
 

 THE ECONOMICS OF CONVERTING A SHEEP FARM INTO A 
SPRINGBUCK (Antidorcas marsupialis) RANCH IN GRAAFF-REINET: A 

SIMULATION ANALYSIS 
 
 
 
 
 

A thesis submitted in fulfilment of the requirements for the degree of  
 
 
 
 

Doctor of Philosophy 
 
 
 
 
 

RHODES UNIVERSITY 
 
 
 

by 
 
 

THULA SIZWE DLAMINI 
 
 
 
 

Supervisor: Professor Gavin C. G. Fraser 
 
 
 
 
 
 
 

December 2011



ii 
 

THE ECONOMICS OF CONVERTING A SHEEP FARM INTO A 
SPRINGBUCK (Antidorcas marsupialis) RANCH IN GRAAFF-REINET:  

A SIMULATION ANALYSIS 
by 

THULA SIZWE DLAMINI, 2011 

 

Degree: PhD 
Department: Economics and Economic History 
Supervisor:  Prof. Gavin C.G. Fraser 
 

ABSTRACT 

In Graaff-Reinet, domestic livestock farming and springbuck ranching are similar in that 

they both rely on the rangeland for their sustainability. However, as a consequence of repeated 

monotonous domestic livestock farming, resulting in compromised biological productivity and 

diversity, the rangelands have disintegrated. This, unfortunately, has placed the future 

sustainability of these rangelands and the livelihoods of the local people in an indeterminate 

state. In recent years, there has been an increasing interest in springbuck ranching for meat 

production as an alternative to domestic livestock farming in the area following (a) fears of 

worsening environmental challenges; (b) declining profitability in commercial domestic livestock 

farming and; (c) growing calls for the sustainable use of these rangelands for the benefit of 

future generations. The springbuck has emerged as a credible alternative to utilising the 

rangelands - as opposed to sheep - because of its promise to addressing the above challenges. 

This is in an attempt to tap into the multitude of benefits that the springbuck possesses (by 

virtue of being part of the natural capital of the area) that have a potential towards restoring 

ecological integrity by extenuating some of the detrimental effects of sheep farming on the 

rangelands and presenting opportunities for diversifying incomes. Yet, despite the general 

increase in interest, a resistance towards the uptake of springbuck ranching for meat production 

exists. The main contention is that springbuck meat production cannot out-perform the 

economic returns of wool sheep farming. This study attempts to address these concerns by 

investigating the profitability and economic sustainability of converting a sheep farm into a 

springbuck ranch in Graaff-Reinet.  

The study uses stochastic simulation to estimate the probability distribution of some key 

output variables, namely: net cash income, ending cash balance, real net worth and the net 
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present value (NPV) in evaluating the profitability of converting a 5 000ha sheep-dominated 

farm into a springbuck-dominated ranch under three alternative scenarios. The use of stochastic 

simulation allows for the incorporation of downside risk associated with the production and 

marketing of wool, mutton and springbuck meat. The study uses stochastic prices and yields to 

calculate net returns variability. Incorporating scenario analysis helped to evaluate how 

alternative wool sheep-dominated and springbuck-dominated combinations would perform 

based on the probable outcomes of different assumptions in the various scenarios. By applying 

stochastic efficiency with respect to a function (SERF) criterion to the simulated NPVs, this 

study compares the profitability of alternative scenarios based on various risk aversion 

coefficients.  

The study finds that converting a 5 000ha wool sheep dominated farm into a springbuck 

dominated ranch could potentially be a more profitable investment than wool sheep farming 

over a 15 year planning horizon, in Graaff-Reinet. The SERF results indicate that for all 

scenarios tested, the best strategy of converting a wool sheep dominated farm into a springbuck 

ranch would be one which comprise a combination of 70% springbuck, 20% mutton and 10% 

wool production as the likely profitable enterprise mix. Using economic sustainability analysis, 

the study reveals that because of low costs in springbuck ranching, springbuck meat production 

enterprises are most likely to be more financially sustainable than wool sheep-dominated 

enterprises. This suggests that rangeland owners may be better off converting their wool sheep-

dominated farms into springbuck-dominated ranches. Thus, as the call for more 

environmentally benign rangeland utilising economic-ecological systems intensifies, rangeland 

owners in the Eastern Cape Karoo have a practicable option. At the very least, there exists an 

option to broaden their incomes whilst promoting ecological restoration with springbuck meat 

production.  
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Chapter 1.  

INTRODUCTION 

1.1 Introduction 

The publication of Acocks’ (1953) ‘‘Veld types of South Africa” marked a defining 

moment in thinking on the environment and domestic livestock farming in the Karoo. 

Subsequent to this, domestic livestock farming has received harsh criticism for its failure to 

address issues of environmental equity and quality (Milton et al., 1994). Research in the Karoo 

documents widespread rangeland degradation (Roux, undated; Roux and Vorster, 1983), with 

clear signs of biological productivity loss (Visser et al., 2004) and to some extent looming dryland 

degradation/desertification (Dean et al., 1995) owing to an interplay of a variety of other factors 

as well as more than two centuries of monotonous domestic livestock farming (Roux, undated, 

Cowling et al., 1986). Although the question of whether the Karoo is in fact expanding (Acocks, 

1953) or not is still far from being settled. The recent release of the Millennium Development 

Goals (MDGs) country report titled “The South Africa I Know, The Home I Understand” 

cautions that the “degradation of the environment threatens the very basis of sustained 

economic growth” (SAGI, 2010:97), illustrating that degradation challenges could downplay any 

meaningful gains in economic and human development in South Africa.   

The report underscores the importance of aligning agricultural production with 

environmental protection (SAGI, 2010), implying the need for prudent and farsighted rangeland 

utilisation ecological-economic systems that will promote ecological cohesion whilst maintaining 

the livelihoods of the people who live in these areas. However, despite considerable investment 

in environmental conservation (DEAT, 1997; SAGI, 2004) and rangelands restoration and 

reclamation programmes (NDA, 1998), rangelands in the Eastern Cape Karoo (EC Karoo) 

continue to linger under a cloud of controversy. This is with regard to the identification and 

perhaps adoption of an ecological-economic system that will promote their sustainable 

utilisation given the visible environmental effects of monotonous domestic livestock farming.  

The exploration for alternative and environmentally benign rangeland utilisation ecological-

economic systems has not been without challenges.  
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First, the historical economic significance of the livestock industry, essentially wool 

sheep farming, has frustrated in a way any attempts aimed at conserving the rangeland by 

replacing domestic livestock in the area. Secondly, the economic returns in domestic livestock 

farming intertwined with historical state backing before 1994 have caused it to be an 

‘untouchable’ sector, especially in the Karoo, despite its visible effects on the environment and 

ecology (Beinart, 2003). Because of these factors, traditional interventions aimed at improving 

environmental health have focused predominantly on how best to improve the productivity of 

the rangelands without compromising the existence of the very industry that has caused some of 

those problems. For example, earlier efforts aimed at curbing continued environmental 

degradation in the EC Karoo, included calls for a reduction in stocking rates to acceptable levels, 

which are at par with the carrying capacities of such rangelands (Nel and Hill, 2008). Whilst 

domestic livestock farmers took heed of the calls to reduce stocking rates, few benefits have 

accrued to the rangeland in terms of reversing actual degradation. This is understandable, as the 

focus on the stocking rates has missed an important aspect of one of the causes of 

environmental degradation: the failure of domestic livestock to promote biological diversity (see 

Donahue, 1999).  

Against this backdrop, critics of domestic livestock farming in semi-arid areas have 

argued vigorously that natural ecosystems will only regain their native biodiversity and biological 

productivity once they are free of domestic livestock grazing (see Donahue, 1999; Fleischner, 

1994; Vavra, 1992). Such authors (Donahue, 1999; Fleischner, 1994) have implicitly suggested 

that the total removal of livestock is necessary to stimulate their restoration (Curtin, 2002). 

These studies have recommended that this could be achieved through the production of those 

species of wild animals (indigenous species) that have coevolved with the ecology in such 

rangelands, otherwise known as natural capital (Donahue, 1999; Fleischner, 1994; Vavra, 1992). 

The argument is that wild animals are biologically better adapted to survive harsh arid climatic 

conditions and could, when used in their native ecosystems, minimise the environmental 

drawbacks of domestic livestock (Milton et al., 2003). Numerous other studies in the biological 

sciences have also shown that game animals have a proficiency to reproduce at much higher 

rates than domestic livestock. For example in the EC Karoo, Skinner et al. (1986) identified the 

springbuck as naturally predisposed to convert plant biomass into saleable meat products much 



Chapter 1 Introduction 

3 
 

more efficiently than the sheep. Indeed, as Milton et al. (2003) opine, the restoration of natural 

capital in the context of South African rangelands is particularly important as a matter of 

urgency to tackle continued economic hardships of the rural masses in terms of job creation and 

maintaining livelihoods. 

Consequently, as a result of increasing rangeland degradation owing to continued sheep 

farming, declining biological productivity and diminishing profits in traditional commercial 

livestock farming, many sheep farmers have embarked on an explorative search for viable 

rangeland utilisation economic systems, which could potentially ensure the continued economic 

sustenance of their enterprises and promote rangeland reclamation whilst producing food. Thus, 

it is not surprising that one common combination of game and livestock in Graaff-Reinet is 

sheep and springbuck ranching for meat production. In the meantime, meat production from 

the springbuck has bourgeoned in the area driven by an increase in demand in overseas markets 

(Neethling, personal communication; Hoffman, 2003) and to a small degree in the local market 

as well (Neethling, personal communication). This has further led to renewed interests in 

springbuck ranching for meat production following earlier warnings that because of poor 

venison prices, meat production from game animals was most likely to lose its economic 

impetus (Hoffman et al., 1999). In the past 15 years, for example, meat production from the 

springbuck has grown from about 20 thousand animals harvested in 1996 to about 30 thousand 

bucks harvested in 2010 as shown in Table 1.1 (Camdeboo Meat Processors, 2010). The 

existence of an excellent abattoir in the area with a robust business structure for springbuck 

meat production has somewhat provided further proof of the potential of springbuck ranching 

for meat production as an alternative to wool sheep farming. 

However, despite its obvious economic potential and benefits on the environment, 

springbuck ranching for meat production has failed to make it as a practicable alternative 

ecological-economic system to wool and mutton sheep farming in the area. Even where farmers 

have tried to take advantage of the economic benefits of the springbuck, it has only been 

through a combination that favours sheep farming more than it does springbuck meat 

production. The leading reasons for this include allegations that springbuck ranching cannot 

outperform the profitability and risk efficiency of sheep farming in the area, the results of which 

have been a general bias against springbuck ranching as the main ecological-economic system in 
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these rangelands. Moreover, equally true is that for farmers to fully accept springbuck ranching 

as an alternative ecological-economic system in the area, springbuck ranching for meat 

production must be a comparatively more profitable and have lesser risks than sheep farming. A 

risk and profitability analysis of springbuck ranching for meat production is therefore required 

to determine whether it would be profitable to convert a sheep farm into a springbuck meat 

production ranch to harness its ecological benefits on the environment.   

Table 1.1: Numbers of Springbuck Cropped for Meat Production in Graaff -Reinet 
Year Quantity (animal 

units) 
Average Dressed 

weight (Kg) 
Price/kg (Yearly average) 

(R) 

1996 20 975 19.20 8.00 

2001 31 563 15.50 11.00 

2009 24 814 14.60 20.00 

2010 29 678 14.00 25.50 

Source: Camdeboo Meat Processors, Graaff-Reinet.  

1.2 Statement of the Problem 

According to Krug (2001:4), the perception that public institutions are incapable of 

safeguarding the adequate provision and conservation of biological biodiversity in natural 

ecosystems in developing countries is a testimony to the need to develop “new and innovative 

approaches” to stimulate their conservation and preservation. The idea of restoring biodiversity 

through the production of natural capital is fast gaining precedence in South Africa’s arid to 

semi-arid rangelands (see Milton et al., 2003). The growth in demand for wildlife meat products 

in overseas markets (Hoffman, 2003; Hoffman and Wikund, 2005) presents a scope for further 

innovative approaches to arrest widespread degradation challenges and improve the biological 

diversity of the rangelands in Graaff-Reinet. Economically speaking, the role of biological 

diversity in an ecosystem is important for several reasons. Firstly, it increases the mean level of 

ecosystem services thus improving its productivity (Baumgatner, 2007; Baumgatner and Quaas, 

2005); and, secondly, it provides ecological insurance for the continued provision of those 

ecosystem functions that are the building blocks for some crucial ecological processes thus 

ensuring ecological stability (Constanza et al., 1997; Baumgatner, 2007). The realisation of these 

fundamental properties of biodiversity from an economic view makes biodiversity the single 

most important injection in the production function of natural ecosystems.  
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However, for biodiversity conservation initiatives to be successful, biodiversity boosting 

ecological-economic systems must compete with commercial domestic livestock farming 

economic systems in these areas. Similarly, for domestic livestock farmers to convert their wool 

sheep farms to springbuck ranches in Graaff-Reinet, meat production from the springbuck must 

be paying comparatively higher returns than wool sheep farming. In the light of this, it is the 

expectation of this study that if meat production from the springbuck is a profitable ecological-

economic system in Graaff-Reinet, rangeland owners might be more than willing to convert 

their sheep farms into springbuck ranches to take advantage of both the ecological and 

economic benefits of springbuck ranching. The effect of this conversion is anticipated to aid in 

biodiversity restoration and to jump-start the much-needed reclamation of the rangelands. It is, 

therefore, necessary to determine (a) under what conditions springbuck ranching will compete 

successfully with sheep farming, and (b) the extent to which production, yield and price risk 

would affect the profitability of springbuck ranching for meat production. No studies have 

utilised simulation analysis to investigate the economics of converting from sheep farming to 

springbuck ranching in South Africa. Given the ecological benefits of springbuck ranching on 

the rangelands, this study is important in that it will provide valuable insights into the 

profitability and risk efficiency of converting a wool sheep dominated farm into a springbuck 

dominated enterprise, in Graaff-Reinet.  

1.3 Objectives of the Study 

The purpose of this study is to analyse the economic profitability of converting a 5 000ha 

sheep farm into a springbuck ranch in Graaff-Reinet whilst overtly considering risk. Springbuck 

ranching differs from sheep farming in that it has the potential to promote the sustainable use of 

rangelands by stimulating biological diversity and rangelands reclamation and restoration 

(Skinner et al., 1986). In addition, a springbuck enterprise incurs minimal operational costs and 

presents an opportunity to landowners to conserve their rangelands whilst earning some income 

(Skinner et al., 1986). However, since the current dominant rangeland utilisation system in the 

area is wool and mutton sheep farming, there arises options through which farmers can 

introduce springbuck ranching, as a medium towards rangelands reclamation and conservation. 

Moreover, not all of these options can present the decision maker with the best outcome in 
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terms of maximising expected net returns. Thus, in this study, three different rangeland 

utilisation scenarios grouped into four cohorts are used to analyse the economic profitability of 

converting from sheep farming into springbuck ranching in Graaff-Reinet.  

The central assumption of this study is that landowners in Graaff-Reinet are profit 

maximisers. Thus, it is subsequently assumed that rangelands utilisation choices are dependent 

upon economic superiority of the different enterprise mixes on the farm. This means that the 

rangeland owner might be enticed to continue with the current ecological-economic system 

despite its effect on the rangeland, if it maximises his net returns and vice versa. Thus in order to 

reconcile the profit maximisation goal of rangeland owners with the constitutional obligation of 

wanting to conserve natural ecosystems through biodiversity restoration and environmental 

conservation, the study explores the effect of some policy incentives on the profitability of 

converting from sheep farming to springbuck ranching. This is done through the introduction 

of a set of incentives for springbuck ranching. The study also aims to investigate the economic 

sustainability of the different alternative scenarios in a bid to understand the performance of 

springbuck meat production on farm profitability over a 15-year planning horizon. A 

profitability analysis of the various rangelands utilisation ecological-economic systems is also 

required to evaluate which ecological-economic system decision makers would prefer under 

different absolute risk aversion coefficients.  

The specific objectives of this study are as follows: 

1. To evaluate the profitability of converting a 5 000ha wool sheep dominated farm into a 

springbuck dominated ranch, whilst overtly taking risk.  

2. To investigate the requisite factors influential in the prospect of returning a positive net 

present value (NPV) for a 5 000ha springbuck dominated ranch, in Graaff-Reinet. 

3. To explore the effect of some policy incentives on the profitability of converting a 

5 000ha sheep dominated farm into a springbuck dominated ranch in Graaff-Reinet.  

4. To analyse the economic sustainability of converting a 5 000ha wool sheep dominated 

farm into a springbuck dominated ranch in Graaff-Reinet. 
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1.4 Research Methods 

In order to address the objectives of this study, the following methods were employed. 

Firstly, an initial step which involved the use of a system of simultaneous equations to construct 

a model to estimate farm profitability so that the stochastic analysis could be carried out by 

specifying a multivariate empirical (MVE) probability distributions of outcomes of the various 

strategies was carried out. The MVE probability distribution was used to correlate stochastic 

variables based on their deterministic means. Prices of both inputs and output yields are affected 

by risk, which also affects the efficiency with which the enterprise realises positive net returns. 

Stochastic simulation allows for the incorporation of risk from wool sheep output, mutton 

output and springbuck output and their prices. Secondly, upon specification, the stochastic 

variables were used to create Monte Carlo financial statements necessary to explore the 

profitability of the different utilisation scenarios. Because the use of Monte Carlo financial 

statements enable the creation of various key output variables (KOVs), which included net cash 

income (NCI), ending cash balances (ECB), real net worth (RNW) and net present value (NPV), 

the first two objectives were accomplished using stochastic simulation. Since simulation allows 

for the incorporation of risk from stochastic variables, which in turn presents the decision 

makers with a rounded feel of their management actions on the profitability of their enterprises, 

the effect of risk on the profitability of the various enterprise mixes has also been analysed. 

Stochastic efficiency with respect to a function (SERF) is used to rank the NPVs of the 

alternative scenarios across a range of absolute risk aversion coefficients (ARACs). 

The introduction of incentives could have an effect on the sustained profitability of the 

enterprises and thus may be very instrumental in the decision making process of whether to 

convert a sheep farm into a springbuck ranch. This study uses scenario analysis to necessitate 

the incorporation of various alternative control variables to assess three alternative rangeland 

utilisation options, grouped into four cohorts. Therefore, the combined usage of stochastic 

simulation and scenario analysis will return a distribution with alternative NPVs for the 

alternative rangelands utilisation scenarios in the four cohorts and the results therein shall be 

used to explore the question of which of the alternative scenarios is mostly preferred by decision 

makers. To achieve the last objective, the probability of returning total variable costs greater 

than a maximum threshold of total variable costs relative to total income in both wool sheep 
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farming and springbuck ranching is explored using stochastic simulation. It is anticipated that 

the results of this study will provide rangeland owners with an impartial examination of 

converting from sheep farming into springbuck ranching in Graaff-Reinet.  

1.5 Study Area 

Graaff-Reinet lies in the Eastern Cape Province part of the Nama Karoo (called Eastern 

Cape Karoo in this study) – which is a semi-arid to arid constituent of the Republic of South 

Africa (see Figures 1.1). The area receives an average annual rainfall of between 200mm and 

400mm per annum, with peak rainfall occurring mostly in February and March, accompanied by 

a great number of thunderstorms (Esler et al., 2006). The soils are generally wide ranging and 

have been summarised by Esler et al. (2006:10) to vary based on the “nature of the underlying 

bedrock, position of the soil in the landscape, and with annual rainfall.” Although Graaff-Reinet 

has been argued to yield better vegetation cover than most parts of the Karoo, the question of 

how grassy the Karoo veldt should be has engaged researchers for many years (Esler et al., 2006). 

However, there is a consensus that the grazing capacity of the rangelands fluctuates as per the 

annual variation in rainfall. Because of high rainfall variability and extremely high daytime 

temperatures, the rangelands have been used for over two centuries generally for commercial 

domestic livestock farming, and are arguably South Africa’s oldest.  

These rangelands owe their popularity to the arrival of early European farmers who 

found them to exhibit a potential towards pastoral production (Beinart, 2003). Indeed, soon 

after the arrival of early farmers, the area became synonymous with livestock farming, essentially 

sheep, goat and to a small degree cattle farming (Beinart, 2003). For hundreds of years before 

the arrival of early farmers, however, it is believed that the rangelands were well endowed with a 

variety of wildlife, including a wide selection of wild animals and plant kingdom species (Acocks, 

1953). Moreover, with the arrival of early farmers and particularly, the introduction of the sheep 

in the late 1700s to early 1800s, a great number of wild animals were displaced in the Karoo to 

make way for domestic livestock farming (Roche, 2008; 2000Roche, 2004; Beinart, 2003; 

Archer,). 
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Figure 1.1: Map showing location of study area (Graaff-Reinet) in the Eastern Cape 
Karoo (to the left) and (to the right) location of study area in relation to other areas in 
the Eastern Cape Karoo. Source: Nel and Hill (2008).  

  
Although there are traces of legislation in the late 1800s geared towards environmental 

protection and the conservation of the wild [flora and fauna] (Carruthers, 2008; Grove, 1987), 

the significance of the livestock farming sector – essentially wool sheep farming – played a huge 

role in driving the economy of South Africa at the time (Beinart, 2003; Nel and Hill, 2008) so 

that even with such attempts, it continued to dominate the rangelands (Nel and Hill, 2008). Not 

surprisingly, with the ostrich products boom in the US before the First World War, farmers 

were able to switch to ostrich production, some only temporarily to take advantage of the 

lucrative ostrich products market, only to revert to livestock farming when the ostrich industry 

plummeted (Beinart, 2003). This signalled the importance of economic gains as a key 

determinant of the choice of rangeland utilisation economic systems. Of course, this also 

explains the prevalence of livestock of all kinds in the area in spite of their effects on the 

environment.   

Historically, livestock farming in Graaff-Reinet was largely dependent on the natural 

productivity of the veldt. Nonetheless, with the introduction of modern farming techniques, 

farmers were soon able to intervene in winter by providing supplementary feeding, or through 

periodic resting of paddocks. Because of an influx of large numbers of sheep in the early 1800s 
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to mid-1950s, many problems associated with the destruction of valuable, productive and soil 

protective plants occurred in the Karoo (Roux, undated). Expectedly, as in most arid to semi-

arid areas of South Africa (Wessels et al., 2007), land degradation soon became a serious risk to 

the sustainability of these rangelands. In Graaff-Reinet, historians have contended that some of 

the early cases or fears of land degradation were reported shortly after the beginning of 

commercial pastoral expansion in the Karoo (Beinart, 2003). Acocks (1953) observed that the 

vegetation of much of the area was changing, raising critical questions regarding what the 

rangelands might have looked like before the onset of domestic livestock farming. Although 

many have disputed the idea of an expanding Karoo, the effect of domestic livestock farming on 

the vegetation especially on land degradation, has received much attention from researchers. 

Roux (undated) argues that the degradation of the rangelands has been caused largely by 

domestic livestock, primarily sheep that have decimated indigenous fauna. This led to the 

development of less palatable grasses, which saw the advancement of bare patches that reached 

their climax in the mid-1940s. Roux (undated) states that even though the vegetation has 

somewhat stabilised, under what he has termed a “most critical stage … which, if mismanaged, 

will inevitably develop into a… [less desirable] situation” opportunities exist through which 

grazing can operate for better. Similarly, the status of the EC Karoo’s degradation varies from 

one study to the next and there is no conclusive answer as to what is the exact state of 

degradation. Notwithstanding, evidence suggests that there is a great deal of land degradation 

characterised by vast patches of dry land without cover that has come about as a result of sheep 

farming (Roux and Vorster, 1983).  

The yearnings to conserve the rangelands began in the early years of the 20th century, 

with many interventions from the state aimed at curbing soil erosion, overstocking, veldt 

degradation and destruction of riparian areas by domestic livestock (Beinart, 2003). However, 

almost a century later issues of environmental quality and the need to halt unrelenting land 

degradation have continued to surface, more so in recent years given fears of climate change and 

its projected likely impact on the environment (Archer, 2004). This has led some researchers in 

rangeland ecology to suggest that the reintroduction of those wild animal species (see Milton et 

al. 2003) which are naturally endemic in the area could perhaps stimulate biological diversity, 
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which could lead to the resumption of some of the basic ecological processes thus aiding their 

restoration, recovery and reclamation.  

The springbuck have come out as a natural choice because of their endemic nature in the 

area, and they have been argued by Roche (2008) to be the cornerstone of the Karoo ecosystem. 

Roche (2004) and Roche (2008) further give an elaborate recollection of springbuck movement 

and what could have led to their subsequent displacement, whilst Liversidge (1970) has shown 

that springbuck do indeed feed differently to the sheep on the rangeland. The dominance and 

economic potential of springbuck meat production presents the rare opportunity to rangeland 

owners in Graaff-Reinet to incorporate conservation practices whilst earning income through 

meat production and other ecotourism related economic systems.  

1.6 Study scenarios 

Figure 1.2 presents an illustration of the study scenarios. In its entirety, the study 

investigates the profitability of converting a 5 000ha wool sheep farm into a springbuck ranch 

based on four cohorts with three scenarios per cohort. The scenarios are based on two 

alternative ecological-economic systems taking place on a real 5 000ha sheep farm in Graaff-

Reinet. The farmer currently uses his farm predominantly for wool sheep farming (70%), but 

culls his wool sheep herd for mutton production from time to time (20%). A very small portion 

of his sheep herd is also kept exclusively for mutton production. Springbuck are naturally 

occurring on the farm, and they form a small portion (10%) of the population of animals on the 

farm. The farmer harvests the springbuck on an annual basis, using the skill of professional 

harvesters, to sell at the local springbuck meat processing facility known as Camdeboo Meat 

Processors. The farmer is paid a per kilogram dressed weight price for the springbuck carcases. 

The animals feed entirely on the rangeland except in wool sheep farming where supplementary 

feeding in winter is provided.  

In the springbuck ranching enterprise, the farmer does not conduct any management 

practices, except basic visual examination of the herd for diseases and through clinical 

examination of faecal samples. The other two scenarios are hypothetical. In the second and third 

scenarios, respectively, the farmer is assumed to increase his output on springbuck to explore 

the effects of an increase in springbuck ranching on the profitability of the base scenario. Since 
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output on the farm is constrained by land, scenario two assumes that the farmer increases his 

springbuck output and by default the amount of land utilised by the springbuck to 20% and 

reduces his wool sheep herd by 20% to 50%, by culling more wool sheep for mutton production 

(30%). In the third scenario of cohort one, it is assumed that the farmer uses 70% of his 

rangeland for wool sheep production whilst 30% is used for springbuck ranching.  

Figure 1.2: Schematic representation of study scenarios 

Cohort two scenarios are similar to the cohort one scenarios, only that the farmer is 

assumed to receive subsidies for springbuck ranching. Cohort three and four are hypothetical 

and represent a scaled up commercial springbuck ranching enterprise, producing springbuck 

meat (venison) as a premier product, with a minimal number of wool sheep on the farm. In the 

first scenario of cohort three, the farmer is assumed to allocate 70% of his rangeland to 

springbuck ranching, 20% to mutton production and 10% to wool sheep. In the second 

scenario, the study explores a combination of 50% springbuck, 30% mutton production and 

20% wool sheep production on the profitability of the farm. The third scenario assesses the 

profitability of converting to a combination of 70% springbuck and 30% wool sheep. Cohort 

four scenarios are similar to cohort three scenarios, with the exception that the farmer is 

assumed to receive incentives for springbuck ranching.  
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1.7 Research Outline 

This thesis contains six chapters: chapter 1, which is an introductory chapter, and five 

subsequent chapters. In chapter 2 a review of literature on game ranching and its ecological 

benefits is undertaken. The chapter also includes a review of the literature on the benefits of 

biodiversity before presenting the economic theory related to rangelands utilisation. In chapter 3 

the thesis reviews the theory on decision making under uncertainty. Theories, assumptions, and 

the procedures used to quantify risk in profitability studies are also reviewed in this chapter. 

Chapter 4 presents the method used to quantify the profitability of converting a sheep farm into 

a springbuck ranch in Graaff-Reinet. In chapter 5 the results and findings are presented whilst 

chapter 6 presents the summary, conclusions and recommendations. 

 

 

 



Chapter 2 Game Ranching and Rangeland Utilisation Theory 

14 
 

Chapter 2.  

GAME RANCHING AND RANGELANDS UTILISATION THEORY 

“[An] old South African farmer ... when asked whether he had seen any changes on his farm 
over his lifetime, replied, upon serious reflection, 'I think the rocks are growing’" – Vanclay (1992, as 
cited in Archer, 2000: 675). 

2.1 Introduction 

The subject of sustainable rangeland utilisation in the semi-arid to arid areas of South 

Africa has been revived by the increase in game ranching. Especially in the Karoo, this is in 

response to a drastic change of rangelands in the last 200 years, from highly productive, open 

savannas to land with vast amounts of woody plant cover (Acocks, 1953) characterised by a 

significant degree of degradation (Milton et al., 2003). An increasing amount of literature 

pinpoints the evident ecosystem degeneration of the Karoo to overstocking and overgrazing by 

domestic livestock, essentially sheep and goats. However, in Graaff-Reinet, the endemic nature 

of the springbuck presents opportunities to rangeland owners to initiate the restoration of these 

rangelands whilst gleaning some income through meat production from the springbuck, through 

springbuck ranching. The first part of this chapter motivates the benefits of wild animals on the 

environment: their agricultural potential, reclamation, and biodiversity restoration capabilities. 

This is in an attempt to make a case for springbuck ranching as a medium towards rectifying 

over two centuries of commercial domestic livestock farming in the Karoo, which has left visible 

scars on the environment in terms of land degradation and compromised forage productivity 

(Archer, 2004; Milton et al., 2003).  

Secondly, as a means to circumvent the challenges brought about by rangeland 

degradation, a significant number of farmers have been converting their farms to game ranching 

(Nel and Hill, 2008). A growing number of farms have also incorporated springbuck ranching 

for meat production. Conveniently, the re-introduction of the springbuck in most farms in 

Graaff-Reinet comes as an attempt from farmers to improve the profitability of their enterprises, 

whilst playing their part in the conservation and reclamation of degraded rangelands (Smith and 

Wilson, 2002). Accordingly, and with respect to the main goals of this study, the second part of 



Chapter 2 Game Ranching and Rangeland Utilisation Theory 

15 
 

this chapter presents a discussion of the economic theory on rangelands utilisation. The chapter 

is concluded with a review of economic studies on rangelands utilisation. 

2.2 Game Ranching  

Bothma (2002: viii), defines game ranching as: “the managed, extensive production of 

free living animals on large fenced or unfenced private or communal land, usually for the 

purposes of hunting, live sales, trophy hunting, venison, tourism or other uses.” It is a capital-

intensive business (ABSA, 2003) requiring the use of large tracts of land (Tomlinson et al., 2002). 

Enough evidence is available that proves the feasibility of wildlife production as a worthwhile 

land use option (Ntiamoa-Baidu, 1997: 50), more especially in South Africa where game 

ranching has been argued to be highly developed (Carruthers, 2008). Recent studies, for 

example, have dared that it has been the production of wildlife that South Africa vaunts “one of 

the greatest reversals of fortune ever seen in wildlife conservation” (Bothma, Suich and 

Spenceley, 2009: 147).  

A number of factors have spurred the growth of the game ranching industry in South 

Africa. These range from socio-economic to political and environmental factors. It was, 

however, not until the demise of apartheid, that wildlife utilisation gained tremendous favour 

amongst landholders (Child, 2009a; Carruthers, 2008). For example, prior to 1994, the heavy 

hand of the South African government with its conservative agricultural policies (e.g. subsidies) 

aimed at the conservative farm vote frustrated the development of wildlife enterprises by 

making uneconomical agricultural production in marginalised, unproductive lands economical 

(Child, 2009b; Carruthers, 2008). Nonetheless, it has been through the adoption of a new 

constitution that emphasises the need to protect the environment for the benefit of future 

generations, coupled with a realisation and comprehension of the contribution of livestock 

farming towards environmental degradation, that land use practices geared towards reclaiming 

and preventing unnecessary degradation have gained precedence in privately owned lands (Child, 

2009a; Carruthers, 2008).  

Amongst the leading land use practices that gained favour among private rangelands 

owners is wildlife production and conservation for ecotourism and meat production, through 

game ranching (Lindsey, Romanach and Davies-Mostert, 2009). Indeed, while game ranching 
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was not an entirely new ecological-economic system in South Africa, a distinction between early 

(traditional) game ranchers and the new (modest) game ranchers existed. For example, it is 

argued that, early game ranchers were mainly driven by non-economic pointers to game 

ranching, such as different individual approach and a way of life (Carruthers, 2008, 1995; Brown, 

2002), whereas in recent times the determinants have fundamentally changed, with economic 

and environmental factors gaining more precedence (Carruthers, 2008; Palmer, Peel and Kerley, 

2006; Nell, 2003). For instance, Smith and Wilson (2002: 11) reiterate the observation that a 

combination of both economic and ecological motivations has induced landholders to convert 

to game ranching in South Africa. Others (e.g. Child, 2009b; Lindsey et al., 2009; Carruthers, 

2008) have identified conservation policy experimentation in privately owned lands; political 

regime change; and shared expertise between private game ranchers and state conservancies, as 

some of the leading pull factors to convert into game ranching in South Africa. The 

development of relevant skills, research and development geared towards the game ranching 

industry, adherence to existing values and practices and the lustre of profits, as Nell (2003) adds, 

have also played a significant role in fuelling the interests of private landholders in game 

ranching, in South Africa. 

Moreover, it appears that the development of favourable policy towards wildlife 

ownership, which has also enabled private landholders to invest in game ranching with the aim 

of making a profit, has been of paramount importance (Palmer et al., 2006). Palmer et al. (2006) 

posit that this has also benefitted from political stability and sustained economic growth, after 

the fall of the apartheid regime. These developments have further encouraged the uptake of 

wildlife utilisation, especially in semi-arid areas of South Africa, where commercial livestock 

farming thrived as a result of apartheid government regime policies that promoted the farming 

of marginalized agricultural lands, through state subsidies (Nel and Hill, 2008). In conjunction 

with this, there has been a tremendous increase in demand for wildlife products and a rise in 

ecotourism in South Africa and abroad (Hoffman and Wiklund, 2006; Hoffman, 2003; Hearne et 

al., 2000). The continued lack of competitiveness 1  in agriculture as a result of “closed 

                                                

1 See, for example, the Strategic Plan of South African Agriculture (NDA, 2006).  
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international markets and an altered agricultural regime devoid of state subsidies, control boards 

and other organs of state that protected South Africa’s white commercial farmers” (Carruthers, 

2008: 161), along with rising cost of land and diminishing profitability in the livestock 

production sector, has made game ranching even more appealing to the land holder from an 

income diversification point of view (Palmer et al., 2006). Fuelling the transition have been 

changes in labour legislation, increased stock theft and stock losses due to predation, rangeland 

degradation, and the desire to reclaim, conserve and stop further degradation in rangelands 

(Smith and Wilson, 2002). Other studies have identified high maintenance costs in livestock 

farming (e.g. disease control) and bush or woody shrub encroachment as some of the other 

reasons why game ranching has gained much favour amongst land owners (Palmer et al., 2006).  

In particular, new labour laws in South Africa at the turn of the millennium necessitated 

the introduction of minimum wages for farm workers which further worsened the already ailing 

commercial domestic livestock farming situation (Carruthers, 2008), leaving rangeland owners 

looking for alternatives which are “potentially less labour intensive than traditional stock 

farming”(Smith and Wilson, 2002: 11). Unlike in game ranching, commercial livestock farmers 

are persistently losing money as a result of stock theft, which has reached epidemic levels, with 

the National Stock Theft Forum estimating the loss to have amounted to R327.6 million in 2007 

alone (NDA, 2009a). Increasing predation (especially for small stock) as a result of a growing 

number of vermin (e.g. jackals), which overflow from neighbouring game ranches, and stock 

theft add to the reasons that have motivated land owners and farmers to convert their farms into 

game ranches in an attempt to avoid economic losses (Smith and Wilson, 2002).  

However, such reasons are not universal, as differences in rangelands utilisation exist 

from one region to the next in South Africa. In the semi-arid and arid rangelands, for example, 

game ranching has grown because of an increased awareness of the negative effects of domestic 

livestock farming on the environment and the perceived ability of wild animals to aid in 

ecosystem health (Carruthers, 2008; Du Toit, 2007; Beinart, 2003; Milton et al., 2003). In these 

rangelands, land degradation caused by continued small stock farming and the influence of 

climate variability has led to a change in vegetation composition, which has largely affected the 

sustainability of commercial livestock enterprises, and often put it in an indeterminate state 

(Archer, 2004; Milton et al., 2003; Dean, Hoffman, Meadows and Milton, 1995).  Unsurprisingly, 
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game ranching has been heralded as the antidote necessary to achieve ecosystem health and at 

most revive the livelihoods of the communities, in such areas (Milton et al., 2003). For example, 

literature is increasingly associating game ranching with improving biodiversity conservation and 

halting desertification in some semi-arid to arid areas in South Africa, e.g. the Karoo (Palmer et 

al., 2006; Milton et al., 2003). Others have connected it with having revived the economic status 

of landholders and the creation of much needed jobs in such areas (Esler et al., 2006; Nel and 

Hill, 2008), whereas some glorify game ranching for aesthetic reasons (DEAT, 2006).  For 

farmers, however, game animals present the possibility of turning land degradation challenges 

into opportunities for restoration: creating a new source of livelihood and contributing to the 

restoration of natural capital2 and biodiversity in rangelands (Milton et al., 2003).  

This thinking and trend has spread across South Africa, causing a transformation in land 

use patterns (Palmer et al., 2006; NDA, 2009b). The transformation is inspired by, among other 

things, the desire to generate more income following a realisation that game has equal 

opportunities to make money through both consumptive (e.g. meat production) and non-

consumptive (e.g. ecotourism) uses (Tomlinson et al., 2002) and the need to halt further 

degradation in rangelands (Milton et al., 2003). 

2.2.1 Agricultural Potential 

It is not surprising; therefore, that others have also looked at various ways in which wild 

animals could be used to produce food for humans (Barnett, 2000; Prins et al., 2000). In the late 

1960s and early 1970s, much of the work concentrated on the merits of wild animals over 

domestic animals. It was after the work of Dasmann and Mossman (1960) and Dasmann (1964), 

that game ranching was seen as a practicable land use option to domestic livestock farming. 

Soon after that, a variety of studies that tried to assess game ranching versus commercial 

domestic livestock farming followed. However, many of the initial studies focused on the 

comparisons between domestic animals and wild ungulates with the intention of mapping out 

                                                

2 Milton et al. (2003: 247) draw on Daly and Cobb (1989); Costanza and Daly (1992); and Hawken (1993) to define 
natural capital as those “renewable and non-renewable resources that occur independently of human action or 
fabrication.” 
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the set of competencies that wild animals appeared to possess over domestic livestock. For 

example, it was discovered that wild ungulates are proficient users of local vegetation as opposed 

to domestic livestock (Taylor and Walker, 1978; Bigalke, 1982; Skinner, 1971). Others associated 

them with superior and efficient rangeland utilisation abilities over domestic livestock; and went 

on to show that they tend to achieve higher rangelands carrying capacities (Mentis and Duke, 

1976). According to Skinner (1970), wild animals are better developed to reproduce and multiply 

under harsh arid environments because of their distinct features, which make them survive even 

the longest of dry spells in arid ecosystems. A significant amount of literature further correlates 

wild animals with an intrinsic potential to reproduce at quantitatively higher rates coupled with 

higher growth rates than domestic livestock (Dasmann and Mossman, 1960; Dasmann, 1964; 

Macnab, 1991; Cooper, 1995).  

Recent studies have gone a step further by developing an understanding of the 

nutritional composition of meat from wild animals. It has been shown, for instance, that the 

meat of wild animals is nutritionally superior (Hoffman, 2008; Hoffman and Wiklund, 2006; 

Ntiamoa-Baidu, 1997: 50) and contains a higher protein and lesser fat content per animal unit 

than domestic livestock (Beinart, 2003). Moreover, from an agricultural production point of 

view, game ranching presents other benefits, which far outweigh livestock farming. According to 

Pollock (1969), game ranching is comparatively easier to operate and has lower development 

costs than livestock farming. For example, in game ranching, the costs of dams, boreholes and 

inoculation and dipping against pests and diseases are minimal and sometimes not part of the 

equation at all. Moreover, since wild animals, in most cases, are naturally resistant to certain 

diseases, which are often menaces in livestock farming; the management of game ranching 

enterprises, from a production costs based perspective, is much more appealing than livestock 

farming based enterprises. The advent of better cropping techniques for game has also 

improved their carcass quality and has opened other potential uses of venison (in the kitchen) 

making it an integral part of the modern consumer’s diet (Hoffman and Wiklund, 2006).  

Incidentally, the characteristics of game meat such as low fat content, leanness, 

wholesomeness, freshness, high nutritional value and succulence, are all coinciding with a 

growing international (and to a lesser extent in local) trend of consumers demanding a healthy 

lifestyle which is characterised by minimal consumption of red meat. These issues pertain to the 
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safety and quality of red meat products (Hoffman and Wiklund, 2006). In particular, growing 

health concerns of consumers are being cited as the major reasons behind the high demand of 

low kilojoule and low cholesterol foods. A rise in environmental consciousness has also led to 

consumers demanding products produced by natural means (Hoffman and Wiklund, 2006). 

From the private landholders’ point of view, game ranching does not only provide the means 

through which such vibrant consumer markets can be tapped into - it presents opportunities to 

improved incomes and restores hope, especially, in semi-arid and arid rangelands. Climate 

variability and land degradation may have obliterated the economic supremacy of domestic 

livestock farming making it a highly challenging and risky rangeland utilisation economic system. 

On the other hand, this has further opened an unending criticism of domestic livestock farming, 

especially its environmental effects on rangelands in semi-arid and arid places. 

2.2.2 Sheep and the Environment 

According to Hickman, Roberts, Keen, Larson and Eisenhour (2009: 42), “[p]opulations 

of animals are part of a larger system, called the community, within which populations of 

different species interact.” In a habitat, species interact at a certain levels that inform its diversity 

(fauna and flora). Species in a community exist in what Hickman et al. (2009: 42) has termed 

“detrimental (-), beneficial (+) or neutral (0) … [interactions].” As Hickman et al. (2009) 

continue to argue, there are different levels of interaction within a community, which further 

shape the way a community is organised in terms of species and ecological diversity. These 

interactions are more intricate and less oblivious to the scientist and his microscope. However, 

more and more evidence is coming to the fore with respect to the level of interaction amongst 

species. One such condition relates to the competition between species, which is now 

understood on a different level by ecologists around the world. First, it is now widely accepted 

that some species may have a neutral effect on others whilst others might exert a negative and or 

positive effect on others, a phenomena that has been named amensalism, or asymmetric 

competition (Hickman et al., 2009). According to Jepson and Ladle (2010), agriculture is one 

such example. It leaves a legacy of compacted soils and altered hydrology, that when it stops 

“the land is vulnerable to rapid invasion by undesirable species” (Jepson and Ladle, 2010: 102).  
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Similarly, the introduction of exotic (domestic livestock) species in an ecosystem can 

alter its ecological makeup, particularly if such species have to compete with keystone species for 

their existence. According to Vander Zanden, Olden and Gration (2006: 165), “no species exists 

in a vacuum. Rather, each species is embedded within a network of predator-prey interactions in 

…Charles Darwin’s … ‘entangled bank’ …known in the most general sense as a food web.” A 

food web can be seen as relating to either: 1) the number of trophic levels in a food chain; and 

or 2) the degree or extent of involvedness in a food web network, in ecological communities 

(Vander Zanden et al., 2006). A food web can also be viewed from the perspective of biomass 

distribution across trophic levels. According to Bukovisnszky, van Veen, Jongema and Dicke 

(2008: 804), diversity of communities is a product of “past evolutionary processes and 

immigration and extinction”, which may be driven by food web dynamics. These food web 

dynamics are often looked at from two perspectives: direct and indirect food web effects 

(Vander Zanden et al., 2006). Direct food web effects are those processes that lead to visible 

changes on the structure or population of another species or organism due to such things as 

predation or competition for resources. Indirect food web effects relate to processes where the 

changes in either species are because of an interaction with a third species (Vander Zanden et al., 

2006). This suggests that there exists a link between food web structure and ecosystem function 

and stability, since the diversity (degree of species richness) and involvedness of food webs are 

fundamental determinants of ecosystem function and stability. The link therein, is argued by 

Bukovisnszky et al. (2008: 804) to be measureable through the extent of “connectance”, which is 

the “fraction of all possible trophic links that can be realised.”  

Although there are no studies as yet, in as far as the literature reviewed is concerned, that 

have sought to understand how the introduction of the sheep impacted food web dynamics in 

the Karoo; evidence does suggest that it may have, especially if one draws from Bukovisnszky et 

al.’s (2008) ‘optimal foraging theory’ which asserts that the connectance of the ecosystem relies 

on both the body size of predators and prey. Others have tried to explain this through the 

concept of “regime shifts” (Crépin, 2007; Folke et al., 2004; Carpenter and Turner, 2000). For 

example, “the combined and often synergistic effects of … [domestic livestock] pressures can 

make ecosystems more vulnerable to changes that previously could be absorbed” (Folke et al., 

2004: 557) by the ecosystem. Fundamentally, what this means is that the sheep may have 
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disrupted or even compromised ecological cohesion, thus leading to poor biological 

productivity. For instance, it is now increasingly understood that the morphological, behaviour 

and life history of many living organisms - especially animal kingdom species - was influenced, 

largely, by their interaction with their desired nutritional requirements (Vavra, 1992). The sheep 

and most of the livestock in the Karoo did not originate there, meaning that they are not 

indigenous to, or do not form the natural capital of the area. Others have shown that, for 

instance, exogenous species do affect the development of certain grass species (Fleischner, 1994; 

Vavra, 1992; Solbrig, Medina and Silva, 1996; De Leo and Levin, 1997; Cooper and Huffaker, 

1997; Khanina, 1998). It has long been established that historic grazing by domestic livestock on 

preferred perennial grasses is to blame for the compromised dynamism in rangelands, which 

make them more susceptible to degradation and invasions by alien plant species (Cooper and 

Huffaker, 1997: 59). For instance, Cooper and Huffaker (1999: 59 – 60) draw on Steward and 

Hull (1949) to illustrate the environmental drawbacks associated with alien grasses in a 

rangeland. They argue that alien grasses usually are artificially rooted compared to indigenous 

perennial grasses and thus are not compatible for binding or holding the soil together, thus 

promoting soil erosion that harms riparian habitat for wildlife.  

2.2.3 Game Ranching and Rangeland Conservation 

Not surprisingly, on privately owned lands, game ranching has gained the support of 

landholders as an ecological management option, wherein wild animals are kept at optimum 

numbers to ensure ecosystem health and ecological resilience through the outlawing of over-

stocking and overgrazing (Beinart, 2000: 5; Lindsay et al., 2009). According to Fairall (1989: 244), 

game ranching “capitalises on the ecological adaptations of indigenous species while satisfying 

the requirement of establishing ownership and managing a closed system.” The adaptation 

proficiency of wild animals in marginalised and water stressed agricultural lands (Skinner, 1971: 

151 -152), which is borne in their ability to balance range utilisation through “specialised and 

complementary feeding habits” (Fairall, 1989: 244), has set them apart from domestic livestock. 

In contrast, game is naturally better adapted to the prevailing environmental conditions in most 

African ecosystems: be it insufficient rainfall or the presence of certain disease organisms, which 

make domestic livestock farming difficult (Ntiamoa-Baidu, 1997). It further forms the natural 
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capital in most rangelands across South Africa and complements their biological diversity 

(Milton et al., 2003; Bothma et al., 2009; Bothma, 2002).  

Pollock (1969) advances several benefits of game on the environment. Firstly, he 

contends that, since wild animals are both grazers and browsers, they are subsequently better 

equipped to use local vegetation efficiently and sustainably. Secondly, he identifies their long-

term adaptation to African habitats as their competitive advantage over domestic livestock in 

conserving the environment. Finally, he cites their ability to spread out more widely and go on 

for longer periods without water as opposed to domestic livestock as a fundamental property 

that makes wild animals more suitable for environmental management. According to Gibson 

(2009: 13), wild herbivores are “beneficial, adaptive, or even critical” and a range of them act as 

keystone species for many rangelands ecosystems and hence are “pertinent repositories of 

biodiversity” (Gibson, 2009: 15). Indeed, a growing amount of literature associates the 

production of wild animals, which are keystone species or natural capital in an area, as beneficial 

towards environmental management in semi-arid rangelands (Joubert et al., 2007; Milton et al., 

2003; Rosenzweig, 2003).  

Batabyal (1999) explains that natural capital is essential in the continuance of certain 

critical and basic ecological functions; in their absence an ecosystem might lose its ecological 

resilience thus risking the possibility of flipping into Westoby et al.’s (1989) undesired states, in 

the presence of continued external perturbations. Khanina (1998) has qualified the concept of 

keystone species as relating to only those species “whose populations (or … [herds] of animals, 

as a rule) either support or essentially alter the main vegetation pattern of the ecosystem”. This 

understanding implies that keystone species vary from one ecosystem to another. For example, 

certain indigenous trees would form the keystone species in a forest ecosystem whilst in African 

grasslands only the relevant wild animals and plants can be considered as keystone species. 

Similarly, the ecological structure and composition of a particular rangeland “will alter when 

keystone species disappear for some reason, or when new ‘stronger’ keystone species [are 

introduced]” (Khanina, 1998). According to Hodgson et al. (2005), natural rangelands are beset 

with severe conservation problems and, consequently, degradation problems because of 

continued domestic livestock farming that have displaced natural capital thus compromising 

species richness and biodiversity.  
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2.2.4 Biodiversity and Conservation 

Biodiversity is defined by Purvis and Hector (2000:212) as “the sum total of all biotic 

variation from the level of genes to ecosystems.” Biodiversity is accredited with increased 

ecosystem functioning and is especially common in those ecosystems which generally have a 

diverse number of organism than in a monoculture. For example, such ecosystems are also 

linked with a high composition of and they represent the “‘natural capital’ that, together with 

man-made capital and human capital, produce goods and services which are consumed by 

households in the economy” (Turpie, 2004: 88). For instance, the production of goods and 

services from natural rangelands can be thought of as follows: goods are the tangible products 

provided by the natural rangelands, such as meat, and services including benefits such as “those 

associated with ecosystem functioning” (Turpie, 2004: 88), like carbon sequestration. Likewise, 

rangeland ecosystems also derive economic attributes from biodiversity, which are a prerequisite 

for ecotourism value or continued existence for that particular rangeland (Batabyal, 2004).  

Often, conservation is assumed to mean preservation of the ecosystem and thus is 

thought of as completely independent of such systems in any use. Perrings and Walker (2004) 

argue that conservation is not only an alternative to exploitation, but also a feasible land use 

alternative that can be simultaneously used in the protection of stocks and the regulation of 

flows. Lindsay et al. (2009) exposit that conservation can lead to increased biodiversity. Indeed, 

the structural components and organisation of biodiversity are a fundamental property in the 

functioning of the ecosystem (Turpie, 2004). For instance, biodiversity is thought to play a 

significant role in the determination of the resilience of an ecosystem, or their capacity to 

withstand external perturbations without losing their resilience (Baumgartner, 2007; 

Baumgartner and Quaas, 2005). Certainly, as De Leo and Levin write: 

“In most cases, it is indeed groups of species, rather than individual species that assume 

importance, forming “keystone groups” or “functional groups”, a generalization of the notion of 

keystone species. Functional groups (guilds) are a collection of species that perform the same 

functions and that, to some extent, may be substitutable and viewed as a unit. For example, the 

removal of a numerically dominant species may result in its replacement by functionally similar 

competitors that had been suppressed, leaving untouched macro-level indicators of ecosystem 

functioning (like productivity, or the amount of matter processed). Yet, loss of species within a 



Chapter 2 Game Ranching and Rangeland Utilisation Theory 

25 
 

guild may reduce the long-term resilience properties of the system, and may lead to noticeable 

change in short-term system dynamics” (De Leo and Levin, 1997).  

The importance of biodiversity in the earth’s buffering and resilience capabilities cannot 

be over-emphasised. According to Baumgartner and Quaas (2005: 1), “biodiversity reduces the 

variance of ecosystem services” as it provides the necessary ecological insurance to risk averse 

economic actors who are deriving some utility from these ecosystems.  This point is echoed by 

Heal (2000), who observes that the contribution of biodiversity to the economic value of natural 

ecosystems is enormous because it improves the services and goods we obtain from the 

ecosystem through its inherent contribution to ecosystem productivity and insurance.  However, 

the production of such ecosystem goods and services is highly uncertain given the various 

ecosystem perturbations that exist in the environment. Because of this, ecosystem services can 

appear random because of the exogenous effect of risk, its distribution and the influence of 

biodiversity on their quality (Baumgartner and Quaas, 2005).  

Moreover, the rates of species extinctions and biodiversity loss because of the activities 

of mankind on the ecosystem, compound the problem (Polasky et al., 2004). According to 

Polasky et al. (2004), human activity and action threaten or lead to biodiversity loss in several 

ways. They contend that human activity threaten biodiversity through the displacement of native 

species and subsequent habitat loss, introduction of exotic species, climate change, pollution and 

over-exploitation of renewable natural resources. These factors resonate well with the livestock 

sector, especially in semi-arid regions, where centuries of domestic livestock farming have led to 

increased rangeland degradation due to the anthropogenic activities of domestic livestock. The 

displacement of natural capital in rangeland ecosystems has had profound implications for 

ecological resilience and biodiversity. According to Perrings (1997), ecosystems retain a certain 

level of stability over defined ranges of biophysical stocks that are essential for driving the 

various ecological functions necessary for an ecologically stable ecosystem. Similarly, if the 

biophysical stocks exceed or fall below a certain critical level or threshold such systems tend to 

lose their stability (become unstable). This means that whenever the resources of such an 

ecosystem are driven past certain threshold values, the system will move from one 

‘thermodynamic path’ to another or from one self-organisation to another (Perrings, 1997).  
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It has been argued that because disastrous changes in one ecosystem impose changes in 

the degree or level of stress on other systems with which it interacts, it follows, therefore, that 

economic activity that leads to unsustainable levels of strain on the natural environment may 

generate feedback effects which are themselves disastrous (Perrings, 1997). The recognition of 

the incompatibility of the properties of biophysical systems has led other commentators in 

natural resource economics to suggest that capital stock conservation be strengthened to include 

at least components of natural capital stock in physical terms (Pearce, 1988; Pearce and Turner, 

1990). For example, Perrings (1997: 26) cites Pearce (1987), as having argued that the first step 

should be in the form of restriction on the rate of “extraction of renewable resources to a rate 

no greater than the regeneration rate.” This is mainly justified by the uncertainty that continues 

to surround the role of natural capital or natural resources in the ecosystem (Batabyal, 1999). 

For instance, evidence emanating from the Nama Karoo of South Africa suggests that it was the 

extirpation of the eland and the springbuck, inter alia, which robbed the Karoo of a cornerstone 

of its ecosystem by severely disrupting the natural processes of the ecosystem (Roche, 2008).  

2.2.5 Substitutability and Natural Capital  

Another issue that exists is the debate on the extent to which natural capital can be 

substituted by produced capital (Batabyal, 1999; Turner, 1992; Deb, 2009). In most semi-arid to 

arid ecosystems, rangelands form the settings for economic activities such as grazing for 

domestic livestock, hunting for venison and ecotourism. However, because of inappropriate 

land uses, such as the displacement of natural capital, overstocking and overgrazing by domestic 

livestock, the rangelands have suffered a severe loss in biological or economic productivity 

(Hahn et al., 2005). For example, in the Karoo of South Africa, near consensus exists to the 

observation that domestic livestock farming is the leading cause of rangeland degradation (Hahn 

et al., 2005; Archer, 2004; Vetter, 2005; Milton et al., 2003). Recent evidence also points to the 

annihilation, extirpation and displacement of natural capital as having contributed immensely to 

ecosystems degeneration in the area (Roche, 2008; Beinart, 2003).  

Fundamentally, this highlights the pre-eminence of species diversity in an ecosystem: for 

instance, they are individually responsible for certain roles in the performance of ecological 

functions (Perrings, 1997). According to Turpie (2004), the importance of species diversity in an 
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ecosystem varies in space and time, however, what is salient is that some species become 

important when the environmental circumstances change. Batabyal explores the notion of 

substitutability by using two variables   (natural capital e.g. springbuck) and   (produced capital 

e.g. sheep) in an ecosystem and juxtaposes that if the two species (  and  ) play the same role 

then they are substitutes (Batabyal, 1999). However, if the two species do not play the same role 

in an ecosystem, they are not substitutes, which mean that the loss of    for example, due to 

displacement by   (because of overgrazing or over-exploitation as has been in the Karoo (with 

livestock and the springbuck respectively)) would undermine the buffering role played by 

ecological redundancy (Turpie, 2004). According to De Leo and Levin (1997), ecological 

redundancy is pertinent because it plays a “fundamental role in maintaining an ecosystem's 

ability to respond to changes and disturbances and, provides a hedge against stresses and 

catastrophes”. For example, De Leo and Levin (1997) cited Tilman and Downing (1994) as 

having proven that ecosystems with a diverse number of species (keystone included) are more 

naturally resistant to external perturbations like drought than species-poor ecosystems.  

According to Turner (1992), one of the fundamental properties of sustainability between 

natural and produced capital that needs clear understanding is the degree or level of 

substitutability in them. Deb (2009) noted that produced capital could not match the 

sustainability of natural capital, arguing that it would be puerile to misconstrue the two. This is 

particularly because of the intricacy involved in the execution of various ecological functions by 

organisms that have co-evolved over millions of years; with each trying to derive the greatest 

benefit from the other and in concert producing the unique ecosystem processes that informs 

ecosystem health. This is particularly true if one looks at it from the viewpoint of domestic 

livestock farming in rangelands ecosystems around the world. Domestic stock, which have been 

selected for their various behavioural, and production traits make indigenous ungulates 

incapable of competing in as far as meat production or forage utilisation is concerned (Hoffman 

et al., 1999). Indigenous animals, regardless, have important fundamental roles to play in 

ensuring ecosystem processes and consequently health, through the maintenance of certain basic 

ecological functions which humankind may not be aware off. Further, as Skinner et al. (1986) 

contend, they (indigenous ungulates) also possess other benefits which, when markets are 

conducive (prices good, high demand), can make a significant contribution into the ranch’s total 
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cash inflow or revenue. Other benefits that come with indigenous ungulates or wild animals 

include “genetic diversity” and biodiversity, which can further add to the recreational value of a 

rangeland (Turpie, 2004: 88).  

The contribution of wild animals to some critical ecological processes is particularly 

important from a biodiversity point of view or from a genetic diversity perspective. Evidence 

emanating from Mauritius elucidates this point further. According to Deb (2009), the extinction 

of the dodo (Raphus cacullatus) is a case in point. Following endless and insensitive extraction of 

the dodo by both sailors and Portuguese settlers in the Island, news of the bird’s extinction 

finally hit home in the late 1700s. However, it was not up until the late 1970s that the true 

conspicuous yet irretrievable value of the dodo dawned, when it was discovered that a certain 

Mauritian tree, calvaria (Sideroxylon majus), was endangered because of the dodo’s extinction 

(Deb, 2009). Essentially, as Deb writes: “its seeds failed to germinate because they were not 

passing through the dodo’s gut” (Deb, 2009: 70) thus robbing the island not only of an 

important component of the ecosystem but also of various other ecological processes and 

functions that also came with both the tree calvaria and the dodo. On the same plane, any 

human device or even any other species (Deb, 2009) can hardly substitute the ecological 

functions of earthworms driven into extinction by the use of chemical fertilisers in agricultural 

lands, or that of crabs from a mangrove ecosystem.  

2.2.6 Discussion 

Without sufficient information on the degree of substitutability (if there is any) between 

produced capital and natural capital, it remains logical to deduce that, by and large, the 

introduction of produced capital (exotic species like cattle, sheep and goats) has contributed to 

the disintegration of ecological cohesion and health of rangeland ecosystems. Making the 

argument more solid in South Africa are the recent assertions by, amongst others, Child (2009b), 

Bothma et al. (2009) and Lindsay et al. (2008) that as a result of game ranching and the implicit 

environmental conservation that comes with it, South Africa now boasts one of the greatest 

reversals of wildlife fortune in the entire world. However, such wildlife reversal success stories 

are still marred by colossal land degradation and biodiversity problems in semi-arid and arid 

rangelands, like the Karoo (Lindsay et al., 2008) – where repeated monotonous commercial 
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domestic livestock farming continues, unabated. This has made land degradation a matter of 

topical nature in southern Africa. It, further, has divided scholarly work, with some identifying 

land degradation with climate change whilst others have associated it with the anthropogenic 

activities of domestic livestock (e.g. Roux, undated; Roux and Vorster, 1983).  Other sets of 

studies have pointed to racially motivated agricultural policies that emphasised the dominance of 

unsustainable rangeland utilisation economic systems (for example, Milton et al., 2003), whilst 

others have maintained a steady balance between the competing ideologies (Archer, 2004).  

As already been argued, and in Deb’s (2009) sense, it can be reasoned that whilst 

domestic livestock has played its fair share in the environmental degradation continuum, 

compounding the problem has been the failure of livestock to promote the various ecological 

processes and functions of the rangeland ecosystems to maintain their stability or ecological 

resilience. Continued over-use of rangelands by domestic livestock has promoted the 

development of certain grass species that are favoured by livestock and in the process has 

compromised the composition and structure of natural rangelands ecosystems (Roux, undated; 

Fleischner, 1994). Drawing from Szaro (1989), Fleischner (1994) adds that, specifically, livestock 

grazing has affected the biodiversity of ecological niche areas through selective herbivory and 

through the effects that grazing may have on different plant species. This, in turn, has not only 

interfered with the biological processes of the ecosystem in its natural state, but has further 

compromised biodiversity in the ecosystem thus creating a litany of problems that are now 

manifesting in the form of rangeland degradation.  

According to Fritz and Loison (2006), biodiversity tends to be highest in ecosystems, 

which show the smallest degree of disturbances and where there is a presence of the variables 

related to primary production and habitat diversity suggesting that there is interplay between 

productivity, habitat diversity and herbivore diversity. Studies undertaken elsewhere have further 

revealed that not only do livestock grazing interfere with plant biodiversity, but they also impact 

wildlife biodiversity as well (Fleischner, 1994). Numerous studies have reported that indigenous 

herbivores prefer plants that are more abundant even though they can tolerate plants of low 

quality for their survival whereas domestic livestock tend to require less-abundant but highly 

nutritious plants or forage (Soest, 1982; Belovsky, 1986; Jarman, 1974).  For example, the effects 

of domestic livestock grazing on indigenous species vary from one habitat to the next 
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(Fleischner, 1994). In a study by Bock et al. (1984), livestock grazing was found to influence 

negatively bird species’ populations. Roche (2008) has recently shown that domestic livestock 

farming is, on the whole, not only to blame for the extirpation of the eland in the Karoo, but 

also for the cessation of one of the greatest migration of wild animals3 ever seen in southern 

Africa: the springbuck trek (colloquially known as the trekbokke).      

This, in the words of Fleischner (1994), is the unfortunate price that rangeland 

ecosystems have to pay for keeping domestic livestock. In semi-arid to arid ecosystems, 

livestock grazing has further been associated with altering the physical structure of the 

ecosystem including vegetation stratification (Fleischner, 1994), removing soil litter (Schultz and 

Leininger, 1990) and increasing soil compaction (Orodho et al., 1990). These have led to reduced 

water infiltration, which given the importance of water in semi-arid and arid rangelands, has led 

to reduced vegetation cover (Dean et al., 1994). In the Karoo, the problem is exacerbated by the 

fact that domestic livestock is exotic, having only been introduced in the late 1700 to early 1800 

(Beinart, 2003). The problem with this is that such domestic herbivores have not co-evolved nor 

evolved with the vegetation (Vavra, 1992). Wild animals like the springbuck, on the other hand, 

boast a long period of co-existence with the vegetation of the Karoo (Roche, 2008). Wild 

ungulates do not only complement the ecological processes of semi-arid rangelands, they also 

form an integral component of the biological diversity of these areas, which means that in 

Turpie’s (2004) logic, they also compliment the diverse ecological processes that informs 

ecosystem functioning.  

Indeed, as argued by Tilman and Downing (1994: 363), biodiversity preservation is 

imperative for the “maintenance of stable productivity in ecosystems.” The displacement of 

indigenous ungulates to free land for agriculture or through over exploitation can have serious 

negative implications for biodiversity (Vavra, 1992; Fleischner, 1994; Deb, 2009; Gibson, 2009). 

Firstly, herbivores whether wild or tamed, are selective grazers and browsers (Vavra, 1992) who 

live by the “law of least effort” (Geist, 1982; as cited by Vavra, 1992: 58). In other words, this 

means that herbivores in general maximise net gain by either increasing forage consumption or 

                                                

3 This can be seen through the dominant notion in the early 1900s up to the 1950s that wildlife was vermin, and needed 
to be removed to make way for agriculture and through the erection of fences throughout rangelands (Carruthers, 2008).  
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nutrient intake through selective grazing. This gives credence to the assertion that wild animals 

can promote biodiversity in their ecological niche areas because of their co-evolution with their 

surroundings, and hence their removal or extirpation can be detrimental to ecosystem health 

(Roche, 2008). Secondly, any given herbivores (like humans) will inhabit an area based on 

“forage availability, food preference of the herbivore species and nutrient demand” (Vavra, 

1992: 58). This means that indigenous animals have an advantage over domestic animals in semi-

arid to arid systems, because they are naturally selected to survive whilst promoting ecological 

resilience.  

An ecosystem is made up of many varieties of animal and plant species, which have co-

existed and co-evolved for many years. Here genetic diversity functions as the foundation for 

adaptive evolution and to ignore it is to disregard the fundamental characteristic that shapes the 

ecology of all living organisms (Falk et al., 2006: 14). Without losing generality, the point here is 

that indigenous ungulates can be assumed to have taken up an ecological niche area based on the 

suitability and capacity of the environment to support its population needs. If animal 

populations grow beyond certain levels that cannot be supported by the ecosystem or because of 

external influences like unfavourable climate (e.g. drought) that make the environment not ideal 

for habitation, animals will (in most cases) die naturally only to recuperate when the conditions 

are better. In springbuck (wild animal) populations, this is called irruption and has been argued 

by Roche (2008: 159) to be witnessed throughout the duration of the trekbokke migration in the 

Karoo; in all cases it was “in sync with the cyclical fluctuations and functioning of the Karoo 

ecosystem.”  

However, as has been seen with commercial livestock farming, and more especially as 

has been noted in the Karoo, commercial farmers maintain more or less the same number of 

animals on the rangeland throughout the year regardless of the prevailing climatic conditions, by 

providing their animals with supplemental feeding (Mucina et al., 2006). This creates a problem 

in that continued heavy grazing reduces species richness (Hoare, 2002) and affects species 

composition over and above the already mentioned problem of compromised ecological 

diversity (i.e. development of less palatable species or bush encroachment) (Mucina et al., 2006).  

Fleischner (1994) adds that the deleterious effects of domestic livestock grazing on ecosystems 

go beyond the visible species richness and composition. In semi-arid to arid ecosystems, there 



Chapter 2 Game Ranching and Rangeland Utilisation Theory 

32 
 

are other living organisms, which are vital for the performance of various ecological processes. 

These include microbiotic soil crusts, cyanobacteria, lichens, and mosses of various genera. 

Microbiotic soil crusts play a pertinent role in cycling of nutrients and nitrogen fixation, hence 

are correlated with high organic matter and phosphorus contents; stable soil structure and 

improved soil water infiltration in ecosystems. However, given their relatively fragile nature, 

microbiotic soil crusts (like the cyanobacteria, lichens and mosses) are highly affected by 

livestock grazing through loss of microbiotic cover and richness (Fleischner, 1994). Other 

studies have shown that livestock grazing can in fact disrupt ecological succession. For example, 

continued livestock grazing has been shown to lead to the introduction of early withering or 

drying of vegetation in some natural ecosystems (Longhurts et al., 1982).  

This, however, is not to insinuate that wild herbivores do not have a negative effect on 

the environment. On the contrary, high population concentrations of indigenous animals can 

also have an effect on the structure and composition of plant species (Mucina et al., 2006).  As 

shown in a study4 by Skinner et al. (1987: 197), springbuck did have an effect on the vegetation 

by promoting the development of non-palatable grass species and the disappearance of less 

palatable Karoo shrubs (particularly those favoured by the springbuck) and a “preponderance of 

lignified grass.” As Mucina et al. (2006: 357) write: “[t]he primary difference between domestic 

livestock and wild herbivores is scale related: the provision of supplementary fodder in 

commercial farming areas during drought periods prevents animal mortality so that grazing 

pressure is maintained during all seasons whereas wild herbivores’ impacts are more spatially and 

temporally heterogeneous.” Thus, it has been observed that domestic livestock chose riparian 

habitats in a rangeland, whereas wild animals tend to spread their grazing, going on for days 

without water (Skinner, 1970). The over-dependence of domestic livestock on riparian habitats 

in semi-arid to arid ecosystems has significant ecological impacts since the risks are higher on 

these areas. 

                                                

4  Notwithstanding the interesting results that this study produced, such results should further be interpreted with 
caution, as the animals were kept in an enclosure, which frustrated their natural movements, thus leading to the 
identified ecosystem problems. 
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This has rejuvenated the argument that “total removal of livestock [is] necessary to 

restore ecosystem health” (Fleischner, 1994: 638). This view is supported by the diversity – 

stability hypothesis, which is based on the premise that “species differ in their traits and that 

more diverse ecosystems are more likely to contain some species that can thrive during a given 

environmental perturbation and thus compensate for competitors that are reduced by that 

disturbance” (Tilman and Down, 1994: 363). A growing body of literature has shown that 

domestic livestock has actually taken the place of indigenous herbivores like the springbuck (see 

Gibson, 2009; Deb, 2009; Roche, 2008; Rosenzweig, 2003; Donahue, 1999; Fleischner, 1994). 

The introduction of domestic livestock in the Karoo, for example, has been widely associated 

with a decline in the productivity of the vegetation (Roux, undated, Archer, 2004; Roux and 

Vorster, 1983). The prevailing argument is that livestock grazing through its deleterious effects 

like trampling and overgrazing have affected the biological and ecological composition of the 

system through the removal of amongst other organisms, microbiotic soil crusts and an overall 

compromised species diversity, as already been argued above, to bring about rangeland 

degradation (Roux, undated). Similarly, in contrast with earlier expositions of the causes of land 

degradation in the Karoo, indigenous species are increasingly being understood to have been 

more naturally endearing and beneficial to the rangelands from a natural capital point of view 

(Milton et al., 2003; Roche, 2008). According to Milton et al. (2003: 251), the restoration of 

natural capital in rangelands in southern Africa is “socially, economically, and ecologically 

desirable” from the point of view of: 1) nature tourism and the wildlife industry; 2) restoring 

ecological processes; and 3) arresting poverty, dealing with water crises and managing alien 

weeds invasion in rangelands.  

2.2.7 Conclusions 

This section has highlighted that wild animals or game do have a set of biological and 

physical competencies over domestic livestock on the environment which, when properly 

harnessed, could help in alleviating the degradation problems that exist in semi-arid to arid 

rangeland ecosystems, particularly if the game animals used are natural capital in these ecological 

niche areas. From the above analysis, it is also evident that this could be achieved through the 

gradual re-introduction of the relevant keystone species (natural capital) in natural ecosystems, 
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which could stimulate a gain in biodiversity thus benefiting the various natural ecological 

processes that are necessary for rangeland ecosystems health. One might then conclude that 

intensifying springbuck ranching, in Graaff-Reinet, could likely impact ecological restoration in a 

positive way and jump-start the much needed rangelands reclamation process. 

2.3 Economic Theory and Rangelands Use 

Often farmers convert to land uses that will improve the terminal equity of their land at 

the end of the planning horizon (Currie, 1981). However, as Currie (1981:50) argues, “there is 

likely to be some sort of trade-off.” Depending on the motive behind the conversion, farmers 

are likely to forego income if such a behaviour help improve the value of the farm (Currie, 

1981). There is consensus amongst economists that the driving factors behind land conversions 

include income growth, population growth or farm returns (Kuminoff and Sumner, 2002). 

However, other reasons are mainly environmental; for example, the need to conserve and 

preserve agricultural land from further degradation or the development of policies that 

encourage the uptake of ecologically benevolent agricultural land uses (OECD, 2009).  Farmland 

conversions in their nature are based on the standard von Thünen model of land allocation, 

which is grounded on the philosophy that agricultural distribution is affected by both spatial 

variation and location of a resource. Such that different land use options compete for 

agricultural land on what can be called a von Thünen plain (Kuminoff and Sumner, 2002). For 

landowners to convert from one utilisation system to the next, the demand elasticies of the 

competing ecosystem products determine the direction of conversion. Similarly, to evaluate the 

direction of conversion investments, the net present value (NPV) is often used. The NPV is 

useful, especially in investment and decision theory, as a directive on whether to undertake a 

project or not (Just, Hueth, and Schmitz, 2004). If the NPV is positive, the decision is that it is 

profitable to undertake the project. An elaborate discussion of the NPV as a decision choice 

criterion is given in chapter 4. 

In semi-arid rangelands, livestock farming has been the dominant land use system for 

many years. In the Karoo, this has been the case for over 200 years. A number of models have 

been developed that try to explain how rangeland owners maximise income from livestock 

keeping. Since in this study the farmer is thought to convert to springbuck ranching for meat 
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production, the same models are used as guidance on how the farmer maximises his income 

from springbuck ranching. Moreover, given the conclusion that the contribution towards 

ecological cohesion differs between wild animals and domestic livestock, it is also recognised 

that the utilisation system chosen by the principal decision maker in the farm, is important as a 

source of income and as an appropriate vehicle through which the rangeland can be conserved 

and the realisation of constant income achieved (Quaas et al., 2007). Thus, in this section, the 

economic theory on rangeland utilisation is reviewed with this in mind. This is explored in three 

parts. Firstly, a review of economic theory on range management given deterministic and 

stochastic rainfall on forage production assuming constant prices is presented. Secondly, the 

impact of rainfall variability and the effect of ecological feedbacks of high grazing pressures on 

rangeland vegetation and income given constant prices follow. The third part of this section 

deals with rangeland management utilisation given variable rainfall, ecological feedback effects 

and price variability and the effect of this on profits. The following review is by no means 

exhaustive. 

2.3.1 Stochastic Range Model 

In semi-arid rangelands, grazing by domestic livestock and wildlife forms the mainstay of 

the economic activities. For ecological-economic systems, grazing is pertinent because these 

systems are tightly coupled (Batabyal, 2005; 2002; 1999; Perrings and Walker, 1997, 2001, 2004). 

For example, green forage biomass is directly used as forage for livestock, which, in turn, is sold 

for income (Quaas et al., 2007; Baumgartner, 2007). Livestock harvest forage biomass through 

grazing and browsing, and consequently influence the ecological dynamics of the rangeland in 

the absence of abiotic factors. Assuming that the major cause of vegetation dynamics in 

rangelands emanates from grazing pressure, rangeland productivity can be achieved by 

manipulating the number of livestock grazing the rangeland (Batabyal, Biswas and Godfrey, 
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2001). By further assuming that green forage biomass production5     in the rangeland can be 

translated into its grazing capacity       and that the amount of forage biomass   required by a 

livestock unit is known, the grazing capacity of the rangeland can be calculated by dividing 

forage biomass production by forage biomass required by a livestock unit as shown in equation 

(2.1) (Hein and Weikard, 2008: 129):  

        
 

 
         (2.1) 

Animals grazing and browsing on the rangeland benefit by gaining weight and through 

growth in the herd numbers. For a myopic decision maker on a farm, the focus is always on the 

stocking rate as this is the most critical aspect of range management (Quaas et al., 2007). 

Drawing on Perrings and Walker (2004), Hein and Weikard (2008) model the growth of the 

animal herd by assuming a logistic growth process: 

       (    
 

    
)          (2.2) 

where   is livestock (in livestock units per hectare),    is livestock gain,      is the rangeland’s 

grazing capacity and   represents a scaling parameter capturing the potential natural growth in 

animal population (   ). Assuming that the animals can be sold at price   per animal unit, 

and that there is a variable cost    and fixed cost    per animal unit, the profit function can be 

written as:  

                                                    (2.3) 

Equation (2.3) can be re-written as                   , where    is a dressed 

weight of each animal and    is the per kilogram price of meat per animal, to capture the profit 

structure when the per kilogram price is used. This equation can also be used to denote the 

profit derived from selling livestock products like wool ( ) per kilogram at price,    , where 

   in this case denotes the amount of wool produced per animal head, given a population   of 

                                                

5 Often, problems arise in measuring the amount of forage biomass produced in a rangeland at any given point in time. 

However, following the work of Pickup (1995) and Reeves, Winslow, and Running (2001), forage biomass production 

can be guesstimated using remote sensing techniques. 
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wool sheep. In order to optimise rangeland management, the range manager chooses the 

stocking rate   to maximise profits      (Batabyal et al., 2001). Using a standard efficiency 

condition that equates marginal costs to marginal revenue and expressing it as a function of the 

stocking rate, the optimal stocking rate      can be modelled as (Hein and Weikard, 2008): 

    = 
    

   
               (2.4) 

However, equation (2.4) ignores the effect of rainfall variability on stocking rate. For 

example, high rainfall in a given year can translate to increased forage production, which would 

in turn lead to an increase in the stocking rate and consequently improved income. Similarly, a 

decrease in rainfall can also affect the stocking rate by decreasing total forage productivity and 

thus leading to a decrease in the grazing capacity of the rangeland. To incorporate the impact of 

rainfall stochasticity, the assumption that forage production is given and fixed (as assumed in 

equation (2.1)) is relaxed by assuming that forage production is a function of effective rainfall, 

                 (Hein and Weikard, 2008: 130). Effective rainfall refers to the net 

amount of rain available to plants for photosynthesis (thus forage production), after run-off and 

evaporation have taken place (Haan et al., 1994, as cited by Hein and Weikard, 2008). Using this 

notion, forage biomass production ( ) is denoted by         , where   is assumed to be a 

function of effective rainfall     only, and not the amount of forage biomass present from the 

previous year. By assuming that      is the probability density function for effective rainfall, 

expected profit      can be maximised by (Hein and Weikard, 2008: 131): 

     ∫     
    

    
                    (2.5) 

Integrating equation (2.5) above, yields: 

                        ∫
             

  

    

    
          (2.6) 

where        ∫       
 

    
. Hein and Weikard (2008: 147) have shown that maximising 

expected profits yields the first order condition: 

      
    

   
            

 

             ∫

     
  

⁄

    
        

    
    

    (2.7) 

Conspicuous in the first order condition (equation (2.7)) is that there is an additional 

term, which is denoted by     from equation (2.6). If the denominator of     is large, the impact 
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of rainfall on grazing capacity would also be large which would in turn lead to a larger variance 

of the distribution of     . Similarly, if the impact of rainfall and rainfall variability increases, 

the optimal stocking rate decreases and vice versa. In the same way, if       /       equation 

(2.7) collapses to equation (2.6), meaning that rainfall has no effect on grazing capacity (Hein 

and Weikard, 2008: 148).  

In equations (2.1) to (2.7), it was implicitly assumed that ecological feedbacks have no 

effect on range management. However, in practice little decision support is gained if the range 

manager does not account for rainfall stochasticity and the ecological feedback of high grazing 

on the vegetation.    

2.3.2 Stochastic Range Model and Ecological Feedbacks 

Range managers do not have direct control over climatic variables (rainfall and drought) 

and subsequently forage production but have control over the number and type of animals 

grazing and browsing the veld. This makes it difficult to model effectively rangeland utilisation 

because the range manager cannot manipulate rainfall variability and its effect on ecological 

dynamics. Another difficulty is that there are many causes of ecological dynamics other than 

livestock grazing and rainfall variability (see section 2.2; Crépin and Lindahl, 2009). Hein and 

Weikard (2008) suggest that to model effectively the stochasticity of rainfall and the ecological 

feedbacks of high grazing pressures on the rangeland, emphasis should be paid to the following 

three issues: 1) forage biomass production; 2) animal production and 3) income.  

To evaluate the interaction between rainfall variability, forage biomass production and 

grazing and its ecological feedback effects, it is important first to consider a situation where 

there is no grazing on the rangeland. For simplicity, Hein and Weikard (2008) assume that 

forage production depends on effective rainfall     and rain-use efficiency     . O’Connor, 

Haines and Snyman (2001) exposit that there is a   – shaped relationship between rainfall and 

rain use efficiency in the semi-arid rangelands of Africa. For example, O’Connor et al. (2001) 

contend that the rain-use efficiency is an inverted  -shaped function of the rainfall. Assuming 

that rain-use efficiency is positive and bounded in the range (          , a simple relationship 

of rain-use efficiency and effective rainfall without grazing can be explained by (Hein and 

Weikard, 2008): 
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                 (   
 

    
)        (2.8) 

where    captures the rain-use efficiency in the rangeland without grazing. To quantify the 

effect of rain-use efficiency with grazing, the following relationship can be established: 

                                                                                        (2.9) 

where        denotes the reduction in rain-use efficiency due to grazing. Similarly, forage 

production can be determined by the amount of effective rainfall and the rangeland’s rain-use 

efficiency. This means that forage biomass production   is also a function of the rain-use 

efficiency of rainfall           Recalling equation (2.2), the growth of the animal herd can be 

expressed by substituting equation (2.1) and          into equation (2.2), which yields (Hein 

and Weikard, 2008: 133): 

      (   
  

  
)            (2.10) 

Thus given equation (2.1) and         , and the ecological feedback of grazing on 

rangeland productivity, the profit maximisation problem becomes (Hein and Weikard, 2008): 

     ∫     
    

    
                       (2.11) 

where      is the grazing capacity expressed in terms of rain-use efficiency on rainfall 

and the long-term stocking rate   as shown below: 

                               (2.12) 

The above equations assume constant prices. This is not adequate since feed fluctuation 

as a result of, for example, droughts or in cases where there is more than enough rain, may cause 

prices to vary in sync to the prevailing climatic conditions (Börner et al., 2007). In cases where 

there are droughts, feed shortages will force rangeland owners to sell-off their animals thus 

depressing prices. Similarly, an increase in forage because of good rains may induce farmers to 

hold their animals, thus prompting an increase in the price. Changes in macro-economic 

pointers may also lead to a change in price, regardless of the prevailing climatic and 

environmental conditions. It is thus necessary to also factor in price variability. 
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2.3.3 Stochastic Model with Ecological Feedback and Price Variability 

In order to account for the effect of stochastic forage production, rainfall stochasticity, 

ecological feedbacks and price variability, it is important to augment the profit function with the 

price effect. This can be done by adjusting the profit function such that it captures the impact of 

either lower or higher prices because of poor and good rains, respectively. To illustrate the 

influence of price variability on the optimality condition for rangeland management and 

utilisation, the production season is divided into two discrete sub periods: years of normal or 

high rainfall and a drought period.   

During drought, farmers receive lower prices      whereas in years of normal or higher 

rains, the price increases to     . With that in mind, the profit function becomes (Hein and 

Weikard, 2008: 135): 

                                      if          

                    (   
 

         
)            (2.13) 

where    is an adjustment factor that captures the effects of a sequential drought on prices and 

equals the fraction of drought years that are consecutive to another drought year.  

Equation (2.13) shows the influence of high and low periods of rainfall on the 

profitability of the rangeland. They however do not explicitly consider and model the effects of 

rainfall variability and stochastic forage production on animal output and thus 

vegetation/ecological dynamics. For example, Quaas et al. (2007) and Muller et al. (2007) have 

shown that the stochastic rainfall and grazing pressure are major determinants of ecological 

dynamics. Perrings and Walker (1997, 2004) contended that optimal rangeland management 

involves achieving a steady balance between forage biomass production, rainfall regime and 

grazing pressure. Moreover, it might seem that, given the discussions in the preceding sections, 

there is the impact on biodiversity to consider. However, notwithstanding ongoing long-term 

grazing trials in other areas in the world (e.g. Charters Towers, Queensland, Australia), this study 

was unable to ascertain the success of such. Perrings (2001) argues that besides the effect of 

environmental factors, forage biomass production is also influenced by the competition effects 

between plants and grazing by domestic livestock and wild animals (for extensively managed 

rangelands). The effect of grazing on a rangeland is through the removal of forage biomass - the 
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rate of which differs and their contribution to biodiversity differs with keystone species (wild 

herbivores) adding more than domestic livestock – as discussed in the preceding sections.  

In order to effectively capture the effects of stochastic rainfall and grazing pressure on 

ecological dynamics and how they, in turn, influence or affect income, Quaas et al. (2007) 

suggest that one needs to conduct an assessment of the state of vegetation in any given 

rangeland. Drawing from Stephan, Jeltsch, Wiegand, Wissel and Breiting (1998), Quaas et al. 

(2007) show that this is achieved by considering the green biomass         and the reserve 

biomass         of representative grass species. Others (Richardson, Hahn and Hoffman 

(2005)) have used similar approaches of both perennial shrubs and annuals to model the effect 

of grazing pressure on income. Similarly, Higgins et al. (2007) and Börner et al. (2007) have 

shown that both above ground and below ground primary productivity matters in ecological 

modelling. The green biomass is important because it captures the reproductive part of the 

plant, which is also what the animals feed on. During the growing season, this part of the plant 

grows whilst the reserve biomass is the non-photosynthetic part of the plant. Recall that in the 

preceding sections, it was argued that ecological-economic systems are coupled: rainfall        

influences the amount of available       in a given rangeland, in any given year, and is 

dependent on the       and on a growth parameter    as shown below (Quaas et al., 2007): 

                             (2.14) 

In contrast to reserve biomass which is a stock variable, green biomass is a flow variable 

and is independent of the green biomass from preceding years. Because reserve biomass is a 

stock variable, its growth differs from the growth of green biomass, mainly because being a 

stock variable means that rainfall from previous years influences its growth (see Perrings and 

Walker, 1997). Hence, growth of the reserve biomass from the previous year to the next is 

(Quaas et al., 2007: 253): 

                          [   
     

 
] +                  [   

     

 
]                 

             (2.15) 

where    is a growth parameter,   is the decomposition rate of reserve biomass (and is 

assumed to be lower than the green biomass growth parameter, reserve biomass decomposition 

rate and the rainfall mean). The parameter  captures the density dependency of reserve biomass 
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whilst variable    captures the impact of animal grazing on the reserve biomass. The parameter 

  denotes the rate of reduction in biomass due to grazing. In equation (2.1), it was shown that 

the grazing capacity depends, largely, on the amount of total forage biomass available on the 

rangeland. Hence, using the same concept, the total amount of green biomass can be used to 

denote the carrying capacity and consequently the optimal herd size (     ). Re-writing equation 

(2.1) yields:  

                   ∑          
               (2.16) 

However, equations (2.14) to (2.16) require the modeller to know the amount of reserve 

biomass, which involves many parameters that require intensive fieldwork to obtain. An easier 

and effective approach that can be employed in the estimation of green biomass growth without 

guesstimating the parameter values is to calibrate directly models using remotely sensed data6 

(Pickup, 1995; Reeves, Winslow, and Running, 2001; Palmer, Short and Yunusa, 2010). Often, 

green growth is estimated through forage aboveground net primary production (ANPP). For 

example, ANPP is used as a measure and control of stock density in rangelands (Baeza, Lezama, 

Pineiro, Altesor and Paruelo, 2010: 73). According to Grigera et al. (2007) and Baeza et al. (2010), 

it is possible to determine the quantity of ANPP by using the amount of photosynthetically 

active radiation absorbed by green vegetation (APAR), and the effectiveness of that energy’s 

transformation in aboveground dry matter. Accordingly, Grigera et al. (2007: 637) define APAR 

as the product of “incoming photosynthetically active radiation (PAR) and the fraction of 

photosysnthetically active radiation absorbed by ... [green vegetation] (fPAR).” The fPAR, 

moreover, can be defined as the energy available for primary production (Stenberg, Rautiainen, 

Manninen, Voipio and Smolander, 2004). This energy can be used as a proxy for primary 

production by converting it into an ‘estimate green forage biomass’ quantity. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor of the Earth Observing System (EOS) 

                                                

6 Hellegers, Soppe, Perry and Bastiaanssn (2009) and Soppe, Hellegers, Perry, Boon, Bastiaanssen, de Wit and Pelgrum 
(2006) have recently shown the efficiency of using remote sensing and economic indicators to supplement the decision-
making process in South African agriculture. (at the same time the recordings are happening, we cannot be absolutely 
sure that is the total: if animals are feeding at the same time)... 
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provides adequate assessment of rangeland vegetation and productivity7 (Reeves et al., 2001). 

These estimates of rangeland productivity necessitate the quantification of green forage biomass 

production (Reeves et al., 2001). Since vegetation productivity is a measure of “rangeland vigour 

and vegetation growth capacity” which are all important aspects of rangeland management and 

health evaluation (Revees et al., 2001: 50), MODIS provides time series data for weekly, monthly, 

and annual estimates of herbage production for the year 2000 onwards (Palmer and Yanusi, 

2010).  

Drawing from Grigera et al. (2007), fPAR is estimated as a non-linear function of 

MODIS normalised difference vegetation index8 (NDVI), which is a “spectral index calculated 

from the reflectance in the red (R) and infrared (IR) portions of electromagnetic spectrum” 

(Baeza et al., 2010: 73): 

 NDVI = (IR – R)/ (IR +R)                                               (2.17) 

NDVI is directly related (non-linear relationship) to fPAR by green vegetation (Grigera et 

al., 2007; Reeves et al., 2001) and primary production9 (Baeza et al., 2010). Using the non-linear 

relationship between NDVI and fPAR compensates for the so-called saturation of NDVI at a 

leaf area index of three or greater (LAI > 3) and thus implies that there is a linear relationship 

between the simple relation index (SR) and fPAR, as shown in equation (4.2) (Grigera et al., 

2007):  

 fPAR = min[SR/SRmax – SRmin) – SRmin/SRmax – SRmax), 0.95]   (2.18) 

where SR = (1 + (NDVI)/(1-NDVI) = IR/R) and NDVI is assumed not to absorb when there 

is no green vegetation due to erosion, environmental degradation or any form of bare soils, 

meaning that: fPAR = 0 (Baeza et al., 2010; Grigera et al., 2007). The fPAR is converted into 

green forage biomass (       ) production at time,  , using the following equation: 

         =    –              (2.19) 

                                                

7 Melesse, Weng, Thenkabail and Senay (2007) give a brief but informative summary of the history of remote sensing 
satellites and sensors, and particularly contrast them with respect to ease of use, efficiency and availability. 
8Reeves et al. (2001) justify the use of remote sensing techniques to quantify biomass by arguing that: “[t]he MODIS ... [8 
days] productivity logic combines remote sensing data and daily climatalogical inputs with fundamental principles of 
plant growth. The remotely sensed data provides a snapshot of greenness and leaf area as daily weather information 
influences growth capacity. This approach permits the estimation of productivity across multiple range sites and 
biomes.”   
9 The conceptual link on fPAR and primary production is found on Monteith (1972).  
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where    and   are constants expressing the response of green biomass to environmental 

conditions of    which is an 8 day interval fPAR coefficient, that is converted into eight days’ 

and later monthly fPAR and subsequently yearly green forage biomass production. Substituting 

        to equation (2.16), yields: 

                   ∑        
                (2.20) 

where       captures the impact of grazing on the green forage biomass at time  . Likewise, the 

herd size (     )  kept on the farm in year   determines the farmer’s income      in year  , as 

shown below:  

       ̃               (2.20) 

Equation (2.20) and (2.20) shows that 1) the herd size is a random variable and 2) that 

income is a random variable. The farmer is assumed to adopt an ecological-economic system 

because it is profitable (Quaas et al., 2007). Note that the number of animals varies with the total 

amount of precipitation since the system is driven by highly variable rainfall. Similarly, the 

farmer varies his herd size on the chosen ecological-economic system with available green forage 

biomass. In other words, the carrying capacity of the farm changes as per the amount of rainfall 

in a given season. In domestic livestock farming, farmers can maintain the same number of 

animals by providing supplementary feeding in winter, whereas in game ranching, the animals 

use a set of biological and evolutionary competences to survive winter feed shortages. From the 

above analysis, it can be argued that rainfall variability imposes a great deal of risk and 

uncertainty on the amount of green forage biomass that can be produced from the rangeland, 

the herd size in the rangeland and the income (gross margins) that can be gleaned from the 

rangeland.  

The decision making process, of whether to convert from one utilisation system to 

another hinges strongly on these factors. The choice of rangeland utilisation ecological-

economic system by the farmer, for that reason, will depend on the pay-off of each utilisation 

system; where the pay-off can be looked at as the profitability of the chosen utilisation system. 

Thus, in the sense of Quaas et al. (2007) and assuming that the farmer is risk averse and non-

satiated in income with a utility function that depends only on his income     , his von 

Neumann-Morgenstern intertemporal expected utility function can be expressed as: 
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    ∑
         

        
 
            (2.21) 

where  is a discount factor and       is a strictly concave Bernoulli utility function of income,  , 

with an expectancy operator    at time,  . Specifying the farmer’s utility function with relative 

risk aversion yields: 

       
      

   
         (2.22) 

where    is a parameter that measures the degree of relative risk aversion of the farmer (Quaas et 

al. 2007) and is greater than or equal to zero (   ) since the farmer is assumed to be risk 

averse (Baumgartner, 2007).  

According to Baumgartner and Quaas (2005), the farmer will choose the utilisation 

system that will maximize his von Neumann-Morgenstern intertemporal expected utility 

function. Hence, acknowledging the influence of risk and uncertainty on the profit structure of 

the farm, the mean income of the farmer, consequently, can be thought of as influenced by the 

utilisation system chosen (Quaas et al., 2007). However, it should be qualified that the choice of 

a utilisation system is constrained by the subjective beliefs of the farmer, which depends on a 

variety of factors: including his resources, and perceptions about future states of nature. For 

example, a farmer can be either farsighted or myopic, depending on his subjective beliefs. A 

farmer, who is not concerned about the future sustainability of his rangeland (myopic), is most 

likely to behave rationally by choosing the utilisation system that maximises his expected utility 

in the short term without considering the effect of the chosen utilization system on the 

environment. However, a farsighted farmer (one who is forward looking and is concerned about 

the sustainability of his farming enterprise) chooses a utilisation system such that he obtains an 

ecological insurance from the ecosystem (Quaas et al., 2007; Baumgartner, 2007; Baumgartner 

and Quaas, 2005).  

No studies have used the above methods to explore the profitability of converting a 

sheep farm into a springbuck ranch. However, there are some studies which have sought to 

understand the effects of risk and uncertainty in the decision making process in agriculture. In 

the following section, a review of those studies that have used a combination of both economic 

and ecological models to explore the effects of uncertainty on the decision making process, is 

made.  
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2.4 Economic Studies on Rangeland Utilisation  

A growing number of economic studies address the effects of both biotic and abiotic 

factors in rangeland utilisation systems. The approaches differ from one study to another 

depending on the fundamental objectives of each study. Objectives in themselves differ, 

depending on the focus of the study. Typical objectives include but are not limited to:  

 identifying optimal rangeland management strategies under rainfall and price 

uncertainty (Higgins et al., 2007; Borner et al., 2007; Janssen et al., 2004);  

 reporting rangeland managers’ actual responses to rainfall variability and biomass 

uncertainty and the inherent uncertainties as a result of the stochasticity of abiotic 

factors (Quass et al., 2007; Gross et al., 2006);  

 assessing the effects of abiotic and biotic processes on the range management decision 

making process (Kobayashi et al., 2009);  

 examining the applicability of both the non-equilibrium and equilibrium paradigms in 

the sustainability of semi-arid pastoral systems (Richardson, Hahn and Hoffman, 

2005);  

 estimating the economic impacts of conservation in the optimal use of rangelands and 

how it interacts with the two paradigms (Perrings and Walker, 2004); and  

 analysing the effects of trade on land use and the consequences of these on 

biodiversity conservation (Polasky et al., 2004; Barbier and Schulz, 1997).  

Evidently, no studies have explored the profitability of converting a sheep farm into a 

springbuck ranch. A handful of studies, however, have studied the interaction between 

herbivory and biomass production in the presence of uncertainty (Quaas et al., 2007; Higgins et 

al., 2007; Börner et al., 2007, Muller et al. 2007; Janssen et al., 2004). These studies modelled the 

effect of different grazing management systems on the income structure of the farm using 

simulation and dynamic programming and came out with varying results. For example, Quaas et 

al. (2007) used an integrated dynamic and stochastic ecological-economic model to analyse the 

choice of grazing management strategies of a risk-averse farmer and the long-term ecological 

and economic impact of different utilisation strategies. They identified grazing management as 
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the crucial link between forage biomass, livestock and profitability. These authors further 

isolated livestock grazing as the driver of ecological dynamics and juxtaposed that stocking rate 

and the farmer’s income, however, are influenced by the degree of rainfall variability. In their 

results, they reported that a myopic farmer is unlikely to consider future economic and 

ecological effects of any management strategy on the environment, as long as it is conservative 

enough to be sustainable.  

Muller et al. (2007), on the other hand, developed a simulation-based model and used it 

to analyse the relevance of rest periods in non-equilibrium systems. They reported that 

improved farming conditions (supplementary feeding, etc.) could lead to both negative 

ecological as well as economic ramifications on the rangeland. Even though the authors (Muller 

et al., 2007) explore possible solutions to rectify the situation, they did not look outside of 

domestic farming. This is despite the realisation by amongst others, Crépin and Lindahl (2009) 

that there is eminent competition between resource users in which when not factored may lead 

to a compromised understanding of the economic aspects of the causes of the deterioration of 

natural systems. Boerner et al. (2007) investigated the effects of deterministic and stochastic 

prices on the management functions of an ecological-economic system, using a simulation-

optimisation model and reported that optimal rangeland management is likely to cause the 

system to crash thus making livestock holding unprofitable.  Using a simulation model, Higgins 

et al. (2007) factored in a mix of both deterministic linkages (effect of forage biomass on animal 

production) and stochastic effects (rainfall on forage biomass) in analysing the sustainable 

management of livestock production systems and showed that opportunistic strategies of range 

management are not optimal. Similarly, in a bid to understand the effects of rancher and animal 

interactions, Kobayashi et al. (2009) constructed a bio-economic model and solved it using a 

stochastic dynamic programming (SDP) solution technique. The authors addressed the type and 

nature of trade-offs that ranchers would face given more proactive land treatments. Their results 

highlighted reasons other than economic gains that act as incentives to private landholders to 

adopt rangeland management treatments that are preventative. 

Other studies have in one way or another explored the issue of the decision-making 

process under uncertainty in rangeland ecosystems. For example, Kobayashi et al. (2007) model 

the effect of stochastic rangeland use under capital constraints. Using a stochastic dynamic 
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programming model, they concluded that capital constraints are pertinent in explaining low 

stocking densities in Kazakhstan. Using a genetic algorithm, Janssen et al. (2004) developed 

robust rangeland management strategies for two systems: one with highly variable rainfall and 

the other where the ranch manager ignores rainfall variability. By comparing the two optimal 

solutions, the authors illustrated that rainfall variability and its related uncertainty may lead to a 

reduction of the possible expected returns from grazing activity. In a stylised mathematical 

model by Anderies et al. (2002), an exploration of the effects of physical, ecological and 

economic factors on the resilience of a fire driven rangeland system, was undertaken. They 

(Anderies et al.) reported that the costs of shrub management, because of poor grazing decisions, 

have a significant effect on the stability of the ecosystem. In conclusion, they argued that the 

resilience of rangelands based ecosystems is highly influenced by ecological, economic, and 

management parameters. 

A growing number of other studies have analysed the response of ecological systems 

under different range management strategies (Smet and Ward, 2005; Fynn and O’Connor, 2000; 

Perrings and Walker, 2004; Quaas et al., 2007; Muller et al., 2007), some of which were 

modelbased, whilst others were survey-based studies. These studies advocate adaptive rangeland 

management strategies as the ideal way to manage rangelands under rainfall and forage 

stochasticity. They, however, identify optimal stocking rates and grazing pressure as other 

factors that need to be considered in range management. The studies use a wide range of models 

and methods to explore the common strategies used in rangeland management and utilisation. 

In the semi-arid rangelands of southern Africa, however, survey based studies (Smith and 

Wilson, 2002; Milton et al., 2003; Joubert et al., 2007) isolated, inter alia, diminishing profitability 

and growing concerns over rangeland degradation in livestock based rangeland utilisation 

economic systems (Milton et al., 2003) as a major stimulant in the uptake of game ranching by 

landowners.  

Whilst survey based studies complement model based studies by providing further 

insights about the optimality of alternate rangeland management strategies, they, however, 

provide a less vivid picture of the decision making process when converting from livestock to 

game based rangeland utilisation economic systems. First, these studies focus entirely on 

domestic livestock farming and do not report the likely effects that evidence of profitability in 
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game meat production for instance might have on the decision making process. They further do 

not explore the policy implications of the profitability of game meat production on the 

reclamation of degraded rangelands. One prominent argument that has been identified for this 

failure to look outside domestic livestock farming for solutions that will put an end to the 

degradation problem in natural ecosystems is what Hodgson et al. (2005) have termed, a 

“powerful economic deterrent” that prevents any innovative ideas outside of the conventional 

agricultural uses of natural ecosystems.  

For instance, Smet and Ward (2005) compared the effects of different rangeland 

management systems on plant species composition, diversity and vegetation structure in a semi-

arid rangeland of South Africa, and reported that systems under both livestock and game 

utilisation are most likely to perform better (environmentally) than livestock dominated ones. 

They further argued that herbivore diversity is not only good from an income point of view but 

that it can also act as a stabilising effect on rangeland productivity in light of rainfall and forage 

stochasticity, further confirming the importance of biodiversity in rangelands. However, 

notwithstanding their findings, these researchers did not investigate the profitability of 

converting from livestock farming to game ranching enterprises. Standiford and Howitt (1992: 

421) have shown that the inclusion of stochasticity in range management shifts production away 

from livestock based utilisation to “less risky ... hunting enterprises.” Baumgartner and Quaas 

(2005) demonstrate that ecosystem management depends on the degree of risk aversion of the 

decision maker and on the properties of the ecosystem. They further show that risk averse 

decision makers take cognizance of the value of the insurance offered by the rangeland 

ecosystem such that with increasing uncertainty farmers become more risk averse and they 

express this by looking for alternatives that will improve the quality of the rangeland (ecological 

insurance).  

The above reviewed studies illustrate that the formation of a rangeland utilisation 

strategy and the set of relevant range management parameters vary across rangeland ecosystems. 

Moreover, they also show that the inclusion of risk in the decision making process can influence 

economic agents to convert into those ecological-economic systems which are potentially less 

risky or those that will provide them with ecological insurance. However, the results for any one 

study in any one rangeland do not necessarily transfer to other rangeland ecosystems. 
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Nevertheless, the tools of analysis are transferable; the degree to which method is suitable for a 

chosen rangeland depends largely on the assumptions about uncertainty and ecological dynamics 

of the system. Three alternative sets of assumptions are common: 1) certainty with no ecological 

dynamics (fixed rainfall and forage production) (Hildreth and Riewe, 1963); 2) uncertainty with 

ecological dynamics (Janssen et al., 2004; Perrings and Walker, 2004); and 3) uncertainty with 

ecological dynamics and price variability (Hein and Weikard, 2008; Börner et al., 2007; Muller et 

al., 2007; Kobayashi et al., 2009).  

Uncertainty is often introduced by the stochasticity of rainfall (Quaas et al., 2007) and 

through price variability (Hein and Weikard, 2008). In the literature, a group of studies that have 

used this set of assumptions to explore the management of a rangeland under uncertainty were 

reviewed (Kobayashi et al., 2009; Hein and Weikard, 2008; Higgins et al., 2007; Quaas et al., 2007; 

Muller et al., 2007; Richardson et al., 2005; Janssen et al., 2004; Perrings and Walker, 2004; Beukes 

et al., 2002; Perrings, 2001; Perrings and Walker, 1997; Standiford and Howitt, 1992). However, 

based on this review, no studies were found to have used this set of assumptions in the context 

of assessing and comparing the profitability of converting a livestock farm into game ranch 

(which is the goal of this thesis). Whilst others (Perrings and Walker, 2004; Perrings, 2001; 

Perrings and Walker, 1997) have included wild animals in their studies, they merely abstract 

from them and do not explore the effects of these assumptions on the livestock farm/game 

ranch management decision-making process, concerning profitability and economic 

sustainability. This is probably because most rangeland ecosystems are traditionally used for 

domestic livestock, hence most researchers focus on the traditional economic systems taking 

place on them, than on what other ecological-economic systems are possible on these 

rangelands. Another explanation could be that, for a long period, game was considered a non-

viable rangeland use enterprise, but has since gained much precedence in rangelands, as new 

evidence emanating from South Africa has shown that game ranching is in fact a viable land use 

option (Tomlinson et al., 2002). Thus in order to develop better utilisation strategies, it is 

imperative that the economics of competing ecological-economic are studied to understand the 

influence of risk and uncertainty on their profitability and the decision making process by 

economic agents – which is the main goal of this study.  
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In a recent study by Moloney and Hearne (2009), an attempt is made to analyse the 

population dynamics of converting from cattle farming to Kangaroo production, in Australia. 

Moloney and Hearne’s (2009) study, like this study, responds to the growing calls to return to 

natural production systems in a bid to halt continued degradation as a result of livestock farming 

in semi-arid to arid rangelands (both in Australia and South Africa). Whilst their (Moloney and 

Hearne’s) study focuses on the interaction between livestock and wild animals, the gist is on 

population dynamics, as opposed to the profitability and economic sustainability therein – which 

is the focus of this study.  

2.5 Conclusions 

The literature reviewed has emphasised the pertinent issues that need to be considered 

when evaluating the relative profitability of alternative rangelands utilisation strategies. Firstly, 

the literature review has discussed how monotonous livestock farming has compromised 

biodiversity in rangelands, which has manifested in poor biological productivity of such systems. 

However, the review has also shown that game animals can act as a buffer to ecological 

resilience more especially if such animals are natural capital (keystone species) in an area. 

Secondly, the literature review has identified the dominant theories that govern rangeland 

management, and has highlighted the importance of using the appropriate paradigm in 

explaining the impact of different rangelands use strategies on ecological dynamics and 

profitability. Studies on southern African rangelands have emphasised the importance of rainfall, 

forage biomass production and price variability on the income structure of the rangeland 

utilisation economic systems. In this context of this research, the literature review revealed that 

because of the deleterious effects of domestic livestock on the environment, rangeland owners 

are increasingly switching to game ranching in an effort to improve the income structure of their 

enterprises. It was also argued that in semi-arid to arid regions of South Africa, such conversions 

are being spurred by the desire to reclaim degraded lands and halt crippling desertification. The 

conclusion is drawn that the potential to use and manage rangelands more efficiently by risk-

averse decision makers, hinges strongly on the profitability of those ecological-economic 

systems that promote biological diversity given rainfall variability, forage biomass production 

stochasticity and price variability. To that extent, any information that would increase the 
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potential to use rangelands in a more sustainable way (i.e. improve ecological resilience and 

biodiversity) whilst sustaining the livelihood of the rangeland owner, will aid the decision making 

process of whether to convert to game ranching.  

Such information could include understanding the effects of both livestock and game 

grazing (browsing) pressure on forage biomass or the effect of rainfall stochasticity on forage 

biomass production in a given period, and how this could affect the profitability and economic 

sustainability of the respective enterprises. It could also entail developing a rounded feel of how 

risk and uncertainty would impact the profitability of domestic livestock versus game ranching 

utilisation systems. Moreover, continued livestock production in rangelands in semi-arid areas 

where there is a high degree of degradation and compromised biological diversity, and high 

rainfall and green forage biomass production variability in conjunction with price uncertainty 

may cause risk-averse decision makers to adopt those utilisation systems that will improve 

ecological insurance, such as game ranching. However, this is only going to happen once 

rangeland owners and decision makers have been convinced that such alternative economic 

system are more profitable than the current utilisation economic system, essentially domestic 

livestock farming. It can be concluded that the level of profitability of the alternative enterprise 

and the level of risk aversion will largely determine whether a farmer continues with livestock 

farming, switches to game ranching, or maintains a balance of the two. This is because livestock 

farming is highly dependent on prevailing weather conditions, forage biomass production and 

price variability.  

In the next chapter, a detailed analysis of decision making under uncertainty is provided.  
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Chapter 3.  

DECISION MAKING UNDER UNCERTAINTY 

3.1 Introduction 

The management of rangelands involves making decisions under a constantly changing 

production and economic environment (Carande et al., 1995). In the previous section, it was 

shown that the sources of uncertainty in semi and arid rangelands derive from both abiotic 

(non-equilibrium) and biotic (equilibrium) factors. It was particularly shown that because of 

rainfall stochasticity, farmers and ranchers are faced with biomass production uncertainty, which 

imposes further uncertainty on the number of animals, the type of range utilisation system that 

the range manager can employ and subsequently the profit structure of the farming / ranching 

enterprise. Moreover, farmers and ranchers also have subjective beliefs about the probability of 

occurrence of different states of nature, which intertwined with their resources (both physical 

and financial), management objectives, and particularly their risk attitudes, play a pivotal role in 

their decision making process.    

In order to access the profitability of converting a sheep farm into a springbuck ranch a 

basic understanding of the theory on decision-making under uncertainty is necessary. Focusing 

on risk is important because it “...serves to emphasize that ... the risk of any ... [alternative] has 

to be weighed against its profitability. Thus both profitability and risk have to be incorporated in 

the decision making process” (Levy, 2006: 25). Moreover, rangeland owners face many 

alternative rangeland utilisation choices. Such choices, however, are limited by the degree and 

level of risk exposure, and the subjective beliefs of the decision makers. Thus, to compare the 

risk and return of alternative rangeland utilisation strategies, a fundamental understanding of 

decision criteria, therefore, is essential.  

This chapter discusses the theory on decision-making under uncertainty. It further 

presents the procedures that under-pin the decision-making under uncertainty. Particular 

procedures and empirical studies that have been used to quantify the effects of uncertainty on 

the decision-making process are reviewed. The chapter is concluded with a detailed discussion 

of the procedures that accompany the stochastic efficiency with respect to a function (SERF) 
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and economic sustainability methods, selected to implement the empirical economic analyses of 

this study.  

3.2 Subjective Expected Utility Hypothesis and Analysis  

Decision-making under uncertainty, generally, is based on the assumptions of the 

subjective expected utility (SEU) hypothesis, which finds its theoretical foundations in the 

provisions of the utility theory (Hardaker, Richardson, Lien and Schuman, 2004ba; Anderson 

and Hardaker, 2003). The theory of utility and expected utility-maximising behaviour dates back 

to Daniel Bernoulli’s 1738 seminal paper which was translated into English in 1954. In 

particular, Bernoulli (1954) introduced four axioms related to choices amongst risky prospects 

namely; ordering, transitivity, continuity and independence. Amongst others, Hardaker et al. 

(2004a: 35 – 36) have interpreted these axioms as follows. There is an ordering axiom if faced 

with two risky prospects,    and   , the decision-maker (DM) prefers one risky prospect to the 

other or is indifferent between the two. Transitivity implies a case where the risky prospect,    is 

preferred to    and in a similar fashion    is preferred to another risky prospect   . In the 

continuity axiom, the DM is assumed to prefer    to    and    to    and that there exists a 

subjective probability        not zero or one, that makes the DM indifferent to    and a lottery 

yielding   with probability       and    with probability             Lastly, the 

independence axiom relates to a case where the DM prefers    to     and,     is any other risky 

prospect, such that the  DM will prefer a lottery yielding     and     when        =          

These four axioms are the building blocks of the Bernoulli principle, otherwise known, 

after the work of Leonardo Savage (1954), as the subjective expected utility (SEU) hypothesis. 

The axiomatic conditions imply that there exists a utility function        for which: if 

         10        holds, then              , such that the DM’s utility function can be 

specified as a function of the possible decisions (Ladanyi, 2008: 148): 

                                                

10 Where        , the set of all possible choices) denotes one of the decisions between which the decision maker must 

choose, the uncertain states of nature by              ,   and   are sets of indexes) and their (subjective probability 

with  (   .      denotes the consequences of the jth act given the state    (Ladanyi, 2008: 148).  
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  (  )   ∑                  for discrete probability or  

  (  )   ∫            for continuous probability                                  (3.1) 

The SEU hypothesis states that the utility or index of relative preferences, of a risky 

prospect is the decision maker’s expected utility for that prospect (Anderson and Hardaker, 

2003: 171). This basically implies that, faced with a choice amongst alternative risky prospects, it 

is hypothesised that the decision maker will opt for the prospect with the highest expected utility 

(Kim, 1991: 253). This hypothesis is particularly appealing because of its three intrinsic 

properties.  The first property highlights the importance of utility values under uncertainty, and 

shows that they can be used to rank risky prospects – with the one having the highest utility 

being the most preferred. The second property pertains to the utility of a risky prospect and 

postulates that it is its expected utility. The third and final property affirms that a given utility 

function can be defined only up to a positive linear transformation – meaning that: “it makes no 

sense to say that one risky prospect yields 20% more utility than another, since a shift in the 

origin or scale will change the proportional difference” (Hardaker et al., 2004a: 35 - 36).  

As a rule of thumb, “[r]isk assessment requires coming to grips with both probabilities 

and preferences for outcomes held by the decision maker” (Hardaker et al. 2004b: 253; 

Anderson and Hardaker, 2003: 171).  As a provision, the SEU hypothesis requires that, for the 

assessment of risky alternatives, the decision-maker’s utility function for outcomes be specified. 

This is because, in the SEU sense, the shape of the utility function reflects an individual’s 

attitude towards risk or his preference for actions (Anderson and Hardaker, 2003). In practice, 

however, this is seldom the norm. For example, in order to put the SEU hypothesis to work in 

the analysis of risky prospects in agriculture, Anderson and Hardaker (2003) contend that there 

is need to elicit the decision maker’s utility function. This is despite the realisation that empirical 

evidence exists that “functions obtained [in this way] are vulnerable to interviewer bias and to 

bias from the way questions are framed” (Anderson and Hardaker, 2003: 173).  

For this reason, Rabin and Thaler (2001) and Rabin (2000) assert that the SEU 

hypothesis is a flawed theory of choice. They argue that its analysis is not enough in explaining 

the behaviour of decision makers faced with uncertainty (Rabin, 2000; Rabin and Thaler, 2001). 

As an illustration, Allais (1984) as cited by Hardaker et al. (2004b: 254) criticized the SEU 

hypothesis because of its long-standing history of inconsistency with theory in certain risky 
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choice situations. One of the major problems in using the SEU hypothesis in analysing risky 

alternatives in agriculture is the difficulty faced when attempting to elicit an individual’s utility 

function (Anderson and Hardaker, 2003). Hardaker et al. (2004b: 254) posit that where it has 

been tried, the results have been rather “scanty and unconvincing”. Another setback with 

expected utility values for decision analysis is that they are difficult to understand and do not 

present an opportunity to assess the magnitude between alternatives, as opposed to using, for 

instance, the certainty equivalents of risky prospects (Hardaker et al., 2004a).  

Partly to stay away from the need to obtain a specific single-valued utility function, 

methods under the caption of stochastic dominance criteria have been developed.    

3.3 Stochastic Dominance Criterion  

Hardaker et al. (2004b: 254) defines a stochastic dominance criterion as a “decision rule 

that provides a partial ordering of risky alternatives for DM whose preferences conform to 

specified conditions about their utility functions (preferences for consequences)”. It is a much 

more discriminating version of the subjective expected utility analysis. Stochastic dominance 

rules and other investment rules (e.g. the mean – variance rule) employ partial information on 

the DM’s preferences. Because of this, they tend to produce only partial orderings as opposed to 

complete ordering. This makes it near impossible to know the precise shape of the utility 

function (Levy, 2006: 49). According to McConnell and Dillon (1997), the stochastic dominance 

criteria is particularly appealing and attractive because 1) it does not require the elicitation of the 

decision maker’s utility function, 2) it bases its comparisons on direct full probability 

distributions of outcomes, and 3) it is easier to use: it only requires a computer and compatible 

software.  

Essentially, stochastic dominance methods entail pairwise comparison of alternatives, 

thus with a larger number of alternatives, the potential number of comparisons also increases 

exponentially thus increasing chances of an inefficient analysis (Hardaker et al., 2004a).  For 

instance, in reality, DMs often face a wide range of investment alternatives (Levy, 2006). These 

make the feasible set (FS). An example of such a set would be a DM who is faced with various 

rangeland utilisation alternatives ranging from wool sheep farming (A), springbuck ranching for 

venison production (B), mutton sheep farming(C), beef cattle farming (D) or goat farming for 
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mohair (E) and has to choose amongst them. Assuming that the decision-maker faces these five 

alternatives only, the decision making process would entail first dividing these alternatives into 

two sets: one efficient, and the other inefficient. For illustration purposes, the five feasible 

alternatives (called the feasible set) as shown in Figure 3.1, are divided into two mutually 

exclusive and comprehensive sets, called the inefficient set      and the efficient set     , as 

depicted by equation (3.2);  

                          (where   denotes union)                                                (3.2) 

Figure 3.1 demonstrates the division of the feasible set,   , into the two sets    and   . 

Particularly, in this example, the    consists of the five feasible alternatives A, B, C, D and E. 

Each alternative included in the feasible set must either be in the    or in the   . Given the 

utility function    denoted by        and assuming that the only information available is that 

      , consequently,        if        where    is the set of all non-decreasing utility 

functions. 

 

 

 

 

  

  Figure 3.1: The Feasible, Efficient and Inefficient Sets (Source: Levy, 2006: 50).  

 

To demonstrate how the concept of the efficient set works, Levy (2006: 50) introduces 

the following definitions:  

Dominance in    : means that alternative I dominates alternative II in    for all utility 

functions such that if                         and for at least one utility function      

  , there is a strict inequality.  

Efficient set in   : means that an investment is included in the efficient set if there is no 

other alternatives that dominates it. The efficient set includes all undominated alternatives. As 

shown in Figure 3.1, alternatives A and B are efficient. Neither A nor B dominates the other 

meaning that there is a utility function          such that:  
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                        >                                                                                   (3.3)  

and there is another utility function,           such that  

                       >                                                                                              (3.4)  

This basically means that neither A nor B is the “best” for all DMs included in the group 

      . In other words, it implies that some DMs may prefer A whilst some may prefer B, and 

that there is no dominance between A and B.  

Inefficient set in   : the inefficient set includes all inefficient risky alternatives. An 

inefficient set can be defined as a set with at least one alternative in the efficient set that 

dominates it. Figure 3.1 shows that the investment alternatives C, D, and E are inefficient. This 

consequently implies that we may have the following relationships:  

                                 >                                                                         (3.5a)  

                               >                                                                                     (3.5b)  

                               >                                                                          (3.5c)  

                                  For all       .   

Equation 3.5a and 3.5b indicate that the efficient alternative A dominates alternative C  

and D, while equation 3.5c indicate that the efficient alternative B dominates E. However, 

cognisance should be taken to the fact that once an alternative has been dominated by one 

efficient set; that alone is enough to relegate it to the inefficient set – as opposed to having it 

dominated by all efficient alternatives (Levy, 2006: 51). This can be shown by bringing in 

another function which introduces or shows that E is above A which adds no weight to the 

partial ordering because E is already dominated by B (as shown in equation 3.5c above) and 

hence no DM will select it as it is already in the inefficient set; as shown below (Levy, 2006: 51):  

                    For all U                                                                     (3.6)  

In essence, the partition of the feasible set,   , to the efficient set (  ) and inefficient set 

(  ) will entirely depend on the data set available. As shown in the above example, Levy (2006: 

49 - 52) explains that any other assumptions made on the utility function would have to change 

the given utilities to a new set of utilities corresponding to the assumed information. Moreover, 

in generic terms, the DM is always better off if the efficient set is smaller relative to the feasible 

set.  As it shall be shown later, the strength of the stochastic dominance criterion is improved if 
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more assumptions or information on preferences or on the distribution of returns are 

introduced thus giving a more restricted efficient term (Levy, 2006).  

This realisation highlights one of the main disadvantages of investment choices with 

partial information (hence partial ordering): they involve two decision stages. The first stage 

involves the consultant or investment expert and is known as the objective decision. The 

objective decision comprises the partial ordering and screening of investments and is concluded 

by dividing the    into the    and   . Whereas, the other decision making stage is at a personal 

level and is mainly concerned with the individual DM and is known as the subjective decision. 

The subjective decision is made up of the optimum investment choices emanating from the 

DM. It is called the subjective decision because it is dependent on the DM’s preferences and is 

based on the contents of the ES (Levy, 2006: 52).   

However, various forms of stochastic dominance analysis that particularly vary as per the 

available information based on the subjective preferences of DMs are available. These methods 

also depend on the type and strength of assumptions made about the functionality of the “utility 

function and the risk attitudes implied” (Hardaker et al., 2004a: 147). As already mentioned, 

stochastic dominance or efficiency methods are based on the subjective expected utility 

maximisation principle, wherein alternative risky prospects are on the main compared in terms 

of probability outcomes, thus yielding a more meaningful output than would have been 

otherwise. In the following subsection, a detailed description of the various forms of stochastic 

dominance are reviewed and their strengths and weaknesses given. 

3.3.1  First degree stochastic dominance  

The concept of first degree stochastic dominance (FSD) is well known in economic 

literature, and was first introduced by Hadar and Russell (1969), as a way of solving the problem 

for the unusual case of       =     and       =    (Hardaker et al., 2004a: 255). Levy (2006: 

55) defines the FSD rule as a criterion that can be used to assess whether an investment 

dominates another investment when the available information is limited. Consequently, in 

stochastic dominance criterion, information is considered limited if        given that     

   and that   is in the range      and this assumption is adopted to avoid the trivial case of 

   coinciding with the horizontal axis. The weak assumption on preference is adopted because 
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of the idea that DMs prefer more wealth than less - conforming to the monotonicity axiom 

(Levy, 2006).  

Consider two investment alternatives; wool sheep farming     and springbuck ranching 

   , with a stochastic (uncertain) outcome  , which is bounded in the range [   ], the 

cumulative probability distributions (or cumulative distribution functions (CDFs)) of these two 

alternatives can be denoted by      and     .   is said to dominate   by FSD if and only if 

            for all  , with a strict inequality for at least one value   . “FSD expresses the fact 

that under     the random variable is “bigger” than under     ” (Meyer, 2001: 11). If 

  dominates   by FSD, then all DMs with non-decreasing utility functions (concave, convex, or 

with both concave and convex segments) prefer   over  . Thus, it can be argued that the FSD 

criterion corresponds to all types of utility functions as long as they are non-decreasing in wealth 

and twice differentiable (Levy and Levy, 2001: 235; Levy 2006: 55 – 59). In a graphical 

illustration, this means that the CDF curve of the dominating risky prospect (in this case F) must 

always lie below and to the right of the risky prospect being dominated (G) and that for a risky 

prospect to dominate another in the first degree sense, their CDF curves must not cross each 

other, as shown in Figure 3.2. However, in practice, as it shall be shown later, it is possible to 

rank alternatives even though their curves cross each other. This shows that the FSD has limited 

discriminatory power (Hardaker et al., 2004b: 147 – 149).  

 
Figure 3.2: Illustration of First Degree Stochastic dominance (Source: Richardson and 
Outlaw, 2008: 215). 

3.3.2   Second Degree Stochastic Dominance  

Hadar and Russell (1969), introduced Second Degree Stochastic Dominance (SSD), as a 

technique of forecasting a decision maker’s preference among specified pairs of risky alternatives 
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in the absence of concrete information about a decision maker’s utility function apart from the 

fact that it exhibits risk aversion properties. By giving necessary and sufficient conditions on a 

pair of risky prospects, the SSD makes it possible for decision makers who are risk averse to 

choose amongst a pair of risky prospects (Meyer, 1977: 477). One of the advantages of the SSD 

is its ability to characterise the pairs of risky prospects for which risk averse decision makers are 

unanimous in choosing one over the other. In particular, F is said to dominate G by SSD for all 

non-decreasing risk averse utility functions (i.e. all functions with decreasing marginal utility), if 

and only if (Hadar and Russell, 1971: 294) 

                          ∫             
 

 
 dx ≥ 0  for all values of y                     (3.7)  

with at least one strict inequality. Just like in FSD, “SSD indicates that the variable is 

bigger and or less risky under      than       (Meyer, 2001). Hardaker et al. (2004b: 255) agree 

that it is possible to order alternatives for decision makers who prefer more wealth to less and 

have absolute risk aversion with respect to wealth by using the FSD, between the bounds 

                    , whilst for the SSD the risk aversion bounds changes to    

                 since it is assumed that such decision makers are not risk preferring. This 

has been argued to imply that the SSD takes cognisance of the possibility that some decision 

makers may possess an absolute risk aversion parameter that is so large that “the utility of a 

small difference at the lowest observation is extraordinarily important” (Hardaker et al., 2004b: 

255).  

However, empirical work has suggested that these two forms of analysis are not 

adequately instructive to yield outcomes that can be considered as useful in making concrete 

decisions, particularly because the size of the efficient set is considered too large to be easily 

manageable (King and Robinson, 1981). In particular, Meyer(1977a) argues that the problem 

with the FSD and SSD criterion is that they fail to adequately capture and describe objects of 

choice of a group of decision makers or agents. Interestingly, allowing for extreme risk aversion 

is unrealistic particularly in relation to loss aversion. However, as Meyer (1977a) shows, a case 

can be made to base analysis on a more restricted range.   It was on this basis that Meyer (1977b) 

introduced a more restricted procedure to circumvent the inefficiencies of the first and second 

degree stochastic dominance decision rules.  
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3.3.3 Stochastic Dominance with Respect to a Function  

Stochastic dominance with respect to a function (SDRF) allows for tighter restrictions on 

risk aversion (Hardaker et al. 2004b: 255). Meyer (1977a) hypothesises that the general problem 

studied under the stochastic dominance heading is that of finding necessary and adequate 

conditions on cumulative distribution functions [   ) and      for     ] to be preferred or 

indifferent to [    ] by all DMs in a particular group of DMs. As already alluded to, DMs are 

assumed to have their preferences represented by an expected utility function      which is 

increasing and twice differentiable (Meyer, 1977a: 327; Meyer, 1977b: 477; Norstad, 2005: 2). 

However, Meyer (1977a: 327) argues that this has tended to direct work done on stochastic 

dominance to describe DMs in terms of the properties of their utility functions – which is not 

very convenient. Meyer (1977a) contends that since the utility function is not a unique 

representation, any positive linear transformation of it also represents the same preferences. He 

proposed that to restrict a group of DMs being considered by imposing restrictions on     , 

cognisance that such restrictions should not only be met by     , but should also be met by all 

positive linear transformations of     , should be taken. For example, up until then, available 

literature tended to focus on restrictions that paid emphasis on the sign of the second and third 

derivatives of     , thus risking the possibility of not defining some groups of DMs -  bearing 

in mind that the thesis of whether a decision maker belongs to a group of DMs or not is entirely 

dependent on the particular representation of [his] preferences being used (Meyer, 1977a: 327).  

In a way, to circumvent against this intricacy, Meyer (1977b) posited that using 

restrictions on a decision maker’s preferences or     , a case could be made to define a group of 

agents or decision-makers. Pratt (1964) illustrated that      uniquely represents an agents’ 

preference, while Pratt and Arrow (1971) defined the function      as a quantification of a 

decision maker’s absolute aversion to risk. Meyer (1977a: 328) contends that imposing 

restrictions on      can be likened to specifying a lower and upper bound on risk aversion for 

the DMs in the set being considered.  By amalgamating the ideas behind the FSD, SSD and the 

SSD with respect to a function, Meyer (1977b:479) described the objects of choice of DMs by 

introducing an all inclusive class of agents or DMs   (     ,      ) and showed that by 

identifying a utility function      which minimises:  
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 ∫      -      
 

 
      dx   0                                 (3.8)  

and satisfy the restrictions on      which are  

                   ≤ 
      

      
 ≤                                                                     (3.9)  

where       and       are random functions which give the lower and upper bounds on 

the measure of risk aversion, and qualifying it with the assumption that all utility functions are in 

line with the dictates of the von Neumann – Morgenstern utility functions which are decreasing 

and twice differentiable. Hence              is defined for all   (Meyer, 1977b, 478).  

Consequently, a concept called Second Degree Stochastic Dominance with Respect to a 

Function, denoted by SSD     where      stochastically dominates      in the second degree 

with respect to      (“  SSD     ”) if and only if (Meyer, 1977b: 479): 

 ∫             
 

 
 dk(x) ≥ 0                                                                      

(3.10)             

where the integration is with respect to the function     . However, this is not a convenient 

way of characterising risk. According to Pratt (1964), a more suitable and corresponding 

depiction is to consider the set of all      such that      =         where      is a concave 

and increasing function and      satisfies the following condition:  

 
      

      
 ≤ 

     

  
                     (3.11) 

Meyer (1977b: 480) shows that a more consistent representation of equation (3.11) can 

be made by relating a group of DM who are more averse to risk denoted by the function  (-

           , ∞) to SSD    such that: 

∫           
 

 
       ≥ 0  for all values of y if and only if 

 ∫           ∫          
 

 

 

 
 for all      є   (

       

  
, ∞)    (3.12) 

In words, equation (3.12) states that the cumulative distribution      stochastically 

dominates      in the second degree with respect to       Furthermore, this is the same as 

     being chosen or indifferent to      by all DMs more risk averse than a DM with the 

utility function     . Moreover, in the presence of uncertainty on how to predict a DM’s choice 

between a pair of risky prospects,      and     , the prediction can be made using the SSD 
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    if the DM’s measure of risk is greater than             . For instance, if               

G   , then it can be deduced that the DM prefers or is indifferent between      and     , 

moreover, if      does not stochastically dominate      with respect      , many probable 

outcomes are possible given that the DM’s preferences are not fully known. Hence, this can be 

interpreted to mean that: 1)      is preferred to     ; and 2)      is preferred to     . 

Concisely, this means that, when trying to predict the DM’s choice among risky alternatives, the 

use of the information contained on the DM’s lower bound can be explored by use of SSD      

(Meyer, 1977b: 480). 

However, equation (3.12) assumes that only one bound is considered on the measure of 

risk aversion - the lower bound. Thus, in a case where the decision maker is less risk averse than 

     (that is, only an upper bound on his degree of risk aversion is known), equation (3.12) 

becomes inefficient in quantifying their risk averseness. Recalling the condition that must be 

satisfied by      in equation (3.13b), a group of all DMs who are less risk averse than      can 

be defined by imposing a new but opposing condition that must be satisfied by     :  

                      
     

  
 ≤

      

      
                               (3.13a) 

According to Meyer (1977b), a more suitable and corresponding depiction is to consider 

the set of all      such that                where      is a concave and increasing function 

and the group of DMs is denoted by                    , by employing Hadar and 

Russell’s (1971)     concerning utility function. Thus, the problem to predict the DM’s choice 

between pairs of risky prospects can be given by (Meyer, 1977b: 482): 

 ∫           
 

 
      ≤ 0  for all values of y  if and only if 

           ∫           ∫          
 

 

 

 
 for all          (   

       

  
)              (3.13b) 

In words, equation (3.13b) shows that a DM will choose      over     . Moreover, 

given limited knowledge of the DM’s preferences, his choice between      and      can then 

be predicted if equation (3.13b) holds. The equation also shows a DM’s choice between a pair of 

risky alternatives assuming that the upper bound on his risk aversion measure is known, as well 

as a categorisation of those pairs of risky prospects that DMs whose risk aversion property is 

less than      are most likely to it choose over the other (Meyer, 1977b: 482). 
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Furthermore, combining equations (3.13a) and (3.13b), the following sets of cumulative 

distribution are obtainable: 

  ∫             
 

 
dx ≥ 0           and   (3.14) 

                             ∫             
 

 
dx ≥ 0           implies    (3.15) 

                ∫             
 

 
dx ≥ 0              (3.16) 

Meyer (1977b: 483) has shown that subtracting equation (3.14) from (3.15) yields (3.16). Hence, 

what equations (3. 14) to (3.16) mean is that a risk neutral DM is equally well-off between      

and      if      is preferred or equally well-off to      by all DM who are more risk averse 

than the risk neutral DM.  Accordingly, the risk neutral DM can consequently be defined in a 

way as some margin between DM who prefer      to      and vice versa:  

                            ∫             
 

 
dk(x) ≥ 0           and   (3.17) 

                          ∫             
 

 
dk(x) = 0  only if    (3.18) 

              ∫             
 

 
dk(x) ≤ 0              (3.19) 

Introducing the utility function      on equations (3. 14) to (3.16) yields the equations 

(3.17) to (3.19) which basically mean that all DM with the utility function      are equally well-

off between      and     . Further, the equations demonstrate that, if      is preferred or 

equally well-off to      for a group of DMs who are more risk averse than       where      is 

indifferent between      and     , then      is preferred or indifferent to      by all agents 

less risk averse than       Hence,      can be viewed as a boundary function setting a group of 

DMs who prefer   to   apart from a group which prefers   to   (Meyer, 1977b: 483). Meyer 

(1977b: 483) has further revealed that it is possible to find      for a particular pair of risky 

prospects (     and     ) such that they are in line with the assumptions of equation (3.19) 

above. In particular, this can be done by determining whether the DM is more or less risk averse 

than      - since the value of      that satisfy the assumptions of equation (3.19) also partially 

characterises those DMs who prefer   to   and vice versa.    
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3.3.4 Conclusions 

Meyer’s (1977b) SDRF has been criticised for its inability to blend well with most risk 

quantification software, with Hardaker et al. (2004a) and Hardaker et al. (2004b) arguing that the 

computing task in it is very tedious and complicated and leads to compromised understanding to 

its users. According to Hardaker et al. (2004b: 255), the SDRF is also inefficient in that it relies 

on finding a subset of dominated alternatives, as opposed to identifying, for example, utility 

efficient prospects for ranges of risk attitudes. What this means is that the SDRF will only 

identify pairwise dominated alternatives, hence, faced with a smallest possible efficient set, a 

pairwise dominated alternative may not be able to pick and isolate such a set.  

In the next section, a more discriminating and transparent method of risk quantification 

is introduced and explained. This method is called the Stochastic Efficiency with Respect to 

Function (SERF) and forms the most recent development in ranking risky alternatives in 

agriculture. The SERF can be viewed as an augmentation of the SDRF, in that it simplifies what 

Meyer (1977b) set out to do (Hardaker et al., 2004a: 153; Hardaker et al., 2004b: 255). The 

availability of easy to use software to quantify and simulate risk in agriculture that comes with 

SERF makes it even more appealing.  

3.4 Stochastic Efficiency with Respect to a Function  

The stochastic efficiency with respect to a function (SERF) method was first presented 

and illustrated by Hardaker and Lien (2003) and formally introduced and proven by Hardaker et 

al. (2004b). Like the SDRF, SERF also finds its theoretical basics in Bernoulli’s (1954) four 

axioms (see section 3.1). Recall in section 2.3, it was argued that the decision maker is assumed 

to choose an alternative that maximises his expected utility function. Hardaker et al. (2004b: 257) 

and Hardaker and Lien (2003: 8 – 9) have independently shown that the SERF method works by 

ordering a set of risky alternatives expressed in certainty equivalents (CE), and calculated for 

ranges of risk attitudes. In particular, Hardaker et al. (2004a: 105) demonstrated some of the 

advantages obtained in using CE’s of alternative risky prospects as opposed to their expected 

utility values in decision analysis. Firstly, they argued that CEs are easy to understand, and 

present a more transparent approach to assess the magnitude between alternatives (through 
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comparison of the CEs). Secondly, they proved that results could be interpreted simply and 

directly since the comparing of independent alternatives entails the expression of one CE as a 

proportion of another, or obtaining the difference between two CEs.  

The CE of a risky prospect is defined as the: “sure sum with the same utility as the 

expected utility of the prospect” (Hardaker et al., 2004b: 257). Drawing on Richardson (2004), 

Grové, Nel and Maluleke (2006) define a certainty equivalent as the minimum cash ransom that 

a decision maker would accept as payment for him to be indifferent between the CE and the 

future payment of a risky prospect. Grové et al. (2006: 53) further add, “the level of the CE is 

determined by the decision maker’s expected utility function and the level of risk aversion.” 

Landányi (2008: 148) defines a CE as “the value ‘for sure’ that would make the DM indifferent 

to facing the risky prospect or to accept the value ‘for sure’ with                        ”.11 

The essence of CEs is to be at a point where the DM is indifferent between the value and the 

risky outcome. Risky prospects are expressed in CE under the supposition that for the rational 

DM, the CE is characteristically lower than the expected money value (EMV) and greater than 

or equal to the minimum value. Thus by computing the difference between the EMV and the 

CE, the risk premium can be obtained (Hardaker et al., 2004a). Since the information available 

from the DM is always limited, partial ordering of alternatives by CE is the same as partial 

ordering them by utility values. Moreover, converting the utilities to CE values by taking the 

inverse of the utility function is ideal and convenient because it allows for the direct explanation 

of the CE values as premium than as utility values. The utility values are converted to CE values 

by (Hardaker et al., 2004a: 154; Hardaker et al., 2004b: 257): 

 CE           =                    (3.20) 

and depending on the utility function given, the CE can be calculated by assuming an 

exponential utility function (Hardaker et al., 2004b: 257) and a discrete distribution of   (Grove 

2008: 33) as (Hardaker, et al., 2004a: 154; Hardaker et al., 2004b: 257):  

 CE           = ln  {(
 

 
∑           

 )

  

      
}    (3.21) 

                                                

11 Where   and   are sets of indexes and     are the consequences of the  th act given the state    
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where   is utility,    is the relative risk aversion coefficient, assumed constant 12 ,       

represents the intensity of absolute risk aversion and   describes the magnitude of the random 

sample of risky alternative  . Moreover, McCarl and Bessler (1989) have also shown that the risk 

aversion coefficient (RAC) values can be calculated by dividing 5 by the standard deviation. To 

determine the relationship between risk aversion and CE, an evaluation of equation (3.21) over a 

range of       is performed 13 . By similarly repeating it for different risky prospects, the 

relationship for several prospects can be obtained. By means of a graphical representation of the 

outcomes, the CE and the risk aversion can be weighed against each other and the alternative 

with the highest CE is chosen given the specific magnitude of risk aversion (Hardaker et al., 

2004b: 257 – 8). This is particularly so because, at each       “only the alternative that yields the 

highest CE is efficient” and all other alternatives are “dominated in the SERF sense” (Hardaker 

et al., 2004b: 258).  

This can be illustrated graphically as shown in Figure 3.2, which elucidates the case of 

being dominated in the SERF sense further. Unlike the SSD or SDRF, Figure 3.2 actually shows 

that even though the various curves are crossing each other at different risk aversion levels, it is 

possible to pick up the most efficient alternative, at any given level of assumed risk aversion. 

Figure 3.2 further shows that alternative one is the dominating prospect since it has the highest 

CE to all the other prospects (two and three) for the risk aversion magnitude       ,        and 

      ,  whilst  alternative two is the prospect of dominance for the risk aversion magnitude of 

       and       . Using the SERF criteria, alternative 3 is not utility-efficient given the fact 

that it is dominated in every level of risk aversion, which offers relief, since the SDRF would 

eliminate none of the three alternatives from the efficient set given the fact that each curve is 

crossed by at least one of the other two alternative curves.  

                                                

12 Following on Anderson and Dillon (1992) the risk attitude of the farmer with respect to wealth (or gains and losses) 
can be categorised into five different classes of relative risk aversion: 0.5 = hardly risk averse at all; 1.0 = somewhat risk 
averse (normal; rather risk averse = 2.0; very risk averse = 3.0 and extremely risk averse = 4.0.  
13 Risky outcomes     can also be expressed as gains and losses as opposed to being expressed in terms of wealth     
only (Hardaker et al., 2004a). 
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Figure 3.3: Illustration of a stochastic efficiency with respect to a function (SERF) for 

comparing three alternatives over risk aversion levels        to        . (Source: 
Hardaker et al., 2004b: 258).  

The SERF method allows for simultaneous comparison of risky alternatives – unlike the 

SDRF, SSD or FSD, which only permit pairwise comparisons (Hardaker et al., 2004b; Hardaker 

and Lien, 2003). By using graphical presentation of SERF results, alternative rankings for DMs 

with different risk preferences may be presented. Because risky alternatives are calculated in 

terms of CE – which is equal to the amount of money an individual would require to be equally 

well-off between a certain payoff and a risky prospect, the SERF method allows for the 

computation of CE values over a range of absolute risk aversion coefficients (ARACs), thereby 

availing the opportunity of representing the DM’s level of risk aversion (Hardaker et al., 2004b: 

255 – 259). Decision makers are risk averse if ARAC > 0, risk neutral if ARAC = 0, and risk 

preferring if ARAC < 0. The main advantage of SERF over SDRF is that “the utility efficient set 

is obtained directly, and so is potentially smaller than SDRF efficient set” (Hardaker et al., 2004a: 

155). Hardaker and Lien (2003) present a detailed comparative analysis of the SDRF and SERF 

methods.  

3.4.1 Risky Premiums 

Decision makers often assign certain premiums or pay-offs to risky alternatives that will 

leave them equally well-off between the risky alternative and the pay-off of the preferred 

alternative. These pay-offs are called risky premiums (RP) and denote the sure amount of money 

that will leave the decision maker equally well-off between the risky alternative and the preferred 

alternative. To calculate the risky premium, consider the amount of money (CE) such that the 
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decision maker is indifferent between an alternative yielding the amount of money,  , and the 

CE. Since a risk averse agent would be willing to pay or be paid a certain premium that will 

make him to be indifferent between the risky prospect and its expected utility      , the risk 

premium (RP) is calculated by: 

            –           (3.22) 

Note that       can also denote the expected money value (EMV), such that re-writing 

equation (3.22) yields: 

     =     –           (3.23)  

According to Hardaker et al. (2004a:101), the risky premiums are negative and “measure 

the costs of the combined effects of risk and risk aversion”. For example, under risk aversion, 

the risk premium is subjective to the appropriate moments of income distribution (Di Falco and 

Chavas, 2009). 

3.4.2 Economic Studies on SERF 

Although relatively new, SERF has been used extensively to rank risky alternatives for a 

number of farm businesses and projects in agriculture around the world, ever-since Hardaker et 

al.’s (2004a) seminal paper. Lien, Hardaker and Flaten (2007a) used SERF to analyse the 

economic sustainability of organic and conventional cropping systems in Eastern Norway.  

Whilst Lien, Stordal, Hardaker and Asheim (2007b) applied SERF to evaluate optimal tree 

replanting replacing on an area that was previously forest land. Clancy, Breen, Butler, Thorne 

and Wallace (2008), showed the practical use of SERF in comparing returns from two 

alternative land use strategies (willow and miscanthus) with those from conventional agricultural 

enterprises, in Irish agriculture. In Greece, Tzouramani, Karakinos, and Alexopoulos (2008) 

have used SERF to compare and explore the economic viability of organic and conventional 

cropping systems with respect to profitability and risk behaviour. In South Africa, Grové (2008); 

Grove (2006) and Grové, Nel and Maluleke (2006), have used the SERF method in the analysis 

of alternative agricultural water use and deficit irrigation practices, respectively. Watkins, 

Highnight, Beck, Anders, Hubbell, and Gadberry (2010) evaluated the profitability and risk 

efficiency of grazing stocker steers on conservation tillage winter wheat pasture, in Arkansas 

using simulation and SERF. Other recent international studies that focused on comparing the 
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net profitability and risk efficiency of various land use enterprises have employed the SERF 

method, in one way or another. These include (but are not limited to) studies by Watkins, Hill, 

and Anders (2008); Archer and Kludze (2006); Evangelista and Lansigan (2007); Ascough, 

Fathelrahman, Vandenberg, Green and Hoag (2009) and Carlberg (2010).  

All the above studies have shown that the trend in stochastic efficiency with respect to a 

function analysis is that of using certainty equivalents (CEs) to distinguish among risky 

alternatives while assuming a specific utility function. In particular, they highlight the ability of 

SERF to rank alternatives for risk efficiency. Through stochastic simulation, alternatives that are 

profitable and risk efficient can be identified and compared. While there are studies that analyse 

and compare the profitability of alternative livestock enterprises (Watkins et al., 2010), there are 

no studies, in as far as the literature reviewed is concerned, that have applied SERF to compare 

and analyse the profitability of converting from livestock farming to springbuck ranching – 

which is the goal of this study.  

3.4.3 Incorporating Risk into Budgeting Models  

Lien (2003) developed procedures that can be used to evaluate the financial feasibility of 

different investments and management strategies on a farm. Lien emphasised the importance of 

accounting for risk in farm planning and, in particular, argued that since deterministic budgeting 

models fail to incorporate the stochasticity of estimates (uses point estimates) of uncertain 

variables (see section 3.3), consequently, they fail to capture the future of investment and 

management decisions on the farm14 (Lien, 2003). According to Lien (2003) and Lien et al. 

(2007a), improved farm planning flexibility can be achieved by using stochastic budgeting. For 

example the “stochastic budget approach may give more realistic and more useful information 

about alternative decision strategies” (Lien, 2003: 411).  

Pouliquen (1970) posits that risk and uncertainty in decision-making can be accounted 

for by employing risk analysis techniques. In the preceding sections, it was shown that risk and 

uncertainty are incorporated into budgeting models by attaching probabilities of occurrence to 

                                                

14 This is because the probability distributions of the outcomes are usually skewed and non-normal (Lien, 2003: 411). 
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the “key variables in a budget, thereby generating the probability distribution of possible budget 

outcomes” (McConnell and Dillon, 1997: 278). The process or act of attaching the probabilities 

is commonly known as stochastic budgeting (Lien, 2003). Basic farm planning requires 

developing forecasts of the coming years’ yields, prices and costs based on personal opinion or 

published data (Lien, 2003). These forecasts simplify the decision making process by presenting 

the decision-maker with an opportunity to determine a priori the most profitable farm enterprise 

combinations that will maximise his/her profits.  

Stochastic budgeting is appealing for a number of reasons. Firstly, it is an improvement 

on the traditional budgeting approach where the focus is on the deterministic elements of the 

budget. Secondly, stochastic budgeting incorporates both the deterministic and stochastic 

elements in developing an apt measure of financial performance (Lien, 2003).  In other words, it 

takes cognisance of the fact that, in reality, “events and conditions planned for will not turn out 

as assumed” (Lien, 2003: 403). Lien (2003: 403) shows that the stochastic elements need to be 

introduced into the budget by specifying probability distributions for the key variables assumed 

to be affecting the “riskiness of the selected measure of financial performance.”   

Stochastic budgeting is often used, interchangeably and with much about the same 

meaning as stochastic simulation (Hardaker et al., 2004a). Typically, stochastic budgets comprise 

a deterministic component in a form of a conventional budget with given or fixed variables 

(assumed certainty) whilst a stochastic simulation model may or may not have the deterministic 

component. However, in practice, stochastic simulation commences from the deterministic 

equivalent to the stochastic one. In short, as Hardaker et al. (2004a: 157) write, “stochastic 

budgeting can be regarded as a sub-category of stochastic simulation.” The advent of stochastic 

simulation software has made the stochastic simulation process much easier than it was in the 

late 1960s and early 1970s. Particularly, the development of specialist stochastic simulation add-

ins for spreadsheet software such as Microsoft Excel has made the practice and adoption of 

stochastic simulation much easier and quicker. The simulation software Simulation and 

econometrics to analyse risk (Simetar®) has gained much popularity following the advent of the 

SERF method.  

Richardson, Schumann and Feldman (2008: 1) define simulation as the “process of 

solving a mathematical ... [replication] model representing an economic system for a set of 



Chapter 3 Decision Making Under Uncertainty 

73 
 

exogenous variables.” Apland and Hauer (1993) note that mathematical programming 

techniques form the centre focus in the analyses of decision-making and economic behaviour 

under risk. Essentially, mathematical programmes make it possible for the modeller to mimic the 

real world system, through a set of equations and parameters. Risk programming and simulation 

models are particularly popular in agriculture because of the pervasive nature of risk 

(Richardson, Lien and Hardaker, 2006). These models are used to analyse the “what-if” 

questions about the real world (Hardaker et al., 2004a: 158), given that perfect knowledge is not 

feasible. They do this by mimicking the relationships that exist between inputs and yields in the 

real world system, thus presents an opportunity for the easy exploration of the impact of change 

on the decision variables (Hardaker et al., 2004a), including that of risk and uncertainty on the 

system.   

One of the major difficulties faced by the farm/ranch manager in managing rangelands 

ecosystems involves, inter alia, the difficulty or inability of knowing a priori what the outcome of 

his management decisions would be on the rangeland (see chapter 2: section 2.3). However, 

through a stochastic simulation model, the decision-maker is able to develop a rounded feel of 

what might happen in the farm because of his management actions. For this to happen, a 

stochastic simulation model representing the complexity of the various input variables, 

interactions, non-linearities, uncertainties and variability must be developed and applied 

empirically. For example, such a stochastic simulation model should include all the key variables 

of interest in the system under study. Using stochastic simulation, the DM can establish the 

probability distributions of consequences for alternative decisions. By developing the probability 

distribution function, the DM can then assess the effect of his management actions on the farm 

(in this case on farm profitability) and consequently weigh various management alternatives so 

as to arrive at a superior and knowledgeable preference. One way of doing this is to simulate the 

consequences of a range of alternative decisions so that a comparative analysis of the outcome 

distributions can be made (Hardaker et al., 2004a).  

3.4.4 Stochastic Simulation and Sampling Procedures 

Stochastic simulation involves generating random numbers and repeated sampling from 

a specified input distribution (Hardaker et al., 2004a). The most common and basic form of 
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sampling used in stochastic simulation is Monte Carlo sampling which was developed by von 

Neumann and Ulam in the early 1940s (Rubinstein, 1981; as cited by Vose, 2008). According to 

Vose (2008), Monte Carlo sampling is the least sophisticated and widely understood stochastic 

sampling method. “It satisfies the purist’s desire for an unadulterated random sampling method. 

It is useful if one is trying to get a model to imitate random sampling from a population or for 

doing statistical experiments” (Vose, 2008: 59). A key concept to understanding Monte Carlo 

sampling is the cumulative distribution function (CDF). A CDF       can be thought of as a 

function that yields the probability   that the variable   will be equal to or less than    such that 

(Hardaker et al., 2004a: 165):  

                       (3.23) 

where      is between zero and one. In order to use Monte Carlo sampling, the inverse 

function of equation (3.22) is specified as follows (Hardaker et al., 2004a: 165): 

                                                                                                         (3.24) 

Using this inverse function, values of   on the horizontal axis can be generated “with the 

frequency that, given a large sample, will represent the original distribution” (Hardaker et al., 

2004a: 165). The sampling procedure is described by Hardaker et al. (2004a: 165 – 166) as 

follows. Given uniformly distributed values,             (meaning that every value of   

between 0 and 1 has an equal chance of being observed), a conceptual sample can be generated 

by selecting   and feeding it to equation (3.23) for      to solicit the matching value of   or 

(Hardaker et al., 2004a: 165): 

                 (3.25) 

This necessitates the sampling of CDF values of   on the vertical axis, thus generating 

the corresponding   value on the horizontal axis, as shown in Figure 3.3. By performing 

adequate iterations, the distribution can be recreated using Monte Carlo sampling. Monte Carlo 

sampling further allows for the random selection of sample means across a range of 

distributions.  However, the randomness of its sample means is also its weakness. For instance, 

Monte Carlo sampling has a tendency of over-and under sampling from various parts of the 

distribution (Vose, 2008; Richardson et al., 2008).  
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Figure 3.3: The Principle of Monte Carlo sampling using the inverse CDF (Source: 
Vose, 2008: 58) 

 

 
Figure 3.4: The principle of Latin Hypercube sampling (Source: Hardaker et al., 2004a:167) 

Figure 3.5: The effect of stratification on Latin Hypercube sampling (Source: Vose, 
2008: 60) 

This compromises its trustworthiness when replicating the input distribution’s shape 

unless a very large number of iterations are performed. Simulation focuses on a model’s ability 

to reproduce a set of given inputs as close to their distribution functions as possible. Hence, for 

simulation to be correct, emphasis should be directed at getting correct cumulative distribution 

functions. Because of this, a need to reproduce the sample means with greater efficiency than 
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Monte Carlo sampling arises. Latin Hypercube sampling provides a method of sampling that 

“appears random” with an added benefit of being able to reproduce the “input distribution with 

much greater efficiency than Monte Carlo sampling” (Vose, 2008: 59).   

In Latin Hypercube sampling (LHS) a “stratified sampling technique” (Hardaker et al., 

2004a: 167) which has been identified by Vose (2008: 59) to be “without replacement” is used in 

simulation modelling. LHS involves the separation of the CDF into   intervals of the same 

probability, with   being the number of iterations that must be executed on the model 

(Hardaker et al., 2004a; Vose, 2008), as shown in Figure 3.4. According to Vose (2008: 59 – 60) 

and Hardaker et al. (2004a: 166 – 167), each iteration can be viewed as occurring in a two-step 

process, where the first step involves the selection of one of the   intervals using a random 

number generator. To achieve this, the cumulative probability scale is divided into   equi-

probable intervals (for example in Figure 3.4   = 5 intervals).  

The dashed arrow lines show the boundaries of the intervals, whereas the thick solid 

(blue) lines show the corresponding location of       In the second step, the generated random 

integer (1, 2...,  (where   = 5 in this case)) is allowed to pick an interval, which is immediately 

followed by the generation of another random number that helps establish the location of      

within the interval.   is calculated the same way as in Monte Carlo sampling (i.e. obtain value of 

     and substitute it into         ). 

This procedure is repeated continuously for the required number of iterations, through a 

method that makes sure that once an interval has been chosen, it is automatically excluded from 

the sampling process (Vose, 2008). This yields a stratified distribution as shown in Figure 3.5, 

which further demonstrates that Latin Hypercube sampling has a much greater ability and 

efficiency to recreate the original distribution than Monte Carlo sampling. Thus, for stochastic 

simulation analysis, Latin Hypercube sampling is superior in that it offers the modeller increased 

sampling efficiency and faster run times due to smaller samples (Hardaker et al., 2004a).  
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3.5 Stochastic Dependency 

A common problem that - in most cases - is neglected in stochastic simulation is “the 

question of dependency between variables” (Hardaker et al., 2004a: 168).  According to Lien et al. 

(2007), stochastic simulation requires vigilance on the stochastic dependency between variables. 

Stochastic dependency can in most cases lead to biases in the results, hence, to avoid such, it is 

important to cater for first-order autocorrelation (i.e. inter-temporal correlation) between years 

as well as cross correlation (Lien et al., 2007). For example, in this study, it is important to 

account for the stochastic dependences between all the variables (rainfall, forage biomass, 

springbuck output, wool sheep output, and lamb output, as well as the price of mutton, venison 

and wool, exchange rates, interest rates, and inflation). Assuming them is not enough since it 

might be a source of erroneous results in the analysis. In order to allow for an appropriate 

stochastic dependency representation, joint distributions of all the related variables must be 

specified. However, Monte Carlo or Latin hypercube sampling is not possible from such joint 

distributions. Nonetheless, by specifying a correlation matrix, stochastic dependency can be 

dealt with (Hardaker et al., 2004a).  

Correlation is an important tool in the measuring of stochastic association between 

variables. However, in agriculture, correlation often fails to yield a more robust picture of the 

causes of stochastic dependency encountered. In essence, “[c]orrelation coefficients measure the 

overall strength of the association, but give no information about how that varies across the 

distribution” (Venter, 2002: 69). For example, correlation matrices tend to reveal dependency in 

terms of first order co-moments even though the dependency can also be explained in terms of 

higher order co-moments (notwithstanding the fact that they (higher order co-moments) rarely 

occur). Yet, as Hardaker et al. (2004a: 170 – 171) write: “[t]he limited capacity of correlations to 

characterise stochastic dependency is analogous to the limited characterisation of some marginal 

distributions by only their means and variances. Nevertheless, ... for marginal distributions, ... 

the story may be told by the lower co-moments... and because of the difficulties in measuring 

and accounting for all aspects of dependency, it is common in stochastic simulation work to 

restrict the representation of such dependency to correlations.” 

Alternative methods that try to capture co–dependency in light of the realisation that 

correlation is a compromised measure of stochastic dependency have been considered. In a way, 
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these methods eliminate the limitations of using correlation as measure of co-dependency by 

augmenting it (correlation) with other techniques. One such technique involves the use of copulas 

to account fully for dependences in a robust manner. A copula is a function that brings together 

two or more marginal distributions.  Drawing on Embrechts, Lindskog and McNeil (2001), 

Hardaker et al. (2004a: 172), define a copula as a “multivariate distribution function defined on 

the unit cube, with uniformly distributed margins.” According to Venter (2002), a copula not only 

separates the individual variables of the joint distribution into marginal distributions, it also 

separates the joint distribution based on the interdependency of the probabilities. They further 

provide “an alternative way to model joint distributions of random variables with greater 

flexibility both in terms of marginal distributions and the dependence structure” (Vedenov, 

2008: 4). Hence, copulas provide the basis for undertaking a full exploration of stochastic 

dependency amongst marginal distributions.  

There are many advantages of using copulas in modelling; one such is that upon 

specification, the copula can be used for many other modelling requirements that may come up. 

For example, they can be applied to any pair of marginal distributions beyond those specified by 

the original distribution (Vedenov, 2008). In the midst of the many examples of copulas in 

agricultural economics problems, is a practical method that was developed by Richardson, Klose 

and Gray (2000) to solve agricultural economics research problems. Known as a multivariate 

empirical (MVE) probability distribution analysis, it necessitates the simulation of random values 

from a frequency distribution that comprises actual historical data. This procedure is an 

extension of the work of Richardson and Condra (1978; 1981) who presented a copula for 

simulating intra-temporally correlated non-normally distributed random prices and yields and 

van Tassel, Richardson, and Conner’s (1989) method for simulating inter-temporally correlated 

random variables from non-normal distributions. Van Tassel et al.’s (1989) method was, 

however, inefficient when it came to manipulating random deviates to correlate variables from 

one year to the next for problems greater than three years (Richardson et al., 2000). Richardson et 

al.’s (2000) method has been shown appropriately to correlate random variables based on their 

historical correlations.  According to, amongst others, Pendell, Williams, Rice, Nelson and 

Boytes (2006), the MVE distribution is, like any other copula based method, particularly useful in 

cases where the data observations are too few to warrant estimation for another distribution, as 
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is the case in this study. Richardson et al. (2000) further show the necessary steps that ought to 

be followed to specify a proper MVE distribution. The MVE provides full correlations of non-

normally distributed stochastic variables.  

In recent years, this method has formed the basis for any correlation work done in 

stochastic simulation in agricultural economics, and it shall be employed to correlate the various 

variables in the present study.  

3.6 Economic Sustainability 

Decision makers are also interested in an economic system that will be able to meet its 

financial obligations throughout the entire planning horizon without compromising the land 

used (Lien et al., 2007a). However, achieving sustainability is a challenging goal, especially in 

ecological-economic systems that are driven by highly variable rainfall. In economics, Commons 

and Perrings (1992) formalized sustainability as relating to both the ecological and economic 

aspects of ecological-economic systems. Beukes et al. (2002:222) state that a fundamental aspect 

of any sustainable biological system is that “[its] long-term capacity ... to produce forage from 

rainfall must be maintained, and the system must produce an acceptable financial return for the 

owner”. This view is shared Solow (1993: 18) who envisions sustainability as an “obligation to 

conduct ourselves so that we leave to the future the option or the capacity to be as well off as 

we are”. Thus, given that to sustain, is to keep in existence, there are key features that need to be 

considered in any sustainability measure. These range from an understanding that the system 

that one is dealing with is stochastic or changing over time, that it can fail at some future date and that 

the ability of such a system to survive into the future can be best expressed as a probability 

(Hansen and Jones, 1996: 186 - 187). 

An economic system is usually set up to accomplish an intention. Such intentions may 

range from deriving profits from the system or satisfying some subjective goal like a way of life 

etc. However, a sustainable economic system is one that has the potential to continue into the 

future. A system that fails to satisfy the continuity condition can be seen as having failed to fulfil 

its purpose (Hansen and Jones, 1996). By implication, this requires that the preferred ecological-

economic system’s ability to be biologically and economically productive into the future needs to 

be considered. Essentially, the notion of sustainability can be used to quantify the capability of 
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various alternatives to meet specific required financial and environmental thresholds into the 

future. The assumption that if an ecological-economic system is able to honour all its future 

financial obligations without compromising the sustainability of the land it depends on, is 

important to form an opinion on the benevolence of a chosen ecological-economic on the 

environment. Batabyal (1999:4) who notes that “the continuance of economic activities such as 

... grazing depend on the ability of the ecosystem to support these activities” – meaning that 

ecosystem health is fundamental for their survival. Hansen and Jones (1996: 185) used this 

notion to define the economic sustainability of a farming system as “its ability to continue to the 

future.” This view is also shared by Lien et al. (2007a) who conclude that agricultural systems are 

only economically sustainable if they:  

 Survive financially into the future and,  

 Do not destroy the very resource in which they depend on – the land itself.  

From this discussion, it is clear that economic sustainability is concerned with the ability 

of a system to survive financially15 into the future. However, it is also true that, at that future 

date, failure or a loss is irreversible (Hanson and Levy, 1996; Lien et al., 2007a).  

This makes the time taken to failure,     to be a random variable with a probability 

density function,    , and a cumulative probability distribution,       , which occurs only to 

the (possible) time paths of systems behaviour (Hansen and Jones, 1996). Here   can be seen as 

a time variable whereas   can be understood as representing a time horizon such that for the 

time period (0,  ); economic sustainability,  , is defined as (Hansen and Jones, 1996): 

                
                                      (3.26) 

This implies that in order to estimate economic sustainability, it is mandatory that the 

probability of occurrence of successful outcomes is modelled (Hansen and Jones, 1996). Often, 

simulation procedures are used to quantify economic sustainability. Such that economic 

sustainability  ̂    is defined as the product of the number of simulated non-failures       at 

                                                

15 It can also be taken to mean time period to failure (Hansen and Jones, 1996; Lien et al., 2007) 
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the end of the planning horizon   and the total number of iterations ( ) used in the simulation 

model (Lien et al., 2007a): 

    ̂     
    

 
                       (3.27)  

SUMMARY 

This chapter discussed the different stochastic efficiency techniques: their foundation 

and major assumptions. It also illustrated how they can be used to aid decision-making process 

in agriculture. It was shown that the most effective and latest method in stochastic efficiency 

analysis is the SERF procedure, which involves ordering of risky alternatives calculated over a 

range of risk attitudes and expressed in certainty equivalents (CEs). The advantages of using the 

CEs of alternatives as opposed to their utility values ranges from ease of interpretation and 

understanding of results to an ability to compare independent alternatives graphically. In order 

to apply the SERF method, it is important to conduct a stochastic budget – which helps in 

developing and presenting more information about alternative strategies, which further aids in 

the incorporation of risk. However, in stochastic budgeting it is also important to account for 

the stochastic dependency between variables. This can be done by specifying a multivariate 

empirical (MVE) distribution, which is fundamental in estimating and simulating farm-level risk 

assessment and policy analysis – which was developed by Richardson et al. (2000). 

In the next chapter, a detailed discussion of the application of the above discussed 

methods in the quantification and analysis of converting a sheep farm into a springbuck ranch in 

Graaff-Reinet whilst overtly considering risk is given.  
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Chapter 4.  

DATA AND METHODS 

4.1  Introduction 

This chapter illustrates the procedures used to quantify and compare the profitability of 

alternative rangelands utilisation scenarios and how that information is used to explore the main 

objective of assessing the profitability of converting a 5 000ha sheep farm into a springbuck 

ranch in Graaff-Reinet. The chapter discusses the stochastic budgeting procedure required to 

explore the profitability of converting a sheep farm into a springbuck ranch, whilst overtly 

considering risk. In order to simulate the financial statements, a multivariate empirical (MVE) 

probability distribution framework is used. This general framework requires specific functional 

forms, discussed in this chapter. Accordingly, the chapter starts with a discussion of the 

stochastic variables used to specify the MVE probability distribution. This is followed by a 

description of the procedure that is used to combine animal yield, stochastic forage biomass, and 

stochastic rainfall with output price variability to simulate intra- and inter-temporally correlated 

risk matrices for the stochastic simulation model. A discussion of the financial statements and 

SERF analysis follow. The chapter is concluded with an explanation of the procedure used to 

quantify economic sustainability.  

4.2 Stochastic Variables 

In order to convert from sheep farming to springbuck ranching and maximise expected 

utility, the decision maker (DM) needs to consider production and output risk brought about by 

forage biomass production, rainfall variability, output yield and price variability. The stochastic 

variables for the sheep and springbuck enterprises are annual forage biomass production, annual 

rainfall, wool, mutton, springbuck meat (venison), wool price, mutton price, and venison price.  
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4.2.1 Forage Biomass 

In this study, forage biomass production is estimated using remote sensing techniques. 

The forage biomass is used as a proxy for the carrying capacity, such that the correlation 

between the total amount of available edible biomass on the ranch and the total numbers of 

animals kept and culled in the historical period and planning horizon is similar. Accordingly, 

green forage production in the historical period is calculated from the fraction of 

photosysnthetically active radiation absorbed by green plants (fPAR). The fPAR is estimated as a 

non-linear function of MODIS normalised difference vegetation index (NDVI) (Baeza et al., 

2010: 73): 

fPAR = min[SR/SRmax – SRmin) – SRmin/SRmax – SRmax), 0.95]   (4.1) 

and 

SR = (1 + (NDVI)/(1-NDVI) = IR/R)      (4.2) 

where SR is the simple relation index, R denotes the reflectance in the red whilst IR is the 

infrared and NDVI is zero when there is no green vegetation due to erosion, environmental 

degradation or any form of bare soils such that: fPAR = 0 (Baeza et al., 2010; Grigera et al., 2007; 

Chasmer et al., 2008). The fPAR is converted into green forage biomass (        ) production 

at time,  , using the following equation (Vetter and Palmer, Personal Communication): 

          = 27.694  – 190.92       (4.3) 

where   is an 8 day interval fPAR coefficient, which is converted into eight days’ then monthly 

fPAR and subsequently yearly green forage biomass production16. For the purpose of this study, 

the green forage biomass (        ) is used as a proxy for the actual carrying capacity17 (    ) 

of the farm since the farming system is forage/grass-based. This is calculated by specifying the 

following equation as discussed in chapter 2: 

                         
        

 
              (4.4) 

                                                

16 Palmer et al. (2010) provide a detailed explanation of this method. 
17 Palmer and Ainslie (2007) used a similar method and equation to qualitatively describe the condition of communally 
managed rangelands in the former Transkei of South Africa, using GIS and high resolution near-infrared imagery. 
Recently, Yang et al. (2008) have shown that near and shortwave hyperspectral reflectance has a great potential for 
estimating fPAR, which has helped improve the precision with which above ground productivity is estimated. 



Chapter 4 Data and Methods 

84 
 

where   is the average annual amount of forage biomass required by one livestock unit (LSU). 

LSU is used to bring both the springbuck and the sheep under a shared denominator. Since the 

farmer kept both sheep and springbuck, this study assumes that the number of sheep and 

springbuck is in equilibrium with the forage produced in the ranch. Furthermore, the amount of 

green forage biomass produced using equation (4.3) is assumed to be adequate to maintain an 

economic number of sheep in summer and springbuck throughout the year, since the farmer 

adapts the stocking rate to the available green forage biomass and as per the chosen utilisation 

strategy18. However, cognisance is taken that sheep and springbuck will consume different parts 

of the forage biomass, at different rates. Important to note is that since remote sensing was used 

to estimate the forage biomass data, its limitation was that it also considered green growth that is 

not available to the animals as well as that which is unpalatable. In addition, some of the 

biomass is lost to trampling and senescence, which reduces the amount of forage biomass 

available to the animal. To correct for this, an availability factor of 35% of the total biomass 

produced was used, based on expect opinion19.  

4.2.2 Rainfall 

Rainfall influences biomass production, which in turn influences the number of animals 

that the rangeland can support and consequently the total income that can be obtained from the 

rangeland. Precipitation amount in the planning horizon was calculated based on a time series of 

60 years of monthly rainfall, ranging from January 1950 to December 2010. These data were 

obtained by application from South African Weather Services. Difficulties are often experienced 

in as far as forecasting precipitation data is concerned. Drawing from New et al. (2002), the 

seasonality of rainfall is simulated by using monthly time steps, where the monthly mean of 

rainfall and the coefficient of variation are used to simulate mean monthly rainfall as a Gamma 

random number, using MATLAB® R2010a. Because of the existence of zero observations in 

                                                

18 This is done through systematic culling to ensure that the total number of sheep and springbuck kept is equivalent to 
what the rangeland can support. The carrying capacity through the total biomass produced is used to capture that. 
19 This was based on personal communication to A. R. Palmer (Agricultural Research Council, Grahamstown) 
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the monthly observations, a Pearson distribution was used instead20. Annual rainfall is modelled 

through the individual summation of monthly means in a year to obtain annual rainfall 

observations from 2011 to 2025. These annual observations are used in the MVE as mean 

values for the annual rainfall values. 

To forecast the amount of biomass in the planning horizon, the forecasted monthly 

rainfall data from 2011 to 2025 were used to estimate the amount of biomass produced in a 

month in the planning period. This was done by using an ordinary least squares (OLS) 

regression model, where green forage biomass was specified as a function of rainfall. The 

forecasted monthly forage biomass was subsequently paired with the rainfall data in each month 

to estimate the amount of forage biomass produced in a season. For simplicity, the years were 

divided into four different seasons: rainy season (November to January); mild rainy season 

(February to April); dry season (with incidence of winter rains) (May – July) and; mild dry season 

(August to October). The total seasonal forage biomass production in a month was calculated by 

adding together all the biomass in a season. The seasonally produced forage was added together 

to calculate the annual total biomass and this was done for every year in the planning horizon.  

4.2.3 Yield 

The stochastic yield of wool sheep shorn, wool sheep culled for mutton and springbuck 

output are simulated from their historical deterministic means. The historical yields exhibited no 

trends, which necessitated the use of the historical means as the deterministic means in 

forecasting the yield values in the planning horizon. Specifically, yield varies with the amount of 

precipitation and green forage biomass production on the farm. In the empirical distribution, the 

yield variability is assumed to grow linearly at 2% per year over the planning period, denoting 

greater uncertainty (of weather and other factors that may affect production in the area) with 

time. Because of this, the variability of the future yield values is expected to be higher than their 

historical ranges.  

 

                                                

20 A Pearson distribution is essentially a Gamma distribution with an offset to account for zero numbers.  
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4.2.4 Prices  

Price data were acquired from different sources. Wool price data were obtained from 

Cape Wools, whereas data for mutton were obtained from Statistics South Africa online. 

Springbuck meat (venison) price data were obtained from Camdeboo Meat Processors. Since 

there are no price forecasts for wool, mutton and springbuck prices in South Africa from 2011 

to 2025, the deterministic mean prices used as forecast values in the simulation analysis were 

forecasted linearly using an inflation rate for consumer prices. The Bureau for Economic 

Research21 (BER) provides annual forecasts for most economic data in South Africa for 15 

years. Specifically, the prices were tested for the presence of trends, and were found to exhibit a 

trend. Using an ordinary least squares (OLS) time regression, the variables were regressed 

against time to de-trend them and were adjusted for inflation, using 2007 prices.  

4.2.5 Other Economic Variables 

Other economic variables also influence decision making in farm level management. 

These include rates of inflation, interest and exchange rates, which all affect the financial 

structure of the business at any time. These variables are specified in the MVE probability 

distribution together with the output variables, to simulate the behaviour of the real system. 

Economic outlook data from 2011 through to 2025 for interest rates, inflation (consumer price 

index and producer index) rates, exchange (Rand / US$) rates are available from the BER. 

Historical data for the variables were obtained from Statistics South Africa online and covered 

the period 2000 to 2010. The BER 2011 baseline projected rates of inflation, interest rates and 

exchange rates were used as forecasted mean values for the simulation of these variables.  

4.3 Specifying the Multivariate Empirical (MVE) Probability Distribution 

All the above variables were used to specify the MVE probability distribution used to 

perform the simulations. The procedure proposed by Richardson et al. (2000) was used to 

                                                

21  The BER is attached to the University of Stellenbosch and provides economic outlook data for a range of 
macroeconomic indicators. 
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specify a MVE probability distribution. Fundamentally, this procedure requires that the future 

variables are correlated the same way as they were in the past. Richardson et al. (2000: 302-308) 

propose that to specify a MVE probability distribution, it is essential to first work out the 

correlation matrix (    ) for the   variables of the historical distribution. Using the Cholesky 

decomposition matrix, the   matrix is factored to get an      matrix such that       . The 

     matrix is correlated within each year and amongst years of the simulation period by 

multiplying it with a vector of independent standard normal deviates (ISND). This produces 

intra and inter-temporally correlated standard normal deviates (CSND). Specifically, the intra-

temporal correlation matrix is calculated by specifying the following equation22: 

                          =[
   ̂    ̂        ̂    ̂     

    ̂    ̂     
]               (4.5) 

where  ̂   is the random component for each random variable     in year  . This is necessary 

since it precludes biasing the results by allowing for first-order autocorrelation. In the same way, 

the inter-temporal correlation of the random variables is specified by following equation (4.6): 

            = {

    ̂    ̂      

     ̂    ̂     

 

}    (4.6) 

The rest of the simulation process is performed by following equation (4.7), which is a 

simplification of the requisite steps necessary in simulating an MVE probability distribution 

(Lien et al. 2007: 544): 

   ̃ 
 

   ̅ 
 

    
 
        

 
           (4.7) 

where  ̃ 
 

is the mean of each variable    in the model at time  ;    
 

denotes the standard 

deviation of variable   at time t whilst      
 

is a cross and auto-correlated standard normal 

deviate for the variable   at time  .    is a variance expansion factor for variable  . It captures 

assumptions regarding the relative variability of the stochastic variable   over the planning 

horizon.  

                                                

22 Equation 4.5 demonstrates an intra-correlation matrix for a 2 x 2 matrix.   
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4.4 Wool Production 

Wool production in the planning horizon is calculated from the simulated total wool 

sheep shorn on the farm multiplied by a constant wool production coefficient per sheep on the 

farm throughout the planning horizon23. Drawing on Kobayashi, Hewitt and Jarvis (2003), wool 

production (       ) at time,  , is modelled using wool output of a representative ewe and or 

yearling. This is achieved by multiplying wool output per average sized ewe (    ) and 

yearling       with the total number of ewes and yearlings shorn, respectively. Based on the 

principal decision maker’s experience24 on wool production per animal on the farm, a coefficient 

of 75% clean wool production coefficient was assumed per ewe weighing 45kg (also see Olivier 

and Roux, 2007); the following equation was used to estimate the aggregated (clean and greasy 

fleece) wool output25: 

          =∑                              
 
     (4.8)  

where   is the average wool output per average sized ewe (  ) (  = 1) or yearling (  = 2) , and 

   is the simulated number of wool sheep shorn.  Yearlings (  ) were assumed to comprise 25% 

of the ewe (  ) population26 (Janssens and Vandepitte, 2003). One quarter was assumed to 

necessitate the calculation of the number of yearlings in the herd.  

4.5 Wool Income 

The simulated amount of wool produced,       , in time,  , of the planning horizon 

was multiplied with the simulated probability distribution of inflation adjusted historical wool 

price at time,  , to calculate the wool total revenue per year, in the planning horizon. Specifically, 

this study used a simplified version of the wool cheque calculation method devised by the 

Queensland Department of Agriculture in Australia, which calculates the wool cheque (WC) as 

the total amount of wool produced (Kg all grade average)   weighted yield (%)   0.75 (% of 

                                                

23 This method is similar to the one used by D’Haese et al. (2001), in cases where there is not enough data. 
24 The farm manager’s (principal decision maker) experience is used because wool output per animal varies from one 
farm to the next and across studies.  
25 The final output of wool per sheep was based on an aggregated output of clean wool and greasy wool.  
26 Rams are not considered because they do not form part of the farmer’s management plan on the farm. 
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wool clean)   0.905 (after selling costs)   clean price (c/kg clean). However, since this study 

uses an aggregated clean and greasy fleece, the Australian method was modified to suit available 

data. The wool income (  ) is therefore calculated as:  

                          =             ̃                  (4.9) 

where         is as defined in equation (4.8) and  ̃  is the empirically distributed deflated price 

(R/kg) of wool.  

4.6 Mutton and Venison Output Estimation 

Mutton and venison output were estimated from the total number of simulated wool 

sheep and springbuck culled in the farm, respectively – as per the various scenarios. This was 

accomplished by specifying the following equations:  

           =            ;             (4.10) 

           =            ;            (4.11) 

where          is the average annual (  = 1, 2, 3,…15 years) output of mutton (equation 4.10) 

and venison (equation 4.11) produced at time,  , on the farm,   denotes 500 iterations, whilst     

and     is the total simulated number of sheep and springbuck culled respectively;   denotes a 

dressing weight percentage of 50% for sheep and 56% for springbuck (Skinner et al., 1986). The 

average body weight of a culled ewe is denoted by     whereas that of springbuck is denoted 

by    .   

4.7 Mutton and Venison Income 

To calculate mutton or venison income (  ), the simulated annual output of mutton 

(         ) (equation 4.11) and venison (         ) (equation 4.11) were substituted into 

equation (4.12) and multiplied by the inflation adjusted meat (mutton or venison) empirically 

distributed price ( ̃ ) (R/kg) in the planning horizon: 

    =           ̃            (4.12)  

Since the springbuck have a 56% dressing weight which reduces the carcass of a 

springbuck measuring an average weight of about 30kg to an average dressed weight of 16.8 kg 
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per animal. An average weight of 14.5 kg was assumed based on the records of the principal 

decision maker, and given that weight differs depending on the season and number of animals 

on the rangeland. Furthermore, the dressed weights of the springbuck carcasses were assumed 

to decrease to 13 kg, in the last 5 years of the planning horizon27. For a culled ewe, a bodyweight 

of 45kg was assumed (which gives a dressed weight of 22.5kg, but because bodyweight varies 

from one animal to the next, a dressed weight of 20kg was used for all culled ewes instead). For 

the wool sheep enterprise, income was assumed to come from wool and mutton sales only. 

Similarly, some springbuck are culled through trophy hunting; however, because the farmer did 

not keep any records, it is assumed that all the money for the springbuck enterprise comes from 

venison production and where applicable wool and mutton.  

4.8 Simulating Net Returns Variability  

In order to simulate stochastic net returns, the stochastic budgeting model generated 

from the MVE distribution, based on the three alternative scenarios, was used. To construct the 

distribution of net returns ((NR) equation (4.13) was used (Watkins et al. (2010: 10): 

       =∑  (( ̃      ̃   )  (        ̃   )) 
               (4.13) 

where       are the simulated net returns for iteration  , and scenario   (in rands); ( ̃      ̃   ) 

is the total revenue, (        ̃   ) denote input costs (including costs of winter-feeding in 

sheep farming);   = 500 iterations;   = 1 to 3 scenarios;   is the output, 1 to 3 (1= wool, 

2=mutton, 3 = venison).  ̃    represents empirically distributed deflated and de-trended prices 

of output  , for iteration  , scenario   (in rands).   ̃   is the empirically distributed output 

(        ) for iteration  , scenario   (kg/animal head).       is the output dependent variable 

cost for scenario   output   (R); and  ̃   denotes winter feeding costs for scenario  , output   

(R/year).  

                                                

27 This observation was informed by an extensive interview held with the Meat Processor, who argued that as the 
number of animals increased in one ranch, the total output in Kg of venison, decreased substantially. It is easy to guess 
that this may have been because of competition for forage on the farm, since springbuck have been documented to be 
territorial (Conroy, 200). 
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     were calculated by abstracting the variable costs for the current enterprises from 

the farmer’s financial statements. These were then estimated as per the simulated stocking rate in 

the respective scenarios. The costs of winter feeding ( ̃  ) were calculated from the product of 

the total number of animals fed during winter or otherwise and their daily forage biomass intake 

( ) in the farm on scenario   for output  . In the case of sheep farming, revenue comes from 

both wool sales and mutton sales. For the springbuck enterprise, however, revenue comes from 

venison sales.  

Using stochastic budgeting, the information on output and all economic variables 

assumed pertinent in the operations of a 5 000ha farm in Graaff-Reinet were programmed on 

Excel®. Simetar© (Richardson et al., 2008) was used to simulate the financial statements 

(discussed in section 4.9) for the specific alternative scenarios, using Latin Hypercube sampling.  

4.9 Financial Statements  

This section describes how the financial statements were attached into the MVE 

distribution to quantify the annual farm income variability of the alternative scenarios. Figure 4.1 

illustrates how the stochastic variables and all the assumptions of the MVE distribution were 

attached to the financial statements. It further summarises the association between variables 

costs, control variables and output and key output variables (KOVs). The financial statements 

were developed for all the three alternative scenarios, in the four cohorts and incorporated into 

the financial model. Through the financial statements, is attached the assumptions made in each 

of the alternative scenarios.  

4.9.1 Income Statement 

The income statement measures the financial performance of the various alternatives 

over the planning horizon. This is achieved through a summary of how the business generates 

income and expenses through its various operations, in a given year of the planning horizon. In 

essence, the income statement is also known as the profit and loss statement because it shows 

the net profit or loss of an enterprise over time. Total market receipts for the various enterprises 

were calculated by adding the alternative scenarios’ enterprise receipts (total output produced 
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multiplied by output selling price) and interest earned receipts. More specifically, total annual 

receipts for the wool sheep enterprise were calculated by summing the wool output receipts 

(product of total wool output multiplied by wool selling price in that given year. Particular 

attention is paid to the fact that different wool grades are possible from one year to the next – 

which is modelled using an all grade wool average price, as discussed in section 4.3 above. The 

receipts for the mutton enterprise come from the mutton sales, whilst those for springbuck 

come from the venison sales as already discussed in the preceding sections. For each of the 

scenarios, the wool, mutton and venison incomes are then summed together with the interest 

receipts to work out the total income for that scenario.  

Interest earned was calculated by multiplying surplus cash reserves with interest rates, 

whereas variable costs are added to interests’ costs to come up with total expenses for the 

enterprises. Stochastic variable costs for supplementary feeding were obtained by multiplying the 

total amount of feed required per production season by the price of feed per ton. The variable 

costs are different across the scenarios, throughout the years, in all the cohorts. The method of 

calculation is, however, the same. Since the focus of this study is on converting an already 

existing sheep farm into a hypothetical springbuck ranch, the following assumptions were made 

relating to land investments costs. The farmer is assumed to continue paying outstanding initial 

capital loan interests costs, which are calculated using a fixed payment amortisation (Richardson 

et al., 2008). For converting the sheep farm into a springbuck ranch, the farmer was assumed 

gradually to allow springbuck into his sheep farm in a very systematic fashion. This study 

captures that by introducing three scenarios based on the current ecological-economic system on 

the ranch and three hypothetical scenarios (see chapter 1 and 5 for their definition) to adequately 

model the type of investments that the rancher would have to make. 

Remaining costs (and especially costs for supplementary feeding and veterinary care 

where necessary) are financed using an operational loan from the bank. Subsequently, the 

interest costs for this loan were calculated by multiplying the sum of all variable costs by the 

projected interest rates. The difference between the total receipts and total expenses yields the 

net cash income, which was then subjected to a tax rate after removing the costs of depreciation 

(Lau, 2004). 
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4.9.2 Cash Flow Statement 

In this study, Lien et al.’s (2007) procedure of incorporating stochastic features by 

specifying probability distributions for key uncertain variables was followed. The study adopts a 

recursive budgeting model over a period of 15 years to evaluate the financial performance of the 

three alternative scenarios in the four cohorts. This means that the ending cash balance from the 

previous year transforms to the beginning cash balance for the following year, such that the 

beginning cash balance for 2011 to 2025 is equal to the ending cash balance from the previous 

year.

 

Figure 4.1: Diagrammatic Illustration of Simulation Model (Source: Lau, 2004: 103) 

 

Total cash income for the alternative scenarios is calculated by summing the cash balance 

for the previous year with the net cash income for that year. Total cash outflows represent the 

money leaving the business in the planning horizon. These are calculated by summing the total 

loan repayment costs, repayment of cash deficit, annual fence replacement costs, miscellaneous 

expenses, income taxes paid (where necessary) and family withdrawals paid. Family cash 

withdrawals are set at a fixed R120 thousand a year growing at 5% per annum throughout the 
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planning horizon. A corporate tax consistent with the South African Revenue Services tax codes 

was imposed. Essentially, in South Africa, farmers are taxed in terms of section 26 of the 

Income Tax Act 58 of 1962.  

Moreover, The South African environmental conservation tax law (Price Waterhouse 

Coopers, 2009) as stipulated on section 37C of the 2009 Income Tax Act accord farmers some 

tax incentives if they incorporate or introduce those land use initiatives that promote 

environmental conservation. This law came into effect in 2009 and is in accordance with, or 

aims to put into action, the objectives of the Biodiversity Management Act (Act 10 of 2004). It 

details a series of costs that can be deducted if land is used for conservation purposes that will 

simultaneously promote biodiversity. In the scenarios that explore the effect of policy incentives 

(income tax breaks and a restoration subsidy) on the profitability of the farm, this was taken into 

effect, as springbuck ranching does promote biodiversity and environmental management (see 

chapter 2). To quantify the impact of tax deductions 28 on the gross margins, the model is 

programmed in such a way that it does not deduct income tax in the scenarios where tax breaks 

are assumed to be introduced, whilst a fixed restoration subsidy of R13/ha is introduced on a 

per hectare basis. This subsidy was carefully calculated based on its influence on the net income 

structure of the 5 000ha farm.  

Ending cash balance was obtained by subtracting the net cash inflow from net cash 

outflow. The whole-farm stochastic simulation model is programmed in such a way that if 

ending cash balance is negative, the farmer is allowed to borrow money from the bank, and 

similarly if the ending balance depicts that the farm made a loss, no taxes are paid, until there is a 

profit and vice versa. Similarly, if the ending cash balance is positive, the model automatically 

allows the surplus income to earn interest in the bank. This is applicable to all the 15 years in the 

planning horizon. 

 

 

 

                                                

28 Note that all tax calculations are programmed into the financial analysis. 
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4.9.3 Balance Sheet 

The enterprises’ balance sheet is made up of assets, liabilities and equity (Lau, 2004). 

Unlike in most balance sheets, the assets are made-up of cash balance and inventories. Land is 

deliberately left out of the balance sheet because of the assumption that, in the event the 

rangelands become completely degraded, financiers would not be able to recover their money, as 

the land would have lost all its agricultural economic value. The balance sheet for the various 

alternative scenarios is actually different from one cohort to the next. For the sheep enterprise, 

depreciation for machinery was calculated using a standard depreciation method. For machinery 

used in all the enterprises, e.g. tractors and vehicles, a straight-line method of depreciation is 

used to depreciate them. Similarly, shearing machinery was depreciated in the same way as the 

tractors and vehicles. Land and buildings were not considered in this study29. Instead, the focus 

is on other assets like cash in bank, stock inventories, machinery (shearing machinery) tractors 

and vehicles in the various scenarios.  

To calculate total liabilities, short term and long-term liabilities were summed together. 

In the event that there are any cash deficits in the planning horizon, they are recorded as short-

term liabilities, whereas the annual ending balance for machinery and vehicles debt constitutes 

the long-term liabilities. Operational capital requirements also differ from cohort one to cohort 

four and amongst the scenarios in the cohorts. Whilst scenario one in cohort one is a true 

depiction of what is happening on the ground (currently), scenarios two and three are only 

hypothetical and all the other scenarios in the three other cohorts are also hypothetical.  

Lastly, equity or net worth is the difference between total assets (excluding land and 

buildings) and total liabilities. Real net worth was used in evaluating the financial soundness of 

the enterprise. A deflation factor was used to deflate the nominal net worth into real net worth.  

 

 

                                                

29 In the Karoo, farmers seldom build new houses on their properties. Farms are handed over from one generation to 
the next, including buildings in them. Land is not considered because of the degradation question in the Karoo. The 
reasoning is that, in the event that desertification was to be a reality, financiers would lose out anyway. Accordingly, this 
study focuses on income wealth.  
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4.9.4 Key Output Variables 

Key output variables (KOVs) form the centre focus of any stochastic simulation analysis 

(Richardson et al., 2007a; Richardson et al., 2007b, Outlaw et al., 2006; Richardson et al., 2006). In 

order to compare the various alternative scenarios in terms of profitability, this study simulates a 

group of common financial indicators or key output variables, as shown in Figure 4.4. These 

include: 

 Net cash income (NCI);  

 Ending cash balance (ECB),  

 Real net worth (RNW) and  

 Net present value (NPV) future returns of the alternative scenarios, in the different 

cohorts.  

The annual net income (NCI) constitutes the total revenue or total farm receipts less all 

expenses and depreciation costs. Annual ending cash balance (ECB) is computed by considering 

only those costs, which impact the business before borrowing - so it does not take into account 

any borrowing costs. The real net worth (RNW) is the sum of the net worth in the last (15th) 

year of simulation period, discounted to 2010 using an assumed discount rate of 9%. Lastly, the 

NPV is selected as a proxy for profitability. It is calculated over the 15-year planning horizon 

using equation 4.14 (Richardson et al., 2007: 204): 

     

                        ∑                                   
  
   /              

                              (4.14) 

where   is the discount rate through which future returns are discounted with to express them in 

today’s money’s worth. Since the NPV is used as a proxy for profitability of every scenario, this 

study follows Richardson and Mapp (1976), who argued that economic success of a project is 

best analysed using the Net Present Value (NPV). However, for this study, a positive NPV is 

defined to mean that the rate of return of the project is greater than its discount rate making it a 

profitable initiative. It is further used as a directive to decision-makers whether to convert from 

sheep farming to springbuck ranching. Thus far, it is used as a foundation to formulate a 
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judgment about how converting a 5 000ha sheep farm into a springbuck ranch will perform in a 

given time period.  

Consequently, for this study, a negative NPV (NPV below zero) means that the rate of 

return of the project is lower than its discount rate hence it is not economically profitable. 

According to Lau (2004), the NPV is but one of many available rules for decision-making. It is, 

moreover appealing because of its ability to give decision makers a synopsis of how the project 

will perform a priori (Lien et al., 2007). Lau (2004: 109) terms this the “value of flexibility” and 

draws from Hardaker et al. (2004) to argue that it is particularly pertinent in instances where risky 

alternatives possess a degree of uncertainty that cannot be resolved before a decision is taken - 

as is the case in this study. The NPV also has the property of presenting a risk-free assessment 

of risky alternatives (McLellan and Carlberg, 2010) and as such is employed, in this study, to 

explore the question of whether converting to springbuck ranching is an economically profitable 

alternative to sheep farming or not, in Graaff-Reinet.  

4.10 Ranking Risky Alternatives 

In order to rank the alternative scenarios with respect to profitability, this study applies 

the SERF analysis to the NPV. This is done to allow for an apt comparison of the various 

alternative scenarios on a range of risk preferences for the decision makers. Particularly, for each 

risky alternative, a utility function,  , for wealth (monotonicity axiom) is calculated by evaluating 

it on a range of lower and upper absolute risk aversion coefficients (ARACs) levels,     ) and 

distribution of wealth,   (as denoted by the NPV) by specifying equation (4.15) (Hardaker et al., 

2004b: 257): 

           = ∫                   ∑       
                 (4.15) 

where      denotes the selected values of risk aversion bounded within lower,      , to upper, 

     , ranges of risk aversion. Drawing from McCarl and Bessler (1989), the upper (     ) and 

lower risk aversion coefficients      are calculated by specifying the following equation:  

      
 

       
           (4.16) 

where RAC is the risk aversion coefficient and         denotes the standard deviation. For this 

study, the RACs are bounded between a (lower) limit of zero and a positive (upper) limit to 
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capture the decision making process of a risk neutral and risk averse decision maker, 

respectively. A RAC of zero signifies a decision maker who is risk neutral, whereas that of above 

zero denotes a risk averse decision-maker. 

The second term in equation (4.15) denotes the continuous case, whereas the third term 

is a “discrete approximation for computational purposes” (Lien et al., 2007: 543 - 4). Since this 

study uses Monte Carlo stochastic simulation to develop distributions for all the key output 

variables,       denotes the probability of returning iteration   in the simulation. The utility 

function is bounded between      and       , because decision-makers are assumed to 

prefer more income to less or simply that they are naturally inclined to choose an investment 

that yields more income. To simulate the decision maker’s utility values for income, the 

following equation is used: 

                                                            (4.17) 

where       is the calculated absolute risk aversion coefficient of the relative risk aversion 

function with respect to income,      ,   denotes the income the farmer obtains from the 

various alternative scenarios.  

The utilities are subsequently converted into certainty equivalents (CEs) by taking the 

inverse of the utility function   (Hardaker et al., 2004: 257b): 

 CE           =                    (4.18)  

The CEs are easy to interpret by converting the utility values into money terms as 

opposed to using them raw - as utility values - which are less instructive. Specifically, Simetar® 

calculates the CEs using the following equation: 

 CE           = ln  {(
 

 
∑           

 )

  

      
}    (4.19) 

where   is the utility,       is the calculated value of absolute risk aversion coefficient, and   

captures the magnitude of the random sample of risky alternative  . Once the risky alternatives 

have been ranked, using their CE values on the SERF analysis, the minimum amount that 

decision makers would want to be paid to convert from the preferred alternative scenario (P) to 

a less preferred alternative scenario (L) based on the absolute risk coefficient (ARAC) is 

calculated by specifying equation (4.21): 

                                       (4.20) 
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where RP is the utility weighted risk premium,           denotes the CE of the preferred 

scenario and           is the CE of the less preferred scenario.  

4.11 Economic Sustainability 

Economic sustainability of the three alternative scenarios in the four cohorts is 

investigated by simulating the probability of occurrence of successful outcomes by specifying 

the following equation (Lien et al., 2007a): 

    ̂     
    

 
        (4.21) 

where      denotes the number of simulated non-failures at the end of the planning horizon,  , 

and   is the total number of iterations used in the simulation model. The economic 

sustainability measure is linked into the financial model. Specifically, this is achieved by 

specifying a Bernoulli function - consistent with Roy’s safety-first rule - for economic 

sustainability in the Monte Carlo financial statements, which is either 0 for failure or 1 for 

success and is simulated for 500 simulations for every year in the planning horizon. The 

economic sustainability of an alternative scenario is determined using 

     
     , if [ {

    
 

    
 }   

   

   
  ]       (4.22) 

   , otherwise, 

where     
  denotes economic sustainability of scenario  , iteration   ( =500) at time  ,     

  are 

the total variable costs for scenario  , iteration   at time  .     
  represents the total revenue 

from scenario  , iteration   at time  , and     is the maximum threshold of variable costs to 

total income as shown in Table A1 of Appendix A. To avoid biasing the results, the value for 

    in the wool sheep dominated cohorts differs from that of the springbuck dominated 

cohorts, as shown in Table A1.  

To conduct sensitivity analysis, the variables costs, yield and price for wool, mutton and 

venison of each scenario in each cohort (cohort one and cohort three) were weighted against the 

NPVs of each scenario in the same cohorts, using Simetar®.  
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4.12 Summary 

This chapter discussed the procedures used to quantify the profitability of converting a 

5 000ha sheep farm into a springbuck ranch in Graaff-Reinet. Firstly, the technique used to 

quantify green forage biomass data used to specify the effect of green forage biomass 

stochasticity on output was discussed. An explanation of the processes followed when 

forecasting rainfall data and biomass data using as a function of rainfall was also discussed. 

Secondly, an explanation of the MVE probability distribution procedure used to quantify risk 

and ensure that the historical observations are correlated the same way in the future as they were 

in the historical distribution, was given. This allowed for the conversion of the deterministic 

means into stochastic variables, required for the stochastic budgeting simulations and economic 

sustainability measure. The chapter also contains a discussion of the financial statements used to 

measure the profitability of the various scenarios, in the various cohorts. A stochastic efficiency 

procedure, namely SERF procedure, was used to rank and isolate economically profitable 

scenarios.    

In the next chapter, the results of all the three scenarios in the four cohorts are given. 
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Chapter 5.  

EMPIRICAL RESULTS  

5.1 Introduction 

In this chapter, the results of the simulations of the multivariate empirical (MVE) 

probability distributions, stochastic budgeting simulations, SERF analysis and economic 

sustainability analysis are reported. For ease of exposition, the results are presented in three 

parts. In the first part a detailed explanation of the simulation and descriptive statistics results of 

the stochastic variables is given. Part 2 simultaneously reports the results of the stochastic 

budgeting simulations and the SERF analysis of each of the 3 scenarios, in the four cohorts. Part 

three focuses on the results of the economic sustainability analysis of the alternative scenarios in 

the four cohorts in a bid to answer the main objective of this study, which was to access the 

profitability and economic sustainability of converting a sheep farm into a springbuck ranch, 

whilst overtly taking risk.  

5.2 Diagnostic Tests and Stochastic Variables Results  

Before conducting the analysis, the simulated variables were subjected to a variety of 

diagnostic tests by comparing them to their historical values. This was done for two reasons: 

firstly, to ascertain how close the stochastic values are to their historical counterparts, and 

secondly, as a way to authenticate the model. To achieve this, the multivariate distribution 

means, variance and correlations were tested against their historical means, variance and 

correlations, respectively. The means of the simulated multivariate distribution were compared 

to their historical means by using the Hotelling’s T-Squared Test, whereas Box’s M Test was 

used to test their variance. The Student t-test was used to test the correlations of the simulated 

variables against those of their historical distribution.  

Specifically, the Hotelling’s T-Squared Test conducts concurrent tests that determine the 

statistical relationships between the simulated vector means and the vector means of the 

historical distribution (Richardson et al., 2006; Vose, 2008; Vose, 2000). Simetar® uses the Two 

Sample Hotelling’s T-Squared Test to ascertain whether the simulated vector means for the 
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multivariate distribution are statistically equivalent to the vector means for the original 

distribution or not (Richardson et al., 2008). Accordingly, the results of the Hotelling’s T-

Squared tests illustrated that at the 0.05 significance level, most of the simulated vector means 

were statistically equal to their historical means. This was expected as some of the simulated 

means were assumed to follow the distribution of the historical means. Variance was tested 

using Box’s M Test (Box, 1953) for homogeneity, which checks for consistency in the variation 

amongst variables (Richardson et al., 2008; Richardson et al., 2006; Vose, 2008; Vose, 2000). To 

perform Box’s M test, the covariance of the simulated multivariate distribution were tested 

against the covariance of the original multivariate distribution, with the intention of checking if 

the was equality in the variables of the two distributions (Richardson et al., 2008). The results for 

the for Box’s M tests for homogeneity confirmed that the variance of the simulated distribution 

was similar to the variance of the historical distribution at the 0.05 significance level - thus 

authenticating the model and confirming that the stochastic variables simulated the variability of 

the historical distribution.  

5.2.1 Output and Prices 

The simulated means for wool sheep output, mutton output, springbuck output, wool 

price, mutton price, and venison price for the year 2011 to 2025 are presented on Figure 5.1. 

The simulated output for springbuck and culled wool sheep increases annually during the course 

of the planning horizon, whereas that of wool sheep was decreasing throughout the planning 

horizon. This is because the farmer was leaning more on springbuck in terms of output than he 

was on wool sheep. Because of this, it was generally assumed in this study that this trend was 

expected to continue in the planning horizon30. This assumption is line with the outcomes of an 

unstructured interview held with farmers in the area, as part of this study, which revealed that, 

whilst farmers were reluctant to take up springbuck ranching as a premier ecological-economic 

system in their rangelands, they, however, often looked to it for improving their net returns. 

                                                

30 For example, data from Camdeboo Meat Processors shows that the output of springbuck in the area was generally 
increasing.  
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This can be chiefly attributed to a growing cost-price squeeze in livestock farming in South 

Africa, especially in the Karoo, which has left farmers in financial hardships. To circumvent 

going into financial ruins, farmers have been keeping more springbucks on their farms. This 

result is line with the observations of Nel and Hill (2008) who reported similar findings with 

regard to game ranching and livestock farming in the Karoo. 

Furthermore, the simulated means show that the amount of mutton produced on the 

farm, nevertheless, was increasing. This is a rather ambiguous result since, it is expected that as 

the population of springbuck on the ranch increases, the number of sheep should subsequently 

fall. However, recalling that the historical dataset is based on the actual number of wool sheep 

sheared, culled or sold as mutton sheep in the past 11 years, it then becomes less confusing. 

What it means is that as the decision maker consciously allows the population of springbuck on 

the ranch to increase, the number of wool sheep culled and subsequently sold as mutton, 

increases. This simultaneously means that the number of wool sheep actually shorn on the ranch 

subsequently decreases, as the mutton and venison output increases: hence, the evident decrease 

in wool output. 31Table A3 in Appendix A presents a comprehensive illustration of the summary 

statistics of all the simulated stochastic variables used in this study. They include the mean; 

standard deviation (StDEV), coefficient of variation (CV), minimum, and maximum values for 

wool sheep, sheep for mutton, springbuck, wool price, mutton price, and venison price. The 

CVs are stable and unwavering from 2011 through to 2025. Not surprisingly, the means of the 

simulated stochastic price variables are higher than their historical deterministic means. The 

reason for this was that the variability of the forecasted mean prices was assumed to increase 

linearly for all means from 2011 to 2025.  

                                                

31 Furthermore, it should be recognized that the output for mutton can only increase for so long, after which if the 
parent stock has been sold there would be no sheep kept on the ranch which would consequently mean that there would 
be no wool or mutton produced. This is also true for springbuck output, which can only increase if there is available 

space to produce more, otherwise the output fluctuates as per the carrying capacity of the farm. 
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Figure 5.1: Simulated yearly mean values for wool sheep, mutton, springbuck, wool 
price, mutton price, and venison price from 2011 to 2025. 

Similarly, the mean output for mutton and venison was increasing. This is in line with 

projections from the OECD-FAO Outlook (2011), which predicts that the world consumption 

of meats and its products is expected to increase up until 2020. The mean price for mutton and 

venison was, using the consumer price index, assumed to increase linearly from 2011 to 2025. 

The price of mutton and venison grew by between R33.66 to R55.48 and R21.37 to R34.57 per 

kilogram in 2011 and 2025, respectively. This is only true in as far as local production and 

consumption of mutton and venison is concerned. This increase in price supposedly attracts or 

cause more landowners to convert their sheep farms to springbuck ranches. Because there is 

only a single buyer of springbuck carcasses in Graaff-Reinet, it was assumed that, even though in 

international markets the per kilogram price of venison might be increasing, it would decrease in 

the area as supply out numbers the processor’s capacity. Because of this, ranchers react by 

finding another buyer, who - at the present moment - is many kilometres away from Graaff-

Reinet, which further increases harvesting and transportation costs, thus undermining any 

lucrative prices that the new buyer might be offering32. The price of mutton increases because of 

the assumption that there will be an increase in the world demand of sheep meat (OECD-FAO, 

2011), but such an increase is only applicable to the world price of mutton not in Graaff-Reinet. 

Thus, as many farmers continue progressively to convert their sheep farms to springbuck 

ranches, it was assumed that the price of mutton would decrease, and to capture this, a price 

wedge that restricts the price from increasing was introduced. Primarily, the mutton price wedge 

                                                

32 This justifies the assumption that throughout the planning horizon, there will only be one buyer. 
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prevents the price from increasing, because of the assumption that the conversions continue 

throughout the planning horizon and that no single farmer converts to 100% springbuck 

ranching over a production season or during any time of the planning horizon. It should be 

noted that this observation only holds under the assumption that ranchers gradually convert 

their sheep farms to springbuck ranches, which means there is an oversupply of mutton. This 

was subsequently assumed to cause the price of wool to become more attractive as wool output 

decreases, in favour of springbuck ranching: an occurrence that was assumed to continue from 

2016 of the planning horizon to 2025.  

In the same way, the mean price of wool increases by between R34.23 to R58.62 per 

kilogram from 2011 to 2025, respectively. This assumption was informed by the observation 

that the Karoo is a significant wool-producing region in South Africa (NDA, 2010). Hence if 

land were to be converted, en masse, for ecological-economic systems that do not favour wool 

production, the expectation is that the wool output in South Africa would drop substantially, 

which would - in the long run - lead to an increase in the nominal price of wool. This should, 

however, be understood within the context of this study, as it does not necessarily mean that, 

because of the conversion from sheep farming to springbuck ranching in Graaff-Reinet, the 

world wool price would be affected. Rather it means that for South Africa, because of a decrease 

in output in the Karoo, buyers might be willing to pay a slightly higher price than they would 

have been willing had the output been increasing or significantly not changing over time. 

5.2.2 Correlations 

In stochastic simulation, stochastic dependency is a crucial concept. In preceding 

chapters, it was mentioned that to account for stochastic dependency amongst variables it is 

important to determine the correlation structure of the historical variables, which was achieved 

through a correlation matrix. A correlation matrix is a table containing a group of numbers 

describing the relationship between all possible pairs of variables in a distribution.  
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Table 5.1: Intra and Inter-Temporal Correlations and Summary Statistics of Wool 
Sheep, Mutton, Springbuck, Wool Price, Mutton Price, Venison Price, Rainfall and 
Biomass 
  OUTPUT   PRICE  OTHER 
 Wool Sheep Mutton Springbuck Wool Mutton Venison  Rainfall Biomass 
OUTPUTa         
Wool Sheep 1.00 -0.83 0.41 -0.29 -0.62 0.61 0.54 -0.26 
Mutton  1.00 -0.16 0.64 0.82* 0.62 -0.54 0.15 
Springbuck  1.00 0.33 0.33 0.21 -0.19 -0.66 
PRICE         
Wool Price   1.00 0.76* 0.70* -0.27 0.07 
Mutton Price    1.00 0.54 -0.64 -0.24 
Venison Price     1.00 -0.33 0.43 
OTHER         
Rainfall       1.00 0.54 
Biomass        1.00 
Inter-
temporalb 

0.44 0.44 0.48 0.10 0.07 0.08 0.41 0.12 

Meanc  953 657 595 36.86 37.94 14.21 305.77 1,880.47 
StDev  221 129 115 7.41 7.63 6.16 59.74 364.08 
CV  23.23 20.57 19.34 20.09 20.10 9.40 19.54 19.36 
Min  767 444 403 24.74 25.62 7.65 204.82 1,261.77 
Max  1,223 874 789 48.88 50.50 25.63 406.50 2,503.98 
a Animal heads 

b One year Correlations  

c Mean restricted to sheep dominated enterprise 
*Significant at 0.05 level (t-critical = 1.98) 

 

To test for correlation, the correlation matrix of the original or historical distribution was 

tested against that of the simulated distribution to investigate if the variables in the simulated 

distribution exhibited the correlation of the historical variables. To perform this test, the Student 

t-test was used to evaluate each of the coefficients in the correlation matrix (Richardson et al., 

2008; Vose, 2008). Specifically, the Student t-test tests the significance of the correlation matrix 

of the historical distribution against those of the simulated distribution. The results of the tests 

evince that the correlation matrix for the simulated distribution was statistically not different to 

the historical correlation matrix at the 0.05 level, indicating that the simulation model was 

proficient in replicating the historical correlations amongst all the variables. 

Table 5.1 presents the correlation matrix for the historical observations for wool sheep, 

mutton, springbuck, wool price, mutton price, venison price, rainfall and biomass. All variables 

are intra-temporally correlated with one or more variables at the 0.05 significance level. A high 

negative correlation was observed between the number of wool sheep sheared on the ranch and 

the wool sheep culled as mutton (-0.83), the price of mutton (-0.62) and the price of venison (-

0.61). Likewise, the number of wool sheep culled for mutton showed a high correlation with the 
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price of wool (0.64), price of mutton (0.82), price of venison (0.62) and rainfall (0.54). The 

correlation between springbuck culled in the farm and green forage biomass was negative and 

significant (-0.66), whereas the correlation between the price of wool and price of mutton (0.76) 

and the price of wool and venison (0.72) was positive and highly significant. Wool sheep sheared 

for wool showed a significant but negative correlation with the rainfall amount in a year (-0.54), 

whilst the correlation between biomass and rainfall (0.54) was positive. Mutton price produced a 

negative and significant correlation with rainfall (-0.64).   

The inter-temporal correlation matrix depicts a moderately weak correlation for wool 

sheep sheared (0.44), wool sheep culled for mutton (0.44) and springbuck culled for venison 

(0.48). The correlations between output and prices were positive but weak, with the price of 

wool having the highest inter-temporal correlation (0.1) amongst the three, followed by the price 

of venison (0.08) and the price of mutton (0.07) was last. Rainfall had a positive and moderate 

inter-temporal correlation (0.41) whilst biomass yielded a positive but weak inter-temporal 

correlation (0.12).  

5.3 Simulation Results for Alternative Scenarios  

The study analyses three alternative ecological-economic systems, categorised into four 

cohorts. Table 5.2 gives a concise illustration of the various ecological-economic systems and 

summarises their grouping as per the decision maker’s preferences. The study was interested in 

knowing if it would be profitable for the principal decision maker to continue as today (Cohort 

1) or convert the farm to a springbuck ranch by making springbuck ranching the leading 

ecological-economic activity on the ranch by means of setting aside more land for it (Cohort 3). 

Moreover, the study also wanted to explore the effect that incentives would have on springbuck 

ranching considering its assumed potential to promote ecological cohesion (through biodiversity 

restoration, see chapter 2). Because of this, Cohort 2 scenarios investigate the impact of 

incentives on farm profitability if the farmer continues as today with all the assumptions of 
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Cohort 1, but with the option of getting incentives for springbuck ranching33. The last option is 

to follow the assumptions of Cohort 3 with the possibility of getting incentives for springbuck 

ranching (Cohort 4). Currently, the premier ecological-economic system on the farm is sheep 

farming.  

Hence, Table 5.2 also shows whether the farmer receives incentives or not. The share of 

land used relates to the portion of the 5 000ha farm assumed to be used for the various 

alternatives in the different scenarios, respectively. It is perhaps, worth mentioning that, in 

Cohort 1, alternative WLS NI SF (wool mutton springbuck, no incentives, sheep farming) is a 

true depiction of what is happening on the study farm at the present. Moreover, also important 

to note is that the share of land used was specifically introduced for ease of computation in this 

study. In practice, springbucks are naturally occurring in farms in Graaff-Reinet; meaning that 

they also share the rangelands with sheep. There are no incentives on livestock farming in South 

Africa, neither are there any subsidies. They, however, are used here to explore the income 

boosting policy measures that the government of South Africa would have to initiate to ensure 

the sustainable use of rangelands in Graaff-Reinet. This would be in response to the continued 

degradation of rangelands because of livestock farming but also given the constitutional goal of 

wanting to conserve natural ecosystems for the benefit of future generations.  

5.3.1 Simulation Results for Cohort One Scenarios 

In Table 5.2, it is shown that in cohort one there are three possible scenarios of how the 

principal decision maker can utilise the rangeland, under the assumptions of this study. The 

decision maker can either continue as today, by using the rangeland chiefly for sheep farming 

(SF) with the sole purpose of producing wool (W) and mutton (L). The decision maker, 

however, harvests free and naturally occurring springbucks (S) on the ranch which are sold to 

the Meat Processor for a per kilogram dressed weight price. In scenario two, the study assumed 

that the decision maker decreases the sheep stock in favour of springbuck ranching, whilst in 

scenario three the study assumed that there would be an increase in springbuck output by up to 

                                                

33 Because it is assumed that the rancher gets incentives for springbuck ranching, even though he does not get them for 
sheep farming the prices are also expected to be influenced, largely, by what is happening in other farms.  
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30 percent. The financial statements were simulated as discussed in the preceding chapter and 

the key output variables (KOV’s) were compared to each other in an endeavour to solicit an 

understanding of how the various alternatives affect the profitability of the ranch.  

Table 5.2: Groupings of Scenario Contents Assumed for Study Analysis  
Cohort Abbreviation Ecological system Share of land used Incentives 

Cohort 1 WLS  NI SF* Wool Mutton Springbuck 7:2:1 No 
 WS    NI SF Wool Mutton Springbuck 5:3:2 No 
 WL    NI SF Wool & Springbuck 7:3 No 
     
Cohort 2 WLS YI SF* Wool Mutton Springbuck 7:2:1 Yes 
 WS   YI SF  Wool Mutton Springbuck 5:3:2 Yes 
 WL   YI SR Wool & Springbuck 7:3 Yes 
     
Cohort 3 SLW  NI SR# Springbuck Mutton Wool  7:2:1 No 
 SW    NI SR Springbuck Mutton Wool  5:3:2 No 
 SL    NI SR Springbuck & Wool  7:3 No 
     
Cohort 4 SLW  NI SR# Springbuck Mutton Wool  7:2:1 Yes 
 SW    NI SR Springbuck Mutton Wool  5:3:2 Yes 
 SL    NI SR Springbuck & Wool  7:3 Yes 
*SF,#SR = premier ecological-economic system is sheep farming and springbuck ranching, respectively. 

5.3.1.1 Net Cash Income 

The estimated average yearly net cash incomes in thousands of South African rands (R) 

for each of the cohort one scenarios are presented in Figure 5.2. The results show that the 

estimated average annual net cash incomes are positive throughout the planning horizon, for all 

the 3 scenarios. Notwithstanding, for WLS NI SF (scenario 1) they indicate that the net cash 

income is smallest throughout the planning horizon. After 2011, the net cash income gradually 

decreases in all the scenarios because, even though the prices show an upward trend, a benefit 

that is over-shadowed by an equal increase in production costs – which prevents any realistic 

gains from wool price increases to be realised. This is somewhat expected since, in this cohort, 

wool production is the premier ecological-economic system and thus there is a high number of 

wool sheep kept implying a high sheep retention ratio and thus high winter feeding costs. The 

net cash income received from scenario 2 (WS NI SF) and 3 (WL NI SF) was higher than in the 

WLS NI SF scenario illustrating the influence of springbuck meat production on the income 

structure of the family farm. However, like in the WLS NI SF scenario, feeding and production 

costs in winter were increasing during the entire course of the planning horizon. This made the 

net cash income to decrease throughout the planning horizon. The WS NI SF scenario had the 
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highest income in 2011 and outpaced by the WL NI SF scenario in 2016, an expected result 

considering the high costs of winter-feeding, that were increasing throughout the planning 

horizon in wool sheep farming. In the WL NI SF scenario, and because of the high number of 

springbuck harvested, the net cash income was highest from 2016 right through to 2025 – 

justifying that a more diversified rangeland could potentially yield higher income returns than 

monotonous wool sheep farming. This is partially because of the increase in income obtained 

from springbuck production as well as the reduced costs of feeding as more land is set aside for 

springbuck ranching. However, such a net income is equally constrained by an equivalent 

increase in production costs, as the farmer tends to use the money from the springbuck 

enterprise to supplement the sheep enterprise.  

 
Figure 5.2: Estimated yearly Net Cash Income for a 5 000ha farm producing wool as a 
premier economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms.  

The net cash income for the three (WLS-, WS- and WL NI SF) scenarios in 2011 was 

about R159 thousand, R183 thousand, and R100 thousand, respectively. For WLS NI SF, the 

probable net income decreases from R159 thousand in 2011 to R8 thousand in 2025, whereas 

for WS NI SF, it decreases from R183 thousand to R24 thousand in 2025, as shown in figure 

5.2. There is a 10% chance that the net cash income in the WLS NI SF scenario would be 

negative in 2025. The WS NI SF scenario returned the highest net cash incomes in all the 

scenarios up until 2015 where after it was over taken by the WL NI SF scenario in 2016, 

suggesting that a combination of 70% wool production and 30% venison might yield higher 

returns in the long-term. The WL NI SF scenario starts with an average net cash income that is 

smallest in all the three scenarios in 2011 and continues in this trajectory up until 2015. In 2016, 

the WL NI SF scenario returned average net cash income that is higher than that of the WS NI 

SF scenario. These results show that scenario 3 (WL NI SF) yields more average yearly net cash 

income than the WLS- and WS NI SF scenarios, respectively, towards the end of the simulation 
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period. From 2013 through to 2025, the net cash income for all the scenarios except the WL NI 

SF scenario is below the R100 thousand mark, demonstrating the effects of production costs, 

especially winter feeding on the net returns. However, scenario one and two failed to yield a net 

cash income above R50 thousand from 2018 to 2025, indicating the influence of an increase in 

production costs on net farm returns. 

Figure 5.3 shows the fan graphs of the probable yearly net income risk for the 5 000ha 

farm, under the assumptions of cohort 1. These fan graphs illustrate the range and risk of the 

simulated probable yearly net incomes for all the three scenarios in cohort 1. The probable 

yearly net income risk is bounded between 5 lines coloured in five distinct colours. The dark red 

(uppermost) line and red (lower) line contain 90 percent of the simulated values, whilst the black 

(middle) line shows the estimated yearly mean, over the planning horizon. The inner lines: blue 

(second from bottom) and green (second from top) contain 50 percent of the simulated values. 

Table B1 in the appendix presents the mean, standard deviation, coefficient of variation, 

minimum, and maximum values of net cash income for the three scenarios.  

 
Figure 5.3: Fan Graphs showing estimated yearly net income risk for a 5  000ha Farm 
in Graaff-Reinet, producing wool as a premier economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms.  

 

Important to note is that the estimated yearly net cash incomes range and risk for 

scenario one was constant whilst both scenarios two and three had a decreasing variability 
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throughout the planning horizon. This variability is shown by the dark red lines in the two 

graphs, and by the coefficient of variation (CV) in Table B1 of Appendix B. In scenario three, 

the net cash income stays constant – with constant variability - throughout the entire planning 

horizon. In these scenarios, the probability of obtaining negative average net cash income 

increases towards the end of the simulation period – owing to high feeding costs in the sheep 

enterprises.  

The range of net income was highest in the WS NI SF with a 50 percent chance that the 

net cash income would lie between R175 thousand and R55 thousand throughout the planning 

horizon. In this scenario, 90 percent of the simulated estimated average yearly net income fell 

between R186 thousand and (R6) thousand in 2016. Moreover, with 90 percent of the simulated 

estimated average yearly net income falling between R216 thousand and (R4) thousand - in the 

same year, the WL NI SF scenario had the thinnest range of net income amongst the three 

scenarios. In 2025, the WS NI SF scenario produced the biggest range and this was supported 

by 90 percent of the simulated average yearly net income falling between (R76) thousand and 

R38 thousand. The WL NI SF scenario had 90 percent of its simulated average yearly net 

income falling between (R53) thousand and R68 thousand, in 2025. There was a 50 percent 

chance that the WL NI SF scenario would yield an income between R153 thousand and R59 

thousand throughout the entire planning horizon. 

5.3.1.2 Ending Cash Balance 

In chapter 4, the ending cash balance (ECB) was defined as that portion of income that 

affects the business before borrowing. For the Cohort 1 scenarios, this is shown in Figure 5.4, 

which displays the estimated average yearly ending cash balances in thousands of rands. The 

ending cash balances for all the scenarios are positive throughout the year and follow the same 

pattern as the net cash incomes. The ending cash balances are highest in 2011, and decrease 

gradually throughout the planning horizon as costs for production increases. The WLS NI SF 

scenario returned the smallest average ending cash balance in 2011, followed by the WS NI SF 

scenario. As expected, given the high ending cash balances, the WL NI SF scenario, yielded the 

highest ending cash balance at bank. For WLS NI SF, the ending cash balance starts from R213 

thousand in 2011, drops to a low of R103 thousand in 2019 and gradually decreases until it 
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reaches R65 thousand in 2025. The reason for the decrease in ending cash balance can be 

attributed to high production costs in this cohort that affected the ending cash balances at bank 

for this scenario, as farmer had to use more income to finance feeding costs given an increase in 

production costs. Figure 5.4 also shows that for the WS NI SF and WL NI SF scenarios, the 

ending cash balances start from R242 thousand and R261 thousand in 2011, and like the 

WLS NI SF scenario, drops to R89 thousand and R118 thousand in 2019 whence they decrease 

gradually to R87 thousand and R109 thousand in 2025, respectively.   

 
Figure 5.4: Estimated yearly ending net cash balance for a 5 000ha Farm in Graaff-
Reinet, producing wool as a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

The ECBs for the entire three scenarios further reflect the influence of increasing 

springbuck output on the ending reserves of the business. For example, the WLS NI SF has the 

lowest ending cash balance in 2011, whilst the WL NI SF scenario has the largest. Similarly, in 

2025, the WL NI SF scenario yielded the lowest ending cash balance in contrast to the other two 

alternative scenarios. This is clearly a result of increasing income sourced from springbuck 

ranching, which increases the farm income thereby increasing the amount of money available to 

accumulate interest in the bank.  

The estimated yearly ending cash balances’ range and risk for all the alternative scenarios 

in cohort 1 are presented in Figure 5.5. The range and risk for the WLS NI SF, WS NI SF and 

WL NI SF scenarios show that the variability of the ending cash balances from 2018 to 2025 are 

constant and moderately thin - ranging between R4 thousand and R196 thousand and R4 

thousand and R112 thousand, respectively. There is a 50% chance that the net cash income for 

the WLS NI SF scenario would be greater than R100 thousand in the first 5 years. The CV for 

this scenario is highest in 2011 at 52% and gradually decreases to 16.56%, in 2025. For the WS 

NI SF the variability remains relatively constant after 2018 and only decreases moderately to 

18.34% in 2025. The ending cash balance ranges between R12 thousand and R336 thousand, in 
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2011 and R8 thousand and R112 thousand in 2025, reflecting decreasing variability around mean 

towards the end of the planning horizon, for the WLS NI SF scenario. Furthermore, the 

scenario has a 50% chance that the ending cash balance would be between R134 thousand in 

2011 and R45 thousand in 2025. However, the ending cash balance for the WL NI SF scenario 

is the largest in this cohort. In 2011, the estimated ending cash balance range and risk for the 

WL NI SF scenario is between R7 thousand and R360 thousand and decreases to R4 thousand 

and R194 thousand, in 2025. There is a 50% chance that the ending cash balance for the WL NI 

SF scenario would be bounded between R153 thousand and R75 thousand in 2011 and 2025, 

respectively.  

Table B3 in Appendix B also presents the mean, standard deviation, coefficient of 

variation, minimum, and maximum values of the estimated ending cash balance for the three 

scenarios. 

 
Figure 5.5: Estimated yearly net ending cash balance risk for a 5  000ha Farm in 
Graaff-Reinet, producing wool as a premier ecological-economic activity without 
incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
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5.3.1.3 Real Net Worth 

The net worth can analyse the financial soundness of any enterprise in two ways. First, it 

can be used in nominal or current (rand) money terms, or as real money (rands). In real money 

(rand) terms, the net worth is called the real net worth and is calculated by adjusting the nominal 

net worth for inflation to find the real value of the enterprise in today’s rands using a deflation 

factor. In this study, the real net worth assesses the financial soundness of the various 

enterprises over a period of 15 years. Figure 5.6 presents the estimated yearly average real net 

worth for the 5000 ha farm, whereas Table B4 in the appendix presents the mean, standard 

deviation, coefficient of variation, minimum, and maximum values for real net worth for all the 

scenarios, in cohort 1.  

 

 
Figure 5.6: Estimated yearly real net worth for a 5 000ha Farm producing wool as a 
premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

The real net worth for the three scenarios starts out just above R1 million in 2011 and 

decreases throughout the 15 year planning horizon, such that it is at its lowest in 2025. The 

estimated average yearly real net worth is equal for both scenarios 2 and 3, in 2011, whereas in 

2025, WL NI SF had the highest real net worth for all the three scenarios. In all the scenarios, 

the real net worth decreases because of the influence of the deflation factor used to deflate the 

nominal net worth – which decreases throughout the planning horizon. Moreover, it also 

decreases because of high borrowing costs and liabilities that the family farm faces throughout 

the planning horizon. The real net worth in 2011 was R1.2 million for WLS NI SF and R1.1 

million for the WS NI SF and WL NI SF scenarios. In 2025, however, the real net worth for the 

three scenarios stood at R307 thousand for WLS NI SF, R500 thousand for WS NI SF and at 

R624 thousand for WL NI SF. The WL NI SF scenario showed the highest real net worth than 

all the other two scenarios because of the high income received from springbuck ranching. The 
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higher real net worth was a result of lower borrowing costs as income sourced from venison 

production, in this scenario, was used partly to finance the wool sheep enterprise. This result 

suggests that a lower sheep retention ratio might in the long-run lead to a profitable enterprise. 

The portion of land used for wool sheep was 70 percent whilst the remaining 30 percent of land 

went to springbuck ranching. Notwithstanding, the results further shows that none of the 

cohort 1 scenarios looks promising as all of them have a declining net worth. 

Figure 5.7: Estimated yearly real net worth risk for a 5 000ha Farm producing wool as 
a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

The fan graphs of the real net worth of the cohort one scenarios are shown in Figure 5.7. 

Despite the WS NI SF scenario showing the thinnest real net worth range in 2011, it has the 

second largest range in 2025, after the WL NI SF scenario. For example, 90% of the real net 

worth values for the WS NI SF scenario are bounded between R32 thousand and R1.173 million 

in 2011. This is in contrast to the WLS NI SF and WL NI SF scenarios, which had 90% of the 

simulated real net worth values fall between R40 thousand and R1.48 million and R34 thousand 

and R1.55 million, in the same year, respectively. In 2025, moreover, the WLS NI SF scenario 

has the thinnest real net worth range with 90% of the simulated estimated yearly real net worth 

falling between R45 thousand and R1.197 million. This is in contrast to a range of R86 thousand 

and R1.311 million for the WS NI SF scenario, in 2025. There is a 50% chance that between 

2011 and 2025, the net worth will range between R680 thousand and R455 thousand, R636 



Chapter 5 Empirical Results 

117 
 

thousand and R480 thousand, and R546 thousand and R600 thousand for the WLS NI SF, WS 

NI SF and WL NI SF scenarios respectively. 

5.3.1.4 Net Present Value  

In chapter 4, the usefulness of the NPV as a yardstick to gauge the financial soundness 

of a project, was discussed. It was emphasised that the NPV is often a valuable tool in cases 

where a decision on whether to invest or not is sought. Lau (2004: 135) adds that an “NPV of a 

capital budgeting project … [can also act as a directive especially when the desire is on 

developing a rounded understanding of] the expected impact of a project on the value of the 

firm and its income earning potential.” In this study, the NPV is used as a proxy for profitability. 

According to Lien (2003), risky strategies are best evaluated using their cumulative distribution 

functions (CDFs). A CDF graph of the NPV, as Lau (2004: 135) continues: “represents the risk 

of simulated NPV outcomes for visual comparison between alternative scenarios.” In cohort 1, 

there are three scenarios, which are represented by the three CDFs in Figure 5.8. The vertical 

axis of Figure 5.8 measures the probabilistic outcome of the NPV whilst the horizontal axis 

shows the actual amount of the estimated NPV of the various scenarios.  

 
Figure 5.8: Stochastic Efficiency with Respect to a Function graph of net present value 
for a 5 000ha farm producing wool as the premier ecological-economic activity without 
incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

The decision maker can only choose one scenario, and when he makes that choice, the 

other two scenarios simultaneously fall off. Since it is assumed that no specific scenario is 

preferred amongst the alternative scenarios in this study. The rule of thumb in mutually 

exclusive projects is to choose the one with the highest positive NPV (Lau, 2004). Using a 

positive NPV is based on the premise that a discounted stream of net returns is sufficient to 

meet the rate of return as dictated by the assumed discount rate – which is 9% in this study. The 

CDF graph results demonstrate that the probability that any scenario in this cohort will yield a 
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negative average NPV is high, except WL NI SF. Table B4 in the appendix also shows the mean, 

standard deviation, CV, minimum and maximum values for the estimated average NPVs in 

cohort one. The probability that WLS NI SF will return a negative NPV is 62 percent, followed 

by WS NI SF with a 51 percent chance. However, WL NI SF has an 18.7 percent chance of 

returning a negative NPV. The average NPVs for the three scenarios are (R83.03) thousand, 

(R23.70) thousand and R137.19 thousand, for WLS-, WS- and WL NI SF, respectively. Only the 

WL NI SF scenario was able to produce a positive NPV albeit small. 

Clearly, the WL NI SF scenario, depicted by a blue dotted line, is the most profitable 

option amongst the three. It is difficult, however, to tell with confidence that the WL NI SF 

scenario is the most profitable alternative since the CDF lines seem to be touching each other at 

the tails. In order to resolve this problem, the stochastic efficiency with respect to a function 

(SERF) method is used to rank and analyse the three scenarios. The SERF analysis complements 

the results of the NPV analysis by providing an unbiased weighting of the SERF graph of the 

alternative scenarios across a range of possible risk aversion coefficients (RACs). Recalling the 

importance of the risk aversion coefficient, as argued in earlier chapters, a need to specify the 

upper and lower limits of the RACs ranges for this study becomes eminent. Accordingly, the 

upper and lower risk aversion coefficients are calculated by following equation (4.23).  

This study uses a lower RAC of 0 because of the assumption that the decision makers are 

risk averse. Therefore, the RACs are bounded between a lower limit of zero and an upper limit 

to capture the decision-making process of a risk neutral and risk averse decision maker, 

respectively. A RAC of zero signifies a decision maker who is risk neutral, whereas a RAC 

greater than 0 but less than 4 (Hardaker et al., 2004a) implies risk averseness. A negative RAC 

implies risk loving or risk seeking which does not apply to this study, since the decision makers 

are assumed risk averse. 

Thus, the study used a lower absolute risk aversion coefficient (ARAC) of 0.0 and 

calculated and an upper ARAC of 0.000025, such that the absolute risk aversion coefficient 

(ARAC) range was between 0.0 and 0.000025 for all the scenarios in cohort one. Figure 5.9 

presents the SERF graph showing the CE lines for the WLS-, WS- and WL NI SF scenarios. 

From these CE lines, it is clear that the WL NI SF scenario is the most preferred scenario over 

the WS NI SF and WLS NI SF scenarios, across the various ranges of risk aversion coefficients. 
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However, the WLS NI SF scenario returned negative CE across the range of risk aversion 

coefficients, suggesting that the farmer is better off increasing his investment in springbuck 

ranching. Often a negative CE means that the investment is not worth it, and is better 

abandoned. In this case, it shows that since the farmer increases the amount of sheep from 

scenario one to scenario three, it would be potentially profitable to convert more land to 

springbuck ranching to take advantage of the positive CE values that comes with an increased 

investment in springbuck ranching. The WS NI SF is equally not appealing for the same reason, 

as it tends to yield a negative CE throughout the range of absolute risk aversion coefficients.  

Figure 5.9: Stochastic Efficiency with Respect to a Function graph of net present value 
for a 5 000ha farm producing wool as the premier ecological -economic activity without 
incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

This result is further confirmed by the calculated risk premiums when the decision maker 

exhibit risk neutral, moderately risk averse and risk averse properties, respectively, between the 

alternative scenarios, as shown in Table 5.3. Important to note is that the differences between 

CE lines also depict the risk premium that decision makers would assign to the alternatives of 

choice in relation to other alternatives in the same cohort. Using equation (4.24), the risk 

premiums were calculated and are as presented on Table 5.3. The risk premium denotes the 

“confidence of decision makers in a particular preferred risky alternative” (Hardaker et al., 2004a: 

264). The CE is the “sure sum with the same utility as the expected utility of the prospect” 

(Hardaker et al., 2004b: 257). This suggests that the risk premium can also represent the amount 

of money that decision makers would be willing to accept to be equally well-off or indifferent 

between two alternative scenarios (Lau, 2004). The risk premium can also be defined as the 

amount of money that will leave the decision maker equally satisfied, in terms of utility, between 

two competing alternatives (Baumgartner and Quaas, 2005).  
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Table 5.3: Risk Premiums for a 5 000ha Farm in Graaff-Reinet, producing WLS, WS, 
and WL with sheep as a premier ecological-economic activity without incentives.  

 Risk  Neutral Moderately Risk  Averse Risk Averse 

R 

WLS NI SF (220 226. 94) (277 656. 54) (326, 208. 85) 

WS   NI FS (160 894. 09) (219, 899. 83) (256, 440. 47) 

WL   NI SF - - - 

See Table 5.2 for a detailed explanation of acronyms. 

Under the assumptions of cohort one, the results of the SERF analysis suggest that the 

WL NI FS scenario is preferred over all the other scenarios across all the risk aversion 

coefficient ranges and was used to calculate the risk premiums. For risk neutral decision makers 

to convert their farms from WL NI FS to WLS NI SF and WS NI SF, respectively, and still be 

equally satisfied, they would have to be paid R220 226.94 and R160 894.09, respectively. 

However, moderately risk averse decision makers would require a sure amount of R277 656.54 

to convert from the preferred WL NI FS to WLS NI SF scenario. Whereas they would need 

R219 899.83 to convert from WL NI SF to WS NI SF. Alternatively, the risk premium also 

show the amount of money in utility terms that the decision makers are losing by engaging in 

the other two scenarios. Lastly, for risk averse decision makers to move from the preferred 

WL NI SF scenario to WLS NI SF and WS NI SF scenarios, respectively, and still be indifferent, 

they would have to be compensated with R326 208.85 and R256 440.47, respectively. This 

illustrates that as the farmer’s absolute risk aversion coefficient increases from zero (risk neutral) 

to risk averse (0.000025), so does his desire for more money to be equally well-off between the 

preferred WS NI SF scenario and the other two scenarios. 

The above results suggest that it is potentially profitable to incorporate springbuck 

ranching into a 5 000ha wool sheep farm in Graaff-Reinet. However, as the results demonstrate, 

only a conversion of at least 30 percent of the 5 000ha farm allocated to springbuck ranching for 

meat production would earn the farmer enough income to warrant any profitability. 

5.3.2 Simulation Results for Cohort Two Scenarios 

The objective of the scenarios in this cohort was to evaluate the influence of incentives 

on the profitability of gradually converting a sheep farm - under the assumptions of cohort one - 

into a springbuck ranch. However, since the size of land used by the springbuck in scenario one 
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(WLS YI SF) is so small34, the farmer is assumed not to get a restoration subsidy. This is because 

assumption that a small number of springbuck on the ranch cannot bring about any significant 

restoration benefits. Moreover, the farmer gets a tax break strictly for the income obtained from 

springbuck ranching – as enticement into springbuck ranching. In scenarios two (WS YI SF) and 

three (WL YI SF), respectively, the farmer progressively increases the amount of land allocated 

to springbuck ranching, which sees the farmer accessing the restoration subsidy – which is paid 

on a per hectare basis of land reserved for springbuck ranching. A restoration subsidy of R 

13/ha was carefully calculated and used for this study. The results show that the incentives do 

not have a significant effect on the structure of the net cash income, ending cash balances, net 

worth and NPV of the ranch. They, however, play a significant role in influencing the long-term 

behaviour of economic agents in the local market and the principal decision makers in the 

rangelands. For example, because of the introduction of a tax break the ranchers are stimulated 

to reduce the population of sheep on their farms. In the long-run, however, this depresses the 

local price of mutton and the wholesale price of springbuck as more and more wool sheep are 

culled at the end of the year to allow for more springbuck on the ranch, but simultaneously 

increases the price of wool, as a result of a decline in wool sheep shorn.  

5.3.2.1 Net Income 

Figure 5.10 presents the results for the estimated average yearly net cash incomes for all 

the scenarios in cohort two. The results follow the same direction as those of the cohort one 

scenarios. In 2011, the WS YI SF scenario returned the highest net income, followed by the 

WL YI SF scenario. However, unlike in the cohort one scenarios, the WL YI SF scenario 

overtook the WS YI SF scenario in 2013, such that by 2016, it was the leading ecological 

economic system in terms of net incomes. This was because of high subsidies, given the high 

number of springbuck harvested on this scenario throughout the year. The WLS YI SF scenario 

returned the lowest net income throughout the planning horizon. This was expected, as this 

scenario did not receive the restoration subsidy unlike the other two scenarios. The net incomes 

                                                

34 Essentially, as already been argued in the preceding paragraphs, the springbuck share the rangeland with the sheep, 
since they move everywhere on the ranch.  
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were decreasing throughout the planning horizon because of high costs of production, which 

were equally increasing in the planning horizon. However, they were generally higher than the 

cohort one scenarios, elucidating the influence of the restoration subsidy and the tax abatements 

on the net income of the farm.   

 
Figure 5.10: Estimated average yearly Net Cash Income for a 5 000ha farm in Graaff-
Reinet, producing wool as a premier economic activity with incentives.  
 See Table 5.2 for a detailed explanation of acronyms.  

 

The WS YI SF and WL YI SF scenario returned relatively higher net income than the 

WLS YI SF scenario. Income earned from the springbuck enterprise via the restoration subsidy 

and tax reduction likewise increased the average net cash income for scenarios two and three. 

However, at the same time, for the WLS YI SF scenario, the high price of wool was unable to 

improve the average net cash income. This can be attributed to rather high production costs in 

sheep farming such as costs for supplementary feeding – which were equally increasing - and 

overshadowed any benefits that the lucrative prices in the wool market, may have had. This is 

unlike the WL YI SF scenario, which, whilst it experienced high production costs for winter-

feeding and labour, the income sourced from springbuck ranching including the incentives 

accorded the rancher made the net income increase progressively towards the end of the 

planning horizon, demonstrating the influence of springbuck meat production on farm 

profitability. Table B5 of appendix B shows the mean, standard deviation, CV, minimum and 

maximum values for the net cash incomes for the three scenarios. 

In 2011 up until 2013, the WS YI SF and WL YI SF scenarios returned a net income 

above R200 thousand. However, for the WLS YI SF scenario, the net cash income was smallest, 

and continued in this trajectory throughout the planning horizon. This was because of high 

initial costs of feeding, and generally increasing costs of production in sheep farming throughout 

the planning horizon. The net income for the WLS YI SF, WS YI SF and WL YI SF was R156 

thousand, R214 thousand and R213 thousand in 2011, respectively.  In 2013, the net income 

obtained from scenario WL YI SF was R161 thousand, and gradually decreased to R106 
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thousand in 2025. The WLS NI SF scenario reached R57 thousand in 2017, whereas WS YI SF 

followed the same trajectory as the WL YI SF scenario, and was at R52 thousand in 2025. Like 

in the cohort one scenarios, the WL YI SF scenario yielded higher incomes throughout the 

planning horizon. This is because, as the farmer increases the amount set aside for springbuck 

ranching, the amount of income obtained from the springbuck enterprise offsets some of the 

costs from the sheep enterprise, thus leaving the farmer better off than in the other scenarios 

where is investment in springbuck ranching is substantially lower.  

The range and risk for the simulated net cash income for the cohort two scenarios is 

presented on Figure 5.11. A quick comparison between the range and risk of the simulated net 

cash income for the cohort one scenarios and the cohort two scenarios reveals some differences 

between the two. For example, in 2011 and 2025 the 50th percentile income range for the 

WLS YI SF falls between R74 thousand and R43 thousand, respectively. However, for the WS 

YI SF and WL YI SF, there is a significant difference. The average cash income ranges between 

R120 thousand to R50 thousand and R109 thousand and R74 thousand between 2011 and 2025, 

respectively. No scenario shows a probability of yielding negative net cash incomes, as expected 

since incentives also improve the income structure of the springbuck ranching, and thus of all 

the enterprises where springbuck meat is produced. In 2011, 90 percent of the simulated net 

cash income values fell between R2 thousand and R181 thousand, R2 thousand and R350 

thousand, and R4 thousand to R311 thousand for the WLS YI SF, WS YI SF and WL YI SF 

scenarios, respectively. In 2025, it decreased to R1 thousand and R128 thousand, R3 thousand 

and R137 thousand, and R4 thousand and R183 thousand, for the WLS YI SF, WS YI SF and 

WL YI SF scenarios, respectively. The variability of the range of income gradually grew from 

2011 to 2015, for all the scenarios. Moreover, for the WL YI SF scenario, the CV shows 

constant variability between the average net cash incomes in the different percentiles, as shown 

in Table B5 of appendix B.    
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Figure 5.11: Estimated average yearly Net Income Risk for a 5 000ha Farm in Graaff-
Reinet, producing wool sheep as a premier ecological -economic activity with incentives.  
 See Table 5.2 for a detailed explanation of acronyms.  

5.3.2.2 Ending Cash Balance 

The estimated yearly ending cash balance for all the scenarios in cohort two are 

presented in Figure 5.12, whereas Table B6 of appendix B presents the mean, standard 

deviation, CV, minimum and maximum values for the net cash incomes for the three scenarios. 

Figure 5.12 shows that the ending cash balances for all the cohort two scenarios. For the WLS 

YI SF and WS YI SF scenario start positive but decrease such that they become negative in 

subsequent years of the planning period. In 2011, the WL YI SF scenario had the highest ending 

net cash balance, followed by WS YI SF and WLS YI SF, respectively. The ending cash balance 

for all the scenarios decrease steadily from 2011 through to 2025, such that it they are lowest in 

2025.  

Figure 5.12: Estimated average yearly Net Ending Cash Balance for a 5  000ha farm in 
Graaff-Reinet, producing wool sheep as a premier economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms.  
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The estimated ECBs for WLS YI SF, WS YI SF and WL YI SF is R257 thousand, R282 

thousand and R328 thousand in 2011, respectively. For the WL YI SF scenario, the ending cash 

balance decreases to R202 thousand in 2019, where after it gradually declines to R90 thousand in 

2025. The decrease in ending cash balance is partially attributable to an increase in production 

costs, which decreases the total amount of income available at bank to fetch interest. Likewise, 

the ending cash balances for the WLS YI SF and WS YI SF scenarios were decreasing 

throughout the planning period. In 2025, the ending cash balance at bank for the WS YI SF 

scenario was R58 thousand, whereas the WLS NI SF scenario returned an ending cash balance 

of R50 thousand, in the same year. The ending cash balance for the WLS YI SF and WS YI SF 

were decreasing, respectively, because of the high need to provide for increasing production 

costs during the planning horizon.  

The range and risk for the estimated ending cash balances for all the scenarios in this 

cohort are presented in Figure 5.13. The ending cash balance for the WLS YI SF scenario is 

similar to that of the WLS NI SF scenario in cohort 1 and depicts an increasing risk over the 

planning horizon. The range and risk for scenarios WLS YI SF and WS YI SF decreases 

throughout the planning horizon and is quite similar to the fan graphs for the similar scenarios 

in cohort 1. The variability around the mean for the WLS YI SF and WS YI SF scenarios 

respectively is highest in the first five years of the planning horizon. After 2015, the CV 

decreases gradually from 2016 to 2025. For WLS YI SF, 90% of the simulated year on year 

ending cash balances is between R3 thousand and R312 thousand and R4 thousand and R84 

thousand in 2011 and 2025, respectively. For WS YI SF and WL YI SF, 90% of the simulated 

year on year ending cash balances are between R8 thousand and R329 thousand and R7 

thousand and R400 thousand, in 2011 respectively, whereas they were between R2 thousand and 

R119 thousand and R15 thousand and R126 thousand respectively, in 2025. The WL YI SF has 

the largest variability amongst the three scenarios throughout the planning horizon, with a CV 

of 52% and 42.9% in 2011 and 2025, respectively. 
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Figure 5.13: Estimated average yearly Net Ending Cash Balance risk for a 5  000ha 
Farm in Graaff-Reinet, producing wool sheep as a premier ecological -economic activity 
with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

5.3.2.3 Real Net Worth 

The real net worth for the cohort two scenarios is presented on Figure 5.14. Table B7 in 

appendix B also presents a complete picture of the mean, standard deviation, CV, minimum and 

maximum values for the real net worth. In 2011, owing to high initial cash at hand, the 

WLS YI SF and WL YI SF scenarios’ real net worth was R1.217 million and R1.309 million, 

respectively, while that of WLS YI SF stood at R1.400 million, in the same year. The real net 

worth was R0.587 million, R0.772 million and R0.883 million for WLS YI SF, WS YI SF and 

WL YI SF, respectively, in 2025. 

Figure 5.14: Estimated yearly real net worth for a 5 000ha Farm producing wool sheep 
as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

The year on year average real net worth was different for the scenarios in cohort two 

when compared to those in cohort one. Like in the cohort one scenarios, the real net worth in 
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this scenario started at a higher value and started to decrease after 2013, because of the effect of 

the deflation factor. Furthermore, the real net worth for all the scenarios in cohort three was 

comparatively higher than the real net worth of the scenarios in cohort one and two. 

Notwithstanding and like in cohort one, scenario WL YI SF returned the highest real net worth 

and it was followed by scenario WS YI SF whilst WLS YI SF returned the lowest real net worth 

in the cohort two scenarios.  The WLS YI SF scenario has the highest variability around the 

mean throughout the planning horizon, followed by the WL YI SF scenario, as shown by the 

CV in table B7 of the Appendix.  

To confirm this, the results of the fan graphs as shown in Figure 5.15 come in handy. 

The graphs show the range and risk of the simulated year on year real net worth risk for all the 

cohort two scenarios. As already been alluded to in the preceding paragraphs, the estimated real 

net worth for all the scenarios is positive and decreases gradually from 2011 to 2025. For WLS 

YI SF and WS YI SF, the real net worth starts out high at R1.672 million and R2.583 million for 

the 95th percentile, respectively. In 2025, 90 percent of the simulated real net worth for scenarios 

WLS YI SF, WS YI SF and WL YI SF was between R20 thousand and R1.663 million, R14 

thousand and R1.413 million, and R21 thousand and R1.769 million, respectively. For all the 

scenarios, there is a zero percent chance that the real net worth will be negative throughout the 

planning horizon.  

Figure 5.15: Estimated yearly real net worth risk for a 5 000ha Farm producing wool 
sheep as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
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5.3.2.4 Net Present Value 

The CDF graph of NPV for a 5 000ha wool sheep, mutton and springbuck farm 

producing wool as the premier product of focus with incentives is presented on Figure 5.16, 

whilst Table B8 in the appendix gives the mean, standard deviation, CV, minimum and 

maximum values for the NPV. The graph shows that scenarios WLS- and WL YI SF have a 

70% and 31.9% chance of returning a negative NPV, respectively, whilst the likelihood that 

scenario WS YI SF would return a negative NPV anytime during the planning horizon is 17.5%. 

The estimated average NPVs for WLS-, WS- and WL YI SF are (R101) thousand, R137 

thousand, and R63 thousand, respectively. Interestingly is that a comparative analysis of the 

NPVs of the cohort one and cohort two scenarios reveal that, even though the cohort two 

scenarios received incentives for the springbuck enterprises, some cohort one scenarios 

managed to return higher incomes when compared to their cohort two counterparts, except for 

the WL YI SF scenario. This scenario produced a higher NPV with a comparatively low 

probability of being negative than the other two scenarios in this cohort and its cohort one 

equivalent. This was anticipated given the influence of the tax reductions and the restoration 

subsidy on the income structure of the springbuck ranching enterprises. Moreover, as in the 

cohort one scenarios, the WL YI SF scenario shown by a blue-dashed line on Figure 5.17, 

returned the highest NPV in contrast to the WLS YI SF and WS YI SF scenarios, respectively.  

 

 
Figure 5.16: Cumulative density functions graph of net present value for a 5  000ha 
Farm producing wool sheep as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

Interestingly, however, is that the results reveal that the incentives did not make any 

significant increase on the NPVs for the cohort two scenarios in relation to their cohort one 

counterparts. The WL YI SF, like the WL NI SF scenario in cohort one, returned the highest 
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NPV. Secondly, there were no great differences between the NPVs of the scenarios, suggesting 

that including incentives on the sheep dominated scenarios might not influence the profitability 

of farm businesses in the area. However, since the CDF graphs for the NPV are touching on the 

tails, it is hard to isolate the most dominated scenario with certainty. 

Using the SERF analysis, the alternative scenarios can be ranked from the most preferred 

to least preferred across a range of risk aversion coefficients. The results of the SERF analysis 

demonstrate that the WL YI SF scenario is the most widely preferred scenario amongst the 

three. In fact, there is a slight difference in utility between the WL NI SF scenario and the 

WL YI SF scenario. Moreover, it also displays that the WS YI SF scenario is the next most 

preferred whilst WLS YI SF is the least preferred amongst the three, as shown by the CE lines 

on Figure 5.17. The WLS YI SF scenario had a negative CE throughout the range of absolute 

risk aversion coefficients calculated in this study, demonstrating the insignificance of the income 

from springbuck ranching in improving the profitability of the farm when springbuck ranching 

is about 10% of the land, given the assumption made on the land use ratios. Certainly, this 

shows that farmers are better off not investing on this scenario. 

 
Figure 5.17: Stochastic Efficiency with Respect to a Function graph of net  present 
value for a 5 000ha Farm producing wool sheep as a premier ecological -economic 
activity with incentives. 
See Table 5.2 for a detailed explanation of acronyms. 

 

Moreover, unlike in the SERF analysis results for the cohort one scenarios, in the cohort 

two scenarios, the WS YI SF scenario returned positive CE values across the range of absolute 

risk aversion coefficients, further illustrating the effects that incentives might have on increasing 

expected utility. In conclusion, it is clear that decision makers prefer the WL YI SF scenario 

followed by the WS YI SF scenario across the range of absolute risk aversion coefficients, as 

shown in Figure 5.17. This is an expected result considering that the WL YI SF and WS YI SF 

scenarios received more income in the form of tax cuts and the restoration subsidy. Table 5.4 
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shows the calculated risk premiums for the different absolute risk aversion coefficients for risk 

neutral (ARAC zero), moderately risk averse (ARAC 0.0000125) and risk averse (ARAC 

0.000025) decision makers. To facilitate the calculation and comparison of the risk premiums, 

the study used the WL YI SF scenario, as it was the most preferred on the SERF analysis.  

Table 5.4: Risk Premiums for a 5 000ha Farm producing wool sheep as a premier 
ecological-economic activity with incentives.  
 Risk Neutral Moderately Risk Averse Risk Averse 

R 

WLS YI SF  (279, 670.67) (273, 718.74)   (268, 307.41) 

WS YI SF (114, 742.58) (109,099.86) (104, 204.38) 

WL YI SF - - - 

See Table 5.2 for a detailed explanation of acronyms. 

The results confirm that the WL YI SF scenario is favoured over the WLS YI SF and WS 

YI SF scenarios, respectively, with high-risk premiums. For example, for risk neutral decision 

makers to convert from the preferred WL YI SF scenario and be indifferent between it and the 

WLS YI SF and or WS YI SF scenarios, they would have to be paid R279 670.67 and 

R114 742.58, respectively. Similarly, moderately risk averse decision makers would have to be 

paid R273 718.74 and R109 099.86 to be indifferent between the preferred WL YI SF scenario 

and the WLS YI SF and WS YI SF scenarios, respectively. For risk averse decision makers to be 

indifferent between the preferred WS YI SF scenario and the WLS YI SF and WL YI SF 

scenarios, they would have to be paid R268 307.41 and R104 204.38, respectively. Remarkably is 

that, unlike in the cohort one scenarios, the WS YI SF scenario has lesser risk premiums than 

the WLS YI SF scenario, exemplifying the impact of subsidies on the springbuck ranching 

enterprise. These premiums decrease as one moves from risk neutral decision makers to risk 

averse decision makers. 

These results demonstrate that a 70% wool and 30% springbuck ranching (WL YI SF) 

for meat production scenario is the most preferred enterprise mix over the 7:2:1 wool, mutton 

and springbuck (WLS YI SF) and 5:2:3 wool and springbuck (WS YI SR) with sheep farming as 

the key ecological-economic system, respectively. The results further illustrate that such a 

scenario is preferred with bigger risk premiums over the other alternatives. Based on this 

finding, the conclusion that incorporating springbuck ranching into an existing 5 000ha sheep 

farm can be profitable is made. However, the results also reveal that such profitability can be 
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highly improved by the introduction of incentives. Secondly, the net cash incomes from this 

scenario were decreasing throughout the planning horizon, suggesting that even though 

springbuck ranching would return some extra income to the rancher, the need to provide 

supplementary feeding for the sheep especially during winter, over and above other variable 

costs could, in the long-term, affect farm profitability.   

5.3.3 Simulation Results for Cohort Three Scenarios  

The objective of the scenarios in this cohort was to explore the profitability of 

converting a 5 000ha sheep farm into a springbuck dominated ranch with springbuck ranching 

for meat production as the premier ecological-economic system, with no incentives, in Graaff-

Reinet. In this cohort, the principal decision maker explores the profitability of the 5 000ha farm 

under three utilisation scenarios, namely: 7:2:1, 5:3:2 and 7:3 springbuck, mutton and wool 

(SLW NI SR); springbuck, mutton and wool (SW NI SR); and springbuck and wool (SL NI SR), 

respectively – as shown in Table 5.2. In this cohort, the assumption made was that the rancher 

invests substantially in boundary fences, and keeps sheep only as a small portion of the ranching 

enterprise, as depicted by the land ratios. Incomes from this cohort come from the sales of 

springbuck meat, as well as wool and mutton. This section reports and discusses the results of 

the KOVs for the various alternatives.  

5.3.3.1 Net Cash Income 

The estimated yearly net cash incomes for the cohort three scenarios are as shown in 

Figure 5.18. The graph shows how each scenario performs in thousands of rands, throughout 

the 15-year planning horizon. In the Appendix, Table B9 presents the mean, standard deviation, 

CV, minimum, and maximum values for the net cash income. In general, all the scenarios 

returned an income above R100 thousand throughout the planning horizon. In 2011, the SLW 

NI SR scenario returned the highest net income, followed by the SW NI SR and SL NI SR 

scenarios, respectively. The reason for this were the low production costs incurred in the SLW 

NI SR scenario, whereas for the SL NI SR scenario, it was because of high winter-feeding costs 

in the wool sheep enterprise. The SLW NI SR scenario returned a net cash of R155 thousand in 

2011. This figure grew to R362 thousand, in 2025. Unlike in the cohort one scenarios, the net 



Chapter 5 Empirical Results 

132 
 

cash income for the SL NI SR scenario were generally decreasing owing to high costs of winter 

feeding in the sheep enterprise which reduced the net cash income earned to R39 thousand in 

2025. For the SW NI SR and SL NI SR scenarios, the estimated yearly net cash income was 

R144 thousand and R117 thousand in 2011, respectively. It grew to R179 thousand in 2019 for 

SW NI SR, whereas for SL NI SR it decreased to R88 thousand, in the same year.  

Figure 5.18: Estimated yearly net cash income for a 5 000ha Farm producing venison 
as a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

In 2025, the SL NI SR scenario had the lowest net cash income amongst the three 

scenarios. This suggests that a 70% springbuck ranching enterprise might not blend well with a 

30% wool sheep enterprise because of the high costs of feeding. Based on the net cash income, 

decision makers may earn higher net income returns if they combine 70% springbuck ranching 

for meat production with 20% mutton production and 10% wool on a 5 000ha farm.  

Figure 5.19: Estimated yearly net cash income risk for a 5 000ha Farm producing 
venison as a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
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The results of the range and risk of the simulated estimated yearly net cash income, as 

shown by the fan graph in Figure 5.19 expound the cohort three net incomes further. For 

scenario one (SLW NI SR), the range and risk is largest in 2011 through to 2025. The coefficient 

of variability also shows that the simulated probable yearly net cash incomes for this scenario 

grows from 23.57 percent in 2011 to 40.01 percent, in 2025. The probability of returning a 

negative net income is zero in the first 13 years of the planning horizon and there is a 0.4 

percent chance that the returns will be negative in the last 2 years. For SW NI SR, a 3 percent 

chance that the net cash income will be negative in 2024 and 2025 exists, whereas the likelihood 

that the simulated yearly net income would be negative in the SL NI SR scenario grows from 2 

percent in 2016 to 37 percent in 2025. The negative net cash income was because of growing 

supplementary feeding costs for the wool sheep and mutton enterprises, but also because of the 

falling springbuck meat/venison and mutton prices, as captured by the mutton and venison 

wedge, which compromised the net income from the springbuck enterprise.  

In 2011, 90 percent of the simulated estimated yearly net cash income for SLW NI SR, 

SW NI SR, and SL NI SR were between R23 thousand and R292 thousand, R23 thousand and R 

299 thousand and R29 thousand and R214 thousand, respectively. The SL NI SR had the 

thinnest range amongst the three scenarios in 2011. The SLW NI SR scenario had the largest 

range in 2025, followed by the SW NI SR and SL NI SR scenarios, respectively. Ninety percent 

of the simulated yearly net cash income was between (R8) thousand and R775 thousand, (R69) 

thousand and R640 thousand and (R189) thousand and R316 thousand for the SLW NI SR, SW 

NI SR, and SL NI SR scenarios in 2025, respectively.  The SLW NI SR and SW NI SR scenarios 

had a 50% chance that their net cash income would be greater than R100 thousand throughout 

the entire planning horizon, whereas the SL NI SR scenario had a 50% chance that it would 

yield a net cash income between R50 thousand and R80 thousand throughout the entire 

planning horizon. The probability that the SLW NI SR, SW NI SR and SL NI SR would be 

negative in 2025 was 0.2%, 2.4% and 36.7%, respectively. The high probability of yielding a 

negative net cash income in scenario three suggest that the combination of 30% wool sheep 

farming and 70% springbuck ranching might not necessarily be a profitable and wise enterprise 

mix.  
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5.3.3.2 Ending Cash Balance 

Figure 5.20 presents the simulated estimated ending cash balances for the cohort three 

scenarios, whilst Table B10 in appendix B, presents the mean, standard deviation, CV, minimum 

and maximum values for the ending cash balance. The graph shows that the ending cash balance 

is positive and increases every year of the planning horizon, albeit with varying magnitude. The 

estimated ending cash balances for all the cohort three scenarios started low in 2011, with 

SL NI SR having the smallest ECB amongst the three. In 2011, for example, the SL NI SR 

scenario had an ECB of R262 thousand, followed by the SW NI SR scenario with an ECB of 

R276 thousand. The SLW YI SR had the largest ECB of R279 thousand, in the same year. 

Except for SL NI SR – owing to high supplementary feeding costs in the wool sheep enterprise 

– the SLW NI SR and SW NI SR scenarios yielded ECBs which were increasing throughout the 

planning horizon to R3.223 million and R2.27 million, respectively in 2025.  

Figure 5.20: Estimated yearly ending cash balance for a 5 000ha Farm in producing 
venison as a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

A direct comparison of the cohort three ECBs with the cohort one and two ECBs reveal 

that the cohort three scenarios returned higher ECBs from 2012 of the planning horizon, to the 

end. Unlike the cohort one ending cash balances, for example, the ECB of the cohort three 

scenarios were increasing throughout the planning horizon. This is despite that in this cohort 

(cohort three) the scenarios showed a higher chance of returning negative net cash incomes. 

Similarly, cohort three scenarios received no incentives, whilst in cohort two they are present. 

This is somewhat an unexpected result given that the price of venison is not as attractive as that 

of mutton or wool throughout the planning horizon. However, if one considers the cost of 

production between the two cohorts, it becomes apparent that because of the low variable costs 

in springbuck ranching more money is left at the bank to accumulate interest; hence, the higher 

ending cash balances. 
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Figure 5.21: Estimated yearly ending cash balance risk for a 5 000ha Farm producing 
venison as a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

Figure 5.21 concludes the analysis of the ECBs. This figure presents synopsis of the 

range and risk of the estimated yearly net ending cash balances for the three alternative 

scenarios, in cohort three. All the scenarios have a zero probability of returning a negative ECB 

at any point of the planning horizon. Of the simulated estimated yearly ending cash balances, 90 

percent of them were between R27 thousand and R4.168 million, R28 thousand and R3.156 

million and R800 and R1.405 million for SLW NI SR, SW NI SR and SL NI SR, respectively, in 

2025. The SL NI SR scenario had the lowest estimated yearly ECBs, an anticipated result given 

the high amount of variable feed costs, in the sheep enterprise. The ECBs shows increasing 

variability towards the end of the planning horizon, suggesting an increase in risk level because 

of compounding of risk from net cash income in each year. 

5.3.3.3 Real Net Worth 

The real net worth for the cohort three scenarios is presented on Figure 5. 22, whilst the 

mean, standard deviation, coefficient of variation, minimum and maximum values for the real 

net worth are presented in Table B11 of appendix B. Figure 5.21 shows that the estimated 

average real net worth decreases from 2011 to 2025, with SW NI SR and SL NI SR having the 

lowest real net worth in 2025, respectively. The real net worth decreases due to the deflating 
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factor and the costs of borrowing, which decreases the income as the year progresses. In 2011, 

SLW NI SR, SW NI SR and SL NI SR had a real net worth of R1.010 million, R1.043 million 

and R1.073 million, respectively. For the SLW NI SR scenario, the real net worth was R721 

thousand, in 2025.  

Figure 5.22: Estimated yearly real net worth for a 5 000ha Farm producing venison as 
a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

The SW NI SR and SL NI SR scenarios returned a real net worth of R 360 thousand and 

R198 thousand, respectively, in 2025. Clearly, the real net worth was smallest in the SL NI SR 

scenario. The fan graph for the real net worth as presented in Figure 5.23 illustrates that the 

range and risk of the simulated average real net worth was increasing for the SLW NI SR 

scenario whilst for SW NI SR and SL NI SR scenarios it was more or less constant throughout 

the planning horizon. Ninety percent of the simulated average real net worth was between R 13 

thousand and R 1.280 million for the SLW NI SR scenario, in 2011. The SW NI SR and  SL NI 

SR scenario had 90 percent of the simulated real net worth falling between R8 thousand and 

R1.310 million and R11 thousand and R1.412 million, respectively in 2011. The SL NI SR 

scenario had the thinnest range in 2025, followed by the SW NI SR scenario. In the same year, 

the SLW NI SR scenario had the largest range and risk of simulated real net worth. In 2025, 90 

percent of the simulated real net worth was between R60 thousand and R3.825 million, R29 

thousand and R2.035 million, and R22 thousand and R1.532 million for SLW NI SR, SW NI SR 

and SL NI SR, respectively.  
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Figure 5.23: Estimated yearly real net worth risk for a 5 000ha Farm producing 
venison as a premier ecological-economic activity without incentives.  
See Table 5.2 for a detailed explanation of acronyms 

5.3.3.4 Net Present Value 

The CDF graphs for the NPVs of the 5000 ha farm producing springbuck; mutton and 

wool with springbuck as the premier ecological-economic system, without incentives are as 

presented in Figure 5.24. In appendix B, Table B12 contains all the summary statistics for the 

mean, standard deviation, coefficient of variation, and minimum and maximum values for the 

NPV. From the CDF graph, it is clear that the SL NI SR scenario has a 0.3 percent chance of 

returning a negative NPV, whilst SLW NI SR and SW NI SR have a zero percent chance of 

returning a negative NPV throughout the planning horizon. The NPV for the SLW NI SR 

scenario is R505 thousand, whilst that of the SW NI SR and SL NI SR scenarios is R489 

thousand and R436 thousand, respectively. The CDF graphs further show that the NPV for 

SLW NI SR - shown by a black solid line - is greater than that of SW NI SR (dashed red line) 

and SL NI SR (dotted blue line), respectively. The NPVs for the cohort three scenarios are 

actually greater than the NPVs of their cohort one and two counterparts. This is expected as the 

cohort three scenarios have lower production costs relative to the cohort one and two scenarios, 

leaving the rancher with more money that accumulated interest in the bank. 
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Figure 5.24: Cumulative density functions graph of net present value for a 5  000ha 
farm producing venison as the premier product of focus without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

It is, however, difficult to tell for sure which of the cohort three scenarios is most 

preferred by decision makers since the CDF graphs for the NPVs cross each other in the tails, 

giving the impression that decision makers would be indifferent amongst the three.  

Figure 5.25: Stochastic Efficiency with Respect to a Function graph of net present 
value for a 5 000ha farm producing venison as the premier product of focus without 
incentives. 
See Table 5.2 for a detailed explanation of acronyms. 

 

To resolve this, a SERF analysis of the cohort three NPVs was performed as shown on 

Figure 5.25. The SERF graph shows that decision makers prefer different scenarios between 

SLW NI SR (solid black line) and SW NI SR (dashed red line) across a range of absolute risk 

aversion factors, whilst SW NI SR is the least preferred scenario amongst the three. The CE 

lines for the SLW NI SR and SL NI SR scenarios, which cross once, demonstrate this. For risk 

neutral decision makers (ARAC of 0.0), the SL NI SR scenario is preferred whereas moderately 

risk averse (ARAC of 0.0000125) decision makers are somewhat indifferent between the two 

scenarios. Risk averse decision makers (ARAC of 0.000025) prefer the SW NI SR scenario.  

Table 5.5 shows the risk premiums for a 5 000ha Farm in Graaff-Reinet, producing 

SLW, SW, and SL with springbuck ranching as a premier ecological-economic activity without 

incentives, using the SLW NI SR scenario as the base. Not surprisingly, the risk premiums for 

SW NI SR are almost close to zero for moderately risk averse decision makers, whilst for risk 
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averse decision makers they are positive and greater than one. This confirms the finding that for 

risk averse decision makers, SW NI SR is preferred as illustrated by the positive risk premium. 

Moreover, in general, the results on Table 5.5 also confirm that the SLW NI SR scenario is 

preferred over the other two scenarios except for risk averse decision makers who prefer 

scenario SW NI SR. 

Table 5.5:  Risk Premiums for a 5 000ha Farm producing venison as a premier 
ecological-economic activity without incentives.  
 Risk Neutral Moderately Risk Averse Risk Averse 

R 

SLW NI SR - - - 

SW NI SR (15,466.90) - 22,373.38 

SL NI SR (68,063.20) (76,528.70) (73,191.90) 

See Table 5.2 for a detailed explanation of acronyms. 

For risk neutral decision makers the risk premiums are lower at R15 466.90 and R68 

063.20 for SW NI SR and SL NI SR, respectively. An interesting observation is that risk averse 

decision makers would have to lose or forego R22 373.38 to be indifferent between the 

preferred SLW NI SR scenario and the SW NI SR, whereas they would have to be paid 

R73 191.90 to be indifferent between the SLW NI SR scenario and the SL NI SR scenario. The 

reason for this is that for decision makers who are risk neutral, the SLW NI SR scenario is 

mostly preferred, whereas on for risk averse decision makers the SW NI SR scenario is 

preferred. Generally, these results suggest that decision makers are more-or-less indifferent 

between the SLW NI SR and the SW NI SR scenario, given that the risk premiums between the 

two are low. 

5.3.4 Simulation Results for Cohort Four Scenarios 

The objective of this scenario was to explore the effect of tax abatements and a 

restoration subsidy on the profitability of the cohort 3 scenarios. The incentives changed the net 

cash income, ending cash balance, real net worth and NPV of the cohort three scenarios. As in 

the cohort three scenarios, an assumption that the rancher invests substantially on boundary 

fences, is made. This section reports the results of the KOVs. 
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5.3.4.1 Net Cash Income 

The net cash incomes are as shown in Figure 5.26, whereas Table B13 of Appendix B 

presents a detailed presentation of the mean, standard deviation, coefficient of variation, 

minimum and maximum net cash income values. The results show that the net income in the 

various scenarios pretty much follow the same trend as those in cohort three, but with varying 

magnitudes. In 2011, the net cash income was R200 thousand, R177 thousand and R163 

thousand, for the SLW-, SW-, and SL YI SR scenarios, respectively. The net income for the 

SL NI SR scenario was decreasing throughout the entire planning horizon.  

 
Figure 5.26: Estimated yearly net cash income for a 5 000ha Farm, producing venison 
as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

In 2025, the SLW YI SR scenario had the highest net cash income, followed the SW- and 

SL YI SR scenarios, respectively. The net cash income was R315 thousand, R227 thousand and 

R39 thousand in the three scenarios, respectively, in 2025. The reason for the drop in net cash 

income for the SL YI SR was expected. This was because the incentives induced more farmers 

to convert to springbuck ranching, which subsequently decreased the price of venison thus 

influencing the net cash income negatively. Also important is that there was no income coming 

from the mutton enterprise, because of the realistic assumption that the farmer focused on wool 

production and springbuck ranching only. Likewise, high winter-feeding costs in the sheep 

enterprise in this scenario were responsible for the drop in net cash income in the same period.  

A comparison of the cohort four scenarios and the cohort one reveal that the cohort four 

scenarios returned a relatively higher net cash income than their cohort one counterparts, except 

for the SL YI SR scenario which failed to return attractive incomes beyond 2020.  
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Figure 5.27: Estimated yearly net cash income risk for 5 000ha Farm producing 
venison as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

The range and risk of the simulated estimated yearly net cash income is shown in Figure 

5.27 and is largest in the SW NI SR scenario, whilst the SL NI SR scenario produced the 

thinnest range and risk, amongst the three scenarios in cohort four. In 2011, 90 % of the 

simulated estimated average net income for the SLW-, SW-, and SL YI SR scenarios was 

between R7 hundred and R 310 thousand, R 5 thousand and R251 thousand and R5 thousand 

and R240 thousand, respectively. The probability that the net income will be negative occurs 

after the first 10 years of the simulation period. In 2011, the SLW YI SR scenario had a 0.8% 

chance of returning a negative net income and this probability increases gradually to 2.2% in 

2024. For the SW- and SL YI SR scenarios, the probability that the estimated net cash income 

will be negative is 1% and 1.8% in 2019 and 2.6% and 38.4 % and 2025, respectively.  

 

5.3.4.2 Ending Cash Balance 

The ending cash balances for the cohort four scenarios are as shown in Figure 5.28. 

Scenario SLW YI SR returned the highest ending cash balances throughout the planning 
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horizon. In all the scenarios, the ending cash balances are increasing, an expected result given 

the influence of interest earned on cash on the total ending cash balances.  

Figure 5.28: Estimated yearly ending cash balance for a 5 000ha Farm producing 
venison as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

In the appendix, Table B14 provides the mean, standard deviation, coefficient of 

variation, minimum and maximum values for the estimated yearly ending cash balances. The 

estimated ending cash balances were R3.811 million, R2.848 and R1.045 million for the SLW-, 

SW-, SL YI SR scenarios, respectively in 2025. The SLW YI SR scenario’s ending cash balance 

was highest amongst the three scenarios illustrating the financial proficiency of springbuck 

ranching when incentives enter the equation. The difference between the ending cash balances 

for the SLW- and SL YI SR was above R2 million, a result that can be attributed to the effect of 

both incentives and interest on cash as being responsible for this wide margin. In scenario one 

the influence of mutton enterprise on the ranch is quite significant, whereas in scenario three 

money earned from the springbuck enterprise is further used to settle the costs of the wool 

sheep enterprise. 
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Figure 5.29: Estimated yearly ending cash balance risk for a 5  000ha Farm producing 
venison as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

Figure 5.29 reports the fan graphs of the range and risk of the ending cash balances for 

the cohort four scenarios. The results show that there is a zero probability that any of the 

scenarios in cohort four would return a negative estimated ending cash balance at any time in 

the planning horizon. As expected, the SLW YI SR scenario had the largest ending cash balance 

range, whilst the SL YI SR scenario had the smallest. Of the simulated estimated ending cash 

balances, 90% were between R 5 thousand and R443 thousand, R5 thousand and R397 thousand 

and R7 hundred and R 307 thousand in SLW-, SW-, and SL YI SR scenarios in 2011, 

respectively. In 2025, however, 90% of the simulated estimated ending cash balances were 

between R55 thousand and R4.710 million, R43 thousand and R3.571 million and R4.5 

thousand and R1.033 million, for the three scenarios respectively.  

5.3.4.3 Real Net Worth 

The estimated real net worth is shown in Figure 5.30, whilst the mean, standard 

deviation, coefficient of variation, minimum and maximum real worth values are shown in Table 

B15 of Appendix B. Throughout the planning horizon, the real net worth for all the three 

scenarios was increasing and above the one million mark. In 2011, the real net worth for the 

SLW YI SR scenario was the smallest at R1.079 million, whilst the SL YI SR had the highest real 

net worth with an average of R1.153 million, in the same year. This is an interesting result since 
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a further analysis of the real net worth reveals that the real net worth for scenario three becomes 

less superior in 2015. 

Figure 5.30: Estimated yearly real net worth for a 5 000ha Farm producing venison as 
a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

The real net worth rises from R1.075 million in 2010 to R5.107 million in 2025 for the 

SLW YI SR scenario. In the SW- and SL YI SR scenarios, the real net worth increases from 

R1.125 million and R1.153 million in 2011 to R4.091 million and R2.224 million, in 2025 

respectively. The average real net worth for the SW YI SR scenarios rises from R1.125 million in 

2011 to R4.091 million in 2025, whereas the average real net worth for the SLW YI SR scenario 

was R5.107 million, in the same year.  

Figure 5.31: Estimated yearly real net worth risk for a 5  000ha Farm producing 
venison as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 
 

The range and risk of the simulated real net worth for all the cohort four scenarios are 

presented on Figure 5.31. The real net worth is estimated to be positive throughout the planning 
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horizon. There is a zero percent likelihood that the real net worth would become negative at any 

point in the planning horizon, whilst the real net worth’s range and risk increases for all the 

scenarios from 2011 to 2025. For the SLW-, SW-, and SL YI SR scenarios, 90% of the simulated 

real net worth are between R81 thousand and R6.554 million, R69 thousand and R5.398 million 

and R57 thousand and R3.217 million, respectively in 2025.  

5.3.4.4 Net Present Value 

In Figure 5.32, the CDF graphs for the net present value for all the scenarios in cohort 

four, are presented. Table B16 of Appendix B shows the mean, standard deviation, coefficient 

of variation, minimum and maximum NPVs values for the cohort four scenarios. Unlike the 

NPVs for the cohort one and two scenarios, all the NPVs of the cohort two scenarios are 

positive and greater than R200 thousand. The SLW YI SR scenario shown by a black solid line, 

returned the greatest NPV amongst the three scenarios, in cohort four. The black solid line 

being located furthest from the other two CDF lines for the NPVs shows this. There is a clear 

distinction between the SL YI SR scenario marked by a blue dotted line and the SLW- and SW 

YI SR scenarios, verifying that it yielded the smallest NPV amongst the three.  

 
Figure 5.32: Cumulative density functions graph of net present value for a 5  000ha 
farm producing venison as a premier ecological-economic activity with incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

The probability that any of the cohort four scenarios will return a negative NPV at any 

point in the planning horizon is zero. The average NPVs are R1.262 million, R1.143 million and 

R706 thousand, for the SLW-, SW-, and SL YI SR scenarios, respectively. These NPVs are 

bigger than those of any of the other scenarios in the three cohorts – suggesting that the 

inclusion of incentives in springbuck ranching for meat production makes it to be more 

profitable than when the rangeland is used for sheep farming or under springbuck ranching 
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without incentives. Furthermore, the CDF graphs illustrate that the SL YI SR scenario yielded 

the smallest NPV amongst the three. However, since the CDF lines for the NPVs for the SL-

and SW YI SR scenarios cross each other at the tails, it is quite difficult to distinguish the most 

profitable scenario amongst the two. 

 
Figure 5.33: Stochastic Efficiency with Respect to a Function graph of net present 
value for a 5 000ha farm producing venison as a premier ecological-economic activity 
with incentives. 
 See Table 5.2 for a detailed explanation of acronyms. 

 

Nevertheless, using the SERF analysis of the net present value for the cohort four 

scenarios as shown in Figure 5.33, the alternatives that are preferred can be mapped out as per 

the risk aversion coefficients (RACs) of decision makers - which were calculated using equation 

5.1 as documented in McCarl and Bessler (1989). For this cohort, risk neutral decision makers 

had a lower limit ARAC of 0.0 whilst risk averse decision makers had an upper limit ARAC of 

0.000025. The WLS YI SR scenario is the most preferred alternative across all the ARACs levels. 

Furthermore, since the CE lines do not cross, it is clear that the SLW YI SR scenario is followed 

by the SW YI SR scenario. Risk neutral decision makers would settle for a CE of R1.143 million 

whilst risk averse decision makers would settle for a lower CE of R1.036 million.  
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Table 5.6: Risk Premiums for a 5000 ha Farm in Graaff-Reinet, producing venison 
with springbuck as a premier ecological-economic activity with incentives.  
 Risk Neutral Moderately Risk Averse Risk Averse 

R 

SLW  YI SF - - - 

SW    YI SF -118,874.93 -111,085.86 -120,824.58 

SL   YI SF -556,639.76 -566,568.40 -595,139.75 

See Table 5.2 for a detailed explanation of acronyms. 

Table 5.6 shows the risk premiums for all the alternative scenarios for risk neutral- 

(zero), moderately risk averse- (0.0000125) and risk averse- (0.000025) decision makers. For risk 

neutral decision makers to be equally well-off between the preferred SLW YI SR scenario and 

the SW YI SR and SL YI SR scenarios, they would have to be paid R118 874.93 and 

R556 639.76, respectively. This is in contrast to R111 085.86 and R566 568.02 which would be 

required by moderately risk averse decision makers to be, respectively, equally well-off between 

the preferred SLW YI SR scenario and the SW YI SR and SL YI SR scenarios. The risk 

premium that would have to be paid to risk averse decision makers to be indifferent between the 

SLW YI SR scenario and the SW YI SR scenario is R120 824.58, whereas that for the SL YI SR 

scenario it is R595 139.75. These risk premiums are significantly high, confirming that the SLW 

YI SR scenario is the mostly preferred scenario, but also illustrating that the ranking was equally 

robust. 

5.4 Economic Sustainability  

To analyse the economic sustainability of the three-rangeland use combinations of the 

three alternative scenarios, in the four cohorts, the study simulated the relative frequency of 

surviving realisations as outlined in equation 4.24 of section 4.3.1.6. A Bernoulli distribution was 

used to simulate whether the variable costs would be greater than the maximum threshold (in 

sheep farming 58.1% or 29.45% in springbuck ranching (see Table A1 of Appendix A)) of 

variable costs relative to total farm income obtained from the respective scenarios, at time,  . 

The models were linked to the financial statements, and were specifically programmed to give 

one (1) if the variable costs are less than the maximum threshold and zero (0) if otherwise.  

The notion behind this economic sustainability measure was adapted following a 

realisation that in Graaff-Reinet – like in most semi-arid rangelands (Quaas et al., 2007) - grazing 
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systems are tightly coupled. Given that at the end of the planning horizon failure is irreversible, 

this study assumed that failure could be averted through early detection of financial stress. This 

could be achieved by conducting an analysis of the variable costs of the family farm relative to 

total farm income. The reasoning is that, an increase in variable costs would induce an increase 

in financial strain on the family farm, thereby acting as a directive on the viability of the farm 

relative to total income35, and vice versa. Similarly, and in the spirit of Hein and Weikard (2008) 

and Quaas et al. (2007), an increase in variable costs implicitly suggests that the rangeland is not 

producing enough biomass to sustain the animals within its carrying capacity. Thus increasing 

the need to provide supplementary feeding or in the case of springbuck ranching leads to a 

decrease in output, which reduces total farm income. As a result, whilst this criterion focuses on 

the economic aspects of each scenario, it implicitly models ecological sustainability by 

quantifying the amount of money spent on variable costs relative to total income to inform 

decision makers on how the enterprise is performing in relation to green forage biomass 

productivity on the farm and subsequently its health36. In sheep farming, costs of supplementary 

(winter) feeding contribute the largest share of variable costs, whereas in springbuck ranching, 

this study assumed there would be no variable costs of feeding as the animals feed exclusively on 

the rangeland. This means that the amount of income obtained from the sales of springbuck 

output reveals, in a way, the productivity of the rangeland. For example, decreasing total output 

and subsequently sales could act as an indicator that the rangeland is no longer producing 

enough green forage biomass thus is compromising total output, which would invariably lead to 

a decrease in total income. The costs of winter-feeding for the sheep enterprises in the 

springbuck dominated scenarios are offset by sheep output sales, such that if variable costs 

                                                

35 This study chooses to identify failure when the variable costs relative to income increase beyond the 58.1% and 
29.45% maximum threshold of variable costs to total income in sheep farming and springbuck ranching, respectively. 
This is opposed to using debt-to-equity ratio (by Hansen and Jones, 1996) or negative owner’s equity (by Lien et al., 
2007a) because, in this case, the chosen sustainability measure presents a reasonable approximation of the probable 
response of lenders if the family farm were to face financial problems. This is especially because this study did not 
consider land – which could be equally obliterated by continued degradation- thus leaving lenders worse off.  
36 The weakness of this measure is that it focuses on the financial aspect of sustainability and could overestimate failure, 
thus limiting its applicability. However, in this study it does give a directive with regard to rangeland health if it is 
assumed, as is the case, that most of the variable costs go towards feeding or in the case of springbuck ranching, that 
there are no costs of feeding. 
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increase relative to total income, it is assumed that the rangeland is unable to support the 

animals and thus the enterprise is approaching failure. 

Hence, if the variable costs are greater than the maximum threshold of variable costs to 

total income, this study assumes that the rangeland faces two sets of problems. The first is a 

growing ecological strain on the farm, which could potentially lead to degradation and ultimately 

failure of the enterprise, whilst the second relates to economic failure, which signifies a growing 

cost-price squeeze that could equally lead to failure. Likewise, this might mean that the costs of 

feed relative to the price of output are repeatedly eroding the enterprise’s profitability. 

Alternatively, in the case of springbuck, it could also signal the failure of the rangeland to 

produce enough green forage biomass, which may possibly decrease total output thus 

compromising the farmer’s income returns. However, because different farming families have 

different tolerance thresholds for difficult situations, this measure should be understood within 

the tolerance thresholds of variable costs as a percentage of enterprise income, as assumed in 

this study37.  

Using Simetar®, the economic sustainability model in each cohort was simulated for 500 

iterations. The results are as presented in Figures 5.34 to 5.36 and explained below.  

a. Cohort 1 

The results reveal that none of the cohort one scenarios (graph not shown, since it was 

almost 100% not economically sustainable) was economically sustainable throughout the 

planning horizon, based on the economic sustainability measure used in this study. This means 

that for the cohort one scenarios, none of them yielded variable costs, which were below the 

average maximum threshold of variable costs to total income of 58.1%. This was partly because 

of high costs of winter-feeding in the sheep enterprise, which increased the variable costs 

making the scenarios not sustainable in the planning horizon. It could also be because of 

declining biomass production in the farm, which meant the farmer had to spend more on 

feeding than usual. Thus, whilst all the scenarios, in cohort one, returned positive net cash 

                                                

37 Skinner et al. (1986) reported a maximum threshold level of 51.1% in sheep farming and 31% in springbuck ranching.  
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income returns from 2011 through to 2025, much of this income was used to settle the variable 

costs of the family farm. In the long-run, this could mean that the family farm might fail to 

produce positive net cash income due to high feeding costs. While the net income obtained 

from springbuck ranching was theoretically expected to improve the sustainability of the 

alternative scenarios, it did very little as the farmer used them to finance the other various 

aspects of the sheep enterprise. This illustrates the various survival mechanisms (on-farm 

strategies) that farmers employ to sustain their livestock enterprises in the Karoo.  

This result suggests that all the cohort one scenarios were unsuccessful owing to a higher 

need for supplementary feeding which meant that the rangeland was not producing enough 

forage biomass to sustain the animals in the summer months, or that the farmer tended to keep 

many animals in winter, which consequently increased the winter feeding costs. Another reason 

could be increasing variable costs of feeding throughout the years, which equally led to an 

outcome of more simulated failures due to higher variable costs. This is likely to be true given 

that sheep do not promote biological diversity, which is acclaimed for its benefits to above 

ground productivity and rangelands health. This further highlights the major effects of sheep 

farming on the environment, which could lead to the total degradation of the rangelands if it 

continues unabated, but which could similarly lead to the failure of farming enterprises in the 

Karoo. 

b. Cohort 2 

Figure 5.34 presents the economic sustainability results for the cohort two scenarios. The 

graphs demonstrate the relationship between time and economic sustainability of the cohort two 

scenarios. Unlike the cohort one scenario, which had a zero probability of being economically 

sustainable, in cohort two the results are different. The probability of financial survival for the   

WLS YI SF scenario is 41.8% in 2011, increases to 56.6% in 2019 before reaching 35.8% in 

2025. This is in contrast to a probability of survival of 63% and 100% for the WS-and 

WL YI SF scenarios, in 2011 and 94.2% and 96% in 2025, respectively. These results suggest 

that the introduction of incentives in springbuck ranching can improve the sustainability of the 

cohort one scenarios. Furthermore, these results show that with an introduction of incentives in 

springbuck ranching, the farmer is able to improve his total income, which decreases the 
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number of simulated failures. From an income point of view, it suggests that because of the 

income returns from springbuck ranching, the farmer may have been able to keep the variable 

costs closer to the maximum threshold of 58.1% of total farm income.   

 
Figure 5.34: Relationship between time and economic sustainability of the WLS-, WS-, 
and WL YI SF scenarios with incentives. 
See Table 5.2 for a detailed explanation of acronyms. 

 

This finding is quite insightful in that it demonstrates the influence of incentives on the 

sustainability of the alternative scenarios and the applicability of the economic sustainability 

analysis in further isolating the most sustainable utilisation system. For example, the WL YI SF 

scenario received the greatest proportion of incentives amongst the three alternatives, because of 

the assumption that springbuck ranching utilised up to 30% of the 5 000ha rangeland. The 

economic sustainability analysis has shown that the WL YI SF scenario has an ability to survive 

financially into the future.  

However, there are a few problems with this outcome. First, the South African Revenue 

Services (SARS) is very strict with permitting rangelands owners’ tax breaks for ecological-

economic systems that improve biological diversity if the farmer cannot prove that it does (Price 

Waterhouse Coopers, 2009). Keeping a given quantity of springbuck on the rangeland might be 

seen as beneficial on the rangeland, only to discover that it is in actual fact not. In such an 

instance, SARS may require such landowners to pay back (with interest) all monies not deducted 

as tax for the whole period that such tax breaks were allowed, thus  further driving the family 

farm into serious financial problems.  

c. Cohort 3 

Figure 5.35 illustrates the relationship between time and economic sustainability of the 

cohort 3 scenarios. The graph shows that the SLW- and SL NI SR scenarios had a 100% 
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probability of being economically sustainable in the first eight years of the planning horizon, 

whilst the SW NI SR scenario had a 100% probability of being economically sustainable only in 

the first two years of the planning horizon. Moreover, the probability of survival of the SW NI 

SR scenario gradually decreases such that by 2025, it was at 32.1%. This is a notable result 

because it reveals that since in calculating economic sustainability feeding costs in springbuck 

ranching are ignored, the variable costs relative to total income were increasing, highlighting the 

influence of sheep production on total income on the springbuck ranching enterprise. Even 

though feeding costs are ignored in this scenario (SW NI SR), the results further reveal that, 

since the income from sheep farming, in this cohort, is theoretically expected to improve the net 

income – it is also expected to offset any feeding costs, not unless they grow so high that they 

infringe on the springbuck ranching enterprise. In which case, the variable cost relative to net 

income would grow beyond the minimum threshold of 29.45% of net income. This would, in 

spite of the assumption that there are no feeding costs, imply that the enterprise is now facing 

an environmental strain – which is upsetting the out of springbuck or that it is facing a financial 

strain which is equally threatening the financial survival of the family farm, as shown by the 

results of the SW NI SR scenario. Because sheep were utilising up to 50% of the rangeland, this 

result does suggest that a combination of 50% springbuck and 50% wool sheep might not be 

economically sustainable based on the assumptions of this study.   

 
Figure 5.35: Relationship between time and economic sustainability of the SLW-, SW-, 
and SL NI SR scenario without incentives.  
See Table 5.2 for a detailed explanation of acronyms. 

 

Moreover, for the SLW NI SR and SL NI SR scenarios, the probability of survival stays 

more-or-less constant, such that it was found to be 90.2% and 99%, respectively in 2025. The 

sustainability results further illustrate that the SLW NI SR scenario had a higher chance of 

surviving throughout the planning horizon followed by the SL NI SR scenario. This is despite 
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the results of the SERF analysis, which revealed that decision makers who are more risk averse 

would prefer the SW NI SR scenario. Based on the sustainability criteria, the most economically 

sustainable alternative amongst the cohort three scenarios would be the SLW NI SR scenario. It 

should be qualified though that both scenarios SLW NI SR and SL NI SR are comparatively 

more economically sustainable than the SW NI SR scenario, because of the lower production 

costs as exemplified by the amount of land set aside for springbuck ranching. Further, the reader 

is reminded that the sustainability measure does not quantify the extent to which the variable 

costs in one scenario surpass those in another; rather they explore the probability at which an 

alternative scenario will have variable costs that are greater than the maximum threshold of 

29.45% of net income throughout the planning horizon. This should, therefore, cast some light 

on the finding that the SW NI SR scenario is, based on the sustainability measure, least 

sustainable. Even though the SW NI SR scenario may have had a superior NPV than the SL NI 

SR scenario, it returned a higher number of zero (0) iterations in the total 500 iterations than the 

other two scenarios, throughout the planning horizon.   

d. Cohort 4 

The economic sustainability results of the cohort four scenarios are shown by the graphs 

in Figure 5.36. The introduction of a restoration subsidy and tax reductions for these scenarios 

improved the sustainability of especially the SW YI SR scenario. For example, compared to the 

sustainability scenarios of the cohort three scenarios - where the farmer does not receive 

incentives - it is clear that the scenario has a higher chance of financial survival, especially in the 

first five years of the planning horizon, after which it decreased to 50% compared to the 32.1% 

in cohort three. However, for the SLW- and SL YI SR scenarios, the results further exemplify 

that the introduction of incentives in springbuck ranching impacts the price of venison 

negatively which marginally affect the total income of these scenarios. For example, in cohort 

three where there are no incentives, these two scenarios had a 100 percent chance of being 

sustainable in the first 8 years of the planning horizon. Moreover, with the introduction of 

incentives, the 100% sustainability falls to the first five years, explaining the effects of incentives 

on the conversion rates and venison prices.  
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Figure 5.36: Relationship between time and economic sustainability of the SLW-, SW-, 
and SL YI SR with incentives (Cohort 4).   
See Table 5.2 for a detailed explanation of acronyms. 

 

For the SLW- and SL YI SR scenarios, instead of improving, the sustainability 

respectively dropped to about 96.7% and 84% in 2025, compared to 99% and 90.2% 

respectively, in cohort three. As the incentives are introduced, more farmers are drawn into 

springbuck ranching, which increases the output quantity. The increase in output causes the 

price to decrease, which in turn reduces the total income of the enterprises. However, the 

scenarios yielded a comparatively higher economic sustainability versus time results than in the 

sheep farming scenarios, suggesting that springbuck ranching could be potentially more 

economically sustainable than sheep farming in a 5 000ha farm in Graaff-Reinet.  

5.5 Sensitivity Analysis 

The profitability of the alternatives is dependent upon the influence of certain variables 

on the NPV. By conducting sensitivity analyses, the effect of very small changes of some key 

variables on the NPV of the alternative scenarios, can be explored. In this study, sensitivity tests 

were conducted to investigate and rank the variables that affect the NPVs in the three alternative 

scenarios of the two rangeland utilisation ecological-economic systems. Sensitivity analyses are 

imperative in mapping out the key variables, which affect the financial viability of the alternative 

scenarios. From a profitability perspective, sensitivity analyses can help pin point the key 

variables that influence the viability of the various scenarios. To investigate the effect of the 

various variables on the NPV, sensitivity elasticities are used. Elasticity in its generic sense 

describes the relationship between a proportional change in a dependent variable in response to 

a proportional change in the independent variable. It is a unit less measure and can be either 

negative or positive, and is used in cases where there is a relationship between two variables.  
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The calculated elasticities for the three alternative scenarios with respect to wool yield 

and price, lamb yield and price, venison yield and price and variable costs in a 5000 ha farm-

producing sheep as a premier ecological-economic activity are shown on Figure 5.37. The graphs 

show that the variable costs had the greatest negative effect on the NPV in all the three 

scenarios, whereas yield or output and prices had a positive effect.  

 
Figure 5.37: Sensitivity analyses of three alternative scenarios with respect to wool 
yield and price, mutton yield and price, venison yield and price and variable costs in a 
5000 ha farm producing wool as a premier ecological -economic activity. 
See Table 5.2 for a detailed explanation of acronyms. 

 

This was expected as variable costs represent the costs of doing business and winter-

feeding costs in the dry season for the sheep enterprise. In scenario one, about 65% of the 

income came from wool sales, whilst 20% came from the sales of culled sheep or mutton. 

Venison contributed about 15% of the total farm income. Therefore, the finding that both the 

prices and yields of wool, mutton and venison had the greatest effect on the NPV or 

profitability is not surprising. 

The elasticities for the WLS NI SF and WS NI SF scenarios were somewhat similar, 

whereas the WL NI SR scenario had slightly different elasticities. This is an expected result given 

the assumptions of the WL NI SR scenario. For scenario one, the results illustrate that a 1% 

yearly increase in variable costs would decrease the NPV by about 3%, in each scenario. This 



Chapter 5 Empirical Results 

156 
 

result could also be interpreted to mean that a 1% decrease per year in variable costs could 

induce a 3% increase in the NPV, in each alternative. However, wool yield and price had the 

greatest positive effect on the NPV in this scenario, followed by mutton yield and price and 

venison yield and price. A 1% increase in wool output and price, would lead to an increase in 

NPV of about 1.7% in both scenarios WLS NI SF and WS NI SF, whereas it would lead to an 

increase of about 3% in the WL NI SF scenario. Moreover, for the WL NI SF scenario, a 1% 

increase in venison output and price would lead to an increase of about 2% in NPV.  

Figure 5.38 shows the calculated elasticities for the three alternative scenarios with 

respect to wool yield and price, lamb yield and price, venison yield and price and variable costs 

in a 5 000ha farm producing springbuck as a premier ecological-economic activity. The results 

show that variables costs exert the greatest effect on the NPV in all the three scenarios even in 

the springbuck dominated scenarios. However, unlike in the sheep farming scenarios, the 

variable costs have a comparatively smaller effect on the NPV. In the sheep farming scenarios, 

the variable costs had an elasticity of about -3, whereas in the springbuck ranching enterprises 

the elasticities are about -1. A 1% increase in variable costs would lead to a 0.9%, 1.1% and 

1.2% decrease in the NPV in the three scenarios, respectively. Venison yield and output had the 

greatest effect on the NPV in all the three scenarios. A 1% increase in venison output and price, 

would lead to a 2.4% increase in the NPV in the SLW NI SR scenario, whereas in the SW NI SR 

and SL NI SR scenarios, it would respectively lead to a 3% and 3.5% increase in the NPV. 

Interestingly is that the venison price seem to exert the greatest influence on the NPV especially 

on the SW NI SR, than the venison yield. 
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Figure 5.38: Sensitivity analyses three alternative scenarios with respect to wool yield 
and price, mutton yield and price, venison yield and price and variable costs in a 5000 
ha farm producing venison as a premier ecological -economic activity. 
See Table 5.2 for a detailed explanation of acronyms. 

 

This is mainly because the farmer is not maximizing on springbuck production, as 50 

percent of the land on this scenario was used for springbuck ranching. What this means is that 

when the farmer uses 50% of his rangeland for springbuck ranching and the remainder for 

sheep farming, the price of venison influences the profitability of the springbuck ranching 

enterprise, whereas for the wool enterprise, the wool yield seem to be the major deciding factor. 

Not surprising, the variable costs had the highest negative influence on this scenario than in the 

other two scenarios. This further illustrates the importance of other factors on the profitability 

of the springbuck ranching industry. If the rangelands are converted en masse to springbuck 

ranching, the price of venison would go down, but similarly the variable costs would also 

decrease significantly, which would make springbuck ranching for meat production more 

profitable in the long-run. 

5.6 Summary of Results 

This chapter presented the empirical results of the simulation procedures used to explore 

the profitability of converting a sheep farm into a springbuck ranch in the Eastern Cape Karoo. 
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The NPV and the SERF analysis were used to explore the question of whether it is economically 

profitable to convert a 5 000ha sheep farm into a springbuck ranch, given risk. An economic 

sustainability measure was linked to the Monte Carlo financial statements to examine the 

financial sustainability of the various scenarios. Using sensitivity analysis, the effects of the 

different key variables on the NPV were explored. 

Several key findings are worth mentioning. Firstly, in cohort one, the SERF analysis was 

able to illustrate that the WS NI SF scenario is the most profitable and hence preferred scenario 

amongst the three scenarios. This scenario yielded the highest NPV despite having an 18.7% 

chance of being negative. The results further illustrated that based on both the NPV and SERF 

analysis; the current rangeland utilisation system being employed by the principal decision maker 

returned the worst NPV with a 62% chance of being negative and were the least preferred. It 

produced negative certainty equivalents stream across all the absolute risk aversion coefficients 

assumed to be the plausible risk aversion ranges in this study, suggesting that the farmer is better 

off discontinuing with such a combination. Secondly, the introduction of incentives for the 

springbuck enterprises in cohort two did not significantly change the NPVs of the various 

scenarios. The WS YI SF scenario was still the most preferred amongst the three. This was 

despite the WL YI SF scenario receiving the largest amount of subsidies. The results further 

demonstrate that if the farmer were to be paid incentives for springbuck ranching, the 

probability of yielding a positive NPV would increase, albeit marginally for the preferred 

WS YI SF scenario.  

Moreover, an assessment of the third and fourth cohorts’ results, respectively, a different 

picture emerges. The results reveal that if the farmer were to convert the farm into a springbuck 

ranch with 70% of the land used for springbuck ranching, the farmer would not only return 

attractive net cash inflows but that the farmer would earn an NPV which is significantly higher 

than that of all the scenarios in cohort one. This suggests that when the income streams are 

discounted, the springbuck ranching enterprises appear to be more profitable than sheep 

farming in the area. The results further show that the introduction of incentives into springbuck 

ranching causes it to out-perform the wool sheep dominated enterprises, by a significant margin. 

Based on the assumptions of this study, one can conclude that springbuck ranching for meat 

production is a profitable ecological-economic system in Graaff-Reinet when comparing the 
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NPVs of the sheep farming scenarios and the springbuck ranching for meat production 

scenarios.  

The results of the economic sustainability analysis further confirmed that springbuck 

ranching does not only yield greater NPVs than sheep farming, they also evinced that it is also 

more economically sustainable than sheep farming in Graaff-Reinet. Such a finding is imperative 

because it economically legitimises springbuck ranching as an ecological-economic activity that 

may well be adopted by farmers in Graaff-Reinet. It also suggests that decision makers who are 

risk averse and non-satiated in income but are interested in conserving their rangelands and 

halting degradation can adopt springbuck ranching. The main goal of this study was to 

investigate the profitability of converting a sheep farm into a springbuck ranch. The conclusion 

is made that decision makers in Graaff-Reinet could potentially make more money if they were 

to convert their sheep farms into springbuck ranches for meat production. However, as the 

results of this study show, a combination of 70% springbuck, 20% mutton and 10% wool could 

potentially be the most profitable enterprise mix of springbuck ranching and sheep farming in 

Graaff-Reinet. 
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Chapter 6.  

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

Halting continued rangelands degradation and achieving sustainable agricultural 

production has featured strongly in government policymaking in South Africa (Scogings et al., 

1998). The development of policies geared towards the sustainable use of natural ecosystems as 

envisaged in the constitution has brought awareness to domestic livestock farmers on the 

sustainable use of natural ecosystems (Lindsey et al., 2009). In Graaff-Reinet, however, such 

policies have yielded hardly any benefits in terms of reversing actual degradation on the 

rangelands. Instead, fears of continuing degradation and a realisation that the rangelands are fast 

losing their biological productivity have seen livestock farmers reducing the number of domestic 

livestock on their farms (Nel and Hill, 2008). This decrease in livestock numbers has been, in 

most cases, accompanied by an equivalent increase in the number of farms that have 

incorporated game ranching (Nel and Hill, 2008), essentially springbuck ranching for meat 

production in the Karoo (Neethling, personal communication), to their livestock enterprises. 

However, there is no empirical evidence on which alternative between sheep farming and 

springbuck ranching for meat production is an economically more profitable rangelands 

utilisation ecological-economic system, let alone whether it is profitable to convert a sheep farm 

into a springbuck ranch.  

Thus, this study investigated the profitability of converting a 5 000ha wool sheep 

dominated farm into a springbuck ranch in Graaff-Reinet in the Eastern Cape Karoo. The study 

was motivated by the endemic nature of the springbuck in Graaff-Reinet (Roche, 2008; Roche, 

2004; Beinart, 2003) and its rangelands reclamation potential given that it has co-evolved with 

the Karoo ecosystem (Roche, 2008). Rangeland owners are in search of profitable rangeland 

utilisation ecological-economic systems to boost their revenue and ensure that their enterprises 

remain profitable. Springbuck ranching can be a productive and environmentally benign 

rangelands utilisation option in the Eastern Cape Karoo. It has the potential to reconcile the 

often incompatible goals of economic profitability and sustainable agricultural production. 

Springbuck meat (venison) also known in overseas markets as antelope is on high demand 
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especially among European Union consumers (Neethling, personal communication) who are 

continually demanding lean meat produced by natural means (Wiklun and Hoffman, 2005). 

However, for springbuck ranching for meat production to be adopted by rangeland owners, it 

must transcend the “huge economic deterrent” (Hodgson et al., 2005: 243) and pay higher 

returns than existing conventional ecological-economic systems on the rangelands.  

Risk analysis in a whole-farm budgeting context (Lien, 2003) was chosen to conduct the 

analysis. This procedure was selected specifically because all businesses face risky decisions, 

which make risk an important attribute of agricultural production (Lien et al., 2009; Hardaker et 

al., 2004a; Hardaker et al., 2004b; Lien, 2003). Secondly, converting from one enterprise mix to 

another involves many uncertainties that can be best understood when studied in a system 

context (Richardson et al. 2006). Specifically, whole-farm stochastic simulation (Lien, 2003) was 

used to incorporate the stochastic components of the production relationships between wool 

sheep, mutton yield and springbuck yield with their respective prices, in a bid to capture the 

uncertainty in the real system under study.  

The central premise of this study was that the springbuck when reintroduced 

appropriately could promote the resumption of crucial ecological processes that are essential for 

healthy and biologically productive rangelands (Skinner et al., 1986). Thus, because of the 

biodiversity restoration potential of springbuck ranching, this study also explored the effect of 

incentive packages on the profitability of converting a sheep farm into a springbuck ranch, in 

Graaff-Reinet. The inclusion of risk in a profitability analysis allowed for the examination of 

economic sustainability (Lien et al., 2007a). It also necessitates the comparison of those variables, 

which directly affect the profitability of the various enterprise mixes through sensitivity analysis 

(Sartwelle et al., 2006). This yields valuable information to decision makers regarding the 

economics of springbuck ranching for meat production before committing large sums of money 

and land to an utilisation system that could potentially be unprofitable and economically 

unsustainable, despite its ecological benefits.  
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6.2 Study Scenarios 

The analysis was for an average sized (5 000ha) sheep farm in Graaff-Reinet and included 

three different utilisation scenarios, grouped into four cohorts. In the first two cohorts, the first 

scenario comprised of 70% of the rangeland used for wool sheep farming (W), 20% for mutton 

production (L) and the remaining 10% was used for springbuck ranching (S) for meat 

production. The second scenario was similar to the first only that the land use ratios were 

changed to 50% (W), 30% (L) and 20% (S). In the third scenario of cohort one and cohort two, 

70% of the rangeland was used for wool sheep farming and 30% for springbuck ranching for 

meat production. Cohort 3 and 4 were based on the cohort one and two scenarios, respectively, 

with the exception that the premier ecological-economic system was assumed springbuck 

ranching. Thus, in cohort three and four, scenario one assumed that 70% of the rangeland was 

used for springbuck ranching for meat production (S), 20% for mutton (L) and 10% for wool 

sheep farming (W). The enterprise mix in scenario two of cohort three and four consisted of 

50% of the land being used for springbuck ranching (S), 30% mutton (L) and 20% for wool 

sheep farming; whereas scenario three had 70% of the rangeland used for springbuck ranching 

for meat production and 30 percent for wool sheep farming.  Cohort one and three necessitated 

the comparison of the key indicators when the premier ecological-economic system on the 

rangeland is sheep farming and springbuck ranching, respectively, whereas cohorts two and four 

were used to explore the effect of tax incentives and the introduction of a fixed annual 

biodiversity restoration subsidy on the springbuck ranching enterprises.  

6.3 Summary of Findings  

The results suggest that springbuck ranching for meat production is more profitable than 

sheep farming in Graaff-Reinet, as shown by the projected NPVs. In other words, converting a 

5 000ha sheep farm to a springbuck ranch in Graaff-Reinet could potentially yield a relatively 

higher income return and maximise expected utility than incorporating springbuck ranching into 

an already existing sheep enterprise or continuing with sheep farming. This finding confirms that 

springbuck ranching for meat production is potentially a more economically desirable ecological-
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economic system than sheep farming in Graaff-Reinet, over the 15 year planning horizon, based 

on the assumptions made on this study.  

6.3.1 Key Output Variables  

For all the wool sheep dominated scenarios (cohort one and two), the projected 

profitability results show that the net cash incomes were decreasing throughout the planning 

horizon, whereas for the springbuck dominated scenarios (cohort three and four) on the other 

hand, the net cash incomes were increasing. For cohort one and two, the net cash incomes were 

decreasing because of the assumption that the production costs in the wool sheep enterprises 

were expected to increase throughout the entire planning horizon, whereas for cohort three and 

four it was mainly because of the reduced costs of production, in springbuck ranching. The 

magnitudes of net cash income were likewise different between the sheep farming scenarios and 

the springbuck ranching scenarios. For the sheep farming scenarios (Cohort one and two), a 

higher net cash income was obtained at the beginning of the planning horizon. However, such 

net cash income was affected by the high costs of borrowing in sheep farming, such that they 

were smallest at the end of the planning period. When a fixed R13/ha restoration subsidy 

together with a 15 year tax break for springbuck ranching enterprises was introduced, the net 

cash income for springbuck ranching enterprises improved significantly signalling the effect that 

incentives might have on the profitability of springbuck ranching for meat production. 

Moreover, with the introduction of the restoration subsidy more farmers were presumably 

drawn to springbuck ranching, which inversely caused the price of venison to decrease. 

Consequently, the low price of venison led to compromised net returns and subsequently the 

net cash income structure of the cohort four scenarios.  

A direct comparison of the cohort one and cohort three scenarios revealed that the 

cohort three scenarios had higher net cash income returns than their cohort one counterparts. 

Similarly, cohort four scenarios yielded higher net cash income than those in cohort two, 

suggesting that converting from wool sheep dominated farming enterprise to a springbuck 

dominated enterprise is potentially more profitable than incorporating springbuck ranching into 

an existing wool sheep farm. Moreover, regrettably the probability of returning negative net cash 

incomes was higher in cohort three and four, than in cohort one and two. This could be 
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attributed to lower venison prices and especially output per animal towards the end of planning 

horizon due to the assumption that as the farmer gradually increases output from springbuck 

ranching; the venison output per animal would subsequently decrease. It is notable that even 

though the cohort three and four scenarios returned higher probabilities of being negative 

relative to the cohort one and two scenarios, they were more likely to be economically 

sustainable than the cohort one and two scenarios. This suggests that as more farmers convert 

to springbuck ranching, their net cash incomes are likely to decrease because of a decrease in the 

farm gate price of venison; however, such a decrease will not lead to financial ruins.  

The results for the ending cash balances for the entire cohort one and two scenarios, 

except WL YI SF (in cohort two) were, like the net cash income, highest in the first year and 

decreasing throughout the entire planning horizon. In contrast, all the ending cash balances were 

positive in cohort three and four, respectively. Cohort one and two scenarios had higher 

expenses and financial obligations than the cohort three and four scenarios, which compromised 

the money available to accumulate, interest at bank, greatly. The SLW YI SR scenario in cohort 

four returned the highest ending cash balances, further illustrating the effects of incentives on 

the profitability of the respective rangeland use ecological-economic systems. The real net worth 

had a zero probability of being negative in all the scenarios. Moreover, because of the deflation 

factor and especially in cohort one, two and three respectively, the real net worth was 

decreasing, whereas in cohort four it was increasing and flattened towards end of planning 

horizon.  

6.3.2 Stochastic Efficiency with Respect to a Function  

Using stochastic efficiency with respect to a function (SERF) analysis, the study ranked 

the alternative scenarios across a range of absolute risk aversion coefficients (ARACs). The 

SERF procedure provides the decision maker with a vigorous and robust method of assigning 

the alternatives into different certainty equivalents (CE) values across a range of absolute risk 

aversion coefficients. It also necessitates the exploration of the future consequences of the 

various alternatives on the profitability of the 5 000ha farm, based on the risk preferences as 

shown by the ARACs.  For the wool sheep dominated enterprises, the WS NI SF and WS YI SF 

scenarios were the most preferred scenarios in cohort one and two respectively, whereas in the 
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springbuck dominated enterprises, the SLW NI SR scenario was only preferred by risk neutral 

decision makers (ARAC  0). Risk moderate (ARAC 0.0000125) decision makers were indifferent 

between the SLW NI SR and the SW NI SR scenarios whereas risk averse (ARAC 0.000025) 

decision makers, on the other hand, preferred the SW NI SR scenario. In cohort four, however, 

all decision makers preferred the SLW YI SR scenario across the range of ARACs. To quantify 

the monetary value that risk neutral, risk moderate and risk averse decision makers would 

respectively require to convert from the preferred alternative to the next and still be equally well-

off, this study calculated their risk premiums. Essentially, a risk premium is the amount of 

money that would leave decision makers equally well-off between the preferred scenario and 

another alternative. Like the CE values, the risk premiums vary across a range of risk aversion 

coefficients (risk preferences). Moreover, their true and conspicuous benefit is in mapping out 

the impact of various enterprise mixes on the profitability of the ranch and can further be used 

as a tool to confirm the robustness of the rankings. In this study, the risk premiums were high 

and reasonably consistent, especially for risk averse decision makers, thus confirming the 

robustness of the rankings.  

6.3.3 Economic Sustainability  

The economic sustainability of converting alternative wool sheep-farming scenarios into 

alternative springbuck ranching scenarios was also explored. The sheep farming alternatives 

returned a higher probability of being economically unsustainable, whereas, all the springbuck 

ranching scenarios were most likely to be economically sustainable, in the planning horizon. 

Using the economic sustainability measure, this study demonstrated that the scenario that is 

preferred mostly by decision makers might also be the most economically sustainable one. None 

of the sheep farming scenarios throughout the planning horizon returned net incomes, which 

were below the maximum threshold of variable costs relative to total income. This was not 

surprising as most of the income in sheep farming is used to finance costs of winter-feeding and 

in cases where rains are not good enough to warrant adequate forage biomass production - 

making the cost of producing sheep on a 5 000ha to be comparatively higher than in springbuck 

ranching. Consequently, the sheep farming scenarios showed a 100 percent potential of being 

economically unsustainable. The introduction of incentives for the springbuck enterprises in the 
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wool sheep dominated scenarios, were inadequate to improve their sustainability, except for the 

WL YI SF scenario, which showed a sustainability of greater than 80%. However, it is worth 

noting that, whilst the introduction of incentives may have improved the probability of financial 

survival into the future of this scenario, all this was possible because of the extra income from 

springbuck ranching – justifying fears of a cost-price squeeze in sheep farming, in the area. 

On the contrary, the springbuck enterprises were sustainable throughout the planning 

horizon. There was, however, a higher probability that in cohort 3, the SW NI SR scenario 

would be unable to meet its financial obligations during the planning horizon, suggesting that 

perhaps an enterprise mix of 70% springbuck and 30% wool sheep might not be a judicious 

combination. This was because of the rising need to provide supplementary feeding for the wool 

sheep enterprise considering that the farmer was assumed not to cull for mutton production. 

Nonetheless, with the introduction of incentives in cohort four, the economic sustainability of 

this scenario improved, albeit only marginally. The differences in economic sustainability 

between a sheep dominated farm and a springbuck dominated ranch are significant, implying 

that farmers are likely better off in springbuck ranching dominated enterprises than in sheep 

farming. The results further illustrate the extent to which different combinations of utilisation 

processes could improve the economic sustainability of the 5 000ha farm.  

6.3.4 Sensitivity Analysis 

Sensitivity analysis results confirmed that variable costs have the greatest effect on 

profitability. The results illustrated that a 1% annual increase in variable costs would decrease 

the profitability by about 3%, in all the sheep farming scenarios, respectively. This was because, 

for the sheep farming enterprises, the variable costs were largely made up of winter-feeding 

costs, which took up a substantial share of the total variable costs. Moreover, wool, mutton and 

venison price together with their respective yield contributed significantly to the profitability of 

these enterprises, as anticipated. A 1% increase in wool and wool price was found to lead to a 

1.5% increase in profitability in all the cohort one scenarios. Likewise, the sensitivity results 

illustrated that a 1% yearly increase in variable costs would lead to a decrease in profitability of 

about 1% in the springbuck dominated scenarios and vice versa, suggesting that even in 
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springbuck ranching, a need to contain costs exists if the profitability of springbuck ranching is 

to be sustained. 

6.4 Conclusions and Recommendations 

This thesis has studied the profitability of converting a 5 000ha wool sheep dominated 

farm into a springbuck dominated ranch in Graaff-Reinet, in the Eastern Cape Province of 

South Africa, in a bid to motivate a new approach and paradigm towards the utilisation of the 

rangelands. This approach, when adopted by rangeland owners, is hypothesised as going to 

positively impact the ecological diversity and integrity of these rangelands, and lead to their 

reclamation (Skinner et al., 1986). Furthermore, based on an extensive literature analysis, the 

opinion that once springbuck ranching for meat production is adopted by rangelands owners, 

the idea of sustainable agricultural production could be achieved in the area is made. This will 

not only mean a continuation of the area’s leading source of livelihoods – settling fears of 

downplaying some of the progress made in human development in South Africa - but also of 

the natural ecosystems, thus saving them for generations yet to come. In other words, the 

conclusion is made that, with the production of the springbuck (which is natural capital in the 

area) an ecological and economic trajectory that will benefit both the immediate users of the 

rangelands and their surrounding communities is potentially possible. Natural capital, as argued 

in the preceding chapters, promotes biodiversity restoration, which promotes the sustained 

productivity of these systems.  

The results of this study have some implications for rangelands management and 

especially for farmers who are interested in those ecological-economic systems that have a 

potential to arrest on-going biodiversity loss and rangelands degradation in the Karoo. First, the 

results show that under the assumptions of this study, it is profitable to convert a 5 000ha 70% 

wool sheep, 20% mutton and 10% springbuck, sheep farm into a 70% springbuck ranch and 

30% (sheep farm 20% mutton and 10% wool sheep) in Graaff-Reinet. This is particularly so 

given that in Graaff-Reinet there is a well-developed facility for processing springbuck meat that 

has access to international markets. Even though this study assumed that consumption would 

stay approximately the same throughout the planning horizon, the results suggest that 

springbuck ranching is potentially a practicable land use option in the area. The results further 
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illustrate that farmers who are reluctant on converting their farms into full springbuck 

enterprises, following the findings of Dlamini, Fraser and Grové (2012), can actually choose 

from a set of other feasible springbuck and sheep farming enterprise combinations.  

Secondly, the findings of this study suggest that converting a 5 000ha sheep farm into a 

springbuck ranch is not only profitable but economically sustainable as well. Springbuck 

ranching for meat production involves low expenses and variable costs compared to sheep 

farming (Skinner et al., 1986). Moreover, the benefits of game ranching in the light of looming 

degradation catastrophes in the Karoo make springbuck meat production a more realistic and 

judicious rangelands utilisation option to sheep farming. Farmers who are concerned about the 

cost-price squeeze in commercial wool sheep farming in Graaff-Reinet have an achievable 

option: convert to springbuck ranching, which will minimise variable costs and management 

requirements, whilst simultaneously stimulating biodiversity restoration and thus aid in 

improving ecological potency. Given these findings together with those of Dlamini et al. (2012) 

that it is financially feasible to convert a 5 000ha farm into a full springbuck ranch, the 

impression that rangeland owners in Graaff-Reinet are perhaps misusing their rangelands 

through sheep farming could easily be made.  

Particularly, this is so given that sheep do not promote biological diversity in these 

rangelands following that they are not part of the natural capital in the Karoo. This is 

notwithstanding that sheep farming is somewhat perceived as a monumental and historically 

important industry, having shaped and established much of the economy of the Karoo (Beinart, 

2003). Indeed, the disappearance of some keystone species intertwined with overgrazing by 

domestic livestock and their failure to promote biological diversity that has led to the great deal 

of degradation evident in most parts of the Karoo. Thus, the study also suggests that the 

reintroduction of springbuck ranching on a bigger scale might improve the buffering capacity of 

the rangelands thus halting degradation in the long-run. The existence of a lucrative springbuck 

meat market in the European Union (Neethling, personal communication) presents further proof 

that perhaps now more than ever is the right time to convert the rangelands into a more 

environmentally benign utilisation economic system. The growing acceptance of venison by the 

modern consumer (Hoffman and Wiklund, 2005), for instance, should further be taken as 

evidence that meat production from wild animals is a viable land use option.  
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The main findings of this study also present opportunities to policy makers to create 

policies and mechanisms that will promote the uptake of springbuck ranching as a means 

towards halting degradation and reversing the effects of 200 years of domestic livestock farming 

in the Karoo. One possible mechanism to address the current degradation challenges of these 

rangelands is to encourage the adoption of those ecological-economic systems that are 

benevolent toward the environment. Such ecological-economic systems should involve the use 

of wild animals that have the potential to promote biodiversity restoration. This is because 

biodiversity can act as a source of ecological insurance and could in the long-run promote an 

ecological trajectory that is conducive to ecological integrity and ultimately resilience. This study 

has shown that the government can provide incentives to springbuck ranching enterprises to 

improve their profitability, and their subsequent uptake by landowners. Such incentives could 

potentially include:  

 A biodiversity restoration subsidy to those farmers who are utilising their rangelands for 

the production of keystone species that have been scientifically proven to aid in 

biodiversity restoration.  

 Paying farmers subsidies for merging their farms in a bid to undo the effects of 200 years 

of domestic livestock farming, especially the removal of fences to allow the free 

movement of wild animals; and  

 Enforcing the newly (late 2009) introduced tax incentives to those farmers who are 

utilising their lands for biodiversity restoring projects.  

Whilst it might be contended – rightly - that such a policy initiative may not be a 

judicious use of government funds, the thrust of this policy advice is mainly informed by the 

need to prevent the unavoidable and avoiding the unpreventable. Surely, the next stage would be 

to conduct a careful evaluation of this policy. However, it should be noted that the future costs 

of resettling the many farmers and residents of Graaff-Reinet in the event that desertification 

were to be fast-tracked as a result of a changing climate or a crash of the ecosystem due to 

continued monotonous domestic livestock farming might be higher than prevention.  

The government may also explore the possibility of introducing conservation easements 

and management and preservation agreements, which are particularly appealing when a desire to 
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conserve and preserve natural ecosystems is sought. These agreements are usually entered into 

between the relevant government agencies and individual rangeland owners. They entail 

individual farmers being compensated for putting aside land for those ecological-economic 

systems that are benevolent toward the environment (Abebayehu et al., 2003). Springbuck 

ranching for meat production might blend well with such policies by promoting biodiversity 

whilst producing food.  

However, as can be seen, the success of these policies will depend on the government’s 

ability to implement them appropriately without disrupting the livelihoods of the farmers and 

the Graaff-Reinet community at large. It will also depend on how much rangeland owners are 

willing to sacrifice their current consumptive use of the rangelands for future generations. It 

should be noted, however, that the aforementioned policies will not in themselves result in 

springbuck ranching realising supernormal profits, but that they will aid in driving the cost of 

production in springbuck ranching down and further cushion farmers against any production 

risks that may arise in springbuck ranching. The foundational result that this study has provided 

is that springbuck ranching can be used as an ecological-economic system in the Eastern Cape 

Karoo. However, equally true is that for landowners fully to reap the ecological advantages of 

springbuck ranching, some compromises would have to be made. Firstly, farmers would have to 

provide an enabling environment for springbuck production to thrive through a substantial 

reduction of fences in the area. As Archer (2000) recollects, the introduction of such modern 

farming practices has brought about some of the environmental hardships in the area. In the 

progression, these farming practices have led to the displacement of much of the natural capital 

and have robbed these rangelands of their ecological integrity (Roche, 2004). Secondly, farmers 

would have to be willing to manage their farms jointly to realise the rewards of free movement 

of the springbuck on the rangelands. Thirdly, even though springbuck ranching is in absolute 

terms profitable, farmers would have to be prepared to settle for lesser income returns, if the 

continued sustainability of these rangelands is to be realised. Indeed, the successful 

implementation of such actions could, in the long-run, lead to the development of other forms 

of managing the resultant biodiversity of the area and could potentially yield other income 

earning projects.  
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Finally, the finding that springbuck ranching could potentially be more profitable than 

sheep farming beckons a need for careful consideration of other programmes that will enforce 

the management of these rangelands through springbuck ranching and related keynote species. 

An example could be the promotion of other spill over industries that could directly benefit 

rangeland owners through the joint management of these rangelands and the resultant 

industries. Such could include ecotourism projects that are progressive and geared towards the 

holistic management of biodiversity (both flora and fauna) with a potential of creating 

employment that could absorb some of the jobs that would have been lost because of the 

transition from sheep farming to game ranching. These programmes should include all 

landowners, resident and non-resident, to enable a holistic development of biodiversity inspired 

projects for the benefit of all the people of Graaff-Reinet and South Africa as a whole and more 

importantly for future generations as well.  

6.5 Concluding Remarks 

Thoughtfulness should be exercised when interpreting these results. Besides the 

unavoidable limitations on data and modelling, the results of this study also have some 

weaknesses, which need to be taken into consideration. The analysis did not include other forms 

of domestic livestock, which the decision maker kept during the historical period that could 

otherwise make livestock farming more profitable than springbuck ranching. Livestock farmers 

in Graaff-Reinet keep a variety of other domestic stock including cattle, goats, domestic fowl 

and horses. Similarly, this study made an ambitious assumption regarding the gradual re-

introduction of springbuck into the farm. In practice, this might not materialise. Rangeland 

owners are reluctant to change from conventional farming systems they know to something that 

is new and practically unknown. Thus, the viability of springbuck ranching will depend very 

much on how individual landowners view the potential benefits of biological diversity on 

rangelands health. In particular, those farmers who are forward looking and appreciate the 

influence of keystone species on biodiversity restoration and its prospective ability to contribute 

towards the rangeland’s ecological insurance would place more value on springbuck ranching 

and vice versa.  Similarly, the conversion rates and especially output numbers in springbuck 
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ranching might vary considerably; affecting the probable profitability of springbuck meat 

production enterprises.  

Therefore, whilst there is a springbuck ranching processing facility in Graaff-Reinet, this 

analysis assumed that the business model would stay the same throughout the planning period. 

In the same way, the costs of harvesting the springbuck were deliberately left out of the analysis 

given that the current agreement between the meat processor and individual springbuck 

ranchers is such that the meat processor pays all costs related to the harvesting of the 

springbuck on the farm. It was, consequently, hard to ascertain the cost of springbuck 

harvesting per farm. The study was also unable to establish whether the per kilogram price of 

venison excluded the cost of harvesting i.e. if the Meat Processor had a way of recovering the 

costs of harvesting from the ranchers. Clearly, as this study has shown, a slight increase in the 

variable costs of production in springbuck ranching could affect the probable profitability of 

springbuck meat production. More than likely, the meat processor might in the long-run push 

the cost of harvesting (helicopter and labour costs) to the individual ranchers, which could 

increase the variable costs of production significantly.  

Another critical limitation of this study was the assumption that the annual mean prices 

in the planning horizon will grow linearly as per the changes in consumer inflation, which might 

not be the case. In this study, the changes in inflation rates were near estimates that could be 

used to forecast future prices. Actually, recent studies (Chen et al., 2008) have shown that wool 

prices are explained more by exchange rates variation than by other factors. Similarly, the price 

of venison might also be affected by changes in exchange rates as venison is mainly sold in 

overseas markets.  The assumption that wool production per ewe will be fixed throughout the 

planning horizon is also a weakness of this study. Indeed, it might seem that farmers are more 

capable to improve wool productivity per ewe than improving the productivity of the 

rangelands. However, as shown in chapter two, this study was more interested in settling the 

degradation impasse of the rangelands in the Karoo. 

An additional limitation of this study was the assumption that farmers might be drawn to 

springbuck meat production because of its profitability. Whilst there is some theoretical and 

empirical basis to this, a major challenge is convincing farmers that the limited local venison 

market will in the future pick up and be a force to reckon with like the wool industry in the area. 
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However, as discussed with Camdeboo Meat Processors, it does appear that they are in a drive 

to sensitise the local consumer market on the health benefits of venison. However, as it might 

seem, farmers are less likely to convert their farms to something new - that still has a lot of 

market uncertainties. It is precisely because of this challenge that this study decided to use 

incentives – to boost incomes and confidence whilst the local market is being nurtured.  

Despite these limitations, the study was able to show that under its assumptions, 

springbuck ranching could return a higher NPV and net worth for a 5 000ha farm producing 

springbuck on 70% of the farm, mutton on 20% and wool on 10%. Decision makers who are 

interested in converting their sheep farms could use these results as a foundation in coming up 

with the appropriate enterprise mixes for their rangelands. Policymakers, on the other hand, 

could use them as a springboard to evaluate further the type of policy initiatives and state 

programmes that could perhaps lead to the uptake of not only springbuck ranching but also 

other ecological-economic systems. This could promote biodiversity restoration and the 

eventual reclamation and protection of these natural ecosystems for the benefit of future 

generations as stipulated in the constitution of the Republic of South Africa.  

6.6 Recommendations for Further Study 

This study analysed the profitability of converting a 5 000ha sheep farm into a 

springbuck ranch for meat production. It is recommended that the study be extended to include 

other forms of domestic livestock in the Karoo together with other spill over businesses from 

springbuck ranching, including trophy hunting, ecotourism, and the economic benefits of 

floristic diversity on the profitability of converting livestock farms into springbuck ranches. In 

addition, this study did not explicitly consider the ecological insurance value of springbuck 

ranching, which could increase the value of farms in Graaff-Reinet significantly.  This study did 

not use actual wool output from the farm due to lack of data. Future studies might expand this 

study by incorporating actual wool output data as opposed to wool from a representative ewe or 

yearling. This will give a more realistic picture of the net returns from wool sheep farming.  

Secondly, economic profitability of springbuck ranching might benefit from scale, which 

was not considered in the present study. Farms in Graaff-Reinet are also bigger than 5 000ha. 

Future studies could potentially extend the present study by analysing the profitability of 
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converting a much bigger sheep farm into a springbuck ranch. Merely replacing sheep farming 

with springbuck ranching, without quantifying - if any - benefits that accrue to the local people 

in terms of jobs and food security may prove to be a big mistake. This point may seem 

somewhat obvious, but it is clearly important from a local economic development perspective 

and on whether the government endorses and supports springbuck ranching as a solution 

towards halting environmental health concerns. Similarly, further analysis on the economic 

impact of converting from sheep farming to springbuck ranching on the Graaff-Reinet economy 

should be conducted with data set that has been obtained from the farmers, community 

members and other concerned stakeholders, to get better insights into the economics of 

springbuck based rangelands utilisation in Graaff-Reinet. There is also opportunity to expand 

this study through the identification of strategies and programmes that can be used to expand 

the limited domestic market for venison in South Africa. This might turn out to be an important 

component of this research going forward if the recommendations of this study do yield a 

significant uptake in springbuck ranching in Graaff-Reinet.  
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APPENDICES 

APPENDIX A 1 

Table A. 1. Costs Analysis 
 Percent of total income from 

Sheep enterprise 
Percent of total income from 

Springbuck enterprise 

Supplementary feeding costs 20 0 

Marketing and related costs 7 0 

Manager's salary 10 12 

Labour 5 7 

Stock purchases 2 1 

Production (veterinary, 
 husbandry etc.)   

5 1 

Maintenance    

            Grounds/veld 0.5 0 

            Vehicles and tractor 2 1 

             Buildings 1 0.2 

             Fences 1.1 0.15 

Fuel    

            Diesel 2 5 

            Petrol 1 1 

Office costs 0.1 0.1 

Miscellaneous 1 1 
Total costs 58.1 29.45 

The cost structure for a sheep farming enterprise versus a springbuck ranching enterprise in 
Graaff-Reinet. The figures are representative of the costs faced by the principal decision maker 
in the case study farm. Note the high percentage of feed costs in sheep farming versus nil in 
springbuck ranching. Also note that labour costs in springbuck ranching appear to be higher 
than in sheep farming because the farmer pays more wages in ranching than in sheep farming.  
Source: Author’s own calculations. 
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Table A2. Inflation, Interest and Exchange Rates for Deterministic and Stochastic 
Variables. 

Year %change 
in CPI 

% change in 
PPI 

Fixed 
costs 

Interest 
rates 

Exchange 
rates 

2011 0.080 0.051 0.089 0.090 0.073 
2012 0.057 0.060 0.084 0.090 0.072 
2013 0.054 0.056 0.081 0.099 0.077 
2014 0.052 0.055 0.078 0.109 0.076 
2015 0.058 0.057 0.067 0.110 0.080 
2016 0.057 0.057 0.067 0.110 0.084 
2017 0.055 0.055 0.067 0.114 0.088 
2018 0.055 0.052 0.067 0.112 0.091 
2019 0.055 0.052 0.067 0.109 0.093 
2020 0.055 0.051 0.067 0.109 0.097 
2021 0.053 0.051 0.067 0.107 0.100 
2022 0.053 0.050 0.067 0.107 0.104 
2023 0.053 0.049 0.067 0.105 0.108 
2024 0.053 0.049 0.067 0.105 0.112 
2025 0.053 0.049 0.067 0.104 0.115 

Source: BER, 2011 
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Table A.3. Summary Statistics for the Simulation of Wool Sheep, Lamb, Springbuck, Wool Price, Mutton Price, 
Venison Price, Rainfall and Biomass 

Wool sheep 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1188.34 1174.06 1153.55 1112.45 1060.61 1061.41 951.08 955.53 827.37 831.06 704.23 706.46 585.32 586.11 469.23 

StDev 233.07 221.80 217.80 218.23 203.77 196.79 182.96 183.24 160.82 161.28 135.04 131.36 108.55 112.59 88.31 

CV 19.61 18.89 18.88 19.62 19.21 18.54 19.24 19.18 19.44 19.41 19.18 18.59 18.55 19.21 18.82 

Min 791.53 782.92 767.41 745.29 707.22 708.88 636.27 636.94 558.80 553.99 471.03 471.32 390.69 390.84 312.97 

Max 1576.72 1563.86 1531.72 1486.54 1412.94 1413.33 1272.01 1269.13 1105.20 1104.60 940.01 940.25 779.67 778.61 624.31 

Lamb Yield 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 340.82 343.76 358.35 363.25 380.33 374.10 410.24 414.58 439.54 445.32 487.53 487.38 513.42 513.03 555.94 

StDev 139.38 140.35 142.72 148.03 146.68 145.55 147.47 146.82 146.68 146.16 153.78 147.39 141.10 141.88 121.72 

CV 40.90 40.83 39.83 40.75 38.57 38.91 35.95 35.41 33.37 32.82 31.54 30.24 27.48 27.66 21.89 

Min 156.04 156.11 162.46 171.71 178.91 180.41 198.77 200.64 233.57 233.77 268.04 269.99 300.37 298.94 358.73 

Max 708.17 719.60 746.59 772.25 773.65 759.18 802.62 817.78 856.57 844.31 918.20 908.76 939.31 957.04 977.73 

Venison 
Yield 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 577.24 584.54 595.63 624.66 668.95 670.34 735.19 737.23 831.97 832.97 956.69 955.94 1119.08 1119.14 1338.81 

StDev 114.10 113.47 114.65 123.63 126.63 130.57 142.96 143.45 158.11 159.29 184.95 184.33 213.13 221.22 259.67 

CV 19.77 19.41 19.25 19.79 18.93 19.48 19.44 19.46 19.00 19.12 19.33 19.28 19.04 19.77 19.40 

Min 385.59 391.41 397.15 417.70 447.53 446.93 491.22 491.10 554.65 555.93 639.71 638.90 747.53 746.86 896.48 

Max 770.24 778.04 794.11 833.66 892.17 892.04 981.38 979.22 1108.60 1106.94 1274.89 1274.24 1491.92 1487.78 1790.62 

Wool Price 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 33.67 35.23 36.87 38.55 40.28 42.51 44.93 47.36 50.24 52.97 55.86 59.13 62.24 65.79 69.49 

StDev 6.44 6.93 7.11 7.45 7.66 8.12 8.42 9.22 9.66 10.13 10.93 11.56 12.05 12.90 13.39 

CV 19.13 19.68 19.28 19.32 19.01 19.10 18.75 19.46 19.23 19.13 19.57 19.55 19.35 19.61 19.27 

Min 22.42 23.46 24.55 25.64 26.88 28.41 30.02 31.68 33.40 35.29 37.28 39.36 41.55 43.83 46.26 

Max 44.79 46.71 48.95 51.24 53.64 56.60 59.84 63.22 66.56 70.51 74.44 78.62 82.97 87.61 92.37 
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Table A.3. Continued 

Mutton Price 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 34.18 35.82 36.16 37.10 38.30 39.69 40.94 42.77 44.78 46.06 48.36 51.35 52.95 55.74 58.62 

StDev 6.56 6.87 6.96 7.58 8.07 8.41 8.92 9.13 10.44 11.07 11.66 11.76 12.75 12.99 13.56 

CV 19.19 19.17 18.24 18.91 19.07 18.81 19.00 18.35 19.78 20.10 19.98 18.86 19.63 18.90 18.67 

Min 22.72 24.07 27.43 30.35 32.38 35.41 37.54 40.84 48.14 47.14 50.35 53.89 56.71 52.60 55.56 

Max 45.38 47.93 52.52 55.91 60.50 66.14 68.70 78.00 78.99 84.12 89.10 94.10 100.13 98.52 104.05 

Venison Price 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 21.37 22.42 23.53 24.63 28.12 26.70 27.61 28.64 29.79 30.63 31.36 32.15 32.92 33.65 34.57 

StDev 4.13 4.38 4.56 4.60 5.30 5.07 5.21 5.43 5.71 5.93 6.14 6.31 6.09 6.48 6.57 

CV 19.34 19.53 19.39 18.69 18.84 18.98 18.88 18.94 19.18 19.36 19.59 19.63 18.48 19.25 18.99 

Min 14.24 15.06 15.69 16.47 18.79 17.87 18.44 19.09 19.79 20.47 20.97 21.48 21.98 22.54 22.96 

Max 28.42 29.93 31.31 32.77 37.37 35.60 36.87 38.16 39.44 40.89 41.90 42.89 43.84 44.89 45.64 

Rainfall/Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 346.74 299.57 291.15 346.24 438.62 294.13 287.31 331.13 418.67 294.73 281.05 316.06 392.82 277.78 306.31 

StDev 90.60 58.94 57.56 66.45 98.51 58.39 58.82 65.99 100.98 60.74 58.74 66.91 100.30 59.29 56.40 

CV 25.96 19.04 18.80 19.19 19.18 18.89 19.14 19.06 19.66 19.61 19.19 19.33 19.56 19.26 18.41 

Min 243.82 205.60 204.28 231.37 343.20 205.78 204.52 231.49 342.23 205.60 204.59 231.17 344.16 206.25 204.34 

Max 349.66 393.55 378.03 461.12 534.03 382.47 370.10 430.78 495.11 383.87 357.51 400.96 441.48 349.31 408.28 

Biomass 
/Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 3152.57 1892.98 1879.94 2130.49 3152.56 2523.10 3011.75 3410.39 5047.92 3032.97 3009.85 2802.62 2753.09 1654.31 1642.71 

StDev 606.57 364.68 360.80 410.23 607.11 487.28 578.91 653.59 967.37 585.67 582.90 539.28 528.30 320.62 318.24 

CV 19.24 19.26 19.19 19.26 19.26 19.31 19.22 19.16 19.16 19.31 19.37 19.24 19.19 19.38 19.37 

Min 2104.94 1263.01 1256.11 1422.19 2103.67 1684.76 2009.65 2274.50 3372.71 2026.15 2009.80 1872.12 1836.02 1104.68 1096.53 

Max 4203.49 2525.02 2505.37 2837.55 4202.04 3364.00 4014.88 4543.63 6724.58 4040.87 4012.91 3739.39 3666.29 2205.39 2190.02 

 



Appendices 
 

195 
 

Appendix B 

SIMULATION SUMMARY STATISTICS OF KEY OUTPUT VARIABLES FOR A 5 000ha 
SHEEP FARM IN GRAAFF-REINET PRODUCING WOOL AS A PREMIER 

ECOLOGICAL-ECONOMIC SYSTEM WITHOUT INCENTIVES. 



Appendices 
 

196 
 

Table B.1. Simulation Summary Statistics for Ending Cash Balance for a 5  000ha producing WLS, WS, and WL with sheep 

as a premier economic activity without incentives. 

WLS NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 159 717.66 106 495.00 80 626.98 80 626.98 77 160.65 66 822.05 62 050.01 45 861.88 44 249.93 32 682.13 38 367.89 21 709.50 17 376.12 12 672.81 -1 870.59 

StDev 79 215.31 50 117.99 31 365.17 31 365.17 28 594.25 24 471.13 22 465.33 16 050.28 14 745.31 10 171.06 10 928.09 5 861.63 4 616.31 3 316.86 489.35 

CV 49.60 47.06 38.90 38.90 37.06 36.62 36.21 35.00 33.32 31.12 28.48 27.00 26.57 26.17 -26.16 

Min 17 435.03 -8 432.44 -17 577.83 -17 577.83 -18 436.78 -16 100.38 -21 001.48 -19 366.23 -24 047.83 -27 929.13 -28 872.40 -32 367.38 -44 961.18 -42 139.61 -53 866.17 

Max 355 411.75 241 883.43 210 083.50 210 083.50 205 929.39 190 167.29 147 234.06 126 848.13 147 594.64 123 202.45 126 090.70 97 995.99 86 828.83 82 867.39 68 370.79 

P(NCI<0) 0 3 4 3 3 1 2 2 2 1 1 2 2 7 9 

                
WS NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 183 541.44 136 666.85 95 482.43 95 482.43 89 174.17 71 379.29 62 644.32 39 702.72 37 393.47 17 368.19 20 752.56 2 879.08 834.21 -6 282.56 -24 275.61 

StDev 90 204.55 64 860.30 45 007.84 43 827.84 40 039.28 31 027.50 26 771.30 15 987.27 14 100.83 6 203.76 6 837.21 944.22 231.23 1 003.67 3 304.90 

CV 49.15 47.46 47.14 45.90 44.90 43.47 42.74 40.27 37.71 35.72 32.95 32.80 27.72 
-         

15.98 
-         

13.61 

Min -2 079.99 6 127.66 -8 870.61 -8 870.61 -14 177.94 -24 504.23 -21 162.14 -27 438.31 -30 684.55 -50 101.75 -32 761.73 -64 238.72 -58 662.82 -59 439.11 -76 717.75 

Max 420 544.06 312 440.89 235 377.44 235 377.44 217 287.33 186 529.99 149 385.13 102 118.32 132 846.50 93 532.89 102 509.29 69 076.20 56 592.87 52 713.93 38 276.81 

P(NCI<0) 1 0 1 1 1 1 1 2 2 2 4 10 10 12 13 

                
WL NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 100 335.92 90 944.82 91 730.69 91 730.69 90 294.49 98 445.03 93 217.95 85 745.92 86 173.88 72 169.67 74 922.34 64 378.34 69 543.00 64 771.72 7 529.26 

StDev 57 005.36 49 779.43 43 259.04 43 259.04 44 119.17 45 309.38 38 220.32 31 306.90 38 057.78 33 178.48 32 217.21 27 643.81 30 345.99 26 365.54 2 659.73 

CV 56.81 54.74 47.16 47.16 48.86 46.03 41.00 36.51 44.16 45.97 43.00 42.94 43.64 40.71 35.33 

Min -10 158.42 -583.40 10 034.21 10 034.21 4 351.70 5 070.26 22 030.34 17 428.76 18 136.06 5 818.93 14 690.88 -6 659.48 5 217.14 9 894.98 -81 343.08 

Max 244 100.05 232 627.53 226 879.19 226 879.19 183 581.41 216 299.55 182 138.01 169 254.27 169 883.05 175 067.06 181 548.89 132 308.79 145 679.35 137 950.59 27 566.16 

P(NCI<0) 1.00 1.00 - - - - - - - - - - - - 15.00 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.2. Simulation Summary Statistics for Ending Cash Balance for a 5  000ha producing wool as a premier economic 
activity without incentives. 

WLS NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 213,379.59 224,729.01 219,487.66 205,712.80 185,827.49 158,642.33 136,029.75 115,462.63 103,555.29 91,232.54 87,185.71 79,902.70 79,902.70 66,221.18 65,929.72 
StDev 32,619.32 48,358.92 53,578.99 52,633.31 47,658.55 42,253.12 39,959.54 32,566.25 28,795.56 30,492.07 31,779.14 31,215.48 31,215.48 24,252.96 16,013.62 

CV 15.29 21.52 24.41 25.59 25.65 26.63 29.38 28.21 27.81 33.42 36.45 39.07 39.07 36.62 24.29 
Min 118,136.19 61,362.55 55,515.23 37,172.61 18,512.28 34,938.11 28,437.48 17,442.74 31,721.05 5,249.23 1,490.35 3,487.87 3,487.87 9,899.06 29,398.25 
Max 309,100.46 336,466.88 348,902.23 341,168.22 318,977.96 290,777.67 245,414.30 192,554.85 176,526.11 175,483.09 170,085.73 158,780.86 158,780.86 129,426.87 112,309.19 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                WS NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 
Mean 242,047.39 213,891.59 181,406.20 153,913.09 135,685.50 113,208.38 100,788.18 89,669.42 89,323.33 84,699.08 89,133.38 85,167.69 75,196.05 80,455.87 87,670.42 
StDev 23,570.92 33,842.55 38,650.86 40,271.89 38,830.23 33,759.83 33,118.24 29,631.74 29,352.57 29,201.84 30,218.36 28,924.33 29,869.70 24,994.04 22,215.07 

CV 9.74 15.82 21.31 26.17 28.62 29.82 32.86 33.05 32.86 34.48 33.90 33.96 39.72 31.07 25.34 
Min 183,156.97 124,864.32 70,474.62 53,226.31 40,774.89 15,868.30 6,404.15 11,345.77 17,603.13 16,580.07 23,810.85 19,172.44 3,270.85 19,731.05 29,484.05 
Max 314,190.71 314,561.54 303,618.14 268,750.57 254,472.95 232,243.98 219,045.96 185,620.05 193,398.96 190,603.19 168,030.83 170,325.61 151,975.38 137,447.79 146,709.53 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                WL NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 
Mean 261,670.33 232,448.79 200,289.51 175,192.61 162,940.33 141,166.09 130,430.60 119,077.02 118,171.30 111,397.96 114,119.61 108,835.79 108,835.79 83,417.01 109,183.98 
StDev 33,603.21 45,752.31 49,147.84 49,085.45 47,326.27 42,040.36 40,185.14 34,475.86 32,526.99 32,614.96 32,441.76 31,251.28 31,251.28 27,695.84 29,092.77 

CV 12.84 19.68 24.54 28.02 29.05 29.78 30.81 28.95 27.53 29.28 28.43 28.71 28.71 33.20 26.65 
Min 178,807.44 128,895.03 84,636.29 55,063.56 42,048.93 34,630.56 27,538.33 27,110.10 39,326.71 25,291.58 32,706.98 33,815.24 33,815.24 12,829.14 42,491.31 
Max 355,415.92 359,875.46 362,943.55 321,811.67 312,314.04 298,091.47 283,732.60 228,004.41 206,993.27 215,219.44 213,573.40 203,232.76 203,232.76 155,399.34 194,031.46 

P(ECB<0) - - - - - - - - - - - - - - - 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.3. Simulation Summary Statistics for Real Net Worth for a 5  000ha Farm in Graaff-Reinet, producing WLS, WS, 
and WL with sheep as a premier economic activity without incentives. 

WLS NI 
SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 65,929.72 66,221.18 79,902.70 79,902.70 87,185.71 91,232.54 103,555.29 115,462.63 136,029.75 158,642.33 185,827.49 205,712.80 219,487.66 224,729.01 213,379.59 

StDev 16,013.62 24,252.96 31,215.48 31,215.48 31,779.14 30,492.07 28,795.56 32,566.25 39,959.54 42,253.12 47,658.55 52,633.31 53,578.99 48,358.92 32,619.32 

CV 24.29 36.62 39.07 39.07 36.45 33.42 27.81 28.21 29.38 26.63 25.65 25.59 24.41 21.52 15.29 

Min 29,398.25 9,899.06 3,487.87 3,487.87 1,490.35 5,249.23 31,721.05 17,442.74 28,437.48 34,938.11 18,512.28 37,172.61 55,515.23 61,362.55 118,136.19 

Max 112,309.19 129,426.87 158,780.86 158,780.86 170,085.73 175,483.09 176,526.11 192,554.85 245,414.30 290,777.67 318,977.96 341,168.22 348,902.23 336,466.88 309,100.46 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
WS NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 87,670.42 80,455.87 75,196.05 85,167.69 89,133.38 84,699.08 89,323.33 89,669.42 100,788.18 113,208.38 135,685.50 153,913.09 181,406.20 213,891.59 242,047.39 

StDev 22,215.07 24,994.04 29,869.70 28,924.33 30,218.36 29,201.84 29,352.57 29,631.74 33,118.24 33,759.83 38,830.23 40,271.89 38,650.86 33,842.55 23,570.92 

CV 25.34 31.07 39.72 33.96 33.90 34.48 32.86 33.05 32.86 29.82 28.62 26.17 21.31 15.82 9.74 

Min 29,484.05 19,731.05 3,270.85 19,172.44 23,810.85 16,580.07 17,603.13 11,345.77 6,404.15 15,868.30 40,774.89 53,226.31 70,474.62 124,864.32 183,156.97 

Max 146,709.53 137,447.79 151,975.38 170,325.61 168,030.83 190,603.19 193,398.96 185,620.05 219,045.96 232,243.98 254,472.95 268,750.57 303,618.14 314,561.54 314,190.71 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
WL NI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 109,183.98 83,417.01 108,835.79 108,835.79 114,119.61 111,397.96 118,171.30 119,077.02 130,430.60 141,166.09 162,940.33 175,192.61 200,289.51 232,448.79 261,670.33 

StDev 29,092.77 27,695.84 31,251.28 31,251.28 32,441.76 32,614.96 32,526.99 34,475.86 40,185.14 42,040.36 47,326.27 49,085.45 49,147.84 45,752.31 33,603.21 

CV 26.65 33.20 28.71 28.71 28.43 29.28 27.53 28.95 30.81 29.78 29.05 28.02 24.54 19.68 12.84 

Min 42,491.31 12,829.14 33,815.24 33,815.24 32,706.98 25,291.58 39,326.71 27,110.10 27,538.33 34,630.56 42,048.93 55,063.56 84,636.29 128,895.03 178,807.44 

Max 194,031.46 155,399.34 203,232.76 203,232.76 213,573.40 215,219.44 206,993.27 228,004.41 283,732.60 298,091.47 312,314.04 321,811.67 362,943.55 359,875.46 355,415.92 
P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.4. Simulation Summary Statistics for Net Present Value for a 5 000ha 
producing WLS, WS, and WL with sheep as a premier economic activity with out 

incentives. 

Variable 
WLS NI SF WS NI SF WL NI SF 

Mean -83,033.6 -23,700.7 137,193.4 

StDev 36,015.3 10,754.5 45,093.1 

CV -43.4 -45.4 32.9 

Min -663,185.9 -587,230.6 -293,615.9 

Max 341,867.3 411,163.5 518,301.7 

P(NPV<0) 64.7% 51.0% 18.7% 

See Table 5.2 for a detailed explanation of acronyms.  
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SIMULATION SUMMARY STATISTICS OF KEY OUTPUT VARIABLES FOR A 5 000ha 

SHEEP FARM PRODUCING WOOL AS A PREMIER ECOLOGICAL-ECONOMIC 

SYSTEM WITH INCENTIVES. 
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Table B.5. Simulation Summary Statistics for Net Cash Income for a 5  000ha Farm producing WLS, WS, and WL with 
sheep as a premier economic activity with incentives. 

WLS YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 156,342.55 134,536.28 129,650.57 56,964.32 55,629.48 63,701.08 64,450.38 59,731.06 61,775.07 55,082.61 55,758.72 50,318.13 53,572.78 52,221.56 52,053.23 

StDev 58,821.50 44,579.43 42,371.50 20,371.50 18,047.69 21,837.17 22,645.42 20,889.77 19,278.07 18,299.69 18,299.69 14,569.19 12,923.74 10,706.53 10,585.56 

CV 37.62 33.14 32.68 35.76 32.44 34.28 35.14 34.97 31.21 33.22 32.82 28.95 24.12 20.50 20.34 

Min 82,266.87 101,463.78 52,928.76 52,928.76 46,689.54 38,257.72 28,220.82 17,854.19 21,915.58 17,656.30 17,656.30 21,759.14 17,281.03 10,332.29 10,981.23 

Max 179,622.86 181,540.80 194,787.14 194,787.14 178,939.95 233,825.01 190,477.26 186,795.00 177,065.45 179,018.81 179,018.81 160,501.20 149,737.60 186,793.30 128,600.15 

P(NCI<0) 0.4 0.1 1.2 1.6 2.4 2.8 3.2 1 1 1 1 1 2.6 8.4 12 

                WS YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 214,461.52 173,239.85 150,963.05 156,080.41 152,347.65 135,916.41 133,690.22 114,855.61 113,121.88 98,883.17 102,167.86 87,188.94 84,121.34 81,686.81 72,419.89 

StDev 90,669.02 70,492.22 61,490.33 55,770.30 51,526.08 44,055.21 43,247.11 36,067.38 33,908.00 31,834.05 32,098.32 26,710.56 26,142.90 24,445.53 22,294.43 

CV 42.28 40.69 40.73 35.73 33.82 32.41 32.35 31.40 29.97 32.19 31.42 30.64 31.08 29.93 30.78 

Min 25,314.72 9,539.93 13,221.81 41,352.92 39,046.51 23,630.76 36,393.62 33,186.86 35,461.37 17,828.46 28,099.85 12,633.78 18,700.23 23,433.26 19,862.80 

Max 460,021.95 350,312.30 332,575.09 313,012.90 299,438.87 266,160.87 270,886.35 222,844.51 209,920.56 189,993.48 193,830.88 169,513.65 158,825.59 190,854.71 137,481.43 

P(NCI<0) - - - - - - - - - - - - - - - 

                WL YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 213,986.30 167,018.53 72,776.44 158,408.84 158,198.91 152,943.33 153,015.35 140,631.68 139,189.58 129,609.35 136,678.19 121,003.23 119,692.76 116,820.28 106,803.39 

StDev 71,299.49 58,525.31 54,619.39 53,139.91 49,568.02 43,505.86 44,181.90 36,267.15 36,971.11 32,841.22 33,570.06 28,768.75 28,129.15 26,313.94 25,643.88 

CV 33.32 35.04 75.05 33.55 31.33 28.45 28.87 25.79 26.56 25.34 24.56 23.78 23.50 22.53 24.01 

Min 64,645.89 12,251.38 95,312.73 34,509.21 33,703.00 64,183.61 60,176.13 55,278.47 56,023.27 53,867.25 63,056.34 50,448.79 61,200.22 57,109.59 56,272.46 

Max 405,723.89 311,966.03 221,352.44 304,637.35 293,693.25 262,710.31 289,952.04 246,158.15 234,798.05 223,745.59 248,544.77 213,762.64 198,500.76 194,178.66 182,726.48 
P(NCI<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.6. Simulation Summary Statistics for Ending Cash Balance for a 5  000ha Farm producing wool sheep as a 
premier economic activity with incentives. 

WLS YI 
SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 220,335.92 180,987.18 164,370.27 151,730.69 120,294.49 98,445.03 93,217.95 85,745.92 86,173.88 72,169.67 74,922.34 64,378.34 69,543.00 64,836.43 50,745.74 

StDev 57,005.36 49,806.98 43,259.04 43,259.04 44,119.17 40,309.38 38,220.32 36,306.90 37,057.78 32,178.48 32,217.21 27,643.81 30,345.99 26,393.35 23,659.73 

CV 25.87 27.52 26.32 28.51 36.68 40.95 41.00 42.34 43.00 44.59 43.00 42.94 43.64 40.71 46.62 

Min 10,158.42 583.40 10,034.21 10,034.21 4,351.70 5,070.26 22,030.34 17,428.76 18,136.06 5,818.93 14,690.88 6,659.48 5,217.14 9,894.98 5,068.08 

Max 244,100.05 232,627.53 226,879.19 226,879.19 183,581.41 216,299.55 182,138.01 169,254.27 169,883.05 175,067.06 181,548.89 132,308.79 145,679.35 137,950.59 103,841.16 

P(ECB<0) - - - - - - - - - - - - - - - 

                WS YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 264,756.62 219,639.95 179,304.71 181,431.03 176,447.50 159,867.98 152,248.01 130,329.34 128,958.56 109,794.26 113,968.53 96,819.72 93,771.27 88,997.57 71,499.39 

StDev 90,204.55 73,898.87 56,670.20 55,007.84 51,839.28 45,027.50 39,771.30 29,987.27 37,159.83 30,203.76 31,837.21 27,444.22 26,831.23 24,649.75 23,304.90 

CV 34.07 33.65 31.61 30.32 29.38 28.17 26.12 23.01 28.82 27.51 27.94 28.35 28.61 27.70 32.59 

Min 79,135.18 89,058.40 69,534.82 77,077.99 73,095.39 63,984.46 68,441.55 63,188.31 60,880.54 42,324.33 60,454.24 29,701.92 35,942.66 35,776.31 19,057.25 

Max 501,759.24 395,371.63 312,460.90 321,326.05 304,560.67 275,018.68 238,988.81 192,744.93 224,411.59 185,958.97 195,725.26 163,016.84 151,198.34 148,350.61 134,051.81 

P(ECB<0) - - - - - - - - - - - - - - - 

                WL YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 253,932.84 202,468.10 179,575.59 179,575.59 177,433.99 168,310.73 164,653.69 149,488.50 148,815.02 138,108.21 144,583.85 128,650.14 124,981.60 120,952.94 106,904.41 

StDev 72,675.31 60,147.85 51,365.17 51,365.17 48,594.25 43,471.13 39,465.33 34,050.28 39,745.31 31,171.06 34,928.09 28,361.63 28,616.31 27,767.68 27,222.75 

CV 28.62 29.71 28.60 28.60 27.39 25.83 23.97 22.78 26.71 22.57 24.16 22.05 22.90 22.96 25.46 

Min 111,650.21 87,498.30 81,370.77 81,370.77 81,836.55 85,388.30 81,602.20 84,260.39 80,517.26 77,496.95 77,343.56 74,573.26 62,644.29 66,075.81 54,908.83 

Max 449,626.93 337,814.17 309,032.10 309,032.10 306,202.73 291,655.98 249,837.74 230,474.75 252,159.73 228,628.53 232,306.67 204,936.63 194,434.31 191,504.08 177,145.79 
P(ECB<0) - - - - - - - - - - - - - - - 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.7. Simulation Summary Statistics for Real Net Worth for a 5  000ha Farm producing WLS, WS, and WL with sheep as 

a premier economic activity with incentives . 

WLS YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1,122,194.64 936,363.10 931,290.31 909,114.21 914,641.74 917,178.97 888,025.14 888,300.61 841,953.74 856,632.13 704,211.18 675,033.60 649,294.60 570,783.40 482,029.32 

StDev 142,704.66 152,128.25 164,089.82 146,431.39 187,916.28 181,017.39 192,025.40 163,343.38 196,556.93 196,399.65 244,746.47 265,018.79 239,044.93 241,238.27 224,026.65 

CV 12.72 16.25 17.62 16.11 20.55 19.74 21.62 18.39 23.35 22.93 34.75 39.26 36.82 42.26 46.48 

Min 785,956.09 668,393.24 576,074.41 491,788.93 573,923.59 499,197.78 479,086.79 548,684.23 400,410.22 394,224.19 193,199.77 151,969.30 173,392.91 71,011.09 6,304.60 

Max 1,486,427.35 1,381,846.04 1,370,104.44 1,253,074.75 1,359,662.21 1,391,660.55 1,454,288.70 1,347,652.66 1,375,731.80 1,291,485.75 1,299,876.11 1,354,552.77 1,313,828.08 1,102,828.21 1,043,811.88 

P(RNW<0) - - - - - - - - - - - - - - - 

                WS YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1,096,752.48 1,011,609.14 956,532.94 950,155.03 995,187.52 995,076.51 1,033,577.03 1,045,892.04 1,091,767.16 1,149,204.49 1,169,383.31 1,250,097.47 1,220,370.72 1,393,690.15 1,560,478.96 

StDev 96,393.03 105,229.54 109,447.87 107,423.49 135,840.00 130,497.45 148,960.36 135,218.59 173,777.90 206,046.85 257,165.11 284,366.48 250,522.72 348,662.21 352,199.78 

CV 8.79 10.40 11.44 11.31 13.65 13.11 14.41 12.93 15.92 17.93 21.99 22.75 20.53 25.02 22.57 

Min 884,958.50 822,066.92 741,194.91 649,481.46 771,237.18 723,566.38 765,723.13 782,543.06 741,870.19 733,046.92 696,998.17 737,094.75 662,470.53 719,890.03 725,607.98 

Max 1,324,935.13 1,249,004.18 1,224,426.20 1,187,049.00 1,352,476.43 1,306,095.25 1,416,302.10 1,454,077.55 1,530,080.38 1,716,795.23 1,917,917.06 2,055,992.62 1,883,186.42 2,244,223.16 2,527,984.50 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
WL YI SF 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1,122,194.64 936,363.10 931,290.31 909,114.21 914,641.74 917,178.97 888,025.14 888,300.61 841,953.74 856,632.13 704,211.18 675,033.60 649,294.60 570,783.40 482,029.32 

StDev 142,704.66 152,128.25 164,089.82 146,431.39 187,916.28 181,017.39 192,025.40 163,343.38 196,556.93 196,399.65 244,746.47 265,018.79 239,044.93 241,238.27 224,026.65 

CV 12.72 16.25 17.62 16.11 20.55 19.74 21.62 18.39 23.35 22.93 34.75 39.26 36.82 42.26 46.48 

Min 785,956.09 668,393.24 576,074.41 491,788.93 573,923.59 499,197.78 479,086.79 548,684.23 400,410.22 394,224.19 193,199.77 151,969.30 173,392.91 71,011.09 -6,304.60 

Max 1,486,427.35 1,381,846.04 1,370,104.44 1,253,074.75 1,359,662.21 1,391,660.55 1,454,288.70 1,347,652.66 1,375,731.80 1,291,485.75 1,299,876.11 1,354,552.77 1,313,828.08 1,102,828.21 1,043,811.88 
P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.8. Simulation Summary Statistics for Net Present Value for a 5  000ha Farm 
producing WLS, WS, and WL with sheep as a premier economic activity with incentives . 

Variable WLS YISF WS YI SF WL YI SF 

Mean -101,615.28 63,312.81 136,965.68 

StDev 39,244.59 23,155.02 37,249.24 

CV -38.62 36.57 27.20 

Min -609,072.23 -508,725.25 -295,855.62 

Max 414, 056.62 527, 227.87 635, 025.03 

P(NPV<0) 70% 31.9% 17.5% 

See Table 5.2 for a detailed explanation of acronyms.  
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SIMULATION SUMMARY STATISTICS OF KEY OUTPUT VARIABLES FOR A 5 000ha 

FARM PRODUCING VENISON AS A PREMIER ECOLOGICAL-ECONOMIC SYSTEM 

WITHOUT INCENTIVES. 
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Table B.9. Simulation Summary Statistics for Net Cash Income for a 5  000ha Farm producing SLW, SW, and SL with 
springbuck ranching as a premier economic activity without incentives . 

SLW NI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 154876.13 163064.41 165474.73 168607.74 194861.47 175030.91 198334.06 192932.44 225034.63 218264.86 256517.32 250781.50 325354.28 284349.76 361959.98 

StDev 36501.96 39737.18 43101.68 45654.78 56004.44 55006.80 61923.15 66668.49 82188.73 82565.78 94525.51 103944.64 131425.66 133633.28 171589.81 

CV 23.57 24.37 26.05 27.08 28.74 31.43 31.22 34.56 36.52 37.83 36.85 41.45 40.39 41.00 40.01 

Min 77016.15 74837.03 68886.51 41319.76 67802.32 16746.87 52253.88 53407.12 38440.36 24749.63 47218.96 32456.23 19428.55 (20829.60) (7967.42) 

Max 258307.51 315642.14 295467.91 294390.04 360913.74 341346.73 366944.25 394440.33 473329.28 491127.15 536261.86 583255.52 744642.16 624570.88 848454.09 

P(NCI<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.02 

                
SW NI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 144125.27 151021.22 151245.37 150587.90 166765.78 151254.08 165266.88 158944.01 178456.16 170808.76 189222.66 181814.54 206914.40 192027.56 241805.62 

StDev 32302.57 35434.93 38177.72 39341.69 47731.81 48010.10 51929.97 56430.11 67855.63 69536.57 79240.13 87017.93 105981.83 112965.09 142927.92 

CV 22.41 23.46 25.24 26.13 28.62 31.74 31.42 32.50 32.02 32.71 32.88 33.86 34.22 34.83 35.11 

Min 74689.92 66530.49 58612.40 37622.08 53674.42 6837.54 40881.18 29317.97 20105.09 11720.25 9581.88 (3071.48) (4422.78) (64925.35) (69063.06) 

Max 238181.17 299018.30 271964.64 267542.19 311683.25 284797.23 314061.30 328496.11 381973.55 395350.53 417171.17 460497.75 547528.27 487266.01 638642.81 

P(NCI<0) 0 0 0 0 0 0 0 0 0 0 0 0.01 0.02 3 2.4 

                
SL NI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 117226.54 121326.96 116633.38 111715.34 119236.39 100570.27 97142.99 89898.36 87778.98 74744.24 61931.25 44652.14 76360.64 24176.17 39092.39 

StDev 35004.28 36921.31 39181.65 39944.32 46429.68 47160.17 53691.91 53909.87 64232.74 64808.41 73352.61 80187.45 87726.57 89620.03 97405.73 

CV 29.86 30.43 33.59 35.76 38.94 36.89 35.27 35.97 35.18 36.71 36.44 37.58 37.88 37.70 29.17 

Min 40557.44 44789.80 36681.10 14618.16 17258.45 (6805.44) (42261.24) (34764.52) (66083.92) (82757.02) (114450.31) (165510.67) (123046.05) (256984.93) (189438.81) 

Max 214404.77 229655.47 251328.97 226670.42 266115.51 232725.55 229056.47 248592.38 256667.19 259259.83 248912.37 280227.93 345843.19 251846.64 315677.54 

P(NCI<0) 0 0 0 0 0 0.6 2 3.4 7 12.4 20.6 32.6 20.4 40.7 36.7 

 See Table 5.2 for a detailed explanation of acronyms.  
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Table B.10. Simulation Summary Statistics for Ending Cash Balance for a 5  000ha Farm in Graaff-Reinet, producing 
SLW, SW, and SL with springbuck ranching as a premier economic activity without incentives . 

SLW NI 
SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 279168.42 383380.69 497128.39 621312.38 776730.41 923531.52 1099236.53 1278316.58 1489749.01 1707240.79 1962333.02 2224159.94 2553032.19 2858723.52 3223434.61 

StDev 33338.89 54282.54 69461.68 85454.60 104469.10 115040.59 128353.35 142193.80 156793.80 168464.94 178456.20 196176.03 217730.32 236197.40 267915.53 

CV 11.94 14.16 13.97 13.75 13.45 12.46 11.68 11.12 10.52 9.87 9.09 8.82 8.53 8.26 8.31 

Min 207788.78 255441.40 316000.66 401759.85 476267.20 575296.72 769224.99 872635.27 1030673.62 1276433.21 1492403.48 1701379.56 1996159.02 2142564.63 2400580.25 

Max 373194.21 550113.72 713647.98 843601.86 1141995.72 1263916.99 1498202.98 1697175.40 2074915.00 2416664.37 2773220.26 2923396.96 3279503.00 3748240.29 4203995.42 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SW NI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 275678.46 374311.70 477987.98 585285.15 711390.93 828046.30 961760.19 1092052.94 1243508.42 1389961.37 1555646.12 1714454.03 1892451.05 2059944.53 2271223.30 

StDev 29950.03 48949.89 62122.20 75725.09 90003.75 97629.77 108272.46 119701.99 135147.79 143674.33 154122.16 174071.77 200764.46 230396.20 281465.13 

CV 10.86 13.08 13.00 12.94 12.65 11.79 11.26 10.96 10.87 10.34 9.91 10.15 10.61 11.18 12.39 

Min 209748.55 248101.87 321765.90 388564.91 432485.72 553084.89 707001.82 783546.34 864538.17 1028757.70 1164635.75 1261941.86 1423651.11 1432395.89 1440420.47 

Max 361873.63 517822.36 664133.50 790939.41 1028836.52 1108221.76 1296522.12 1469898.16 1750869.61 1972458.47 2191694.24 2243264.74 2508888.58 2746162.88 3190534.28 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SL NI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 262631.45 329749.36 392490.87 450558.50 516313.76 563486.81 607228.35 643626.76 677706.44 698443.85 705944.61 695617.75 716316.47 684002.97 665621.72 

StDev 35004.28 54572.79 69334.57 82714.26 95039.26 100152.38 113214.77 125780.34 139382.10 151016.38 159352.64 176403.53 192864.66 211703.73 234010.46 

CV 13.33 16.55 17.67 18.36 18.41 17.77 18.64 19.54 20.57 21.62 22.57 25.36 26.92 30.95 31.16 

Min 185962.36 208610.66 227353.76 236412.43 267186.14 281893.02 304328.06 288809.36 312244.89 326344.98 244445.43 148879.50 243289.91 125785.07 39457.05 

Max 359809.69 499378.48 607278.77 701694.78 828497.36 921470.33 1049588.42 1025092.71 1154218.11 1203530.33 1216068.32 1160906.59 1304802.75 1291322.93 1429292.70 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.11. Simulation Summary Statistics for Real Net Worth for a 5  000ha Farm producing SLW, SW, and SL with 
springbuck ranching as a premier economic activity without incentives . 

SLW NI 
SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1010077.68 1078047.09 1154358.21 1224960.30 1344410.23 1379686.57 1483556.78 1543624.73 1666322.43 1734795.10 1864768.98 1949665.76 2319891.42 2391554.66 2597771.66 

StDev 88727.75 104150.78 114116.11 127620.40 156683.23 157056.28 177375.87 191277.86 222060.21 226705.28 250831.57 269274.78 355926.56 338259.60 400016.56 

CV 8.78 9.66 9.89 10.42 11.65 11.38 11.96 12.39 13.33 13.07 13.45 13.81 15.34 14.14 15.40 

Min 819514.67 843969.33 886461.58 833959.82 897019.33 973014.74 1032074.48 1114878.13 1013640.03 1161075.55 1279097.13 1360699.43 1431148.09 1510682.11 1657753.42 

Max 1280098.87 1433432.64 1447195.26 1605273.08 1904375.64 1934279.52 2033352.60 2219936.23 2485252.23 2517141.52 2634564.72 2898552.70 3543508.16 3419730.74 3824864.16 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SW NI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1043433.82 1072478.88 1102050.98 1120807.13 1169145.21 1154989.64 1177961.51 1165876.16 1189407.21 1171413.63 1166265.59 1146462.08 1164966.18 1131004.50 1209788.71 

StDev 85687.87 99155.44 107448.59 114810.51 135274.65 138738.96 156587.02 165974.22 192627.07 199061.68 224302.53 233867.67 256676.46 247762.73 293453.10 

CV 8.21 9.25 9.75 10.24 11.57 12.01 13.29 14.24 16.20 16.99 19.23 20.40 22.03 21.91 24.26 

Min 825471.13 855879.77 822179.28 785806.88 808688.44 814559.55 809174.27 787290.13 742164.74 702537.92 628243.96 646191.00 566554.73 573226.15 530414.54 

Max 1320069.83 1450855.33 1400143.01 1473300.87 1598912.55 1607497.11 1683775.42 1730062.40 1908097.29 1831106.43 1832665.74 1947369.89 2089080.32 1775966.47 2066148.37 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SL NI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1073617.42 1095542.96 1111464.33 1114928.12 1146217.62 1105891.72 1082840.93 1053583.99 1027083.26 989187.39 921519.51 886007.95 896849.55 859015.66 929198.32 

StDev 110237.02 123588.04 134873.42 142388.58 161022.48 164814.70 189027.78 191239.12 212101.53 210724.52 225616.47 227733.73 226122.76 211372.69 227261.30 

CV 10.27 11.28 12.13 12.77 14.05 14.90 17.46 18.15 20.65 21.30 24.48 25.70 25.21 24.61 24.46 

Min 834520.18 829218.98 746323.69 796304.58 753027.86 714396.31 560521.08 540123.82 548854.63 484724.34 401613.30 399726.70 407837.20 323922.66 434054.05 

Max 1424282.68 1500066.37 1530869.44 1539987.37 1679085.95 1699743.99 1717294.65 1678101.35 1754909.62 1657514.43 1552657.10 1620514.69 1593898.42 1391880.87 1554547.56 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.12. Simulation Summary Statistics for Net Present Value for a 5 000ha Farm 
producing SLW, SW, and SL with springbuck ranching as a premier economic activity 
without incentives. 
Variable SLW  NI SR WS    NI SR SL    NI SR 

Mean 504521.3618 489096.867 436439.7483 

StDev 140193.5641 133984.5959 142834.1228 

CV 27.78743869 27.39428626 32.72711144 

Min 38933.8142 75490.24329 -33957.1889 

Max 1011218.359 996407.5416 945813.8975 

P(NPV<0) 0% 0% 3% 

See Table 5.2 for a detailed explanation of acronyms.  
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SIMULATION SUMMARY STATISTICS OF KEY OUTPUT VARIABLES FOR A 5 000ha 

FARM PRODUCING VENISON AS A PREMIER ECOLOGICAL-ECONOMIC SYSTEM 

WITH INCENTIVES. 
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Table B.13. Simulation Summary Statistics for Net cash Income for a 5  000ha Farm producing SLW, SW, and SL with 
springbuck ranching as a premier economic activity with incentives. 

SLW YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 200662.19 158767.30 159554.88 159142.34 185162.51 164371.92 180957.70 176618.67 203676.19 199958.87 225856.33 213504.00 287220.82 243818.84 315076.22 

StDev 37994.49 39079.57 44556.59 48854.01 56938.24 55785.18 63254.75 66713.79 80017.13 81437.06 100878.94 102751.59 138335.39 137697.81 165153.76 

CV 18.93 24.61 27.93 30.70 30.75 33.94 34.96 37.77 39.29 40.73 44.67 48.13 48.16 56.48 52.42 

Min 122776.55 41729.39 57697.77 29389.51 70501.64 22812.82 31863.26 5154.97 32990.42 -7666.86 11310.83 -18956.59 -33717.40 -93285.18 -82353.16 

Max 312737.94 265896.69 281819.23 284295.65 349372.77 321359.28 373852.37 396056.15 429565.17 435018.24 543217.25 555564.33 677747.53 659672.44 740252.84 

P(NCI<0) 0 0 0 0 0 0 0 0 0 0.2 0 1 0.6 2.4 1.2 

                
SW YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 176884.69 178814.78 177712.00 173543.78 189308.93 172984.55 180237.73 175214.66 189606.33 184842.21 191100.87 177677.02 201725.40 184059.04 227361.76 

StDev 33388.75 34422.36 39864.72 42983.21 47542.48 48618.82 53556.08 56509.07 67783.47 69121.16 84506.84 86618.03 112449.50 117206.01 138990.89 

CV 18.88 19.25 22.43 24.77 25.11 28.11 29.71 32.25 35.75 37.39 44.22 48.75 55.74 63.68 61.13 

Min 100350.52 67042.04 84613.94 50994.39 93282.10 45254.28 53077.69 9116.88 40073.14 -9782.46 13690.25 -31315.50 -72793.33 -112164.30 -108706.14 

Max 264399.90 276258.82 288204.87 287945.70 344430.75 317168.77 354304.94 363494.94 378099.46 376836.44 450986.58 462995.62 510478.77 537737.62 577688.80 

P(NCI<0) 0 0 0 0 0 0 0 0 0 0 0.1 1.2 2.6 5 2.8 

                
SL YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 163136.76 162896.20 155455.40 147493.91 153429.92 132684.07 126675.91 114614.28 110891.72 96344.12 82618.21 60529.73 86483.07 28883.53 39926.18 

StDev 35657.51 36198.57 37632.01 41081.66 46503.02 46336.15 52434.94 55287.41 64513.74 68448.12 77836.45 77649.96 94340.95 97032.81 97897.04 

CV 21.86 22.22 24.21 27.85 30.31 34.92 41.39 48.24 58.18 71.05 94.21 128.28 109.09 335.95 245.20 

Min 93991.79 80294.17 73803.38 54105.57 59535.76 3143.15 6528.66 -17601.88 -39409.87 -70893.76 -111195.50 -173583.62 -151051.47 -227157.86 -191493.31 

Max 260648.12 252607.60 267303.25 264880.21 288551.20 259916.16 262695.74 288191.37 293257.78 267914.16 278337.75 294942.25 319839.52 297428.97 313173.89 

P(NCI<0) 0 0 0 0 0 0 0 0.6 1.8 8.4 16 22.6 17.8 39 35.8 

See Table 5.2 for a detailed explanation of acronyms.  
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Table B.14. Simulation Summary Statistics for Ending Cash Balance for a 5 000ha Farm producing SLW, SW, and SL 
with springbuck ranching as a premier economic activity with incentives. 

SLW YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 279168.42 383380.69 497128.39 621312.38 776730.41 923531.52 1099236.53 1278316.58 1489749.01 1707240.79 1962333.02 2224159.94 2553032.19 2858723.52 3223434.61 

StDev 33338.89 54282.54 69461.68 85454.60 104469.10 115040.59 128353.35 142193.80 156793.80 168464.94 178456.20 196176.03 217730.32 236197.40 267915.53 

CV 11.94 14.16 13.97 13.75 13.45 12.46 11.68 11.12 10.52 9.87 9.09 8.82 8.53 8.26 8.31 

Min 207788.78 255441.40 316000.66 401759.85 476267.20 575296.72 769224.99 872635.27 1030673.62 1276433.21 1492403.48 1701379.56 1996159.02 2142564.63 2400580.25 

Max 373194.21 550113.72 713647.98 843601.86 1141995.72 1263916.99 1498202.98 1697175.40 2074915.00 2416664.37 2773220.26 2923396.96 3279503.00 3748240.29 4203995.42 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SW YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 275678.46 374311.70 477987.98 585285.15 711390.93 828046.30 961760.19 1092052.94 1243508.42 1389961.37 1555646.12 1714454.03 1892451.05 2059944.53 2271223.30 

StDev 29950.03 48949.89 62122.20 75725.09 90003.75 97629.77 108272.46 119701.99 135147.79 143674.33 154122.16 174071.77 200764.46 230396.20 281465.13 

CV 10.86 13.08 13.00 12.94 12.65 11.79 11.26 10.96 10.87 10.34 9.91 10.15 10.61 11.18 12.39 

Min 209748.55 248101.87 321765.90 388564.91 432485.72 553084.89 707001.82 783546.34 864538.17 1028757.70 1164635.75 1261941.86 1423651.11 1432395.89 1440420.47 

Max 361873.63 517822.36 664133.50 790939.41 1028836.52 1108221.76 1296522.12 1469898.16 1750869.61 1972458.47 2191694.24 2243264.74 2508888.58 2746162.88 3190534.28 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SL YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 262631.45 329749.36 392490.87 450558.50 516313.76 563486.81 607228.35 643626.76 677706.44 698443.85 705944.61 695617.75 716316.47 684002.97 665621.72 

StDev 35004.28 54572.79 69334.57 82714.26 95039.26 100152.38 113214.77 125780.34 139382.10 151016.38 159352.64 176403.53 192864.66 211703.73 234010.46 

CV 13.33 16.55 17.67 18.36 18.41 17.77 18.64 19.54 20.57 21.62 22.57 25.36 26.92 30.95 31.16 

Min 185962.36 208610.66 227353.76 236412.43 267186.14 281893.02 304328.06 288809.36 312244.89 326344.98 244445.43 148879.50 243289.91 125785.07 39457.05 

Max 359809.69 499378.48 607278.77 701694.78 828497.36 921470.33 1049588.42 1025092.71 1154218.11 1203530.33 1216068.32 1160906.59 1304802.75 1291322.93 1429292.70 

P(ECB<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

See Table 5.2 for a detailed explanation of acronyms. 
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Table B.15. Simulation Summary Statistics for Real Net Worth for a 5  000ha Farm in Graaff-Reinet, producing SLW, SW, 
and SL with springbuck ranching as a premier economic activity with incentives . 

SLW YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1010077.68 1078047.09 1154358.21 1224960.30 1344410.23 1379686.57 1483556.78 1543624.73 1666322.43 1734795.10 1864768.98 1949665.76 2319891.42 2391554.66 2597771.66 

StDev 88727.75 104150.78 114116.11 127620.40 156683.23 157056.28 177375.87 191277.86 222060.21 226705.28 250831.57 269274.78 355926.56 338259.60 400016.56 

CV 8.78 9.66 9.89 10.42 11.65 11.38 11.96 12.39 13.33 13.07 13.45 13.81 15.34 14.14 15.40 

Min 819514.67 843969.33 886461.58 833959.82 897019.33 973014.74 1032074.48 1114878.13 1013640.03 1161075.55 1279097.13 1360699.43 1431148.09 1510682.11 1657753.42 

Max 1280098.87 1433432.64 1447195.26 1605273.08 1904375.64 1934279.52 2033352.60 2219936.23 2485252.23 2517141.52 2634564.72 2898552.70 3543508.16 3419730.74 3824864.16 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SW YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1043433.82 1072478.88 1102050.98 1120807.13 1169145.21 1154989.64 1177961.51 1165876.16 1189407.21 1171413.63 1166265.59 1146462.08 1164966.18 1131004.50 1209788.71 

StDev 85687.87 99155.44 107448.59 114810.51 135274.65 138738.96 156587.02 165974.22 192627.07 199061.68 224302.53 233867.67 256676.46 247762.73 293453.10 

CV 8.21 9.25 9.75 10.24 11.57 12.01 13.29 14.24 16.20 16.99 19.23 20.40 22.03 21.91 24.26 

Min 825471.13 855879.77 822179.28 785806.88 808688.44 814559.55 809174.27 787290.13 742164.74 702537.92 628243.96 646191.00 566554.73 573226.15 530414.54 

Max 1320069.83 1450855.33 1400143.01 1473300.87 1598912.55 1607497.11 1683775.42 1730062.40 1908097.29 1831106.43 1832665.74 1947369.89 2089080.32 1775966.47 2066148.37 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
SL YI SR 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Mean 1073617.42 1095542.96 1111464.33 1114928.12 1146217.62 1105891.72 1082840.93 1053583.99 1027083.26 989187.39 921519.51 886007.95 896849.55 859015.66 929198.32 

StDev 110237.02 123588.04 134873.42 142388.58 161022.48 164814.70 189027.78 191239.12 212101.53 210724.52 225616.47 227733.73 226122.76 211372.69 227261.30 

CV 10.27 11.28 12.13 12.77 14.05 14.90 17.46 18.15 20.65 21.30 24.48 25.70 25.21 24.61 24.46 

Min 834520.18 829218.98 746323.69 796304.58 753027.86 714396.31 560521.08 540123.82 548854.63 484724.34 401613.30 399726.70 407837.20 323922.66 434054.05 

Max 1424282.68 1500066.37 1530869.44 1539987.37 1679085.95 1699743.99 1717294.65 1678101.35 1754909.62 1657514.43 1552657.10 1620514.69 1593898.42 1391880.87 1554547.56 

P(RNW<0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

See Table 5.2 for a detailed explanation of acronyms. 
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Table B.16. Simulation Summary Statistics for Net Present Value for a 5  000ha Farm 
producing SLW, SW, and SL with springbuck ranching as a premier economic activity 
with incentives. 

Variable 
SLW  YI SR WS    YI SR SL    YI SR 

Mean 1262367.487 1143492.556 705729.6968 

StDev 163771.6341 153784.4082 155469.0901 

CV 12.97 13.45 22.03 

Min 839157.8752 694705.3512 219447.3002 

Max 1781526.083 1650788.741 1245475.762 

P(NPV<0) 0 0 0 

See Table 5.2 for a detailed explanation of acronyms. 

 

 

 

 

 

 

 

 


