

AN INVESTIGATION INTO THE CONTROL OF

AUDIO STREAMING ACROSS NETWORKS HAVING

DIVERSE QUALITY OF SERVICE MECHANISMS

A thesis submitted in fulfilment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

of

RHODES UNIVERSITY

by

PHILIP JAMES FOULKES

September 2011

ii

Abstract

The transmission of realtime audio data across digital networks is subject to strict quality of service

requirements. These networks need to be able to guarantee network resources (e.g., bandwidth),

ensure timely and deterministic data delivery, and provide time synchronisation mechanisms to

ensure successful transmission of this data. Two open standards-based networking technologies,

namely IEEE 1394 and the recently standardised Ethernet AVB, provide distinct methods for

achieving these goals.

Audio devices that are compatible with IEEE 1394 networks exist, and audio devices that are

compatible with Ethernet AVB networks are starting to come onto the market. There is a need for

mechanisms to provide compatibility between the audio devices that reside on these disparate

networks such that existing IEEE 1394 audio devices are able to communicate with Ethernet AVB

audio devices, and vice versa. The audio devices that reside on these networks may be remotely

controlled by a diverse set of incompatible command and control protocols. It is desirable to have a

common network-neutral method of control over the various parameters of the devices that reside on

these networks.

As part of this study, two Ethernet AVB systems were developed. One system acts as an Ethernet

AVB audio endpoint device and another system acts as an audio gateway between IEEE 1394 and

Ethernet AVB networks. These systems, along with existing IEEE 1394 audio devices, were used to

demonstrate the ability to transfer audio data between the networking technologies. Each of the

devices is remotely controllable via a network neutral command and control protocol, XFN. The

IEEE 1394 and Ethernet AVB devices are used to demonstrate the use of the XFN protocol to allow

iii

for network neutral connection management to take place between IEEE 1394 and Ethernet AVB

networks. User control over these diverse devices is achieved via the use of a graphical patchbay

application, which aims to provide a consistent user interface to a diverse range of devices.

iv

Acknowledgments

First of all, I would like to thank my project supervisor, Professor Richard Foss, for continually

guiding me throughout the project. Many thanks also go to my colleagues for their assistance and

support in reaching the goals of the project. To my family and friends, thank you for your support

and encouragement.

Thank you to the departmental sponsors for providing financial assistance to undertake this work:

Telkom, Comverse, Tellabs, Stortech, Easttel, Bright Ideas 39, THRIP through the Telkom Centre of

Excellence at Rhodes University. Thank you to Universal Media Access Networks for providing

equipment and source code which proved invaluable during this study. Without this assistance the

research would not have been possible.

v

Table of Contents

Abstract .. ii

Acknowledgments... iv

Table of Contents ... v

List of Figures .. xv

List of Tables .. xxi

List of Listings ... xxiii

Chapter 1 Introduction .. 1

1.1 Interoperability and Common Command and Control .. 3

1.2 Document Structure ... 6

Chapter 2 Network Technologies ... 9

2.1 IEEE 1394 .. 9

2.1.1 Asynchronous Communication .. 10

2.1.2 Isochronous Communication ... 11

2.1.2.1 Resource Reservation ... 11

2.1.2.2 Deterministic Transmission .. 11

2.1.2.3 Synchronisation .. 12

2.2 Audio Video Bridging.. 12

2.2.1 Bridging ... 12

2.2.1.1 VLAN Bridging .. 13

2.2.1.2 Bridge Architecture .. 15

2.2.2 Audio Video Bridging.. 17

2.2.2.1 Resource Reservation ... 18

2.2.2.2 Forwarding and Queuing Enhancements for Time-Sensitive Streams 18

2.2.2.3 Timing and Synchronization .. 18

2.2.2.4 AVB Systems ... 19

2.3 Conclusion ... 19

Chapter 3 Resource Reservation... 20

vi

3.1 Resource Reservation for IEEE 1394 .. 20

3.2 Resource Reservation for Ethernet AVB ... 22

3.2.1 Multiple Registration Protocol ... 23

3.2.1.1 MRP Architecture ... 26

3.2.1.2 Multiple Attribute Propagation (MAP) .. 28

3.2.1.3 MRP State Machines .. 29

3.2.1.3.1 Transmit Opportunity ... 30

3.2.1.3.2 Applicant State Machine .. 32

3.2.1.3.3 Registrar State Machine ... 35

3.2.1.3.4 Attribute Declaration and Registration .. 37

3.2.1.3.5 Leave All State Machine .. 39

3.2.1.3.6 Periodic Transmission State Machine .. 42

3.2.1.4 Protocol Timers .. 44

3.2.1.5 MRP Application Addressing ... 45

3.2.2 Multiple MAC Registration Protocol... 46

3.2.2.1 MMRP Attributes and Service Primitives .. 48

3.2.2.1.1 Registering and Deregistering MAC Addresses .. 49

3.2.2.1.2 Responding to Registration Events .. 51

3.2.3 Multiple VLAN Registration Protocol ... 54

3.2.3.1 MVRP Attribute and Service Primitives .. 57

3.2.3.1.1 Registering and Deregistering VLANs .. 57

3.2.4 Multiple Stream Reservation Protocol ... 60

3.2.4.1 MSRP Attributes and Service Primitives ... 62

3.2.4.2 Talkers Advertising Streams .. 63

3.2.4.3 Listeners Requesting Attachment to Streams ... 66

3.2.4.4 Updating Queuing and Forwarding Information .. 72

3.2.4.5 MSRP Attributes and Service Primitives in Detail .. 73

3.2.4.5.1 Talker Attributes .. 73

3.2.4.5.1.1 Stream ID .. 74

3.2.4.5.1.2 Data Frame Parameters ... 74

vii

3.2.4.5.1.3 TSpec .. 74

3.2.4.5.1.4 Priority and Rank .. 75

3.2.4.5.1.5 Accumulated Latency ... 75

3.2.4.5.1.6 Failure Information ... 76

3.2.4.5.2 Talker Service Primitives ... 76

3.2.4.5.2.1 Register Stream Request .. 76

3.2.4.5.2.2 Deregister Stream Request .. 77

3.2.4.5.2.3 Register Stream Indication ... 77

3.2.4.5.2.4 Deregister Stream Indication ... 78

3.2.4.5.3 Listener Attribute ... 78

3.2.4.5.4 Listener Service Primitives .. 78

3.2.4.5.4.1 Register Attach Request ... 79

3.2.4.5.4.2 Register Attach Indication .. 79

3.2.4.5.4.3 Deregister Attach Request ... 79

3.2.4.5.4.4 Deregister Attach Indication .. 80

3.2.4.6 Stream Importance .. 80

3.2.4.7 Stream Bandwidth Calculations ... 80

3.3 Conclusion ... 81

Chapter 4 Determinism ... 82

4.1 Determinism for IEEE 1394 .. 82

4.1.1 Bus Arbitration... 82

4.1.1.1 Isochronous Arbitration .. 84

4.1.1.2 Cycle Start and Priority Arbitration .. 85

4.2 Determinism for Ethernet AVB ... 85

4.2.1 VLAN Tagged Ethernet Frames .. 86

4.2.2 Forwarding and Queuing ... 87

4.2.2.1 Traffic Classes .. 88

4.2.2.2 Stream Reservation Traffic Classes .. 90

4.2.2.3 Transmission Selection Algorithms.. 92

4.2.2.3.1 Strict Priority Transmission Selection Algorithm .. 93

4.2.2.3.2 Credit-Based Shaper Transmission Selection Algorithm................................... 93

4.2.2.3.2.1 Credit-shaper Algorithm by Example ... 96

4.2.2.3.2.2 Deriving Actual Bandwidth Requirements from the Advertised TSpec 99

viii

4.2.2.4 Stream Reservation Protocol Domain .. 100

4.2.2.4.1 Detection of a Stream Reservation Protocol Domain 104

4.2.2.4.2 Priority Regeneration ... 105

4.2.2.5 Talker Behaviour .. 107

4.3 Conclusion ... 108

Chapter 5 Timing and Synchronisation .. 109

5.1 IEEE 1394 .. 110

5.1.1 Cross IEEE 1394 Bridge Synchronisation ... 111

5.1.1.1 IEEE 1394 Bridge Portals... 112

5.1.1.2 Phase Synchronisation .. 113

5.1.1.3 Cycle Master Adjust Packet ... 116

5.2 Ethernet AVB... 116

5.2.1 gPTP Messages .. 117

5.2.1.1 Generation of Event Message Timestamps .. 118

5.2.2 Best Master Selection and Network Establishment ... 120

5.2.2.1 Time-aware System Characterisation ... 120

5.2.2.2 Examples of Grandmaster Selection ... 121

5.2.2.3 Port Roles ... 126

5.2.3 Logical Syntonisation .. 128

5.2.4 PTP Peer Delay Protocol ... 129

5.2.5 Calculating Neighbour Rate Ratio ... 131

5.2.6 Time-Synchronisation .. 132

5.3 Conclusion ... 136

Chapter 6 Media Transport Protocols ... 137

6.1 Packet Formats ... 137

6.1.1 IEEE 1394 Audio Packet Formats ... 137

6.1.1.1 Isochronous Packet ... 137

6.1.1.2 Common Isochronous Packet ... 138

6.1.1.3 IEC 61883-6 ... 140

ix

6.1.2 Ethernet AVB Audio Frame Formats .. 144

6.1.2.1 AVTP Frame Formats .. 145

6.1.2.1.1 AVTP Common Header ... 145

6.1.2.1.2 AVTP Common Stream Data Header .. 147

6.1.2.2 IEC 61883 over AVTP ... 149

6.2 Timing and Synchronisation .. 152

6.2.1 IEEE 1394 .. 153

6.2.1.1 Cross IEEE 1394 Bridge Timestamp Regeneration ... 156

6.2.2 Ethernet AVB... 156

6.2.2.1 AVTP Presentation Time.. 157

6.2.2.2 Presentation Time Measurement Points ... 157

6.2.2.3 IEC 61883-6 Timing and Synchronisation ... 159

6.3 AVTP Address Allocation ... 159

6.4 Conclusion ... 161

Chapter 7 Standards-Based Command and Control Protocols ... 162

7.1 Simple Network Management Protocol ... 162

7.1.1 Managers and Agents ... 162

7.1.2 UDP Transmission ... 163

7.1.3 SNMP Communities .. 163

7.1.4 Structure of Management Information... 163

7.1.4.1 Naming OIDs .. 164

7.1.4.2 Object Data Type .. 167

7.1.5 Management Information Bases .. 168

7.1.6 SNMP Operations .. 168

7.1.7 Connection Management ... 169

7.1.8 Tools .. 171

7.1.9 Conclusion ... 172

7.2 IEC 62379 .. 172

7.2.1 Equipment Structure .. 172

x

7.2.2 Managed Objects ... 174

7.2.3 Control Framework .. 176

7.2.3.1 Media Formats .. 177

7.2.3.2 Audio Ports ... 178

7.2.4 Status Broadcasts ... 179

7.2.5 Connection Re-establishment .. 180

7.2.6 Privilege Levels ... 180

7.2.7 Automation .. 181

7.2.8 Connection Management ... 181

7.2.9 Conclusion ... 184

7.3 OSC .. 184

7.3.1 OSC Address Space and OSC Addresses .. 184

7.3.2 OSC Data Types .. 185

7.3.3 OCS Packets... 186

7.3.3.1 OSC Message ... 186

7.3.3.2 OSC Bundles .. 187

7.3.4 OSC Message Processing .. 187

7.3.5 Connection Management ... 188

7.3.5.1 Creating Source Streams .. 188

7.3.5.2 Creating Sink Streams .. 189

7.3.5.3 Destroying Streams... 191

7.3.6 Tools .. 191

7.3.7 Conclusion ... 191

7.4 XFN.. 192

7.4.1 Structuring.. 192

7.4.2 Messaging .. 196

7.4.3 Indexing ... 198

7.4.4 Wildcarding.. 198

7.4.5 Pushing ... 198

7.4.6 Joining and Grouping ... 199

xi

7.4.6.1 Example .. 200

7.4.7 Modifiers .. 202

7.5 Conclusion ... 202

Chapter 8 Tunnelling .. 204

8.1 Tunnelling Ethernet Traffic over IEEE 1394... 204

8.2 Limitations ... 206

8.3 Tunnel Header .. 206

8.4 Providing Control over the Tunnel Nodes ... 211

8.4.1 Connection Establishment ... 211

8.4.2 Maximum Payload Size ... 211

8.4.3 Tunnel Node Parameter Control with XFN ... 211

8.4.4 Tunnel Node Parameter Control with the Connection Manager 215

8.5 Conclusion ... 219

Chapter 9 Networked Audio Devices ... 220

9.1 UMAN Evaluation Boards and Amplifier Nodes .. 220

9.2 UMAN IEEE 1394 Bridges/Routers .. 222

9.3 Ethernet AVB Endpoint Devices ... 225

9.4 IEEE 1394 / Ethernet AVB Audio Gateway Devices .. 226

9.5 AVB Device Architecture .. 227

9.6 Conclusion ... 230

Chapter 10 Ethernet AVB Devices ... 231

10.1 Audio Components .. 231

10.1.1 Analogue Component .. 233

10.1.2 AVB Component ... 234

10.1.3 1394 Component .. 235

10.2 Audio Formatting ... 236

10.2.1 Ethernet AVB Endpoint Device... 236

10.2.2 IEEE 1394/Ethernet AVB Audio Gateway Device ... 239

10.3 Timing and Synchronisation .. 242

xii

10.3.1 Timestamp Regeneration ... 242

10.3.1.1 Timestamp Regeneration Example ... 243

10.3.1.2 CIP and AVTP Timestamp Regeneration .. 244

10.3.1.2.1 CIP and AVTP Timestamp Regeneration Example 246

10.4 MAAP Component .. 249

10.4.1 MAAP struct .. 250

10.4.2 MAAPAddressRange struct ... 251

10.4.3 MAAP Utilisation .. 252

10.5 MRP Component ... 252

10.5.1 Attribute Registration... 255

10.5.2 MRP Callbacks .. 256

10.5.3 MRP Kernel Module Usage ... 258

10.6 MMRP and MVRP Kernel Modules.. 260

10.7 MSRP Kernel Module.. 263

10.7.1 MSRP Functions .. 264

10.7.1.1 Registering Streams .. 265

10.7.1.2 Deregistering Streams ... 267

10.7.1.3 Receiving a Stream ... 268

10.7.1.4 Stopping Stream Reception .. 269

10.7.2 MSRP Callback Functions ... 269

10.7.2.1 Callback Registration ... 270

10.7.2.2 Stream Registration Notification .. 270

10.7.2.3 Stream Deregistration Notification ... 271

10.7.2.4 Stream Reception Notification ... 271

10.7.2.5 Stream Reception Deregistration Notification ... 272

10.7.3 MSRP User-space Functions ... 273

10.7.4 Using the MSRP User-space Functions ... 276

10.8 Forwarding and Queuing (FAQ) Kernel Module .. 278

10.9 AVB Device Interface.. 279

10.9.1 Internal Connections .. 279

xiii

10.9.2 IEEE 1394 Interface ... 282

10.9.3 AVB Interface .. 285

10.10 Conclusion ... 286

Chapter 11 XFN Control and Representation... 288

11.1 XFN Stack Component .. 288

11.2 Graphical Representation of XFN Devices .. 289

11.2.1 Connection Manager Architecture ... 289

11.3 Building an XFN Address Hierarchy with the XFN Stack Component 290

11.4 Device Discovery ... 294

11.4.1 XFN Stack Component Device Discovery .. 296

11.4.2 Graphical Representation of Discovered Devices ... 298

11.5 Internal Device Routing ... 300

11.5.1 Connection Manager Representation of Internal Device Routing 304

11.6 Stream Establishment... 311

11.6.1 IEEE 1394 .. 311

11.6.2 Ethernet AVB... 312

11.6.3 Multicore Representation ... 312

11.6.3.1 IEEE 1394... 313

11.6.3.2 Ethernet AVB ... 316

11.6.3.3 Distinguishing Between Multicore Types .. 317

11.6.4 External Device Multicore Routing ... 318

11.7 Rationale for Matrix Patching .. 325

11.7.1 List-Based Patchbays ... 325

11.7.2 Tree-View-Based Patchbays .. 326

11.7.3 Tree-Grid-Based Patchbays ... 328

11.7.4 Graphic-Based Patchbays .. 329

11.7.5 A Comparison Of Patchbays .. 331

11.8 Connection Manager Grid Displays... 332

11.9 Conclusion ... 333

xiv

Chapter 12 Conclusion ... 335

12.1 Goals .. 336

12.2 Conclusions .. 336

12.3 Future Work ... 346

Bibliography .. 348

xv

List of Figures

Figure 1: IEEE 1394 topology ... 9

Figure 2: Bridged IEEE 1394 Network ... 10

Figure 3: A bridged LAN [6] ... 13

Figure 4: A bridged LAN with VLANs ... 14

Figure 5: A bridged LAN highlighting VLAN 1 ... 14

Figure 6: A bridged LAN highlighting VLAN 2 ... 15

Figure 7: Relaying MAC frames (adapted from [6]) ... 16

Figure 8: Observing network traffic (adapted from [6]) .. 17

Figure 9: MRP application inheritance .. 23

Figure 10: An example of an attribute value propagation from one station (adapted from [71]) 25

Figure 11: An example of an attribute value propagation from two stations [71] 26

Figure 12: MRP architecture [71] .. 27

Figure 13: An attribute associated with an applicant and registrar state machine 29

Figure 14: An MRP participant associated with a leave all and periodic transmission state machine 30

Figure 15: MRPDU structure ... 31

Figure 16: Applicant state machine initialisation .. 32

Figure 17: State transitions for the declaration of an attribute... 33

Figure 18: State transitions for the withdrawal of a declaration of an attribute 35

Figure 19: Initial registrar state machine state ... 36

Figure 20: Registrar state after attribute registration ... 36

Figure 21: Registrar state after attribute deregistration ... 37

Figure 22: State machine transitions .. 39

Figure 23: Leave all state machine initialisation ... 40

Figure 24: Leave all state machine timer expiring ... 40

Figure 25: Leave all state machine timer expiring ... 42

Figure 26: Periodic transmission state machine initialisation.. 43

Figure 27: Periodic state machine timer expiring .. 43

Figure 28: Applicant state machine being signalled with a periodic event ... 44

Figure 29: Example MMRP registrations .. 47

Figure 30: MMRP architecture [71] .. 48

xvi

Figure 31: Register MAC address .. 50

Figure 32: Deregister MAC address .. 51

Figure 33: MAC address registration ... 52

Figure 34: Two port bridge receiving an MMRP attribute declaration ... 53

Figure 35: MMRP MAD leave indication .. 54

Figure 36: Example MVRP registrations ... 56

Figure 37: MVRP architecture ... 57

Figure 38: Register VLAN member .. 58

Figure 39: MVRP MAD join indication... 59

Figure 40: MVRP MAD leave indication .. 60

Figure 41: MSRP architecture [67] .. 62

Figure 42: An example of talker attribute propagation ... 65

Figure 43: Listener responding to a talker advertise ... 67

Figure 44: Listener responding to a talker failed ... 67

Figure 45: Example listener attribute propagation and merging ... 69

Figure 46: Example listener attribute propagation and merging ... 70

Figure 47: Merging of listener attributes ... 72

Figure 48: Two IEEE 1394 nodes requesting ownership of an IEEE 1394 bus 84

Figure 49: VLAN tag ... 87

Figure 50: Association of traffic classes to outbound port queues .. 88

Figure 51: Frame priority to traffic class mapping example .. 90

Figure 52: Bridge port transmission selection ... 93

Figure 53: Example outbound queues.. 95

Figure 54: Credit-shaper algorithm frame transmission (no conflicting traffic) 96

Figure 55: Credit-shaper algorithm frame transmission (conflicting traffic) 97

Figure 56: Credit-shaper algorithm frame transmission (burst traffic) .. 98

Figure 57: SRP domain with non-AVB bridge .. 102

Figure 58: SRP domain for SR class A .. 103

Figure 59: SRP domain for SR class B .. 104

Figure 60: Queuing model for a talker station [68] ... 107

Figure 61: Example stream synchronisation .. 109

Figure 62: Cycle time register (adapted from [4]) ... 111

Figure 63: An example net ... 113

xvii

Figure 64: Phase synchronisation between two IEEE 1394 buses [62] ... 114

Figure 65: Definition of message timestamp point, reference plane, timestamp measurement plane,

and latency constants (adapted from [69]) ... 118

Figure 66: Announce message transmission in a steady state .. 121

Figure 68: Announce message transmission after time-aware system addition 123

Figure 70: Announce message transmission after time-aware system removal 125

Figure 71: Announce message transmission in a steady state after station removal 126

Figure 72: An example master/slave hierarchy of time-aware systems [69] 128

Figure 73: Propagation delay measurement using the PTP peer delay protocol (adapted from [69])

.. 130

Figure 74: Example neighbour rate ratio calculation.. 132

Figure 75: Transmission of sync messages .. 133

Figure 76: Transport of time synchronisation information (adapted from [69]) 134

Figure 77: Isochronous packet format ... 138

Figure 78: CIP packet format ... 139

Figure 79: A stream of sequences .. 141

Figure 80: A representation of a stream containing sequences .. 142

Figure 81: FDF field .. 142

Figure 82: AM824 format .. 143

Figure 83: AVTP common header ... 145

Figure 84: AVTP common stream header ... 147

Figure 85: AVTP common stream header with CIP header .. 150

Figure 86: Sample clock synchronisation .. 155

Figure 87: AVTP presentation time measurement point [55] .. 158

Figure 88: Example portion of an object tree hierarchy .. 165

Figure 89: Representing the interfaces table in the SNMP address hierarchy 167

Figure 90: A block ... 173

Figure 91: An example unit with blocks [87] .. 173

Figure 92: An audio limiter block .. 174

Figure 93: Inputs and outputs .. 182

Figure 94: AVTP multiplexing/de-multiplexing ... 183

Figure 95: An example OSC address space ... 185

Figure 96: The block diagram for the Yamaha 01V96 Digital Mixing Console [10] 193

xviii

Figure 97: An example hierarchical address for an equalisation parameter 195

Figure 98: XFN message processing ... 197

Figure 99: Three faders with initial values .. 200

Figure 100: Absolute master/slave relationship, master adjusted .. 201

Figure 101: Relative peer-to-peer relationship, fader A adjusted .. 201

Figure 102: Tunnelling of Ethernet traffic over IEEE 1394 .. 205

Figure 103: Tunnel node header positions ... 207

Figure 104: An isochronous packet with a tunnel node header for packed Ethernet frames............. 207

Figure 105: An isochronous packet with a tunnel node header for fragmented Ethernet frames 209

Figure 106: A tunnel node with an XFN stack .. 212

Figure 107: Portion of the XFN address hierarchy for an output isochronous stream 214

Figure 108: Portion of the XFN address hierarchy for an input isochronous stream 215

Figure 109: Portion of the XFN address hierarchy for representing IP addresses............................. 216

Figure 110: The Connection Manager's main interface ... 217

Figure 111: The Connection Manager's multicores display .. 218

Figure 112: The Connection Manager’s source multicore settings window 219

Figure 113: UMAN evaluation board (front)... 220

Figure 114: UMAN evaluation board (back) ... 221

Figure 115: Conceptual routing within a UMAN evaluation board .. 222

Figure 116: A UMAN IEEE 1394 bridge/router ... 223

Figure 117: IEEE 1394 bus to IP subnet mapping ... 224

Figure 118: Two IEEE 1394 buses joined with an IEEE 1394 bridge .. 224

Figure 119: Conceptual stream routing within an IEEE 1394 bridge .. 225

Figure 120: Conceptual routing within an Ethernet AVB endpoint device 226

Figure 121: Conceptual routing within an IEEE 1394/Ethernet AVB audio gateway device 227

Figure 122: Ethernet AVB device architecture .. 228

Figure 123: Audio interfaces ... 231

Figure 124: An example audio gateway device with audio components ... 232

Figure 125: Example ALSA frames .. 234

Figure 126: Packaging of audio in an AVTP frame .. 237

Figure 127: AVTP common stream header with CIP header and payload .. 238

Figure 128: Stream sequence mapping .. 239

Figure 129: A received CIP packet .. 240

xix

Figure 130: A transmitted AVTP frame .. 241

Figure 131: SYT field format.. 243

Figure 132: Hypothetical timestamp regeneration ... 244

Figure 133: MRP kernel module attribute declaration .. 259

Figure 134: MRP kernel module attribute declaration withdrawal ... 260

Figure 135: MMRP kernel module usage .. 262

Figure 136: MSRP user-space usage ... 276

Figure 137: Generic inputs and outputs ... 280

Figure 138: Connection Manager architecture .. 290

Figure 139: An application node .. 292

Figure 140: An application node with a section block ... 292

Figure 141: An application node with a section block ... 293

Figure 142: Portion of the XFN address hierarchy for representing IP addresses............................. 295

Figure 143: Device discovery .. 296

Figure 144: Device discovery sequence diagram .. 298

Figure 145: An example audio network... 299

Figure 146: The Connection Manager networks and devices display ... 300

Figure 147: An example internal patching matrix ... 301

Figure 148: XFN input crosspoint modelling .. 302

Figure 149: XFN output crosspoint modelling .. 303

Figure 150: IEEE 1394 endpoint device internal routing matrix ... 308

Figure 151: Ethernet AVB endpoint device internal routing matrix ... 309

Figure 152: IEEE 1394/AVB audio gateway internal routing matrix ... 310

Figure 153: The XFN address hierarchy for IEEE 1394 multicores ... 313

Figure 154: The XFN address hierarchy for AVB multicores ... 316

Figure 155: Ethernet AVB multicore patching ... 321

Figure 156: IEEE 1394 multicore patching ... 322

Figure 157: The Yamaha mLAN Graphical Patchbay’s List View ... 326

Figure 158: The NAS Explorer Patchbay .. 327

Figure 159: The Otari ND 20B mLAN Control Software Routing Matrix 329

Figure 160: The Yamaha mLAN Graphic Patchbay.. 331

Figure 161: IEEE 1394 endpoint device internal routing matrix ... 342

Figure 162: IEEE 1394/AVB audio gateway internal routing matrix ... 343

xx

Figure 163: IEEE 1394 multicore patching ... 344

Figure 164: Ethernet AVB multicore patching ... 345

xxi

List of Tables

Table 1: Maximum data payload size of isochronous packets .. 21

Table 2: The default MRP timer values ... 45

Table 3: Listener attribute propagations .. 71

Table 4: Listener attribute merging.. 71

Table 5: Structure of talker attributes .. 73

Table 6: Recommended priority to traffic class mappings [68] .. 89

Table 7: Recommended priority to traffic class mappings for SR class A and SR class B 91

Table 8: Recommended priority to traffic class mappings for SR class B only 92

Table 9: Priority regeneration table .. 106

Table 10: Default domain boundary port priority regeneration override values table 106

Table 11: Example phase difference calculation based on Figure 64 [62] .. 115

Table 12: Port role definitions ... 127

Table 13: Isochronous packet fields .. 138

Table 14: CIP header fields.. 140

Table 15: Event type (EVT) code definitions .. 142

Table 16: SFC (Nominal Sampling Frequency Code) definition .. 143

Table 17: AM824 label definitions .. 144

Table 18: Raw audio labels .. 144

Table 19: AVTP common header field definitions .. 146

Table 20: Subtype values ... 147

Table 21: AVTP common stream header type specific data field definitions 148

Table 22: AVTP common stream header additional header fields ... 149

Table 23: IEC 61883 protocol specific header fields .. 151

Table 24: CIP header field formats .. 152

Table 25: SFC definition .. 154

Table 26: AVTP address ranges .. 160

Table 27: An interfaces table ... 164

Table 28: Interface attributes ... 166

Table 29: An example source table .. 170

Table 30: An example block table [87] .. 176

xxii

Table 31: An example connector table [87] ... 177

Table 32: An example mode table [87] .. 178

Table 33: An example media format ... 178

Table 34: An example port table [87] .. 179

Table 35: Core OSC types ... 185

Table 36: OSC type tags .. 186

Table 37: The XFN seven-level addressing scheme .. 194

Table 38: Tunnel header fields for a packed Ethernet frame ... 208

Table 39: Tunnel header fields for a fragmented Ethernet frame .. 210

Table 40: Clock times .. 246

Table 41: Converted clock times ... 247

Table 42: Clock time differences ... 247

Table 43: Input to output associations ... 280

Table 44: The number of mouse clicks to make a soft connection .. 332

xxiii

List of Listings

Listing 1: An example OSC message .. 186

Listing 2: MAAP_init function ... 250

Listing 3: MAAP methods for acquiring MAC addresses ... 251

Listing 4: MAAPAddressRange_getAddress function .. 252

Listing 5: mrp_init function.. 253

Listing 6: MRP application addresses.. 254

Listing 7: MRP application EtherTypes .. 254

Listing 8: mrp_clean_up function .. 255

Listing 9: mrp_mad_join_request_notify function .. 256

Listing 10: mrp_mad_leave_request_notify function .. 256

Listing 11: mrp_ops struct .. 257

Listing 12: mrp_mad_join_indication callback function ... 258

Listing 13: mrp_mad_leave_indication callback function ... 258

Listing 14: mmrp struct .. 261

Listing 15: mvrp struct .. 261

Listing 16: MMRP functions ... 261

Listing 17: MVRP functions .. 263

Listing 18: msrp struct .. 264

Listing 19: msrp_register_stream_request function .. 265

Listing 20: msrp_data_frame_parameters struct ... 266

Listing 21: msrp_tspec struct ... 266

Listing 22: msrp_priority_and_rank struct .. 267

Listing 23: msrp_deregister_stream_request function ... 268

Listing 24: msrp_register_attach_request function .. 268

Listing 25: msrp_deregister_attach_request function ... 269

Listing 26: msrp_ops struct .. 270

Listing 27: msrp_register function .. 270

Listing 28: msrp_register_stream_indication function .. 271

Listing 29: msrp_deregister_stream_indication function .. 271

xxiv

Listing 30: msrp_register_attach_indication function .. 272

Listing 31: msrp_deregister_attach_indication function .. 273

Listing 32: MSRP_init function ... 273

Listing 33: MSRP callback functions .. 274

Listing 34: MSRP functions... 275

Listing 35: Audio input and output functions .. 282

Listing 36: Gateway IEEE 1394 functions .. 283

Listing 37: Gateway stream registration functions .. 285

Listing 38: Gateway_setInputStreamID function ... 286

Listing 39: XFN Stack component's address hierarchy building functions 291

Listing 40: addXFNListener function ... 297

Listing 41: ipDiscoverCallback function .. 297

Listing 42: discoverIPAddresses function ... 298

Listing 43: Obtaining input and output numbers ... 305

Listing 44: Obtaining input and output names ... 306

Listing 45: Obtaining and setting patches .. 306

Listing 46: getInputMulticoreType function .. 318

Listing 47: MulticoreType enum .. 319

Listing 48: connectOutputFWMulticoreSocketToInputFWMulticoreSocket function

.. 323

Listing 49: connectOutputAVBMulticoreSocketToInputAVBMulticoreSocket

function .. 324

1

Chapter 1 Introduction

Traditionally audio and video production environments are composed of many different independent

audio, video, and command and control transports. These solutions are often proprietary and consist

of point-to-point connections, switching systems and processors that are centred on specific media

formats. For example, video signals may be distributed using SD-SDI [1] or HD-SDI [2] interfaces

using coaxial cables to connect devices together. Audio signals may flow through AES-3 interfaces

[3] and coaxial cables. Command and control messages require further interfaces and cables. These

messaging protocols vary in format between different types of devices with each of these different

signal types processed separately.

There is a growing trend towards transporting diverse content (e.g., web and e-mail traffic, realtime

audio and video stream data, and command and control data) via single a networking medium.

Having audio and video devices interconnected via a common networking technology provides more

flexibility and is more future-proof. A common networking technology provides flexible routing

capabilities as all of the signals that are transported by the network are available throughout the

network. There is no need to add additional cabling and interfaces to a networked system in order to

route a signal to a device, as routing is configured in software. It is also possible to allow additional

protocols to run over the network without having to replace the network itself. New protocols can be

developed in software to run on existing devices, or new devices can be added to an existing

network.

Different types of content have different requirements of the network on which they run. Web and e-

mail traffic can be delivered on a best effort basis as their consumption is not time critical. For

example, variable delays associated with the delivery of web pages are not critical to them being

displayed correctly. If, due to network congestion, a webpage takes a few seconds longer to display

than a previous one, the content can still be consumed in a meaningful way. However, the successful

transportation of realtime audio and video data is subject to strict quality of service (QoS)

requirements. Realtime audio and video is consumed immediately after it is produced. For example,

a performer at a concert singing into a microphone produces audio to be consumed immediately by

an audience (via a set of loud speakers). Ideally, the delivery of realtime audio and video data should

be instantaneous, but small bounded delays are acceptable. If the delivery of the audio is subjected to

2

varying delays, the reproduced audio could contain jitter resulting in perceived poor quality audio.

Therefore, a network should provide strict QoS mechanisms for the delivery of realtime audio and

video data to avoid data loss, unacceptable latency, and lack of synchronisation.

In order to provide an acceptable environment for the transmission of realtime data, a network has to

be designed such that there is no packet loss, and it has to provide a guarantee on the maximum

latency for the transmitted realtime data. This implies that there are sufficient resources on the

network to support the transmission of realtime data streams. Devices involved in realtime data

streaming need to be able to communicate their stream resource requirements to the network so that

these can be reserved and guaranteed by the network. The devices on a network also need to share a

common sense of time to allow for the synchronisation of multiple streams, and to provide a

common time base for sampling a data stream (at a source device) and presenting the data stream (at

a receiving device).

Traditional information technology (IT) networks do not natively provide the appropriate QoS

requirements needed for the transport of realtime data. It has thus been difficult to use these networks

for the transmission of this data without the network configuration being tightly constrained.

However, there are two open standards-based networking technologies that are capable of natively

transporting both non-realtime and realtime data with appropriate QoS for realtime stream data.

These are IEEE 1394 [4] and a recently standardised enhanced form of Ethernet [5] and Ethernet

bridging1 [6], called Ethernet audio video bridging (AVB) [7]. These networking technologies

provide diverse mechanisms that allow end stations to communicate their stream resource

requirements, thereby allowing these resources to be guaranteed by the network. These networking

technologies also provide diverse timing and synchronisation mechanisms. These mechanisms

enable the deterministic and timely transmission of realtime stream data.

1 Ethernet bridging is commonly referred to as Ethernet switching.

3

1.1 Interoperability and Common Command and Control

There currently exist digital audio devices that are compatible with IEEE 1394 networks, and digital

audio devices that are compatible with Ethernet AVB networks are starting to come onto the market.

A number of manufactures have produced IEEE 1394 compatible audio equipment:

• Yamaha [8] have manufactured a number of audio devices that make use of IEEE 1394. Their

01X [9] and 01V96 [10] audio mixing desks, for instance, are capable of receiving and

transmitting audio signals across IEEE 1394 buses. Via an IEEE 1394 bus, these audio mixing

desks can be connected together with their Motif XS8 synthesisers [11] and with personal

computers (PCs), amongst other devices. This enables PC based recording software to be used to

record audio signals produced by the equipment on the IEEE 1394 bus. Yamaha has a patchbay

application [12] that allows for signals to be routed between the Yamaha devices on the IEEE

1394 bus. Yamaha also produced the N8 [13] and N12 [14] audio mixing desks that allow for

seamless integration with digital audio workstation (DAW) software via an IEEE 1394 bus.

• PreSonus [15] manufacture a number of IEEE 1394 capable breakout boxes. These allow the

audio capabilities of a PC to be extended via a PC’s IEEE 1394 interface. They also manufacture

a number of audio mixing desks, such as the StudioLive 16.4.2 16-Channel Digital Mixer with

FireWire Interface [16], that allows IEEE 1394 connectivity to a PC to enable the recording and

playback of audio.

• M-Audio [17] have developed a number of IEEE 1394 breakout boxes that allow the audio

capabilities of a PC to be extended via its IEEE 1394 interface. These devices include the ProFire

610 [18] and the ProFire 2626 [19]. The ProFire 610 provides 6 audio inputs and 10 audio

outputs, and the ProFire 2626 provides 26 audio inputs and 26 audio outputs in a mixture of

analogue and digital form. These devices also have pre-amps built into them.

• Focusrite [20] have developed a number of IEEE 1394 capable audio interfaces. These interfaces

extend the audio interface capabilities of a PC via a PC’s IEEE 1394 interface. Devices include

their Liquid Saffire 56 [21] interface which provides 28 inputs and 28 outputs of analogue and

digital audio, and their Saffire PRO 40 [22] which provides 20 inputs and 20 outputs of analogue

and digital audio. These devices also include a number of pre-amps.

• Mackie [23] produce a number of IEEE 1394 capable audio interfaces and audio mixing desks.

The Mackie Onyx Blackbird [24] is a 16 input, 16 output audio interface that accepts and

4

transmits audio in analogue and digital formats. The Onyx 1640i FireWire Recording Mixer [25]

allows for the transmission and reception of 16 channels of audio between it and a DAW

application via IEEE 1394.

• Alesis [26] have produced a range of breakout boxes and audio mixing desks that are IEEE 1394

capable. Their iO|14 [27] and iO|26 [28] devices provide a number of analogue and digital input

and outputs to a PC via a PC’s IEEE 1394 interface. Alesis have also produced a range of IEEE

1394 capable audio mixing desks, such as their MultiMix 12 FireWire [29] and their MultiMix

16 FireWire [30].

• Allan and Heath [31] produce the ZED-R16 [32] audio mixing desk. This audio mixing desk has

an IEEE 1394 interface allowing the device to be connected to a PC to allow for PC based

recording to take place. The IEEE 1394 interface allows for the reception of 18 input signals, and

the transmission of 18 output signals.

• TerraTec [33] have produced a number of IEEE 1394 capable breakout boxes. These include the

Phase X24 [34] and the Phase 88 Rack FW [35]. These devices provide a number of analogue

and digital input and outputs, allowing the audio capabilities of a PC to be extended via its IEEE

1394 interface.

• Universal Media Access Networks (UMAN) [36], who are involved in the development of

software and hardware for audio and video networks, are actively developing and promoting the

use of IEEE 1394 and Ethernet AVB networking technology for the transmission of realtime

audio and video data. They have developed a number of IEEE 1394 evaluation breakout boxes

and IEEE 1394 bridges (see Chapter 9 “Networked Audio Devices”) allowing for flexible large

scale audio and video networks to be built.

A number of manufactures are creating Ethernet AVB capable hardware:

• LabX [37] have been actively involved in developing and promoting Ethernet AVB. They have

released an Ethernet AVB capable bridge, known as the Titanium 411 Ruggedized AVB Ethernet

Bridge [38]. They have also released a field programmable gate array (FPGA) based AVB

Audio Demo Platform [39] allowing for the evaluation and development of Ethernet AVB

endpoints.

• BSS Audio [40] have also released an Ethernet AVB capable bridge, known as the GS724T 24

Port Ethernet AVB Switch [41].

5

• Broadcom [42] have produced an Ethernet AVB capable integrated gigabit Ethernet controller,

known as the BCM57765 [43]. This Ethernet controller is currently available in a number of

Apple [44] products. These include the iMac [45], Mac Mini [46], and MacBook Pro [47].

• Marvell [48] have produced Ethernet AVB capable networking equipment. These include a

number of gigabit Ethernet bridges and a gigabit Ethernet network interface controller [49].

• Crown Audio [50] have released the PIP-USP4 Module [51] which is an input module for their

CTs Series two channel amplifier [52]. This input module enables the amplifier to receive digital

audio via an Ethernet AVB network.

Audio signals between professional audio devices on an IEEE 1394 bus can be transported using the

layer two protocols defined in IEC 61883-6 [53] (see Section Chapter 6 “Media Transport

Protocols”). Connection management between IEEE 1394 audio devices can be achieved with the

layer two Function Control Protocol (FCP) and the connection management procedures defined in

IEC 61883-1 [54]. Professional audio devices on an Ethernet AVB network are able to stream audio

to each other via the layer two protocols defined in IEEE 1722 [55] (see Section Chapter 6 “Media

Transport Protocols”). Connection management between Ethernet AVB devices may be performed

with the layer two protocols and procedures defined in IEEE 1722.1 [56]. A number of other parties

have defined and developed protocols and procedures that can be used to perform connection

management on professional IEEE 1394 and Ethernet AVB audio devices. These include protocols

and procedures making use of the Simple Network Management Protocol (SNMP) [57], and

protocols and procedures making use of the Open Sound Control (OSC) protocol [58].

There is a need to provide compatibility between the audio devices that reside on these disparate

networks such that existing IEEE 1394 audio devices will be able to stream audio data to and from

Ethernet AVB audio devices. As indicated above, the audio devices that reside on these networks

may be controlled by a diverse set of incompatible command and control protocols. It is desirable to

have a common representation and network-neutral method of control over the various parameters of

these devices. This control should allow for the adjustment of the various parameters that are internal

to the devices, and allow for network streaming to take place between these devices. This thesis

proposes that such network neutral control is possible, and that mechanisms can be put in place to

ensure a congruent user interface to provide control over the parameters of these diverse devices. To

this end:

6

• Proof of concept Ethernet AVB endpoint devices were developed that are able to both transmit

and receive audio streams over Ethernet AVB networks (see Chapter 10 “Ethernet AVB

Devices”).

• Proof of concept IEEE 1394/Ethernet AVB audio gateway devices were developed that are able

to transmit and receive audio streams over IEEE 1394 and Ethernet AVB networks. These

devices allow for these streams to be transferred between the two networking technologies (see

Chapter 10 “Ethernet AVB Devices”).

• Existing IEEE 1394 audio devices were used in conjunction with the developed Ethernet AVB

devices to demonstrate the ability to transfer audio data between audio devices on these diverse

networks.

• The XFN [59] [60] Internet Protocol (IP) [61] based command and control protocol was used to

provide the ability to remotely obtain and set parameter values of the IEEE 1394 and the

developed Ethernet AVB audio devices (see Chapter 11 “XFN Control and Representation”).

• A connection management application was developed to allow for user control over the

abovementioned audio devices. This application allows for the consistent graphical

representation and control over the parameters of these audio devices (see Chapter 11 “XFN

Control and Representation”).

1.2 Document Structure

Chapter 2 introduces the IEEE 1394 and Ethernet AVB networking technologies. It provides a high-

level overview of each of these networking technologies and highlights the core characteristics of

each that make them suitable for the transmission of synchronised low-latency realtime stream data:

the ability to communicate network resource requirements, the ability of the network to provide

timely and deterministic data transmission, and the ability of network devices to share a common

sense of time.

Chapter 3 details the mechanisms that IEEE 1394 and Ethernet AVB provide, allowing network

resource requirements (e.g., bandwidth) to be communicated by network devices. This allows

resources to be reserved for the devices’ realtime data streams.

7

Chapter 4 describes the mechanisms that are in place in IEEE 1394 and Ethernet AVB networks that

ensure that stream resource requirements are met. This ensures that deterministic low-latency stream

transmission is able to take place.

Chapter 5 details how devices on IEEE 1394 and Ethernet AVB networks synchronise their clocks to

a common master clock. This enables source devices to instruct receiving devices when to present

audio samples such that this presentation happens simultaneously on multiple devices receiving the

same streams. It also enables the re-creation of sample clock frequencies.

Chapter 6 discusses the dominant media transport protocols used for the transmission of audio

streams across IEEE 1394 and Ethernet AVB networks. It discusses the packet and media formatting

rules employed by these protocols as well as their synchronisation mechanisms.

Chapter 7 discusses a few of the command and control protocols that have been used, or proposed, to

provide control over networked audio devices. It concludes with a discussion of the XFN protocol.

The XFN protocol was used during this study to provide remote control over audio devices.

Chapter 8 discusses the implementation of a simple tunnelling protocol that allows for tunnelling of

Ethernet traffic across IEEE 1394 networks to provide a deterministic environment for this traffic. It

also discusses how the XFN protocol has been used to represent and control the various parameters

of the tunnelling devices to allow for their control from a graphical patchbay application.

Chapter 9 provides an overview of the various IEEE 1394 and Ethernet AVB audio devices that

were used or developed during this study. It provides a high-level overview of their functionality and

of their core components.

Chapter 10 ties the preceding chapters together and provides a detailed discussion of the architecture

and operation of the proof of concept Ethernet AVB devices that were developed during this study.

One device is an audio gateway between IEEE 1394 and Ethernet AVB networks, and another device

is an Ethernet AVB audio endpoint.

Chapter 11 discusses how the XFN protocol has been used to provide a common method of

representing and controlling the disparate audio devices that were used during this study. It discusses

8

the development of a graphical patchbay application used to provide control over the XFN capable

devices. This patchbay application aims to provide a consistent graphical representation to a diverse

range of networked audio devices.

Chapter 12 provides concluding remarks on the work discussed in this thesis.

9

Chapter 2 Network Technologies

IEEE 1394 [4] and Ethernet audio video bridging (AVB) [5] are two open standards-based

networking technologies that natively provide mechanisms that allow for the transfer of synchronised

low-latency realtime audio and video streams between devices. The ability to reserve network

resources (such as bandwidth), the ability to provide a deterministic environment to ensure timely

stream packet transmission, and the ability to provide timing and synchronisation mechanisms are

core requirements for networks transferring these kinds of streams. This chapter provides an

overview of these networking technologies and a brief introduction to how the above requirements

are fulfilled by each of these networking technologies.

2.1 IEEE 1394

IEEE 1394 is a peer-to-peer serial bus interconnect that allows for asynchronous and isochronous

forms of packet transmission between the devices that reside on the bus. There is no dependence on a

host system, so there is no host processor or memory bottleneck involved in the transfer of data

between devices. A device that resides on an IEEE 1394 bus incorporates an IEEE 1394 node which

may contain one or more ports (but typically two or three). Figure 1 shows a typical arrangement of

IEEE 1394 nodes (Node A – Node F) and their ports. A node receiving data on a particular port will

re-transmit it to all other ports.

Figure 1: IEEE 1394 topology

Node A Node B Node C

Node D Node E

Node F

Port

IEEE 1394 cable

10

An IEEE 1394 bus may contain up to 63 IEEE 1394 nodes and individual IEEE 1394 buses may be

bridged together to form larger networks of devices. Up to 1024 buses may exist on a network.

Figure 2 shows an example of two IEEE 1394 buses bridged together with an IEEE 1394 bridge [62].

Figure 2: Bridged IEEE 1394 Network

The IEEE 1394 architecture is ideal for applications that require a constant transfer of data, such as

those transferring realtime audio and video data as it natively provides deterministic low-latency

transmission of data. An IEEE 1394 bus implements an arbitration scheme that guarantees

isochronous applications a constant bus bandwidth. Isochronous packets are broadcast onto the bus

on one of 64 channels and nodes on the bus can be configured to receive isochronous packets on

certain channels. Each node that resides on the bus has its internal clock synchronised with the clock

of a master device.

2.1.1 Asynchronous Communication

IEEE 1394 nodes on an IEEE 1394 bus are able to read from, and write to, other IEEE 1394 nodes’

registers. These reads and writes are known as asynchronous transactions. An asynchronous

transaction is initiated by a requester node and is received by a responder node. Each transaction

consists of two subactions: a request subaction, and a response subaction. A request subaction

transfers a register address, command, and data (for writes) from the requester to the responder. A

response subaction returns the completion status (for writes) back to the requester, or returns data

(for reads). Both request and response subactions are communicated using an asynchronous packet.

Bus 1

Bus 2

Bridge

Node Node

Node Node

Node

Node Node

Node

Node

11

There are two types of read and write requests: quadlet and block. A quadlet request reads or writes

four octets whereas a block request can read or write a variable number of octets (there is a size limit

which is dependent on the transmission speed capability of the transmitting node). An asynchronous

packet contains an address that is used to address a particular memory location on a particular IEEE

1394 node.

Connection management requests can be communicated with asynchronous reads and writes to

devices. For example, a controlling device may write to another device in order to get it to start

transmitting an isochronous stream. The same controlling device may then also write to yet another

device to instruct it to start receiving that isochronous stream.

2.1.2 Isochronous Communication

Isochronous packet transmission consists of only one subaction, a write subaction. There are no

responses to isochronous packet transmission. A device that transmits isochronous packets does so

on a particular isochronous channel. Each isochronous packet that is transmitted is tagged with a

channel number that varies from 0 through to 63. A receiving device can be set to receive packets on

one of these channels.

2.1.2.1 Resource Reservation

Before isochronous packets can be transmitted by an IEEE 1394 node, the isochronous channel

number and the bus bandwidth required for the stream of isochronous packets has to be obtained and

set aside for that stream. An IEEE 1394 node on the bus is elected as the isochronous resource

manager (IRM) which keeps track of the allocation of isochronous channels and bus bandwidth. An

IEEE 1394 node will request the required isochronous stream resources from the IRM, and if these

are successfully obtained, they are reserved.

2.1.2.2 Deterministic Transmission

Once a stream’s resources have been obtained, the stream’s isochronous packets are transmitted at a

regular interval, thus providing deterministic transmission of data. On an IEEE 1394 bus, a single

12

IEEE 1394 node is elected as the cycle master node. It regularly transmits a cycle start packet (once

every 125 µs) and all of the nodes receive the cycle start packet. When a node wanting to transmit an

isochronous packet receives a cycle start packet, it will arbitrate for usage of the bus, and if it gains

access, it will transmit a queued isochronous packet.

2.1.2.3 Synchronisation

An IEEE 1394 node that wishes to perform isochronous transactions implements a cycle count

register that is updated by a clock on the node. The cycle master node transmits a cycle start packet

every 125 µs. This cycle start packet contains the contents of the cycle master’s cycle count register

and each node updates its cycle count register based on the timing value in the cycle start packet.

This mechanism allows all of the devices on the bus to be synchronised.

2.2 Audio Video Bridging

Ethernet is the most dominant form of local area network (LAN) technology on the market today.

The Ethernet protocol is a simple protocol and has been widely adopted [63]. Traditional Ethernet

and Ethernet bridging are not able to provide network nodes with guaranteed network resources

(such as bandwidth) [64]. While it is possible to transmit synchronised low-latency realtime audio

and video data over such a network, the network itself does not guarantee that this is possible. Thus,

these types of networks are constrained to avoid interference from unknown devices. With the

inability to guarantee network resources, Ethernet frames may be subject to unpredictable frame loss

and unacceptable latency variation.

2.2.1 Bridging

This section provides an overview of traditional bridging as it forms the base of Ethernet AVB. A

bridge is a device that is used to connect IEEE 802 LANs of all types together by relaying and

filtering frames between separate media access control (MAC) entities. IEEE 802 LANs include

IEEE 802.3 (CSMA/CD) [5], IEEE 802.5 (Token Ring) [65] and IEEE 802.11 (Wireless) [66]. In an

Ethernet environment, a bridge is often referred to as an Ethernet switch. In this document, LAN

refers to an individual LAN that is specified by the MAC technology without the inclusion of

bridges, and a bridged LAN refers to the concatenation of individual IEEE 802 LANs interconnected

13

by bridges. Figure 3 shows an example of a bridged LAN. In this example, five different individual

LANs are bridged together by five bridges. The MAC technology of each of the LANs does not have

to be the same.

Figure 3: A bridged LAN [6]

2.2.1.1 VLAN Bridging

Virtual LANs (VLANs) allow for the construction of a number of separately manageable virtual

bridged LANs to run above bridged LANs. A VLAN has the same properties as a bridged LAN. A

VLAN is composed of a set of stations that communicate as if they were attached to a single

broadcast domain regardless of their location on a bridged LAN. A bridged LAN may contain a

number of VLANs which are configured in software. A VLAN is identified by a VLAN identifier

(VID). Shown in Figure 4 is a bridged LAN composed of end stations that are each either a member

of VLAN 1 (indicated as V1) or VLAN 2 (indicated as V2). Figure 5 and Figure 6 highlight the two

VLANs that are created to run on top of the bridged LAN. If one of the end stations connected to

14

VLAN 1 transmits a broadcast frame onto the network, the bridges of the network will only forward

that broadcast frame to the LANs containing stations that are members of VLAN 1.

Figure 4: A bridged LAN with VLANs

Figure 5: A bridged LAN highlighting VLAN 1

Bridge Bridge Bridge

V2 Bridge

V2

V2 V2 V1

V1

V1

Bridge Bridge Bridge

V2 Bridge

V2

V2 V2 V1

V1

V1

15

Figure 6: A bridged LAN highlighting VLAN 2

2.2.1.2 Bridge Architecture

A bridge has a MAC relay entity that is used to filter and forward individual frames between the ports

of a bridge and learn filtering information. Figure 7 shows a two port bridge with a single instance of

frame relay between the ports. Each port is able to receive and transmit frames to and from the

attached LAN via the bridge port transmit/receive process. The forwarding process is able to filter

frames and forward frames to other ports based on the information contained in the filtering

database. The filtering database contains appropriate entries that enable a bridge to determine

whether frames received (with a given destination MAC address and VID) are to be forwarded

through a potential transmission port.

Bridge Bridge Bridge

V2 Bridge

V2

V2 V2 V1

V1

V1

16

Figure 7: Relaying MAC frames (adapted from [6])

Bridges are not aware of the exact locations of end stations on a bridged LAN, but they determine

the ports through which frames should be transmitted in order to ensure that the appropriate end

stations receive frames destined to them. Bridges learn about end stations on a network by observing

the frames that the end stations transmit. Each frame has a source MAC address field that contains

the MAC address of the transmitting end station. It is the learning process that observes the source

address of frames received on each port and updates the filtering database. The learning process is

shown in Figure 8.

LAN

802.n

Bridge port
transmit/receive

LAN

802.n

Bridge port
transmit/receive

Forwarding process

Filtering
database

MAC relay
entity

17

Figure 8: Observing network traffic (adapted from [6])

2.2.2 Audio Video Bridging

The IEEE 802.1 Audio Video Bridging Task Group [7] developed a set of standards commonly

known as audio video bridging (AVB). This task group is responsible for developing specifications

that allow for time-synchronised low-latency streaming services to take place through bridged IEEE

802 networks. Currently their work has focused mainly on the use of Ethernet, but work on 802.11

(Wireless) is also underway. The work described in this thesis focused on the use of Ethernet as the

transport medium of the time-sensitive streams. In terms of AVB, a device that transmits a stream of

data is known as a talker, and a device that receives a stream of data is known as a listener.

A key requirement for the transmission of realtime audio and video streams is minimal packet loss.

An Ethernet AVB system makes use of Ethernet full-duplex links. The implication of this is that

there is no collision of frames on the Ethernet medium. Ethernet AVB frames are standard Ethernet

frames that are VLAN tagged [6]. VLAN tagging allows for priority information to be carried within

the frames, via the VLAN tag’s priority code point (PCP) field. These priority values are mapped

into traffic classes allowing stream requirements to be met. Ethernet AVB frames are transmitted on

VLANs (by default, a VLAN with a VID of 2). VLANs are useful for creating separate logical

networks above a single infrastructure. This feature could be leveraged to ensure that sensitive audio

LAN

802.n

LAN

802.n

Bridge port
transmit/receive

Forwarding process

Filtering
database

MAC relay
entity

Learning
process

18

streams transmitted across a network (in a VLAN) are only received by devices that are part of the

VLAN, and not received by devices that are not part of the VLAN.

There is a set of AVB standards documents that define the various components of an AVB system.

These components are briefly introduced below.

2.2.2.1 Resource Reservation

IEEE 802.1 Qat [67] defines the multiple stream registration protocol (MSRP). This is a protocol

that allows paths (from stream talkers through to stream listeners) to be guaranteed through a bridged

LAN for the streams that flow between the devices. It ensures that there are sufficient resources

available along the paths to support the streams. A transmitting device is able to communicate its

stream resource requirements to a bridged LAN, and a receiving device is able to communicate its

intention to receive a stream. This communication allows the network components involved in the

transfer of streaming data to guarantee the streams’ required resources.

2.2.2.2 Forwarding and Queuing Enhancements for Time-Sensitive Streams

IEEE 802.1 Qav [68] defines forwarding and queuing mechanisms for time-sensitive streams to

ensure that the resources allocated to particular streams are guaranteed. End points and bridges that

are part of an AVB system implement traffic shaping that guarantees these required resources and

smooths the delivery of frames throughout a bridged LAN. Each port’s outbound queue that

implements the traffic shaping maintains a transmission credit which dictates whether frames from

the queue may be transmitted or not. The transmission credit is decreased and increased at values

that are determined by the amount of bandwidth that is reserved for the queue.

2.2.2.3 Timing and Synchronization

IEEE 802.1 AS [69] defines timing and synchronization mechanisms for time-sensitive applications

in bridged local area networks. This standard allows for devices on an AVB network to exchange

timing information that allows them to synchronise their time base reference clock precisely.

Through the operation of the protocol, a single clock is selected as a grandmaster clock from which

all other devices derive their time. This clock periodically updates its slave clocks.

19

2.2.2.4 AVB Systems

IEEE 802.1 BA [70] defines a number of profiles that each define features, options, configurations,

defaults, protocols and procedures for bridges, stations and LANs that are to be used to build

networks capable of transporting time sensitive streams. Manufacturers can use these defaults and

profiles to develop AVB-compatible LAN components. The profiles enable persons to build

networks (using these LAN components) that do not require configuration.

2.3 Conclusion

IEEE 1394 and Ethernet AVB are two open standards-based networking technologies that allow for

the transport of synchronised, low-latency, realtime audio and video streams between the devices

that reside on the respective networks. Each of these networking technologies has mechanisms in

place to support the transmission of synchronised low-latency realtime data streams. This chapter

gave a brief introduction to these networks. In the chapters that follow, each of the key components

that make these networks suitable for the transmissions of synchronised low-latency realtime data

will be discussed.

20

Chapter 3 Resource Reservation

When transmitting realtime data streams across a network there has to be a guarantee that there are

sufficient resources to support those streams on the network. A streaming application will be aware

of its stream resource requirements, and should communicate these to the network before streaming

takes place. If the resources are available on the network, these resources should be reserved for the

particular stream(s). If not, the resource reservation should fail. This failure to reserve resources

should be communicated to the device requesting the reservation.

In order to develop a common network-neutral command and control protocol for diverse networked

audio devices, an understanding of each network’s native resource reservation mechanism is

required. The command and control protocol should be able to trigger network specific resource

reservation procedures with the correct parameters to allow for stream establishment. This chapter

explains how resource requirements are natively communicated by devices that reside on IEEE 1394

and AVB networks in order to enable stream connections to be created across these networks.

3.1 Resource Reservation for IEEE 1394

Whenever certain states of any IEEE 1394 node on a bus change (including the addition and removal

of IEEE 1394 nodes), a bus reset occurs. When this occurs, the bus is reset and it reconfigures itself.

During the reconfiguration processes, each node on the IEEE 1394 bus is assigned a unique physical

ID (or node ID) and one of the nodes on the bus is identified as the isochronous resource manager

(IRM) node. The IRM is responsible for storing isochronous channel and bandwidth allocations. The

IRM implements a bandwidth available and channels available register. The bandwidth available

register contains the amount of bandwidth currently available for isochronous transfers, and the

channels available register is a 64-bit bitmap (where each bit represents an isochronous channel)

indicating the availability of isochronous channels. Before an IEEE 1394 node is able to transmit

isochronous packets, it requests its required network resources (bandwidth and a channel number)

from the IRM on the bus. 80% of the available bus bandwidth is available for isochronous

transactions.

21

The bandwidth available register is given in terms of allocation units where each allocation unit is

the amount of time required to transmit 4 octets (a quadlet) of data at a data rate of 1.6Gbps. For a

transmission rate of 800Mbps, this is the amount of time required to transmit two octets, and at

400Mbps, it is the amount of time required to transmit one octet. 4915 allocation units are available

for isochronous transactions. At a data rate of 400Mbps, this translates to a maximum of 4915 octets

of data that may be transmitted per isochronous cycle. These limits place a restriction on the

maximum data payload size of an isochronous packet, as detailed in Table 1.

Cable speed Maximum data payload size (octets)

400Mbps 4096

800Mbps 8192

1.6Gbps 16384

Table 1: Maximum data payload size of isochronous packets

Accesses to the bandwidth available register are supported only by the quadlet read and lock

compare and swap transactions. A node is able to find out how much bandwidth is available on the

bus by reading the IRM’s bandwidth available register. It is then able to tell whether there is

sufficient bandwidth to support its isochronous stream. The lock compare and swap transaction

passes a data value and an argument value to the target node. The data value is the value being used

to update the register (which includes the node’s bandwidth requirements), and the argument value is

the value previously read. The lock compare and swap transaction returns the old value at the target

address. If the old value returned is the same as the argument value sent, then there has been no

access to the register since it was read and since performing the lock compare and swap transaction.

Otherwise, the register was updated by another node in the interim and the swap will not be

performed.

A node is also able to determine the availability of an isochronous channel, and then request the use

of the channel. A node is able to obtain the use of an isochronous channel via the IRM’s channels

available register. The channels available register is a 64-bit register where each bit represents a

channel. When it is initialised, all of the bits are set to one, indicating that none of the channels have

been allocated. A node is able to read the value of the register to determine the next available

channel number. It uses a lock compare and swap transaction to request the next available channel.

22

If an IEEE 1394 node’s requested resources are available, the node is guaranteed those resources. If,

however, any of the requested resources are unavailable, the node is unable to transmit the

isochronous packets associated with the resource reservation.

3.2 Resource Reservation for Ethernet AVB

In order to successfully transmit realtime stream data across a bridged LAN (with the required QoS),

AVB devices need to ensure that there are sufficient network resources (such as bandwidth and

buffer space) on the path from stream talkers to stream listeners before stream transmission can take

place.

A stream talker is able to register its intention to transmit a data stream with the network. It transmits

a frame containing a talker advertise attribute onto the network. This attribute includes details of the

characteristics of the stream (e.g., bandwidth and traffic class). Each intermediate bridge that

receives the frame is able to ensure that there are sufficient resources to guarantee that the stream

frames will be transmitted with the requested parameters.

A stream listener can register its intention to receive a particular data stream. It does so by

transmitting a frame containing a listener ready attribute towards the talker. This attribute includes

details of the stream it would like to receive. The intermediate bridges that receive this frame are able

to set up various internal parameters to ensure that there are sufficient resources to transfer the

requested stream frames to the listener device. If any resource reservations fail, the participating

devices are notified and streaming cannot go ahead. Once a successful path has been established

through a bridged LAN, the stream talker is able to transmit a stream.

Stream talker devices are able to tear down streams and de-allocate the resources that are reserved

for the streams by withdrawing their stream advertisements. Listeners are able to stop receiving

streams by withdrawing their intention to listen to a stream. When a stream is torn down, the

resources that were associated with that stream are released.

These stream resource reservation requirements in AVB networks are communicated using the

multiple stream registration protocol (MSRP) [67]. In addition to the functionality it provides, this

23

protocol also makes use of the functionality provided by the multiple MAC registration protocol

(MMRP) [71] and the multiple VLAN registration protocol (MVRP) [71]. These protocols are

multiple registration protocol (MRP) [71] applications. MRP allows for the registration and

distribution of information (known as attributes) across a bridged LAN. The use of the registered

attributes is specific to the application making use of MRP.

3.2.1 Multiple Registration Protocol

MRP is a distributed, many-to-many generic protocol that allows participants in an MRP application

(for example, MSRP) to declare attributes, and to have those attributes registered within other

participants on a bridged LAN. An attribute is used to convey information and may be composed of

one or more fields. For example, MMRP defines a MAC attribute that is used to describe a single six

octet MAC address, whereas MSRP defines a talker advertise attribute (that describes a stream) that

is composed of several fields. For example, a talker advertise attribute contains an eight octet

identifier to identify a stream, and fields that define the maximum frame size and frame rate of the

stream.

MRP defines a generic behaviour that all MRP applications conform to. Specific attribute types, their

allowed values, and the semantics associated with these values when they are registered, are defined

by the specific MRP applications. In essence, MRP is used to establish, maintain, withdraw, and

disseminate attribute declarations and registrations among a set of MRP participants. As shown in

Figure 9, specific MRP applications inherit the generic behaviour of MRP.

Figure 9: MRP application inheritance

MRP

MSRP MMRP MVRP MRP Applications

24

An instance of an MRP application (for example, MSRP) running on a station participates in the

MRP protocol with other instances of the same MRP application, and is known as a participant. A

participant is able to make or withdraw declarations of attributes. The declaration of an attribute

results in the registration of that attribute with the other participants. The withdrawal of a declaration

of an attribute results in the removal of registration of the attribute from the other participants. For

example, MSRP defines a talker advertise attribute and a talker end station is able to declare this

attribute. This attribute is registered on all other MSRP participants within a bridged LAN.

Figure 10 shows an example of a bridged LAN. Each end station (denoted with a triangle) has a

single port, and each bridge (denoted with a rectangle) has two or more ports. In this example, each

port has associated with it a single MRP participant (this is typically the case, but can be defined

otherwise per-MRP application). Therefore, each end station has a single MRP participant associated

with its port, and a bridge has a single MRP participant associated with each one of its ports. In this

figure, a single participant (running on an end station) has made a declaration of an attribute

(indicated by the number 1). This attribute is stored by the participant, and it is marked as being

declared. The attribute declaration is propagated to all of the other ports attached to the same LAN.

The attribute is registered by the participant on the port that receives the declaration (indicated by the

number 2). This attribute is stored by the participant, and is marked as being registered. The attribute

registration is propagated to, and declared by, all of the other bridge’s ports participants (indicated by

the number 3). These declarations then repeat the propagation cycle (indicated by the number 4).

Once a declaration of an attribute has reached a participant on an end station (for example, the end

station indicated by the number 5), it is registered and not propagated any further.

25

Figure 10: An example of an attribute value propagation from one station (adapted from [71])

Figure 11 shows an example of two different participants (running on different end stations)

declaring the same attribute (an attribute with the same type and value) on two different LANs (these

end stations are circled in the figure). All of the participants running on end stations register the

attribute. Some bridges register the attribute on more than one of its participants.

1

2

3

4

5

26

Figure 11: An example of an attribute value propagation from two stations [71]

3.2.1.1 MRP Architecture

An MRP participant consists of the following components:

• MRP application component: The application component is responsible for the semantics

associated with attribute values and attribute registrations. For example, the MSRP application is

aware of the semantics associated with the registration of talker advertise attributes.

• MRP attribute declaration (MAD) component: The MAD component is responsible for

executing the MRP protocol. It keeps track of attributes, and marks whether each one is declared

or registered. It generates MRP messages for transmission, and it processes messages it receives

from other participants.

End stations have a single MRP participant per MRP application and bridges have one MRP

participant per MRP application per port. For example, in a bridged LAN that supports the MSRP

application, an end station will have a single MSRP participant, and a bridge will have an MSRP

participant for each port of the bridge. The encoding (and subsequent decoding) of a specific MRP

application’s attribute values is specific to the MRP application. MRP uses MRP data units

(MRPDUs) to convey messages generated by the MAD component for a single MRP application.

27

MRPDUs have a general structure used by all MRP applications. Within bridges, each MRP

application has an MRP attribute propagation (MAP) component. This component is responsible for

propagating information between per-port MRP participants. Figure 12 shows the components of

MRP participants (shown in dashed lines) in a two port bridge and an end station.

Figure 12: MRP architecture [71]

An MRP application is able to request the MAD component to make and withdraw attribute

declarations. This happens via two service primitives2:

• MAD join request (attribute type, attribute value, new)

2 A service primitive is an interface to a service provider, much like a function is an interface to an object in an object-
oriented programming language. The service provider carries out the service requested by a service user. A service user
makes a request to a service provider via a service primitive.

Two port bridge End station

28

• MAD leave request (attribute type, attribute value)

The MAD component is able to notify the MAP component and the MRP application component of

changes in attribute registrations. This happens via two service primitives:

• MAD join indication (attribute type, attribute value, new)

• MAD leave indication (attribute type, attribute value)

These service primitives have the following parameters:

• Attribute type: Each MRP application defines a number of attributes and each is identified by a

number that is unique to that application. The value of the attribute type parameter represents the

type of attribute associated with the service primitive invocation.

• Attribute value: The value of this parameter is an instance of the attribute referred to by the

attribute type parameter. If, for example, the attribute type parameter refers to a MAC parameter,

the attribute value will be a MAC address.

• New: The MAD join request and the MAD join indication service primitives also have a new

parameter (in addition to the ones mentioned above). This parameter is a Boolean parameter

whose value represents an explicitly signalled new declaration. An application making an

attribute declaration may explicitly signal that the associated attribute is a new declaration. When

the attribute is registered with other participants, the application is notified that the attribute

declaration is new. MRP applications choose whether or not they make use of this functionality.

An MRP application defines a set of attribute types and the permitted values for each attribute. It

defines the semantics associated with each attribute type and value. The structure and encoding of

the attribute types and their values in MRPDUs is application specific. Each MRP application

decides on the requirements for MRP state machine support in end stations and bridges.

3.2.1.2 Multiple Attribute Propagation (MAP)

The MAP component (as shown between the two MAD components of the two port bridge in Figure

12) allows for attributes registered on a port to be propagated across a bridged LAN to other MRP

participants. Once an attribute has been registered on a port of a bridge, it will be propagated to all

other ports of the bridge, which then declare the attribute. Deregistration of an attribute on a bridge

port is propagated to all of its other ports via MAP.

29

3.2.1.3 MRP State Machines

An MRP participant contains a number of state machines. In a full MRP participant, each attribute

(whether it is declared, registered, or tracked) has associated with it an applicant state machine and a

registrar state machine. This is shown diagrammatically in Figure 13. When an attribute is created,

its associated state machines are created and initialised (see Section 3.2.1.3.2 “Applicant State

Machine” and Section 3.2.1.3.3 “Registrar State Machine”). Attributes are not necessarily created

when they are declared and/or registered. The time when attributes are created is an implementation

decision.

Figure 13: An attribute associated with an applicant and registrar state machine

An MRP participant has associated with it a leave all state machine, and a periodic transmission

state machine. This association is shown diagrammatically in Figure 14.

Attribute

Applicant state

machine

Registrar state

machine

1

1

30

Figure 14: An MRP participant associated with a leave all and periodic transmission state machine

Subsequent sub sections will discuss these state machines, but first the messaging architecture used

by the state machines will be described.

3.2.1.3.1 Transmit Opportunity

MRPDUs are used to convey messages between the state machines of participants. A single MRPDU

may contain a number of messages. Each message may contain one or more attribute values (each of

the same attribute type). For each attribute value there is a corresponding attribute event, and an

optional value field. The attribute event signalled in the message is applied to the state machines of

the attribute identified by the attribute type and the attribute value (examples of attribute events will

be discussed in the sections that follow). The use of the optional value field is defined by each MRP

application. This field is able to carry the range of values 0 through 3. Each MRP application, if it

does use the field, associates its own meaning with these values. Figure 15 shows the logical

structure of an MRPDU and its contents (the actual encoded structure of the MRPDU may be

different to enable efficient transmission).

Participant

Leave all state

machine

Periodic

transmission

state machine

1

1

31

Figure 15: MRPDU structure

If a state machine would like to transmit a message to a LAN, it has to be granted a transmit

opportunity. Associated with each participant is a join period timer. The join period timer is used to

control the time interval between transmit opportunities that are granted to state machines that

requested transmit opportunities.

If an MRP participant’s state machine wants to transmit a message, it requests a transmit opportunity

(if one is not already pending) and is added to a list of state machines (associated with the

participant) requesting a transmit opportunity. If this is the first transmit opportunity request after the

last transmit opportunity was granted, the join period timer is started. When the join period timer’s

time expires, the state machines that requested transmit opportunities add their pending messages to

an MRPDU. Once all of the pending messages are added to the MRPDU, the MRPDU is transmitted.

This process occurs separately for each participant.

The transmit opportunity mechanism facilitates the encoding of multiple attribute messages within

single MRPDUs, rather than the transmission of single attribute messages per MRPDU. Each

participant is associated with a particular port. MRPDUs are only transmitted through the port that is

associated with the participant. Each MRP application defines a unique MAC address and an

EtherType. The destination MAC address and EtherType in the MRPDU will be the MAC address

Attribute type
Attribute

value(s)

Attribute

events(s)

MRPDU

Message Message Message Message

Optional

value(s)

32

and EtherType associated with the MRP application (for example, MSRP defines its own MAC

address and EtherType).

3.2.1.3.2 Applicant State Machine

A declaration of an attribute by an MRP participant is recorded by the attribute’s applicant state

machine. Certain transitions of the applicant state machine’s state may trigger the transmission of

MRPDUs. These MRPDUs communicate attribute declaration (or withdrawal) to the other MRP

participants. Each applicant state machine maintains a declaration state that records whether it:

• Wishes to make a new attribute declaration (as signalled by the new parameter of MAD join

request)

• Wishes to maintain or withdraw an existing attribute declaration

• Has no attribute declaration to make

• It has actively made an attribute declaration

• Has been passive

• Wishes to take advantage of, or simply observe the attribute declarations of others

Figure 16 shows a partial state transition diagram for the initialisation of an applicant state machine.

When an attribute is created, its associated state machines are created and initialised. An attribute

could be created when it is declared, registered, or at some other time. For example, an MRP

application implementation may create all of its required attributes when it is initialised. Even though

these attributes exist, they are marked as not being declared, and not being registered. When an

applicant state machine is initially created (on attribute creation), it is initialised by signalling it with

a begin event. The state machine transitions to the VO (very anxious observer) state which indicates

that the associated attribute is not declared (even though it exists).

Figure 16: Applicant state machine initialisation

VO

begin

33

Figure 17 and Figure 18 show partial state transition diagrams for an applicant state machine. These

show the state transitions of the state machine when declaring an attribute, and then withdrawing the

attribute declaration. They assume that no other events take place other than the ones shown in the

figures.

Figure 17: State transitions for the declaration of an attribute

Shown in Figure 17 above is a partial state transition diagram for an applicant state machine. It

shows the transition of state when an attribute is declared. When a MAD join request service

primitive is invoked (by MSRP for a talker advertise attribute, for example), the attribute is located

within the participant. If the attribute cannot be located, the attribute is created and its applicant state

machine is signalled with a begin event (as shown in Figure 16). Once the attribute has been located

(or created), MAD signals the attribute’s applicant state machine with a join event. This causes the

applicant state machine to transition to the VP (very anxious passive) state which indicates that the

VO

join

VP Request transmit opportunity

AA

transmit

Send join empty message
Request transmit opportunity

QA

transmit

Send join empty message

MAD join request

VO Very anxious observer

VP Very anxious passive

AA Anxious active

QA Quiet activate

34

associated attribute is being declared but this has not yet been communicated to the bridged LAN.

When the state machine transitions into the VP state, it requests an opportunity to transmit (see

Section 3.2.1.3.1 “Transmit Opportunity”). Once the requested transmit opportunity arrives (after the

join period timer expires), a transmit event is signalled to the applicant state machine. This causes

the state machine to transition to the AA (anxious active) state which indicates that the state machine

is declaring the attribute and has communicated this to the bridged LAN. The state machine adds a

join empty message to an MRPDU which is sent to the bridged LAN. Following this a further

transmit opportunity is requested. When the transmit opportunity arrives, another transmit event is

signalled to the applicant state machine. This causes the state machine to transition to the QA (quiet

activate) state, which indicates that the applicant is declaring the attribute and has sent at least one

message communicating the declaration. The state machine adds a further join empty message to an

MRPDU which is sent to the bridged LAN.

In the scenarios mentioned above, the attribute event communicated in the messages (of the

MRPDUs) will indicate join empty. The join empty attribute event indicates that the attribute is

declared by the participant, but is not registered by the participant (i.e., no other participant on the

LAN has declared the same attribute). Section 3.2.1.3.3 “Registrar State Machine” details what

happens when these messages are received and how the events are interpreted.

Shown in Figure 18 is a further partial state transition diagram for an applicant state machine. It

shows the transition of states when an attribute declaration is withdrawn. Once an attribute is

declared, and this declaration has been communicated to the bridged LAN, the applicant state

machine is in the QA state (as shown in Figure 17). When a MAD leave request service primitive is

invoked (by MSRP for a talker advertise attribute, for example), the applicant state machine for the

attribute is signalled with a leave event, causing the state machine to transition to the LA (leaving

active) state. This state indicates that it has communicated the attribute declaration to the bridged

LAN but has subsequently received a MAD leave request and has yet to communicate this leave

request to the bridged LAN. When the state machine transitions to this state, it requests a transmit

opportunity. When the transmit opportunity arrives (after the join period timer’s time expires), a

transmit event is signalled to the applicant state machine. The applicant state machine transitions to

the VO state, and it adds an appropriate message to an MRPDU which is sent to the bridged LAN.

The attribute’s attribute event communicated in the message will indicate leave. The leave attribute

event indicates that the attribute declaration has been withdrawn. Section 3.2.1.3.3 “Registrar State

35

Machine” details what happens when this message is received by other participants and how the

event is interpreted.

Figure 18: State transitions for the withdrawal of a declaration of an attribute

3.2.1.3.3 Registrar State Machine

The registration of an attribute is recorded by its registrar state machine for each participating end

station and bridge port that receives an MRPDU. Its job is to record the declarations of attributes

made by other MRP participants. The registrar state machine does not send any MRPDUs. The

following states are implemented by each registrar:

• Registered

• Previously registered, but is now being timed out

• Not registered

As shown in Figure 19, when a registrar state machine is initially created (upon attribute creation), it

is signalled with a begin event. The attribute could be created when it is declared, registered, or at

some other time specific to an MRP application implementation. The begin event causes it to

QA

leave

LA Request transmit opportunity

transmit

VO Send leave message

MAD leave request

QA Quiet activate

LA Leaving active

VO Very anxious observer

36

transition to the MT (not registered) state which indicates that the attribute associated with the

registrar state machine is not registered.

Figure 19: Initial registrar state machine state

Figure 20 shows a partial state transition diagram for a registrar state machine. If a single participant

on a bridged LAN has declared an attribute, it will communicate this to the bridged LAN. All of the

other participants’ registrar state machines (on the same LAN) for the same attribute will be

signalled with a receive join empty event (as the attribute event indicated in the received message is

join empty (as discussed in Section 3.2.1.3.2 “Applicant State Machine”)). This event indicates that

the associated attribute that was received is declared, but not registered (by the participant that

transmitted the MRPDU). Each registrar state machine transitions to the IN (registered) state. When

this happens, a MAD join indication is signalled to MAP and the MRP application indicating the

attribute type and attribute value.

Figure 20: Registrar state after attribute registration

MT

begin

MT

IN Join

receive join empty

MAD join indication

MT Empty

IN Registered

37

A timer is associated with each registrar state machine and operates when the associated attribute is

being timed out. Figure 21 shows a further partial state transition diagram for a registrar state

machine. If an MRPDU is received containing an attribute and it is indicated that the attribute

declaration has been withdrawn (the attribute event is leave), the associated registrar state machine

will be signalled with a receive leave event. This event causes the state machine to transition to the

LV (previously registered, but is now being timed out) state and causes the timer associated with the

registrar state machine to be started. Once the timer expires, it will signal a leave timer event to its

registrar state machine, which causes the state machine to transition to the MT state. When the state

machine transitions to the MT state, a MAD leave indication is signalled to MAP and the MRP

application (e.g., MSRP).

Figure 21: Registrar state after attribute deregistration

3.2.1.3.4 Attribute Declaration and Registration

Figure 22 shows an applicant state machine of a participant (on end station 1), and a registrar state

machine of another participant (on end station 2). Also shown is how the state transitions and

messaging of one state machine affects the other one when an attribute is declared. An MRP

application, for example MSRP, invokes a MAD join request service primitive to indicate that it

IN

LV

receive leave

Start leave timer

MT

leave timer

Leave MAD leave indication

IN Registered

LV Leave

MT Empty

38

wants to declare an attribute with a certain value. End station 1 declares an attribute (and thus its

applicant state machine is shown), and this attribute is registered on end station 2 (and thus its

registrar state machine is shown). Once the attribute’s applicant state machine is created, it is in the

VO state. The invocation of the MAD join request (on end station 1) results in the attribute’s

applicant state machine being signalled with a join event causing it to transition to the VP state. The

applicant state machine then requests a transmit opportunity, and when given one, adds an

appropriate message to an MRPDU. The attribute event associated with the attribute in the message

is join empty.

When the message is received on the other participant (on end station 2), the attribute is located (or if

not found, created and signalled with a begin event) and its registrar state machine is signalled with a

receive join empty event causing the state machine to indicate that the attribute is registered. This

results in a MAD join indication service primitive being signalled to the MRP application. When the

registrar state machine receives the second join empty, it stays in the registered state, and does not

signal a MAD join indication to the MRP application.

39

Figure 22: State machine transitions

3.2.1.3.5 Leave All State Machine

Associated with each MRP participant is a leave all state machine. The leave all state machine is

responsible for periodically ensuring that all participants on a LAN deregister any stale attribute

registrations. An attribute registration could become stale if, for example, the participant that

declared the attribute suddenly lost network connectivity.

End station 1

Applicant

End station 2

Registrar

MAD join request

MT

IN Join

receive join empty

MAD join indication

VO

join

VP Request transmit opportunity

AA

transmit

Send join empty message
Request transmit opportunity

QA

transmit

Send join empty message

receive join empty

40

The leave all state machine can either be in the active state or passive state and it has associated with

it a timer. When the leave all state machine is initially created, it is signalled with a begin event. This

causes it to transition to the passive state and causes its timer to be started. This is shown in Figure

23.

Figure 23: Leave all state machine initialisation

Figure 24 shows a partial state transition diagram for the leave all state machine. When its timer’s

time expires, a leave all timer event is signalled to the state machine. This causes the state machine

to transition to the active state and causes a transmit opportunity to be requested, and the timer to be

restarted. When the transmit opportunity arrives (when the join period timer’s time expires), a

transmit event is signalled to the state machine. This causes a leave all message to be added to an

MRPDU.

Figure 24: Leave all state machine timer expiring

A leave all message is used to communicate that all attribute registrations (of all participants on a

LAN) will shortly be deregistered, and that all MRP participants need to reregister their attributes.

The leave all message applies to all attributes. Any attributes that are registered by the MRP

participant that transmitted the leave all message, as well as the participants that receive the leave all

message, are timed out.

Passive

begin

Start leave all timer

Passive

leave all timer

Active
Request transmit opportunity
Start leave all timer

transmit

Send leave all

41

Only a single participant’s leave all state machine needs to periodically transmit a leave all message.

Since the MRP protocol is a distributed protocol, each participant is able to transmit leave all

messages. When a participant receives a leave all message (that was generated by another

participant’s leave all state machine), its leave all state machine’s timer is restarted without it

generating a leave all message.

Figure 25 shows a leave all state machine (on end station 1), a registrar state machine (on end station

2), and an applicant state machine (on end station 3). Assume that the applicant state machine has

declared an attribute, and has communicated this to a LAN. The registrar state machine (on end

station 2) has registered the attribute. A leave all state machine’s timer expires, which results in a

leave all message being transmitted to the LAN (indicated by the number 1). A receive leave all

event is signalled to all of the registrar and applicant state machines on the LAN (indicated by the

number 2). The registrar state machine transitions to the LV state and starts its timer (as described in

Section 3.2.1.3.3 “Registrar State Machine”). This causes the attribute registration to start being

timed out.

The applicant state machine transitions to the VP state, requests a transmit opportunity, and

eventually transmits a join empty message (indicated by the number 3). This join empty message is

received by the registrar state machine (indicated by the number 4) which causes its timer to stop.

The registrar then transitions back into the registered state. If the registrar’s timer were to expire, the

attribute would have been deregistered. This would have happened, for example, if the station that

declared the attribute had lost network connectivity as the registrar would not have received the join

empty message. This ensures that when a participant declares attributes and it leaves the LAN

without withdrawing these attribute declarations, the stale attributes are deregistered from other

participants.

42

Figure 25: Leave all state machine timer expiring

3.2.1.3.6 Periodic Transmission State Machine

The periodic transmission state machine of each participant periodically causes the states of its

declared attributes to be sent to a LAN to ensure that the attributes are registered on other

participants. The functionality of the periodic transmission state machine may be disabled and

enabled at any time during its existence. MSRP, for example, does not make use of the periodic

transmission state machine.

AA

VP

receive leave all

Request transmit opportunity

transmit

Send join empty message

IN

LV

receive leave all

Start leave timer

MT

leave timer

Leave

receive join empty

Stop leave timer

Passive

leave all timer

Active
Request transmit opportunity
Start leave all timer

transmit

Send leave all

2

1

2

3

4

End station 1

Leave all

End station 2

Registrar

End station 3

Applicant

43

There is a timer associated with the periodic transmission state machine, and it periodically signals a

periodic event to the participant’s applicant state machines. The periodic transmission state machine

can either be in the active or passive state. When the state machine is created, it is signalled with a

begin event. This causes the state machine to transition to the active state, and causes its timer to be

started, as shown in Figure 26.

Figure 26: Periodic transmission state machine initialisation

When the periodic transmission state machine’s timer expires, the periodic transmission state

machine is signalled with a periodic timer event. The state machine remains in the active state, but

causes the state machine to signal all applicant state machines with a periodic event and causes its

timer to be restarted, as shown in Figure 27.

Figure 27: Periodic state machine timer expiring

If, for example, an applicant state machine has recorded the declaration of an attribute, and has

transitioned to the QA state (as shown in Figure 17) and is signalled with a periodic event, it will

cause the applicant state machine to transition to the AA state. This transition causes a transmit

opportunity to be requested. When this transmit opportunity arrives, the state machine transitions

back to the QA state and communicates the attribute registration state to the bridged LAN. Figure 28

shows an applicant state machine being signalled with a periodic event.

Active

begin

Start period timer

Active

 periodic timer

Start period timer
Signal periodic to applicant state machines

44

Figure 28: Applicant state machine being signalled with a periodic event

3.2.1.4 Protocol Timers

Various timers are used by MRP to cause actions to take place after a defined period of time:

• The join period timer is used to control the time between transmit opportunities that are granted

to applicant and leave all state machines that requested transmit opportunities. There is a join

period timer per MRP participant.

• The leave period timer is used to control the amount of time that a registrar state machine will

wait in the “previously registered, but is now being timed out” state before it transitions to the

“not registered” state.

• The leave all period timer controls the frequency at which the leave all state machine generates

leave all messages. One of these timers exists per MRP participant.

• The periodic transmission timer controls the frequency at which the periodic transmission state

machine indicates to the applicant state machines that its timer has expired. This timer is used to

stimulate periodic transmission and ensure that current attribute declarations are registered on all

participants on a LAN. One of these timers exists on a per-port basis.

Given in Table 2 are the default timer values.

Active

 periodic timer

Start period timer
Signal periodic to applicant state machines

QA

periodic

AA Request transmit opportunity

transmit

Send join message

45

Timer Default Value (milliseconds)

Join period timer 200

Leave period timer 600-1000

Leave all period timer 10000

Periodic transmission timer 1000

Table 2: The default MRP timer values

The correct operation of the MRP protocol is not critically dependent on the values of the various

timers associated with a participant’s state machines. The protocol will, however, operate more

efficiently if certain relationships are maintained between timer values used by peer participants:

• The value of the leave period timer of the registrar should be at least twice the maximum join

period timer, and also at least six times the timer resolution. This gives applicant state machines

sufficient time to communicate their attribute declarations to a LAN to ensure that registrar state

machines do not deregister their attributes unnecessarily. If, for example, a registrar state

machine (on a port attached to a LAN) and an applicant state machine (on another port on the

LAN) for the same attribute receive a leave all message, the registrar will start timing the

attribute out. The applicant, once it has received the leave all message and has been given a

transmit opportunity, will communicate the attribute declaration to the LAN, causing the registrar

to stop its leave period timer (and it will move back into the registered state). The applicant state

machine has to be given sufficient time to communicate the attribute declaration before the

attribute is unnecessarily deregistered.

• To minimize the potential volume of leave all messages, the value chosen for the leave all period

timer of the leave all state machine should be large relative to the leave period timer of registrar

state machines.

3.2.1.5 MRP Application Addressing

Each specific MRP application uses a unique EtherType in order to identify the application protocol.

MRP applications also use a specific MAC address in the destination address field of their MRPDUs.

This MAC address is used to identify the MRP application. The specific set of multicast addresses

that have been set aside for MRP applications have the following properties:

46

• If an MRP application is using a particular MAC address, any frames that are destined to that

address are not forwarded by the bridge component. These frames are passed to the relevant

MRP applications on the bridge, which process them and decide if the frames should be

propagated (using the MAP component).

• For any of the addresses that are not used by any MRP applications, the frames destined for that

address and received by the bridge are forwarded to all other ports.

3.2.2 Multiple MAC Registration Protocol

MMRP is an MRP application that allows end stations and bridges to register and deregister MAC

address information with the bridges and end stations of a bridged LAN. The services provided by

MMRP allow end stations to dynamically control reception of frames destined to unicast and

multicast MAC addresses. MMRP allows a bridge or end-station to request that frames with a given

destination unicast or multicast MAC address be forwarded to it.

Figure 29 shows an example bridged LAN that is composed of a number of bridges, LANs and end

stations. Each port on the bridged LAN has associated with it an MMRP participant. A number of

end stations have registered (via MMRP) the fact that they would like to receive frames with a

destination multicast address m (these end stations are marked with the letter M). The registration

and propagation of this registration information is handled by MRP. If any end station sends out a

frame with a destination multicast MAC address m (in this example, the end station marked with the

letter T), the bridges of the network will forward the frame out of their ports where the MAC address

m has been registered. Bridges receiving the frames will not forward the frames out of ports where

the MAC address is not registered.

47

Figure 29: Example MMRP registrations

MMRP allows for multicast frames to be forwarded only to parts of a bridged LAN where they are

needed (as opposed to being broadcast throughout a bridged LAN) thus saving bandwidth. End

stations are able to utilise information registered by MMRP to provide source pruning. This allows

end stations that are sources of frames with destination multicast MAC addresses to suppress the

transmission of these frames if the information registered by MMRP indicates that there are no

recipients of the frames.

Figure 30 shows the architecture of MMRP for a two-port bridge and an end station. Each MMRP

participant consists of an MMRP application and a MAD component. The MMRP application

component is responsible for the semantics of MMRP attribute registration and deregistration. It

interacts with the filtering database and adds or deletes appropriate entries to ensure that the requests

Bridge Bridge Bridge

M

M Bridge

M

T M

Bridge

M

End station requiring frames with destination multicast MAC address m

End station transmitting frames with destination multicast MAC address m

End station not requiring frames with destination multicast MAC address m

Forwarding of frames with destination MAC address m

T

48

of MMRP are carried out. The MAD component executes the MRP protocol (as discussed in Section

3.2.1 “Multiple Registration Protocol”). For network bridges, MMRP attributes are propagated

between the various MMRP participants via a MAP component.

Figure 30: MMRP architecture [71]

3.2.2.1 MMRP Attributes and Service Primitives

MMRP uses the attribute declaration and propagation mechanisms provided by MRP in order to

register its attributes on bridges and end stations. MMRP defines a MAC attribute type and the

following service primitives:

• Register MAC address (MAC)

• Deregister MAC address (MAC)

49

3.2.2.1.1 Registering and Deregistering MAC Addresses

MMRP provides the ability to dynamically register and deregister MAC addresses via a register

MAC address and a deregister MAC address service primitive. The registering and deregistering of

MAC addresses allow for control over the reception of frames. Each of these service primitives has a

MAC address parameter. This MAC address parameter is six octets long and represents a MAC

address.

When a register MAC address service primitive is issued to an MMRP participant, it issues a MAD

join request to its MAD component indicating an attribute type of MAC with an attribute value equal

to the requested MAC address. Invoking the MAD join request results in a MAC attribute being

declared. The MAC attribute is six octets long and is used to represent a MAC address. This

declaration is communicated to the LAN and registered by other MMRP participants on the LAN.

Bridges propagate the registration to their other ports (as discussed in Section 3.2.1 “Multiple

Registration Protocol”).

Figure 31 shows an end station application registering a MAC address. This application could be a

video application that is interested in receiving a stream of frames destined to a multicast MAC

address, for example. The application interfaces with the MMRP participant and invokes the

participant’s register MAC address service primitive indicating the multicast MAC address of

interest (indicated by the number 1). The MMRP participant handles the registration and requests

that MAD declare an attribute (via the MAD join request service primitive) of type MAC with a

value equal to the indicated MAC address (indicated by the number 2). The MAD component

declares the attribute and is responsible for communicating the attribute declaration to the LAN (via

an MRPDU) such that it is made known to the bridged LAN (indicated by number 3). Section

3.2.2.1.2 “Responding to Registration Events” discusses what happens when the attribute is

registered on other stations on the LAN.

50

Figure 31: Register MAC address

When a deregister MAC address service primitive is issued to an MMRP participant, it issues a MAD

leave request to its MAD component indicating an attribute type of MAC with an attribute value

equal to the requested MAC address. Invoking the MAD leave request results in the attribute

declaration being withdrawn, and this withdrawal being communicated to the LAN.

Figure 32 shows an example of an end station application deregistering a MAC address. Once again,

this could be a video application, but this time it no longer wishes to receive the stream of frames

destined to the multicast MAC address. This application interfaces with the MMRP participant and

invokes its deregister MAC address service primitive indicating the destination MAC address of the

frames that it no longer wishes to receive (indicated by the number 1). The MMRP participant issues

a MAD leave request to its MAD component indicating an attribute of type MAC and an attribute

value equal to the requested MAC address (indicated by the number 2). The MAD component then

withdraws the MAC attribute declaration and communicates this attribute withdrawal to the LAN

(via an MRPDU). Section 3.2.2.1.2 “Responding to Registration Events” discusses what happens

when the attribute is deregistered on other stations on the LAN.

End Station

MMRP

End station application

MAD

Register MAC address (MAC address)

MAD join request (MAC, MAC address)

1

2

Communicate declaration to LAN

3

51

Figure 32: Deregister MAC address

3.2.2.1.2 Responding to Registration Events

Section 3.2.2.1.1 “Registering and Deregistering MAC Addresses” discussed how the registration of

MAC addresses are initiated and initially communicated to a LAN. When these attributes are

registered by other MMRP participants (residing on bridges and end stations) on a bridged LAN,

these stations need to be configured appropriately to honour the requests of the registrations.

Figure 33 shows a bridged LAN. The end station marked with the letter M is interested in receiving

frames that are destined to multicast MAC address m. It registers the MAC address by declaring a

MAC attribute with an attribute value equal to the MAC address m (indicated by the number 1). The

attribute is communicated to the LAN and is registered on the port of the bridge (indicated by the

number 2). The bridge propagates the attribute registration to its other ports and declares the attribute

on these ports (indicated by the number 3). These ports communicate the attribute declarations to

their LANs which results in the attributes being registered on the ports of the stations of their LANs

End Station

MMRP

End station application

MAD

Deregister MAC address (MAC address)

MAD leave request (MAC, MAC address)

1

2

Communicate declaration withdrawal to LAN

3

52

(indicated by the number 4). This cycle is continued until the MAC attribute is registered on end

stations and cannot be propagated any further.

Figure 33: MAC address registration

MMRP responds to the registration and deregistration of MAC address information made by remote

bridges and end stations. When a MAC attribute is registered by MRP, MMRP receives notification

of this via its MAD component’s MAD join indication service primitive. When a MAC attribute is

deregistered by MRP, MMRP receives notification of this via its MAD component’s MAD leave

indication service primitive.

When MMRP receives a MAD join indication, a bridge or end station is configured such that it will

forward any received frames (that meet the criteria of the MAC address attribute) out of the port on

which the attribute is registered. Shown in Figure 34 is an example of a two port bridge with an

MMRP participant receiving an MRPDU communicating an MMRP attribute declaration by a

remote station (indicated by the number 1). The MMRP participant’s MAD component receives and

processes the MRPDU. It registers the attribute and invokes a MAD join indication to indicate to

M

End station requiring frames with destination multicast MAC address m

End station not requiring frames with destination multicast MAC address m

Bridge Bridge

 M

 D m

 D m

 D m D m D m R m

 R m R m R m

 R m

1

2

3

3

4

4

53

MMRP the registration of the attribute. MMRP adds an appropriate entry to the bridge’s filtering

database to ensure that frames are forwarded correctly. If, for example, an end station attached to the

lower port of the two port bridge has requested that all frames destined to multicast MAC address m

be forwarded to it, an entry is added to the filtering database that associates the multicast MAC

address m and the port. The forwarding process is then able to use this information when making

forwarding decisions for any received frames destined to multicast MAC address m. It will forward

any frames with that address out of the associated port.

Figure 34: Two port bridge receiving an MMRP attribute declaration

When MMRP receives a MAD leave indication, a bridge or end station is configured such that it will

filter any frames that meet the criteria of the MAC address parameter. Shown in Figure 35 is an

example of a two port bridge (that has MMRP participants associated with its ports) that has received

an MRPDU indicating that an MMRP attribute declaration has been withdrawn. The MMRP

participant’s MAD component receives and processes the MRPDU, deregisters the attribute and

Bridge

MMRP

Filtering Database

MAD

MAD join indication (MAC, MAC address)

2

Receive attribute declaration

1

1

Update filtering database
3

54

notifies the MMRP component by invoking the MAD leave indication service primitive. The MMRP

component updates the filtering database such that it no longer forwards the specified frames out of

the associated port.

Figure 35: MMRP MAD leave indication

3.2.3 Multiple VLAN Registration Protocol

MVRP is an MRP application that allows for dynamic VLAN registrations in bridged LANs. Both

end stations and bridges are allowed to create and withdraw attribute declarations that allow them to

register themselves as a member of a VLAN, and to deregister that VLAN membership.

End stations are able to register their VLAN membership (via MVRP) with the other MVRP

participants on the LAN segment to which they are connected. Each MVRP participant that receives

one of these MVRP attribute declarations updates itself to indicate that the VLAN is registered on

Bridge

MMRP

Filtering Database

MAD

MAD leave indication (MAC, MAC address)

2

Receive attribute
declaration withdrawal

1

1

Update filtering database
3

55

the port that received the attribute declaration. VLAN-aware bridges register and propagate VLAN

membership on their ports. Incoming registrations and de-registrations are used to update bridge

VLAN membership information.

VLAN membership registration on end stations allows for source pruning: if an end station has

frames to transmit on a particular VLAN, but that VLAN does not consist of any members, the

frames will not be transmitted onto the LAN.

Figure 36 shows an example of a bridged LAN. A number of end stations have indicated that they

would like to be a member of VLAN v (these end stations are marked with a V). These end stations

have requested membership to the VLAN v via MVRP. This allows for bridges to know where to

forward frames that are part of VLAN v. If a transmitting end station (in this example, the end station

marked with a T) transmits a broadcast frame as part of VLAN v, the bridges will only forward the

frame on the bridge ports where VLAN v has been registered.

56

Figure 36: Example MVRP registrations

Shown in Figure 37 is the architecture of MVRP for a two-port bridge and an end station. There

exists a single MVRP participant per port. An MVRP participant consists of an MVRP application, a

MAD component, and a MAP component.

Bridge Bridge Bridge

V

V Bridge

V

T V

Bridge

V

End station that is a member of VLAN v

End station transmitting frames on VLAN v

End station that is not a member of VLAN v

Forwarding of frame on VLAN v

T

57

Figure 37: MVRP architecture

3.2.3.1 MVRP Attribute and Service Primitives

MVRP defines a VID attribute and two service primitives:

• Register VLAN member (VID)

• Deregister VLAN member (VID)

The register VLAN member service primitive allows for VLAN membership registration, and the

deregister VLAN member service primitive allows for VLAN membership deregistration. Each of

these service primitives has a VID parameter that represents a 12-bit VLAN identifier.

3.2.3.1.1 Registering and Deregistering VLANs

If a station wishes to become a member of a particular VLAN, it will issue a register VLAN member

service primitive to MVRP with the VLAN ID that identifies the VLAN that it wishes to become a

58

member of. MVRP then issues a MAD join request to its MAD component indicating an attribute

type of VID with an attribute value equal to the requested VLAN ID. This causes MAD to declare a

VID attribute, the attribute declaration to be communicated to the LAN, and for the attribute to be

registered on other ports attached to the LAN. This is shown in Figure 38.

Figure 38: Register VLAN member

A similar process is followed when deregistering a VID. When a deregister VLAN member service

primitive is issued to MVRP with a VLAN ID, MVRP issues a MAD leave request to MAD

indicating an attribute type of VID with an attribute value representing the requested VLAN ID. This

causes the attribute declaration to be withdrawn, and for this withdrawal to be communicated to the

LAN.

MVRP responds to the registration and deregistration of VIDs made by remote bridges and remote

end stations. These registrations and deregistrations are indicated to MVRP via MAD’s MAD join

indication and MAD leave indication service primitives. An end station or bridge may receive an

MRPDU containing a VID attribute declaration. MVRP’s MAD component will process this and

End Station

MVRP

End station application

MAD

Register VLAN member (VLAN ID)

MAD join request (VID, VLAN ID)

1

2

Communicate VID declaration to LAN

3

59

register the attribute, and will notify MVRP of the attribute registration via a MAD join indication.

The MVRP component will configure the bridge or end station such that it will forward frames that

are part of the requested VLAN. Shown in Figure 39 is an example of a two-port bridge receiving

communication of a VID attribute declaration. A MAD join indication is issued for the VID attribute.

This results in an appropriate entry being added to the filtering database to associate the port on

which the attribute is registered with the VLAN ID. This allows for incoming frames that are tagged

as being part of that VLAN to be forwarded out of the port on which the VID attribute is registered.

Figure 39: MVRP MAD join indication

Similarly, an end station or bridge may receive an MRPDU containing a VID attribute declaration

withdrawal. MVRP’s MAD component will process this and deregister the VID attribute, and will

notify MVRP of the attribute deregistration by signalling it with a MAD leave indication. The MVRP

component will configure the bridge or end station such that it will filter frames that are part of the

requested VLAN for the port. Shown in Figure 40 is an example of a two-port bridge receiving

Bridge

MVRP

Filtering Database

MAD

MAD join indication (VID, VLAN ID)

2

Receive VID attribute declaration

1

1

Update filtering database
3

60

communication of a VID attribute declaration withdrawal. A MAD leave indication is issued for the

VID attribute. This results in the appropriate entry being deleted from the filtering database to

remove the association between the port on which the attribute is registered, and the VLAN ID. This

results in incoming frames that are tagged as being part of that VLAN to be filtered for the port on

which the VID attribute was registered.

Figure 40: MVRP MAD leave indication

3.2.4 Multiple Stream Reservation Protocol

MSRP (which is an MRP application) is a signalling protocol used by end stations to reserve network

resources on a bridged LAN. This protocol allows for guaranteed QoS for the transmission of unicast

and multicast data streams across a bridged LAN. Transmitted data that is associated with, and

Bridge

MVRP

Filtering Database

MAD

MAD leave indication (VID, VLAN ID)

2

Receive VID attribute declaration withdrawal

1

1

Update filtering database
3

61

conforms to, a successful stream reservation is not discarded by the network that it is transmitted on.

MSRP utilises MVRP, and optionally MMRP.

Talker end stations declare MSRP attributes that are used to define their streams’ characteristics.

These declarations (and their subsequent propagation through a bridged LAN) allow bridges to

allocate the necessary resources to ensure that the streams can traverse the bridged LAN with their

requested QoS. Listener end stations declare MSRP attributes that are used to request the reception

of the talkers’ advertised stream(s). Transmitted data that conforms to a successful stream reservation

will not be discarded by any bridge due to congestion on a LAN.

Each bridge on the path from a stream talker to a stream listener will process, possibly combine or

alter, and propagate these MSRP attribute declarations. Each stream in an AVB system is uniquely

identified by a stream identifier (stream ID). Within bridges, talker and listener attributes are

associated with each other via a stream ID that is present in each of the attributes. The talker and

listener attributes result in changes to the forwarding characteristics of a bridge and the allocation of

internal resources when streams are initiated (see Section 4.2.2 “Forwarding and Queuing”).

In order for the QoS parameters to be guaranteed, all of the devices in a bridged LAN have to

participate in the signalling as well as queuing and forwarding algorithms required of bridges (the

queuing and forwarding algorithms are discussed in Section 4.2.2 “Forwarding and Queuing”).

MSRP provides a means to interact with higher and lower level networking layers, and provides

limited error reporting capabilities.

Shown in Figure 41 is the architecture of MSRP for a two-port bridge and an end station. Each port

has associated with it an MSRP participant. Each MSRP participant consists of an MSRP application

and a MAD component. For network bridges, MSRP attributes are propagated between the various

MSRP participants via a MAP component.

62

Figure 41: MSRP architecture [67]

3.2.4.1 MSRP Attributes and Service Primitives

Stream talkers and stream listeners use attribute declarations in order to advertise streams and to

request attachment to streams respectively. There is no requirement for the order in which stream

talkers and stream listeners make their MSRP attribute declarations. The following attribute types are

used by MSRP to communicate stream information:

• Talker advertise

• Talker failed

• Listener: the listener attribute can in one of three states:

• Listener ready

• Listener ready failed

• Listener asking failed

63

MSRP provides a set of service primitives which control the declarations of the various attributes

defined by MSRP.

The service primitives that are associated with a stream talker are:

• Register stream request

• Deregister stream request

• Register attach indication

• Deregister attach indication

The service primitives that are associated with a stream listener are:

• Register attach request

• Deregister attach request

• Register stream indication

• Deregister stream indication

These service primitives contain parameters that represent properties of the streams. Section 3.2.4.2

“Talkers Advertising Streams” to Section 3.2.4.3 “Listeners Requesting Attachment to Streams”

discuss the high-level way in which the MSRP service primitives and attributes are used in order to

configure streams across a bridged LAN. Section 3.2.4.5 “MSRP Attributes and Service Primitives

in Detail” discusses these service primitives and attributes in further detail.

3.2.4.2 Talkers Advertising Streams

When a stream talker application has a stream to offer, it will invoke MSRP’s register stream

request service primitive. MSRP will then request its MAD component to declare a talker advertise

attribute by invoking its MAD join request service primitive. This attribute declaration is sent to the

bridged LAN to inform the bridges and listeners about the characteristics of the stream the talker can

provide.

Talker attributes gather QoS information along the network paths that they are transmitted on. MSRP

examines the availability of network resources (such as bandwidth) for the stream, and as the

attribute is propagated through bridges on a bridged LAN, each bridge will update the attribute.

When a bridge receives the talker advertise attribute declaration, it is registered by the MSRP

64

participant on the port that receives the attribute declaration. The MSRP MAP function assesses

whether there are sufficient resources on each of the outbound ports of the bridge for the stream. If it

is found that an outbound port is not able to support a particular stream, MSRP’s MAP component

will change a talker advertise attribute to a talker failed attribute before propagating it to the MSRP

participant on that port. If a talker failed attribute is registered by an MSRP participant on a bridge

port, it will be propagated to all other MSRP participants of the same bridge as a talker failed

attribute.

When a talker advertise attribute is registered by an MSRP participant, it indicates that the

advertisement did not encounter any resource constraints along the path from the stream talker end

station. This indicates to a stream listener that there are sufficient resources on the network to

support the stream referenced in the talker advertise attribute. If a stream listener requests attachment

to this stream, it is guaranteed that it will receive it with the described QoS. When a talker failed

attribute is registered by an MSRP participant, it indicates that the advertisement encountered

resource constraints along the path from the stream talker. This indicates to a stream listener that the

stream will not be available to it because of resource constraints somewhere along the network path

from the talker end station.

Figure 42 shows an example of a bridged LAN consisting of a talker and three listeners. The talker

registers a stream that it has to offer with the bridged LAN. It does so by declaring a talker advertise

attribute for the stream (D:TA). This talker advertise attribute is registered by the MSRP participant

associated with port 1 of the bridge (R:TA). The MSRP MAP function is notified of the talker

advertise attribute registration. The MAP function analyses the availability of resources to determine

if each outbound port is able to support the stream. In this example, each port, except port 3, has

sufficient resources to support the stream. The MAP function instructs the MSRP participants of port

2 and port 4 to declare a talker advertise attribute, and instructs the MSRP participant of port 3 to

declare a talker failed attribute (D:TF). This results in a talker advertise attribute being registered on

the listeners connected to port 2 and port 4, and a talker failed attribute being registered on the

listener connected to port 3 of the bridge (R:TF).

65

Figure 42: An example of talker attribute propagation

By default, talker attribute declarations are sent out of all non-blocked ports unless talker pruning is

enabled. The talker pruning option limits the scope of the talker declaration propagation. When

talker pruning is enabled, before a talker is able to advertise a stream, a listener must first issue a

register MAC address service primitive to MMRP for the destination MAC address of the talker’s

stream. When the talker advertises the stream, the talker advertise attribute is only forwarded out of

the ports that have the stream’s destination multicast MAC address associated with it.

When a talker advertise or a talker failed attribute is registered with a listener’s MSRP MAD

component, the MSRP application is notified of this via the MAD join indication service primitive.

The MSRP participant then notifies the listener application of the stream registration via the register

stream indication service primitive.

When a talker’s stream is no longer available, the talker requests MSRP to deregister the stream. The

talker does so by invoking MSRP’s deregister stream request service primitive, which results in

MSRP invoking its MAD component’s MAD leave request to withdraw the talker advertise attribute

declaration. The talker attribute is deregistered from all ports on the bridged LAN. Each MAD

component notifies its MSRP application of the attribute withdrawal by invoking the MAD leave

 1 2

 3 4

Talker

D:TA

Listener

Listener

Listener

R:TA D:TA

R:TA

D:TF D:TA

R:TA
R:TF

MAP
Bridge

66

request service primitive for the talker attribute. The MSRP participant notifies a listener application

of the stream deregistration by issuing it with a deregister stream indication service primitive.

3.2.4.3 Listeners Requesting Attachment to Streams

When a listener wants to receive a particular stream, it makes a request to receive this stream by

invoking MSRP’s register stream attach service primitive specifying the listener declaration type.

MSRP then invokes its MAD component’s MAD join request service primitive to request it to

declare a listener attribute. The listener declaration type is carried within the optional value field of a

message within an MRPDU. The listener declaration types are ready, ready failed, and asking failed:

• A listener ready attribute indicates that one or more listeners are requesting attachment to the

referenced stream and there are sufficient resources available along the path(s) back to the stream

talker for all listeners to receive the stream.

• A listener ready failed attribute indicates that two or more listeners are requesting attachment to

the referenced stream and at least one of the listeners have sufficient resources along the path to

receive the stream, but one or more other listeners are unable to receive the stream because of

network resource allocation problems.

• A listener asking failed attribute indicates that one or more listeners are requesting attachment to

the referenced stream but none of those listeners are able to receive the stream because of

network resource allocation problems.

If a listener has a talker advertise attribute registered for a stream that is wishes to receive, it will

request attachment to the stream as shown in Figure 43:

1. The listener has a talker advertise attribute registered for a stream (R:TA), and the listener is

ready to receive the stream.

2. The listener requests membership to the VLAN referred to in the talker advertise attribute (see

Section 3.2.4.5.1.2 “Data Frame Parameters”). This is performed via the register VLAN member

service primitive of MVRP (D:VM) (see Section 3.2.3.1.1 “Registering and Deregistering

VLANs”).

3. The listener declares a listener ready attribute for the stream (D:LR).

67

Figure 43: Listener responding to a talker advertise

If a listener has a talker failed attribute registered for a stream that is wishes to receive, it will

respond as shown Figure 44:

1. The listener has a talker failed attribute registered for a stream (R:TF), and the listener is ready to

receive the stream.

2. The listener declares a listener asking failed attribute for the stream (D:LAF).

Figure 44: Listener responding to a talker failed

A listener may request attachment to a stream before the stream has been advertised by a talker.

When this happens, a listener declares a listener asking failed attribute for the stream.

A bridge’s MSRP MAP function will use the stream ID field of the talker and listener attributes to

associate listener attributes with talker attributes. This allows listener attributes to be forwarded only

on the ports on which the talker attributes are registered (this is referred to as listener pruning). If

any bridge along the path from a stream talker to a stream listener does not have sufficient resources

available to support a stream, its MSRP MAP function will change a listener ready attribute to a

listener asking failed attribute. If it is found that there is no talker attribute declaration to associate

with a listener attribute declaration, the listener attribute will not be propagated. If a bridge receives

a listener ready attribute declaration and it associates it with a talker failed attribute declaration, the

Listener

R:TA

1 2 3

Listener

R:TA D:VM

Listener

R:TA D:VM

D:LR

Listener

R:TF

Listener

R:TF D:LAF

1 2

68

bridge will transform the listener attribute declaration into a listener asking failed declaration before

forwarding it.

If at some point in a bridged LAN a bridge has a listener ready on one port, and a listener asking

failed on another port for the same stream, the MSRP MAP function will merge these two attribute

declarations into a single listener ready failed attribute declaration before propagating it. This will be

forwarded to the stream talker. When a stream talker receives a listener ready failed, it knows that

one or more listeners want the stream, but not all of them can receive it. The stream is still

transmitted by the talker.

Figure 45 shows the same example network as shown in Figure 42. As in Figure 42, the talker has

advertised a stream, and this advertisement has been propagated throughout the network. Port 3 of

the bridge can however not support the stream due to resource constraints. The listener attached to

port 2 and the listener attached to port 4 of the bridge would like to receive the stream being

advertised by the talker. Each of the listeners declares a listener ready attribute (D:LR). These

listener attributes are registered on the respective listeners’ bridge ports (R:LR). The MSRP MAP

function then propagates these attributes as listener ready attributes towards the talker. These

attributes are merged on port 1 of the bridge as a listener ready attribute before being forwarded and

registered on the talker.

69

Figure 45: Example listener attribute propagation and merging

Figure 46 shows the same example network as shown in Figure 45. However, the listener attached to

port 3 of the bridge would also like to receive the stream being advertised by the talker. Due to

resource constraints, the bridge is unable to forward the stream out of port 3. As the listener has a

talker failed attribute registered for the stream, it declares a listener asking failed attribute (D:LAF).

This listener asking failed attribute is registered on port 3 of the bridge (R:LAF), and propagated as a

listener asking failed attribute. At port 1, the listener asking failed is merged with the listener ready

attribute. The resulting listener attribute is a listener ready failed attribute (D:LRF). This listener

ready failed attribute is forwarded to the talker and registered on its port (R:LRF).

 1 2

 3 4

R:TA D:TA

D:TF D:TA

MAP

R:LR

D:LR

Talker

D:TA

Listener

Listener

Listener

R:TA

R:TA
R:TF

Bridge

D:LR

R:LR D:LR

R:LR

70

Figure 46: Example listener attribute propagation and merging

Table 3 shows how listener attributes are propagated from incoming ports:

• If a listener attribute for a particular stream is registered on a port of a bridge, and there are no

talker attributes for that stream on any other ports, the listener attribute is not be propagated.

• If a listener asking failed attribute for a particular stream is registered on a port of a bridge, it will

be propagated as a listener asking failed to the other ports of the bridge.

• If a listener ready or listener ready failed attribute for a particular stream is registered on a port

of a bridge, and a talker failed attribute for that stream is registered on another port, a listener

asking failed attribute will be propagated to that port.

• If a listener ready or listener ready failed attribute for a particular stream is registered on a port

of a bridge, and a talker advertise attribute for that stream is registered on another port, the

listener attribute will be propagated as-is to that port.

 1 2

 3 4

R:TA D:TA

D:TF D:TA

MAP

R:LR R:LAF

D:LRF

Talker

D:TA

Listener

Listener

Listener

R:TA

R:TA R:TF

Bridge

D:LAF D:LR

R:LRF D:LR

R:LR

71

 Talker

 (none) Advertise Failed

Li
st

en
er

(none) (none) (none) (none)

Ready (none) Listener ready Listener asking failed

Ready failed (none) Listener ready failed Listener asking failed

Asking failed (none) Listener asking failed Listener asking failed

Table 3: Listener attribute propagations

When an MSRP participant registers or declares a listener attribute for a particular stream, it merges

this attribute with any listener attributes that it may already have for that same stream into a single

listener attribute. The resulting listener attribute type is shown in Table 4.

First declaration type Section declaration type Resultant declaration type

Ready None or ready Ready

Ready Ready failed or asking failed Ready failed

Ready failed Any Ready failed

Asking failed Ready or ready failed Ready failed

Asking failed None or asking failed Asking failed

Table 4: Listener attribute merging

When a talker registers a listener attribute, it examines the stream ID and declaration type of the

merged listener attribute:

• If the stream ID matches the stream ID of one of the streams that the talker is able to supply and

the declaration type is either listener ready or listener ready failed, the talker can start the

transmission of this stream immediately.

• If the declaration type is listener asking failed, the talker stops the transmission of the stream (if

it is currently transmitting the stream).

If a talker receives a MAD leave indication for a listener attribute and if the stream ID matches one

of the streams that the talker is transmitting, the talker stops the transmission of the stream (if it is

currently transmitting the stream).

72

Figure 47 shows an example of a talker end station merging listener attributes:

1. The talker has registered one listener attribute with a declaration type of ready and has started the

transmission of the requested stream (R:LR).

2. A second listener attribute (with the same stream ID as the first one) is registered on the talker

with a declaration type of ready failed (R:LRF).

3. The second attribute will be merged with the first one and the resulting attribute will have a

declaration type of ready failed (R:LRF).

Figure 47: Merging of listener attributes

When a listener no longer wishes to receive a particular stream, it will make a request to stop

receiving the stream. It will invoke its MSRP participant’s deregister attach request service primitive

for the stream. This results in MSRP invoking its MAD component’s MAD leave request for the

listener attribute to request it to withdraw the attribute.

3.2.4.4 Updating Queuing and Forwarding Information

When incoming listener attribute processing has been completed for a port, a bridge’s MAP

component will update the bridge’s filtering database to either filter any frames with the stream’s

destination MAC address, or forward any frames with the stream’s destination MAC address. If a

talker advertise attribute is matched with a listener ready or listener ready failed attribute, the

filtering database is configured to forward the stream’s frames, otherwise it is configured to filter the

stream’s frames.

When MSRP’s MAP component is called upon (when an attribute is registered on a port of a bridge),

a change in the streams that are filtered and those that are forwarded can occur. These changes are

reflected in the amount of bandwidth that is currently reserved for use by the queues that are

Talker

R:LR

Talker

R:LR

R:LRF

Talker

R:LRF

1 2 3

73

associated with the streams. If a stream is removed (for example, when a talker withdraws its talker

advertise attribute), MAP decreases the bandwidth reserved for the stream. MAP increases the

amount of reserved bandwidth when streams are successfully established.

In order ensure that no stream packets are dropped, if the reserved bandwidth of a port is going to be

increased, the bandwidth should be updated before the filtering database is updated as the bridge

should not start forwarding a stream’s frames before bandwidth has been allocated to it. Conversely,

if the reserved bandwidth of a port is going to be decreased, the filtering database should be updated

before the reserved bandwidth is updated.

Section 4.2.2 “Forwarding and Queuing” contains further details on how bandwidth is reserved for

streams.

3.2.4.5 MSRP Attributes and Service Primitives in Detail

Section 3.2.4.1 “MSRP Attributes and Service Primitives” gave a high-level overview of MSRP’s

attributes and service primitives. This section describes these service primitives and attributes in

more detail.

3.2.4.5.1 Talker Attributes

The structure of a talker advertise attribute and a talker failed attribute is shown in Table 5.

Talker advertise Talker failed

Stream ID: Eight octets Stream ID: Eight octets

Data frame parameters: Eight octets Data frame parameters: Eight octets

TSpec: Four octets TSpec: Four octets

Priority and rank: One octet Priority and rank: One octet

Accumulated latency: Four octets Accumulated latency: Four octets

 Failure information: Nine octets

Table 5: Structure of talker attributes

74

The fields shown in Table 5 are defined in Section 3.2.4.5.1.1 “Stream ID” through to Section

3.2.4.5.1.6 “Failure Information”

3.2.4.5.1.1 Stream ID

The 64-bit stream ID field is used to match talker attributes with their corresponding listener

attributes. The stream ID consists of the following sub-components:

• The first 48-bits is the 48-bit MAC address that is associated with the system sourcing the stream

to the bridged LAN. The entire range of possible 48-bit addresses is acceptable.

• The last 16-bits is an unsigned integer value that is used to distinguish among multiple streams

sourced by the same system.

A stream ID is unique across the entire bridged LAN. These are generated by a system offering

streams, or could be generated by a controlling system.

3.2.4.5.1.2 Data Frame Parameters

The data frame parameters component specifies the destination MAC address and VLAN ID that are

common to all frames belonging to the data stream. The information contained in it is used by

bridges to appropriately configure their filtering databases.

Valid MAC addresses are multicast MAC addresses, or local administered addresses. A system that

is not VLAN aware uses a VLAN ID of 2 whereas a VLAN aware system may use any valid VLAN

ID (1 through 4094).

3.2.4.5.1.3 TSpec

This 32-bit field is the traffic specification that is associated with the stream. It contains two

elements:

• Max frame size: This is a 16-bit unsigned field that is used to allocate resources and adjust queue

selection parameters in order to supply the QoS requirements of the talker. It represents the

maximum frame size that the talker will produce for the stream. This value does not include any

overhead for the media specific framing. The bridge or talker will determine the media specific

75

framing overhead on the egress port. This value is added to the max frame size when calculating

the amount of bandwidth to reserve.

• Max interval frames: This is a 16-bit unsigned field that is used to allocate resources and adjust

queue selection parameters in order to supply the QoS requirements of the talker. It represents the

maximum number of frames that the talker may transmit in one class measurement interval. The

class measurement interval is dependent on the traffic class that the stream is part of. Traffic

class A has a class measurement interval of 125 µs and traffic class B has a class measurement

interval of 250 µs.

Section 4.2.2 “Forwarding and Queuing” discusses how the values carried in these fields are used to

reserve bandwidth.

3.2.4.5.1.4 Priority and Rank

The priority and rank field is made up of the following components:

• Data frame priority: This is a 3-bit field that is used to convey the priority value that the

referenced data streams will be tagged with. The value of this parameter will determine which

queue the stream’s frames are placed into on an outgoing bridge port.

• Rank: This is a 1-bit field that is used by systems to decide which streams can and cannot be

served when the port capacity has been exceeded. If a bridge becomes oversubscribed, the rank

value will be used to help determine which stream(s) to drop. A value of zero is considered more

important than a value of one. The rank field has a default value of one.

• Reserved: This is a 4-bit field that is zeroed on transmission, and is ignored when received.

3.2.4.5.1.5 Accumulated Latency

This is a 32-bit unsigned field and is used to determine the worst-case latency that a stream can

encounter in its path from the talker to the given listener. The latency should not increase during the

life of the reservation. The accumulated latency is initially set to the maximum per-port per-traffic

class latency that a frame may experience through the underlying MAC service plus any amounts

specified in the register stream request service primitive (see Section 3.2.4.5.2.1 “Register Stream

Request”). The amount specified by the talker is the amount of latency that a stream’s frames will

encounter before being passed to the MAC service.

76

The value of the accumulated latency field is increased by each bridge as the talker attribute

propagates through the network. A listener is able to use this latency information in order to decide

whether or not the latency is too large for the acceptable presentation of the stream. The accumulated

latency is represented in nanoseconds.

3.2.4.5.1.6 Failure Information

If a bridge transforms a talker advertise attribute into a talker failed attribute, the bridge will add

information that indicates the cause of the failure and the identity of the bridge and port on which the

failure occurred. The failure information component is made up of two sub-components:

• Bridge ID: The value of this field is the ID of the bridge that transformed the talker attribute from

a talker advertise attribute to a talker failed attribute.

• Reservation failure code: The value of this field states the reason why the resource reservation

failed. These include values that indicate the unavailability of bandwidth and other bridge

resources, as well as the validity of parameters included in the talker advertise attribute.

3.2.4.5.2 Talker Service Primitives

Associated with a talker are a number of service primitives. Section 3.2.4.5.2.1 “Register Stream

Request” to Section 3.2.4.5.2.4 “Deregister Stream Indication” discusses these service primitives.

3.2.4.5.2.1 Register Stream Request

A stream talker application entity initiates the advertisement of an available stream via the register

stream request service primitive of an MSRP participant. Shown below are the parameters of the

register stream request service primitive:

• Stream ID

• Declaration type

• Data frame parameters

• TSpec

• Data frame priority

• Rank

77

• Accumulated latency

When an MSRP participant receives a register stream request, it issues a MAD join request to MAD.

The attribute type indicated to MAD has a value indicating the type of talker attribute. The

declaration type parameter has a value that indicates the type of talker attribute to declare. The value

of this parameter would indicate either:

• Talker advertise, or

• Talker failed

The attribute value indicated to MAD contains the values from the parameters of the register stream

request service primitive.

3.2.4.5.2.2 Deregister Stream Request

When a talker application entity wishes to notify a network that a stream it previously advertised is

no longer available, it invokes MSRP’s deregister stream request service primitive. This removes the

advertisement of the stream from the bridged LAN. The MSRP deregister stream request has a

stream ID parameter.

When the MSRP participant receives a request to deregister a stream via the deregister stream

request service primitive, it requests MAD to withdraw the talker attribute via the MAD leave

request service primitive. The attribute type indicated to MAD is set to the declaration type currently

associated with the stream ID. The attribute value indicated to MAD will contain the value of the

stream ID and the other values that were in the associated register stream request.

3.2.4.5.2.3 Register Stream Indication

The register stream indication service primitive is used to notify a stream listener application that a

stream is being advertised by a stream talker somewhere on the attached network. Shown below are

the MSRP register stream indication parameters:

• Stream ID

• Declaration type

• Data frame parameters

78

• TSpec

• Data frame priority

• Rank

• Accumulated latency

When an MSRP participant receives a MAD join indication from MAD indicating an attribute type

of talker advertise or talker failed, the MSRP application will issue a register stream indication to

the stream listener application. The register stream indication will carry the values indicated by

MAD. The value of the declaration type parameter will indicate the type of attribute that was

registered.

3.2.4.5.2.4 Deregister Stream Indication

A deregister stream indication service primitive is used to notify a stream listener application that a

stream is no longer being advertised by a particular stream talker. The MSRP deregister stream

indication service primitive has a stream ID parameter.

When an MSRP participant receives a MAD leave indication indicating an attribute type of talker

advertise or talker failed, the MSRP application will issue a deregister stream indication to the

stream listener application.

3.2.4.5.3 Listener Attribute

The listener attribute consists of a single stream ID field. The 64-bit stream ID is used to match

listener attribute registrations with their corresponding talker attribute registrations.

3.2.4.5.4 Listener Service Primitives

Associated with a listener are a number of service primitives. Section 3.2.4.5.4.1 “Register Attach

Request” through to Section 3.2.4.5.4.4 “Deregister Attach Indication” discusses these service

primitives.

79

3.2.4.5.4.1 Register Attach Request

A stream listener application uses a register attach request service primitive to request attachment to

a stream. Shown below are the parameters of the MSRP register attach request service primitive:

• Stream ID

• Declaration type

When an MSRP participant receives a register attach request, it will issue a MAD join request to

MAD. The attribute type indicated to MAD is a listener attribute. The attribute value contains the

stream ID, and the declaration type is communicated in the optional value field of the message in the

MRPDU.

The declaration type takes on values that indicate the type of listener attribute:

• Asking failed

• Ready

• Ready failed

3.2.4.5.4.2 Register Attach Indication

The register attach indication notifies a stream talker application that a stream is being requested by

one or more stream listeners. Shown below are the parameters of the register attach indication

service primitive:

• Stream ID

• Declaration type

When an MSRP participant receives a MAD join indication from MAD indicating an attribute type

of listener, the MSRP participant issues a register attach indication to the stream talker application.

The register attach indication contains the values from the MAD join indication.

3.2.4.5.4.3 Deregister Attach Request

When a stream listener application entity wishes to request detachment from a stream, it issues a

deregister attach request to the MSRP participant. It has a stream ID parameter.

80

When an MSRP participant receives a deregister attach request, it will issue a MAD leave request to

MAD indicating an attribute type of listener. The attribute value will contain the stream ID. The

declaration type that is currently associated with the stream ID will be communicated via the

optional value field of the message in the MRPDU.

3.2.4.5.4.4 Deregister Attach Indication

A deregister attach indication service primitive is used to notify the stream talker application that a

stream is no longer being requested by any stream listeners. It has a stream ID parameter.

When an MSRP participant receives a MAD leave indication indicating an attribute type of listener,

the MSRP participant will issue a deregister attach indication to the stream talker application. The

attribute value indicated by the MAD leave indication contains the stream ID.

3.2.4.6 Stream Importance

MSRP ranks streams to decide on their importance:

• If two streams have the same rank, the age of the streams is compared.

• If both the rank and the streams’ ages are identical, the streams’ stream IDs will be compared and

the stream with the lower stream ID is considered more important.

Certain streams may be considered more important than others (for example, an emergency phone

call may be given a higher rank that background music being played over a public address system). If

a bridge is not able to support a stream of higher importance due to insufficient bandwidth being

available for the stream, streams of lower importance will be dropped such that the stream of higher

importance can be supported.

3.2.4.7 Stream Bandwidth Calculations

The bandwidth requirements of a stream include more than just the amount specified in the register

stream request. MSRP need to adds the per frame overhead associated with the media attached to the

port.

81

The total frame size for a stream on an outbound port is the sum of the maximum frame size and the

overhead associated with the media attached to the port. The associated bandwidth (in bits per

second) is calculated by multiplying the total frame size and the number of frames transmitted per

class measurement interval.

Streams in the listener ready or listener ready failed state reduce the amount of available bandwidth

that is available to other streams. For a stream that has no listeners, or streams that are in the asking

failed state, the amount of bandwidth is not decreased.

Section 4.2.2.3.2.2 “Deriving Actual Bandwidth Requirements from the Advertised TSpec”

discusses this in further detail.

3.3 Conclusion

Before a device may transmit stream data onto a network with guaranteed QoS, it has to

communicate the stream resource requirements to the network in order to ensure that those resources

are reserved by the network for the stream. IEEE 1394 and AVB are two networking technologies

that provide environments that allow for streams to be transmitted with appropriate QoS. Each of

these networking technologies has native mechanisms in place that allow for network resources to be

reserved for streaming data.

This chapter described the protocols involved in communicating resource requirements on IEEE

1394 and AVB networks. In developing a common network-neutral method of establishing stream

connections across these networks, there is a need to be able to trigger:

• The allocation of bandwidth and an isochronous channel number by a transmitting device on an

IEEE 1394 network.

• The advertisement of a stream by a talker on an Ethernet AVB network.

• The reception of a talker’s stream (identified by a particular stream ID) by a listener on an AVB

network.

82

Chapter 4 Determinism

The maximum transmission delay for real time stream data across a network must be low and

deterministic. A streaming application should transmit with confidence knowing that its data will be

given the appropriate opportunities to be transmitted onto a network and that this data will be

delivered timeously. Realtime streams require a constant amount of network resources and these

resources need to be guaranteed.

In order to develop a method of transferring audio data from one networking technology to another,

there is a need to understand the fundamental nature of the transmission mechanisms of the

networking technologies involved. Chapter 3 detailed the mechanisms used for communicating

resource requirements within IEEE 1394 and AVB networks. This chapter details the native network

mechanisms that are in place to guarantee the network resources requested by the stations attached to

these networks.

4.1 Determinism for IEEE 1394

Once an IEEE 1394 node has obtained its required stream resources from the isochronous resource

manager (IRM), its stream packet transmission has to happen in a structured fashion. When a bus

reset occurs, one of the IEEE 1394 nodes on the bus is identified as the root node of the tree

structure formed by the nodes. Each port on a node is identified as either a parent port or a child port.

A parent port is closer to the root node than a child port. Before there can be data transmission, bus

arbitration has to take place. Bus arbitration is a process that determines which node is granted

access to the bus.

4.1.1 Bus Arbitration

Bus arbitration begins when a period of bus idle time (known as a gap) is recognised. This idle time

signals the end of a transmission and varies between isochronous and asynchronous transactions. The

isochronous gap is the period of time that must be observed prior to arbitration for the next

isochronous transaction. This gap is approximately 0.04µs. The subaction gap is the period of time

83

that must be observed prior to arbitration for the next asynchronous transaction. This value may be

tuned so that arbitration can begin as early as possible without interfering with the normal

completion of a subaction and its subsequent acknowledgment. By default, the subaction gap is

approximately 10µs.

Any node wishing to access the bus has to arbitrate for bus access, and has to be granted ownership

of the bus by the root node before it may transmit. When a node wants bus ownership, it signals a

request towards the root node. Any node on the path to the root node that detects the request

forwards it towards the root node, unless it is already signalling a request for itself or for another

node. Once the root node receives a request on one of its ports, it will grant ownership of the bus to

the requesting node. If two nodes’ requests reach the root at the same time, the node attached to the

port with the lowest numeric port number is granted access to the bus.

Figure 48 shows an example bus of connected nodes with two nodes (node A and node E) trying to

gain access to the bus. Both of these nodes send a request for bus ownership to their parent node.

Node B detects node A’s request and forwards it to its parent. Node E’s request is sent directly to the

root node (its parent). The root node (node D) receives Node E’s request, and thus grants it access to

the bus. Node D (the root node) sends a data prefix signal out of port 1 to notify all nodes

downstream from the root that it has granted ownership of the bus to a node, and that a packet can be

expected. When node E receives notification of bus ownership, it removes its request signal for bus

ownership and begins packet transmission. Node C forwards the data prefix to its children. When

node B detects this, node B stops signalling for bus ownership and forwards the data prefix signal to

node A which causes node A to remove its request for bus ownership. The reception of the data

prefix signal indicates to node A that another node has won ownership of the bus.

84

Figure 48: Two IEEE 1394 nodes requesting ownership of an IEEE 1394 bus

4.1.1.1 Isochronous Arbitration

When a node would like to transmit an isochronous packet, it uses the isochronous arbitration

service. The elected cycle master node (which is the same node as the root node) broadcasts a cycle

start packet onto the IEEE 1394 bus every 125µs (8000 times per second). Isochronous transactions

begin immediately after a cycle start packet has been broadcast onto the bus. Isochronous arbitration

will begin when all of the nodes that would like to access the bus observe a bus idle time of

approximately 0.04µs. Once arbitration is complete, and a node has been granted access to the bus,

the winning node performs its isochronous transaction. Once this transaction is complete, the bus

returns to an idle state. Once the bus has been idle for a further 0.04µs, the nodes wishing to perform

an isochronous transaction again begin the arbitration process. Any node that would like to perform

Root (D)

1 2

1

Leaf (E)

4

Branch (C)

1 2 3

1

Leaf (F)

2

2

Branch (B)

1

1

Leaf (A)

Node A and node E request ownership of the bus

Node D (root) grants node E ownership of the bus

Node D (root), node C and node B signal data prefix

to their other ports

85

an asynchronous transaction is prevented from arbitrating for bus ownership because the longer

subaction gap will not occur until all isochronous transactions have completed.

Each isochronous channel requires a certain amount of bandwidth which has been obtained from the

IRM. A bandwidth allocation is a portion of each 125µs interval. This ensures that bandwidth is

reserved for transmitting devices and not oversubscribed. For each 125µs cycle, once all of the nodes

that need to perform an isochronous transaction have done so, the remaining time within the cycle is

used for asynchronous packet transmission. If there are no pending asynchronous transactions, the

rest of the 125µs cycle goes unused.

4.1.1.2 Cycle Start and Priority Arbitration

The cycle master node broadcasts a cycle start packet onto an IEEE 1394 bus every 125µs. The

transmission of a cycle start packet takes priority over other pending asynchronous transactions, thus

permitting the start of isochronous transactions. As the cycle master node is the root node, it will

always win arbitration at the first subaction gap following the cycle synchronisation event.

4.2 Determinism for Ethernet AVB

The priority information contained in VLAN tagged frames allows for bridges to apply specific

frame-forwarding to the frames that form part of streams, and for traffic-shaping to happen at bridges

and AVB end-points. End-point devices transmit frames onto a network at a regular time interval.

Transmission characteristics are defined by the traffic class that the stream is a part of, and the

various QoS parameters that were used when the stream was approved by the network. For example,

when a stream is initialised, it may be agreed that the stream talker will transmit frames at a rate of

4.7Mb/s with a frame rate of 8000 packets per second. These 8000 packets must then be transmitted

evenly within each second (i.e., one packet transmission every 125µs).

Within a bridge, audio and video frames are forwarded as per usual. They will, however, also be

subject to specific traffic manipulation rules. These rules are based on the specific traffic class that

the frames belong to and the allocated bandwidth for the traffic class for the egress port of a bridge.

The frames that belong to a specific traffic class cannot go beyond the allocated resources.

86

An Ethernet AVB network also allows for the transmission of non-AVB data (such as web, e-mail

and command and control data). This kind of traffic does not have any reserved QoS and frames

belonging to this category of traffic may experience frame loss if network resources are constrained.

4.2.1 VLAN Tagged Ethernet Frames

AVB frames are VLAN tagged. In Ethernet frames, a VLAN tag is inserted between the frame

header’s source address field and type/length field. Figure 49 shows a VLAN tagged Ethernet frame

header which consists of the following fields:

• Destination address: this field either contains the unicast MAC address of the station to which

this frame is destined, a multicast MAC address if the frame is destined to multiple stations, or a

broadcast MAC address if the frame is destined to all stations.

• Source address: this field contains the MAC address of the station that sent the frame onto the

network.

• Type/length: if this field’s value is less than or equal to 1500, this field’s value represents the

length of the data that is carried in the Ethernet packet. If this field’s value is greater than or

equal to 1536, this field’s value identifies the high-level protocol that is being carried in the

frame’s data field.

• Tag protocol ID: This two octet field carries the value 0x8100 which is used to identify the fact

that the Ethernet frame is VLAN tagged. This field is in the same position as the type/length field

of an untagged Ethernet header.

• Priority code point (PCP): This 3-bit field is used to carry priority information. The value of this

field can be used to give different handling to frames of different priorities.

• Canonical format indicator (CFI): This 1-bit field is used to specify whether the MAC address is

in canonical format or not. This field is always set to zero (canonical format) in bridged Ethernet

networks.

• VLAN ID: The value of this 12-bit field is used to carry the value identifying the VLAN to which

the frame belongs (see Section 3.2.3 “Multiple VLAN Registration Protocol”).

87

Figure 49: VLAN tag

4.2.2 Forwarding and Queuing

The forwarding and queuing procedures that are defined in IEEE 802.1Qav [68] allow end stations

and bridges to provide performance guarantees for the transmission of time and loss sensitive stream

data across a bridged LAN. Stream transmission latency has to be bounded and buffering within

receiving stations should be minimized for better performance.

VLAN tagged frames, via the value of the PCP field, are used to place stream frames into queues that

support stream data whilst non-stream data is placed into other queues. This allows for both stream

data and non-stream data to be bridged across a bridged LAN. A number of mechanisms have been

put in place to address these performance requirements:

• There is a mechanism to detect the boundary between a set of bridges that support the stream

reservation protocol (see section 3.2.1 “Multiple Stream Reservation Protocol”) and the

surrounding bridges that do not.

Destination

Address

(6 octets)

Source

Address

(6 octets)

Data

(46 - 1500 octets)

Type/length

(2 octets)

Tag protocol ID

(2 octets)

 P

C

P

C

F

I

VLAN ID

(12 bits)

3 1
bits bit

VLAN tag

88

• A set of parameters that together represent the availability of bandwidth for each port. More

specifically, these parameters are able to represent the maximum bandwidth available to a given

outbound queue and the actual bandwidth reserved for a given outbound queue.

• Credit-based shaper transmission selection algorithm: This algorithm is used to shape the

transmission of stream-based traffic in accordance with the bandwidth that has been reserved on

a given outbound queue.

• A mechanism for mapping the priorities of received frames to the traffic classes available on the

transmission ports of a bridge.

4.2.2.1 Traffic Classes

A bridge’s outbound ports may have associated with them a number of queues for frames waiting to

be transmitted. A bridge may implement a number of traffic classes. A traffic class has a one-to-one

association with a specific queue on an outbound port of a bridge. Traffic classes are numbered from

zero through to N-1 where N is the number of outbound queues that are associated with a given

bridge’s port. The value of N is between one and eight inclusive. Traffic class zero is used for non-

expedited traffic, and any non-zero traffic class is used for expedited traffic.

Figure 50 shows a transmission port of a bridge and the queues that are associated with it. Also

shown are the traffic classes that are associated with each queue. In this instance, the transmission

port has four queues associated with it, and hence traffic classes numbered from zero through to

three are associated with those queues.

Figure 50: Association of traffic classes to outbound port queues

Transmission Port

0 1 2 3 Traffic Class

Queue

89

There is a fixed mapping between the priority associated with each frame and the traffic class that

that frame belongs to. This mapping is dependent on the number of traffic classes that a port

implements. Table 6 shows the recommended frame priority to traffic class mappings for a bridge

that does not support the credit-based shaper algorithm (see Section 4.2.2.3.2 “Credit-Based Shaper

Transmission Selection Algorithm” on page 93).

 Number of available traffic classes

 1 2 3 4 5 6 7 8

P
rio

rit
y

0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0

2 0 0 0 1 1 2 2 2

3 0 0 0 1 1 2 3 3

4 0 1 1 2 2 3 4 4

5 0 1 1 2 2 3 4 5

6 0 1 2 3 3 4 5 6

7 0 1 2 3 4 5 6 7

Table 6: Recommended priority to traffic class mappings [68]

Figure 51 shows an example transmission port of a bridge. A VLAN tagged frame arrives at the

bridge (via another port) and is forwarded to the transmission port of the bridge. At the transmission

port, the priority value contained within the frame is read, and the corresponding traffic class is

obtained from the mapping table. As this transmission port implements four traffic classes, priority

four is mapped to traffic class two, and is placed into the queue associated with traffic class two.

90

Figure 51: Frame priority to traffic class mapping example

4.2.2.2 Stream Reservation Traffic Classes

A stream reservation class (SR class) is a traffic class that allows bandwidth to be reserved for its

stream data. SR classes are denoted with successive letters of the alphabet starting with the letter A

and continuing up until the letter G (there are seven possible SR classes). Each SR class has

associated with it a priority value that is used to map frames to the appropriate traffic class. By

default, SR classes are numbered using the highest traffic class numbers that are associated with a

bridge port’s queues. If, for example, a bridge port implements four traffic classes and two of those

traffic classes are SR classes, the SR classes will use traffic class three and traffic class two.

In a bridge that supports the forwarding and queuing of time-sensitive stream data, the default

mapping of priority values to traffic class values meets the following constraints:

 Number of available traffic classes

 1 2 3 4 5 6 7 8

P
rio

rit
y

0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0

2 0 0 0 1 1 2 2 2

3 0 0 0 1 1 2 3 3

4 0 1 1 2 2 3 4 4

5 0 1 1 2 2 3 4 5

6 0 1 2 3 3 4 5 6

7 0 1 2 3 4 5 6 7

Frame

(Priority 4)

Transmission Port

0 1 2 3

Traffic Class

Queue

91

• The priority values that are used to support SR classes are mapped to traffic class values that

support the credit-based shaper algorithm as the transmission selection algorithm.

• Any traffic classes that support the credit-based shaper algorithm have a higher priority than

those traffic classes that support the strict priority (or any other) transmission selection algorithm

(see Section 4.2.2.3.1 “Strict Priority Transmission Selection Algorithm” on page 93).

• At least one traffic class should support the credit-based shaper algorithm, and at least one traffic

class should support the strict priority transmission selection algorithm. The class that supports

the strict priority transmission selection algorithm allows for data that is not part of a reservation

to be transmitted (e.g., best-effort traffic).

Table 7 shows the recommended default priority to traffic class mappings for SR class A and SR

class B. By default, frames that form part of SR class A streams use priority value three, and frames

that form part of SR class B streams use priority two. The traffic classes that are shaded are the

traffic classes that use the credit-based shaper algorithm (SR classes), and the un-shaded traffic

classes are those that use the strict priority transmission selection algorithm.

 Number of available traffic classes

 2 3 4 5 6 7 8

P
rio

rit
y

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

2 1 1 2 3 4 5 6

3 1 2 3 4 5 6 7

4 0 0 1 1 1 1 2

5 0 0 1 1 1 2 3

6 0 0 1 2 2 3 4

7 0 0 1 2 3 4 5

Table 7: Recommended priority to traffic class mappings for SR class A and SR class B

Table 8 shows the recommended default priority to traffic class mappings for a system using SR

class B (using priority 2) only.

92

 Number of available traffic classes

 2 3 4 5 6 7 8

P
rio

rit
y

0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0

2 1 2 3 4 5 6 7

3 0 0 0 1 1 2 2

4 0 1 1 2 2 3 3

5 0 1 1 2 2 3 4

6 0 1 2 3 3 4 5

7 0 1 2 3 4 5 6

Table 8: Recommended priority to traffic class mappings for SR class B only

4.2.2.3 Transmission Selection Algorithms

For each port, frames are selected for transmission on the basis of the traffic classes that the port

supports and the operation of the transmission selection algorithm that is associated with each queue

on that port. For a given port and queue, a frame in that queue is selected for transmission from that

queue if, and only if:

• The transmission selection algorithm supported by the queue determines that there is a frame

available for transmission.

• For each queue that has a numerically higher traffic class value, the transmission selection

algorithm associated with that queue determines that there is no frame available for transmission.

This process is illustrated in Figure 52. It shows two bridge ports that each have four queues (hence

the traffic classes associated with each of these queues are numbered from zero through to three).

Each queue has a transmission selection algorithm associated with it used to determine if a frame is

ready for transmission out of its associated queue. The “Transmission Selection” section selects a

frame for transmission out of the port.

93

Figure 52: Bridge port transmission selection

IEEE 802.1Qav defines two transmission selection algorithms: the strict priority transmission

selection algorithm, and the credit-based shaper algorithm.

4.2.2.3.1 Strict Priority Transmission Selection Algorithm

The strict priority transmission selection algorithm determines that there is a frame available for

transmission from its associated queue if there is at least one frame in the queue.

4.2.2.3.2 Credit-Based Shaper Transmission Selection Algorithm

The credit-based shaper algorithm is used to shape the transmission of stream-based traffic in

accordance with the bandwidth that has been reserved on an associated outbound queue. Each queue

using this algorithm has a credit parameter that represents the transmission credit that is available to

the queue. The value of this parameter is represented in bits per second. The algorithm determines

that a frame is ready for transmission from its associated queue if the following conditions are true:

• The associated queue contains at least one frame.

• The amount of credit associated with the queue is zero or positive.

The following are some of the other parameters that are associated with each queue that supports the

credit-based shaper algorithm:

Transmission Selection

0 1 2 3

Transmission Port

Traffic Class

Queue

Transmission Selection

0 1 2 3

Transmission Port

94

• Port transmit rate: The value of this parameter represents the transmission rate of the port. The

value of this parameter is represented in bits per second.

• Idle slope: The value of the idle slope parameter represents the actual amount of bandwidth that

is reserved for use by the queue (in bits per second), i.e., the maximum portion of the port

transmit rate that is available to the associated queue. The value of the idle slope parameter

represents the rate of change of the credit parameter when a frame is not being transmitted out of

the associated queue. The amount of reserved bandwidth is determined via MSRP. If MSRP is

not available, the amount of reserved bandwidth can be set by management means.

• Send slope: The value of this parameter represents the rate of change of the credit parameter

when a frame is being transmitted from the associated queue. The value of this parameter is

represented in bits per second. The value of the send slope parameter is equal to the value of the

idle slope parameter less the value of the port transmit rate parameter.

• Delta bandwidth: The value of this parameter represents the bandwidth that can be reserved for

use by the queue associated with the traffic class in addition to the delta bandwidth values

associated with higher priority queues. The value of this parameter is represented as a percentage

of the port transmit rate. For a given traffic class, the total bandwidth that can be reserved is the

sum of the delta bandwidth values for the traffic class and all higher traffic classes, minus any

bandwidth reserved by higher traffic classes that support the credit-based shaper algorithm. By

default, the recommended value of delta bandwidth for the highest numbered traffic class is 75%

of the port’s available bandwidth. For any lower numbered traffic classes, the recommended

additional amount of reservable bandwidth (i.e., delta bandwidth) is 0%. If the reserved

bandwidth for a given queue is less than the maximum value, then any lower-priority queue that

supports the credit-based shaper algorithm may make use of the reservable bandwidth that has

not been used by the higher priority queue.

Assume that there are four queues on an outbound port of a bridge and two of these queues

support the credit-based shaper algorithm. These two queues are queues 3 and 2 and they support

SR class A and B respectively. The other two queues support the strict transmission selection

algorithm. This is illustrated in Figure 53.

95

Figure 53: Example outbound queues

Suppose the following:

• Delta bandwidth for queue three (SR class A) is 20%

• Delta bandwidth for queue two (SR class B) is 30%

• The amount of reserved bandwidth for queue three (SR class A) is 10%

then the maximum amount of bandwidth that can be reserved for SR class B is 40% (30% + 20% -

10%)

Suppose the following:

• Delta bandwidth for queue three (SR class A) is 20%

• Delta bandwidth for queue two (SR class B) is 30%

• The amount of reserved bandwidth for queue three (SR class A) is 20%

then the maximum amount of bandwidth that can be reserved for SR class B is 30% (30% + 20% -

20%)

If at any time there are no frames in a queue, no frame is being transmitted out of the queue, and the

value of the credit parameter is positive, the value of the credit parameter is set to a value of zero. If

a queue uses less bandwidth that what is reserved for it, the unused bandwidth can be used by other

traffic classes.

In order for the operation of the credit-based shaper algorithm to operate as designed, each traffic

class that supports the algorithm has to be numerically higher than any traffic class that does not

support the algorithm.

Strict Strict Credit Credit
 0 1 2 3

 SR B SR A

96

4.2.2.3.2.1 Credit-shaper Algorithm by Example

Assume that a bridge port has a port transmit rate of 100 Mb/s. If, for example, MSRP requests to

reserve 25 Mb/s worth of bandwidth for SR class A streams, then the queue’s idle slope parameter

will have a value of 25 Mb/s and the send slope parameter will have a value of -75 Mb/s (this is

calculated by subtracting the port transmit rate from the idle slope (25 Mb/s – 100 Mb/s)).

When a frame is being transmitted out of a queue supporting the credit-shaper algorithm, the credit

value associated with that queue is decreased at a rate equal to the queue’s send slope parameter.

When the frame transmission ends, the value of the queue’s credit parameter increases at a value

equal to the value of the idle slope parameter.

Error! Reference source not found. shows a graph showing the value of a credit parameter over

time.

Figure 54: Credit-shaper algorithm frame transmission (no conflicting traffic)

This graph shows what happens when the credit parameter has a value of zero and there is no

conflicting traffic (there is no higher priority traffic awaiting transmission, and there is no frame

being transmitted out of the port). At time t1, a frame is queued for transmission. The frame can be

transmitted from the queue immediately (as there is zero or more credit and there is no conflicting

traffic). When the frame is being transmitted, the value of the credit parameter is decreased at a value

equal to the send slope parameter. In the example, that would be at a rate of -75 Mb/s. At time t2, the

frame transmission is complete, and the value of the credit parameter increases at 25 Mb/s (which is

0 Time

Send slope Idle slope

Credit

t 1

t 2

t 3

97

the value of the idle slope parameter in the example) until it reaches a value of zero (time t3). During

the time that the credit parameter has a value less than zero (between time t1 and time t3), no other

frame transmission is allowed to be initiated from the associated queue. This ensures that the queue

does not use more than its allocated bandwidth.

Figure 55 shows a graph that displays the value of a credit parameter over time.

Figure 55: Credit-shaper algorithm frame transmission (conflicting traffic)

At time t1, there are no frames waiting in the queue for transmission, but conflicting frames are

being transmitted out of the port associated with the queue. At time t2, a frame is queued for

transmission. Since the value of the credit parameter is zero, the algorithm will allow the

transmission of the frame, but as a conflicting frame is being transmitted out of the port, the frame

cannot be transmitted. The transmission of the conflicting frame ends at time t3.Whilst the

conflicting frame is being transmitted, the value of the credit parameter increases at a value that is

equal to the value of the idle slope parameter. From the time t2 to the time t3, the frame waits in the

queue. At time t3, the transmission of the queued frame begins, and at time t4 the transmission of the

frame is complete. During the transmission of the frame, the value of the credit parameter decreases

at a value that is equal to the value of the send slope parameter. The transmission of the frame does

not consume all of the credit that is available. At time t4, there are no other frames in the queue and

thus the value of the credit parameter is set to zero.

Figure 56Error! Reference source not found. shows a further graph that displays the value of a

credit parameter over time.

0 Time

Send slope Idle slope

Credit

t 1 t 2

t 3

t 4

98

Figure 56: Credit-shaper algorithm frame transmission (burst traffic)

At time t1, there are no frames waiting in the queue for transmission, but conflicting frames are

being transmitted out of the port associated with the queue. At time t2, three frames are queued one

after the other. As soon as the first frame is queued, the value of the credit parameter increases at a

rate equal to the value of the idle slope parameter as there is conflicting traffic being transmitted by

the port. At time t3, the conflicting traffic has been transmitted and the first frame in the queue (f1) is

transmitted. Whilst the frame is being transmitted the value of the credit parameter decreases at a

rate equal to the value of the send slope parameter. At time t4 the transmission of the first frame is

complete. As the value of the credit parameter is positive at this point, the second frame (f2) is

transmitted and the value of the credit parameter continues to decrease at a rate equal to the value of

the send slope parameter. At time t5 the transmission of the second frame is complete. As the value

of the credit parameter is now negative, the third frame cannot be transmitted. The value of the credit

parameter increases at a rate equal to the value of the idle slope parameter. At time t6 the value of the

credit parameter reaches a value of zero. There is no other conflicting traffic so the third frame (f3) is

transmitted. Whilst this frame is being transmitted, the value of the credit parameter decreases at a

rate equal to the value of the send slope parameter. At time t7 the transmission of the third frame is

complete and the credit parameter increases at a rate equal to the value of the idle slope parameter.

At time t8 the value of the credit parameter reaches zero. As there are no queued frames and no

conflicting traffic, the value of the credit parameter remains at zero.

0 Time

Credit

t 1 t 3 t 2

t 6

t 7

t 8 t 4

t 5

f1 f2 f3

99

4.2.2.3.2.2 Deriving Actual Bandwidth Requirements from the Advertised TSpec

The forwarding and queuing rules use bandwidth parameters that are defined in terms of the actual

bandwidth used when frames are transmitted on the medium that supports the underlying MAC. The

bandwidth is not defined as the size of the payload that is carried within frames. MSRP specifies the

size of the payload that forms part of a stream. This value does not take into consideration the per-

frame overhead that is associated with transmitting the frame over a given medium. When

calculating the amount of bandwidth to reserve for a given queue, it is necessary to take into

consideration the per-frame overhead associated with the transmission of frames.

When calculating the bandwidth consumed by a stream, it is assumed that the stream data is

essentially of constant size and transmission rate. The maximum frame rate is calculated as follows:

• Maximum frame rate = maximum interval frames × (1 / class measurement interval)

The maximum frame rate is measured in frames per second. The maximum interval frames is

measured in units of the number of frames transmitted every class measurement interval. The class

measurement interval is measured in seconds.

Stream class A has a class measurement interval of 125µs. If, for example, an end station supports

stream class A and is transmitting an audio stream at one frame per class measurement interval (i.e.,

it has maximum interval frames of one), the maximum frame rate would be calculated as follows:

= maximum interval frames × (1 / class measurement interval)

= 1 × (1 / 125 × 10-6)

= 1 × 8000

= 8000 frames per second

It is possible to determine the per-frame overhead that is added to each payload. The actual per-

frame overhead is dependent on the protocol stack and the underlying MAC technology. The actual

bandwidth that is required to support a given stream is defined as follows:

• Actual bandwidth = (per frame overhead + payload size) × max frame rate

The actual bandwidth is measured in octets per second, and the per-frame overhead and payload size

are measured in octets.

100

For VLAN tagged Ethernet frames, the overhead associated with each frame is:

• Inter frame gap (IFG): 12 octets

• Preamble: 8 octets

• Ethernet header (with VLAN tag): 18 octets

• Trailer: 4 octets

The total per-frame overhead is thus 42 octets.

If, for example, an end-station advertised that the maximum payload associated with the stream is 80

octets (via the talker advertise TSpec field), the actual reservation of bandwidth performed by

MSRP’s MAP component (as represented by the idle slope parameter of the queue associated with

the stream) will also have to take into consideration the 42 octets of per-frame overhead. The actual

bandwidth will be calculated as follows:

= (per frame overhead + payload size) × max frame rate

= (42 + 80) × 8000

= 112 × 8000

= 976000 octets/s

= 7.808 Mb/s

4.2.2.4 Stream Reservation Protocol Domain

It is possible to connect non-AVB-aware stations to AVB-aware stations and it is also possible for

AVB-aware stations to associate different priority values with the SR classes that they support. For

example, a bridge may use priority three to identify class A streams, and a second bridge that it is

connected to may be configured to use priority four to identify class A streams. Given this, stream

reservation protocol domains (SRP domains) are created to ensure that stream requirements are met

and not interfered with from devices outside of the domain. For example, a non-AVB aware end

station could be connected to an AVB-aware bridge. This end station is able to transmit VLAN

tagged frames that are tagged with a priority value that is being associated with one of the supported

SR classes. If this were to happen, the reserved bandwidth for the particular SR class would be

oversubscribed resulting in packet loss. Thus, when these frames enter the SRP domain, their priority

101

values need to be adjusted such that they do not conflict with priority values being used by SR

classes (see Section 4.2.2.4.2 “Priority Regeneration”).

Each supported SR class of each port of each bridge of a set of connected bridges needs to be

identified as either being at the edge of the set of bridges or not. An SR class of a port is considered

to be at the edge of the set of connected bridges if the station at the other end of the link does not

support the credit-shaper algorithm for stream transmission, does not support MSRP, or the SR class

uses a different priority value to tag the SR class’s stream frames with. The set of bridges form SRP

domains for the supported SR classes.

Figure 57 shows an example network composed of three four-port bridges. Bridge B3 is not AVB-

aware, and bridge B1 and bridge B2 are AVB aware. Bridge B1 and bridge B2 support SR class A

using priority three and SR class B using priority two. End stations End 1 to End 5 are also compliant

with the AVB standards and support SR class A using priority three and SR class B using priority

two. The right hand port of bridge B2 has been marked as an edge port (this port is known as a

domain boundary port) for SR class A and SR class B as it is connected to a port of a bridge that is

not AVB-aware. All of the other ports of the AVB-aware stations are marked as not being at the edge

(these ports are known as domain core ports) for both SR class A and SR class B.

102

Figure 57: SRP domain with non-AVB bridge

Figure 58 shows another example network composed of three four-port bridges. All of the bridges

are AVB aware. Bridge B1 and bridge B2, and End 1 through to End 5 support SR class A using

priority three and SR class B streams using priority two. Bridge B3 and End 6 through to End 8 only

support class B streams using priority two. As a result of this, the right hand port of bridge B2 is

marked as a domain boundary port for SR class A. Any frames entering the port that have been

tagged with a priority value of three will have their priority value adjusted.

B2

B1

B3

 End 2

 End 4 End 5

 End 1

 End 3

 AVB compliant end station

 AVB-aware bridge

 Non-AVB-aware bridge

 Domain core port

 Domain boundary port

103

Figure 58: SRP domain for SR class A

Figure 59 shows the same example network as shown in Figure 58. In this figure, all of the ports of

all of the stations are marked as domain core ports for SR class B as all of the stations support SR

class B using priority two.

B3

 End 6

 End 8

 End 7

B2

B1

 End 2

 End 4 End 5

 End 1

 End 3

 Class A and B AVB compliant end station

 Class A and B AVB-aware bridge

 Class B AVB compliant end station

 Class B AVB-aware bridge

 Domain core port for class A

 Domain boundary port for class A

104

Figure 59: SRP domain for SR class B

4.2.2.4.1 Detection of a Stream Reservation Protocol Domain

MSRP is used to establish SRP domains. Neighbouring devices that have identical SR class

characteristics are part of the same SRP domain and stream data may be transmitted between these

devices. All systems that support a particular SR class are considered to be in the same SR domain if

they use the same priority value for that SR class. A SRP domain boundary for a SR class exists at a

point when neighbouring devices use different priority values for the same SR class.

In addition to the talker and listener attributes, MSRP defines a domain attribute. This attribute

contains information that is used by a bridge port to determine the location of an SRP domain

boundary. The structure of a domain attribute is as follows:

• SR class ID (one octet): The SR class ID field is used to represent an SR class that is supported

by the port.

• SR class priority (one octet): The SR class priority field is used to represent the priority value

that is associated with the SR class (identified by the SR class ID field).

B3

 End 6

 End 8

 End 7

B2

B1

 End 2

 End 4 End 5

 End 1

 End 3

 Class A and B AVB compliant end station

 Class A and B AVB-aware bridge

 Class B AVB compliant end station

 Class B AVB-aware bridge

 Domain core port for class B

105

• SR class VID (two octets): The SR class VID field is used to represent the VID of the VLAN that

is associated with the SR class (identified by the SR class ID field).

Each AVB device is aware of its characteristics and functionality. When it is initialised, it is able to

declare domain attributes for each of its supported SR classes. For each SR class, of each port of a

bridge, MSRP determines whether the port is a domain core port, a domain boundary port or that the

port is not part of the domain. When the domain attribute of the port at the other end of a link has the

same value as the domain attribute on the local end of a link, the port is considered to be a domain

core port for the SR class, otherwise it is not considered to be a domain core port.

Once registered on a bridge’s port, MSRP does not propagate domain attributes across to the other

ports of a bridge. The purpose of the domain attribute is to determine the SR class characteristics of a

station at the other end of an attached link.

4.2.2.4.2 Priority Regeneration

When a frame is received by a bridge, the priority of that frame is regenerated using the priority

information contained within the frame and the priority regeneration table of the port from which

the frame was received

Each port has associated with it a priority regeneration table. This table has eight entries that

correspond to the eight possible priority values: zero through to seven. Each entry specifies the

received priority value and the corresponding regenerated priority value. Table 9 shows the default

regeneration values. These are initially used in the priority regeneration table of each port.

106

Received priority Default regenerated

priority

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Table 9: Priority regeneration table

In a bridge that supports SRP, each reception port has a domain boundary port priority regeneration

override table associated with it. This table associates a priority value with each SR class supported

by the bridge and a regenerated priority value to be used when the port has been determined to be a

domain boundary port.

Table 10 shows the default values for priority and regenerated priority for two SR classes (SR class

A and SR class B) for a domain boundary port. This ensures that any data arriving at the boundary

port using a priority value that is associated with an SR class is regenerated so that it does not

interfere with any stream data.

SR class Default priority Default regenerated

priority for SRP domain

boundary ports

A 3 0

B 2 0

Table 10: Default domain boundary port priority regeneration override values table

Assume that an AVB-aware bridge uses the default domain boundary port priority regeneration

override values that are defined in Table 10. If a non-AVB endpoint device transmits a frame

destined to the AVB-aware bridge with a priority of three, when the frame arrives at the domain

107

boundary port of the AVB-aware bridge, the priority of that frame will be adjusted to zero before it

is transmitted further. This then prevents that frame from interfering with any stream data (using

priority three) in the SRP domain.

4.2.2.5 Talker Behaviour

A talker end station that wants to make use of the credit-based shaper algorithm characteristics for

stream delivery has to use the priorities that the bridges in a network recognise as being associated

with SR classes exclusively for transmitting stream data. A talker end station exhibits the

transmission behaviour for frames that are part of time-sensitive streams. This behaviour is

consistent with the operation of the credit-based shaper algorithm. This behaviour is seen for the

transmission of individual streams, and for combined streams’ data transmitted from the port. This is

illustrated in Figure 60.

Figure 60: Queuing model for a talker station [68]

A talker end station has a per-stream queue, and it places stream frames into this queue. The

placement of frames into this queue is based on the parameters of the talker advertise attribute for

the stream. During each class measurement interval, it is allowed to place the number of frames it

TransmisTransmisTransmisTransmission selectionsion selectionsion selectionsion selection

108

advertised in the talker advertise into the queue, and each frame may not be larger than the

maximum frame size advertised in the talker advertise.

Each queue associated with each stream uses the credit-based shaper algorithm to determine the rate

at which data frames for the stream are placed into the appropriate port’s outbound queue. The port’s

outbound queue then in turn uses the credit-based shaper algorithm to select which frames are to be

transmitted out of the queue.

The end station exhibits the same transmission selection characteristics that are described in Section

4.2.2.3 (“Transmission Selection Algorithms” on page 92) for the transmission of frames.

4.3 Conclusion

When transmitting realtime stream data across a digital network, it is necessary for this data to be

transmitted in a timely and deterministic fashion. IEEE 1394 and Ethernet AVB networks natively

provide mechanisms to provide this deterministic transmission to ensure that the networks are not

oversubscribed. IEEE 1394 provides deterministic transmission via a bus arbitration mechanism.

This ensures that all of the devices that have acquired network resources are able to transmit

isochronous data every isochronous cycle. Ethernet AVB devices make use of the credit-shaper

algorithm to guarantee network resources to streams. These mechanisms ensure that data frames are

not discarded due to network congestion and ensures that they arrive timeously.

109

Chapter 5 Timing and Synchronisation

When transmitting multiple audio and video streams across a network, it must be possible to present

these streams so that they are rendered correctly with respect to each other. For example (as shown in

Figure 61) a video camera could be capturing images and a microphone the audio associated with

those images. The video stream could traverse a network to reach a video display, and the audio

stream may traverse the network to reach a pair of speakers. The audio and video streams may take

different paths through the network and this could result in their data arriving at their respective

destination devices at different times. It is essential that the video and its associated audio be

synchronised so that the audio corresponds to the images on the video display. It should be possible

for transmitting devices to be able to tell receiving devices the time at which video and audio

samples should be presented (i.e., it should be able to provide the receiver(s) with a presentation

time).

Figure 61: Example stream synchronisation

Bridge Bridge

Bridge

Bridge

110

It is also necessary to achieve wordclock synchronisation: for example, a signal from a microphone

could be fed into an analogue to digital converter (ADC) where it is sampled at a certain rate

(nominally 48 kHz, for example). This signal could then be transmitted across a digital network to a

speaker. Once that signal arrives at the speaker, it may be fed into a digital to analogue converter

(DAC) such that it can be played back on the speaker. The DAC should run at the same rate as the

ADC (48 kHz, for example), but this is unlikely to be the case. If the ADC is running faster than the

DAC, it will produce more samples than the DAC is consuming causing a buffer overrun. In the

opposite case, where the ADC is running at a slower rate than the DAC, the ADC is producing fewer

samples than the DAC is trying to consume resulting in a buffer under-run. These conditions result in

glitches in audio and video playback. There is a need to synchronise the sampling clocks of the

devices that produce streams, and the sample clocks of the devices that receive streams. This is

known as wordclock synchronisation.

In order to control the presentation time of audio and video samples, and to allow for wordclock

synchronisation, IEEE 1394 and AVB devices need to share a common sense of time. This chapter

discusses the native synchronisation mechanisms that are in place within each of these networking

technologies such that devices on these networks are able to share a common sense of time. There is

a need to understand these synchronisation mechanisms in order to develop mechanisms that allow

for cross network stream synchronisation to take place.

5.1 IEEE 1394

On an IEEE 1394 bus, each node has a cycle time register that is incremented by a clock on the node.

This clock has a frequency of 24.576 MHz. The format of the cycle time register is shown in Figure

62. It is composed of a 7-bit second count field, a 13-bit cycle count field, and a 12-bit cycle offset

field. These fields are used as follows:

• The cycle offset field is updated until it reaches a value of 3071. At this point it rolls over to zero

and the cycle count field is updated by one. The roll over happens every 125µs and is used to

trigger the transmission of cycle start packets. Once every 125µs, the root node broadcasts a

cycle start packet onto the bus. The cycle start packet contains the root node’s cycle time register

value. The cycle time register values of all the nodes are synchronised by the cycle start packet.

111

• The cycle count field is updated until it reaches a value of 7999. At this point it rolls over to zero

and the second count field is updated by one. This happens every second.

• The second count field is updated until it reaches a value of 127. At this point it rolls over to a

value of zero.

Figure 62: Cycle time register (adapted from [4])

An IEEE 1394 node also implements a bus time register. This register is composed of a second count

hi field and a second count lo field. The second count lo field is an alias for the second count field of

the cycle time register and is thus 7-bits in size. The second count hi field is 25-bits in size and is

incremented when the value of the second count lo field rolls over from a value of 127.

Using this mechanism, all of the nodes on an IEEE 1394 bus share a common sense of time. This

allows for transmitting IEEE 1394 nodes to timestamp their packets with presentation times, as

shown in Section 6.2 “Timing and Synchronisation”.

5.1.1 Cross IEEE 1394 Bridge Synchronisation

IEEE 1394 buses (consisting of IEEE 1394 nodes) can be bridged together with IEEE 1394 bridges

[62] to form a net. An IEEE 1394 bridge consists of two portals. Each portal is a connection from a

bridge to an IEEE 1394 bus. A bridge is capable of forwarding asynchronous and isochronous

subactions. The forwarding characteristics of a bridge are determined by routing information that it

maintains.

Each IEEE 1394 bus forms its own arbitration domain and has a cycle master that provides uniform

time to that bus. Each bridge portal has an independent 24.576 MHz cycle timer. These cycle timers

may not advance at exactly the same rate resulting in one advancing at a higher rate than the other.

Cycle offset (3071) Cycle count (7999) Second count

7 bits 13 bits 12 bits

125µs intervals 1s intervals

24.576MHz clock

112

In order for an IEEE 1394 bridge to reliably transport isochronous stream data, it is necessary for all

cycle masters within a net to maintain frequency synchronisation with each other. Without this, cycle

time drift might grow large enough to cause isochronous buffer overruns or underruns. For example,

an IEEE 1394 bridge may receive isochronous packets on a portal at a faster rate than it is

transmitting them on its second portal. This would occur if the cycle time of the cycle master of the

first portal’s bus advances at a higher rate than the cycle time of the cycle master of the second

portal’s bus. The simplest method of achieving frequency synchronisation is to maintain an effective

cycle offset phase difference of zero (known as phase synchronisation) between cycle timers on

adjacent buses. Cycle offset phase synchronisation occurs when cycle start events are simultaneous.

A net has a single cycle master that provides cycle offset for the entire network. This is the cycle

master of one of the IEEE 1394 buses and is known as the net cycle master. IEEE 1394 bridges

distribute the net cycle offset throughout a net.

5.1.1.1 IEEE 1394 Bridge Portals

A single portal of a net is known as the prime portal. The location of the prime portal determines the

location of the net cycle master, i.e., the net cycle master is located on the bus to which the prime

portal is connected. Each bus of a net contains an alpha portal. This portal snoops and forwards

transaction subactions addressed to the prime portal. The prime portal is also the alpha portal on the

IEEE 1394 bus to which it is connected. A co-portal, from the perspective of a particular IEEE 1394

bridge’s portal is the other portal of the same bridge. A subordinate portal is a portal that is neither

an alpha nor a prime portal. Figure 63 shows an example net that contains two IEEE 1394 bridges

and two IEEE 1394 nodes. In this example, the left hand portal of Bridge A is the prime portal. As a

result of this, the right hand portal of Bridge A and Bridge B are alpha portals. The left hand portal of

Bridge B is a subordinate portal.

113

Figure 63: An example net

In the context of cycle time synchronisation, a downstream cycle master or a downstream portal is

one that has more bridges between itself and the net cycle master than the portal to which it is

compared. For example, in Figure 63, if Node A is the net cycle master, the alpha portal of Bridge B

is downstream relative to the alpha portal of Bridge A. In the context of an isochronous stream,

within a bridge the downstream portal is the one with more bridge portals between itself and the

node transmitting the stream.

In the context of cycle time synchronisation, an upstream cycle master or an upstream portal is one

that has fewer bridges between itself and the net cycle master than the portal to which it is compared.

For example, in Figure 63, if Node A is the net cycle master, the alpha portal of Bridge A is

upstream relative to the alpha portal of Bridge B. In the context of an isochronous stream, within a

bridge the upstream portal is the one with fewer bridge portals between itself and the node

transmitting the stream.

On the bus that contains the prime portal, the portals of the other bridges on the bus obtain cycle time

directly from the net cycle master. These portals communicate their cycle offset to their co-portals

which regulate cycle start events on their own buses.

5.1.1.2 Phase Synchronisation

The IEEE 1394 bridges that interconnect IEEE 1394 buses into a net are responsible for maintaining

phase-locked synchronisation between the net cycle master and all other cycle masters in the net.

Phase lock is achieved when the value of the cycle offset field of the cycle time register is identical

for two cycle masters separated by a bridge. An IEEE 1394 bridge accomplishes phase lock by

measuring the cycle offset difference between the cycle master on the upstream portal’s bus and the

cycle master on the alpha portal’s bus. This difference is adjusted to account for propagation delays

p α α

Node A Bridge A Bridge B Node

114

between the portals and their respective cycle masters. When the difference (measured in ticks of a

24.576 MHz cycle timer) is nonzero, the alpha portal either adjusts its own cycle time (if it is cycle

master) or transmits a cycle master adjustment packet to the cycle master on its bus. The cycle

master adjustment packets (known as go fast or go slow packets) allow an alpha portal to instruct a

cycle master to delay or hasten the advent of the next cycle synchronisation event by one tick of its

24.576 MHz cycle timer.

For an alpha portal to calculate whether a phase adjustment is required, four data items are sufficient:

• Simultaneous samples of the cycle offset field of the cycle time register of both bridge portals.

• The propagation delay between the alpha portal and the downstream cycle master.

• The propagation delay between the upstream portal and the upstream cycle master.

Figure 64 shows these data items between two IEEE 1394 buses in a net. The upstream and

downstream (with respect to the net cycle master) cycle masters are marked CM and CM’. The

upstream portal is labelled u and the alpha portal is labelled α.

Figure 64: Phase synchronisation between two IEEE 1394 buses [62]

An IEEE 1394 bridge is able to calculate the phase difference between its two portals with the

following formula

(cycle offsetalph + propagation delayCM’) – (cycle offsetupstream + propagation delayCM)

115

Each portal of an IEEE 1394 bridge measures the propagation delay between itself and the cycle

master on its bus by means of ping packets. The propagation delay is half the round-trip delay

measured by a ping packet.

Both bridge portals have an independent 24.576 MHz cycle timer whose value can be sampled via

the cycle time register. Once each isochronous period, the phase of both cycle timers (visible via the

cycle offset field of the cycle time register) is sampled. This result of this is combined with the

propagation delays according to the formula above. If the result of the calculation is a negative value,

the downstream cycle master is running slower than the upstream cycle master and the alpha portal

should instruct it to reduce the threshold value for the impending cycle start by one cycle timer tick.

If the result of the calculation is a positive value, the downstream cycle master is too fast and the

alpha portal instructs it to increase the threshold value by one cycle timer tick. Adjustments made by

the alpha portal to the cycle master’s threshold value are in effect only for the next cycle count

increment. After this, the threshold reverts to the nominal 3071 cycle timer ticks.

Table 11 shows an example phase difference calculation for Figure 64. The data shown in the table is

observed by a single IEEE 1394 bridge. After the calculation is performed, it is determined that the

downstream cycle master (CM’) is running slower than the upstream cycle master (CM) and thus it is

instructed to temporarily decrease its cycle count increment threshold by one time tick.

O
bs

er
ve

d
d

at
a

 cycle offsetupstream 25 ticks

propagation delayCM 7 ticks

cycle offsetalpha 15 ticks

propagation delayCM’ 5 ticks

phase difference -12 ticks

R
es

ul
t

The alpha portal will transmit a cycle master

adjustment packet to temporarily decrease the

cycle count increment threshold by one cycle

time tick (go fast).

Table 11: Example phase difference calculation based on Figure 64 [62]

116

5.1.1.3 Cycle Master Adjust Packet

A cycle master adjust packet instructs the recipient to adjust the interval between successive cycle

synchronisation events. The type of cycle master adjust packet indicates the adjustment to be made to

the cycle master’s behaviour at the next cycle synchronisation event. The adjustment causes a

temporary override of the threshold value above which the cycle offset field of the cycle time register

wraps around to zero and causes the cycle count field of the cycle time register to increment.

• A go slow packet specifies that the threshold should be set to 3072. This delays the next cycle

synchronisation event by one tick of the cycle master’s 24.576 MHz cycle timer.

• A go fast packet specifies that the threshold should be set to 3070. This hastens the next cycle

synchronisation event by one tick of the cycle master’s 24.576 MHz cycle timer.

Upon the next cycle synchronisation event, the threshold value is restored back to 3071.

5.2 Ethernet AVB

IEEE 802.1 AS [69] [72] [73] defines the generalised precision time protocol (gPTP) which allows

systems on a bridged LAN to all share a common sense of time. The protocol defines two types of

time-aware systems:

• Time-aware end station: A time-aware end station is a device that is capable of acting as a source

of synchronised time and/or a destination of synchronised time (using gPTP).

• Time-aware bridge: A time-aware bridge is a device that is capable of communicating

synchronised time received on one of its ports to its other ports (using gPTP).

A bridged LAN composed of these time-aware systems interconnected by LAN technologies

supporting gPTP is known as a time-aware bridged LAN. This time-aware bridged LAN forms a

gPTP domain. The gPTP domain defines the scope of gPTP message communication, state,

operations, data sets and timescale. The time-aware systems form a synchronisation master/slave

hierarchy with one of the time-aware systems selected to be the grandmaster.

Time synchronisation is performed with the selected grandmaster sending its current time (amongst

other information) to all of the time-aware systems directly attached to it. Each one of the time-aware

systems that receives this information corrects the received time by adding the propagation time

117

needed for the information to transit the communication path from the grandmaster. A time-aware

bridge will forward the corrected synchronised time information (including additional delays in the

forwarding process) to all of its attached time-aware systems. For this mechanism to work, two time

intervals need to be precisely known:

• The time taken for the synchronised time information to transit the communication path between

two time-aware systems. Each time-aware system in a gPTP domain, for each of its ports,

measures the delay on the link between itself and the time-aware system that it is connected to.

• The forwarding delay through bridges (called the residence time). The measurement of the

residence time is local to a bridge and must be less than or equal to 10ms.

Any time-aware system that has clock sourcing capabilities is a potential grandmaster. gPTP defines

a selection process that ensures that all of the time-aware systems in a gPTP domain use the same

grandmaster. This selection process is known as the best master clock algorithm (BMCA). All of the

time-aware systems on a time-aware bridged LAN continuously participate in the BMCA (even if

they are not grandmaster capable) and thus should a “better” clock enter the time-aware bridged

LAN, it will be selected as the grandmaster. If a time-aware bridged LAN were to become divided,

for example, the BMCA will ensure that a grandmaster exists on each segment that is created. The

BCMA will select the “best” grandmaster-capable time-aware station as the grandmaster of the time-

aware bridged LAN segment. When this happens, two separate gPTP domains are formed.

Time-aware systems in a gPTP domain only communicate gPTP information directly with other

time-aware systems. Non-time-aware bridges cannot be used to relay gPTP information as they slow

timing convergence and introduce extra jitter and wander.

5.2.1 gPTP Messages

For full-duplex point-to-point links, all gPTP communication occurs via precision time protocol

(PTP) messages. There are two PTP message classes:

• Event message class: these messages are time-stamped on egress from a time-aware system and

ingress to a time-aware system.

• General message class: these messages are not time-stamped.

118

Each PTP message class also has a number of message types. These message types will be

introduced in the relevant sections.

5.2.1.1 Generation of Event Message Timestamps

All event messages are time-stamped on egress from, and ingress to, a time-aware system. The

timestamp value is the time, relative to the local clock of that time-aware system, at which the

message timestamp point of the message passes the reference plane. The message timestamp point is

the point within an event message at which a timestamp is taken, and is defined as the beginning of

the first symbol following the start of frame delimiter. The reference plane marks the boundary

between the time-aware system and the network media. These are illustrated in Figure 65.

Figure 65: Definition of message timestamp point, reference plane, timestamp measurement plane, and latency

constants (adapted from [69])

xxxxxxxxxxxxxxxxxxxx...xxxxYxxxxx xxxxxxxxxxxxxxxxxxxx...xxxxYxxxxx

Ingress event message Egress event message

Message timestamp point Message timestamp point

PHY

MAC

Higher layers

Reference plane

Timestamp

measurement plane

Timestamp

measurement plane

Egress latency

Ingress latency

119

If event message timestamps are generated using a point other than the message timestamp point

(within an event message), then the generated timestamps should be corrected by the time interval

between the actual time of detection and the time that the message timestamp point passed the

reference plane. If these corrections are not made, a time offset between time-aware systems results.

If timestamps are generated at a timestamp measurement plane that is different from the reference

plane, the generated timestamps should be corrected for these offsets. Thus, the egress and ingress

timestamps should be corrected as follows:

• egress timestamp = egress measured timestamp + egress latency

• ingress time stamp = ingress measurement timestamp - ingress latency

Where,

• egress timestamp and ingress timestamp are the timestamp values when the message timestamp

point passed the reference plane,

• egress measured timestamp and ingress measured timestamp are the timestamp values measured

relative to the timestamp measurement plane,

• egress latency and ingress latency are the latencies between these measurement planes.

The timestamp measurement plane, relative to the reference plane, may be different for inbound and

outbound event messages, and thus the egress latency and ingress latency values are likely to be

different. Failure to make these corrections results in a time offset between the slave and master

clocks.

PTP peer delay measurements (see Section 5.2.4 “PTP Peer Delay Protocol”) calculates the mean

propagation time on a link and thus requires that two-way delay be symmetrical for the highest

accuracy. The latency corrections allow transmission delays to be measured such that they appear

fixed and symmetrical to gPTP even though there might be substantial asymmetry and transmission

variation.

120

5.2.2 Best Master Selection and Network Establishment

The BMCA is a distributed algorithm that is used to select the “best” clock of a gPTP domain as the

root time-aware system of that gPTP domain, and if the root time-aware system is grandmaster

capable, the grandmaster. The grandmaster will always be the root time-aware system, but the root

time-aware system will not necessarily be the grandmaster (this would occur if none of the time-

aware systems are capable of being grandmaster). The BMCA is also used to construct a time-

synchronisation spanning tree. Synchronised time is communicated from the selected grandmaster

(the root time-aware system) to other time-aware systems via the time-synchronisation spanning tree.

BMCA exchanges information between time-aware systems via announce messages. An announce

message is a general message, and thus is not time-stamped. Each announce message contains

information that identifies one of the time-aware systems as the root of the time-synchronisation

spanning tree and, if the root time-aware system is grandmaster-capable, the grandmaster. Each time-

aware system uses the information in the announce message it receives, along with its knowledge of

itself, to determine which time-aware systems that it has knowledge of should be the root and, if

grandmaster-capable, the grandmaster. Once an announce message is transmitted by a port,

subsequent timing information transmitted by the port shall be derived from the grandmaster that is

indicated in that announce message.

5.2.2.1 Time-aware System Characterisation

Each announce message carries information that is used to characterise the time-aware system. This

information consists of a priority value, multiple clock characteristic values, and a clock identity

value that is used to uniquely identify a time-aware system. When comparing two time-aware

systems, these values are concatenated together to form an unsigned integer called a system identity.

A system identity with a lower numeric value indicates a time-aware system that is a more capable

root time-aware system than a time-aware system with a system identity with a higher numeric value.

The priority field can be used to determine whether a time aware system is grandmaster capable or

not, and can be used by a network manager to force a certain time-aware system to be grandmaster.

When comparing two time-aware systems, a time-aware system’s priority value has the greatest

influence on the outcome of the system identity comparison. The clock characteristic value includes

121

values that describe the class of the clock and its accuracy. When comparing two time-aware

systems, if the systems have equal priority, their clock characteristics are compared. If the two time-

aware systems have equal clock characteristics, then the clock identities are compared as a tie-

breaker.

5.2.2.2 Examples of Grandmaster Selection

When a time-aware bridged LAN is in a steady state, the grandmaster of the gPTP domain

periodically transmits an announce message announcing its presence and superiority. Time-aware

end stations and bridges keep track of the current grandmaster. Figure 66 shows an example time-

aware bridged LAN with time-aware end station A as the grandmaster. It periodically transmits

announce messages. In the diagram, GM indicates grandmaster.

Figure 66: Announce message transmission in a steady state

A

(I am GM)

(A is GM)

C

(A is GM)

B

(A is GM)
D

(A is GM)

122

In Figure 67, an additional time-aware end station (E) is added to the network. This end station

receives an announce message from end station A and realises (by comparing the system identity in

the announce message with its own system identity) that it is a better grandmaster than end station A.

This could happen, for example, if the clock of time-aware system E is considered more accurate

than the clock of time-aware system A.

Figure 67: Addition of a time-aware system

A

(I am GM)

(A is GM)

C

(A is GM)

B

(A is GM)
D

(A is GM)

E

(I am GM)

123

As shown in Figure 68, time-aware end station E transmits an announce message announcing its

superiority. The time-aware bridge updates its knowledge of the grandmaster. Subsequent announce

messages from time-aware system A are not forwarded by the time-aware bridge as is it aware of a

superior time-aware system (time-aware end station E). The bridge forwards time-aware end station

E’s announce message.

Figure 68: Announce message transmission after time-aware system addition

A

(I am GM)

(E is GM)

C

(A is GM)

B

(A is GM)

D

(A is GM)

E

(I am GM)

124

Once each time-aware system has received the announce message from time-aware end station E, it

records that time-aware system E is the grandmaster, as shown in Figure 69.

Figure 69: Announce message transmission in a steady state after time-aware system addition

A

(E is GM)

(E is GM)

C

(E is GM)

B

(E is GM) D

(E is GM)

E

(I am GM)

125

If time-aware system E is removed from the time-aware bridged LAN, the other time-aware systems

will stop receiving its announce messages. After a time-out period, all of the time-aware systems

send announce messages, as shown in Figure 70. The time-aware bridge keeps track of the system

identity with the lowest value and only forwards the announce message of the time-aware system

with the lowest system identity value. In this case (assuming that the bridge processes time-aware

system A’s announce message first), time-aware system A’s announce message is forwarded to the

other time-aware systems and the rest of the other time-aware systems announce messages are

filtered.

Figure 70: Announce message transmission after time-aware system removal

A

(I am GM)

(A is GM)

C

(I am GM)

B

(I am GM)
D

(I am GM)

E

126

The system stabilises once again, and the grandmaster time-aware system continuously transmits

announce messages announcing its presence and superiority, as shown in Figure 71.

Figure 71: Announce message transmission in a steady state after station removal

5.2.2.3 Port Roles

As part of the construction of a time-synchronisation spanning tree, each port of each time-aware

system is assigned a port role from Table 12.

A

(I am GM)

(A is GM)

C

(A is GM)

B

(A is GM)
D

(A is GM)

E

127

Port role Description

Master Any port of a time-aware system that is closer to the root time-aware system than any

other port of the gPTP communication path connected to that port.

Slave The one port of a time-aware system that is closest to the root time-aware system.

Passive Any port of a time-aware system whose port role is not master, slave, or disabled.

Disabled Any port of a time-aware system that is either disabled, has its time-synchronisation

and best master selection functions disabled, or the IEEE 802.1AS protocol is not

operating.

Table 12: Port role definitions

An example master/slave hierarchy of time-aware systems is shown in Figure 72. All of the

grandmaster’s ports have a port role of master. All of the other time-aware systems have exactly one

slave port. The time synchronisation spanning tree is formed by the links between ports of time-

aware systems where these ports are not passive. The passive ports are used to break loops.

128

Figure 72: An example master/slave hierarchy of time-aware systems [69]

5.2.3 Logical Syntonisation

Time synchronisation correction is dependent on the accuracy of delay and residence time

measurements. Ideally, the clock used for this purpose has to be frequency locked (syntonised) to the

grandmaster to ensure that all of the time measurement intervals use the same time base. Two time-

aware systems are syntonised if the duration of a second on both of the clocks is the same. i.e., each

clock advances at the same rate (syntonised clocks do not necessarily share the same epoch).

129

Adjusting the frequency of an oscillator is slow and prone to gain peaking effects. gPTP measures

the frequency of a clock against the frequency of the grandmaster clock. This frequency ratio is

known as the grandmaster frequency ratio. The grandmaster frequency ratio allows time-aware

bridges to correct time interval measurements. For each port that a time-aware system has, the ratio

of the frequency of the time-aware system at the other end of the link to the frequency of its own

clock is measured. This is known as the neighbour frequency ratio. The grandmaster frequency ratio

is used in computing synchronised time, and the neighbour frequency ratio is used in correcting

propagation time measurements. The grandmaster frequency ratio is calculated by accumulating

neighbour frequency ratios.

All of the time-aware systems in a gPTP domain are logically syntonised, meaning that they all

measure time intervals using the same frequency even though their clocks may advance at different

rates.

5.2.4 PTP Peer Delay Protocol

Link propagation delay is measured by each port at the end of every full-duplex, point-to-point link.

Both of the ports that share a link, independently and periodically make the measurement, and both

ports know the propagation delay result. This allows time-synchronisation information to be

transported irrespective of the direction it takes. The direction that time synchronisation information

is transmitted could change if the grandmaster changes.

Figure 73 shows the operation of the PTP peer delay protocol. The propagation delay measurement

is initiated by a peer delay initiator time-aware system. The time-aware system at the other end of

the link is the peer delay responder time-aware system. A similar measurement occurs in the

opposite direction, with the initiator and responder interchanged and the directions of the messages

reversed.

The propagation delay measurement starts with the peer delay initiator transmitting a p delay request

event message and generating a timestamp, t1. The peer delay responder receives the message and

timestamps it with time t2. The responder returns a p delay response event message and timestamps it

with time t3. The responder returns the time t2 in the p delay response message, and the time t3 in a p

delay response follow up message. The peer delay initiator generates a timestamp, t4, upon receiving

130

the p delay response message. The peer delay initiator then uses these four timestamps to calculate

the mean propagation delay as follows:

 ��� = �� − ��

 ��� =	 �	 − �

 � = 	
���	��

�
=	

������������	���

�

where D is the mean propagation delay.

Figure 73: Propagation delay measurement using the PTP peer delay protocol (adapted from [69])

The accuracy of the mean propagation delay measurement depends on how accurately the times t1,

t2, t3, and t4 are measured. The calculation also assumes that the peer delay initiator and peer delay

responder timestamps are taken relative to clocks that have the same frequency. In practice, t1 and t4

are measured relative to the local clock of the peer delay initiator, and t2 and t3 are measured relative

to the local clock of the peer delay responder. If the value of the mean propagation delay is wanted

relative to the peer delay responder’s time base, the term (t4 – t1) must be multiplied by the ratio of

the peer delay responder relative to the peer delay initiator. If the value of the mean propagation

delay is wanted relative to the peer delay initiator’s time base, the term (t3 – t2) must be multiplied

Peer delay initiator Peer delay responder

t1

t4

p delay request
t2

t
3

p delay response

t2

p delay response follow

up

t
ir

t
ri

131

by the rate ratio of the peer delay initiator relative to the peer delay responder. If the mean

propagation delay is desired relative to the grandmaster’s time base, each term must be multiplied by

the rate ratio of the grandmaster relative to the time base that the term is expressed in.

There can also be an error in the measured propagation delay due to time measurement granularity.

For example, if the time measurement granularity is 40ns, the timestamps t1, t2, t3, and/or t4 can

undergo 40ns step changes. When this occurs, the measured propagation delay will change by 20ns

(or by a multiple of 20ns if more than one of the timestamps has undergone a 40ns step change). The

actual propagation delay has not changed by 20ns. The effect is due to time measurement

granularity. The effect can be reduced, and the accuracy improved, by averaging successive

measured propagation delay values.

The p delay turnaround time (the duration of the interval between the receipt of a p delay request

message by a port, and the sending of the corresponding p delay response message) must be less than

or equal to 10ms.

5.2.5 Calculating Neighbour Rate Ratio

The rate ratio of the peer delay responder relative to the peer delay initiator is known as the

neighbour rate ratio. The neighbour rate ratio is calculated using the departure (from a peer delay

responder) and arrival (to a peer delay initiator) times of successive p delay response messages.

IEEE 802.1AS does not prescribe the specific algorithm to use to calculate the neighbour rate ratio,

as long at the measurement can be made within ±0.1 ppm. As an example, the neighbour rate ratio

can be estimated as the ratio of the elapsed time of the local clock of the responder time-aware

system, to the elapse time of the local clock of the initiator time-aware system. This ratio can be

calculated for the time interval between a set of received p delay response and p delay response

follow up messages and a second set of received p delay response and p delay response follow up

messages some number of p delay request message transmission intervals later.

Figure 74 shows two time-aware systems (a peer delay initiator and a peer delay responder), and it

shows a p delay response and p delay response follow up message being transmitted by the peer

delay responder, and then a second p delay response and p delay response follow up being

transmitted a number of p delay request message transmission intervals later. Based on the departure

132

time of the first p delay response message (t3,1) and the departure time of the second p delay response

message (t3,x), the time difference between these two times (tdr) can be calculated by the peer delay

initiator. Based on the arrival times of the first p delay response message (t4,1) and the arrival time of

the second p delay response message (t4,x), the time difference between these two times (tdi) can be

calculated by the peer delay initiator. These two time differences can then be used to calculate the

neighbour rate ratio.

Figure 74: Example neighbour rate ratio calculation

5.2.6 Time-Synchronisation

In a time-aware bridged LAN, a time-aware system synchronises to the selected grandmaster using

information that it receives on its slave port. In this context, synchronise means that the time-aware

system is able to calculate the grandmaster time corresponding to any local clock time. There is no

Peer delay initiator Peer delay responder

t4,

t
3,1

p delay response

p delay response follow up

t3,1

t
4,x

t
3,x

p delay

p delay response follow

up

.

.

.

tdr

td
i

133

requirement that the local clock’s frequency be physically adjusted to match the grandmaster’s

frequency, although this is not prohibited.

The transportation of time-synchronisation information by a time-aware system that uses full-duplex

Ethernet links use sync and follow up event messages. As shown in Figure 75, all master ports

periodically transmit a sync message to ensure that all devices share a common sense of time. This

time originates from the grandmaster time-aware system, and trickles through to the leaves of the

time-synchronisation spanning tree.

Figure 75: Transmission of sync messages

A non-grandmaster time-aware system receives time synchronisation information on its slave port.

This information consists of the grandmaster’s time, and the corresponding local clock’s time. The

synchronisation process is shown in Figure 76. This figure shows three adjacent time-aware systems,

labelled a, b, and c. Time-synchronisation information is transported from time aware system a to

time-aware system b, and from time-aware system b to time-aware system c.

Grandmaster

M

S

S

S

M M

M

S

Sync

Sync Sync

Sync

134

Figure 76: Transport of time synchronisation information (adapted from [69])

In Figure 76, the master port of time-aware system a sends a sync message to the slave port of time-

aware system b at time ts,a. ts,a is measured relative to the local clock of time-aware system a. At a

later time, time-aware system a sends an associated follow up message to time-aware system b,

which contains the following fields:

• precise origin timestamp: this field contains the time of the grandmaster when it originally sent

the sync message information. If time-aware system a is the grandmaster, this would correspond

to the time ts,a.

• correction fielda: this field contains the difference between the grandmaster’s time when the sync

message was sent by time-aware system a (ts,a) and the precise origin timestamp. If time-aware

system a is the grandmaster, this value would be zero. The sum of the precise origin timestamp

and the correction fielda values is equal to the grandmaster’s at time ts,a.

• rate ratioa: this field contains the ratio of the grandmaster’s clock frequency to the frequency of

the local clock of time-aware system a. It is calculated from the most recently received rate ratio

on its slave port multiplied by the current neighbour rate ratio measured by the slave port. If

Time-aware system

a

Master port

Time-aware system b

Slave port Master port

Time-aware system c

Slave port

ts, a

t
r,b

Sync

t
s,b

t
r,c

Sync

Follow up

• precise origin timestamp

• correction fielda

• rate ratioa

Follow up

• precise origin

timestamp

• correction fieldb

• rate ratio

135

time-aware system a is the grandmaster (and hence does not have any slave ports), the rate ratio

is one.

Time-aware system b receives the sync message from time-aware system a at time tr,b. tr,b is

measured relative to the local clock of time-aware system b. Time-aware system b receives the

associated follow up message some time later.

Time-aware system b sends send a new sync message at time ts,b. ts,b is measured relative to the local

clock of time-aware system b. Time-aware system b calculates the value of the correction fieldb (the

difference between the grandmaster’s time that corresponds to the time ts,b and the precise origin

timestamp). i.e., the sum of the precise origin timestamp and the correction fieldb values is equal to

the grandmaster’s time that corresponds to ts,b (the time that the sync message was sent by time-

aware system b). To calculate the correction fieldb, it must calculate the value of the time interval

between ts,a and ts,b, expressed in the grandmaster’s time base. This interval is equal to the sum of the

following quantities:

• The propagation delay on the link between time-aware systems a and b, expressed in the

grandmaster time base.

• The difference between ts,b and tr,b (i.e., the residence time), expressed in the grandmaster time

base.

The mean propagation delay (which time-aware system b stores in time-aware system a’s time-base)

on the link between time-aware system a and time-aware system b must be multiplied by rate ratioa

to express it in the grandmaster’s time base. The residence time must be multiplied by the rate ratiob

to express it in the grandmaster time base. These adjustments allow for all quantities used in

calculations to use the same time base thus reducing inaccuracies in calculations.

With the time information that is transported in the sync and follow up messages, it is possible for a

time-aware system to calculate the offset between itself and the grandmaster. Thus, it is possible for

a time-aware system to calculate the grandmaster’s time (the synchronised time) at any given point

using its local time and the calculated offset.

136

5.3 Conclusion

When transmitting audio and video streams across IEEE 1394 and Ethernet AVB networks, it is

necessary for these streams to be synchronised. There needs to be mechanisms in place that allow

audio and video data to be time-stamped with presentation times so that this data can be presented

correctly with respect to each other. These devices also need mechanisms to allow them to perform

wordclock synchronisation. This requires that all of the devices on a network share a common sense

of time.

This chapter discussed how IEEE 1394 and Ethernet AVB networks natively allow for all devices to

synchronise their clocks to that of a master clock, thus allowing for the sharing of a common time.

These networking technologies have distinct methods for achieving clock synchronisation and

represent time in different formats. Chapter 6 “Media Transport Protocols” discusses how this time is

used by media transport protocols to provide synchronisation. When time-stamped data streams are

transferred from IEEE 1394 networks to Ethernet AVB networks, or vice versa, there is a need to

understand these synchronisation mechanisms to ensure the correct presentation of the media.

137

Chapter 6 Media Transport Protocols

A number of media transport protocols have been standardised for transporting various forms of

media over IEEE 1394 and Ethernet AVB networks. An IEEE 1394/Ethernet AVB audio gateway

device needs to be able to interpret these protocols to allow for reception of streams on one network

type, and for the subsequent transmission of these streams on the other network type. Audio data and

timing information has to be successfully transferred across the networking technologies. This

chapter presents an overview of these protocols, the packet formats that they utilise, and their

associated synchronisation mechanisms.

6.1 Packet Formats

Packet formats have been standardised for transporting audio data over IEEE 1394 and AVB

networks. The AVB protocols borrow heavily from the IEEE 1394 protocols, and thus the IEEE

1394 protocols are discussed first.

6.1.1 IEEE 1394 Audio Packet Formats

6.1.1.1 Isochronous Packet

Figure 77 shows the IEEE 1394 isochronous packet format used during isochronous transactions.

Each node that has successfully reserved bandwidth and a channel number, and that is performing

isochronous transactions, is able to transmit one of these packets onto an IEEE 1394 bus (for each

channel of interest) once each isochronous cycle (once every 125 µs).

138

Figure 77: Isochronous packet format

Table 13 defines the fields of an isochronous packet.

Field Size Definition

data length 16 bits The value of the data length field represents the number of bytes of data in

the packet.

tag 2 bits The tag field is used to identify higher level protocols carried within the

isochronous packet.

channel 6 bits The value of the channel field is used to represent the channel that the

packet is transmitted on.

tcode 4 bits The tcode field is set to a value of 0xA for isochronous transactions.

sy 4 bits The sy field is application specific.

data blocks The data blocks carry the isochronous packets payload.

Table 13: Isochronous packet fields

6.1.1.2 Common Isochronous Packet

The IEC [74] has prepared a series of standards that prescribe the transmission of audio, video and

multimedia over IEEE 1394 networks. This series is identified as IEC 61883. IEC 61883 is

composed of a number of parts that give formal descriptions of how audio and video data should be

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

data length tag channel tcode sy

header CRC

data block

last quadlet

data CRC

.

.

.

.

139

transported across IEEE 1394 networks. Amongst other things, IEC 61883-1 [75] describes the

general packet format, known as the common isochronous packet (CIP). A packet that uses this

format is known as a CIP packet. Figure 78 shows the format of a CIP packet. A CIP header and data

section appear within the data section of an isochronous packet. For an isochronous packet that

contains CIP data, its tag field is set to a value of 01b.

Figure 78: CIP packet format

The CIP header fields are defined in Table 14.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

data length tag channel tcode sy

header CRC

last quadlet

data CRC

0 0 SID
1 0

DBS FN QPC SPH rsv DBC
FMT FDF SYT

CIP data

.

.

.

140

Field Size Definition

SID 6 bits The SID field’s value represents the 6 bit physical ID of the node transmitting

the packet.

DBS 8 bits Audio visual data is clustered into one or more data blocks. The data block

size field represents the size of the data blocks. A value of 0 indicates 256

quadlets, and any other value represents the actual number of quadlets.

FN 2 bits The fraction number field is used to indicate the number of fractions into

which the original application packet was divided. This is not used for audio

samples, so its value is 0.

QPC 3 bits The quadlet padding count field is used to represent the number of padding

bytes added to each application frame to make it divide evenly into 2FN data

blocks. The value of this field is 0 for audio data.

SPH 1 bit The source packet header field is set to 0 for audio data indicating that the

packet contains no sources packets.

rsv 2 bits This field is reserved for future standardisation.

DBC 8 bits The data block count field represents a count of data blocks.

FMT 6 bits The format field is used to indicate the format of the data being transported.

FDF 8 bits The format dependent field is used to identify sub-formats or convey other

information.

SYT 16 bits The value of the SYT field indicates the time that a particular data block

within the packet should be presented at the receiver.

Table 14: CIP header fields

6.1.1.3 IEC 61883-6

IEC 61883-6 [53] is a standard that defines the audio and music data transmission protocol. This

defines how audio data is transferred across IEEE 1394 networks. IEC 61883-6 allows multiple

channels (or sequences) of audio to be transmitted simultaneously within single CIP packets.

Conceptually, these sequences of audio are transferred in streams. Figure 79 shows this concept

diagrammatically. It shows a stream that is transferring four sequences of audio. These audio

sequences could correspond to four channels of audio being transmitted by an audio mixing desk, for

example.

141

Figure 79: A stream of sequences

Audio data is transported within a CIP packet’s data section. As an IEEE 1394 transmitter transmits

isochronous packets at a rate of 8000 per second, and as audio is sampled at much higher rates (44.1

kHz, 48 kHz, 88.2 kHz, or 96 kHz, for example), multiple audio samples have to be packaged

together into single CIP packets.

The simultaneous availability of samples from multiple sources is known as an event. The data that

makes up an event is known as a data block. A CIP packet would format the audio stream in Figure

79 into data blocks each containing four quadlets (a quadlet is four octets). Each data block

represents the simultaneous sampling of the four channels of audio (known as an event), and each

quadlet represents a sample. Figure 80 shows an isochronous packet and how samples are packaged

into data blocks within the packet. The quadlet position within a data block corresponds to a

sequence. For example, each first quadlet of each data block is a sample of a series of samples that

together make up a sequence of audio. A series of these packets together make up a stream. The size

of each data block is communicated in the CIP header’s DBS field. In this example, the value would

be four quadlets.

Stream

1
2
3
4

Sequences

142

Figure 80: A representation of a stream containing sequences

CIP packets transferring IEC 61883-6 conformant data have an FMT field value of 0x10 (audio and

music data transmission protocol). IEC 61883-6 defines a number of sub formats. Within CIP

packets, this sub format is carried within the FDF field. The format of the FDF field is shown in

Figure 81.

Figure 81: FDF field

The EVT field of the FDF field indicates the event type. Possible values for the EVT field for IEC

61883-6 are shown Table 15. The work in this thesis focused on the use of the AM824 event type.

EVT (event type)

Value Description

0x00 AM824

0x01 24-bit * 4 audio pack

0x02 32-bit floating point data

0x03 Reserved

Table 15: Event type (EVT) code definitions

Stream

1
2
3
4

Sequences

Header

0 0 EVT 0 SFC

143

The SFC field of the FDF field indicates the nominal sampling frequency code. Possible values for

the SFC field are shown in Table 16.

SFC (Nominal Sampling Frequency)

Value Sample transmission

frequency

0x00 32 kHz

0x01 44.1 kHz

0x02 48 kHz or not indicated

0x03 88.2 kHz

0x04 96 kHz or not indicated

0x05 176.4 kHz

0x06 192 kHz or not indicated

0x07 Reserved

Table 16: SFC (Nominal Sampling Frequency Code) definition

Each sample within a data block that is formatted with the AM824 format specification is composed

of an 8-bit label, and 24 bits of audio data, as shown in Figure 82.

Figure 82: AM824 format

The value of the label field is used to specify the format of the 24 bit data field. Table 17 shows the

possible values, and their definitions. The work described in this thesis focused on the use of the raw

audio format.

label 24-bit data

144

Label

Value Description

0x00 – 0x3F IEC 60958 conformant

0x40 – 0x43 Raw audio

0x44 – 0x7F Reserved

0x80 – 0x83 MIDI Conformant

0x84 – 0xFF Reserved

Table 17: AM824 label definitions

Each sample using the raw audio format may have a sample length that is 24, 20, or 16 bits in length.

The label values used to represent these are shown in Table 18.

Raw audio labels

Value Description

0x40 Raw audio 24-bit sample

0x41 Raw audio 20-bit sample

0x42 Raw audio 16-bit sample

0x43 Reserved

Table 18: Raw audio labels

Raw audio samples are expressed using 2’s complement numbering format.

6.1.2 Ethernet AVB Audio Frame Formats

IEEE 1722 [55] specifies a protocol, packet formats, and presentation time procedures that can be

used to transfer audio and video data between end stations on AVB bridged LANs. The protocol

leverages protocols and procedures defined in the IEC 61883 family of standards. The protocol

defined in IEEE 1722 is known as the audio/video transport protocol (AVTP). The protocol allows

audio and video data that is transmitted by a talker to be reproduced on one or more listeners. AVTP

data is transported directly on the underlying MAC layer. This section will only focus on the use of

Ethernet as the underlying medium.

145

All devices that transmit, receive or forward AVTP data are required to support MSRP (see Section

3.2.4 “Multiple Stream Reservation Protocol” on page 60), the forwarding and queuing rules

specified in Section 4.2.2 “Forwarding and Queuing” on page 87, and gPTP (see Section 5.2

“Ethernet AVB” on page 116). AVTP relies on these protocols in order to function properly.

MSRP is used to communicate AVTP stream resource requirements to a bridged LAN and to reserve

resources for the streams. The forwarding and queuing rules ensure that stream frames are

transported throughout a bridged LAN with the requested QoS. AVTP makes use of gPTP for a

common sense of time to be used to convey timing information from talkers to listeners.

6.1.2.1 AVTP Frame Formats

AVTP is capable of transporting many audio and video formats. AVTP defines a common header

that is common to all AVTP frames, and it defines headers that are specific to audio and video

formats. An AVTP frame is contained within an Ethernet frame with the EtherType 0x22F0.

6.1.2.1.1 AVTP Common Header

All AVTP stream and control frames share a common header, as shown in Figure 83.

Figure 83: AVTP common header

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
CD subtype sv version type specific data

stream ID

additional header and payload

(dependent on subtype)

146

The fields of this header are defined in Table 19.

Field Size Definition

CD 1 bit The value of the CD field indicates whether the AVTP frame is

carrying control or stream data. A value of 0 indicates stream data,

whereas a value of 1 indicates control data.

subtype 7 bits The value of the subtype field is used to identify the protocol being

carried by the AVTP frame.

sv 1 bit The value of the sv field indicates whether the stream ID field contains

a valid stream ID or not. A value of 1 indicates that the stream ID field

is carrying a valid stream ID, and a value of 0 indicates that the value

is not valid.

version 3 bits The value of the version field is used to identify the version of AVTP

being transported. Currently, the only valid value is 0x00. All other

values are reserved for future standardisation.

type specific data 20 bits The value of the type specific data field is dependent on whether the

AVTP is transporting control data or stream data.

stream ID 64 bits If the sv field is set to 1, then the stream ID field contains a valid AVB

stream ID. The stream ID field is used to identify the stream that the

frame is associated with.

Table 19: AVTP common header field definitions

The possible subtype values are shown in Table 20. The experimental subtype is for testing purposes

only. The subsequent interpretation of AVTP frame fields is dependent on the subtype conveyed in

the frame. This work focused only on the use of the 61883 subtype (0x00) and the MAAP subtype

(0x7E).

147

Value Protocol Definition

0x00 61883/IIDC IEC 61883/IIDC protocol

0x01 MMA Midi Manufactures Association

0x02 – 0x7D Reserved Reserved for future use

0x7E MAAP Multicast Address Acquisition Protocol

0x7F Experimental Experimental protocol

Table 20: Subtype values

6.1.2.1.2 AVTP Common Stream Data Header

When the CD field of an AVTP common header is 0 (indicating that AVTP is transporting stream

data), AVTP uses an AVTP common stream header as detailed in Figure 84. An AVTP common

stream header specifies fields in the type specific data field, and includes additional fields below the

stream ID field.

Figure 84: AVTP common stream header

The type specific data fields are as specified in Table 21.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

CD subtype sv version mr

stream ID

stream data

(dependent on subtype)

r gv tv sequence number reserved tu

avtp timestamp
gateway info

stream data length protocol specific header

148

Field Size Definition

mr 1 bit The media clock restart field is used by a talker to indicate that there

has been a change in the source of the media clock. For example, this

could happen when there is a change from one audio input to another

audio input, and this input is the source of the media clock. A listener

could use this notification to allow it to quickly adjust to the new

media clock. This bit is toggled by the talker each time a media clock

restart is needed, and it stays at this value until a new media clock

restart is needed. This bit must remain in each state for a minimum of

eight AVTP frame transmissions for a stream.

r 1 bit This field is reserved for future standardisation.

gv 1 bit The gateway info valid field is reserved for use by AVTP gateways.

Its use is not defined in IEEE 1722.

tv 1 bit The timestamp valid field is used to indicate whether or not the value

in the avtp timestamp field is valid or not. A value of 0 indicates that it

is not, and that the value of the avtp timestamp field should be ignored

by a listener. A value of 1 indicates that the avtp timestamp field

contains a valid value.

sequence

number

8 bits The sequence number field is used to indicate the sequence of the

AVTP frame in a stream. The value of this field may start at any

value, but subsequence AVTP frames should have the value

incremented by 1. The value of this field wraps to 0x00 after it reaches

0xFF. This field can be used by listeners to detect lost AVTP frames.

reserved 7 bits This field is reserved for future standardisation.

tu 1 bit The timestamp uncertain field is used to indicate that the attached

gPTP system has reported a significant problem with its

synchronisation system. For example, this could happen when the

grandmaster in the system changes. This field is used to indicate that

the timestamps in AVTP frames may not be globally synchronised

with network time. A listener could use this information to prevent

unacceptable disturbances in the recovered media streams.

Table 21: AVTP common stream header type specific data field definitions

149

Table 22 shows the details of the additional header fields that are present in AVTP common stream

headers.

Field Size Definition

avtp timestamp 32 bits The avtp timestamp field contains the AVTP presentation time (if the

tv field is set to 1). The avtp timestamp field is in units of nanoseconds

and has a maximum value of 232 – 1. The avtp timestamp field is

calculated as follows:

 avtp timestamp = (AS s × 109 + AS ns) mod 232

 AS s is the gPTP seconds field

 AS ns is the gPTP nanoseconds field

gateway info 32 bits The gateway info field is reserved for use by AVTP gateways. The

operation of AVTP gateways is not defined in IEEE 1722.

stream data

length

16 bits The stream data length field is used to indicate the length of the

stream’s payload (in octets) of all valid data octets contained in the

frame after the protocol specific header field.

protocol

specific header

16 bits The protocol specific header field is used to carry data that is specific

to the protocol being carried in the AVTP frame. The definition of this

field is dependent on the value of the subtype field.

stream data The value of this field is dependent on the on the protocol being

transported by AVTP.

Table 22: AVTP common stream header additional header fields

6.1.2.2 IEC 61883 over AVTP

AVTP allows for the transportation of a subset of the IEC 61883 family of protocols. This work

focused on the transportation of IEC 61883-6: Audio and music data transmission protocol [53]. An

AVTP frame transporting IEC 61883-6 has a CD field value of 0 (to indicate that the frame contains

stream data) and a subtype field value of 0 (see Table 20 on page 147) to indicate that the frame is

transporting IEC 61883 conformant data. IEC 61883 makes use of the protocol specific header field

of an AVTP common stream header as shown in Figure 85.

150

Figure 85: AVTP common stream header with CIP header

The fields of the protocol specific header are as defined in Table 23.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

CD subtype sv version mr

stream ID

stream data

r gv tv sequence number reserved tu

avtp timestamp
gateway info

stream data length ta g channel tcode (A 16) sy
0 0 SID
1 0

DBS FN QPC SPH Rsv DBC
FMT FDF SYT

151

Field Size Definition

tag 2 bits The definition of the tag field has the same definition as for IEEE

1394. For IEC 61883-6 the value of the tag field is set to a value of

012. This indicates that a CIP header is included after the protocol

specific header.

channel 6 bits The definition of the channel field has the same definition as for IEEE

1394. When IEC 61883-6 data originates from an AVB network, the

channel field is set to a value of 31. When IEC 61883-6 data

originates from an IEEE 1394 network, the channel field represents

the channel number that was used to transmit the data onto the IEEE

1394 network via a gateway device. In this case, the valid values are 0

– 30 and 32 – 63, inclusive.

tcode 4 bits The definition of the tcode field has the same definition as for IEEE

1394. The value of this field is always set to 0x0A.

sy 4 bits The value of the sy field is application specific, and its use is outside

of the scope of IEEE 1722. IEC 61883-6 does not use this field.

Table 23: IEC 61883 protocol specific header fields

The fields of the CIP header are defined in Table 24, and their definitions remain similar to those of

the CIP header field definitions in IEEE 1394 isochronous packets (see Table 14 on page 140).

152

Field Size Definition

SID 6 bits The value of the SID field is set to a value of 63 when the audio data

originates from an AVB network. When the audio data originates from an

IEEE 1394 network (via a gateway), the SID field’s value represents the 6 bit

physical ID of the node that transmitted the packet.

DBS 8 bits Audio visual data is clustered into one or more data blocks. The data block

size field represents the size of the data blocks. A value of 0 indicates 256

quadlets, and any other value represents the actual number of quadlets.

FN 2 bits The fraction number field is used to indicate the number of fractions into

which the original application packet was divided. This is not used for audio

samples, so its value is 0.

QPC 3 bits The quadlet padding count field is used to represent the number of padding

bytes added to each application frame to make it divide evenly into 2FN data

blocks. The value of this field is 0 for audio data.

SPH 1 bit The source packet header field is set to 0 for audio data indicating that the

packet contains no sources packets.

rsv 2 bits This field is reserved for future standardisation.

DBC 8 bits The data block count field represents a count of data blocks.

FMT 6 bits The format field is used to indicate the format of the data being transported.

FDF 8 bits The format dependent field is used to identify sub-formats or convey other

information.

SYT 16 bits The synchronization timing field is not uses by AVTP end stations, but is used

by gateways. If the audio data originated from an IEEE 1394 bus, the value of

the SYT field indicates the time that a particular data block within the packet

should be presented at an IEEE 1394 receiver.

Table 24: CIP header field formats

6.2 Timing and Synchronisation

When IEEE 1394 CIP packets and AVTP packets are transmitted across a network, they are time-

stamped with a presentation time value. This presentation time value is used so that multiple

receivers of a stream present the audio samples simultaneously. It is also used to recreate media

153

clock sampling frequencies. Chapter 5 “Timing and Synchronisation” detailed how all of the devices

on an IEEE 1394 bus, and how all of the devices on an AVB network share a common sense of time.

This section discusses how the timestamp information transmitted in these packets is used in

conjunction with a common sense of time to perform synchronisation.

6.2.1 IEEE 1394

When transmitting IEC 61883-6 AM824 audio data across an IEEE 1394 bus, each packet is time

stamped with a presentation time. This time value is a combination of the time value read from the

transmitter’s cycle time register and a delay offset value known as a transfer delay. The transfer

delay takes care of the delay incurred in the transfer of an isochronous packet on its path from a

transmitter to a receiver. It allows packets travelling along different paths to be presented

simultaneously, and it also takes account of a potential short bus reset that may occur during

transmission. The default transfer delay is 354.17 µs. This accommodates the maximum latency of a

CIP transmission through a short bus reset.

The presentation time is contained within the SYT field of the CIP header. The format of the SYT

field is the same as the format of the lower 16-bits of the cycle time register, as seen in Figure 62 on

page 111. The SYT field’s value applies to one of the events (data blocks) contained within the

packet. The exact event is dependent on the sampling frequency of the media clock. This timestamp

interval is known as the SYT interval. The sampling frequency (and hence the SYT interval) of the

transmitter’s media clock is communicated in the SFC field of each packet’s FDF field, as shown in

Table 25. For example, if the transmitter’s media clock is running at 48 kHz, then the timestamps are

associated with each eighth event.

154

SFC (Nominal Sampling Frequency)

Value Sample transmission

frequency

SYT

Interval

0x00 32 kHz 8

0x01 44.1 kHz 8

0x02 48 kHz or not indicated 8

0x03 88.2 kHz 16

0x04 96 kHz or not indicated 16

0x05 176.4 kHz 32

0x06 192 kHz or not indicated 32

0x07 Reserved

Table 25: SFC definition

A receiving device is able to extract the timestamp and use it to re-create the sampling frequency of

the transmitted audio samples. When a receiver receives a CIP packet, it reads the timestamp value

from that packet, and when that value is equal to its own cycle time register value, it indicates a

match to a phase locked loop (PLL). The PLL receives a continuous series of match pulses, and

effectively multiples the frequency of the pulses by the SYT interval to produce a sample clock of the

transmitter’s frequency. This is shown diagrammatically in Figure 86. In the figure, a transmitter is

generating samples at a rate of 48 kHz, and packing the samples into data blocks within isochronous

packets. At every eighth tick of the sample clock, the cycle time register of the transmitter is

sampled, and its value included (with the addition of an offset) into the CIP header of the next

isochronous packet to be transmitted.

155

Figure 86: Sample clock synchronisation

Depending on the transmission type, every isochronous packet may not contain the number of data

blocks equal to the SYT interval. If, for example, a transmitter is sampling at 48 kHz, it would have a

SYT interval of eight, and it could be placing six data blocks into each isochronous packet. This

implies that the timestamp will not be consistently associated with a data block at a particular

position. A transmitter will prepare a timestamp for a data block that meets the following condition:

mod (DBC, SYT interval) = 0

At 48 kHz, every eighth data block has a time stamp associated with it.

At the receiver, the index of the data block to which the timestamp applies can be calculated as

follows:

 mod (SYT interval – mod(DBC, SYT interval)), SYT interval)

Once a receiver has received a time-stamped packet and determined the data block associated with

the timestamps, it will not process this data block, and subsequent data blocks, until the cycle time in

Time-stamped: Cycle time + offset

Transmitter

Cycle time register

Receiver

Cycle time register
Isoch packet Isoch packet

PLL 48 kHz

Timestamp matches

cycle time: indicate

match to PLL

156

its cycle time register matches the timestamp. The recovery of the timing for events between events

to which the SYT timestamp applies is implementation specific.

6.2.1.1 Cross IEEE 1394 Bridge Timestamp Regeneration

An IEEE 1394 bridge is responsible for filtering and transforming isochronous subactions with

respect to channel numbers. It is also responsible for transforming CIP packet physical ID and

timestamp fields. A CIP packet that contains a two-quadlet CIP header has its SID field set to the

physical ID of the transmitting portal.

The SYT timestamp field in a CIP packet contains an absolute timestamp value of when a time-

stamped audio sample is to be presented at a receiver. The timestamp value generated at the

transmitting device is relative to the transmitter’s clock. When a CIP packet traverses an IEEE 1394

bridge, the timestamp value in that packet needs to be recalculated relative to the transmitting

portal’s 24.576 MHz clock.

The timestamp is specified as an absolute value that specifies a future cycle time. Isochronous

subactions experience a constant delay when routed through a bridge. It is therefore sufficient to

transform the timestamps by the addition of this constant value plus the difference in cycle times

perceived by the portal and its co-portal. The difference in cycle time between the two sides of the

bus, delta, is measured by implementation-independent means and is defined as follows:

delta = cycle counttalking portal – cycle countlistening portal

The SYT field is transformed as follows:

SYTtransmitted = (SYTobserved + ((latency + delta) << 12)) & 0x0000FFFF

6.2.2 Ethernet AVB

AVTP defines a presentation time that allows for synchronisation between a talker and listeners.

Each AVTP common stream header contains an avtp timestamp field which carries a presentation

time timestamp. The value of this field represents the gPTP time when the data contained in the

AVTP frame is to be available to AVTP listeners. The value of this field is expressed in

nanoseconds.

157

The AVTP presentation time is used as a reference to synchronise any necessary media clocks and to

determine when the first sample of a stream is to be presented to the client. The exact usage of the

AVTP presentation time is media format dependent.

6.2.2.1 AVTP Presentation Time

The AVTP presentation time represents the time that the media sample was presented to the AVTP

component of a talker plus constant transit time (known as max transit time) to compensate for

network latency. The actual network latency is dependent on the network configuration and speed.

The value of max transit time represents the maximum network latency assumed for a given

configuration. It is possible for a talker and a listener to determine the max transit time value to use

for a given stream but this mechanism is outside of the scope of IEEE 1722. The default max transit

time for an SR class A stream is 2ms, and 50ms for an SR class B stream. These default times have

been decided upon to support up to seven Ethernet hops for class A streams, and up to two WiFi

hops plus six Ethernet hops for class B streams.

The AVTP presentation time, as received by listeners, is used to synchronise the media clock of the

listener to the talker’s media clock. The AVTP presentation time is directly linked to the gPTP global

time and as such may be used to synchronise multiple listeners.

6.2.2.2 Presentation Time Measurement Points

Figure 87 shows the measurement points used when calculating the AVTP presentation time. The

presentation time is the gPTP time that the 1722 layer of a listener transfers the time stamped data to

the next processing layer in the stack. This is shown as the Presentation Time Reference Plane in

Figure 87. The AVTP presentation time is used in the listener to know when to start processing (e.g.,

playing) a new stream and it is used to recover a stream’s media clock.

158

Figure 87: AVTP presentation time measurement point [55]

A talker generates an AVTP timestamp value that is in the future by the max transit time amount for

the stream class (unless otherwise configured). In Figure 87, the Ingress Time Reference Plane is the

point in a talker where an AVTP frame is transferred to the MAC for transmission. A talker transfers

the frame to the MAC layer at a time that is no later than the AVTP presentation time – max transit

time. If it does transfer the frame later than this time, the AVTP frame may not arrive at the listener

before it is required for playback resulting in loss of part of a media stream.

There is always some uncertainty about exactly when this Ingress Time Reference Plane crossing

will occur. A talker is responsible for knowing this timing uncertainty of its own design and to begin

the transfer of a frame such that, in the worst case, the crossing of the Ingress Time Reference Plane

will occur no later than AVTP presentation time – max transit time. The timing uncertainty of a talker

is a combination of a number of factors, including its own local timer resolution and its worst-case

response time to a timer event. An AVTP talker’s design should be such that its timing uncertainty is

not more than 125µs for an SR class A stream, and not more than 1ms for an SR class B stream.

159

6.2.2.3 IEC 61883-6 Timing and Synchronisation

The processing of presentation time, and the timing and synchronisation for IEC 61883-6 over

AVTP is generally accomplished in the same manner as for IEEE 1394. AVB uses the gPTP time

expressed in nanoseconds for its presentation times, whereas IEEE 1394 uses a time expressed in

seconds, cycles and ticks of a 24.579 MHz clock.

If an AVTP frame consists of multiple data blocks, it is necessary to specify which data block

corresponds to the AVTP timestamp. A transmitter generates a timestamp for the data block that

meets the criterion

mod (data block count, SYT interval) = 0

The data block count is a running count of the transmitted data blocks. The SYT interval indicates the

number of data blocks between two successive valid AVTP timestamps. The receiver is able to

derive the index of the data block to which the AVTP timestamp applies with the following formula:

index = mod ((SYT interval – mod (data block count, SYT interval)), SYT interval)

A listener is responsible for determining the timing of successive data blocks between valid time

stamps.

6.3 AVTP Address Allocation

A block of multicast MAC addresses has been reserved for use by AVTP for the transmission of

streams. The MAC address acquisition protocol (MAAP) [55] is a peer-to-peer protocol that is

responsible for the dynamic allocation of these addresses to devices that make use of AVTP. Table

26 shows the range of addresses that has been allocated for use by AVTP. MAAP is responsible for

the allocation of the range 91:E0:F0:00:00:00 - 91:E0:F0:00:FD:FF.

160

Address range Use

91:E0:F0:00:00:00 -

91:E0:F0:00:FD:FF

This range of addresses can be dynamically allocated by MAAP to devices

making use of AVTP.

91:E0:F0:00:FE:00 -

91:E0:F0:00:FE:FF

This address range is reserved for static allocation to devices making use of

AVTP.

91:E0:F0:00:FF:00 -

91:E0:F0:00:FF:FF

This address range is reserved for specific functionality. Currently, the

address 91:E0:F0:00:FF:00 is reserved for use in MAAP frames. The rest of

the addresses are reserved for future standardisation.

Table 26: AVTP address ranges

MAAP is able to allocate a single address, or a range of consecutive addresses. When a device would

like to make use of one or more of the dynamically allocatable addresses, its instance of MAAP:

• Selects a random continuous range of multicast addresses from the dynamically allocatable

address range.

• Sends up to three MAAP probe messages to the network to determine if all or part of the address

range is already in use by any other devices on the network. The MAAP probe message contains

the first address and the number of addresses that it would like to acquire. MAAP probe messages

are transmitted at a random interval between 500 and 600 milliseconds.

• Listens for MAAP defend messages from other instances of MAAP. A MAAP defend message

indicates that all or part of an address range being probed is in use.

• Repeats the above process until an address range that is not in use has been found.

Once an instance of MAAP has acquired an address range, it is responsible for defending it by:

• Periodically transmitting MAAP announce messages to the network to announce the fact that it is

using a certain range of multicast MAC addresses. MAAP announce messages contain the first

address of the range, and the number of addresses in the range of addresses which that instance of

MAAP is using. MAAP announce messages allow address conflicts to be identified when

networks are joined. MAAP announce messages are transmitted at a random interval that is

between 30 and 32 seconds.

• Listening for MAAP probe messages and responding with MAAP defend messages if the address

range identified in the MAAP probe message conflicts with an address range that it has acquired.

The MAAP defend message contains the first address of the range and the number of addresses

that were requested in the MAAP probe message. The MAAP defend message also contains the

161

first address that conflicts with the range that has been acquired, and the number of addresses that

conflict.

• Listening for MAAP announce messages that conflict with previously acquired address ranges. If

a conflict is detected, MAAP should discontinue the use of the address range and acquire a new

address range.

MAAP probe and MAAP announce messages are sent to the MAC address 91:E0:F0:00:FF:00,

whereas MAAP defend messages are sent to the MAC address of the station that transmitted the

MAAP probe message.

6.4 Conclusion

Protocols have been developed that allow for the transmission of audio and video over IEEE 1394

and Ethernet AVB networks, and allow for stream and media clock synchronisation to occur. This

chapter discussed the dominant media transport protocols for these networks, their packet formats,

and the synchronisation mechanisms in place for each protocol.

These protocols use similar mechanisms for the transmission audio data. Audio data is formatted in a

similar fashion on each network, and each network uses synchronisation mechanisms that are

conceptually similar. When transferring audio data from one network to another, it has to be

repackaged in a suitable format before transmission. Timestamp information associated with the

audio data has to be regenerated such that it is relevant on the network it is being transmitted on.

Chapter 10 “Ethernet AVB Devices” proposes a mechanism for achieving this.

162

Chapter 7 Standards-Based Command

and Control Protocols

A number of command and control protocols exist that allow for remote control over parameters of

networked devices. One of the goals of this work was to provide remote control over disparate

networked audio devices from a single command and control protocol, with a focus on the ability to

perform connection management within audio devices, and between audio devices. A protocol had to

be selected for this task. This chapter provides an overview of a subset of the command and control

protocols that were considered for the task. These protocols have all been used, or proposed, to

provide control over network audio devices. The chapter concludes with an overview of the XFN

protocol which was used in this study for control over audio devices.

7.1 Simple Network Management Protocol

The simple network management protocol (SNMP) [57] is a UDP-based [76] protocol used for

managing devices on IP [61] networks. SNMP can be used to monitor and control network devices

remotely. At the core of SNMP is a set of operations that enables the modification of parameters on

SNMP-based devices. SNMP is usually associated with the monitoring and controlling of bridges

and routers, but it can be used for managing many types of devices. SNMP has been used to control

networked audio devices that reside on CobraNet [77] networks, for instance, as discussed in [78],

and has also been proposed to control AVTP capable AVB devices, as discussed in [79] (see Section

7.1.7 “Connection Management”).

7.1.1 Managers and Agents

SNMP defines a manager and agent entity. A manager entity runs software that can handle

management tasks for a network, and an agent is a piece of software that runs on a device being

monitored and controlled. A manager is responsible for polling and receiving traps from agents on a

network. When a manager polls a device for certain information, it performs a query on an agent for

that information, whereas a trap is a mechanism used by agents to inform managers that an event has

163

occurred. Once a manager has received a piece of information, it may use it. For example, a manager

may be monitoring a bridge and it may discover that it has gone down. When this happens, it could

alert the network administrator that this has happened.

7.1.2 UDP Transmission

UDP is a low overhead protocol when compared to the transmission control protocol (TCP) [80].

SNMP uses UDP as a transport protocol for its messages. Since UDP is a connectionless unreliable

protocol, SNMP deals with lost packets. If a response to a request is not received after a certain

amount of time, it is able to retransmit the request. The number of retransmissions is configurable.

This mechanism works when polling, but not for traps. When an agent sends a trap to a manager, and

it does not arrive, the manager has no way of knowing that it was sent a trap, and the agent does not

know that the trap did not arrive because the manager is not required to send a response back to the

agent acknowledging the receipt of the trap.

7.1.3 SNMP Communities

SNMPv1 and SNMPv2 use communities to establish trust between managers and agents. An agent is

configured with three community names:

• Read-only: allows for reading data values only.

• Read-write: allows for reading and writing data values.

• Trap: allows managers to receive traps from an agent.

7.1.4 Structure of Management Information

The structure of management information (SMI) provides mechanisms to define how managed

objects are named, and their associated data types. A managed object is a piece of information that

can be monitored or controlled via SNMP. For example, this could be something like the operational

status of a network interface, the number of octets that a network interface has transmitted, or a text

string describing the physical location of a device. Managed objects are defined using a subset of

OSI’s Abstract Syntax Notation One (ASN.1) [81]. ASN.1 is a notation used for describing data

164

transmitted by telecommunications protocols. It is concerned with the structural aspects of

information (the encoding of data), and not the semantics related to this data. The SMI defines the

subset of ASN.1 used by SNMP.

Each managed object has a name, type and syntax, and encoding. The name, or object identifier

(OID), uniquely identifies a managed object. Managed object names usually appear in numeric form

and in human readable form. A managed object’s data type specifies how its data is represented and

transmitted between managers and agents. A managed object is encoded into a string of octets such

that it can be transmitted over a transport medium.

Managed objects may be arranged into tables where each row, or entry, in a table is made up of one

or more related managed objects. For example, a device may have a number of network interfaces.

Each of these network interfaces has a number of attributes, such as a description, a type, a

transmission speed, and a physical address. A table can be used to describe this data such that each

entry in the table defines a network interface with its properties. Table 27 shows an example table

describing two network interfaces (along with their attributes). Section 7.1.4.1 “Naming OIDs”

describes how SNMP represents tables.

Description Type Speed Physical Address

10/100BaseTX Port 7/1 Ethernet CSMA/CD 1000000000 00:23:45:67:89:AB

10/100BaseTX Port 7/2 Ethernet CSMA/CD 100000000 00:11:22:33:44:55

Table 27: An interfaces table

7.1.4.1 Naming OIDs

Managed objects are arranged in a hierarchical tree structure. This structure is the basis for SNMP’s

naming scheme. An OID is a series of integers separated by dots (.). These integer values are used to

identify nodes in the tree structure. The human readable form of an OID is a series of names

separated by dots. Each name is used to identify a node in the tree structure. Figure 88 shows an

example of a few top levels of an object tree structure. Each node is identified by a number and a

name (the actual numbers and names in the figure are unimportant at this stage).

165

Figure 88: Example portion of an object tree hierarchy

The node at the top of an object tree is called the root, any node with children is called a subtree, and

any node without any children is called a leaf node. The iso(1).org(3).dod(6).internet(1) subtree may

be represented in OID form as 1.3.6.1 or iso.org.dod.internet.

The OID of a managed object has a number attached to the end of it. It uses the convention x.y,

where x is the OID of the object type and y identifies an instance of that managed object. Scalar

objects (that are not defined as a row in a table) use the identifier 0. If the objects are defined in a

table, the instance identifier lets a row in the table be identified. The first row is identified by the

identifier 1, the second row by the identifier 2, and so on.

For example, each attribute of a network interface (as seen in Table 27 on page 164) could be

allocated an OID to uniquely identify it, as shown in Table 28. In order to query the managed object

representing the description of the first interface, the OID .1.3.6.1.2.1.2.2.1.2.1 would be used to

address it. The description of the second interface would be addressed with the OID

.1.3.6.1.2.1.2.2.1.2.2, and so on.

root node

ccitt (0) iso (1) joint (2)

org (3)

dod (6)

internet (1)

directory (1) mgmt (2) experimental (3) private (4)

.

.

.

enterprises (1)

166

OID Attribute

.1.3.6.1.2.1.2.2.1.2 Description

.1.3.6.1.2.1.2.2.1.3 Type

.1.3.6.1.2.1.2.2.1.5 Speed

.1.3.6.1.2.1.2.2.1.6 Physical Address

Table 28: Interface attributes

Figure 89 shows how SNMP would represent the interfaces table shown in Table 27 in the SNMP

address hierarchy. The leaf nodes are used to address managed objects representing the various

attributes of the network interfaces. The top level nodes in the address hierarchy have the following

meanings:

• iso(1): OIDs that fall below the iso(1) base OID are assigned by the International Organisation

for Standardisation (ISO) [82].

• org(3): OIDs that fall below the iso(1).org(3) base OID are assigned by organisations that are

acknowledged by ISO.

• dod(6): OIDs that fall below the iso(1).org(3).dod(6) base OID are assigned by the US

Department of Defence [83].

• internet(1): OIDs that fall below iso(1).org(3).dod(6).internet(1) are used to address managed

objects related to the Internet.

• mgmt(2): OIDs that fall below iso(1).org(3).dod(6).internet(1).mgmt(2) are used to address

Internet management managed objects.

• MIB-2(1): iso(1).org(3).dod(6).internet(1).mgmt(2).MIB-2(1) is the base OID for managed

objects defined in MIB-2. MIB-2 defines managed objects that allow for the management of

TCP/IP based networks.

• interfaces(2): iso(1).org(3).dod(6).internet(1).mgmt(2).MIB-2(1).interfaces(2) is the base OID for

managed objects related to the IP interfaces of a device.

• ifTable(2): iso(1).org(3).dod(6).internet(1).mgmt(2).MIB-2(1).interfaces(2).ifTable(2) is the base

OID for a table listing the interfaces of a device. Conceptually, the table is composed of

ifEntry(1) entries. Each ifEntry has a number of fields, such as the description (ifDesc(2)), type

(ifType(3)), speed (ifSpeed(5)), and address (ifPhyAddr(6)) of an interface.

167

Figure 89: Representing the interfaces table in the SNMP address hierarchy

It is possible for anyone to implement their own object tree hierarchy for their own needs under the

enterprises (1.3.6.1.4.1) base OID. An application can be made to the Internet Assigned Numbers

Authority (IANA) [84] for the assignment of a private enterprise number. The owner of this number

is then free to define their own object tree structure under this base OID. For example, the owner of

the enterprise number 2680 (Peak Audio, Inc) is free to define the object tree under the

1.3.6.1.4.1.2680 base OID. Parameters relating to CobraNet devices fall under this base OID, for

example.

7.1.4.2 Object Data Type

SNMP defines a number of data types that managed objects may take on. These define the type of

data that the object can hold. Examples of data types are:

iso (1)

org (3)

dod (6)

internet (1)

mgmt (2)

MIB-2 (1)

interfaces (2)

ifTable (2)

ifEntry (1)

ifDesc (2) ifType (3) ifSpeed (5) ifPhyAddr (6)

1 2 1 2 1 2 1 2

168

• Integer/Integer32: This data type is a 32-bit number that is often used to represent enumerated

types. For example, a managed object may be in either an up, down, or testing state represented

by the numbers 1, 2, and 3 respectively.

• String: A string of zero or more octets generally used to represent text strings.

• Counter/Counter32: This data type is a 32-bit unsigned number. When its maximum value is

reached, it wraps to zero and starts over again. The value of a counter type should never decrease

in value.

• OID: An OID for a managed object within an object tree.

• IP address: This is a 32-bit data type used to hold an IPv4 address.

• Gauge/Gauge32: This data type is a 32-bit unsigned number. The gauge type (unlike the counter

type) is able to increase and decrease in value.

• Time ticks: This data type is a 32-bit unsigned number that is used to measure time in hundredths

of a second.

7.1.5 Management Information Bases

The management information base (MIB) is a collection of managed objects (arranged in a tree

structure) that an agent tracks. Any information that can be accessed by a manager is defined in a

MIB. The SMI provides mechanisms to define managed objects, while a MIB is the definition of the

objects themselves. An agent may implement many MIBs. Vendors are free to implement MIBs for

their own use.

7.1.6 SNMP Operations

It is possible for a manager to gather information from an agent. SNMP defines a number of

operations. The core operations are:

• Get: The get operation allows a manager to send a request to an agent for a specific piece of

information. The request contains the OID that the requestor is interested in. The agent processes

this request and responds with the requested information in a get response message. If the request

cannot be performed, the get response message contains a meaningful error code. The get

operation is able to attempt to retrieve more than one managed object at once, but message sizes

169

are limited by agent capabilities. If a particular agent is unable to return all of the requested

responses, it returns an error message with no data.

• Get next: The get next command allows a manager to retrieve a group of object values from an

agent. For each managed object of interest, a separate get next request and get response is

generated. A get next command is used to traverse a subtree in lexicographical order. When an

agent responds to a get next command (and this command is received by the manager), the

manager issues the next get next command. This process continues until the agent returns an

error, which signifies the end of the MIB has been reached. The get next command is useful for

retrieving information out of a table where the length of the table is not known. It is possible to

issue a get next for the start of a table (using an instance identifier of 0) which will return the first

entry in the table (which is identified with the instance identifier 1), if the entry exists. To

retrieve the next entry in the table, the instance identifier 1 is specified, which will return the

second entry (identified with the instance identifier 2), if the entry exists. If the manager attempts

to read past the end of the table, an error is returned by the agent.

• Get bulk (SNMPv2 and SNMPv3): The get bulk operation allows for the retrieval of a large

section of a table at once. With the get bulk command, as much of the response as possible is sent

to the requesting manager (it is possible to send incomplete responses to a manager).

• Set: The set operation is used to change the value of a managed object, or to create a new row in

a table. Only objects that are defined read/write or write only can be modified or created using

set. It is possible for a manager to set more than one object at a time. When a set command is

sent to an agent, it responds with a get response to specify whether the command was

successfully carried out. It is possible to set more than one managed object at a time, but if any of

the sets fail, all of them fail.

• Trap: A trap is sent from an agent to a manager. The agent is configured with the trap destination

address. A manager does not acknowledge receipt of trap messages. A trap informs a manager

when a managed object changes state. A trap message contains managed objects and their values.

It is the responsibility of the manager to respond to the trap message appropriately.

7.1.7 Connection Management

SNMP enables object tree hierarchies to be built that represent the parameters of a device, and allow

their values to be obtained and adjusted.

170

Connection management within a device occurs when audio signals are routed from signal source

points to signal destination points within a device. For example, an audio signal arriving at the

analogue input of a device could be patched through to an AES-3 interface, or to the channel of an

AVTP stream, of the same device. Connection management between audio devices occurs when

audio signals are patched from an output of one device to the input of another device. For a

connection to be established, certain parameters need to be configured on the devices that are part of

the connection.

The use of SNMP was proposed in [79] for control over AVTP capable AVB devices. The document

proposes to represent AVTP stream sources and stream sinks with rows in SNMP tables, where each

row in a source table represents a source AVTP stream, and each row in a sink table represents a sink

AVTP stream. Table 29 shows an example table representing two source streams with a few of their

properties.

Name Stream ID Multicast MAC State

“Drum Kit” 01:23:45:67:89:AB:00:01 01:23:45:67:89:AB Streaming

“Stage Mics” 01:23:45:67:89:AC:00:02 01:23:45:67:89:AC Advertised

Table 29: An example source table

Each row in one of the tables contains properties (each property represented with a column)

associated with the stream, such as:

• Name: A textual name for the stream.

• Stream ID: The stream ID associated with the stream. For a source stream, this represents the

stream ID allocated to the stream by the device. For a sink stream, this represents the stream ID

of the stream that the device would like to/is receiving.

• MMAC: The MAC address allocated by MAAP for the stream. For a source stream, this

represents the MAC address allocated to the stream by MAAP. For a sink stream, this represents

the MAC address of the stream that the device would like to/is receiving.

• State: The state of the stream. This property represents the streaming state of the stream. It is

useful to determine whether MSRP successfully reserved resources for the stream.

• Format: The format of the stream. AVTP is able to transport a number of media formats, and this

argument allows the format of the stream to be specified. This can allow a hardware device to

configure itself to receive the particular stream format, for example.

171

• Channels: The number of channels contained within the stream.

• Map: The map field is used for connection management internal to a device. For a source stream,

the map property is used to determine where the channels in a stream are receiving their signals

from within a device. For example, the map property could map the first and second analogue

input of a device to the first and second channel in an AVTP stream. For a sink stream, the map

property is used to determine where the channels in a stream are routed to within a device. For

example, the map property could map the first and second channel of a stream to the first and

second analogue outputs of a device.

• Presentation: The presentation time offset. The value of this field determines the presentation

time offset that is added to the presentation time contained in AVTP frames. This field allows the

presentation time to be fine-tuned.

The creation of a row in the source table allows an AVTP stream source to be created. In SNMP, this

can be achieved via a read-only managed object that indicates the next available row index. When

this managed object is read (with a get request), a new row is created in the table and the index of the

new row is returned to the caller. A row can be deleted by setting its state field to a value indicating

that the stream is no longer required. Creating a row in the source table results in the stream being

advertised to the attached AVB network (via MSRP). The creation of a row in the sink table allows

an AVTP stream sink to be created. This results in the device requesting attachment (via MSRP) to a

stream advertised by another device.

7.1.8 Tools

A number of tools exist that allow for the use and development of applications that make use of

SNMP. Net-SNMP [85], for example, is a suite of tools and libraries that allow for:

• The retrieval and manipulation of information on SNMP-capable devices

• Graphical MIB browsing of SNMP enabled devices

• The reception of SNMP notifications (traps) from agents

• Applications to be built to respond to SNMP queries. These applications can define their own

MIBs and respond as required to queries on the managed objects defined in those MIBs.

172

7.1.9 Conclusion

SNMP provides the means for address hierarchies to be built that reflect the natural structure of a

device. The leaves of these hierarchies point to the parameters (managed objects) of a device. The

native commands of the protocol allow for the values of the managed objects to be obtained and

adjusted. The SNMP table structure offers a convenient mechanism for representing streams that a

device has to offer, or that a device would like to receive. Each row of a table represents a stream,

and the columns of the table represent the properties of that stream.

7.2 IEC 62379

IEC 62379 [86] is a set of specifications that specify a control framework for control over networked

audio visual equipment. The framework allows for control over network transmission, and for

control over internal device parameters. The control framework provides a consistent interface to the

functionality provided by audio/visual units. IEC 62379 allows systems to be built that are plug-and-

play. Devices are able to discover units that are connected to a network, and interrogate them to

determine their capabilities. The natural functional groups of a device are represented in a consistent

and structured manner. IEC 62379 is designed such that it is extensible. IEC 62379 is composed of

parts 1 through 6. IEC 62379-1 [75] specifies aspects that are general to all equipment, and IEC

62379-2 [87] specifies aspects of the control framework that are specific to audio devices. IEC

62379-5 specifies control over the transmission of various realtime media over networking

technologies. IEC 62379-5 sub-part 1 [88] specifies management of aspects that are common to all

network technologies and IEC 62379-5 sub-part 2 [89] specifies protocols which can be used

between networking equipment to enable the setting up of connections.

7.2.1 Equipment Structure

The natural structure of a device forms the basis of the control framework. A device, or a unit, tends

to be structured hierarchically as a set of functional blocks. These blocks are usually linked to each

other through some form of internal routing and patching mechanisms. Blocks may have inputs,

outputs, and internal parameters, as shown in Figure 90.

173

Figure 90: A block

The output of one block usually forms the input of another block. An input to a block may or may

not be connected to one output of another block. The output of a block may be connected to zero or

more inputs of other blocks. Groups of blocks that are connected together are called processing

chains. Usually, a processing chain represents what a device does as a whole.

A port provides an external connection to another piece of equipment. An input port allows data (for

example, audio and video) to enter a unit from an external entity, and an output port allows data to

leave a device to an external entity. A port may correspond to a physical connector (for example, an

XLR socket for analogue audio), or to a virtual connector (for example, the end point of a connection

across a network). With respect to a unit, an input port has no inputs, and an output port has no

outputs (these are external to the device). An input port has an output which is used to supply data to

a block. An output port has an input which is used to receive data from a block.

Figure 91 shows an example unit that is composed of a number of blocks and ports. The outputs of

the input ports (1, 2) are connected to the inputs of a mixer block (3). The output of the mixer block

is connected to the input of a limiter block (4). The limiter block’s output is connected to the output

port’s (5) input. These blocks and their connections form a processing chain. The numbers shown in

brackets are block identifiers (see Section 7.2.3 “Control Framework”).

Figure 91: An example unit with blocks [87]

Block
Inputs Outputs

Parameters

AES/EBU Output (5)
Mixer

(3)

AES/EBU Input (1)

AES/EBU Input (2)
Limiter (4)

174

7.2.2 Managed Objects

IEC 62379 utilises SNMP, and communication between a controlling application and a unit takes

place via SNMP (SNMPv1, SNMPv2, or SNMPv3 may be used). As indicated in Section 7.1

“Simple Network Management Protocol”, SNMP defines read and write operations that may be

performed on a set of managed objects. The managed object types are arranged in a hierarchical

manner and are accessible via OIDs. Managed object type OIDs that are part of the IEC 62379 series

of standards begin with 1.0.62379.p if they are defined in part p of IEC 62379, or 1.0.62379.p.s if

they are defined in sub-part s of part p of IEC 62379.

Each block is described by a group of managed objects. These managed objects represent the

parameters that exist within a functional block. The structure of each type of block is specified in one

of the parts of IEC 62379, or elsewhere for product-specific or application-specific blocks.

Connections between blocks are described by a table containing identification of the output to which

each input is connected. As an example, IEC 62379 defines an audio limiter to have a structure as

shown in Figure 92. This block limits the incoming audio signal to a pre-set maximum level. The

limiter block is defined as having the following parameters: threshold, attack time, gain makeup,

recovery time, and recovery mode.

Figure 92: An audio limiter block

Instances of limiter blocks are defined as rows in SNMP tables. The root node for a limiter block

type is identified with the OID .1.0.62379.2.1.5. The parameters of a limiter are identified with the

following values appended to the OID:

• Block ID: 1

• Threshold: 2

• Attack time: 3

• Gain makeup: 4

• Recovery time: 5

• Recovery mode: 6

Limiter Input Output

175

Therefore, in order to access the attack time parameter of the second limiter, the following OID will

be used:

• iso(1).standard(0).IEC 62379(62379).part 2(2).audioMIB(1).audioLimiter(5).attackTime(3).2

Each managed object type within IEC 62379 is defined by the following attributes:

• Identifier: This specifies the name and number that identifies the object type relative to the group

in which it belongs. For example, the value 2 identifies the threshold parameter in a limiter block.

• Syntax: This specifies the syntax of the abstract data structure representing the object value. This

could be an integer, for example.

• Index: This specifies whether the object is used to uniquely identify a row in a managed object

table. For example, the block ID of the limiter is used to uniquely identify a row in the table

representing the limiters of a device.

• Readable: This specifies the privilege level for read access to the associated object. It is only

permissible to read the managed object (with a get or get next SNMP operation) with a privilege

level equal or greater to this privilege level. It is possible to set this to none to completely disable

read access.

• Writeable: This specifies the privilege level for write access to the associated object. It is only

permissible to write to the associated managed object (with a set SNMP operation) with a

privilege level equal or greater to this privilege level. It is possible to set this to none to

completely disable write access.

• Volatile: This attribute specifies whether the current value of the object is retained after a hard

reset or period of power loss.

• Status: This attribute specifies the required level of implementation support for the object. This

attribute is able to specify whether:

• It is mandatory to implement the managed object in a unit that implements the object’s

parent group.

• It is optional to implement the managed object in a unit that implements the object’s

parent group.

• It is deprecated, indicating that the managed object will not be implemented in any newly

designed units.

176

7.2.3 Control Framework

The control framework consists of a list of blocks that make up a unit, and a list of connections

between these blocks. The list of blocks is contained in a block table and the list of connections is

contained in a connector table. A number of blocks currently exist, and new ones continue to be

introduced all of the time. Units can be developed from a combination of existing blocks and new

blocks to provide desired functionality.

A defined block type is identified by an OID. When a new block type is specified, the OID of the

block type identifies a MIB table, or group of MIB tables, with each table containing a variable

number of rows. An instance of a block type in a table is indexed using a block identifier (block ID).

A block ID is a unique number (with respect to an individual unit) that is used to identify individual

blocks within a unit.

Table 30 shows the block table for the example device shown in Figure 91. As the unit is made up of

five blocks, the table contains five rows (one for each block). Shown in each row is the block ID that

a device has assigned to the instance of the block, and the OID that is used to identify the type of

block.

Block ID Block type

1 1.0.62379.2.1.1 (Audio port)

2 1.0.62379.2.1.1 (Audio port)

3 1.0.62379.2.1.2 (Mixer block)

4 1.0.62379.2.1.5 (Limiter block)

5 1.0.62379.2.1.1 (Audio port)

Table 30: An example block table [87]

Table 31 shows an example connector table for the example unit shown in Figure 91. A connection is

formed between an output of a block to the input of another block. Each row in the table represents a

connection. The first column of the table represents the block ID of the block containing the input,

and the second column represents the actual input of that block. The third column represents the

block ID of the block containing the output, and the fourth column represents the actual output of

177

that block. For the unit shown in Figure 91, the first row of the table indicates that AES/EBU Input

(1) is connected to the first input of the mixer (3).

Connection Rx Block

ID

Connection Rx Block

Input

Connection Tx Block

ID

Connection Tx Block

Output

3 1 1 1

3 2 2 1

4 1 3 1

5 1 4 1

Table 31: An example connector table [87]

A controlling application may only need to be able to represent and control certain blocks within a

unit. A controlling application is able to discover units that exist on a network, and is able to discover

the blocks that each unit contains. It does not have to have knowledge of the unit itself. A controlling

application may also retrieve any connections that may exist between blocks.

7.2.3.1 Media Formats

A mode table lists all of the media formats that are valid for each block’s outputs. Table 32 shows an

example mode table for the example unit shown in Figure 91. In this example, each of the outputs

within the unit are capable of running at either 44.1 kHz or 48 kHz. The table displays the possible

formats for each output of each block.

178

Block ID Block output Media format Enabled

1 1 1.0.62379.2.2.1.3.2.2.24.44100 True (1)

1 1 1.0.62379.2.2.1.3.2.2.24.48000 True (1)

2 1 1.0.62379.2.2.1.3.2.2.24.44100 True (1)

2 1 1.0.62379.2.2.1.3.2.2.24.48000 True (1)

3 1 1.0.62379.2.2.1.3.2.2.24.44100 True (1)

3 1 1.0.62379.2.2.1.3.2.2.24.48000 True (1)

4 1 1.0.62379.2.2.1.3.2.2.24.44100 True (1)

4 1 1.0.62379.2.2.1.3.2.2.24.48000 True (1)

Table 32: An example mode table [87]

The media formats above are represented using OIDs, such as 1.0.62379.2.2.1.3.2.2.24.48000. The

components of this OID are defined as shown in Table 33.

OID Part Definition

1.0.62379 IEC 62379

1.0.62379.2 IEC 62379 part 2: audio

1.0.62379.2.2 Audio format

1.0.62379.2.2.1 Audio signal format

1.0.62379.2.2.1.3 The signal is encoded using Pulse Code Modulation (PCM)

1.0.62379.2.2.1.3.2 The signal is in stereo format

1.0.62379.2.2.1.3.2.2 The signal consists of two channels of audio

1.0.62379.2.2.1.3.2.2.24 Each sample is 24-bits in length

1.0.62379.2.2.1.3.2.2.24.48000 The sampling frequency is 48 kHz

Table 33: An example media format

7.2.3.2 Audio Ports

The ports that exist on a unit are represented in a port table. There exists an entry in the table for

each port on the unit. Table 34 shows an example port table for the example unit shown in Figure 91.

The table lists the block ID for each port, the direction of the port, the media format of the port, the

port transport (for example, analogue or AES 3), and a name for the port.

179

Port block

ID

Port

direction

Port data format Port transport Port name

1 Input (1) 1.0.62379.2.2.1.3.2.2.24.48000 AES3 (1.0.62379.2.2.2.2) AES/EBU

2 Input (1) 1.0.62379.2.2.1.3.2.2.24.48000 AES3 (1.0.62379.2.2.2.2) AES/EBU

5 Output (2) 1.0.62379.2.2.1.3.2.2.24.48000 AES3 (1.0.62379.2.2.2.2) AES/EBU

Table 34: An example port table [87]

7.2.4 Status Broadcasts

IEC 62379 has a status broadcast mechanism. A status broadcast reports on the values of a group of

managed objects. Examples of managed objects that could be reported are the peak level of an audio

signal, the media format being received at an input, or information about what is connected to a

network port. The status broadcast mechanism is implemented using point-to-multipoint

transmission.

Each one of the parts of IEC 62379 defines groups of managed objects that are available for status

broadcasts. All of the managed objects in a group are reported periodically, and any managed objects

whose values change are reported immediately. The periodic reporting ensures that units have the

latest managed object values, even if they miss a report.

Status broadcasts are initiated by a unit in response to an appropriate command. A source unit

transmits one or more status pages of status information. A status page is a message that contains

structured values representing some internal state of a unit. Each page is organised into a fixed

format of related information. A unit may define and support multiple types of status page. Related

status pages are grouped together in status broadcast groups. When a remote entity requests a status

broadcast, it specifies which group it is interested in receiving. A status broadcast group is identified

by an OID.

180

7.2.5 Connection Re-establishment

If a piece of equipment fails for some reason, and as a result it drops a connection, it is important that

these connections are re-established (this is especially important in a broadcast studio, or during a

live sound concert, for example). A compliant network interface unit is required to reconnect stored

connections. Connections should be stored in non-volatile memory, and these connections should be

re-established after a temporary power failure. This is only intended to cover short-term failures,

after which attempting to re-establish a connection should not be attempted. This prevents units that

are redeployed from one area to another from attempting to re-establish a connection that existed in

another location.

7.2.6 Privilege Levels

IEC 62379 uses privilege levels to distinguish between different kinds of users. This mechanism

allows network resources to be set aside for more privileged users, and to prevent inappropriate

control tasks being performed by less privileged users, for example. Four privilege levels are

defined:

• Listener: This is the lowest privilege level, and it is intended to be used by those interested in

monitoring audio or video signals passing through a unit. A listener is able to route signals from

remote devices to themselves, but is unable to change anything that would affect the experience

of other users.

• Operator: The operator privilege level is intended for use by those who are controlling the day-

to-day operation of a unit. An operator is able to change parameters that may affect other users.

• Supervisor: The supervisor privilege level is intended for use by those who are controlling and

maintaining a network.

• Maintenance: The maintenance privilege level is the highest privilege level, and it is intended to

be used by those who need to perform tasks that might disrupt the normal operation of a unit.

181

7.2.7 Automation

The automation mechanism allows for single or multiple values to be set at a given time. An

automation event consists of a time, the OID of an object, and the value to set the object to at the

time. This allows events to occur simultaneously, or for events to occur one after the other.

7.2.8 Connection Management

IEC 62379-5 specifies control over the transmission of realtime data over digital networks. It uses

the concept of a call. Before stream data can be transmitted, a call has to be set up between the

parties involved in the transmission. In order to set up a call, a management terminal (running a

control application, for example) sends commands to a destination unit, and the destination unit then

asks the network to make the connection.

Some networks offer a connection-oriented service. In these cases, a call maps naturally onto this

service. IEEE 1394 and Ethernet AVB both have the concept of connections, thus an IEC 62379 call

would map to this.

A physical connection to a network is described with a block. The block has an input for each media

flow going to the network, and it has an output for each media flow coming from the network. Figure

93 shows a block representing a physical network port. It is transmitting three streams, or flows, onto

a network, and has an input for each one of these flows. It is also receiving three flows from the

network, and has an output for each one of these flows.

182

Figure 93: Inputs and outputs

Each device has a unit destination list and a source destination list. The unit destination list is a list

of streams being received by a device, and a unit source list is a list of streams being transmitted by a

device. Each entry in a list keeps track of properties that pertain to each stream. These include:

• The size of the payload of the maximum sized packet that forms part of the stream, and the rate at

which packets are transmitted by the device. These values can be used to calculate the bandwidth

required of a stream.

• The state of the stream. This value can be adjusted to create and teardown calls. For example,

setting this field to ready to connect instructs the device to initiate a call. While the device is

attempting to make the call, the state of the stream could be set to call proceeding. Once a call

has been made, the state of the stream is set to active.

• A block identifier identifying the port through which the stream is flowing.

• In the case of a source stream, the input of the port block through which the stream is flowing.

• In the case of a destination stream, the output of the block through which the stream is flowing.

When a device would like to receive a particular stream, a new entry is created in the unit destination

list of the unit that is to receive the stream. At this stage, the network port on which the stream is to

arrive may not be known. A management terminal, once it has created the entry, has to fill in the

fields of the new entry. This includes identifying the input of a block that is to receive the stream.

Once this has happened, the management terminal requests the unit to make the connection on the

network.

Flow �
Flow �
Flow �

Output �
Output �
Output �

Network port

 Flow
 Flow
 Flow

 Input
 Input
 Input

183

If a connection is successfully created, a new output is created (or an existing unused output is used)

on the network port block through which the stream is to flow. This output is connected to an input

of another block. In the case of an AVTP stream carrying sequences of audio data, the output of the

network port block could be connected to an input of an AVTP multiplexing/ de-multiplexing block.

The multiplexing/de-multiplexing block will be responsible for extracting the individual sequences

of audio out of the incoming streams. Streams can be formed from the individual channels entering

the block. This process is shown in Figure 94. The connections between the blocks are described in

the connector table.

Figure 94: AVTP multiplexing/de-multiplexing

If a stream source is already transmitting the stream, and the network supports multicasting, the

network equipment (a switch, for example) simply copies the existing stream to the new destination

device. If a source device is not transmitting the stream of interest, the device will create (or assign) a

new input to the relevant network port block, and connect it to the source.

 AVTP Stream

AVTP Stream �

Network port

AVTP

Multiplexing

De-multiplexing

Mixer

Limiter

Limiter

184

7.2.9 Conclusion

IEC 62379 uses SNMP and makes use of its hierarchical addressing scheme and table concept in

order to represent connections internal to a device, and connections between devices. Each entry in

the connector table represents an internal connection between an output of a block, and an input of

another block. In a similar way to that proposed in Section 7.1.7 “Connection Management”, each

stream is represented with an entry in a table, where the fields of each entry represent the properties

of the stream. Creating and breaking stream connections involves changing the state of the stream.

7.3 OSC

Open sound control (OSC) [58] is an open, transport neutral, message-based protocol that allows for

communication between computers, sound synthesisers, and other multimedia devices. OSC

communication occurs between an OSC client and an OSC server via OSC packets.

An OSC server has a set of OSC methods. OCS methods are methods that are triggered with the

arrival of OSC packets from OSC clients. OSC methods may expect to be passed arguments from the

OSC client. OSC methods are arranged in a tree structure called the OSC address space, with the

leaves of the tree being the OSC methods. Branch nodes are referred to as OSC containers. The

contents and the shape of the OSC address space may change over time.

7.3.1 OSC Address Space and OSC Addresses

Each OSC container (except the root OSC container) and each OSC method has a symbolic name.

This name is composed of an ASCII character string consisting of printable characters other than the

following characters: space # * , / ? [] { }

An OSC address of an OSC method is the symbolic name giving the full path to the OSC method in

the OSC address space, starting with the root of the tree. An OSC address starts with the ‘/’

character, followed by the names of all the containers, in order, along the path from the root of the

tree to the OSC method. Each container’s symbolic name is separated by a ‘/’.

185

Figure 95 shows an example OSC address space with each OSC container and method having a

name. From this tree structure are formed the following OSC method addresses: “/first/this/one”,

“/second/1”, “/second/2”, “/third/a”, “/third/b”, “/third/c”.

Figure 95: An example OSC address space

7.3.2 OSC Data Types

All OSC data are composed of a set of core types, as defined in Table 35.

Type Definition

32 bit integer 32 bit big endian two’s compliment integer

OSC timetag 64 bit big endian fixed-point time tag

32 bit float 32 bit big endian floating point number

OSC string A sequence of non-null characters, followed by a null character

OSC blob A 32 bit integer count, followed by that many octets of arbitrary data

Table 35: Core OSC types

The size of each of the core types is a multiple of 32 bits to ensure 32-bit alignment.

“first” “second” “third”

root

“this”

“one”

“1” “2” “a” “b” “c”

186

7.3.3 OCS Packets

OSC packets are transmitted by OSC clients, and received by OSC servers. These packets either

contain an OSC message or an OSC bundle.

7.3.3.1 OSC Message

An OSC message consists of an OSC address, followed by an OSC type tag string, followed by zero

or more OSC arguments. The OSC address is the address of the method that should be invoked. The

OSC type tag string is an OSC string that begins with the character ‘,’ followed by a sequence of

characters corresponding exactly to the sequence of OSC arguments in the OSC message. Each one

of these characters is called an OSC type tag and is used to represent the type of each corresponding

OSC argument. Table 36 lists the possible OSC type tags.

OSC type tag Definition

i 32 bit integer

f 32 bit floating point number

s OSC string

b OSC blob

Table 36: OSC type tags

The OSC arguments are a sequence of arguments that will be supplied to the method addressed by

the OSC address. Listing 1 shows an example OSC message. This message is targeted at the

“input/level” OSC method which is used to adjust the audio level of an input. This OSC message

contains two arguments, an integer and a float (as indicated with the ,if part of the message). The first

argument is a number used to identify the input whose audio level should be adjusted, and the second

argument is the value that the audio level should be set to.

Listing 1: An example OSC message

“/input/level” ,if (input number) (value)

187

7.3.3.2 OSC Bundles

An OSC bundle consists of the OSC string “#bundle” followed by an OSC time tag, followed by

zero or more OSC bundle elements. The OSC time tag is a 64-bit fixed time tag. Each OSC bundle

element is composed of a 32-bit integer size indication followed by that number of octets as contents,

and will always be a multiple of four. The contents of an OSC bundle element are either an OSC

message or another OSC bundle.

7.3.4 OSC Message Processing

When an OSC server receives an OSC message, it invokes the OSC methods addressed by the OSC

address pattern of the message. All of the methods that match the OSC address are invoked with the

same argument data supplied in the OSC message. Any part of an OSC address may contain special

characters with special meaning:

• ‘?’: Matches any single character in an OSC address

• ‘*’: Matches any sequence of zero or more characters

• String of characters in square brackets (e.g., “[string]”): Matches any character in the string. A ‘-’

or a ‘!’ character in the square brackets has the following meanings:

• ‘-’: Two characters separated by a minus sign indicate a range of characters between the

two given characters on either side of the ‘-’.

• ‘!’: An exclamation mark at the beginning of a bracketed string negates the sense of the

list (i.e., the list matches any character not in the list).

• Comma separated list of strings in curly braces (e.g., “{foo,bar}): Matches any of the strings in

the list.

When an OSC server receives a single OSC message, the corresponding OSC methods should be

invoked immediately. If the OSC server receives a bundle (which contains a time tag), the message

methods are invoked when the time of the time tag is reached. If the time tag represents a time before

or equal to the current time, the OSC server invokes the methods immediately.

188

7.3.5 Connection Management

The use of an OSC based protocol for connection management in AVTP capable AVB networks was

proposed in [90]. This protocol is known as AVBC. The AVBC protocol proposes an OSC address

space, and the use of OSC methods to allow for the remote control of AVTP capable AVB devices.

In AVBC, AVTP source streams are listed under the /avb/source/… OSC address, and AVTP

sink streams are listed under the /avb/sink/… OSC address. Two OSC methods are provided that

allow for the dynamic creation of streams. These are /avb/source/create and

/avb/sink/create. These methods accept a number of parameters.

7.3.5.1 Creating Source Streams

The /avb/source/create method expects the following OSC arguments:

• The name of the stream: This argument allows human readable names to be assigned to a stream

and can be used to refer to the stream at a later stage. For example, this could be set to something

like “Movie Audio”.

• Media format: AVTP is able to transport a number of media formats, and this argument allows

the format of the stream to be specified. This can allow a hardware device to configure itself to

receive the particular stream format, or allow it to reject the stream creation request if it does not

support the stream format.

• Presentation: This argument allows for the presentation time offset for a stream to be configured.

By default, the presentation time offset for class A AVTP streams is 2ms. This argument allows

this to be fine-tuned.

• Number of channels: This argument specifies the number of channels that the stream should

contain.

• Media source channel code: The media source channel code argument is a map of a device’s

media sources to the channels of the stream. For example, if a device has eight analogue inputs,

this argument could map these analogue inputs to the first eight channels of a stream.

When the OSC /avb/source/create method is invoked, a stream is created and a stream ID

and multicast MAC addresses are allocated to it. The stream is then advertised to the AVB network

189

via MSRP. The stream is represented in the OSC address space with an addition of a stream ID node

to the /avb/source address. The value of this node is the value of the stream ID associated with

the stream. The parameters of the stream are represented under the individual stream ID nodes. For

example, mmac, state, format and map nodes are added as child nodes to each individual

stream ID node, as shown below.

• /avb/source/stream ID/mmac

• /avb/source/stream ID/state

• /avb/source/stream ID/format

• /avb/source/stream ID/map

These nodes address OSC methods that allow for the retrieval of the multicast mac address allocated

to the stream, the streaming state of the stream, the format of the media being conveyed in the

stream, and the mapping of media sources to stream channels.

The OSC /avb/source/create method returns a number of arguments to the caller, including:

• Stream ID: This argument represents the stream ID that was generated for the stream when it was

created.

• Multicast MAC address: This argument represents the multicast MAC address that the stream

will be transmitted with. This is a multicast MAC address allocated by the MAAP protocol for

the stream (see Section 6.3 “AVTP Address Allocation”).

7.3.5.2 Creating Sink Streams

There are three approaches to creating stream sinks:

1. An application is able to specify the stream ID and the multicast MAC address of the stream to

attach to.

2. An application is able to specify the stream ID, and the sink device is expected to look up the

multicast MAC address of the stream.

3. The controlling application specifies the device and stream name, causing the sink device to

lookup the network address of the device, and well as the stream ID and multicast MAC address.

190

If the first approach of creating a sink stream is used, the /avb/sink/create method expects the

following OSC arguments:

• Stream ID: The value of this argument represents the source stream ID that the sink stream

should attach to.

• Multicast MAC address: This argument represents the multicast MAC address that the source

stream will be transmitted with. When MSRP is making use of talker pruning (see Section

3.2.4.2 “Talkers Advertising Streams”), a listener device needs this value in order to request

membership to the multicast group.

• Presentation: The value of this parameter specifies the presentation time offset for the stream.

This allows for the fine-tuning of this value.

• Number of channels: The value of this argument informs the sink device of the number of

channels in the source stream. This allows the device to prepare for the reception of the stream.

• Media sink source code: The value of this parameter is a map of incoming stream channels to

media sinks within a device. If, for example, a device contains eight analogue outputs, the

incoming stream channels could be mapped to these analogue outputs.

This method returns a number of arguments to the caller, including a sink ID. The value of this

argument is a unique identifier generated by the sink device for the sink stream. It can be used later

to refer to the stream.

When a sink stream is created using the /avb/sink/create method, the sink device will request

attachment to the source stream via MSRP by declaring a listener attribute for the stream. The

created sink stream is represented in the OSC address space with an addition of a stream ID node to

the /avb/sink address. The value of this node is the value of the stream ID associated with the

stream. The parameters of the sink stream are represented under the individual stream ID nodes. For

example, mmac, state, format and map nodes are added as child nodes to each individual

stream ID node, as shown below.

• /avb/source/stream ID/mmac

• /avb/source/stream ID/state

• /avb/source/stream ID/format

• /avb/source/stream ID/map

191

As with source streams, these nodes address OSC methods that allow for the retrieval of the

multicast mac address allocated to the stream, the streaming state of the stream, the format of the

media being conveyed in the stream, and a map of stream channels to media sinks.

7.3.5.3 Destroying Streams

Each source and sink stream has a destroy method. For a source stream, this would be accessed with

the following OSC address /avb/source/stream ID/destroy. When the destroy method is

invoked, the stream associated with it is torn down. For a source stream, a request is made to MSRP

to withdraw the talker advertise attribute for the stream. For a sink stream, a request is made to

MSRP to withdraw the listener attribute for the stream.

7.3.6 Tools

Programming libraries exist which allow for the development of OSC based clients and servers.

oscpack [91], for example, provides a set of C++ classes for packing and unpacking OSC packets. It

also provides the ability to transport OSC messages using the UDP/IP protocol.

7.3.7 Conclusion

OSC uses a hierarchical addressing scheme that allows methods on remote device to be invoked. In

essence, the representation of streams is similar to those protocols based on SNMP. Each stream can

be represented using a table abstraction where streams are represented in the address hierarchy with a

unique address (representing a row in a table), and the properties of each stream are addressed under

that (each one representing a field in a row). In AVBC, the mapping of stream channels to internal

media sources and sinks is performed with a bitmap, and thus is less verbose than using a table.

Alternatively, the hierarchical addressing scheme of the protocol allows for table abstractions to be

constructed allowing for the representation of more explicit patching matrices.

192

7.4 XFN

The XFN protocol [59] [60] is an IP [61] based peer-to-peer command and control protocol that

makes use of UDP [76]. Any device on a network that participates in the protocol may initiate or

accept control, monitoring and connection management commands from any of its peers. The

protocol incorporates three core concepts:

• Structuring: Each parameter in an XFN system is part of a hierarchical structure, and any level of

this structure may be addressed to allow for addressing of multiple parameters simultaneously.

• Joining and grouping: Disparate parameters may be joined into groups allowing for control over

these parameters from single control sources.

• Indexing: Every parameter has an index value associated with it, and it may be addressed via this

index value. This mechanism has been put in place to lower network bandwidth consumption.

Due to the fact that the XFN protocol is based on UDP/IP, it has been implemented independent of

any networking architecture. This allows for this protocol to work across multiple networking

architectures without any changes.

7.4.1 Structuring

Multi-level addresses were created for a number of professional audio-related devices, and it was

found that most parameters conform to a similar hierarchical structure. A device tends to be

structured as a series of functional groupings, with the parameters of a device positioned at the

lowest level of these groupings. For example, as shown in Figure 96, an audio mixing desk may be

structured as follows:

• The audio mixing desk has an input block that is composed of number of signal inputs. These

signal inputs may be analogue or digital in nature (number 1 in the figure).

• These signal inputs may then be patched to the channels of the audio mixing desk (number 2 in

the figure).

• Each of the audio mixing desks channels may have a number of signal processing components

(for example, equalisers and dynamics processors) associated with them. Each one of these signal

processing components is composed of a number of adjustable parameters (number 3 and 4 in the

figure).

193

• The signals from each channel may be patched onto the various buses that the audio mixing desk

has (number 5 and 6 in the figure).

• Signals from buses may be patched through to the output sections. The output section may be

composed of further signal processing components, and each of these components may be further

composed of adjustable parameters (number 7 in the figure).

• The signals from the output sections may be patched through to the various outputs that the audio

mixing desk has to offer (number 8 in the figure).

• The audio mixing desk has a number of analogue and digital signal outputs (number 9 in the

figure).

Figure 96: The block diagram for the Yamaha 01V96 Digital Mixing Console [10]

Based on the hierarchical structuring of devices, it was decided that every parameter in an XFN

system be addressed via a fixed seven-level address. These addresses intuitively reflect the

hierarchical structure of a device. Each level in the hierarchy has a unique value assigned to it.

Associated with each one of these values is an alias used to describe the level’s functionality. This

hierarchical addressing scheme is shown in Table 37. Also shown are the hierarchical address aliases

that would be used to describe an equalisation parameter of an audio mixing desk.

194

Address level Address level name Example level alias

1 Section block Input block

2 Section type Analogue inputs

3 Section number Analogue input 1

4 Parameter block Equaliser

5 Parameter block Index Equalisation band 1

6 Parameter type Equalisation parameter

7 Parameter index Equalisation parameter 1

Table 37: The XFN seven-level addressing scheme

An XFN address consists of the following address hierarchy:

1. Section block: A device is usually comprised of a number of sections. An audio mixing desk has

an input section, output section, and various patching matrix sections, for example. This part of

an XFN address is used to identify the section in which the parameter resides.

2. Section type: Every section of a device has a type, and may be composed of many types. An input

section of an audio mixing desk may be composed of an analogue input section type and a digital

input section type. This part of an XFN address is used to identify the section type of the section

block in which the parameter resides.

3. Section number: The section number is used to identify a specific instance of the section type. An

analogue input section type may be composed of a number of analogue inputs. The section

number is used such that each one of these may be individually addressed.

4. Parameter block: A number of parameters may be grouped together. An equalizer is a signal

processing component that is composed of a number of sections and parameters. This part of an

XFN address is used to identify a specific parameter block of the section number.

5. Parameter block index: A parameter block may be composed of a number of sections. For

example, an equaliser may have low, low-mid, high-mid, and high sections. This part of the XFN

address is used to identify the sub-section of a parameter block.

6. Parameter type: Each one of the sections of a parameter block may contain a number of

parameter types. For example, each one of the sub sections of an equaliser parameter block may

contain a Q, frequency, and gain parameter. This part of the XFN address is used to identify the

specific parameter type being addressed.

195

7. Parameter index: Each parameter block may contain a number of parameters of the same type.

The parameter index section of an XFN address is used to address these individual parameters. A

channel of an audio mixing desk may, for example, contain multiple gain parameters.

Address level identifiers are defined within the XFN specification. New devices describing existing

parameter types (e.g., gain parameters) use the same addresses used by existing devices. This allows

new devices to be easily integrated into existing networks.

A device that participates in the XFN protocol builds up an internal seven-level tree structure that

reflects the actual device. Each of the leaf nodes of the tree is associated with a user supplied

callback function that allows the device to respond to commands from its peers (see Section 7.4.2

“Messaging”). Figure 97 shows an example XFN stack with a built up tree structure. Each level in

the tree structure has a unique address (and an address alias) used to identify it. The leaf nodes of the

tree structure are associated with user supplied callback functions for a specific XFN application.

Figure 97: An example hierarchical address for an equalisation parameter

Section block: Input Block (0x01)

Section type: Analogue inputs (0x04)

Channel number: Analogue input 1 (0x01)

Parameter block: Equaliser (0x30)

Parameter block index: Equalisation band 1 (0x01)

Parameter type: Equalisation parameter (0x50)

Parameter index: Equalisation parameter 1 (0x01)

Callback

196

Some devices may not need all seven levels to address their parameters. This may be the case for

simple devices with a few high-level parameters. When this is the case, a dummy value is placed into

the address level in place of a standard level identifier.

7.4.2 Messaging

Any device on an XFN network is allowed to transmit and receive XFN messages to and from its

peers. Each message has a message type, command executive, and a command qualifier. Amongst

other things, the message type field is used to distinguish between request and response messages. A

request message is sent from one device to another to request it to perform some action, and a

response message is sent in response to a request message. Not all request messages require a

response message.

The specific action of a request message is indicated in the command executive and command

qualifier fields. The command executive field indicates the fundamental nature of the message, and

the command qualifier field allows the command executive to be directed to a certain attribute of a

parameter (a parameter contains a number of attributes, such as a value, name, and flags). The two

most common command executives are get and set, and the most common command qualifier is

value. In order to obtain the value of a parameter on a second device, a device will send a request

message to that device specifying a get value command, and will specify the seven-level address of

the parameter. The device that receives the request will respond to the requester with a response

message containing the value of the parameter. In order to set the value of a parameter on a second

device, a device will send a request message to the device specifying a set value command, the

seven-level address of the parameter, and the value that the parameter should be set to.

Figure 98 shows how an incoming XFN message is processed. This message contains the seven-level

address of a parameter (Parameter address), the action to perform on that parameter (Command), and

a value (the value field is used for set value commands). When a device receives an XFN message

from another device, the parameter that is identified by the XFN seven-level address is located

(indicated by the number 2). Certain commands (such as get value and set value) require further

action by the application using the XFN protocol. If one of these commands is indicated in the

message, the application-supplied callback is called (indicated by the number 3) and is requested to

perform the required action (indicated by the number 4). For example, if a get value command is

197

specified to the callback, the callback returns the current value of the parameter to the caller. If a set

value command is specified to the callback, the callback sets the value of the parameter to the

supplied value.

Figure 98: XFN message processing

When a value is transported in an XFN message, it has associated with it a value format specified in

a value format field. The value format field is an integer field that indicates the type and length of the

value.

XFN messages may be broadcast or multicast onto a network. This allows single messages to control

parameters on multiple devices.

XFN Stack

Callback

Parameter address Command Value

Perform command

1

2

3

4

198

7.4.3 Indexing

XFN also allows for parameters to be addressed via a unique ID (as opposed to a seven-level

address). Every parameter in an XFN device has associated with it a unique ID, and this unique ID

may be obtained for a parameter by addressing it with its seven-level address and requesting the ID.

Subsequent messages to the device may contain the unique ID for the parameter. This mechanism

has been put in place to reduce network bandwidth usage.

7.4.4 Wildcarding

Parameters may be addressed individually using a full seven-level address, or groups of parameters

on a device may be addressed by replacing address level values with wildcards. If, for example, a

controller would like to adjust all of the gain parameters of a particular channel, it would send a set

value message to the device and wildcard the parameter index part of the XFN address. The device

will then cycle through all of the parameter’s indexes and set the value of each parameter (via the

callback function). Wildcards may appear at more than one level. If, for example, a controller would

like to adjust all of the gain parameters of all of the channels of a device, it will wildcard the section

number and the parameter index portions of an XFN seven-level address. A receiving device will

then cycle through each channel, and for each channel will cycle through each gain parameter and set

its value. A wildcard replaces the level identifier value with a value that has all of its bits set to one.

XFN messages that make use of the wildcard mechanism may also use broadcast and multicast

transmission mechanisms. This allows multiple parameters on multiple devices to all be addressed

with a single message.

7.4.5 Pushing

When a device would like to know the value of a parameter, it is able to request the value of that

parameter via a get value command. It may however become inefficient to consistently poll for the

value of a parameter when it is desirable to frequently monitor the value of a parameter. This is true

of level metering parameters, for example. To alleviate this, the XFN protocol has the concept of a

push mechanism. A requesting device is able to instruct another device to tell it whenever one of its

parameter values change by sending it a set push command for the parameter. A requesting device

199

may also instruct another device to stop informing it when the parameter value changes by sending it

a set push off message for the parameter.

Some parameter values may change at a high frequency, and it may be undesirable or unnecessary to

be notified each time that this happens. XFN has mechanisms that allow updates to be sent at a

regular interval. If this functionality is enabled, at each interval, if a parameter’s value has changed,

it sends a notification of the change in value. It is also possible to instruct a device to send updates

only once a parameter’s value has change by a given delta.

A requesting device has to continually register its continued interest in receiving updates on

parameter value changes. If, after a timeout time, a device does not receive notification that a

requesting device is still interested in receiving parameter value updates, it will cease sending

updates. This mechanism is in place to guard against devices losing network connectivity before

withdrawing their interest in parameter updates.

7.4.6 Joining and Grouping

Disparate parameters may be joined together into groups. Grouped parameters may exist on the same

device, or the parameters may be on difference devices. This mechanism allows groups of

parameters to be controlled via single control messages. For example, two audio mixing desks may

exist on a network, and a fader of the one audio mixing desk may be joined to the fader of another

audio mixing desk. When one of the faders is moved, it will result in the joined fader on the second

audio mixing desk being moved.

There are a number of relationships that may exist between parameters that are joined into groups.

These are master/slave, and peer-to-peer. These relationships may then be further described as

absolute or relative.

In a master/slave relationship, a single parameter in the group is a master parameter, and all of the

other parameters in the group are slave parameters. The master parameter has control over the slave

parameters. For instance, when the value of the master parameter is adjusted, the values of the slave

parameters are adjusted. However, when the value of a slave parameter is adjusted, the master is not

200

influenced. In a peer-to-peer relationship, whenever any of the parameters that are part of the group

are modified, the other members of the group are also modified.

When parameters have an absolute relationship, and a parameter of the group is adjusted, its slaves

or peers (depending on the relationship that exists between the parameters) take on the same value as

the parameter. When parameters have a relative relationship, and a parameter of a group is adjusted,

its slaves or peers (depending on the relationship that exists between the parameters) take on a value

that is an offset to the slave’s or peer’s current value.

7.4.6.1 Example

Assume that three faders on an audio mixing desk exist, each one controlling a gain parameter. The

gain parameters can take on the values 0 through 20. These faders are shown in Figure 99, and are

labelled A, B, and C and currently have the values 12, 5, and 17 respectively.

Figure 99: Three faders with initial values

If these gain parameters are grouped together into an absolute master/slave relationship (with gain A

the master), and fader A is adjusted such that it takes on the value 14, its slaves will also take on the

value 14, as shown in Figure 100. If fader B of the master/slave group is adjusted, it will not have

any influence over any of the other parameters in the group.

A B C

12 5 17

201

Figure 100: Absolute master/slave relationship, master adjusted

Assume that the faders in the example are set to the initial values shown in Figure 99 and they are

joined into a relative peer-to-peer group. If fader A is adjusted to a value of 14, faders B and C will

be adjusted by a value of 2, as shown in Figure 101. Similarly, if fader B is adjusted to a value of 4,

faders A and C will be adjusted by a value of -3.

Figure 101: Relative peer-to-peer relationship, fader A adjusted

A B C

14 14 14

A B C

14 7 19

202

7.4.7 Modifiers

The XFN specification incorporates a modifier mechanism. This mechanism allows a device to

adjust values that it transmits and receives, allows for the modification of seven-level address blocks,

and allows for the modification of the timing of a message. Modifiers are classified as:

• Value modifiers: This modifier type allows a transmitted or received value to be modified. For

example, it may be desirable to have one fader reflect the inverse value of a second fader. In this

example, the two parameters need to be joined together, and the values received from each other

need to be modified such that the values are inverted.

• Level modifiers: This modifier type allow for the modification of transmitted or received XFN

addresses. For example, it may be useful to be able to use a single control (for example, a fader)

on a small device to control a number of parameters on another larger device by selecting the

channel that it has control over. Before any messages are transmitted by the controlling device,

its address block is modified to reflect the channel that it currently has control over.

• Event modifiers: An event modifier type allows the timing of a message to be adjusted. During

parameter adjustment automation, received messages need to be stored and only interpreted at a

later time. This modifier allows for this to take place.

7.5 Conclusion

There are a number of command and control protocols available that allow for remote control over

networked audio devices. From a high-level perspective, all of the protocols discussed above provide

the ability to address unique parameters on a device, and allow for the access and modification of

parameter values. The various protocols all provide a form of hierarchical parameter addressing

which allows the natural hierarchical structure of a device to be modelled. Conceptual tables can be

formed with their hierarchical addressing schemes, which allows for a convenient representation of

patching matrices for connection management internal to devices. The table representation also

allows for stream sources and sinks (and their properties) to be conveniently represented.

The XFN protocol was selected for use in this study as it was under development as an Audio

Engineering Society (AES) standard [92] at the time that this work was performed. It provides a rich

set of features and functionality geared towards networked realtime audio and video equipment.

203

Source code of an implementation of the XFN protocol was also made available. This source code

was designed such that it could be built on Windows platforms, Linux platforms, as well as other

platforms. The XFN protocol is easy to use due to its simple design and natural address hierarchy.

The API functions provided by the source code are simple to use. They provide the ability to build

XFN address hierarchies, and to associate application specific callback functions with the leaves of

the hierarchies. All message processing is handled by the provided source code, and responses to

commands are dealt with in the application supplied callback functions. This enables minimal

application code in order to implement an XFN controllable application.

The XFN specification defines level hierarchies and parameters that allow for connection

management to take place within audio devices, and between audio devices. These parameters allow

for pre-defined hierarchies to be built allowing for connection management to take place. Chapter 11

“XFN Control and Representation” details how the protocol has been used to perform connection

management in both IEEE 1394 and Ethernet AVB devices.

204

Chapter 8 Tunnelling

The preceding chapters introduced a number of protocols. The work that was carried out in this study

is based on the use of a combination of these protocols in order to allow for control (from a single

control protocol) over realtime audio devices that operate on disparate networks. The dominant

standards-based networking technologies that provide a suitable environment for the transmission of

realtime audio data are IEEE 1394 and Ethernet AVB, and were thus used in this study.

As an initial proof-of-concept, an application that allows for Ethernet traffic to be streamed

(tunnelled) across IEEE 1394 networks was developed. Due to the incompatible addressing

mechanisms and frame formats of each network type, Ethernet traffic has to be encapsulated within

IEEE 1394 compatible packets. The tunnelling of Ethernet traffic across these networks allows

Ethernet devices to take advantage of pre-existing IEEE 1394 networks for Ethernet frame

transmission. Ethernet end stations and Ethernet LANs can be conjoined using the tunnelling

application. This tunnelling application allows for remote Ethernet control over device parameters

via the XFN protocol. IEEE 1394 natively provides an environment whereby audio and video data

may be deterministically transmitted over a digital network. Traditional Ethernet and Ethernet

bridging do not provide these mechanisms. Allowing for the transmission of Ethernet frames over

IEEE 1394 networks provides a mechanism to allow for deterministic transmission of this data.

8.1 Tunnelling Ethernet Traffic over IEEE 1394

Given in Figure 102 is a sample set up of two IEEE 1394 Ethernet tunnelling devices (tunnel nodes).

These devices are used as entry and exit points for tunnelling Ethernet frames over IEEE 1394

networks. These devices are used to capture all incoming Ethernet frames that are not addressed to

the node itself, and to forward this traffic to a second tunnel node within an isochronous stream. This

captured Ethernet traffic is encapsulated within IEEE 1394 isochronous packets and is sent onto the

network. The second tunnel node is responsible for receiving these isochronous packets and for

extracting the Ethernet frames contained within them. These Ethernet frames are then transmitted out

of the second tunnel node’s Ethernet interface. From the perspective of the transmitting and

receiving Ethernet devices, the tunnelling mechanisms are transparent. These devices are not aware

of the presence of the tunnel nodes.

205

Figure 102: Tunnelling of Ethernet traffic over IEEE 1394

The tunnelling capabilities provided by the tunnel nodes allow for the deterministic transmission and

routing of Ethernet frames between Ethernet devices. Devices that connect (via Ethernet) to the

tunnel nodes use full-duplex links. This has the implication that the transmitting device is the only

device contending for access to the medium, collision detection is not needed, and so it is able to

transmit frames at will. Before a tunnel node transmits any isochronous packets, it allocates the

resources (bandwidth and an isochronous channel number) needed to tunnel the Ethernet frames over

the bus.

In the scenario presented in Figure 102, a stream source is directly attached to the Ethernet interface

of the first tunnel node. Directly attached to the Ethernet interface of the second tunnel node is a

stream sink. The stream source is able to transmit its Ethernet frames to the first tunnel node. These

frames can then be deterministically routed through a complex network of IEEE 1394 nodes until

they reach a destination tunnel node. At the second tunnel node, the frames are directly transmitted

out of the Ethernet interface to the stream sink. If the stream source and sink were connected together

through a traditional bridged Ethernet network, they would have to contend for network resources

Stream

source

Tunnel

node 1

Other IEEE

1394 device

Tunnel

node 2

Other IEEE

1394 device

Stream

sink

IEEE 1394

bridge

IEEE 1394

Ethernet

Ethernet frame

Ethernet frame encapsulated in

IEEE 1394 isochronous packet

206

with other devices on the network. This could lead to unpredictable frame loss and unacceptable

latency causing jitter in stream playback. With the tunnel node application, existing Ethernet devices

are able to take advantage of the characteristics of IEEE 1394 networks.

8.2 Limitations

The isochronous bandwidth allocation on an IEEE 1394 bus affects the maximum size that an

isochronous packet may be (see Section 3.1 “Resource Reservation for IEEE 1394”). It is possible

that insufficient bandwidth has been reserved to cater for Ethernet frames over a certain size. Also,

an IEEE 1394 node transmits isochronous packets at a rate of 8000 packets per second. It is possible

that a tunnel node receives more than 8000 Ethernet frames per second and thus is not able to

transmit all of the frames that it receives onto an IEEE 1394 network.

To counter these limitations, if there is more than one Ethernet frame waiting to be transmitted onto

the IEEE 1394 bus, the tunnel node is able to pack multiple Ethernet frames into a single isochronous

packet (if there is sufficient space in the packet for this to happen). At the receiving tunnel node,

these frames are unpacked and individually sent onto the Ethernet network.

If, on the other hand, an Ethernet frame waiting to be sent onto the IEEE 1394 network is larger than

the maximum allowed isochronous packet payload size, the tunnel node will fragment the frame and

send the fragments across to the receiving tunnel node. The receiving tunnel node will rebuild the

Ethernet frame as it receives the fragments. Once it has a complete Ethernet frame, it will transmit it

out of its Ethernet interface.

8.3 Tunnel Header

To communicate the packing and fragmenting of Ethernet frames within isochronous packets, a

tunnel header was designed. This header is used to communicate whether the packet contains packed

Ethernet frames or fragmented Ethernet frames, amongst other information. This header appears

before each Ethernet frame. If the isochronous packet contains packed Ethernet frames, then the

header appears before each Ethernet frame. If an isochronous packet contains an Ethernet frame

fragment, then the header will appear before the fragment. Figure 103 shows the structure of an

207

isochronous packet containing a tunnel header and an Ethernet frame fragment, as well as an

isochronous packet containing multiple tunnel headers for multiple packed Ethernet frames.

Figure 103: Tunnel node header positions

Figure 104 shows the structure of the tunnel header used for packed Ethernet frames.

Figure 104: An isochronous packet with a tunnel node header for packed Ethernet frames

Packed frame Packed frame Packed frame

Isochronous header Tunnel header

Fragmented frame

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

data length tag channel tcode sy

data block

last quadlet

data CRC

.

.

.

.

version

ht data length next packet offset reserved

header CRC

208

The fields of the tunnel header used for packed Ethernet frames are defined in Table 38.

Field Definition

Header type (ht) The header type field is used with packed Ethernet frames and with fragmented

Ethernet frames. It is used to distinguish between a tunnel header appearing

before a packed Ethernet frame, and a tunnel header appearing before a

fragmented Ethernet frame. A value of one indicates packed, and a value of

zero indicates fragmented.

Version The version field is used with packed Ethernet frames and with fragmented

Ethernet frames. It is used to identify the version of the tunnelling protocol.

Currently only one version is defined, and its value is set to one.

Data length The data length field is used to specify the total length of the Ethernet frame

(including the header and the body) that is under the tunnel header.

Next packet offset The next packet offset field is used to specify the offset (in octets) from the

beginning of this tunnel header to where the next tunnel header can be found.

A value of zero indicates that there are no more tunnel headers in the packet

(and hence no more Ethernet frames).

Reserved The reserved field is reserved for future use.

Table 38: Tunnel header fields for a packed Ethernet frame

Figure 105 shows the structure of the tunnel header used for fragmented Ethernet frames.

209

Figure 105: An isochronous packet with a tunnel node header for fragmented Ethernet frames

The fields of the tunnel header used for fragmented Ethernet frames are defined in Table 39.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

data length tag channel tcode sy

data block

last quadlet

data CRC

.

.

.

.

version

ht entire frame length fragment offset r

header CRC

pos r

210

Field Definition

Header type (ht) This has the same definition as for packed Ethernet frames.

Version This has the same definition as for packed Ethernet frames.

Position (pos) The value of the position field is used to identify the position of the fragment in

relation to the Ethernet frame which the fragment is part of:

• A value of one indicates that the fragment is the first fragment in the series

of fragments.

• A value of two indicates that the fragment is the last fragment in the series

of fragments.

• A value of three indicates that the fragment is an interior fragment (i.e., it

is in between the first and last fragments).

Reserved (r) The reserved field is reserved for future use.

Entire frame

length

The value of the entire frame length field is used to communicate the length of

the Ethernet frame from which the fragment came.

Fragment offset The fragment offset is the offset of the first octet of the fragment relative to the

first octet of the Ethernet frame from which the fragment came.

Reserved (r) The reserved field is reserved for future use.

Table 39: Tunnel header fields for a fragmented Ethernet frame

When the position field indicates that the fragment underneath the tunnel header is the first fragment

in a series of fragments, it allows a receiver to prepare for receiving a frame over a few isochronous

packet receptions. It allows the receiver to prepare a buffer, and instructs it to not transmit the

contents of the buffer until all of the fragments have been received. When the position field indicates

that the fragment underneath the tunnel header is an interior fragment, this indicates to the receiver to

place the received fragment within the previously allocated buffer. When the position field indicates

that the fragment is the last fragment of a series of fragments, it knows that it will not receive any

more fragments for this frame. Using the entire frame length value, the fragment offset values of the

received fragments, and the data length values (of the isochronous header) of the received fragments,

the receiver is able to determine whether or not it has received an entire Ethernet frame. Once the

receiver has received an entire Ethernet frame, it can prepare it for transmission out of its Ethernet

interface.

211

8.4 Providing Control over the Tunnel Nodes

The tunnel nodes provide mechanisms for tunnelling Ethernet frames in isochronous packets across

IEEE 1394 networks between IEEE 1394 nodes. There was a need to provide remote control over

these mechanisms and as such parameters were created to enable this control. It was necessary to

provide parameters to allow for isochronous stream establishment between tunnel nodes, and to

allow for control over the maximum isochronous payload size (and hence isochronous bandwidth

allocation).

8.4.1 Connection Establishment

On an IEEE 1394 bus, isochronous packets are broadcast onto the bus on a particular isochronous

channel (which is identified by an isochronous channel number). An IEEE 1394 node that is

interested in receiving these stream packets is configured to receive the packets on that channel. In

order to establish a connection between two nodes, the receiving device needs to know the

isochronous channel number of the stream it should receive. It should be possible to instruct

transmitting devices to start and stop streaming, and it should be possible to instruct receiving

devices to start and stop receiving a stream.

8.4.2 Maximum Payload Size

The maximum size of an isochronous packet is defined by the transmission speed of the IEEE 1394

bus and by the amount of bandwidth that has been reserved for the particular stream. Given the

variable nature of Ethernet frame sizes and transmission frequency, it was desirable to allow

configuration of the maximum payload size of the isochronous packets to allow for optimal

bandwidth allocation and usage.

8.4.3 Tunnel Node Parameter Control with XFN

To allow for control over the tunnel nodes, the XFN protocol was built into the devices and an XFN

address hierarchy was developed to allow for control over their parameters. Each tunnel node builds

212

up the XFN address hierarchy to represent the hierarchical structure of the device. This allows the

parameters of the devices to be addressed such that their values can be remotely obtained and set.

Figure 106 shows how an XFN stack is associated with the tunnelling component of the tunnel node.

The tunnelling component of the tunnel node is responsible for the reception and transmission of

Ethernet frames and isochronous packets, and for frame fragmentation and packing. This component

has parameters that allow the transmission and reception isochronous channels, as well as the

transmission isochronous packet sizes to be obtained and set. The XFN stack builds up a tree

structure representing the tunnel node’s structure, and the leaves of this tree structure (which

represent the parameters) point to user defined callbacks within the tunnelling component. These

callbacks are responsible for enabling the tunnelling within the tunnelling component of the tunnel

nodes.

Figure 106: A tunnel node with an XFN stack

Figure 107 shows a portion of the XFN address hierarchy that is built up to represent a transmission

isochronous stream of a tunnel node. In XFN, IEEE 1394 and Ethernet AVB streams are known as

multicores. As this stream is transmitted from a tunnel node, the parameters are located within

Tunnel Node

XFN stack

Tunnelling component

Callback

213

stream section type of the signal output section block. All of the stream output multicore parameters

are located within the multicore parameter block. Each multicore parameter block is indexed with a

unique parameter block index value. Within each unique parameter block index are listed the

parameters associated with each multicore:

• The isochronous channel number parameter is used to represent the isochronous channel that the

stream will be, or is being, transmitted on. The value of this parameter may be obtained and set

by a remote device.

• The start parameter is a Boolean parameter that is used to start and stop the transmission of the

stream. The value of this parameter may be obtained and set by a remote device. Reading a value

of one from this parameter indicates that the stream is being transmitted, and writing a value of

one starts stream transmission (if stream transmission is not already started). Reading a value of

zero indicates that the stream is not being transmitted, and writing a value of zero to this

parameter stops stream transmission (if the stream is being transmitted).

• The max payload size parameter represents the maximum payload size that a transmitted

isochronous packet may have. The value of this parameter may be obtained and set by a remote

application. The value of this parameter affects a tunnel node’s ability to either pack multiple

Ethernet frames into single isochronous packets, or to fragment single Ethernet packets into

multiple isochronous packets.

214

Figure 107: Portion of the XFN address hierarchy for an output isochronous stream

Figure 108 shows a portion of the XFN address hierarchy that is built up to represent a reception

multicore of a tunnel node. This structure is almost identical to the structure shown in Figure 107 (for

an output multicore) except that input multicores are represented under the signal input section

block. An input multicore of a tunnel node has the following parameters:

• The isochronous channel number parameter is used to represent the isochronous channel number

of the stream that the tunnel node is receiving, or should receive. It is possible to remotely obtain

and set the value of this parameter.

• The start parameter is used to start and stop the reception of the isochronous stream. It is a

Boolean parameter whose value may be obtained and set remotely. Reading a value of one from

this parameter indicates that the tunnel node is configured to receive an isochronous stream, and

writing a value of one to this parameter configures the tunnel node to start the reception of a

stream (if it is not already receiving a stream). Reading a value of zero from this parameter

indicates that the tunnel node is not configured to receive a stream, and writing a value of zero to

this parameter configures it stop the reception of the stream (if it is already receiving a stream).

Section block: Signal output

Section type: Stream

Section number: 1

Parameter block: Multicore

Parameter block index: 1

Parameter type: Max payload size

Parameter index: 1

Parameter type: Isochronous channel number

Parameter index: 1

Parameter type: Start

Parameter index: 1

215

Figure 108: Portion of the XFN address hierarchy for an input isochronous stream

8.4.4 Tunnel Node Parameter Control with the Connection Manager

A desktop application (known as the Connection Manager) was developed to allow the tunnel nodes

(and their parameters) to be remotely represented and adjusted. The Connection Manager application

uses an XFN stack in order to communicate with the XFN stack of a tunnel node. The Connection

Manager was developed using JUCE [93]. JUCE is a C++ cross-platform class library that allows for

the development of desktop applications, amongst other things.

Each tunnel node has parameters that represent the IP addresses bound to its network interfaces, as

shown in Figure 109. The built up XFN address hierarchy contains a configuration section block

under which are listed the stream and non-stream interfaces of a device. Under each one of the

interface types is an IP parameter block which is used to represent each interface’s IP related

parameters. An IP address is represented with the IP address parameter type.

Section block: Signal input

Section type: Stream

Section number: 1

Parameter block: Multicore

Parameter block index: 1

Parameter type: Isochronous channel number

Parameter index: 1

Parameter type: Start

Parameter index: 1

216

Figure 109: Portion of the XFN address hierarchy for representing IP addresses

When an XFN device would like to discover other XFN devices on a network, it sends out a

broadcast packet containing an XFN get value command for all of the values of the IP address

parameter types. The address hierarchies in the messages may contain a wildcard at each of the

section type and section number levels to indicate that all of the IP addresses of all of the interfaces

should have their IP addresses returned to the requester. Each device responds with its IP address.

Once the requesting device knows the IP address of any other XFN device on a network, it is able to

communicate with that device directly using its IP address.

When the Connection Manager application starts up, it discovers all of the XFN devices that exist on

the network. As shown in Figure 110, the main display of the application represents the discovered

devices along the axes of a grid. On this grid, the devices along the left are viewed as source devices

(devices that produce streams). The devices along the top of the grid are viewed as destination

devices (devices that consume streams). Each device that is discovered is able to both produce

streams, and consume streams, thus each device is shown on the left hand side and at the top of the

grid. The buttons between the devices allow for connections between the various devices to be

established. In this figure, the Connection Manager is displaying two tunnel nodes (a typical network

will usually consist of many different types of devices).

Section type: Stream interface

Section number: 2 (Interface number)

Parameter block: IP

Parameter block index: 1

Parameter type: IP address

Parameter index: 1

Section type: Non-stream interface

Section number: 1 (Interface number)

Parameter block: IP

Parameter block index: 1

Parameter type: IP address

Parameter index: 1

Section block: Configuration

217

Figure 110: The Connection Manager's main interface

Once a device has been discovered on a network, it is possible to enumerate the device to discover its

capabilities. In terms of the tunnel nodes, the Connection Manager is interested in knowing about its

available multicores, and the properties of those multicores. For each multicore parameter block (of

each signal input and signal output section block), the Connection Manager is able to determine the

number of multicores that exist by obtaining the number of parameter block index level values that

exist under the multicore parameter block level. In terms of the tunnel nodes, there exists only one

input multicore, and one output multicore (a typical audio device may contain many multicores).

Once the Connection Manager has obtained the number of input and output multicores, it is possible

to query each of the parameters that exist for each multicore.

Selecting one of the cross points on the grid will display the various multicores associated with the

devices, in the form of a grid (as shown in Figure 111). The multicore along the left hand side of the

grid is viewed as a source multicore (this multicore is the originator of isochronous packets). The

multicore along the top of the grid is viewed as a destination multicore (this multicore is the

consumer of isochronous packets). Figure 111 is displaying the output multicore of the selected

source tunnel node, and the input multicore of the selected destination tunnel node. Typically, a

218

device has a much larger number of multicores (allowing a single device to stream multiple streams

of data). Hence, there is a desirability to display these multicores in the form of a grid.

Figure 111: The Connection Manager's multicores display

With this grid display, it is possible to ensure that the source tunnel node’s output multicore streams

its isochronous packets to the destination tunnel node’s input multicore. When the grid button

(shown in Figure 111) is selected, the XFN stack of the Connection Manager sends XFN messages to

the tunnel nodes to instruct them to set up their internal parameters to allow for streaming to take

place. The following sequence of events takes place to ensure that this happens:

• The Connection Manager obtains the isochronous channel number of the source multicore from

the source tunnel node. This is the channel number that the stream will be streamed on. It issues

the tunnel node with an XFN get value request for the isochronous channel number parameter of

the output multicore.

• The Connection Manager informs the destination tunnel node which channel to receive

isochronous packets on. This is the channel number that was obtained from the transmitting

tunnel node. The Connection Manager issues the destination tunnel node with an XFN set value

request for the isochronous channel number parameter of the input multicore.

• The Connection Manager instructs the destination tunnel node to prepare itself to receive the

stream. It issues the destination tunnel node with an XFN set value request for the start parameter

(with a value of one) for the input multicore.

219

• The Connection Manager instructs the source tunnel node to start the stream transmission. It

issues the source tunnel node with an XFN set value request for the start parameter (with a value

of one) for the output multicore.

Selecting the multicores in Figure 111 displays the various parameters associated with them. Shown

in Figure 112 is the window that is displayed when a source multicore is selected. These are the

parameters that are depicted in Figure 107. The Connection Manager performs XFN get value

requests on the isochronous channel number, maximum payload size, and start parameters to display

their values. When any of these parameters are adjusted via the window, the new values are

communicated to the relevant device via XFN set value request messages.

Figure 112: The Connection Manager’s source multicore settings window

8.5 Conclusion

The development of the tunnel node application and the control thereof by the XFN protocol laid the

groundwork for the interoperability of, and control over, IEEE 1394 and Ethernet AVB audio

devices. The tunnel node application allows Ethernet frames to be transmitted in a deterministic

fashion over IEEE 1394 networks. This was born from a need to allow a video encoder (which

transmits Ethernet frames) to transit its frames to a video decoder (which receives Ethernet frames)

via pre-existing IEEE 1394 networks.

XFN parameters were developed to allow for control over the tunnel nodes’ parameters. The tunnel

node application demonstrated the successful use of the XFN protocol for discovering remote tunnel

nodes, establishing isochronous stream connections across IEEE 1394 networks, as well as allowing

for other parameters of the devices to be viewed and adjusted.

220

Chapter 9 Networked Audio Devices

In this study, a number of pre-existing audio devices were used and further devices were developed.

The pre-existing devices include prototype IEEE 1394 endpoint audio devices and IEEE 1394

bridges that were developed by Universal Media Access Networks (UMAN) [36]. Ethernet AVB

endpoint devices, and IEEE 1394/Ethernet AVB audio gateway devices were developed. These

devices were integral to the development of connection management capabilities. They provided

IEEE 1394 audio reception and transmission capabilities, and Ethernet AVB audio reception and

transmission capabilities. This chapter gives an overview of each of these devices, and the

functionality they provide.

9.1 UMAN Evaluation Boards and Amplifier Nodes

UMAN evaluation boards and amplifier nodes are endpoint audio devices that contain a number of

audio connectors which expect audio in a range of formats. The evaluation boards each contain an

IEEE 1394 interface (expecting audio formatted according to IEC 61883-6 formatting rules),

analogue inputs and outputs, ADAT interfaces, and AES-3 interfaces. The amplifier nodes each

contain an IEEE 1394 network interface (expecting audio formatted according to IEC 61883-6

formatting rules), and analogue inputs and outputs. Figure 113 shows the front panel of a UMAN

evaluation board which contains a number of analogue input and output connectors.

Figure 113: UMAN evaluation board (front)

221

Figure 114 shows the back panel of a UMAN evaluation board. The back panel of the device

contains an Ethernet management interface, two IEEE 1394 interfaces, AES-3 interfaces, wordclock

interfaces, ADAT interfaces, and MIDI [94] interfaces.

Figure 114: UMAN evaluation board (back)

It is possible to configure each of these devices such that audio is patched from the various inputs of

the device to the various outputs of the device. For example, audio arriving at the IEEE 1394

interface of the device may be patched through to the ADAT and analogue output interfaces of the

device. Figure 115 is a high-level diagram showing the functionality of a UMAN evaluation board

with its various interfaces and patching capabilities. The devices provide mechanisms that allow their

internal parameters (such as the patching of audio from one interface to another) to be adjusted. The

amplifier nodes are similar to the evaluation boards, except that they provide less functionality in

terms of the audio formats that they are able to process.

Ethernet IEEE 1394 AES-3 Wordclock ADAT MIDI

222

Figure 115: Conceptual routing within a UMAN evaluation board

Each of the UMAN endpoint devices contains an XFN stack. The internal address hierarchy of the

stack is built up to reflect the natural hierarchy of the device. Via the XFN stack, it is possible to

adjust the various parameters of the device. For example, the stack allows for the routing of audio

signals arriving at the inputs of the device to the outputs of the device, and allows for connections to

be established between the device and other IEEE 1394 devices.

9.2 UMAN IEEE 1394 Bridges/Routers

UMAN bridge/router devices are used to bridge IEEE 1394 buses together, and are used to route IP

packets between IP subnets. Figure 116 shows a UMAN bridge/router connecting two IEEE 1394

buses together. This device also contains an Ethernet port to allow for management of the device.

Analogue

audio

Digital Audio (e.g.,

ADAT, AES-3)

IEEE 1394

audio

223

Figure 116: A UMAN IEEE 1394 bridge/router

The XFN protocol works such that an IEEE 1394 bus is mapped onto an IP subnet, as shown in

Figure 117. When a stream connection is established across one of the UMAN IEEE 1394 bridges,

two separate connections are established: one from the transmitting device to the bridge, and a

second connection from the bridge to the receiving device. The XFN specification works such that

connections are established between devices on an IP subnet. Thus, all of the devices that are able to

make direct connections with each other exist on a unique IP subnet.

IEEE 1394

Ethernet management

port

224

Figure 117: IEEE 1394 bus to IP subnet mapping

Figure 118 shows a UMAN IEEE 1394 bridge/router joining two IEEE 1394 buses together. Each

bus contains IEEE 1394 evaluation devices.

Figure 118: Two IEEE 1394 buses joined with an IEEE 1394 bridge

IEEE 1394 bridge/router

IEEE 1394 bus

IP subnet
IEEE 1394 bus

IP subnet

225

Each portal of the IEEE 1394 bridge is able to accept a number of incoming IEEE 1394 isochronous

streams, and is able to transmit a number of IEEE 1394 isochronous streams. The bridge provides

capabilities to bridge these streams from one portal to another. Figure 119 shows an example of a

two portal IEEE 1394 bridge. Each side is both transmitting and receiving IEEE 1394 isochronous

streams. Streams received on one portal are bridged across to the other portal for transmission.

Figure 119: Conceptual stream routing within an IEEE 1394 bridge

9.3 Ethernet AVB Endpoint Devices

As part of this study, a Linux [95] based software system was developed to act as an Ethernet AVB

endpoint device. This device is both a producer and a consumer of analogue audio and of AVTP

Ethernet AVB audio streams (see Section 6.1.2 “Ethernet AVB Audio Frame Formats”).

The device is able to receive analogue audio via an analogue sound card. The device can be

configured to capture this audio, format it appropriately and encapsulate it within AVTP packets.

These packets can then be sourced on an Ethernet AVB network. The device is also able to receive

AVTP packets from an Ethernet AVB network. The audio data contained within these packets is

extracted, formatted appropriately and sourced out of the device’s analogue outputs.

The Ethernet AVB endpoint device contains an XFN stack. This stack builds up an internal tree

structure that reflects the natural hierarchy of the device. Via this XFN stack, the parameters of the

device may be adjusted, allowing for connection management to take place between this device and

IEEE 1394

audio

IEEE 1394

audio

226

other compatible devices, and internally within the device. The conceptual layout of the device is

shown in Figure 120.

Figure 120: Conceptual routing within an Ethernet AVB endpoint device

9.4 IEEE 1394 / Ethernet AVB Audio Gateway Devices

A second Linux-based software system has been developed to act as an audio gateway between IEEE

1394 and Ethernet AVB networks. The audio gateway device is able to receive IEEE 1394 packets

containing digital audio (formatted according to IEC 61883-6 formatting rules) via an IEEE 1394

network card. This captured audio is then appropriately formatted and encapsulated within AVTP

frames which are sourced on an Ethernet AVB network. The audio gateway device is also able to

receive AVTP packets (containing audio data) arriving at the Ethernet interface of the device. It is

able to extract audio data from the packets, format it appropriately, encapsulate it within IEEE 1394

packets, and source this audio on an IEEE 1394 network.

The IEEE 1394/Ethernet AVB audio gateway device also contains an XFN stack. This stack builds

up an internal tree structure that represents the natural hierarchical structure of this device. Via this

XFN stack, the parameters of the device may be adjusted allowing for connection management to

take place between this device and other devices, and for connection management to take place

internally within the device. The conceptual layout of the device is shown in Figure 121.

Analogue

audio

Ethernet AVB

audio

227

Figure 121: Conceptual routing within an IEEE 1394/Ethernet AVB audio gateway device

9.5 AVB Device Architecture

The Ethernet AVB devices have been developed as a set of interacting components. Figure 122

shows the architecture of the Ethernet AVB devices. The Ethernet AVB end-point devices do not

contain the 1394 component, and the IEEE 1394/Ethernet AVB audio gateway devices do not

contain the analogue component.

Ethernet AVB

audio IEEE 1394

audio

228

Figure 122: Ethernet AVB device architecture

AVB
Device

Ethernet
Driver

Ethernet

MRP
Module

MSRP
Module

Send/Receive
MRP Frames

Snd Card
Driver

SND

XFN
Stack

AVB Analogue

Analogue
Audio

Digital
Audio

MSRP 1394

1394
Driver

1394

Digital
Audio

MAAP

FAQ

229

This section provides a brief overview of these components. These components are discussed in

more detail in subsequent chapters.

• AVB Device: The AVB Device component coordinates the activities of the system as a whole. It

links the components together and allows for communication to take place between the

components. It ensures orderly initialisation and shutdown of the components of the system.

• XFN Stack: The XFN Stack component is an implementation of the XFN protocol (see Section

7.4 “XFN”). It is responsible for all network communication with XFN stacks on other devices,

for interpreting XFN messages from remote devices, for creating appropriate XFN messages for

transmission to remote devices, and for notifying the AVB Device component of any requests

that it should respond to.

• MRP Module, MSRP Module and MSRP: The MRP Module component is a kernel module

implementation of MRP (see Section 3.2.1 “Multiple Registration Protocol”). The MSRP Module

component is a kernel module implementation of MSRP (see Section 3.2.4 “Multiple Stream

Reservation Protocol”). The MSRP component allows for user-space applications to interact with

the MSRP kernel module.

• AVB: The AVB component is an implementation of the AVTP protocol (see Section 6.1.2

“Ethernet AVB”). It is responsible for accepting audio samples in various formats and for

packetizing them in AVTP frames for transmission onto an AVB network. It is also responsible

for accepting AVTP frames and extracting the audio samples so that they may be passed to other

components.

• FAQ: The FAQ component is a placeholder for the implementation of the AVB forwarding and

queuing rules (see Section 4.2.2 “Forwarding and Queuing”).

• MAAP: The MAAP component is an implementation of MAAP (see Section 6.3 “AVTP Address

Allocation”).

• Ethernet Driver: The Ethernet Driver component is an Ethernet driver through which Ethernet

frames are sent and received.

• 1394 and 1394 Driver: The 1394 component is responsible for the reception and transmission of

audio over an IEEE 1394 bus. It is responsible for accepting audio samples in various formats

and packetizing them for transmission, and it is responsible for receiving IEEE 1394 packets and

extracting the audio samples so that they may be passed to other components.

• Analogue and Snd Card Driver: The analogue component is responsible for sending and

receiving audio samples to and from an analogue sound card via a sound card driver (Snd Card

230

Driver). It is also responsible for accepting audio samples in various formats for transmission,

and for receiving audio samples from a sound card and for passing these to other components of

the system.

9.6 Conclusion

A number of audio devices were used or developed as part of this study. This chapter provided a

brief overview of the functionality of UMAN evaluation devices. It also provided an overview of the

functionality and architecture of the AVB capable devices that were developed as part of this study.

The following chapters will discuss these devices in detail, showing their architecture and the

mechanisms used to achieve audio streaming and control.

231

Chapter 10 Ethernet AVB Devices

As part of this study, proof of concept software was developed for computers running the Linux

operating system, enabling them to act as Ethernet AVB endpoint devices, and as IEEE

1394/Ethernet AVB audio gateway devices. Chapter 9 gave a brief introduction to the functionality

of these devices and to their components. This chapter provides a detailed discussion of these

devices, their components, and the operation of these components in order to achieve the first goal of

this work: provide the ability to allow audio data to be transferred from IEEE 1394 to Ethernet AVB

networks, and vice versa.

10.1 Audio Components

The IEEE 1394 and Ethernet interfaces of the Ethernet AVB endpoint devices and the IEEE

1394/Ethernet AVB audio gateway devices can be viewed as audio interfaces, since they are able to

transmit and receive audio streams. As shown in Figure 123, each of these interfaces has the same

conceptual functionality: the ability to receive and transmit audio streams.

Figure 123: Audio interfaces

With this in mind, the Ethernet AVB endpoint devices and the IEEE 1394/Ethernet AVB audio

gateway devices transfer audio data from one audio interface to another. An endpoint device

transfers audio data from the analogue interface of the device to its Ethernet interface, and vice versa.

Audio

interface

Analogue IEEE 1394 Ethernet

232

An audio gateway device transfers audio data from the IEEE 1394 interface of the device to its

Ethernet interface, and vice versa.

Each one of these audio interfaces comprises one or more audio inputs and one or more audio

outputs. An audio input is used to receive an audio stream from a source that is external to the

system, and an audio output is used to send an audio stream to a sink that is external to the system.

Within a device, an audio input of an audio interface is able to send its received audio stream to one

or more audio outputs of an audio interface. These associations, or connections, are configurable.

Each audio interface of an endpoint or an audio gateway device is modelled in software by a

component. Each input of an audio component keeps track of the output(s) to which it should send its

received audio signal to. Figure 124 shows an IEEE 1394/Ethernet AVB audio gateway device with

an AVB component representing the Ethernet interface of the device, and a 1394 component

representing the IEEE 1394 interface of the device. Each of these components has a number of inputs

and outputs to receive and transmit audio streams. The figure shows how the inputs of one

component may be associated with the output(s) of another component.

Figure 124: An example audio gateway device with audio components

Audio data that arrives at an input of a component is immediately sent to each of the outputs that it is

associated with, if any. Each one of the audio components accepts audio samples packaged in a

specific format. The audio data is packaged into a format that is appropriate for each specific output

AVB 1394

Audio

streams

Audio

streams
Audio components with inputs and outputs

233

and is placed into a queue for the output. Each output drains its queue and transmits the audio data

out of the interface that it is representing.

10.1.1 Analogue Component

An Ethernet AVB endpoint device contains a software analogue component that is responsible for

reception and transmission of analogue audio. This component interacts with the system’s sound card

driver via the Advanced Linux Sound Architecture (ALSA) system [96]. ALSA provides the Linux

operating system with audio functionality. It supports multiple audio interfaces and provides a user-

space library to allow for audio program development.

In the computer systems used for this study, an analogue component of an Ethernet AVB endpoint

device has one analogue input (which represents the system’s sound card line in interface) and one

analogue output (which represents the system’s sound card speaker out interface). These interfaces

are stereo interfaces. Thus, the analogue input and the analogue output can each be viewed as a

multicore that contains two channels of audio. A multi-channel sound card would have an analogue

component with more than two inputs and outputs.

An input of the analogue component reads audio samples from ALSA (which originate from the

analogue input of the sound card). The left and right samples are interleaved together in a frame. In

the computers used during this study, the frames are presented to the application in groups of 32

continuous frames at a time. Figure 125 shows an example of the structure of the frames that are

presented to the Ethernet AVB endpoint application by ALSA. For this system, each sample is

formatted as a signed 16-bit little-endian number. Once these samples have been received by the

Ethernet AVB endpoint device, they are transferred to the output(s) associated with the input,

transformed into an appropriate format for the particular output, and then queued for transmission.

234

Figure 125: Example ALSA frames

An output of the analogue component is used to transmit audio samples to ALSA (and hence to the

analogue output of the sound card). ALSA expects the samples to be interleaved and to be presented

in a buffer of frames (each containing two samples for a left and a right channel), as shown in Figure

125. Each sample has to be formatted as a signed 16-bit little-endian number.

10.1.2 AVB Component

The Ethernet AVB endpoint devices and the IEEE 1394/Ethernet AVB audio gateway devices each

contain a software AVB component. This component is responsible for the reception and

transmission of AVTP audio streams across an Ethernet network (Section 6.1.2 “Ethernet AVB

Audio Frame Formats” details AVTP). The AVB component is configured to transmit SR class A

streams at a rate of 8000 packets per second. The number of sequences per stream is configurable.

The inputs and outputs of the AVB component are configured in software. Each input is used to

receive a stream of AVTP frames (identified with a stream ID) from an Ethernet AVB network, and

each output is used to transmit a stream of AVTP frames (identified with a stream ID) onto an

Ethernet AVB network. Each input has a stream ID associated with it. This stream ID is configurable

and is used to identify the stream frames that it is to receive from the Ethernet AVB network. Once

an input has received stream frames, the audio samples contained within those frames are transferred

L

S

A

M

P

L

E

R

S

A

M

P

L

E

L

S

A

M

P

L

E

R

S

A

M

P

L

E

1 2 . . . 32

L

S

A

M

P

L

E

R

S

A

M

P

L

E

 . . .

235

to the output(s) associated with the input, transformed to an appropriate format for the particular

output, and queued awaiting transmission.

An output of the AVB component is used to transmit an AVTP audio stream onto an Ethernet AVB

network. Associated with each one of these outputs is a stream ID that is generated when the system

is initialised. The first 6 octets of the stream ID are made up of the MAC address that is associated

with the Ethernet interface of the system. The last two octets are generated consecutively for each

AVB output, starting with the value one. Each stream ID (that is associated with an AVB output)

does not change during the lifetime of the program.

Also associated with each output of the AVB component is a unique multicast MAC address. This is

the MAC address to which any stream frames transmitted by the output will be addressed. AVTP has

a reserved range of multicast MAC address which it may use for stream transmission. Table 26 on

page 160 shows this range of addresses. When the system is initialised, MAAP is run such that a

range of multicast MAC addresses is allocated for use by the system. Once the protocol has obtained

a unique range of MAC addresses, each output of the AVB component is assigned a unique multicast

MAC address. Section 6.3 “AVTP Address Allocation” provides an overview of MAAP, and Section

10.4 “MAAP Component” shows its implementation in the AVB devices.

10.1.3 1394 Component

Each IEEE 1394/Ethernet AVB audio gateway device contains a software 1394 component. This

component is responsible for the transmission and reception of audio streams to and from an IEEE

1394 bus. The formatting and transmission of the audio streams is detailed in Section 6.1.1 “IEEE

1394 Audio Packet Formats”. The inputs and outputs of the 1394 component are configured in

software. An input is used to receive a stream of isochronous packets containing AM824 audio data,

and an output is used to transmit a stream of isochronous packets containing AM824 audio data.

Each 1394 input has an isochronous channel number associated with it. This number represents the

isochronous channel that it will receive isochronous packets on. The isochronous channel number is

configurable. Audio samples that are received at the input (via the isochronous packets) are

transferred to the outputs that the input may be associated with. At the output, the audio samples are

converted to a format that is suitable for the particular output, and queued for transmission.

236

Each 1394 output has an isochronous channel number associated with it. When the system is

initialised, unique isochronous channel numbers are allocated to each 1394 output. The availability

of isochronous channel numbers is verified via the channels available register of the isochronous

resource manager (IRM) node on the IEEE 1394 bus.

The transmission of audio data in CIP packets onto IEEE 1394 buses may take place in one of two

modes: blocking, or non-blocking. When blocking mode is used, a transmitter waits until it receives

a number of events equal to the SYT interval (which is eight when sampling at 48 KHz) before it

transmits a packet. In non-blocking mode, a transmitter will transmit the number of events that it

received since the last isochronous cycle. For transmission onto an IEEE 1394 network, the IEEE

1394 audio devices used in this study made use of the blocking transmission mode.

10.2 Audio Formatting

The packaging of audio data received on an audio interface of either an Ethernet AVB endpoint

device or an IEEE 1394/Ethernet AVB audio gateway device is not compatible with the other

interface of the same device. When transferring audio from one interface to another, the audio data

has to be repackaged into an appropriate format.

10.2.1 Ethernet AVB Endpoint Device

When audio data is transferred from the analogue input of an Ethernet AVB endpoint device to an

Ethernet AVB output, the 16-bit audio samples received via the analogue input are packaged into

AVTP frames using the raw AM824 format. In this study, the analogue input of the sound card was

set to sample at 48 kHz. As the analogue input samples audio at 48 kHz, and the AVB output

transmits 8000 packets per second, six events are packaged into each AVTP packet, as shown in

Figure 126. Each event represents the simultaneous sampling of the right and left channels of the

analogue input of the device. The samples of the right and left channels each form a sequence

(channel) of audio.

237

Figure 126: Packaging of audio in an AVTP frame

Figure 127 shows the packaging of six frames of audio received via ALSA into an AVTP frame.

Each label of each AM824 sample is given the value 0x42 defined to represent a raw audio 16-bit

sample (see Section 6.1.1.3 “IEC 61883-6”). The actual audio sample is placed into the 24-bit data

section with the last octet set to zero. The figure shows the complete packaging of the audio data in

an AVTP stream common frame with a CIP header. The fields of the AVTP and CIP headers are

filled as specified in Section 6.1.2 “Ethernet AVB Audio Frame Formats”. The stream ID field is set

to the value of the stream ID associated with the AVB component’s output. The tv (timestamp valid)

field is set to zero indicating that the timestamp is not valid. Timestamps were not included in the

AVTP frames due to the unavailability of a compatible combination of an IEEE 802.1 AS capable

network interface, a suitable driver for the network interface, and gPTP software. Also, the

unpredictable processing nature of user-space programs running on a general purpose operating

system on a general purpose computer result in a timing uncertainty that is higher than that specified

by IEEE 1722 (which is 125µs for class A streams (see Section 6.2.2.2 “Presentation Time

Measurement Points”)).

Stream

1
2 Sequences

Header

238

Figure 127: AVTP common stream header with CIP header and payload

When audio is transferred from an input of the Ethernet interface to an output of the analogue

interface, the audio samples packaged into the received AVTP frames need to be extracted and

packaged appropriately for ALSA to process. As the analogue output of the Ethernet AVB endpoint

device only accepts two channels of audio, only the first two sequences of audio are extracted from

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

CD subtype sv version mr

stream ID

r gv tv sequence number reserved tu

avtp timestamp
gateway info

stream data length ta g channel tcode (A 16) sy
0 0 SID
1 0

DBS FN QPC SPH Rsv DBC
FMT FDF SYT

Label
Label

L Sample
R Sample

Label R Sample
Label

Label R Sample

Label R Sample

Label R Sample

Label R Sample

Label

Label

Label

Label

L Sample

L Sample

L Sample

L Sample

L Sample

R

S

A

M

P

L

E

L

S

A

M

P

L

E

R

S

A

M

P

L

E

L

S

A

M

P

L

E

1 2 3 4 5 6

R

S

A

M

P

L

E

L

S

A

M

P

L

E

R

S

A

M

P

L

E

L

S

A

M

P

L

E

R

S

A

M

P

L

E

L

S

A

M

P

L

E

R

S

A

M

P

L

E

L

S

A

M

P

L

E

239

incoming AVTP frames (if more than two samples exist per event). These samples are then passed to

ALSA, formatted as shown in Figure 125 on page 234.

10.2.2 IEEE 1394/Ethernet AVB Audio Gateway Device

When audio samples received via the IEEE 1394 interface of an IEEE 1394/Ethernet AVB audio

gateway device are transferred to its Ethernet interface, the audio data is extracted from the received

CIP packets and placed into AVTP frames. Each AVTP stream can be configured with the number of

sequences it should contain. If an AVTP stream is configured to contain n sequences, where n is less

than the number of sequences received on the IEEE 1394 interface, then the first n sequences are

extracted from the received CIP packets, and the rest are discarded, as shown in Figure 128. If n is

more than the number of sequences in the received CIP packets, then all of the sequences are

extracted from the isochronous packets and packaged into AVTP frames. The rest of the sequences

in the AVTP frames are zeroed.

Figure 128: Stream sequence mapping

Assume that the packet shown in Figure 129 is received on the IEEE 1394 interface of an IEEE

1394/Ethernet AVB audio gateway device. Also assume that this is the first packet of a stream to

arrive at the audio gateway. The packet contains eight events, as the transmitting IEEE 1394 device

is configured to transmit audio in blocking mode. Each event in the packet contains four samples

(hence, the packet represents four sequences of audio in a stream).

AVTP Stream CIP Stream

1
2
3
4

1
2

Header

Header

.

240

Figure 129: A received CIP packet

Assume that the IEEE 1394 input that received the packet shown in Figure 129 is associated with an

output of the AVB component, and this output is configured to transmit two sequences of audio. In

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

data length tag channel tcode sy

header CRC

data CRC

0 0 SID
1 0

DBS FN QPC SPH rsv DBC
FMT FDF SYT

Label
Label

Sample
Sample

Label Sample
Label

Label Sample

Label Sample

Label Sample

Label Sample

Label

Label

Label

Label

Sample

Sample

Sample

Sample

Sample

Label
Label

Sample
Sample

Label Sample
Label

Label Sample

Label Sample

Label Sample

Label Sample

Label

Label

Label

Label

Sample

Sample

Sample

Sample

Sample

Label Sample

Label Sample

Label Sample

Label Sample

Label

Label

Label

Label

Sample

Sample

Sample

Sample

241

this instance, the audio transmitted by the AVB component will be formatted as shown in Figure

130. The first two sequences of audio of the first six events will be packaged into an AVTP frame,

and this frame will be queued for transmission. The first two sequences of the last two events will be

packaged into the following AVTP frame. This frame will wait for the next IEEE 1394 CIP packet to

arrive, where the first two sequences will be extracted from the first four events and placed into the

remainder of the second AVTP frame. The second AVTP frame will then be queued for

transmission.

Figure 130: A transmitted AVTP frame

The same is true in the opposite case. Audio samples received in AVTP frames via the Ethernet

interface of an audio gateway device are extracted and placed into CIP packets for transmission onto

the IEEE 1394 bus. The number of sequences transmitted in each IEEE 1394 stream is configurable.

Therefore, if an AVTP stream contains n sequences, and n is greater than the number of sequences

supported by the CIP stream, say m, then the first m sequences are extracted from the AVTP frames

and packaged into CIP packets. If n is less than m, all of the sequences are extracted from the AVTP

frames and placed into CIP packets, and the remaining sequences are zeroed. As the IEEE 1394

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

CD subtype sv version mr

stream ID

r gv tv sequence number reserved tu

avtp timestamp
gateway info

stream data length ta g channel tcode (A 16) sy
0 0 SID
1 0

DBS FN QPC SPH Rsv DBC
FMT FDF SYT

Label
Label

L Sample
R Sample

Label R Sample
Label

Label R Sample

Label R Sample

Label R Sample

Label R Sample

Label

Label

Label

Label

L Sample

L Sample

L Sample

L Sample

L Sample

242

outputs transmit audio in blocking mode, a packet is only queued for transmission once eight events

have been received from the AVB input and packaged into the IEEE 1394 CIP packet.

10.3 Timing and Synchronisation

An IEEE 1394 bridge is responsible for bridging two IEEE 1394 buses together. Each portal of an

IEEE 1394 bridge has an independent 24.576 MHz clock. These clocks typically do not run at

exactly the same rate and drift apart. Thus IEEE 1394 bridges regenerate timestamp values within

CIP packets such that these timestamps are relative to the cycle time of the portal that they are being

transmitted on. See Section 6.2.1.1 “Cross IEEE 1394 Bridge Timestamp Regeneration”. Similar to

an IEEE 1394 bridge, an IEEE 1394/Ethernet AVB audio gateway device has two separate

incompatible clocks for each network type. Thus, it needs to implement similar cross network timing

and synchronisation mechanisms as IEEE 1394 bridges do.

10.3.1 Timestamp Regeneration

When audio data is transferred across an IEEE 1394/Ethernet AVB audio gateway, it is essential that

the intended absolute presentation time of the transmitter be maintained. Timestamp values need to

be regenerated such that they are relevant on the network they are being transmitted on.

CIP packets received on the IEEE 1394 interface of an audio gateway device contain a 16-bit SYT

field that contains the time (relative to the cycle time of the bus from which it was received) that the

time-stamped event in the packet is to be presented at the receiver. The format of this field is the

same as the lower 16-bits of the cycle time register, as shown in Figure 131. The SYT field is able to

represent 24 (16) 125 µs isochronous cycles, which is equal to two milliseconds (125 µs × 16). The

cycle offset field is able to represent up to 3071 ticks of the 24.576 MHz clock, which is equal to

124.96 µs (rounded to two decimal places), after which it rolls over to represent an isochronous cycle

of 125µs. Therefore, the SYT field is able to hold a timestamp value that is up to 2.12496 ms

(rounded to five decimal places) in the future.

243

Figure 131: SYT field format

AVTP frames received on the Ethernet interface of an AVB device contain a 32-bit avtp timestamp

field that represents the gPTP time (in nanoseconds) that the time-stamped event is to be presented at

the receiver. The avtp timestamp field is able to represent 232 ns which is equal to more than four

seconds. Thus, the avtp timestamp field may hold a timestamp value that is more than four seconds

into the future.

10.3.1.1 Timestamp Regeneration Example

Figure 132 shows a hypothetical gateway device that is used to join two networks together. Each side

of the device contains an independent clock. The clock on side A (clock A) of the gateway has a

nominal frequency of 12.5 MHz, and the clock on side B (clock B) of the gateway has a nominal

frequency of 25 MHz. A packet arrives at side A of the gateway containing a presentation timestamp

of 16 ticks relative to clock A. This timestamp needs to be transferred across the gateway such that

when it arrives at its destination (on the network attached to side B of the gateway), it should be

presented when clock A reaches a tick count of 16.

The difference between the two clocks, delta, needs to be calculated by subtracting clock A’s count

(expressed in block B’s time base) from clock B’s count:

 delta = clock countB – clock countA expressed in B’s clock time base

When the gateway calculates the difference, clock A’s count is 12 ticks relative to clock A, and clock

B’s count is 36 ticks relative to clock B. In order to convert one clock’s tick count to a tick count that

is expressed relative to the other clock, the frequency difference between the two clocks needs to be

accurately measured (for this example, assume that both clocks have exactly their nominal

frequency). As clock B runs twice as fast as clock A, clock A’s count would have a value of 24 ticks

if it were running at the same rate as clock B. Thus the difference between these two clocks, in clock

B’s time base, is 12 ticks (36 ticks (B) – 24 ticks (A)).

Cycle offset (3071) Cycle count (7999) Second count

7 bits 9 bits 12 bits

4 bits

244

As the timestamp is going to be transferred from network A (timestampA) to network B

(timestampB), it has to be expressed in clock B’s time base. The timestampA has been generated

relative to clock A’s clock and thus needs to be expressed in clock B’s time base. As clock B is

running twice as fast as clock A, the timestampA's value would be 32 ticks if it had been generated

based on clock B’s frequency. Once the timestamp has been converted, the difference between the

two clocks, delta, is added to the converted timestamp to obtain the timestamp value that is to be

transmitted:

 timestampB = timestampA expressed in B’s clock time base + deltaexpressed in B’s clock time base

Thus, in this example, the transmitted timestamp will have a value of 44 ticks (32 ticks + 12 ticks)

which will maintain the original transmitter’s intended absolute presentation time; when clock A

reaches 16 ticks, clock B will reach 44 ticks.

Figure 132: Hypothetical timestamp regeneration

10.3.1.2 CIP and AVTP Timestamp Regeneration

Timestamp values contained in CIP packets received via the IEEE 1394 interface of an audio

gateway device need to be transformed into timestamps to be transmitted in AVTP frames via the

Ethernet interface. Also, timestamp values contained in AVTP frames received via the Ethernet

interface of an audio gateway need to be transformed into timestamps to be transmitted in CIP

packets via the IEEE 1394 interface. Thus, received SYT timestamps need to be transformed from a

format that contains a cycle count and a cycle offset field (that is expressed relative to the cycle time

on the IEEE 1394 bus) to a nanosecond value (that is expressed relative to the gPTP time on the

Ethernet AVB network). A received avtp timestamp field needs to be transformed from a nanosecond

12.5 MHz 25 MHz

 A B
12 36

245

value (that is expressed relative to the gPTP time on the Ethernet AVB network) to a timestamp

value that is expressed in a cycle count and cycle offset field (expressed relative to the IEEE 1394

bus’s cycle time).

The transformation of timestamp values should happen in a similar fashion to the method used by

IEEE 1394 bridges, as described in Section 6.2.1.1 “Cross IEEE 1394 Bridge Timestamp

Regeneration”. An IEEE 1394/Ethernet AVB audio gateway device should be able to calculate the

time difference between the clocks of each network. To do this, it must simultaneously read the

current clock times of each network. Once these values have been retrieved, the times should be

expressed in the same unit and the time difference between the two should be calculated.

The gPTP clock time is stored as seconds and nanoseconds. It is possible to convert the current IEEE

1394 clock time to gPTP time with the following formulae:

• gPTP seconds = bus time

• gPTP nanoseconds = int ((cycle count × 125 µs × 103) + (cycle offset × (125 µs × 103 / 3072)))

It is possible to convert the current gPTP clock time to bus time, cycle count, and cycle offset with

the following formulae (where % represent a modulo operation):

• bus time = gPTP seconds % 232

• cycle count = int (gPTP nanoseconds / 125 µs × 103)

• cycle offset = int ((gPTP nanoseconds / (125 µs × 103 / 3072)) % 3072)

Thus, the time difference between the two clocks can be calculated in nanoseconds and IEEE 1394

clock time by ensuring that both clock times are expressed in the same units.

It is possible to convert a timestamp conveyed in a CIP packet to a value that is expressed in

nanoseconds with the following formula:

• int ((cycle count × 125 µs × 103) + (cycle offset × (125 µs × 103 / 3072)))

It is possible to convert a timestamp expressed in nanoseconds conveyed in an AVTP frame to a

value that is expressed in IEEE 1394 cycle counts and cycle offsets with the following formulae:

• cycle count = int ((avtp timestamp / 125 µs × 103) % 8000)

• cycle offset = int ((avtp timestamp / (125 µs × 103 / 3072)) % 3072)

246

With the above information, a received timestamp in a CIP packet can be transmitted in an AVTP

frame by converting the SYT value to a nanosecond value, and adding the nanosecond difference

between the two clocks. A received timestamp in an AVTP packet can be transmitted in a CIP packet

by converting the avtp timestamp value to an SYT value and by adding the time difference between

the two clocks (expressed in IEEE 1394 clock time) to it.

10.3.1.2.1 CIP and AVTP Timestamp Regeneration Example

Assume that an IEEE 1394/Ethernet AVB gateway device at a particular time has the times as shown

in Table 40.

IEEE 1394 gPTP

Bus time 12 s gPTP seconds 34 s

Cycle count 100 cycles gPTP nanoseconds 15,187,500 ns

Cycle offset 768 ticks

Table 40: Clock times

The above IEEE 1394 time can be converted to gPTP time, and the above gPTP time can be

converted to IEEE 1394 time, as shown in Table 41.

247

IEEE 1394 ���� gPTP gPTP ���� IEEE 1394

gPTP seconds

= bus time

= 12 s

Bus time

= gPTP seconds % 232

= 34 % 223

= 34 s

gPTP nanoseconds

= int ((cycle count × 125 × 103) + (cycle offset ×

(125 × 103 / 3072)))

= int ((100 × 125 × 103) + (768 × (125 × 103 /

3072)))

= 12,531,250 ns

Cycle count

= int (gPTP nanoseconds / 125 × 103)

= int (15,187,500 / 125 × 103)

= int (121.5)

= 121 cycles

 Cycle offset

= int ((gPTP nanoseconds / (125 × 103 / 3072))

% 3072)

= int ((15,187,500 / (125 × 103 / 3072)) % 3072)

= 1536 ticks

Table 41: Converted clock times

Once both networks times have been converted to a common base, the difference between the two

clocks can be calculated, as shown in Table 42.

Time difference: gPTP Time difference: IEEE 1394

= (34 s 15,187,500 ns) – (12s 12,531,250 ns)

= 22s 2,656,250 ns

= (34 s 121 cycles 1536 ticks) – (12 s 100 cycles

768 ticks)

= 22 s 21 cycles 768 ticks

Table 42: Clock time differences

Assume that a CIP packet arrives at the IEEE 1394 interface of the audio gateway device (shortly

after the readings in Table 40 were taken) with a cycle count of 12 cycles and a cycle offset of 2304

ticks. This means that presentation time of the time-stamped event is 12 s, 108 cycles and 2304 ticks.

This is calculated as follows:

• bus time

248

= node’s bus time

= 12 s

• cycle count

= (node’s cycle count & 0x1FF0) | SYT cycle count

= (100 & 0x1FF0) | 12

= 96 | 12

= 108 cycles

• cycle offset

= SYT cycle offset

= 2304 ticks

The cycle count calculation replaces the lower four bits of the node’s cycle count with the four bits of

the cycle count field of the CIP packet’s SYT field. The time value would be converted to a gPTP

time of 12 s 13,593,750 ns. This value is calculated as follows:

• gPTP seconds = bus time

= 12

• gPTP nanoseconds = int ((cycle count × 125 µs × 103) + (cycle offset × (125 µs × 103 / 3072)))

= int ((108 × 125 µs × 103) + (2304 × (125 µs × 103 / 3072)))

= int (13,500,000 + 93750)

= 13,593,750 ns

The difference between the two clocks (22s 2,656,250 ns) is added to this to yield a presentation time

of 34 s 16,250,000 ns. This time value is then converted to a nanosecond avtp timestamp (using the

formula from Table 22 on page 149). The formula for this conversion is:

• avtp timestamp

= (gPTP seconds × 109 + gPTP nanoseconds) % 232

= (34 × 109 + 16,250,000) % 232

= 3,951,478,928 ns

If an AVTP frame arrives at the Ethernet interface of the audio gateway device (shortly after the

readings in Table 40 were taken) with an avtp timestamp value of 3,951,478,928 ns, this would mean

that the presentation time of the time-stamped event is 34 s 16,250,000 ns. This is calculated as

249

follows (assume that at the time that the frame arrived, the gPTP nanoseconds advanced to

15,200,500 ns):

= ((gPTP seconds × 109 + gPTP nanoseconds) & 0xFFFFFFFFFFFF00000000) | avtp timestamp

= ((34 x 109 + 15,200,500) & 0xFFFFFFFFFFFF00000000) | 3,951,478,928

= 34,016,250,000

= 34 s 16,250,000 ns

This calculation replaces the lower 32-bits of the time with the timestamp value conveyed in the

AVTP frame. The value converted to IEEE 1394 time is 34 s, 130 cycles, 0 ticks. This time value is

calculated as follows:

• bus time = gPTP seconds % 232

= 34 % 232

= 34 s

• cycle count = int (gPTP nanoseconds / 125 µs × 103)

= int (16,250,000 / 125 × 103)

= int (130)

= 130 cycles

• cycle offset = int ((gPTP nanoseconds / (125 µs × 103 / 3072)) % 3072)

= int ((16,250,000 / (125 µs × 103 / 3072)) % 3072)

= int (399,360 % 3072)

= int (0)

= 0 ticks

The difference between the two clocks (22 s, 21 cycles, 768 ticks) is subtracted from this value to

yield a value of 12 s, 108 cycles, 2304 ticks. Thus, the value of the SYT field would be 12 cycles,

2304 ticks (the lower four bits of 108 is equal to 12).

10.4 MAAP Component

As part of this study, a reusable MAAP component was developed. This component is an

implementation of MAAP (see Section 6.3 “AVTP Address Allocation”) and is responsible for the

allocation of multicast MAC addresses for AVTP frame transmission. Each AVB capable device

contains a MAAP component. The MAAP component defines a MAAP struct and a set of functions

250

that act on it, and a MAAPAddressRange struct and a set of functions that acts on it. The MAAP

struct represents the MAAP protocol and is responsible for keeping track of the protocol’s state. The

MAAPAddressRange struct represents a range of dynamically allocatable MAAP MAC addresses.

10.4.1 MAAP struct

The AVB devices making use of MAAP create a MAAP struct, and initialise it with the MAAP_init

function. The signature of the MAAP_init function is shown in Listing 2. The maap argument is a

pointer to the MAAP struct to be initialised. The ethIFName argument is the name of the Ethernet

interface on which MAAP will transmit and receive frames. This could be “eth0”, for example. The

MAAP_AddressRangeNoLongerAvailableCallback argument is a pointer to a user

supplied callback function. When an address range that has been acquired by MAAP is no longer

available for use (for example, if two networks are joined together, and another device announces

that is it using a range of MAC addresses that MAAP has acquired), the application is notified of this

via this callback. The callback function has a single argument, which is a pointer to a

MAAPAddressRange struct. This struct represent the range of addresses that are no longer

available.

Listing 2: MAAP_init function

Once a MAAP struct has been successfully initialised, it can be used to acquire ranges of dynamically

allocatable multicast MAC addresses. The MAAP component defines two functions for achieving

this. These functions are shown in Listing 3. The MAAP_generateRandomMACAddresses

function returns a randomly generated consecutive range of MAC addresses. The maap argument is

a pointer to the MAAP struct previously initialised. The numConsecutiveAddresses argument

is the number of addresses that the application is requesting. When this function is called, a random

range of addresses are generated that do not conflict with any other addresses previously acquired by

int MAAP_init (

 MAAP * maap,

 char * ethIFName,

 MAAP_AddressRangeNoLongerAvailableCallback

 notAvailableCallback);

251

this instance of MAAP, or any other address ranges recently announced by other instances of

MAAP. MAAP then transmits MAAP probe messages to the network to probe the availability of the

address range. If after three MAAP probe transmissions no MAAP defend messages are received for

the address range, the address range is passed back to the caller via a MAAPAddressRange struct.

Listing 3: MAAP methods for acquiring MAC addresses

The MAAP_tryGetMACAddresses function tries to acquire the range of MAC addresses

supplied by the caller. The startAddress argument is the first address of the range that the caller

would like to acquire, and the numConsecutiveAddresses argument is the number of

consecutive addresses that the caller would like to acquire. When this function is called, MAAP

starts the probe procedure, and if no other instance of MAAP tries to defend the use of the address

range, the address range is acquired. If another instance of MAAP defends the use of the address

range, MAAP proceeds as if MAAP_generateRandomMACAddresses was called and returns a

randomly generated address range.

10.4.2 MAAPAddressRange struct

The MAAPAddressRange struct represents a range of dynamically allocatable MAAP MAC

addresses and is returned by the functions shown in Listing 3. The members of the

MAAPAddressRange struct should be considered opaque and all interaction with the struct should

be via the defined functions. The MAAP component defines the

MAAPAddressRange_getAddress method that allows for the retrieval of a single MAC

address out of a MAC address range represented by a MAAPAddressRange struct. This function is

MAAPAddressRange * MAAP_generateRandomMACAddresses (

 MAAP * maap,

 uint16 numConsecutiveAddresses);

MAAPAddressRange * MAAP_tryGetMACAddresses (

 MAAP * maap,

 uint8 startAddress [6],

 uint16 numConsecutiveAddresses);

252

shown in Listing 4. The maapAddressRange argument is the MAAPAddressRange struct

which represents the range of addresses from which to get the address. The index argument is the

index of the address to obtain, with 0 being the first address. The address argument is a user

supplied buffer into which the address is placed. The addressSize argument is the size of the

address buffer. The size of the buffer has to be at least 6 octets in size to ensure that a 48-bit MAC

address can be copied into it.

Listing 4: MAAPAddressRange_getAddress function

10.4.3 MAAP Utilisation

When an AVB device is initialised, the MAAP component is initialised and the application requests

a range of dynamically allocatable MAAP MAC addresses. The number of requested MAC

addresses is dependent on the number of AVTP stream outputs that the AVB component

implements. Once MAAP returns a range of MAC addresses, a MAC address is allocated to each of

the AVB component’s outputs. The allocated MAC address is the address that the output will use to

transmit its stream frames on (i.e., it is the address set in each Ethernet frame’s destination address

field).

10.5 MRP Component

Each AVB device contains a multiple registration protocol (MRP), multiple VLAN registration

protocol (MVRP), multiple MAC registration protocol (MMRP), and multiple stream reservation

protocol (MSRP) component. These components were implemented as Linux kernel modules. The

MRP kernel module implements the MRP protocol (see Section 3.2.1 “Multiple Registration

Protocol”) for an end station. It is responsible for keeping track of attributes, and their declaration

int MAAPAddressRange_getAddresss (

 MAAPAddressRange * maapAddressRange,

 int index,

 uint8 address [6],

 int addressSize);

253

and registration states. It is also responsible for communicating attribute declaration and registration

states to a bridged LAN to make other MRP kernel modules aware of attribute declarations.

The MRP kernel module defines an mrp struct that represents the MRP protocol and keeps track of

the protocols state. All of the members of the struct should be considered opaque. All interaction

with the mrp struct occurs via a set of defined functions. An MRP application (e.g., MSRP) creates

one of these mrp structs and initialises it with a call to the mrp_init function. The signature of the

mrp_init function is shown in Listing 5.

Listing 5: mrp_init function

The mrp argument is a pointer to the created mrp struct that is to be initialised. The

application_address argument is the reserved MAC address that the application uses to

transmit and receive Ethernet frames. Each MRP application defines its own unique MAC address

(from a set of addresses reserved for such use) used for communication between instances of the

MRP application. Currently, three MRP applications have been defined (MMRP, MVRP, and

MSRP), and each one of these has been assigned a unique MAC address. These addresses have been

defined in the MRP kernel module as shown in Listing 6. The MRP kernel module registers the

supplied MAC addresses with the kernel in order to instruct the kernel to pass it any frames destined

to that address.

int mrp_init (

 struct mrp * mrp,

 const u8 application_address [6],

 u16 ether_type,

 const char * port_name,

 struct mrp_ops * mrp_ops,

 int protocol_version,

 int use_attribute_list_length);

254

Listing 6: MRP application addresses

The ether_type argument is the EtherType that the MRP application uses for its frames. Each

MRP application defines its own unique EtherType, as shown in Listing 7.

Listing 7: MRP application EtherTypes

The port_name argument is the name of the port that the MRP application will transmit and

receive its frames on. For example, this could be the value “eth0”. The mrp_ops argument is a

pointer to an mrp_ops struct that contains pointers to various user defined callback functions. These

callbacks are discussed in Section 10.5.2 “MRP Callbacks”. The protocol_version argument is

the version of the MRP application. Each MRP application defines the version number to use. The

protocol version is carried within MRPDUs and allows for future extensions to the protocols. The

use_attribute_list_length specifies whether the MRP application makes use of the

attribute list length field inside each message of an MRPDU. The attribute list length field specifies

the number of octets that the list of attributes within a message of an MRPDU uses. Currently,

MMRP and MVRP do not make use of this field, whereas MSRP does.

Once an MRP application is done with an mrp struct, it calls mrp_clean_up passing it a pointer

to the created mrp struct. The mrp_clean_up function’s signature is shown in Listing 8. This

function is responsible for releasing any resources that were acquired by the MRP kernel module.

const u8 mrp_application_address_mmrp [6] =

 {0x01, 0x80, 0xc2, 0x00, 0x00, 0x20};

const u8 mrp_application_address_mvrp [6] =

 {0x01, 0x80, 0xc2, 0x00, 0x00, 0x21};

const u8 mrp_application_address_msrp [6] =

 {0x01, 0x80, 0xc2, 0x00, 0x00, 0x22};

#define MRP_ETHERTYPE_MMRP 0x88F6

#define MRP_ETHERTYPE_MVRP 0x88F5

#define MRP_ETHERTYPE_MSRP 0x22EA

255

Listing 8: mrp_clean_up function

10.5.1 Attribute Registration

An MRP application is able to request MAD to declare attributes, and withdraw attribute

declarations. MRP defines the MAD join request and the MAD leave request service primitives

which are represented in the MRP kernel module by the mrp_mad_join_request_notify

function (shown in Listing 9) and mrp_mad_leave_request_notify function (shown in

Listing 10).

When an MRP application would like to declare an attribute, it makes a call to

mrp_mad_join_request_notify. The signature of this function is shown in Listing 9. The

mrp argument is a pointer to the mrp struct that was previously initialised. The attribute_type

argument is the numeric value that is used to uniquely identify the attribute that the application

would like to declare. Each MRP application defines unique numeric values for the attributes that it

defines. MSRP, for example, defines unique numeric values for talker advertise, talker failed, and

listener attributes. The attribute_value argument represents an instance of the attribute

identified by the attribute_type argument. The four_packed_type argument is only used

by MSRP for listener attributes to specify their type (i.e., either listener ready, listener ready failed,

or listener failed). MSRP defines unique numeric values for each of the listener attribute types. The

new argument is a Boolean argument whose value is used to indicate an explicitly signalled new

attribute declaration. When an MRP application makes an attribute declaration, it may explicitly

signal to other MRP applications that the declaration is new.

void mrp_clean_up (struct mrp * mrp);

256

Listing 9: mrp_mad_join_request_notify function

When an MRP application would like to withdraw an attribute declaration, it makes a call to

mrp_mad_leave_request_notify. The signature of this function is shown in Listing 10. The

arguments have the same definitions as those defined for the

mrp_mad_join_request_notify function call.

Listing 10: mrp_mad_leave_request_notify function

10.5.2 MRP Callbacks

The MRP kernel module defines a number of callback functions that have to be implemented by an

MRP application. These callback functions either notify the MRP application of various events, or

request application specific information. When an mrp struct is initialised, it expects a pointer to an

mrp_ops struct that contains a number of function pointers defined by the MRP application. A

portion of the mrp_ops struct is shown in Listing 11.

int mrp_mad_join_request_notify (

 struct mrp * mrp,

 int attribute_type,

 void * attribute_value,

 int four_packed_type,

 int new);

int mrp_mad_leave_request_notify (

 struct mrp * mrp,

 int attribute_type,

 void * attribute_value);

257

Listing 11: mrp_ops struct

Listing 11 only shows the two most important members of the mrp_ops struct. The definitions of

these members are shown in Listing 12 and Listing 13. MRP defines the MAD join indication and the

MAD leave indication service primitives to notify an MRP application of changes in attribute

registration. These service primitives are represented by two callbacks. The MAD join indication

service primitive is represented by the mrp_mad_join_indication callback (shown in Listing

12), and the MAD leave indication service primitive is represented by the

mrp_mad_leave_indication callback (shown in Listing 13).

When an attribute is registered by an MRP application’s MAD component, the MAD component

notifies the participant of this registration via the mrp_mad_join_indication callback. The

mrp argument is a pointer to the MRP application that the attribute registration is related to. The

attribute_type argument is a numeric value indicating the attribute type. For example, MSRP

defines a talker advertise attribute and it defines a unique numeric value to represent that attribute.

The attribute_value argument is the actual value of the attribute instance. For example, this

could be an MSRP application’s talker advertise attribute with all of its fields. It is the responsibility

of an MRP application to extract the fields out of the data buffer to which attribute_value

points. The four_packed_type argument is a numeric value used by listener attributes to

indicate their type (either listener ready, listener ready failed, or listener failed). The new argument

is a Boolean argument whose value is used to indicate an explicitly signalled new declaration. When

an MRP application makes an attribute declaration, it may explicitly signal that the declaration is

new. When the attribute is registered with other participants on the LAN, they are notified of this via

this new argument.

struct mrp_ops

{

 mrp_mad_join_indication mad_join_indication;

 mrp_mad_leave_indication mad_leave_indication;

 ...

};

258

Listing 12: mrp_mad_join_indication callback function

When an attribute is deregistered by an MRP application’s MAD component, it notifies the

participant of this deregistration via the mrp_mad_leave_indication callback. The argument

definitions of this callback are the same as those defined for the mrp_mad_join_indication.

Listing 13: mrp_mad_leave_indication callback function

10.5.3 MRP Kernel Module Usage

Figure 133 shows an example of how the MRP kernel module is used when declaring an attribute (in

the simplest case). An MRP application has an attribute that it would like to declare and it invokes

the mrp_mad_join_request_notify function for the attribute (indicated by the number 1).

The MRP kernel module adds the attribute to a list of attributes that it is keeping track of (if the

attribute is not already there), as indicated by the number 2 (in the MRP kernel module

implementation, the attributes are kept in a linked list). A newly added attribute has its applicant and

registrar state machines initialised by signalling them with a being event, and then the attribute’s

applicant state machine is signalled with a join event, as discussed in 3.2.1.3.2 “Applicant State

Machine”. The attribute declaration is communicated to the LAN segment that the MRP application

is associated with and it is registered on other participants (indicated by the number 3). The

participant adds the attribute to a list of attributes that it is keeping track of (if it not already in the

list). A newly added attribute has its applicant and registrar state machines initialised by signalling

typedef int (*mrp_mad_join_indication) (

 struct mrp * mrp,

 int attribute_type,

 void * attribute_value,

 int four_packed_type,

 int new);

typedef int (*mrp_mad_leave_indication) (

 struct mrp * mrp,

 int attribute_type,

 void * attribute_value,

 int four_packed_type);

259

them with a being event, and then its registrar state machine is signalled with a receive join empty

event, as discussed in Section 3.2.1.3.3 “Registrar State Machine”. Once the attribute has been

registered, the attribute registration is communicated to the MRP application via the

mrp_mad_join_indication callback function. The MRP application then decides on what to

do with the attribute.

Figure 133: MRP kernel module attribute declaration

Figure 134 shows an example of how the MRP kernel module is used when withdrawing an attribute

declaration (in the simplest case). When an MRP application would like to withdraw a declared

attribute, it invokes the mrp_mad_leave_request_notify function for the attribute (indicated

by the number 1). The MRP kernel module iterates through the attributes that it is keeping track of to

locate the attribute (indicated by the number 2). Once the attribute has been located, the attribute’s

applicant state machine is signalled with a leave event, as discussed in Section 3.2.1.3.2 “Applicant

State Machine”. The withdrawal of the attribute declaration is communicated to the LAN segment

(as indicated with the number 3). Any station on the LAN segment that has previously registered the

attribute has the attribute’s registrar state machine signalled with a receive leave event which will

cause the attribute to be deregistered (assuming that no other station on the LAN segment has

declared the attribute). The attribute deregistration is indicated to the MRP application via the

mrp_mad_leave_indication callback function (indicate by the number 4). The MRP

application decides on how to behave when it receives notification of the attribute deregistration.

mrp_mad_join_request_notify

MRP

1

2

mrp_mad_join_indication

MRP
 4

3

260

Figure 134: MRP kernel module attribute declaration withdrawal

10.6 MMRP and MVRP Kernel Modules

As part of this study, kernel modules were developed to represent MMRP, MVRP, and MSRP

applications for end stations. This section discusses the MMRP and MVRP kernel modules, as they

are very similar. Section 10.7 “MSRP Kernel Module” discusses the MSRP kernel module.

The MMRP and MVRP kernel modules make use of the functionality provided by the MRP kernel

module. These modules are responsible for defining attribute types, the semantics associated with

their attribute registrations, and for defining an interface to allow for other modules to interact with

them.

MMRP is represented with an mmrp struct, and MVRP is represented with an mvrp struct. Each

struct’s only member is an mrp struct. When each of these modules is loaded into the kernel, its mrp

struct is initialised (they each run an independent copy of MRP). These structs are shown in Listing

14 and Listing 15.

mrp_mad_leave_request_notify

MRP

1

2

mrp_mad_leave_indication

MRP
 4

3

261

Listing 14: mmrp struct

Listing 15: mvrp struct

The MMRP specification defines service primitives that allow for the registration of MAC addresses.

These service primitives are represented in the MMRP kernel module with the functions shown in

Listing 16.

Listing 16: MMRP functions

The mmrp_register_mac_address function represents MMRP’s register MAC address

service primitive. It allows an application to request the reception of frames with a certain destination

MAC address. Figure 135 shows two stations on a LAN segment each having an MMRP kernel

module. Each one of these MMRP kernel modules makes use of the functionality of an MRP kernel

module. An application calls the mmrp_register_mac_address function and supplies it with

the multicast MAC address. This function calls mrp_mad_join_request_notify in order to

declare a MAC attribute. Other stations on the LAN segment register the attribute. The MMRP

module is notified of the MAC attribute registration via the mrp_mad_join_indication

callback function. When this callback is called within a bridge, the bridge will be configured to

forward frames with the given MAC address out of the port that registered the attribute. An end

station that would like to transmit frames with the MAC address can use the registration information

struct mmrp

{

 struct mrp mrp;

};

struct mvrp

{

 struct mrp mrp;

};

int mmrp_register_mac_address (u8 mac_address [6]);

int mmrp_deregister_mac_address (u8 mac_address [6]);

262

to decide whether or not any station is interested in receiving the frames (i.e., a lack of a MAC

attribute registration for the MAC address indicates to the end station that there is no interest in

frames destined to the MAC address).

Figure 135: MMRP kernel module usage

The mmrp_deregister_mac_address function represents MMRP’s deregister MAC address

service primitive. When called, it withdraws the MAC attribute declaration for the supplied MAC

address by calling mrp_mad_leave_request_notify for the MAC attribute. Any bridges that

deregister the MAC attribute are configured to filter the frames with the given MAC address (that

were previously forwarded towards the station that made the attribute declaration). When the

attribute is deregistered from an end station, it can use this information to stop the transmission of

frames destined to the MAC address as it knows that no stations are interested in receiving the

frames.

The MVRP kernel module has two functions that are used to represent the service primitives of

MVRP. These functions are shown in Listing 17. Each one of the functions has a single parameter

that is used to represent a VLAN ID. The mvrp_register_vlan_member function is used by a

station to become a member of a VLAN, and the mvrp_deregister_vlan_member is used by

a station to deregister its VLAN membership.

join_request_notify

MRP

1

2

join_indication

MRP
 4

 3

MMRP

mmrp_register_mac_address

MMRP

Configure frame

forwarding

5

263

Listing 17: MVRP functions

When the mvrp_register_vlan_member function is called, MVRP declares a VLAN attribute

with a value that is equal to the requested VLAN ID. The declaration of the attribute is performed via

the mrp_mad_join_request_notify function call. This ensures that the attribute declaration

is communicated to the bridged LAN, which may result in the attribute being registered (if it is not

already registered) on the ports of the bridges and other end stations of the bridged LAN. When the

attribute is registered, the bridges and end stations are configured such that they will forward frames

that are part of the VLAN towards the station that made the attribute declaration.

When the mvrp_deregister_vlan_member function is called, it withdraws the VLAN

attribute declaration. This attribute declaration withdrawal happens via the

mrp_mad_leave_request_notify function. The attribute declaration withdrawal is

communicated to the bridged LAN, which may result in the attribute being deregistered from the

ports of the bridges and end stations of the bridged LAN. The attribute will not be deregistered from

all ports if other stations on the network have declared the same attribute. When the attribute is

deregistered, the stations are configured to not forward frames that are part of the VLAN out of the

port that deregistered the attribute.

10.7 MSRP Kernel Module

A kernel module was developed to represent an MSRP application for an end station. MSRP was

implemented as a kernel module as it is responsible for configuring low-level network parameters

(such as those of the credit-shaper algorithm (see Section 4.2.2 “Forwarding and Queuing”)). The

kernel module has been implemented independently of any application that makes use of it. This

promotes reusability of the module allowing multiple applications and future applications to make

use of it.

int mvrp_register_vlan_member (u16 vid);

int mvrp_deregister_vlan_member (u16 vid);

264

The operation of MSRP is defined in Section 3.2.4 “Multiple Stream Reservation Protocol”. The

MSRP kernel module makes use of the functionality of the MRP kernel module, as well as the

functionality of the MVRP kernel module, and optionally the MMRP kernel module if talker pruning

is enabled (talker pruning is used to limit the scope of talker attribute propagation to just those

listeners interested in the stream on offer (see Section 3.2.4.2 “Talkers Advertising Streams”)). The

MSRP kernel module defines an msrp struct, as shown in Listing 18. This listing shows the most

important members of the msrp struct: an mrp struct and a pointer to an msrp_ops struct. When

the kernel module is loaded into the kernel, the msrp struct is initialised, which includes the

initialisation of the mrp struct.

Listing 18: msrp struct

The msrp_ops struct contains pointers to user defined callback functions. An application that

would like to make use of the MSRP kernel module defines the callback functions, and registers

them with the MSRP kernel module. These callback functions allow the MSRP kernel module to

notify the user of the module of any relevant events. These callback functions are discussed in

Section 10.7.2 “MSRP Callback Functions”.

10.7.1 MSRP Functions

The MSRP kernel module has a number of functions that allow for talkers to register and deregister

streams, and for listeners to register and deregister attachment to streams that are available from

talkers. This section provides an overview of the functionality provided by the MSRP kernel module.

Section 10.7.4 “Using the MSRP User-space Functions” discusses how the MSRP kernel module is

used from user-space by the AVB devices that were developed during this study.

struct msrp

{

 struct mrp mrp;

 struct msrp_ops * msrp_ops;

 ...

};

265

10.7.1.1 Registering Streams

When a talker has a stream to offer, it has to register this stream with an AVB network by declaring a

talker attribute for the stream. The MSRP kernel module allows for talkers to register streams with

the msrp_register_stream_request function. This function represents the MSRP register

stream request service primitive. The msrp_register_stream_request function is shown in

Listing 19.

Listing 19: msrp_register_stream_request function

This function has the following arguments:

• stream_id: The value of the stream_id argument is the 64-bit stream ID used to uniquely

identify the stream being advertised by the talker. It is up to the talker to generate the stream ID.

• declaration_type: The value of the declaration_type argument is a numeric value

indicating the type of talker attribute that the talker should declare. The value of this argument

indicates either an attribute declaration of talker advertise, or of talker failed. If the talker has

sufficient resources to support the stream, the declaration type is set to talker advertise, otherwise

it is set to talker failed.

• msrp_data_frame_parameters: The msrp_data_frame_parameters argument is

a pointer to an msrp_data_frame_parameters struct. Listing 20 shows the members of

this struct. The destination_address field’s value contains the destination MAC address

of the transmitted stream. The vlan_identifier field’s value contains the VLAN ID of the

VLAN that the stream will be transmitted on. In its default configuration, AVB uses VLAN 2.

int msrp_register_stream_request (

 u8 stream_id [8],

 int declaration_type,

 struct msrp_data_frame_parameters *

 msrp_data_frame_parameters,

 struct msrp_tspec * msrp_tspec,

 struct msrp_priority_and_rank * msrp_priority_and_rank,

 u32 accumulated_latency);

266

Listing 20: msrp_data_frame_parameters struct

• msrp_tspec: The msrp_tspec argument is a pointer to an msrp_tspec struct. The

members of this struct are shown in Listing 21. The max_frame_size field’s value represents

the maximum size that any frame that is part of the stream may be. The

max_interval_frames field’s value represents the maximum number of frames that will be

transmitted in one class measurement interval. For a class A stream, the class measurement

interval is 125µs, and for a class B stream, the class measurement interval is 250µs. The

max_frame_size and the max_interval_frames values are used by bridges to calculate

the stream’s bandwidth requirements and to reserve resources for the stream.

Listing 21: msrp_tspec struct

• msrp_priority_and_rank: The msrp_priority_and_rank argument is a pointer to

an msrp_priority_and_rank struct. Listing 22 shows this struct (the listing shows Little-

Endian bit fields and would need to be reversed when using Big-Endian bit fields). The

data_frame_priority field’s value represents the priority value that the stream will be

tagged with. By default, class A streams are transmitted using priority three, and class B streams

are transmitted using priority two. The rank field’s value is used to determine a stream’s

importance. A lower numeric value has a higher importance that a higher numeric value. This

could be used, for example, to allow the placement of an emergency phone call on a network that

struct msrp_data_frame_parameters

{

 uint8 destination_address [6];

 uint16 vlan_identifier;

};

struct msrp_tspec

{

 uint16 max_frame_size;

 uint16 max_interval_frames;

};

267

is already being used to its capacity. A lower rank stream will be dropped in favour of the higher

rank stream should resources be constrained.

Listing 22: msrp_priority_and_rank struct

• accumulated_latency: The value of this field represents the worst case latency that the

stream will encounter from the talker to the listener. When a talker calls

msrp_register_stream_request, it initially sets this argument’s value to an amount that

specifies the amount of latency that a stream’s frames will encounter before being passed to the

MAC service. MSRP then adds the maximum per-port per-traffic class latency that the frame

may experience through the underlying MAC service to this argument.

When a talker makes a call to msrp_register_stream_request, MSRP makes a call to the

MRP module’s mrp_mad_join_request_notify function to request that a talker attribute be

declared (the type of talker attribute is dependent on the value of the declaration_type

argument). The fields of the talker attribute (as shown in Section 3.2.4.5.1 “Talker Attributes”) are

filled with the values passed into the msrp_register_stream_request function.

10.7.1.2 Deregistering Streams

When a talker no longer has, or wants to, offer one of its previously advertised streams, it calls the

msrp_deregister_stream_request function. This function represents MSRP’s deregister

stream request service primitive, and its signature is shown in Listing 23. The caller of this function

supplies the stream’s stream ID as an argument to the function. Calling this function results in a call

being made to mrp_mad_leave_request_notify for the talker attribute that has the supplied

stream ID.

struct msrp_priority_and_rank

{

 uint8 reserved : 4;

 uint8 rank : 1;

 uint8 data_frame_priority : 3;

};

268

Listing 23: msrp_deregister_stream_request function

10.7.1.3 Receiving a Stream

When a listener would like to receive a particular stream, it makes a call to the MSRP kernel

module’s msrp_register_attach_request function. This function represents MSRP’s

register attach request service primitive, and its signature is shown in Listing 24.

Listing 24: msrp_register_attach_request function

The stream_id argument should be supplied with a value that is equal to the stream ID of the

stream that it would like to receive (i.e., one of the streams that were advertised by a talker on an

AVB network). The declaration_type argument should be set to the type of listener attribute

that should be declared (a numeric value representing a listener type of either ready, ready failed, or

asking failed). The value of the declaration_type argument is dependent on the type of talker

attribute registered for the stream. A listener searches through its list of attributes for the talker

attribute with the stream ID of the stream it would like to receive.

• If the talker attribute is not found, or a talker failed attribute is found, the

declaration_type argument is set to asking failed.

• If the talker attribute is found and its type is talker advertise, the declaration_type

argument is set to ready.

A call is made to mrp_mad_join_request_notify to request MAD to declare a listener

attribute of the type specified by the declaration_type argument. The declared listener

attribute’s stream ID field is set to the value of the stream_id argument.

int msrp_deregister_stream_request (u8 stream_id [8]);

int msrp_register_attach_request (

 u8 stream_id [8],

 int declaration_type);

269

10.7.1.4 Stopping Stream Reception

If a listener is receiving a stream and it would like to stop this reception, it makes a call to the MSRP

kernel module’s msrp_deregister_attach_request function. This function represents

MSRP’s deregister attach request service primitive, and its signature is shown in Listing 25. An

application supplies this function with the stream ID of the stream that it no longer would like to

receive. This function then calls the mrp_mad_leave_request_notify function to withdraw

the listener attribute that has the stream ID indicated by the stream_id argument.

Listing 25: msrp_deregister_attach_request function

10.7.2 MSRP Callback Functions

The MSRP kernel module defines a number of callback functions that a talker and/or listener should

supply to it such that the module can notify it of certain events taking place. An msrp_ops struct

has been defined that contains pointers to the callback functions. The members of this struct are

shown in Listing 26. The callback functions’ signatures are shown in Listing 28 through to Listing

31.

int msrp_deregister_attach_request (

 u8 stream_id [8]);

270

Listing 26: msrp_ops struct

10.7.2.1 Callback Registration

The user of the MSRP kernel module should register an instance of an msrp_ops struct with the

MSRP kernel module to supply the module with pointers to application defined callback functions.

The MSRP kernel module defines the msrp_register function that allows an application to

register the callback functions with the module. Listing 27 shows the signature of this function.

Listing 27: msrp_register function

10.7.2.2 Stream Registration Notification

Listing 28 shows the msrp_register_stream_indication callback function. This function

is used to represent MSRP’s register stream indication service primitive. When a talker advertises a

stream on a bridged LAN, each listener is notified of the stream’s presence via the

msrp_register_stream_indication callback function. When a talker attribute is

registered on a listener, the MRP kernel module notifies the MSRP kernel module of this attribute

registration via the mrp_mad_join_indication callback function. The MSRP kernel module

then in turn notifies the listener of the stream’s presence via the

msrp_register_stream_indication callback function. The definitions of the function’s

struct msrp_ops

{

 msrp_register_attach_indication

 register_attach_indication;

 msrp_deregister_attach_indication

 deregister_attach_indication;

 msrp_register_stream_indication

 register_stream_indication;

 msrp_deregister_stream_indication

 deregister_stream_indication;

};

void msrp_register (struct msrp_ops * msrp_ops);

271

arguments are the same as those defined for the msrp_register_stream_request function

shown in Section 10.7.1.1 “Registering Streams”.

Listing 28: msrp_register_stream_indication function

10.7.2.3 Stream Deregistration Notification

Listing 29 shows the signature of the msrp_deregister_stream_indication callback

function. This function represents MSRP’s deregister stream indication service primitive. When a

stream is no longer being offered by a talker, it withdraws the talker attribute for the stream. When

the talker attribute is deregistered from a listener, the listener’s MRP kernel module notifies its

MSRP kernel module of this via the mrp_mad_leave_indication callback function. This in

turn notifies the listener via the msrp_deregister_stream_indication callback function.

The stream_id argument’s value is the stream ID of the stream that is no longer offered by the

talker.

Listing 29: msrp_deregister_stream_indication function

10.7.2.4 Stream Reception Notification

Listing 30 shows the signature of the msrp_register_attach_indication callback

function. This function is used to represent MSRP’s register attach indication service primitive.

typedef int (*msrp_register_stream_indication) (

 u8 stream_id [8],

 int declaration_type,

 struct msrp_data_frame_parameters *

 msrp_data_frame_parameters,

 struct msrp_tspec * msrp_tspec,

 struct msrp_priority_and_rank * msrp_priority_and_rank,

 u32 accumulated_latency);

typedef int (*msrp_deregister_stream_indication) (

 u8 stream_id [8]);

272

When a listener on a network requests attachment to a stream (by declaring a listener attribute), the

listener attribute is registered on the talker’s port. The MRP kernel module notifies the MSRP kernel

module of the attribute registration via the mrp_mad_join_indication callback function. The

talker that initially advertised the stream is then notified of this attachment request via the

msrp_register_attach_indication callback function. The stream_id argument is the

stream ID of the talker’s stream that the listener is requesting attachment to. The

declaration_type argument is a numeric value indicating the type of the listener attribute that

was registered on the talker’s port. The type of listener attribute is either listener ready, listener

ready failed, or listener asking failed. When this callback function is called, and the

declaration_type has a numeric value indicating that the listener attribute has a type of either

listener ready or listener ready failed, the talker should start the transmission of the stream identified

by the value of the stream_id parameter.

Listing 30: msrp_register_attach_indication function

10.7.2.5 Stream Reception Deregistration Notification

Listing 31 shows the signature of the msrp_deregister_attach_indication callback

function. This function is used to represent MSRP’s deregister attach indication service primitive.

When no more listeners are interested in receiving a particular stream (when all of the listeners that

were receiving a particular stream have withdrawn their listener attribute for the stream), the listener

attribute is deregistered from the talker. The MRP kernel module notifies the MSRP kernel module

of this attribute deregistration via the mrp_mad_leave_indication callback function. The

talker that is transmitting the stream is then notified that no listeners would like to receive the

particular stream via the msrp_deregister_attach_indication callback function. The

value of the stream_id argument is the stream ID of the stream that no more listeners are

interested in receiving. When this callback function is called, the talker stops the transmission of the

stream.

typedef int (*msrp_register_attach_indication) (

 u8 stream_id [8],

 int declaration_type);

273

Listing 31: msrp_deregister_attach_indication function

10.7.3 MSRP User-space Functions

The MSRP kernel module allows for user-space applications to interact with it via a set of defined

user-space functions. These functions are very similar to those of the MSRP kernel module, and are

briefly introduced here. The Ethernet AVB endpoint devices, and the IEEE 1394/Ethernet AVB

audio gateway devices have been developed as user-space proof of concept applications. These

applications interact with MSRP via the user-space functions. A user-space application that makes

use of the functionality of MSRP creates an MSRP struct and passes it to the MSRP_init function

for initialisation. The signature of the MSRP_init function is shown in Listing 32. The

MSRP_init function also expects to receive pointers to application defined callback functions

representing the indication service primitives defined by MSRP.

Listing 32: MSRP_init function

The signatures of the callback functions are shown in Listing 33. The arguments of these functions

are the same as those defined for the MSRP kernel module (the argument names use a different

naming convention but retain the same meanings).

typedef int (*msrp_deregister_attach_indication) (

 u8 stream_id [8]);

int MSRP_init (

 MSRP * msrp,

 MSRP_registerStreamIndication registerStreamIndication,

 MSRP_deregisterStreamIndication deregisterStreamIndication,

 MSRP_registerAttachIndication registerAttachIndication,

 MSRP_deregisterAttachIndication deregisterAttachIndication);

274

Listing 33: MSRP callback functions

There is a set of user-space functions that allow user-space applications to register and deregister

streams on AVB networks, and to register and deregister attachment to streams on offer by talkers on

AVB networks. These functions are shown in Listing 34. These functions are similar to the functions

of the kernel module. The first argument of each function is a pointer to the user-space MSRP struct

to which the function call applies. All of the other arguments have the same definitions as those of

the MSRP kernel module.

typedef int (*MSRP_registerStreamIndication) (

 uint8 streamID [8],

 int declarationType,

 uint8 destinationAddress [6],

 uint16 vlanIdentifier,

 uint16 maxFrameSize,

 uint16 maxIntervalFrame,

 uint8 dataFramePriority,

 uint8 rank,

 uint32 accumulatedLatency);

typedef int (*MSRP_deregisterStreamIndication) (

 uint8 streamID[8]);

typedef int (*MSRP_registerAttachIndication) (

 uint8 streamID[8],

 int declarationType);

typedef int (*MSRP_deregisterAttachIndication) (

 uint8 streamID[8]);

275

Listing 34: MSRP functions

Figure 136 shows how the MSRP_registerStreamRequest function would be used from user

space. Calling this function results in the kernel module’s msrp_register_stream_request

function being called, which results in a talker advertise attribute being declared. When this attribute

is registered on other stations, MSRP is notified via its mrp_mad_join_indication callback

function. This results in kernel space and user space listener applications being notified of the

presence of the stream via the msrp_register_attach_indication and

MSRP_registerAttachIndication functions, respectively.

int MSRP_registerStreamRequest (

 MSRP * msrp,

 uint8 streamID [8],

 int declarationType,

 uint8 destinationAddress [6],

 uint16 vlanIdentifier,

 uint16 maxFrameSize,

 uint16 maxIntervalFrames,

 uint8 dataFramePriority,

 uint8 rank,

 uint32 accumulatedLatency);

int MSRP_deregisterStreamRequest (

 MSRP * msrp,

 uint8 streamID [8]);

int MSRP_registerAttachRequest (

 MSRP * msrp,

 uint8 streamID [8],

 int declarationType);

int MSRP_deregisterAttachRequest (

 MSRP * msrp,

 uint8 streamID [8]);

276

Figure 136: MSRP user-space usage

10.7.4 Using the MSRP User-space Functions

The Ethernet AVB devices that were developed as part of this study make use of the MSRP user-

space functions. When one of the AVB devices has an AVTP stream to offer (represented by an

output of the AVB component), it advertises this to an AVB network by calling the

MSRP_registerStreamRequest function. This function has to be supplied with a number of

arguments:

• streamID: At initialisation time, a unique stream ID is associated with each AVB output.

When the AVTP stream (represented by the AVB output) is advertised to an AVB network, the

stream ID associated with the output is supplied to the streamID argument.

• declarationType: When an AVB device initially advertises a stream to an AVB network,

the declarationType argument is supplied with a value that represents a talker advertise

declaration type.

• destinationAddress: When the AVB devices are initialised, each AVB output is assigned

a unique multicast MAC address by the MAAP component. The destinationAddress

argument is supplied with the value of this multicast MAC address.

• vlanIdentifier: By default, AVB streams are transmitted on VLAN 2, and this is the value

that the AVB devices supply to this argument. It would be possible to allow this value to be user

defined.

MSRP_registerStreamRequest

msrp_register_stream_request

mrp_mad_join_request_notify

MSRP_registerAttachIndication

msrp_register_attach_indication

mrp_mad_join_indication

277

• maxFrameSize: Each output of the AVB component is aware of the number of sequences it

transmits, and is aware of the number of events that it packs into each AVTP frame. It is also

aware of the AVTP header size. With this information, each output is able to calculate the

maximum size AVTP frame it will transmit. This value is supplied to the maxFrameSize

argument.

• maxIntervalFrames: The AVB devices only implement class A streams (class A has a class

measurement interval of 125 µs). The AVB devices transmit one frame per class measurement

interval and thus set the value of this parameter to one.

• dataFramePriority: By default, class A streams are transmitted using priority three, and

class B streams are transmitted using priority two (see Section 4.2.2.2 “Stream Reservation

Traffic Classes”). The AVB devices provide this argument with the default value for class A

streams. It would be possible to allow this value to be user defined.

• rank: For the AVB devices, each output has the rank argument set to one, which is the default

value (see Section 3.2.4.5.1.4 “Priority and Rank”).

• accumulatedLatency: No latency measurements were made for the AVB devices, and thus

the value of this argument is set to zero.

When one of the AVB devices no longer has one of its streams to offer, it calls the

MSRP_deregisterStreamRequest function and supplies it with the stream ID that identifies

the stream. The stream ID value is maintained by the output (that represents the stream) of the AVB

component.

When one of the AVB devices would like to receive a particular AVTP stream, it calls the

MSRP_registerAttachRequest function which results in a listener attribute being declared

for the requested stream. The streamID argument is supplied with the value of the stream ID of the

talker’s stream. This value has to be supplied to the application via a higher layer protocol. Chapter

11 “XFN Control and Representation” details how this is performed with the XFN protocol. The type

of listener attribute that should be declared for the stream is specified via the declarationType

argument. If a talker advertise has been received for the stream (as indicated by the

MSRP_registerStreamIndication), the AVB devices supply this argument with a value that

represents an attribute type of listener ready.

278

The Ethernet AVB devices implement the callback functions (representing MSRP’s indication

service primitives) shown in Listing 33. When the MSRP_registerAttachIndication

callback function is called, it indicates to the device that at least one listener is interested in receiving

one of its streams. The value of the declarationType argument specifies the type of listener

attribute that was registered by the device for the stream. If the value indicates that the listener

attribute is a listener ready or a listener ready failed attribute, then the device locates the output of

the AVB component whose stream ID matches the value of the streamID argument. Once the

output has been located, the transmission of the AVTP stream associated with output is started.

When the MSRP_deregisterAttachIndication callback function is called, it indicates to

the device that the listener(s) previously interested in receiving the stream identified by the

streamID argument are no longer interested in the reception, i.e., the listener attribute for the

stream has been deregistered from the device. When this callback function is called, the device

locates the output of the AVB component whose stream ID matches the value of the streamID

argument. Once the output has been located, the transmission of the AVTP stream associated with

the output is stopped.

10.8 Forwarding and Queuing (FAQ) Kernel Module

A kernel module has been implemented as a placeholder for the implementation of the forwarding

and queuing rules specified in IEEE 802.1 Qav (see Section 4.2.2 “Forwarding and Queuing”). This

module simply accepts Ethernet frames and transmits them out of the Ethernet interface of the

Ethernet AVB devices. At the time of developing the Ethernet AVB devices, no suitable Ethernet

network cards and drivers were available. The credit-shaper algorithm specified in IEEE 802.1 Qav

requires that packets be transmitted at even intervals. Packets should not be transmitted in bursts, or

clusters. A talker transmitting a class A stream transmits 8000 packets per second, and thus a packet

transmission should occur once every 125 µs. This requirement places strict constraints on the

behaviour of an implementation of the credit-shaper algorithm. Thus, dedicated hardware is required

to meet the performance requirements of the credit-shaper algorithm.

279

10.9 AVB Device Interface

Each Ethernet AVB device is represented in software with an AVBDevice struct and a set of

functions that acts on it. The AVBDevice struct represents an AVB device (it is able to represent

either an endpoint device or an audio gateway device) and is responsible for coordinating the

activities of the components of the device (see Figure 122 on page 228). Each Ethernet AVB audio

device provides a function API interface that allows for control over its parameters and behaviour.

This interface allows other modules (for example, a command and control module such as one

representing the XFN protocol) to interact with the device and make adjustments to its parameters.

This section provides an overview of the core functionality provided by this interface.

10.9.1 Internal Connections

Section 10.1 “Audio Components” discusses the general architecture that the AVB devices use to

make connections between its audio inputs and audio outputs. Each audio device provides a function

API interface that allows for associations between the inputs and outputs of the device to be obtained

and for them to be created and destroyed.

The Ethernet AVB endpoint devices have a number of AVB stream inputs and analogue inputs, and

a number of AVB stream outputs and analogue outputs. The IEEE 1394/Ethernet AVB audio

gateway devices have a number of IEEE 1394 and AVB stream inputs, and a number of IEEE 1394

and AVB stream outputs. These devices were developed such that the details of these inputs and

outputs (such as their type, and the formatting of the audio) are abstracted away from the interface.

From the perspective of an external entity (such as an XFN entity), these are viewed as generic

inputs and outputs.

Figure 137shows an example IEEE 1394/Ethernet AVB audio gateway device. This device has four

audio inputs (two IEEE 1394 inputs, and two AVB inputs), and four audio outputs (two IEEE 1394

outputs, and two AVB outputs). Audio signals arriving at the inputs of the device are patched

through to the outputs of the device. The input to output associations are shown in Table 43.

280

Figure 137: Generic inputs and outputs

Input Output

1 4

2 3

3 1

4 2

Table 43: Input to output associations

Listing 35 shows the functions of an AVB device related to its audio inputs and outputs (both the

Ethernet AVB endpoint devices and the IEEE 1394/Ethernet AVB audio gateway devices use the

same function interface). The AVBDevice_getNumGlobalInputs function allows for the

retrieval of the number of audio inputs that an AVB device has, and the

AVBDevice_getNumGlobalOutputs function allows for the retrieval of the number of audio

outputs that an AVB device has. If, for example, an Ethernet AVB endpoint device has an analogue

input, and three AVTP stream inputs, then a call to AVBDevice_getNumGlobalInputs for the

device would return the value four. The avbDevice argument is a pointer to an AVBDevice struct

representing the Ethernet AVB device.

Ethernet AVB audio

IEEE 1394 audio

2

3

4

1

2

3

4

1

281

The AVBDevice_getGlobalInputName function allows for the retrieval of the name of a

particular input of an AVB device, and the AVBDevice_getGlobalOutputName function

allow for the retrieval of the name of a particular output of a device. The inputIndex argument

should be supplied with the index of the input of interest. If, for example, an AVB device has four

inputs, the inputIndex argument will accept values ranging from zero through to three, where

zero is used to address the first input. Similarly, the outputIndex argument should be supplied

with the index of the output of interest.

The AVBDevice_getOutputInputPatchIndex function allows for the retrieval of the index

of the input that is patched through to a specific output (as specified by the outputIndex

argument). The AVBDevice_setOutputInputPatchIndex function allows for patches to be

created between inputs and outputs. The outputIndex argument should be supplied with the

index of the output that is to be associated with the input. The inputIndex argument should be

supplied with the index of the input which is to be associated with the output (as specified with the

value of the outputIndex argument). In order to break a connection, a value of -1 is supplied to

the inputIndex argument.

282

Listing 35: Audio input and output functions

10.9.2 IEEE 1394 Interface

The IEEE 1394/Ethernet AVB audio gateway devices provide an interface that allows for

isochronous stream connections to be established across IEEE 1394 buses. Isochronous streams are

established when a transmitting IEEE 1394 device transmits an isochronous stream on a particular

isochronous channel, and a receiving device is configured to receive the isochronous stream on that

channel. Listing 36 shows the interface functions that were created for an audio gateway device.

int AVBDevice_getNumGlobalInputs (

 AVBDevice * avbDevice);

int AVBDevice_getNumGlobalOutputs (

 AVBDevice * avbDevice);

char * AVBDevice_getGlobalInputName (

 AVBDevice * avbDevice,

 int inputIndex);

char * AVBDevice_getGlobalOutputName (

 AVBDevice * avbDevice,

 int outputIndex);

int AVBDevice_getOutputInputPatchIndex (

 AVBDevice * avbDevice,

 int outputIndex);

int AVBDevice_setOutputInputPatchIndex (

 AVBDevice * avbDevice,

 int outputIndex,

 int inputIndex);

283

Listing 36: Gateway IEEE 1394 functions

• AVBDevice_get1394InputIsochChannelNumber: This function allow for the retrieval

of an IEEE 1394 input’s isochronous channel number. The input isochronous channel number

int AVBDevice_get1394InputIsochChannelNumber (

AVBDevice * avbDevice,

int inputIndex);

int AVBDevice_get1394OutputIsochChannelNumber (

AVBDevice * avbDevice,

int outputIndex);

int AVBDevice_set1394InputIsochChannelNumber (

AVBDevice * avbDevice,

int inputIndex,

int isochChannel);

int AVBDevice_set1394OutputIsochChannelNumber (

AVBDevice * avbDevice,

int outputIndex,

int isochChannel);

int AVBDevice_start1394Output (

 AVBDevice * avbDevice,

 int outputIndex);

int AVBDevice_stop1394Output (

 AVBDevice * avbDevice,

 int outputIndex);

int AVBDevice_start1394Input (

 AVBDevice * avbDevice,

 int inputIndex);

284

represents the isochronous channel that the IEEE 1394 input should receive its stream on. The

inputIndex argument should be supplied with the index of the IEEE 1394 input of the 1394

component (Figure 124 on page 232 shows an example 1394 component with inputs). The

AVBDevice_getNum1394Inputs function allows for the retrieval of the number of IEEE

1394 stream inputs that an audio gateway device has. If the device has three IEEE 1394 stream

inputs, the inputIndex argument would accept values from zero through to two where zero is

used to address the first input.

• AVBDevice_get1394OutputIsochChannelNumber: This function allows for the

retrieval of an IEEE 1394 output’s isochronous channel number. The output isochronous channel

number represents the isochronous channel number that is associated with the IEEE 1394 output

stream. The outputIndex argument should be passed the index of the IEEE 1394 output of

the 1394 component. The AVBDevice_getNum1394Outputs function allows for the

retrieval of the number of IEEE 1394 stream outputs that an audio gateway has.

• AVBDevice_set1394InputIsochChannelNumber: This function allows the

isochronous channel number of an IEEE 1394 input to be set. The inputIndex argument

should be passed the index of the input of the 1394 component. The isochChannel argument

should be set to the isochronous channel number that the input should receive its stream on.

• AVBDevice_set1394OutputIsochChannelNumber: This function allows the

isochronous channel number of an IEEE 1394 output to be set. The isochChannel argument

should be set to the isochronous channel number that the output’s stream is transmitted on.

• The IEEE 1394/Ethernet AVB audio gateway devices also have a number of functions that allow

isochronous streaming to be started and stopped. The AVBDevice_start1394Output and

AVBDevice_stop1394Output functions start and stop the transmission of an isochronous

stream for a particular IEEE 1394 output. The AVBDevice_start1394Input and

AVBDevice_stop1394Input functions start and stop the reception of an isochronous stream

for a particular IEEE 1394 input. Similarly, there are functions that allow for the current

streaming state of the inputs and outputs to be obtained:

AVBDevice_is1394InputStarted and AVBDevice_is1394OutputStarted.

285

10.9.3 AVB Interface

The AVB devices that were developed provide an interface that allows for the triggering of AVB

stream advertisements and for triggering attachment to AVB streams. These functions for an AVB

device are shown in Listing 37 (the functions are the same for the Ethernet AVB endpoint devices,

and for the IEEE 1394/Ethernet AVB audio gateway devices).

Listing 37: Gateway stream registration functions

• The AVBDevice_registerAVTPStream function instructs the audio gateway to register an

AVB stream (represented by an output of the AVB component) with the attached AVB network.

The outputStreamIndex argument should be supplied with the index of the AVB output

that is to be registered. Calling this function results in the output being located and the stream

advertised to the AVB network via the MSRP component.

• The AVBDevice_deregisterAVTPStream function instructs the audio gateway to

deregister an AVB stream from the attached AVB network. The outputStreamIndex

argument should be supplied with the index of the AVB output that is to be deregistered. Calling

this function results in the output being located, and the stream advertisement for the stream

int AVBDevice_registerAVTPStream (

AVBDevice * avbDevice,

int outputStreamIndex);

int AVBDevice_deregisterAVTPStream (

AVBDevice * avbDevice,

int outputStreamIndex);

int AVBDevice_registerAVTPStreamAttach (

AVBDevice * avbDevice,

int inputStreamIndex);

int AVBDevice_deregisterAVTPStreamAttach (

AVBDevice * avbDevice,

int inputStreamIndex);

286

being withdrawn. The request to withdraw the stream advertisement is handled by the MSRP

component.

• The AVBDevice_registerAVTPStreamAttach function instructs the audio gateway to

request attachment to a stream. The inputStreamIndex argument is the index of the input of

the AVB component that is to receive the particular stream. Before calling

AVBDevice_registerAVTPStreamAttach, the AVB input given as an argument needs

to know the stream ID of the stream that it is to receive. The audio gateway defines the

AVBDevice_setInputStreamID function (as shown in Listing 38) that allows for this to

happen. Once the AVBDevice_registerAVTPStreamAttach function has been called,

the input is located, and attachment to the stream is requested via the MSRP component.

• The AVBDevice_deregisterAVTPStreamAttach function instructs the audio gateway

to detach from a stream that it is receiving. The inputStreamIndex argument is supplied

with the index of the input of the AVB component that should stop receiving the stream. When

this function is called, the input is located, and detachment from the stream is requested via the

MSRP component.

Listing 38: Gateway_setInputStreamID function

10.10 Conclusion

This chapter provided a detailed overview of the implementation of the Ethernet AVB endpoint and

IEEE 1394/Ethernet AVB audio gateway devices with a focus on how internal and external audio

connections are established. Each device has a number of audio interfaces that are able to receive and

transmit audio signals in various formats: an Ethernet AVB endpoint device allows for the transfer of

audio between its analogue interface and its Ethernet interface (and vice versa), and the IEEE

1394/Ethernet AVB audio gateway device allows for the transfer of audio between its IEEE 1394

interface and its Ethernet interface (and vice versa). These devices provide a means to configure the

internal audio routing between the audio interfaces via a set of functions.

int AVBDevice_setInputStreamID (

AVBDevice * avbDevice,

int inputIndex,

uint8 streamID [8]);

287

The devices also allow for inter-device audio streaming to take place: the endpoint and audio

gateway devices are able to transmit and receive audio signals over an Ethernet AVB network, and

the audio gateway device is able to transmit and receive audio signals over an IEEE 1394 bus. These

devices provide a means to establish stream connections across these networks and control over this

connection management is provided via a set of functions.

The implementation of these devices, and the provision of the functions that allow for control over

their parameters, allow for external modules to control the devices. Chapter 11 “XFN Control and

Representation” details how control over these devices has been achieved with the XFN command

and control protocol.

288

Chapter 11 XFN Control and

Representation

Each of the audio devices used or developed during this study contains an XFN stack. This stack is

an implementation of the XFN protocol (see Section 7.4 “XFN”). It allows for the creation of a

seven-level XFN address hierarchy and allows for XFN network communication. Amongst other

things, the stack provides a means for remote devices to obtain and set parameter values within a

device. The core of the XFN stack was developed by Universal Media Access Networks (UMAN)

[36] and was extended as part of this study.

One of the goals of the XFN protocol is to provide a common interface to a diverse range of devices.

For each of the audio device types used in this study, an XFN address hierarchy has been defined.

When each device is initialised, it builds up an XFN address hierarchy that represents the

hierarchical structure of the device itself. Via the address hierarchy, it is possible to view the

parameters that are available on a device, as well as obtain and set these parameter values. Through

this mechanism, it is possible to configure audio streaming internally within a device, and also

between devices.

This chapter discusses how the XFN protocol has been used to achieve the second goal of this work:

provide a common view of the parameters of IEEE 1394 and Ethernet AVB audio devices to allow

for remote control over these parameters. This remote control has been achieved via a graphical

patchbay application.

11.1 XFN Stack Component

In the AVB audio devices that were developed, the reusable XFN Stack component (see Figure 122

on page 228) is represented with an XFN struct and a set of functions that operate on it. The XFN

Stack component allows a device to build an XFN address hierarchy which enables remote

controllers to obtain and set parameters of the device.

289

11.2 Graphical Representation of XFN Devices

Each of the audio devices introduced in Chapter 9 “Networked Audio Devices” is remotely

controllable via the XFN protocol. Each device builds up an XFN address hierarchy that reflects the

structure of the device with its parameters. These devices allow for their parameter values to be

obtained and set remotely.

An application, known as the Connection Manager, was developed during this study to represent and

control a number of XFN capable devices. This application makes use of the XFN command and

control protocol to discover available XFN devices on a network, obtain their parameter values, and

graphically represent them. Any changes to parameter values via the application’s graphical user

interface (GUI) are communicated to the appropriate devices via XFN messages.

11.2.1 Connection Manager Architecture

Figure 138 shows the architecture of the Connection Manager. The Connection Manager consists of

a GUI component that is used to represent XFN devices graphically, and also allows for user control

over the parameters of the devices. The problem domain component (PDC) keeps track of devices

and their parameters’ states. It accepts requests from the GUI component for parameter value

changes, and also communicates to the GUI any parameter value changes, so that they may be

represented graphically. The XFN stack component is responsible for all XFN network

communication. It accepts requests from the PDC to obtain parameter values from remote devices

and also set their parameter values. The XFN stack component communicates any responses back to

the PDC.

290

Figure 138: Connection Manager architecture

11.3 Building an XFN Address Hierarchy with the XFN Stack

Component

The XFN Stack component of the AVB devices provides a set of functions that allow a device to

build up an XFN address hierarchy to be used to address device parameters. The XFN protocol

allows an XFN stack to have a number of nodes, each with its own address hierarchy. Each node

would typically represent a unique device. These nodes are useful when a device is representing a

number of other devices (a proxy device, for example). The functions used for building up an address

hierarchy are shown in Listing 39.

XFN

stack

GUI

PDC

291

Listing 39: XFN Stack component's address hierarchy building functions

int XFN_addApplicationNode ();

int XFN_addSectionBlockToLastAppNode (

 uint32 nodeID,

 char * levelAlias);

int XFN_addSectionTypeToLastSectionBlock (

 uint32 nodeID,

 char * levelAlias);

int XFN_addSectionNumberToLastSectionType (

 uint32 nodeID,

 char * levelAlias);

int XFN_addParameterBlockToLastSectionNumber (

 uint32 nodeID,

 char * levelAlias);

int XFN_addParameterBlockIndexToLastParameterBlock (

 uint32 nodeID,

 char * levelAlias);

int XFN_addParameterTypeToLastParameterBlockIndex (

 uint32 nodeID,

 char * levelAlias);

int XFN_addParameterIndexToLastParameterType (

 uint32 nodeID,

 char * levelAlias);

int XFN_addParameterToLastParameterIndex (

 uint8 valueFormat,

 XFNParameterCallback parameterCallback,

 void * applicationData);

292

When building up an address hierarchy with the XFN Stack component, an application first adds a

top-level application node to the address hierarchy by calling the XFN_addApplicationNode

function. The XFN Stack component keeps track of the application node that was last added to the

stack. Figure 142 shows conceptually what the stack’s address hierarchy looks like after this call.

Once the node has been added, it is possible to start building up the address hierarchy for that node,

starting from the top of the XFN address hierarchy structure.

Figure 139: An application node

• XFN_addSectionBlockToLastAppNode: This function allows for a section block to be

added to the node that was last added to the stack. This function’s nodeID argument is the value

of the section block node of the address hierarchy, and the levelAlias argument is the node’s

alias. For example, an application could add an input section block to the address hierarchy

which has a value of 0x01 (which is defined in the XFN specification), and is able to set the tree

node’s alias to anything it likes (“Inputs”, for example). Aliases are used for meaningful display

of the XFN address hierarchy. When a section block is added to the XFN Stack component, the

stack keeps track of the last section block that was added. Figure 140 shows conceptually what

the stack’s address hierarchy looks like after adding a section block.

Figure 140: An application node with a section block

• XFN_addSectionTypeToLastSectionBlock : Once a section block has been added to

the XFN address hierarchy, it is possible to add section types to it with this function. This

function adds a section type to the section block that was last added to the XFN address

hierarchy. The arguments to this function are similar to those of the

XFN_addSectionBlockToLastAppNode function. The nodeID argument is the value of

Application node

Application node

Section block: Inputs (0x01)

293

the section type being added to the address hierarchy, and the levelAlias argument is an alias

for the section type being added. For example, the XFN specification defines the value 0x04 to

represent the stream interface section type. An application could give this an alias of “Stream

interfaces”, for example. Figure 141 shows conceptually what the stack’s address hierarchy looks

like after adding a section type.

Figure 141: An application node with a section block

An application continues this process by adding a section number, parameter block, parameter block

index, parameter type, and a parameter index. Once a parameter index has been added to the address

hierarchy, it is possible to associate a parameter with it via the

XFN_addParameterToLastParameterIndex function. The function expects the following

arguments:

• The valueFormat argument of this function is a numeric value that is used to represent the

format of the parameter’s value. The XFN specification defines values used to represent the

various parameter value formats. Value formats are conveyed in XFN messages to allow for their

correct interpretation on receipt. For example, the specification defines values to represent

integers, floats, and data blocks of various sizes.

• The parameterCallback argument is a pointer to an application supplied callback function

that is called when some action is performed on the parameter. For example, when a remote

device tries to obtain or set the parameter’s value, this callback function is called to request the

application to perform the action. The callback function specifies the specific action to perform.

Figure 98 on page 197 shows the process of receiving an XFN message and the resulting

parameter callback function call.

• The applicationData argument is a pointer to application data that is supplied to the

callback function when it is called. An application could associate a single callback function with

multiple parameters and use unique application data to identify the parameter that the invocation

of the callback function is associated with.

Application node

Section block: Inputs (0x01)

Section type: Stream interfaces (0x04)

294

11.4 Device Discovery

Device discovery is the process of discovering the available XFN capable devices that exist on a

particular network. There is a need to be able to obtain the IP addresses of these devices such that

communication with these devices can take place. As such, each XFN device builds up an address

hierarchy that represents the IP addresses bound to the interfaces of the device. The address

hierarchy that is built up to represent IP address parameters is shown in Figure 142:

• Each XFN capable device has a configuration section block under which any device

configuration parameters may reside.

• Network interfaces are divided into interfaces through which audio and video data may be

streamed, and those through which audio and video data may not be streamed (a management

interface of a device may be classified as such, for example). Thus, a stream interface section

type and a non-stream interface section type has been defined under which configuration

parameters related to these interfaces are addressed.

• The section number level in the address hierarchy is used to address individual interfaces of each

type.

• Each interface may have a number of IP related parameters associated with it (such as an IP

address, subnet mask, and a default gateway). Thus, the IP parameter block has been defined to

allow IP related parameters to be addressed.

• Each interface may have associated with it a number of IP addresses and the use of unique

parameter block indexes are used to address each set of IP information.

• Under each unique parameter block index are listed the IP parameters that a device may have.

These parameters include IP address, subnet mask, and default gateway parameters.

• The parameter index is not used for IP related parameters, and is set to one.

On an IEEE 1394 audio device, the IP addresses bound to the IEEE 1394 interfaces of the device are

listed under the stream interface section type, and the IP address bound to the device’s management

interface is listed under the non-stream interface section type. Similarly, on the AVB devices

developed during this study, the IP address bound to the Ethernet and IEEE 1394 interfaces of the

devices are listed under the stream interface section type. The AVB devices do not have management

295

interfaces. These level hierarchies allow remote XFN capable devices to obtain the IP addresses

bound to the interfaces of the XFN capable devices.

Figure 142: Portion of the XFN address hierarchy for representing IP addresses

Figure 143 shows how device discovery takes place with the XFN protocol. When an XFN capable

device would like to discover other XFN capable devices on a network, it transmits a broadcast XFN

get value message to the network for the IP address parameter values of each device (as shown at the

top of the figure). Each device responds with a unicast message to the requester with the value(s) of

its IP address parameter(s) (as shown at the bottom of the figure). Once an XFN device is aware of

another XFN capable device, it can query it directly as it knows the device’s IP address.

Section type: Stream interface

Section number: 2 (Interface number)

Parameter block: IP

Parameter block index: 1

Parameter type: IP address

Parameter index: 1

Section type: Non-stream interface

Section number: 1 (Interface number)

Parameter block: IP

Parameter block index: 1

Parameter type: IP address

Parameter index: 1

Section block: Configuration

296

Figure 143: Device discovery

11.4.1 XFN Stack Component Device Discovery

The XFN Stack component of the Connection Manager (shown in Figure 138) is represented by an

XFN object. This object inherits its core functionality from an implementation of the XFN protocol

developed by UMAN and extends it. This object is responsible for all communication between the

PDC of the Connection Manager and remote XFN devices. Once an XFN object has been created, it

may be used to discover other XFN devices that exist on a network. The XFN object notifies the

Connection Manager’s PDC component of events via a listener interface. An XFNListener class

has been defined that contains virtual functions that the PDC should implement. The PDC inherits

XFN

Controller

XFN

Device

XFN

Device

XFN

Device

XFN

Device

Switch

XFN

Controller

XFN

Device

XFN

Device

XFN

Device

XFN

Device

Switch

297

from the XFNListener class and overrides its functions. The PDC registers itself with the XFN

object via the addXFNListener method of the XFN object (shown in Listing 40).

Listing 40: addXFNListener function

The XFNListener class defines the ipDiscoverCallback virtual function (shown in Listing

41) that the PDC of the Connection Manager overrides. When the XFN object becomes aware of the

presence of an XFN capable device, the Connection Manager is made aware of this device via this

callback function. The ipAddress argument holds the value of the IP address of the discovered

XFN capable device. The sessionID argument is a value supplied to the XFN object when it was

requested to discover the available XFN devices on the network.

Listing 41: ipDiscoverCallback function

The XFN object defines the discoverIPAddresses function that allows the Connection

Manager to discover the available XFN devices that are on a network. This function is shown in

Listing 42. When this function is called, the XFN object sends out a broadcast packet (to the address

specified by the broadcastAddress argument) containing an XFN get value command for all of

the values of the IP address parameter types. Each device responds individually with its IP

address(es). When this happens, the Connection Manager is notified via the

ipDiscoverCallback function. The value of the sessionID argument is supplied to the

ipDiscoverCallback function to allow requests and responses to be matched. Once the

Connection Manager has been made aware of an XFN device, it is able to communicate with the

device directly using its IP address.

void add XFNListener (XFNListener * xfn Listener);

virtual void ipDiscoverCallback (

const uint32 ipAddress,

const int sessionID);

298

Listing 42: discoverIPAddresses function

Figure 144 shows the sequence of events that takes place when the XFN object is called upon to

discover the available XFN capable devices that exist on a network.

Figure 144: Device discovery sequence diagram

11.4.2 Graphical Representation of Discovered Devices

Figure 145 shows an example audio network composed of two IEEE 1394 buses joined together with

an IEEE 1394 bridge, and one of the IEEE 1394 buses joined to an AVB network with an IEEE

1394/Ethernet AVB audio gateway device. The IEEE 1394 buses and the AVB network are each

represented with a unique IP subnet. In this example, the IEEE 1394 buses are represented with the

IP subnets 192.168.103.0/24 and 192.168.1.0/24, and the Ethernet AVB network is represented with

the IP subnet 146.231.120.0/21. The XFN protocol allows a controlling device (for example, a

control application running on a computer) to be located anywhere on the network. The figure shows

a PC connected to one of the IEEE 1394 buses, and a PC connected to the Ethernet AVB network.

const bool discoverIPAddresses (

const uint32 broadcastAddress,

const int sessionID);

PDC XFN Network

discoverIPAddresses

Broadcast get value

Unicast response

ipDiscoverCallback

299

Figure 145: An example audio network

In Figure 146 is the main display of the Connection Manager demonstrating how the network shown

in Figure 145 is graphically represented. When the Connection Manager is initialised, it discovers all

of the XFN compatible devices that exist on the network. The discovery is performed by transmitting

a broadcast XFN get value request for the values of the IP address parameters of all XFN devices.

Once the Connection Manager has a device’s IP address, it starts querying it. Initially, the

Connection Manager finds out what subnet the device is on, and the name of the device. Once it has

this information, it is able to graphically display it. XFN devices are organised into IP subnets and

each IP subnet is represented as a tab along the top of the display. For each IP subnet, the devices are

arranged along the axes of a matrix where the devices along the left hand side of the matrix are

viewed as devices that produce audio streams, and the devices along the top of the matrix are viewed

as devices that consume audio streams.

1394/AVB

audio gateway
Bridge PC

IEEE 1394

bridge

1394

device PC

1394

device

1394

device

AVB

device

300

Figure 146: The Connection Manager networks and devices display

11.5 Internal Device Routing

The XFN specification defines the model for representing internal patching capabilities within a

device whereby signal sources, signal destinations, and patch points are all modelled. Within a

device, audio signals are patched from signal source points to signal destination points. Some signal

destination points only accept a single source (e.g., an output of an audio mixer), and some signal

destination points may accept multiple signal sources (e.g., a stereo bus of an audio mixer). Shown in

Figure 147 is an example internal patching matrix of a device. This device has four signal source

points (Input 01 to Input 04), and four signal destination points (Output 01, Output 02, Bus 01 and

Bus 02). Shown in the figure are the patches that exist between the signal source points and signal

destination points. The outputs are only able to accept one signal source at a time, and the buses are

able to accept multiple sources at a time. Thus, the XFN protocol models every possible patch point

that exists between the signal source and destination points within a device.

301

Figure 147: An example internal patching matrix

Figure 148 and Figure 149 show how the XFN specification defines how a patching matrix is

modelled with the XFN protocol. Each input keeps track of the outputs to which it is patched, and

each output keeps track of the inputs that are patched through to it.

Figure 148 shows how this is achieved for the inputs of a system with crosspoint enable parameter

types:

• The audio inputs of a patching matrix are addressed under the audio section type of the signal

input section block.

• Each input is indexed with a unique section number value (the figure shows two inputs).

• Each input contains an output parameter block which is used to represent the outputs of the

patching matrix.

• Under each output parameter block is a unique parameter block index value for each output (the

figure shows two outputs for each input).

• For each parameter block index there is a crosspoint enable parameter type.

• As there is only one crosspoint enable parameter type for each unique parameter block index,

each parameter index has a value of one.

For the signal input section block, the crosspoint enable parameter type is a Boolean parameter used

to specify whether or not the input (identified by the section number) is patched through to the output

(identified by the parameter block index). A remote XFN device is able to query the crosspoint

enable parameters to determine which inputs are patched through to which outputs. A remote XFN

 O
utput 01

O
utput 02

B
us 01

B
us 02

Input 01

Input 02

Input 03

Input 04

302

capable device is also able to set the value of the crosspoint enable parameters in order to create

patches between specific inputs and outputs.

Figure 148: XFN input crosspoint modelling

Figure 149 shows how patching is achieved from the perspective of the outputs of a system with the

crosspoint enable parameter type. The XFN address hierarchy for the outputs is similar to the XFN

address hierarchy for the inputs (as shown in Figure 148), with a few exceptions:

• The outputs are listed under the audio section type of the signal output section block.

• For each output, there is an input parameter block under which all of the inputs are listed.

• Under each input parameter block is a unique parameter block index value for each input (the

figure shows two inputs for each output).

• For the signal output section block, the crosspoint enable parameter type determines whether the

output (identified by the section number) is receiving a signal from the input (identified by the

parameter block index).

A remote XFN device is also able to query these crosspoint enable parameters to determine which

inputs are patched through to which outputs. A remote XFN device is also able to set the value of

these crosspoint enable parameters in order to create patches between inputs and outputs.

Section block: Signal input

Section type: Audio

Parameter block index: 1

Parameter type: Crosspoint enable

Parameter index: 1

Section number: 1

Parameter block:

2

Output

2

Crosspoint enable

1

2

CE

1

1

CE

1

303

Figure 149: XFN output crosspoint modelling

The crosspoint enable parameters for the inputs and the outputs represent the same crosspoint control

from different perspectives. The rationale for having crosspoint enable parameters for both the inputs

and the outputs of an audio device is to allow for the tracing of audio signal paths through a device

from any point within a network. With this approach, it is possible to trace an audio signal from its

final destination through to its source, and it is possible to trace an audio signal from its source

through to its final destination. It is therefore necessary for each output to be aware of the input(s)

that it is receiving its signal(s) from, and for each input to be aware of the output(s) that it is sending

its signal(s) to.

The IEEE 1394 and AVB devices have a number of audio inputs and outputs, and in these devices

audio signals can be patched between these inputs and outputs. For example:

• IEEE 1394 audio devices: These devices have analogue, ADAT, and IEEE 1394 stream inputs

and outputs.

• Ethernet AVB endpoint devices: These devices have an analogue input and output, and a number

of Ethernet AVB stream inputs and outputs.

• IEEE 1394/Ethernet AVB gateway devices: These devices have a number of IEEE 1394 stream

inputs and outputs, and a number of Ethernet AVB stream inputs and outputs.

Section block: Signal output

Section type: Audio

Parameter block index: 1

Parameter type: Crosspoint enable

Parameter index: 1

Section number: 1

Parameter block: Input

2

Input

2

Crosspoint enable

1

2

CE

1

1

CE

1

304

The IEEE 1394 and Ethernet AVB devices build XFN address hierarchies (as shown in Figure 148

and Figure 149) for each of their inputs and outputs. This enables remote devices to create and

destroy patches between the inputs and outputs of the devices.

In the Ethernet AVB capable devices, each one of the crosspoint enable parameters is associated

with a callback function. When this function is called and a get value command is indicated to the

function (as a result of a remote XFN device performing a get value request on the parameter), the

Gateway_getOutputInputPatchIndex function of the device is called to determine if the

addressed input is patched through to the addressed output. The device returns either a true or false

indication to the requesting device. If the patch is enabled between the input and the output, the

device responds with a true to the requesting device. If the patch is not enabled, the device responds

with a false to the requesting device. When the parameter’s callback function is called and a set value

command is indicated to the callback function (as a result of a remote XFN device performing a set

value request on the parameter), the Gateway_setOutputInputPatchIndex function is

called in order to create or break a patch between the addressed input and output: a value of true

indicates that a patch should be created, and a value of false indicates that a patch should be broken.

11.5.1 Connection Manager Representation of Internal Device Routing

Each XFN device that the Connection Manager discovers is enumerated to discover its capabilities

and functionality. With the XFN protocol, it is possible to determine the number of child nodes that a

particular node in an XFN address hierarchy has. Each XFN capable device is able to process a get

child node aliases command. Associated with this command is the address of the XFN address

hierarchy node whose child node aliases should be obtained. If, for example, a device builds up an

XFN address hierarchy as shown in Figure 149, and a controller would like to know how many audio

outputs the device has, the controller will sent a get child node aliases command to the device

specifying the address of the audio section type of the signal output section block. The device

responds with the number of child nodes that the addressed nodes has, and the aliases of each one of

those nodes.

When the Connection Manager wants to know how many inputs a particular device has, it queries

the device to determine how many child nodes the audio section type of the signal input section

block has. Similarly, when the Connection Manager would like to know how many outputs a device

305

has, it queries the device to determine how many child nodes the audio section type of the signal

output section block has. Once these numbers have been obtained, it is possible to query the

parameters of each individual input (each represented with a unique section number of the audio

section type of the signal input section block), and it is possible to query the parameters of each

output (each represented with a unique section number of the audio section type of the signal output

section block).

Listing 43 shows two functions of the Connection Manager’s XFN Stack component. The

getNumAudioInputs function allows the Connection Manager to query a specific device to

determine the number of inputs it has. The getNumAudioOutputs function allows the

Connection Manager to query a specific device to determine the number of outputs it has. In each

instance, the theDeviceIPAddress argument should be supplied with the IP address of the

device that is being queried.

Listing 43: Obtaining input and output numbers

Each input and each output has associated with it a matrix pin name parameter type. By default, the

devices assign names to their inputs and outputs and the matrix pin name parameter type allows for

retrieval of these. For example, the analogue input of an Ethernet AVB endpoint device is named

Analogue Input 1, and the first AVTP input is named AVTP Input Multicore 1. The Connection

Manager retrieves the name of each input and output, and the state of the patches between these

inputs and outputs and stores them. Listing 44 shows two functions of the Connection Manager’s

XFN Stack component that allow for the retrieval of input and output names of remote XFN capable

devices. The getAudioInputName function returns the name of a specific input on a particular

device. The getAudioOutputName function returns the name of a specific output on a particular

device. The deviceIPAddress argument should be supplied with the IP address of the device

that is being queried and the inputIndex and the outputIndex arguments should be supplied

with the input’s index and output’s index, respectively.

const int getNumAudioInputs (

const uint32 theDeviceIPAddress);

const int getNumAudioOutputs (

const uint32 theDeviceIPAddress);

306

Listing 44: Obtaining input and output names

Listing 45 shows two functions of the Connection Manager’s XFN Stack component that allow for

obtaining and setting patches between a particular device’s inputs and outputs. The

getAudioOutputInputPatch function returns the state of a patch between a particular input

(as specified by the audioInputIndex argument) and a particular output (as specified by the

audioOutputIndex argument). This function returns the value of the crosspoint enable

parameter for the specified input and output. The setAudioOutputInputPatch function sets

the state of a patch between a particular input and a particular output as specified by the value of the

isPatched argument. If the value of the isPatched argument is true, the patch is created. If the

value of the isPatched argument is false, the patch is broken. This happens by setting the value of

the crosspoint enable parameter for the specified input and output.

Listing 45: Obtaining and setting patches

const String getAudioInputName (

const uint32 deviceIPAddress,

int inputIndex);

const String getAudioOutputName (

const uint32 deviceIPAddress,

int outputIndex);

const bool getAudioOutputInputPatch (

const uint32 deviceIPAddress,

const int audioOutputIndex,

const int audioInputIndex);

const bool setAudioOutputInputPatch (

const uint32 deviceIPAddress,

const int audioOutputIndex,

const int audioInputIndex,

const bool isPatched);

307

With the Connection Manager, it is possible to view the retrieved inputs, outputs, and patches. When

one of the devices on the Connection Manager’s display is selected, a graphical routing matrix is

displayed that shows these inputs, outputs and the device’s internal routing configurations, as shown

in Figure 150, Figure 151 and in Figure 152. In these routing matrices, the labels along the left hand

side are signal inputs to the routing matrix, and thus are viewed as signal source points internally

within the device. The labels along the top of the routing matrix are signal outputs from the routing

matrix, and thus are viewed as signal destination points internally within the device. The cross-points

on the routing matrix show whether or not inputs are patched through to particular outputs.

Figure 150 shows the internal routing matrix of an IEEE 1394 endpoint device. Shown are various

analogue inputs being patched to sequences of output multicores, and the third and fourth ADAT

inputs being patched to sequence seven and eight of the first output multicore.

308

Figure 150: IEEE 1394 endpoint device internal routing matrix

Connection Manager - Devices
Appl ication Routing Network Settings

[£460 231.12000/2SS02SS024S00] r[1-9-2-01-6-So-1-03- 0-0'-2-S-So-2-S-So-2-SS- 0-'oj

Audio Research
Group

Destinat..o
UMAN Eval Board - 192016801.2

Worddod< Source

Sampling Rate

f; j

Input Multkores

t Output Mutdcores

UMAN Eval Board - 192.168.1.2

7d
Outputs

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
c: c: c: c: c: c: c: c: c: c: c: ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:;

,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0
0 0 0 0 0 0 0 0 0 0 0 iil iil .., .., .., .., .., .., .., .., ..,

(I) (I) (I) (I) (I) (I) (I) (I) (I) Audio Research
0 0 0 0 0 0 0 0 0 0 0

c: c:
Group c: c: c: c: c: c: c: c: c: <"T <"T

<"T <"T <"T <"T <"T <"T <"T <"T <"T N W "'" Vl C7' '-J GO \0
....
0

Analog In 1

Analog In 2

Analog In 3

Analog In 4

Analog In 5

Analog In 6

5'
ADAT In 1 "0

c:
Iir ADAT In 2

ADAT In 3

ADAT In 4

ADAT In 5

ADAT In 6

ADAT In 7

ADAT In 8

~ ~ ~ ~ ~ ~ ~ ~ c: c: c: c: c:
;:; ;:; ;:; ;:; ;:; c: c: c:

;:; ;:; ;:; ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0
0 0 0 0 0
iil iil iil iil iil 0 0 0 .., .., ..,
.... (I) (I) (I)

N N N
0 0 0 0 0 0 0 0 c: c: c: ~ ~ <"T <"T <"T c: c: c:

<"T <"T <"T N W N W "'" Vl C7'

309

Figure 151 shows the internal routing matrix of an Ethernet AVB endpoint device. Shown is one of

the input AVB multicores being patched through to the device’s analogue output.

Figure 151: Ethernet AVB endpoint device internal routing matrix

Figure 152 shows the internal routing matrix of an IEEE 1394/AVB audio gateway device. This

device has been configured to route the audio arriving at 1394 input multicores to AVB output

multicores, and vice versa.

310

Figure 152: IEEE 1394/AVB audio gateway internal routing matrix

Via these routing matrices, it is possible to route audio signals entering the device via its inputs to the

outputs of the device by selecting the cross points on the matrix. Selecting a cross point on a matrix

causes an XFN set value message for the crosspoint enable parameter to be sent to the appropriate

device. When this happens, the callback function for the parameter is called within the device. This

callback function handles the device specific method of configuring the input to output routing.

311

11.6 Stream Establishment

Before any audio streaming is able to take place between devices on either an IEEE 1394 bus, or an

Ethernet AVB network, each device that is part of a stream needs to be appropriately configured, and

any network resources required for streaming need to be reserved. Devices that source audio onto

these networks need to be configured to start streaming with certain parameters, and devices that

receive streams on these networks need to be configured to receive specific audio streams. Each

networking technology has its own unique methods of establishing and tearing down audio streams,

as shown in Chapter 3 “Resource Reservation”.

11.6.1 IEEE 1394

On an IEEE 1394 bus, a transmitting device needs to be configured to transmit a particular audio

stream on a particular isochronous channel, and it needs to be configured to start the transmission of

the audio stream. Any devices that are required to receive an audio stream need to be configured with

the isochronous channel number of the audio stream of interest. They also need to be configured to

start listening for the particular audio stream. These parameters allow for streams to be established

and torn down. For example, a connection management application may perform the following steps

to establish a stream on an IEEE 1394 bus:

1. Read the appropriate register of a transmitting device to find out the isochronous channel number

of the stream that is to be transmitted onto the bus.

2. Set the appropriate register in the receiving device to the isochronous channel number obtained

from the transmitter of the stream.

3. Write to the appropriate register to instruct the transmitting device to start transmitting its stream.

4. Write to the appropriate register to instruct the receiving device to receive the stream being

transmitted by the transmitter.

In order for the XFN protocol to establish stream connections across an IEEE 1394 bus, the XFN

specification defines XFN address hierarchies to represent the parameters of IEEE 1394 multicores.

These parameters allow for stream establishment to take place (see Section 11.6.3 “Multicore

Representation”).

312

11.6.2 Ethernet AVB

On an Ethernet AVB network, each audio stream is uniquely identified via a 64-bit stream ID. Each

stream may also be transmitted using an Ethernet multicast MAC address such that it may be

received by multiple stream listeners. When one of the Ethernet AVB audio devices starts up, a

unique stream ID is associated with each transmitting AVB stream and MAAP reserves a block of

multicast MAC addresses for use by these streams.

Before streaming may take place, a device that is to receive a particular stream needs to know the

stream ID of that stream. The device that is going to transmit the audio stream needs to advertise it to

the AVB network. It does so by transmitting an Ethernet frame containing a talker advertise attribute

to the network. This talker advertise attribute contains the stream’s characteristics and requirements,

and is propagated throughout the network.

The device that is to receive the stream sends an Ethernet frame containing a listener ready attribute

to the talker to request attachment to the stream. This listener ready attribute contains the stream ID

of the audio stream that it would like to receive. The listener ready attribute is forwarded through the

network towards the talker device.

When a talker device receives a listener ready or a listener ready failed attribute that contains a

stream ID that matches the stream ID of one of its advertised streams, it knows that there are

sufficient resources available from itself to the listener(s) to support the stream. The talker is then

able to start streaming.

In order for the XFN protocol to establish stream connections across an Ethernet AVB network, XFN

level hierarchies were defined to represent the various parameters of Ethernet AVB streams to enable

stream establishment to take place.

11.6.3 Multicore Representation

In terms of XFN, each stream (whether it is a stream across an IEEE 1394 network, or a stream

across an Ethernet AVB network) is known as a multicore, as each stream may contain multiple

channels of audio.

313

11.6.3.1 IEEE 1394

Figure 153 shows a section of the XFN address hierarchy that is built up to represent the IEEE 1394

multicores on the IEEE 1394 endpoint devices and on the IEEE 1394/Ethernet AVB audio gateway

devices. An IEEE 1394 device may have a number of input and output IEEE 1394 multicore

endpoints through which it may receive and transmit audio streams.

Figure 153: The XFN address hierarchy for IEEE 1394 multicores

The XFN address hierarchy for IEEE 1394 multicores is structured as follows:

• Input multicores are represented under the signal input section block as they are inputs to the

system from external sources. Output multicores are represented under the signal output section

block as they are outputs from the system to external destinations.

• As multicores are used for streaming, they are represented under the stream section type of the

signal input and signal output section blocks.

• The section number is used to represent the interface that the multicores are associated with.

Interfaces are numbered from one. An IEEE 1394 bridge, for example, has a number of IEEE

1394 interfaces, and these are uniquely identified under the section number level.

Signal output

Stream

1

Multicore

ICN: Isochronous channel number

Section block: Signal input

Section type: Stream

Section number: 1

Parameter block: Multicore

Parameter block index: 1

Device

Parameter type: Start

Parameter index: 1

1

Start

2

ICN ICN Start ICN ICN Start

1 1 1 1 1 1

2 1

314

• Multicores and their parameters are represented under the multicore parameter block.

• Unique parameter block index values are used to uniquely identify multicores, as a number of

input and output multicores may exist per interface. Multicores are indexed from one. Shown in

Figure 153 are two input multicores and two output multicores.

• Under each parameter block index is listed the parameters that are associated with each

multicore. Shown are an isochronous channel number parameter, and a Boolean start parameter.

In the case of a transmitting multicore, the isochronous channel number parameter value

specifies which isochronous channel the multicore transmits on and the Boolean start parameter

starts and stops streaming. In the case of a receiving multicore, the isochronous channel number

parameter specifies which isochronous channel the multicore will receive its audio stream on,

and the Boolean start parameter starts and stops the reception of the audio stream.

• For each of the multicore parameters, the parameter index value is set to one as there exists only

one of each of these parameters for each multicore.

Associated with each of these parameters is a callback function that allows the device to respond to

requests from remote XFN devices. When the callback function is called for the start parameter with

a get value command (as a result of the remote device sending a get value request for the parameter),

the callback function obtains the streaming state of the requested input or output and sends the state

back to the requester. The AVB Device component of an audio gateway device has the following

two functions that allow for the retrieval of the streaming state of a 1394 multicore:

• AVBDevice_is1394OutputStarted: This function returns the streaming state of an

output 1394 multicore. It determines whether the device is configured to transmit a particular

stream.

• AVBDevice_is1394InputStarted: This function returns the streaming state of an input

1394 multicore. It determines whether the device is configured to receive the stream identified by

the isochronous channel number parameter.

When the callback function associated with a start parameter is called indicating a set value

command, the callback function sets the streaming state of the requested input or output. The AVB

Device component has the following two functions that allow for the 1394 streaming of an audio

gateway device to be started:

315

• AVBDevice_start1394Output: This function instructs the device to start the transmission

of a particular source IEEE 1394 stream. Before the transmission goes ahead, bandwidth and an

isochronous channel number are reserved on the IEEE 1394 bus for the stream.

• AVBDevice_start1394Input: This function instructs the device to start the reception of a

particular isochronous stream. The isochronous stream is identified by the value of the

isochronous channel number associated with the sink stream.

The AVB Device component has the following two functions that allow for the IEEE 1394 streaming

of an audio gateway device to be stopped:

• AVBDevice_stop1394Output: This function instructs the device to stop the transmission of

a particular IEEE 1394 stream.

• AVBDevice_stop1394Input: This function instructs the device to stop the reception of the

stream identified by the value of the sink stream’s isochronous channel number.

Similarly, if the callback function associated with an isochronous channel number parameter is

called with a get value command, the AVBDevice component’s

• AVBDevice_get1394InputIsochChannelNumber function is called to obtain the

isochronous channel number associated with a particular IEEE 1394 input multicore.

• AVBDevice_get1394OutputIsochChannelNumber function is called to obtain the

isochronous channel number associated with a particular IEEE 1394 output multicore.

Once the value of the multicore’s isochronous channel number has been obtained, it is returned to the

requesting device.

If the callback function associated with an isochronous channel number parameter is called with a

set value command, the AVBDevice component’s

• AVBDevice_set1394InputIsochChannelNumber function is called to set a particular

IEEE 1394 input multicore’s isochronous channel number.

• AVBDevice_set1394OutputIsochChannelNumber function is called to set a particular

IEEE 1394 output multicore’s isochronous channel number.

316

11.6.3.2 Ethernet AVB

Figure 154 shows the section of the XFN address hierarchy that is built up to represent the

parameters associated with the AVB multicores on the Ethernet AVB endpoint devices and the IEEE

1394/Ethernet AVB audio gateway devices. The address hierarchy is similar to the address hierarchy

for IEEE 1394 multicores, except that the multicores have different parameters associated with them.

The figure shows the address hierarchy used to address stream ID (SID) parameters, as well as

Boolean advertise and Boolean listen parameters. The stream ID parameter that is associated with a

transmitting multicore is used to represent the stream ID that uniquely represents that stream. The

stream ID parameter that is associated with a receiving multicore is used to represent the stream ID

of the stream that it is interested in receiving. The transmitting multicore’s Boolean advertise

parameter is used to allow a stream to be advertised, or for that advertisement to be withdrawn. The

Boolean listen parameter that is associated with a receiving multicore is used to allow a device to

request reception of a stream, or to withdraw that request.

Figure 154: The XFN address hierarchy for AVB multicores

Each one of these parameters is associated with a callback function that allows for acquiring and

setting these parameters values. Performing a get value request on the Stream ID parameter results in

Signal

output

Stream

1

SID: Stream ID

Section block: Signal input

Section type: Stream

Section number: 1

Parameter block:

Parameter block index:
1

Device

Parameter type: Listen

Parameter index: 1

1

Listen

2

SID SID SID
Advertise

1 1 1 1 1 1

2 1

Advertise
SID

317

the value of the stream ID of the stream being returned to the caller. Performing a set value request

on an AVB input causes its stream ID to be set. It is not possible to set the value of the stream ID

associated with an AVB output as these are allocated when the system is initialised and remain as

such for the lifetime of the system.

The advertise and listen parameter callbacks respond as follows:

• Performing a set value request on an advertise parameter with a value of true causes the device’s

AVBDevice_registerAVTPStream function to be called for the addressed AVB output

stream. This causes the particular stream to be advertised to the attached AVB network.

• Performing a set value request on an advertise parameter with a value of false causes the device’s

AVBDevice_deregisterAVTPStream function to be called for the addressed AVB output

stream. This causes the particular stream’s advertisement to be withdrawn from the AVB

network.

• Performing a set value request on a listen parameter with a value of true causes the device’s

AVBDevice_registerAVTPStreamAttach function to be called for the addressed AVB

input stream. This causes a listener ready attribute to be declared for the stream (as identified by

the value of the input’s stream ID parameter).

• Performing a set value request on the listen parameter with a value of false causes the device’s

AVBDevice_deregisterAVTPStreamAttach function to be called for the addressed

AVB input stream. This causes the particular stream’s listener attribute to be withdrawn.

11.6.3.3 Distinguishing Between Multicore Types

With the level hierarchies shown in Figure 153 and Figure 154, it is possible to determine that

multicores exist on a device, but it is not possible to determine the type of multicore being dealt with.

For each multicore (i.e., for each parameter block index of the multicore parameter block), there

exists a multicore type at the parameter type level. Unique values have been defined to represent an

IEEE 1394 multicore and an Ethernet AVB multicore. Performing an XFN get value on this

parameter returns the type of multicore being represented.

318

11.6.4 External Device Multicore Routing

Each XFN device that is discovered by the Connection Manager is enumerated to discover the

multicores that exist on each of the devices. To determine the number of input multicores that exist

on a device, the Connection Manager queries the device to determine the number of child nodes that

the multicore parameter block of the signal input section block has. To determine the number of

output multicores that exist on a device, the Connection Manager queries the device to determine the

number of child nodes that the multicore parameter block of the signal output section block has.

Once these have been obtained, the Connection Manager is able to query the parameters of each

multicore within a multicore parameter block (each identified with a unique parameter block index

value).

For each multicore that is discovered on a device, its type and name is retrieved and stored by the

Connection Manager. The XFN Stack component of the Connection Manager defines the

getInputMulticoreType function (shown in Listing 46) that allows for the retrieval of a

specific input multicore type (represented by a MulticoreType enum (shown in Listing 47)). The

interfaceNumber argument should be supplied with the interface number that the multicore is

associated with. The multicoreIndex is the index of the particular input multicore whose type is

being requested. Similarly, the XFN Stack component defines the getOutputMulticoreType

function that allow for the retrieval of an output multicore’s type. Currently, the MulticoreType

enumeration defines an IEEE 1394 and AVB multicore type.

Listing 46: getInputMulticoreType function

MulticoreType getInputMulticoreType (

const uint32 deviceIPAddress,

const int interfaceNumber,

const int multicoreIndex);

319

Listing 47: MulticoreType enum

If the multicore is an IEEE 1394 multicore, the values of the isochronous channel number and start

parameters are retrieved by the Connection Manager. If the output multicore is an AVB multicore,

the value of the stream ID and advertise parameters are retrieved. If an input multicore is an AVB

multicore, then the value of the stream ID and the listen parameters are retrieved. All of these values

are stored by the Connection Manager.

The XFN Stack component defines functions that allow for the retrieval of this information:

• getInputMulticoreIsochChannelNumber: retrieves the isochronous channel number

associated with a particular input on a particular device.

• getOutputMulticoreIsochChannelNumber: retrieves the isochronous channel number

associated with a particular output on a particular device.

• setInputMulticoreIsochChannelNumber: sets the isochronous channel number of a

specific input on a particular device.

• setOutputMulticoreIsochChannelNumber: sets the isochronous channel number of a

specific output on a particular device.

Similarly, the XFN Stack component provides functions that allow for the values of AVB multicore

stream ID parameters to be obtained and set, as well as the states of the advertise and listen

parameters:

• getInputAVBMulticoreStreamID: retrieves the stream ID associated with a particular

input AVB multicore on a particular device.

• getOutputAVBMulticoreStreamID: retrieves the stream ID associated with a particular

output AVB multicore on a particular device.

enum MulticoreType

{

 INVALID_MULTICORE = 0,

 FW_MULTICORE,

 AVB_MULTICORE

};

320

• setInputAVBMulticoreStreamID: sets the value of the stream ID associated with a

particular input AVB multicore on a particular device.

• setOutputAVBMulticoreAdvertise: sets the state (either true of false) of the advertise

parameter associated with a particular AVB output multicore on a particular device.

• setInputAVBMulticoreListen: sets the state (either true or false) of the listen parameter

associated with a particular AVB input multicore on a particular device.

With the Connection Manager, multicores are displayed by selecting one of the cross points on the

matrix of the main device display of the application. This displays a second matrix that is used to

represent the transmitting multicore(s) of the selected source device, and the receiving multicore(s)

of the selected destination device. Figure 155 shows an example of the multicores display for AVB

multicores. The source multicores are represented with labels along the left hand side of the matrix.

In the figure, these are the output AVB multicores of an IEEE 1394/Ethernet AVB audio gateway

device. Destination multicores are represented with labels along the top of the matrix. In the figure,

these are the input AVB multicores of an Ethernet AVB endpoint device. The buttons on the matrix

show whether or not a stream connection exists between a transmitting multicore of one device, and

a receiving multicore of another device.

321

Figure 155: Ethernet AVB multicore patching

Figure 156 shows examples of the multicore displays for IEEE 1394 multicores. As with the

multicores display for the AVB multicores, source multicores are displayed along left hand side of

the matrix, and destination multicores are displayed along to the top of the matrix. The patching

matrix shown on the right hand side of the figure is displayed when the cross point between the AVB

Gateway and the UMAN Eval Board is selected. Shown are the transmitting IEEE 1394 multicores

of the IEEE 1394/Ethernet AVB audio gateway device, and the receiving IEEE 1394 multicores of

an IEEE 1394 end point device. The selected cross points on the patching matrix show that the first

transmitting multicore of the audio gateway device is patched through to the first receiving multicore

of the IEEE 1394 endpoint device, and the second transmitting multicore of the audio gateway is

patched through to the second receiving multicore of the IEEE 1394 endpoint device. The patching

322

matrix shown at the bottom of the figure is displayed when the cross point between the IEEE 1394

endpoint device and the audio gateway device is selected. This patching matrix shows that the first

transmitting multicore of the IEEE 1394 endpoint device is patched through to the first reception

multicore of the audio gateway device, and the second transmitting multicore of the of the IEEE

1394 endpoint is patched through to the third input multicore of the audio gateway device.

Figure 156: IEEE 1394 multicore patching

323

Making a connection between the multicores involves selecting the cross points between the required

multicores. When a cross point is selected, a sequence of events is initiated that ensures that a

connection between the multicores on the devices is established. This sequence of events is

dependent on the specific type of multicore being represented.

When the Connection Manager wishes to establish a multicore connection between two XFN devices

on an IEEE 1394 bus, it performs the following sequence of events:

1. It issues an XFN get value request to the transmitting device to get the value of the isochronous

channel number parameter of the multicore that is to transmit the stream.

2. It issues an XFN set value request to the receiving device to set the channel number of multicore

that is to receive the stream.

3. It issues XFN set value requests to the devices to set their start parameters to initiate streaming.

The XFN Stack component provides a function that allows a stream connection to be established

between two IEEE 1394 devices. The signature of this function is shown in Listing 48. The caller

specifies the IP addresses of the devices involved in the connection, the interface numbers of the

interfaces associated with the multicores, the multicores indexes, and the isochronous channel

number to use. The connect argument is used by a caller to specify whether a connection is being

created or broken.

Listing 48: connectOutputFWMulticoreSocketToInputFWMulticoreSocket function

const bool connectOutputFWMulticoreSocketToInputFWMulticoreSocket

(

 const uint32 senderIPAddress,

 const int senderInterfaceNumber,

 const int senderMulticoreIndex,

 const uint32 receiverIPAaddress,

 const int receiverInterfaceNumber,

 const int receiverMulticoreIndex,

 const int isochChannelNumber,

 const bool connect);

324

When the Connection Manager wishes to establish a connection between two XFN devices on an

Ethernet AVB network, it performs the following sequence of events:

1. It issues an XFN get value request to the transmitting device to get the value of the stream ID

parameter of the multicore that is to transmit the stream.

2. It issues an XFN set value request to the receiving device to set the stream ID parameter of

multicore that is to receive the stream.

3. It issues an XFN set value request to the transmitting device to set the advertise parameter of the

multicore that is to transmit the stream.

4. It issues an XFN set value request to the receiving device to set the listen parameter of the

multicore that is to receive the stream.

The XFN Stack component provides a function that allows a stream connection to be established

between two AVB devices. The signature of this function is shown in Listing 49. The caller specifies

the IP addresses of the devices involved in the connection, the interface numbers of the interfaces

associated with the multicores, the multicores indexes, and the stream ID to use. The connect

argument is used by a caller to specify whether a connection is being created or broken.

Listing 49: connectOutputAVBMulticoreSocketToInputAVBMulticoreSocket function

const bool

connectOutputAVBMulticoreSocketToInputAVBMulticoreSocket (

 const uint32 senderIPAddress,

 const int senderInterfaceNumber,

 const int senderMulticoreIndex,

 const uint32 receiverIPAaddress,

 const int receiverInterfaceNumber,

 const int receiverMulticoreIndex,

 const uint8 streamID [8],

 const bool connect);

325

11.7 Rationale for Matrix Patching

As discussed in [97], digital audio networks often make use of a software patchbay to configure

audio routing between audio devices on the network. These patchbays display the devices on the

network, along with their associated inputs and outputs, and allow sound engineers to make and

break connections between the inputs and outputs of the devices. There are a range of software

patchbay types that have been developed, including list-based patchbays, tree-view-based patchbays,

tree-grid-based patchbays and graphic-based patchbays. This section provides a comparison of these

patchbays in order to motivate for the grid approach to connection management.

11.7.1 List-Based Patchbays

List-based patchbays display the devices on an audio network along with their inputs and outputs in

the form of lists. Sound engineers are able to select the output and input from the lists and make

connections between the two. Figure 157 shows the mLAN Graphic Patchbay’s List View [12]. This

window shows mLAN3 [98] devices present on an IEEE 1394 network, their various audio and MIDI

inputs and outputs, and the connection settings of the devices. The annotations in the figure are

explained below:

1. This list displays the various mLAN devices on the IEEE 1394 network, and the outputs present

on those devices. These are the various signal sources present on the network.

2. This list displays the various mLAN devices on the IEEE 1394 network along with the inputs

present on those devices. These are the various signal destination points that exist on the

network.

3. This list displays the connections between the outputs and inputs of the mLAN devices on the

IEEE 1394 network.

3 Music Local Area Network (mLAN) is a technology that allows for the transmission of deterministic, synchronised,
low latency audio data over a network. mLAN makes use of IEEE 1394 in order to achieve its goals.

326

Figure 157: The Yamaha mLAN Graphical Patchbay’s List View

Via this list-based patchbay, making connections between the various outputs and inputs of the

mLAN devices is done by scrolling to the required signal output and selecting it (see annotation 1 in

the above figure), scrolling to the required signal input and selecting it (see annotation 2 in the above

figure) and then selecting the Connect button. The output and input of connected devices will be

shown as having connections between them by displaying the destination device in the Destination

Connector List (see annotation 3 in the above figure) next to the output.

11.7.2 Tree-View-Based Patchbays

Tree-view-based patchbays present the layout of the network in the form of tree structures. Figure

158 shows the NAS Explorer Patchbay [99] used to control mLAN devices. The tree views of this

patchbay are organized in such a way as to represent the hierarchical nature of the IEEE 1394

network it is representing. This patchbay contains two tree-view structures: one to represent the

signal outputs available on the mLAN devices, and one to represent the signal inputs available on the

mLAN devices.

The root node of each tree represents the entire IEEE 1394 network. Its child nodes represent the

various IEEE 1394 buses that make up the network. Each node representing the various buses of the

1

2

3

327

network has child nodes representing the mLAN devices present on the bus. Each node in the tree

representing the devices on the buses has child nodes representing either the inputs, or the outputs of

the devices, depending on the specific tree. This way, sound engineers can logically locate the

require inputs and outputs by navigating their way down the tree structure.

Figure 158: The NAS Explorer Patchbay

The annotations in Figure 158 are explained below:

1. This tree-view represents the structure of the IEEE 1394 network along with the mLAN devices

and their signal output plugs, hierarchically.

2. This tree-view represents the structure of the IEEE 1394 network along with the mLAN devices

and their signal input plugs, hierarchically.

328

3. Making a connection between a signal output and a signal input requires that a sound engineer

first select the signal output.

4. The second stage for a connection requires selecting the signal input.

5. Once the output and input have been selected, a connection between the two plugs is made by

right clicking on one of the selected inputs or outputs, and selecting the Connect menu item.

6. The NAS Explorer Patchbay displays a connection by making the connected output a child of the

input, and vice versa. Breaking the connection is performed by right-clicking this child node, and

selecting the Disconnect menu item.

11.7.3 Tree-Grid-Based Patchbays

Tree-grid-based patchbays display the devices on a network, along with their associated inputs and

outputs, along the axes of grids. The cross points on the grids allow for connections between the

outputs and inputs of devices to be made or broken by selecting or deselecting the points on the

grids, respectively. Figure 159 shows the Routing Matrix of the Otari ND 20B mLAN Control

Software [100]. This tree-grid-based patchbay displays Otari ND 20B units on an mLAN network,

their associated inputs and outputs and the connections between them. The Otari ND 20B units,

along with their inputs and outputs, are shown hierarchically on the axes of the grid with tree views.

Making and breaking connections is performed by selecting and deselecting the cross points on the

grid. The annotations in this figure are explained below:

1. The left hand column shows the names of the devices present on the network and the input

channels available on each device, hierarchically.

2. The top row shows the names of the devices on the network and the output channels associated

with each device, hierarchically.

3. The checkered section of the grid shows which output channels are routed through to which input

channels. Making and breaking connections is performed by selecting and de-selecting the cross

points on the grid where the required output channels intersect the required input channels.

329

Figure 159: The Otari ND 20B mLAN Control Software Routing Matrix

11.7.4 Graphic-Based Patchbays

A graphic-based patchbay represents devices on an audio network with the aid of icons. Each icon

represents a device and the inputs and outputs associated with it. The connections between the

devices are represented with cable-like lines drawn between the plugs. The Yamaha Graphic

Patchbay [12] is an example of a graphic-based patchbay. This patchbay is used to make connections

between mLAN devices on an IEEE 1394 network. The primary window of this patchbay is shown

in Figure 160. The annotations in this figure are explained below:

1. The mLAN devices on the IEEE 1394 network are shown on the workspace with the aid of

different coloured icons, and each icon may contain detail pertaining to the particular device.

330

2. The inputs and outputs on each device are shown on the side of the icons that represent the

different mLAN devices.

3. The connections between the devices are shown with graphic cable-like connectors. Different

colours are used to distinguish the different virtual cables.

4. In order to make a connection between an output and input on two different devices, the ‘out’

section of one device, and the ‘in’ section of another device is selected. This displays two

Connector windows that display the relevant plugs available on the selected devices. A

connection is then made by selecting the required output, and then selecting the required input.

Connections are then visually shown with graphical cables between the output plugs, and the

input plugs.

331

Figure 160: The Yamaha mLAN Graphic Patchbay

11.7.5 A Comparison Of Patchbays

As the number of devices on an audio network increases, the complexity of the patchbay

representing the devices on the network may increase as well. Besides the list-based patchbay

discussed above, all of the patchbays represent the network hierarchically. This hierarchical

representation reflects the structure of the network itself. This makes navigating to required devices

and their inputs and outputs take place in a logical way. It also reduces the amount of clutter on the

displays of the patchbays, as sound engineers have the option of only displaying the information that

they are interested in.

1

1 1

2
2

3 4

332

Table 44 shows the number of mouse button clicks it would take a sound engineer to make a

connection between two devices on a single bus IEEE 1394 network, using the patchbays discussed

above. The table distinguishes between the number of mouse button clicks it takes to navigate to the

required inputs and outputs to make the connection.

 List-based Tree-view-based Tree-grid-based Graphic-based

Navigate to plugs 0 (Scroll) 6 4 2

Make connection 3 4 1 2

Table 44: The number of mouse clicks to make a soft connection

With all the patchbays discussed above, a sound engineer is required to individually navigate to the

required output and input to make a connection.

The patchbays discussed above, except the tree-grid-based patchbay, require that sound engineers

individually select the output and input before a connection can be made. Even though the list-based

patchbay has the least number of mouse clicks to make a connection, the process of selecting the

plugs could become tedious. The lists in which the inputs and outputs are listed may grow to the

point where each list contains literally hundreds of individual items even for a small studio.

When making a connection with the tree-grid-based patchbay, there is no need to explicitly select the

outputs and inputs required for a connection. A connection is created by selecting the cross point on

the grid that is used to represent the output and input. The output and input are implicitly selected.

11.8 Connection Manager Grid Displays

The grid approach (as opposed to the approaches discussed above) allows for the implicit selection

of source and destination devices, and the implicit selection of a signal source point and a signal

destination point when patching. The grid based approach implemented for the Connection Manager

mimics the process that an audio engineer would follow when manually routing audio between

devices that are part of an audio system. When patching audio signals manually, audio devices may

be connected by cables that are grouped into multicore cables. A multicore cable can be routed to

333

another location where the individual cables within the multicore can be sent to the sockets of a

patch panel. Here individual signals can be patched through to a device, or be patched into another

multicore cable. The Connection Manager mimics this process (refer to Figure 145 on page 299 for

the sample network that the following examples apply to):

• First, connections are made within a source device. If, for example, an audio engineer would like

to patch the signal from a microphone through to one of the sources device’s output multicore

sequences, then, with the Connection Manager, the source device is selected to display the

internal routing configuration of the device. A connection can then be made between the input

(that the microphone is connected to) and output (representing the sequence of the output

multicore) of the device by selecting the cross point between these two on the patching matrix.

An example of this can be seen in Figure 150 on page 308.

• Next, connections between two devices can be created by selecting the cross point between the

signal source device and the signal destination device on a device display grid (as seen in Figure

156 on page 322). This displays the multicore outputs of the implicitly selected source device,

and the multicore inputs of the implicitly selected destination device in the form of a matrix.

Multicore connections between the devices are created by selecting the cross point between the

signal source and the signal destination. In the example, the microphone’s signal is routed into a

particular multicore. This multicore is then patched through to a multicore input on the receiving

device (the IEEE 1394 bridge, for example) by selecting the cross point between the two devices.

• Once inter-device patching is complete, connections within the destination device can be made

(the IEEE 1394 bridge). The destination device is selected to display the internal routing

configuration of the device. Connections on this device can be made between its inputs and

outputs by selecting the cross points on a patching matrix. In the example, the incoming

multicore signal that contains the microphone signal can be patched through to an output

multicore on the other portal of the bridge. This process continues until the audio signal arrives at

the destination device.

11.9 Conclusion

The IEEE 1394 and Ethernet AVB devices that were used as part of this study each contain an XFN

stack. This chapter demonstrated how the XFN protocol has been used to represent and control both

IEEE 1394 and Ethernet AVB audio devices:

334

• Each device is able to build up a seven-level XFN address hierarchy that reflects the hierarchical

structure of the device itself.

• Via the protocol, remote devices are able to determine the presence of these devices. A graphical

patchbay application was developed to discover and represent these devices.

• The protocol was used to provide a common view of signal source points, signal destination

points, and signal patch points within the devices. The graphical patchbay application has been

used to represent these signal source, destination, and patch points for both the IEEE 1394 audio

devices, and Ethernet AVB audio devices. The patchbay application allows a user to create and

break these patches.

• The protocol has been used to provide a common multicore view of the streams that may exist

between IEEE 1394 devices, and streams that may exist between Ethernet AVB devices.

Parameters are defined for each multicore type to enable stream connections across their

respective networks. The graphical patchbay application is able to represent these multicores, and

allows for patches to be created and destroyed between multicores of the same type.

335

Chapter 12 Conclusion

Digital networks are increasingly being used for the simultaneous transport of a variety of types of

non-realtime and realtime data. The transmission of these various types of data places different

demands on the networks that they are transmitted on. Non-realtime data can be delivered on a best

effort basis, whereas realtime stream data requires the ability to:

• Be able to transfer data uninterrupted at a constant rate. The data needs to be delivered

deterministically with bounded latency.

• Synchronise multiple realtime streams to allow for their simultaneous playback, and to allow for

wordclock regeneration.

These requirements necessitate that the underlying network technology provides:

• A means to ensure that network resources (e.g., bandwidth) are reserved for realtime data. There

need to be mechanisms in place allowing end stations involved in realtime data streaming to

communicate their resource requirements to the network. This allows the network to reserve

these resources for the streams.

• Mechanisms to guarantee that the data is transmitted in a deterministic and timely fashion across

the network.

• A common sense of time amongst nodes on the network to allow for the synchronisation of

realtime streams. The network needs to provide the ability to allow all stations on the network to

have a common understanding of time.

The two dominant open standards-based networking technologies that natively provide the above

mentioned capabilities are IEEE 1394 and Ethernet AVB. These networking technologies implement

diverse mechanisms in order to achieve the above requirements. Audio transport protocols have been

standardised for each of these networking technologies. These protocols allow audio data to be

streamed between the audio devices that reside on these networks. Also defined are diverse

incompatible command and control protocols that allow connection management to take place in and

between the devices that reside on these networks.

336

12.1 Goals

The goals of this work were to:

• Demonstrate the ability of audio devices residing on IEEE 1394 networks to transmit audio data

to audio devices residing on Ethernet AVB networks, and vice versa.

• Develop a common method of representing and controlling audio devices that reside on these

disparate networks.

• Develop a graphical patchbay application that is able to graphically represent and control these

diverse devices in a congruent manner.

12.2 Conclusions

In order to achieve the above goals, this work was divided into a number of sections. Before the

compatibility of, and control over, these networking technologies could be explored, a thorough

knowledge of the underlying workings of IEEE 1394 and Ethernet AVB networks was needed. This

investigation focused on the core requirements that make these networks suitable for transferring

realtime audio data, as identified above. These two networking technologies each provide their own

mechanisms for achieving these goals.

On an IEEE 1394 bus, the elected isochronous resource manager (IRM) node keeps track of the

amount of bandwidth remaining on the bus, and keeps track of isochronous channel numbers that are

available for use. Nodes wishing to transmit isochronous stream packets request bus bandwidth and

an isochronous channel number from the IRM. If the request succeeds, these resources are reserved

for the node that requested them (see Section 3.1 “Resource Reservation for IEEE 1394”). On an

Ethernet AVB network, a talker wishing to transmit a realtime stream sends a frame onto the

network containing a talker advertise attribute. This attribute contains a description of the resource

requirements of the stream. The attribute is propagated throughout the network and, given sufficient

resources, is received by all bridges and end stations. When a bridge receives a talker advertise

attribute, it is able to determine whether each of its ports are able to support the stream or not. The

talker advertise attribute is transmitted out of each port that is able to support the stream. When a

listener would like to receive a particular stream, it transmits a frame to the network containing a

listener ready attribute. This attribute contains the stream ID of the stream that listener would like to

337

receive. The network sends this attribute directly to the talker. As the attribute propagates through

the bridges of the network, if the stream resources are available, they are reserved for the stream.

When the listener ready attribute is received by the talker, the talker knows that the network has

reserved the resources required for the stream, and is able to start transmission of the stream (see

Section 3.2 “Resource Reservation for Ethernet AVB”).

IEEE 1394 and Ethernet AVB each provide mechanisms that allow for the deterministic and timely

transmission of realtime stream data. IEEE 1394 operates on a 125 µs isochronous cycle. Each node

that has reserved bandwidth (via the IRM) is given an opportunity to transmit data (per requested

isochronous channel) once per isochronous cycle (i.e., each node is guaranteed that it will be able to

transmit its isochronous data once per isochronous cycle) (see Section4.1 “Determinism for IEEE

1394”). Ethernet AVB devices tag stream data with specific priority values used to identify stream

data. This allows Ethernet AVB bridges to apply specific frame forwarding to these frames. Each

outbound port on an Ethernet AVB bridge contains a number of queues containing frames awaiting

transmission. Higher numbered queues are given higher preference than lower numbered queues for

frame transmission. Stream frames are placed into the highest numbered queues (with class A

streams going into the highest numbered queue). Each queue that supports stream reservation keeps

track of the amount of bandwidth reserved for it, and through the use of the credit-based shaper

algorithm, ensures that stream frames are transmitted evenly onto the network, and that the

bandwidth is not oversubscribed (see Section 4.2 “Determinism for Ethernet AVB”).

IEEE 1394 and Ethernet AVB natively provide mechanisms that allow the nodes on the network to

all share a common sense of time. Each network elects a master node from which all other nodes on

the network derive their time (see Chapter 5 “Timing and Synchronisation”).

Media transport protocols have been defined to allow for the transportation of audio data between

devices on IEEE 1394 and Ethernet AVB networks. The formatting of the media packets, the

formatting of the media data itself, and the timing and synchronisation mechanisms employed by the

protocols was examined in Chapter 6 “Media Transport Protocols”. The AVTP protocol, used to

transfer audio data between devices on an AVB network, borrows heavily from the CIP and AM824

protocols defined for transferring audio data between devices on an IEEE 1394 network.

Conceptually, audio data is transferred between devices in a stream, with a stream being composed

338

of individual channels of audio. The timing and synchronisation mechanisms employed by the

protocols vary in that they use different presentation timestamp formats.

During the course of this work, the Ethernet AVB standards were under development and

commercially available Ethernet AVB capable devices did not exist. Proof of concept Ethernet AVB

endpoint devices were developed to run on general purpose computers running the Linux operating

system. Ethernet AVB endpoint devices were developed to allow for the transmission and reception

of audio streams across Ethernet networks. These devices are able to capture analogue audio through

an analogue sound card, and encapsulate that audio in AVTP frames for transmission over an

Ethernet AVB network. These devices are also able to receive AVTP frames containing audio data,

and transfer this audio to the analogue interface of the device. IEEE 1394/Ethernet AVB audio

gateway devices were also developed. These devices allow for audio streams to be transferred

between IEEE 1394 and Ethernet AVB networks. The channels of audio data contained within

packets received via one interface of the device are extracted and placed into packets for the other

interface of the device to transmit (see Chapter 10 “Ethernet AVB Devices”).

The use of these devices, along with the use of existing IEEE 1394 endpoint devices, allowed for the

development of a means to transfer audio streams between IEEE 1394 and Ethernet AVB networks

with the protocols and procedures defined in IEC 61883 and IEEE 1722. These devices make use of

the CIP, AM824 and AVTP protocols in order to achieve this goal. These protocols make use of the

same audio formats, thus alleviating the need to do any transcoding between audio data received on

one interface, and the audio data transmitted on the other interface. IEEE 1722 does not define cross

network timing and synchronisation mechanisms, thus this work proposed a means to provide timing

and synchronisation mechanisms between IEEE 1394 and Ethernet AVB networks. Timing and

synchronisation mechanisms were proposed to enable the synchronisation of multiple streams being

transferred across these disparate networks. The timing and timestamps used by these networks are

not compatible, thus timestamp values conveyed in packets have to be converted from one format to

another when transferred across the audio gateway device. These timestamps also have to be

regenerated relative to the time of the network on which they are transmitted. This work proposed a

set of formulae for achieving these goals (see Section 10.3 “Timing and Synchronisation”).

In Chapter 7 “Standards-Based Command and Control Protocols”, a number of command and control

protocols were examined at a high-level to determine a suitable protocol for providing control over

339

the IEEE 1394 and Ethernet AVB audio devices that were developed as part of this study. Of the

protocols examined, it was observed that they provide similar hierarchical parameter addressing and

parameter access functionality. It was decided that the XFN command and control protocol would be

used during this study. During this study, the XFN protocol was under development as an AES

standard. It provides a rich set of features and functionality geared towards networked realtime audio

and video equipment. Source code of an implementation of the XFN protocol was made available.

This source code was developed to be cross platform such that it could be built on Windows, Linux,

and other platforms. The XFN protocol has a simple design and natural parameter addressing. The

API functions provided by the source code are easy to use and provide the ability to build XFN

address hierarchies. Application specific callback functions can be associated with these hierarchies.

This enables minimal application code to be written in order to implement an XFN controllable

application.

In order to initially examine the capabilities of the XFN protocol, simple proof of concept devices

were developed. These devices provide a means to tunnel Ethernet traffic over IEEE 1394 networks.

Packet formats were developed to allow for the fragmentation of Ethernet frames (used when an

Ethernet packet is larger than the maximum payload size of the isochronous packets), and for the

packing of Ethernet frames (used when multiple Ethernet frames can be accommodated in an

isochronous packet). The XFN protocol was used to successfully provide control over the parameters

of the devices to enable tunnelling to take place across IEEE 1394 buses: the protocol was used to

establish stream connections across IEEE 1394 buses, and was used to manipulate other parameters

relating to the streams, such as the maximum payload size of each transmitted isochronous packet.

The isochronous stream used to carry Ethernet traffic between tunnel nodes was modelled as a

multicore. A graphical patchbay application was developed and successfully used to represent and

control the parameters of the tunnelling devices. The application used the XFN protocol to discover

the availability of the tunnelling devices on a network, the availability of multicore endpoints on the

devices, and to create and break stream connections between the multicore endpoints (see Chapter 8

“Tunnelling”).

Following this proof of concept, each of the developed Ethernet AVB devices, as well as the existing

IEEE 1394 endpoint devices were implemented such that they are remotely controllable via the XFN

protocol. Each device contains an XFN stack that allows for the creation of an XFN address

hierarchy, and allows for the reception and transmission of XFN messages. As with the tunnelling

340

nodes, the Ethernet AVB devices implemented pre-existing address hierarchies and parameters from

the XFN specification that allow for the discovery of the devices by other XFN capable devices.

These devices also implement parameters that allow for control over the internal audio routing

configuration of the devices, and allow for control over the parameters that allow for stream

connections to be established across digital networks.

As with the tunnelling devices, the IEEE 1394 endpoint devices and the IEEE 1394/Ethernet AVB

audio gateway devices implement parameters that enable IEEE 1394 isochronous streams to be

remotely established between devices on IEEE 1394 buses. In each instance, the XFN protocol views

each isochronous stream as a multicore. Each one of the device’s multicore endpoints has parameters

that enable streams to be established. Starting a source IEEE 1394 multicore, by setting its start

parameter, causes the device to request bus bandwidth and an isochronous channel number from the

IRM. If these resources have been obtained, stream transmission begins. Starting a sink multicore, by

settings its start parameter, causes a device to be configured to receive the stream identified by the

multicore’s isochronous channel number parameter. The Ethernet AVB endpoint and IEEE

1394/Ethernet AVB devices were implemented such that the XFN protocol also views streams across

Ethernet AVB networks as multicores. The AVB multicores have parameters that enable stream

establishment to take place between devices on an Ethernet AVB network. The Ethernet AVB

devices introduce additional parameters to the XFN specification that allow for stream connections

to be established across Ethernet AVB networks. A source AVB multicore has an advertise

parameter associated with it that, when set, causes the device to advertise the stream to the attached

Ethernet AVB network via MSRP. A sink AVB multicore has a listen parameter associated with it

that, when set, causes the device to request attachment to a specified stream via MSRP (Section 11.6

“Stream Establishment”).

The XFN specification defines parameters that allow for the routing of audio signals internal to a

device. These parameters represent a patching matrix where a crosspoint parameter enables the

routing of an audio signal from a signal source point to a signal destination point within a device.

The existing IEEE 1394 audio devices use the parameters to route single audio channels from the

inputs of the devices, to the outputs of the devices. In the Ethernet AVB endpoint devices, crosspoint

parameters are used to route audio signals from the reception multicores of the device to its analogue

output, and vice versa. In the IEEE 1394/Ethernet AVB audio gateway devices, crosspoint

341

parameters were successfully used to route bundles of audio from their reception multicores to their

transmission multicores.

The consistent use of parameters across a diverse range of devices simplifies the control over these

devices:

• The consistent use of the XFN crosspoint parameter enables a patchbay application to simply

discover the signal sources, signal destinations, and signal cross points within a device without

concern for the signal formats and the complexities involved in routing the audio data from one

signal point and format to another signal point and format within a device. An application is able

to instruct a device to enable a crosspoint, and the device deals with the device specifics involved

in routing the audio signals.

• The consistent view of a stream as a multicore simplifies the process of discovering stream

endpoints that exist on a device. A controller is able to determine the existence of multicore

endpoints on a device (regardless of whether they are IEEE 1394 or Ethernet AVB multicore

endpoints), and is able to represent them. Due to the disparate methods used to form connections

across these networks, unique XFN connection management parameters are defined for each

multicore type.

The XFN protocol’s generic representation of devices and their connection management parameters

allows for software applications to graphically represent audio devices with a consistent user

interface. The Connection Manager, developed to represent and control the IEEE 1394 and Ethernet

AVB audio devices used during this study, provides a consistent graphical representation to the

various internal audio inputs and outputs of a device, the patches between these inputs and outputs,

the source and sink multicores that a device has, and the connections between these multicore

endpoints. The use of common parameters from the XFN specification allows the Connection

Manager to represent devices without having to have knowledge of the internal workings of the

devices themselves.

Figure 161 and Figure 162 show the Connection Manager representing IEEE 1394 and Ethernet

AVB devices. Also shown are the inputs, outputs and internal patches of an IEEE 1394 and an

Ethernet AVB device.

342

Figure 161: IEEE 1394 endpoint device internal routing matrix

Connection Manager - Devices
Appl ication Routing Network Settings

[£460 231.12000/2SS02SS024S00] r[1-9-2-01-6-So-1-03- 0-0'-2-S-So-2-S-So-2-SS- 0-'oj

Audio Research
Group

Destinat..o
UMAN Eval Board - 192016801.2

Worddod< Source

Sampling Rate

f; j

Input Multkores

t Output Mutdcores

UMAN Eval Board - 192.168.1.2

7d
Outputs

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
c: c: c: c: c: c: c: c: c: c: c: ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:; ;:;

,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0
0 0 0 0 0 0 0 0 0 0 0 iil iil .., .., .., .., .., .., .., .., ..,

(I) (I) (I) (I) (I) (I) (I) (I) (I) Audio Research
0 0 0 0 0 0 0 0 0 0 0

c: c:
Group c: c: c: c: c: c: c: c: c: <"T <"T

<"T <"T <"T <"T <"T <"T <"T <"T <"T N W "'" Vl C7' '-J GO \0
....
0

Analog In 1

Analog In 2

Analog In 3

Analog In 4

Analog In 5

Analog In 6

5'
ADAT In 1 "0

c:
Iir ADAT In 2

ADAT In 3

ADAT In 4

ADAT In 5

ADAT In 6

ADAT In 7

ADAT In 8

~ ~ ~ ~ ~ ~ ~ ~ c: c: c: c: c:
;:; ;:; ;:; ;:; ;:; c: c: c:

;:; ;:; ;:; ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0 ,,0
0 0 0 0 0
iil iil iil iil iil 0 0 0 .., .., ..,
.... (I) (I) (I)

N N N
0 0 0 0 0 0 0 0 c: c: c: ~ ~ <"T <"T <"T c: c: c:

<"T <"T <"T N W N W "'" Vl C7'

343

Figure 162: IEEE 1394/AVB audio gateway internal routing matrix

Figure 163 and Figure 164 show how the Connection Manager consistently represents the multicores

that exist on IEEE 1394 and Ethernet AVB devices, as well as the connections that exist between

these multicore endpoints.

344

Figure 163: IEEE 1394 multicore patching

345

Figure 164: Ethernet AVB multicore patching

The natural hierarchical matrix-styled graphical layout of the Connection Manager is such that audio

signals can be routed through complex audio networks by methodically patching from a source

device to a destination device:

• Selecting a source device displays its internal routing configurations on a patching matrix. This

patching matrix allows patches to be enabled and disabled between the inputs of a source device

and its outputs.

• Selecting a crosspoint between a signal source device and a signal destination device displays the

signal routing configurations between the devices on a patching matrix. The patching matrix

allows for connections between the devices to be created and broken.

346

• Selecting a destination device displays its internal routing configurations on a patching matrix.

This patching matrix allows patches to be enabled and disabled between the inputs of a

destination device and its outputs.

This approach to patching has been applied to a number of devices, including the UMAN evaluation

breakout boxes, UMAN amplifier nodes, UMAN IEEE 1394 bridges, the developed Ethernet AVB

endpoint devices, and the developed IEEE 1394/Ethernet AVB audio gateway devices. These

devices have diverse capabilities and implementations, yet have been represented using a common

set of XFN parameters, and a common graphical user interface. It is the intention that other

networked audio devices (in addition to IEEE 1394 and Ethernet AVB audio devices) can be

controlled via the same set of parameters and graphical patching matrix layout thus enabling

seamless device integration and control.

12.3 Future Work

As a result of the work performed during this study, a number of possible future projects have

emerged:

• The AVB devices implemented as part of this study were done so from the specifications

obtained from the IEEE. It would be useful to verify that these device implementations are

interoperable with other AVB implementations. Ideally, this verification should involve AVB

aware bridges and AVB aware end stations from a number of different manufacturers.

• This work proposed a number of cross network timing and synchronisation mechanisms. It would

be useful to implement these mechanisms and verify their accuracy. Their accuracy should be

tested over a number of hops.

• The AVB devices implemented as part of this study were done so on general purpose Linux

computers. The implementation of the AVB protocols and procedures for the professional audio

market requires fine control over hardware devices to enable strict control over latency and the

timing and synchronisations mechanisms. It would be useful to verify the cross network

streaming capabilities by implementing these mechanisms on specifically designed hardware

devices.

347

• For consumer grade audio applications, it will be useful to create PC sound card drivers to allow

audio to be streamed from PC applications to AVB networks. This should also allow for audio

applications to receive audio streams from AVB networks.

348

Bibliography

1. SMPTE 259M-2008. Television – SDTV Digital Signal/Data – Serial Digital Interface. New

York : Society of Motion Picture and Television Engineers, 2008. SMPTE 259M-2008.

2. SMPTE 292M. 1.5 Gb/s Signal / Data Serial Interface. New York : Society of Motion Picture

and Television Engineers, 2008. SMPTE 292M.

3. AES3-2003. AES Standard for Digital Audio Engineering - Serial Transmission Format for Two-

channel Linearly Represented Digital Audio Data. New York : Audio Engineering Sociery, 2003.

AES3-2003.

4. Anderson, D. FireWire System Architecture. Massachusetts : MindShare Inc, 1999.

5. IEEE 802.3 Ethernet Working Group. IEEE 802.3 Ethernet Working Group. [Online] Institute of

Electrical and Electronics Engineers, 19 June 2010. [Cited: 14 September 2010.]

http://www.ieee802.org/3/.

6. IEEE 802.1Q. Virtual Bridged Local Area Networks. New York : Institute of Electrical and

Electronics Engineers, 2005. IEEE 802.1Q.

7. The Audio/Video Bridging Task Group. IEEE 802.1. [Online] 18 September 2008. [Cited: 28

April 2009.] http://www.ieee802.org/1/pages/avbridges.html.

8. Yamaha. Yamaha - Global. [Online] 2011. [Cited: 12 September 2011.]

http://www.yamaha.com/.

9. —. 01X Digital Mixing Studio Owner’s Manual. 2003.

10. —. 01V96 Digital Mixing Console Version 2 Owner’s Manual. 2004.

11. —. Motif XS8 Music Production Synthesizer Owner’s Manual. 2007.

12. —. mLAN Graphic Patchbay Owner’s Manual. 2004.

13. —. n8 - n12/n8 - Mixers - Music Production Tools - Products - Yamaha United States. [Online]

2011. [Cited: 12 September 2011.] http://usa.yamaha.com/products/music-

production/mixers/n12_n8/n8/.

14. —. n12 - n12/n8 - Mixers - Music Production Tools - Products - Yamaha United States. [Online]

2011. [Cited: 12 September 2011.] http://usa.yamaha.com/products/music-

production/mixers/n12_n8/n12/.

15. PreSonus. PreSonus. [Online] 2011. [Cited: 12 September 2011.] http://www.presonus.com/.

16. —. StudioLive 16.4.2. [Online] 2011. [Cited: 12 September 2011.]

http://www.presonus.com/products/Detail.aspx?ProductId=52.

349

17. M-Audio. M-Audio. [Online] 2011. [Cited: 12 September 2011.] http://www.m-audio.com/.

18. —. ProFire 610 - High-Definition 6-in/10-out FireWire Audio Interface with Octane Preamp

Technology. [Online] 2011. [Cited: 12 September 2011.] http://www.m-

audio.com/products/en_us/ProFire610.html.

19. —. ProFire 2626 - High-Definition 26-in/26-out FireWire Audio Interface with Octane Preamp

Technology. [Online] 2011. [Cited: 12 September 2011.] http://www.m-

audio.com/products/en_us/ProFire2626.html.

20. Focusrite. Audio Interfaces, EQ & Compression, Mic Pres - Focusrite. [Online] [Cited: 12

September 2011.] http://www.focusrite.com/.

21. —. Liquid Saffire 56 Audio Interfaces Professional 28 In / 28 Out with 2 Liquid and 6 Focusrite

Pre-amps. [Online] [Cited: 12 September 2011.]

http://www.focusrite.com/products/audio_interfaces/liquid_saffire_56/.

22. —. Saffire PRO 40 Audio Interfaces Professional 20 In / 20 Out Firewire interface with eight

Focusrite Pre-amps. [Online] [Cited: 12 September 2011.]

http://www.focusrite.com/products/audio_interfaces/saffire_pro_40/.

23. Mackie. Mackie. [Online] 2011. [Cited: 12 September 2011.] http://www.mackie.com/.

24. —. Mackie Onyx Blackbird: 16x16 Firewire Recording Interface. [Online] 2011. [Cited: 12

September 2011.] http://www.mackie.com/products/onyxblackbird/.

25. —. Onyx 1640i. [Online] 2011. [Cited: 12 September 2011.]

http://www.mackie.com/products/onyx1640i/.

26. Alesis. Alesis. [Online] 2011. [Cited: 12 September 2011.] http://www.alesis.com/.

27. —. iO|14. [Online] 2011. [Cited: 12 September 2011.] http://www.alesis.com/io14.

28. —. iO|26. [Online] 2011. [Cited: 12 September 2011.] http://www.alesis.com/io26.

29. —. MultiMix 12 FireWire. [Online] 2011. [Cited: 12 September 2011.]

http://www.alesis.com/multimix12firewire.

30. —. MultiMix 16 FireWire. [Online] 2011. [Cited: 12 September 2011.]

http://www.alesis.com/multimix16firewire.

31. Allen and Heath. ALLEN & HEATH // WORLD CLASS MIXING. [Online] 2011. [Cited: 12

September 2011.] http://www.allen-heath.com/.

32. —. ZED-R16. [Online] 2011. [Cited: 12 September 2011.] http://www.allen-

heath.com/uk/Products/Pages/ProductDetails.aspx?CatId=ZEDSeries&ProductId=ZEDR16.

33. TerraTec. TerraTec. [Online] 2011. [Cited: 12 September 2011.] http://www.terratec.net/.

350

34. —. Phase X24. [Online] 2011. [Cited: 12 September 2011.]

http://www.terratec.net/en/products/PHASE_X24_FireWire_1632.html.

35. Walker, M. Sound on Sound. Terratec Phase 88 Rack FW. [Online] May 2005. [Cited: 12

September 2011.] http://www.soundonsound.com/sos/may05/articles/terratec88.htm.

36. Universal Media Access Networks. [Online] 2011. [Cited: 08 March 2011.]

http://www.umannet.com/.

37. LabX. Lab X Technologies, LLC. [Online] 2010. [Cited: 12 September 2011.]

http://www.labxtechnologies.com/.

38. —. Titanium 411 Ruggedized AVB Ethernet Bridge. [Online] 2010. [Cited: 12 September 2011.]

http://www.labxtechnologies.com/connectivity/titanium-411-ruggedized-avb-ethernet-bridge/.

39. —. FPGA AVB Audio Demo Platform. [Online] 2010. [Cited: 12 September 2011.]

http://www.labxtechnologies.com/ip-solutions/fpga-based-avb-audio/fpga-avb-audio-demo-

platform/.

40. BSS Audio. BSS Audio Professional Audio Signal Processing. [Online] 2010. [Cited: 12

September 2011.] http://www.bssaudio.com/.

41. —. BSS AudioGS724T. [Online] 2011. [Cited: 12 September 2011.]

http://www.bssaudio.com/productpg.php?product_id=72.

42. Broadcom Corporation. Broadcom. [Online] 2011. [Cited: 12 September 2011.]

http://www.broadcom.com/.

43. Broadcom. BCM57765 - Integrated Gigabit Ethernet and Memory Card Reader Controller.

[Online] 2011. [Cited: 12 September 2011.] http://www.broadcom.com/products/Ethernet-

Controllers/Enterprise-Client/BCM57765.

44. Apple Inc. Apple. [Online] 2011. [Cited: 12 September 2011.] http://www.apple.com/.

45. Apple. iMac. [Online] 2011. [Cited: 12 September 2011.] http://www.apple.com/imac/.

46. —. Mac Mini. [Online] 2011. [Cited: 12 September 2011.] http://www.apple.com/macmini/.

47. —. MacBook Pro. [Online] 2011. [Cited: 12 September 2011.]

http://www.apple.com/macbookpro/.

48. Marvell. Marvell Technology Group Ltd. [Online] 2011. [Cited: 12 September 2011.]

http://www.marvell.com/.

49. —. Marvell First to Launch Suite of 802.1 AVB Compliant Products for Robust Delivery of

Multimedia Content over Ethernet. [Online] 27 August 2009. [Cited: 12 September 2011.]

http://www.marvell.com/technologies/avb/audio_video_bridging_yukon_linkstreet_kirkwood_avb/re

lease/1322/.

351

50. Crown International. Crown International. [Online] 2011. [Cited: 12 September 2011.]

http://www.crownaudio.com/.

51. —. PIP-USP4 Module. [Online] 2011. [Cited: 12 September 2011.]

http://www.crownaudio.com/pip_htm/usp4.htm.

52. —. CTs Series. [Online] 2011. [Cited: 12 September 2011.]

http://www.crownaudio.com/amp_htm/cts.htm.

53. IEC 61883-6. Consumer audio/video equipment. Digital interface – Part 6: Audio and music

data transmission protocol. Geneva : International Electrotechnical Commission, 2005. IEC 61883-

6.

54. IEC 61883-1. Consumer audio/video equipment. Digital interface – Part 1: General. Geneva :

International Electrotechnical Commission, 2003. IEC 61883-1.

55. IEEE 1722. Standard for Layer 2 Transport Protocol for Time Sensitive Applications in a

Bridged Local Area Network. New York : Institute of Electrical and Electronics Engineers, 2011.

IEEE 1722.

56. IEEE 1722.1. Draft Standard for Standard for Standard Device Discovery, Connection

Management and Control Protocol for IEEE 1722 Based Devices. New York : Institute of Electrical

and Electronics Engineers, 2011. IEEE 1722.1 Draft 16.

57. Case, J, et al. A Simple Network Management Protocol (SNMP). 1990. RFC 1157.

58. Open Sound Control. [Online] The Center For New Music and Audio Technology (CNMAT),

UC Berkeley. [Cited: 21 February 2011.] http://opensoundcontrol.org/.

59. AES-X170. DRAFT AES Standard for Audio Applications of Networks - Integrated Control,

Monitoring, and Connection Management for Digital Audio and Other Media Networks. New York :

AES, 2011. AES-X170.

60. —. DRAFT AES Informative Document for Audio Applications of Networks - Integrated Control,

Monitoring, and Connection Management for Digital Audio and Other Media Networks. New York :

AES, 2011. AES-X170.

61. Postel, J. Internet Protocol. 1981. RFC 791.

62. IEEE 1394.1. Standard for High Performance Serial Bus Bridges. New York : Institute of

Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers, 2004. IEEE

1394.1.

63. Cisco. Token Ring-to-Ethernet Migration. [Online] [Cited: 25 October 2010.]

http://www.cisco.com/en/US/solutions/collateral/ns340/ns394/ns74/ns149/net_business_benefit0918

6a00800c92b9_ps6600_Products_White_Paper.html.

352

64. Teener, M and Gaél, M. Ethernet in the HD studio. Broadcast Engineering. [Online] 1 May

2008. [Cited: 15 February 2010.] http://broadcastengineering.com/hdtv/ethernet-hd-studio/.

65. IEEE 802.5. IEEE 802.5 Web Site. IEEE 802.5 Web Site. [Online] Institute of Electrical and

Electronics Engineers, 22 March 2004. [Cited: 14 September 2010.] http://www.ieee802.org/5/.

66. IEEE 802.11. IEEE 802.11 Wireless Local Area Networks. IEEE 802.11 Wireless Local Area

Networks. [Online] Institute of Electrical and Electronics Engineers. [Cited: 14 September 2010.]

http://www.ieee802.org/11/.

67. IEEE 801.1Qat. Stream Reservation Protocol. New York : Institute of Electrical and Electronics

Engineers, 2010. IEEE 802.1Qat.

68. IEEE 802.1Qav. Forwarding and Queuing Enhancements for Time-Sensitive Streams. New

York : Institute of Electrical and Electronics Engineers, 2009. IEEE 802.1Qav.

69. IEEE 802.1AS. Timing and Synchronization for Time-Sensitive Applications in Bridged Local

Area Networks. New York : Institute of Electrical and Electronics Engineers, 2011. IEEE 802.1AS.

70. IEEE 802.1BA. Audio Video Bridging (AVB) Systems. New York : Institute of Electrical and

Electronics Engineers, 2011. IEEE 802.1BA Draft 2.3.

71. IEEE 802.1ak. Multiple Registration Protocol. New York : Institute of Electrical and

Electronics Engineers, 2007. IEEE 802.1ak.

72. Garner, G and Ryu, H. Synchronization of Audio/Video Bridging Networks Using IEEE

802.1AS. IEEE Communications Magazine. 2011, Feburary 2011.

73. Stanton, K. 802.1AS Tutorial. 2008.

74. International Electrotechnical Commission. [Online] http://www.iec.ch/.

75. IEC 62379-1. Common control interface - Part 1: General. s.l. : International Electrotechnical

Commission, 2007. IEC 62379-1.

76. Postel, J. User Datagram Protocol. 1980. RFC 768.

77. CobraNet. [Online] [Cited: 26 May 2011.] http://www.cobranet.info/.

78. Gross, K and Holtzen, T. Controlling and Monitoring Audio Systems with Simple Network

Management Protocol (SNMP). Boulder : Audio Engineering Society, 1998.

79. Gross, K. AVBC via SNMP for 1722.1. s.l. : AVA Networks, 2010.

80. Postel, J. Transmission Control Protocol. 1981. RFC 793.

81. International Telecommunication Union. ASN.1 & OID Project. [Online] International

Telecommunication Union, 2011. [Cited: 26 May 2011.] http://www.itu.int/ITU-T/asn1/.

82. International Organization for Standardization. ISO - International Organization for

Standardization. [Online] 2011. [Cited: 26 May 2011.] http://www.iso.org/.

353

83. US Department of Defense. The Official Home of the Department of Defense. [Online] [Cited:

26 May 2011.] http://www.defense.gov/.

84. Internet Assigned Numbers Authority. Internet Assigned Numbers Authority. [Online]

http://www.iana.org/.

85. Net-SNMP. Net-SNMP. [Online] [Cited: 29 March 2011.] http://www.net-snmp.org/.

86. IEC 62379. IEC 62379 Common Control Interface. [Online] 2010. [Cited: 09 January 2011.]

http://www.iec62379.org/. 62379.

87. IEC 62379-2. Common control interface – Part 2: Audio. s.l. : International Electrotechnical

Commission, 2008. IEC 62379-2.

88. IEC 62379-5-1. DRAFT Common control interface for networked digital audio and video

products – Part 5-1: Transmission over networks – General. Geneva : International Electrotechnical

Commission, 2011. IEC 62379-5-1.

89. IEC 62379-5-2. DRAFT Common control interface for networked digital audio and video

products – Part 5-2: Transmission over networks – Signalling. Geneva : International

Electrotechnical Commission, 2011. IEC 62379-5-2.

90. Koftinoff, J. AVBC – A protocol for connection management and system control for AVB. 2010.

Version 1.3.

91. Bencina, R. oscpack. A simple C++ Open Sound Control (OSC) packet manipulation library.

[Online] [Cited: 26 April 2011.] http://code.google.com/p/oscpack/.

92. Audio Engineering Society. AES Standards. [Online] [Cited: 26 April 2011.]

http://www.aes.org/standards/.

93. Raw Material Software. JUCE. [Online] [Cited: 15 March 2011.]

http://www.rawmaterialsoftware.com/.

94. MIDI Manufacturers Association. MIDI Manufacturers Association. [Online] 2010. [Cited: 15

May 2011.] http://www.midi.org/.

95. The Linux Home Page at Linux Online. [Online] [Cited: 14 February 2010.]

http://www.linux.org/.

96. AlsaProject. [Online] [Cited: 28 March 2011.] http://www.alsa-project.org/.

97. Foulkes, P. A grid based approach for the control and recall of the properties of IEEE1394 audio

devices. A thesis submitted in fulfilment of the requirements for the degree of MASTER OF

SCIENCE of RHODES UNIVERSITY. 2008.

98. mLAN Central. mLAN Central. [Online] [Cited: 21 July 2011.] http://www.mlancentral.com/.

354

99. Chigwamba, N. and Foss, R. Enhanced End-User Capabilities in High Speed Audio Networks.

s.l. : AES, 2007.

100. Otari. mLAN Control Software Operation Manual. 2005.

