation of a kernel using this tool provides lower level compiled
versions of the kernel, a report on errors and warnings, and kernel statistics [4].

1http://msdn.microsoft.com/en-us/library/dd831853(v=vs.100).aspx
2http://msdn.microsoft.com/en-us/library/dd831853(v=vs.110).aspx
3http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/

4.2. GPU PROBLEM ACCELERATION 37

Figure 4.2: An example of the output from a GPU performance counters profile.

Intel OpenCL CPU Debugger

The Intel SDK for OpenCL Applications4 includes an OpenCL debugger for Intel CPUs
that integrates into Microsoft Visual Studio 2010 (and 2012). This allows the debugging of
OpenCL programs running on compatible Intel CPUs in much the same way as you would
debug a normal program within Visual Studio. The only caveat is that you must specify
the target GPU thread you would like to debug prior to running the application. The Intel
OpenCL debugger enabled much faster code navigation than the AMD debugger, and was
thus used in conjunction with the AMD debugger for particularly tough problems.

4.2.2 Performance Testing

The programs were benchmarked by calculating the arithmetic mean of the recorded
time for at least five executions. For GPU benchmarks, this included the transfer of
data to and from the GPU (unless otherwise specified), since this step is necessary for
GPU computation in many cases. All benchmarks were performed on the same computer
system, the specifications of which are given in Table 4.1, using the software listed in
Table 4.2. When only testing with one GPU, the second GPU was removed from the
system to maximise the available PCI Express bandwidth5.

The impact of individual GPU optimisations can be measured using a number of differ-
ent methods. For example, optimisations could be implemented and benchmarked on a
base unoptimised implementation, a version with all other optimisations implemented, or

4http://software.intel.com/en-us/vcsource/tools/opencl-sdk
5The presence of two GPUs reduced the number of active PCI Express lanes from 16x to 8x on our

motherboard.

4.2. GPU PROBLEM ACCELERATION 38

Table 4.1: System hardware specification.

Component Description

Motherboard Intel ‘Blue Hills’ DZ77BH

CPU Model Intel Core i7-3770

Graphics Processing Units 2 x Gigabyte GV-R797OC-3GD

RAM 2 x 4 GB DDRIII 1600 MHz

Table 4.2: System software specification.

Software Version

Linux Mint 15 3.8.0-19-generic x86_64

Microsoft Windows 7 Enterprise SP1 x86_64

AMD APP SDK Developer 2.8.1.0

AMD APP SDK Runtime 10.0.1084.4

Intel SDK for OpenCL Applications 2012 & 2013

Visual Studio 10.0.40219 SP1Rel

CodeXL 1.2.2484

GNU Compiler Collection 4.7.3

the partly optimised version of the implementation on which the optimisation was first
implemented. The order in which the optimisations are applied affects the performance
impact of individual optimisations and thus their perceived value.

When benchmarking optimisations on an otherwise unoptimised implementation, the im-
pact of each optimisation is likely to be exaggerated because of the large scope for im-
provement. Conversely, the impact of optimisations on an otherwise fully optimised im-
plementation might not portray the value of an individual optimisation in the absence of
one of the already implemented optimisations (some of which may not be applicable to
other applications). Several optimisations are also only applicable in certain scenarios.
For example, loop unrolling is only applicable if loops were not already unrolled as a result
of the use of vector types. We have thus used the third approach of benchmarking opti-
misations on the partially optimised implementations on which they were first attempted.
If a similar order of optimisations is followed, this should provide the truest reflection of
the impact of the optimisations.

4.2. GPU PROBLEM ACCELERATION 39

Figure 4.3: A summary of the performance counters given by the CodeXL (taken from [5]).

The GPU implementations were compared to at least one multithreaded CPU implemen-
tation. If an existing multithreaded CPU implementation was not available, one was
created by parallelising the program in much the same way as the GPU implementation.
It should be noted that the comparisons between the CPU and GPU versions are made
from the perspective of an application developer rather than an architect researcher. Con-
sequently, the GPU speedups given are not accurate reflections of the relative speeds of
the CPU and GPU, but instead reflect the performance improvement achieved through
parallelisation using GPUs. The qualification that the comparisons are of the program
implementations rather than the hardware is not always included to improve readability.

4.3. SUMMARY 40

4.2.3 Identification of Performance Bottlenecks

Before optimisations can be attempted, the areas in need of optimisation must first be
known. Performance bottlenecks were primarily identified through the review of the
kernel performance counters given by the CodeXL kernel profiling tool. A summary
of these counters is given in Figure 4.3. The counters most commonly reviewed were
the VALUUtilization, VALUBusy, SALUBusy, CacheHit, and MemUnitStalled, as these
give an indication of the branch divergence, stream processor utilisation, and efficiency
of memory access patterns. Another performance indicator reviewed was the maximum
kernel occupancy. This value is constrained by the number of general purpose registers
used by each work-item, the quantity of shared memory allocated to each work-group,
and the work-group size [5].

4.3 Summary

The problems accelerated in this study were selected based on their perceived benefit
from GPU acceleration, difficulty, and lack of a freely available and GPU solution with
good performance. With the exception of the radix sort case study, the problems were
accelerated by modifying the existing CPU solution to work in OpenCL, and iteratively
optimising the solution until a suitable speedup was achieved. Since the radix sort already
had an optimised GPU solution in an alternative GPGPU framework, a naïve and a
highly optimised implementation were ported to OpenCL and compared instead. All
GPU solutions were compared with a multithreaded CPU implementation to obtain the
GPU speedup. Since problem acceleration was done from the perspective of an application
developer, the speedups obtained represent the performance gained from parallelising the
existing implementation on a GPU, rather than the relative speeds of the CPU and GPU.

Chapter 5

Case Study 1: Hydrological
Uncertainty Model

Hydrological models are simplified representations of certain processes within the hy-
drological cycle. These models are primarily used to increase our understanding of the
observed processes and to make hydrological predictions or estimations [52]. A recent
trend in hydrological modelling is the use of uncertainty analysis [33]. Using this ap-
proach, a model is run thousands of times using different input parameters. This can take
a considerable amount of time on a CPU and could stand to benefit greatly from GPU ac-
celeration, owing to the problem’s SIMD-like nature. The hydrological uncertainty model
accelerated here is based on an adapted version of the Pitman rainfall-runoff model [63]
used for water resource estimation.

5.1 Pitman Hydrological Model

The Pitman model is a conceptual type, semi-distributed (sub-catchment), monthly time-
step model that includes some 23 parameters that govern the algorithms defining the hy-
drological storages and processes such as evapotranspiration, interception, surface runoff,
soil moisture storage, interflow, groundwater (GW) recharge and drainage, and catchment
routing [33]. An overview of the hydrological processes and their relationships for this
version of the model is illustrated in Figure 5.1. The full details of the model are not given
here as the study could have used any model of this type. The conceptual diagram in Fig-
ure 5.1 and the brief explanation of the model are merely provided to illustrate the degree

41

5.1. PITMAN HYDROLOGICAL MODEL 42

of model complexity. The model is typically run over a period of 40 to 90 years (480 to
1,080 months) depending on the availability of input rainfall data. Each component of the
model (Figure 5.1) consists of a set of sequential algorithms that generate either output
data or the values of internal state variables that are used in the next time interval or
as input to the next downstream sub-catchment. Most of the model components operate
over four equal steps within the one-month main time step to avoid excessive changes in
any of the state variables (storages or fluxes) before other components are updated. This
approach is frequently used in coarse time step models [30] in recognition of the fact that,
in nature, water balance components operate simultaneously.

The ability of the model to accurately represent the hydrological response of any given
catchment is reliant on the correct specification of the model parameters. Estimation of
these parameters is always problematic, even if they are calibrated against an observed
stream flow time series. Many of the parameter estimation issues are associated with inter-
relationships between model parameters and the problem of equifinality [13], whereby
similar model outputs can be achieved with different parameter sets.

Time series of precipitation

Time series of potential evap. Interception function

Impervious area

Catchment absorption
function Surface runoff

Soil moisture store

Actual evaporation

Soil
moisture

runoff

function

GW recharge
function

GW storage &
discharge function

Catchment lag
& attenuation

Abstractions & return flow

Upstream inflow

Reservoir or
wetland sub-model

Downstream outflow

Channel lag &
attenuation

Total sub-catchment runoff

Soil moisture
runoff

Small dam & abstraction function

Figure 5.1: Conceptual process diagram of the version of the Pitman model in [31].

5.1. PITMAN HYDROLOGICAL MODEL 43

The uncertainty version of this model is designed to assist in the estimation of these
parameters and allows the model results for many different options within the feasible pa-
rameter space to be explored [33]. The model has the goal of establishing parameter values,
setting parameter uncertainty bounds [38], and exploring parameter inter-dependencies.
Parameter inputs to the model are specified as either means and standard deviations of
normal distribution functions, or minimum and maximum values of uniform distribution
functions. If the normal distribution function option is used, the minimum and maximum
values are used to constrain the tails of the distribution.

The Delphi code on which this model is based has evolved from the first version of the
Spatial and Time Series Information Modelling (SPATSIM) system developed in the early
2000s [32], rather than having been meticulously designed from the perspective of efficient
software architecture. The model is run many times (typically between 5,000 and 20,000)
to generate ensembles of outputs, where each output is based on independent random
samples from the defined parameter distributions. Running 10,000 ensembles for a basin
with 30 sub-divisions over an 80 year input climate time series involves repeating the full
set of model algorithms some 288 x 106 times, not to mention the time taken to access
data from, and write the results to, the SPATSIM database tables. A second version of
the uncertainty model also allows the precipitation inputs to the model to be considered
with uncertainty and makes use of stochastically generated rainfall sequences rather than
a single fixed time series. Typically, the model is run with 500 stochastic rainfall sequences
(for each spatial sub-division or catchment within the basin), in which case the number
of parameter samples is limited to 500, giving a total number of 250,000 ensembles or
72 x 108 operations of the model algorithms. Post-processing options available within
the SPATSIM system include global sensitivity analysis [68] of the ensembles, frequency
distribution analysis of selected output metrics, such as mean annual runoff, groundwater
recharge, and several percentiles of the simulated flow duration curves, and a relatively
simple approach to water resources yield uncertainty analysis. Figure 5.2 illustrates the
software configurations of the Delphi (SPATSIM) versions of the two models. These
configurations were designed for sequential execution, but they can be parallelised by
executing the functions within the ensemble loop on different threads with different input
parameters, as is illustrated in Figure 5.3.

The complexity of each model run and the design of the program can result in an un-
desirable model runtime of several hours on a modern CPU, even when running 10,000
ensembles (i.e., without stochastic rainfall inputs). An application of the stochastic rain-
fall version of the model to the Caledon River basin with 31 sub-catchments in Southern
Africa takes approximately 45 hours to complete. While these model runs would not

5.1. PITMAN HYDROLOGICAL MODEL 44

Read time series data
from database

Read model parameter
specifications from database

Ensemble loop i = 1 to 10 000

Determine parameters
for ensemble i

Run model & store output in
binary file

Interpret outputs & write final
results

Create temporary
binary file

Read time series data from
database for stochastic rain
sequence i

Create temporary
binary file

Read model parameter
specifications from database

Rain ensemble loop i = 1 to 500

Determine parameters
for ensemble j

Run model & store output in
binary file

Interpret outputs & write final
results

Parameter ensemble loop
j = 1 to 500

A B

Figure 5.2: Software flow diagrams for the uncertainty version with single climate inputs
(A) and the version using stochastic rainfall input sequences (B).

Read model parameter
specifications from database

Ensemble loop i = 0 to n

Determine parameters for
ensemble i

Run model & store output in
binary file

Read model parameter
specifications from database

Determine parameters for all
ensembles

Replicate model data for
ensemble i

Integrate parameters for
ensemble x into own model data

Run Model

Parallel
(en

sem
b

le 0
..n

)

Read ensemble results & output
to binary file

Seq
u

en
tial

Seq
u

en
tial

Sequential Execution Parallel Execution

Figure 5.3: Comparison of the sequential and parallel implementations of the uncertainty
version with single climate inputs.

5.2. GPU IMPLEMENTATION 45

normally be repeated many times, as would be the case with a purely manual parame-
ter search and calibration approach, it is sometimes useful to run the uncertainty model
several times to explore the effects of different combinations of constraints on the distri-
butions of the different model parameters. Reducing the model runtime would therefore
be extremely beneficial and, since each ensemble is computed in isolation, it is possible
for this to be achieved by running ensembles in parallel.

5.2 GPU Implementation

For the model to be accelerated on a GPU, the core model code had to be extracted from
the original Delphi project and implemented in OpenCL. The method used to do this is
outlined below.

5.2.1 General Approach

A three-step approach was taken to accelerate the model with the aim of minimising
debugging time. These steps are illustrated in Figure 5.4. The first step involved the
extraction and conversion of the core model code into a new project or language. The
motivation behind this step was to do a “trial run” implementation of the core model
outside its original project with the luxury of CPU debugging tools. C# was used in
this step, as the Visual Studio IDE has excellent debugging tools for the language and
it is syntactically very similar to C and C++ (and hence OpenCL). The next step used
the output of step one to create an OpenCL version of the model. Ideally, this step
should involve less work because of the work done in step one. Finally, the OpenCL
implementation was tuned to provide a satisfactory speedup on our test system without
significantly modifying the original code. The proposed next step was to integrate the
OpenCL solution into the original Delphi program.

5.2.2 Creating the C# Implementation

For the model to be run in an alternative language, the Delphi model data had to be
exported at the time of model execution. For ease of development, these data were
written to a binary file to be read by alternative implementations. The data were then
imported into the Delphi equivalent data structures in C# to support the model code.

5.2. GPU IMPLEMENTATION 46

C#

Debug C#

Validate
Results

No

Validate
Results

No

Valid
Results?

Valid
Results?

Debug
OpenCL

Optimise

Integrate
Solution

Extract &
Convert

Delphi

Code
Conversion

Finished
Optimising?

Yes

No

Yes
OpenCL

Yes

Accelerated
Delphi Model

Figure 5.4: The approach taken to accelerate the uncertainty version of the adapted
Pitman rainfall-runoff model.

Rather than rewriting the entire model line-by-line in C#, the Delphi code was copied,
and its syntax iteratively translated into C# using regular expression replacements. Any
syntax differences that could not be fixed this way were then changed manually. This
resulted in a C# version of the model that ran, but produced results with significant
numerical differences to the results of the original Delphi implementation. Even with
the powerful debugging tools available for C#, it took a great deal of effort to debug
the conversion errors that caused the differences in results. Given that CPU debugging
is much easier than GPU debugging, it is worthwhile to do this intermediate step to
identify such problems before the conversion to GPU code. For the purpose of performance
comparisons, a multithreaded version of the C# implementation was also created. This
was done by distributing the ensembles to be run among the threads in a thread pool.

5.2.3 Creating the OpenCL Implementation

Before work on the OpenCL model could begin, the managing host program had to be
created. This was written in C++ to allow use of the OpenCL API more directly, although
OpenCL API wrappers do exist for many of the popular programming languages. The
model data were read into the program in the form of C++ structs, which were then
written to OpenCL buffers for use in OpenCL kernels. A kernel was created to replicate
the modifiable model data for the specified number of ensembles to enable their concurrent
execution. This kernel also integrated the model parameters into the data, essentially
preparing the data for each ensemble prior to model execution.

5.3. RESULTS 47

The model logic was added to a second kernel, which was created using the C# code as the
starting point. The similarity of the C# syntax to OpenCL C made the conversion of the
C# code relatively trivial, with most of the changes required being either function headers,
mathematical operations, or the referenced location of variables. It was considerably more
challenging to debug the GPU code than it was the C# code, owing to inferior debugging
tools and scale of parallelism.

5.3 Results

The performance of the model was evaluated on a sample dataset that contained four
sub-catchments for a variety of ensemble sizes. An additional dataset that represented
the Caledon River basin with 31 sub-catchments was also tested to verify the consistency
of the results. To gauge the impact and importance of GPU optimisations, the GPU
implementation was evaluated both before and after optimisations had been applied.

1

10

100

1000

10000

Delphi C# (single-threaded) C# (multithreaded) OpenCL
(GPU - unoptimised)

T
im

e
 (

s
)

a
n

d
 S

p
e
e
d

u
p

 (
x
)

Time (s)

Speedup

Figure 5.5: Model performance comparison for the execution of 50,000 ensembles on
the sample dataset, with the speedups relative to the Delphi implementation plotted
alongside.

The results in Figure 5.5 show that there is a significant improvement in speed from
the original Delphi version to the OpenCL version running on a single HD7970 GPU.

5.3. RESULTS 48

Surprisingly, the single-threaded C# version is also noticeably faster than the Delphi
version, even though the logic is identical. The OpenCL (GPU) implementation was 3.4x
faster than the multithreaded C# implementation, and 35.8x faster than the original
Delphi implementation. While the speedup over the original Delphi version is of practical
significance, it is not a fair comparison since the Delphi version is single threaded. The
unoptimised GPU version compared to the multithreaded C# version is a more relevant
comparison and only results in a modest speedup of 3.4x.

5.3.1 Verifying the Results

When the results between the Delphi and C# implementations were compared, we were
able to achieve a binary match. We were not able to achieve this with the OpenCL
version; the results produced by the GPU differed very slightly from the Delphi and C#
results. A frequency distribution of the size of these differences for the primary model
outputs: mean monthly rainfall volume (MMRV), mean monthly groundwater recharge
(MMGR), 10th percentile of the flow duration curve (10FDC), 50th percentile of the flow
duration curve (50FDC), and 90th percentile of the flow duration curve (90FDC), can
be seen in Figure 5.6. Leeser et al. [44] explain how the implementation flexibility of the
IEEE 754 floating-point standard allows different hardware implementations to arrive at
slightly different results, which could explain the observed differences. Since the slight
variations in the results were acceptable for this model, a difference threshold was applied
to verify subsequent OpenCL results.

5.3.2 Optimisations

Analysis of CodeXL’s kernel profiling output revealed two characteristics of the GPU
program that were hindering performance: register usage and memory latency.

Register Usage

Heavy register (local variable) usage restricts the number of wavefronts that can be sched-
uled on a compute unit, which results in the GPU operating at a lower occupancy [3].
Although this does not mean that compute units will be without work, it does mean
that they are unable to swap between as many wavefronts to hide memory access latency.

5.3. RESULTS 49

0

100

200

300

400

500

600

700

800

900

1000

0% (0%,
0.005%]

(0.005%,
0.01%]

(0.01%,
0.05%]

(0.05%,
0.1%]

(0.1%, 1%]

C
o

u
n

t
o

f
e
n

s
e
m

b
le

s
 i
n

 i
n

te
rv

a
l

Intervals for size of differences between CPU and GPU outputs

MMRV

MMGR

10FDC

50FDC

90FDC

Figure 5.6: Frequency distribution showing the size of the differences between the primary
CPU and GPU model outputs.

Excessive register usage results in registers spilling into slower memory, which incurs a
significant performance penalty [3]. As can be expected with models of this kind, there
were a large number of model state variables, which resulted in spilled registers and a low
GPU occupancy of 10%.

Reducing register usage The program function that is responsible for running the
model declares 22 private arrays that are significant contributors to the register usage of
the program. These arrays were moved to global memory to determine whether manually
moving less frequently used model state variables out of register space would improve
performance by eliminating register spillage. The change did not, however, make a mean-
ingful difference to the runtime of the model. Using local memory was also considered,
but its limited size made its use impractical for this purpose. It is likely that the register
usage could be reduced through code restructuring, but this was not attempted owing to
the probable time requirement.

Memory Latency

Kernels that spend more time waiting for data transfers than performing computation
are known as memory-bound kernels. CodeXL indicated that the utilisation of the GPU

5.3. RESULTS 50

stream processors was under 12%, making the kernel significantly memory bound. Any
memory optimisations were therefore likely to yield a performance improvement. Two
methods for reducing the impact of memory latency were identified: caching of frequently
used data and optimising the memory layout.

Data Caching The kernel was memory bound because the model data were stored in
global memory, which is the slowest GPU memory. Caching the most frequently accessed
data in local memory would help to reduce the use of global memory, and also take
advantage of local memory’s higher bandwidth and lower access latency. An effort was
made to do this, but it proved to be ineffective for this model because the size of the
data that needed to be cached was too large, resulting in frequent swapping between local
and global memory. Nevertheless, this optimisation is worth mentioning since it can be
beneficial to other memory-bound applications.

Data Layout Optimising memory access patterns to avoid memory channel conflicts
is another technique that can be used to improve memory performance [3]. The original
data layout resulted in an undesirable many-unit stride between data accesses of consecu-
tive work items, since the data for each ensemble were stored in large structs. To change
this into a one-unit stride, the kernel that replicated the original model data was modified
to store consecutive items in the data structs x places apart, where x is the number of
model ensembles. A comparison between the original layout and this new layout is illus-
trated in Figure 5.7. This optimisation resulted in a considerable threefold performance
improvement.

…

Conventional data layout

Optimised data layout

…

V
a

r 1

V
a

r 1

V
a

r 1

V
a

r 1

V
a

r 1

… … … …

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

V
a

r 1

V
a

r 2

V
a

r n

…

…

V
a

r 2

V
a

r 2

V
a

r 2

V
a

r 2

V
a

r 2

…

V
a

r n

V
a

r n

V
a

r n

V
a

r n

V
a

r n

…

M
e
m

o
ry

M

e
m

o
ry

Figure 5.7: The original data layout in memory compared to the optimised layout.

5.3. RESULTS 51

5.3.3 Optimised GPU Implementation

A performance comparison between the optimised GPU implementation and the CPU im-
plementations for the sample dataset is given in Figure 5.8. The performance of the GPU
implementation was also tested on a Caledon River basin dataset for different problem
sizes, the results of which can be seen in Figure 5.9.

1

10

100

1000

10000

Delphi C# (single-
threaded)

C# (multithreaded) OpenCL (GPU -
 unoptimised)

OpenCL (GPU) OpenCL
(2 GPUs)

T
im

e
 (

s
)

a
n

d
 S

p
e

e
d

u
p

 (
x

)

Time (s)

Speedup

Figure 5.8: Model performance comparison for the execution of 50,000 ensembles on the
sample dataset after optimisation, with the speedups relative to the Delphi implementa-
tion plotted alongside.

As shown in Figure 5.8, the data layout optimisation made a considerable difference to
GPU performance. The optimised version is 3x faster than the unoptimised version,
and consequently 107x faster than the Delphi implementation and 10x faster than the
multithreaded C# version. The addition of a second identical GPU scaled the performance
almost linearly, with the speedup over the C# version improving to 18.6x.

The results for the Caledon basin dataset in Figure 5.9 reveal that if 15,000 or more
ensembles are run, the GPU’s speedup over the CPU implementations is consistent with
the results in Figure 5.8. However, if fewer than 15,000 ensembles are run, the speedup
starts declining. The decline in performance is the result of idle stream processors after
the first 8,192 ensembles1 have been processed. Considering that running a large number

1This the minimum number of work-items needed to provide work to all the stream processors.

5.4. SUMMARY 52

1

10

100

1000

5000 10000 12500 15000 30000

G
P

U
 S

p
e
e
d

u
p

Number of Ensembles

OpenCL (GPU) vs Delphi

OpenCL (GPU) vs C# (multithreaded)

Figure 5.9: The GPU speedup when running 5,000 to 30,000 ensembles of the model on
the Caledon basin dataset.

of ensembles is desirable in uncertainty modelling, this should not be a cause for concern.
The performance impact of data transfers to and from the GPU was also measured and
found to account for less than 0.1% of the total program execution time, and this value
decreased with higher ensemble counts.

5.4 Summary

The goal of this study was to determine the difficulty of using a GPU to accelerate
an adapted Pitman rainfall-runoff uncertainty model without significantly changing the
original code and obtain a worthwhile speedup. This is an extension of our previously
published work on this hydrological model [78]. Through a three-step approach, a tenfold
speedup over a multithreaded C# implementation of the model was achieved by using
a commodity GPU, whilst minimising the work needed to create the GPU version. One
significant optimisation was implemented to achieve this result, that is, the rearrangement
of the model data in global memory to improve global memory throughput. The speedup
was also found to scale almost linearly with the addition of a second identical GPU.

5.4. SUMMARY 53

Additional testing of the model on an alternative dataset for a number of different problem
sizes revealed the performance to be consistent with the initial dataset when running at
least 15,000 ensembles, and the speedup remained constant with larger problem sizes.
Smaller problem sizes resulted in declining performance as a result of insufficient parallel
work for the GPU. Given the work required to achieve these results, it was estimated that
users would need to have a basic understanding of OpenCL and parallel programming as
well as knowledge of an efficient global memory data layout to achieve similar results with
a comparable model. As the model code was not redesigned specifically for GPUs, it is
likely that there is still potential for further improvement.

Chapter 6

Case Study 2: K-Difference String
Matching

The matching of strings with an allowance for small differences, or errors, forms an integral
part of many data processing algorithms. Its use is particularly evident in bioinformatics,
signal processing, and spelling correction [56]. Other areas in which it is used include
handwriting recognition, intrusion and virus detection, spam detection and filtering, data
mining, pattern recognition, and image compression [6, 56, 84]. However, calculating
the k-difference result of two strings is time consuming and thus impractical for many
applications that require performing k-difference comparisons between a large number of
strings. Scenarios where this may be required include improving the accuracy of email
spam detection techniques [6] and malware detection on network stream data [85].

The layout of a sequential algorithm for this use case may be similar to Algorithm 6.1.

Algorithm 6.1 Comparing input strings to a number of test patterns.
function pattern_match(inputStrings, testPatterns, results, threshold)

for i ∈ 0..len(testPatterns) do
for j ∈ 0..len(inputStrings) do

resultsi,j ← kdiff(testPatternsi, inputStringsj, threshold)
end function

This use case is somewhat different to the type of approximate string matching typically
utilised in bioinformatics, where an approximate match of a short string is searched within
a comparatively long text.

In this chapter, we investigate the effectiveness of using a GPU to perform large numbers
of k-difference comparisons using two different algorithms. In the benchmarking of the

54

6.1. APPROXIMATE STRING MATCHING 55

CPU and GPU implementations, we evaluate the performance impact of string length,
the size of the string alphabet, and the chosen cut-off threshold. Since the structure of
the problem is well matched to the GPU’s architecture, it is expected that the GPU will
provide a significant performance improvement.

6.1 Approximate String Matching

There are two primary types of approximate string matching, namely k-difference and
k-mismatch [56]. A k-mismatch algorithm calculates the hamming distance between two
strings, which is the minimum number of substitutions that need to be made to make
the compared strings identical. Algorithms that use k-difference matching calculate the
Levenshtein distance or edit distance between two strings, which is similar to the ham-
ming distance, except that it also allows deletions and insertions. The k value specifies
the maximum number of weighted errors between two strings after which the strings are
considered sufficiently different to be classed as non-matching. Since each of the opera-
tions in a k-difference algorithm usually has a configurable cost, these algorithms can be
easily adapted into k-mismatch algorithms by giving the deletion and insertion operations
sufficiently large cost values.

Performing k-difference string matching quickly and efficiently is challenging, and it has
long been a classic computer science problem. Many different algorithms of varying com-
plexities have been developed over the past three decades [56], but for this study, we are
only interested in so-called “online” algorithms that do not perform any pre-processing.

The original solution to calculating the Levenshtein distance between two strings used a
dynamic programming approach [56]. The algorithm involves building a difference matrix
C0..i,0...j, where 0..i represents the characters in the test string m, and 0..j represents the
characters in the input string n. The first row C0,j is populated with its column index, and
the first column Ci,0 is populated with its row index. The rest of the table is populated
by applying the algorithm shown in Algorithm 6.2.

Algorithm 6.2 Populating the dynamic programming matrix.
if ni == mi then

Ci,j ← Ci−1,j−1
else

Ci,j ← 1 +min(Ci−1,j−1, Ci−1,j, Ci,j−1)

6.1. APPROXIMATE STRING MATCHING 56

After the table is populated in this way, the last cell in the table, Ci−1,j−1, contains
the difference value between the two strings. This value can then be checked against a
threshold, k, to determine whether the strings are an approximate match. An example
of this method is illustrated in Figure 6.1. Although this approach is simple and flexible,
it is O(mn) in both time and space, which means it is impractical for many applications
on traditional hardware. Since the original algorithm, there have been two significant
improvements to k-difference string matching that are useful for problems that do not
require text searching.

 d y n a m i c

 0 1 2 3 4 5 6 7

d 1 0 1 2 3 4 5 6

d 2 1 1 2 3 4 5 6

y 3 2 1 2 3 4 5 6

a 4 3 2 2 2 3 4 5

m 5 4 3 3 3 2 3 4

i 6 5 4 4 4 3 2 3

d 7 6 5 5 5 4 3 3

Test pattern

In
p

u
t

s
tr

in
g

Figure 6.1: The dynamic programming approach to calculating the Levenshtein distance
between two strings. The final difference value is indicated by the shaded block.

6.1.1 The Cut-Off Heuristic

In 1985, Ukkonen observed that the dynamic programming matrix propertyDi,j ≥Di−1,j−1

allows Levenshtein distance algorithms to avoid unnecessary calculation of cells in a col-
umn where the value is always greater than the applied threshold, k [79]. This column
calculation cut-off heuristic can be applied as follows:

Algorithm 6.3 Ukkonen’s cut-off heuristic.
active← k
for j ∈ 1..n do

calculate D1..a+1,j, where a == activej−1
activej ←last cell in column j where Di,j ≤ k

This optimisation has been proven to reduce the average expected time complexity of the
algorithm to O(kn) [16]. A faster algorithm that uses Ukkonen’s cut-off was developed

6.1. APPROXIMATE STRING MATCHING 57

that further improves the average time to O(kn/
√
α), where α represents the alphabet

size [16]. However, this algorithm has the drawback of reduced flexibility [56].

6.1.2 Bit Parallelism

It was discovered that existing string matching algorithms could be accelerated by ex-
ploiting the parallelism inherent in operations on computer words [56]. Myers [54] used
this parallelism effectively for k-difference matching by encoding the differences along
columns of the dynamic programming matrix using two bits, and transitioning from col-
umn to column using bit operations. This solution is best suited to short strings where
ideally m ≤ word size, as such strings would not require the use of multiple words to
emulate a word of size m or greater. Myers’ algorithm has a much improved average
expected time complexity of O(mn/w), but can be difficult to adapt to different distance
functions [54, 56].

6.1.3 Existing GPU Solutions

There are many existing GPU solutions for k-difference string matching, where a pattern
is searched for within a very long text (e.g. large DNA sequence). However, there are few
GPU solutions designed for the problem of k-difference matching between large numbers
of aligned short texts1. While the existing k-difference string matching solutions could
conceivably be adapted for this problem, they would not be very efficient. This is be-
cause they utilise the vast parallelism of GPUs to cooperatively solve a single k-difference
problem, rather than solve many problems concurrently. For shorter texts, this would
result in underutilisation of the GPU because of the lack of available parallelism in each
comparison.

Other than our own work, the only published account of accelerating this particular
problem on a GPU was found to be a Master’s thesis by Langner [41]. Langner imple-
mented Myers’ bit-parallel algorithm with Ukkonen’s cut-off in CUDA and tested it with
an NVIDIA Geforce 460 GTX. He reported speedups of up to 4x over an i7 930 CPU
with an OpenCL implementation. This is lower than we would expect from GPU accel-
eration, but there appear to be opportunities for improving his implementation. Possible
improvements include computing multiple comparisons per thread, using multiple words

1The test data we use consists of strings that are less than 560 characters in length, which is consid-
erably shorter than the long DNA sequences typically used in approximate string matching.

6.2. GPU IMPLEMENTATIONS 58

rather than increasing the word size for longer strings, and the use of thread cooperation.
Through the use of a modern GPU and creation of a GPU implementation that includes
these improvements, we expect to achieve a larger speedup.

6.2 GPU Implementations

Two GPU solutions were created to solve this problem. The first solution used a standard
dynamic programming matrix algorithm that is easily adaptable to different distance
functions, and the second solution used an adaptation of Myers’ bit-parallel algorithm,
which is much faster, but not as simple to modify. The GPU implementations do not
parallelise this algorithm, but rather run many instances of it concurrently.

6.2.1 Simple Dynamic Programming Matrix Implementation

One of the simplest and most flexible methods for finding the k-difference between two
strings is building a dynamic programming matrix with an algorithm such as the one
described in Algorithm 6.2. However, accelerating this approach to string matching on
a GPU is challenging, as each cell in the matrix requires a character comparison, which
results in a very low ratio of computation instructions to memory transactions.

A simplified version of the GPU implementation of this algorithm (including Ukkonen’s
cut-off improvement) is provided in Algorithm 6.4. Since filling column i only requires
the values in column i− 1, the amount of memory used by the algorithm can be reduced
significantly by only storing two columns of the matrix at one time. However, the amount
of data transferred to and from global memory is a bottleneck. The reason for this can
be explained by reviewing the core function of the algorithm, calc_col. In this function,
a loop iterates over the number of char16 vectors in the string. Within the loop, a
batch of 16 characters (16 bytes) and 16 short integers (32 bytes) are read from global
memory, and the characters are compared to the reference character, c. The results of
these comparisons are saved back to global memory. This amounts to dpatternLen

16 e × (48)
bytes read from global memory and dpatternLen

16 e × (32) bytes saved to global memory per
calc_col function call. Without Ukkonen’s cut-off, a string of 256 characters in length
would result in calc_col reading and writing a total of

⌈
256 + 15

16

⌉
× (48 + 32) = 1280 bytes

59

Algorithm 6.4 A simplified representation of the GPU implementation of the standard
algorithm.
1: function calc_col(global strTest, patternLen, c, global prevCol, global curCol,
i, bestk, active)

2: . strTest is the test pattern, patternLen is the length of the shortest pattern,
c is character in the input string currently tested against, prevCol is the
previously calculated column, curCol is the column to be calculated, and i is
the column number.

3: pos← 0
4: while pos ≤ (patternLen+ 15)/16 and pos < active+ 1 do
5: testV ec← strTestpos×16..pos×16+15
6: prevV ec← prevColpos×16..pos×16+15
7: for p ∈ pos× 16..pos× 16 + 15 do
8: if p == 0 then
9: curColi,0 ← (testV ec0 6= c ? 1 : 0)
10: else
11: curColi,p ← min((testV ecp 6= c ? prevV ecp−1 + 1 : prevV ecp−1),

min(prevV ecp, testV ecp−1) + 1)
12: pos++
13: for p ∈ 15..0 do
14: if curColi,pos×16+p <= maxdiff then
15: curActive = pos
16: break
17: active← curActive
18: bestk ← curColi,(pos−1)×16+(queryLen+15%16)
19: end function
20: function compare_strings(global strInput, global strTest, global patternLen,

global tempCol0, global tempCol1, maxdiff)
21: . strInput is the input string, strTest is the test string, patternLen is the shorter

of the input and test string, tempCol0 and tempCol1 are used to temporarily
store two columns in a matrix.

22: for j ∈ 0..patternLen do
23: tempCol0← j + 1
24: bestk ← patternLen+ 1
25: i← 0
26: active = (patternLen+ 15)/16
27: while i ≤ ((patternLen+ 15)/16) do
28: inpV ec← strInputi×16..i×16+15
29: count← (patternLen− i× 16) % 16
30: for j ∈ 0..count in steps of 2 do
31: calc_col(strTest, patternLen, inpV ecj, tempCol0, tempCol1, i× 16 + j,

bestk, active, maxdiff)
32: calc_col(strTest, patternLen, inpV ecj+1, tempCol1, tempCol0, i× 16+

j + 1,bestk, active, maxdiff)

6.2. GPU IMPLEMENTATIONS 60

33: if count % 2 6= 0 then
34: calc_col(strTest, patternLen, inpV ecj, tempCol0, tempCol1, i× 16 +

count− 1, bestk, active, maxdiff)
35: i++
36: if bestk ≤ maxdiff then
37: return True
38: else
39: return False
40: end function

per calc_col function call. According to [3], global memory bandwidth per stream pro-
cessor is ∼0.14 bytes per cycle. Each thread compares its own input string to the same
test pattern, so this would most likely benefit from L1 caching, which can transfer an
average of one byte per cycle. Transferring 1,024 bytes uncached and 256 bytes cached
would therefore require 7,570 cycles. In contrast to the large number of memory trans-
actions, the amount of computation in this function is almost negligible. Problems such
as this where the GPU spends most of its time servicing memory requests are known
as memory-bound. This makes it clear that optimisations should target improving the
efficiency of memory transactions. The aggregate time and space complexities for this
algorithm can be represented as (∑t

i=1 O(kini))/p and ∑pd
i=1 O(mi), respectively, where t

represents the total number of comparisons, p represents the number of processors, and
d represents how many comparisons each processor executes concurrently.

6.2.2 Bit-Parallel Implementation

Hyyrö’s adaptation of Myers’ bit-parallel algorithm [35], hereafter referred to as HBP, is
used as the basis for this implementation, which is an extension of our previous attempt
to accelerate this algorithm on the GPU [77]. Further adaptations of this algorithm by
Hyyrö are specific to certain use cases and are thus not relevant to this work. The size
of the word type was chosen to be a 32-bit unsigned integer for the GPU implementation
rather than a 64-bit unsigned int as used in the CPU implementation. This is because the
HD7970 is primarily built for 32-bit operations and only uses 32-bit registers [3]. Since the
solution should work for texts greater than the size of the words used to store the column
data, multiple words are used for each column vector. This adds a few extra operations
as overflows between neighbouring words must be taken into account when addition and
bit shift operators are used. Myers’ solution to the cut-off heuristic was applied to this
algorithm, where only the required word blocks are calculated, as illustrated in Figure 6.2.

6.2. GPU IMPLEMENTATIONS 61

This results in an O(kn/w) expected time and O(αm/w) space complexity [34, 54]. The
aggregate time and space complexities can be represented as (∑t

i=1 O(kini/w))/p and∑pd
i=1 O(αimi/w), respectively.

The HBP algorithm represented in Algorithm 6.5 requires considerably fewer global mem-
ory transactions than Algorithm 6.4. This is because its effective use of computer words
means fewer memory transactions are needed to transfer the same amount of information,
and more data can be stored in private registers. If the Ukkonen cut-off optimisation is
omitted for the sake of comparison, this algorithm would result in patternLen+31

32 + 2 un-
signed integer (4 bytes) loads from local or global memory. A string of 256 characters
would therefore result in 72 bytes read from global memory in 72 clock cycles (cached).
In practice, it is only b + 2 with the cut-off optimisation, where b is the current number
of active blocks (illustrated in Figure 6.2).

6.2.3 Parallelisation Approach

GPUs make extensive use of SIMD processing, which means they are well suited to running
the same algorithm on large datasets. Depending on the algorithm, each GPU thread can
be independent, or groups of threads can work cooperatively. Existing GPU solutions to
a similar problem where an approximate match of a pattern is searched within a large
text have used the latter approach. For this problem, we use the former in a data-parallel
style, as the individual comparisons are too short to benefit from work-group parallelism.

Test Pattern

1

2

3

In
pu

t S
tr

in
g

Figure 6.2: The dynamic programming matrix with columns divided into blocks the size of
a word (adapted from [34]). The shaded region indicates the area that would be calculated
using the cut-off heuristic without bit-parallelism. The blocks indicate the region that
would be calculated using the cut-off heuristic incorporated into the bit-parallel algorithm.

62

Algorithm 6.5 A simplified representation of the GPU implementation of the HBP
algorithm.
1: function advance_block(b, ref , PM , lastV P , lastV N , N , hin)
2: . b is the active block depth, ref is the string character to compare against, PM

is the processed test string, lastV P contains the vertical positive changes from
the last column, lastV N contains the vertical negative changes from the last
column, N is the shorter string’s length, and hin is a carry from a previous
block.

3: out← 0
4: X ← PMref,b

5: if hin == −1 then
6: X |= 1
7: D0← (((X & lastV Pb) + lastV Pb) ˆ lastV Pb) | X | lastV Nb

8: HP ← lastV Nb | ∼(D0 | lastV Pb)
9: HN ← D0 & lastV Pb

10: num← (b+ 1 == (N + 31)/32) ? N & 31 : 32
11: if HP & 1 << num− 1 then
12: out← 1
13: else
14: if HN & 1 << num− 1 then
15: out← −1
16: HP <<= 1
17: HN <<= 1
18: if hin == 1 then
19: HP |= 1
20: lastV Pb ← HN | ∼(D0 |= 1)
21: if hin == −1 then
22: lastV Pb |= 1
23: lastV Nb ← D0 & HP
24: return out
25: end function
26: function calc_col(ref , PM , N , lastV P , lastV N , DT , b, strindex, k, pass)
27: . ref is the character in the input string currently tested against, PM is the

processed test string, lastV P contains the vertical positive changes from the
last column, lastV N contains the vertical negative changes from the last column,
DT stores block error count values, b is the active block depth, strindex is the
current index of the input string, k is the maximum k value, and pass is an
output parameter used to indicate a positive or negative match.

28: carry ← 0
29: for i ∈ 0..b do
30: carry ← advance_block(i, ref, PM, lastV P, lastV N,N, carry)
31: DTi ← DTi + carry

32: if DTb−1 − carry ≤ k and b < (N + 31)/32 and PMref,b & 1 then
33: b++
34: for i ∈ 0..32 do
35: lastV Pb−1 |= (1 << i)

6.3. RESULTS 63

36: lastV Nb−1 ← 0
37: DTb−1 ← DTb−2 + 32− carry +

advance_block(b− 1, ref, PM, lastV P, lastV N,N, carry)
38: else
39: while DTb−1 ≥ k + 32 do
40: b--
41: if b == (N + 31)/32 and DTb−1 ≤ k then
42: pass← 1
43: return
44: if strindex == N − 1 then
45: if b == (N + 31)/32 and DTb−1 − b× 32−N ≤ k then
46: pass← 1
47: else
48: pass← −1
49: end function

6.3 Results

The GPU implementations were benchmarked against the same algorithms implemented
for the CPU in the C programming language. Four categories of test data were used: short
texts of no more than 64 characters, long texts of between 256 and 560 characters, a small
alphabet of 4 characters, and a large alphabet of 64 characters. For brevity, transitional
results only include the extreme combinations of short texts with a small alphabet and long
texts with a large alphabet. Each dataset was evaluated with threshold (k) values from
2% to 20% of the string length. Sample datasets were used for the different alphabet and
string length configurations. The datasets consisted of 8,192 strings, which were compared
to a sample of 500 strings when testing long strings and 2,000 strings when testing short
strings. The results for the baseline implementations of both algorithms can be seen in
Figure 6.3.

Both baseline GPU implementations were faster than their CPU counterparts, but not by
much. The GPU speedup was particularly low for short strings, where the average speedup
was 1.8x for the standard algorithm2 and 1.7x for the HBP algorithm. Longer strings
resulted in comparatively better performance for the GPU, with the average speedups
increasing to 12.7x for the standard algorithm and 5.8x for the HBP algorithm. However,
these GPU implementations were naïve and stood to benefit from a number of optimisa-
tions.

2If the first three data points are omitted from the calculation, this is reduced to 1.2x.

6.3. RESULTS 64

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e
r

s
e
c

o
n

d
)

Difference threshold (%)

GPU Standard Baseline

GPU HBP Baseline

CPU Standard

CPU HBP

(a) The comparative CPU and GPU performance for short strings using a small alphabet.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e
r

s
e
c

o
n

d
)

Difference threshold (%)

GPU Standard Baseline

GPU HBP Baseline

CPU Standard

CPU HBP

(b) The comparative CPU and GPU performance for long strings using a large alphabet.

Figure 6.3: The baseline performance of both algorithms for short strings (a) and long
strings (b).

6.3.1 Optimisations

The performance of both algorithms was greatly improved through the implementation
of a number of optimisations.

6.3. RESULTS 65

Data Layout

It is important to ensure that any accesses to global memory are designed as efficiently as
possible to achieve good performance [3], especially when this memory is accessed often.
Each GPU thread calculates the k-difference value between a common test pattern and its
assigned input string, both of which are stored in global memory. The standard algorithm
also uses global memory to temporarily store two columns in the dynamic programming
matrix. The initial implementations of these algorithms simply stored the string and
column data linearly in a section of global memory assigned to each thread. According
to the AMD guide, global memory throughput is maximised on the HD7970 when each
wavefront accesses consecutive groups of 256 bytes (4 bytes per thread), as this results
in each wavefront accessing a different memory channel [3]. However, it was found that
reading 1,024 bytes per wavefront resulted in better performance3. This was achieved by
writing the input string and column data to global memory in the order in which they
were read.

Caching

Although each compute unit on the HD7970 has 16 KB of L1 cache, the explicit caching
of global memory data in registers can increase performance. This is because registers can
serve up to 12 bytes per cycle compared to a single byte per cycle from the L1 cache, an
order of magnitude difference. To ensure the string data in global memory was read as fast
as possible, the string characters were loaded in batches into temporary private memory
(registers). The data layout optimisation meant that each load from global memory was
16 bytes. The highest throughput from global memory was achieved when multiple loads
of 16 bytes were cached in private memory, but it was only practical to cache a single
load when other components of the algorithm were added because of the limited number
of registers available. Another advantage of using registers for cache is they are not prone
to cache misses.

3The AMD guide also mentions that there are 12 memory channels on the HD7970, and increments
of 256 bytes usually result in the use of a different memory channel. Since 12 is not a power of two, 16
consecutive sections of 256 bytes would need to be read to access all the memory channels. Therefore,
it makes sense that reading 1,024 bytes instead of 256 bytes per wavefront would result in superior
performance, since doing so would result in the use of all 12 of the memory channels instead of only 10.

6.3. RESULTS 66

Vector Types

Previous generation AMD GPUs that use the very long instruction word (VLIW) archi-
tecture can benefit substantially from vectorisation as a result of more efficient use of the
VLIW processing units [3]. The HD7970 used in this study no longer uses the VLIW
architecture and thus does not benefit from explicit vectorisation [3]. However, the use of
certain vector types can still improve performance as a result of their clear identification of
16 or 32 contiguous bytes of memory that can make use of 16-byte memory operations [3].
To leverage the memory efficiency benefit of vector types, char16 and short16 vector
types were used instead of char and short arrays in the standard algorithm. As a side
effect of this optimisation, loops had to be manually unrolled because vector components
are not enumerable.

Loop Unrolling

Loop unrolling (otherwise known as loop unwinding) is used in many high performance
programs. It is the practice of minimising or removing loop control flow logic by directly
embedding multiple iterations of the loop into the code, which can reduce dynamic in-
struction count, improve ILP, and exploit memory locality [28, 53, 75]. It has been shown
to provide significant improvements in performance if implemented correctly [53, 81].
However, loop unrolling can result in increased register and instruction cache usage, pos-
sibly leading to instruction cache misses and spilled registers [75]. This optimisation was
attempted on the standard algorithm as it utilised many loops containing few instructions.

Intra-Group Cooperation

Although each thread processes its own k-difference problem, one common element be-
tween the threads is the test pattern. This was leveraged by using intra-group thread
cooperation to collectively read the relevant test string from global memory. In the stan-
dard algorithm, this string was then stored in local memory to be used by all the threads
within the group. Since each thread reads the same test pattern from local memory dur-
ing the running of the algorithm, local memory loads benefited from broadcast reads [3].
The HBP algorithm first required the string to be processed into bit-vector arrays (in the
form of unsigned integers) before the processed string could be saved in local or global
memory.

6.3. RESULTS 67

Scheduling

An advantage of OpenCL is that the programmer can specify a very large NDRange and
let the hardware manage its execution. However, we found that scheduling a set NDRange
yielded optimum performance if the NDRange was calculated using the expected number
of wavefronts scheduled per GPU compute unit, as this reduced scheduling overhead.
Using this method, each thread performs multiple k-difference calculations.

Simple Algorithm Optimisations

The performance improvements observed by implementing the optimisations described
above are illustrated in Figure 6.4(a) and (b) for short and long strings, respectively. The
data layout optimisation resulted in a 12% to 514% improvement for short strings and
14% to 246% improvement for long strings. Comparisons between the longer strings at
higher difference thresholds benefited the most from this optimisation as they transferred
a much greater amount of data to and from global memory. Loop unrolling reduced the
performance by 1% to 2% for short strings and under a percent for long strings, which is
not too surprising considering the bottleneck was with memory latency rather than control
flow overhead. Caching provided the third biggest improvement of between 24% to 31%
for short strings and 28% to 29% for long strings, even though it resulted in four registers
being spilled into global memory. The vector data type optimisation surprisingly gave
the second biggest performance improvement of between 197% and 272% for short strings
and 262% to 276% for long strings. The impact of the final local memory optimisation
was negligible (under a percent). Although local memory is considerably faster than
global memory, only ∼11% of the global memory data used in the core algorithm could be
placed in local memory and this had to be initialised from global memory. Furthermore,
the global memory accesses are likely to benefit from the L1 and L2 caches, since all
work-groups would be accessing the same test strings in the same order.

HBP Algorithm Optimisations

The performance improvements observed by implementing the optimisations described
above, with the exception of loop unrolling and vector types, are illustrated in Fig-
ure 6.5(a) and (b) for short and long strings, respectively. The loop unrolling and vector
type optimisations were not as relevant to this implementation because of differences in

6.3. RESULTS 68

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

Local Memory Vectors Unrolling Caching Data Layout Baseline

(a) The impact of individual optimisations on the standard implementation for short strings
with a small alphabet.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

Local Memory Vectors Unrolling Caching Data Layout Baseline

(b) The impact of individual optimisations on the standard implementation for long strings with
a large alphabet.

Figure 6.4: The impact of different optimisations on the performance of the standard
algorithm.

6.3. RESULTS 69

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

Local Memory Cooperation String Layout Caching Baseline

(a) Impact of individual optimisations on the HBP implementation for short strings with a small
alphabet.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

Local Memory Cooperation String Layout Caching Baseline

(b) Impact of individual optimisations on the HBP implementation for long strings with a large
alphabet.

Figure 6.5: The impact of different optimisations on the performance of the HBP algo-
rithm.

6.3. RESULTS 70

the algorithm implementation. The data layout optimisation resulted in a 620% to 690%
improvement for short strings and 66% to 109% improvement for long strings. Unlike
what was observed with this optimisation in the standard algorithm, its impact decreases
with longer strings and higher difference thresholds. When the algorithm operated on
short strings of less than 64 characters, only two unsigned integers were required to cover
each position in the string (2 x 32 bits). This meant that there was little variance in the
section of PM array (containing the processed test string) read by each work-item since
successful matching could only result in a depth increase of one unsigned integer. The
data layout optimisation ensured that accesses to the PM array also had high spatial
locality. However, the longer strings required up to 18 unsigned integers to cover each po-
sition in the string. The different matching success rates of the string comparisons could
thus result in a high variance in the depth of the PM array read by each work-item, and
higher difference thresholds permitted larger gaps between the lowest permissible depth
and the highest (perfect match). This significantly reduced the regularity of the memory
reads and thus the effectiveness of the data layout optimisation.

Caching of string data resulted in a 20% to 26% performance decline for short strings and
a 41% to 43% performance decline for long strings. Better caching is usually expected
to result in better performance, but the implementation of caching required the use of
additional GPU registers. GPU kernel profiling revealed that the use of extra registers
resulted in 60 registers being spilling into global memory, which was responsible for the
decline in performance.

Intra-thread cooperation in reading test strings improved the performance of short strings
by 96% to 110% and long strings by 124% to 133%. Saving the cooperatively read and
processed test strings into local memory instead of global memory reduced the perfor-
mance by between 5% to 7% for short strings and 13% to 14% for long strings. This is
contrary to local memory performance benchmarks done using a similar memory access
pattern in which local memory was just over 2x faster than global memory. Despite our
efforts, we have yet to discover the reason for this performance anomaly.

6.3.2 Optimised Results

The final optimised versions of the GPU implementations were compared to their CPU-
based counterparts for small and short alphabets and short and long strings. The standard
GPU implementation included the data layout, caching, vector type, and local memory

6.3. RESULTS 71

optimisations, while the HBP GPU implementation included the data layout and thread
cooperation optimisations.

Standard Algorithm

The similarity of graph (a) to (b) in Figures 6.6 and 6.7 indicates that alphabet size
has a minimal impact on the relative performance of the CPU and GPU for the standard
algorithm. The average GPU speedup differed by less than a percent between performance
tests on the small and large alphabets. Since the algorithm simply compares one character
to another numerically, this is unsurprising.

A clear trend that can be seen from the results is the decrease in comparison through-
put with higher difference thresholds. This is the result of previously failed comparisons
requiring additional work to reach a result because of the increased tolerance for mis-
matches. As indicated by the speedup curve, the performance of the GPU does not
decline as fast as the CPU’s performance with higher difference thresholds. From the
lowest threshold to the highest, the CPU’s throughput decreases by 2.4x while the GPU’s
throughput decreases by 1.5x.

The number of string comparisons per second decreases considerably from short strings
(Figure 6.6) to long strings (Figure 6.7). However, the GPU’s speedup over the CPU
more than doubles, increasing from an average of 33x to an average of 100x. In many
ways, increasing the string length is synonymous with increasing the acceptable difference
threshold, since both result in an increased average number of comparisons per string. It
is therefore clear that the performance of the GPU implementation scales considerably
better than the CPU implementation with larger problem sizes and difference thresholds
for this algorithm.

HBP Algorithm

Unlike the standard algorithm results, the larger alphabet resulted in a decrease in GPU
speedup for the HBP algorithm. This can be seen when comparing graph (a) to (b) in
Figures 6.8 and 6.9. The comparison rate of the GPU decreased by an average of 9.8%,
while the CPU comparison rate only decreased by and average of 2.7%, resulting in a
decrease in the average GPU speedup of 7.8%. The GPU profiling information revealed
a ∼15% average reduction in the number of active stream processors for the dataset with

6.3. RESULTS 72

0

10

20

30

40

50

60

70

80

0.1

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

CPU Standard

GPU Standard

GPU Speedup

(a) The standard algorithm tested with a small alphabet and short strings.

0

10

20

30

40

50

60

70

80

0.1

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

CPU Standard

GPU Standard

GPU Speedup

(b) The standard algorithm tested with a large alphabet and short strings.

Figure 6.6: The performance of the standard algorithm for short strings, small and large
alphabets, and varying difference thresholds. The comparison rate of the GPU and CPU
(green and blue lines) are labelled on the left y-axis, and the GPU speedup (red line) is
labelled on the right y-axis.

6.3. RESULTS 73

0

20

40

60

80

100

120

1

10

100

1000

10000

4 8 12 16 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(t

h
o

u
s

a
n

d
 p

e
r

s
e

c
o

n
d

)

Difference threshold (%)

CPU Standard

GPU Standard

GPU Speedup

(a) The standard algorithm tested with a small alphabet and long strings.

0

20

40

60

80

100

120

1

10

100

1000

10000

4 8 12 16 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(t

h
o

u
s

a
n

d
 p

e
r

s
e

c
o

n
d

)

Difference threshold (%)

CPU Standard

GPU Standard

GPU Speedup

(b) The standard algorithm tested with a large alphabet and long strings.

Figure 6.7: The performance of the standard algorithm for long strings, small and large
alphabets, and varying difference thresholds. The comparison rate of the GPU and CPU
(green and blue lines) are labelled on the left y-axis, and the GPU speedup (red line) is
labelled on the right y-axis.

6.3. RESULTS 74

0

5

10

15

20

25

30

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

CPU HBP

GPU HBP

GPU Speedup

(a) The HBP algorithm tested with a small alphabet and short strings.

0

5

10

15

20

25

30

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

CPU HBP

GPU HBP

GPU Speedup

(b) The HBP algorithm tested with a large alphabet and short strings.

Figure 6.8: The performance of the HBP algorithm for short strings, small and large
alphabets, and varying difference thresholds. The comparison rate of the GPU and CPU
(green and blue lines) are labelled on the left y-axis, and the GPU speedup (red line) is
labelled on the right y-axis.

6.3. RESULTS 75

0

5

10

15

20

25

30

0.01

0.1

1

10

100

4 8 12 16 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

CPU HBP

GPU HBP

GPU Speedup

(a) The HBP algorithm tested with a small alphabet and long strings.

0

5

10

15

20

25

30

0.01

0.1

1

10

100

4 8 12 16 20

C
o

m
p

a
ri

s
o

n
 r

a
te

(m

il
li

o
n

 p
e

r
s

e
c

o
n

d
)

Difference threshold (%)

CPU HBP

GPU HBP

GPU Speedup

(b) The HBP algorithm tested with a large alphabet and long strings.

Figure 6.9: The performance of the HBP algorithm for long strings, small and large
alphabets, and varying difference thresholds. The comparison rate of the GPU and CPU
(green and blue lines) are labelled on the left y-axis, and the GPU speedup (red line) is
labelled on the right y-axis.

6.3. RESULTS 76

a large alphabet. The GPU performance decrease is thus likely the result of increased
thread divergence from differences in the data rather than a larger alphabet.

The impact of higher difference thresholds on the GPU speedup was mixed. For short
strings, the CPU performance remained constant as the difference threshold increased,
while the performance of the GPU gradually declined. Both the CPU and GPU per-
formance declined with higher difference thresholds when operating on long strings, but
the CPU performance declined more rapidly. The consistent performance of the CPU
with higher thresholds on the small alphabet dataset is contrary to the norm. However,
it is explained by the fact that the CPU implementation uses 64-bit unsigned integers
for storing the bit-vectors, which contain a sufficient number of bits to represent each
position in the short strings. This means that higher difference thresholds do not result
in the need for additional bit vectors to be read. The same does not apply to the GPU
implementation since it uses 32-bit unsigned integers.

Comparisons between long strings (Figure 6.9) reduced the performance of the GPU
implementation more than they did the CPU implementation, resulting in a decline in
GPU speedup from an average of 19x to an average of 14.4x. This is the opposite of what is
typically expected from GPUs given their throughput-oriented architecture. GPU kernel
profiling revealed the cause of this to be a 20% reduction in the GPU occupancy, which
reduced the ability of the GPU to hide memory access latency. The occupancy decrease
was caused by an increase in the number of registers needed to support the bit-vector
arrays that represented the longer strings. Comparisons between even longer strings
would exacerbate the issue and result in register spilling.

6.3.3 Impact of Problem Size

To determine the impact of problem size on GPU performance, the HBP algorithm was
benchmarked with the number of required comparisons increasing from 131,000 to 100
million in increments of 131,000. Both short and long strings were tested using a small
alphabet and a difference threshold of 4%. The results, given in Figure 6.10, show that
the GPU’s performance is remarkably consistent as the problem size increases. Given
the strong evidence for a linear relationship between GPU execution time and problem
size, the LINEST4 function in Microsoft Excel was used to calculate the linear regression
equation and coefficient of determination (R2) statistic for (a) and (b), which are shown

4http://office.microsoft.com/en-za/excel-help/linest-HP005209155.aspx

6.3. RESULTS 77

y = 7.22x + 34.188
R² = 0.9998

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

T
im

e
 (

s
)

Number of comparisons (millions)

GPU

Linear Time

(a) Comparisons between short strings.

y = 121.67x - 26.325
R² = 0.9997

0

2

4

6

8

10

12

14

0 20 40 60 80 100

T
im

e
 (

s
)

Number of comparisons (millions)

GPU

Linear Time

(b) Comparisons between long strings.

Figure 6.10: The impact of problem size on the HBP algorithm when using a difference
threshold of 4%.

on their respective graphs. Table 6.1 also gives the F probability and the standard m
and c errors. The calculated R2 statistics and F probabilities indicate that the execution

6.4. DISCUSSION 78

time for comparisons between both short and long strings can be predicted with the
given linear equations within a 99% confidence interval. Graph (a) conforms to the linear
equation better than (b) though, which is most likely due to the larger variance in possible
comparison times permitted by comparisons between longer strings.

Table 6.1: Regression analysis for a linear relationship between problem size and perfor-
mance.

String Length R2 F Probability m Std. Error c Std. Error

Short 0.999826 0 0.003448 0.199281

Long 0.999725 0 0.073084 4.224020

6.3.4 Data Transfers

Table 6.2: The data transfer overhead.

Test Strings 1,000 2,000 3,000 4,000 5,000

Small α, short strings 10.1% 6.8 % 6.2 % 6.5% 5.7%

Large α, long strings 0.3% 0.2% 0.2% 0.2% 0.1%

The benchmarks were carried out with the GPU program configured as dual dependent,
which is the least desirable configuration for data transfers. The overall contribution of
data transfers to the total runtime of the HBP GPU implementation for various configu-
rations at a difference threshold of 4% can be seen in Table 6.2. These results show that
the data transfer time impacts comparisons between short strings the most; the transfer
time for short strings contributed up to 11.65% of the total GPU time compared to up
to 0.16% for long strings. This difference is the result of the significantly longer com-
parison time between long strings compared to that of short strings, which reduces the
contribution of data transfer overhead to overall GPU execution time.

6.4 Discussion

Prior to optimisation, the GPU implementations of both algorithms outperformed their
CPU counterparts, but not by a significant margin. After the implementation of four
optimisations, the performance of the standard algorithm improved by an average of

6.5. SUMMARY 79

18.3x for short strings and 7.8x for long strings. Two optimisations improved the average
performance of the HBP algorithm by 11.9x for short strings and 2.4x for long strings.
Overall, these optimisations resulted in the GPU being between 23.9x and 109x faster
than the CPU for the standard algorithm and between 12.5x and 21x faster for the HBP
algorithm.

6.5 Summary

Determining whether two strings approximately match each other using the k-difference
algorithm is an operation that has uses in many applications. However, because of the
time complexity of the k-difference algorithm, it is not usually feasible to incorporate it in
programs that require high throughput processing, such as malware detection and spam
filtering. The goal of this study was to evaluate the applicability of GPU acceleration to
large numbers of k-difference string comparisons using a standard dynamic programming
matrix algorithm and a bit-parallel algorithm. The bit-parallel algorithm had already been
accelerated on a GPU using OpenCL, but inefficiencies in the existing implementation
were found and the speedup was considerably lower than we believed was achievable.
Initial GPU implementations of these algorithms only resulted in a speedup over the
CPU of between 1.8x and 12.7x for the standard algorithm and between 1.7x and 5.8x
for the HBP algorithm. Through the implementation of two to four memory related
optimisations, the speedups were improved to between 23.9x and 109x for the standard
algorithm and between 12.5x and 21x for the HBP algorithm. The speedups obtained
are likely to be significant for many applications of the algorithms, and could potentially
make previously impractical applications feasible.

Chapter 7

Case Study 3: Radix Sort

The need for sorting is found in many computer science problems. Although highly
optimised sorting algorithms have been developed for CPUs, sorting very large datasets
such as those found in existing GPU applications can still be a performance bottleneck [50].
Unlike the problems in Chapters 5 and 6, sorting does not map easily onto the GPU’s
architecture because of the inherent and irregular data dependence between the records to
be sorted [50]. However, using the right techniques, a modern GPU can achieve a sizeable
speedup over a modern CPU for certain use cases.

7.1 Radix Sort Algorithms

A least significant digit radix sort algorithm works by repeatedly sorting the input keys
based on increasingly higher value sections of the physical representation of the keys. Keys
that have the same value at the same section of the key do not change positions relative
to each other. The number of sections, and consequently sorting passes, is determined by
the width of the section, otherwise known as the radix. A simple sequential radix sort of
four values is illustrated in Figure 7.1, and a basic algorithm is given in Algorithm 7.1.

Efficiently parallelising this algorithm is significantly more challenging than parallelising
the problems presented in Chapters 5 and 6, owing to the large amount of synchronisation
and cooperation needed between participating threads. The basic parallel approach to
radix sorting separates the problem into three steps. These steps, repeated for each radix
segment of the key as outlined by Satish et al. [71], are:

80

7.1. RADIX SORT ALGORITHMS 81

9 5 4
3 5 4
0 0 9
4 1 1

4 1 1
9 5 4
3 5 4
0 0 9

Sort Digit 0 Sort Digit 1 Sort Digit 2 Final Result

0 0 9
4 1 1
9 5 4
3 5 4

0 0 9
3 5 4
4 1 1
9 5 4

Figure 7.1: A simple illustration of the steps performed in a radix sort. In this example,
the radix is a single digit, i.e., units, 10’s and 100’s are sorted in turn.

Algorithm 7.1 A basic sequential radix sort for 32-bit integers.
1: function SeqRadixSort(keys, numkeys)
2: radix← 4
3: numpasses← 32/radix
4: numbuckets← pow(2, radix)
5: . Appopriate allocation and zeroing of index and bucket arrays.
6: for sortpass ∈ numpasses do
7: for i ∈ numkeys do
8: . getbits extracts the value from the key at current radix
9: k ← getbits(keysi, radix, sortpass ∗ radix)

10: bucketsk,indexk++ ← keysi

11: keyindex← 0
12: for j ∈ numbuckets do
13: for i ∈ indexj do
14: keyskeyindex ← bucketsj,i

15: keyindex++
16: end function

1. Assign an even portion of the input keys to each thread and make each thread
calculate a private histogram of its allocated keys.

2. Use a parallel prefix sum to calculate a global histogram from the private histograms
created by each thread.

3. Use parallel prefix sums to determine the offset for each key within each thread’s in-
dividual histogram partitions, add this offset to the global partition offset calculated
in Step 2, and scatter accordingly.

7.2. GPU IMPLEMENTATIONS 82

7.2 GPU Implementations

Two GPU radix sort algorithms were implemented for comparison. The first was a simple
GPU radix sort based on a naïve C++ AMP implementation [12], and the second was a
highly optimised GPU radix sort based on a CUDA implementation created by Merrill and
Grimshaw (MG) [49]. A comparison of the performance and implementation of these two
GPU radix sorts should provide some insight into the problem difficulty and knowledge
required for successfully accelerating a radix sort.

7.2.1 Simple Radix Sort

The simple GPU radix sort [12] has three kernels, which are straight-forward implementa-
tions of the three steps outlined for parallel radix sorts in the previous section. However,
there are two notable differences in the kernels for Steps 1 and 3. The first difference is
that each GPU thread only processes a single key rather than a fraction of the total num-
ber of keys divided equally among the GPU processing elements. This approach simply
scales the size of the NDRange with problem size, thereby taking advantage of the GPU’s
ability to handle large problem sizes and ensuring very high GPU occupancy. The second
difference is the use of intra-group thread cooperation to produce aggregated work-group
results in Step 1, which are then processed in Step 2 and used in Step 3. This is done to
reduce the amount of data copied to and from global memory.

7.2.2 MG Radix Sort

To the best of the author’s knowledge, MG’s CUDA radix sort is the fastest implemen-
tation of a radix sort on GPUs. Much like the simple radix sort, it has three kernels
corresponding to the three steps in a parallel radix sort algorithm and uses intra-group
thread cooperation to aggregate thread results into work-group results. A very high-level
overview of the algorithm implementation is illustrated in Figure 7.2. A more detailed
description of the implementation can be found in [50].

The three phases, each implemented in a separate GPU kernel, are described in more
detail below.

Kernel 1: The purpose of this kernel is to determine the aggregate number of keys that
fall into the different bit-pattern buckets for each of the work-groups, where the keys

7.2. GPU IMPLEMENTATIONS 83

Unsorted Keys

Read Keys Read Keys

Bucketing
keys by value

Bucket
aggregation

Group bucket totals

K
e

rn
el 1

Read bucket totals

Prefix scan

Global group bucket offsets

Prefix scan

K
ern

el 3

Local offsets Local offsets

Key exchange

Final key-offset pairs Final key-offset pairs

Intermediate Results

Calculating
local offsets

Calculating
global offsets

Exchanging
keys for write
coalescing

Key scattering

Calculating
global group
bucket offsets

K
ern

e
l 2

Re-read unsorted keys
& bucket

Re-read unsorted keys
& bucket

Read bucket totals

Bit pattern buckets

Serial Reduction Serial Reduction

G
lo

b
al gro

u
p

 o
ffsets

G
lo

b
al gro

u
p

 o
ffsets

Figure 7.2: A high-level overview of the steps performed in Merrill and Grimshaw’s GPU
radix sort algorithm. The dotted line in the centre demarcates sections of independent
computation.

7.2. GPU IMPLEMENTATIONS 84

are decoded based on the current offset in the key and the chosen radix. Each thread
reads a number of keys from global memory and increments the appropriate bucket
in local memory depending on the key’s decoded value. The decoded bit pattern
is simply the value of the relevant section of the key as determined by the radix
and current sorting pass. The buckets in local memory are then serially reduced to
obtain the final bucket counts for the work-group (or CUDA thread block), which
are saved in global memory.

Kernel 2: This kernel performs a prefix scan of the bit-pattern buckets saved by the first
kernel to obtain the global bucket offsets for each of the work-groups. This is done
to provide each work-group with an offset in global memory for each bit-pattern
bucket to which it can scatter its keys.

Kernel 3: The final kernel can be conceptually separated into four phases. In the first
phase, the keys are re-read from global memory, decoded, and bucketed according to
their bit pattern. This is essentially redundant computation since this was done in
Kernel 1, but is repeated because it is faster than saving and loading the results to
and from global memory. In the second phase, the threads within the work-groups
cooperate to determine their inter-group bucket offsets using prefix scans. The third
phase serves to optimise the scattering of the keys by performing an intra-group key
exchange that results in the threads holding keys with offsets that would result in
writes to global memory that are more ordered. The fourth and final phase adds
the global group bucket offsets to the local offsets to get the final global memory
offsets, and scatters the keys accordingly.

Since the kernels only operate on a section of the input keys, the results output by Kernel
3 are intermediate and are used as the input for the next iteration. The number of
iterations required to fully sort the keys depends on the size of the key and the chosen
radix. For a typical key size of 32 bits, eight iterations of the kernels would be needed to
fully sort the keys using a radix of four.

Since the sort was implemented in CUDA, we had to reimplement a revision1 of it in
OpenCL for AMD’s Tahiti range of GPUs to provide a fair comparison. Apart from
the standard CUDA to OpenCL syntax changes, many of the required changes involved
modifying sections of code to use a wavefront of 64 instead of 32 threads and modifying

1Revision 256 was used as the code in later revisions was significantly more fragmented and templated,
making it harder to port to OpenCL.

7.2. GPU IMPLEMENTATIONS 85

GPU architecture-specific settings that governed the memory usage pattern of the algo-
rithm. Even though the algorithm was explicitly designed for the GPU, implementing it
in OpenCL was still challenging because of the low-level optimisations that needed to be
understood and adapted for the HD7970 architecture.

7.2.3 Comparison Between GPU Sorts

The simple radix sort and the MG radix sort both consisted of three phases and followed
roughly the same steps for a parallel radix sort as listed in Section 7.1. Three of the
biggest differences in the MG sort implementation were found to be the addition of a key
exchange step in the final phase, scaling the amount of work done per thread with problem
size rather than scaling the number of threads, and loading and processing multiple keys
per thread rather than a single key at a time. Many of the other differences related to
the MG sort’s processing of multiple keys per thread and techniques used to perform the
same operations as in the simple sort in a more efficient manner.

We identified a number of strategies and techniques used in the MG sort that greatly
improve GPU utilisation. Some of these are described below.

Computational Granularity

Each GPU work-group processes a portion of the total number of keys, which is in the
thousands for problem sizes large enough to warrant the use of GPUs. To ensure efficient
use of both the stream processors and GPU memory, these keys are processed in batches of
an appropriate size tied to the target GPU’s architecture. Scheduling more parallel work
per thread has been shown to maximise performance by hiding more memory latency [80].
Furthermore, throughout the radix sort algorithm the number of memory loads done
prior to computation has been set to depend on the target GPU architecture. This
is because different GPU architectures have different efficient ratios of computation to
memory transactions as a result of different memory and stream processor configurations.
It is therefore necessary to optimise the computational granularity based on the target
GPU architecture for best performance.

7.2. GPU IMPLEMENTATIONS 86

Synchronisation-Free Cooperation

It is common for synchronisation barriers to be used when GPU threads write to local
memory to ensure memory consistency is maintained. These barriers can unnecessarily
reduce performance in situations where not all work-items are required to participate in
the cooperation and the number of work-items exceeds the size of a wavefront. This
is because wavefronts are usually able to process instructions independently of other
wavefronts in the same work-group, and barriers prevent them from doing this [3, 73].
This was avoided by using synchronisation-free thread cooperation throughout the radix
sort algorithm by keeping the number of threads participating in thread cooperation to
within a single wavefront. Since wavefronts are executed atomically [3], synchronisation
is not needed between the threads.

Loop Unrolling

Wherever it was possible, loops were unrolled either through a compiler directive or
manually by using a tiered function hierarchy. With the tiered function hierarchy, a
particular tier calls lower tier functions until the lowest function is reached, which contains
the unrolled code. A basic example of this can be seen in Listing 7.1.

Memory Packing

When working with values much smaller than can be held by the value type in local
or global memory, packing multiple values into a single word can be an effective way
of reducing memory load. This technique is used with local memory repeatedly in the
algorithm, where an integer is re-interpreted as four separate char values.

Kernel Fusion

In programs where there is a requirement to perform common operations on the GPU
data, it may seem sensible to use existing optimised solutions provided by libraries such as
Boost.Compute2 for OpenCL, and the Data-Parallel Primitives Library3 for CUDA, as has
been done in previous solutions [70]. However, there is a significant performance penalty

2https://github.com/kylelutz/compute
3https://code.google.com/p/cudpp

7.2. GPU IMPLEMENTATIONS 87

1 void ProcessDataItem (i n t item) ; //Def ined e l s ewhere
2

3 void Process4Items (i n t ∗data , o f f s e t) {
4 ProcessDataItem (data [o f f s e t]) ;
5 ProcessDataItem (data [o f f s e t + 1]) ;
6 ProcessDataItem (data [o f f s e t + 2]) ;
7 ProcessDataItem (data [o f f s e t + 3]) ;
8 }
9

10 void Process8Items (i n t ∗data , o f f s e t) {
11 Process4Items (data , o f f s e t) ;
12 Process4Items (data , o f f s e t + 4) ;
13 }
14

15 void Process16Items (i n t ∗data , o f f s e t) {
16 Process8Items (data , o f f s e t) ;
17 Process8Items (data , o f f s e t + 8) ;
18 }
19

20 void ProcessData (i n t numitems , i n t ∗data) {
21 i n t o f f s e t = 0 ;
22 whi le (o f f s e t + 16 < numitems) {
23 Process16Items (data , o f f s e t) ;
24 o f f s e t += 16 ;
25 }
26 i f (o f f s e t + 8 < numitems) {
27 Process8Items (data , o f f s e t) ;
28 o f f s e t += 8 ;
29 }
30 i f (o f f s e t + 4 < numitems) {
31 Process4Items (data , o f f s e t) ;
32 o f f s e t += 4 ;
33 }
34 f o r (i n t i = o f f s e t ; i < numitems ; i++) // Process remaining e lements
35 ProcessDataItem (data [i]) ;
36 }

Listing 7.1: An example of how a tiered function hierarchy can be used to increase the
amount of work done per loop iteration.

for doing so as it requires that all the data be passed from one kernel instance to another
through global memory. This implementation integrates all of the required operations
into existing kernels, thereby reducing the aggregate memory workload by allowing the
results from one step to be passed to the next through local or private memory [50].

Ordered Writes

In the final phase of the sort, the newly ordered keys are written back to global memory.
Since the order of the keys may have changed significantly from their order when the

7.3. RESULTS 88

threads initially read them, this can result in highly scattered writes and thus low global
memory throughput. The degree of orderliness of global memory writes can be greatly
improved by exchanging keys within work-groups so that the keys within work-groups are
ordered. Even though this requires additional computation and use of local memory, the
benefit of improved global memory throughput far outweighs the cost of the additional
work.

Pinned Memory

The need for GPU accelerated sorting is likely to only arise with very large datasets.
Consequently, it is important to ensure that the transfer of data to and from the GPU is
as fast as possible. To this end, pinned host memory was used to ensure the host could
transfer data to and from the host memory regions using the maximum available memory
bandwidth [3]. Pinned memory enables this since it is unpageable and has a fixed memory
address [3].

7.3 Results

The performance of the GPU implementations were compared to std::sort found in
Microsoft’s standard template library4 (sequential) and the highly optimised parallel CPU
radix sort found in Microsoft’s Parallel Patterns Library (PPL)5. The keys to be sorted
were generated randomly, and the results were averaged over five runs for each problem
size tested.

As shown by the results in Figure 7.3, the simple GPU sort performed poorly; even the
PPL radix sort was on average 2.2x faster than the simple GPU sort for the tested problem
sizes. The performance of the MG sort was significantly better – an average of 2.5x faster
than the PPL radix sort.

Despite the GPU radix sort being by far the most optimised of the GPU implementations
presented here, its performance benefit over an efficient CPU solution is considerably less
than the order of magnitude speedups achieved by the other GPU problems presented in
Chapters 5 and 6. Compared to the PPL radix sort, the performance of our adaptation of
MG’s radix sort ranged from a slowdown of 0.92x when sorting 217 elements to a speedup
of 3.7x when sorting 225 elements.

4http://msdn.microsoft.com/en-us/library/vstudio/c191tb28(v=vs.110).aspx
5http://msdn.microsoft.com/en-us/library/vstudio/dd492418(v=vs.110).aspx

7.3. RESULTS 89

0

100

200

300

400

500

600

700

800

2^16 2^17 2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25 2^26

S
o

rt
in

g
 r

a
te

 (
m

il
li
o

n
 k

e
y
s

/s
e

c
o

n
d

)

Number of sorted integers

CPU (std::sort)

CPU (PPL radix sort)

GPU (Simple)

GPU (MG)

 216 217 218 219
 220 221

 222
 223 224 225 226 216 217 218 219

 220 221
 222

 223 224 225 226

Figure 7.3: A comparison between the performance of the simple GPU radix sort, the
MG radix sort, and two CPU sorting algorithms for different problem sizes.

7.3.1 Data Transfers

The MG radix sort results are considerably better if only the compute time of the GPU
is considered. The results demonstrating this are illustrated in Figure 7.4.

Excluding the time it takes to transfer the data to and from the GPU, the GPU’s advan-
tage over the CPU ranges from 1.6x to 7.9x over the same problem sizes. An unfortunate
limitation of discreet GPUs is that the transfer of data to and from the GPU can be
a significant bottleneck, and indeed, this was the case for the GPU radix sort. For the
smallest problem size tested, 216, data transfers accounted for 36% of the total GPU time,
and for problem sizes greater than 221, the data transfer time actually exceeds the com-
pute time and continually grows in proportion to compute time with larger problem sizes.
This trend is shown in Table 7.1. The GPU’s ‘sweet spot’ is when sorting 225 elements;
greater problem sizes result in a decrease in performance because the additional work no
longer results in better GPU utilisation and creates more overhead from data transfers.

While the impact of data transfers on performance was severe for a standalone sort, other
use cases provide opportunities to mitigate the impact of data transfers or remove the

7.3. RESULTS 90

0

200

400

600

800

1000

1200

1400

1600

2^16 2^17 2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25 2^26

S
o

rt
in

g
 r

a
te

 (
m

il
li
o

n
 k

e
y
s

/s
e

c
o

n
d

)

Number of sorted integers

CPU (PPL radix sort)

GPU (MG)

GPU (MG - compute only)

 216 217 218 219
 220 221

 222
 223 224 225 226

Figure 7.4: The performance of the MG radix sort when only compute time is considered,
compared to the data transfer inclusive version and PPL radix sort.

requirement completely. In use cases where the radix sort is a component of a larger
GPU program, it may not be required to transfer the input data or results between the
host and GPU depending on where the sort is needed. For use cases where a number
of datasets require sorting, the impact of data transfers can be reduced by overlapping
data transfers with kernel execution. If this is done when the execution time exceeds the
data transfer time, all but the first and last data transfers are hidden by computation,
which can result in a sizeable performance improvement. This is illustrated in Figure 7.5
for three identical sorts, where (a) represents a completely sequential implementation and
(b) represents an implementation using overlapped transfers. Each computation phase is
preceded by data transfer for the input keys and followed by the transfer of the sorted
results. As can be seen in (b), only the first and last data transfers are not hidden by

Table 7.1: The data transfer contribution to the total GPU time of a number of different
problem sizes.

No. Keys 216 217 .. 225 226

Transfer Overhead 36% 43% .. 52% 57%

7.3. RESULTS 91

computation, thus resulting in a significant reduction in overall execution time compared
to (a).

1

3

2

Data Transfer Computation

1

3

2

Improvement

(a)

(b)

Figure 7.5: An illustration of how overlapped transfer with kernel execution hides data
transfer overhead.

0

100

200

300

400

500

600

700

800

900

1000

2^16 2^17 2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25 2^26

S
o

rt
in

g
 r

a
te

 (
m

il
li
o

n
 k

e
y
s

/s
e

c
o

n
d

)

Number of sorted integers

GPU (serial)

GPU (overlapped)

 216 217 218 219
 220 221

 222
 223 224 225 226 216 217 218 219

 220 221
 222

 223 224 225 226

Figure 7.6: A comparison of how overlapped transfer and execution of multiple sorts
compares to sequential scheduling.

7.4. SUMMARY 92

To gauge the performance benefit of this optimisation for the MG radix sort, ten identical
sorts were executed both sequentially and using overlapped transfers. The results in
Figure 7.6 show a performance improvement from 1.16x when sorting 216 elements to
1.8x when sorting 223 elements. Larger problem sizes resulted in greater speedups, as
the longer data transfer times impacted the sequential version significantly more than the
version using the optimisation. However, the speedup was not sustained with problem
sizes greater than 223 elements, as the time spent on data transfers exceeded the time
spent on computation, and thus the entire data transfer time could no longer be hidden.

7.4 Summary

Fast sorting is an operation that is required in many scientific programs. This chapter
reviewed the radix sort algorithm and how it could be parallelised for GPUs to provide a
speedup over an efficient CPU radix sort implementation. The parallelisation of the radix
sort was seen to be significantly more complicated than the parallelisation of the problems
in Chapters 5 and 6. Two GPU implementations were attempted. The first implemen-
tation was a relatively straight-forward implementation of the parallel radix sort steps
on a GPU, while the second implementation was a conversion from a highly optimised
CUDA radix sort. The optimised CUDA radix sort used techniques such as carefully se-
lected computational granularity, synchronisation-free thread cooperation, loop unrolling,
tight memory packing, kernel fusion, and ordered writes to ensure optimal performance.
Pinned memory was also used to reduce the data transfer overhead. The results revealed
the simpler implementation to be inadequate in providing a speedup over an efficient CPU
radix sort, as it was on average 2.2x slower. The speedup of the optimised GPU radix
sort ranged from a slowdown of 0.92x to a speedup of 3.7x. When only GPU computation
time was measured, the speedup increased to between 1.6x and 7.9x faster, which shows
that data transfer time between the host and GPU can be a significant contributor to the
total GPU processing time. The speedup from using overlapped transfer and execution
to reduce the impact of data transfers was between 1.16x and 1.8x when sorting 216 and
223 keys, respectively.

Chapter 8

Discussion

The wealth of published success stories of gaining orders of magnitude speedups through
the use of GPU computing has undoubtedly caught the attention of many scientists.
However, anyone new to the field of GPGPU could be forgiven for feeling apprehensive
about the steep learning curve and low-level documentation, which act as barriers to entry
into the field. This need not be so in all cases. To accelerate problems that do not map
well to the GPU’s architecture, it may be necessary to understand the low-level details of
thread scheduling, memory transactions, and so forth. For problems that map relatively
well to the GPU’s architecture, having such in-depth knowledge of the functioning of
the GPU is not a prerequisite for obtaining a satisfactory speedup, as was found with
the uncertainty model discussed in Chapter 5. Consequently, it would be beneficial to
be able to classify a problem as belonging to a particular GPU acceleration difficulty
level, and identify guidance appropriate to the given classification. Here we expand on
our preliminary work [76] on the identification of problem attributes influencing problem
difficulty to provide a more complete solution. This chapter begins with an overview
of the knowledge required to achieve the speedups obtained for each of the problems
accelerated. This is followed by a detailed explanation of the problem attributes selected
as problem difficulty indicators. Finally, the classification framework built around these
difficulty indicators is discussed.

8.1 Reflection on Required GPGPU Knowledge

The problems accelerated in Chapters 5, 6, and 7 were found to require different levels of
GPGPU knowledge to achieve the speedups obtained. This can be seen as corresponding

93

8.1. REFLECTION ON REQUIRED GPGPU KNOWLEDGE 94

to problem difficulty. A brief summary of the knowledge required for each case study is
outlined below.

8.1.1 Case Study 1: Hydrological Uncertainty Model

Of all the case studies, acceleration of the hydrological uncertainty ensemble model (Chap-
ter 5) required the least amount of GPU-specific knowledge. The required knowledge can
be broken down as follows:

OpenCL: A basic understanding of the OpenCL framework and API was needed to
create a program capable of launching the required OpenCL kernels. This includes un-
derstanding the role and use of OpenCL platforms, contexts, devices, command queues,
programs, kernels, buffers, and NDRanges. However, much of the boilerplate OpenCL
initialisation and configuration could have been avoided if an OpenCL wrapper such as
OpenCLHelper1 had been used. To create the OpenCL kernels, knowledge of the C lan-
guage was required, along with the syntax additions and added constraints of OpenCL
C. It was also necessary to have a high-level understanding of the way in which OpenCL
kernels are executed in parallel.

GPU Architecture: In porting this model to a GPU, a data layout optimisation was
applied that significantly improved the program’s performance. Such an optimisation
could only have been attempted with knowledge of either the most efficient memory
access pattern or the way in which memory requests are allocated to different memory
controllers on the GPU.

8.1.2 Case Study 2: K-Difference String Matching

The speedup obtained in the acceleration of large numbers of k-difference comparisons
(Chapter 6) was achieved as a result of several optimisations. The implementation of
these optimisations required additional knowledge to that identified for the first case
study.

1https://github.com/hughperkins/OpenCLHelper

8.1. REFLECTION ON REQUIRED GPGPU KNOWLEDGE 95

OpenCL: Over and above the basic knowledge required for case study 1, acceleration
of the standard algorithm also required knowledge of the properties of local memory.

Thread Cooperation: For best performance, threads were made to cooperate on read-
ing data from global memory. To even be aware that such an optimisation was possible,
it was necessary to understand the respective characteristics of local and global memory.
Implementation of the optimisation further required knowledge of the memory consistency
model of local and global memory, and the correct use of barriers.

GPU Architecture: The GPU architecture knowledge required for this problem built
on the knowledge required for case study 1. To recognise the benefit of explicit caching,
it was necessary to know the respective speeds of global and register or private memory.
Furthermore, the effect of register usage on performance had to be understood to achieve
a good balance between caching and GPU occupancy. Lastly, knowledge of vector types
and the benefit of their use was required for an optimisation applied to the standard
algorithm.

8.1.3 Case Study 3: Radix Sort

Unlike the problems in case studies 1 and 2, the acceleration of a radix sort (Chapter 7)
was based on an existing GPU solution. The identification of the knowledge required for
this case study was thus based on a combination of analysis of the existing implementation
and the experience gained through re-implementation of the radix sort in OpenCL.

OpenCL: In addition to the knowledge required for case study 2, knowledge of the
benefits of using pinned memory for transfers between the host and GPU and how this
could be implemented was necessary.

GPU Architecture: The MG radix sort incorporated many additional GPU architec-
ture specific optimisations, including optimised memory load granularity, synchronisation-
free cooperation, and maximisation of GPU occupancy. Implementation of these optimisa-
tions required knowledge of the target GPU’s memory architecture and processing speed,
thread scheduling, number of compute units, and maximum number of wavefronts per
compute unit.

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 96

8.1.4 Implication of Required Knowledge

From the discussion above, it is clear that the knowledge required for each subsequent
case study expanded on the knowledge requirement of the previous case study, with the
knowledge becoming increasingly specific to the target GPU. The need for additional
knowledge is a direct result of the optimisations implemented to improve the baseline
performance. This increasing knowledge requirement is thus relevant to problem difficulty,
since in addition to the requirement of a greater understanding of GPGPU, it correlates
with a higher degree of GPU-specific optimisation of an increasingly complex nature. It
follows that if one could identify the need for such optimisations, the difficulty of GPU
problems could be approximated.

8.2 Important Problem Difficulty Factors

Through the acceleration of the problems in Chapters 5 to 7, seven problem attributes
relevant to problem difficulty have been identified, namely, inherent parallelism, branch
divergence, problem size, required computational parallelism, memory access regularity,
data transfer overhead, and thread cooperation. These difficulty indicators correspond
with previously identified factors for GPU acceleration viability and performance projec-
tion [15, 48, 73]. It is easy to see the relation between GPU acceleration performance and
our notion of difficulty in parallelising problems – factors that decrease estimated GPU
performance would require more attention during solution optimisation. Each difficulty
indicator is described below with reference to its relevance to the accelerated problems.
The best methods for accurate quantitative measurement of the indicators are not readily
apparent. This is an area that requires further research; however, possible methods have
been suggested.

8.2.1 Inherent Parallelism

The traditional definition of inherent parallelism refers to the structure of an algorithm
that enables it to be decomposed into a number of tasks that can be executed indepen-
dently without sharing data [36]. This is similar to (1− f) in Amdahl’s and Gustafson’s
laws. For the purposes of this study, a relaxed definition of inherent parallelism is used
that places more emphasis on the quantity of parallel tasks and does not require complete

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 97

independence between the tasks. This work specifically considers the inherent parallelism
of the algorithm used, and not that of the problem itself, since these may differ.

Some algorithms may have an adequate amount of parallelism for CPUs, but lack the
massive amount of parallelism required by GPUs. As an example of this, consider Al-
gorithm 8.1. On a standard multi-core CPU, this algorithm could be parallelised in its
current form by sharing the iterations of the primary loop between the CPU cores. The
same approach would not be suitable for implementation on a GPU, owing to the insuf-
ficient number of iterations in the primary loop to satisfy the data parallel requirements
of a GPU. However, it is sometimes possible to redesign or transform algorithms in a
way that dramatically increases inherent parallelism. Algorithm 8.2 shows how this could
be applied to the example problem. Instead of having sufficient inherent parallelism to
keep only 32 processors occupied, as is the case in the first algorithm, the transformed
algorithm now has enough parallelism for n processors. The inherent parallelism is now
directly linked to problem size. This transformation does mean that the initialisation
and configuration work is duplicated. However, given the massive processing power of
GPUs, there is little need to prevent work duplication in GPU programs if it avoids un-
favourable data transfers or code layouts. In some cases, this duplication can be avoided
by using shared memory. Low inherent parallelism therefore means that effort must be
directed towards re-evaluating the algorithm to ascertain whether it can be restructured
or redesigned to increase the inherent parallelism.

Algorithm 8.1 An algorithm with low inherent parallelism.
for i ∈ 0..31 do

. Initialisation and configuration based on i
for j ∈ 0..n do . Where n is a large number

. Independent Core Code

Algorithm 8.2 Transformed version of Algorithm 8.1 with high inherent parallelism.
for i ∈ 0..n do . Where n is a large number

for j ∈ 0..31 do
. Initialisation and configuration based on j
. Independent Core Code

The solutions to the hydrological uncertainty ensemble model in Chapter 5 and the large-
scale k-difference matching in Chapter 6 are embarrassingly parallel, since the inherent
parallelism is directly related to the problem size. However, other solutions that were
considered would have resulted in a considerably lower amount of inherent parallelism2.

2For example, parallelising the k-difference comparison itself for the problem in Chapter 6.

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 98

Unlike the first two problems, the radix sort in Chapter 7 contains sections of code in
which only a limited number of threads can participate, and hence, this problem has less
inherent parallelism.

An evaluation of inherent parallelism should be possible with a performance projection
tool such as GROPHECY, which was designed to statically evaluate skeleton CPU code
for GPU acceleration [48].

8.2.2 Branch Divergence

Within compute units, wavefronts are executed by SIMD stream processors. Conse-
quently, branch divergence (or control flow divergence) within a wavefront results in lower
GPU utilisation, as stream processors that do not follow a branch are forced to idle [18].
This is clearly illustrated in Figure 3.3.

The k-difference string matching problem was parallelised by assigning each work-item
different k-difference problems to solve, thus making the problem embarrassingly parallel.
This solution also allowed for a significant amount of branch divergence, as each work-item
processes strings with potentially different lengths to its neighbours. Ukkonen’s cut-off
heuristic further increased branch divergence by adding variation based on the input data.
This resulted in an average active number of work-items in a wavefront of 55% or lower,
which is a significant performance bottleneck. Since branch divergence can be difficult to
avoid without significant code refactoring, it was not one of the problems we attempted
to address in our GPU solutions. Nevertheless, it is an important difficulty indicator, as
it can have a significant impact on GPU performance, and it can be avoided or reduced
through code refactoring and methods such as branch fusion [18].

The amount of branch divergence within a program typically changes depending on the
input data. Typical divergence statistics for a program would therefore have to be deter-
mined through dynamic analysis using typical input data. It may be possible to do this
by using an automatic conversion tool to obtain a basic functioning GPU program (e.g.
OpenMP to CUDA [42]), which can then be used by a GPU performance analysis tool
(e.g. GPUPerf [73]) to extract this information. Familiarity with a program may also
enable one to make a reasonable estimate of the severity of branch divergence.

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 99

8.2.3 Problem Size

Problem size is the amount of work that can be parallelised. If managed correctly, an
abundance of work enables the GPU to hide much of the memory access latency (given
the resource constraints) [3]. Conversely, a low amount of parallel work increases the
likelihood of compute units stalling on pending memory operations, or idling without
work.

An abundance of parallel work is typically used to improve TLP, ILP, or both. Improving
TLP involves scheduling additional work-groups to compute units. This gives the SIMD
units within the compute units the opportunity to process alternative work-groups when
the resident work-group has stalled, thereby improving stream processor utilisation and
GPU performance. However, TLP cannot be improved indefinitely. Compute units are
able to schedule a limited number of work-groups and wavefronts. On AMD GPUs, the
number of work-items (threads) needed to fully occupy the GPU can be calculated by
Eq. (8.1):

Work-items = max_wavefronts_per_CU × number_of_CU⌈
work_group_size

64

⌉ × work_group_size

(8.1)

The AMD HD7970 has 32 compute units, each of which can schedule 40 wavefronts [3].
A typical work-group size of 64 would therefore require 81,920 work-items to fully occupy
the GPU. However, because compute unit resources are shared between the work-groups
active on that compute unit [3], the number of active work-groups each compute unit
can manage may be significantly lower than the maximum. For example, the GPU HBP
implementation of k-difference string matching in Chapter 6 has a maximum occupancy
of 40% for short strings, owing to register usage restricting the number of work-groups
that can be scheduled on a compute unit to 16. This means 32,768 work-items would
be sufficient to reach the restricted maximum occupancy. Since GPU resource usage is
not known prior to implementation, estimations would have to be used based on GPU
performance projection tools such as GROPHECY [48].

Increasing ILP and using additional registers is another approach to improving GPU util-
isation [80]. Instead of using many additional wavefronts to hide memory access latency,
ILP hides memory access latency by enabling stream processors to execute alternative in-
dependent instructions in the same work-item. This approach has been shown to provide
high GPU utilisation even with very low GPU occupancy [80].

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 100

While ILP and TLP differ in the way in which they utilise work-items to improve utilisa-
tion, they can both be improved by increasing the number of independent work problems
processed by each stream processor. Thus, to maximise GPU utilisation by leveraging
either ILP, TLP, or optimally a combination of the two, the number of work problems to
be processed should be multiple times larger than the number of stream processors in the
target GPU. Estimation of the number of work problems required to cover memory access
latency is discussed in the next section. In the absence of an abundance of work problems,
ILP can also be improved by ensuring that independent instructions follow each other as
often as possible.

The impact of insufficient problem size can be seen in case studies 1 and 3. In Section 5.3.3,
the speedup of the GPU implementation of the hydrological model steadily declined with
problem sizes lower than 15,000 ensembles. The performance of the GPU radix sort in
Section 7.3 steadily increased with larger problem sizes. It is therefore clear that having
a sufficiently large problem size is important when accelerating a program using GPUs.

8.2.4 Required Computational Parallelism

We define required computational parallelism (RCP) as the number of wavefronts or warps
required to cover memory access latency. This is calculated as RCP = (a+m) / a, where
a is the total arithmetic latency and m is the total global memory latency for a single
work-item. This is identical to computation warp parallelism [29]; we have used a different
name to avoid association with a particular brand of GPUs (warp is a CUDA term). RCP
is similar to arithmetic intensity, except that it relates to time rather than quantity.

1

3

2

1

2

3

4 4

5 5

Computational

Period

Memory

Period

RCP = 5

1 1

2 2

3 3

RCP = 3

Figure 8.1: An illustration of how the length of computational periods affects RCP. The
numbers within the blocks represent different wavefronts or warps.

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 101

The latencies of global memory reads and writes are orders of magnitude higher than
those of computational instructions [3], which means it can be quite difficult to hide
memory latency with computation. RCP is essentially a measure of how many alternative
wavefronts are required to cover memory latency. This is clearly illustrated in Figure 8.1.
Programs with a low RCP are preferable as this simplifies the hiding of memory latency.
High RCP values typically require more effort to be directed towards adding TLP and ILP
to hide memory latency, and ensuring memory requests are as efficient as possible. The
acceleration of the standard algorithm compared to the HBP algorithm in Chapter 6 is a
good example of this. The standard algorithm required a much larger number of global
memory requests than the HBP algorithm, and as a result, more effort was spent on
reducing the number of memory requests and improving the efficiency of these requests.
The radix sort also has a high RCP, and many of the radix sort optimisations are memory
related.

1 void reduce (f l o a t ∗x , f l o a t ∗output , f l o a t z , i n t dataitems)
2 {
3 f o r (i n t i = 0 ; i < dataitems ; i ++)
4 {
5 f l o a t r e s u l t = 0 ;
6 f l o a t input = x [i] ;
7

8 f o r (i n t j = 0 ; j < 4 ; j++) {
9 r e s u l t += z ∗ i ;

10 }
11

12 r e s u l t ∗= input ;
13 output [i] = r e s u l t ;
14 }
15 }

Listing 8.1: Simple C++ function illustrating the calculation of RCP.

Listing 8.1 is used to demonstrate how RCP is calculated. In a multithreaded CPU
application, the reduce function can be called by multiple threads with a subset of the
total number of data items to achieve parallelism. A GPU solution, on the other hand,
may remove the primary loop and assign a GPU thread to each work item to be processed.
Doing so would result in each thread processing roughly 13 arithmetic operations3 and
one memory read instruction. The number of clock cycles these instructions require
varies depending on the target GPU. On the HD7970, most arithmetic instructions have
a latency of four cycles, while global memory fetch instructions have a latency of 400 to
600 cycles [3]. The aggregate latency of the compute instructions is therefore ∼52 cycles

3Lines 8 to 10 contain 12 arithmetic operations (three per iteration, one for the loop counter and two
for line 9), and line 12 adds one more.

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 102

while the aggregate latency of the memory instructions is ∼500 cycles. This results in an
RCP of 10.6.

A limitation of calculating RCP using the above approach is that it assumes the algorithm
has perfect ILP and contains no global read-after-write dependencies. It is also assumed
that the program does not spill registers into global memory; if this occurs, variables
would have to be manually moved into global data structures to ensure global memory
access patterns are predictable. Thus, accurately calculating this value by hand may be
difficult, especially with the size of some programs and the limited information available
on the latency of GPU operations. However, tools such as GROPHECY can provide
estimations of the number of GPU memory load and computational instructions given
annotated input from the user [48]. If a base GPU program already exists, kernel analysis
tools are capable of providing estimates as well. For example, AMD’s kernel analyser
estimates the number of stream processor instructions and fetch instructions for OpenCL
kernels from static analysis4. There are also performance analysis tools that can do this
for CUDA programs [29, 73].

RCP can be used to estimate the problem size needed to hide the latency of global
memory requests. However, an accurate interpretation of RCP can only be done with
extra problem specific information, such as the maximum number of wavefronts or warps
that can be scheduled by the hardware, the number of wavefronts in a compute unit that
can simultaneously access global memory during the time it takes for a memory request
to complete, problem size, and maximum memory bandwidth [29, 73]. With further work,
it should be possible to adapt existing GPU program analytical models for this purpose.

8.2.5 Memory Access Pattern Regularity

GPUs are able to provide the highest memory bandwidth when memory access patterns
are regular and have high spatial locality. Irregular access patterns or patterns with
low spatial locality prevent memory requests from being coalesced into fewer memory
transactions, or result in unbalanced utilisation of the memory controllers [3, 48]. This
can sometimes be addressed by preprocessing the input data to group similar data inputs,
or rearrangement of the data items within a work-group.

The original solutions to the first two case studies included memory access patterns with
low spatial locality, which significantly reduced performance and were addressed through

4http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 103

data-layout optimisations. Branch divergence in the solution for the second case study
can also result in irregular memory access patterns. For the most part, the memory
access patterns in the radix sort are regular and have high spatial locality; however, the
writing of the output data in the key scattering kernel is inherently irregular. This was
partially addressed in the MG radix sort solution through inter-group data swapping.
This problem is more challenging to address in algorithms that have inherently irregular
data structures, such as those that involve tree or graph traversal [82].

The overall rating of this difficulty indicator is a combination of the ratings for mem-
ory access regularity and memory access locality. The measurement of these prior to
implementation is difficult, since it typically involves dynamic variables. However, the
GROPHECY tool is able to measure the prevalence of memory access irregularity to
some extent through static analysis and deductions [48].

8.2.6 Data Transfer Overhead

Most GPU programs require data to be transferred to and from the GPU. The overhead
of these transfers and the context in which the GPU program is run are important consid-
erations that can affect problem difficulty. In the context of running a standalone GPU
program, the time taken to transfer data to and from the GPU is pure overhead. Thus,
GPU programs with large data requirements will be harder to accelerate than those with
smaller data requirements.

The importance of reviewing kernel data requirements was recognised by Gregg and Hazel-
wood [27], prompting the creation of a taxonomy to describe the data transfer require-
ments of GPU kernels. This taxonomy is outlined in Section 3.4, where the categories are
listed in order of preference from a performance perspective. Programs that fall into the
single-dependent-host-to-device, single-dependent-device-to-host, or dual-dependent cat-
egories require unhidden data transfers between the host and the GPU. This data transfer
overhead can greatly reduce the performance benefit of using GPUs, and can even result
in a performance slowdown [15]. Data transfer overhead had a crippling impact on the
performance of the GPU radix sort (Section 7.3.1). A measure of the data transfer over-
head can therefore be useful in estimating difficulty, since high values may require data
restructuring to ensure that the smallest amount of data is transferred between the GPU
and host, use of pinned memory, or implementation of optimisations such as overlapped
data transfer with kernel execution.

8.2. IMPORTANT PROBLEM DIFFICULTY FACTORS 104

An estimation of data transfer overhead (in percent) can be obtained using a tool such
as GROPHECY++ [15]. By building on the analysis and CPU code transformations
performed by the original GROPHECY tool, GROPHECY++ can estimate data transfer
time by measuring the data transfer rate and identifying data that must be transferred
between the host and GPU [15]. The data transfer rate will vary from host to host owing
to differences in the specification of the host and device hardware. In the absence of
the relevant hardware to measure the transfer rate, default hardware specific values can
be used. The tool can also estimate the execution time of a CPU program after GPU
acceleration (with some optimisation) [15, 48]. Using the data transfer and program
execution time estimates, the estimated data transfer overhead can be calculated. The
tool’s prediction errors in estimating data transfer and computation times have been
measured at an average of 8% and 9%, respectively [15].

The potential severity of data transfer overhead can also be determined manually by
calculating the quantity of data that would need to be transferred between the host
and the GPU for a desired problem size and then estimating the GPU speedup. Once
the quantity of data to be transferred has been calculated, it can be converted into a
time estimate using the average data transfer rate between the host and the GPU5. The
compute time can be estimated by reducing the execution time of the CPU version by
estimated GPU speedup factors. The data transfer overhead can then be estimated by
calculating the data transfer time as a percentage of the combined compute and data
transfer time.

8.2.7 Thread Cooperation

Cooperation between threads can occur within the same work-group (intra-group) or
between different work-groups (inter-group). Intra-group thread cooperation is commonly
used in conjunction with local memory, while inter-group cooperation takes place over
multiple kernel executions through global memory for reasons of data consistency.

The difficulty of thread cooperation lies in its use of local and global memory, and syn-
chronisation primitives such as barriers and atomic operations. Local and global memories
are orders of magnitude slower than private memory, and atomic operations serialise con-
current memory requests. This necessitates giving careful thought to the granularity and
structure of thread cooperation to ensure that performance penalties are kept to a mini-
mum. This includes understanding how best to arrange data in shared memory regions to

5The data transfer rate of similar systems could be used if the target system is unavailable.

8.3. CLASSIFICATION FRAMEWORK 105

avoid memory channel conflicts that serialise the memory requests [3]. The more preva-
lent thread cooperation there is in a program, the more important it is to ensure that the
cooperation is designed as efficiently as possible to prevent unnecessary performance loss.

The final solution to the large-scale k-difference problem discussed in Chapter 6 used
thread cooperation to reduce duplication of work and memory reads. Although this was
a relatively simple use of thread cooperation, the implementation thereof provided some
difficulty relating to the use of local versus global memory. Conversely, the MG radix
sort in Chapter 7 made extensive use of thread cooperation for several different purposes.
This necessitated the use of optimisations and techniques to ensure that this cooperation
was as fast as possible, which greatly increased the complexity of the GPU solution.

8.3 Classification Framework

It would be beneficial to aggregate the analysis of the different problem characteristics
discussed in the previous section into a simple classification framework that could be
used to describe overall problem difficulty. This would require quantifying the analysis
of each difficulty indicator using a rating that appropriately describes its relevance to
problem difficulty; an attempt at doing this is given below. This is followed by an initial
framework design that incorporates these ratings to describe overall problem difficulty,
application of the classification framework to the accelerated problems in Chapters 5 to
7, and limitations of the proposed design.

8.3.1 Difficulty Categories

For the purposes of the initial classification framework, ordinal ratings are used for all
the difficulty indicators, namely, ‘Negligible’, ‘Low’, ‘Moderate’, or ‘High’, as quantitative
measurement of the difficulty indicators and determination of applicable thresholds are
beyond the scope of this research. These ratings have different meanings for the different
difficulty indicators, as discussed below.

Inherent Parallelism: ‘Negligible’ means there is no inherent parallelism. A ‘Low’ rat-
ing means that inherent parallelism is not linked to problem size, and there is an
insufficient number of parallel tasks for the number of processors on the GPU. A
‘High’ rating means there is an abundance of parallel tasks, and the inherent paral-
lelism is typically linked to problem size.

8.3. CLASSIFICATION FRAMEWORK 106

Branch Divergence: ‘Negligible’ means there is virtually no branch divergence, while
‘High’ denotes an abundance of branch divergence.

Problem Size: ‘Negligible’ means there are virtually no work tasks. A ‘Low’ rating
means the envisaged problem size is not sufficiently large to provide work for all the
stream processors in the GPU, or not large enough to take advantage of TLP or
ILP. A ‘High’ rating means the problem size allows for an abundance of TLP and
ILP.

Required Computational Parallelism: A ‘Negligible’ RCP means no TLP is needed,
while a ‘High’ RCP means it is difficult or impossible to hide memory access latency.

Memory Access Regularity: ‘Negligible’ means memory transactions are completely
irregular and have no spatial locality, whereas ‘High’ means memory accesses are
predominantly or always regular and have high spatial locality.

Data Transfer Overhead: ‘Negligible’ means the data transfer overhead is not a con-
sideration, whereas ‘High’ means the data transfer overhead contributes significantly
to overall program execution time.

Thread Cooperation: ‘Negligible’ means there is virtually no thread cooperation, while
‘High’ means thread cooperation is prevalent throughout the solution.

8.3.2 Framework Design

Based on the difficulty indicators described in the previous section, a difficulty classifica-
tion framework was constructed, as illustrated in Table 8.1. Despite its simplicity and use
of ordinal ratings, this framework can provide the user with an idea of overall problem
difficulty, particularly for extreme cases where problem acceleration is either very simple
or very difficult, and serves as a starting point for future work on GPU problem difficulty
classification.

To enable computation of an overall difficulty value, values between zero and three are
associated with each of the ordinal ratings. Where higher evaluations result in increased
difficulty, the ‘Negligible’ rating is assigned zero and the ‘High’ category three. The
reverse is true for indicators where higher evaluations result in decreased difficulty. Since
all indicators are weighted equally in this framework, the overall difficulty value can be
obtained by simple addition of the values assigned to the indicators.

8.3. CLASSIFICATION FRAMEWORK 107

Table 8.1: The problem difficulty classification framework.

Difficulty Indicator
Rating

Negligible Low Moderate High

Inherent Parallelism

Branch Divergence

Problem Size

Required Computational Parallelism

Memory Access Pattern Regularity

Data Transfer Overhead

Thread Cooperation

8.3.3 Classification of Accelerated Problems

Given that the classification framework was modelled on what was learned from accel-
erating the three case studies, evaluation of these problems using the framework should
provide a difficulty estimation similar to what was actually experienced. Owing to the
unavailability of the GROPHECY or GROPHECY++ tool for measurement of the ap-
plicable indicators, performance metrics estimated by the CodeXL kernel profiling tool
are used instead. The reader is referred to Appendix A for an explanation of how RCP
and data transfer overhead figures were calculated. We have attempted to classify the
problems without using knowledge gained during the actual problem acceleration.

Case Study 1: Hydrological Uncertainty Model

Inherent Parallelism: Since the model uses uncertainty analysis, many independent
instances of the model are run with different input data. Each of these model
instances can be regarded as a parallel task to be run as a separate work-item, which
links the parallelism with problem size. This makes the problem embarrassingly
parallel.

Branch Divergence: There is unlikely to be much branch divergence between ensem-
bles since the primary loop iteration counts are identical, and the data-dependent

8.3. CLASSIFICATION FRAMEWORK 108

branches typically have a low depth. Kernel profiling confirmed this by indicating
an average branch divergence of under 3%.

Problem Size: Since the purpose of this program is uncertainty analysis, the parameters
for each model run are generated randomly (within certain bounds). The problem
size is therefore only restricted by the number of possible parameter configurations;
this number is large enough not to be of concern. Before acceleration, the model was
typically run with between 5,000 and 20,000 ensembles. The limit on the number of
ensembles run was solely due to the high execution time of the sequential solution.

RCP: This ratio was evaluated to be 4.7. We consider this to be ‘Moderate’, as it would
require TLP amounting to just under half of the maximum number of wavefronts
that can be scheduled on a SIMD unit.

Memory Access Pattern Regularity: Other than a small amount of branch diver-
gence, the memory access pattern is regular. However, the memory access locality
is low because of the large data structures that store the model data. Thus, we
classify this as ‘Moderate’.

Data Transfer Overhead: The data transfer to the GPU consists of the core model
data and the parameter sets for each ensemble. Since the parameter sets are small,
the quantity of input data transferred between the host and the GPU does not scale
significantly with problem size. With model runs being computationally intensive,
the data transfer overhead should only constitute a small portion of the overall

Table 8.2: Classification of the hydrological uncertainty model.

Difficulty Indicator
Rating

Negligible Low Moderate High

Inherent Parallelism 4 0

Branch Divergence 4 0

Problem Size 4 0

Required Computational Parallelism 4 2

Memory Access Pattern Regularity 4 1

Data Transfer Overhead 4 0

Thread Cooperation 4 0

8.3. CLASSIFICATION FRAMEWORK 109

GPU execution time. If the GPU speedup factor is estimated at 10x or 100x, the
data transfer overhead is estimated at less than 0.1% for a problem size of 50,000
ensembles. We therefore classify this as ‘Negligible’.

Thread Cooperation: Each work-item calculates its own model ensemble, and thus no
thread cooperation is required.

Table 8.2 shows the difficulty classification of the hydrological uncertainty model. The
only non-zero difficulty indicators are RCP and memory access pattern regularity. The
overall difficulty according to this evaluation is 3, which suggests a relatively low acceler-
ation difficulty.

Case Study 2: K-Difference String Matching

Inherent Parallelism: Each k-difference comparison can be run independently of all
others, and the number of comparisons is linked to problem size. This gives the
problem ‘High’ inherent parallelism.

Branch Divergence: Comparisons between strings of different lengths within a wave-
front will result in some work-items finishing before others. Coupled with Ukkonen’s
cut-off, this results in high branch divergence. According to kernel profiling, the av-
erage amount of branch divergence is over 55%.

Problem Size: The number of strings compared is expected to be in the millions for
practical applications of this program. There is thus an abundance of parallel work
available.

RCP: The RCP for comparing short and long strings was calculated as 3.4 and 2.7 for
the HBP algorithm, and 27.1 and 28.6 for the standard algorithm, which may be
considered as ‘Low’ and ‘High’, respectively.

Memory Access Pattern Regularity: The original solution used a linear layout for
storing the string data and partial results in memory. The length of the strings
results in low memory access locality, as each work-item accesses different strings.
The access pattern regularity would also be low since the strings do not have a set
length. Branch divergence can also cause irregularity in the memory access pattern
as some work-items request more data than others. Therefore, we classify this as
‘Low’.

8.3. CLASSIFICATION FRAMEWORK 110

Data Transfer Overhead: The input consists of the strings to be compared, and the
output for each comparison is an integer corresponding to a positive or negative
match. If a 10x speedup is assumed for the HBP algorithm with a problem size
of 2,000 short test patterns and 8,192 short input strings, the transfer overhead is
estimated at 2.22%. We classify this as ‘Low’. The overhead decreases to under a
percent when applying this estimation to long strings and the standard algorithm,
which we classify as ‘Negligible’.

Thread Cooperation: Inter-group cooperation between work-items is not needed in
this algorithm, but can be recognised as greatly beneficial for data sharing purposes.
Since this might not be known prior to implementation, this has been classified as
‘Negligible’.

Table 8.3: Classification of the k-difference string matching problem. Ratings that are
specific to an algorithm are annotated; the standard algorithm has been abbreviated to
STD.

Difficulty Indicator
Rating

Negligible Low Moderate High

Inherent Parallelism 4 0

Branch Divergence 4 3

Problem Size 4 0

Required Computational Parallelism 4 1 (HBP) 4 3 (STD)

Memory Access Pattern Regularity 4 2

Data Transfer Overhead 4 0 4 1 (HBP)

Thread Cooperation 4 0

Table 8.3 shows the difficulty classification of this problem. Unlike the hydrological uncer-
tainty ensemble model, there are many non-zero difficulty indicators in this classification.
If these are summed, the overall difficulties of the standard and HBP algorithms are 8
and 7, respectively.

8.3. CLASSIFICATION FRAMEWORK 111

Case Study 3: Radix Sort

Inherent Parallelism: Parallelism is obtained by partitioning the key space between a
number of work-items and sharing information at key points in the algorithm. There
are many sections of code in which thread cooperation occurs involving a limited
number of work-items, which reduces the inherent parallelism to ‘Moderate’.

Branch Divergence: As mentioned for inherent parallelism, there are many sections of
code in which a limited number of threads participate, which implies a moderate
amount of branch divergence. This is supported by kernel profiling, which indicates
divergence to be as high as 43.6% for the first kernel, but less than 13% for the
second and third kernels.

Problem Size: GPU radix sorting is typically only required for very large numbers of
keys, which means problem size is ‘High’.

RCP: The average RCP for the primary kernels6 was calculated as 11. This is ‘High’,
since it exceeds the maximum number of wavefronts that can be scheduled on a
SIMD unit.

Memory Access Pattern Regularity: Irregular access patterns are found in the final
kernel when writing the results of a sorting pass to global memory. Given that this
code is visited a number of times from multiple sorting passes, this algorithm has
been classified as having ‘Moderate’ memory access pattern regularity.

Data Transfer Overhead: Other than several non-vector input variables, the input and
output data sizes are identical. For a problem size of 226 32-bit integers, the data
transfer overhead is estimated at 59%, which is easily classified as ‘High’.

Thread Cooperation: A significant amount of both intra- and inter-group thread co-
operation is used in this algorithm to enable parallel execution.

Table 8.4 shows the difficulty classification of the radix sort. It is clear from this clas-
sification that the radix sort is a much harder problem to accelerate than the first two
problems. It has a lower amount of inherent parallelism, high RCP, high data transfer
overhead, and a much higher use of thread cooperation. The overall difficulty according
to this classification is 13.

6The second kernel was omitted from the calculation because it is designed to only use a single
work-group.

8.3. CLASSIFICATION FRAMEWORK 112

Table 8.4: Classification of the MG radix sort.

Difficulty Indicator
Rating

Negligible Low Moderate High

Inherent Parallelism 4 1

Branch Divergence 4 2

Problem Size 4 0

Required Computational Parallelism 4 3

Memory Access Pattern Regularity 4 1

Data Transfer Overhead 4 3

Thread Cooperation 4 3

8.3.4 Reflection

Classification of the hydrological uncertainty ensemble model, large-scale k-difference
string matching problem, and radix sort using the proposed framework resulted in dif-
ficulties of 3, 7 - 8, and 13, respectively. Relative to each other, these ratings are well
matched to the actual problem difficulties experienced. Furthermore, the individual diffi-
culty indicator ratings correspond to either the evaluation of the knowledge requirement
for replicating our GPU solutions, or identified bottlenecks. This shows that the evalu-
ation of the identified difficulty indicators can give an idea of the difficulty of problem
acceleration using GPUs.

8.3.5 Limitations

The present classification system is an initial attempt at estimating the difficulty asso-
ciated with implementing algorithms on GPU hardware. The relatively high correlation
between predicated and actual difficulty of the test cases described shows that this ap-
proach has potential. However, a number of limitations exist that need to be addressed
in future revisions.

Evaluation methods: One of the most significant limitations is the lack of reliable quan-
titative evaluation methods for the problem difficulty indicators. Possible methods

8.4. CLASSIFICATION-BASED OPTIMISATION GUIDANCE 113

have been identified, but these need to be explored in more detail. Once the best
methods have been identified, they would need to be built into an evaluation tool
to enable quick and easy evaluation of candidate problems for GPU acceleration.

Unclear Classifications: The current classification options are too vague. Other than
extreme cases, it is not clear how the indicator evaluations relate to the framework
ordinal ratings. Further work is needed to determine appropriate boundaries for
each category rating.

Uniform Weighting: In the final difficulty calculation based on a classification, each
indicator is weighted equally. In reality, the difficulty impact of some indicators is
likely to be more significant than others. This also requires further research.

8.4 Classification-Based Optimisation Guidance

If a GPU problem classification system such as the one described above were standard-
ised, guides could be written to suggest optimisations or strategies to address particular
classifications. As shown below, many of the optimisations identified in the case studies
could be included as suggestions for certain classifications. The sections in which these
optimisations are described are given in brackets.

8.4.1 Extensive Thread Cooperation

Efficient Memory Packing (7.2.3): To reduce the impact of the data transfers necessary
for thread cooperation, the data in the shared memory region could be packed as
efficiently as possible.

Synchronisation-Free Thread Cooperation (7.2.3): In programs where the work-group
size is greater than the wavefront size, synchronisation-free thread cooperation can
reduce the performance penalty of barriers.

8.4.2 High Data Transfer Overhead

Batched Processing (7.3.1): The impact of data transfers can be significantly reduced
by overlapping data transfer with kernel execution.

8.5. SUMMARY 114

Pinned Memory (7.2.3): Pinned memory can improve the data transfer speed between
the host and the GPU.

8.4.3 High Required Computational Parallelism

Data Layout (5.3.2, 6.3.1): Memory read bandwidth can be improved by ensuring mem-
ory access patterns and data layouts are efficient for the target GPU.

Caching (6.3.1): Storing previously requested data in local or private memory can reduce
the number of global memory requests.

Vector Types (6.3.1): The use of vector types can improve the efficiency of memory
requests.

Efficient Memory Packing (7.2.3): Efficient memory packing can reduce the number of
memory requests by better utilisation of memory space.

Thread Cooperation (6.3.1): In situations where different work-items require the same
data from global memory, thread cooperation can be used to read the data once
from global memory and share it between threads using faster local memory.

Ordered Writes (7.2.3): Through the use of thread cooperation, global memory writes
can be re-ordered to improve memory write bandwidth.

8.5 Summary

The difficulty of GPU acceleration depends on the problem considered for acceleration.
For new or novice GPGPU developers, it may not be easy to distinguish problems that
would be difficult to accelerate from those that could be accelerated relatively easily. As
such, it would be useful to be able to determine the probable difficulty of accelerating
a particular problem using a classification framework based on the problem’s attributes.
To do this, important difficulty indicators for classifying overall problem difficulty were
identified by reviewing the problems accelerated in Chapters 5, 6, and 7, and selecting
the problem attributes relevant to acceleration difficulty. The identified indicators were
inherent parallelism, branch divergence, problem size, required computational parallelism,
memory access pattern regularity, data transfer overhead, and thread cooperation. A
simple difficulty classification framework was created based on these difficulty indicators

8.5. SUMMARY 115

and ordinal rating categories. This framework was applied to the accelerated problems,
and the classifications were found to correspond relatively well with the difficulty actually
experienced in accelerating these problems. However, three limitations of the framework
were identified, namely, the lack of reliable quantitative difficulty indicator evaluation
methods, vague classification ratings, and unrealistic uniform indicator weightings. It
was suggested that all of these could be addressed with further research. Finally, it
was shown that specific problem difficulty indicator classifications can be used to suggest
specific optimisations to improve program performance.

Chapter 9

Conclusion and Future Work

GPUs have improved tremendously in their ability to perform general-purpose computa-
tion in recent years; their massively parallel and throughput-oriented architecture provides
many scientists with an opportunity to significantly improve the performance of their ap-
plications using commodity hardware. However, the architecture of GPUs is not well
suited to all kinds of problems, and some problems require extensive developer effort and
GPU knowledge to achieve a satisfactory speedup. Past research has made progress in
projecting the probable GPU performance given a skeleton implementation, but no work
has been done on estimating the difficulty of GPU acceleration. Such an estimation,
along with a breakdown thereof, would give those interested in GPU acceleration an idea
of what to expect in terms of the required development effort and GPGPU knowledge.

We set out to address the lack of a means to formally estimate problem difficulty through
the identification of problem attributes that are important in determining problem diffi-
culty; evaluation of the reasons behind the identified attributes’ contribution to problem
difficulty; and creation of an initial difficulty classification framework. The identification
of relevant problem attributes was achieved through the acceleration and review of three
problems of increasing difficulty, namely, a hydrological uncertainty ensemble model, a
comparison of large numbers of strings using k-difference matching, and a radix sort algo-
rithm. The speedups achieved under ideal circumstances were 10.2x for the hydrological
model, 109x (standard algorithm) and 21x (HBP algorithm) for computing large numbers
of k-difference comparisons, and 3.7x for the radix sort.

The review of the aforementioned case studies revealed seven problem attributes to be
important factors in GPU acceleration difficulty. These are inherent parallelism, branch

116

117

divergence, problem size, required computational parallelism, memory access pattern reg-
ularity, data transfer overhead, and thread cooperation. Their contribution to overall
problem difficulty was explored by evaluating the reason for their impact on GPU perfor-
mance and the work required to address unfavourable evaluations.

The identification of appropriate problem difficulty indicators enabled the creation of an
initial problem difficulty classification framework. Since quantitative methods for evalu-
ating the difficulty indicators were not available, the framework was constructed based on
ordinal rating categories: ‘Negligible’, ‘Low’, ‘Moderate’, and ‘High’. Classifications are
thus acknowledged as being subjective, since it may not be clear where the boundary lies
between adjacent ratings. Overall problem difficulty is determined by simple addition of
the numeric representations of the difficulty ratings, which are weighted equally. Applica-
tion of the classification framework to the three accelerated problems produced difficulty
classifications of 3, 7 - 8, and 13, respectively, which are relatively accurate evaluations of
the difficulty actually experienced in accelerating the problems.

Despite a lack of quantifiable difficulty indicators, a difficulty classification framework
has been created that clearly differentiates problems at the extremes of the difficulty
spectrum. Furthermore, application of the framework to the accelerated problems resulted
in difficulty indicator ratings for each case study that matched either our actual experience
in problem acceleration, or performance bottlenecks identified in our solutions. With the
adaptation of our framework for quantitative measurements, we firmly believe that a more
accurate difficulty classification is possible across the full range of difficulties.

The work presented in this thesis represents a preliminary exploration into problem dif-
ficulty classification. During the research, a number of opportunities were identified that
can be addressed in future work. Firstly, a more comprehensive study on the attributes
of problem solutions that increase acceleration difficulty could be done to ensure that
all important difficulty indicators are present in the classification framework. Following
this, each of the attributes needs to be studied in more detail to determine appropriate
quantitative measurement methods. Given the effort that may be required to manually
assess each of the problem difficulty indicators, an existing performance analysis tool
could be extended, or a new tool created, to automate this assessment. With the avail-
ability of quantitative measurement methods for the difficulty indicators, the classification
options may need to be revised to better reflect the range of possible values, and appro-
priate boundaries for each category rating would need to be determined. It would also
be beneficial to investigate the relative importance of the difficulty indicators to assign
appropriate weightings to them in the classification framework. Finally, extensive user

118

testing could be carried out to determine the accuracy of difficulty estimations given by
the framework.

References

[1] ACM. The ACM Computing Classification System [1998 Version]. 1998. Online:
http://www.acm.org/about/class/1998 [Accessed 10/12/13].

[2] Advanced Micro Devices. AMD Graphics Core Next (GCN) Architecture. 2012.
Online: http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
[Accessed 31/07/13].

[3] Advanced Micro Devices. AMD Accelerated Parallel Processing OpenCL Pro-
gramming Guide. August 2013. Online: http://developer.amd.com/wordpress/
media/2013/08/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_
Guide.pdf [Accessed 01/08/13].

[4] Advanced Micro Devices. CodeXL. 2013. Online: http://developer.amd.
com/tools-and-sdks/heterogeneous-computing/codexl/ [Accessed 19/07/2013].

[5] Advanced Micro Devices. CodeXL User Guide. November 2013.
Online: http://developer.amd.com/wordpress/media/2013/11/CodeXLHelp.chm
[Accessed 01/08/13].

[6] Aleen, F., and Mahalingam, K. Improving Bayesian Spam Filters Using String
Edit Distance Algorithm. In International Conference on Internet Computing (2008),
CSREA Press, 121–125.

[7] Anderson, M., Catanzaro, B., Chong, J., Gonina, E., Keutzer, K., Lai,
C., Murphy, M., Sheffield, D., Su, B., and Sundaram, N. Considerations
when evaluating microprocessor platforms. In Proceedings of the 3rd USENIX con-
ference on Hot topic in parallelism (Berkeley, CA, USA, 2011), HotPar’11, USENIX
Association, 1.

[8] Andrews, G. R., and Schneider, F. B. Concepts and Notations for Concurrent
Programming. ACM Comput. Surv. 15, 1 (Mar. 1983), 3–43.

119

REFERENCES 120

[9] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubia-
towicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel,
D., and Yelick, K. A view of the parallel computing landscape. Commun. ACM
52, 10 (Oct. 2009), 56–67.

[10] Baghsorkhi, S. S., Delahaye, M., Patel, S. J., Gropp, W. D., and Hwu,
W. W. An Adaptive Performance Modeling Tool for GPU Architectures. SIGPLAN
Not. 45, 5 (Jan. 2010), 105–114.

[11] Barry, W. amd Allen, M. Parallel Programming: Techniques And Applications
Using Networked Workstations And Parallel Computers, 2/E. Pearson Education,
Upper Saddle River, NJ, 2006.

[12] Basu, D. Parallel Radix Sort on the GPU using C++ AMP. 2013. On-
line: http://www.codeproject.com/Articles/543451/Parallel-Radix-Sort-
on-the-GPU-using-Cplusplus-AMP [Accessed 09/02/13].

[13] Beven, K. J. A manifesto for the equifinality thesis. Journal of Hydrology 320, 1–2
(2006), 18–36.

[14] Bland, A. S., Wells, J., Messer, O. E., Hernandez, O., and Rogers, J.
Titan: Early experience with the Cray XK6 at Oak Ridge National Laboratory. In
Cray User Group 2012 (2012).

[15] Boyer, M., Meng, J., and Kumaran, K. Improving GPU Performance Pre-
diction with Data Transfer Modeling. In IEEE 27th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum (IPDPSW) (2013), 1097–
1106.

[16] Chang, W., and Lampe, J. Theoretical and empirical comparisons of approximate
string matching algorithms. In Combinatorial Pattern Matching (1992), Springer,
175–184.

[17] Che, S., Li, J., Sheaffer, J., Skadron, K., and Lach, J. Accelerating
compute-intensive applications with GPUs and FPGAs. In Symposium on Applica-
tion Specific Processors (SASP) (2008), IEEE, 101–107.

[18] Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Meira Jr., W. Diver-
gence Analysis and Optimizations. In Proceedings of the 2011 International Confer-
ence on Parallel Architectures and Compilation Techniques (Washington, DC, USA,
2011), PACT ’11, IEEE Computer Society, 320–329.

REFERENCES 121

[19] Culler, D. E., Singh, J. P., and Gupta, A. Parallel computer architecture: a
hardware/software approach. Gulf Professional Publishing, 1999.

[20] Dongarra, J. Visit to the National University for Defense Technology Changsha,
China. Tech. rep., University of Tennessee, 2013.

[21] El-Rewini, H., and Abd-El-Barr, M. Advanced computer architecture and
parallel processing, vol. 42. John Wiley & Sons, Inc., 2005.

[22] Enslow, Jr., P. Multiprocessor Organization - a Survey. ACM Comput. Surv. 9,
1 (March 1977), 103–129.

[23] Fang, Q., and Boas, D. A. Monte Carlo simulation of photon migration in 3D
turbid media accelerated by graphics processing units. Opt. Express 17, 22 (Oct.
2009), 20178–20190.

[24] Flynn, M. Computer Architecture: Pipelined and Parallel Processor Design. Com-
puter Science Series. Jones and Bartlett, 1995.

[25] Flynn, M. J. Some computer organizations and their effectiveness. IEEE Trans.
Comput. 21, 9 (Sept. 1972), 948–960.

[26] Gaster, B. Heterogeneous Computing with OpenCL. Morgan Kaufmann, 2012.

[27] Gregg, C., and Hazelwood, K. Where is the data? Why you cannot debate CPU
vs. GPU performance without the answer. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (2011), ISPASS ’11,
IEEE Computer Society, 134–144.

[28] Hennessy, J. L., and Patterson, D. A. Computer Architecture, Fourth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2006.

[29] Hong, S., and Kim, H. An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness. SIGARCH Comput. Archit. News 37, 3
(June 2009), 152–163.

[30] Hughes, D. A. Incorporating groundwater recharge and discharge functions into an
existing monthly rainfall–runoff model. Hydrological Sciences Journal 49, 2 (2004),
297–311.

REFERENCES 122

[31] Hughes, D. A., Andersson, L., Wilk, J., and Savenije, H. H. Regional
calibration of the Pitman model for the Okavango River. Journal of Hydrology 331,
1–2 (2006), 30–42.

[32] Hughes, D. A., and Forsyth, D. A. A generic database and spatial interface for
the application of hydrological and water resource models. Computers & Geosciences
32, 9 (2006), 1389–1402.

[33] Hughes, D. A., Kapangaziwiri, E., and Sawunyama, T. Hydrological model
uncertainty assessment in Southern Africa. Journal of Hydrology 387, 3–4 (2010),
221–232.

[34] Hyyrö, H. Explaining and Extending the Bit-parallel Approximate String Match-
ing Algorithm of Myers. Tech. rep., Dept. of Computer and Information Sciences,
University of Tampere, 2001.

[35] Hyyrö, H. A bit-vector algorithm for computing Levenshtein and Damerau edit
distances. Nordic J. of Computing 10, 1 (Mar. 2003), 29–39.

[36] Jaques, M., Ross, C., and Strickland, P. Exploiting inherent parallelism in
non-linear finite element analysis. Computers & Structures 58, 4 (1996), 801–807.

[37] Jotwani, N. D. Computer System Organization. Tata McGraw-Hill Education,
2009.

[38] Kapangaziwiri, E., Hughes, D. A., and Wagener, T. Constraining uncer-
tainty in hydrological predictions for ungauged basins in Southern Africa. Hydrolog-
ical Sciences Journal 57(5) (2012), 1000–1019.

[39] Khronos OpenCL Working Group. The OpenCL Specification, version 1.2,
Rev 15. Khronos Group, 15 November 2011.

[40] Kothapalli, K., Mukherjee, R., Rehman, M., Patidar, S., Narayanan,
P. J., and Srinathan, K. A performance prediction model for the CUDA GPGPU
platform. In International Conference on High Performance Computing (HiPC)
(2009), 463–472.

[41] Langner, L. Parallelization of Myers Fast Bit-Vector Algorithm using GPGPU.
Master’s thesis, Freie Universität Berlin, 2011.

[42] Lee, S., Min, S., and Eigenmann, R. OpenMP to GPGPU: A Compiler Frame-
work for Automatic Translation and Optimization. SIGPLAN Notices 44, 4 (Feb.
2009), 101–110.

REFERENCES 123

[43] Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D.,
Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal,
R., and Dubey, P. Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. SIGARCH Comput. Archit. News 38, 3
(June 2010), 451–460.

[44] Leeser, M., Ramachandran, J., Wahl, T., and Yablonski, D. OpenCL
Floating Point Software on Heterogeneous Architectures — Portable or Not? In
Workshop on Numerical Software Verification (NSV) (2012).

[45] Lewis, T. G., and El-Rewini, H. Introduction to parallel computing. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[46] Lu, P., Oki, H., Frey, C., Chamitoff, G., Chiao, L., Fincke, E.,
Foale, C., Magnus, S., McArthur, WilliamS., J., Tani, D., Whitson,
P., Williams, J., Meyer, W., Sicker, R., Au, B., Christiansen, M.,
Schofield, A., and Weitz, D. Orders-of-magnitude performance increases in
GPU-accelerated correlation of images from the International Space Station. Jour-
nal of Real-Time Image Processing 5, 3 (2010), 179–193.

[47] Meenderinck, C., and Juurlink, B. (When) Will CMPs Hit the Power Wall?
In Euro-Par 2008 Workshops - Parallel Processing, vol. 5415 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2009, 184–193.

[48] Meng, J., Morozov, V. A., Kumaran, K., Vishwanath, V., and Uram,
T. D. GROPHECY: GPU performance projection from CPU code skeletons. In
Proceedings of 2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis (2011), ACM, 14.

[49] Merrill, D., and Grimshaw, A. Revisiting Sorting for GPGPU Stream Archi-
tectures. Tech. Rep. CS2010-03, University of Virginia, Department of Computer
Science, Charlottesville, VA, USA, 2010.

[50] Merrill, D., and Grimshaw, A. High Performance and Scalable Radix Sorting:
A case study of implementing dynamic parallelism for GPU computing. Parallel
Processing Letters 21, 2 (2011), 245–272.

[51] Microsoft Corporation. C++ AMP : Language and Program-
ming Model. Tech. rep., Microsoft Corporation, http://download.
microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/
CppAMPLanguageAndProgrammingModel.pdf, 2012.

REFERENCES 124

[52] Moradkhani, H., and Sorooshian, S. General Review of Rainfall-Runoff Mod-
eling: Model Calibration, Data Assimilation, and Uncertainty Analysis. In Hydrolog-
ical Modelling and the Water Cycle, vol. 63 of Water Science and Technology Library.
Springer Berlin Heidelberg, 2008, 1–24.

[53] Murthy, G., Ravishankar, M., Baskaran, M., and Sadayappan, P. Op-
timal loop unrolling for GPGPU programs. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on (2010), 1–11.

[54] Myers, G. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM 46, 3 (May 1999), 395–415.

[55] Natoli, V. Top 10 Objections to GPU Computing. June 2011. On-
line: http://archive.hpcwire.com/hpcwire/2011-06-09/top_10_objections_
to_gpu_computing_reconsidered.html [Accessed 15/11/13].

[56] Navarro, G. A guided tour to approximate string matching. ACM Comput. Surv.
33, 1 (Mar. 2001), 31–88.

[57] Netronome. Netronome NFP-6xxx. August 2013. Online: http:
//www.netronome.com/files/file/Product%20Briefs/Netronome%20NFP-
6xxx%20Product%20Brief%208-13.pdf [Accessed 19/11/13].

[58] Nickolls, J., and Dally, W. The GPU computing era. Micro, IEEE 30, 2
(2010), 56–69.

[59] NVIDIA Corporation. CUDA C Programming Guide, 4.2 ed. NVIDIA Corpora-
tion, April 2012.

[60] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architec-
ture: Kepler GK110. Tech. rep., NVIDIA Corporation, http://www.nvidia.com/
content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf,
2012.

[61] Oak Ridge Leadership Computing Facility. ORNL Debuts Titan Supercom-
puter. Tech. rep., Oak Ridge Leadership Computing Facility, 2012.

[62] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and
Phillips, J. C. GPU Computing. Proceedings of the IEEE 96, 5 (May 2008),
879–899.

REFERENCES 125

[63] Pitman, W. V. A mathematical model for generating monthly river flows from
meteorological data in South Africa. Hydrological Research Unit, University of the
Witwatersrand, Johannesburg, South Africa, 1973.

[64] Rosenberg, O. OpenCL Overview. November 2011. Online: http:
//www.khronos.org/assets/uploads/developers/library/overview/opencl-
overview.pdf [Accessed 01/05/12].

[65] Ross, P. Why CPU frequency stalled. Spectrum, IEEE 45, 4 (2008), 72–72.

[66] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B.,
and Hwu, W. W. Optimization principles and application performance evaluation
of a multithreaded GPU using CUDA. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming (New York, NY, USA,
2008), PPoPP ’08, ACM, 73–82.

[67] Ryoo, S., Rodrigues, C. I., Stone, S. S., Baghsorkhi, S. S., Ueng, S.,
Stratton, J. A., and Hwu, W. W. Program optimization space pruning for
a multithreaded GPU. In Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization (2008), CGO ’08, ACM, 195–204.

[68] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,
Gatelli, D., Saisana, M., and Tarantola, S. Global Sensitivity Analysis.
The Primer. John Wiley & Sons, 2008.

[69] Sanders, J., and Kandrot, E. CUDA by example: an introduction to general-
purpose GPU programming. Addison-Wesley Professional, 2010.

[70] Satish, N., Harris, M., and Garland, M. Designing efficient sorting algorithms
for manycore GPUs. In Proceedings of the 2009 IEEE International Symposium on
Parallel & Distributed Processing (Washington, DC, USA, 2009), IPDPS ’09, IEEE
Computer Society, 1–10.

[71] Satish, N., Kim, C., Chhugani, J., Nguyen, A. D., Lee, V. W., Kim, D.,
and Dubey, P. Fast sort on CPUs and GPUs: a case for bandwidth oblivious
SIMD sort. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data (2010), SIGMOD ’10, 351–362.

[72] Scarpino, M. A Gentle Introduction to OpenCL. August 2011. On-
line: http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/
231002854 [Accessed 29/11/13].

REFERENCES 126

[73] Sim, J., Dasgupta, A., Kim, H., and Vuduc, R. A performance analysis
framework for identifying potential benefits in GPGPU applications. SIGPLAN Not.
47, 8 (Feb. 2012), 11–22.

[74] Smith, R., Goyal, N., Ormont, J., Sankaralingam, K., and Estan, C.
Evaluating gpus for network packet signature matching. In Proceedings of the In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS)
(2009), 175–184.

[75] Sreenivasa Murthy, G. Optimal loop unrolling for GPGPU programs. Master’s
thesis, Ohio State University, 2009.

[76] Tristram, D., and Bradshaw, K. Evaluating the acceleration of typical scientific
problems on the GPU. In SAICSIT ’13: Proceedings of the South African Institute
for Computer Scientists and Information Technologists Conference (New York, NY,
USA, 2013), ACM, 17–26.

[77] Tristram, D., and Bradshaw, K. Parallelising k-difference calculations on the
GPU. In Southern African Telecommunications Networks and Applications Confer-
ence (2013), 155 – 160.

[78] Tristram, D., Hughes, D., and Bradshaw, K. Accelerating a hydrological
uncertainty ensemble model using graphics processing units (GPUs). Computers &
Geosciences 62 (2014), 178–186.

[79] Ukkonen, E. Finding approximate patterns in strings. Journal of algorithms 6, 1
(1985), 132–137.

[80] Volkov, V. Better performance at lower occupancy. In Proceedings of the GPU
Technology Conference, GTC (2010), vol. 10.

[81] Volkov, V. Unrolling parallel loops. November 2011. Online: http://www.cs.
berkeley.edu/~volkov/volkov11-unrolling.pdf [Accessed 01/11/13].

[82] Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., and
Shringarpure, A. On the limits of GPU acceleration. In Proceedings of the
2nd USENIX conference on Hot topics in parallelism (2010), USENIX Association,
13–13.

[83] Walton, S. AMD Radeon HD 7970 Review. December 2011. Online: http:
//www.techspot.com/review/481-amd-radeon-7970/ [Accessed 03/12/13].

REFERENCES 127

[84] Wang, A. H. Detecting spam bots in online social networking sites: a machine learn-
ing approach. In Proceedings of the 24th annual IFIP WG 11.3 working conference
on Data and applications security and privacy (2010), DBSec’10, Springer-Verlag,
335–342.

[85] Yen, T., and Reiter, M. K. Traffic Aggregation for Malware Detection. In
Proceedings of the 5th international conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (Berlin, Heidelberg, 2008), DIMVA ’08, Springer-
Verlag, 207–227.

Appendix A

Classification Calculations

A.1 Required Computational Parallelism

As defined in Section 8.2.4:

RCP = (a+m)
a

where
a is the latency of arithmetic instructions,
and m is the latency of memory instructions.

To calculate RCP using the performance metrics given by the AMD Kernel Profiling Tool:

Let
n be the number of kernels;
instructionsA be the total number of arithmetic instructions;
instructionsM be the total number of memory instructions;
latencyA be the latency of arithmetic instructions;
latencyM be the latency of memory instructions;
V ALUInsti be the number of arithmetic instructions for kernel i;
V FetchInsti be the number of vector memory instructions for kernel i; and
SFetchInsti be the number of scalar memory instructions for kernel i.

Then:

128

A.1. REQUIRED COMPUTATIONAL PARALLELISM 129

instructionsA =
n−1∑
i=0

V ALUInsti

instructionsM =
n−1∑
i=0

(V FetchInsti + SFetchInsti)

∴ RCP = (instructionsA × latencyA) + (instructionsM × latencyM)
instructionsA × latencyA

For the HD7970, we set latencyA to 4 and latencyM to 500 (see Section 8.2.4). The
RCP calculations for each problem are given below using the above equations and the
V ALUInst, V FetchInst, and SFetchInst figures given by the AMD Kernel Profiler for
the unoptimised implementations of the problems.

A.1.1 Case Study 1

instructionsA =
1∑

i=0
V ALUInsti

= 2792 + 71828357

= 71831149

instructionsM =
1∑

i=0
(V FetchInsti + SFetchInsti)

= (442 + 13) + (2144804 + 87)

= 2145346

∴ RCP = (instructionsA × latencyA) + (instructionsM × latencyM)
instructionsA × latencyA

= (71831149× 4) + (2145346× 500)
71831149× 4

= 4.7

A.1. REQUIRED COMPUTATIONAL PARALLELISM 130

A.1.2 Case Study 2

Standard Algorithm - Short Strings

instructionsA =
0∑

i=0
V ALUInsti

= 21468587

instructionsM =
0∑

i=0
(V FetchInsti + SFetchInsti)

= (4484684 + 1014)

= 4485698

∴ RCP = (instructionsA × latencyA) + (instructionsM × latencyM)
instructionsA × latencyA

= (21468587× 4) + (4485698× 500)
21468587× 4

= 27.1

Standard Algorithm - Long Strings

instructionsA =
0∑

i=0
V ALUInsti

= 455474468

instructionsM =
0∑

i=0
(V FetchInsti + SFetchInsti)

= (100558278 + 264)

= 100558542

∴ RCP = (instructionsA × latencyA) + (instructionsM × latencyM)
instructionsA × latencyA

= (455474468× 4) + (100558542× 500)
455474468× 4

= 28.6

A.1. REQUIRED COMPUTATIONAL PARALLELISM 131

HBP Algorithm - Short Strings

instructionsA =
0∑

i=0
V ALUInsti

= 5849788

instructionsM =
0∑

i=0
(V FetchInsti + SFetchInsti)

= (111184 + 1016)

= 112200

∴ RCP = (instructionsA × latencyA) + (instructionsM × latencyM)
instructionsA × latencyA

= (5849788× 4) + (112200× 500)
5849788× 4

= 3.4

HBP Algorithm - Long Strings

instructionsA =
0∑

i=0
V ALUInsti

= 72950241

instructionsM =
0∑

i=0
(V FetchInsti + SFetchInsti)

= (988806 + 226)

= 989032

∴ RCP = (instructionsA × latencyA) + (instructionsM × latencyM)
instructionsA × latencyA

= (72950241× 4) + (989032× 500)
72950241× 4

= 2.7

A.2. DATA TRANSFER OVERHEAD 132

A.1.3 Case Study 3

instructionsA =
1∑

i=0
V ALUInsti

= 150 + 224

= 374

instructionsM =
1∑

i=0
(V FetchInsti + SFetchInsti)

= (1 + 11) + (5 + 13)

= 30

∴ RCP = (instructionsA × latencyA) + (instructionsM × latencyM)
instructionsA × latencyA

= (374× 4) + (30× 500)
374× 4

= 11

A.2 Data Transfer Overhead

A ‘what-if’ approach to estimating data transfer overhead:

Let
n be the number of inputs;
datain be the data transferred to the GPU (in bytes) independent of n;
datapiin be the extra data transferred to the GPU (in bytes) per increment of n;
datapiout be the extra data transferred from the GPU (in bytes) per increment of n;
rate be the estimated rate of transfer to and from the GPU (in bytes/ms);
tCP U be the execution time of the existing implementation (in ms);
tGP U be the estimated execution time of GPU implementation (in ms);
tdata be the estimated data transfer time (in ms); and
speedup be a desired or estimated speedup over the existing implementation.

Then:

A.2. DATA TRANSFER OVERHEAD 133

tdata = datain + n× (datapiin + datapiout)
rate

tGP U = tCP U

speedup

∴ transfer_overhead = tdata

tGP U + tdata

× 100

We estimate our rate to be 10 GB/s for our system. The data transfer overhead calcula-
tions for each case study are given below.

A.2.1 Case Study 1

When n is 50,000 ensembles on a test dataset:

datain is 57,540,954 bytes,
datapiin is 164 bytes,
datapiout is 212 bytes, and
tCP U is 219,500 ms.

Assume speedup is 10x:

tdata = datain + n× (datapiin + datapiout)
rate

= 57540954 + 50000× (164 + 212)
10× 230 × 10−2

= 7

tGP U = tCP U

speedup

= 219500
10

= 21950

∴ transfer_overhead = 7
21950 + 7 × 100

= 0.03%

A.2. DATA TRANSFER OVERHEAD 134

A.2.2 Case Study 2

These calculations are based on the scenario where n is 8,192 strings, the number of test
strings is 2,048, and the difference threshold is 4%.

HBP Algorithm - Short Strings

With an average string length of 64 characters:

datain is 131,072 bytes,
datapiin is 64 bytes,
datapiout is 8,192 bytes, and
tCP U is 2,781 ms.

Assume speedup is 10x:

tdata = datain + n× (datapiin + datapiout)
rate

= 131072 + 8192× (64 + 8192
10× 230 × 10−2

= 6.3

tGP U = tCP U

speedup

= 2781
10

= 278.1

∴ transfer_overhead = 6.3
278.1 + 6.3 × 100

= 2.22%

HBP Algorithm - Long Strings

With an average string length of 560 characters:

datain is 1,146,880 bytes,
datapiin is 560 bytes,
datapiout is 8,192 bytes, and

A.2. DATA TRANSFER OVERHEAD 135

tCP U is 15,303 ms.

Assume speedup is 10x:

tdata = datain + n× (datapiin + datapiout)
rate

= 1146880 + 8192× (560 + 8192
10× 230 × 10−2

= 6.8

tGP U = tCP U

speedup

= 15303
10

= 1530.3

∴ transfer_overhead = 6.8
1530.3 + 6.8 × 100

= 0.44%

Standard Algorithm

The same amount of data is transferred for the HBP and standard algorithms, and thus
the data transfer overhead of the standard algorithm can be expressed in terms of the
overhead calculated for the HBP algorithm:

Short Strings The CPU HBP algorithm is 2.35x faster than the standard algorithm.
Therefore, for a 10x speedup, the data transfer overhead is 2.27

2.35 = 0.96%.

Long Strings The CPU HBP algorithm is 27x faster than the standard algorithm.
Therefore, for a 10x speedup, the data transfer overhead is 0.44

27 = 0.016%.

A.2.3 Case Study 3

When n is 226 integers:

datain is 0 bytes;

A.2. DATA TRANSFER OVERHEAD 136

datapiin is 4 bytes;
datapiout is 4 bytes; and
tCP U is 347 ms.

Assume speedup is 10x:

tdata = datain + n× (datapiin + datapiout)
rate

= 0 + 226 × (4 + 4)
10× 230 × 10−2

= 50

tGP U = tCP U

speedup

= 347
10

= 34.7

∴ transfer_overhead = 50
34.7 + 50 × 100

= 59%

