
An Investigation of Protocol Command
Translation as a means to enable Interoperability

between Networked Audio Devices

Submitted in fulfilment

of the requirements of the degree

DOCTOR OF PHILOSOPHY

of Rhodes University

OSEDUM P. IGUMBOR

February 2013

Abstract

Digital audio networks allow multiple channels of audio to be streamed between de-
vices. This eliminates the need for many different cables to route audio between devices.
An added advantage of digital audio networks is the ability to configure and control
the networked devices from a common control point. Common control of networked
devices enables a sound engineer to establish and destroy audio stream connections be-
tween networked devices that are distances apart.

On a digital audio network, an audio transport technology enables the exchange of data
streams. Typically, an audio transport technology is capable of transporting both control
messages and audio data streams. There exist a number of audio transport technologies.
Some of these technologies implement data transport by exchanging OSI/ISO layer 2
data frames, while others transport data within OSI/ISO layer 3 packets. There are some
approaches to achieving interoperability between devices that utilize different audio
transport technologies.

A digital audio device typically implements an audio control protocol, which enables it
process configuration and control messages from a remote controller. An audio control
protocol also defines the structure of the messages that are exchanged between compli-
ant devices. There are currently a wide range of audio control protocols. Some audio
control protocols utilize layer 3 audio transport technology, while others utilize layer 2
audio transport technology. An audio device can only communicate with other devices
that implement the same control protocol, irrespective of a common transport technol-
ogy that connects the devices.

The existence of different audio control protocols among devices on a network results in
a situation where the devices are unable to communicate with each other. Furthermore,
a single control application is unable to establish or destroy audio stream connections
between the networked devices, since they implement different control protocols. When
an audio engineer is designing an audio network installation, this interoperability chal-
lenge restricts the choice of devices that can be included. Even when audio transport
interoperability has been achieved, common control of the devices remains a challenge.

This research investigates protocol command translation as a means to enable inter-
operability between networked audio devices that implement different audio control
protocols. It proposes the use of a command translator that is capable of receiving mes-
sages conforming to one protocol from any of the networked devices, translating the

ii

received message to conform to a different control protocol, then transmitting the trans-
lated message to the intended target which understands the translated protocol message.
In so doing, the command translator enables common control of the networked devices,
since a control application is able to configure and control devices that conform to dif-
ferent protocols by utilizing the command translator to perform appropriate protocol
translation.

Acknowledgements

Many thanks to my supervisor Prof. Richard Foss for the encouragement and insights
throughout the course of this research. In spite of his other commitments, he was always
patient and willing to listen to my many ideas and suggestions, and more so guide me
in my search for answers. To me, you have been a mentor, and a role model.

To my parents, Sam Nwa-Igumbor and Prof. Eunice Igumbor, I am grateful for the
virtues of hard work and discipline that was instilled in me. These tools certainly played
an important role during my academic journey. Mum and Dad, thanks for the dream,
and for laying the path.

I am grateful to my brothers, Dr. Jude Igumbor, Ozenim Igumbor, and Prof. Ehi Igum-
bor, whose numerous calls to enquire about my well-being always left me even more
motivated. Our many intellectual debates have immensely enriched me as a person.

I am most grateful to my fiancée, Kem Okecha, whose love, patience, and encourage-
ment kept me balanced and focused. Kem, I am blessed to have you in my life.

I thank my colleagues in the Audio Research Group, and staff of the Department of
Computer Science (Rhodes University), who in different ways have contributed to my
knowledge. It is always great to have colleagues with whom one can exchange ideas.

I acknowledge the financial contribution of the Distributed Multimedia Centre of Ex-

cellence at Rhodes University with its sponsors, and the Andrew Mellon foundation. I
am also grateful to UMAN Technologies for granting me access to their equipment and
control application software that was used in the course of this research.

Contents

1 Introduction 1

1.1 Networked audio device . 2

1.2 Audio Transport Technology . 3

1.3 Audio Control Protocols . 5

1.4 Problem Statement . 8

1.5 Command Translation Approach . 9

1.6 Chapter Layout . 11

2 Digital Audio Network Technologies and Interoperability 13

2.1 Audio Networking Technologies . 13

2.1.1 Resource allocation . 15

2.1.2 Device synchronization . 15

2.1.3 Network latency . 16

2.2 Overview of current Audio Networking Technologies 17

2.2.1 Layer 2 Audio Networking Technologies 18

2.2.1.1 IEEE 1394 . 19

2.2.1.2 Ethernet AVB . 22

2.2.1.3 CobraNet . 28

2.2.1.4 RockNet . 30

2.2.1.5 EtherSound . 31

2.2.2 Review of Layer 2 Audio Networking Technologies 34

2.2.2.1 Interoperability on layer 2 networks 35

i

CONTENTS ii

2.2.2.2 Tunneling nodes for Layer 2 Interoperability 36

2.2.3 Layer 3 Audio Networking Technologies 37

2.2.3.1 Q-LAN . 38

2.2.3.2 RAVENNA . 40

2.2.3.3 Livewire . 41

2.2.3.4 Dante . 44

2.2.4 Review of Layer 3 Audio Networking Technologies 45

2.2.4.1 Interoperability on layer 3 networks 47

2.2.4.2 AES-X192 for Layer 3 Interoperability 47

2.3 Audio Networking Technology Interoperability 51

2.4 Summary . 52

3 Audio Network Control Protocols 53

3.1 Audio Control Protocols . 53

3.2 Overview of Layer 3 Audio Control Protocols 55

3.2.1 Open Sound Control (OSC) 56

3.2.1.1 OSC messaging . 57

3.2.2 Architecture for Control Networks (ACN) 58

3.2.3 Common Control Interface for Networked Audio and Video
Products (IEC 62379) . 60

3.2.3.1 IEC 62379 monitoring and control 61

3.2.3.2 IEC 62379 discovery 62

3.2.4 Audio Engineering Society standard for Command, Control and
Connection Management for Integrated Media (AES-64) 63

3.2.4.1 AES-64 messaging 65

3.2.5 Open Control Architecture (OCA) 65

3.2.5.1 OCA messaging . 68

3.3 Overview of Layer 2 Audio Control Protocols 68

3.3.1 Audio Video Control (AV/C) 68

3.3.2 IEEE 1722.1 (AVDECC) . 71

CONTENTS iii

3.3.3 Music Local Area Network (mLAN) 72

3.4 Protocols of Interest . 75

3.4.1 Focus on OSC . 77

3.4.1.1 Device model . 79

3.4.1.2 Device discovery 80

3.4.1.3 Connection management 82

3.4.2 Focus on AES-64 . 82

3.4.2.1 Device model . 86

3.4.2.2 Device discovery 89

3.4.2.3 Connection management 90

3.4.3 Focus on IEEE 1722.1 . 93

3.4.3.1 Device model . 96

3.4.3.2 Device discovery 103

3.4.3.3 Connection management 107

3.5 Summary . 111

4 Approaches to Networked Audio Device Interoperability 114

4.1 Control Protocol Interoperability Challenge 114

4.2 Solutions for Interoperability . 116

4.2.1 Hardware abstraction plug-in approach - mLAN 116

4.2.2 Layer 3 common specification approach - AES-X192 120

4.2.3 AVDECC Proxy Protocol . 122

4.3 Command translation for Interoperability 124

4.4 Summary . 126

5 Layer 3 end station implementation - OSC 128

5.1 OSC Server Overview . 130

5.1.1 Implementation Platform . 131

5.1.2 Device discovery component 131

5.1.3 AVB component . 132

CONTENTS iv

5.1.4 OSC parser component . 132

5.1.5 OSC service . 133

5.2 OSC Server capabilities . 133

5.3 OSC Server Implementation Layout 133

5.4 Device Discovery . 135

5.4.1 Publishing of OSC server . 136

5.4.2 Withdrawing of OSC service 137

5.5 OSC Address Space for OSC Server 137

5.5.1 OSC address space for OSC generic properties 138

5.5.2 OSC address space for device properties 138

5.5.3 OSC address space for AVB properties 139

5.6 Connection Management . 140

5.6.1 Implementing connection management capabilities in the OSC
server . 141

5.6.2 OSC methods for connection management 143

5.6.3 OSC server as AVTP talker . 147

5.6.3.1 Stream identification 147

5.6.3.2 Stream enumeration 148

5.6.3.3 Stream advertising 148

5.6.3.4 Stream transmission 149

5.6.4 OSC server as AVTP listener 149

5.6.4.1 Stream identification 150

5.6.4.2 Stream enumeration 150

5.6.4.3 Stream attachment 151

5.6.4.4 Stream reception . 151

5.7 Internal Audio Signal Routing . 152

5.8 Summary . 153

CONTENTS v

6 Layer 3 Proxy Implementation 154

6.1 Introduction . 154

6.2 The Proxy Approach . 155

6.3 OSC Proxy Design . 157

6.4 OSC Proxy Implementation . 158

6.4.1 OSC server discovery . 159

6.4.2 AES-64 parameters for OSC server 160

6.4.2.1 Device discovery parameter types 160

6.4.2.2 Input parameter types 161

6.4.2.3 Output parameter types 162

6.4.2.4 Internal routing matrix parameter types 162

6.4.3 OSC proxy for connection management 163

6.4.3.1 Setting up OSC server as AVB listener 163

6.4.3.2 Setting up OSC server as AVB talker 165

6.5 Layout of the OSC proxy Implementation 166

6.6 Tests and Results . 168

6.6.1 Device discovery via OSC proxy 169

6.6.2 Connection management via OSC proxy 170

6.7 Qualitative Analysis . 172

6.8 Summary . 174

7 Layer 2 end station Implementation - AVDECC 175

7.1 Introduction . 176

7.2 AVDECC library . 178

7.2.1 AVDECC Transport Controller module 179

7.2.2 ADP module . 181

7.2.2.1 Advertising state machine 182

7.2.2.2 Discovery state machine 183

7.2.3 ACMP module . 184

CONTENTS vi

7.2.3.1 Controller state machine 185

7.2.3.2 Listener state machine 186

7.2.3.3 Talker state machine 186

7.2.4 AECP module . 187

7.2.5 AEM container . 188

7.3 Transform based description of libavdecc 189

7.4 AVDECC end station . 192

7.4.1 Discovering the AVDECC end station 193

7.4.2 Connection management on AVDECC end station 194

7.4.2.1 AVDECC end station as AVDECC listener 196

7.4.2.2 AVDECC end station as AVDECC talker 198

7.5 Summary . 199

8 Layer 2/Layer 3 Proxy Implementation 200

8.1 Introduction . 201

8.2 AVDECC Proxy Design . 203

8.3 AVDECC Proxy Implementation . 206

8.3.1 AES-64 parameters for AVDECC end stations 208

8.3.1.1 Device discovery parameters for an AVDECC end
station . 209

8.3.1.2 Connection management parameters for an AVDECC
end station . 210

8.3.2 Device discovery of AVDECC end stations 211

8.3.3 Connection management procedure for AVDECC end stations . 213

8.3.3.1 Connection management procedure between two AVDECC
end stations . 214

8.3.3.2 Connection management procedure between AES-64
and AVDECC end stations 217

8.3.3.3 Connection management procedure with AVDECC
end station as AVB listener 220

CONTENTS vii

8.4 Testing and Results . 222

8.4.1 Integrating layer 2 devices into a layer 3 network 222

8.4.1.1 Discovering layer 2 devices 224

8.4.1.2 Connection management between layer 2 devices . . 224

8.4.2 Common control of layer 2 and layer 3 devices 225

8.4.2.1 Discovering layer 2 and layer 3 devices 227

8.4.2.2 Connection management between layer 2 and layer 3
devices . 227

8.5 Summary . 232

9 Quantitative Analysis 233

9.1 Introduction . 233

9.1.1 Visual stimuli perception time 235

9.1.2 Auditory stimuli perception time 237

9.1.3 Perception time criterion for quantitative analysis 238

9.2 Quantitative analysis of Layer 3 Proxy 238

9.2.1 Scenario One: Connection between OSC end stations 239

9.2.2 Scenario Two: Connection between OSC and AES-64 end stations242

9.2.3 Results analysis . 245

9.3 Quantitative analysis of Layer 2/Layer 3 Proxy 246

9.3.1 Scenario One: Connection between AVDECC end stations . . . 246

9.3.2 Scenario Two: Connection between AVDECC and AES-64 end
stations . 249

9.3.3 Results analysis . 253

9.4 Summary . 256

10 Conclusion 258

References 267

List of Figures

1.1 Digital audio device . 3

1.2 Ethernet AVB network with OSC and AES-64 devices 8

1.3 Audio network that incorporates a command translator 9

2.1 IEEE 1394 serial bus interconnections 20

2.2 VLAN isolates physically connected devices 23

2.3 Master/slave relationship in a gPTP domain 27

2.4 EtherSound network . 32

2.5 Tunneling audio across IEEE 1394 and Ethernet AVB networks [1, pp.
200] . 36

2.6 PTP-aware network . 50

3.1 Audio control protocol interacts with application 54

3.2 IEC 62379 unit with a single processing chain 61

3.3 OCA device model . 67

3.4 Structural layout of an AV/C unit . 69

3.5 OSC client/server communication . 78

3.6 OSC address space of a simple OSC server 79

3.7 High-level layout of a UDP/IP packet that includes an AES-64 message 82

3.8 AES-64 message triggers a parameter’s callback 85

3.9 AES-64 conceptual device model . 86

3.10 AES-64 7-level parameter hierarchy 88

3.11 An example AES-64 message’s parameter address for a ‘DEVICE_NAME’

parameter . 88

viii

LIST OF FIGURES ix

3.12 Structure of an Ethernet frame with an AVDECC PDU 94

3.13 Conceptual layout of AVDECC end station 96

3.14 Layout of AEM descriptors . 97

3.15 Example AEM model for an AVDECC entity 98

3.16 Example procedure for enumerating an AEM 100

3.17 AECP commands to change value of AEM control descriptor 102

3.18 AVB network of AVDECC and non-AVDECC compliant devices . . . 105

3.19 ACMP connection management procedure 110

4.1 AES-64 and OSC devices are unable to communicate 115

4.2 mLAN enabler/transporter network 117

4.3 mLAN enabler/transporter architecture 119

4.4 SIP communication between user agents 121

4.5 APC and APS communication . 123

4.6 Command translation for interoperability 125

5.1 Overview of OSC server components 131

5.2 OSC server class diagram . 134

5.3 OSC server’s classes for AVB interaction 142

6.1 Logical layout of interaction with OSC proxy 155

6.2 Common control of AES-64 devices and OSC servers 156

6.3 OSC proxy use-case diagram . 157

6.4 OSC proxy creates an AES-64 node for each discovered OSC server . . 158

6.5 OSC proxy enables OSC server to fulfill the role of AVB listener 163

6.6 OSC proxy enables OSC server to fulfill the role of AVB talker 165

6.7 OSC proxy class diagram . 166

6.8 Test bed network topology . 169

6.9 UNOS Creator networked devices view 170

6.10 UNOS Creator’s connection manager view 171

LIST OF FIGURES x

6.11 Integrated command translator for AES-64 network control 173

7.1 Logical layout of the libavdecc implementation 178

7.2 libavdecc exposes AEM of an AVDECC entity 188

7.3 Transformation schema of libavdecc 189

7.4 Overview of AVDECC end station . 192

7.5 Conceptual view of inputs and outputs on the AVDECC end station . . 193

7.6 AVDECC device discovery mechanism 194

7.7 AVDECC controller connect mode for connection management 195

7.8 AVDECC controller disconnect mode for connection management . . . 196

8.1 Conceptual view of layer 2 proxy approach 202

8.2 AVDECC proxy for integrated network communication 204

8.3 Common control of networked layer 2 and layer 3 devices 204

8.4 Use case diagram of AVDECC proxy 205

8.5 Structural layout of AVDECC proxy 206

8.6 Class diagram for AVDECC proxy . 207

8.7 AVDECC proxy models AVDECC end stations in terms of AES-64 . . 209

8.8 AVDECC proxy utilizes libavdecc to discover AVDECC end stations . 212

8.9 AVDECC proxy enables AES-64 discovery of AVDECC end stations . 213

8.10 Sequence diagram for establishing an audio stream connection between
AVDECC end stations . 215

8.11 Sequence diagram of connection management procedure with AVDECC
end station as AVB talker . 218

8.12 Sequence diagram of connection management procedure with AVDECC
end station as AVB listener . 220

8.13 Test bed topology for integrating layer 2 devices 223

8.14 UNOS Vision discovers AVDECC end stations 224

8.15 UNOS establishes a stream connection between AVDECC end stations . 225

8.16 Test bed topology for common control of networked layer 2 and layer 3
devices . 226

LIST OF FIGURES xi

8.17 Layer 2 and layer 3 device discovery 227

8.18 Sequence diagram of UNOS Vision’s connection management proce-
dure for AVB devices . 228

8.19 Connection management with AVDECC end station as AVB talker . . . 229

8.20 Connection management with AVDECC end station as AVB listener . . 231

9.1 Sound engineer’s visual and auditory perception 235

9.2 User managing network . 236

9.3 Auditory feedback from computer as a musical instrument 237

9.4 Test network topology . 239

9.5 Timing connection management of layer 3 audio control protocols . . . 240

9.6 Timing connection management of network with OSC and AVB end
stations . 243

9.7 Test bed topology with commercially available Ethernet AVB end stations246

9.8 Timing connection management between two AVDECC end stations . 248

9.9 Quantitative analysis of AES-64 and AVDECC connection management
procedure . 250

9.10 Test bed topology for Ethernet network with AES-64 and AVDECC end
stations . 251

9.11 Switch latency investigation . 254

10.1 Control messaging and audio data transmission 260

10.2 Controller configures networked devices 261

10.3 Command translator enables common control 262

10.4 Command translation process . 262

List of Tables

3.1 An example AES-64 7-level hierarchy for a stream ID parameter 92

3.2 AVDECC subtypes . 94

3.3 Meaning of 64-bit stream_ID field . 95

3.4 Response to enumeration of the configuration descriptor 101

3.5 Response to enumeration of the audio unit descriptor 101

6.1 Mapping table for command translation 167

6.2 Modified mapping table to incorporate Protocol X 168

7.1 AVDECC protocol subtypes . 180

7.2 ADP message types . 181

7.3 libavdecc’s ACMP state machines and the ACMP messages they handle 185

9.1 Timing results of connection management between OSC end stations . . 241

9.2 Timing results for Ethernet AVB network of OSC and AES-64 end stations244

9.3 Comparing results obtained from layer 3 connection management pro-
cedure . 245

9.4 Timing results of connection management between networked AVDECC
end stations . 249

9.5 Timing results of connection management between networked AES-64
and AVDECC devices . 252

9.6 Comparing results obtained from layer 2/layer 3 connection manage-
ment procedure . 253

9.7 Results for ping test to determine switch latency 254

xii

LIST OF TABLES xiii

9.8 XMOS XS1-L2 chip specification . 255

9.9 Intel Core Quad Q9400 specification 255

10.1 Command message mapping . 263

Chapter 1

Introduction

Audio devices have been connected into networks for deployment in various contexts.
These include theme parks, airports, stadiums, casinos, shopping malls, audio produc-
tion studios, places of worship and conference centers. The networks ensure that the
sound produced by a source device is distributed to multiple destination devices, where
the signal can be further processed and reproduced.

An earlier solution for distributing audio signals was the use of multiple analog cables
with the appropriate connectors to connect the devices. This solution resulted in a lot of
analog audio cables being used per device. The larger the venue and number of audio
channels a device can receive and/or transmit, the larger the number of cables required
to establish audio connections. The result is that it becomes difficult to trace cables that
interconnect the devices.

Digital audio networking technology has provided an opportunity to transmit multiple
channels of audio using a single cable.

In order to transport audio on a digital network, the transport medium and associated
technology must cooperate to provide a number of qualities. These include:

• ensuring that audio data is transported with minimum delay

• ensuring that there is sufficient bandwidth on the path from source to destination
device

• ensuring that the devices are synchronized so that there is no degradation in the
sound quality.

Fulfilling these qualities requires careful design of the digital audio network. Some
of the available audio networking technologies will be described in this thesis, with
particular reference to how they ensure the above qualities.

1

CHAPTER 1. INTRODUCTION 2

When audio devices are interconnected within digital audio networks, it is desirable to
be able to remotely monitor and control various features on the networked devices from
a remote control center. Such monitoring and control of networked devices involves
the exchange of messages between the controller and the networked audio devices. The
messages that are exchanged are structured in a certain manner and processed by the
target device(s). An audio control protocol is responsible for defining the structure and
meaning of the exchanged messages.

Currently a number of audio control protocols exist. Some of them have been stan-
dardized, while others are proprietary. The manner in which the audio control protocols
fulfill the above responsibilities will be discussed in this thesis, in order to provide an in-
sight into the nature of audio control protocols. This discussion will reveal why protocol
command interoperability remains a challenge.

1.1 Networked audio device

A digital audio device should be capable of transmitting audio data, as well as con-
trol commands and status information. A typical digital audio device consists of the
following components:

• audio transport component - which is concerned with transmitting the actual au-
dio streams. It should meet certain quality of service requirements in order to
ensure reliable delivery of the audio data.

• audio control component - which is concerned with the exchange of messages that
allow for remote monitoring, configuration, and control of the device. It utilizes
the audio transport component for communication with other networked devices.

• device model component - which structurally represents the various features and
controls within the device.

• application component - which utilizes the audio control protocol and interacts
with the device model, in order to fulfill the overall functionality of the device.

Figure 1.1 depicts a digital audio device with the above mentioned components.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Digital audio device

The actual device functionality is implemented by the application component which is
illustrated as ‘Application’ in Figure 1.1. The ‘Application’ interacts with the ‘Device

Model’ in order to modify and/or monitor the state of the device’s features. The ‘Device

Model’ holds the state of the device. A change to a feature within the ‘Device Model’

could cause the ‘Audio Control Protocol’ to perform a task. For example if a remote
controller has requested to be notified when the value of a control changes, then the
audio control protocol would send a message containing the updated value to the re-
mote controller. All protocol-specific implementations are implemented by the ‘Audio

Control Protocol’. The ‘Audio Transport Protocol’ is responsible for transmitting audio
data and control commands.

The audio transport component forms the base on which audio device communication
is built. It ensures communication and audio data exchange between networked digital
audio devices.

1.2 Audio Transport Technology

Audio transport technology refers to the technology that allows audio data that is trans-
mitted by a source device to be transported to any number of destination devices, with-
out degradation in the quality of the audio and without a noticeable delay. This requires
that the audio transport protocol be capable of ensuring that the necessary resources are
available for the duration of the audio transmission. Given that the devices are con-
nected on a network, they will need to share network resources such as the available
bandwidth for data transmission on the network.

When audio is distributed on a network, it is necessary that the devices that receive the

CHAPTER 1. INTRODUCTION 4

audio are synchronized to the transmitting device. This will ensure that glitches and
jitter are not present in the reproduced audio at the receiving device(s). Furthermore it
ensures that there is control over the presentation time of the sound at the many desti-
nation devices.

At present, there are a number of audio transport protocols. They include:

• IEEE 1394 [2] - a serial bus networking architecture that allows for the transmis-
sion of digital audio streams and control data, as well as for the synchronization
of networked IEEE 1394 nodes. IEEE 1394 nodes are daisy-chained on the bus,
and each bus is capable of interconnecting a maximum of 63 nodes.

• Ethernet Audio Video Bridging (AVB) [3] - a suite of IEEE standards that allow
for the deterministic and guaranteed delivery of time-sensitive data over Ethernet
networks. One of the standards in this suite defines a mechanism for exchanging
time information between participating nodes.

• CobraNet [4] - a proprietary technology for transmitting multiple channels of au-
dio, as well as sample clocks on Ethernet networks.

• RockNet [5] - a proprietary technology for low latency audio data transmission
using CAT5 cables. It operates on a ring networking technology with a maximum
of 99 nodes on the network.

• EtherSound [6] - a proprietary technology that allows for the transmission of high-
quality audio with low latency over standard Ethernet networks.

• Q-LAN [7] - a proprietary technology that will allow for the transmission of low-
latency audio and control data over gigabit (or higher rate) Ethernet networks.

• RAVENNA [8] - an IP-based networking technology for low latency real-time
audio data transport over a tightly synchronized network. It utilizes existing stan-
dards and networking infrastructure.

• Livewire [9] - a proprietary IP-based audio distribution technology over standard
Ethernet infrastructure. It ensures low latency audio transmission over a Local
Area Network (LAN).

• Dante [10] - a proprietary technology that utilizes an Ethernet infrastructure for
the distribution of multiple channels of low latency media.

CHAPTER 1. INTRODUCTION 5

• AES-X192 [11] - an Audio Engineering Society (AES) project that is currently in
progress, whose goal is the transmission of low latency audio over Internet Pro-
tocol (IP) based networks. It seeks to define a set of recommendations of existing
standards and procedures so as to achieve interoperability between networked IP-
based audio devices.

The above audio transport protocols are described in chapter 2. Some of them have
been (or are in the process of being) published by standards organizations, thus ac-
cess to documentation about the particular technology is readily available from the ap-
propriate standards body. These include IEEE 1394 and Ethernet AVB, which have
been published by the Institute of Electrical and Electronics Engineers (IEEE) [12], and
AES-X192 which is in the process of standardization by the Audio Engineering Society
(AES) [13].

Because the audio formats (encoding), supported sampling rates, and synchronization
mechanisms that are used by the different audio networking technologies differ, de-
vices that are networked using different technologies are unable to exchange audio data,
even when they utilize the same transmission medium. For example, Ethernet AVB
and EtherSound both utilize CAT5 cable and an Ethernet physical layer to network de-
vices, but Ethernet AVB devices cannot receive audio streams that are transmitted by an
EtherSound device, and vice versa.

While the audio transport protocols ensure that whatever is received for transmission is
reliably and promptly delivered, the actual control of networked devices is determined
by audio control protocols.

1.3 Audio Control Protocols

An audio control protocol creates defined instructions and responses as messages that
are exchanged between devices on a network. It is also responsible for providing mean-
ing to received instructions from a remote device. This ensures that only compliant
devices can understand messages that conform to a particular protocol.

An audio control protocol can incorporate a scheme by which a device can be made
aware of other devices on the network that implement the same audio control proto-
col. This is referred to as device discovery. Typically, a device discovery mechanism
involves:

• a device that seeks to discover other devices on the network. This is typically
called a controller. The controller requires knowledge of the other devices on the

CHAPTER 1. INTRODUCTION 6

network, and it may request to be informed whenever a device joins or leaves the
network.

• a device that announces its presence and availability on the network. This device
responds to a discovery query from the controller. The response will typically
contain the unique identifier and address of the responding device.

Although any number of devices can announce their presence, the number of controllers
permitted on a network depends on the particular audio control protocol. The discovery
of networked devices by a controller is typically the first step before device enumeration,
monitoring and control.

The device model component that was described in section 1.1 is defined by the audio
control protocol. A device model provides a uniform way for compliant devices to
present their features and controls. This makes it easy for a controller to enumerate
the various controls and features that exist within a device. The particular messages
that will be used to explore the device model are defined by the audio control protocol.
Although the device model does not actually represent how the control data is stored
internally by a device, it ensures that particular information can be consistently accessed
(and modified) on compliant devices. For example, it might be possible to determine
the maximum number of audio sources by accessing a particular location in the device
model of all compliant devices.

The procedure used for establishing and destroying audio stream connections between
devices is defined by the audio control protocol. This includes defining the types of
messages and possible responses that can be obtained, as well as the order in which
the messages should be transmitted. The process of ‘setting up’ (establishing) or ‘tear-
ing down’ (destroying) audio stream connections is known as connection management.
Each audio control protocol specifies its own technique for connection management.

Currently, there exist a number of audio control protocols. Some audio control protocols
transport their messages within OSI/ISO layer 3 (mostly within IP) packets. Such audio
control protocols will be referred to as layer 3 audio control protocols, in this document.
Some other audio control protocols transport their messages as frames within OSI/ISO
layer 2 frames. These will be referred to as layer 2 audio control protocols, in this
document.

Some of the available audio control protocols are:

• OSC - the Open Sound Control (OSC) protocol is a transport layer independent
media content format for real-time control messaging [14].

CHAPTER 1. INTRODUCTION 7

• ACN - the Architecture for Control Networks (ACN) is a suite of protocols and
languages that can be combined to create a reliable control data distribution net-
work [15].

• IEC 62379 - the Common Control Interface for Networked Audio and Video Prod-

ucts (IEC 62379) is a suite of standards that allow for control and audio data
distribution over different network infrastructures [16].

• AES-64 - the Audio Engineering Society standard for audio applications of net-

works - Command, control, and connect for integrated media (AES-64) is an IP-
based peer-to-peer command and control protocol that allows for device control
and monitoring [17].

• OCA - the Open Control Architecture (OCA) is a protocol for controlling and
monitoring networked devices [18].

• AV/C - the Audio Video Control (AV/C) protocol is an IEEE 1394-based device
control protocol.

• IEEE 1722.1 - is a protocol for device discovery, connection management and
control protocol for IEEE 1722-based devices on Ethernet AVB networks [19].

• mLAN - the music Local Area Network (mLAN) is an IEEE 1394-based audio
control protocol that allows for the transmission of audio and music control data,
as well as timing information between networked devices [20].

Further details about the above audio control protocols are provided in chapter 3.

Usually, an audio control protocol message is transported on the same audio transport
technology that is used for transmitting audio stream data. For example, the IEEE 1394
serial bus provides two types of transactions for data transfers. One of the IEEE 1394
transactions is the isochronous transaction in which isochronous packets are transmitted
at regular intervals. An isochronous transaction is used for time-sensitive data (such as
audio) transmission. The other IEEE 1394 transaction is the asynchronous transaction,
which entails the transfer of asynchronous packets and is typically used for control
messaging. Audio control protocols such as mLAN and AV/C utilize asynchronous
transactions for transporting protocol command messages.

An audio control protocol message could be transmitted as:

• unicast - from a controller to a particular target device.

CHAPTER 1. INTRODUCTION 8

• multicast - from a controller to any number of devices within a group. Each
member of the group ‘listens’ for messages that are addressed to the entire group.

• broadcast - from a controller to every device on the network. This type of message
is received by all devices on the network.

Each audio control protocol will define which of these message types it uses. Typically,
an audio control protocol will transmit its messages using more than one of the above
types of transmission, depending on what it is trying to achieve. For example, when
attempting to discover all networked devices, the IEEE 1722.1 protocol utilizes multi-
cast messaging. However, when an IEEE 1722.1 controller sends a message to control
a particular feature on a target device, it transmits its control command as unicast to the
target.

1.4 Problem Statement

Audio devices on a network will communicate via a defined audio control protocol. This
entails the exchange of protocol messages between these devices. The messages may
be received by any number of devices that are on the network. However, only devices
that implement the same audio control protocol can understand the received messages.
Thus, communication is only between devices that implement the same audio control
protocol.

Figure 1.2 shows an example of OSC and AES-64 devices on an Ethernet AVB network.

Figure 1.2: Ethernet AVB network with OSC and AES-64 devices

CHAPTER 1. INTRODUCTION 9

There are five devices on the network that is depicted in Figure 1.2. Two of these
devices implement the OSC audio control protocol, and the other three implement AES-
64. If an AES-64 network controller is seeking knowledge of all streaming Ethernet
AVB devices on the network by broadcasting an AES-64 discovery message, only the
AES-64 devices on the network will respond. The network controller will be unable to
enumerate, monitor and control the state of the OSC devices on the network.

In this document, the above dilemma is referred to as the interoperability challenge. It
results in a situation where it becomes challenging to have a single network manager
(or control application) that is capable of configuring networked devices that utilize
disparate audio control protocols. Further description of the interoperability challenge
can be found in chapter 4.

This research project proposes a solution to the protocol command interoperability chal-
lenge. The proposed solution involves the use of a command translator that is capable
of receiving messages that conform to one audio control protocol, then translating it to
the equivalent message or messages in another protocol, in order to achieve the same
desired result. The command translation approach is described in the next section.

1.5 Command Translation Approach

The command translation approach requires that a command translator receive com-
mands that conform to one audio control protocol, translates them into commands for
a second audio control protocol, and then transmits the translated messages to a target
device. Figure 1.3 depicts an audio network that incorporates a command translator.

Figure 1.3: Audio network that incorporates a command translator

CHAPTER 1. INTRODUCTION 10

The ‘Command Translator’ in Figure 1.3 is a proxy that enables devices that implement
the ‘Protocol A Stack’ to communicate with the devices that implement the ‘Protocol

B Stack’, and vice versa. This enables interoperability between the networked devices,
and allows a common controller to configure the devices on the network.

When implementing a command translator, the first consideration is to determine the
protocol that will be used by the controller within the network. While making such a
consideration, there are at least two possible scenarios. In one scenario a network of
audio devices that implement a particular protocol has already been deployed, and an
audio engineer will be seeking to incorporate devices that implement different control
protocol(s) into the network. In another scenario an audio engineer is designing a new
audio installation. Whichever is the case, it is desirable to have a single control protocol
for the entire network.

This research document will describe the design and implementation of a command
translator. This command translator has been implemented as a proxy that implements
the audio control protocols of the devices that need to communicate on the network.
The proxy is capable of enabling interoperability between audio devices that conform
to different control protocols. Furthermore, the proxy enables a common controller to
setup stream connections between the networked devices.

In order to investigate the effectiveness of the command translation approach, two proxy
implementations will be described in this document. The first implementation, which is
described in chapter 6, will enable connection management of networked devices that
implement layer 3 audio control protocols. These are devices that transmit their control
messages within OSI/ISO layer 3 packets, in particular OSC and AES-64 devices. The
second implementation, which is described in chapter 8, will enable connection man-
agement between devices that implement layer 3 and layer 2 audio control protocols.
The ‘layer 2 audio control protocol’ devices refer to audio devices that transport proto-
col messages within OSI/ISO layer 2 packets. The AES-64 and IEEE 1722.1 protocols
will be used in the second proxy investigation. Motivations for choosing these protocols
are provided in chapter 3.

Following the creation of the proxy, a number of tests will be conducted to determine the
efficiency of the proxy. This will involve timing the connection management process to
determine whether the proxy adds a significant overhead when observed by a user. If the
overhead is large, it will discourage the adoption of the proxy in live audio distribution
networks. Chapter 9 provides an analysis of the test results.

The layout of the rest of this document is described in the next section.

CHAPTER 1. INTRODUCTION 11

1.6 Chapter Layout

Chapter 2 describes the nature of networking technologies that are being used for the
distribution of audio in different types of installation contexts, including live sound rein-

forcement, commercial audio, audio recording, and audio post-production. The chapter
also describes some of the qualities that are required for an audio networking technol-
ogy to distribute time-critical audio data across a network, thus fulfilling its role as an
audio transport protocol. This is followed by an overview of some of the available audio
networking technologies.

Chapter 3 describes some of the available audio control protocols that allow for remote
device monitoring, configuration and control. To provide further insight into the oper-
ations of audio control protocols, three audio control protocols are described in detail.
These are the OSC, AES-64 and IEEE 1722.1 protocols. A motivation for the choice of
these three audio control protocols, is also provided.

Chapter 4 describes the interoperability challenge and how it affects current audio net-
work design and deployment. It also provides further details about the command trans-
lation approach for interoperability between networked audio devices that implement
different audio control protocols.

Chapter 5 describes the design and implementation of an Ethernet AVB end station that
is capable of transmitting and receiving IEEE 1722 streams. The end station implements
a layer 3 audio control protocol, which refers to an audio control protocol that commu-
nicates by transporting messages encapsulated within an OSI/ISO layer 3 packet. In
particular, the Ethernet AVB end station that is described implements the OSC protocol.
At the time of creating the OSC end station, OSC devices that implement Ethernet AVB
were not commercially available. Hence the need to develop an OSC server that runs
on a workstation.

In chapter 6 the design and implementation of a command translator, in particular a
proxy, is described. The proxy that is described allows for interoperability between
AES-64 and OSC devices. Furthermore, it will allow for an AES-64 controller to dis-
cover OSC devices, and configure audio stream connections between the OSC devices
and AES-64 devices on an Ethernet AVB network.

Chapter 7 describes the design and implementation of Ethernet AVB end stations that
implement the IEEE 1722.1 standard. The end station is referred to as an AVDECC
entity. At the time of implementing the AVDECC entity, the IEEE 1722.1 standard was
still being ratified by the IEEE standards association, thus there were no commercially
available AVDECC entities. Before creating the AVDECC entity, the IEEE 1722.1 stan-

CHAPTER 1. INTRODUCTION 12

dard was implemented as a software library (called libavdecc) that can be utilized to
create an AVDECC entity on a workstation. The libavdecc software library has been
created for Windows and (Ubuntu) Linux platforms. The design, implementation and
operation of libavdecc is also described in chapter 7.

Chapter 8 describes the design and implementation of a layer 2/layer 3 proxy that
enables interoperability between devices that communicate by exchanging messages
which are encapsulated within different OSI/ISO layer packets. In particular it demon-
strates how a proxy can be used to ensure common control of networked AVDECC
entities and AES-64 devices.

Chapter 9 is an analysis of the proxies created in chapter 6 and chapter 8 in order to
determine their efficiency. This is carried out by determining the overhead that is added
when connection management is performed with the aid of a proxy.

Chapter 2

Digital Audio Network Technologies
and Interoperability

Digital audio networks are becoming widely deployed as the preferred technology for
interconnecting audio devices. Typically on such networks audio is sampled, packe-
tized, then transmitted on the network by a source device. A destination device receives
the audio data packets, strips the audio data from the packet header (which is used for
routing the packets on the network), then it reproduces the audio. It is the responsibility
of the networking technology to ensure that the audio being transported arrives at its
destination without degradation in quality. That is, that there are no glitches or jitter in
the sound presented to the destination device.

When audio devices are networked such that the audio transmitted by a source device is
reproduced at the destination device(s) without distortion in the sound, interoperability
is said to exist between the devices. In order to achieve interoperability, the networked
audio devices should be able to receive and/or transmit audio with similar formats, and
the devices should have clocks that are synchronized.

This chapter describes some of the available audio networking technologies, and high-
lights some of the properties that enable them provide low-latency high quality au-
dio transmission. Audio networking technology interoperability concerns are also dis-
cussed.

2.1 Audio Networking Technologies

In recent times, there has been a wide scale adoption of digital networking technologies
as a means for interconnecting audio devices. This has been driven by a number of

13

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 14

factors, which include the ability to transmit multiple channels of audio on a single ca-
ble. Digital networking technologies make it possible to remotely control and monitor
networked audio devices [21]. Also, digital audio networks are able to provide redun-
dancy such that the network continues to operate after a single point of failure, thereby
increasing the reliability of the audio transmission [22].

Audio networking technology refers to the technology that is utilized by a digital audio
network to distribute multiple channels of audio over long distances. An audio network-
ing technology incorporates a transport protocol which guarantees that the transmitted
audio is delivered without distortions in sound quality. The technology is responsible
for providing the transport mechanism for audio between networked devices, such that
audio that is transmitted by a source device is routed and received by one or more des-
tination device(s).

Audio networking technologies have been used in various applications to deliver high-
quality audio among devices within a network. Some of the audio applications are [23]:

• Live sound reinforcement - where audio generated by a live performer is dis-
tributed across a venue, for instance a musical concert in a stadium.

• Commercial audio - where audio from a source is distributed along several routes
to various parts of a venue, for instance background music playing in different
rooms, areas, and lounges within a casino.

• Audio recording - where audio is captured in real-time, routed (in some instances,
together with previously recorded tracks) through various signal processors, then
monitored. This is typically the case in music recording studios, and broadcast
studios.

• Audio post-production - where audio is edited and recorded onto a media storage
device very often with video. This application typically consists of a network of
digital audio workstations that are able to access digital audio from hard disks and
edit it.

Each of the above applications emphasizes particular performance requirements for the
networking technology. For instance in an auditorium with a live band performing, there
can be no distortions or delays in the sound feed from speakers which are typically large
distances apart. Furthermore the sound produced on such speakers must appear to be
‘in sync’, there cannot be perceived delays. When designing a particular audio network,
care should be taken to ensure that the technology that is deployed does not interfere
with the sound quality.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 15

Whether an audio networking technology is used in the context of live sound reinforce-
ment, commercial audio installations, audio recording, or audio post-production, there
are certain requirements that the transport technology must fulfill. These include:

• network resource allocation,

• synchronization of networked devices, and

• network latency control

These requirements ensure that audio that is produced and transmitted by a source de-
vice, arrives at the intended destination device(s) and that the audio is replayed within a
limited time interval. The above network requirements for audio data transmission are
described in the following subsections.

2.1.1 Resource allocation

On a digital audio network, the network resources are shared between the interconnected
nodes. For example, the network link has a fixed maximum bandwidth that will be
shared by all connected nodes. These network resources are finite, and as more nodes
are added on a network the resources become strained. It is the responsibility of the
audio transport technology to ensure that there is an allocation scheme for the network
resources. Such a scheme should ensure that a device wishing to transmit audio is
guaranteed the necessary resources for the duration of the audio transmission. When
the device no longer needs to transmit on the network, the resource allocation scheme
should ensure that the resources become available to other devices wishing to transmit
on the network. In essence, since there are limited resources on a digital audio network,
the networking technology should ensure that the resources are adequately managed.

2.1.2 Device synchronization

Audio is sampled, packetized and transmitted within streams on most digital audio net-
works. Usually an audio stream is transmitted from a single source to any number of
destination nodes. Consider a scenario where a source node is streaming audio on a
network, and two destination nodes are receiving the audio stream. Without the right
mechanism, if the two receiving nodes play back the audio, it is likely that the sound
reproduced by each node is out of sync. In other words, the two audio streams repro-
duced at the destination nodes are not time aligned. It is the responsibility of the audio
networking technology to implement a mechanism that will overcome this.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 16

By implementing a synchronization mechanism, an audio networking technology en-
sures that the networked devices have a common sense of time. There are two aspects
to synchronization on an audio network, and they are [24]:

• Sample rate recovery - which enables a common sample rate to be utilized by
transmitting and receiving nodes. This ensures that buffer overflow and underflow

are eliminated at the receiving node(s), and eliminates glitches and jitter in the
sound quality. A buffer overflow occurs on the receiving node ddwhen the trans-
mitting node is sampling audio at a higher sampling rate than the receiving node.
A buffer underflow occurs on the receiving node when the transmitting node is
sampling audio at a lower sampling rate than the receiving node.

• Time alignment - which ensures that the “presentation time” of audio at the re-
ceiving nodes are aligned. It compensates for delays that are introduced as audio
is being routed from a transmitting node to any number of receiving nodes.

For example, on an IEEE 1394 network the sampling rate recovery on audio networks
can be achieved by transmitting sampling rate information together with the audio data.
The sampling rate information is added as part of the audio packet header. This is
approach is not required if all devices on the network work on the same clock.

One approach to achieving time alignment is by distributing the clock information of
one node to the other nodes on the network. The source of the time information is called
the master clock, and the other nodes that ‘sync’ to it (master clock) are slaves. At a
specified presentation time, the audio signal is ‘presented’ for processing by a receiving
node. This ensures that audio is reproduced at the same time by multiple receiving
nodes on a network.

2.1.3 Network latency

When audio is transported on a digital network, it experiences delay as it moves from
a source to a destination device. This delay is referred to as the network latency. It
is the difference between the time at which the source node transmits an audio packet
and the time when the packet arrives at the destination node. An audio networking
technology endeavors to reduce the network latency, so that audio is delivered in the
shortest possible time.

Fonseca attributes latency on a digital audio network to three delay factors, namely [25]:

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 17

• Propagation delay - which refers to the delay in transfer of (audio) data from the
source to its destination. This delay depends on the speed of the transmission
cable.

• Frame delay - which refers to the delay between when the first bit and last bit of
a (data) frame are transmitted. This is dependent on the size of the frame and the
bandwidth of transmission.

• Switch latency - which refers to the delay introduced by intermediate network
switches when they store received data frames. This is known as buffering latency.
The switch latency also includes the forwarding latency, which is a property of
the switch and it indicates how long it takes for the switch to process received
frames.

These three factors contribute to the overall latency of the network. Although these de-
lay factors cannot be completely eliminated on a digital audio network, the networking
technology should ensure that the overall latency is minimal.

In order to attain interoperability between networked audio devices the three require-
ments (resource allocation, device synchronization, and network latency) have to be
addressed by the networking technology. It is also required that the networked devices
support similar audio formats. Otherwise a receiving device will be unable to reproduce
the audio data sent from a transmitting device.

The available audio networking technologies address these requirements in different
ways. In the following section, some of the audio networking technologies currently in
use are described, with insights into how they fulfill these requirements.

2.2 Overview of current Audio Networking Technolo-
gies

Currently there are a number of audio networking technologies, which ensure that audio
that is being transmitted by a source device is distributed and timeously delivered to a
number of destination devices, without degradation of the audio quality. Some of these
technologies have been standardized by standards bodies such as the Institute of Electri-
cal and Electronics Engineers (IEEE) [12], and others are proprietary technologies that
are utilized by specific manufacturers.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 18

Standardization enables interoperability since it provides assurance to manufacturers
that by conforming to a standard, their products can exchange audio data with compliant
products from other manufacturers.

The audio networking technologies that are described in this chapter are classified into
two categories based on their implementation strategy and level of operation. In accor-
dance with the OSI/ISO model, the categories are [26]:

• Layer 2 audio networking technologies - enable packet transmission and reception
at layer 2 of the OSI/ISO model [27].

• Layer 3 audio networking technologies - enable packet transmission and reception
at layer 3 of the OSI/ISO model [27].

Although different approaches are used to address the requirements mentioned in sec-
tion 2.1, the audio networking technologies that are described in this chapter take into
consideration the requirements in their design and deployment. The following subsec-
tions describe the two categories of audio networking technologies.

2.2.1 Layer 2 Audio Networking Technologies

In this section a number of layer 2 audio networking technologies are described. These
include:

• IEEE 1394,

• Ethernet AVB,

• CobraNet,

• RockNet,

• EtherSound.

The descriptions that are provided in this section are intended to provide an overview
of these layer 2 audio networking technologies, which are currently available and are
being deployed in various audio installations.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 19

2.2.1.1 IEEE 1394

IEEE 1394 is a technology for high-speed data transfers on a serial bus. This technology
has been standardized and published by the IEEE Standards Association (IEEE-SA)
[28]. The IEEE 1394 standard has evolved over the years since its original publication
in 1995. The various IEEE 1394 specifications are:

• IEEE 1394-1995 - is the original IEEE 1394 specification and was published in
1995 [29]. It defines data transfer rates of 100Mbps, 200Mbps, 400Mbps, and a
6-pin cable connector [30].

• IEEE 1394a-2000 - is an amendment to the IEEE-1394-1995 specification, which
was published in 2000[31]. This amendment was aimed at addressing perfor-
mance issues, and improving interoperability between the various vendor imple-
mentations of IEEE 1394-1995 that existed at the time. It also defined a 4-pin
connector, that was intended for small devices such as hand-held video cameras,
by removing the power signals (2 pins) of the 6-pin connectors.

• IEEE 1394b-2002 - was published in 2002 as an amendment to the IEEE 1394a-
2000 specification. It enables full-duplex operation, and improved the transfer
speed of the serial bus to 800Mbps [32]. IEEE 1394b-2002 also defined a 9-pin
connector for IEEE 1394 devices.

• IEEE 1394c-2006 - was published in 2006 in order to meet several application re-
quirements [33]. The improvements added by the IEEE 1394c-2006 specification
include interconnecting IEEE 1394 devices with new cable types (such as CAT5e,
CAT6, GOF, POF, and GigE) [32].

• IEEE 1394-2008 - combined and amended the various IEEE 1394 standards (IEEE
1394-1995, IEEE 1394a-2000, IEEE 1394b-2002, and IEEE 1394c-2006) into a
single document [2].

Presently, the 1394 Trade Association (1394TA) is responsible for compliance and in-
teroperability testing. The 1394TA is also responsible for marketing the IEEE 1394
networking technology [34].

Figure 2.1 shows a simple network of three IEEE 1394 nodes.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 20

Figure 2.1: IEEE 1394 serial bus interconnections

As shown in Figure 2.1, IEEE 1394 nodes are daisy-chained on a single bus. The IEEE
1394 technology permits a a maximum of 63 nodes per bus. For large installations IEEE
1394 bridges can be used to enable a maximum of 1023 buses to be interconnected,
with each bus possibly having as many as 63 devices on it [35]. Figure 2.1 shows
three networked nodes, with a single hop between ‘Node 0’ and ‘Node 1’, and two
hops between ‘Node 0’ and ‘Node 2’. A maximum of 16 hops is permitted between a
transmitting and a receiving node [36].

When a device is added or removed from the (IEEE 1394) bus, a process known as bus

reset occurs. At the end of a bus reset:

• each node is assigned a node ID that uniquely identifies the node

• the transmission speeds between nodes are determined, and

• every node is aware of the bus topology.

There are two types of transactions that are used for data transfer on the IEEE 1394
serial bus. These IEEE 1394 transactions are:

• Asynchronous transaction - guarantees delivery of the transmitted data. Asyn-
chronous transactions are typically used for transmitting control messages, such
as register read and write commands. An asynchronous packet is used to transport
an asynchronous message to a specified target node, which is identified by its node
ID. The target node responds to each received asynchronous control message by
sending an acknowledgement and requested data (if needed) to the requester.

• Isochronous transaction - ensures that at constant intervals, a constant amount of
data is transmitted. Isochronous transactions are used for high speed deterministic
data transmission on the IEEE 1394 serial bus, such as real-time audio and/or
video streaming. The IEEE 1394 serial bus has a dedicated channel (channel 63)
which is used for broadcasting isochronous messages.

The format of the audio data that is transmitted within an isochronous message has been
standardized by the IEC 61883-6 specification [37]. The IEC 61883-6 specification is

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 21

the “Audio and Music data transmission protocol”, which defines how multiple channels
of audio can be simultaneously transmitted within streams, on the IEEE 1394 serial bus.
IEC 61883-1 defines a Common Isochronous Packet (CIP) header for transporting the
audio data [38]. CIP (among other things) enables a transmitter to specify the nominal
sampling rate of the audio data within its payload.

Being a standardized protocol, IEC 61883-6 enables interoperability by guaranteeing
that compliant nodes are able to exchange audio data.

IEEE 1394 has been utilized as the audio networking technology of choice for a number
of audio device control protocols, such as mLAN and AV/C [20] [39, Pg 56]. These
two audio control protocols will be described later in chapter 3 on Audio Networking

Control Protocols.

IEEE 1394 resource allocation

On an IEEE 1394 bus, the two resources that are necessary for isochronous data trans-
mission are:

• channel - on which to transmit a stream, and

• bandwidth - that is sufficient for the transmission.

The node that is responsible for managing these resources is called the Isochronous

Resource Manager (IRM). The IRM is determined at bus reset, and it monitors and
maintains the allocation of channels and bandwidth for the transmission of isochronous
data streams. In order to do this, the IRM implements two registers. These registers are
the [40]:

• CHANNEL_AVAILABLE register - is a 64-bit register that maps to the 64 channels
that are used for transmission on the bus. Initially this register has all of its bits
set to ‘1’. A node wishing to transmit isochronous data will request a channel
from the IRM. A successful request will cause the IRM to modify the value of
the bit that corresponds to the acquired channel (in the CHANNEL_AVAILABLE

register) to ‘0’.

• BANDWIDTH_AVAILABLE register - is a 32-bit register that holds the value of
the available isochronous transmission bandwidth in bandwidth units. Initially the
value of the bw_remaining field is 4915 (bandwidth units) for isochronous trans-
mission, but it reduces as nodes are granted bandwidth for isochronous transmis-
sion. A requesting node indicates how much bandwidth (in bandwidth units) it re-
quires for its isochronous audio data transmission. If the value of the bw_remaining

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 22

field is more than what is required, that is there is sufficient bandwidth, the
bw_remaining value is reduced by the required bandwidth and a success response
(to the lock transaction) is returned to the requesting node.

A node that wishes to transmit an isochronous stream is required to first acquire a trans-
mission channel from the IRM before proceeding to request bandwidth.

IEEE 1394 device synchronization

Each IEEE 1394 node that is capable of isochronous transactions implements a CY-

CLE_TIME register. In order to synchronize the CYCLE_TIME registers of all con-
nected nodes, the cycle master broadcasts the value of its CYCLE_TIME register within
cycle start packets (nominally) once every 125 microseconds. This ensures that the CY-

CLE_TIME registers of the connected (isochronous transaction capable) nodes remain
synchronized to that of the cycle master. The cycle start packet also indicates the start
of an isochronous stream transmission.

IEEE 1394 network latency

IEEE 1394 is a high speed serial bus with transfer speeds of about 100Mbps, 200Mbps,
400Mbps and 800Mbps. The standard allows for faster speeds of 1.6Gbps and 3.2Gbps
[32]. The IEEE 1394-2008 standard defines transfer speeds as high as 4Gbps [41]. Such
high speeds allow for fast data transmission on the network, such that latency due to the
networking technology (IEEE 1394) is minimal. The IEEE 1394 serial bus allows for
interoperability between devices that implement different transfer speeds by ensuring
that data is transfered at the lowest speed of the interconnected devices.

2.2.1.2 Ethernet AVB

Ethernet Audio/Video Bridging (AVB) refers to a collection of IEEE 802.1 standards
that together provide the necessary quality of service (QoS) for the transmission of
time-sensitive data, such as audio, over Ethernet networks. The development of the
Ethernet AVB standards was driven by the fact that Ethernet enjoys widespread adoption
in the Information Technology (IT) environment. Ethernet AVB is intended to provide
deterministic and guaranteed delivery of time-sensitive data on IT networks [42].

Ethernet AVB incorporates Virtual Local Area Networks (VLANs), which allow a phys-
ical network to be partitioned such that devices which are physically connected can

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 23

be logically isolated into different domains, irrespective of their physical relationships.
Thus a number of ‘sub-networks’ (VLANs) can exist on a single LAN or WAN. For
example the ten devices that are shown to be physically connected in Figure 2.2, are
isolated into three VLANs. Typically the rules that govern the creation of VLANs are
specified by the network switches [43].

Figure 2.2: VLAN isolates physically connected devices

The documents that make up the Ethernet AVB standard are:

• IEEE 802.1Qat - the Stream Reservation Protocol (SRP) standard, which is an
amendment to the IEEE 802.1Q standard for virtual bridged local area networks
[44]. It was published in 2010 by the IEEE. The IEEE 802.1Qat standard defines
two roles that exist when a data stream is being transmitted on the network. These
are:

1. Talker - a device that is the source or transmitter of a stream on the network.

2. Listener - a device that receives a stream from the network.

Talker and listener devices are broadly referred to as endpoints or end stations.
The SRP protocol provides a mechanism that enables signaling of participating
devices so that network resources, such as bandwidth and buffer space on in-
termediate bridges along the path from talker to listener, can be set aside for a

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 24

particular stream. In SRP interactions, a talker regularly publishes information
about its available streams on the network, and a listener indicates the particular
stream that it is interested in. Also, the intermediate bridges on the path from
talker to listener ensure that the necessary resources are available before trans-
mission begins. As SRP signaling messages are being exchanged between talker
and listener, the intermediate bridges may modify them (the signaling messages)
to indicate whether the network can guarantee resources for the particular talker
stream. SRP eliminates packet loss by guaranteeing that prior to a talker transmit-
ting a stream, there are sufficient network resources on the path to the listener.

• IEEE 802.1Qav - an amendment to the IEEE 802.1Q standard for virtual bridged
local area networks, that was published in 2010 by the IEEE as an enhancement
for forwarding and queuing of time-sensitive streams [45]. This standard defines
a traffic shaping mechanism that ensures smoothing of traffic in order to transmit
stream packets at an evenly distributed rate [42]. It does this by adapting the
IEEE 802.1Q frame priority tagging scheme, and by defining a forwarding policy
for the transmission of frames on the network. This ensures that, although AVB
stream data and non-AVB data are transmitted on the network, priority is given
to isochronous stream data over asynchronous data on ‘exit’ ports of networked
endpoints and bridges.

• IEEE 802.1AS - the IEEE standard for timing and synchronization for time-
sensitive applications in bridged local area networks, that was published in 2011
[46]. The IEEE 802.1AS standard was developed to enable networked AVB end-
points to synchronize their clocks. The IEEE 802.1AS ensures that:

1. a common clock is distributed across the network.

2. multiple streams, which are distributed across different paths on a network,
are presented at the same time.

Synchronizing the clocks of the networked endpoints ensures clock stability. The
IEEE 802.1AS standard is based on the IEEE 1588 standard, which addresses
system-wide time synchronization that is in the sub-microsecond accuracy range
[47]. On an AVB network, endpoints that share a common clock are said to reside
within the same time domain. The choice of the common clock that is distributed
on an AVB network can either be manually selected, or can be automatically
determined by the network.

• IEEE 802.1BA - the standard for an Audio Video Bridging System, which en-
ables the network to isolate participating AVB endpoints from other devices on

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 25

the network [48]. This ensures that endpoints which are capable of reserving net-
work resources, as well as synchronizing their clocks to that of a common clock,
are identified. It defines a number of profiles for the features and options that
should be implemented by AVB endpoints so that non-AVB compliant nodes (on
the network) do not interfere with the operations of the AVB system. By referring
to this standard, manufacturers have a standardized conformance requirement for
developing AVB compliant devices.

Ethernet AVB networks include bridges and endpoints that cooperate to guarantee the
delivery of time-sensitive data. A talker publishes information about the stream(s) it has
to offer on the network. The network bridges modify the stream advert(s) to indicate
whether there are sufficient resources and more accurately reflect the expected latency
across the path, before propagating the advertisement on the network. A listener in-
dicates to the network that it wishes to receive a particular stream by sending a ready

message, which is propagated to the stream source (talker). As the ready indication
from the listener is being propagated towards the talker, the network bridges (along the
path) reserve the necessary network resources for the stream. The talker begins to trans-
mit when it receives the ready message, with the assurance that its stream is guaranteed
to be delivered to the listener.

On Ethernet AVB networks, each audio stream is identified by its 64-bit stream ID.
The media transport that is used on an Ethernet AVB network is defined in the IEEE
1722 standard [49]. IEEE 1722 is also known as the Audio/Video Transport Protocol

(AVTP), and it defines the procedure for exchanging media and timing information be-
tween Ethernet AVB end stations. Audio that is formatted according to the IEC 61883-6
specification is transported within the AVTP payload.

The Ethernet AVB technology is used as the transport protocol for the IEEE 1722.1
protocol, which is described in chapter 3 on Audio Networking Control Protocols.

Ethernet AVB resource allocation

On Ethernet AVB networks, the reservation of network resources for time-sensitive
stream transmission is achieved by two cooperating processes. These processes involve:

1. Signaling participating endpoints and bridges along the path from transmitter to
receiver endpoints, requesting them to reserve resources.

2. Applying the resource reservation algorithm.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 26

The signaling mechanism is described by the Multiple Stream Reservation Protocol

(MSRP), which is defined in the IEEE 802.1Qat standard [44]. A participating node
uses MSRP to reserve network resources. MSRP uses Multiple Registration Protocol

(MRP) to declare talker and listener attributes on the network [50]. The talker attributes
are talker advertise and talker failed. The listener attributes are listener ready, listener

ready failed, and listener asking failed. These attributes are multicast on the Ethernet
AVB network.

When signaled (to do so), the network reserves the necessary transmission bandwidth
and buffers within participating bridges. Foulkes describes how MSRP uses MRP to
declared talker and listener attributes, as well as how these attributes are propagated
across the network [1].

The “Forwarding and Queuing” algorithm, which is defined in IEEE 802.1Qav, priori-
tizes AVB traffic over non-AVB traffic [45]. In order to ensure that non-AVB traffic gets
a chance to be transmitted on the network, every Ethernet AVB bridge is permitted 75%
of its bandwidth to AVB traffic, and the rest to non-AVB traffic [51].

Ethernet AVB device synchronization

The procedure for synchronizing endpoints on an Ethernet AVB network is defined by
the IEEE 802.1AS standard [46]. IEEE 802.1AS defines a generalised Precision Time

Protocol (gPTP) which is a constrained form of the Precision Time Protocol (PTP) [52].

The gPTP protocol defines a time-aware bridged LAN as a LAN with interconnected:

• Time-aware end stations - which are endpoints that are capable of transmitting
and receiving timing information by utilizing gPTP,

• Time-aware bridges - which are endpoints that have multiple ports and are capable
of relaying timing information received on one port to the others.

Time-aware end stations and time-aware bridges make up what is referred to as a time-

aware system. In a time-aware system gPTP messages (which contain time informa-
tion) are distributed in order to synchronize participating endpoints to a common clock.
The source of the common clock is called a grandmaster, and there can be only one
grandmaster per gPTP domain. A gPTP domain refers to the scope within which gPTP
messages are communicated, thus defining the scope of synchronized end points. A
Best Master Clock Algorithm (BMCA) is used to determine the grandmaster in a gPTP
domain [1].

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 27

A master/slave relationship exists in a time-aware system. This is shown in the gPTP
domain depicted in Figure 2.3.

Figure 2.3: Master/slave relationship in a gPTP domain

In Figure 2.3, the time-aware (grandmaster) end station generates the clock information
that is used to synchronize the other end stations and the bridge within the gPTP domain.
The grandmaster clock is the clock master of the ‘Time-aware bridge’ shown in the
figure. In turn, the ‘Time-aware bridge’ is the master of the other ‘Time-aware end

stations’ on the network, since it (‘Time-aware bridge’) is closer to the grandmaster
than either of the ‘Time-aware end stations’.

The grandmaster transmits its current time within the gPTP messages that it propagates
on the network. Each subsequent clock master bridge that receives the gPTP message
adjusts the time to include an estimated propagation delay that the message encountered
on its way. Then the clock master transmits the gPTP message to its slave endpoints.
When a time-aware bridge receives the gPTP message, in addition to adding the prop-
agation delay, it adds the possible delay the message would have encountered as it is
being relayed across to its other ports. This additional delay is called the residence time

[46].

Ethernet AVB network latency

As part of the quality of service (QoS) requirement of media transport on Ethernet
AVB, stream packets must arrive within the shortest time as they travel from source to
destination endpoints. The prioritization of time-sensitive data over other data that is
being transmitted on the network ensures that within the shortest possible time an AVB

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 28

bridge would have transmitted a received packet from one port to the other port(s) on
the path from talker to listener(s).

The IEEE 802.1Qav standard defines a traffic shaping protocol, which classifies AVB
traffic into two classes [53]:

• Class A - with maximum latency of 2 milliseconds when there are 7 hops between
transmitting and receiving nodes on a 100Mbps Ethernet connection.

• Class B - with maximum latency of 50 milliseconds when there are 4 hops be-
tween transmitting and receiving nodes on a 100Mbps Ethernet connection.

2.2.1.3 CobraNet

CobraNet is a proprietary technology that enables reliable streaming of multiple chan-
nels of audio data over Ethernet networks. The CobraNet technology utilizes Ethernet
for the transmission of isochronous data, sample clock and control data.

CobraNet can be deployed on a network that either incorporates switches or repeaters
(network hubs), but not a mixture of both devices on the same network. When Co-
braNet is deployed on a switched network, it is possible for the network to handle both
CobraNet data and other Ethernet traffic. This is typically not the case in a network
with repeaters. The choice of either a switched or repeater network determines how a
CobraNet network is designed and deployed.

A CobraNet node comprises [54]:

• A high bandwidth hardware interface - which incorporates a Digital Signal Pro-
cessor (DSP).

• A protocol stack - that combines multiple channels of isochronous data into an
Ethernet packet.

• Device software - that enables device monitoring and management, as well as
enabling clock generation and recovery.

Three types of packets are transmitted on a CobraNet network. These are [55]:

• Beat packets - these packets contain the network operating parameters, transmis-
sion permissions, and the sample clock that is used to synchronize all other de-
vices on the network. The beat packets are multicast on the network, and their
time-sensitive nature requires that they are timeously delivered.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 29

• Isochronous packets - these packets typically contain the audio data, which are
transmitted within bundles. A bundle can either be multicast to several networked
devices, or unicast to a single networked device. Each bundle comprises multiple
channels.

• Reservation packets - these are small sized packets that are multicast by each
CobraNet device on the network. They contain transmission reservation informa-
tion, network congestion information and the IP address of the CobraNet device.
A CobraNet device transmits one reservation packet every second.

On a full-duplex switched network, CobraNet can transmit 32 channels of (20-bit) audio
at 48kHz over a 100Mbit Ethernet link. On repeater Ethernet networks, 64 channels of
(20-bit) audio at 48kHz can be transmitted within bundles. Each bundle will contain 8
channels of uncompressed audio [4]. CobraNet is capable of transmitting 16, 20, and 24
bit audio resolutions at 48kHz sampling rate in order to allow for interoperability with
different types of devices. CobraNet is also capable of transmitting audio at 96kHz.

CobraNet utilizes the Simple Network Management Protocol (SNMP) for device moni-
toring and control [56]. Since CobraNet utilizes Ethernet for data transmission, it per-
mits other control protocols (that use Ethernet for transport) to be transported on the
network. This further enables interoperability with other networked devices.

CobraNet resource allocation

Audio is transmitted within isochronous packets on a CobraNet network. A beat packet
signifies the beginning of an isochronous transmission cycle. Typically the isochronous
cycle interval is 1.33 milliseconds, but for low-latency modes CobraNet allows isochronous
cycle intervals of 0.66 milliseconds and 0.33 milliseconds [55]. In order to handle vari-
ations in delivery time and to reorder isochronous packets on a receiving device, Co-
braNet allows buffering of packets.

The reservation packets, which are transmitted once every second, are used to specify
transmission resource reservations and network congestion information [54].

CobraNet device synchronization

Beat packets contain the clock of a participating device known as the ‘conductor’ and
it is multicast to all devices on the network. Usually, the conductor transmits 750 beat
packets per second. Every other device on the network listens for the beat packets. On

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 30

receiving a beat packet, the CobraNet device synchronizes its clock to that of the sample
clock within the beat packet. A beat packet is typically about 100 bytes in size.

CobraNet network latency

Transmission delay that is less than 400 microseconds is expected for beat packets,
so as to ensure that the local clocks of networked devices are synchronized with the
conductor’s clock [55].

The latency for the transmission of isochronous packets on CobraNet is 5.33 millisec-
onds when the isochronous cycle interval is 1.33 milliseconds. CobraNet also allows
low latency modes of 2.66 milliseconds and 1.33 milliseconds for isochronous packet
transmissions when the isochronous cycle intervals are 0.66 milliseconds and 0.33 mil-
liseconds, respectively [55].

2.2.1.4 RockNet

RockNet is a proprietary real-time, low latency audio networking technology that allows
for the distribution of multiple channels of audio. It is deployed as a ring network
topology that utilizes CAT5 cables to connect a maximum of 99 nodes [57].

It provides redundancy for fail-safe audio transmission by providing two connections
for each networked device interface. The use of two network interface connections,
together with the ring network topology, reduces the risk of a single point of failure.
There are two variations of the RockNet technology, namely:

1. RockNet 300 - which is able to transmit 160 channels of 24-bit audio at a sampling
rate of 48kHz. It is also capable of 96kHz sample rate [57].

2. RockNet 100 - which is able to transmit 80 channels of 24-bit audio at a sampling
rate of 48kHz.

Interoperability exists between devices that implement the above types of RockNet tech-
nologies. To enable easy device configuration, RockNet devices have control buttons on
their front panel.

RockNet allows for isochronous transmission of audio, together with standardized net-
work traffic (such as TCP/IP) on the same network [5]. Detailed information on the
RockNet technology could not be obtained.

RockWorks is a software package that can be used to remotely configure and monitor
networked RockNet devices [5].

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 31

2.2.1.5 EtherSound

EtherSound is a proprietary audio networking technology that was developed by Digi-
gram to allow for the deterministic transmission of high-quality audio with low-latency
over standard Ethernet (IEEE 802.3) networks. It was first publicly presented in 2001
[58].

EtherSound devices can be incorporated into networks of devices with standard Ether-
net interfaces and switches. It allows devices to be daisy-chained into a peer-to-peer
network topology, as well as permitting star and fault-tolerant ring topologies. A com-
bination of any of these network topologies is also permitted by the EtherSound tech-
nology.

There are two variations of the EtherSound networking technology. The choice of which
EtherSound technology to deploy depends on the application requirements. The avail-
able EtherSound technologies are [59]:

• EtherSound ES-100 Audio Transport network - was designed for 100Mbps Ether-
net infrastructure. This allows for the transmission of 64 bi-directional channels
of 24-bit digital audio at 48kHz sampling rate, together with control and monitor-
ing data.

• EtherSound ES-Giga System Transport network - utilizes a 1Gbps dedicated Eth-
ernet infrastructure for the transmission of 512 channels of 24-bit digital audio at
a sampling rate of 48kHz, together with 100Mbps of control and monitoring data.

EtherSound devices communicate by transmitting EtherSound frames, which are encap-
sulated within standard Ethernet (IEEE 802.3) frames. An EtherSound frame consists
of an [6]:

1. EtherSound header - contains protocol specific information, that identifies an
EtherSound frame.

2. EtherSound payload - contains the data that is being transported on the Ether-
Sound network. The EtherSound payload consists of:

(a) Packet header - that holds the packet type and subtype information.

(b) Packet data - which is the actual data being transported.

The EtherSound protocol defines two types of data packets which are transmitted in the
EtherSound payload on a 100Mbps network, namely:

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 32

1. Command packet - which is either a control command, or a request for status
information.

2. Audio packet - which is used to transmit the channels of 24-bit PCM (digital)
audio.

EtherSound devices implement a Field-Programmable Gateway Array (FPGA), which
defines an internal database of 256 16-bit device registers. Remote device control and
monitoring is achieved by reading and writing to these registers [6].

EtherSound includes a device control protocol and an Application Programming Inter-
face (API) for the protocol. The API can be used by a control application to transmit
command instructions to EtherSound devices that are produced by different manufac-
turers, thus enabling interoperability [59].

EtherSound resource allocation

EtherSound frames are used to transport audio data and clock information between the
networked devices. In order to understand how the EtherSound network distributes
audio data, an understanding of the various roles that can be fulfilled by the EtherSound
devices is required. Figure 2.4 shows a network with five EtherSound devices, each
fulfilling a specific role.

Figure 2.4: EtherSound network

The roles depicted in Figure 2.4 are:

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 33

• Primary Master - is a source of audio on the network, and the originator of the
EtherSound frames that are transmitted downstream.

• Master - is an audio source device, and is located downstream from the primary
master on the network. It responds (upstream) to control and status information
commands from the primary master. A master device adds its audio data to the
EtherSound frame as it flows downstream from the primary master.

• Slave - is a receiver of audio from the networked devices upstream. It obtains the
audio data from EtherSound frames that are transmitted by the primary master
on the network. It is also capable of responding upstream to control and status
information commands from the primary master.

• Master/Slave - is downstream from the primary master and is both a transmitter
and receiver of audio data. Like the master and slave devices, it is capable of
responding to control and status information commands from the primary master.

EtherSound device synchronization

EtherSound devices synchronize their audio clocks to that of the network clock, which
is derived from the primary master [59]. The primary master transmits (downstream) its
audio data and its clock within an EtherSound frame.

A master, master/slave, or slave device synchronizes its clock with that obtained from
the EtherSound frame transmitted by the primary master.

EtherSound network latency

Network latency on an EtherSound network is independent of the number of audio chan-
nels that are being transmitted [60].

The EtherSound ES-100 Audio Transport ensures a 125 microseconds end-to-end trans-
mission time (of 6 samples) at 48kHz sampling rate. Each EtherSound interface in
a daisy-chain Ethernet topology adds less than 1.5 microseconds latency [60]. Any
switch along the path (from network input to network output) adds between 2 to 20
microseconds latency.

The EtherSound ES-Giga System Transport promises less than half a microsecond la-
tency [60].

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 34

2.2.2 Review of Layer 2 Audio Networking Technologies

In the previous section, a number of audio networking technologies were described.
Some of them have been standardized, in particular IEEE 1394 and Ethernet AVB, while
others are proprietary networking solutions, such as CobraNet, RockNet, and Ether-
Sound. Each technology defines its own transmission frame for audio data and timing
information exchange. Some of the prominent features of these networking technolo-
gies are highlighted below.

• IEEE 1394

– Serial bus network technology.

– Transmits up to 64 channels of uncompressed audio.

– Audio is formatted according to IEC 61883-6 specification.

– Variable sampling rates (from 32kHz to 192kHz) for audio that is transported
on the bus.

– Synchronization information is obtained from the timing information that is
distributed by the cycle master node.

• Ethernet AVB

– Spanning tree network topology.

– Ethernet links with dedicated Ethernet AVB switches.

– Supports transmission of IEC 61883-6 formated audio within AVTP frames.

– Supports sampling rates as high as 192kHz.

– Synchronization is achieved by locking to a common clock that is distributed
by the grandmaster node.

– Media clock synchronization for both IEEE 1394 and AVB is implemented
by each receiver, which extracts the presentation time stamps from the trans-
mitted stream and uses these regular time stamps to adjust the media clock
frequency to that of the transmitter.

• CobraNet

– Spanning tree network topology.

– Ethernet links with standard Ethernet switches and repeaters.

– 64 channels of uncompressed audio.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 35

– Sampling rate of 48kHz is typical for audio with a resolution of 20-bit.

– Networked devices are synchronized by a beat packet, which is originates
from a conductor node. 750 beat packets are transmitted (by the conductor)
every second.

• RockNet

– Ring network topology.

– Uses Ethernet link for data transmission.

– RockNet 300 transmits 160 channels of 24-bit audio.

– RockNet 100 transmits 80 channels of 24-bit audio.

– Typically, sampling rate is 48kHz.

• EtherSound

– Token ring communication.

– Ethernet links with standard Ethernet switches on the network.

– 64 bi-directional channels of 24-bit digital audio on 100Mbps Ethernet link.

– 512 channels of 24-bit digital audio on 1Gbps Ethernet link.

– Typical sample rate is 48kHz with a resolution of 24-bit.

– Networked devices synchronize to the clock information obtained from the
primary master.

– One way audio traffic.

Most of the audio networking technologies described in this chapter, with the exception
of IEEE 1394, utilize Ethernet links between networked nodes. EtherSound and Rock-
Net permit 24-bit audio at 48kHz sampling rate. Uncompressed audio that is formatted
according to IEC 61883-6 is permitted on IEEE 1394 and Ethernet AVB networks.

2.2.2.1 Interoperability on layer 2 networks

It is difficult to attain interoperability between devices that utilize different audio net-
working technologies. The existence of different network links, packet formats for audio
transmission, and synchronization mechanisms, makes it difficult to guarantee reliable
transmission of audio across different networking technologies. Even when the same

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 36

physical link (for example Ethernet) is used to connect the devices, the format of the
frames for audio data transport and the synchronization mechanisms usually differ.

The following section describes a tunneling approach that enables interoperability be-
tween devices on IEEE 1394 and Ethernet AVB networks. This approach enables audio
that is transmitted by an Ethernet AVB device to be received by an IEEE 1394 device.
Likewise, the tunneling approach enables audio that is transmitted by an IEEE 1394
device to be received by an Ethernet AVB device.

2.2.2.2 Tunneling nodes for Layer 2 Interoperability

Foulkes has demonstrated how interoperability can be achieved between two standards-
based audio networking technologies, in particular IEEE 1394 and Ethernet AVB [1].
The technique involved the use of tunneling nodes that have IEEE 1394 and Ethernet
network interfaces.

The use of the tunneling nodes ensured deterministic delivery of audio data from an
Ethernet source node to an Ethernet sink node and vice versa. The audio data was
transported across an IEEE 1394 network, thus making the stream available to other
IEEE 1394 devices. A layout of the network is shown in Figure 2.5.

Figure 2.5: Tunneling audio across IEEE 1394 and Ethernet AVB networks [1, pp. 200]

The tunneling nodes (‘Tunnel node 1’ and ‘Tunnel node 2’) in Figure 2.5, each have two
network interfaces. ‘Tunnel node 1’ has one of its interfaces connected to the ‘Stream

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 37

source’ (Ethernet AVB) device, and its second interface connected to the ‘IEEE 1394

bridge’. ‘Tunnel node 2’ has an interface connected to the ‘IEEE 1394 bridge’, and
a second interface connected to the ‘Stream sink’ Ethernet AVB device. Besides the
tunneling nodes and IEEE 1394 bridge, there are two other IEEE 1394 nodes on the
serial bus.

The bandwidth of an IEEE 1394 network determines the maximum size of packets that
can be transmitted on the bus. It is possible that a tunneling node receives more Ethernet
frames (containing audio data) than it can fit into a single isochronous packet for onward
transmission on the IEEE 1394 network. In order to overcome such restrictions, a trans-
mitting tunneling node is able to pack multiple Ethernet frames into a single isochronous
packet, if the isochronous packets are larger than the Ethernet frames. Also, the receiv-
ing tunneling node is able to unpack and retrieve the Ethernet frames. If the Ethernet
frames are larger than an isochronous packet, the transmitting tunneling node is able to
fragment the Ethernet frame and transmit the fragments across to the receiving tunnel-
ing node. The receiving node is capable of combining the fragments to form the original
Ethernet frame.

By utilizing the tunneling nodes, audio data can be transmitted from an IEEE 1394
network to an Ethernet AVB network, and vice versa.

2.2.3 Layer 3 Audio Networking Technologies

A number of audio networking technologies implement audio transport at layer 3 of the
OSI/ISO model. Some of these protocols are described in this section. In particular, the
following protocols are described:

• Q-LAN

• Ravenna

• Livewire

• Dante

There are some similarities among the above layer 3 audio networking technologies,
such at the use of Internet Group Management Protocol (IGMP) which enables devices
to subscribe to an audio stream, and the use of Differentiated Services (DiffServ) to
prioritize audio data over other data on the network [61] [62].

The following subsections provides an overview of each of the above audio networking
technologies. In particular emphasis is on how these technologies allocate network

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 38

resources, the mechanisms they use for device synchronization, and information about
the expected network latency.

2.2.3.1 Q-LAN

Q-LAN is a high-resolution low-latency audio distribution technology. It allows for au-
dio and control transport on gigabit (or higher rates) Ethernet infrastructure [7]. Q-LAN
is a proprietary solution of QSC that was developed as the audio networking technology
for Q-Sys [63]. Q-Sys is an integrated system platform for media distribution between
QSC audio products [64]. It (Q-LAN) allows for audio distribution between the Q-Sys
components, namely:

• Core,

• I/O frames, and

• User control interfaces.

The Q-Sys Core is a device that is dedicated to audio processing on the Q-LAN network.
The audio input and output devices on the Q-Sys network are referred to as I/O frames.
The user control interfaces are the user interfaces for signal monitoring and control.
The Q-Sys designer, which is software that runs on a PC workstation, fulfills the role of
user control interface. Any number of these components may be present in a Q-LAN
installation.

In order to deal with network failure, Q-LAN makes use of two Ethernet connections
between networked devices. Failure on one transmission path causes a seamless routing
of the audio through the other path.

Audio is transmitted within stream packets on a Q-LAN network. These stream packets
are unidirectional from a transmitter to a receiver, and they are encapsulated within User
Datagram Protocol (UDP) frames [65]. The transmission rate of the stream packets is
3000 per second. Each stream connection to an ‘I/O device’ contains a maximum of
16 channels (in each direction) of 32-bit (floating point formatted) audio. Usually the
Q-LAN cores have a maximum capacity of 128 channels in each direction, although up
to 512 channels (per direction) can be transmitted with each audio stream containing 8
or more channels [66]. After every 100 stream packets, the receiver sends an acknowl-
edgement to the transmitting device [7]. The UDP datagrams (containing the audio
stream packets) are encapsulated within IP packets and unicast to a receiver [67]. Thus
in order to route the same audio signals to multiple receivers, separate audio streams
will be unicast to each receiving device.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 39

Devices on a Q-LAN network implement the Q-Sys network control protocol, which is
an IP-based protocol for device control, monitoring and signal routing.

Q-LAN resource allocation

Q-LAN can be deployed on existing (end-to-end) gigabit Ethernet infrastructure. It is
able to ensure the necessary quality of service (QoS) for time-sensitive data transmis-
sion, by prioritizing Q-LAN packets over other traffic on the network. It utilizes the
Differentiated Services (DiffServ) technique for QoS, and operates using three priority
classes [62]. The traffic classes used by Q-LAN are:

• Expedited Forwarding (EF) - used for clock transmission

• Assured Forwarding (AF41) - used for audio transmission

• Default classification (0) - used for control message transmission

Each switch on the Q-LAN network implements a minimum of four queues for each
egress (outward) port, in order to handle the network traffic. The transmission selection
mechanism used by these switches is the strict priority selection, which ensures that
high priority traffic is transmitted before the lower priority traffic.

Q-LAN device synchronization

Q-LAN utilizes Precision Time Protocol (PTP) for synchronizing the local clocks of
each networked device [52]. The devices on the network are synchronized to a common
clock of a dedicated device, known as the grandmaster. PTP enables the grandmaster
to transmit periodic time updates on the network, which are used by the other devices
to update their local clocks. A device on the network is also capable of periodically
querying the grandmaster for its time.

Q-LAN network latency

Q-LAN imposes restrictions on the number of hops between a transmitting and a re-
ceiving device, based on their distance apart. The further away the devices, the fewer
the number of hops that are permitted.

The latency on a gigabit Ethernet infrastructure is less than 12 microseconds, and net-
work switches are required to have a latency that is less than 10 microseconds. The
total amount of time that is allowed for data transfer on the Q-LAN network is 243
microseconds [68].

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 40

2.2.3.2 RAVENNA

The Real-time Audio Video Enhanced Next-generation Network Architecture (RAVENNA)
is an Internet Protocol (IP) based real-time media distribution technology [8]. RAVENNA
does not define any new protocols, but rather utilizes established protocols and standards
that cooperate to enable media streaming on an IP infrastructure.

It was designed as a low latency data transport for high performance audio applications,
where tight synchronization and network reliability are required. A RAVENNA network
is scalable with the IP infrastructure on which it is deployed, although RAVENNA is IP
infrastructure-agnostic [51]. Traditional IP network traffic can co-exist with RAVENNA

If redundancy is required, RAVENNA provides fault tolerance by transmitting the same
stream data (with the same time stamp) across separate routes on the network [51]. Both
multicast and unicast messaging are permitted on RAVENNA networks.

RAVENNA uses the Real-time Transport Protocol (RTP) for streaming media on the
network [69]. This enables the media streams to be available to a wide range of applica-
tions that support RTP. The media streams are encapsulated within Real-time Transport

Protocol/Audio Video Profile (RTP/AVP) payload, and are transported within User Data-

gram Protocol/Internet Protocol (UDP/IP) packets [70] [71] [67]. RAVENNA supports
16-bit (‘L16’) and 24-bit (‘L24’) digital audio stream formats which are defined in RFC
3551 and RFC 3190, respectively [70] [72].

RAVENNA implements a tight synchronization scheme, and for interoperability with
networked devices this synchronization scheme must be implemented by the networked
nodes.

RAVENNA uses Real Time Streaming Protocol (RTSP) to remotely configure audio
stream connections between networked RAVENNA nodes [73]. It also recommends
that RAVENNA nodes implement Hypertext Transfer Protocol (HTTP) web servers,
which allow for remote device configuration and control [74].

RAVENNA resource allocation

RAVENNA uses Differentiated Services (DiffServ) to ensure quality of service (QoS)
for media streams on a RAVENNA network [62]. This ensures that RAVENNA packets
are prioritized over other traffic on the network, thus reducing jitter at receiving nodes
and packet loss when there is traffic congestion on the network.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 41

RAVENNA device synchronization

On a RAVENNA network, a grandmaster node provides the master clock that is used
to synchronize every other node on the network. Each RAVENNA node maintains a
local clock that is tightly synchronized with the master clock. The master clock can
be obtained from either a dedicated clock source such as Global Positioning System

(GPS), or a RAVENNA node that assumes the role of grandmaster. When selecting a
RAVENNA node to assume the role of grandmaster, RAVENNA uses the Best Master

Clock Algorithm (BMCA), which is defined by the Precision Time Protocol (PTP) [52].

RAVENNA utilizes Precision Time Protocol Version 2 (PTPv2) for clock distribution on
a network [52]. The local clock on each networked node is synchronized with a master
clock that is transmitted using PTP. The accuracy of the local clock with respect to
the grandmaster’s clock is approximately 100 nanoseconds given that there is sufficient
support from the network infrastructure.

The master clock is transported within PTP packets. When a node receives a PTP
packet, it synchronizes its local clock with the master clock, thus maintaining a tight
‘sync’ with the grandmaster’s clock. The local clock on a RAVENNA node is used to
synchronize its media clock. The media clock is used to sample audio that arrives at
the analog audio input of the node. Each sample is time stamped using the local clock
and stored in a buffer. When the appropriate number of samples have been received,
RTP packets are used to transmit the audio samples on the network [69]. On a receiv-
ing node, the RTP packets are de-packetized then stored in the receive buffer until their
play-out (presentation) time. The play-out time is determined by the local clock on the
receiving node.

RAVENNA network latency

The network latency on a RAVENNA network varies, depending on the network in-
frastructure (that is network bandwidth, capacity of switches, and number of hops), as
well as on the number of samples and channels being transmitted. A minimum network
latency of approximately 1 millisecond can be expected on a RAVENNA network [51].

2.2.3.3 Livewire

Livewire is a proprietary standards based Internet Protocol (IP) technology that uti-
lizes standard Ethernet infrastructure to provide low latency audio distribution for high

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 42

performance applications. Livewire traffic can coexist with traditional Ethernet traffic,
including traffic from Voice over IP (VoIP), file transfers, and emails [75].

There are two types of devices that implement Livewire. These are [76]:

• Hardware nodes - physical devices that implement Livewire, for example Axia

AES/EBU digital audio node [77] and Axia Router Selector Node [78].

• PC nodes - PC workstations that incorporate the Livewire software driver. The
software driver appears like a hardware interface on the PC (workstation), while
actually streaming audio via the workstation’s Ethernet interface.

A Livewire device that has audio streams to offer, advertises its audio sources with
a text name (maximum of 24 characters) and an associated numeric identifier on the
network. Devices capable of receiving the audio, build up a list of available sources on
the network [76].

There are two types of streams that are transmitted by Livewire nodes. These are [9]:

• Livestreams - which are small packets that are transmitted frequently, and are
optimized for low-latency transmission. Livestream packets have an audio data
size of 72 bytes which contains 12 samples of 24-bit audio at a sampling rate of
48kHz. Livewire hardware nodes are able to receive the livestream packets on the
network, but PC nodes are unable to receive these packets because of their fast
transmission speeds.

• Standard streams - which are much bigger packets in comparison with livestreams.
They are also intended for real time transmission. The audio data size of a stan-
dard stream packet is either 1440 bytes (for 240 samples of 24-bit audio at 48 kHz
sampling rate) or 720 bytes (for 120 samples of 24-bit audio at 48 kHz sampling
rate). Livewire utilizes the Real-Time Protocol (RTP) over IP to multicast stan-
dard streams on the network. Standard streams can be transmitted and received
by both hardware nodes and PC nodes.

This technology is able to distribute audio data, together with control messages on the
same Ethernet infrastructure. Livewire Routing Control Protocol (LWRP) is imple-
mented by all Livewire devices, and it enables signal routing on a Livewire network. In
order to allow for sophisticated device configuration and control that go beyond routing
audio signals between connected devices, the Livewire Control Protocol (LWCP) can be
implemented within the Livewire devices [75].

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 43

Livewire resource allocation

Livewire audio streams (livestreams and standard streams) can be transported on the
same Ethernet network infrastructure as traditional Ethernet traffic. Hence care must
be taken to ensure that the audio data is prioritized over other traffic. Livewire utilizes
a quality of service (QoS) approach that involves various components of the network.
The QoS approach ensures that [75]:

• the Ethernet switches are able to dedicate an entire port to a single node.

• there are full-duplex collision free Ethernet links that allow the full link bandwidth
to be utilized in each direction.

• audio data is prioritized over non-audio traffic on the network.

This QoS approach makes it possible to reliably deliver audio data on a network infras-
tructure that is shared with standard Ethernet traffic.

Livewire device synchronization

In order to synchronize the devices on a Livewire network, a device designated as the
clock master distributes its clock at regular intervals.

Each Livewire node implements a Phase Locked Loop (PLL), which is used to recover
the local clock from the multicast clock of the master clock. The PLL consists of hard-
ware and software components that work together to ensure that the differential delay is
less than 5 microseconds network-wide [9].

The clock master is selected via an arbitration process that ensures that a device with
the highest clock master priority emerges as network clock master. The clock master
priority is in the range ‘0’ to ‘7’. During the clock master arbitration process each
competing device multicasts its priority. A clock master priority of ‘0’ indicates that the
device should never be assigned the responsibility of clock master, while a ‘7’ indicates
that the device should always be designated as the network clock master. Typically a
device’s manufacturer configures the default clock master priority to ‘3’.

Livewire network latency

A network latency of 0.75 millisecond can be expected from a Livewire network [79].

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 44

2.2.3.4 Dante

Dante is a proprietary media transport technology that was developed by Audinate in
2006 [80]. It allows for low-latency, multi-channel digital audio streaming over Ethernet
networks [10]. By utilizing existing Internet Protocol (IP) standards, Dante is able to
ensure high-performance audio distribution on networks that transport other Ethernet
traffic such as file transfers and emails.

Dante transports control data and high-bandwidth digital audio data, on existing (100Mbps
and 1Gbps) Ethernet network infrastructures. The audio data is transported within User

Datagram Protocol (UDP)/ IP packets [65] [67] [10]. Typically audio streams are uni-
cast from a transmitter to a receiver on a Dante network. However a multicast transmis-
sion mode where a transmitter sends data to multiple receivers, is permitted [81].

As many as 1024 bi-directional channels of 24-bit audio sampled at a rate of 48kHz can
be transported on a gigabit Ethernet Dante network. If the Ethernet network bandwidth
is 100Mbps, Dante allows for up to 96 bi-directional 24-bit audio channels at 48kHz
sampling rate [80].

An audio stream on a Dante network is identified by its unique (descriptive) label. The
use of descriptive labels allows streams to be easily identified on a control application
user interface. A label can be remotely modified, at anytime, by a controller on the
network. The stream labels persist even after powering off and restarting the device.

With regard to control workstations, Dante does not require additional hardware. The
Dante Virtual Soundcard is software that enables a workstation (Windows or Macin-
tosh) to transmit and receive multiple channels of audio via a standard Ethernet interface
[82].

Dante resource allocation

Dante implements a quality of service (QoS) approach that allows audio streams to
be reliably transmitted on a standard Ethernet infrastructure. Differentiated Services

(DiffServ) are used to prioritize audio data over IP packets on the network [62] [80].

Dante device synchronization

The Dante audio networking technology utilizes Precision Time Protocol (PTP) for
clock synchronization [52]. PTP enables the clock of a dedicated clock source device
(known as the grandmaster) to be distributed to the other devices on the network. The
PTP mechanism has been described in section 2.2.4.2.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 45

Dante network latency

Network latency as low as 150 microseconds can be achieved between devices directly
connected to each other [81]. On a network with gigabit Ethernet switches (end-to-end),
latency of 1 millisecond is achieved when the number of hops is 10 [83].

2.2.4 Review of Layer 3 Audio Networking Technologies

Some of the notable features of each of the layer 3 technologies for audio transport, are
highlighted below.

• Q-LAN

– Is a proprietary transport technology.

– Distributes audio data over 1000Mbps Ethernet link.

– Each I/O device has a maximum of 16 input channels and 16 output chan-
nels.

– Each Core device has a maximum of 512 input channels and 512 output
channels.

– Transports 32-bit floating point audio data at 48kHz sampling rate.

– Prioritizes audio data over non-audio data using the DiffServ protocol.

– Synchronizes networked devices using PTP.

– Network latency is 243 microseconds.

• RAVENNA

– Is an open standard transport technology.

– Allows audio data and standard Ethernet traffic to coexist.

– Uses RTP for audio transport.

– Transports 16-bit uncompressed audio.

– Transports 24-bit linear encoded audio.

– Prioritizes audio data over non-audio data using the DiffServ protocol.

– Synchronizes networked devices using PTP.

– Ensures less than 1 millisecond network latency.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 46

• Livewire

– Is a proprietary audio transport technology.

– Distributes audio data over 100Mbps or 1000Mbps Ethernet links.

– Allows audio data and standard Ethernet traffic to coexist.

– Transports 24-bit audio at a sampling rate of 48kHz.

– Prioritizes audio data over non-audio data in order to guarantee QoS.

– Clock master distributes its clock information at regular intervals in order to
synchronize the clocks of the other devices on the network.

– Network latency is 0.75 millisecond.

• Dante

– Is a proprietary audio transport technology.

– Distributes audio data over 100Mbps or 1000Mbps Ethernet links.

– Allows audio data and standard Ethernet traffic to coexist.

– Transports 24-bit audio at a sampling rate of 48kHz.

– Transports a maximum of 1024 bi-directional channels on 1000Mbps (giga-
bit) Ethernet links.

– Transports a maximum of 96 bi-directional channels on 100Mbps Ethernet
links.

– Prioritizes audio data over non-audio data using the DiffServ protocol.

– Synchronizes networked devices using PTP.

– Network latency of 150 microseconds on point-to-point connections.

– Network latency less than 1 millisecond when data is transported over ten
hops.

There are some similarities between the above layer 3 audio networking technologies.
These include:

• The use of Ethernet links for distributing multiple channels of audio data.

• The use of standard Ethernet infrastructures (including network switches).

• Time sensitive (audio) data is prioritized over other standard Ethernet traffic, such
as e-mail traffic.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 47

• With the exception of Livewire, a common approach for device synchronization.

In spite of these similarities, the different audio sampling rates, audio formats, device
synchronization schemes (for example Livewire), and number of channels within an
audio stream, makes it difficult to attain interoperability between the different layer 3
audio transport technologies.

2.2.4.1 Interoperability on layer 3 networks

Interoperability remains a challenge between the various layer 3 IP-based audio trans-
port technologies. In order to solve this problem, the AES-X192 project was initiated
within the AES. This project aims to provide a set of recommendations that will provide
the necessary QoS for high performance audio streaming over IP-based networks.

By complying with a standard, manufacturers are guaranteed that their devices can ex-
change audio data with compliant devices from different manufacturers. Hence a num-
ber of promoters of different audio networking technologies are actively participating
in the development of a standard within the X192 project. This standard is described in
the following subsection 2.2.4.2.

2.2.4.2 AES-X192 for Layer 3 Interoperability

The AES-X192 project was initiated in 2010 by the Audio Engineering Society (AES) in
an effort to develop a standard for audio interoperability over high performance IP net-
works [84]. The AES-X192 project investigates the various Internet Protocol (IP) based
networking technologies that are deployed in audio networks, in an effort to produce
a recommendation that would be published as an AES standards document. This rec-
ommendation should describe how interoperability can be achieved between networked
audio devices by utilizing existing IP-based network standards.

The AES-X192 document is in the draft stage, but has started to address the following
concerns within IP-based audio networks [11]:

• Synchronization - the mechanism by which a common time base is distributed to
devices on the network. When multiple receivers are synchronized to the same
clock, they are able to play back audio (that might have arrived through different
network paths from the transmitting device) at the same time.

• Media clock management - is concerned with the relationship between a media
clock and the (common) time base on the network. The media clock is used by

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 48

a transmitting device to sample audio, and by a receiving device to play back the
audio streams.

• Transport - the technique used for end-to-end transmission of audio and control
data on the network. It includes flow control, ordering, and time stamping of
packets in high performance audio networks.

• Encoding - is concerned with the packetization of audio data, which are transmit-
ted as streams on a digital audio network. The encoding of audio data is concerned
with payload formats, sample rates, and stream channel counts for the digitized
audio data. This ensures that the audio that is transmitted can be reproduced at
the receiver(s), irrespective of the manufacturer of the transmitting and receiving
devices.

• Stream description - is concerned with the format used to describe critical in-
formation about an audio stream. Such information includes the stream source
information, network address, and encoding format. This information is required
for discovery and connection management.

• Discovery - the mechanism for determining the available devices and services
offered on the network. Networked devices should be able to obtain a list of
available devices and services, and should be notified when a device or service is
no longer available.

• Connection management - the procedure for establishing and destroying audio
stream connections between transmitting and receiving devices.

AES-X192 recommends the use of the Real-time Transport Protocol (RTP) for audio
data transport [69]. It recommends that audio is encoded as 16-bit uncompressed linear
audio data samples (defined in RFC 3551 [70]) at 48kHz sampling rate, or 24-bit un-
compressed linear audio data samples (defined in RFC 3190 [72]) at a sampling rate of
48kHz. Another requirement is that AES-X192 compliant audio devices should be able
to receive audio streams that contain from 1 to 8 channels of audio.

AES-X192 is currently at an advanced stage of development. It promises interoperabil-
ity between devices that comply with the standard, and quality of service for real-time
audio transmission on IP-based networks.

AES-X192 resource allocation

AES-X192 seeks to ensure that an IP network provides the quality of service (QoS) for
the transmission of real-time audio. It recommends that audio streams are transmitted

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 49

within IP version 4 (IPv4) packets [67]. These packets may be multicast or unicast from
transmitter to receivers, but networked devices that conform to AES-X192 are required
to support IGMP version 2 (IGMPv2) or IGMP version 3 (IGMPv3) [85] [61].

The QoS strategy ensures that audio data, which is time-critical, is prioritized over non-
time-critical traffic. The current AES-X192 documentation suggests that AES-X192
networks will utilize Differentiated Services (DiffServ) technique as defined in RFC
2474 to ensure QoS [62]. DiffServ prioritizes IP packets based on the value of the
Differentiated Services Code Point (DSCP) field, which determines the traffic class of
an IP packet. AES-X192 defines three traffic classes, namely:

• Clock - used for PTP (clock) messaging and its value is ‘46’.

• Media - used for transmitting media streams and its value is ‘34’.

• Best effort - used for control and status update messaging such as messages used
for discovery and connection management. Its value is ‘0’.

These values are set in the DSCP field within an IP packet. The higher the DSCP value,
the more urgent the packet is considered to be. Standard IP traffic such as email, and
messaging have a DSCP value of ‘0’.

AES-X192 device synchronization

Synchronization between networked devices enables multiple receivers of an audio
stream to playback the audio at the same time, and at the same rate. The AES-X192
project recommends the use of Precision Time Protocol (PTP) defined in IEEE 1588-
2008 [52]. PTP provides a means for a common clock to be distributed between PTP-

aware nodes on a network.

A node on the network, known as the grandmaster, distributes its clock to the other
nodes. The grandmaster is determined by a Best Master Clock (BMC) algorithm, which
results in a master/slave hierarchy being established between interconnected nodes. The
grandmaster forms the root of the hierarchy and the leaf nodes are slaves. Each master
node propagates a PTP message (containing time information) to its slave node. A
bridge in the path between grandmaster and leaf nodes, could be either a Boundary

Clock (BC) or a Transparent Clock (TC) [86].

A boundary clock is a PTP-aware bridge that receives PTP clock signals on one of its
ports, which is a slave to a port on another node. Its other ports are slaves to this port,
such that PTP messages received on the port are propagated to the other (slave) ports.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 50

A transparent clock (TC) is a PTP-aware bridge that is capable of calculating the time
a PTP message has spent in the bridge. This time is called the residence time. The TC
adds the residence time to the time information within the PTP message before sending
it off to its slaves. Figure 2.6 depicts a PTP-aware network.

Figure 2.6: PTP-aware network

There are six PTP-aware nodes in the network shown in Figure 2.6. The ‘GrandMaster’

is the source of the clock information used to synchronize the networked nodes. A
synchronization hierarchy is formed, such that the ‘GrandMaster’ clock is received by
‘PTP-aware 1’, which is a PTP-aware node and slave to ‘GrandMaster’. The clock of
‘PTP-aware 1’ is master to the PTP-aware bridge which has a transparent clock (‘TC’).
‘TC’ clock is in turn the master to the clocks on ‘PTP-aware 2’ and boundary clock
(‘BC’). ‘tc0’ is the clock information received by ‘TC’. ‘tc1’ and ‘tc2’ are the clocks
that are propagated to ‘PTP-aware 2’ and ‘BC’, respectively. The values of ‘tc1’ and
‘tc2’ includes the residence time on ‘TC’. ‘TC’ does not need to be synchronized, that
is it should be ‘transparent’. However, it is required that ‘TC’ is able to determine
the residence time, and that it adds the residence time to the clock information that it
distributes. When ‘BC’ receives clock information, it synchronizes its local clock (like
any of the other PTP-aware nodes on the network), then it propagates clock information
onto its clock slave (‘PTP-aware 3’).

PTP allows for different modes of operation, clock types, parameter values, attributes
and options that result in interoperability becoming a challenge [87]. As a result a
particular application context is allowed to define a PTP profile which it can utilize.
A PTP profile defines a constrained set of operations, attributes, options and modes of
operation that can be utilized within a defined context.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 51

In order to enable interoperability between AES-X192 compliant nodes, AES-X192
defines a media (PTP) profile that can be used by standard IP nodes that do not have
dedicated hardware for time-stamping. It also allows for the Ethernet AVB synchro-
nization protocol (that is the IEEE 802.1AS standard) to be used for high-performance
IP networks. A heterogeneous synchronization scheme that will allow a common clock
to be shared between nodes that utilize the media profile and those that utilize IEEE
802.1AS synchronization is being developed.

AES-X192 network latency

AES-X192 aims to enable interoperability for high-performance streaming of audio. It
defines a packet time latency of 1 millisecond, so that it is suitable for a wide range
of audio applications [11]. Packet time latency refers to the amount of time it takes a
transmitting device to packetize audio data for transmission. All AES-X192 receivers
are required to be able to receive audio packets that have 1 millisecond of audio data.
This is expected to allow for interoperability between a variety of audio equipment.

2.3 Audio Networking Technology Interoperability

In section 2.2.2.1, a tunneling approach for interoperability between two layer 2 audio
networking technologies, was described. The tunneling approach involved the active
participation of a tunneling node, which implements the two audio networking tech-
nologies. In section 2.2.4.1, the AES-X192 project was described as a consolidated
effort by different audio manufacturers to provide a common set of recommendations
that guarantee interoperability on IP-based networks.

However, device control is necessary to ensure that the networked audio devices can be
remotely configured when establishing or destroying audio stream connections. Typi-
cally when devices are connected on a network, they require user intervention to select
which stream(s) should be transmitted on the network, and which stream(s) should be
received from the network. In order to allow for this, each device implements an audio
control protocol that allows for local and remote device configuration. Also, an audio
control protocol ensures that a network controller is able to discover all compliant nodes
on the network.

Even if there is network transport interoperability between networked audio devices,
each device needs to observe a common control protocol for stream communication.
This will be the focus of subsequent chapters.

CHAPTER 2. NETWORK TECHNOLOGIES AND INTEROPERABILITY 52

2.4 Summary

Digital networking technologies provide solutions for interconnecting audio devices.
The transmission of audio between networked devices requires that the networking tech-
nology is capable of providing the necessary quality of service. This includes being able
to guarantee that:

• there are sufficient resources on the network,

• the networked devices are synchronized,

• the network latency is kept to a minimum.

There are a number of audio networking technologies that meet these requirements.
Some of the audio networking technologies implement low-latency real-time audio
transport on OSI/ISO layer 2. Others implement IP-based high-resolution audio trans-
port on layer 3. In this chapter, these two approaches were described in an effort to give
an overview of some of the available audio networking technologies.

The existence of different networking technologies, each defining its own audio sam-
pling rate, audio format, resource allocation scheme, transaction type for audio data
transmission, and device synchronization mechanism, makes it difficult for devices that
utilize different transport technologies to exchange audio data. Hence interoperability
does not exist between devices that implement different audio transport technologies.

Two approaches to audio network interoperability were described in this chapter. One
approach involved the extraction and encapsulation of audio data into different packet
structures, as the audio is transported from one layer 2 networking technology to an-
other. The second approach is a united effort by promoters of different technologies to
standardize the techniques used for audio transport on layer 3 networks. Irrespective of
the approach used, an audio device requires a control protocol that will enable it to be
configured. Typically, an audio transport technology will allow audio data and control
commands to be transported on the same network.

Chapter 3

Audio Network Control Protocols

In the previous chapter, an audio networking technology was described as a means of
interconnecting nodes such that audio from a source node can be transported to one or
more destination nodes. In order for a networking technology to be able to assume the
role of transport protocol for real-time audio transmission, it should be able to ensure
deterministic and guaranteed delivery of audio streams without degradation in the audio
quality.

Because audio devices are networked as nodes on an audio networking technology, con-
trol and monitoring is possible from a remote device. This chapter provides information
about some of the available audio control protocols, which make it possible to remotely
monitor and adjust parameters of remote audio devices.

3.1 Audio Control Protocols

When devices are networked, it is desirable to be able to remotely control multiple de-
vices that might be some distance from the controller. An audio control protocol enables
networked audio devices to interpret the instructions that are addressed to them. The
transport protocol (audio networking technology) is used by the audio control proto-
col to exchange messages between compliant devices on a network. However an audio
control protocol is not concerned with how the actual audio streams are transmitted,
but rather focuses on how (control and monitoring) messages are exchanged between
networked devices.

An audio control protocol will typically define:

• a message packet layout,

53

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 54

• the meaning of the information exchanged between compliant devices,

• the layout of controllable parameters within the device,

• a device discovery mechanism,

• a procedure for connection management.

At present, there are a variety of audio control protocols that are being deployed in
different contexts. These protocols include those used in the broadcast industry, hos-
pitality industry, recording and post-production industries, automotive industry, and in
the entertainment industry. In these cases, any number of networked audio devices can
be controlled from a single control booth. In some cases, such as in the hospitality and
tourism industry, multiple (and perhaps mobile hand-held) devices can be used to con-
figure and monitor the networked devices. An audio control protocol should be able to
meet these requirements.

Typically, a commercially available audio device implements only one control protocol.
Hence the manner in which it can be remotely configured is determined by its control
protocol.

An audio control protocol provides a service for a specific application implementation,
such that it receives and transmits messages on behalf of the application. This is repre-
sented in the form of a diagram in Figure 3.1.

Figure 3.1: Audio control protocol interacts with application

An audio networked device is typically designed in the manner depicted in the above
figure. The ‘Application’ depicted in Figure 3.1 could be a networked device controller

that has a:

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 55

• graphical interface component, which is used to present network devices (and
their attributes) to a user, and

• control component, which implements the logic for controlling the networked
devices.

The ‘Audio Control Protocol’ receives all messages addressed to the device via its ‘Net-

work Interface’. It gives meaning to a received message and passes it on to the ‘Appli-

cation’. It also receives instructions from the ‘Application’, and creates the appropriate
commands for onward transmission to the network.

The audio control protocols that are described in this chapter have been classified into
two categories, based on which of the OSI/ISO 7 layers a particular audio control pro-
tocol uses for transporting its messages [26]. In this regard, some of the audio control
protocols described in this chapter utilize the OSI/ISO layer 3 (“Network layer”) audio
transport protocols, and they are typically IP-based. Others utilize the OSI/ISO layer 2

(“Data link layer”) audio transport protocols. These two categories of audio transport
protocols have been described in chapter 2.

In section 3.2 a number of layer 3 dependent audio control protocols, are described.
Section 3.3 provides a description of some of the available layer 2 dependent audio
control protocols.

3.2 Overview of Layer 3 Audio Control Protocols

Some audio control protocols utilize existing OSI/ISO layer 3 protocols for messaging.
Such protocols have been classified in this chapter as layer 3 audio control protocols.
These include the following protocols:

• Open Sound Control (OSC)

• Architecture for Control Networks (ACN)

• Common control interface for networked audio and video equipment (IEC 62379)

• Audio Engineering Society standard for audio applications of networks - Com-
mand, control, and connection management for integrated media (AES-64)

• Open Control Architecture (OCA)

These layer 3 audio control protocols are described in the following subsections.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 56

3.2.1 Open Sound Control (OSC)

Open Sound Control (OSC) is an open specification that was developed within The

Center for New Music and Audio Technologies (CNMAT) at the University of California
Berkeley in 1997 [88]. It specifies a digital media content format for real-time media
control messages [14]. Although OSC was initially intended for audio applications, it
has been used in such fields as show control, gesture recognition, and robotics.

OSC is transport-independent, and it is concerned with how control information is dis-
tributed between networked devices. It has been published as an open specification
which developers can utilize, and it does not define a certification process or any royalty
for adapting the technology. Hence it has a wide range of applications which include
[89]:

• Sensor/gesture-based electronic musical instruments - where sensor(s) are used to
capture physical activities (such as motion, acceleration, pressure, displacement,
flexion, key presses, and switch closures) from a performer. The captured data
from the performer are then processed (by mapping them) in real-time to controls
on an electronic device [90].

• Multiple-user shared musical control - where a number of users interact with an
interface in order to control a shared sonic environment in real-time [91].

• Web interfaces - where a server that implements OSC is used to send real-time
OSC messages to other OSC devices [92].

• Networked LAN Musical Performance - where a group of people in a musical
collaboration make use of networked computers that are able to remotely control
parameters on other computers [93].

• WAN performance and Telepresence - where a number of musicians who are lo-
cated at large physical distances apart, are able to collaborate in a musical pro-
duction [94].

The OSC specification describes communication between networked devices as con-
forming to the client/server architecture. It defines two roles between communicating
devices, namely [95]:

• OSC client - an OSC compliant device that sends a request.

• OSC server - an OSC compliant device that processes a request.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 57

It is possible for an OSC device to have both capabilities, that is OSC client and OSC
server. An example of this is an OSC streaming device (which has been implemented on
a PC) that is capable of discovering other OSC devices on the network, and requesting
them to specify their manufacturer and model. The streaming device can also respond
to requests to set up its stream connections. Such a device is described in chapter 5.

3.2.1.1 OSC messaging

Communication between OSC clients and OSC servers on a network is performed by
exchanging OSC packets. An OSC packet consists of:

• a size field, which specifies the number of 8-bit bytes that make up the packet,

• a content field, which could be either an OSC message or an OSC bundle.

The size of an OSC packet is always a multiple of 4. The first eight bits of an OSC
packet’s content indicates whether the packet is an OSC message or an OSC bundle
[96].

An OSC message consists of:

• An OSC address pattern - this is a URL-style addressing scheme which is com-
prised of an OSC string that begins with the ‘/’ (forward slash) character. An OSC

string is a sequence of non-null ASCII character strings that is terminated with a
null character, followed by null-character padding to ensure that the number of
bits is a multiple of 32.

• An OSC type tag string - is a sequence of characters that represent the arguments
in the message, and they appear in the order in which the arguments occur. This
character sequence (OSC type tag string) starts with a ‘,’ (comma) character, and
is followed by any number of OSC defined argument types. The basic OSC argu-
ment types are:

– 32-bit integer denoted with the character ‘i’

– 32-bit float denoted with the character ‘f’

– OSC string denoted with the character ‘s’

– OSC-blob denoted with the character ‘b’.

An OSC server that receives a message containing unfamiliar characters will ig-
nore the message.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 58

• OSC argument(s) - any number of arguments may be included in an OSC mes-
sage. However, the order in which the arguments appear must match the order in
which the OSC type tag string is encoded.

An example of the structure of an OSC message is provided in section 3.4.1.

An OSC bundle consists of:

• An OSC string - which has a value of ‘#bundle’, and is used to identify the OSC
packet’s content as an OSC bundle.

• An OSC time tag - a 64-bit fixed point number that specifies when the OSC bundle

element (which is described below) should be processed. The most significant
32-bits (of the OSC time tag) represents the number of seconds since epoch. The
epoch used for this field is January 1, 1900. The least significant 32-bits indicates
fractional parts of a second to a precision of 200 picoseconds.

• An OSC bundle element - which consists of:

– size - a 32-bit integer that specifies the number of 8-bit bytes that are in the
contents, and is a multiple of 4.

– contents - are either OSC messages or OSC bundles. It can also consist of
both OSC messages and OSC bundles.

Any number of OSC messages and/or OSC bundles can appear as the OSC bundle el-
ement. An OSC server processes the OSC messages and/or OSC bundles in the same
order as they appear. The OSC bundle element is processed as a single atomic transac-
tion. This means that if any of the contents (OSC messages and/or OSC bundles) within
the OSC bundle element fails (cannot be processed), the entire transaction will fail as
well. The OSC protocol is further described in section 3.4.1.

3.2.2 Architecture for Control Networks (ACN)

The Architecture for Control Networks (ACN) is a collection of protocols and languages
that enable the creation of networked control systems. It was developed by the Enter-

tainment Services and Technology Association (ESTA) together with the Professional

Lighting and Sound Association (PLASA) [97]. ACN was initially intended for use as
a lighting system control protocol that enables interoperability between networked de-
vices. However, it was developed as a reliable control data distribution technology for

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 59

networked devices in lighting, entertainment technologies and other control networks
[98].

ACN specifies a number of independent protocols that can be combined as modular units
in order to create a networked system. To ensure consistency and interoperability, ACN
specifies the use of interoperability profiles which describe how the various modules
(ACN protocols) should be combined in a particular application context.

Communication in an ACN network occurs between ACN components. An ACN com-
ponent is an addressable ACN entity (functional unit or endpoint), which could be a
program or application, that is capable of receiving and transmitting ACN data. Each
component is identified by its Component Identifier (CID) [15]. The CID is a 128-bit
globally unique Universally Unique Identifier (UUID), and is used by a component for
its entire existence [99].

Within an ACN component are a number of controllable units that are known as the
component’s properties. These properties model specific functionalities within a com-
ponent that can be remotely accessed and modified. ACN specifies the protocols that
enable a remote controller to enumerate, monitor and control the properties within an
ACN component. These (modular) protocols include [15]:

• Device Management Protocol (DMP) [100] - defines the addressing structure nec-
essary for identifying individual properties within a component, and the messages
that can be used to efficiently manipulate these properties. The DMP also provides
a mechanism that will enable a component to announce changes to the values of
its properties as they occur.

• Device Description Language (DDL) [101] - is a language for describing DDL

devices in a manner that will enable DDL controllers to interface with them. A
DDL device refers to an entity that can be monitored and configured remotely.
The DDL provides an interface with which a DDL controller is able to enumerate
the device. Devices that can be described with the same DDL description are said
to belong to the same device class. Each device class is uniquely identified by its
Device Class Identifier (DCID), which is a UUID.

• Session Data Transport (SDT) [102] - is used by ACN client protocols (such as
DMP) to transport messages (within sessions) on the network. It ensures that
the standard network infrastructure is efficiently utilized by ‘bundling’ multiple
client protocol messages (which are typically very small) and transmitting them
to a group of components that receive from the same session. A session ensures

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 60

ordered delivery of messages through a bi-directional transport connection be-
tween a leader and one or more members. Typically a majority of the traffic in
a session is downstream from a leader to the other members of the session, al-
though the members may also transmit upstream to the leader. By utilizing SDT,
multiple messages can be multicast on a network with each component extracting
only those messages that are addressed to it.

The unit of a message sent by a client protocol, such as DMP, is known as a Protocol

Data Unit (PDU). ACN defines a common PDU that encapsulates a client protocol’s
PDU. A lower level Root Layer Protocol (RLP) is defined in ACN. RLP combines PDUs
from higher level protocols into packets for transmission on the network, and it transfers
received packets to the appropriate protocol.

ACN utilizes Service Location Protocol version 2 (SLPv2) for device discovery [103].
SLP provides a means for ACN components to publish their presence on a network, and
to discover other components on the network.

3.2.3 Common Control Interface for Networked Audio and Video
Products (IEC 62379)

IEC 62379 is a set of standards that allow for device control and live media stream-
ing over different networking technologies. The IEC 62379 standards were originally
intended for radio broadcasting where (at the time) there was a need for audio to be re-
liably distributed over an Asynchronous Transfer Mode (ATM) network, and for remote
device control on such networks [16].

Each device on an IEC 62379 network is referred to as a unit, and it consists of a number
of functional entities called blocks. Typically a unit (such as a mixing console) will have
a number of interconnected blocks that process an audio signal as it is routed from an
input to an output. The output of one block feeds the input of another block. The IEC
62379 standard defines two special types of blocks, namely:

• input port - connects the other block(s) within a unit to signals from outside of
the unit. It serves as an entry point for external signals to the unit.

• output port - is a block that is similar to the input port in that it is a link between
the blocks within a unit to outside the unit. It receives signals from blocks within
a unit.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 61

The interconnection of blocks within a unit, such that signal that enters the unit from
an input port is routed for processing from one block to the other, is called a processing

chain. Typically the processing chain within a unit indicates the overall functionality of
the unit [16]. Figure 3.2 shows a unit with a single processing chain.

Figure 3.2: IEC 62379 unit with a single processing chain

In Figure 3.2, the ‘Unit’ has four blocks. Two of the blocks are input ports (‘Input port

1’ and ‘Input port 2’) and they are connected to a ‘Mixer’ block, which is then connected
to an output port (‘Output port 1’).

Within blocks are control points called parameters. The value of a parameter can be
adjusted or monitored by a management terminal in order to modify or determine (re-
spectively) the state of the unit. A management terminal is a device that enables config-
uration, monitoring and control of networked IEC 62379 compliant devices.

3.2.3.1 IEC 62379 monitoring and control

For monitoring and controlling networked devices on an IEC 62379 network, the Simple

Network Management Protocol (SNMP) is used [56]. Each unit possesses a Manage-

ment Information Base (MIB) that consists of a number of ‘managed objects’ that are
organized in a hierarchical order [104]. Each (managed) object is uniquely identified by
its Object Identifier (OID), and it (the object) represents the properties within a block.

By performing ‘read’ and/or ‘write’ operations on these objects, a management terminal
is able to obtain status information about the properties within a block, as well as control
those properties. A dot-notation is used to (hierarchically) address objects within a unit.
For example, an audio port can be addressed by the following dot-notation [105]:

1.0.62379.2.1.1

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 62

Which means:

ISO (1)

Standard (0)

IEC 62379 (62379)

Audio (2)

Audio MIB (1)

Audio port (1)

The IEC 62379 standard restricts possible controls that are permitted by users based on
four privilege levels. These privilege levels are [16]:

• listener - is the lowest privilege level, and allows users in this category to only
possess local control of signals.

• operator - is a higher level than the listener privilege level, and users in this cate-
gory are able to adjust controls that affect other users, such as listeners.

• supervisor - is a higher level than the operator privilege level. Instructions that
are targeted at controls from users in this group are of higher priority than those
of the operator. Such controls could affect other users.

• maintenance - is the highest privilege level, and is used for system troubleshooting
and upgrades.

A management terminal can only manipulate the value of a parameter based on its priv-
ilege level.

In order to announce status information on a network, the IEC 62379 standard specifies
that such messages should be broadcast on the network. This enables multiple manage-
ment terminals to be updated with the same message.

3.2.3.2 IEC 62379 discovery

In order to monitor and control a networked IEC 62379 device, a management terminal
typically has to locate and enumerate the parameters within the remote device. The
discovery mechanism requires that a management terminal [16]:

• discover the units on the network and add each discovered unit to a list. Each unit
is identified by a unit 64-bit address that conforms to the 64-bit Extended Unique

Identifier (EUI-64) specification [106].

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 63

• discover the blocks within each unit in its list. Each block within a unit is globally
unique and identified by its block OID. The block OID provides some indication
of the type of block it represents. A unique value called the block ID is used to
identify particular blocks within a unit. A list of blocks is created that associates
a block with its parent unit.

• discover connections between discovered blocks.

After devices have been discovered and their parameters enumerated, a management
terminal can proceed to control them by performing ‘read’ and ‘write’ operations.

3.2.4 Audio Engineering Society standard for Command, Control
and Connection Management for Integrated Media (AES-64)

The Audio Engineering Society standard for Command, Control and Connection man-
agement for Integrated Media (AES-64) is an IP-based peer-to-peer audio network pro-
tocol [17]. Being an IP-based protocol, the AES-64 protocol is transport independent
and has been deployed on Ethernet and IEEE 1394 networks [107]. It was initiated by
UMAN Technologies and called Cross-Fire Network (XFN) [108]. It later became part
of the Audio Engineering Society’s (AES) AES-X170 project. It has been ratified by
the AES and published as AES-64. For the sake of consistency, it will be referred to as
AES-64.

Control points within an AES-64 device are known as parameters. These parameters
can be remotely monitored and controlled. The AES-64 specification defines a number
of parameters that can be used to model a device. Each parameter has a 32-bit value
associated with it, which is known as the parameter identifier (parameter ID). The pa-
rameter ID uniquely identifies a parameter within a device, and can be used to address
it (the parameter).

Each AES-64 device consists of:

• An AES-64 protocol stack (commonly referred to as the XFN stack) - which is
responsible for AES-64 messaging and provides various mechanisms for device
discovery, connection management, parameter subscription and notification, and
maintaining parameter relationships.

• AES-64 device nodes (commonly referred to as the XFN nodes) - which represent
a particular functional entity within the XFN stack. It is possible for a device to

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 64

implement several XFN nodes. For instance an AES-64 proxy device may require
multiple XFN nodes to correspond to each physical device that it proxies on the
network.

• Fixed (7-level) hierarchical parameter structure - which ensures a consistent ad-
dressing scheme for each parameter within an XFN node. Typically each node
consists of multiple parameters. The use of a fixed 7-level hierarchy provides a
way of modeling parameters according to their functionality.

• AES-64 application - which creates the XFN nodes and corresponding param-
eters, and utilizes the XFN stack for communication with remote devices. An
AES-64 application incorporates other functionalities that occur in response to
modification of a device’s parameters.

The AES-64 protocol enables complex relationships between parameters within a group.
This grouping mechanism makes it possible to select parameters, which may reside on
the same or different devices, into a collection for the purpose of establishing various
relationships between them. In particular, the AES-64 protocol enables [109]:

• peer-to-peer relationships between parameters - a change in the value of any pa-
rameter in the group will cause a change in the value of the other parameter(s) in
the group.

• master-slave relationships between parameters - a change in the value of a param-
eter that has been designated as master will cause the other parameters (which are
slaves) to be modified as well. However, the value of any slave parameter may
change without affecting the value of the master parameter or other corresponding
slave parameters in the group.

There are two types of peer-to-peer and master-slave parameter relationships. These
are:

• absolute relationship - in which a change in a member of the group to a new value
causes the other parameters (in the relationship) to be updated to the exact same
value.

• relative relationship - in which a change in the value of a member of the group
causes the other parameters (in the relationship) to be modified by the same
amount, while maintaining the offset in values that exists between them.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 65

AES-64 includes a mechanism for parameters to subscribe to value changes on other
parameters. This mechanism is called a push mechanism [110]. The push mechanism
allows an AES-64 parameter to indicate to a target device, that it is interested in re-
ceiving updates whenever the value of a specified parameter changes. This causes the
XFN stack within the target device to add the requester’s address to its local push list.
The push list is a listing of addresses to which a notification (status change) should be
sent. This mechanism prevents a controller from continuously polling the value of a
particular parameter, thus providing an efficient way for controllers to be updated.

3.2.4.1 AES-64 messaging

The AES-64 specification defines an AES-64 message packet layout, that is used to
transfer AES-64 instructions (commands) and status reports (responses) on a network.
In order to remotely address a parameter, an AES-64 controller transmits a message that
specifies a [17]:

• 128-bit device ID

• 32-bit node ID

• 104-bit message address block that specifies the 7-level address of the target pa-
rameter, or the 32-bit parameter ID of the target parameter.

In order to address multiple parameters with a single AES-64 message, AES-64 defines
a ‘wildcard’ mechanism. When a wildcard is used at any of the 7-levels in an AES-64
message, it implies that the message is targeted at all the alternatives (implemented in
the node) at that level [110].

AES-64 messages are encapsulated within UDP/IP packets, and may be unicast, mul-
ticast or broadcast packets [71] [67]. Unicast packets are used for peer-to-peer device
parameter communication on the network, while multicast packets are used to address
a group of devices. Broadcast packets are used when a message is intended for every
device on the network.

Further details about the AES-64 protocol are provided in section 3.4.2.

3.2.5 Open Control Architecture (OCA)

The Open Control Architecture (OCA) is a control and monitoring protocol for media
networks [111]. It was developed by the OCA-Alliance which was founded in 2011

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 66

[112]. It is designed to operate above various networking technologies including Eth-
ernet AVB and Dante, and is primarily focused on device monitoring and control. The
OCA is a successor of the AES24 project [113]. It is currently being ratified by the
Audio Engineering Society (AES) as part of the AES-X210 project. In its current form,
the OCA protocol has been developed for audio networks, but there are intentions to
enable control of video devices as well.

OCA is an object-oriented protocol that defines [114]:

• the type of objects (which are instances of the OCA classes),

• how objects and their attributes are identified,

• the format of the data transfered between objects,

• the procedure for exchanging data when objects communicate.

The OCA specification is being developed for a network that has between 0 and 10,000
devices [18]. The specification consists of three parts [111]:

• Open Control Framework (OCF) - which describes the models and mechanisms
of the OCA [114].

• Open Control Class (OCC) structure - which describes the nature of the OCA
class hierarchy [115]. OCA classes are instantiated as objects which represent
control points within an OCA device.

• Open Control Protocols (OCP.<n>) - which are the protocols that utilize the OCF
and OCC for particular application contexts. The ‘<n>’ represents an index of
the particular protocol. Presently only the OCP.1 (which is for TCP/IP networks)
has been defined [116]. There are plans for specifying the OCP.2 protocol for
USB connections, and OCP.3 protocol which will be a “text version for various
purposes” [18].

OCA classes are organized in a tree hierarchy with a single root node referred to as a root

class. Subsequent nodes downstream from the root are other derived OCA classes that
each inherit from a single parent class. Each node (OCA classes) in the tree hierarchy
(except for the root class) inherits from exactly one parent node. A derived class is
a specialized entity of the parent class and it may redefine any of the methods that
it inherited from its parent [18]. Each class is uniquely identified by its class identifier

(class ID). A class ID can be used to address a particular class, and it consists of integers
in the dotted number notation. By convention the names of standard OCA classes begin
with the “Oca” characters. An OCA class has a number of [114]:

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 67

• properties - these are attributes that can be remotely monitored and controlled,

• methods - these are used to acquire and/or modify class properties,

• events - enable a remote controller to subscribe to a class such that it is notified
whenever a change occurs to a particular class property.

The OCA device model consists of objects that perform the following roles. These roles
are depicted in the OCA device model of Figure 3.3.

Figure 3.3: OCA device model

The possible roles that can be fulfilled by an OCA object are [114]:

• Managers - are objects whose attributes and states reflect the overall status of the
device. An OCA device is permitted only one manager object.

• Workers - are objects which are control interfaces to the functions within a device.
There are different types of workers based on the type of control functions they
fulfill. These include:

– actuators - which control application functions, for example switches.

– sensors - which detect and report signal parameters and other values back to
controllers, such as signal level sensors.

– blocks - which allow the grouping of objects within a device.

– matrices - which allow objects to be assembled into two-dimensional arrays
within a device.

– networks - which describe digital networks to which the device is attached.

• Agents - are objects which act as intermediaries that are capable of affecting con-
trols within a device, although they (agents) do not perform a signal processing
function.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 68

Each OCA object is uniquely identified by its 32-bit object number (ONo) [18].

3.2.5.1 OCA messaging

Communication between OCA devices occurs between objects, which are instances of
OCA class(es). The message format used by OCA objects to communicate, depends on
the particular OCP protocol. Each OCA message is encapsulated within Protocol Data

Units (PDUs) for transmission on the network. Most OCA messages are unicast in
nature and require that the target OCA object returns an acknowledgement to the source
of the message. The exception to this is the “fast” message, which is multicast on the
network and does not require an acknowledgement. The fast message type is part of the
OCA’s event subscription mechanism, and is typically used for noncritical traffic such
as meter updates on a remote console [18].

An OCA message will typically include [18]:

• a method call,

• a method return status or event notification.

3.3 Overview of Layer 2 Audio Control Protocols

The monitoring and control of networked audio devices can be performed by utilizing
OSI/ISO layer 2 audio transport protocols for transporting command messages and sta-
tus updates. Audio control protocols that do so are classified in this chapter as layer 2
audio control protocols. They include:

• Audio Video Control (AV/C) protocol

• IEEE 1722.1 (AVDECC) protocol

• Music Local Area Network (mLAN) protocol

Each of the above audio control protocols are described in the following sections.

3.3.1 Audio Video Control (AV/C)

Audio Video Control (AV/C) is a protocol that was developed for device control on the
IEEE 1394 serial-bus [117]. In its original form, AV/C utilizes IEEE 1394 asynchronous

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 69

transactions, which permit direct memory ‘reads’ and ‘writes’ to registers on an IEEE
1394 node. Each asynchronous command is acknowledged by the target node. Recently,
there has been a demonstration of AV/C over IP in an effort to transmit AV/C messages
over IP network infrastructure [118]. The 1394 Trade Association (1394TA) maintains
the various AV/C standards [119].

AV/C utilizes the Function Control Protocol (FCP) command and response messaging
mechanism [120]. FCP defines a set of command and response registers. The command
register is called the ‘FCP_COMMAND’ register, and the response register is known as
the ‘FCP_RESPONSE’ register. A controller (IEEE 1394 node) transmits a command
within an FCP frame (which is encapsulated in an IEEE 1394 asynchronous packet) to
a target node. This command is addressed to the FCP_COMMAND register within the
target node. The target node responds by performing an asynchronous transaction to
the FCP_RESPONSE register within the controller. These asynchronous transactions
are writes to the particular registers. AV/C defines a command set that utilizes the FCP
mechanism for device control.

An AV/C device consists of any number of logical entities called units. Depending on
the overall purpose of a device it may implement one or more units. Within a unit are a
number of functional entities called subunits. Figure 3.4 depicts an AV/C unit with its
subunits.

Figure 3.4: Structural layout of an AV/C unit

The AV/C unit shown in Figure 3.4 consists of three subunits. There are different types
of AV/C subunits, for example an AV/C audio subunit and an AV/C music subunit have
been defined by the I394TA [121] [122]. Since a unit may have multiple instances of a
subunit, a 3-bit subunit identifier (ID) is used to uniquely specify a particular subunit.
The AV/C subunits implement a number of functional blocks that perform specific con-
trol or signal processing on behalf of the subunit. The types of functional blocks that

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 70

exist in a device depends on the subunit within which they reside.

An AV/C unit implements a number of input and output plugs, which are virtual end-
points for receiving and transmitting data (respectively). There are different types of
unit plugs, namely [117]:

• serial bus isochronous plugs - for transmitting isochronous data (typically time-
sensitive media streams) from or to the unit.

• serial bus asynchronous plugs - for transmitting asynchronous data (typically non-
critical command data) from or to the unit.

• general bus plugs - make it possible to transmit data between other types of signal
transmission buses besides the IEEE 1394 serial bus.

• external plugs - transmit data between the unit and any other signal source/desti-
nation that is not a bus.

Input plugs act as entry points for data to a unit, and output plugs fulfill the role of exit
points of data from the unit. The AV/C specification defines the address that should be
used for each of the above plug types. Each unit can have a maximum of 31 input and
output plugs.

AV/C subunits implement a number of source and destination plugs. A subunit source
plug is the point of exit of data from the subunit, and the destination plug is the point of
entry of data to the subunit. A maximum of 31 source plugs and 31 destination plugs
may be implemented on each subunit. A device that requires more plugs could do so by
increasing the number of subunits (of the same type) that it implements.

Various connections exist between the unit input plugs, unit output plugs, subunit des-
tination plugs and subunit source plugs. These connections could be fixed, in which
case they are created by the manufacturer, and they cannot be modified by a controller.
In some cases, it is possible for a controller to remotely modify these connections by
sending the appropriate connection commands.

The logical layout of the internal structure of an AV/C device is presented by an interface
known as descriptors and information blocks (info blocks) [123]. An AV/C device’s
descriptors are presented in a hierarchical structure that describes the parameters that it
contains. At the top of the hierarchy is a descriptor known as the root descriptor. There
are three types of descriptors in AV/C, namely [124]:

• unit/subunit identifier descriptor - holds information that is associated with the
entire unit or subunit.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 71

• list descriptor - holds information about the entry descriptors that are contained
within the unit/subunit.

• entry descriptor - is addressable within the descriptor hierarchy, and may contain
other list descriptors or info blocks that provide specific information about the
unit/subunit.

The use of descriptors and info blocks for presenting a device’s information does not
constrain a manufacturer on how a device’s properties are implemented. It rather pro-
vides a consistent way of presenting device information so as to provide a standard way
of remotely enumerating the device’s properties. The actual storage of these parameters
within the device is at the discretion of the device manufacturer. AV/C defines a set
of commands that can be used to acquire and modify a device’s descriptors and info
blocks.

3.3.2 IEEE 1722.1 (AVDECC)

IEEE 1722.1 refers to the IEEE standard protocol for device discovery, connection man-
agement and control of IEEE 1722 based devices [19]. It is currently a draft standard,
and is commonly referred to as the Audio Video Device Discovery, Enumeration, Con-

nection Management and Control (AVDECC) protocol. It is being developed to enable
control of networked Ethernet AVB endpoints that are capable of transmitting IEEE
1722 data streams.

IEEE 1722.1 defines three protocols that will enable the discovery, connection manage-
ment, enumeration and control of AVB endpoints via layer 2 transport. These protocols
are:

• AVDECC Discovery Protocol (ADP) - which defines a mechanism for device dis-
covery on Ethernet AVB networks. It is used by an AVDECC end station to
announce its presence and departure on a network, as well as to discover other
networked end stations.

• AVDECC Connection Management Protocol (ACMP) - which defines a mecha-
nism for establishing and destroying IEEE 1722 stream connections on an Ether-
net AVB network.

• AVDECC Enumeration and Control Protocol (AECP) - which defines a mech-
anism for discovering and controlling the features and functional units within
networked endpoints.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 72

AVDECC messages are encapsulated within layer 2 Ethernet frames that are transmit-
ted on an Ethernet AVB network. Each of the AVDECC protocols defines a particular
Protocol Data Unit (PDU), which is used to encapsulate protocol specific messages.

An end station that is capable of AVDECC messaging is referred to as an AVDECC

entity. An AVDECC entity is uniquely identified by a 64-bit identifier. The possible
roles that an AVDECC entity could fulfill are:

• AVDECC controller - is an AVDECC entity that sends commands to control or ob-
tain information about the other AVDECC entities on the network. An AVDECC

proxy is a special case of the AVDECC controller, which forwards AVDECC mes-
sages between OSI/ISO layer 3 and layer 2.

• AVDECC talker - is an AVDECC entity that is the source of one or more media
streams on the network.

• AVDECC listener - is an AVDECC entity that receives one or more media streams
from the network.

• AVDECC interface - is an entity on the network that is capable of receiving and/or
transmitting AVDECC messages but is not an AVDECC controller, talker, or lis-
tener.

The IEEE 1722.1 standard also defines a device modeling scheme known as the AVDECC

Entity Model. This model standardizes the layout of the various properties and controls
within an AVDECC entity into a structured hierarchy of addressable objects. At the top
level of this hierarchy is an AEM entity object that describes the overall functionality of
the AVDECC entity.

The IEEE 1722.1 (AVDECC) protocol is further described in section 3.4.3.

3.3.3 Music Local Area Network (mLAN)

The music Local Area Network (mLAN) is an IEEE 1394-based audio network con-
trol protocol that allows for the transmission of audio and music control data between
networked devices. To enable this, the mLAN protocol defines a number of formats,
structures and procedures that make it possible to deploy reliable IEEE 1394 networks
within music studios [125]. The mLAN technology enables multiple sequences of audio
and music data (such as MIDI and SMPTE) to be ‘bundled’ together, then transmitted as
data streams from a source IEEE 1394 node and appropriately extracted at the receiving

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 73

IEEE 1394 node. The media (audio and music data) that are transmitted conform to
the “Audio and Music data transmission protocol” specification [37]. mLAN also en-
ables synchronization of networked devices by transporting timing information within
an asynchronous packet’s Common Isochronous Packet (CIP) header. CIP is defined in
the IEC 61883-1 specification [38].

Two approaches were implemented in the mLAN technology. These are:

• mLAN version 1

• mLAN version 2 called the enabler/transporter architecture

In the first generation of mLAN (mLAN version 1) the formats, structures and proce-
dures for device control and connection management were implemented in hardware
(such as the mLAN-PH1 chip [126], and the mLAN-PH2 chip [127]), and associated
firmware within IEEE 1394 mLAN nodes. An mLAN node is regarded as an IEEE 1394
serial bus node that is mLAN compliant. In mLAN version 1, each mLAN node imple-
mented mLAN plugs which were abstractions (in software) of physical signal endpoints.
The mLAN plugs could be ‘source plugs’, in which case they transported signals out
of the mLAN node, or ‘destination plugs’ that are the entry points of signals into the
mLAN node.

mLAN version 1 defined various input and output registers that are associated with par-
ticular input and output plugs on a node. In order to establish a stream, an mLAN
controller would perform an asynchronous write transaction on the output plug register
associated with a particular mLAN source plug on a source node. This write transaction
indicated the channel on which the source IEEE 1394 node should transmit its audio
stream. The controller then performed an asynchronous write transaction to the input
plug register that is associated with a particular mLAN destination plug on the destina-
tion node, specifying the same channel value as written to the source node.

The states of each plug were stored within non-volatile memory on the mLAN nodes,
thus each node was able to restore to its previous state after a power restart.

The mLAN version 1 nodes implemented AV/C descriptors and info blocks to expose
the properties of their mLAN plugs [124]. They also implemented AV/C vendor de-

pendent commands that made it possible to read and modify mLAN plug information,
which were presented using the AV/C descriptor and info block mechanism [117].

Since the descriptor and info block mechanism permits the internal functionality to be
device or manufacturer specific, mLAN defined its own procedures but utilized the de-
scriptors and info blocks for control presentation.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 74

This approach suffered from a number of problems, in particular [128]:

• the large amounts of memory required to implement the mLAN plugs on devices
contributed to high cost of mLAN compliant devices.

• an mLAN compliant devices would require firmware upgrades in order to comply
with bug fixes, upgrades and changes in connection management approach.

• non-mLAN chip manufactures required a considerable amount of effort and ex-
pertise in order to get their devices to communicate with mLAN devices.

• device discovery and enumeration was time consuming for networks with many
devices.

To address these concerns, the Enabler/Transporter architecture (also known as the
Plural-Node architecture) was developed [129]. The core difference between this ap-
proach and the mLAN version 1 approach was the relocation of the mLAN plugs to
reside within a control workstation rather than at the mLAN nodes. Thus a workstation,
which could be a Macintosh, Windows or Linux PC, is required to establish and destroy
connections between networked devices. In order to do this, the controlling worksta-
tion implemented an mLAN control capability known as an ‘Enabler’. A networked
mLAN node implements the Audio and Music (A/M) protocol responsible for encap-
sulating and extracting audio and music data. These nodes are referred to as mLAN
‘transporters’. Each transporter implements a ‘transporter controller interface’ which
is used by an enabler to control the transporter. Each transporter is controlled by only
one enabler, although an enabler may have multiple transporters under its control. This
separation between A/M data encapsulation, extraction and transport, from the actual
mLAN plugs abstraction is known as the plural-node approach, and the enabler is a
plural node device since it incorporates many nodes [129].

Within an mLAN enabler are three layers, namely [128]:

• mLAN plug abstraction layer - implements all mLAN source and destination
plugs of the transporters under the control of the enabler.

• Audio and music manager layer - maintains information about the mLAN plug
parameters under the control of the enabler.

• Hardware Abstraction Layer (HAL) - abstracts information about hardware imple-
mentations of the transporter, thus enabling interoperability between transporters
that are manufactured by different vendors. The HAL communicates with the

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 75

transport controller interface within each of the transporters under the control of
the enabler.

A vendor wishing to communicate with mLAN devices would need to implement a
transport controller interface and provide the associated HAL for the interface to the
enabler as a ‘plug-in’. An Open Generic Transporter (OGT) has been defined, provid-
ing a standard structure for vendors to implement their HAL and associated transport
controller interface [130].

3.4 Protocols of Interest

Chapter 1 mentions the fact that the existence of multiple audio control protocols has
resulted in an interoperability challenge, which is a situation where networked devices
that implement different audio control protocols are unable to communicate with each
other. To resolve the protocol interoperability challenge, this research project has pro-
posed the use of a command translator.

An AES-64 protocol controller was available for this research project. There were also
AES-64 end point devices. The goal was therefore to test the hypothesis using the
controller and layer 2/3 protocols for which:

• there were already device implementations

• there was already take up in the industry and the protocols were likely to be used
in future audio devices

In the previous section, several audio control protocols were described. Typically, an
audio control protocol defines a standard technique for:

• modeling devices that conform to it,

• discovering compliant devices on the network,

• enumerating the device to determine its capabilities,

• connection management, that is the procedure for establishing and destroying au-
dio stream connections.

This section emphasizes these requirements of an audio control protocol. In particular,
further details will be provided on how three of the previously described audio con-
trol protocols are able to meet the above requirements. The audio control protocols of
interest are:

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 76

• OSC,

• AES-64, and

• IEEE 1722.1 / AVDECC

The remaining protocols described in the previous section were not used in this study
for the following reasons:

• IEC 62379 - there were no available devices that implement the IEC 62379 pro-
tocol, and no implementation code that could have been used to create IEC 62379
compliant devices.

• ACN - there were no audio devices that implement the ACN protocol, and no
implementation code that could have been used to create one.

• mLAN - there are no plans to develop mLAN devices in the future.

• AV/C - there are no plans to develop AV/C devices in the future.

• OCA - there were no available devices that implement the OCA protocol, and no
implementation code that could have been used to create OCA compliant devices.

It is worth noting that the OSC and AES-64 audio control protocols are dependent on
the OSI/ISO layer 3 transport technology, while the IEEE 1722.1 audio control protocol
is dependent on OSI/ISO layer 2 transport. Thus the following descriptions will provide
insights into the operations of layer 3 and layer 2 transport dependent audio control
protocols. A goal of this study was to show how the command translation approach
could be used for translation between layer 3 protocols as well as between layer 3 and
layer 2 protocols.

The OSC protocol has been chosen because:

• it is being deployed across a wide range of application contexts. These include
show control, gesture recognition, and robotics.

• the OSC specification is open and ready available online [96].

• there are many implementations of the OSC protocol that can be used to create
OSC applications. These implementations have been written in a number of pro-
gramming languages including C, C++, Java, Ruby, and Python [131].

• OSC messages can be transported within layer 3 IP packets.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 77

The AES-64 protocol has been chosen because:

• The AES-64 protocol has been published as an open standard within an interna-
tional standards body, the Audio Engineering Society (AES) [132].

• The AES-64 protocol incorporates features that are common to most contempo-
rary IP control protocols. These include a connection management procedure, de-
vice discovery mechanism, device enumeration, and device control. It also incor-
porates advanced control features such as joins, push notification and grouping.
An implementation of AES-64 by Universal Media Access Network (UMAN)
was made available for this research [108].

• AES-64 was co-developed with the Rhodes University audio networking research
group, thus AES-64 devices were readily available for this research.

• AES-64 messages can be transported within layer 3 UDP/IP packets.

The IEEE 1722.1 (AVDECC) protocol was chosen for the following reasons:

• IEEE 1722.1 is being developed within an international standards body, the Insti-
tute of Electrical and Electronics Engineers (IEEE) [12].

• The IEEE 1722.1 specification will be an open standard that can be obtained from
the IEEE.

• It utilizes layer 2 transport for message transmission, thus providing an oppor-
tunity to test the command translation approach (proposed in this thesis) across
audio transport layers.

These three open standard audio control protocols, that is OSC, AES-64 and IEEE
1722.1, will be fully described in the following sections.

3.4.1 Focus on OSC

OSC has been described as a control message format exchange protocol that allows net-
worked devices to communicate according to a client-server architecture. In an OSC
network, an OSC client transmits a request to an OSC server, which in turn processes
the received request. Although any type of networking topology is permitted by OSC,
typically UDP/IP is used for transporting OSC packets. These OSC packets provide
an OSC address pattern that specifies the particular OSC method(s) that should be trig-
gered. OSC packets could be either OSC messages or OSC bundles.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 78

Communication between OSC devices involves triggering control points, known as OSC

methods, within the target OSC device. In essence an OSC message specifies the OSC
method (in the form of an OSC address pattern) that should be executed. Figure 3.5
depicts the communication between an OSC client and an OSC server when an OSC
client sends an OSC message to obtain the name of an OSC server.

Figure 3.5: OSC client/server communication

In Figure 3.5, the OSC client sends an OSC message requesting the name of the OSC
server. Thus the OSC address pattern within the message is ‘/device/name’. The OSC
server (in the figure above) responds by sending:

• the same address pattern that was received from the client,

• the argument type (‘s’) which indicates that the response is an OSC string,

• the string value “OSC Server”.

Each OSC device implements an OSC protocol stack, that enables it to parse messages
that conform to the OSC specification.

In order to enable time-critical control of networked devices, the OSC specification
defines OSC time tags which make it possible for a controller device (in the form of
an OSC client) to specify when a particular instruction should be executed by the OSC
server. OSC time tags are used when the message being transmitted is an OSC bundle.

An OSC bundle may comprise nested OSC messages and/or other OSC bundles. All
of the OSC instructions within an OSC bundle are handled as an atomic transaction. In
order words if one of the instructions within an OSC bundle cannot be executed, the
entire ‘bundle’ of instructions are considered to have failed.

In line with other audio control protocols, OSC provides a means of modeling net-
worked devices. It can be used to discover devices on an network, as well as configure
discovered devices such that audio streams can be established and destroyed between
devices. The following sections describes how these are accomplished in OSC.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 79

3.4.1.1 Device model

In OSC, the modeling of device controls is achieved by defining the OSC address space

within the device. An OSC address space incorporates every OSC address pattern that
can be used to address an OSC device. It is an hierarchical structured representation and
addressing scheme that can be used to access all of the OSC methods within the device.
Every OSC server is required to implement an OSC address space.

The OSC address hierarchy can be viewed as consisting of nodes, with the top-most
node being the root node. The root node is identified with the forward slash symbol
(‘/’). The leaf nodes are OSC methods, which are trigger points that can be addressed
by a remote client in other to fulfill a task. All nodes between the root node and the
OSC methods are known as OSC containers. An OSC pattern which is used to address
an OSC method describes the full-path from root node to the OSC method in a URL-
style addressing scheme. Figure 3.6 depicts the OSC address space of a simple OSC
server that is capable of receiving a signal via its input and transmitting the received
signal via any or both of its outputs. For the sake of this example, each input and output
has a mechanism for instructing it to start or stop receiving (in the case of the input) or
transmitting (in the case of the output).

Figure 3.6: OSC address space of a simple OSC server

The OSC server of Figure 3.6 has three OSC containers (‘device’, ‘input’ and ‘output’).
The OSC ‘device’ container has three OSC methods (‘name’, ‘serial’ and ‘vendor’).
The OSC ‘input’ container has one ‘child’ OSC container (‘1’) associated with it. This
OSC ‘1’ container has two OSC methods, namely ‘start’ and ‘stop’. The OSC ‘input’

container has two child containers associated with it, namely ‘1’ and ‘2’. In the same
manner as the ‘/input/1’ container, the OSC ‘/output/1’ and ‘/output/2’ containers each
have associated ‘start’ and ‘stop’ OSC methods.

In order to instruct the input to start receiving signal, an OSC message with an OSC

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 80

address pattern ‘/input/1/start’ would be sent to the server. To stop the same signal, the
OSC pattern within the OSC message will be ‘/input/1/stop’.

The process of mapping an OSC address pattern to a particular OSC method is called
matching, and the processes of invoking (or triggering) the OSC method is called dis-

patching. When an OSC message is dispatched, the application specific implementation
is triggered. This implementation is fulfilled by the OSC method. In certain instances
(for example WOscLib [133]) the OSC methods are implemented as application call-
back functions. This approach enables a loose coupling between application implemen-
tation and OSC message parsing.

The OSC protocol defines a number of special characters that can be used to enhance
pattern matching within an OSC address space. These characters are described in the
OSC specification [96].

Typically an OSC parser will match and dispatch OSC messages on behalf of an appli-
cation. There are a wide range of OSC parsers freely available for download, and a list
of some of them can be found at the OSC website [131].

3.4.1.2 Device discovery

OSC is a message content format specification, and does not explicitly define a device
discovery procedure [134]. The particular technique used for device discovery is con-
sidered to be beyond the scope of the OSC specification, since its primary concern is
how control messages can be exchanged between clients and servers.

However the OSC 1.1 specification suggests that a service discovery procedure that is
based on the Domain Name System (DNS) protocol can be used for OSC device discov-
ery [135]. This technology is known as the DNS-based Service Discovery (DNS-SD)

[136].

DNS-SD enables networked devices to discover instances of a particular service within
a specified DNS domain. A client node on the network utilizes DNS-SD to announce
its presence on the network, and to discover all instances of a particular service type

that are present on the network. The entire process of discovery and advertising on the
network utilizes standard DNS queries. Each instance of a particular service type is
described using DNS-SRV and DNS-TXT records [137] [135].

DNS-SRV describes the format for identifying service instances on a network. It pro-
poses the use of a service identification name of the form shown in Listing 3.1, together
with the host IP and port number necessary for communicating with the service instance.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 81

< i n s t a n c e >. < s e r v i c e type >. < domain >

Listing 3.1: DNS-SRV record syntax

The syntax of the DNS-SRV record shown in Listing 3.1 comprises the following fields:

• ’<instance>’ - a human readable character string that is used to identify a partic-
ular service on a device.

• ‘<service type>’ - defines the type of service that is being offered by the service
instance. A service type is comprised of two labels, both beginning with an under-
score character (‘_’), and separated by a dot (‘.’). The first label indicates the ap-
plication protocol that offers the service (for instance ‘_http’ or ‘_ipp’). The sec-
ond label specifies the transport protocol and would typically be ‘_tcp’ or ‘_udp’.
Thus typical examples of a service type could be ‘_http._tcp’ or ‘_ipp._udp’.

• ‘<domain>’ - refers to the DNS subdomain where the service names are regis-
tered. For example, domain addresses such as ‘tester.interop.com’ and ‘applica-

tion.interop.com’ are said to reside in the same (‘interop.com’) DNS subdomain.

DNS-TXT is used to provide additional information, which is organized as key/value

pairs. For example if the number of inputs and outputs on a devices were to be included
in a DNS-TXT record, it would be of the form shown in Listing 3.2.

i n p u t s =2
o u t p u t s =3

Listing 3.2: DNS-TXT key/value pairs

The ‘inputs’ and ‘outputs’ are referred to as the keys, each having a corresponding value.
In this instance, the DNS-TXT indicates that the device has two inputs and three outputs.

The OSC 1.1 specification suggests that for discovery of OSC devices on a network, the
following OSC service types could be used [134]:

• ‘_osc._tcp’ - which indicates an OSC application via TCP transport.

• ‘_osc._udp’ - which indicates an OSC application via UDP tranport.

The DNS-TXT record could include the version of the OSC protocol implemented on
the device, and the OSC type tags that are supported by the OSC server.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 82

3.4.1.3 Connection management

OSC does not define a connection management procedure. Within the context of au-
dio networks, any application that utilizes OSC is required to define the procedures
and commands that should be followed when establishing or destroying audio stream
connections. The commands necessary for connection management can be transported
within OSC packets.

3.4.2 Focus on AES-64

AES-64 is an IP-based audio control protocol that enables remote device monitoring,
configuration and control via transmission of AES-64 messages. The AES-64 messages
are encapsulated within UDP datagrams, which are in turn encapsulated within IP pack-
ets for transmission on a network.

When a controller transmits an AES-64 message to a target device on the network,
the message is addressed to a parameter within the target device. These parameters
are the control points that determine the state of various properties and attributes of
the device. For example a device may possess a parameter that indicates whether a
particular input is streaming, and another parameter that indicates what audio format
the input can receive. Each parameter can be uniquely addressed in AES-64.

The high-level structure of a UDP/IP packet that is used to transmit an AES-64 message,
is depicted in Figure 3.7.

Figure 3.7: High-level layout of a UDP/IP packet that includes an AES-64 message

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 83

Figure 3.7 shows the:

• IP header - contains the standard Internet Protocol version 4 (IPv4) information
necessary for routing packets from a source to a destination device on a network
[67]. The AES-64 protocol permits unicast, broadcast and multicast addresses
within the IP header. A unicast is used for one to one communication, and broad-
cast is used when the intention is to transmit the AES-64 message to all devices
on the network. Multicast transmission is used when the intention is to transmit
the AES-64 message only to members of a group, that is members ‘listening’ on
a particular group IP address.

• UDP header - provides standard UDP transport of AES-64 messages [71]. The
UDP headers contain a communication port number. The port number ‘7107’

has been registered for the AES-64 protocol by the Internet Assigned Numbers

Authority (IANA) [138].

• AES-64 message - contains the AES-64 protocol specific information, including:

– Node address : refers to the fields within an AES-64 packet that specify the
particular AES-64 node that the message is addressed to. This includes the
following fields:

∗ Destination device ID - a 128-bit field that specifies the target AES-64
device ID.

∗ Destination node ID - a 32-bit field that specifies a particular target
AES-64 node ID.

∗ Source device ID - a 128-bit field that specifies the source (or con-
troller’s) AES-64 device ID.

∗ Source node ID - a 32-bit field that specifies a particular source (or
controller’s) AES-64 node ID.

– Source parameter info - refers to the 32-bit source parameter ID field that
specifies the parameter (within the source device’s node) that generated the
request.

– Message meta-data : refers to the fields within an AES-64 packet that pro-
vide information about the nature of the message. These include the follow-
ing fields:

∗ User-level - an 8-bit field that provides information used to determine
the authorization of the command to modify the target parameter.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 84

∗ Message type - an 8-bit field that indicates whether the parameter ad-
dress that is contained within the message is a hierarchical 104-bit ad-
dress or a 32-bit index of the parameter. It also specifies whether a
response is required from the target parameter.

∗ Sequence ID - a 32-bit field that is used to match requests with re-
sponses. This field provides reliability for AES-64 messaging, which
utilizes UDP transport.

∗ Command executive - an 8-bit field that indicates the essence of the
message.

∗ Command qualifier - an 8-bit field that indicates the attribute of the
parameter that is being targeted.

– Parameter address : there are two types of parameter addresses permitted
by the AES-64 protocol. These are:

∗ hierarchical addressing - refers to the 104-bit field that describes the
full (7-level) parameter address. The 7-level hierarchy is explained in
section 3.4.2.1.

∗ index addressing - refers to the 32-bit parameter index that is unique
to each parameter, and is associated with the parameter by the AES-64
protocol stack when the parameter is created. This is further explained
in section 3.4.2.1.

– Value meta-data : refers to the 8-bit (valft) field that specifies the format of
the parameter’s value, which is contained within the message.

– Value : is a variable length field that indicates the actual value of a parameter,
and is of the format specified by the value meta-data.

A detailed structure of the AES-64 packet can be obtained from the AES-64 specifica-
tion [17].

AES-64 messages can broadly be considered to be of two types. These are:

• ‘Get’ message - used to obtain the value of a parameter. This type of message
does not contain any value in the value block of Figure 3.7.

• ‘Set’ message - used to modify the value of a parameter. When this type of mes-
sage is transmitted by a controller, a value is indicated and it will be of the format
specified by the value meta-data of Figure 3.7.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 85

The AES-64 specification defines a large number of parameters whose values can be
acquired and/or modified by a controller in order to monitor or change the state of an
AES-64 device [17]. Associated with each parameter is an application specific callback

that implements the functionality of the parameter. While the hierarchical addresses
provide a way of communicating with a particular parameter, the callback associated
with that parameter fulfills the instruction. For example a message to ‘set’ a gain pa-
rameter on a particular input signal on a mixer will cause the callback associated with
the gain parameter to be executed. It is this callback that will actually cause the new
value to be set on the gain, thus resulting in an observable effect. Figure 3.8 shows how
an AES-64 device processes a message.

Figure 3.8: AES-64 message triggers a parameter’s callback

In Figure 3.8, an AES-64 message is received and processed by the ‘AES-64 Protocol

Stack’. It matches the address within the received message with the specified parameter.
This causes the callback associated with the parameter to be triggered.

Every AES-64 device incorporates an AES-64 protocol stack, which is responsible for
protocol specific implementations. These include:

• AES-64 command packetization and extraction,

• abstracting AES-64 nodes,

• identifying the parameter(s) that a particular AES-64 message is addressed to,

• enabling discovery by responding to AES-64 discovery requests,

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 86

• enabling the parameter grouping mechanism.

Although the AES-64 protocol can be used to control any type of device, its current
implementations are targeted at audio devices. The following subsections describe how
AES-64 is able to meet some of the requirements of an audio control protocol mentioned
in section 3.4.

3.4.2.1 Device model

AES-64 provides a mechanism for modeling compliant devices. The device model relies
on the AES-64 protocol stack to create nodes and parameters that adequately model the
various functionalities and attributes within the device. Figure 3.9 depicts a conceptual
layout of an AES-64 device model.

Figure 3.9: AES-64 conceptual device model

At the bottom of the AES-64 device model depicted in Figure 3.9 is the ‘IP stack’, which
‘picks’ up IP messages from the network. In particular UDP traffic on the designated
AES-64 communication port (7107) is ‘passed’ on to the AES-64 protocol stack. This
protocol stack then executes the instruction specified in the ‘message meta-data’ for the
parameter specified by the ‘parameter address’ section of the AES-64 message. The
AES-64 message structure has been described in section 3.4.2. The ‘AES-64 stack’

is responsible for determining that the received message is meant for the device by
comparing the value of the destination device ID field (within the AES-64 message)
with its own 128-bits device ID.

Above the ‘AES-64 stack’ are a number of functional units known as nodes. An AES-64
application (or device) may have any number of nodes, with each node corresponding to

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 87

a particular functional entity. However each node will possess a unique 32-bit identifier
known as its node ID. For example, a proxy device may instantiate multiple nodes, with
each node corresponding to each device that it proxies.

The parameters are contained within a node. These parameters are created by the AES-
64 stack, and associated with each parameter is a 32-bit unique identifier known as the
parameter ID. The parameters within an AES-64 node are structured in a fixed 7-level
hierarchy that can be used to address the particular parameter. The seven levels allow
for a consistent way of presenting parameters to a remote controller.

The seven-levels defined by AES-64 are [17]:

• Section block - is the highest level of the hierarchy that describes in the broadest
sense a grouping to which a particular parameter can be associated. For instance,
input section and output section.

• Section type - is a further categorization of the section block into smaller group-
ings. For example, audio input and video input are both inputs, but have been
further classified.

• Section number - is a number that is used to categorize a parameter based on the
signal path it is associated with. For example for digital audio signals the section
number would be the channel number of the signal.

• Parameter block - categorizes parameters into their functional blocks. For exam-
ple a parameter block a group of parameter equalizers that allow for wide ranging
equalization of an audio channel.

• Parameter block index - specifies particular parameter groupings within the func-
tional blocks. For example, each parameter equalizer type could be assigned an
index 1, 2, 3 and so on.

• Parameter type - indicates the particular functionality of the parameter. An exam-
ple would be a gain, or frequency in a parameter equalizer.

• Parameter index - is a number that identifies the particular parameter. For in-
stance, if a device has more than one gain parameter, this parameter index speci-
fies which of the parameters is being addressed.

Each of the levels listed above has a defined set of values with particular meanings. A
full listing of the defined values of each of these levels can be obtained from the AES-
64 specification [17]. Figure 3.10 shows the layout of an example 7-level parameter

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 88

structure that can be used to access the name parameter and globally unique identifier

(GUID) parameter (such as serial number) on an AES-64 node.

Figure 3.10: AES-64 7-level parameter hierarchy

As shown in Figure 3.10 each tree node in the 7-level parameter tree has a value as-
sociated with it. In this case, the values shown are those that are associated with the
‘GUID’ parameter (on the left side) and the ‘DEVICE_NAME’ parameter (on the right
side) of the tree. These values are necessary when addressing a parameter. The structure
of the ‘Parameter address’ block of Figure 3.7, when addressing the ‘DEVICE_NAME’

parameter is shown in Figure 3.11.

Figure 3.11: An example AES-64 message’s parameter address for a ‘DEVICE_NAME’
parameter

As mentioned earlier, the 32-bit parameter index that is associated with the parameter at
its time of creation can be used instead of the full 7-level address shown in Figure 3.11.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 89

It is possible to address multiple nodes at any level of the 7-level parameter hierarchy,
by using the ‘wildcard’ mechanism. For instance, if a controller wanted to obtain both
parameters shown in the tree structure of Figure 3.10, it could ‘wildcard’ the ‘Parameter

block’ (Level 4) of the full 7-level address shown in Figure 3.11.

3.4.2.2 Device discovery

Communication between AES-64 devices is via ‘gets’ and ‘sets’ of parameters within a
device. This is so since every attribute of a device is modeled as parameter. A controller
wishing to discover networked AES-64 devices will need to broadcast a request that
will cause all the AES-64 devices to respond to it. In fact, this could be a number of
broadcast requests to all of the device discovery parameters that are necessary for com-
munication and identifying each AES-64 device on the network. The device discovery
parameters include IP address, subnet mask, device type, and device name.

To simplify the discovery process, an enhanced mechanism has been developed for
AES-64 bulk value requests. This mechanism, known as the Universal Snap Group

(USG), provides an efficient way for a controller to request the values of a group of
parameters.

A USG-enabled AES-64 device, implements two data structures within a particular node
(functional unit). These are [139]:

• USG cache list - is an indexed list of parameters within an AES-64 node, such
that each entry within the list maps a parameter’s hierarchical address to its pa-
rameter ID. In section 3.4.2, it was mentioned that a node’s parameters can either
be addressed by its hierarchical (7-level) address or by its parameter ID (which is
assigned to the parameter by the protocol stack). The USG cache list enables a
single index to be mapped to both of these addressing schemes for each parameter
within the node.

• USG buffer pool - is a fixed sized data store that contains a number of entries
called USG buffers. Each buffer within the ‘pool’ is uniquely identified by its
USG buffer ID, and contains among other attributes a parameter bitmap. The
parameter bitmap is used to specify (by mapping) which parameters within the
USG cache list are associated with the USG buffer.

USG defines two roles between communication devices, namely USG requester and
USG target. A USG requester is a device (such as a controller) that requests the values
of a group of parameter values. The USG target is the device that responds to the

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 90

request, by returning its parameter values. An AES-64 device can fulfill both roles on
the network.

A USG transaction involves the following steps [139]:

• Initialization - the USG target creates a USG cache list which contains the full
parameter address and parameter ‘ID’ for all parameters within a node. Then it
creates a fixed size USG buffer pool for USG transactions.

• Parameter bitmap creation - the USG requester sends a message to the USG target
containing the full address for all the parameters it is interested in. The target
will create a USG buffer (within the target’s USG buffer pool) with a bit map
that indicated the indexes of the target’s USG cache list that match the required
parameter. The target responds to this request by sending a valid USG buffer ID,
to the requester.

• Retrieval of parameter values - the requester sends a message to the target re-
questing the values of the parameters associated with a particular USG buffer. It
indicates the USG buffer of interest using the USG buffer’s ID. In turn, the tar-
get returns the values of the parameter associated with the USG buffer. At any
time, the requester is permitted to request the values of the parameters associated
with the USG buffer. The requester is in a position to match the values to the
appropriate parameter.

• USG buffer deallocation - since the size of the USG buffer pool is defined at
initialization, the pool memory should be adequately managed. Thus when a
requester no longer requires updates of the group of parameters within the USG
buffer it requested, it should indicate this to the target. The target will then be
able to reallocate the USG buffer to another USG query. This is typically the case
when USG is used in device discovery.

3.4.2.3 Connection management

The AES-64 protocol does not define a generic connection management procedure. By
its nature, AES-64 enables remote device monitoring, configuration, and control by
providing a mechanism for acquiring and modifying the values of parameters. In order
to enable a remote controller establish or destroy streams, an AES-64 device models the
device stream controls as parameters, with associated callbacks that perform application
specific functions.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 91

In AES-64, media streams are referred to as multicores. There are different types of
multicores, for example audio multicores and video multicores. For audio stream con-
nections, an AES-64 device will implement a number of audio multicores that represent
the various input and/or output audio stream connections that the device is capable of
transmitting and/or receiving (respectively).

The connection management procedure utilized by the AES-64 protocol typically de-
pends on the audio transport protocol (technology). The two audio transport technolo-
gies for which the protocol has been used are IEEE 1394 and Ethernet AVB. The AES-
64 connection management procedures on each of these technologies are slightly differ-
ent and will be described here.

AES-64 connection management procedure for IEEE 1394 devices

In order to establish or destroy a stream connection between a source and a destination
node on an IEEE 1394 serial bus, an AES-64 device would implement a:

• channel parameter - one for each input and output multicore. This parameter
indicates the value of the channel on which a source node is transmitting, or a
destination node is receiving an audio stream.

• start parameter - one for each input and output multicore , which can have one
of two values. In the case of a source device’s output multicore, this parameter
is used to start or stop the transmission of an audio stream. In the case of a
destination device’s input multicore, this parameter is used to control when the
device should start or stop receiving an audio stream.

The AES-64 IEEE 1394-based connection management requires the controller to [1]:

• acquire the value of the channel parameter associated with a particular output
multicore on the source node.

• modify the value of the channel parameter associated with a particular input mul-
ticore on the destination node, to the value obtained from the source node.

• modify the parameter associated with the output multicore (on the source node),
that will cause it to start streaming.

• modify the parameter associated with the input multicore (on the destination
node), that will cause it to start receiving the stream.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 92

AES-64 connection management procedure for Ethernet AVB devices

Connections on an Ethernet AVB network are between a talker (which is the source of
the stream) and one or more listeners (which are the receivers/consumers of the stream).

On an Ethernet AVB network, a talker advertises the characteristics and attributes of the
streams it has on offer by utilizing MSRP. MSRP has been described in section 2.2.1.2.
These attributes include the 64-bit stream identifier (ID) that is used to uniquely identify
each stream. The announcements (adverts) by the talker are received by each device
on the network. This provides a mechanism for a listener to gain knowledge of what
streams are available on the network.

A listener that wishes to receive a stream will send a listener ready attribute declaration
via MSRP to the network. This message is forwarded by the intermediate Ethernet AVB
bridges towards the talker. As the message is being propagated, the necessary resources
will be reserved. When the talker gets a listener ready or listener ready failed attribute
declaration, it knows that at least one listener on the network is prepared to receive a
particular stream indicated by the stream ID. The talker then commences transmission
of its stream, assured that it will be delivered to the listener.

In order to support AES-64 connection management of Ethernet AVB devices, a stream_ID

parameter (with value 0x0D13) has been defined at level-6 (parameter type) of the pa-
rameter hierarchy. Table 3.1 shows the 7-level hierarchy for the stream_ID parameter
of an audio input Ethernet AVB multicore.

Level Label Value Description

1 Section Block 0x01 INPUT_SIGNAL

2 Section Type 0xD1 AUDIO

3 Section Number 0x778000 Entry index ‘1’

4 Parameter Block 0xD1 MULTICORE

5 Parameter Block Index 0x000001 Entry index ‘1’

6 Parameter Type 0x0D13 STREAM_ID

7 Parameter Index 0x0001 Entry index ‘1’

Table 3.1: An example AES-64 7-level hierarchy for a stream ID parameter

The connection management procedure for establishing a stream connection on an Eth-
ernet AVB network is as follows:

• the controller sends an AES-64 message to acquire the value of the stream_ID

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 93

parameter associated with an output multicore on the talker. This is accomplished
by sending a ‘get’ message to the talker.

• the controller sends an AES-64 message to modify the value of the stream_ID
parameter associated with an input multicore on the listener. This is accomplished
by sending a ‘set’ message to the listener.

On receiving a ‘set’ message addressed to a particular stream_ID parameter, the listener
could proceed to request attachment to the specified stream by utilizing MSRP.

3.4.3 Focus on IEEE 1722.1

The IEEE 1722.1 standard for device discovery, enumeration, connection management
and control is also known as the Audio Video device Discovery, Enumeration, Connec-

tion management and Control (AVDECC) protocol [19]. AVDECC is an OSI/ISO layer
2-based protocol, that is currently being developed within the IEEE [140]. A number
of sub-protocols are defined by AVDECC, with each fulfilling a particular requirement.
AVDECC is designed for interaction between devices that implement the IEEE 1722
specification, which is also known as the Audio Video Transport Protocol (AVTP).

Typically communication on an AVDECC network is between AVDECC controllers,
AVDECC listeners, and AVDECC talkers. A single device (known as an AVDECC
end station) may fulfill any or a combination of these roles. The AVDECC proto-
col also defines AVDECC interfaces, as devices that do not fit into the three above-
mentioned types. Furthermore, to enable layer 3 communication with AVDECC end
stations, AVDECC defines a client-server architecture implemented by the AVDECC

Proxy Protocol (APP). The APP protocol is described in chapter 4.

An AVDECC message is transported as a Protocol Data Unit (PDU) that is encapsulated
within an Ethernet frame. A number of PDUs have been defined by AVDECC, with each
PDU depending on the particular sub-protocol message being transported. These PDUs
are based on the Audio Video Transport Protocol Data Unit (AVTPDU), which is defined
by the IEEE 1722 standard [49, pp. 10]. The general format of an AVDECC message is
shown in Figure 3.12.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 94

Figure 3.12: Structure of an Ethernet frame with an AVDECC PDU

The ‘Ethernet Header’ shown in Figure 3.12 consists of:

• Destination Medium Access Control (MAC) address - a 6 octet field that specifies
the MAC address to which the Ethernet frame is transported.

• Source MAC address - a 6 octet field that specifies the MAC address of the origin
of the Ethernet frame being transported.

• EtherType - a 2 octet field that provides an indication of which protocol is be-
ing transported by an Ethernet frame. AVDECC uses the value ‘0x22F0’ for its
EtherType field, which is defined by the AVTP protocol [49, pp. 8].

The ‘Common PDU Header’ shown in Figure 3.12 consists of the following fields:

• cd - is a 1-bit field that indicates whether the PDU frame contains control in-
formation or stream data. For AVDECC protocols, the value of this field is ‘1’

indicating that the frame contains control information.

• subtype - is a 7-bit field that indicates which AVDECC sub-protocol message is
contained in the PDU frame. The subtypes defined by the IEEE 1722.1 standard
are shown in Table 3.2.

Description Subtype Value PDU

AVDECC Discovery Protocol 0x7A ADPDU

AVDECC Enumeration and Control Protocol 0x7B AECPDU

AVDECC Connection Management Protocol 0x7C ACMPDU

Table 3.2: AVDECC subtypes

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 95

• sv - is a 1-bit field that indicates whether a valid stream ID is specified in the PDU.
AVDECC protocols use the value ‘0’ for this field indicating that the PDU does
not utilize the stream ID field as defined in IEEE 1722.

• version -is a 3-bit field that specifies the version of the AVTP protocol being used.
AVDECC protocols currently specify a value of ‘0’ for this field.

• message_type - is a 4-bit field that indicates the particular type of message within
the AVDECC sub-protocol that is being transmitted in the PDU. Each of the
AVDECC protocols defines a number of possible commands, and this field is
used to distinguish between the available commands implemented by a particular
AVDECC sub-protocol.

• status or valid_time - is a 5-bit field that performs two possible functions. In the
case of an ADPDU, this field is referred to as the ‘valid_time’ and it indicates the
validity of the information transported within an ADPDU in 2-second increments.
In the case of AECP and ACMP, this field is referred as the ‘status’ field. In
AECPDUs this field indicates whether the command was successfully executed,
while in ACMPDUs this field is used in response to a command, to indicate the
status of the command.

• control_data_length - is an 11-bit field that specifies the number of octets that
make up the PDU frame.

• stream_ID - is a 64-bit field which specifies the IEEE 1722 stream_ID in the IEEE
1722 standard. The AVDECC protocols reuse this field for different purposes.
These are shown in Table 3.3.

Protocol Field name Meaning

Indicates the 64-bit GUID of the entity transmitting
ADP entity_GUID an ADP ENTITY_AVAILABLE message. The ADP

protocol is described later in section 3.4.3.2.

Indicates the 64-bit GUID of the target to which the
AECP target_ID AECP command is addressed. The AECP protocol is

described later in section 3.4.3.1.

Indicates the stream ID of an IEEE 1722 stream that
ACMP stream_ID is transmitted by a talker. The ACMP protocol is

described later in section 3.4.3.3.

Table 3.3: Meaning of 64-bit stream_ID field

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 96

The ‘PDU Frame’ shown in Figure 3.12 is a variable length field, and depends on the
particular AVDECC sub-protocol being transported.

When an AVDECC message is received by an AVDECC end station, the appropriate
sub-protocol is responsible for processing the message. An AVDECC message can be
unicast or multicast in nature. A unicast message is used when the message is intended
for a single (target) end station. This mode of transmission is used by the AECP pro-
tocol commands, except for the AECP identification notification command, which is
used to send an unsolicited information update to a controller. Multicast messaging is
used when the intention is to make the AVDECC message available to every end sta-
tion within the AVDECC network, which could be within an AVB time domain. The
multicast transmission is used by ADP and ACMP protocols. A multicast MAC ad-
dress has been reserved for AVDECC communication. This AVDECC multicast MAC
is ‘91:E0:F0:01:00:00’ for ADP and ACMP messaging, and ‘91:E0:F0:01:00:01’ for
identification notification.

3.4.3.1 Device model

An AVDECC end station is an AVB endpoint that is capable of transmitting and/or
receiving IEEE 1722 streams, and implements one of the AVDECC protocols. It may
possess one or more network interfaces. Figure 3.13 shows a conceptual layout of an
AVDECC end station.

Figure 3.13: Conceptual layout of AVDECC end station

An AVDECC end station may contain any number of functional units known as AVDECC

entities. An AVDECC entity could be an AVDECC controller, AVDECC talker, AVDECC

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 97

listener or AVDECC interface. In Figure 3.13, there are two AVDECC entities de-
picted in the end station. An AVDECC entity is uniquely identified by its 64-bits entity
Globally Unique Identifier (GUID). An AVDECC entity implements one or more of
the AVDECC sub-protocols. That is ADP, ACMP, AECP, or it may implement the
AVDECC Proxy Protocol (APP).

The AVDECC Entity Model (AEM), which is defined in the IEEE 1722.1 standard,
provides a means for modeling AVDECC entities. It describes how the internal compo-
nents of an AVDECC entity can be structured. AEM provides a hierarchical structure
of objects that can be described in a structural manner using descriptors. An AVDECC
descriptor provides information about an AEM object. At the top of the hierarchy is
a particular descriptor known as the Entity descriptor, which describes the information
about the entire entity, and the various configurations that may exist within the entity.
An entity’s configuration is described by Configuration descriptors. A configuration de-
scriptor represents a particular operation mode of the AVDECC entity. A configuration
descriptor may contain any number of Unit descriptors and Control descriptors, which
describe the different functional components that cooperate to fulfill the requirements
of a particular configuration. The general hierarchical layout of an AVDECC entity’s
AEM descriptors is shown in Figure 3.14.

Figure 3.14: Layout of AEM descriptors

Figure 3.14 shows an entity descriptor (‘Entity descriptor 0’) that describes the two pos-
sible modes of operation of a particular AVDECC entity. These modes of operations are
modeled as two different configurations (‘Configuration descriptor 0’ and ‘Configura-

tion descriptor 1’). ‘Configuration descriptor 0’ contains two unit descriptors (‘Unit 0’

and ‘Unit 1’) and two control descriptors (‘Control 0’ and ‘Control 1’). ‘Configuration

descriptor 1’ contains three unit descriptors (‘Unit 0’, ‘Unit 1’ and ‘Unit 2’), and a con-
trol descriptor (‘Control 0’). The ‘Unit 2’ descriptor contains two control descriptors

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 98

(‘Control 1’ and ‘Control 2’).

The IEEE 1722.1 standard defines different types of descriptors that can be used to
model the functional components within an AVDECC entity. A ‘descriptor_type’ field
is used to differentiate between the various types of descriptors. Each descriptor is
uniquely identified by its 16-bit index known as the ‘descriptor_index’ field. Within an
AEM the value of ‘descriptor_index’ starts at ‘0’ (zero) for a particular descriptor type
and increments with the number of descriptors of the same type per configuration.

To describe signal paths as they convey signals ‘into’ and ‘out of’ a unit, the IEEE
1722.1 describes port descriptors. Figure 3.15 depicts the AEM for an AVDECC entity.
This diagram was created during the research project and was later was modified and
adopted by the IEEE 1722.1 working group as the example AEM model in the IEEE
1722.1 standard.

Figure 3.15: Example AEM model for an AVDECC entity

Figure 3.15 shows a single configuration of an entity that is capable of receiving an
IEEE 1722 stream and an analog stereo audio signal, then processing the signal within
an audio unit before transmitting it on an analog stereo output and IEEE 1722 output
(respectively). There are two signal paths as audio enters and exits the AVDECC entity
depicted in Figure 3.15.

• In the first path, ‘Stream In 0’ descriptor describes the received IEEE 1722 stream
and routes the stream to the ‘Stream Port In 0’ descriptor, which resides within the
‘Audio Unit 0’ descriptor. ‘Audio Map 0’ makes it possible to trace the static rela-
tionship between the channels in a stream descriptor (‘Stream In 0’) and an audio

cluster descriptor (‘Audio Cluster 0’). ‘Audio Cluster 0’ describes the channel

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 99

groupings (in this case two channels of audio) within a stream stream. The two-
channel audio signal is grouped by the ‘Audio Cluster 0’, then routed to ‘Control

2 Volume’ descriptor that allows for remote control of the gain (volume) of the
signal. The signal is then routed to the egress ‘External Port Out 0’ descriptor as
it makes its way out of the ‘Audio Unit 0’ descriptor. On exit from the entity, the
signal is routed via the ‘Jack Out 0’ descriptor.

• In the second signal path, a stereo audio signal is described by the ‘Jack In 0’ de-
scriptor as in the configuration depicted in Figure 3.15. The ‘External Port In 0’

descriptor provides information about the audio signal as it enters the ‘Audio Unit

0’ descriptor. The signal is routed to the ‘Audio Cluster 1’ descriptor (which re-
sides within the ‘Stream Port Out 0’ descriptor) via the ‘Control 1 Mute’ descrip-
tor, which allows for remote mute control of the audio signal. The ‘Audio Map 1’

descriptor maps the stereo audio signal as it exits the entity via the ‘Stream Out

0’ descriptor.

In order to enable remote control and monitoring of the various descriptors implemented
in an AVDECC entity, the IEEE 1722.1 standard has defined a number of commands
that can be used to acquire and modify descriptors, as well as the possible responses
that should be expected for each command. These commands and responses are trans-
ported within an AVDECC Enumeration and Control Protocol Data Unit (AECPDU).
The AECPDU is identified by the value of the ‘subtype’ field of the ‘Common PDU

Header’ of Figure 3.12. The value of the ‘subtype’ field for an AECPDU is ‘0x7B’.
The ‘message type’ field of the ‘Common PDU Header’ of Figure 3.12 is used to differ-
entiate between the different types of messages being transported by the AECPDU. In
particular, a ‘message type’ field value of ‘0’ indicates that the AECPDU is transport-
ing an AEM command, while a value of ‘1’ indicates that an AEM response is being
transported.

Although the fields of the AECP commands and responses that allow for remote access
and control of an AEM model vary, they contain a ‘command type’ field which indicates
the specific type of command or response being transported. An AECP also contains a
‘descriptor type’ field, which specifies the particular type of descriptor that is addressed
by an AECP command or that is responding to an AECP command. A number of AEM
descriptors are defined in the IEEE 1722.1 specification [19].

As depicted in Figure 3.14, the AEM model is structured as a hierarchy of descriptors
with the entity descriptor being the top-most descriptor. Each entity descriptor has any
number of configuration descriptors, depending on the possible modes of operation of
the entity.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 100

An AVDECC controller that wishes to enumerate the AEM of an AVDECC entity will
need to ‘read’ the descriptors, one level at a time, in order to get an overall view of the
various features and controls that reside within the entity. Figure 3.16 shows how an
‘AVDECC Controller’ can enumerate the AEM depicted in Figure 3.15.

Figure 3.16: Example procedure for enumerating an AEM

As shown in Figure 3.16, the following messages are transmitted by the ‘AVDECC Con-

troller’ in order to enumerate the ‘AVDECC Entity’.

• READ_DESCRIPTOR command indicating the target descriptor type as entity

descriptor (‘0x0000’) and the descriptor index as ‘0’. This command is used to
obtain information about the possible configurations that exist within the entity.
Its response will indicate that there is a configuration descriptor with index ‘0’
within the entity descriptor.

• GET_CONFIGURATION command is used to determine the current operation
mode of the AVDECC entity. In the case of the AEM depicted in Figure 3.15,
it might not be necessary for the controller to issue this command because there
is only one possible operation mode, which is represented by ‘Configuration 0’.
However, this command will return the index (in this case ‘0’) of the current
configuration in use.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 101

• READ_DESCRIPTOR command indicating the target descriptor type as config-

uration descriptor (‘0x0001’) and the descriptor index as ‘0’. This will return the
types and the number of instances of each type of the top level descriptors within
‘Configuration 0’. The returned values are shown in Table 3.4.

Descriptor type Descriptor value Number of descriptors

Audio Unit 0x0002 1

Stream Input 0x0005 1

Stream Output 0x0006 1

Jack Input 0x0007 1

Jack Output 0x0008 1

AVB Interface 0x0009 1

Clock Source 0x000A 1

Control 0x001A 1

Table 3.4: Response to enumeration of the configuration descriptor

The AEM of Figure 3.15 has one of each of the descriptors (at the top level) listed
in Table 3.4.

• READ_DESCRIPTOR command indicating the target is the audio unit descriptor
(‘0x0002’) with the descriptor index ‘0’. The response to this command will
provide information about the type and number of each top-level descriptor in the
audio unit. This information is presented in Table 3.5.

Descriptor type Descriptor value Number of descriptors Base index

Stream Port Input 0x000E 1 0

Stream Port Output 0x000F 1 0

External Port Input 0x0010 1 0

External Port Output 0x0011 1 0

Control 0x001A 2 1

Table 3.5: Response to enumeration of the audio unit descriptor

From the response shown in Table 3.5, besides the control descriptor which has
two instances within the audio unit, each of the other descriptors have a single
instance.

The audio unit descriptor also returns the lowest index (known as base index) of
each of its descriptors. This makes it possible for a controller to accurately specify

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 102

the index of a descriptor it wishes to address. The values of the lowest descriptor
index (for each descriptor) are also shown in Table 3.5.

• READ_DESCRIPTOR command indicating the target is the stream port input de-
scriptor (‘0x000E’) with the descriptor index ‘0’. In response to this command the
entity will indicate that it has an audio cluster descriptor (‘0x0014’) and an audio

map (‘0x0017’) descriptor, and that the base index of each of these descriptors is
‘0’.

• READ_DESCRIPTOR command indicating the target is the stream port output

descriptor (‘0x000F’) with the descriptor index ‘0’. In response to this command
the entity will indicate that it has an audio cluster descriptor (‘0x0014’) and an au-

dio map (‘0x0017’) descriptor, and that the base index of each of these descriptors
is ‘1’.

The structure of the READ_DESCRIPTOR and GET_CONFIGURATION commands
and responses are described in the IEEE 1722.1 standard. These two commands have
the values ‘0x0004’ and ‘0x0007’ respectively.

By utilizing the AECP commands defined in the IEEE 1722.1 standard it is also possi-
ble to modify the value of controls within an AVDECC entity. Figure 3.17 shows the
sequence of commands that can be used to change the value of the control descriptor
labeled ‘Control 2 Volume’ of Figure 3.15.

Figure 3.17: AECP commands to change value of AEM control descriptor

The layout of the AECP commands are described in the IEEE 1722.1 specification [19,
pp. 172].

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 103

In order to change the volume of the control descriptor with index ‘2’ (refer to Figure
3.15), the following AECP commands are issued.

• ACQUIRE_ENTITY command is used to obtain a lock to the descriptor, thus re-
stricting access to modifying the descriptor. This command is sent to the ‘AVDECC

Entity’ with the flag field value of ‘0x0000 0000’, which indicates that it is an ac-
quire command (and not a release command). The descriptor type field is set to
‘0x001A’ which indicates that it is a CONTROL descriptor, and the descriptor

index field is set to ‘2’ which identifies the particular descriptor.

• SET_CONTROL command is used to modify the value control descriptor. The
descriptor type and descriptor index fields are the same as in the ACQUIRE_ENTITY
command, that is ‘0x001A’ and ‘2’ respectively. The value field specifies the new
value for the volume control. This command will cause the entity to adjust the
specified volume to the new value.

• ACQUIRE_ENTITY command is used to release the lock on the control descrip-
tor. Thus making it available to any other controller that wishes to acquire it. The
value of the flag field for this release command is ‘0x8000 0000’.

The ‘command type’ values for the above AECP commands are defined in the IEEE
1722.1 specification. The value for the ACQUIRE_ENTITY command is ‘0x0000’, and
the SET_CONTROL command has its value as ‘0x0018’.

It is possible for any other controller on the network to read a descriptor that has been ac-
quired by another. However, only the controller that acquired the descriptor can modify
the descriptor.

3.4.3.2 Device discovery

The IEEE 1722.1 standard defines an AVDECC Discovery Protocol (ADP) that will en-
able an AVDECC entity to announce its presence on a network, announce its departure
from the network, and discover other AVDECC entities on the network. In order to do
this, ADP defines three message types, namely [19]:

• ENTITY_AVAILABLE - is multicast by an AVDECC entity at regular intervals
to indicate its presence on the network.

• ENTITY_DEPARTING - is multicast by an AVDECC entity when it is gracefully
leaving the network.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 104

• ENTITY_DISCOVER - is multicast on the network to discover AVDECC entities
on the network. An ADP ENTITY_DISCOVER message can be used to discover
every AVDECC entity on the network, or to discover a specific AVDECC entity on
the network. Whether an ENTITY_DISCOVER message is intended to discover
every entity on the network or to discover a specific entity, the target(s) is/are
expected to respond by sending an ENTITY_AVAILABLE message.

In order to transmit these ADP messages, the ADP protocol defines an AVDECC Dis-

covery Protocol Data Unit (ADPDU). The structure of the ADPDU is shown in the
IEEE 1722.1 standard [19, pp. 26]. When transmitting an ADPDU, an entity specifies
its 64-bits entity GUID. The other fields that are contained in an ADPDU include:

• vendor_id - is a 32-bit field that identifies the manufacturer of an AVDECC entity.

• entity_model_id - is a 32-bit field that can be used by a manufacturer to specify
the model of the entity.

• entity_capabilities - is a 32-bit field that bitmaps the various features that are
supported by the AVDECC entity. This includes indicating whether the entity
supports AEM commands and responses, as well as indicating the class of IEEE
1722 streams supported by the entity.

• talker_stream_sources - is a 16-bit field that specifies the maximum number of
simultaneous IEEE 1722 streams that the AVDECC entity is capable of transmit-
ting.

• talker_capabilities - is a 16-bit field that bitmaps the talker features that are sup-
ported by the AVDECC entity. This includes indicating whether the entity has
audio, MIDI, SMPTE or video stream sources.

• listener_stream_sinks - is a 16-bit field that specifies the maximum number of
simultaneous IEEE 1722 streams that the AVDECC entity is capable of receiving.

• listener_capabilities - is a 16-bit field that bitmaps the listener features that are
supported by the AVDECC entity. This includes indicating whether the entity has
audio, MIDI, SMPTE or video stream sources.

• controller_capabilities - is a 32-bit field that bitmaps the controller features that
are supported by the AVDECC entity. In the current draft of the IEEE 1722.1
specification, this field could indicate that an entity is an AVDECC controller, or
that it is a layer 3 proxy.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 105

• available_index - is a 32-bit field that differentiates between different cycles of
the same entity. It starts from ‘0’ and is incremented by ‘1’ on subsequent trans-
missions. When the entity leaves the network, or after a power restart, this field is
reinitialized to ‘0’.

• as_grandmaster_id - is a 64-bit field that specifies which IEEE 802.1AS grand-
master an AVDECC entity is synchronized with. Thus it indicates which IEEE
802.1AS time domain that a particular entity belongs to.

• association_id - is a 64-bit field that can be used to group multiple AVDECC
entities into a logical collection.

An AVB network that supports the transmission of IEEE 1722 streams is shown in
Figure 3.18.

Figure 3.18: AVB network of AVDECC and non-AVDECC compliant devices

Figure 3.18 depicts an AVB network with six AVB endpoints within the same IEEE
802.1AS clock domain. Four of the AVB endpoints are AVDECC entities, and the other
two AVB endpoints do not support the AVDECC protocol. When any of the AVDECC
entities join the network, they will announce their presence by multicasting an EN-

TITY_AVAILABLE message. This message is only processed by the AVDECC entities
(that is the ‘AVDECC Entity (Controller)’, ‘AVDECC Entity (Talker)’ and the two enti-
ties labeled ‘AVDECC Entity (Listener)’) on the network. If at any point the ‘AVDECC

Entity (Controller)’ seeks knowledge of all the AVDECC entities on the network, it

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 106

will multicast an ENTITY_DISCOVER message. On receiving such a message, each
AVDECC entity will respond by multicasting an ENTITY_AVAILABLE message. It is
possible for the ‘AVDECC Entity (Controller)’ to request that only a particular entity
should respond to its ENTITY_DISCOVER message. It does so by specifying the entity
GUID of the entity it is interested in. When an AVDECC entity is gracefully leaving the
network, it will multicast an ENTITY_DEPARTING message to inform the other entities
of its departure.

These ADP messages are transmitted as multicast on the network, and a multicast ad-
dress has been reserved for ADP communication. This multicast address is ‘91-E0-F0-

01-00-00’. ADP entities listen for messages whose destination MAC address (within
the Ethernet header of Figure 3.12) has its value set to this multicast address.

In order to enable AVDECC controllers, listeners and talkers to respond appropriately
to ADP messages, the IEEE 1722.1 standard defines a number of state machines. These
state machines are:

• Advertising Entity State Machine - is implemented by an AVDECC entity to an-
nounce its presence on an AVB network. It performs these announcements at reg-
ular intervals, determined by the value of the reannounceTimerTimeout variable
within the state machine. The value of the available_index field is incremented
with each announcement. On receiving an ENTITY_DISCOVER ADP message
from a controller, the advertising entity state machine responds as soon as possi-
ble, without waiting for its reannounceTimerTimeout to lapse.

• Advertising Interface State Machine - is implemented for each AVB interface of
an AVDECC entity. This state machine utilizes the advertising entity state ma-
chine to send ENTITY_AVAILABLE ADP messages on the network. Unlike the
advertising entity state machine, this state machine keeps track of changes to the
IEEE 802.1 AS domain grandmaster, and also track whether the entity’s inter-
face link is connected or disconnected form the network. When either of these
changes occurs, the advertise interface state machine updates (the value of) the
corresponding state variable so that subsequent adverts on the network will indi-
cate the updated value.

• Discovery State Machine - is implemented by an AVDECC entity that seeks
knowledge of the other AVDECC entities on the network. The discovery state
machine keeps a list of entities on the network, and it updates this list by:

– adding a new entry to the list whenever a new entity announces its presence
on the network

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 107

– removing an entry from the list whenever the corresponding entity announces
its departure (ENTITY_DEPARTING) from the network

– modifying an entry in the list whenever a previously discovered entity ad-
vertises one or more new attributes within its ENTITY_AVAILABLE ADP
message.

The advertising entity state machine and advertising interface state machine are typ-
ically implemented by AVDECC talkers and listeners. A discovery state machine is
typically implemented by an AVDECC controller or any other AVDECC entity that
requires AVDECC discovery.

3.4.3.3 Connection management

The IEEE 1722.1 standard defines a protocol for connection management known as the
AVDECC Connection Management Protocol (ACMP). The ACMP defines the proce-
dure for establishing IEEE 1722 streams, as well as the procedure for destroying such
streams. An AVDECC controller is able to utilize ACMP to set up an IEEE 1722 stream
that is being offered by an AVDECC talker as the source, and set up a particular sink on
an AVDECC listener as the destination of the stream.

ACMP defines a protocol data unit, called the ACMP Data Unit (ACMPDU). The ACM-
PDU is a 44-octect frame, and its structure can be found in the IEEE 1722.1 standard
document [19, pp. 263]. The ACMPDU includes the following fields:

• controller_guid - a 64-bit field that specifies the entity GUID of the controller that
issued the ACMP command. It enables an AVDECC controller to match received
responses with its original transmitted command.

• talker_guid - a 64-bit field that specifies the entity GUID of the target talker for
which an ACMP is intended.

• listener_guid - a 64-bit field that specifies the entity GUID of the target listener
for which an ACMP is intended.

• talker_unique_id - a 16-bit field that is used to identify a particular source stream
amongst the various source streams on offer by a talker.

• listener_unique_id - a 16-bit field that is used to identify a particular sink stream
amongst the various sinks that a listener possesses.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 108

• stream_dest_mac - a 48-bit field that specifies the MAC address that should be
used for transmitting an IEEE 1722 stream from a talker to one or more listeners.

• connection_count - a 16-bit field that provides some information about the prob-
able number of stream connections that a talker assumes have been established
with the stream identified by the talker_unique_id field. This value is the differ-
ence between the number of requests for connections and requests for disconnec-
tions, received by the talker entity. If a connection was pulled down without an
explicit command being sent to the talker, the value of this (connection_count)
field will be inaccurate. This could happen if a connection cable was removed
unexpectedly.

• sequence_id - a 16-bit field that is used to match a command with its appropriate
response. It starts with a value ‘0’ and is incremented on each command trans-
mitted, but is reinitialized to ‘0’ after a power up.

• flags - a 16-bit field that is a bitmap used to indicate attributes of a particular
connection. This includes indicating the type of connection mode being used.

The ACMP defines four connection management modes. These modes are:

• Fast Connect - is used by an AVDECC listener to re-establish a connection that
was previously connected. This connection mode is used by a listener that is ca-
pable of storing its connections in non-volatile or rapid memory before departing
from a network. On joining the network, the listener is capable of negotiating for
the same stream(s) from the appropriate talker.

• Fast Disconnect - is used by an AVDECC listener to destroy a previously estab-
lished stream connection when it is shutting down cleanly.

• Controller Connect - is the connection mode that is used by an AVDECC con-
troller to establish a stream connection between a particular source stream on an
AVDECC talker and a sink stream on an AVDECC listener.

• Controller Disconnect - is the connection mode that is used by an AVDECC con-
troller to destroy a particular stream connection between an AVDECC talker and
an AVDECC listener.

The ‘message_type’ field of an ACMP message is used to specify the ACMP command
type. Each command type has a timeout associated with it. If a command is issued and
no response has been received within the expected timeout period, the entity that sent

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 109

the message may retransmit the same message a specified number of times. The number
of retransmits depends on the particular role being fulfilled by the entity from where the
message originated. That is whether the message originated from a controller, talker or
listener state machine.

The ACMP messages are transmitted as multicast on the network. The multicast desti-

nation MAC address (shown if Figure 3.12) for ACMP transmission is the same as that
for ADP (‘91-E0-F0-01-00-00’).

To fulfill the roles of AVDECC controller, listener or talker, the ACMP protocol defines
three state machines. The ACMP state machines are:

• Controller state machine - this state machine describes the behavior of an AVDECC
controller that is involved in the connection management process. It describes
what possible transition states the AVDECC controller could exist in, and how to
respond to received commands at each state, as well as how to interpret received
responses.

• Listener state machine - this state machine describes the behavior of an AVDECC
listener that will sink an IEEE 1722 stream. It describes how the listener will
behave when it receives connection management commands (from an AVDECC
controller) to establish a sink stream, or to destroy a stream connection. It also
defines how the listener is expected to respond to such commands.

• Talker state machine - this state machine describes the behavior of an AVDECC
talker that is the source of one or more IEEE 1722 stream(s). It describes the
various states and expected responses from a talker that is participating in the
ACMP.

The controller connect and controller disconnect connection management modes are
the typical way for setting up and pulling down (respectively) stream connections. In
these modes of operation, an AVDECC controller initiates the connection management
procedure. The particular ACMP commands that are exchanged between the AVDECC
controller, listener and talker entities depend on whether a stream is being established or
destroyed. However, the general procedure used by an AVDECC controller to establish
or destroy a stream connection can be achieved in four steps. These are shown in Figure
3.19.

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 110

Figure 3.19: ACMP connection management procedure

In Figure 3.19 the AVDECC controller is labeled ‘AVDECC Entity Controller’, the
AVDECC listener is labeled ‘AVDECC Entity Listener’, and the AVDECC talker is
labeled ‘AVDECC Entity Talker’. The steps in the connection management procedure
shown in Figure 3.19 are:

1. The AVDECC controller utilizes its controller state machine to issue an ACMP
command, and indicates whether an IEEE 1722 stream should be established
(connect) or destroyed (disconnect) between the AVDECC listener and the AVDECC
talker. The AVDECC listener and the particular sink (stream destination) on the
listener are specified by the listener_guid and listener_unique_id fields (respec-
tively) in the ACMPDU frame. Similarly the AVDECC talker and the particular
stream source on the talker are specified by the talker_guid and talker_unique_id

fields (respectively) in the ACMPDU frame. The controller will also specify its
entity GUID in the controller_guid field of the ACMPDU.

2. The AVDECC listener’s listener state machine processes the received command
to verify that its GUID is specified in the command. Then it sends either a request
for the stream (in the case of a ‘connect’ message) or an indication that it is no
longer interested in the stream (in the case of a ‘disconnect’ message), to the
AVDECC talker.

3. The AVDECC talker’s talker state machine receives and processes the request
for stream connection from the listener. If the received message is a request for
connection to the stream (specified in the stream_ID field) that is not already be-
ing sinked to another entity on the network, the talker will register the stream
on the AVB network via MSRP. If the message is to ‘disconnect’ a previously
requested stream and the AVDECC listener is the only end station listening, the

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 111

talker withdraws the stream via MSRP. This will make the Ethernet AVB network
resources that were being utilized by the stream available for other stream connec-
tions. MSRP has been described in chapter 2. Then the talker returns an ACMP
response to the AVDECC listener indicating (in the status field) whether or not it
was able to process the request. For a successful connect request, the talker will
specify the multicast MAC address of the stream within the stream_dest_mac field
of the ACMPDU.

4. The AVDECC listener’s listener state machine receives and processes the re-
sponse from the talker. If the response is for an earlier request for connection
that was sent by the listener, the AVDECC listener proceeds to request attachment
to the specified stream via MSRP. The AVDECC listener then sends a response
to the AVDECC controller which started the connection management procedure.
The message to the controller will indicate whether the connection management
procedure was successful.

The above illustration assumes that each message is successfully transmitted and the
appropriate responses are received within the defined timeout periods. Thus there are
no retries of any of the ACMP commands indicated in the above sequence.

3.5 Summary

An audio control protocol defines a:

• message format for control and response information exchanges

• structured representation of the properties and features of compliant devices

• procedure for compliant devices to discover each other

• technique for enumerating the various controls and features within a compliant
device

• procedure for establishing and destroying stream connections.

There exist a range of audio control protocols that enable remote device configuration,
monitoring and control, and some of them have been described in this chapter. While
some of the protocols have been designed to utilize OSI/ISO layer 3 transport proto-
cols for messaging, as is the case with OSC and AES-64, others such as AV/C and

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 112

IEEE 1722.1 (AVDECC) utilize OSI/ISO layer 2 transport protocols for exchanging
their messages.

There was a particular focus on the OSC, AES-64 and AVDECC protocols which were
determined to be the viable protocols for this study on interoperability. From discussions
of these three audio control protocols certain similarities can be noticed, particularly
between the layer 3 IP-based protocols, that is between OSC and AES-64.

These similarities include:

• Device modeling - the three control protocols provide a hierarchical structure for
modeling the controls and features that exist within a device. In particular OSC
and AES-64 model a device as consisting of addressable control points called
OSC methods and AES-64 parameters, respectively. The hierarchical structure
for device modeling in AVDECC is called an AEM model, and it allows for
remote control and monitoring by sending AECP commands to the appropriate
descriptors.

• Application robustness - all three protocols enable loose coupling between what
is application specific implementation, and what the protocol defines. The OSC
protocol does this by enabling an application to perform specific tasks when an
OSC method is dispatched. An AES-64 device is able to do this within the call-

backs associated with each parameter. A similar mechanism is provided by the
ACMP protocol’s processResponse call, which enables a controller to perform
device specific tasks when it receives an ACMP response [19, pp. 272].

• Message structure - the fundamental OSC and AES-64 messages posses a similar
structure of the form:

<address to target control point><argument type><value>

In the case of OSC, this takes the specific form:

<OSC address pattern><argument OSC type tag><argument value>

With AES-64, it takes the form:

<device ID + node ID + parameter address><value format>< value>

• Control architecture - a similar control architecture exists for the three protocols.
Dedicated roles are defined for networked devices, where one device issues a
request for service and another provides the service. In OSC this takes the form

CHAPTER 3. AUDIO NETWORK CONTROL PROTOCOLS 113

of an OSC client requesting a service, and an OSC server providing the service. In
AES-64 this takes the form of a requester (which could be a network controller)
issuing a command, and a target fulfilling the request specified in the command.
AVDECC implements a similar architecture, where an AVDECC controller issues
discovery, enumeration, control or connection management commands and the
targeted AVDECC listener or talker responds to the commands.

In spite of these similarities, networked audio devices can only interact when they imple-
ment the same control protocol. The analysis of protocols in this chapter has highlighted
similarities, and thus provided an indication of the possibility of protocol command
translation as a way to enable interoperability.

Chapter 4

Approaches to Networked Audio
Device Interoperability

In the previous chapter, various audio control protocols were described. These ranged
from layer 3 (IP-based) control messaging protocols (such as AES-64 and OSC) to
layer 2 control messaging protocols (such as AV/C and IEEE 1722.1). An audio control
protocol defines a particular message structure that is used for exchanging control com-
mands and attribute information between networked devices. When audio devices are
networked, communication is restricted to compliant devices. That is, only devices that
implement the same audio control protocol are able to communicate with each other.

This chapter describes the problem known as the ‘interoperability challenge’, which
arises when devices of different audio control protocols are interconnected. This is
followed by a description of some of the approaches to providing a solution to the inter-
operability challenge. Finally, the chapter describes the command translation approach,
which this research proposes as a solution to the interoperability challenge.

4.1 Control Protocol Interoperability Challenge

An audio networking technology provides the transport mechanism for exchanging dig-
ital audio data between networked devices. Such a technology should provide the neces-
sary quality of service (QoS) required for time-sensitive data transmission. In chapter 2,
some of the available audio networking technologies were described.

Above the audio transport technology is a control protocol that enables remote device
configuration and monitoring of control points within an audio device. An audio device
implements a protocol stack or parser that receives, transmits and processes messages

114

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 115

that are formatted according to the particular protocol. As a result, communication is
restricted to devices that implement the same protocol. For example, since AES-64 and
OSC allow for IP-based messaging over Ethernet links, devices that conform to these
two protocols can be deployed on the same transport technology (for example an Eth-
ernet AVB). The transport technology (Ethernet AVB) ensures that network resources
can be reserved and that the time information (necessary for synchronization) can be
exchanged between the networked devices. This enables deterministic and guaranteed
delivery of the audio data between participating devices on the network. However con-
figuring the AES-64 and OSC devices to stream audio between each other may require
at least two controllers. One of the controllers will implement the AES-64 protocol to
control the AES-64 devices on the network, while the second controller will implement
the OSC protocol so as to enable configuring the OSC devices. This situation is depicted
for an Ethernet AVB network in Figure 4.1.

Figure 4.1: AES-64 and OSC devices are unable to communicate

The devices shown in Figure 4.1 reside within the same Ethernet AVB clock domain.
This means that they are being synchronized by the same IEEE 802.1AS grandmaster.
There are two audio control networks shown in Figure 4.1. One of the audio control net-
works consists of all the AES-64 devices, and the other audio control network consists
of all the OSC devices. The devices shown in Figure 4.1 cannot communicate across
the ‘boundary’ of their audio control protocol.

The above situation has been introduced as the interoperability challenge in chapter 1.
In this case, audio stream connections cannot be established between interconnected
devices because they implement different control protocols. This results from the in-
ability to set up the stream connections by sending the same audio control messages to

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 116

the networked devices. In the scenario depicted in Figure 4.1, the networked devices
cannot communicate even when they use the same transport technology because they
implement different audio control protocols.

In order to control and monitor all the devices on the network (as depicted in Figure 4.1),
a network controller application should be able to communicate using AES-64 and OSC
control protocols. The situation gets more complicated when there are large numbers
of audio control protocols implemented by the different networked devices. This would
require that the network controller implements as many protocols as are represented by
the devices on the network.

Typically, commercially available audio devices implement a single audio control pro-
tocol. Usually the controller application intended for such devices also implements a
single protocol. Such a network controller will be unable to configure and monitor
other devices that do not conform to the audio control protocol it implements.

The interoperability challenge currently prevails in the audio networking industry. As
a result, audio engineers are restricted by the types of devices that can be purchased
when designing an audio network. Even when there might be benefits to using devices
that conform to a different audio control protocol, an audio engineer is hampered by the
interoperability challenge, and forced to use only devices that conform to a particular
audio control protocol. This research proposes a solution that will solve this problem.

4.2 Solutions for Interoperability

Various solutions to the interoperability challenge have been proposed, and in some
cases implemented. This section describes some of these approaches.

4.2.1 Hardware abstraction plug-in approach - mLAN

The mLAN version 2 audio control protocol, which was described earlier in section 3.3.3
on page 72, is an IEEE 1394-based audio networking and control protocol [128]. It im-
plements an enabler/transporter architecture, which is also referred to as the plural-

node architecture. The plural-node architecture considered interoperability between
mLAN devices and non-mLAN compliant devices.

Figure 4.2 depicts an mLAN enabler/transporter network that consists of an enabler and
three transporter nodes.

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 117

Figure 4.2: mLAN enabler/transporter network

An enabler resides within a workstation, which could be a Windows PC, Mac, or Linux
workstation, and it is responsible for configuring and controlling the transporter (IEEE
1394) nodes. A transporter resides within the networked mLAN compliant nodes, and it
enables device configuration by implementing and exposing device registers that can be
accessed by the enabler via a transport controller interface. An enabler will typically
control multiple transporters, but each transporter can only be controlled by a single
enabler.

mLAN utilizes IEEE 1394 isochronous transactions for audio stream transmission, and
asynchronous transactions are used to control messaging. On an mLAN network, the
endpoints of an isochronous audio stream are abstracted as mLAN plugs. The mLAN
plugs reside within the enabler, and they enable connection management. This sepa-
ration of roles, whereby the enabler exists on a workstation for device monitoring and
control and the transporter resides on the actual device, is referred to as the plural-node

architecture.

In order to understand how the plural-node architecture provides for interoperability
between mLAN compliant and non-mLAN compliant nodes, the mLAN enabler and
transporter are described here.

mLAN enabler

An mLAN enabler consists of three layers that each contribute to its over all function-
ality of configuring transporter nodes. These three layers are [128]:

• mLAN plug abstraction layer - is the top layer of the mLAN enabler. The mLAN
plug abstraction layer interfaces with an application on the workstation that uti-
lizes the mLAN enabler. It defines an Application Programming Interface (API)

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 118

that an application can use to interact with the mLAN plugs. These mLAN plugs
allow the application to manage device connections.

• A/M manager layer - refers to the audio and music layer of the mLAN enabler. It
interfaces with the mLAN plug abstraction layer via a defined API. This layer is
concerned with audio and music data parameter manipulations. Each transporter
that is being controlled by the enabler, is abstracted as transporter objects within
the A/M manager layer. The transporter objects make it possible for the enabler
to maintain and monitor the state of the corresponding transporter node.

• Hardware Abstraction Layer (HAL) - this layer interacts with the A/M man-
ager layer and the transporter control interface that resides within the transporter
nodes. It abstracts manufacturer specific implementations of audio and music data
encapsulation and extraction. The abstractions are implemented as plug-ins that
are incorporated into the enabler.

The enabler is able to achieve interoperability between mLAN devices that are imple-
mented by different manufacturers. This is precisely the function of the HAL layer.
Each manufacturer incorporates a device-specific HAL plug-in for communication with
the manufacturer’s device.

mLAN transporter

An mLAN transporter implements a module known as the mLAN node controller that
enables it to encapsulate and extract audio and music data within isochronous packets.
An mLAN transporter consists of [128]:

• the IEEE 1394 layer - this implements the IEEE 1394 serial bus requirements,
as well as the mLAN unit directory, which enables the identification of mLAN
transporter nodes, and other software diagnostics.

• Transporter control interface layer - maps IEEE 1394 registers for audio and mu-
sic data processing to particular addresses within the transporter. This enables
IEEE 1394 asynchronous transactions to have the desired effects on the trans-
porter’s stream processing.

• A/M protocol layer - implemented in hardware (for example the Yamaha’s NC1,
PH1 [126] and PH2 chips [127]) or in software (for example the BridgeCo’s
DM1000 chip [35]) to enable the packetization and extraction of audio and music
data according to the A/M specification [37].

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 119

An mLAN transporter may implement a Connectionless Isochronous Transmission (CIT)

manager layer [35]. The CIT makes it possible for a transporter to save its plug con-
figurations within non-volatile memory known as boot parameter memory, so that the
transporter does not require the enabler to reconfigure its plugs after each power down.

The enabler/transporter architecture is designed such that the enabler, which is the con-
trol point for mLAN nodes on the network, can be utilized in order to attain interoper-
ability with non-mLAN nodes. This is the situation depicted in Figure 4.3.

Figure 4.3: mLAN enabler/transporter architecture

In Figure 4.3, the ‘Control Application’ is responsible for establishing and destroying
stream connections between devices that implement a particular audio control protocol
(referred to as Protocol A in the figure). This means that the ‘Control Application’ is
able to perform connection management between Protocol A nodes (‘Protocol A Device

1‘ and ‘Protocol A Device 2‘). With the assistance of the enabler, the ‘Control Appli-

cation’ is also able to perform connection management operations on the networked
mLAN transporter nodes (‘Manufacturer A Device 1’, ‘Manufacturer B Device 2’, and
‘Manufacturer B Device 3’). The ‘Control Application’ transmits the appropriate Pro-
tocol A connection management commands to the devices on the network. The enabler
ensures that the ‘Protocol A’ commands that are directed at the plug abstraction layer,
result in the appropriate manufacturer specific commands being sent to the correspond-
ing transporter node.

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 120

The enabler shown in Figure 4.3 controls the three mLAN transporter nodes. Two of
these nodes are manufactured by the same hardware vendor (Manufacturer B), and the
third node is manufactured by a different hardware vendor (Manufacturer A). Each of
these manufacturers have created a HAL plug-in, which is incorporated into the en-
abler’s HAL layer. At the enabler’s ‘A/M Manager Layer’, three transporter objects are
created. Each of these transporter objects corresponds to a particular transporter node
under the control of the enabler. At the ‘Plug Abstraction Layer’, the enabler abstracts
the end-points of audio sequences and MIDI subsequences in a manner that conforms
to Protocol A. The enabler exposes these endpoints (‘plugs’) to the ‘Control Applica-

tion’ in the same manner that the Protocol A devices expose their stream connection
endpoints.

The ‘Control Application’ can establish audio stream connections by connecting the
enabler’s ‘Protocol A endpoints’ with the endpoints that reside within the Protocol A
devices. In this way, the enabler is able to achieve interoperability between devices
that implement the mLAN protocol and devices that implement other audio control
protocols. The ‘Control Application’ and the ‘Enabler’ depicted in Figure 4.3 may
reside on the same workstation.

4.2.2 Layer 3 common specification approach - AES-X192

The AES-X192 task group is currently developing a specification that will allow for in-
teroperability between networked audio devices via IP-based messaging [11]. It utilizes
existing protocols and standards. AES-X192 standardizes the procedure for:

• setting up and destroying audio stream connections

• exchange of timing information necessary for synchronization

• describing stream characteristics and encoding

Of particular interest to this research project is how stream connections can be remotely
configured on networked audio devices such that audio that is transmitted by a source
device, can be received by a destination device.

The AES-X192 project recommends the use of Session Initiation Protocol (SIP) for
connection management [141]. SIP provides signaling for setting up or tearing down
connections between participants known as user agents (UA) [142].

SIP interactions are between a User Agent Client (UAC) that sends a request, and a User

Agent Server (UAS) that processes and responds to the request. Typically a single UA

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 121

is capable of fulfilling both roles. Each UA registers its location on a dedicated SIP
server known as the Registrar server. This (registrar) server stores a database of all SIP
services being offered on the network, and their corresponding location.

Associated with each UA is a Uniform Resource Identifier (URI) that can be used to
identify the particular UA on the network [143].

The SIP URI recommended by AES-X192 is of the form:

sip:<username>@<host>

The ‘sip:’ indicates that the URI is defined for the SIP protocol. The ‘<username>’

identifies the particular instance on the ‘<host>’.

Each SIP response has a status code and reason phrase that are associated with it [142].
The status codes are defined in the SIP standard documents [141] [144] [145] [146].
The reason phrase provide a description of the code as human-readable text.

Figure 4.4 depicts communication using SIP.

Figure 4.4: SIP communication between user agents

Figure 4.4 depicts a three-way handshaking approach to initiating a SIP connection. The
steps are:

1. ‘User Agent 1’ sends an INVITE request to the ‘Proxy’ server. It will specify the
SIP URI of the device it wishes to communicate with (that is the URI on ‘User

Agent 2’).

2. The ‘Proxy’ server sends a “Trying” response (with code 100) to ‘User Agent 1’,
which indicates that it is processing the request. Then it queries the ‘Registrar’

server for the location of ‘User Agent 2’.

3. After gaining knowledge of the location of the intended target, the ‘Proxy’ server
sends the INVITE request to ‘User Agent 2’.

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 122

4. ‘User Agent 2’ sends a “Ringing” response (with code 180) to the ‘Proxy’ indi-
cating that connection is being established.

5. The ‘Proxy’ relays the “Ringing” response to ‘User Agent 1’.

6. ‘User Agent 2’ sends an “OK” response (with code 200) to the ‘Proxy’ which
means that the connection has been established at ‘User Agent 2’.

7. The ‘Proxy’ relays the “OK” response to ‘User Agent 1’. The “OK” message
means that ‘User Agent 2’ is ready to receive data.

The transaction illustrated in Figure 4.4 is the SIP request INVITE method, and it is used
to establish a connection. The transaction for pulling down a connection is implemented
by the SIP request BYE method.

SIP is transport protocol independent and it has been used with TCP and UDP proto-
cols [147] [71]. It is widely deployed and understood by network administrators, thus
making it an attractive solution for interoperability between devices on IP-based audio
networks.

By defining a common connection management procedure, each AES-X192 compliant
device is guaranteed interoperability with other (AES-X192) compliant devices on the
network. The AES-X192 task group proposes that an X192 compliance mode be added
to devices.

4.2.3 AVDECC Proxy Protocol

The IEEE 1722.1 standard defines an AVDECC Proxy Protocol (APP) that will en-
able AVDECC messaging (which is a layer 2-based messaging) across layer 3 networks
[19]. This will ensure interoperability between AVDECC end stations across different
network transport protocols, that is layer 3 and layer 2 transport technologies.

The APP approach allows for AVDECC interoperability over layer 3 transport technol-
ogy. In order to enable cross-network communication, the APP defines two distinct
roles between communicating devices. These are:

• AVDECC Proxy Server (APS) - an AVDECC entity that is capable of receiving
ADP, ACMP, and AECP messages (refer to section 3.4.3) via layer 3 messaging,
then forwarding the received messages to an AVDECC layer 2 network.

• AVDECC Proxy Client (APC) - an AVDECC entity that communicates via layer
3 AVDECC messaging, and utilizes the APS for layer 2 communication.

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 123

By utilizing an AVDECC Proxy Server (APS), an AVDECC end station that implements
the APC state machine is able to communicate with other AVDECC end stations across
an intermediate layer 3 network. This approach is intended for interoperability between
networked AVDECC end stations.

APP allows forwarding of layer 3 messages to layer 2 (AVDECC) networks by defining
an AVDECC Proxy Protocol Data Unit (APPDU), which is used for APC and APS
communication. The APPDU encapsulates ADPDU, ACMPDU or AECPDU (refer to
section 3.4.3) protocol data units, as it is being transported across a layer 3 network.

The communication between AVDECC entities that utilize APP is represented in the
form of a diagram in Figure 4.5.

Figure 4.5: APC and APS communication

In Figure 4.5, ‘AVDECC network A’ consists of three APC AVDECC end stations, and
‘AVDECC network B’ consists of two APC AVDECC end stations. Communication be-
tween end stations that reside in the same network, is via layer 2 (AVDECC) messaging.
In order for any of the APCs in ‘AVDECC network A’ to communicate with an APC in
‘AVDECC network B’, it will encapsulate its message within a layer 3 APPDU message
and address it to the APS. The APS is responsible for forwarding layer 3 APPDU mes-
sages between ‘AVDECC network A’ and ‘AVDECC network B’. It is also possible to
have a device, for example a web-based controller, that implements APC and is able to
communicate with AVDECC end stations via the APS.

The APP defines two state machines that enable an APC or APS to appropriately re-
spond to received messages. The AVDECC proxy client state machine implements the
functionality of an APC, and an AVDECC proxy server state machine implements the
functionality of an APS.

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 124

APP utilizes the HTTP CONNECT method to initiate the tunneling of (APPDU) mes-
sages between an APS and an APC [74].

An APC has to discover the available APS on the network. The IEEE 1722.1 standard
recommends the use of DNS-SD for discovery. DNS-SD requires that a particular ser-
vice type is being advertised and/or discovered on the network depending on whether
the participating device is a client discovering one or more service(s), or a server pub-
lishing its service(s). A DNS-TXT record is used to provide further information about
the service being offered. DNS-TXT record information is presented as key/value pairs.

An APS advertises a DNS-SD service type ‘_avdecc._tcp’, which utilizes TCP/IP for
communication and a textual description of “AVDECC Proxy”. It uses port ‘17221’ for
communication.

4.3 Command translation for Interoperability

The previous section described some approaches to attain interoperability between net-
worked audio devices. The mLAN approach involves the use of a central mLAN com-
pliant network configuration and monitoring application called an enabler, which resides
within a workstation. The enabler abstracts the endpoints of audio sequences and MIDI
subsequences in order to conform to a protocol, and can thus be used for connection
management of mLAN compliant transporter nodes and devices that comply with that
protocol.

The AES-X192 approach requires that networked devices conform to the same (IP-
based) network interoperability requirements. It recommends that networked audio de-
vices implement SIP for connection management. The AES-X192 approach ensures
that irrespective of the underlying audio protocol of the networked device, SIP can be
used to establish and destroy audio streams on the device.

The AVDECC proxy protocol approach only allows interoperability between AVDECC
end stations. It utilizes a client/server architecture, which uses HTTP to initiate tunnel-
ing of APPDU messages.

This research proposes the use of a protocol command translator to enable device in-
teroperability. An initial investigation of this command translator approach was im-
plemented on an IEEE 1394 network of AV/C and AES-64 devices. Those results were
documented in a paper titled “A Proxy Approach for Interoperability and Common Con-

trol of Networked Digital Audio Devices” [148]. This research project provides further
experimentation and implementations that include:

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 125

• Command translation between devices on an Ethernet AVB network where the
devices implement layer 2 and layer 3 protocols.

• Centralized control of networked devices that conform to different audio control
protocols

• Quantitative analysis of the protocol command translation approach

The command translator acts as a proxy that enables communication between devices
that implement different audio control protocols. The proxy enables devices conforming
to protocol A to appear as if they were devices conforming to protocol B to an external
controller. The proxy should be able to:

• discover the devices (conforming to protocol A) that it proxies,

• enable a controller that implements a different protocol (protocol B) to discover
the proxied devices,

• receive protocol messages on behalf of the proxied devices,

• translate the received messages from one protocol to another,

• transmit the translated messages to the intended target.

Figure 4.6 depicts how a proxy is used for command translation between networked
devices.

Figure 4.6: Command translation for interoperability

Figure 4.6 shows three networks that are distinguished by the audio control protocol
they implement. The three networks are ‘Protocol A’, ‘Protocol B’, and ‘Protocol C’.

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 126

The objects within each of these networks communicate with each other by exchanging
their own particular protocol messages.

In Figure 4.6, the ‘Proxy’ is used to translate control messages (‘Protocol A messages’,
‘Protocol B messages’, and ‘Protocol C messages’) so as to enable communication be-
tween the devices that conform to the three protocols.

The proxy (command translation) approach ensures that networked devices communi-
cate using the particular audio control protocol that they implement. When compared
with the plural-node architecture, this approach eliminates the need for a manufacturer
of an mLAN transporter to create a HAL for their devices (refer to section 4.2.1). Sec-
ondly, it eliminates the need to modify the enabler so that it can abstract the stream
endpoints in a manner that will allow the network controller to interact with them.

The proxy is able to translate commands between audio control protocols that are im-
plemented on different transport technologies. This approach avoids the requirement
that networked devices conform to the same transport protocol and implement the same
procedure for connection management, as is the case with the AES-X192 approach to
interoperability (refer to section 4.2.2).

The command translation approach implemented by the proxy enables communication
between devices on layer 2 and layer 3 networks as is the case for APP. However it does
not place restrictions on the particular audio control protocol that should be used for
communication between the networked devices and the proxy, as is the case of the APP
approach.

The proxy makes it possible for networked devices to discover other devices that im-
plement disparate audio control protocols. It makes it possible for a single network
controller to configure all of the networked devices, since the messages of the network
controller will be appropriately translated by the proxy, as they are forwarded to their
targets.

4.4 Summary

An audio control protocol enables remote monitoring and configuration of networked
devices on an audio network. Several audio control protocols are currently being used.
Audio devices can only interact with other networked devices that implement the same
control protocol. Hence interoperability between devices that implement different con-
trol protocols remains a challenge.

CHAPTER 4. NETWORKED AUDIO DEVICE INTEROPERABILITY 127

A number of audio control protocols have incorporated solutions that provide a way to
enable interoperability with non-compliant devices. Yet these solutions impose certain
restrictions. The mLAN approach requires the construction of a HAL by each manufac-
turer of a transporter, and the enabler can only provide an abstraction of one protocol.
The AES-X192 and APP approaches require protocol conformance.

These restrictions can be overcome with the use of a command translator on the network.
The command translator implements the audio control protocols of the networked de-
vices, and should be capable of discovering and communicating with the networked
devices according to their particular control protocol.

Chapter 5

Layer 3 end station implementation -
OSC

This research project has proposed the command translation approach as a solution for
interoperability between networked audio devices. A description of the approach has
been provided in the previous chapter. In order to investigate the command translation
approach, devices that implement different audio control protocols need to be networked
together with the command translator. The Open Sound Control (OSC) protocol was
selected as one of the audio control protocols for this investigation (the reasons for this
have been provided in chapter 3).

OSC is a specification that defines message formating syntax for communication be-
tween devices. The communication between OSC devices conforms to the client-server
architecture where the following roles are defined in OSC:

• OSC client - an OSC device that sends out a command or request for a service

• OSC server - an OSC device that executes the requested instruction or performs
the requested task

Both roles (client and server) can be performed by the same device. That is, an OSC
device can be both an OSC client (with its ability to transmit requests) and an OSC
server (with its ability to process requests). For further information on OSC refer to
chapter 3.

OSC is transport independent, and OSC messages can be encapsulated within OSI/ISO
layer 3 Internet Protocol (IP) packets. Most OSC implementations utilize IP for OSC
messaging. Hence OSC has been classified as a layer 3 audio control protocol (refer to
chapter 3).

128

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 129

In this investigation, a decision was made to utilize Ethernet AVB for audio streaming
since:

• Ethernet AVB is rapidly becoming the transport technology of choice for many
audio/video manufacturers.

• There was access to workstation-based implementation of Ethernet AVB [1]. This
Ethernet AVB implementation was used in this research to implement layer 2 and
layer 3 protocols.

As a result, the Ethernet AVB technology was selected as the audio transport technology
of choice. However at the time of this investigation there were no commercially avail-
able Ethernet AVB capable OSC devices. As a result, an OSC server that is capable of
streaming audio on an Ethernet AVB network was created. The audio streams conform
to the IEEE 1722 standard also known as the Audio Video Transport Protocol (AVTP)

[49]. Devices that transmit IEEE 1722 streams are referred to as AVTP end stations.

The OSC server, which was created in this investigation, is an AVTP end station that
is capable of performing the roles of AVTP talker and AVTP listener. An AVTP talker
is the source of an audio stream on an Ethernet AVB network, and an AVTP listener
receives an audio stream from an Ethernet AVB network. The term ‘AVTP end station’

refers to a device on the Ethernet AVB network that is capable of fulfilling the roles of
AVTP talker and AVTP listener.

This chapter provides an overview of the OSC server’s design. It describes the various
components that together make up the server. This is followed by some design and
implementation details that describe the various aspects of the OSC server, including
the:

• device discovery implementation with regards to the OSC server,

• OSC message handling,

• OSC address space that was created for the (OSC) server,

• procedures and features of the server that enable connection management, and

• internal routing of signals within the server.

The overall goal with this implementation, was to create an OSC server that is capable
of transmitting and receiving IEEE 1722 streams on an Ethernet AVB network, as well

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 130

as enabling remote control of its connection management OSC methods in order to set
up the IEEE 1722 streams.

In this chapter, the term ‘AVB audio stream’ refers to audio streams that conform to the
IEEE 1722 standard and that are being transported on an Ethernet AVB network. Also
‘AVB’ refers to the Ethernet AVB networking technology that was described in chapter 2
on page 13.

5.1 OSC Server Overview

The OSC server, that was implemented as part of this research project, is an Ethernet
AVB end station that is capable of transmitting and receiving IEEE 1722 audio streams.

The design of the (OSC) server focuses on three important aspects: device discovery,
connection management and internal routing. These (with respect to the OSC server)
are described below.

• Device discovery - refers to how the OSC server can be discovered by a controller
or other OSC devices on the network.

• Connection management - refers to the procedure for making and breaking stream
connections between the OSC server and a remote device.

• Internal routing - refers to the internal routing of audio between the various inputs
and outputs of the OSC server.

In this investigation, a PC implementation of the OSC server was created. The im-
plementation is aided by the C++ programming language, thus allowing for an object-
oriented programming model. Figure 5.1 shows an overall layout of the OSC server
implementation. As shown in the figure, there is an implementation platform, above
which are three components (Device discovery component, AVB component and OSC

parser component). Above these three components is the OSC service which imple-
ments the OSC methods that execute OSC requests.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 131

Figure 5.1: Overview of OSC server components

In Figure 5.1 the arrows illustrate the interactions between the various components and
the OSC service (above them), and the implementation platform (below them). These
are explained in the following sections.

5.1.1 Implementation Platform

The Implementation Platform forms the basis for the components above it (see Figure
5.1). The OSC server has been developed on Ubuntu Linux (version 11.10 and kernel
version 3.0.0-14-generic) as its platform. The platform provides an IP stack that is
utilized by the service discovery and OSC parser components. It also provides the
necessary interface for the Ethernet AVB (kernel) modules to interact on a network.

5.1.2 Device discovery component

This component provides a mechanism for informing other devices of the presence of
the OSC server on a network. It also ensures that other networked devices are aware of
the OSC server’s departure from the network. In the current implementation of the OSC
server, the avahi library (version 0.6.30) is utilized by this component [149].

Avahi is an implementation of the zero configuration networking technology [149]. Zero
configuration networking includes multicast DNS (mDNS) and DNS Service Discovery
(DNS-SD). mDNS enables networked devices to acquire an IP address without manual
configuration or the use of a dedicated DNS server. DNS-SD provides a mechanism for
devices to discover available services on the network.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 132

5.1.3 AVB component

The AVB component handles AVB interactions between the OSC server and the Ether-
net AVB network. There are Linux kernel modules that can be utilized to implement
Ethernet AVB capabilities. These modules are [1]:

• kmrp module - implements the Multiple Registration Protocol (MRP) as defined
in IEEE 802.1ak [50]. MRP enables applications to declare and register attributes,
it also maintains the state of the attributes on a bridged LAN.

• kmmrp module - implements the Multiple MAC Registration Protocol (MMRP)
defined in IEEE 802.1ak [50]. It is an MRP application that is used to register and
deregister MAC address information on a bridged LAN.

• kmvrp module - implements the Multiple VLAN Registration Protocol (MVRP)
defined in IEEE 802.1ak [50]. It is an MRP application that enables end-stations
and bridges to declare and withdraw attributes when joining or leaving a VLAN.

• kmsrp module - implements the Multiple Stream Registration Protocol (MSRP)
defined in IEEE 802.1Qat [44]. MSRP utilizes MRP, MMRP, and MVRP to de-
clare stream attributes, which are used by the network to ensure that the necessary
resources are reserved for the transmission of the stream.

• faq module - implements the Forwarding and Queuing procedure defined in IEEE
802.1Qav [45]. This module implements a buffer that holds Ethernet frames
which are destined for transmission via an Ethernet interface.

The specific implementation of these Linux kernel modules are described in [1].

All interactions between these modules and the server is via this component. The AVB
component also ensures that the encapsulation of audio streams is in accordance with
IEEE 1722.

5.1.4 OSC parser component

The OSC parser component is responsible for interpreting received OSC messages, and
formulating OSC messages in response to a received query. All OSC messages ex-
changed with the OSC server are encapsulated within UDP/IP packets. The OSC parser
component is responsible for triggering the appropriate OSC method (within the OSC
address space) that matches a received OSC address pattern.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 133

5.1.5 OSC service

The OSC service implements the OSC server’s OSC address space and combines the
functionalities of the three components, in order to meet the requirement of the OSC
server. For instance in order to execute a request from a remote OSC client to advertise
it’s available (IEEE 1722) streams on the network, the OSC server receives the message
(via the OSC parser component), and parses it to trigger the appropriate OSC method
within its OSC address space. The OSC method will send an ‘advertise stream’ request
to the relevant Ethernet AVB module (via the AVB component).

5.2 OSC Server capabilities

The OSC server is capable of:

• Receiving an AVB audio stream connection, thus performing the role of AVB
listener

• Transmitting audio via an AVB stream connection, thus performing the role of
AVB talker

• Internal routing of audio, including routing:

– analog audio input plug to IEEE 1722 output plug

– IEEE 1722 input plug to analog audio output plug

The term plug as used here refers to the endpoint of an audio connection. A plug will
consist of the source or destination of a mono or stereo audio channel.

5.3 OSC Server Implementation Layout

The three components depicted in Figure 5.1 give an overview of the various functional
units that together form the OSC server. This section describes in detail the OSC server
implementation.

Figure 5.2 depicts the OSC server in the form of a class diagram.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 134

Figure 5.2: OSC server class diagram

The initialization and starting of the OSC server is implemented in the OscServer class
of Figure 5.2. At startup, the OscServer_init method of the OscServer class is called
to create an instance of the OscServer. This instance (of the OscServer) is started by
calling the OscServer_start method. In order to properly shut down the server, an Osc-

Server_cleanup method has also been defined within the OscServer class.

The device discovery component (of Figure 5.1) is implemented by the OscServerSer-

viceDiscovery class. The OscServerService class abstracts the OSC service component
of Figure 5.1. The OscServer_runOSCServer() method within the OscServerService

class starts up the OSC parser component (of Figure 5.1). The OscServerAVB class
abstracts the AVB component, thus enabling AVB interaction between the server and
the Ethernet AVB network. An OscServerAnalogAudio class has been created as an
abstraction that handles stereo analog audio input and output plugs.

The following sections provide a detailed description of the various classes (shown in
Figure 5.2).

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 135

5.4 Device Discovery

Device discovery refers to the mechanism used by networked devices to discover each
other. Within a network of audio devices, a controller requires knowledge of the other
devices it is capable of controlling/configuring. These will be all the network devices
that conform to the same control protocol as the controller.

In this implementation, DNS service discovery (DNS-SD) is the device discovery mech-
anism used. DNS-SD allows for a networked device to announce its presence when it
joins a network, and announce it’s departure when it leaves the network (gracefully).
Graceful departure refers to a device adhering to the proper procedure for leaving a net-
work. This is in contrast to a situation where the power plug on a networked device is
accidentally pulled out.

The OSC server uses avahi for its DNS-SD implementation [149]. Avahi is a Linux
library (with API) that allows for publishing and browsing of DNS-SD services. Each
service has a particular service type by which it is identified. Additional information
about the service is obtained from the DNS records. DNS-SD is described in detail in
section 3.4.1.2 on page 80.

The OscServerServiceDiscovery class of Figure 5.2 implements device discovery within
the OSC server. This class exposes two functions (OscServer_publishService and Osc-

Server_withdrawService) to the OscServer class. The OscServer_publishService is used
to announce that a device with a particular service type is now available on the network.
A controller that is listening for announcements of this service type (on the network)
gets this information and can probe the device for further information. For instance it
could proceed to discover the features, capabilities and controls within the device. This
process is called device enumeration.

The OscServer_withdrawService is used to announce that the device is leaving the net-
work. A controller can use such information to update its list of available devices.

In order to use the two functions mentioned above, an object of the service_parameter

data type (shown in Listing 5.1) is passed to the appropriate function. This ser-

vice_parameter is used to provide device discovery specific information (device name
and UDP port number) that can be retrieved by a remote device via DNS-SD.

s t r u c t s e r v i c e _ p a r a m e t e r {
c h a r ∗ name ;
i n t p o r t ;

} ;

Listing 5.1: Data structure for service type

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 136

The variables in the service_parameter data type comprise minimal the device informa-
tion, which is published on the network, thus making this information accessible to a
remote controller. The name field holds a reference to a descriptive name used to iden-
tify the device, and the port is used to specify the UDP port on which the OSC server
is listening for OSC messages. Following this it is possible to enumerate further device
information.

The publishing and withdrawing of services make use of the avahi library, and are de-
scribed in the following subsections.

5.4.1 Publishing of OSC server

The publishing of an OSC service is implemented by the OscServer_publishService

function, which is passed an instance of the service_parameter data structure (refer to
Listing 5.1). This function makes use of the avahi API following the steps below:

1. It creates an instance of the avahi client with the avahi_client_new method. This
client is used to get a handle on the avahi library. Associated with the client is a
callback that is triggered after initialization of the handle to the AvahiClient, and
this callback incorporates an error handling mechanism.

2. It creates an instance of the AvahiEntityGroup using the avahi_entity_group_new

API function, and associates it with a callback that is triggered whenever there is
a change in the entity group.

3. It specifies details of the OSC service and adds it to the entity group (created
above) by utilizing the avahi_entry_group_add_service method of the avahi API.
Such details include the:

• service type - which in this case is ‘_osc._udp’

• name - is the name field in the service_parameter of Listing 5.1

• port - is the port field in the service_parameter of Listing 5.1

4. It registers the service by calling the avahi_entity_group_commit API function.

At the end of this process all controllers browsing for the ‘_osc._udp’ service type,
will be informed that the OSC server is available on the network. There is an Avahi
capability to ‘resolve’ a service type announcement. Refer to the avahi API for more
information about the functionalities of the avahi library [150].

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 137

5.4.2 Withdrawing of OSC service

The OscServer_withdrawService method of the OscServerServiceDiscovery class en-
ables an entity to withdraw its service. This method withdraws the (‘_osc._udp’) service
by announcing its departure from the network, following steps below:

1. It frees the entity group by calling the avahi_entity_group_free API method.

2. It deletes the AvahiClient by calling the avahi_client_free API method.

At the end of this process all controllers on the network will be informed that the OSC
server has left the network. This is accomplished via a browser callback that is asso-
ciated with each avahi client that is browsing for OSC services on the network. The
browser callback of such a client (avahi client browsing for OSC services) is triggered
whenever a departure announcement is made on the network.

5.5 OSC Address Space for OSC Server

In OSC the entire hierarchical layout of the various paths from root node to leaf nodes
within an OSC server is known as its OSC address space. The root node is the topmost
node of the hierarchy and the leaf nodes are the OSC methods that form trigger points.
When an OSC client requests a service or directs a query at an OSC server, it sends
an OSC message that is addressed to an OSC method (leaf node on the address space
hierarchy). OSC provides a mechanism for a single OSC message to address multiple
OSC methods.

The OSC address space created for the OSC server can be classified into three cate-
gories:

• OSC generic properties

• Device properties

• AVB properties

The OSC address space is implemented in the OscServerService class of Figure 5.2.
When the OscServer_runOSCServer method of the OSCServerService class is called,
the OSC address space is created and the OSC server waits for its OSC methods to be
triggered.

The following subsections describe the OSC address space based on the three categories
mentioned.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 138

5.5.1 OSC address space for OSC generic properties

This category includes the OSC methods that reveal information about the OSC protocol
implemented by the OSC server. Currently the OSC server implements two methods in
this category. These are shown in Listing 5.2.

/ osc / v e r s i o n
/ osc / p ing

Listing 5.2: OSC address space for OSC generic information

The version method is used to inquire about the OSC version implemented by the OSC
server. The server implements version 1.1 of the OSC specification [96].

The ping method is used to detect the availability of the server on a network. This could
be used by a controller to probe whether the server is still accessible or active.

5.5.2 OSC address space for device properties

The OSC methods within this category are those that provide device specific information
about the OSC server. These include information such as the server’s name, it’s IP
address, and the total number of audio inputs on the server. Listing 5.3 shows the OSC
methods in this category.

/ d e v i c e / name
/ d e v i c e / t y p e
/ d e v i c e / i p
/ d e v i c e / s o u r c e s
/ d e v i c e / s i n k s
/ d e v i c e / s o u r c e / name
/ d e v i c e / s i n k / name
/ d e v i c e / s i n k / s o u r c e

Listing 5.3: OSC address space for device specific information

The OSC methods referred to in the following discussion refer to those listed in Listing
5.3.

The name method is used to obtain the name of the OSC server. The server will return
a string that contains its name whenever this method is triggered. This value can also
be set remotely, in which case the remote controller will provide the new name as an
argument (of type string) to the name OSC method. Listing 5.4 depicts such a message.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 139

/ d e v i c e / name <name>

Listing 5.4: OSC message to set the OSC server’s name from a remote controller

The type method is used to determine the functionality of the server. Currently the OSC
server responds by returning a value that indicates that it is an AVB end station. This is
a read only value, and cannot be changed remotely by a controller.

The sources and sinks methods are used to determine the total number of audio outputs
and the total number of inputs, respectively. These are read-only values, that is they
cannot be changed remotely. These totals (number of outputs and number of inputs)
include both the analog audio and AVB audio streams.

The source/name method returns the name of a particular audio source (output), and
the sink/name method returns the name of a particular audio sink (input). Each input
and output on the server has a name assigned to it for easily identification. To obtain
the name of a particular audio input or output, an index of the input or output must be
specified as an integer argument within the OSC message. The index starts from ‘1’ to
the total number of inputs or outputs on the server. Listing 5.5 depicts an OSC message
to obtain the name of an output on the OSC server.

/ d e v i c e / s o u r c e / name <index >

Listing 5.5: OSC message to get the name of a source

The names of the audio inputs and outputs can be set remotely by a controller. To do this
a second (string) argument is included in the message to the name method. Listing 5.6
shows the syntax of an OSC message that modifies the name of an output on the server.
Changes to the names of inputs or outputs on the server are non-persistent, hence are
lost when the OSC server is restarted.

/ d e v i c e / s o u r c e / name <index > <newName>

Listing 5.6: OSC message to set a source name

The sink/source method is used for internal routing within the server. The method (sink/-

source) is described in section 5.7.

5.5.3 OSC address space for AVB properties

The OSC methods in this category relate to the AVB properties on the OSC server.
These methods are shown in Listing 5.7 on the next page.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 140

/ avb / s o u r c e s
/ avb / s o u r c e / name
/ avb / s o u r c e / t y p e
/ avb / s o u r c e / i d
/ avb / s o u r c e / c h a n n e l s
/ avb / s o u r c e / f o r m a t
/ avb / s o u r c e / s t a r t
/ avb / s o u r c e / s t o p
/ avb / s o u r c e / s t a t e
/ avb / s o u r c e / a d v e r t i s e
/ avb / s o u r c e / wi thdraw
/ avb / s i n k s
/ avb / s i n k / name
/ avb / s i n k / t y p e
/ avb / s i n k / i d
/ avb / s i n k / c h a n n e l s
/ avb / s i n k / f o r m a t
/ avb / s i n k / s t a r t
/ avb / s i n k / s t o p
/ avb / s i n k / s t a t e
/ avb / s i n k / l i s t e n
/ avb / s i n k / d e s t r o y

Listing 5.7: OSC methods for AVB stream information

Detailed descriptions of the OSC methods, which are depicted in Listing 5.7, are pro-
vided later in section 5.6.2 on page 143.

The following section describes how to establish or destroy a stream connection on the
OSC server.

5.6 Connection Management

Connection management describes the procedure for establishing and destroying stream
connections between networked devices. The OSC server can perform the role of AVTP
talker, in which case it is the origin (source) of an audio stream on an Ethernet AVB
network. The server can also perform the role of AVTP listener where it becomes the
destination (sink) of an IEEE 1722 audio stream.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 141

In order to establish an audio stream connection between an AVTP talker and AVTP
listener, the following steps have to be followed [1]:

• The talker acquires a multicast MAC address using MAAP.

• The talker announces its AVTP audio stream by sending a talker advertise at-
tribute while utilizing MSRP. This attribute contains the properties of the audio
stream, and registers the stream on the network.

• A listener that requires the advertised stream sends a listener ready attribute (uti-
lizing MSRP), which specifies the stream ID of the stream it wants to receive.

• When the talker receives a listener ready (or listener ready failed) attribute (via
MSRP) and if the stream ID of this attribute matches one of its advertised streams,
the talker starts to stream.

A set of OSC methods have been created in order to control this connection management
process. Before describing these OSC methods, the design of the connection manage-
ment capabilities (of the OSC server) is provided in the following section.

5.6.1 Implementing connection management capabilities in the OSC
server

For the implementation of the roles of AVTP talker and listener, the OSC parser com-

ponent and AVB component of Figure 5.1 are utilized. All OSC messages are parsed
by the OSC parser component. The acquisition of a multicast MAC address, as well as
the MSRP interactions are handled by the AVB component. A multicast MAC address
enables multiple AVTP listeners to receive an audio stream from an AVTP talker. When
setting up or destroying a stream connection, both of these components (OSC parser and
AVB) are used. For instance, when an OSC message to advertise a stream is received
by the OSC server, the following steps ensue:

• the OSC parser component scrutinizes the message in order to trigger the appro-
priate OSC method within the server’s OSC address space. In this case it will be
a call to the ‘/avb/source/advertise’ method.

• the advertise method utilizes the AVB component to register its stream on the
network. It does this by calling the MSRP module, which subsequently calls
MRP to issue a talker advertise attribute.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 142

Figure 5.3 shows the two classes of the OSC server’s class diagram (Figure 5.2 on
page 134) that are of interest to this discussion.

Figure 5.3: OSC server’s classes for AVB interaction

The OSC parser component runs within the OscServer_runOSCServer method of the
OscServerService class. It is this method that tallies (matches) received OSC messages
with the appropriate OSC address patterns in the server’s OSC address space.

The OscServerService constructor creates an instance of the OscServerAVB class which
implements the AVB component. The OscServerAVB class implements methods for:

• acquiring a range of multicast MAC addresses by utilizing MAAP. This is imple-
mented in the OscServer_acquireMAAPAddress method.

• network resource reservation (for its audio streams) by utilizing MSRP, which en-
ables it to performs the roles of AVB talker or listener. Advertising and withdraw-
ing of the available of AVB streams on the AVB talker are fulfilled by the Osc-

Server_register1722Stream and OscServer_deregister1722Stream methods (re-
spectively). The AVB listener role involves indicating interest or disinterest in
a stream. This role is fulfilled by the OscServer_attachTo1722Stream and Osc-

Server_detachFrom1722Stream methods.

• initializing the required audio buffers, as well as initiating and terminating the
transmission of audio. These are fulfilled by the OscServer_initializeAudio, Osc-

Server_startAudio, and OscServer_stopAudio methods respectively.

In order to enable connection management the OSC server implements a number of
OSC methods. These methods are described in the following section.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 143

5.6.2 OSC methods for connection management

The OSC methods referred to in the following discussion refer to those listed in Listing
5.7.

The sources and sinks methods are used to obtain the number of AVB output and input
streams (respectively) that exist on the OSC server. In the current implementation, the
OSC server transmits two AVB audio source streams and accepts a maximum of two
AVB audio sink streams. These values (sources/sinks) cannot be modified by a remote
controller.

The name methods return a string that describes a particular source or sink stream. A
controller that seeks to determine the name of an audio source stream will send an OSC
message of the form shown in Listing 5.8. To obtain the name of the first AVB audio
source stream, the value of the index argument (in Listing 5.8) will be specified as ‘1’,
and to obtain the value of the second AVB audio source stream the index argument will
be ‘2’.

/ avb / s o u r c e / name <index >

Listing 5.8: OSC message to get the name of an AVB source audio stream

A similar syntax is used to obtain the names of the AVB audio sink streams. The names
of the stream sources/sinks can be changed by a remote controller. To do this, the
controller specifies a name argument as depicted in Listing 5.9.

/ avb / s o u r c e / name <index > <name>

Listing 5.9: OSC message to set the name of an AVB source audio stream

The type methods are used to determine the type of AVB stream presented by the
sources/sinks methods. This provides a means to determine the type of data being trans-
ported within the AVB stream. Hence by querying this value, a controller is able to
distinguish between an audio and a video stream. In the case of the OSC server, the
streams are audio AVB streams. In order to determine the stream type of a source or
sink, the OSC message is passed an index (as an argument) to specify the particular
source or sink. Listing 5.10 depicts the syntax of an OSC message to a type method
within the source OSC container.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 144

/ avb / s o u r c e / t y p e < index >

Listing 5.10: OSC message to get the type of AVB stream

Each AVB audio stream has a unique stream identifier (stream ID). The id methods are
used to determine the stream ID of a particular AVB audio source or sink. The stream
IDs are 64-bit values that consist of :

• a 48-bit field obtained from the server’s MAC address and hence unique to the
server, and

• a 16-bit field that is a unique identifier for each stream, and hence distinguishes
multiple streams from the same OSC server

The AVB stream IDs also provide a mechanism with which to associate talker and lis-
tener streams. The syntax of the OSC message used to obtain the stream ID of a source
AVB stream is shown in Listing 5.11. The index argument specifies the particular stream
of interest, and has a value in the range ‘1’ to the number of sources (‘2’).

/ avb / s o u r c e / i d < index >

Listing 5.11: OSC message to get the AVB source audio stream ID

The stream ID’s of the source streams are acquired when the OscServerAVB class (of
Figure 5.2) is initialized by the OscServerService class. Once the stream ID’s have been
set (at initialization), they cannot be modified. The OSC server acquires its 48-bit MAC
address by utilizing the MAAP module, which forms part of the AVB component of
Figure 5.1. . The 16-bit unique stream identifier is unique for each audio stream on the
OSC server.

The format of the OSC message used to obtain the stream ID of an AVB sink stream
is similar to that in Listing 5.11, except that it is addressed to the sink container. It is
also possible to set the value of an AVB sink stream, although this is not supported for
a source stream. This capability is required when setting up the OSC server as an AVB
listener. The source stream ID on an AVTP talker will be the same as that of an AVTP
listener that sinks the same stream. The syntax for setting a listener’s sink stream is
shown in Listing 5.12.

/ avb / s i n k / i d < index > <st reamID >

Listing 5.12: OSC message to set a listener’s sink stream ID

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 145

An AVB stream consists of a number of channels of audio. The number of channels
within an AVB stream can be obtained from the channels methods. The syntax is shown
in Listing 5.13, and a similar message can be addressed to the sink container. The
index argument is in the range ‘1’ to the number of streams, and it specifies a particular
source or sink stream. The OSC server has two channels of audio within each of it’s
AVB source streams.

/ avb / s o u r c e / c h a n n e l s < index >

Listing 5.13: OSC message to get the number of audio channels within an AVB stream

The audio format of the AVB streams can be obtained by sending a message of the
form shown in Listing 5.14. The index argument is in the range ‘1’ to the number of
streams, and is used to indicate the particular source stream. The OSC server transmits
raw AM824 audio. A similar syntax is used to obtain the audio format of a sink stream.

/ avb / s o u r c e / f o r m a t < index >

Listing 5.14: OSC message to get the audio format of an AVB stream

The start methods of the source and sink containers are used to start transmitting or
receiving an audio stream. The stop methods are also defined to allow a controller to
stop the transmission or reception of audio streams. The syntax for starting and stopping
an audio source stream is shown in Listing 5.15. A similar syntax is used for the sink
streams. The index argument is used to indicate the particular source/sink and has a
value that ranges from ‘1’ to number of sources/sinks.

/ avb / s o u r c e / s t a r t < index >
/ avb / s o u r c e / s t o p < index >

Listing 5.15: OSC message to start and stop an audio stream

To determine whether an audio stream has started, a controller transmits a message to
the state method. This method can be used to inquire about a source or sink stream, and
its syntax is as shown in Listing 5.16. A similar syntax is used to obtain the state of a
sink stream. The index argument is used to specify a particular source/sink stream.

/ avb / s o u r c e / s t a t e < index >

Listing 5.16: OSC message to get the state of an audio stream

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 146

The advertise method of the source container causes the OSC server to advertise/register
a particular stream on the Ethernet AVB network. If successful, this method results in
the AVB network reserving adequate resources for the transmission of a stream. An
index argument specifying the source stream to advertise, is passed to this method. The
OSC message is of the form shown in Listing 5.17.

/ avb / s o u r c e / a d v e r t i s e < index >

Listing 5.17: OSC message to advertise an AVB stream

Similar to the advertise method, the withdraw method within the source container
causes the server to indicate to the Ethernet AVB network that it is withdrawing an
existing stream. This will cause the network to deallocate all previously allocated re-
sources for that stream. This makes them (the resources) available to the network for
any other stream request. The OSC message that triggers the withdraw method is of the
form depicted in Listing 5.18. The index argument indicates which stream to withdraw.

/ avb / s o u r c e / wi thdraw <index >

Listing 5.18: OSC message to withdraw an existing AVB stream

On the sink container is a listen method that causes the server to request attachment to
a stream that was previously advertised on the AVB network by an AVTP talker. The
syntax of the listen method is shown in Listing 5.19. The index argument specifies
which of the audio sinks should request attachment to a talker stream, and it (index) has
a value from ‘1’ to the number of audio sinks returned by the sinks method.

/ avb / s i n k / l i s t e n < index >

Listing 5.19: OSC message to request attachment to an AVB stream

In order to stop listening, that is detach from a previously attached stream on the AVB
network, the destroy method is implemented within the OSC server. A message to this
method is of the form shown in Listing 5.20. The index argument is an integer value
that indicates the sink that should be detached from a source audio stream.

/ avb / s i n k / d e s t r o y < index >

Listing 5.20: OSC message to request detachment form an AVB stream

The following subsections describe how the OSC server utilizes the above methods in

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 147

fulfilling it’s talker and listener features.

5.6.3 OSC server as AVTP talker

The OSC server has a number of OSC methods that enable it perform the role of AVTP
talker. As an AVTP talker, the server becomes the source of AVB audio streams that
conform to IEEE 1722. Listing 5.7 on page 140 shows a full listing of the server’s
AVB related OSC methods, but of particular relevance in this section are those (OSC
methods) of the source OSC container. These methods are shown in Listing 5.21.

/ avb / s o u r c e s
/ avb / s o u r c e / name
/ avb / s o u r c e / t y p e
/ avb / s o u r c e / i d
/ avb / s o u r c e / c h a n n e l s
/ avb / s o u r c e / f o r m a t
/ avb / s o u r c e / s t a r t
/ avb / s o u r c e / s t o p
/ avb / s o u r c e / s t a t e
/ avb / s o u r c e / a d v e r t i s e
/ avb / s o u r c e / wi thdraw

Listing 5.21: OSC server’s AVB source methods

The OSC methods referred to in the following discussion refer to those listed in Listing
5.21.

The role of AVB talker as performed by the OSC server is described under the following
headings:

5.6.3.1 Stream identification

The OSC server possesses two AVB source streams. A controller is able to determine
the number of source streams available on the server by triggering the sources method.
A call to this method will return the value ‘2’ which is the maximum possible value of
an index argument used to query the server’s AVB streams.

When the OscServerAVB class is instantiated, it acquires a range of multicast MAC
addresses by utilizing MAAP. The OscServer_acquireMAAPAddress method, shown in

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 148

Figure 5.3 on page 142, implements this functionality. The acquired multicast MAC
addresses together with the 16-bit unique ID fields are used to generate two AVB stream
IDs for the server’s AVB streams. The first stream is assigned a value of ‘1’ as the value
of its 16-bit unique ID field, and the second stream is assigned the value ‘2’ for the same
field.

A remote controller is able to determine the stream IDs of the server’s sources by send-
ing a message to the id method with an index (value) argument. The index specifies
which of the two streams it wishes to determine its stream ID. The index of the first
stream is ‘1’ and the second stream has an index value of ‘2’.

5.6.3.2 Stream enumeration

Each stream has a name associated with it. To get the name of a stream, the controller
sends a message to trigger the name method. It must specify the index of the stream
whose name it wants to obtain. The first stream has the default name of “1722 Output
Stream 1”, and the second stream’s default name is “1722 Output Stream 2”. These
names allow the controller to properly present the stream on a graphical interface, if for
instance the controller is running on a PC. Other properties such as the type of AVB
stream and the audio formats are retrieved by calling the type and format methods. This
information enables a controller to acquire more details about the sort of media that is
transported in the AVB stream. The OSC server transmits two channels of audio within
its AVB streams. A controller is able to determine the number of audio channels within
each of the server’s audio source streams by triggering the channels method.

5.6.3.3 Stream advertising

A controller can request the OSC server to advertise any of its source streams on the
AVB network by triggering the server’s source stream advertise method. This method
causes the register stream request primitive of MSRP to be triggered for a particu-
lar stream on the AVB network. The advertise method does this by calling the Osc-

Server_register1722Stream of the OscServerAVB in Figure 5.3 on page 142. If success-
ful, this effectively results in the network reserving sufficient resources for the transmis-
sion of the specified stream. It also enables all AVTP listeners (on the network) to gain
knowledge of the characteristics of the stream. A message that triggers the withdraw

method ensures that the previously reserved network resources, for a particular stream,
are released. This is achieved by calling the OscServer_deregister1722Stream of the

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 149

OscServerAVB class (of Figure 5.3), which calls the deregister stream request primitive
of MSRP.

5.6.3.4 Stream transmission

Within the OSC server, audio signals are placed in buffers before transmission on the
AVB network. These buffers are initialized when the OscServerAVB_initializeAudio

method is called. The server implements two types of buffers for audio stream trans-
mission. One buffer is for receiving audio (the receive buffer) and is utilized by the
sinks on the server. The other buffer is for transmitting audio (the transmit buffer) and
is utilized by the sources on the server.

The actual transmission of audio can be regulated (remotely) by a controller. The con-
troller does this by sending an OSC message to either the start or stop OSC methods.
The start method is used to commence the transmission of the audio from the server.
The stop method is used to stop the transmission of audio from the server. These meth-
ods are associated with the source’s transmit buffer.

As depicted in Figure 5.3, the OscServerAVB class implements the OscServer_startAudio

and OscServer_stopAudio methods to start and stop (respectively) the transmission of
audio within AVB streams.

The state method enables a remote controller to determine whether a particular source
has started streaming audio.

5.6.4 OSC server as AVTP listener

The OSC server is capable of performing the role of AVTP listener. In accomplishing
this role, the server acts as the destination (sink) of AVB audio streams that conform to
IEEE 1722. A controller is able to configure the server to receive audio streams from
the AVB network by sending OSC messages that match the OSC methods associated
with the sink OSC container. The OSC methods of interest in this discussion are shown
in Listing 5.22.

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 150

/ avb / s i n k s
/ avb / s i n k / name
/ avb / s i n k / t y p e
/ avb / s i n k / i d
/ avb / s i n k / c h a n n e l s
/ avb / s i n k / f o r m a t
/ avb / s i n k / s t a r t
/ avb / s i n k / s t o p
/ avb / s i n k / s t a t e
/ avb / s i n k / l i s t e n
/ avb / s i n k / d e s t r o y

Listing 5.22: OSC server’s AVB sink methods

The OSC methods referred to in the following discussion refer to those listed in Listing
5.22.

The role of AVB listener as performed by the OSC server is described under the follow-
ing headings:

5.6.4.1 Stream identification

The server implements the id method to enable a remote controller ‘get’ and ‘set’ any of
its sink stream ID. The stream ID of a sink is set when a connection is being established
(with the sink). If no connection has been established with a particular sink, a message
to determine its stream ID will return a zero value (0x00000000). When a zero value
is returned in response to a ‘get’ id method, a remote controller interprets this as an
indication that the sink is not receiving an audio stream.

5.6.4.2 Stream enumeration

The OSC server implements two AVB audio sinks and the number of implemented sinks
on the server can be retrieved by triggering the sinks method. The first audio sink stream
is named “1722 Input Stream 1”, and the second is “1722 Input Stream 2”. The names
of each stream can be obtained by triggering the name method with the index of the
particular sink stream passed as an argument.

Although these streams are presented by the server, they only represent the maximum
number of AVB sink streams that the OSC server can receive. Hence a query to de-
termine the state of each stream (with index ‘1’ for the first stream and index ‘2’ for

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 151

the second) will indicate that the stream has not started and a start command will fail.
In fact, any message to methods that enumerate a sink stream before a connection is
establish (with an AVB stream) will fail. These include OSC messages to determine
the:

• stream ID on a sink stream by triggering the id method,

• number of audio channels within a sink stream by triggering the channels method,
and

• audio format by triggering the format method.

5.6.4.3 Stream attachment

In order to sink an AVB stream, the server requires knowledge of the stream’s stream
ID which uniquely identifies the stream on the network. This is achieved by triggering
the id method on a sink stream, in order to set the sink’s stream ID.

A message to the sink’s listen method will cause the OscServer_attachTo1722Stream

method (of the OscServerAVB class) to be called. This results in the MSRP register

attach request service primitive to be declared with a ready declaration type.

The destroy method causes the server to indicate (via MSRP) that it has no interest in
a particular stream. The OscServer_detachFrom1722Stream method is used to annouce
this lack of interest in a stream. In this case the MSRP deregister attach request service
primitive is declared on the network.

5.6.4.4 Stream reception

A call to a sink stream’s start method will cause the server to begin buffering the re-
ceived audio (on a particular sink) into its receive buffer. When the stop method is trig-
gered, the server terminates the buffering of audio from the specified sink stream. The
OscServerAVB class implements the OscServer_startAudio and OscServer_stopAudio

in order to facilitates these two processes (starting and stopping the buffering of audio).

The sink’s start and stop methods utilize the receive buffer which is initialized when the
OscServer_initializeAudio method is called (by the OscServerAVB constructor).

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 152

5.7 Internal Audio Signal Routing

The OSC server has a stereo analog audio input and a stereo analog audio output that
is abstracted by the OscServerAnalogAudio class of Figure 5.2. When this class is
initialized by the OscServerService class, it gets a handle to the ALSA audio driver
on the Linux PC [151]. The ALSA driver enables the server to capture audio from its
stereo analog input, and playback audio on its stereo analog output.

Listing 5.23 shows the relevant OSC methods for routing audio signals between the
inputs and outputs of the server.

/ d e v i c e / s o u r c e s
/ d e v i c e / s o u r c e / name
/ d e v i c e / s i n k s
/ d e v i c e / s i n k / name
/ d e v i c e / s i n k / s o u r c e

Listing 5.23: OSC methods for internal signal routing

The OSC methods referred to in the following discussion refer to those listed in Listing
5.23.

As described in section 5.5.2, the audio inputs and outputs on the OSC server can be
determined by triggering the sinks and sources OSC methods, respectively. Each of
the inputs and outputs have a name associated with them, which can be retrieved by
triggering the name method of the appropriate OSC container. The name method can
also be used by a controller to set the names of the sinks or sources.

In order to allow for patching between the various inputs and outputs on the OSC server,
a source method has been implemented within the sink OSC container. This method
allows a controller to determine which output a particular input is routed to. Thus it
allows the controller to either get the current input/output patch, or set the input/output
patch.

A controller seeking knowledge of which output an input is currently patched to, will
send an OSC message of the form depicted in Listing 5.24. The index is an integer
value that ranges between ‘1’ and the maximum number of inputs obtained from the
sinks method.

/ d e v i c e / s i n k / s o u r c e < index >

Listing 5.24: OSC message to get the input/output patch

CHAPTER 5. LAYER 3 END STATION IMPLEMENTATION - OSC 153

The value returned is an integer value which represents the index of the source. This
value is between ‘1’ and the number of sources obtained from the ‘/device/sources’
method.

The source method within the sink OSC container can also be used to route signals
between the inputs and outputs of the OSC server. The syntax for routing signals is
shown in Listing 5.25.

/ d e v i c e / s i n k / s o u r c e < i n p u t I n d e x > < o u t p u t I n d e x > < enab l e >

Listing 5.25: OSC message to set the input/output patch

The inputIndex and outputIndex specifies the inputs and outputs that should be patched.
The inputIndex and outputIndex have integer values between ‘1’ and the values returned
by the sinks and sources methods, respectively. The enable variable has a value of ‘1’
to establish a connection, or ‘0’ to destroy a connection.

5.8 Summary

OSC provides a mechanism for formating messages for transmission on a network, ir-
respective of the transmission technology. AVB networks are designed to ensure that
time-sensitive data (such as audio) can be transmitted with the best possible quality of
service by ensuring deterministic and guaranteed delivery of stream data. AVTP end sta-
tions are capable of transmitting audio streams that conform to the IEEE 1722 standard
on an Ethernet AVB network.

This chapter described an OSC server that is capable of transmitting audio streams on
an Ethernet AVB network. There was an explanation of the various components that
together enable the OSC server to function as an AVTP end station. Also discussed was
the server’s OSC message handling mechanism, connection management on an Ethernet
AVB network, as well as internal routing within the OSC server.

Chapter 6

Layer 3 Proxy Implementation

Following the creation of the OSC server, which has been described in the previous
chapter, an Ethernet AVB network of AES-64 and OSC devices was setup in order to
investigate the command translation approach (that has been described in chapter 4).
Seeing that the audio streaming technology (Ethernet AVB) and networking infrastruc-
ture (Ethernet) were the same, there emerged a need to be able to stream audio between
the networked Ethernet AVB end stations irrespective of the audio control protocol im-
plemented by each end station. Furthermore there was a desire to have these networked
end stations being controlled from the same network controller.

This chapter describes how the command translation approach, implemented as a proxy,
can be used to enable common control, connection management and interoperability
between devices that conform to different audio control protocols, in particular the AES-
64 and OSC protocols.

6.1 Introduction

Ethernet AVB makes it possible for time-sensitive data, such as audio and video, to
be reliably transmitted over Ethernet. However, to allow for networked devices to be
remotely configured for streaming, each device implements a control protocol.

An audio control protocol will typically define its own syntax and semantics for com-
mands and responses, as well as procedures for establishing and destroying stream con-
nections. Very often, each equipment manufacturer implements a proprietary control
protocol on their devices. As a result there currently exists a large number of disparate
audio control protocols, given the wide range of audio equipment commercially avail-
able. Typically, each audio device only implements one control protocol. As a result,

154

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 155

although it is possible to physically network devices on the same networking technol-
ogy (such as IEEE 1394, Ethernet, USB), there remains the problem of interoperability
between devices that implement different control protocols.

This was the problem when the OSC server was connected to AES-64 devices on an
Ethernet AVB network. Although AES-64 defines a procedure for connection manage-
ment, and the OSC server implements a number of OSC methods that enable connection
management, setting up audio stream connections between devices that conform to both
protocols remained a challenge. Also required was a single controller that is capable of
configuring both devices (AES-64 devices and OSC servers) such that audio can be
streamed between them.

To overcome the interoperability challenge, which was described in chapter 4, this chap-
ter descibes an implementation of the command translation approach in the form of a
proxy. The OSC proxy implementation that is described in this chapter enables connec-
tion management and control of AES-64 devices and OSC servers on an Ethernet AVB
network.

6.2 The Proxy Approach

An OSC proxy has been created to allow AES-64 messages to be translated to appro-
priate OSC messages in order to enable connection management and control of OSC
servers via AES-64 messaging. This enables an AES-64 controller to configure an OSC
server. The proxy also relays OSC responses (messages) to the AES-64 controller.

A logical layout of the interaction between an AES-64 device, the OSC proxy and an
OSC server is provided in Figure 6.1.

Figure 6.1: Logical layout of interaction with OSC proxy

The interaction depicted in Figure 6.1 is as follows:

• an AES-64 device issues an AES-64 message addressed to an OSC server,

• the OSC proxy receives the message on behalf of the OSC server, then translates
it to an OSC message,

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 156

• the OSC proxy sends the translated OSC message to the appropriate OSC server,

• the OSC server receives and parses the OSC message, which will cause an OSC
method to be called,

• if a response is required (for instance if the original AES-64 message was a ‘get’

value message), the OSC server returns a response to the proxy,

• the proxy retrieves the response from the OSC message, then encapsulates it
within an AES-64 message as a response, and

• finally the AES-64 response message is sent to the AES-64 device.

In the above interaction, the OSC proxy assumes the role of destination of the AES-64
messages and the source of the OSC messages, which are addressed to the OSC server.
This ensures that all AES-64 messages (from the AES-64 device) and all OSC responses
(from the OSC server) go via the proxy.

The proxy also enables a common AES-64 controller to control AES-64 devices and
OSC servers on a network. The common control of networked AES-64 devices and
OSC servers, with the aid of the OSC proxy, is illustrated in Figure 6.2.

Figure 6.2: Common control of AES-64 devices and OSC servers

In Figure 6.2 the solid lines represent AES-64 messages, and the dotted lines repre-
sent OSC messages. The ‘AES-64 Controller’ sends the same AES-64 message to all
AES-64 devices on the network. The proxy receives the message, translates it to the
appropriate OSC message and then sends the OSC message to the OSC servers on the
network. The ‘AES-64 Controller’ can control AES-64 and OSC Server devices, and
enable streaming between the different device types.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 157

The next section provides details about the requirements and design decisions that were
considered when the proxy was being developed.

6.3 OSC Proxy Design

The OSC proxy was designed to enable AES-64 control of networked OSC servers. It
is capable of receiving AES-64 messages, and then translating the received message to
the appropriate OSC message(s), and vice versa. The design requirements of the OSC
proxy are depicted in the form of a use-case diagram in Figure 6.3.

Figure 6.3: OSC proxy use-case diagram

From Figure 6.3 all AES-64 communication with the proxy is handled by the ‘AES-64
protocol stack’. This includes messages from either the remote ‘AES-64 Controller’
or an ‘AES-64 device’ on the network. The proxy uses the ‘OSC parser’ for all OSC
communication with the ‘OSC server’. The parser encapsulates OSC methods within
OSC packets for onward transmission to the ‘OSC server’. It also causes the appropriate
OSC method (within the proxy) to be called when a response is received from the ‘OSC
server’. The ‘Zero conf library’ is an implementation of zero configuration networking
which includes DNS-SD (which has been described in section 3.4.1.2 on page 80), and
it is used for discovering the ‘OSC server’.

The proxy is designed in such a way that it runs a single AES-64 stack above its IP
stack. For each discovered OSC server, the proxy creates an AES-64 node above its
AES-64 stack. Each AES-64 node is uniquely identified by an AES-64 node ID. This is
illustrated in Figure 6.4.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 158

Figure 6.4: OSC proxy creates an AES-64 node for each discovered OSC server

The ‘OSC Proxy’ in Figure 6.4 has discovered all three OSC servers on the network,
and has created the corresponding AES-64 nodes (‘AES-64 Node 1’, ‘AES-64 Node
2’, and ‘AES-64 Node 3’) above its ‘AES-64 Protocol Stack’. Each node models the
control features on an OSC server as AES-64 parameters. This makes it possible for the
‘AES-64 controller’ to access the OSC server’s features.

The ‘AES-64 controller’ is able to address an AES-64 message to an OSC server by
sending it to the IP-address of the proxy and the AES-64 node ID that corresponds to
the particular server. To a remote AES-64 device, the OSC device appears like any other
AES-64 device on the network.

The next section gives more details on how the OSC proxy has been implemented to
meet its requirements.

6.4 OSC Proxy Implementation

The OSC proxy that has been created is capable of:

• discovering OSC servers,

• exposing the parameters on each discovered OSC server in AES-64 terms, and

• enabling connection management of audio streams on the OSC servers.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 159

The following sections describe how the proxy accomplishes these requirements. ‘AVB

streams’ is used to describe audio streams on an Ethernet AVB network that conform to
the IEEE 1722 standard.

6.4.1 OSC server discovery

The discovery mechanism implemented by the OSC proxy is DNS-SD [152]. DNS-
SD enables a device to advertise its available services on a network, and other devices
on the network to discover the advertised service. DNS-SD has been described in sec-
tion 3.4.1.2 on page 80.

At start up, the proxy attempts to discover all OSC devices on the network. It utilizes
the avahi (version 0.6.25) library to discover OSC services of type ‘_osc._udp’ on the
network [150]. The proxy interprets each discovered instance of this (OSC) service type

as an OSC server on the network. The term service type, as used in zero configuration
networking, is an application protocol name that gives information about what protocol
a particular service implements and how to communicate with the service [152].

The proxy adheres to the following steps when attempting to discover instances of the
OSC service on the network:

• The proxy creates an instance of the AvahiClient by calling the avahi_client_new()

function. A callback is passed as an argument to this function. Whenever the state
of the avaihi client changes, this callback is triggered. On successful initializa-
tion of the client, the callback is triggered with the AVAHI_CLIENT_S_RUNNING

state value, which is an indication that the avahi server is in operation.

• On successful initialization of the AvahiClient, the proxy creates a service browser
object by calling the avahi_service_browser_new() function. The service type
argument passed to this function is _osc._udp, and it indicates that the proxy is
only interested in discovering devices that implement this OSC service on the
network. There is a callback argument that is associated with the service browser
object. This callback is actuated whenever a browser event occurs. Such browser
events include announcements from avahi clients indicating that they are either
available on (or departing from) the network.

• For each discovered OSC service (of type _osc._udp), an avahi service resolver
object is created with avahi_service_resolver_new(). A call to this function en-
ables the proxy to obtain the DNS records of a discovered service instance. A

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 160

callback is passed to the avahi_service_resolver_new() function, and the callback
is actuated if the resolver failed or succeeded in obtaining the DNS records.

The resolver enables the proxy to obtain further details beyond the presence of the ser-
vice on the network. This includes device specific information such as IP address, port
number, and common name (nickname) of the device publishing the service (instance)
on the network.

After a service instance has been resolved, the proxy proceeds to create an AES-64 node
which represents the resolved service instance.

6.4.2 AES-64 parameters for OSC server

The current implementation of the OSC proxy uses version 1.0.6 of the AES-64 protocol
stack, which is known as the xfndll. The protocol stack is initialized at startup of the
OSC proxy. For each discovered OSC server on the network, the proxy creates an
abstraction of the server in the form of an AES-64 node. Each AES-64 node has a unique
node ID associated with it, and consists of a number of addressable AES-64 parameters
which are organized in a 7-level hierarchy. Each parameter has an associated callback
that handles AES-64 messages addressed to it. Refer to chapter 3 (section 3.4.2.1 on
page 86) for a description of the AES-64 parameter structure.

When the OSC proxy receives an AES-64 message addressed to a particular parameter
within one of its AES-64 nodes, the callback associated with the parameter translates
the message, then sends the appropriate OSC message to the corresponding physical
device (OSC server).

At level-6 of an AES-64 parameter’s hierarchy is the AES-64 parameter type (refer to
section 3.4.2.1 on page 86 in chapter 3). An AES-64 parameter type describes the kind
of control or feature represented by the parameter. It is possible to have any number
of parameters with the same parameter type within an AES-64 node. At level-7 of the
parameter hierarchy, a unique parameter index is used to distinguish between different
parameters of the same parameter type.

A number of parameter types were created within the AES-64 nodes that correspond to
OSC servers on the network. These parameter types are described below.

6.4.2.1 Device discovery parameter types

The various device discovery parameter types enable an AES-64 controller to discover
the AES-64 nodes that reside within the proxy. These parameter type are:

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 161

• XFN_PTYPE_IP_ADDRESS - contains the IP address of the host device.

• XFN_PTYPE_SUBNET_MASK - holds the network subnet where the host re-
sides.

• XFN_PTYPE_DEVICE_NAME - indicates the name of the device, for instance
“UMAN Eval board”.

• XFN_PTYPE_DEVICE_TYPE - holds one of the defined AES-64 device types.
For instance a proxy device has a defined AES-64 device type within the AES-64
protocol stack.

• XFN_PTYPE_XFN_BOUND - indicates that a particular IP interface is capable
of streaming media.

6.4.2.2 Input parameter types

A number of input parameters were created within the proxy’s AES-64 nodes. The input
parameter types reside within the input section block of the AES-64 node’s parameter
hierarchy. They are used to model the input features on the OSC server. The parameter
types in this category are:

• XFN_PTYPE_MULTICORE_RUNNING_STATE - indicates whether an active
connection exists on a particular input stream.

• XFN_PTYPE_MULTICORE_TYPE - indicates the type of multicore such as Eth-
ernet AVB audio multicore, Ethernet AVB video multicore, or IEEE 1394 audio
multicore.

• XFN_PTYPE_MULTICORE_NAME - contains the name of the multicore as a
string. For instance “Input Multicore 1”.

• XFN_PTYPE_MULTICORE_START - this parameter can be used to start or stop
the input multicore stream.

• XFN_PTYPE_STREAM_ID - holds the stream ID of the input multicore.

• XFN_PTYPE_LISTEN - this parameter is a listen parameter, which is used to
indicate interest in an AVB stream by interacting with MSRP.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 162

6.4.2.3 Output parameter types

A number of output parameters were created within the proxy’s AES-64 nodes. The
output parameter types reside within the output section block of the AES-64 node’s
parameter hierarchy, and they model the outputs features on the OSC server. The pa-
rameter types in this category are:

• XFN_PTYPE_MULTICORE_RUNNING_STATE- indicates whether an active
connection exists with a particular output stream.

• XFN_PTYPE_MULTICORE_TYPE - indicates the type of multicore such as Eth-
ernet AVB audio multicore, Ethernet AVB video multicore, or IEEE 1394 audio
multicore.

• XFN_PTYPE_MULTICORE_NAME - indicates the name of the multicore as a
string. For instance “Output Multicore 1”.

• XFN_PTYPE_MULTICORE_START - this parameter can be used to start or stop
the output multicore stream.

• XFN_PTYPE_STREAM_ID - holds the stream ID of the output multicore.

• XFN_PTYPE_ADVERTISE - an advertise parameter, which enables advertising
of an AVB stream by interacting with MSRP.

6.4.2.4 Internal routing matrix parameter types

To enable routing of signals between the inputs and outputs on the OSC server, internal
routing matrix parameter types were defined. These parameter types are:

• XFN_PTYPE_MATRIX_PIN_NAME - this parameter exists for both input and
output multicores. It holds the names (as a string) of the inputs and outputs. For
instance “Analog Input 1”, “Multicore Input 1 Pin 1” , “Analog Output 1” or
“Multicore Output 1 Pin 1”.

• XFN_PTYPE_CROSSPOINT_ENABLE - indicates a cross point between an in-
put and an output. A value of ‘1’ indicates that the cross-point has been enabled,
and a connection should be established between the corresponding input and out-
put. A ‘0’ value means that the connection between the input and output should
be destroyed.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 163

Within the callback functions that are associated with each of the parameters, the proxy
translates the messages from AES-64 to OSC. In the next section the connection man-
agement of networked AES-64 devices and OSC servers, as implemented by the OSC
proxy, is described.

6.4.3 OSC proxy for connection management

Connection management is concerned with establishing and destroying audio stream
connections between networked devices. The OSC proxy enables connection manage-
ment between AES-64 devices and OSC servers on the same network. In particular this
proxy was designed to enable connection management on AES-64 and OSC end sta-
tions on an Ethernet AVB network. Thus the OSC server is capable of fulfilling the role
of AVB talker or AVB listener.

The following discussions describe the interactions that occur when the proxy is used to
set up an OSC server as an AVB listener and AVB talker.

6.4.3.1 Setting up OSC server as AVB listener

The interactions that occur when the OSC proxy is used to establish an audio stream be-
tween an AES-64 device (as AVB talker) and OSC server (as AVB listener) are depicted
in the form of a sequence diagram in Figure 6.5.

Figure 6.5: OSC proxy enables OSC server to fulfill the role of AVB listener

The actor ‘UNOS Creator’ is an AES-64 network connection management application.
In Figure 6.5, ‘UNOS Creator’ establishes a stream connection between the ‘AES-64

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 164

Device’ and the ‘OSC Server’. To establish a stream connection, the following steps are
followed:

• ‘UNOS Creator’ sends an AES-64 message to obtain the stream ID of a particular
output AVB stream on the AVB talker, which in this case is the ‘AES-64 Device’.

• ‘UNOS Creator’ sends an AES-64 message to the OSC proxy, to set the stream
ID on a particular input AVB stream on the ‘OSC Server’. It indicates the input
stream index and the value of the stream ID.

• The ‘OSC Proxy’ translates the received AES-64 message to an OSC message,
then sends it to the ‘OSC Server’. The ‘OSC Proxy’ includes the input stream
index and the value of the stream ID in the OSC message.

• ‘UNOS Creator’ sends an AES-64 message to enable the advertise parameter
within the ‘AES-64 Device’. This causes the ‘AES-64 Device’ to register its
stream on the Ethernet AVB network via MSRP.

• ‘UNOS Creator’ sends an AES-64 message to the ‘OSC Proxy’ to enable the
listen parameter on the Ethernet AVB input.

• The ‘OSC Proxy’ translates the AES-64 message to an OSC message and sends it
to the ‘OSC Server’. This causes the ‘OSC Server’ to indicate interest in receiving
the stream from the Ethernet AVB network, via MSRP.

A similar sequence can be used to destroy a stream connection. However when de-
stroying a stream connection, the modifications to the sequence diagram of Figure 6.5
are:

• the setOutpuMulticoreAdvertise() function is sent from ‘UNOS Creator’ to the
‘AES-64 Device’ with a disable argument.

• the setInpuMulticoreListen() function is sent from ‘UNOS Creator’ to the ‘OSC

Proxy’ with a disable argument.

• the ‘/avb/sink/listen index’ message from the ‘OSC Proxy’ to the ‘OSC Server’

becomes a ‘/avb/sink/destroy index’.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 165

6.4.3.2 Setting up OSC server as AVB talker

The OSC proxy is utilized by UNOS Creator (an AES-64 connection management ap-
plication) to setup an OSC server as AVB talker. The sequence of interactions that occur
when UNOS Creator establishes an audio stream connection between an OSC server (as
AVB talker) and an AES-64 device (as AVB talker), via the proxy, is shown in Figure
6.6.

Figure 6.6: OSC proxy enables OSC server to fulfill the role of AVB talker

The interaction between the various actors (‘UNOS Creator’, ‘OSC Server’ and ‘AES-
64 Device’) with the ‘OSC Proxy’ depicted in Figure 6.6, is as follows:

• ‘UNOS Creator’ sends an AES-64 message to the ‘OSC Proxy’ to obtain the
stream ID on an output (source) AVB stream on the ‘OSC Server’.

• The ‘OSC Proxy’ translates the AES-64 message to an OSC message to obtain
the stream ID of a source AVB stream on the ‘OSC Server’.

• ‘UNOS Creator’ sends an AES-64 message to set the stream ID on an input of the
‘AES-64 Device’.

• ‘UNOS Creator’ sends an AES-64 message to the ‘OSC Proxy’ to enable AVB
stream advertisement.

• The ‘OSC Proxy’ translates the received AES-64 message to an OSC message,
then sends it to the ‘OSC Server’. This causes the ‘OSC Server’ to advertise its
stream on the Ethernet AVB network via MSRP.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 166

• ‘UNOS Creator’ sends an AES-64 message to the ‘AES-64 Device’ to enable its
listen parameter. This causes the ‘AES-64 Device’ to indicate interest in the AVB
stream, via MSRP.

To destroy a stream connection, a similar sequence to Figure 6.6 is followed, except
that:

• the setOutputMulticoreAdvertise() AES-64 message from ‘UNOS Creator’ to the
‘OSC Proxy’ is passed a destroy argument rather than the enable.

• the ‘OSC Proxy’ translates this message to an ‘/avb/source/withdraw index’ mes-
sage and sends it to the ‘OSC Server’. This will cause the ‘OSC Server’ to declare
a withdrawal of its stream from the Ethernet AVB network via MSRP.

• the setInputMulticoreListen() AES-64 message from ‘UNOS Creator’ to the ‘AES-
64 Device’ is passed a destroy argument.

6.5 Layout of the OSC proxy Implementation

The proxy implementation is depicted in form of a class diagram in Figure 6.7.

Figure 6.7: OSC proxy class diagram

The proxy was implemented for connection management and device control of net-
worked AVB end stations, hence the class names ‘AvbNetwork’ and ‘AvbDevice’ shown
in Figure 6.7. An ‘AvbNetwork’ object abstracts the Ethernet AVB network, and an
‘AvbDevice’ object abstracts an AVB end station.

At start up, the proxy creates an instance of the ‘AVBNetwork’ object. The ‘AVBNet-

work’ object is responsible for creating the ‘OscServiceDiscovery’ object, which is used

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 167

to browse for instances of the OSC service type (‘_osc._udp’). Each instance of the OSC
service type is resolved, and considered (by the proxy) to be an OSC server. The ‘AVB-

Network’ object holds a list of discovered devices. Each device in this list is uniquely
identified by its IP address, and nickname. For each new OSC server discovered, an
‘AVBDevice’ object is created and added to the AVB devices list.

For OSC communication with the OSC server, the proxy instantiates an ‘OscMessaging’

object. The ‘OscMessaging’ object is used by the proxy to receive and transmit OSC
messages on the network.

A one-to-one relationship exists between an ‘AvbDevice’ object and an ‘AES-64Device’

object, since the proxy models every ‘AvbDevice’ (in the AVB device list) as an ‘AES-

64Device’.

The ‘ProtocolCommandLookup’ class that is implemented by the proxy, maps each
AES-64 message with the appropriate OSC message, and vice versa. It matches the
OSC commands of the ‘OscMessaging’ object to corresponding AES-64 callbacks of
the ‘AES-64Device’ object.

The integration of other control protocols into the proxy entails:

• defining a set of connection management and control commands for the protocol,
and

• mapping of the new command set to those in the ‘ProtocolCommandLookup’.

This design enables the proxy to be adopted to new protocols by performing an update
to the ‘ProtocolCommandLookup’ class. In order to incorporate a new protocol, the
new protocol messages will have to be appropriately mapped to those of the already
existing protocols. For example, the lookup table (mapping) for command translation
between two protocols (AES-64 and OSC) that is implemented by the ‘ProtocolCom-

mandLookup’ class could be of the form shown in Table 6.1.

Index Description AES-64 callback OSC method

1 Obtain device name getDeviceName() /device/name

2 Obtain IP address getDeviceIPAddress() /device/ip

3 Modify stream ID setAVBStreamId() /avb/streamId

Table 6.1: Mapping table for command translation

Table 6.1 shows the associated AES-64 callback and OSC method that corresponds to
each command index in a lookup table. When an AES-64 getDeviceIPAddress() call-
back is triggered, the command translator maps it to the corresponding OSC method

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 168

with the same command index (in this case ‘2’). Then it transmits an OSC message that
will cause the /device/ip OSC method to be dispatched within the target OSC server.
Similarly when an OSC message that is addressed to the /avb/streamId method is called,
the command translation table matches it to the appropriate AES-64 message that will
cause the setEthernetAVBStreamId() callback within the target AES-64 device to be trig-
gered. The index associated with each command allows a particular protocol command
to be translated to another protocol command.

In order to incorporate another protocol (Protocol X) into the lookup table, the equiva-
lent ‘Protocol X’ commands are mapped to those already defined for AES-64 and OSC.
The new map will be of the form shown in Table 6.2.

Index Description AES-64 callback OSC method Protocol X

1 Obtain device name getDeviceName() /device/name discoverXName()

2 Obtain IP address getDeviceIPAddress() /device/ip discoverXIp()

3 Modify stream ID setAVBStreamId() /avb/streamId adjustXAVBStreamId()

Table 6.2: Modified mapping table to incorporate Protocol X

Table 6.2 illustrates the specific ‘Protocol X’ execution procedure for each of the com-
mands already defined for AES-64 and OSC. A discoverXName() Protocol X procedure
will result in the command translator sending an AES-64 message that will trigger the
getDeviceName() callback within the AES-64 target. In the same manner, when an OSC
/device/ip method is dispatched, it will cause the command translator to issue a ‘Proto-
col X’ message that will cause a target ‘Protocol X’ device to execute its discoverXIP()

procedure.

Using this approach any number of audio control protocols can be incorporated into the
proxy for command translation.

6.6 Tests and Results

The effectiveness of the OSC proxy was tested with an AES-64 network monitor, con-
figuration, connection and control manager called UNOS Creator [153]. The test bed
topology is shown in Figure 6.8.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 169

Figure 6.8: Test bed network topology

The ‘OSC Server’ shown in Figure 6.8 has been described in chapter 5. The ‘AES-64
Device’ was also implemented as a (virtual) device on a PC [1]. Both of these devices
are Ethernet AVB compliant.

UNOS Creator was used to investigate:

• discovery of OSC servers via the OSC proxy, and

• connection management between networked devices that implement AES-64 and
OSC protocols.

The results are described in the following subsections.

6.6.1 Device discovery via OSC proxy

When UNOS Creator is started, it broadcasts an AES-64 device discovery message
on the network. Each AES-64 node, representing an AES-64 device on the network,
responds to the AES-64 device discovery message. The response includes AES-64 dis-
covery information such as IP address, subnet mask, device name, and the type of de-
vice. Figure 6.9 shows UNOS Creator’s device discovery view for the test bed network
of Figure 6.8.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 170

Figure 6.9: UNOS Creator networked devices view

AES-64 is being standardized by the Audio Engineering Society (AES) as part of the
AES-X170 project. Hence in Figure 6.9, X170 refers to AES-64 and an AES-64 device
exposes its name as “X170 Virtual Device”.

To the right of the screen, within UNOS Creator’s device discovery view, is the net-
work subnet of discovered devices. Figure 6.9 displays only one subnet (‘192.168.0.0’),
which implies that all discovered AES-64 nodes reside on the same subnet.

Since UNOS Creator also runs the AES-64 protocol stack, it is discovered and displayed
in the networked devices view as ‘UNOS Creator 192.168.0.4’.

The ‘OSC Server’ of Figure 6.8 is discovered by UNOS Creator via the proxy, hence
its IP address is ‘192.168.0.2’, which is the IP address of the ‘OSC Proxy’. Thus all
AES-64 messages to the ‘OSC Server’ are addressed to the proxy.

6.6.2 Connection management via OSC proxy

Figure 6.10 is a screen shot of UNOS Creator when an audio stream connection is
established between the ‘AES-64 Device’ and the ‘OSC Server’. The ‘AES-64 Device’
was set up as an AVB talker and the ‘OSC Server’ as the AVB listener.

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 171

Figure 6.10: UNOS Creator’s connection manager view

The top left matrix is UNOS Creator’s device matrix, and it shows the discovered AES-
64 devices. Clicking on a cross-point in this matrix establishes the device on the left
of the cross point as the source device, and the device above the cross point as the
destination device.

The top middle matrix is the multicore matrix. To the left of the multicore matrix are the
output multicores of the source device. At the top of the multicore matrix are the input
multicores of the destination device. In the context of AES-64, a multicore is a term that
describe the end-points of an audio or video stream. In Figure 6.10, the selected cross-
point indicates that a connection has been established between the output multicore
“1722 Output Multicore 1” (of the “X170 Virtual Device”) and the input multicore
“1722 Input Multicore 1” of the “OSC Server”. A connection can be destroyed by
deselecting the cross-point between an output and input. Each of the multicores on the
devices used in this test contains two channels of audio.

In UNOS Creator, an internal routing matrix exposes the stream inputs and outputs on a
particular device, and it is used to patch a signal from a particular input to one or more
outputs on the device.

The bottom left matrix depicts the internal routing matrix of the source device, which
in this case is the “X170 Virtual Device”. In Figure 6.10, an analogue audio input

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 172

signal (“Analogue Input 1”) from an audio source (for instance an MP3 player) has
been patched to the output (“1722 Output Multicore 1”) of the same device.

The internal routing matrix of the “OSC Server” is shown in the bottom middle matrix
of Figure 6.10. In the figure, the OSC server’s input (“1722 Input Multicore 1”) is
patched to its analogue output (“Analogue Output 1”) which is attached to a speaker.

6.7 Qualitative Analysis

On an Ethernet AVB network, an AVB talker advertises its available streams via MSRP.
An AVB listener indicates to the AVB talker that it is ready to receive an audio stream.
If sufficient network resources have been reserved for the stream, the AVB talker can
start transmitting. Refer to section 2.2.1.2 on page 22 for a description on the role of
MSRP for enabling streaming on an Ethernet AVB network.

An Ethernet AVB network controller (such as UNOS Creator) can be used to configure
the AVB talker and AVB listener in order to establish (or destroy) a stream connection.
The AES-64 messages issued by UNOS Creator in order to set up AVB talker and AVB
listeners are [1]:

• AES-64 get value message to obtain the stream ID of an output multicore from
the AVB talker.

• AES-64 set value message to modify the value of the stream ID on an AVB lis-
tener’s input multicore.

• AES-64 set value message to the AVB talker to advertise its output stream via
MSRP.

• AES-64 set value message addressed to the listen parameter of the input multicore
on the AVB listener, causing it to request attachment to the stream on offer by the
talker via MSRP.

By utilizing the proxy, UNOS Creator is capable of configuring AVB talker and AVB
listener end stations according to the above steps.

The role of the command translator (that is proxy) is to:

• discover networked audio devices

• model the discovered devices in terms of a command control protocol, that is the
protocol implemented by the network controller

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 173

• expose the controls within each discovered device to the network controller

• receive messages, which conform to the common control protocol, on behalf of
the discovered devices

• translate the received messages to the appropriate protocol messages

• transmit the translated messages to the target device(s)

• receive a response from the target device(s)

• translate the received response to the appropriate message of the common control
protocol

• transmit the response to the common network controller

In the current implementation these functions are fulfilled by a proxy that is located
on a separate PC (workstation) from the control application (as shown in Figure 6.8).
However, it is possible to host the command translator within the same host PC as the
control application. Such an implementation could utilize the same network interface
for receiving and transmitting messages for both the network control application and
the command translator. Figure 6.11 shows an example layout of how the command
translator can be incorporated into the same host PC as an AES-64 network controller.

Figure 6.11: Integrated command translator for AES-64 network control

CHAPTER 6. LAYER 3 PROXY IMPLEMENTATION 174

Figure 6.11 depicts a network of six devices, including an AES-64 network control ap-
plication. Three of the networked devices implement AES-64, while the other three
implement a different (‘Protocol A’) control protocol. The use of a command transla-
tor will allow interoperability between the devices on the network. In Figure 6.11, the
command translator runs on the same PC workstation as the controller application. A
single network interface card is used, but two instances of the AES-64 protocol stack
run on the PC. Each AES-64 stack is bound to a different IP address, although the same
network interface in used. By binding to a different IP address, the ‘Controller Appli-

cation’ and ‘Command Translator’ appear as if they were located on different AES-64
devices. The ‘Command Translator’ proxies the three ‘Protocol A’ devices, hence it
creates three AES-64 nodes above its protocol stack. The ‘Command Translator’ is
able to fulfill its role while located on the same PC as the ‘Controller Application’, and
it interacts with the ‘Controller Application’ as if it was located on a different PC. This
approach ensures that the connection management application does not depend on a
remote networked device.

6.8 Summary

There are a wide range of disparate audio control protocols, which are used by net-
worked audio devices for remote configuration, monitoring and control. Interoperability
and common control of networked devices that conform to different audio control pro-
tocols remains a challenge. This chapter has described the use of a proxy for command
translation from one layer 3 audio control protocol to another.

An OSC proxy was created to enable connection management and common control of
devices that implement the AES-64 and OSC protocols. In this chapter the requirements,
design and implementation of the OSC proxy have been described in detail.

Tests were conducted to determine the effectiveness the OSC proxy when it is used to
enable interoperability between networked OSC and AES-64 devices. The proxy proved
to be capable of enabling audio stream connections between the networked devices.

Although these tests have been conducted for OSC and AES-64 command translation,
the inclusion of other control protocols was considered in the design of the proxy. This
will allow for adaptation of the proxy to different audio networks.

Chapter 7

Layer 2 end station Implementation -
AVDECC

Ethernet AVB allows for the networking of AVTP endpoints (also referred to as AVTP
end stations). An AVTP end station is a device that is capable of transmitting data
streams that conform to the IEEE 1722 standard.

IEEE 1722.1 is an audio control protocol that will enable remote monitoring, configura-
tion and control of AVTP end stations. IEEE 1722.1 messages are exchanged between
networked IEEE 1722.1 compliant devices. An IEEE 1722.1 message is encapsulated
within an OSI/ISO layer 2 Ethernet frame, thus IEEE 1722.1 has been described as a
layer 2 audio control protocol in chapter 3.

At the start of this research project, there were no commercially available IEEE 1722.1
compliant devices. Also there were no software library that could be used to develop a
IEEE 1722.1 compliant device, although there were lots of interest in the development
of the IEEE 1722.1 standard. Hence the first step was to develop a software library that
will allow for the creation of IEEE 1722.1 audio streaming devices.

This chapter provides an overview of the IEEE 1722.1 standard and describes the im-
plementation of the (IEEE 1722.1) software library that was created in the course of this
research project. It also describes a layer 2 end station that runs on a PC workstation,
implements the IEEE 1722.1 standard, and is capable of streaming IEEE 1722 audio
on an Ethernet AVB network. In the following discussions, the term ‘AVB’ refers to
Ethernet AVB.

175

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 176

7.1 Introduction

A digital audio network device typically implements a control protocol that enables it to
be remotely monitored and configured. An audio control protocol will usually define the
procedure for establishing and destroying audio stream connections. This procedure is
known as connection management. Other common features of control protocols include:

• a device discovery mechanism,

• support for the enumeration of a device’s features, and

• control commands for manipulating the enumerated features.

The IEEE 1722.1 standard defines an Audio Video device Discovery, Enumeration, Con-

nection management and Control (AVDECC) protocol. The goal of AVDECC is to stan-
dardize a procedure for achieving the above mentioned features (of control protocols) on
IEEE 1722 (AVTP) devices. AVDECC views networked IEEE 1722 devices as fulfilling
one or more of three different roles, namely [19]:

• AVDECC controller - device that sends enquiry and control AVDECC messages to
AVDECC talkers and AVDECC listeners. An AVDECC controller is a device that
sends AVDECC messages to configure AVDECC listeners or AVDECC talkers.

• AVDECC listener - device that receives one or more audio stream(s) from the
network. It utilizes MSRP to indicate interest in a particular stream on offer by a
talker.

• AVDECC talker - device that is the source of one or more audio stream(s) on the
network. An AVDECC talker utilizes MSRP to ensure that the necessary network
resources are available before it commences the transmission of media streams on
the network.

• AVDECC interface - device that is capable of AVDECC messaging, but does not
necessarily fulfill any of the above roles.

Devices that conform to the AVDECC protocol are broadly referred to as AVDECC end
stations. At the time of writing, the current draft (draft 19) of the IEEE 1722.1 standard
defines a number of (layer 2) sub-protocols that fulfill different aspects of AVDECC.
Each of these sub-protocols defines a data unit (DU) that describes the structure and
meaning of its messages. A protocol’s DU is encapsulated within a layer 2 (AVDECC)
message, and is transmitted on the network.

These AVDECC sub-protocols are [19]:

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 177

• AVDECC Discovery Protocol (ADP) - is a layer 2 protocol that enables networked
AVDECC devices to be discovered. ADP defines an advertising state machine,
which is utilized by an AVDECC end station to announce its presence on a net-
work. It also defines a discovery state machine, which enables an AVDECC con-
troller to discover other AVDECC end stations on the network. ADP defines the
ADPDU, which provides a standard ADP message encapsulation for transmission
on the network. All ADP messages are multicast in nature.

• AVDECC Enumeration and Control Protocol (AECP) - is a layer 2 protocol that
enables remote device enumeration and control. AECP defines the message struc-
ture for discovering the functional units and features within an AVDECC end sta-
tion. It also defines the structure of layer 2 commands that should be used to
modify these features. An AECP command is encapsulated within an AECPDU,
and unicast from one AVDECC end station to another on the network.

• AVDECC Connection Management Protocol (ACMP) - is a layer 2 protocol that
defines the procedures for establishing and destroying stream connections. ACMP
defines three state machines that enable AVDECC end stations to fulfill the roles
of AVDECC controller, AVDECC talker, and AVDECC listener. The ACMP pro-
tocol also defines an ACMPDU, which is used to transmit the various ACMP
commands and responses necessary for establishing and destroying stream con-
nections. All ACMP messages are unicast on the network.

An AVDECC end station is uniquely identified by a 64-bit unique identifier, known
as it’s entity GUID. This entity GUID is used for unicast communication. AVDECC
defines multicast MAC addresses used for multicast messaging [19, pp. 268].

In order to provide a standardized way for AVDECC end stations to expose their func-
tional units and features to a remote controller, the IEEE 1722.1 standard defines an
AVDECC Entity Model (AEM). The AEM defines a hierarchical structure that enables
AVDECC end stations to represent their control features, capabilities, and functional-
ities. AEM can be used to trace the relationship between the features within an end
station. AVDECC defines a number of commands that can be used to enquire about
a control/feature, and to modify it. AEM commands and responses are encapsulated
within the AECPDU of the AECP protocol.

In the course of this research, an AVDECC end station was implemented, that is capable
of streaming audio an an Ethernet AVB network. In order to implement the AVDECC
end station, a software library that implements the AVDECC protocol has been created.
This library is known as libavdecc, and it initially implemented on the Linux platform

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 178

(kernel version 3.0.0-17). To allow for a wider use of the software, it has also been
ported to the Windows platform. The following section describes libavdecc with the
intention of providing further detail about the nature of various components that make
up the AVDECC protocol. Although these descriptions refer to Linux version of the
(libavdecc) software, the overall architecture of the Windows and Linux versions are the
same.

7.2 AVDECC library

The AVDECC Linux software library implementation (libavdecc) that has been devel-
oped in the course of this research, was designed to enable a software developer to
create an application that conforms to the IEEE 1722.1 standard. An AVDECC con-
troller can utilize libavdecc to discover AVDECC talkers and listeners, as well as to
transmit AVDECC connection management and control instructions. A software devel-
oper is able to create an AVDECC talker and/or AVDECC listener, that runs on a Linux
PC, by utilizing libavdecc.

The libavdecc library was designed to consist of a number of modules, with each module
implementing an aspect of the AVDECC protocol. This modular design allows develop-
ers to utilize only the modules that are required by their applications. Figure 7.1 shows
the design layout of the libavdecc library.

Figure 7.1: Logical layout of the libavdecc implementation

Figure 7.1 shows the:

• ‘AVDECC Transport Controller’ module - this is the transport module imple-
mented by libavdecc, and it is used by all of the other modules (ADP’, ‘ACMP’,
and ‘AECP’). Currently this module is Linux platform dependent. To use libavdecc

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 179

on any other platform (such as Windows or Mac OS) requires a port of this mod-
ule.

• ‘ADP’ module - is an implementation of the AVDECC Discovery Protocol. Asso-
ciated with it are the advertising and discovery state machines, which are shown
as the circles labeled ‘A’ and ‘D’, respectively.

• ‘ACMP’ module - is libavdecc’s implementation of the AVDECC Connection
Management Protocol. Associated with ‘ACMP’ are the controller, listener and
talker state machines, which are the circles labeled ‘C’, ‘L’, and ‘T’, respectively.

• ‘AECP’ module - implements the AVDECC Enumeration and Control Protocol.
It enables the encapsulation and extraction of AECP commands and responses
within AECPDUs.

• ‘AEM’ container - is an implementation of the AVDECC Entity Model. It defines
a number of data structures that lay out the functional units within an AVDECC
entity.

The following sections provide more information about the libavdecc modules.

7.2.1 AVDECC Transport Controller module

The AVDECC Transport Controller is responsible for receiving and transmitting all
AVDECC messages from and to the network, respectively. All AVDECC messages re-
ceived or transmitted by this module are layer 2 packets. There are two types of packets
that the AVDECC transport controller is interested in. These are:

• Unicast packets that are addressed to the network interface hardware address of
the host.

• Multicast packets that are sent to the multicast address reserved for AVDECC
messaging.

The current draft of the IEEE 1722.1 standard defines 91-E0-F0-01-00-00 as the AVDECC
multicast MAC address for device discovery and connection management [19, pp. 268].

Every device that utilizes libavdecc is required to initialize this (AVDECC transport

controller) module for communication with the network. To do this, libavdecc provides
an initialization function which is shown in Listing 7.1. The Listing also shows the
transport controller module’s cleanup function, which is used to deallocate resources
utilized by the transport controller.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 180

a v d e c c _ t r a n s p o r t _ c o n t r o l l e r _ i n i t (
a v d e c c _ t r a n s p o r t _ c o n t r o l l e r ∗ a v d e c c _ t c)

a v d e c c _ t r a n s p o r t _ c o n t r o l l e r _ c l e a n u p (
a v d e c c _ t r a n s p o r t _ c o n t r o l l e r ∗ a v d e c c _ t c)

Listing 7.1: Initialization and cleanup functions of the AVDECC transport controller
module

An avdecc_transport_controller data structure is an instance of the transport controller
module, and is passed as an argument to the above.

Each AVDECC packet that is received by the transport controller module consists of a
protocol Data Unit (DU), which is encapsulated within the transport layer header (Eth-
ernet header). Within each DU is a ‘subtype’ field that is used to differentiate between
AVDECC sub-protocols. The values of the subtype fields as defined by the AVDECC
protocol are shown in Table 7.1.

Subtype Value Protocol

0x7A ADP

0x7B AECP

0x7C ACMP

Table 7.1: AVDECC protocol subtypes

When the AVDECC transport controller receives a message from the network, it strips
the packet of its transport (Ethernet) header. Then it passes on the DU to the appropriate
protocol module based on the DU’s subtype field. The AVDECC transport controller
module provides a function that is used by an AVDECC sub-protocol module to indicate
interest in a particular type of AVDECC message. This function is shown in Listing 7.2.

a v d e c c _ t r a n s p o r t _ c o n t r o l l e r _ r e g i s t e r _ p r o t o c o l ()

Listing 7.2: AVDECC transport controller function for registering a sub-protocol

A module utilizing the AVDECC transport controller uses this function to indicate the
type of message it is interested in. A callback is passed as an argument to this function,
and it is triggered by the transport controller whenever a message of the specified type
is received.

In order to transmit AVDECC messages, a sub-protocol (that is ADP, ACMP, or AECP)
module utilizes the transport controller by sending its DU to the transport controller. The
AVDECC transport controller adds the transport layer header to the received DU, and

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 181

sends the packet onto the network. The AVDECC transport controller module provides a
function that is utilized by the other AVDECC modules to pass their DUs to the transport
controller, for onward transmission on the network. The function is:

a v d e c c _ t r a n s p o r t _ c o n t r o l l e r _ s e n d _ d a t a ()

Listing 7.3: AVDECC transport controller function for transmitting messages on the
network

A module utilizing this function passes as arguments the data unit it wishes to transmit,
and an indication of the size of the data. The size is dependent on the particular protocol
DU being transmitted.

7.2.2 ADP module

The ADP module implements the AVDECC Discovery Protocol (ADP) [19]. The ADP
protocol defines a data unit known as ADPDU, and two state machines (advertising

and discovery state machines) that enable AVDECC end stations to be discovered on a
network.

The ADP module as implemented by libavdecc receives an ADP message from the
AVDECC transport controller, then passes it to the appropriate state machine for pro-
cessing. The ADP module determines which state machine should process a received
ADP message based on the ‘message type’ field. Table 7.2 shows the various ADP mes-
sage types (as defined by IEEE 1722.1), and the libavdecc state machine responsible for
processing them.

Value Meaning State Machine

0 Available Discovery

1 Departing Discovery

2 Discover Advertising

Table 7.2: ADP message types

The libavdecc’s implementation of the advertising and discovery state machines are
described in section 7.2.2.1 and section 7.2.2.2, respectively. libavdecc implements
the ADP module as the base module for the advertise and discovery state machines.
Although either of these ADP state machines can be utilized independently (of each
other), they both require the ADP module to have been initialized. The libavdecc library

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 182

provides a function that can be used by an application to initialize the ADP module, and
another for cleaning up resources used by the ADP module. These two functions are:

a v d e c c _ a d p _ i n i t ()
a v d e c c _ a d p _ c l e a n u p ()

Listing 7.4: ADP module functions for initialization and cleanup

An avdecc_adp structure is passed as an argument to the functions above.

All ADP messages are multicast announcements, and the AVDECC multicast MAC
address is used to transmit an ADP message on the network. The libavdecc’s imple-
mentation of the ADP advertising and discovery state machines are described in the
following sections.

7.2.2.1 Advertising state machine

The advertising state machine is utilized by an AVDECC end station to announce its
presence on a network. It implements a re-announce timer, which ensures that the end
station multicasts its advertise messages at regular intervals. An ADP advertise message
includes a valid_time field, which indicates how long the announcement is valid for. If
no re-announcement is received from the end station with this state machine, a controller
can assume that the end station is no longer available on the network.

When an ADP discovery message is received from the ADP module, the advertise state
machine re-announces its presence on the network. Thus making its presence known
to the transmitter of the discovery message. When the end station is leaving the net-
work, the advertising state machine announces its departure by multicasting an ADP
‘departing’ message.

The libavdecc library provides a function for initializing the advertising state machine,
and another for deallocating resources used by the advertising state machine. These two
functions are:

a v d e c c _ a d p _ a d v e r t i s e _ s m _ i n i t ()
a v d e c c _ a d p _ a d v e r t i s e _ s m _ c l e a n u p ()

Listing 7.5: libavdecc’s advertise state machine functions

A data structure (avdecc_adp_advertise_sm), which is an instance of the advertise state
machine, is passed as an argument to either of these functions.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 183

7.2.2.2 Discovery state machine

The discovery state machine is used by an AVDECC end station (typically an AVDECC
controller) to discover the other end stations on the network. It does this by multicasting
an ADP discover message on the network.

The discovery state machine holds a list of discovered end stations, and it modifies this
list whenever a new end station is discovered or an end station has become unavailable.
Whenever a re-announce message is received from an end station, the discovery state
machine updates its list. This ensures that the list of discovered end stations contains
the most recent information about each discovered end station.

There are two ways in which the discovery state machine determines whether an AVDECC
end station is available or not. These are:

1. Each end station multicasts an ADP departing message on the network when it
has been shut down gracefully. Upon receiving an ADP departing message, the
discovery state machine removes the end station from its list of discovered end
stations.

2. Each entry that is stored in the list of discovered end stations has a ‘time-to-live’
value associated with it. This ‘time-to-live’ value resides in the ‘valid time’ field
of the ADP advertise message, and it indicates how long an announcement is
valid. If within the specified time, an ADP available message is not received from
the same end station, the discovery state machine assumes that the end station is
no longer available, and it is removed from the list.

libavdecc provides a function that can be used by an application to initialize a discovery
state machine, and a function to deallocate resources used by this state machine. These
functions are:

a v d e c c _ a d p _ d i s c o v e r y _ s m _ i n i t ()
a v d e c c _ a d p _ d i s c o v e r y _ c l e a n u p ()

Listing 7.6: libavdecc’s discovery state machine functions

A data structure (avdecc_adp_discovery_sm) which represents an instance of the dis-
covery state machine is passed as an argument to these functions. Associated with the
discovery state machine’s initialization function (avdecc_adp_discovery_sm_init()) is
a callback function that is passed as an argument by an application to the discovery state
machine. The discovery state machine calls the application’s callback function when-
ever an ADP available message or an ADP departing message is received. This enables

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 184

the application to be informed whenever an end station becomes available, leaves the
network, or updates its information.

7.2.3 ACMP module

The libavdecc software library implements the AVDECC Connection Management Pro-
tocol (ACMP) as a module. This (ACMP) module receives connection management
messages from the AVDECC transport controller. Each message received by the ACMP
module conforms to the ACMP Data Unit (ACMPDU) defined by the AVDECC proto-
col [19, pp. 187].

The libavdecc library provides a function for initializing the ACMP module, as well as a
function to enable an application to properly destroy and deallocate all resources being
utilized by the ACMP module. These functions are:

a v d e c c _ a c m p _ i n i t ()
avdecc_acmp_c leanup ()

Listing 7.7: libavdecc’s ACMP initialization and destroy functions

The two functions take an instance of the ACMP data structure (avdecc_acmp) as an
argument.

The libavdecc software library implements three state machines that are associated with
the ACMP module. Each of these state machines can be enabled independently of
each other, but each of them requires the ACMP module for receiving and transmitting
ACMPDUs. Thus an end station that utilizes any of these state machines is required to
have already initialized the ACMP module. The three ACMP state machines are:

• Controller state machine - handles AVDECC controller messages on an AVDECC
end station,

• Listener state machine - handles AVDECC listener messages on an AVDECC end
station, and

• Talker state machine - handles AVDECC talker messages on an AVDECC end
station.

The ACMP module forwards an ACMPDU to a state machine based on the ‘message

type’ field of a received ACMP command or response. Table 7.3 shows the possible
ACMP message types (commands and responses) received by the ACMP module, and
the state machine responsible for handling them.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 185

ACMP state machine Message type

Controller

GET_TX_STATE_RESPONSE
CONNECT_RX_RESPONSE
DISCONNECT_RX_RESPONSE
GET_RX_STATE_RESPONSE
GET_TX_CONNECTION_RESPONSE

Listener

CONNECT_TX_RESPONSE
DISCONNECT_TX_RESPONSE
CONNECT_RX_COMMAND
DISCONNECT_RX_COMMAND
GET_RX_STATE_COMMAND

Talker

CONNECT_TX_COMMAND
DISCONNECT_TX_COMMAND
GET_TX_STATE_COMMAND
GET_TX_CONNECTION_COMMAND

Table 7.3: libavdecc’s ACMP state machines and the ACMP messages they handle

The identifying values of the ACMP message types shown in Table 7.3 are defined in
the IEEE 1722.1 standard document [19]. All ACMP commands and responses are
multicast on the network.

The following sections provides more details about the ACMP state machines, as im-
plemented in libavdecc.

7.2.3.1 Controller state machine

This state machine enables an AVDECC controller to transmit and receive connection
management commands to and from AVDECC talkers and listeners. The controller
state machine is able to retry a command when no response has been received within its
(the command’s) timeout period. These timeouts are defined by the AVDECC protocol,
and they depend on the command’s ‘message type’ value [19, pp. 192]. The controller
state machine is also able to associate a received response with the appropriate initiating
command.

libavdecc provides a function that can be used by an application to initialize the con-
troller state machine, and another function for deallocating resources used by the con-
troller state machine. These functions are shown in Listing 7.8.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 186

a v d e c c _ a c m p _ c o n t r o l l e r _ s m _ i n i t ()
a v d e c c _ a c m p _ c o n t r o l l e r _ s m _ c l e a n u p ()

Listing 7.8: libavdecc’s controller state machine functions

A data structure (avdecc_acmp_controller_sm), which is an instance of the controller
state machine, is passed as an argument to the functions shown in Listing 7.8.

7.2.3.2 Listener state machine

The listener state machine is used by an AVDECC listener to process connection man-
agement commands. It enables an AVDECC listener to respond (appropriately) to re-
ceived commands. These could be commands to:

• establish stream connections,

• destroy previously established stream connections, or

• determine the state of a particular input stream connection on the listener.

When an AVDECC listener receives an ACMP command to establish or destroy a stream
connection, it utilizes MSRP to indicate to the (Ethernet AVB) network that it is inter-
ested (or not interested, in the case of a disconnect command) in a particular stream.

The listener state machine monitors commands that it has transmitted. This enables it
to match a received ACMP response with the appropriate initiating ACMP command.

libavdecc provides a function that can be used by an application to initialize the listener
state machine, and another function to deallocate resources used by the listener state
machine. These functions are shown in Listing 7.9.

a v d e c c _ a c m p _ l i s t e n e r _ s m _ i n i t ()
a v d e c c _ a c m p _ l i s t e n e r _ s m _ c l e a n u p ()

Listing 7.9: libavdecc’s listener state machine functions

The functions shown in Listing 7.9 accepts as an argument a (avdecc_acmp_listener_sm)
data structure that represents an instance of the listener state machine.

7.2.3.3 Talker state machine

libavdecc implements a talker state machine, which is used by an AVDECC talker to
respond to AVDECC messages from AVDECC listeners and controllers. The talker
state machine responds to ACMP commands to:

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 187

• establish a stream connection,

• destroy a stream connection,

• determine the state of an output on the talker, or

• determine the state of a stream connection.

The talker state machine utilizes MSRP for reserving network resources for its streams.

libavdecc provides a function that can be used by an application to initialize the talker
state machine, and another function to deallocate resources used by the talker state ma-
chine. These functions are shown in Listing 7.10.

a v d e c c _ a c m p _ t a l k e r _ s m _ i n i t ()
a v d e c c _ a c m p _ t a l k e r _ s m _ c l e a n u p ()

Listing 7.10: libavdecc’s talker state machine functions

An instance of the talker state machine in the form of a (avdecc_acmp_talker_sm) data
structure, is passed as an argument to the above functions.

7.2.4 AECP module

The AVDECC Enumeration and Control Protocol (AECP) is implemented in libavdecc

as the AECP module. The libavdecc’s transport controller passes all the AECP Data
Units (AECPDUs) it receives to this (AECP) module. Once initialized, the AECP mod-
ule handles all messages that involve enumeration and control of the features on an
AVDECC end station. It also processes all AECP messages to provide information
about the capabilities and functional units within an end station.

The libavdecc library provides functions that allow an application to initialize and de-
stroy the AECP module. These functions are shown in Listing 7.11.

a v d e c c _ a e c p _ i n i t ()
a v d e c c _ a e c p _ c l e a n u p ()

Listing 7.11: libavdecc’s AECP functions

An instance of the AECP module, in the form of a data structure (avdecc_aecp), is
passed to the functions shown in Listing 7.11.

The AECP module interacts with the AVDECC Entity Model (AEM), and can be used
to query and manipulate the AEM. All messages handled by this module conform to
one of the formats of the AECP Data Unit (AECPDU) [19, pp. 258-267].

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 188

An AVDECC end station can utilize this module to allow for remote control and moni-
toring. AECP messages are typically unicast to a particular end station.

7.2.5 AEM container

The libavdecc library implements an AEM container, which provides a data structure for
creating an AVDECC Entity Model (AEM). The AEM container consists of a number of
C-structures that can be used to model the internal units within an AVDECC end station
as defined the IEEE 1722.1 AEM [19, pp. 31-107]. AEM is described in section 3.4.3.1
on page 96.

The AEM container data structure allows a software developer to model an AVDECC
entity by instantiating the appropriate data structures that corresponds to the descriptors
that should be included in the entity’s AEM. These data structures are implemented in
libavdecc.

By utilizing the AEM container API, libavdecc is able to expose the AEM created for
an entity to an AVDECC controller. This interaction is depicted in Figure 7.2.

Figure 7.2: libavdecc exposes AEM of an AVDECC entity

When an ‘AECP command’ is received by ‘AEM Message Handler’ shown in Figure
7.2, it interacts with the ‘AEM container’, then returns the appropriate ‘AEM response’.
For instance a READ_DESCRIPTOR command (which was described in section 3.4.3.1
on page 96) would cause ‘AEM Message Handler’ to obtain the value of the specified
descriptor and return it (the descriptor) in the ‘AEM response’. Each AEM descriptor is
identified by the type and 16-bit index.

libavdecc provides a number of functions that can be used to build-up the AEM con-
tainer. These are:

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 189

aem_create_container();

aem_delete_container();

aem_add_descriptor(void* descriptor);

aem_delete_descriptor(uint16 type, uint16 index);

The aem_create_container() function creates the AEM container, which is effectively a
linked list, while aem_delete_container() is used to delete the container including all of
its contents (descriptors). aem_add_descriptor(void* descriptor) is used to add any of
the descriptor data structures to the AEM container, while aem_delete_descriptor(uint16

type, uint16 index) removes a particular descriptor (identified by the type and index ar-
guments) from the AEM container.

7.3 Transform based description of libavdecc

Following the description of the components that make up libavdecc in section 7.2, this
section describes how libavdecc processes the layer 2 packets that it receives from the
network. Figure 7.3 depicts libavdecc in the form of a transformation schema based on
the Ward and Mellor approach [154].

Figure 7.3: Transformation schema of libavdecc

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 190

In Figure 7.3, the arrows represent message flows, and the circles represent processing
points. These processing points are known as transforms , and they have been im-
plemented as processing threads. The parallel line structures (in the figure) represent
stores, which are queues that hold items that are processed by the transforms (threads).
The rectangle at the top-left of Figure 7.3 represents the external network from and to
which layer 2 packets are received and transmitted, respectively.

The activities of the libavdecc depicted in Figure7.3, are as follows:

• The ‘transport controller receive thread’ receives a layer 2 AVDECC packet from
the ‘network’, adds it to the ‘transport controller receive queue’, then it signals
the ‘transport controller processing thread’.

• The ‘transport controller processing thread’ is responsible for processing AVDECC
packets from the ‘transport controller receive queue’ . Depending on the subtype

field of the AVDECC message, the ‘transport controller processing thread’ adds
the data unit (DU) into either the ‘adp receive queue’, ‘aecp receive queue’, or
‘acmp receive queue’, then it signals the appropriate thread.

• the ‘transport controller transmit thread’ is signaled whenever an AVDECC packet
has been added to the ‘transport controller transmit queue’, and it is responsible
for transmitting the (AVDECC) packets to the network.

• For ADP message processing, the ‘adp processing thread’ receives ADPDUs
from the ‘adp receive queue’. Based on the message-type field, it adds the ADP
command into either the ‘advertising state machine receive queue’ store or ‘dis-

covery state machine receive queue’ store. Then it signals the appropriate pro-
cessing thread that handles the ADP command store.

• The ‘advertising state machine processing thread’ implements the ADP adver-
tising state machine that has been described in section 7.2.2.1. It receives ADP
commands from the ‘advertising state machine receive queue’ when signaled by
the ‘adp processing thread’. The ‘advertising state machine processing thread’
adds its response ADPDU to the ‘transport controller transmit queue’ and signals
the ‘transport controller transmit thread’ to inform it that there is a data waiting
for onward transmission to the network.

• The ‘discovery state machine processing thread’ implements the ADP discovery
state machine which was described in section 7.2.2.2. It receives its ADP com-
mands from the ‘discovery state machine receive queue’when signaled by the
‘adp processing thread’. It adds its responses to the ‘transport controller transmit

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 191

queue’ and informs the ‘transport controller transmit thread’ that there is data for
onward transmission to the network with the ‘transTx control signal’.

• For AECP message processing, the ‘aecp processing thread’ retrieves an AECPDU
from the ‘aecp receive queue’ when it has been signaled with the ‘aecpRx con-

trol signal’. The manner in which the AECPDUs are processed depends on their
message-type field. The current libavdecc implementation is designed to pro-
cess only AECPDUs whose message type is AEM_COMMAND [19, pp. 259].
Such messages are addressed to the AEM model for processing (which has been
described in section 7.2.5. All responses from the ‘aecp processing thread’ are
added to the ‘transport controller transmit queue’ and the ‘transport controller

transmit thread’ is signaled to inform it that it has data ready for transmission on
the network.

• For ACMP message processing, the ‘acmp processing thread’ receives ACMP-
DUs from the ‘acmp receive queue’. Based on the message-type field, it adds the
ACMP command into either the ‘controller state machine receive queue’, ‘lis-

tener state machine receive queue’, or ‘talker state machine receive queue’ store,
then it signals the processing thread for the appropriate state machine.

• The ‘controller state machine processing thread’ implements the ACMP con-
troller state machine that has been described in section 7.2.3.1, and it is signaled
by the ‘contrSMRx control signal’. When signaled, it retrieves an ACMP com-
mand from the ‘controller state machine receive queue’ and processes it. It trans-
mits its response on the network by adding it to the ‘transport controller transmit

queue’ and signaling the ‘transport controller transmit thread’.

• The ‘listener state machine processing thread’ implements the ACMP listener
state machine that has been described in section 7.2.3.2, and it is signaled by the
‘listrSMRx control signal’. It transmits its response on the network by adding it to
the ‘transport controller transmit queue’ and signaling the ‘transport controller

transmit thread’.

• The ‘talker state machine processing thread’ implements the ACMP talker state
machine that has been described in section 7.2.3.3, and it is signaled by the
‘talkrSMRx control signal’. It transmits its response on the network by adding
it to the ‘transport controller transmit queue’ and signaling the ‘transport con-

troller transmit thread’.

The libavdecc only ‘picks up’ layer 2 packets that are either addressed to the Ethernet

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 192

hardware address of its host, or to the AVDECC multicast MAC address (refer to section
7.2.1).

7.4 AVDECC end station

In the design of the layer 2 (AVDECC) end station, the requirement was that the end sta-
tion should be capable of being discovered in accordance with the AVDECC Discovery
Protocol (ADP), and also that the end station complies with the AVDECC Connection
Management Protocol (ACMP). Figure 7.4 shows the interaction between the AVDECC
end station implementation and the external libraries it utilizes.

Figure 7.4: Overview of AVDECC end station

The AVDECC end station runs on a Linux PC, and is capable of receiving and transmit-
ting audio streams from and to (respectively) an Ethernet AVB network. In order to do
this, the end station utilizes the following software libraries:

• libavdecc for discovery and connection management

• kmsrp for audio stream resource reservation on the Ethernet AVB network

• libasound for analog audio capture and playback

The libavdecc software library has been described in section 7.2, and provides the
AVDECC functionality for discovery and connection management.

The kmsrp software library is an implementation of the MSRP functionality, which:

• enables an Ethernet AVB device to request that the necessary resources it requires
for transmitting a stream are reserved on the Ethernet AVB network.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 193

• ensures that the source stream is advertised (at regular intervals) on the network.

• enables an Ethernet AVB device to indicate interest in a particular stream [155].

libasound is the Advanced Linux Sound Architecture (ALSA) software library, that
enables a Linux PC to capture and playback audio from it’s analog audio inputs and
outputs, respectively [151].

With regards to audio inputs and outputs, the AVDECC end station has:

• one analog audio stereo input

• one analog audio stereo output

• one Ethernet AVB source

• one Ethernet AVB sink

These are shown in Figure 7.5.

Figure 7.5: Conceptual view of inputs and outputs on the AVDECC end station

The audio input, output, sink stream, and source stream shown in Figure 7.5 are stereo
(2 channels). Routing of audio between the inputs and outputs by a remote controller
has not been implemented on the AVDECC end station. However, when the end station
has reserved the necessary network resources for its source stream, its stereo ‘Analog

In’ input stream is routed to its ‘AVB source’. In a similar manner, a 2-channel audio
stream at the end station’s ‘AVB sink’ is routed to its ‘Analog Out’.

7.4.1 Discovering the AVDECC end station

The AVDECC end station implements device discovery as defined by the AVDECC pro-
tocol, and utilizes the libavdecc’s advertising state machine, which has been described in
section 7.2.2.1. At regular intervals, the AVDECC end station advertises its presence on

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 194

the network, and it is capable of responding to ENTITY_DISCOVERY messages from
an AVDECC controller. Figure 7.6 shows the device discovery interaction between an
‘AVDECC controller’ and the ‘AVDECC end station’.

Figure 7.6: AVDECC device discovery mechanism

In order to discover AVDECC end stations on a network, the following steps are per-
formed:

• An AVDECC controller multicasts an AVDECC message with a message type of
‘ENTITY_DISCOVER’ as shown in Figure 7.6.

• The message is received by the AVDECC transport controller module within a
participating end station.

• The ADPDU is passed on to the AVDECC adp module.

• The ADP module passes the message to its advertising state machine.

• The advertising state machine sends a response with a message type of ‘EN-
TITY_AVAILABLE’ to its AVDECC adp module.

• The ADP module passes the ADPDU to the AVDECC transport controller of its
host.

• The transport controller multicasts the response on the network.

• This response is received by the remote AVDECC controller.

7.4.2 Connection management on AVDECC end station

Connection management is the process of establishing and destroying stream connec-
tions. In the case of the AVDECC end station, these streams are audio stream connec-
tions. The AVDECC end station conforms to the AVDECC Connection Management

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 195

Protocol (ACMP) defined in the IEEE 1722.1 standard, and it utilizes libavdecc for
connection management.

The AVDECC end station can fulfill the role of AVDECC listener (that is the destination
of an audio stream) and AVDECC talker (that is the source of an audio stream). In order
to fulfill the role of AVDECC listener, the end station utilizes the listener state machine

that has been described in section 7.2.3.2. To assume the role of AVDECC talker, the
end station utilizes the talker state machine that has been described in section 7.2.3.3.

libavdecc implements controller connect and controller disconnect modes for connec-
tion management, which are defined by the AVDECC protocol [19, pp. 245]. In these
modes of connection management, all commands to either establish or destroy a stream
connection are addressed to the AVDECC listener. The listener is responsible for is-
suing the appropriate command to the AVDECC talker, indicating that it wishes to re-
ceive a particular Ethernet AVB source stream. To establish a connection, the ‘message

type’ field of the ACMP message that is transmitted by the AVDECC controller to the
AVDECC listener is CONNECT_RX_COMMAND. The controller connect mode for
connection management that is defined by the AVDECC protocol, is shown in Figure
7.7.

Figure 7.7: AVDECC controller connect mode for connection management

In Figure 7.7, when the AVDECC listener receives a CONNECT_RX_COMMAND
command from the controller, it issues a CONNECT_TX_COMMAND to the AVDECC
talker. In response, the AVDECC talker sends a CONNECT_TX_RESPONSE to the
AVDECC listener. The listener in turn responds to the AVDECC controller’s command
to establish a connection by sending a CONNECT_RX_RESPONSE to the controller.

A similar procedure is followed for destroying a stream connection, and this is shown
in Figure 7.8.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 196

Figure 7.8: AVDECC controller disconnect mode for connection management

The connection management commands and responses shown in Figure 7.7 and Figure
7.8 are encapsulated within an ACMPDU. The ACMPDU is defined in the IEEE 1722.1
document [19, pp. 239]. For this discussion, the particular ACMPDU fields that are of
interest are:

• controller_guid - is the 64-bit unique identifier of the AVDECC controller issuing
a command.

• talker_guid - is the 64-bit unique identifier of the AVDECC talker.

• listener_guid - is the 64-bit unique identifier of the AVDECC listener.

• talker_unique_id - is a 16-bit field which specifies the particular source stream on
the AVDECC talker.

• listener_unique_id - is a 16-bit field which specifies the particular sink stream on
the AVDECC listener.

The status of an issued command is obtained from the status field of the corresponding
response.

The following sections will describe how the AVDECC end station, utilizing libavdecc,
is able to fulfill the role of AVDECC listener and talker.

7.4.2.1 AVDECC end station as AVDECC listener

By utilizing the listener state machine implemented in libavdecc, the AVDECC end
station is able to fulfill the role of AVDECC listener. The listener state machine enables
the end station to receive and process ACMP commands that are addressed to it, as well
as adequately respond to the received command.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 197

Connection management as implemented by AVDECC end station conforms with the
ACMP controller connect and controller disconnect modes that were described in sec-
tion 7.4.2. When the AVDECC listener receives an ACMP connect command (CON-
NECT_RX_COMMAND) that has a ‘listener_guid’ field the same as its (the listener’s)
own, it is required to return an ACMP (CONNECT_RX_RESPONSE) response to the
AVDECC controller which is identified by the ‘controller_guid’ field in the ACMPDU.
In between receiving this command and transmitting a response, the following occurs:

• the listener multicasts an ACMP (CONNECT_TX_COMMAND) command to an
AVDECC talker (identified by the ‘talker_guid’ field), indicating its intention to
receive from one of its source streams (identified by the ‘talker_unique_id’ field)

• upon receiving a response from the talker, the listener determines whether or not
the talker is capable of transmitting the stream, by inspecting the ‘status’ field of
the received response

• if the ‘status’ field of the ACMP response from the talker indicates ‘SUCCESS’,
the listener interprets this as implying that the talker is in a state that it can start
transmitting the stream. In this case, the listener:

– obtains the stream ID of the talker’s source stream from the received re-
sponse

– utilizes MSRP to indicate to the Ethernet AVB network that it is interested
in receiving a particular stream (which is uniquely identified by the obtained
stream ID) from the network

– routes its ‘AVB sink’ input (identified by the ‘listener_unique_id’ field of the
ACMP command it received from the controller) to its ‘Analog Out’ output
shown in Figure 7.5. The AVDECC listener utilizes libasound to transmit
the audio it receives from its ‘AVB sink’ input to its ‘Analog Out’

– returns an ACMP (CONNECT_RX_RESPONSE) response, with its ‘status’

field indicating ‘SUCCESS’, to the AVDECC controller

• if the ‘status’ field of the ACMP (CONNECT_RX_RESPONSE) response from
the talker does not indicate ‘SUCCESS’, an ACMP (CONNECT_RX_RESPONSE)
response is returned by the listener to the AVDECC controller. The ‘status’ field
of this response is the same as that returned by the AVDECC talker’s (CON-
NECT_TX_RESPONSE) response.

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 198

When a controller receives an ACMP (CONNECT_RX_RESPONSE) response with a
‘status’ field of ‘SUCCESS’, it interprets this as implying that an audio stream connec-
tion has been established between the talker and listener.

7.4.2.2 AVDECC end station as AVDECC talker

The AVDECC end station created is able to fulfill the role of IEEE 1722 audio stream
source. As shown in Figure 7.5, the AVDECC end station has only one source stream
(‘AVB source’).

At startup, the end station:

• utilizes Multicast Address Acquisition Protocol (MAAP) to obtain a multicast
MAC address for its IEEE 1722 source stream, and

• generates a 64-bit unique identifier (known as stream ID) for its source stream.

The AVDECC end station utilizes the talker state machine, implemented by libavdecc,
to fulfill the role of AVDECC talker. The talker state machine enables the end station
to receive and process ACMP commands that are addressed to it, as well as adequately
respond to the received commands.

The AVDECC end station conforms to the ACMP controller connect and controller

disconnect modes that were described in section 7.4.2. When an AVDECC talker end
station receives an ACMP connect command (CONNECT_TX_COMMAND) that has
a ‘talker_guid’ field that is the same as its own entity GUID, it is required to return
an ACMP (CONNECT_TX_RESPONSE) response to the AVDECC listener which is
identified by the ‘listener_guid’ field. In between receiving this command and transmit-
ting a response, the following occurs:

• the AVDECC talker utilizes MSRP to request resource reservation for its stream

• if the MSRP stream reservation request is successful, the talker:

– adds the 64-bit stream ID of its source stream to a response ACMPDU. The
source stream is identified by the ‘talker_unique_id’ field.

– adds the multicast MAC address (obtained via MAAP) associated with its
source stream, to the response ACMPDU

– utilizes libasound to capture stereo audio from its ‘Analog In’ input, then
routes the (2-channel) audio to its ‘AVB source’ output

CHAPTER 7. LAYER 2 END STATION IMPLEMENTATION - AVDECC 199

– multicasts an ACMP (CONNECT_TX_RESPONSE) response with a status

field that indicates ‘SUCCESS’

• if the MSRP stream reservation request failed, or if the specified source does
not exist, an appropriate ‘status’ field value is transmitted in the ACMP (CON-
NECT_TX_RESPONSE) response.

A listener receiving an ACMP (CONNECT_TX_RESPONSE) response with a status

field of ‘SUCCESS’, interprets this as implying that the AVDECC talker has reserved
the necessary network resources for its stream, and has started streaming audio from its
source stream.

7.5 Summary

IEEE 1722.1 defines layer 2 protocols that will enable the discovery, enumeration, con-
trol and connection management of devices on an Ethernet AVB network. These pro-
tocols are commonly referred to as the AVDECC protocol. The IEEE 1722.1 standard
requires that compliant networked devices are able to transmit and/or receive data ac-
cording to the format defined by the IEEE 1722 standard. This chapter described the
implementation and design of a software library known as libavdecc, which implements
the IEEE 1722.1 standard. libavdecc is implemented in a modular structure that allows a
software developer to utilize only those components that are required. The components
of libavdecc implement the various sub-protocols defined by AVDECC. These include
the:

• AVDECC Discovery Protocol (ADP)

• AVDECC Enumeration and Control Protocol (AECP)

• AVDECC Connection Management Protocol (ACMP)

The libavdecc library implements the ADP and ACMP state machines, which enables
an AVDECC device to appropriately process and respond to commands.

The implementation of an AVDECC end station was also described in the chapter. This
AVDECC end station runs on a Linux PC, and is capable of transmitting and receiving
audio streams to and from (respectively) an Ethernet AVB network. The end station
fulfills the role of AVDECC talker and listener by utilizing the libavdecc library. Thus
it is able to receive device discovery and connection management AVDECC commands
from a remote AVDECC controller, and respond appropriately in compliance with the
IEEE 1722.1 standard.

Chapter 8

Layer 2/Layer 3 Proxy Implementation

The previous chapter described the implementation of an AVDECC end station that
can be remotely configured to transmit and receive IEEE 1722 streams on an Ethernet
AVB network. At the time of the implementation there were no commercially available
AVDECC end stations, as a result the IEEE 1722.1 standard was implemented as a
software library that was used to create an AVDECC compliant audio streaming PC
(workstation) device.

It may be desirable to enable interoperability between the AVDECC end station and
Ethernet AVB end stations that implement other control protocols. Such that an IEEE
1722 audio stream that is transmitted by an AVDECC end station can be received by an-
other AVDECC end station as well as the other (non-AVDECC compliant) end stations
on the network. In the same manner it may be desirable for the IEEE 1722 audio stream
that is transmitted by any of the other (non-AVDECC compliant) end stations to be re-
ceived by the AVDECC end stations and non-AVDECC compliant end stations on the
network. The procedure for setting up such stream connections is known as connection
management.

The command translator approach (which was described in chapter 4) could allow for
such interoperability and common control between the AVDECC end station and Eth-
ernet AVB end stations that implement other audio control protocols.

In chapter 3 a layer 2 audio control protocol was described as an audio control protocol
that encapsulates its control messages within OSI layer 2 packets, as is the case with
IEEE 1722.1. A layer 3 audio control protocol was described as an audio control pro-
tocol that encapsulates its control messages within OSI layer 3 packets, in the manner
that AES-64 does.

Connection management is being used as the criteria for investigating the command

200

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 201

translation approach for interoperability between Ethernet AVB end stations that imple-
ment a layer 2 audio control protocol and those that implement a layer 3 audio control
protocol.

In this chapter the command translator approach is investigated to determine whether it
is capable of:

• enabling connection management of networked devices that implement a layer 2
audio control protocol

• enabling connection management of networked devices that implement layer 2
and layer 3 audio control protocols

8.1 Introduction

An AVDECC end station is capable of transmitting and/or receiving IEEE 1722 audio
streams on an Ethernet AVB network. In order to allow for remote configuration and
control, it implements the IEEE 1722.1 standard (also known as the AVDECC protocol).
An AVDECC controller is an end station that can remotely configure an AVDECC talker
to be the source of an (IEEE 1722) audio stream, and configure an AVDECC listener to
receive the audio stream. The control messages transmitted by the AVDECC controller
are encapsulated within OSI layer 2 (Ethernet) packets, hence the AVDECC protocol
has been classified as a layer 2 audio control protocol (refer to chapter 3).

AVDECC end stations (controllers, talkers, and listeners) are incorporated into an Eth-
ernet AVB network. There may be desirable Ethernet AVB end stations that implement
other audio control protocols, which a sound engineer wishes to include into the net-
work. Communication between these non-AVDECC compliant end stations is defined
by their audio control protocol. It is possible that the other audio control protocols uti-
lize a different OSI layer for communication, such as the OSI layer 3. For instance, the
AES-64 audio control protocol utilizes the Internet Protocol (IP), which is an OSI layer
3 protocol, for transporting its messages. Note that the AES-64 has been described as a
layer 3 audio control protocol because it encapsulates its messages within IP packets.

In the scenario above, both AVDECC and AES-64 end stations on the Ethernet AVB
network are capable of transmitting and receiving IEEE 1722 audio streams, it might be
desirable for audio stream connections to exist between the end stations, irrespective of
the audio control protocol that they implement. That is, for audio streams transmitted
by an AVDECC end station to be received by an AES-64 end station, and for streams

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 202

transmitted by an AES-64 end station to be received by an AVDECC end station. This
would require configuring participating end stations to transmit and/or receive the audio
stream(s). This problem has been described as the interoperability challenge in chapter
4.

In order to allow for common control and interoperability between networked audio de-
vices, in particular layer 2 and layer 3 audio control protocols, the command translation
approach of chapter 4 can be used. To demonstrate this (command translation) solu-
tion, a proxy that is capable of communication with layer 2 and layer 3 Ethernet AVB
end stations was created. Figure 8.1 depicts the conceptual layout of a proxy that can
facilitate interoperability such an Ethernet AVB network.

Figure 8.1: Conceptual view of layer 2 proxy approach

As shown in Figure 8.1, a ‘Proxy’ is situated between a layer 3 and a layer 2 network of
audio devices. The ‘Proxy’ receives a layer 3 message, translates it into the appropriate
layer 2 message, then transmits the layer 2 message to the layer 2 network. In the same
manner, it receives a layer 2 message, translates it into the appropriate layer 3 message,
then transmits it to the layer 3 network. This proxy approach for device interoperability
also allows for common control of the networked layer 2 and layer 3 devices.

In this chapter, a description of the design and implementation of an AVDECC (layer
2) proxy in provided. The implementation allows a device that implements a layer 3
protocol (AES-64) to control AVDECC end stations. It translates layer 3 IP messages to
layer 2 Ethernet messages. The proxy enables an AES-64-based network monitor and

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 203

device control application to establish and destroy audio stream connections between
AVDECC end stations, as well as between AES-64 and AVDECC end stations.

The motivations for using AES-64 in this investigation were:

• AES-64 was co-developed with the Rhodes University audio networking research
group, where the project is situated.

• AES-64 devices were readily available.

• The AES-64 protocol has been standardized by the Audio Engineering Society
(AES).

• The AES-64 protocol incorporates features that are common to most contempo-
rary IP control protocols. These include a connection management procedure,
device discovery mechanism, device enumeration, and device control.

• The AES-64 protocol incorporates advanced audio networking features such as
joins, modifiers and grouping [109].

• AES-64 defines a fixed 7-level hierarchy for parameter modeling, which provide
a consistent way to represent and address device controls [17].

• There is an AES-64-based network monitor and control application (UNOS Vi-
sion) which is provided freely by its developer - UMAN [156].

The following section describes the design of the AVDECC proxy for device interoper-
ability and common control of layer 2 and layer 3 networked audio devices.

8.2 AVDECC Proxy Design

The AVDECC proxy created in this investigation is capable of layer 3 (IP packets)
and layer 2 (Ethernet frames) communication. It can receive a command within an
IP message, and translate it to the corresponding Ethernet layer 2 message. It is also
capable of receiving a command encapsulated within a layer 2 frame, and translates it
into the appropriate layer 3 IP message. In particular the AVDECC proxy was created
for AES-64 (layer 3) to AVDECC (layer 2) communication.

The interaction between a layer 3 protocol (AES-64) and a layer 2 protocol (AVDECC),
via the proxy, is shown in Figure 8.2.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 204

Figure 8.2: AVDECC proxy for integrated network communication

From Figure 8.2, when the ‘AVDECC proxy’ receives an AES-64 message from the
‘AES-64 Network Controller’, it translates the message to a corresponding AVDECC
message, which it then sends to the appropriate ‘AVDECC device’. The AES-64 mes-
sage could be an instruction to establish a connection between an AVDECC talker and
an AVDECC listener. Any response from the ‘AVDECC device’ is received by the
‘AVDECC proxy’, translated to the appropriate AES-64 message, then it is sent to the
‘AES-64 Network Controller’.

It is also possible to use the AVDECC proxy to allow for common control of networked
AES-64 and AVDECC devices. This is shown in Figure 8.3.

Figure 8.3: Common control of networked layer 2 and layer 3 devices

In Figure 8.3 the arrows with solid lines represent layer 3 (IP-based) AES-64 messages,
and the arrows with broken lines represent layer 2 AVDECC messages.

In the figure, an ‘AES-64 network controller’ transmits an AES-64 message to set the
mute control of all devices on the network. Note that this is possible in AES-64 when
the mute parameter on each of the networked device has been ‘joined’. A join is when
parameters are grouped in a relationship, such that a change to the value of one param-
eter could result in a change to the others in the group [109].

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 205

The ‘AVDECC proxy’ receives AES-64 messages on behalf of the AVDECC end sta-
tions. It translates the mute (AES-64) message to the corresponding AVDECC com-
mand and sends it to the appropriate ‘AVDECC end station’. Thus enabling the net-
worked AES-64 and AVDECC devices to be controlled by a common ‘AES-64 network

controller’.

The AVDECC proxy is capable of:

• discovering AVDECC end stations on a network,

• exposing the discovered AVDECC end stations to AES-64 devices and AES-64
network controllers, and

• enabling connection management over AVDECC end stations.

The requirements of the proxy are depicted in the form of a use case diagram in Figure
8.4.

Figure 8.4: Use case diagram of AVDECC proxy

The proxy utilizes the ‘AES-64 stack’ for AES-64 messaging with the ‘AES-64 connec-

tion manager’. It utilizes the ‘AVDECC library’ for layer 2 (AVDECC) communication
with the ‘AVDECC end station’. The ‘AVDECC library’ refers to the software library
(‘libavdecc’), which is an implementation of the AVDECC protocol. The libavdecc

software library has been described in chapter 7 on page 175.

The proxy is capable of discovering all AVDECC end stations by utilizing the ADP
component of the ‘AVDECC library’ to discover AVDECC end stations on the network.
For each discovered AVDECC end station, the proxy creates an AES-64 device node,
which is discoverable and accessible from a remote AES-64 device such as the ‘AES-64

connection manager’ in Figure 8.4.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 206

Utilizing the proxy, the ‘AES-64 connection manager’ is able to establish and destroy
audio stream connections on the ‘AVDECC end station’. The connection manager is
also able to establish and destroy audio stream connections between an ‘AES-64 device’
and an ‘AVDECC end station’ via the proxy. The AVDECC proxy is able to fulfill the
connection management procedure by utilizing the ACMP component of the ‘AVDECC

library’.

The overall structural layout of the AVDECC proxy running on a PC is shown in Figure
8.5.

Figure 8.5: Structural layout of AVDECC proxy

As shown in Figure 8.5 the ‘AVDECC proxy application’ utilizes the ‘libavdecc’ soft-
ware library for layer 2 (AVDECC) messaging, and it utilizes the ‘AES-64 stack’ for
layer 3 (AES-64) messaging. AES-64 is an IP-based protocol, hence all AES-64 mes-
sages are via the host’s ‘IP stack’. The translation of commands from AES-64 to
AVDECC (and vice versa) are implemented within the ‘AVDECC proxy application’.
The following section provides details of the implementation of the AVDECC proxy.

8.3 AVDECC Proxy Implementation

The AVDECC proxy has been implemented as a Linux (kernel version 3.0.0-21) PC
application that enables the discovery and connection management of AVDECC end
stations via AES-64 messaging. Thus it is capable of both AES-64 and AVDECC com-
munication. For AES-64 messaging the AVDECC proxy utilizes the AES-64 stack (ver-

sion 1.0.6), and for AVDECC messaging it utilizes the libavdecc (version 0.1) software

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 207

library that has been described in section 7.2 on page 178. The AVDECC proxy is
depicted in the form of a class diagram in Figure 8.6.

Figure 8.6: Class diagram for AVDECC proxy

An object of the ‘AvdeccProxy’ class is the proxy’s start-up object which creates the
‘AvdeccNetwork’. The ‘AvdeccNetwork’ object initializes libavdecc’s transport con-
troller module and the AES-64 stack within its constructor. It also initializes the ADP
module, the ACMP module and ADP discovery state machine. Following this, it multi-
casts a discovery AVDECC message on the network. Each AVDECC end station on the
network responds to this discovery message by sending an AVDECC ADP available

message, which contains (discovery) information about the end station (entity). The
information returned in an ADP message includes a [19]:

• 32-bit vendor ID field

• 32-bit entity model ID field

• 16-bit field that specifies the number of source streams on the entity

• 16-bit field that specifies the number of listener streams on the entity

• 16-bit field that specifies the entity’s talker capabilities

• 16-bit field that specifies the entity’s listener capabilities

• 16-bit field that specifies the entity’s controller capabilities

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 208

The AVDECC proxy holds a list of discovered entities. Each entity is uniquely identified
by its entity GUID, which is a 64-bit value that is a combination of the vendor ID and
entity model ID fields [19].

On receiving an ADP available message, the proxy checks its list to determine whether
the received entity GUID corresponds with that of an end station that already exists in its
list of discovered entities. If this entity is not in its list, the proxy creates a new instance
of the ‘AvdeccEntity’ class, which is an abstraction of the actual device, then adds it to
the list.

For each discovered end station, the ACMP controller, listener and talker state machines
are created within the constructor of its corresponding ‘AvdeccEntity’ class. These state
machines enable the proxy to fulfill the roles of controller, listener and talker on behalf
of the particular end station. The ‘AvdeccEntity’ constructor also creates an object of
the ‘AES-64Device’ class. A one-to-one relationship exists between an ‘AvdeccEntity’

object and an ‘AES-64Device’ object.

The ‘AES-64Device’ class creates a number of AES-64 parameters which adequately
model the connection management features of the AVDECC end station in AES-64
terms. The parameters created are described in section 8.3.1. All AES-64 interactions
with an AVDECC end station are achieved by communicating with its corresponding
‘AES-64Device’ object. In order to configure a device as the source or destination of a
stream connection, typically a network controller has to discover the device. The device
discovery process as implemented by the AVDECC proxy is described in more detail in
section 8.3.2.

The following sections provide more details of how the (AVDECC) proxy models an
AVDECC end station in AES-64 terms, discovers an AVDECC end station, as well as
how it enables connection management.

8.3.1 AES-64 parameters for AVDECC end stations

When the AVDECC proxy discovers an AVDECC end station, it models the AVDECC
end station in terms of AES-64. To do this, the proxy creates an AES-64 node for each
AVDECC end station that it discovers. Within each AES-64 node are the parameters
associated with the particular device. These parameters are structured according to a
fixed 7-level hierarchy, that provide both a logical grouping and an addressing scheme
for the parameters. Refer to chapter 3 on page 53 for a detailed description of the AES-
64 protocol.

Figure 8.7 shows the design layout of AES-64 nodes within an AES-64 device.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 209

Figure 8.7: AVDECC proxy models AVDECC end stations in terms of AES-64

In Figure 8.7, the ‘AVDECC Proxy’ is on the same network as three AVDECC end
stations (‘AVDECC end station 1’, ‘AVDECC end station 2’, and ‘AVDECC end station

3’). When the proxy discovers an AVDECC end station, it creates an AES-64 node
above its ‘AES-64 Protocol Stack’. In the figure, it creates ‘AES-64 Node 1’, ‘AES-

64 Node 2’ and ‘AES-64 Node 3’ to correspond with the three AVDECC end stations
discovered.

Within each of the AES-64 nodes that models an AVDECC end station, the proxy cre-
ates a number of AES-64 parameters that enable AES-64 device discovery and con-
nection management of the corresponding AVDECC end station. These parameters are
described in section 8.3.1.1 and section 8.3.1.2.

8.3.1.1 Device discovery parameters for an AVDECC end station

To enable an AES-64 device (or controller) to remotely discover an AVDECC end sta-
tion, the AVDECC proxy creates a number of AES-64 device discovery parameters.

These parameters are:

• XFN_PTYPE_IP_ADDRESS - contains the IP address of the host device (PC
running the proxy application).

• XFN_PTYPE_SUBNET_MASK - holds the network subnet where the proxy re-
sides.

• XFN_PTYPE_DEVICE_NAME - indicates the name of the AVDECC end station
as a string. Currently, the proxy returns the entity GUID of the AVDECC entity
as its device name.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 210

• XFN_PTYPE_DEVICE_TYPE - holds one of the defined AES-64 device types.
Within the AES-64 protocol stack, an AES-64 device type has been defined for
an AVDECC end station.

• XFN_PTYPE_XFN_BOUND - indicates that the IP interface is capable of stream-
ing media.

• XFN_PTYPE_AVDECC_ENTITY_GUID - contains the 64-bits unique identifier
of the AVDECC end station.

These parameters are created within each of the AES-64 nodes of Figure 8.7, and they
are returned in response to an AES-64 device discovery message from a remote con-
troller. A description of how these parameters are used for device discovery is given in
section 8.3.2.

8.3.1.2 Connection management parameters for an AVDECC end station

The AVDECC proxy creates a number of input and output parameters that enable an
AES-64 controller remotely configure an AVDECC end station in order to establish or
destroy audio stream connections. The parameters created are described below.

• Input parameters

– XFN_PTYPE_MULTICORE_TYPE - indicates the type of multicore. The
AES-64 protocol stack defines a number of multicore types. The AES-64
term multicore describes the endpoint of a media stream. A multicore con-
tains a number of channels of media. The input multicores created by the
proxy are of type ‘Ethernet AVB Audio Multicore’.

– XFN_PTYPE_MULTICORE_NAME - contains the name of the multicore
as a string. For example “1722 Input Multicore 1”.

– XFN_PTYPE_STREAM_ID - holds the 64-bit stream ID of the input mul-
ticore. At start up, the value of an input multicore’s stream ID is zero, until
a stream connection has been established.

– XFN_PTYPE_LISTEN - this parameter is a listen parameter, which is used
to indicate interest in an Ethernet AVB stream by interacting with MSRP.
The connection management sequence is described in section 5.6 on page 140.

– XFN_PTYPE_AVDECC_SRC_ENTITY_GUID - this is the 64-bit entity
GUID of the talker whose source audio stream is sinked to the particular
input multicore.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 211

– XFN_PTYPE_AVDECC_SRC_MULTICORE_ID - this is the 16-bit source
multicore index on the talker whose audio stream is sinked to the particular
input multicore.

– XFN_PTYPE_AVDECC_CONTROLLER_CONNECT - this is a connect

parameter, which is used to establish or destroy an audio stream connection.
The libavdecc library will be used to perform the connect/disconnect.

• Output parameters

– XFN_PTYPE_MULTICORE_TYPE - indicates the type of multicore. The
proxy creates an output multicore of type ‘Ethernet AVB Audio Multicore’

for an AVDECC end station.

– XFN_PTYPE_MULTICORE_NAME - indicates the name of the multicore
as a string. For instance “1722 Output Multicore 1”.

– XFN_PTYPE_STREAM_ID - holds the 64-bit stream ID of the output mul-
ticore. The output multicore’s stream ID cannot be modified remotely.

– XFN_PTYPE_ADVERTISE - an advertise parameter, which enables adver-
tising of an Ethernet AVB stream this is done by interacting with MSRP.

With an AVDECC end station’s connection management features exposed as AES-64
(input and output) parameters, an AES-64 controller is able to configure the end station
as AVDECC talker or AVDECC listener for a particular connection. These parameters
also enable an AES-64 controller to determine the state of a particular stream connec-
tion. A description of how these parameters are used to make stream connections is
given in section 8.3.3.

8.3.2 Device discovery of AVDECC end stations

At start up, the AVDECC proxy discovers AVDECC end stations on the network. It does
this in accordance with the AVDECC discovery protocol by utilizing the libavdecc’s
ADP module, which has been described in section 7.2.2 on page 181.

Figure 8.8 shows how the AVDECC proxy utilizes libavdecc to discovery an AVDECC
end station on the network.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 212

Figure 8.8: AVDECC proxy utilizes libavdecc to discover AVDECC end stations

As shown in Figure 8.8 when the ‘AvdeccNetwork’ object is created, the following oc-
curs:

• The ‘AvdeccNetwork’ object calls the avdecc_adp_doDiscover() function of the
discovery state machine of libavdecc to discover AVDECC end stations on the
network. The discovery state machine multicasts an ADP ENTITY_DISCOVER

message on the network. An AVDECC end station on the network responds to this
message by transmitting an ADP ENTITY_AVAILABLE message on the network.

• When the ‘AvdeccNetwork’ object is notified (by libavdecc) that a new end sta-
tion has been discovered, it proceeds to create an ‘AvdeccEntity’ object, which
abstracts the discovered end station. In addition to the entity GUID (entityGuid),
number of sinks (numIns), and number of sources (numOuts) parameters that are
passed as arguments when creating the ‘AvdeccEntity’ object, the ‘AvdeccNet-

work’ object also passes an AES-64 node ID (AES-64NodeId) argument which is
assigned to the AES-64 node that corresponds to the ‘AvdeccEntity’ object.

• The ‘AvdeccEntity’ object models its features in AES-64 terms by creating the
‘AES-64Device’ object, and passes the AES-64 node ID (AES-64NodeId) that
uniquely identifies this (AES-64) node as an argument. Also passed to the ‘AES-

64Device’ object are the number of stream inputs (numIns) and the number of
stream outputs (numOuts) that the end station possesses. The created ‘AES-

64Device’ object is responsible for AES-64 messaging on behalf of the corre-
sponding AVDECC end station.

The ‘AES-64Device’ object abstracts the AVDECC end station by creating a number of
AES-64 parameters that are accessible to an AES-64 network controller. These param-
eters have been described in section 8.3.1 on page 208.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 213

The AVDECC proxy enables AVDECC end stations to be discovered by an AES-64 net-
work controller. Figure 8.9 shows how an AES-64 network controller (‘UNOS Vision’)
is able to discover the AVDECC end stations on the network.

Figure 8.9: AVDECC proxy enables AES-64 discovery of AVDECC end stations

When the ‘UNOS Vision’ actor in Figure 8.9 broadcast an AES-64 message to discover
AES-64 devices on the network, the ‘AES-64Device’ object responds by sending unicast
AES-64 messages with the values of the AES-64 device discovery parameters that have
been described in section 8.3.1.1.

Having exposed AVDECC end stations on the network to an AES-64 network con-
troller, the AVDECC proxy should be capable of enabling connection management of
the AVDECC end stations when requested by the network controller. Section 8.3.3
describes how this is achieved by the AVDECC proxy.

8.3.3 Connection management procedure for AVDECC end stations

The AVDECC proxy was created to enable connection management between AES-64
devices and AVDECC end stations on a network. It (AVDECC proxy) utilizes the three
connection management state machines of libavdecc to fulfill different tasks. These are:

• controller state machine - to enable connection management between two end
stations that implement the AVDECC protocol, as well as to enable the proxy to
obtain information about the state of a source or sink stream connection.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 214

• listener state machine - to enable the proxy to fulfill connection management
between an AES-64 device (as listener) and an AVDECC end station (as talker).

• talker state machine - to enable the proxy to fulfill connection management com-
mands between an AES-64 device (as talker) and an AVDECC end station (as
listener).

When an AES-64 network controller (such as UNOS Vision) is utilizing the proxy, the
procedure for connection management depends on whether the:

• source and destination devices are both AVDECC end stations,

• AVDECC end station is the source of the audio stream, and

• AVDECC end station is the destination of the audio stream.

Section 8.3.3.1, section 8.3.3.2 and section 8.3.3.3 provide details the procedures for
each of the above mentioned features. In these discussions, UNOS Vision which is an
AES-64 network configuration, monitoring and device control application is used as the
network controller [156].

8.3.3.1 Connection management procedure between two AVDECC end stations

The steps followed by UNOS Vision when establishing a stream connection between
two AVDECC end stations are:

• UNOS Vision sends an AES-64 message to the AVDECC talker’s AES-64 node
(AES-64Device), in order to obtain the entity GUID. That is, UNOS Vision sends
a message to ‘get’ the XFN_PTYPE_AVDECC_GUID parameter of the AVDECC
talker.

• UNOS Vision sends an AES-64 message to ‘set’ the source entity GUID parameter
of the AVDECC listener’s input multicore. That is, to modify the value of the
input multicore’s XFN_PTYPE_AVDECC_SRC_ENTITY_GUID parameter.

• UNOS Vision sends an AES-64 message to ‘set’ the source stream index parameter
of the AVDECC listener’s input multicore. That is, to modify the value of the
input multicore’s XFN_PTYPE_AVDECC_SRC_MULTICORE_ID parameter.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 215

• UNOS Vision sends an AES-64 message to the controller connect parameter of
the AVDECC listener’s input multicore, indicating that it should establish (‘en-

able’) a stream connection. The controller connect parameter is modeled as the
AES-64 XFN_PTYPE_AVDECC_CONTROLLER_CONNECT parameter of the
AVDECC listener’s input multicore.

The interaction between the AES-64 network controller (UNOS Vision) and the proxy
that enables the establishment an audio stream connection, is depicted in the form of a
sequence diagram in Figure 8.10.

Figure 8.10: Sequence diagram for establishing an audio stream connection between
AVDECC end stations

In Figure 8.10, an AES-64 message that is addressed to an AVDECC end station is
processed by its corresponding ‘AES-64Device’ object (within the AVDECC proxy).
In turn, the ‘AES-64Device’ object calls the appropriate method of its corresponding
‘AvdeccEntity’ object, which then calls a function of the ‘libavdecc’ actor to execute an
AVDECC command.

The interactions in Figure 8.10 are:

• The ‘AES-64DeviceTalker’ object of the AVDECC talker (identified by its AES-

64NodeId) receives a message from the ‘UNOS Vision’ actor, which is effectively
a getAvdeccEntityGuid() instruction. This causes it to obtain the talker’s entity

GUID by calling the getEntityGUID() method of its corresponding ‘AvdeccEnti-

tyTalker’ object. The ‘AvdeccEntityTalker’ object obtains the entity GUID of the
physical end station (that it abstracts) during the device discovery process that has
been described in section 8.3.2.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 216

• The ‘AES-64DeviceListener’ object of the AVDECC listener (identified by its
AES-64NodeId) receives a message from UNOS Vision, which is effectively a set-

InputAvdeccMulticoreSrcEntityGuid() instruction. The ‘AES-64DeviceListener’

object calls the setSinkStreamSrcGuid() method of its corresponding ‘AvdeccEn-

tityListener’ object, in response to the received instruction. The value argument is
the entity GUID that was obtained (by UNOS Vision) from the AVDECC talker.

• The ‘AES-64DeviceListener’ object of the AVDECC listener (identified by its
AES-64NodeId) receives a message from UNOS Vision, which is effectively a set-

InputAvdeccMulticoreSrcStreamIndex() instruction. The ‘AES-64DeviceListener’

object to call the setSinkStreamSrcIndex() method of its corresponding ‘Avdec-

cEntityListener’ object, in response to the received instruction. The index argu-
ment specifies a particular source on the AVDECC talker.

• The ‘AES-64DeviceListener’ object of the AVDECC listener (identified by its
AES-64NodeId) receives a message from UNOS Vision, which is effectively a
setInputAvdeccMulticoreControllerConnect() instruction. This causes the ‘AES-

64DeviceListener’ object to call the connectSinkStream() method of its corre-
sponding ‘AvdeccEntityListener’ object. The controllerConnect argument indi-
cates that the connection management procedure is according to the controller

connect mode described in chapter 7 section 7.4.2 on page 194. On receiving
the instruction to establish a stream according to the controller connect mode of
(AVDECC) connection management, the ‘AvdeccEntityListener’ object calls the
libavdecc’s function (avdecc_acmp_controller_doCommand()) with a params ar-
gument. The params argument includes the:

– message type (for controller connect this value is ‘1’),

– talker’s entity GUID,

– index of the source stream on the talker,

– the listener’s entity GUID, and

– the index of the sink stream on the listener.

Using the params argument, the libavdecc’s controller state machine associated with
the ‘AvdeccEntity’ object sends an ACMP CONNECT_RX_COMMAND message to the
physical AVDECC end station that it abstracts. This then starts the connection manage-
ment sequence that was described in chapter 7 section 7.4.2 on page 194.

In order to destroy an audio stream connection:

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 217

• ‘UNOS Vision’ sends an AES-64 message that calls the setInputAvdeccMulticore-

ControllerConnect() method of the ‘AES-64DeviceListener’ object with a ‘dis-

able’ argument. If the argument value is ‘1’, it implies an ‘enable’, while a value
of ‘0’ implies a ‘disable’.

• This results in the ‘AES-64DeviceListener’ object calling the connectSinkStream()

method of the ‘AvdeccEntityListener’ object with a controllerDisconnect argu-
ment.

• The ‘AvdeccEntityListener’ object then calls the libavdecc’s controller state ma-

chine function with a controller disconnect (of value‘0’) message type as part of
the params argument.

The connection management procedure depicted in Figure 8.10 enables UNOS Vision
to establish an audio stream connection between AVDECC listener and talker end sta-
tions (via the AVDECC proxy) according to the controller connect mode that has been
described in section 7.4.2 on page 194. However there are instances where a sound engi-
neer wishes to establish or destroy audio stream connections between an AVDECC end
station and an AES-64 device on an Ethernet AVB network. Section 8.3.3.2 describes
how an AES-64 network controller would establish (or destroy) audio stream connec-
tions between an AES-64/Ethernet AVB device (as AVB listener) and an AVDECC end
station (as AVB talker) via the AVDECC proxy. Section 8.3.3.3 provides a description
of how the AVDECC proxy is used by an AES-64 network controller to establish or
destroy audio stream connections between an AVDECC end station (as AVB listener)
and an AES-64/Ethernet AVB device (as AVB talker).

8.3.3.2 Connection management procedure between AES-64 and AVDECC end
stations

The AVDECC proxy is capable of enabling connection management between an AES-
64 device and an AVDECC end station. In this case, an AES-64 network controller
(such as UNOS Vision) issues AES-64 commands to the proxy in order to configure the
appropriate connection management parameters on the AVDECC end station.

The interaction that takes place when UNOS Vision is establishing an audio stream
connection (via the AVDECC proxy) between an AES-64 device (as AVB listener) and
an AVDECC end station (as AVB talker) is shown in the form of a sequence diagram in
Figure 8.11.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 218

Figure 8.11: Sequence diagram of connection management procedure with AVDECC
end station as AVB talker

The transactions in Figure 8.11 are:

• The ‘AES-64Device’ object within the AVDECC proxy (which is uniquely identi-
fied by the AES-64NodeId argument) receives an AES-64 message that triggers its
getOutputStreamID() callback. This method is passed an index argument, which
specifies the particular output stream.

• The ‘AES-64Device’ object calls the getSourceStreamID() method of its corre-
sponding ‘AvdeccEntity’ object, while specifying the source stream of interest
with the index argument.

• The ‘AvdeccEntity’ object calls the avdecc_acmp_command() function of libavdecc

in order to multicast an ACMP message (GET_TX_STATE) to the ‘AVB Talker’

actor.

• The avdecc_acmp_command() utilizes the libavdecc’s controller state machine to
multicast the GET_TX_STATE command to the ‘AVB Talker’ actor.

• Having obtained the stream ID of the AVDECC end station, ‘UNOS Vision’ sends
an AES-64 message which will trigger the setInputStreamID() callback within
the (AES-64) ‘AVB Listener’. The particular input multicore is specified with the
index argument.

When the AES-64 network controller (‘UNOS Vision’ actor in Figure 8.11) sends an
AES-64 message to the AVDECC proxy in order to ‘enable’ the advertise parameter of
the ‘AVB Talker’ actor, the following occurs:

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 219

• The setOutputAdvertise() method of the ‘AES-64Device’ object, which is uniquely
identified by the AES-64NodeId argument, is called with an index argument spec-
ifying the particular output stream. The ‘enable’ argument indicates that the com-
mand is meant to establish a connection. If the network controller is attempting
to destroy a stream connection, a ‘disable’ argument value is transmitted. A ‘1’
indicates ‘enable’ and a ‘0’ indicates ‘disable’.

• The ‘AES-64Device’ object calls the registerSourceStream() method of its cor-
responding ‘AvdeccEntity’ object, while specifying the source stream of interest
with the index argument. The call from the ‘AES-64Device’ to the ‘AvdeccEntity’

is a deregisterSourceStream() when a connection is being destroyed.

• The ‘AvdeccEntity’ object calls the avdecc_acmp_command() function of libavdecc

in order to multicast an ACMP (CONNECT_TX_COMMAND) message, which is
‘picked up’ by the ‘AVB Talker’ actor. When destroying a stream connection, this
message is replaced with an ACMP DISCONNECT_TX_COMMAND message.

• The avdecc_acmp_command() utilizes the libavdecc’s listener state machine to
multicast the CONNECT_TX_COMMAND command to the ‘AVB Talker’ actor.
The listener state machine multicasts a DISCONNECT_TX_COMMAND message
when destroying a stream connection. This will cause the ‘AVB Talker’ to adver-
tise its stream via MSRP.

• ‘UNOS Vision’ sends an AES-64 message which will trigger the setInputListen()

callback within the (AES-64) ‘AVB Listener’. The input multicore is specified
with the index argument. This callback utilizes MSRP to indicate to the network
that the ‘AVB Listener’ is interested in the particular stream.

When an AVDECC end station receives an ACMP message with the message type field
of CONNECT_TX_COMMAND or DISCONNECT_TX_COMMAND, it proceeds to ei-
ther request resources for transmitting its stream from the Ethernet AVB network, or to
release previously acquired resources from the Ethernet AVB network, respectively.

The AVDECC proxy can also be used for connection management with the AVDECC
end station as AVB listener, and an AES-64 device as AVB talker. This scenario is
described in the following section.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 220

8.3.3.3 Connection management procedure with AVDECC end station as AVB
listener

In order to set up an audio stream connection between an AVDECC end station (as AVB
listener) and an AES-64 device (as AVB talker), a number of steps are followed. These
steps are shown in the form of a sequence diagram in Figure 8.12.

Figure 8.12: Sequence diagram of connection management procedure with AVDECC
end station as AVB listener

In Figure 8.12, ‘UNOS Vision’ sends an AES-64 message that is effectively a getOutput-

StreamID() instruction to the (AES-64) ‘AVB Talker’. It indicates the particular index of
Ethernet AVB stream source (output).

After obtaining the source stream ID, ‘UNOS Vision’ sends a setInputStreamID() in-
struction to the ‘AES-64Device’ object (within the AVDECC proxy), which causes the
setSinkStreamID() function of the ‘AvdeccEntity’ object to action.

When the ‘AES-64Device’ object receives an AES-64 message to ‘set’ its input stream
ID, it stores the stream ID as an attribute of the ‘AvdeccEntity’ object, and it indicates
the particular index of the Ethernet AVB stream sink (input).

After obtaining and setting the stream ID on the ‘AVB Talker’ and ‘AVB Listener’ end
stations (respectively), ‘UNOS Vision’ sends an AES-64 message to the ‘AVB Talker’.
This message causes the setOutputAdvertise() callback within the ‘AVB Talker’ to be
triggered, which causes the ‘AVB Talker’ to advertise its stream by utilizing MSRP. This
is followed by ‘UNOS Vision’ issuing an AES-64 message to enable the listen parameter
within the ‘AES-64Device’ object.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 221

When the AVDECC proxy receives an AES-64 message to ‘enable’ the listen parameter
of the AVDECC end station, the following occurs:

• The setInputListen() method of the ‘AES-64Device’ object, which is uniquely
identified by the AES-64NodeId argument, is called with an index argument spec-
ifying the input. The ‘enable’ argument indicates that the command is meant to
establish a connection. If the controller wishes to destroy a stream connection it
sends a ‘disable’ argument. A ‘1’ indicates ‘enable’ and a ‘0’ indicates ‘disable’.

• The ‘AES-64Device’ object calls the registerSinkAttach() method of its corre-
sponding ‘AvdeccEntity’ object. It specifies the sink stream of interest with the
index argument. This call from the ‘AES-64Device’ to the ‘AvdeccEntity’ is a
deregisterSinkAttach() when a connection is being destroyed.

• The ‘AvdeccEntity’ object calls the avdecc_acmp_command() function that is
implemented by the ‘libavdecc’ actor in order to multicast an ACMP (CON-

NECT_RX_COMMAND) message to the ‘AVB Listener’ actor. It utilizes its con-

troller state machine of the libavdecc library to do this. The message type of the
ACMP message is DISCONNECT_RX_COMMAND, when destroying a stream
connection. The ‘AvdeccEntity’ object specifies its entity GUID as the talker

GUID in the ACMP message that is sent to the end station.

• In response to a received CONNECT_RX_COMMAND (when establishing a stream
connection) ACMP message, the AVDECC end station (which is represented
by the ‘AVB Listener’ actor) multicasts a CONNECT_TX_COMMAND message.
This response (CONNECT_TX_COMMAND message) is received by the ‘Avdec-

cEntity’ object’s talker state machine.

• On receiving a CONNECT_TX_COMMAND ACMP message from the ‘AVB Lis-

tener’ actor, the ‘AvdeccEntity’ object utilizes its talker state machine to multi-
cast an ACMP CONNECT_TX_RESPONSE message to the ‘AVB Listener’ actor.
It does this by utilizing the avdecc_acmp_command() function of the libavdecc

library. The multicast message specifies the stream ID of the source stream that
was previously ‘set’ for the sink.

• The ‘AVB Listener’ actor multicasts an ACMP CONNECT_RX_RESPONSE mes-
sage, which is received by the ‘AvdeccEntity’ object’s controller state machine.

When the AVDECC end station (‘AVB Listener’ actor in Figure 8.12) receives an ACMP
message of type CONNECT_TX_RESPONSE it proceeds with requesting attachment to

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 222

a stream on the Ethernet AVB network by utilizing MSRP. If the received message is an
ACMP message of type DISCONNECT_TX_RESPONSE, the ‘AVB Listener’ detaches
itself from the network stream via MSRP.

Following the implementation of the AVDECC proxy, a number of tests were conducted.
These are described in section 8.4.

8.4 Testing and Results

From the use case diagram of Figure 8.4, the proxy is required to:

• enable the discovering of AVDECC end stations, and

• enable connection management of AVDECC end stations.

To determine whether the proxy meets these requirements, two scenarios were tested.
These scenarios are:

1. Integrating layer 2 (AVDECC) devices into a layer 3 (AES-64) network. This will
demonstrate layer 3 control of layer 2 devices by utilizing the AVDECC proxy.
This is described in section 8.4.1.

2. Common control of layer 2 (AVDECC) and layer 3 (AES-64) devices. This will
demonstrate connection management of layer 2 and layer 3 devices by a layer
3 network controller with the aid of the AVDECC proxy. This is described in
section 8.4.2 on page 225.

These test were conducted to determine the effectiveness of the AVDECC proxy. In
the following subsections, the proxy is located on a separate PC workstation from the
control application. However, it is possible to have the proxy implemented within the
same PC as the control application. This approach of having a common host PC for an
AES-64 controller application and a command translator (proxy) has been described in
subsection 6.7 on page 172.

8.4.1 Integrating layer 2 devices into a layer 3 network

A test bed was set up to investigate whether the AVDECC proxy is capable of enabling
connection management between (layer 2) AVDECC end stations, when instructed by a
(layer 3) AES-64 network controller. Figure 8.13 depicts the test bed topology.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 223

Figure 8.13: Test bed topology for integrating layer 2 devices

The test bed consists of:

• an ‘AES-64 connection manager’,

• two AVDECC end stations (‘AVDECC end station 1’ and ‘AVDECC end station

2’),

• an ‘AVDECC proxy’ , and

• an ‘AVB switch’.

The ‘AES-64 connection manager’ is an AES-64 network configuration, monitoring
and device control Windows PC application called UNOS Vision. The AVDECC end
stations are XMOS/Attero Tech Low-cost AVB Audio Endpoint modules, which are run-
ning the XMOS AVDECC end station software [157]. The ‘AVDECC proxy’ is a Linux

(kernel version 3.0.0-22-generic) PC application running on an Ubuntu 12.04 operating
system. The ‘AVB switch’ is a LabX Titanium 411 AVB Ethernet Bridge which imple-
ments the Ethernet AVB protocol [158].

Section 8.4.1.1 describes how the proxy was used to enable device discovery of the
XMOS/Attero Tech boards (layer 2 devices). Section 8.4.1.2 describes how the proxy
was used to enable connection management between the networked (XMOS/Attero
Tech) devices.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 224

8.4.1.1 Discovering layer 2 devices

With the AVDECC proxy on the network, UNOS Vision is able to discover the XMOS/At-
tero Tech devices. Figure 8.14 shows a screenshot of UNOS’ device discovery view.

UNOS Vision discovers the AVDECC end stations on the network in the same manner it
would discover any AES-64 device on the network. It does so by broadcasting an AES-
64 device discovery message. The proxy responds to this message by sending its (the
proxy’s) IP address and a different AES-64 node ID for each device. Hence in Figure
8.14 both AVDECC end stations discovered by UNOS Vision have the same IP address
‘192.168.0.7’.

In the current implementation, UNOS Vision displays an end station’s entity GUID as
its display name.

Figure 8.14: UNOS Vision discovers AVDECC end stations

8.4.1.2 Connection management between layer 2 devices

The screen shot in Figure 8.15 shows UNOS Vision when a user establishes a connec-
tion between the two AVDECC end stations (in Figure 8.13). This causes the source
AVDECC end station to assume the role of AVB talker and the destination AVDECC
end station to assume the role of AVB listener.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 225

Figure 8.15: UNOS establishes a stream connection between AVDECC end stations

When the cross point in the (multicores) matrix on the right of the screenshot (shown in
Figure 8.15) is clicked, UNOS Vision proceeds with its connection management proce-
dure which has been described in section 8.3.3.1 on page 214.

8.4.2 Common control of layer 2 and layer 3 devices

To investigate the control of layer 2 and layer 3 devices an Ethernet AVB network was
setup to include AES-64 and AVDECC devices. The test bed topology is shown in
Figure 8.16.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 226

Figure 8.16: Test bed topology for common control of networked layer 2 and layer 3
devices

The test bed consists of an:

• ‘AES-64 connection manager’ - an AES-64 network configuration, monitoring
and device control software (UNOS Vision) running on a Windows PC,

• ‘AVB switch’ - a LabX Titanium 411 Ethernet AVB switch which implements the
Ethernet AVB protocol [?],

• ‘AVDECC proxy’ - the AVDECC proxy that has been described in this chapter,
running on a PC,

• ‘AVDECC end station’ - the AVDECC end station that was described in chapter 7
on page 175, and

• ‘AES-64 device’ - an AES-64 Ethernet AVB endpoint running on a PC [1].

The test was conducted to determine whether the AVDECC proxy enables:

• UNOS Vision to discovery the AVDECC end station on the network

• UNOS Vision to establish and destroy stream connections between the networked
devices

Section 8.4.2.1 describes how the AVDECC proxy is used to enable device discovery,
and section 8.4.2.2 describes how it is used to enable connection management between
AES-64 and AVDECC devices.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 227

8.4.2.1 Discovering layer 2 and layer 3 devices

UNOS Vision is able to discover the networked (AES-64 and AVDECC) devices. Figure
8.17 is a screenshot of the UNOS Vision’s device view.

Figure 8.17: Layer 2 and layer 3 device discovery

UNOS Vision discovers networked AES-64 devices by broadcasting an AES-64 discov-
ery message. Each AES-64 device on the network responds to the AES-64 discovery
broadcast message. The AVDECC proxy responds by returning its (the proxy’s) IP ad-
dress as the destination address for the AVDECC end station on the network of Figure
8.16. Thus any communication with the AVDECC end station (from UNOS Vision)
is addressed to the AVDECC proxy. For multiple AVDECC end stations on the net-
work, the proxy responds to UNOS by returning the same IP address, but different
AES-64 node IDs for each of the end stations. The proxy returns the entity GUID of the
AVDECC end station as the end station’s name.

8.4.2.2 Connection management between layer 2 and layer 3 devices

In order to establish a stream connection between AVB devices, UNOS Vision adheres
to the following steps:

• UNOS Vision sends an AES-64 command to ‘get’ the stream ID of a particular
source stream on the AVB talker

• UNOS Vision sends an AES-64 command to ‘set’ the stream ID of a particular
sink stream on the AVB listener

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 228

• UNOS Vision sends an AES-64 command to ‘enable’ the advertise parameter on
a particular source stream on the AVB talker

• UNOS Vision sends an AES-64 command to ‘enable’ the listen parameter on a
particular sink stream on the AVB listener

The above steps are depicted in the form of a sequence diagram in Figure 8.18.

Figure 8.18: Sequence diagram of UNOS Vision’s connection management procedure
for AVB devices

In order to destroy a stream connection, UNOS Vision sends an AES-64 command to:

• ‘disable’ the advertise parameter on a particular source stream on the AVB talker

• ‘disable’ the listen parameter on a particular sink stream on the AVB listener

To test connection management on the testbed (network) shown in Figure 8.16, there
are two possible scenarios. The first scenario is when the AVDECC end station assumes
the role of AVB talker, that is the source of the Ethernet AVB audio stream. The second
scenario is when the AVDECC end station assumes the role of AVB listener. These two
scenarios are described below.

AVDECC end station as AVB talker

Connection management was investigated with the AVDECC end station as the source
of the Ethernet AVB audio stream. Figure 8.19 shows UNOS Vision’s connection man-
agement view, when an audio stream connection is established between the ‘AVDECC

end station’ and the ‘AES-64 device’ depicted in Figure 8.16.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 229

Figure 8.19: Connection management with AVDECC end station as AVB talker

In UNOS Vision’s connection management view, the matrix at the top left is the devices

matrix, and it is used to select the source and destination devices between which to
make a connection. The bottom left matrix is the source internal routing matrix, and
it displays the inputs and outputs on the source device. The bottom right matrix is the
destination internal routing matrix, and it displays inputs and outputs on the destination
device. The top right matrix is called the multicore matrix, and it displays the input and
output Ethernet AVB streams. In the multicores matrix, the source device’s outputs are
listed on the left and the destination device’s inputs are listed at the top.

When the AVDECC end station is selected as the source and the AES-64 device as the
destination of a stream connection, the source and destination internal routing matrices
are updated as shown in Figure 8.19. The AVDECC proxy does not enable control of
internal signal routing within the AVDECC end station, hence there are no inputs and
outputs in the source internal routing matrix of Figure 8.19. This is because in this
investigation connection management between devices that implement different control
protocols is considered as the criteria for interoperability. This means that if it is possi-
ble to set up audio stream connections between devices that implement different audio
control protocols, then the interoperability challenge (described in chapter 4) does not
exist between the devices. Also the AVDECC end stations are capable of transmitting

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 230

and receiving audio steams without necessarily requiring to perform any internal rout-
ings. Figure 7.5 on page 193 shows the layout of the AVDECC end station.

The source Ethernet AVB multicore of the AVDECC end station is shown in the mul-
ticores matrix as ‘Source Stream 1’, and the sink multicores of the AES-64 device are
shown as ‘1722 Input Multicore 1’ to ‘1722 Input Multicore 6’. In Figure 8.19 the cross
point between the AVDECC end station’s ‘Source Stream 1’ and the AES-64 device’s
‘1722 Input Multicore 1’ has been clicked (‘enabled’) in order to establish an audio
stream connection. Both ‘Source Stream 1’ and ‘1722 Input Multicore 1’ are 2-channel
audio streams. The connection management procedure followed when the cross point is
clicked has been described in section 8.18 on page 228.

In Figure 8.19, the destination internal routing matrix shows that the stereo ‘1722 Input

Multicore 1’ audio stream has been routed to the ‘Analogue Output 1’ stereo output on
the AES-64 device. Thus the sound can be heard on a stereo speaker connected to the
analogue output of the AES-64 device.

AVDECC end station as AVB listener

The AVDECC proxy was tested to investigate whether it is capable of enabling con-
nection management between an AES-64 device (as AVB talker) and an AVDECC end
station (as listener). Figure 8.20 is a screenshot of UNOS Vision’s connection manage-
ment view when a stream connection is established between an AES-64 device and an
AVDECC end station. The network topology used in this test is shown in Figure 8.16.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 231

Figure 8.20: Connection management with AVDECC end station as AVB listener

In Figure 8.20, the AES-64 device has been selected as the source device, and the
AVDECC end station has been selected as the destination of a stream connection. The
source internal routing matrix shows the AES-64 device’s inputs and outputs. As shown
in the figure, the ‘Analogue Input 1’ has been routed to the ‘1722 Output Multicore 1’ of
the AES-64 device. Both ‘Analogue Input 1’ and ‘1722 Output Multicore1’ are stereo
(2-channel) audio streams. The destination internal routing matrix for the AVDECC
end station is empty since this investigation considers connection management between
networked audio devices as the criteria for interoperability. Also the AVDECC end
stations are capable of transmitting and receiving audio steams without necessarily re-
quiring to perform any internal routings. Figure 7.5 on page 193 shows the layout of the
AVDECC end station.

In Figure 8.20, the source Ethernet AVB multicores of the AES-64 device are shown
as ‘1722 Output Multicore 1’ to ‘1722 Output Multicore 6’ and the sink Ethernet AVB
multicore of the AVDECC end station is shown in the multicores matrix as ‘Sink Stream

1’. The cross point between the AES-64 device’s ‘1722 Output Multicore 1’ and the
AVDECC end station’s ‘Sink Stream 1’ has been clicked (‘enabled’) in order to establish
an audio stream connection. The connection management procedure followed when the
cross point is clicked has been described in section 8.18 on page 228.

CHAPTER 8. LAYER 2/LAYER 3 PROXY IMPLEMENTATION 232

8.5 Summary

The command translation approach entails that a control message is translated from one
audio control protocol to another. In this chapter the approach was investigated between
two audio control protocols on an Ethernet AVB network.

The investigation involved the design and implementation of a proxy that is capable of
receiving a layer 3 (AES-64) message and translating it to the corresponding layer 2
(AVDECC) message, and vice versa. In particular the messages were connection man-
agement instructions, such that an AES-64 connection manager was able to establish
and destroy audio stream connections between the networked Ethernet AVB devices.

A number of tests were conducted to determine the effectiveness of the proxy. The
results obtained revealed that by utilizing the layer 2/layer 3 proxy, an AES-64 connec-
tion manager is able to discover AVDECC end stations, as well as establish and destroy
audio stream connections between:

• AVDECC end stations on an Ethernet AVB network

• AVDECC and AES-64 end stations on an Ethernet AVB network

The command translation functionality that is implemented by this proxy can be in-
corporated into the same host PC as the network control application. This has been
described in section 6.7 on page 172, and it will enable the command translator utilize
the same processing power of the PC that runs the control application.

Chapter 9

Quantitative Analysis

Chapter 6 investigated how a proxy that is capable of protocol command translation,
can be used to effectively enable interoperability between AES-64 and OSC devices
on an Ethernet AVB network. The networked devices utilized the same layer 3 (UD-
P/IP) transport protocol for messaging. Ethernet AVB enabled the transmission of audio
streams between the devices.

In chapter 8 the command translation solution to interoperability of networked devices
was investigated for devices that implement different transport protocols. A proxy was
able to perform command translation between AES-64 and IEEE 1722.1 (AVDECC)
messages. IEEE 1722.1 utilizes layer 2 transport for messaging, which is different from
the layer 3 transport that is used by AES-64.

In chapter 6 and chapter 8, the effectiveness of the proxy was demonstrated by a network
controller that was used to establish and destroy audio stream connections between the
networked end stations.

This chapter investigates the efficiency of the command translators (proxies) that were
developed as part of this research project, in order to determine whether the command
translation approach is a viable solution for commercial installation. The connection
management procedures for establishing and destroying audio stream connections with
the aid of a proxy, were timed in order to determine the overhead added by the proxy.

9.1 Introduction

When an audio stream is transmitted by a source device (on a network) and received by
a destination device, interoperability is said to exist between both devices. Establishing
a stream connection between the source and destination devices requires that:

233

CHAPTER 9. QUANTITATIVE ANALYSIS 234

• the source device is configured to transmit a particular stream

• the destination device is configured to receive the specified stream.

The procedure for configuring the source and destination devices, is known as connec-
tion management. Connection management procedures differ from one audio control
protocol to another. It has been demonstrated that interoperability between devices that
implement different audio control protocols can be achieved with the aid of a proxy. The
proxy translates protocol commands from one audio control protocol to another. Refer
to chapter 6 and chapter 8 for implementation details of the proxies that were created in
this research project.

In order to investigate the efficiency of the proxy, it is necessary to determine the amount
of time overhead that is added by the proxy when it is used to enable connection man-
agement. In order to consider the proxy as a viable solution for commercial deployment,
it is required that the proxy does not add noticeable delays due to its command transla-
tion operations.

When a human observer utilizes a graphical user interface (GUI) audio network control
application for connection management, two types of stimuli can be perceived. These
are:

• visual stimuli - refers to external changes that are perceived with human eye.

• auditory stimuli - refers to external changes that are perceived by the ears.

Typically the user of the connection management control application expects feedback
as quickly as possible. The feedback could be a visual feedback from the GUI screen,
or an auditory feedback from a speaker that is attached to a receiving device.

The above scenario is shown in Figure 9.1.

CHAPTER 9. QUANTITATIVE ANALYSIS 235

Figure 9.1: Sound engineer’s visual and auditory perception

In Figure 9.1, the sound engineer is depicted as a ‘User’ that utilizes the ‘Control Appli-

cation running on a Digital Audio Workstation’ to establish an audio stream connection
between a ‘Sound Synthesizer’ and a ‘Mixing console’. The control application, mix-
ing console and sound synthesizer are networked. When an audio stream connection is
established between the synthesizer (as source device) and the mixing console as desti-
nation device, the sound engineer is able to observe the visual stimuli from the screen
of the digital audio workstation and the auditory stimuli from the speaker.

Usually software developers endeavor to keep the interval between the ‘button click
event’ (by ‘User’ in Figure 9.1) and the perceived response stimuli as minimal as possi-
ble. The following subsections provide some information about human perception times
for visual and audio stimuli.

9.1.1 Visual stimuli perception time

The Modeling Human Processor (MHP) provides a model for analyzing how humans
respond to external visual stimuli [159]. MHP categorizes human cognitive actions into
three processors. The MHP processors are:

• perceptual processor - relates to how stimuli are perceived

• cognitive processor - relates to how the perceived stimuli are interpreted based on
long-term information in memory

• motor processor - relates to how humans respond to stimuli

CHAPTER 9. QUANTITATIVE ANALYSIS 236

When designing a graphical audio network controller, it is important to consider the
perceptual processor cycle time. Perceptual processor cycle time refers to the time
within which multiple events can be distinguished by an observer. This is illustrated in
Figure 9.2.

Figure 9.2: User managing network

Figure 9.2 shows a ‘User’ making an audio stream connection between devices within
an ‘Audio Network’. A workstation (PC) which runs the network connection manager
software is used by the ‘User’ to discover the devices, as well as to establish stream
connections between the devices. The user observes the effects of connection patches
made via the PC ‘Screen’ shown in the figure.

In Figure 9.2, an action by the ‘User’ causes ‘n’ events (‘event 1’, ‘event 2’ to ‘event

n’) to be sent from a PC (which is represented by the ‘Screen’). These events are shown
to have corresponding responses (‘response 1’, ‘response 2’, ‘response n’), which are
observed by the ‘User’. The ‘Screen’ displays the effect of an action when a response
has been received.

Assuming that the time at which ‘response 1’ is observed on the screen is noted as
T1, and the time at which ‘response n’ is observed is noted as Tn, the time difference
between the two actions is Tn - T1.

The graphical display of network control software will typically show the connection
management procedure (for establishing or destroying a stream connection) as a single
action. For instance, although the procedure for establishing an audio stream connection
(such as those described in section 8.3.3) involves a number of transaction steps, the
graphical display of a network controller and monitoring software might present a single
button to initiate the transaction steps. An application developer will typically endeavor
to keep the time taken between the transaction steps to a minimum so that they appear
as a single action to an observer.

The MHP model indicates that the perceptual processor cycle time is 100 milliseconds.
This means that when a series of visual events occur within a 100 millisecond interval,

CHAPTER 9. QUANTITATIVE ANALYSIS 237

they appear as a single visual event to an observer [159]. With regard to the graphical
display example, the transaction steps that are involved in establishing an audio stream
connection should take place within a 100 millisecond interval if there are visual re-
sponses and if these responses are to be observed as a single event. This means that the
‘time taken’ (Tn - T1) should not exceed 100 milliseconds.

9.1.2 Auditory stimuli perception time

In a paper titled “Problems and Prospects for Intimate Musical Control of Comput-

ers”, Wessel and Wright suggest that the allowed time for auditory feedback should
not exceed 10 milliseconds [160]. The paper describes the use of computers as musical
instruments. The time limit for auditory feedback from a computer that is referred to by
Wessel and Wright is illustrated in Figure 9.3.

Figure 9.3: Auditory feedback from computer as a musical instrument

In Figure 9.3, the ‘Music performer’ gestures the computer in order to output a sound
through the ‘Speaker’, which is connected to the computer. The computer processes
the gesture it receives via a gestural interface, which could be a digitizing tablet, then it
performs a ‘generative algorithm’ that results in the intended sound(s) being produced
through the speaker. Wessel and Wright indicates that the (time) interval between the
time when the performer’s gesture is captured by the computer and the time when sound
is heard by the performer, should not exceed 10 milliseconds.

In addition to this, Moore states that when two auditory stimuli are perceived within
30 milliseconds, they are perceived by humans to occur at the same time [161]. Thus
humans detect multiple auditory stimuli that occur within 30 milliseconds as occurring
at the same time.

CHAPTER 9. QUANTITATIVE ANALYSIS 238

9.1.3 Perception time criterion for quantitative analysis

From the discussions on visual and auditory stimuli perception by humans, which are
described in section 9.1.1 and section 9.1.2 (respectively), it can be deduced that the
minimum time within which multiple auditory stimuli are distinguishable (30 millisec-
onds) is much less than for visual stimuli (100 milliseconds). In the case of auditory
stimuli, the time for a system to respond to a controlling action should not exceed 10
milliseconds.

In the following investigations, 10 milliseconds will be used as the criterion for accept-
able network latency for the completion of a connection management request. This
value is the recommended response time for auditory response as prescribed by Wessel
and Wright. Since humans are more sensitive to the timing of auditory stimuli than
visual stimuli, this value (10 milliseconds) falls within an acceptable response time for
visual stimuli.

9.2 Quantitative analysis of Layer 3 Proxy

This section describes the investigation that was conducted to determine the perfor-
mance of the proxy that was described in chapter 6. The two scenarios used in this
analysis were:

• quantitative analysis of Ethernet AVB network containing OSC end stations

• quantitative analysis of Ethernet AVB network containing OSC and AES-64 end
stations.

In both scenarios:

• UNOS Vision was used for device configuration and control. UNOS Vision ran
on a PC (workstation) for which the specification was:

Processor Intel Core (i7) @ 2.93GHz

Operating System Windows 7 Professional (64-bits)

Ethernet Speed 1000Mbps

• The OSC and AES-64 end stations were implemented as PC audio streaming
devices. An identical PC specification was used for both end stations. The speci-
fication was:

CHAPTER 9. QUANTITATIVE ANALYSIS 239

Processor Intel Core Quad (Q9400) @ 2.66GHz

Operating System Linux Ubuntu 10.10 (32-bits)

Ethernet Speed 1000Mbps

• The proxy was deployed on the same PC for each of the investigations. The
specification of the PC used was:

Processor Intel Quad-Core (i7) @ 2.70GHz

Operating System Linux Ubuntu 12.04 (32-bits)

Ethernet Speed 1000Mbps

Figure 9.4 shows the test bed network topology used.

Figure 9.4: Test network topology

The OSC and AES-64 end stations used in this investigation were deployed on the PC
workstations shown in Figure 9.4. The test scenarios are described in the following
sections.

9.2.1 Scenario One: Connection between OSC end stations

In this scenario the latency added by an OSC proxy (described in chapter 6) was mea-
sured for thirty-five iterations of establishing and destroying audio stream connections
between two OSC servers. Both OSC servers were Ethernet AVB end stations, and
UNOS Vision was used for connection management. The network layout is shown in
Figure 9.5a.

CHAPTER 9. QUANTITATIVE ANALYSIS 240

(a) Ethernet AVB network of OSC end stations (b) Ethernet AVB network of AES-64 end
stations

Figure 9.5: Timing connection management of layer 3 audio control protocols

Figure 9.5a shows the following steps for establishing a stream connection:

1. UNOS Vision sends an AES-64 command to obtain the stream ID of the OS-
C/AVB talker.

2. The OSC proxy receives the AES-64 command on behalf of the OSC talker, then
it translates the received AES-64 command to a corresponding OSC command
and it sends the OSC command to the OSC/AVB talker.

3. The OSC/AVB talker sends an OSC response to the proxy.

4. The proxy translates the OSC response to the appropriate AES-64 response, then
it sends the AES-64 response to UNOS Vision.

5. UNOS Vision sends an AES-64 command to the OSC proxy, to set the stream ID
of the OSC/AVB listener input.

6. The OSC proxy receives the AES-64 command on behalf of the OSC listener, then
it translates the received AES-64 command to a corresponding OSC command
and it sends the OSC command to the OSC/AVB listener.

7. The OSC/AVB listener sends an OSC response to the proxy.

8. The proxy translates the OSC response to the appropriate AES-64 response, then
it sends the AES-64 response to UNOS Vision.

Wireshark, a network protocol analyzer, was used to note the startTime as the time when
the first connection management command was transmitted by UNOS Vision, and the
endTime as the time when the last connection management response was received by

CHAPTER 9. QUANTITATIVE ANALYSIS 241

UNOS Vision [162]. The latency is calculated as the difference between the startTime

and endTime.

Wireshark utilizes libpcap software library (or WinPcap on Windows platform) to cap-
ture packets [163]. libpcap utilizes the operating system’s time to time stamp each
packet that it transfers to the wireshark application [164]. Thus, both operating sys-
tem and libpcap library contribute to the time measurements. libpcap is able to ensure
microseconds time resolution, which is sufficient for this investigation [164].

The time stamps associated with the wireshark packet analyzer are obtained from the
operating system via lipcap

The results obtained from the setup shown in Figure 9.5a are compared with the results
obtained from the network setup of Figure 9.5b. In Figure 9.5b, UNOS Vision is used
to configure two AES-64 end stations so that an audio stream transmitted by the talker
is received by the listener.

The results of the above timings for establishing (CONNECT) and destroying (DIS-

CONNECT) audio stream connections are shown in Table 9.1. The values in the table
are in milliseconds, and are the average values of thirty-five iterations.

CONNECT (ms) DISCONNECT (ms)

Network of OSC end stations 3.579 1.468

Network of AES-64 end stations 1.385 0.752

Difference 2.194 0.716

Table 9.1: Timing results of connection management between OSC end stations

The results shown in Table 9.1 reveal that:

• it takes an average of 3.579 milliseconds to establish an audio stream connection
between the two OSC servers (Ethernet AVB end stations) when the proxy is used

• it takes an average of 1.468 milliseconds to destroy an audio stream connection
between the two OSC servers when the proxy is used

• it takes an average of 1.385 milliseconds to establish an audio stream connection
between two AES-64 end stations

• it takes an average of 0.752 milliseconds to destroy an audio stream connection
between two AES-64 end stations

• 2.194 milliseconds is the time difference between establishing an audio stream on
a network of OSC end stations, and a network of AES-64 end stations

CHAPTER 9. QUANTITATIVE ANALYSIS 242

• the time difference between destroying a stream connection on a network of OSC
end stations and a network of AES-64 end stations is 0.716 millisecond.

As Table 9.1 reveals, the time taken for a connection to be established when the proxy
is used for the connection management procedure between two OSC servers is below
the 10 milliseconds perception criterion described in section 9.1.3. Hence the proxy
provides a time efficient solution for the connection management of OSC end stations
by an AES-64 controller.

9.2.2 Scenario Two: Connection between OSC and AES-64 end sta-
tions

In this scenario UNOS Vision was used to establish and destroy audio stream connec-
tions between OSC and AES-64 end stations on an Ethernet AVB network. A timing
investigation was conducted with:

• the OSC end station as AVB listener and the AES-64 end station as AVB talker.
This setup is shown in Figure 9.6a.

• the OSC end station as AVB talker and the AES-64 end station as AVB listener.
This setup is shown in Figure 9.6b.

In both cases, the startTime was noted as the time when the first connection management
command was transmitted by UNOS Vision, and the endTime was noted as the time
when the last connection management response was received by UNOS Vision. The
times noted were from the packets captured by Wireshark [162].

CHAPTER 9. QUANTITATIVE ANALYSIS 243

(a) Ethernet AVB network with OSC end station as AVB listener

(b) Ethernet AVB network with OSC end station as AVB talker

Figure 9.6: Timing connection management of network with OSC and AVB end stations

Figure 9.6a shows the following steps for establishing a stream connection between an
AES-64 talker and an OSC listener:

1. UNOS Vision sends an AES-64 command to obtain the stream ID of the AES-64
talker.

2. The AES-64 talker sends an AES-64 response to UNOS Vision.

3. UNOS Vision sends an AES-64 command to the OSC proxy in order to set the
stream ID of the OSC/AVB listener’s input.

4. The OSC proxy translates the received AES-64 command to a corresponding OSC
command, then it sends the translated command to the OSC/AVB listener.

5. The OSC/AVB listener sends an OSC response to the proxy.

6. The proxy translates the OSC response to the appropriate AES-64 response, then
it sends the AES-64 response to UNOS Vision.

Figure 9.6a shows the following steps for establishing a stream connection between an
OSC talker and an AES-64 listener:

CHAPTER 9. QUANTITATIVE ANALYSIS 244

1. UNOS Vision sends an AES-64 command to obtain the stream ID of the OS-
C/AVB talker.

2. The OSC proxy receives the AES-64 command on behalf of the OSC talker, then
it translates the received message to the corresponding OSC command and sends
the translated command to the OSC/AVB talker.

3. The OSC/AVB talker sends an OSC response to the proxy.

4. The proxy translates the OSC response to the appropriate AES-64 response, then
it sends the AES-64 response to UNOS Vision.

5. UNOS Vision sends an AES-64 command to set the stream ID of the AES-63
talker input.

6. The AES-64 listener sends an AES-64 response to UNOS Vision.

The startTime and endTime was noted for thirty-five iterations of establishing audio
stream connections, and thirty-five iterations of destroying audio stream connections.
The average of the thirty-five iterations for the setup in Figure 9.6 is shown in Table 9.2.

CONNECT (ms) DISCONNECT (ms)

AES-64 talker and OSC listener 3.242 0.856

AES-64 listener and OSC talker 3.138 0.966

Table 9.2: Timing results for Ethernet AVB network of OSC and AES-64 end stations

From the results in Table 9.2:

• it takes an average of 3.242 milliseconds to establish an audio stream connection
when the AVB listener is the OSC end station and the AVB talker is the AES-64
end station.

• it takes an average of 0.856 milliseconds to destroy an audio stream connection
when the AVB listener is the OSC end station and the AVB talker is the AES-64
end station.

• it takes an average of 3.138 milliseconds to establish an audio stream connection
when the AVB listener is an AES-64 end station and the AVB talker is the OSC
end station.

• it takes an average of 0.966 milliseconds to destroy an audio stream connection
when the AVB listener is an AES-64 end station and the AVB talker is the OSC
end station.

CHAPTER 9. QUANTITATIVE ANALYSIS 245

The values in Table 9.2 are below the 10 milliseconds acceptable limit for feedback that
was described in section 9.1.3. This implies that the proxy is a time efficient solution
for interoperability between AES-64 and OSC end stations since it does not add any
noticeable delays to the connection management procedures.

9.2.3 Results analysis

In Table 9.3, the values in Table 9.2 are compared with timings for the connection
management of AES-64 end stations when the proxy is not used. The timing values
for the connection management of AES-64 end stations are taken from Table 9.1. All
values shown in Table 9.3 are the average of thirty-five iterations.

CONNECT (ms) DISCONNECT (ms)

AES-64 (talker) and OSC (listener) 3.242 0.856

AES-64 end stations 1.385 0.752

Difference (OSC listener) 1.857 0.104
AES-64 (listener) and OSC (talker) 3.138 0.966

AES-64 end stations 1.385 0.752

Difference (OSC talker) 1.753 0.214

Table 9.3: Comparing results obtained from layer 3 connection management procedure

Table 9.3 reveals that when the proxy is used by UNOS Vision for connection manage-
ment:

• an average of 1.857 milliseconds are added when UNOS Vision utilizes the proxy
to establish an audio stream connection between AES-64 and OSC end stations,
with the OSC end station as the listener.

• an average of 0.104 milliseconds are added when UNOS Vision utilizes the proxy
to destroy an audio stream connection between AES-64 and OSC end stations,
with the OSC end station as the listener.

• an average of 1.753 milliseconds are added when UNOS Vision utilizes the proxy
to establish an audio stream connection between AES-64 and OSC end stations,
with the OSC end station as the talker.

• an average of 0.214 milliseconds are added when UNOS Vision utilizes the proxy
to destroy an audio stream connection between AES-64 and OSC end stations,
with the OSC end station as the talker.

CHAPTER 9. QUANTITATIVE ANALYSIS 246

9.3 Quantitative analysis of Layer 2/Layer 3 Proxy

The scenarios in this section describe the use of a proxy to enable a network controller
to establish and destroy audio stream connections between networked audio devices that
utilize layer 2 and layer 3 messaging. Two scenarios were investigated, and they are:

• Ethernet AVB network with AVDECC (IEEE 1722.1) end stations

• Ethernet AVB network with AES-64 and AVDECC end stations

The results of these investigations are provided in the following sections.

9.3.1 Scenario One: Connection between AVDECC end stations

In this scenario, the connection management procedure between networked AVDECC
end stations was timed. The aim was to determine the time added by the proxy when
connection management was performed on two AVDECC end stations. A comparison
was conducted between the time taken for:

• a test application (running on a PC) to establish and destroy an audio stream
connection by sending AVDECC commands directly to the AVDECC listener (as
illustrated in Figure 9.8a), and

• UNOS Vision to establish and destroy an audio stream connection when utilizing
the AVDECC proxy. This is illustrated in Figure 9.8b.

This investigation was conducted using commercial Ethernet AVB end stations. The
network topology (which is the same as in Figure 8.13) is shown in Figure 9.7.

Figure 9.7: Test bed topology with commercially available Ethernet AVB end stations

CHAPTER 9. QUANTITATIVE ANALYSIS 247

In Figure 9.7, an Ethernet AVB switch (‘LabX Titanium 411’) is used to connect two
XMOS/AtteroTech end stations (‘XMOS/AtteroTech end station 1’ and ‘XMOS/AtteroTech

end station 2’) that implement the IEEE 1722.1 standard. Also connected on the net-
work is the ‘AVDECC Proxy’ that was described in chapter 8, and UNOS Vision running
on a PC workstation.

Wireshark was used to capture the packets transmitted on the network, and the times
were noted [162]. In Figure 9.8a, the time at which an AVDECC command was issued
by the test application was noted as the startTime. The time at which the test application
received a response from the ‘AVDECC listener’ was noted as the endTime.

Figure 9.8a shows the following steps for establishing a stream connection:

1. The test application sends an AVDECC command to the listener in order to estab-
lish a stream connection between the listener and talker AVDECC end stations.

2. The listener sends an AVDECC command to the talker. This command specifies
which of the talker’s source streams that the listener wishes to receive.

3. The talker sends an AVDECC response to the listener. If the stream is available,
this response will also contain the multicast MAC address for the particular stream
connection.

4. The listener sends an AVDECC response to the test application, indicating whether
or not the connection was established.

Using the same network packet analyzer, the time at which UNOS Vision issued an
AES-64 message to the AVDECC proxy (in Figure 9.8b) was noted as the startTime.
The time at which a response was received by ‘UNOS Vision’ from the ‘AVDECC proxy’
was noted as the endTime.

Figure 9.8b shows the following steps for establishing a stream connection with the aid
of the proxy:

1. UNOS Vision sends an AES-64 command to the AVDECC proxy in order to
obtain the stream ID of the AVDECC talker.

2. The AVDECC proxy translates the received AES-64 command to the correspond-
ing AVDECC command, then it sends the translated command to the AVDECC
listener.

3. The listener sends an AVDECC command to the talker. This command specifies
which of the talker’s source streams that the listener wishes to receive.

CHAPTER 9. QUANTITATIVE ANALYSIS 248

4. The talker sends an AVDECC response to the listener. If the stream is available,
this response will also contain the multicast MAC address for the particular stream
connection.

5. The listener sends an AVDECC response to the AVDECC proxy, indicating whether
or not the connection was established.

6. The proxy translates the AVDECC response to the appropriate AES-64 response,
then it sends the AES-64 response to UNOS Vision.

(a) Test application as network controller (b) UNOS Vision as network controller

Figure 9.8: Timing connection management between two AVDECC end stations

In the illustrations in Figure 9.8, the time taken (overhead) was calculated as the differ-
ence between endTime and startTime in milliseconds.

The test application in Figure 9.8a and the AVDECC proxy in Figure 9.8b used the same
machine (PC workstation). This was to ensure that performance of the PC did not affect
the results. The workstation had the following specification:

• Intel Quad-Core (i7) processor, with each core processing at a rate of 2.70GHz

• Linux (Ubuntu 12.04) operating system

• 1000Mbps (gigabit) Ethernet connector.

Thirty-five iterations of the connection management sequences depicted in Figure 9.8a
and Figure 9.8b were observed. The averages of the time taken (in milliseconds) for the
thirty-five iterations are shown in Table 9.4.

CHAPTER 9. QUANTITATIVE ANALYSIS 249

CONNECT (ms) DISCONNECT (ms)

UNOS via AVDECC proxy 9.549 4.344

Test application 6.248 1.072

Difference 3.301 3.282

Table 9.4: Timing results of connection management between networked AVDECC end
stations

From the results of Table 9.4:

• it takes UNOS Vision an average of 9.549 milliseconds to establish a stream con-
nection with the aid of the AVDECC proxy

• it takes UNOS Vision an average of 4.344 milliseconds to destroy a stream con-
nection with the aid of the AVDECC proxy

• it takes the test application an average of 6.248 milliseconds to establish a stream
connection

• it takes the test application an average of 1.072 milliseconds to destroy a stream
connection

• the proxy adds 3.301 milliseconds delay when establishing a stream connection

• the proxy adds 3.282 milliseconds delay when destroying a stream connection

As described in section 9.1.3, 10 milliseconds has been chosen as the permissible max-
imum time for auditory feedback. Hence the 9.549 milliseconds interval between events
when using UNOS Vision to establish an audio stream connection between two AVDECC
end stations (with the aid of the AVDECC proxy) is acceptable. The 4.344 milliseconds
interval when destroying an audio stream connection also falls within the permissible
maximum time for auditory feedback.

9.3.2 Scenario Two: Connection between AVDECC and AES-64
end stations

In this scenario, the connection management procedure for an Ethernet network that
contains AES-64 and AVDECC end stations was timed. The intention was to determine
the overhead added when a proxy is used for connection management when:

• the AVDECC end station assumes the role of AVB talker, and

CHAPTER 9. QUANTITATIVE ANALYSIS 250

• the AVDECC end station assumes the role of AVB listener.

The setup for this test is shown in Figure 9.9a. The connection times were noted in
order to determine if the proxy added a noticeable delay to the connection management
procedure.

The values obtained from this investigation were compared with the setup shown in
Figure 9.9b, where the time taken for the connection management procedure between
two AES-64 end stations (on the same Ethernet AVB network), was noted.

(a) AES-64 and AVDECC Ethernet AVB end stations (b) AES-64 Ethernet AVB end stations

Figure 9.9: Quantitative analysis of AES-64 and AVDECC connection management
procedure

In Figure 9.9a, the startTime was noted as the time when ‘UNOS Vision’ transmitted the
first AES-64 command for the connection management procedure. The endTime was
noted as the time when ‘AVDECC proxy’ returned a final response to ‘UNOS Vision’.
The time taken (overhead added) was calculated as the difference between endTime and
startTime in milliseconds.

Similarly in Figure 9.9b, the startTime was noted as the time when ‘UNOS Vision’
transmitted the first AES-64 command for the connection management procedure, and
the endTime was noted as the time when ‘AES-64 Listener’ returned a final response to
‘UNOS Vision’.

The test bed topology used for this test in Figure 9.9a is shown in Figure 9.10.

CHAPTER 9. QUANTITATIVE ANALYSIS 251

Figure 9.10: Test bed topology for Ethernet network with AES-64 and AVDECC end
stations

Shown in Figure 9.10 is an Ethernet AVB network with a UNOS Vision controller,
which is running on a PC workstation. The network consists of:

• UNOS Vision running on a PC,

• an ‘Ethernet AVB switch’,

• an ‘AVDECC end station’,

• an ‘AES-64 device’, and

• a ‘Proxy’.

The ‘AVDECC end station’ and ‘AES-64 device’ shown in Figure 9.10 are audio stream-
ing devices, which run on PC workstations. When testing for connection management
between two AES-64 end stations, the ‘AVDECC device’ is replaced with an ‘AES-64

end station’ so that only AVDECC end stations are on the network.

In these tests:

• UNOS Vision is used for device configuration and control. UNOS Vision runs on
the same PC (workstation) for each of the scenarios. The PC specifications are:

Processor Intel Core (i7) @ 2.93GHz

Operating System Windows 7 Professional (64-bits)

Ethernet Speed 1000Mbps

CHAPTER 9. QUANTITATIVE ANALYSIS 252

• The AVDECC and AES-64 end stations are implemented as PC audio streaming
devices. Identical PC specifications were used for both end stations. The specifi-
cations are:

Processor Intel Core Quad (Q9400) @ 2.66GHz

Operating System Linux Ubuntu 10.10 (32-bits)

Ethernet Speed 1000Mbps

• When a proxy was used, it ran on the same PC for each of the investigations. The
specification of the PC is:

Processor Intel Quad-Core (i7) @ 2.70GHz

Operating System Linux Ubuntu 12.04 (32-bits)

Ethernet Speed 1000Mbps

Table 9.5 shows the results of the tests, when establishing (CONNECT) and destroying
(DISCONNECT) an audio stream connection. The times noted in Table 9.5 are the
average of thirty-five attempts for each of the connection management processes (that
is establishing and destroying stream connections). In Table 9.5, the values for the
connection management procedure between AES-64 end stations is the same as those
in Table 9.1.

CONNECT (ms) DISCONNECT (ms)

AES-64 listener and AVDECC talker 3.370 3.404

AES-64 talker and AVDECC listener 3.449 3.540

AES-64 talker and AES-64 listener 1.385 0.752

Table 9.5: Timing results of connection management between networked AES-64 and
AVDECC devices

From the results of Table 9.5:

• it takes 3.370 milliseconds to establish an audio stream connection between an
AES-64 device (as Ethernet AVB listener) and an AVDECC end station (as Eth-
ernet AVB talker)

• it takes 3.404 milliseconds to destroy an audio stream connection between an
AES-64 device (as Ethernet AVB listener) and an AVDECC end station (as Eth-
ernet AVB talker)

• it takes 3.449 milliseconds to establish an audio stream connection between an
AVDECC end station (as Ethernet AVB listener) and an AES-64 device (as Eth-
ernet AVB talker)

CHAPTER 9. QUANTITATIVE ANALYSIS 253

• it takes 3.540 milliseconds to destroy an audio stream connection between an
AVDECC end station (as Ethernet AVB listener) and an AES-64 device (as Eth-
ernet AVB talker)

• it takes 1.385 milliseconds to establish an audio stream connection between two
AES-64 end stations where one of them is the Ethernet AVB listener and the other
is Ethernet AVB talker

• it takes 0.752 millisecond to destroy an audio stream connection between two
AES-64 end stations where one of them is the Ethernet AVB listener and the
other is Ethernet AVB talker

These values (shown in Table 9.5) are below the 10 milliseconds perception time limit
described in section 9.1.3. This demonstrates that the proxy is a viable solution for inte-
grating layer 2 and layer 3 audio devices (in particular AES-64 and AVDECC devices),
since the overhead is not noticeable.

9.3.3 Results analysis

When the values in Table 9.4 are compared with those in Table 9.5, there are clear
differences in the time taken for connection management in the different tests. These
differences are shown in Table 9.6.

CONNECT DISCONNECT

(ms) (ms)

Commercial AVDECC UNOS Vision network controller 9.549 4.344

end stations Test application network controller 6.248 1.072

AVDECC end stations 4.292 1.663

PC AVDECC AES-64 listener and AVDECC talker 3.370 3.404

AES-64 talker and AVDECC listener 3.449 3.540

AES-64 talker and AES-64 listener 1.385 0.752

Table 9.6: Comparing results obtained from layer 2/layer 3 connection management
procedure

From Table 9.6, the values obtained for connection management between AVDECC end
stations varies. When the connections are created by UNOS Vision between the com-
mercial (XMOS/AtteroTech) end stations, the average connect and disconnect values
are 9.549 and 4.344, respectively. When the connections are created by UNOS Vision
between the AVDECC PC end stations, the average connect and disconnect values are

CHAPTER 9. QUANTITATIVE ANALYSIS 254

4.292 and 1.663, respectively. The connections between commercial AVDECC end sta-
tions are delayed by 5.257 milliseconds beyond those of the PC AVDECC end stations.
The PC AVDECC end stations perform better than the commercial AVDECC end sta-
tions by an average of 2.681 milliseconds when being disconnected by UNOS Vision.

The same proxy was used in both tests, so it became necessary to investigate the cause
of the noted differences in the average values obtained.

Tests were done to determine the latency of the switches in order to establish whether
the extra overhead was a result of the LabX Titanium 411 switch, or the D-Link Giga-
bit Ethernet switch (used in the commercial end stations or PC end stations scenarios
respectively). The latency of a packet-switched network can be expressed as the round-
trip time (RTT) [165]. Figure 9.11 shows a network in which the RTT is used to specify
latency.

Figure 9.11: Switch latency investigation

A ping test can be used to determine RTT [166]. With regards to Figure 9.11, the ping
test requires that ‘Device A’ sends a ping packet to ‘Device B’, which is illustrated as
‘transmit’. In response to the ‘transmit’ ping packet, ‘Device B’ sends a ping response
to ‘Device A’, which is illustrated as ‘response’ in Figure 9.11. The RTT is the time it
takes between ‘Device A’ sending a ping packet and it (‘Device A’) receiving a response
from ‘Device B’.

The average RTT for the network depicted in Figure 9.11 after fifty ping transmits and
responses is shown in Table 9.7.

Average RTT (ms)

LabX Titanium 411 0.2487

D-Link Gigabit Ethernet 0.3657

Table 9.7: Results for ping test to determine switch latency

The values shown in Table 9.7 reveal that the LabX switch has a RTT of 0.2487 mil-
liseconds, and the D-Link switch has a RTT of 0.3657 milliseconds. These values do
not sufficiently account for the differences observed in Table 9.6 in:

CHAPTER 9. QUANTITATIVE ANALYSIS 255

• connection management between commercial AVDECC end stations

• connection management between PC (workstation) AVDECC end stations.

Hence the difference in value has to be attributed to the performance of the end stations.
The XMOS/AtteroTech end stations incorporate the XMOS XS1-L2 chip, which has the
following specification:

Number of cores 2

Instruction set 32-bit

MIPS 500 per core

Clock frequency 500 MHz per core

Table 9.8: XMOS XS1-L2 chip specification

Each core in Table 9.8 is analogous to a ‘tile’ on an XMOS board. An XMOS tile has 8
XMOS cores that each run at 63 MHz when all eight cores are in use [167].

The PC workstation utilizes an Intel Core 2 Quad Q9400 processor with the following
specification:

Number of cores 4

Instruction set 64-bit

Clock frequency 2.66 GHz per core

Table 9.9: Intel Core Quad Q9400 specification

When the XMOS processor is compared with the processor in the PC, it becomes clear
that the PC workstations should outperform the XMOS end stations. However, the
processing power (of a processor) alone does not provide sufficient indication of the
performance of a computer. Other factors such as the cache size, processor loads, and
operating system latency contribute to a computer’s performance [168].

Table 9.6 also reveals that the connection times for AVDECC (PC) end stations are
larger than those of the AES-64 end stations. In particular, the AES-64 end stations
outperform the AVDECC end stations by:

• 2.907 milliseconds for connect

• 0.911 milliseconds for disconnect

Since the AVDECC and AES-64 end stations used the same PC hardware and were
deployed on the same network setup, these delays can be attributed to the relative com-
plexity of the AVDECC endpoint implementation. A number of state transitions are

CHAPTER 9. QUANTITATIVE ANALYSIS 256

involved in processing an AVDECC connection management packet (ACMP). The state
transition diagram (Figure 7.3) illustrates how an AVDECC end station processes an
AVDECC message. The AES-64 approach entails triggering an appropriate callback
for the parameter addressed by a received message (described in subsection 3.4.2 on
page 82).

9.4 Summary

In this chapter, visual and auditory stimuli were described as relevant forms of feedback
to the user of an audio network control application. The perception time for visual
feedback was described by the MHP model to be less than 100 milliseconds, and the
perception time for auditory feedback was described to be less than 10 milliseconds. In
terms of perception time, auditory stimuli were described as being more sensitive than
visual stimuli.

In order to determine the acceptable latency of the proxy that was described in chapter
6 and 8, 10 milliseconds was used as the criterion for a quantitative analysis.

The quantitative analysis involved timing the connection management procedure for
establishing and destroying an audio stream connection within different scenarios. The
time at which a control command was transmitted by a controller was noted as the
startTime and the time at which the controller received a response was noted as the
endTime. The difference between the startTime and endTime was noted as the time
taken for the particular transaction.

The average of 35 iterations of the time taken for each transaction was noted for different
scenarios. They reveal the following:

• When the proxy was used for connection management between devices that im-
plement layer 3 audio control protocols:

– the proxy enabled the creation and termination of audio stream connections
within the 10 milliseconds limit, when the network consisted of only OSC
Ethernet AVB end stations.

– the proxy enabled the creation and termination of audio stream connections
between OSC and AES-64 Ethernet AVB end stations within the 10 millisec-
onds limit, irrespective of whether the OSC end station was AVB listener or
AVB talker.

CHAPTER 9. QUANTITATIVE ANALYSIS 257

• When the proxy was used for connection management between devices that im-
plement layer 2 and layer 3 audio control protocols:

– the proxy enabled the creation and termination of audio stream connec-
tions within the 10 milliseconds limit, when the network consists of only
AVDECC (IEEE 1722.1) end stations.

– the proxy enabled the creation and termination of audio stream connections
between AVDECC and AES-64 (Ethernet AVB) end stations within the 10
milliseconds limit, irrespective of whether the AVDECC end station was
AVB listener or AVB talker.

The results obtained show that the overhead added by the proxy was not sufficiently
noticeable to a user establishing or destroying stream connections from a graphical user
interface, thereby making the proxy a viable solution for enabling control protocol in-
teroperability, from a time efficiency point of view.

Chapter 10

Conclusion

Digital networks are becoming the preferred solution for interconnecting audio devices
in large installations such as stadiums, casinos, theme parks, conference centers, air
ports, shopping malls and places of worship. In these installations digital audio net-
works enable the distribution of multiple channels of audio between devices that are
some distance apart.

The networking technology used to transport audio streams considers the time-sensitive
nature of audio and endeavors to adequately provide for reliable transport of time-
sensitive data. Currently, there exist a number of audio networking technologies. They
include:

• IEEE 1394

• Ethernet AVB

• CobraNet

• RockNet

• EtherSound

• Q-LAN

• RAVENNA

• Livewire

• Dante

258

CHAPTER 10. CONCLUSION 259

The above technologies have been described in chapter 2. Some of them have been
published by a standards body, while others are proprietary solutions for audio transport.
An audio networking technology should be able to ensure that:

• the necessary network resources (such as bandwidth, buffer queues, and channels)
for the transmission of an audio stream are guaranteed for the duration of the
stream connection.

• the networked devices are tightly synchronized by providing a mechanism for
exchanging time information. This will avoid glitches and jitter since the audio
sample rate of the transmitter will be the same as that of the receiver(s). It also
ensures that there is ‘lip-sync’ between multiple receiving devices by providing
them with a common presentation time.

• the network infrastructure does not interfere with the audio data transmission by
adding significant delay.

Various techniques are used to ensure that the above three requirements are met by the
available audio networking technologies. As a result of the different transport tech-
niques used by these audio networking technologies, interoperability remains a chal-
lenge. Thus, devices that are compatible with one audio transport technology type can-
not exchange audio data with devices that are designed to communicate on different
audio transport technologies. Chapter 2 has described attempts to enable audio trans-
port interoperability.

One of the benefits of audio networks is the ability to remotely configure, connect,
control and monitor audio devices that are some distance away from a control station.
An audio control protocol enables remote access to the controls within a device by the
exchange of control messages. An audio control protocol defines:

• a message structure that formats the protocol commands and responses

• a device model that is used to organize the various controls (within an audio de-
vice) in a structured manner, and makes them remotely accessible

• a mechanism by which the networked devices can discover each other

• a procedure for establishing and destroying audio stream connections between the
networked devices

There are a number of audio control protocols. Each audio control protocol achieves the
above requirements in its own particular manner. Some of the available audio control
protocols are:

CHAPTER 10. CONCLUSION 260

• Open Sound Control (OSC)

• Architecture for Control Networks (ACN)

• Common Control Interface for Networked Audio and Video Products (IEC 62379)

• Audio Engineering Society standard for audio applications of networks - Com-
mand, control and connection management for integrated media (AES-64)

• Open Control Architecture (OCA)

• Audio Video Control (AV/C)

• IEEE 1722.1 (AVDECC)

• Music Local Area Network (mLAN)

Audio control protocols can be classified based on the OSI/ISO 7 layer that they utilize
for control messaging. The two categories identified are:

• Layer 3 audio control protocols - includes audio control protocols that transport
their messages within layer 3 (mostly IP) packets. Examples include the OSC,
ACN, IEC 62379, AES-64 and OCA protocols.

• Layer 2 audio control protocols - includes audio control protocols that utilize layer
2 packets for messaging. For example AV/C, IEEE 1722.1 and mLAN.

Details about the audio control protocols mentioned here, can be found in chapter 3.

While the audio networking technology is designed to guarantee reliable audio data
transport, it also provides transport for control messages. Figure 10.1 shows control
messaging and audio stream transmission between two networked audio devices.

Figure 10.1: Control messaging and audio data transmission

CHAPTER 10. CONCLUSION 261

The figure illustrates how the audio control protocol is used for communication between
devices. Control messages for device monitoring and configuration are exchanged be-
tween ‘Device A’ and ‘Device B’. When a device receives a control message at its ‘Audio

Transport’ layer, it sends the message to the ‘Audio Control Protocol’ for processing. A
successful connection management command to establish an audio stream connection
will cause audio data to be transmitted between ‘Device A’ (source device) and ‘Device

B’ (destination device).

A network controller can remotely establish and destroy audio stream connections be-
tween networked devices. This process is aided by the audio control protocol that the
devices implement. A typical scenario for establishing an audio stream connection be-
tween two devices on the same audio networking technology is shown in Figure 10.2.

Figure 10.2: Controller configures networked devices

In Figure 10.2, ‘Device A’, ‘Device B’ and ‘Device C’ implement the same audio control
protocol. ‘Device C’ is a network controller, and it sends control messages to ‘Device A’
and ‘Device B’ according to the procedure for connection management that is defined
by their common control protocol. Following the exchange of connection management
messages to establish an audio stream connection, audio data is transported between
‘Device A’ and ‘Device B’.

Interoperability is said to exist when audio can be exchanged between the networked
devices. Most commercial audio devices implement a single control protocol, thus they
can only communicate with other networked devices that implement the same protocol.
It is often desirable to network devices that implement different audio control protocols.
For example a sound engineer may want audio from an AES-64 mixing console to be
received by IEEE 1722.1 speakers within the same Ethernet AVB network. Currently
interoperability between devices that implement different control protocols remains a

CHAPTER 10. CONCLUSION 262

challenge.

This research project has proposed the use of a protocol command translator that imple-
ments multiple audio control protocols, to achieve interoperability between networked
audio devices that implement different control protocols. Figure 10.3 depicts how a
command translator can be used to achieve interoperability.

Figure 10.3: Command translator enables common control

In Figure 10.3, ‘Protocol A Controller’ is a network controller that sends ‘Protocol
A’ commands in order to establish an audio stream connection between ‘Protocol A

Device’ and ‘Protocol B Device’. The ‘Command Translator’ receives all ‘Protocol
A’ commands that are intended to configure ‘Protocol B Device’. Then it sends the
corresponding ‘Protocol B’ command to ‘Protocol B Device’.

The functional process that occurs within a command translator is depicted in Figure
10.4.

Figure 10.4: Command translation process

The process shown in Figure 10.4 is:

• a protocol command is received from a controller

• the received command is translated

CHAPTER 10. CONCLUSION 263

• the translated command is sent to the intended target

• a response message is received from the target

• the response is translated

• the translated response is sent to the controller

Chapters 6 and 8 describe how a command translator, which was implemented as a
proxy, is able to map control commands from one audio control protocol to another. An
example of the mapping technique for three different audio control protocols is shown
in Table 10.1.

Command index Command description Protocol A Protocol B Protocol C

1 Get device name A1 B1 C1

2 Get device address A2 B2 C2

3 Get number of AVB sources A3 B3 C3

4 Get number of AVB sinks A4 B4 C4

5 Set channel number A5 B5 C5 C6

Table 10.1: Command message mapping

There are five command messages in Table 10.1, each uniquely identified by a com-
mand index. The three protocols (Protocol A, Protocol B and Protocol C) fulfill each of
the commands by sending specific messages. If the proxy receives a Protocol B com-
mand (B3) to obtain the number of Ethernet AVB streams from devices that implement
Protocol A and Protocol C, the following occurs:

• the proxy determines the index of the received message, in this case the index is
‘3’

• the proxy sends Protocol A and Protocol C commands that correspond to index
‘3’, that is A3 and C3 respectively

It is possible for the proxy to translates a received command to multiple commands
of the target device. Also the proxy might translate multiple commands to a single
command of a target device. For example in Table 10.1, a Protocol B command (B5) to
set the channel number is translated to a single command (A5) for Protocol A, and two
commands (C5and C6) for Protocol C.

By mapping commands in this manner, other audio control protocols can be incorpo-
rated into the proxy. In order to do this, the mapping table will have to be updated with
the new protocol commands for each command index.

CHAPTER 10. CONCLUSION 264

Several tests were conducted in order to investigate the effectiveness of the command
translator approach. The tests involved utilizing a proxy for connection management
between devices of different audio control protocols. Two proxies were investigated,
and they are:

• a layer 3 proxy that enabled an AES-64 network controller to discover OSC
servers, as well as enable connection management between AES-64 and OSC
devices on an Ethernet AVB network.

• a layer 2/layer 3 proxy that enables an AES-64 network controller to discover
IEEE 1722.1 (AVDECC) end stations, as well as enable connection management
between AES-64 and AVDECC end stations on an Ethernet AVB network.

In both cases, the proxy was able to effectively allow a common controller to configure
the networked Ethernet AVB end stations, irrespective of the audio control protocol that
they implement.

It is possible to host the command translator within the same PC workstation as the
network controller. An approach to achieving this for the AES-64 network controller
application has been described in section 6.7. It entails implementing two AES-64 appli-
cations on the same PC (a controller application and a command translator application),
each with its own AES-64 protocol stack. Each protocol stack is bound to a different IP
address, and allocated a different AES-64 Device ID. Thus each application appears to
the other as if it were hosted on a remote PC. This has the following advantages:

• avoiding a single point of failure that could result from the proxy going down.

• enabling the command translator functionality to take advantage of the processing
power of the host PC workstation on which the control application is running.

A concern related to the proxy approach was the time required for protocol translation.
To address this concern a number of quantitative tests were performed.

The Modeling Human Processor (MHP) is a conceptual model for human graphical user
interface processing. MHP defines the time it takes an observer to perceive external
visual stimuli (event) and respond to it as the perceptual processor cycle time. MHP
defines the perceptual processor cycle time to be about 100 milliseconds. This means
that any number of events that occur within a 100 milliseconds interval, appear as a
single event to an observer.

In an investigation of gesture control systems, Wessel and Wright suggest that 10 mil-
liseconds is an acceptable maximum time within which auditory feedback should be

CHAPTER 10. CONCLUSION 265

received. In another paper, Moore indicates that humans are unable to distinguish be-
tween multiple auditory stimuli when they occur within 30 milliseconds.

Within the context of audio device control, the visual perception time is relevant when a
graphical interface is used to control networked audio devices. The auditory perception
time applies when connection management is performed on networked devices, and the
receiving devices are connected to sound outputs.

In the quantitative analysis of the command translators (proxies), 10 milliseconds was
chosen as the maximum acceptable latency that could be contributed by a command
translator that is used for connection management.

When a PC workstation control application that has a graphical interface is used to es-
tablish an audio stream connection between two networked Ethernet AVB end stations,
the control application may do the following:

• Determine the ‘stream ID’ of the audio stream from the AVB talker (source de-
vice).

• Specify the ‘stream ID’ of the audio stream that the AVB listener (destination
device) should listen to.

• Instruct the AVB talker to advertise its stream on the (Ethernet AVB) network via
MRP.

• Instruct the AVB listener to indicate to the network (via MRP) that it is prepared
to receive the specified stream .

The graphical control application might provide a button that can be used to establish
a stream connection according to the above steps. All four steps should appear as a
single event to a sound engineer who is using the control application. That is, when the
button is clicked by the sound engineer the connection should be visually and audibly
determined as being instantaneous.

The command translators (proxies) implemented in this research were investigated to
determine whether they added significant delay that would cause the connection man-
agement transaction to exceed the 10 milliseconds limit. The investigations involved
setting up a network that utilized the proxy, and subsequently:

• Noting the time at which a control application transmitted the first command in
the sequence of connection management commands necessary to fulfill a task.

CHAPTER 10. CONCLUSION 266

• Noting the time at which the control application received the final response in the
sequence of connection management commands necessary to fulfill the task.

An AES-64 connection management application was used to establish and destroy stream
connections between Ethernet AVB end stations that implement the following audio
control protocols:

• AES-64

• OSC

• IEEE 1722.1 (AVDECC)

The results of the quantitative tests were described in chapter 9.

The results revealed that the proxy enabled connection management efficiently, since it
did not add a sufficient overhead (time delay) to the connection management procedure.
The observed worst case for the CONNECT procedure was between two commercial
AVDECC end stations, which took 9.549 milliseconds. The worst case for the DIS-
CONNECT procedure was between two commercial AVDECC end stations. It took
4.344 milliseconds for the DISCONNECT procedure.

Since the values obtained for the worst case are less than 10 milliseconds, the addition
of the proxy into the network did not cause an observable difference in the perception
of a user. This served to demonstrate that the protocol command translation approach
provides an efficient solution for protocol interoperability between networked audio
devices.

References

[1] P.J. Foulkes. An Integration into the Control of Audio Streaming across Diverse

Quality of Service Networks. Dissertation, Rhodes University, 2011.

[2] IEEE-SA. IEEE Standard for a High-Performance Serial Bus. IEEE Std 1394-

2008, 2008.

[3] Institute of Electrical and Electronics Engineers (IEEE). Audio/Video Bridg-

ing Task Group. IEEE. http://www.ieee802.org/1/pages/

avbridges.html [Accessed: 2011.04.28].

[4] Cirrus Logic. Cobranet faq. http://www.cobranet.info/support/

faq [Accessed: 2012.09.10].

[5] Riedel. RockNet - Performance Audio Networks. http://www.riedel.

net/LinkClick.aspx?link=Downloads%2fBroschures%

2fRiedel_RockNet_EN.pdf&portalid=0&mid=0&language=

en-US&forcedownload=true [Accessed: 2012.09.11].

[6] Digigram. EtherSound Overview - An Introduction to the technology Rev. 2.0c.
October 2004.

[7] K. Gross. QSC White paper: Q-LAN. October 2009.

[8] ALC NetworX. RAVENNA - Operating Principles Draft 1.0. ALC NetworX
GmbH, June 2011.

[9] Axia Audio. Introduction to Livewire - IP Audio System De-

sign Reference & Primer. http://axiaaudio.com/tech/

introduction-to-livewire-systems-primer-v21/download

[Accessed: 2012.09.17].

[10] Audinate. Dante - Digital Audio Networking Just Got Easy. Audinate Whitepa-

per, 2009.

267

http://www.ieee802.org/1/pages/avbridges.html
http://www.ieee802.org/1/pages/avbridges.html
http://www.cobranet.info/support/faq
http://www.cobranet.info/support/faq
http://www.riedel.net/ LinkClick.aspx?link=Downloads%2fBroschures%2fRiedel_RockNet_EN.pdf&portalid=0&mid=0&language=en-US&forcedownload=true
http://www.riedel.net/ LinkClick.aspx?link=Downloads%2fBroschures%2fRiedel_RockNet_EN.pdf&portalid=0&mid=0&language=en-US&forcedownload=true
http://www.riedel.net/ LinkClick.aspx?link=Downloads%2fBroschures%2fRiedel_RockNet_EN.pdf&portalid=0&mid=0&language=en-US&forcedownload=true
http://www.riedel.net/ LinkClick.aspx?link=Downloads%2fBroschures%2fRiedel_RockNet_EN.pdf&portalid=0&mid=0&language=en-US&forcedownload=true
http://axiaaudio.com/tech/introduction-to-livewire-systems-primer-v21/download
http://axiaaudio.com/tech/introduction-to-livewire-systems-primer-v21/download

REFERENCES 268

[11] Audio Engineering Society (AES). AES-X192 (SC-02-12-H) Draft 1.0 AES
standard for audio applications of networks - High-performance streaming audio-
over-IP interoperability. November 2012.

[12] Institute of Electrical and Electronics Engineers (IEEE). The IEEE website, 2012.
http://www.ieee.org/ [Accessed: 2012.08.10].

[13] Audio Engineering Society (AES). http://www.aes.org/ [Ac-
cessed:2012.12.09].

[14] A. Schmeder, A. Freed, and D. Wessel. Best Practices for Open Sound Control.
In Linux Audio Conference, Utrecht, NL, May 2010.

[15] American National Standard (ANSI). Entertainment Technology - Architecture

for Control Networks, draft document ansi e1.17 edition, 2005.

[16] International Electrotechnical Commission (IEC). IEC 62379 Common Control
Interface for networked audio and video equipment - Background, 2005. http:
//www.iec62379.org/details.html [Accessed: 2012.10.05].

[17] Audio Engineering Society (AES). AES standard for audio applications of net-

works - Command, control, and connection management for integrated media,
AES64-2012 edition, January 2013.

[18] J. Berryman, G. van Beuningen, K. Dalbjurn, H. Hamamatsu, M. Lave, N.
O’Neil, M. Renz, M. Smaak, D. Takahashi9, S. van Tienen, B. Tudor, and E.
Wetzell. The Open Control Architecture. In Audio Engineering Society Conven-

tion 133, October 2012.

[19] Institute of Electrical and Electronics Engineers (IEEE). IEEE P1722.1/D21:

Draft Standard for Device Discovery, Connection Management and Control Pro-

tocol for IEEE 1722 Based Devices, July 2012.

[20] R. Foss and J. Fujimori. mLAN - The Current Status and Future Directions. In
Audio Engineering Society Convention 113, October 2002.

[21] J. Emmett. Panel Discussion: The View from Here. In Audio Engineering Society

Conference: UK 8th Conference: Digital Audio Interchange (DAI), May 1993.

[22] F. Rumsey. Audio Networking for the Pros. Journal of the Audio Engineering

Society, 57(4):271–275, 2009.

http://www.ieee.org/
http://www.aes.org/
http://www.iec62379.org/details.html
http://www.iec62379.org/details.html

REFERENCES 269

[23] D. Jacobs and D.P. Anderson. Design Issues for Digital Audio Networks. In Au-

dio Engineering Society Conference: 13th International Conference: Computer-

Controlled Sound Systems, December 1994.

[24] B. Moses. Audio Applications of the IEEE 1394 High Performance Serial Bus.
In Audio Engineering Society Conference: UK 15th Conference: Moving Audio,

Pro-Audio Networking and Transfer, May 2000.

[25] N. Fonseca and E. Monteiro. Latency in Audio Ethernet Networks. In Audio

Engineering Society Convention 114, March 2003.

[26] N. Olifer and V. Olifer. Computer Networks: Principles,Technologies And Pro-

tocols For Network Design. Wiley India Pvt. Limited, 2006.

[27] F. Rumsey. Audio in the Age of Digital Networks. Journal of the Audio Engi-

neering Society, 59(4):244–253, 2011.

[28] IEEE-SA. The IEEE Standards Association website, 2012. http://

standards.ieee.org/ [Accessed: 2012.08.10].

[29] IEEE-SA. IEEE Standard for a High-Performance Serial Bus. IEEE Std 1394-

1995, August 1996.

[30] 1394 Trade Association (1394TA). IEEE1394: versatility, performance, se-

curity, flexibility. http://www.1394ta.org/press/WhitePapers/

IEEE%201394%20Comparison.pdf [Accessed: 2010.08.10].

[31] IEEE-SA. IEEE Standard for a High-Performance Serial Bus – Amendment 1.
IEEE Std 1394a-2000 (Amendment to IEEE Std 1394-1995), 2000.

[32] 1394 Trade Association (1394TA). FireWireTM Reference Tutorial (An Informa-

tional Guide), January 2010.

[33] IEEE-SA. IEEE Standard for a High-Performance Serial Bus – Amendment 3.
IEEE Std 1394c-2006 (Amendment to IEEE Std 1394-1995), 2006.

[34] 1394 Trade Association (1394TA). The 1394 Trade Association website. http:
//www.1394ta.org [Accessed 2012.08.21].

[35] H.A. Okai-Tettey. High Speed End-to-end Connection Management in a Bridged

IEEE 1394 Network of Professional Audio Devices. Dissertation, Rhodes Uni-
versity, 2005.

http://standards.ieee.org/
http://standards.ieee.org/
http://www.1394ta.org/press/WhitePapers/IEEE%201394%20Comparison.pdf
http://www.1394ta.org/press/WhitePapers/IEEE%201394%20Comparison.pdf
http://www.1394ta.org
http://www.1394ta.org

REFERENCES 270

[36] R.H.J. Bloks. The IEEE-1394 high speed serial bus. Philips Journal of Research,
50(1-2):209–216, 1996.

[37] International Electrotechnical Commission (IEC). Consumer audio/video equip-

ment - Digital interface - Part 6: Audio and music data transmission protocol,
2nd edition edition, October 2005.

[38] International Electrotechnical Commission (IEC). Consumer audio/video equip-

ment - Digital interface - Part 1: General, 2nd edition edition, January 2003.

[39] O.P. Igumbor. A Proxy Approach to Protocol Interoperability within Digital Au-
dio Networks. Masters Thesis, Rhodes University, 2009.

[40] D. Anderson. FireWire system architecture (2nd ed.): IEEE 1394a. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[41] 1394 Trade Association (1394TA). FireWire Reaches 4 Gigabit/Second Speeds.
http://www.1394ta.org/press/TAPress/2012_0110.html [Ac-
cessed 2012.08.21].

[42] M. J. Teener. AVnu Alliance Whitepaper: No-excuses Audio/Video Networking:
the Technology Behind AVnu. August 2009.

[43] N. Parik. Ethernet and Multimedia Applications - The History and the Future -
Part 1. November 2007.

[44] Institute of Electrical and Electronics Engineers (IEEE). Standard for Local and

Metropolitan Area Networks - Virtual Bridged Local Area Networks - Amend-

ment: 9: Stream Reservation Protocol (SRP), 28 June 2010.

[45] Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for

Local and Metropolitan Area Networks—Virtual Bridged Local Area Networks

- Amendment: Forwarding and Queuing Enhancements for Time-Sensitive

Streams, 5 January 2010.

[46] Institute of Electrical and Electronics Engineers (IEEE). Standard for Local and

Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Ap-

plications in Bridged Local Area Networks, 30 March 2011.

[47] Institute of Electrical and Electronics Engineers (IEEE). Standard for A Preci-

sion Clock Synchronization Protocol for Networked Measurement and Control

Systems, 2008.

http://www.1394ta.org/press/TAPress/2012_0110.html

REFERENCES 271

[48] Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Lo-

cal and Metropolitan Area Networks: Audio Video Bridging (AVB) Systems, 14
March 2011.

[49] Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for

Layer 2 Transport Protocol forTime-Sensitive Applications in Bridged Local Area

Networks, May 2011.

[50] Institute of Electrical and Electronics Engineers (IEEE). Multiple Registration

Protocol (MRP), June 2007.

[51] A. Holzinger and A. Hildebrand. Realtime Linear Audio Distribution Over Net-
works: A Comparison of Layer 2 and 3 Solutions Using the Example of Ethernet
AVB and RAVENNA. In Audio Engineering Society Conference: 44th Interna-

tional Conference: Audio Networking, November 2011.

[52] IEEE-SA. IEEE Standard for for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. IEEE Std 1588-2008, 2008.

[53] J. Koftinoff. Audio Video Bridging and Linux. August 2011. Presented at
LinuxCon Vancouver.

[54] K. Gross and D.J. Britton. Deploying Real-Time Ethernet Networks. In Au-

dio Engineering Society Conference: UK 15th Conference: Moving Audio, Pro-

Audio Networking and Transfer, May 2000.

[55] K. Bradley and F. Richard. A Comparative Study of mLAN and CobraNet Tech-
nologies and their use in the Sound Installation Industry. In Audio Engineering

Society Convention 114, March 2003.

[56] J.D. Case, M. Fedor, M.L. Schoffstall, and J. Davin. Simple Network Manage-
ment Protocol (SNMP). RFC 1157 (Historic), May 1990.

[57] Riedel. RockNet - Digital Audio Network, 2012. http://www.

riedel.net/en-us/products/signaltransportprocessing/

rocknetdigitalaudionetwork/about.aspx [Accessed: 2012.08.10].

[58] Digigram. Technology Overview, 2008. http://www.ethersound.com/
technology/overview.php [Accessed: 2012.09.10].

[59] Digigram. The EtherSound Standard. http://www.ethersound.

com/download/files/EtherSoundTechnology.pdf [Accessed:
2012.09.10].

http://www.riedel.net/en-us/products/signaltransportprocessing/rocknetdigitalaudionetwork/about.aspx
http://www.riedel.net/en-us/products/signaltransportprocessing/rocknetdigitalaudionetwork/about.aspx
http://www.riedel.net/en-us/products/signaltransportprocessing/rocknetdigitalaudionetwork/about.aspx
http://www.ethersound.com/technology/overview.php
http://www.ethersound.com/technology/overview.php
http://www.ethersound.com/download/files/EtherSoundTechnology.pdf
http://www.ethersound.com/download/files/EtherSoundTechnology.pdf

REFERENCES 272

[60] Digigram. Technology: Latency, 2008. http://www.ethersound.com/
technology/latency.php [Accessed: 2012.09.10].

[61] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. Internet Group
Management Protocol, Version 3. RFC 3376 (Proposed Standard), October 2002.
Updated by RFC 4604.

[62] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed
Standard), December 1998. Updated by RFCs 3168, 3260.

[63] The QSC website. http://www.qscaudio.com/ [Accesses: 2012.0.15].

[64] Q-Sys Network Audio Solution. http://qsc.com/products/network/
QSys/ [Accesses: 2012.0.15].

[65] IETF. User Datagram Protocol. 1980.

[66] Q-SYS Network Audio Solution. Q-Sys Core. http://www.

qscaudio.com/products/network/Qsys/Q-Sys_core.php

[Accessed:2012.12.22].

[67] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by
RFCs 1349, 2474.

[68] S. Kalarchik. QSC Application Note: Q-Sys Networking Overview. January
2011.

[69] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003. Updated
by RFCs 5506, 5761, 6051, 6222.

[70] H. Schulzrinne and S. Casner. RTP Profile for Audio and Video Conferences
with Minimal Control. RFC 3551 (Standard), July 2003. Updated by RFC 5761.

[71] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[72] K. Kobayashi, A. Ogawa, S. Casner, and C. Bormann. RTP Payload Format
for 12-bit DAT Audio and 20- and 24-bit Linear Sampled Audio. RFC 3190
(Proposed Standard), January 2002.

[73] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).
RFC 2326 (Proposed Standard), April 1998.

http://www.ethersound.com/technology/latency.php
http://www.ethersound.com/technology/latency.php
http://www.qscaudio.com/
http://qsc.com/products/network/QSys/
http://qsc.com/products/network/QSys/
http://www.qscaudio.com/products/network/Qsys/Q-Sys_core.php
http://www.qscaudio.com/products/network/Qsys/Q-Sys_core.php

REFERENCES 273

[74] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785, 6266, 6585.

[75] S. Church and S. Pizzi. Audio Over IP - Building Pro AoIP Systems with Livewire.
Focal Press, 2010. ISBN 978-0-240-81244-1.

[76] Axia Audio. "Did you say ’networked audio?’". http://axiaaudio.com/
livewire [Accessed; 2012.09.19].

[77] Axia Audio. Axia AES/EBU. http://axiaaudio.com/

system-components#AES [Accessed: 2012.12.04].

[78] Axia Audio. Axia Router Selector Node. http://axiaaudio.com/

system-components#Audio_Nodes [Accessed: 2012.12.04].

[79] N. Bouillot, E. Cohen, J.R. Cooperstock, A. Floros, N. Fonseca, R. Foss, M.
Goodman, J. Grant, K. Gross, S. Harris, B. Harshbarger, J. Heyraud, L. Jonsson,
J. Narus, M. Page, T. Snook, A. Tanaka, J. Trieger, U. Zanghieri. AES White Pa-
per: Best Practices in Network Audio. Journal of the Audio Engineering Society,
57(9):729–741, 2009.

[80] Audinate. Dante Q&A, 2012. http://www.audinate.com/index.

php?option=com_content&view=article&id=99 [Accessed:
2012.09.17].

[81] Audinate. Whitepaper - Audio Networks Past, Present and Future [CobraNet
and Dante]. http://www.audinate.com/images/PDF/Audio%

20Networks%20Past%20Present%20and%20Future.pdf [Accessed:
2012.09.17].

[82] Audinate. Dante Virtual Soundcard, 2012. http://www.audinate.

com/index.php?option=com_content&view=article&id=235

[Accessed: 2012.09.17].

[83] Audinate. Whitepaper - Evolving networks to Audio Video Bridging (AVB).
2011.

[84] AES-X192 task group. AES-X192 - High-performance streaming audio-over-IP
interoperability. http://www.x192.org/ [Accessed: 2012.09.19].

[85] W. Fenner. Internet Group Management Protocol, Version 2. RFC 2236 (Pro-
posed Standard), November 1997. Obsoleted by RFC 3376.

http://axiaaudio.com/livewire
http://axiaaudio.com/livewire
http://axiaaudio.com/system-components#AES
http://axiaaudio.com/system-components#AES
http://axiaaudio.com/system-components#Audio_Nodes
http://axiaaudio.com/system-components#Audio_Nodes
http://www.audinate.com/index.php?option=com_content&view=article&id=99
http://www.audinate.com/index.php?option=com_content&view=article&id=99
http://www.audinate.com/images/PDF/Audio%20Networks%20Past%20Present%20and%20Future.pdf
http://www.audinate.com/images/PDF/Audio%20Networks%20Past%20Present%20and%20Future.pdf
http://www.audinate.com/index.php?option=com_content&view=article&id=235
http://www.audinate.com/index.php?option=com_content&view=article&id=235
http://www.x192.org/

REFERENCES 274

[86] H. Weibel. Technology Update on IEEE 1588: The Second Edition of the High
Precision Clock Synchronization Protocol. Zurich University of Applied Sci-
ences, 2009.

[87] H. Weibel and S. Heinzmann. Media Clock Synchronization Based on PTP. In
Audio Engineering Society Conference: 44th International Conference: Audio

Networking, November 2011.

[88] M. Wright. Open Sound Control: an enabling technology for musical network-
ing. Organised Sound, 10:193–200, December 2005.

[89] The Center for New Music and Audio Technology (CNMAT).
OSC Application Areas. http://opensoundcontrol.org/

osc-application-areas [Accessed: 2012.10.01].

[90] The Center for New Music and Audio Technology (CN-
MAT). Sensor/Gesture-Based Electronic Musical In-
struments. http://opensoundcontrol.org/

sensor-gesture-based-electronic-musical-instruments

[Accessed: 2012.10.01].

[91] The Center for New Music and Audio Technology (CNMAT). Multiple-
User Shared Musical Control. http://opensoundcontrol.org/

multiple-user-shared-musical-control [Accessed: 2012.10.01].

[92] The Center for New Music and Audio Technology (CNMAT). Web In-
terfaces. http://opensoundcontrol.org/web-interfaces [Ac-
cessed: 2012.10.01].

[93] The Center for New Music and Audio Technology (CNMAT). Net-
worked LAN Musical Performance. http://opensoundcontrol.org/

networked-lan-musical-performance [Accessed: 2012.10.01].

[94] The Center for New Music and Audio Technology (CNMAT). WAN
performance and Telepresence. http://opensoundcontrol.org/

wan-performance-and-telepresence [Accessed: 2012.10.01].

[95] M. Wright, A. Freed, and A. Momeni. Open Sound Control: State of the Art
2003. pages 153–159, 2003. OpenSound Control.

[96] M. Wright. The Open Sound Control 1.0 Specification. CNMAT, version 1.0
edition, March 2002. http://opensoundcontrol.org/spec-1_0 [Ac-
cessed: 2012.10.01].

http://opensoundcontrol.org/osc-application-areas
http://opensoundcontrol.org/osc-application-areas
http://opensoundcontrol.org/sensor-gesture-based-electronic-musical-instruments
http://opensoundcontrol.org/sensor-gesture-based-electronic-musical-instruments
http://opensoundcontrol.org/multiple-user-shared-musical-control
http://opensoundcontrol.org/multiple-user-shared-musical-control
http://opensoundcontrol.org/web-interfaces
http://opensoundcontrol.org/networked-lan-musical-performance
http://opensoundcontrol.org/networked-lan-musical-performance
http://opensoundcontrol.org/wan-performance-and-telepresence
http://opensoundcontrol.org/wan-performance-and-telepresence
http://opensoundcontrol.org/spec-1_0

REFERENCES 275

[97] PLASA. The "PLASA Membership" website. http://www.plasa.org/

welcome/ [Accessed: 2012.10.05].

[98] P. Nye. ACN - A Protocol Suite for Entertainment Technology Networking. In
Audio Engineering Society Convention 111, November 2001.

[99] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace. RFC 4122 (Proposed Standard), July 2005.

[100] American National Standard (ANSI). Draft BSR E1.17 Architecture for Control

Networks - Device Management Protocol, 2009.

[101] American National Standard (ANSI). Draft ANSI E1.17-2010 Architecture for

Control Networks - Device Description Language (DDL), 2010.

[102] American National Standard (ANSI). Draft BSR E1.17-20xx Architecture for

Control Networks - Session Data Transport Protocol (SDT)), 2009.

[103] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol,
Version 2. RFC 2608 (Proposed Standard), June 1999. Updated by RFC 3224.

[104] K. McCloghrie and M. Rose. Management Information Base for Network Man-
agement of TCP/IP-based internets:MIB-II. RFC 1213 (Standard), March 1991.
Updated by RFCs 2011, 2012, 2013.

[105] S. Turner. IEC 62379 Common control interface for networked digital audio and

video products. AudioScience Inc, December 2009. IEC62379 Presentation for
P1722.1.

[106] Institute of Electrical and Electronics Engineers Standards Association (IEEE-
SA). Guidelines for 64-bit Global Identifier (EUI-64TM) Registration Authority,
November 2012.

[107] R. Foss, R. Gurdan, B. Klinkradt, and N. Chigwamba. An Integrated Connection
Management and Control Protocol for Audio Networks. In Audio Engineering

Society Convention 127, October 2009.

[108] UMAN. Universal Media Access Network, 2012. http://www.umannet.
com/ [Accessed: 2012.11.08].

[109] N. Chigwamba, R. Foss, R. Gurdan, and B. Klinkradt. Parameter Relation-
ships in High-Speed Audio Networks. Journal of the Audio Engineering Society,
60(3):132–146, 2012.

http://www.plasa.org/welcome/
http://www.plasa.org/welcome/
http://www.umannet.com/
http://www.umannet.com/

REFERENCES 276

[110] R. Foss, R. Gurdan, B. Klinkradt, and N. Chigwamba. The XFN Connection
Management and Control Protocol. In Audio Engineering Society Conference:

44th International Conference: Audio Networking, November 2011.

[111] OCA Alliance. OCA Release 1.1, September 2012.

[112] OCA Alliance. About the OCA Alliance. http://www.oca-alliance.

com/About/index.html [Accessed: 2012.10.09].

[113] Audio Engineering Society (AES). AES standard for sound system control - Ap-

plication protocol for controlling and monitoring audio devices via digital data

networks - Part 1: Principles, formats, and basic procedures, AES24-1-1999
edition, 1999.

[114] OCA Alliance. OCA Open Control Architecture Release 1.1 - OCF:Framework,
revision 11 edition, September 2012.

[115] OCA Alliance. OCA Open Control Classes Overview, revision 05 edition,
September 2012.

[116] OCA Alliance. OCA Open Control Architecture Release 1.1 - OCP.1 OCA Pro-

tocol for TCP / IP Networks, revision 10 edition, September 2012.

[117] 1394 Trade Association (1394TA). AV/C Digital Interface Command Set General

Specification Version 4.2, September 2004.

[118] A. Butterworth. AVB based AVB Device. Apple Inc, 2009.

[119] 1394 Trade Association (1394TA). Specifications. http://www.1394ta.

org/developers/Specifications.html [Accessed: 2010.10.11].

[120] International Electrotechnical Commission (IEC). Consumer audio/video equip-

ment - Digital interface - Part 1: General, 3rd edition edition, 2008.

[121] 1394 Trade Association (1394TA). TA Document 1999008: AV/C Audio Subunit

Specification 1.0, 2000.

[122] 1394 Trade Association (1394TA). TA Document 2004007: AV/C Music Subunit

Specification 1.1, 2005.

[123] 1394 Trade Association (1394TA). TA Document 1999045: AV/C Information

Block Types Specification Version 1.0, 2001.

http://www.oca-alliance.com/About/index.html
http://www.oca-alliance.com/About/index.html
http://www.1394ta.org/developers/Specifications.html
http://www.1394ta.org/developers/Specifications.html

REFERENCES 277

[124] 1394 Trade Association (1394TA). TA Document 1999025: AV/C Descriptor

Mechanism Specification Version 1.0, 2001.

[125] R. Foss and J. Fujimori. mLAN - The Current Status and Future Directions. In
Audio Engineering Society Convention 113, October 2002.

[126] Yamaha Corporation. mLAN-NC1 PH1 Block Specification, 2001. Confidential.

[127] Yamaha Corporation. mLAN-PH2 (YTS440-F) Specification, 2003. Confidential.

[128] R. Foss and J. Fujimori. A New Connection Management Architecture for the
Next Generation of mLAN. In Audio Engineering Society Convention 114,
March 2003.

[129] R. Foss, J. Fujimori, and H. Okai-Tettey. An Open Design and Implementation
for the Enabler Component of the Plural Node Architecture of Professional Audio
Devices. In Audio Engineering Society Convention 119, October 2005.

[130] R. Foss, J. Fujimori, K. Kounosu, and R. Laubscher. An Open Generic Trans-
porter Specification for the Plural Node Architecture of Professional Audio De-
vices. In Audio Engineering Society Convention 118, May 2005.

[131] The Center for New Music and Audio Technology (CNMAT). OSC Implemen-
tations. http://opensoundcontrol.org/implementations [Ac-
cessed: 2012.10.01].

[132] Audio Engineering Society (AES). Aes-x170 initiation, May 2010.
http://www.aes.org/standards/meetings/init-projects/

aes-x170-init.cfm [Accessed: 2012.11.09].

[133] U. Franke. WOscLib: The Weiss OpenSound Control Library, 2005. http:

//wosclib.sourceforge.net/ [Accessed: 2012.10.19].

[134] A. Freed and A. Schmeder. Features and Future of Open Sound Control version
1.1 for NIME. In NIME, June 2009.

[135] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035
(Standard), November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982,
1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034,
4035, 4343, 5936, 5966, 6604.

[136] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. IETF, 2011.
http://files.dns-sd.org/draft-cheshire-dnsext-nbp.txt

[Accessed: 2012.09.20].

http://opensoundcontrol.org/implementations
http://www.aes.org/standards/meetings/init-projects/aes-x170-init.cfm
http://www.aes.org/standards/meetings/init-projects/aes-x170-init.cfm
http://wosclib.sourceforge.net/
http://wosclib.sourceforge.net/
http://files.dns-sd.org/draft-cheshire-dnsext-nbp.txt

REFERENCES 278

[137] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location of
services (DNS SRV). RFC 2782 (Proposed Standard), February 2000. Updated
by RFC 6335.

[138] Internet Assigned Numbers Authority (IANA). Service Name
and Transport Protocol Port Number Registry. http://www.

iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.xml [Accessed: 2012.10.17].

[139] R. Foss, R. Gurdan, B. Klinkradt, and N. Chigwamba. The AES-3CIM Connec-
tion Management and Control Protocol. 2012.

[140] P1722.1 Working Group. Device Discovery, Enumeration, Connection Manage-
ment & Control Protocol for AVTP devices. http://grouper.ieee.org/
groups/1722/1/AVB-DECC/IEEE-1722.1_Working_Group.html

[Accessed:2012.10.21].

[141] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Pro-
posed Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393,
5621, 5626, 5630, 5922, 5954, 6026, 6141, 6665.

[142] G. Camarillo. SIP Demystified. McGraw-Hill Professional, 2001.

[143] M. Mealling and R. Denenberg. Report from the Joint W3C/IETF URI Plan-
ning Interest Group: Uniform Resource Identifiers (URIs), URLs, and Uniform
Resource Names (URNs): Clarifications and Recommendations. RFC 3305 (In-
formational), August 2002.

[144] C. Holmberg. Session Initiation Protocol (SIP) Response Code for Indication of
Terminated Dialog. RFC 6228 (Proposed Standard), May 2011.

[145] A. Niemi and D. Willis. An Extension to Session Initiation Protocol (SIP) Events
for Conditional Event Notification. RFC 5839 (Proposed Standard), May 2010.

[146] G. Camarillo, W. Marshall, and J. Rosenberg. Integration of Resource Man-
agement and Session Initiation Protocol (SIP). RFC 3312 (Proposed Standard),
October 2002. Updated by RFCs 4032, 5027.

[147] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.
Updated by RFCs 1122, 3168, 6093, 6528.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://grouper.ieee.org/groups/1722/1/AVB-DECC/IEEE-1722.1_Working_Group.html
http://grouper.ieee.org/groups/1722/1/AVB-DECC/IEEE-1722.1_Working_Group.html

REFERENCES 279

[148] O.P. Igumbor and R. Foss. A Proxy Approach for Interoperability and Com-
mon Control of Networked Digital Audio Devices. In Audio Engineering Society

Convention 128, May 2010.

[149] The AVAHI Team. AVAHI, 2005. http://www.avahi.org/ [Accessed:
2012.11.09].

[150] The AVAHI Team. avahi 0.6.31, February 2012. http://avahi.org/

download/doxygen/ [Accessed: 2012.11.09].

[151] ALSA Project. Advanced Linux Sound Architecture (ALSA) project home-
page. http://www.alsa-project.org/main/index.php/Main_

Page [Accessed: 2012.10.31].

[152] D. Steinberg and S. Cheshire. Zero Configuration Networking: The Definitive

Guide. O’Reilly Media, Inc., first edition, December 2005.

[153] Universal Media Access Networks (UMAN). UNOS Creator User Manual,
February 2010. http://www.unosnet.com/unosnet/index.php/

unos-core.html [Accessed: 2011.05.29].

[154] P.T. Ward and S.J. Mellor. Structured Development for Real-Time Systems, Vol-

ume 1: Introduction and Tools. Prentice Hall, June 1986.

[155] P. Foulkes. kmsrp for end station. http://code.google.com/p/kmsrp/
[Accessed: 2012.10.31].

[156] Universal Media Access Networks (UMAN). UNOS Vision. http://

www.unosnet.com/unosnet/index.php/unos-vision.html [Ac-
cessed: 2012.04.26].

[157] XMOS. Low-Cost AVB Audio Kit Built on XCore Processor,
2011. http://www.xmos.com/resources/xkits?category=

Low-cost+AVB+Audio+Endpoint+Kit [Accessed: 2012.11.20].

[158] LabX Technologies, LLC. Titanium 411 Ruggedized AVB Ethernet
Bridge. http://www.labxtechnologies.com/connectivity/

titanium-411-ruggedized-avb-ethernet-bridge/ [Ac-
cessed:2012.11.20].

[159] S. Card and T. Moran. User technology - from pointing to pondering. In Pro-

ceedings of the ACM Conference on The history of personal workstations, HPW
’86, pages 183–198, New York, NY, USA, 1986. ACM.

http://www.avahi.org/
http://avahi.org/download/doxygen/
http://avahi.org/download/doxygen/
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/main/index.php/Main_Page
http://www.unosnet.com/unosnet/index.php/unos-core.html
http://www.unosnet.com/unosnet/index.php/unos-core.html
http://code.google.com/p/kmsrp/
http://www.unosnet.com/unosnet/index.php/unos-vision.html
http://www.unosnet.com/unosnet/index.php/unos-vision.html
http://www.xmos.com/resources/xkits?category=Low-cost+AVB+Audio+Endpoint+Kit
http://www.xmos.com/resources/xkits?category=Low-cost+AVB+Audio+Endpoint+Kit
http://www.labxtechnologies.com/connectivity/titanium-411-ruggedized-avb-ethernet-bridge/
http://www.labxtechnologies.com/connectivity/titanium-411-ruggedized-avb-ethernet-bridge/

REFERENCES 280

[160] D. Wessel and M. Wright. Problems and Prospects for Intimate Musical Control
of Computers. Computer Music Journal, 26(3):11–22, September 2002.

[161] R.F. Moore. The Dysfunctions of MIDI. Computer Music Journal, 12(1):19–28,
March 1988.

[162] Wireshark Foundation. Wireshark the world’s foremost network protocol ana-
lyzer. http://www.wireshark.org/ [Accessed: 2012.02.12].

[163] WinPcap. WinPcap - The industry-standard windows packet capture library.
http://www.winpcap.org/ [Accessed: 2012.09.21].

[164] U. Lamping, R. Sharpe, and E. Warnicke. Wireshark User’s Guide, 2004.

[165] QLOGIC. Introduction to Ethernet Latency - An Explanation of Latency and
Latency Measurement. August 2011.

[166] M. Muus. The Story of the PING Program. http://ftp.arl.mil/mike/
ping.html [Accessed: 2012.11.21].

[167] XMOS. XS1-L02A-QF124 Datasheet. XMOS, 10 2012. Document Number:
X118.

[168] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantita-

tive Approach. Morgan Kaufmann, 2012. ISBN: 978-0-12-383872-8.

http://www.wireshark.org/
http://ftp.arl.mil/mike/ping.html
http://ftp.arl.mil/mike/ping.html

	1 Introduction
	1.1 Networked audio device
	1.2 Audio Transport Technology
	1.3 Audio Control Protocols
	1.4 Problem Statement
	1.5 Command Translation Approach
	1.6 Chapter Layout

	2 Digital Audio Network Technologies and Interoperability
	2.1 Audio Networking Technologies
	2.1.1 Resource allocation
	2.1.2 Device synchronization
	2.1.3 Network latency

	2.2 Overview of current Audio Networking Technologies
	2.2.1 Layer 2 Audio Networking Technologies
	2.2.1.1 IEEE 1394
	2.2.1.2 Ethernet AVB
	2.2.1.3 CobraNet
	2.2.1.4 RockNet
	2.2.1.5 EtherSound

	2.2.2 Review of Layer 2 Audio Networking Technologies
	2.2.2.1 Interoperability on layer 2 networks
	2.2.2.2 Tunneling nodes for Layer 2 Interoperability

	2.2.3 Layer 3 Audio Networking Technologies
	2.2.3.1 Q-LAN
	2.2.3.2 RAVENNA
	2.2.3.3 Livewire
	2.2.3.4 Dante

	2.2.4 Review of Layer 3 Audio Networking Technologies
	2.2.4.1 Interoperability on layer 3 networks
	2.2.4.2 AES-X192 for Layer 3 Interoperability

	2.3 Audio Networking Technology Interoperability
	2.4 Summary

	3 Audio Network Control Protocols
	3.1 Audio Control Protocols
	3.2 Overview of Layer 3 Audio Control Protocols
	3.2.1 Open Sound Control (OSC)
	3.2.1.1 OSC messaging

	3.2.2 Architecture for Control Networks (ACN)
	3.2.3 Common Control Interface for Networked Audio and Video Products (IEC 62379)
	3.2.3.1 IEC 62379 monitoring and control
	3.2.3.2 IEC 62379 discovery

	3.2.4 Audio Engineering Society standard for Command, Control and Connection Management for Integrated Media (AES-64)
	3.2.4.1 AES-64 messaging

	3.2.5 Open Control Architecture (OCA)
	3.2.5.1 OCA messaging

	3.3 Overview of Layer 2 Audio Control Protocols
	3.3.1 Audio Video Control (AV/C)
	3.3.2 IEEE 1722.1 (AVDECC)
	3.3.3 Music Local Area Network (mLAN)

	3.4 Protocols of Interest
	3.4.1 Focus on OSC
	3.4.1.1 Device model
	3.4.1.2 Device discovery
	3.4.1.3 Connection management

	3.4.2 Focus on AES-64
	3.4.2.1 Device model
	3.4.2.2 Device discovery
	3.4.2.3 Connection management

	3.4.3 Focus on IEEE 1722.1
	3.4.3.1 Device model
	3.4.3.2 Device discovery
	3.4.3.3 Connection management

	3.5 Summary

	4 Approaches to Networked Audio Device Interoperability
	4.1 Control Protocol Interoperability Challenge
	4.2 Solutions for Interoperability
	4.2.1 Hardware abstraction plug-in approach - mLAN
	4.2.2 Layer 3 common specification approach - AES-X192
	4.2.3 AVDECC Proxy Protocol

	4.3 Command translation for Interoperability
	4.4 Summary

	5 Layer 3 end station implementation - OSC
	5.1 OSC Server Overview
	5.1.1 Implementation Platform
	5.1.2 Device discovery component
	5.1.3 AVB component
	5.1.4 OSC parser component
	5.1.5 OSC service

	5.2 OSC Server capabilities
	5.3 OSC Server Implementation Layout
	5.4 Device Discovery
	5.4.1 Publishing of OSC server
	5.4.2 Withdrawing of OSC service

	5.5 OSC Address Space for OSC Server
	5.5.1 OSC address space for OSC generic properties
	5.5.2 OSC address space for device properties
	5.5.3 OSC address space for AVB properties

	5.6 Connection Management
	5.6.1 Implementing connection management capabilities in the OSC server
	5.6.2 OSC methods for connection management
	5.6.3 OSC server as AVTP talker
	5.6.3.1 Stream identification
	5.6.3.2 Stream enumeration
	5.6.3.3 Stream advertising
	5.6.3.4 Stream transmission

	5.6.4 OSC server as AVTP listener
	5.6.4.1 Stream identification
	5.6.4.2 Stream enumeration
	5.6.4.3 Stream attachment
	5.6.4.4 Stream reception

	5.7 Internal Audio Signal Routing
	5.8 Summary

	6 Layer 3 Proxy Implementation
	6.1 Introduction
	6.2 The Proxy Approach
	6.3 OSC Proxy Design
	6.4 OSC Proxy Implementation
	6.4.1 OSC server discovery
	6.4.2 AES-64 parameters for OSC server
	6.4.2.1 Device discovery parameter types
	6.4.2.2 Input parameter types
	6.4.2.3 Output parameter types
	6.4.2.4 Internal routing matrix parameter types

	6.4.3 OSC proxy for connection management
	6.4.3.1 Setting up OSC server as AVB listener
	6.4.3.2 Setting up OSC server as AVB talker

	6.5 Layout of the OSC proxy Implementation
	6.6 Tests and Results
	6.6.1 Device discovery via OSC proxy
	6.6.2 Connection management via OSC proxy

	6.7 Qualitative Analysis
	6.8 Summary

	7 Layer 2 end station Implementation - AVDECC
	7.1 Introduction
	7.2 AVDECC library
	7.2.1 AVDECC Transport Controller module
	7.2.2 ADP module
	7.2.2.1 Advertising state machine
	7.2.2.2 Discovery state machine

	7.2.3 ACMP module
	7.2.3.1 Controller state machine
	7.2.3.2 Listener state machine
	7.2.3.3 Talker state machine

	7.2.4 AECP module
	7.2.5 AEM container

	7.3 Transform based description of libavdecc
	7.4 AVDECC end station
	7.4.1 Discovering the AVDECC end station
	7.4.2 Connection management on AVDECC end station
	7.4.2.1 AVDECC end station as AVDECC listener
	7.4.2.2 AVDECC end station as AVDECC talker

	7.5 Summary

	8 Layer 2/Layer 3 Proxy Implementation
	8.1 Introduction
	8.2 AVDECC Proxy Design
	8.3 AVDECC Proxy Implementation
	8.3.1 AES-64 parameters for AVDECC end stations
	8.3.1.1 Device discovery parameters for an AVDECC end station
	8.3.1.2 Connection management parameters for an AVDECC end station

	8.3.2 Device discovery of AVDECC end stations
	8.3.3 Connection management procedure for AVDECC end stations
	8.3.3.1 Connection management procedure between two AVDECC end stations
	8.3.3.2 Connection management procedure between AES-64 and AVDECC end stations
	8.3.3.3 Connection management procedure with AVDECC end station as AVB listener

	8.4 Testing and Results
	8.4.1 Integrating layer 2 devices into a layer 3 network
	8.4.1.1 Discovering layer 2 devices
	8.4.1.2 Connection management between layer 2 devices

	8.4.2 Common control of layer 2 and layer 3 devices
	8.4.2.1 Discovering layer 2 and layer 3 devices
	8.4.2.2 Connection management between layer 2 and layer 3 devices

	8.5 Summary

	9 Quantitative Analysis
	9.1 Introduction
	9.1.1 Visual stimuli perception time
	9.1.2 Auditory stimuli perception time
	9.1.3 Perception time criterion for quantitative analysis

	9.2 Quantitative analysis of Layer 3 Proxy
	9.2.1 Scenario One: Connection between OSC end stations
	9.2.2 Scenario Two: Connection between OSC and AES-64 end stations
	9.2.3 Results analysis

	9.3 Quantitative analysis of Layer 2/Layer 3 Proxy
	9.3.1 Scenario One: Connection between AVDECC end stations
	9.3.2 Scenario Two: Connection between AVDECC and AES-64 end stations
	9.3.3 Results analysis

	9.4 Summary

	10 Conclusion
	References

