
Towards a Portable
occam

T I?<6:6 • ~'6

o

submitted in partial fulfilment of the requirements for the degree

MASTER OF SCIENCE
of Rhodes University

by

David Timothy Hill

January 1988

Abstract

Occam is designed for concurrent programming on a network of

transputers. AI/ocation and partitioning of the program is specified

within the source code, binding the program to a specific network An

altemative approach is proposed which completely separates the source

code from hardware considerations. Static al/ocation is performed as a

separate phase and should, ideally, be automatic but at present is manual.

Complete hardware abstraction requires that non-local, shared

communication be provided for, introducing an efficiency overhead which

can be minimised by the al/ocation.

network of IBM PCs, modelled

implementation issues are discussed.

The proposal was implemented on a

on a transputer network, and

Acknowledgements

I am indebted to Peter Clayton, my supervisor, for his guidance, input and encouragement. My

thanks to the Rhodes University Department of Computer Science in general, for providing a

pleasant, cheerful working environment.

I am grateful to the CSIR, Sasol and Rhodes University for their fmancial support In this

project.

Finally, to Raewyn for her support, financial and otherwise, and for her tolerance.

Trademark Notice

UCSD Pascal is a trademark of the Regents of the University of California. MS_DOS is a

trademark of MicroSoft Corpordtion. Turbo Pascal is a trademark of Borland International

Corporation. ADA is a trademark of the US Department of Defence. Sage II is a trademark

of Sage Computer Technology. Transputer and occam are trademarks of the INMOS group of

companies

1

2

3

3.1

3.2

3.2.1

CONTENTS

Introduction 1

Problems with the Placed Par Construct

A Step Towards Automatic Configuration

Communication

Allocation .

The use of Statistics in Allocation

5

8

9

10

11

3.2.2 The Network Map . 12

3.3 Priority • • • 12

3.4

4

4.1

4.2

4.2.1

4.2.2

4.2.3

4.2.3.1

4.2.3.2

4.3

4.3.1

4.3.2

4.3.2.1

4.3.2.2

4.3.2.3

4.3.3

4.3.4

4.3.4.1

4.3.4.2

4.3.4.3

5

Summary and Criticisms

Implementation •

.. 12

...... . 15

Implementation Outline•.

Communication Issues

Packet Communication

The Formation of the Network Map

Message Communication and Synchronization .

A Hierarchial Re-routing Approach

The Approach of a Third-Party Channel Supervisor . . .

Issues Relating to Daughter Processes

Language Restrictions Introduced to Daughter Invocation .

16

17

17

19

19

21

22

25

25

Daughter Invocation . 27

The Parameter Passing Mechanism used • • .. 28

Parent-Daughter Parameter Passing 29

Parent-Daughter Synchronization 30

Code Generation for Named Processes • • . . . • • • . .. 31

Name Allocation

Processor Name Allocation

Channel Name Allocation•. .• .

Daughter Name Allocation ...

Summary and Conclusions

32

32

32

33

34

Bibliography

Introduction

1 Introduction

Concurrent programming has become an area of prolific research over the last twenty years.

New programming languages have been developed for the expression of concurrent algorithms,

of which Modula-2 [WIR82], Ada [ADA84] and occam [MA Y83] are currently prevalent.

Concurrent programming is no longer solely the domain of the implementors of operating

systems but has widespread use in both real-time and non real-time applications, including

process control, digital image processing, scientific simulations/ calculations and database

management systems. The reason for this has been the availability of cheap processors,

making multiprocessor systems feasible, and the realization that concurrent algorithms often

provide a more naturally expressed solution to many problems.

The memory of earlier multiprocessor systems was shared by the processors in the system, and

languages such as Concurrent Pascal [BRI75] and Modula [WIR 77] were designed with this type

of target hardware in mind. The bottleneck, created by sharing either memory or a

communications bus between processors, places an upper limit on the number of processors

such a system can contain. Thus current multiprocessor systems have tended towards

distributed processors, having local memory only and communicating with one another via I/O

channels. CSP [HOA78] and DP [BRI78] reflect this type of mUltiprocessor architecture as do

languages influenced by them, such as occam and -MOD [C0080]. Ada, also influenced by

CSP and DP, does not completely reflect a distributed architecture and contruns certain

features which rely on a single shared memory. Stammers [STA85] identifies these features

and suggests ways m which they could be modified so as to support implementation on

distributed hardware.

Although concurrent languages should ideally be implemented on a multiprocessor system, most

current implementations of these languages are on a single processor where the concurrent

tasks execute pseudo-concurrently by sharing the processor via some time-slicing mechanism.

Single processor implementations do not address the important Issue of allocation (ie. which

concurrent tasks execute on which processors). In non real-time applications, the selection of

a particular allocation affects only the efficiency of the program execution, not its correct

execution, since allocation does not affect the logical behaviour of the program. In real-time

applications, however, timing constrrunts might not be met by a certain allocation, and hence

the program will not execute correctly for that allocation.

Designers of concurrent languages can either provide facilities within the language which

require the programmer to specify allocation in the source code, as in 'MOD and occam, or

-1-

Introduction

else can leave allocation to the implementation, as is the case with Ada and Modula-2.

Leaving allocation to the implementation, or to some standard run-time support environment,

allows for program portability but significantly complicates implementation. In Ada,

implementation on distributed processors is further complicated by weaknesses in the language

design, already referred to. As a result, no implementation yet exists which automatically

distributes an Ada program amoung processors with local memory only. Bishop et at [BIS87)

suggest an interim approach to distributing an Ada program which involves the user supplying

process to processor mappings. In adapting and implementing Modnla-2 for distributed

systems, Mellor et at [MEL86] use both automatic and interactive (user supplied) techniques to

allocate Modula-2 modules to processors.

By placing allocation completely in the hands of the programmer, the designers of occam allow

the language to be easily implemented on a distributed system, but also create some problems.

Specifying allocation in the source code results in a loss of portability since the source must

be modified if it is to be executed on a transputer network of differing topology. The

programmer is not abstracted from hardware considerations and is restricted in the use of the

language. These restrictions are described in section 2 of this report. Specifying allocation

in the source code becomes prohibitively tedious for programming a system of many (100)

processors. Occam has been criticized for this and Crookes et at [CR087) have developed the

language Latin in an attempt to overcome these difficulties, encountered when using a

transputer network as an array processor programmed in occam.

The ability of the programmer to specify allocation is often advantageous for real-time

programming, especially where hard real-time constraints must be met:

Communication times can be calculated exactly and guaranteed at the design stage

since the communication paths are known.

Response times can be guaranteed since the number of tasks sharing a particular

processor is determined by the programmer and no run-time allocation overheads need

be considered.

Since hard real-time programs are, by their very nature, machine specific, the loss of program

portability is not a serious consideralion for these applications.

For programmers not concerned with stringent timing details, but simply with the efficient

execution of their programs, the disadvantages of specifying allocation in the source code,

-2-

Introduction

especially via the cumbersome PLACED PAR construct of occam, become serious. This is

especially true since many applications of transputers do not require that the transputer

network become a special-purpose machine for solving a particular problem as determined by

the occam program, but rather that it be a general purpose machine. Examples of these

general purpose, low cost, high performance machines are the Meiko Computing Surface

[BOT86] and the work of the ESPRIT transputer array project [EIS8?]. The developers of the

Meiko Computing Surface are reported [POU86,POU8?] to be experimenting with a dynamic

allocation mechanism where each transputer executes a small occam process which either

accepts data sent to it for processing, or passes it on to the next transputer.

There is clearly a need to allow the mapping of occam processes to transputers to be done

independently of the occam source code. This report proposes facilities to enable this and

presents a partial implementation. In brief, the idea is to strive towards portable occam by

separating the source code from all hardware-specific aspects. The allocation of occam

processes to transputers is done as a separate phase which should, ideally, be automatic. In

order to avoid the unnecessary recompilation of the source code each time the occam program

is to be reallocated, it was decided to separate the compilation and allocation into different

stages. Mellor et 01 adopt a similar approach [MEL86]. The allocator decides the allocation

according to a map of the transputer network, supplied to it by the user, and run-time

statistics of the behaviour of the program gathered from previous executions, as depicted in

Figure 1. The proposal was partially implemented on a network of IBM PCs, each containing

a four-port serial card and thus being functionally equivalent to a transputer [HIL86].

e""" i 1 er

FIgure 1

nternediat
code

The Proposal

-3-

istribute
code

Introduction

It is assumed that the reader IS familiar with both occam and the transputer, and the

unfamiliar reader is referred to the ample literature covering these topics [JON8S, MA Y84,

MA Y85, NEW86, TRA8SJ.

-4-

Problems with the Placed Par Construct

2 Problems with the Placed Par Construct

This section criticizes the current allocation scheme of occam, provided by the PLACED PAR

construct. The affect of this construct on program design and allocation is discussed and the

implications of the resultant loss of portability are considered.

The configuration (allocation) construct of occam is always introduced to prospective occam

programmers as an afterthought, tucked away in the last pages of the manual or textbook.

Indeed, it is suggested [MA T87j that the construct be used as an afterthought, and that the

program be developed without regard for the target hardware until the final configuration

stage. Unfortunately the configuration construct imposes some far reaching constraints on

program design, and cannot be ignored until the end.

The most far reaching of these constraints is that the programmer cannot place any

concurrent occam process on any arbitrary transputer. The novice occam programmer might

easily gain the impression that any component process of a PAR construct can, given a

suitable transputer network, execute on its own dedicated transputer (ie. not pseudo­

concurrently). Unfortunately this is not the case since not all PAR constructs can be

replaced with a PLACED PAR construct. The PLACED PAR construct must be the first

(outermost) construct in the occam program and its component processes are separately

compiled processes which may have only channels and constants declared global to them. The

PAR construct, on the other hand, may be used wherever a process is allowed and there are

no restrictions on the type of declarations which may be global to a PAR construct. The only

restrictions are the so called non-interference conditions, made explicit in occam2 [MA Y87aj,

which prohibit more than one concurrent process from modifying a global variable. Thus a

PAR construct may be replaced by a PLACED PAR construct only if the PAR construct is the

outermost construct and its component processes (hence referred to as daughters) do not have

variables or timers declared global to them.

To illustrate this point, consider the following occam program:

Ii) VAR offset:

SEQ

offset: = 1

VARx, y:

PAR

x:= offset + 3
y:= offset + 4

The above program can only be configured to run on a single transputer, since the PAR

-5-

Problems with the Placed Par Construct

construct cannot be replaced by a PLACED PAR construct. However, if the program is

rewritten as

(ii) CHAN start:
PAR

VAR offset, x:

SEQ

offset: = 1

START! offset

x;= offset + 3

VAR offset, y:

SEQ

START? offset

y:= offset + 4

then the PAR construct can be replaced by a PLACED PAR construct and the two daughters

can be made into separately compiled processes. Hence the program has the potential to be

configured for a transputer network of two transputers. If an occam programmer proceeds

with program development without keeping in mind the restrictions of the PLACED PAR

construct, the final program might not be configurable or at least be seriously restricted. The

programmer may be forced to write code in the form of program (ii) above, even though

program (i) is a far more lucid expression of the algorithm.

It is perhaps possible to pcrform automatic source translation of occam programs, so that all

daughter processes in the program are made potential separately compiled processes, thus

allowing for the maximum degree of truly concurrent execution of the program. The large

number of channels required to synchronize the execution of the daughters will, however,

present problems due to the limited number of links available per transputer. This is another

aspect of the PLACED PAR construct which limits the design of occam programs.

The mapping of occam channels to transputer links is done via the port allocation clause of

the PLACED PAR construct. Only two occam channels, providing they communicate in

opposite directions, may be mapped to a single transputer link. Thus two separately compiled

processes, which are mapped to separate transputers, may only share as many channels as can

be mapped to the links connecting the two transputers directly. The mapping remains static

throughout program execution and has been identified as a problem [FA Y87]. Fay and Das

[FA Y87] suggest either dynamic reconfiguration of transputer link hardware or else a network

layer, implemented on the transputers so as to allow for differing logical and physical

connections.

At present, however, the designer of an occam program must minimize the number of

-6-

Problems with the Placed Par Construct

channels between potential separately compiled processes so as not to fall foul of the limited

number of hardware links available, even though the algorithm may be more clearly expressed

by using more channels. A highly unsatisfactory alternative is to create an occam process on

each transputer which multiplexes many channels onto a single channel. The low level support

for synchronization provided by the transputer will, however, be lost and must be replaced by

synchronizing messages generated by the occam processes doing the multiplexing.

It can be seen, then, that configuration of occam processes requires that the programmer

create what are essentially separate occam programs, each executing on their own transputer

and communicating with each other using a limited number of channels. Decisions on how

best to divide the occam program into sub-programs and allocate them to transputers must

take into account firstly the connectivity constraints of the target network, secondly the

loading of each transputer and finally the logical grouping of processes. The logical grouping

of processes, being the least critical aspect, would normally be poorly attended to, and an

insight into the structure of a distributed occam program would, unfortunately, be rarely

gained by examining its modular decomposition into separately compiled processes.

The allocation decisions, outlined above, require a fairly detailed knowledge of the run-time

behaviour of the program, and the task of allocation cannot be easily done by someone other

than the programmer. Should a particular transputer network be upgraded by the addition of

extra transputers, the maintenance required to reconfigure the existing occam programs for

the upgraded network is formidable and would probably not be done optimally. In addition,

vendors of occam software are faced with a problem since the source code is required for

allocation or reallocation. Thus there is a clear need for the ability to automatically

configure any occam program for any transputer network in an optimal fashion.

-7-

A Step Towards Automatic Configuration

3 A Step Towards Automatic Configuration

In this section, a system IS proposed which facilitates automatic configuration by not

specifying allocation within the source code, but rather leaving this to the implementation.

The programmer is then free to concentrate on the logical structure of the program, declare

as many processes and channels as might be required, use constructs which reflect the

algorithm most clearly, and yet be safe in the knowledge that the program will execute on any

given transputer network without modification of the source code. This scheme will be

referred to as ponable occam in order to clearly distinguish it from the existing occam

language.

Unlike the current allocation scheme of occam, it is proposed that every daughter process be

given the potential to execute on any transputer in the target network, as decided by the

allocation algorithm employed. This is illustrated by the example program In Figure 2, where

the blocked code may execute on any transputer, which is not necessarily the transputer

executing the code contained in an outer block.

Figure 2

VAR x, y, z:
SEQ

x:= 4
PAR

VARa:

SEQ

a; = 1

IF
x = 4

PAR

TRUE
x:= 5

I z:= 1

jy:=

The Partitioning Proposed

It is necessary for a communications layer to be implemented on each transputer so as to

abstract the logical connections between processes from the physical connections between

transputers. Fisher [FIS86] has implemented occam on a multiprocessor token ring network

-8-

A Step Towards Automatic Configuration

which allows for such abstraction between logical and physical connections by multiplexing

occam channels onto the ring. Unfortunately the performance of the communications ring is

degraded as the number of processors is increased.

Models and algorithms for optimal and suboptimal allocation are areas of research in

themselves and are not investigated here, neither is a particular allocation algorithm proposed.

Instead, it is assumed that if a system can be provided whereby any daughter process can be

arbitrarily mapped to any transputer on any given network, then that mapping can be

optimized through the use of some appropriate algorithm. Shatz et al [SHA8?] and Chu et al

[CHU80] survey the research into such algorithms.

3.1 Communication

The current communication philosophy of occam is that communication may only occur between

directly connected transputers and that channels may not compete for communication

resources. This has the advantage of removing communication bandwidth constraints on the

network size, but severely restricts the set of possible allocations of a program on a given

network. This restricted set might easily exclude the most efficient allocation. The ability to

provide global communication is thus essential if the programmer is to be abstracted from

hardware considerations and yet be given the ability to execute the program making optimal

use of the available hardware.

For portable occam, a system is envisaged which will support the complete set of possible

allocations. Hence global communication IS allowed and channels may compete for

communication resources.

Figure 3

I ,
I

1

, ,
.... .. virtua 1

...
I-- 2 - 3

I
'1

Message Forwarding

-9-

A Step Towards Automatic Configuration

Communication facilities are suggested, for each transputer, to provide for a virtual link

between every pair of transputers in the network. Those pairs which are not directly

connected by a single physical link, communicate via other transputers which pass the message

on. Thus a virtual link between transputer 1 and transputer 3, in Figure 3, would be created

by two physical links with transputer 2 forwarding the messages.

The communication facilities must also allow any number of occam channels to be mapped to a

virtual link. This sharing of links by channels can be done either on a first-come-first-serve

basis or else according to priority. A priority mechanism is discussed in section 3.3.

By allowing communication between any two transputers in the network, the potential

communication overhead in forwarding messages increases exponentially for each transputer as

the network size increases. It is therefore imperative that the allocation algorithm adopted

should attempt to minimize this overhead and the allocation should reflect a clustering, on the

transputer network, of processes which communicate with each other.

3.2 Allocation

Allocation can be done either statically or dynamically, both methods having their advantages

and disadvantages, and Kruskal and Weiss [KRU84] have compared the performance of these

two techniques. Static allocation involves mapping processes to processors before the

execution of the program. This mapping can therefore be done by the programmer, as in

occam, or by the implementation before execution, which is the approach adopted by both

Bishop et af [EIS87] and Mellor et at [MEL86]. The advantage of this approach is that there

is no run-time scheduling overhead while the disadvantage is that, at compile-time, it is

impossible to predict the run-time behaviour of the program. Hence the allocation algorithm

must use predictions of such behaviour in order to determine allocation, which can lead to

less efficient allocations being adopted.

In dynamic allocation, the allocation occurs at run-time with the advantage of better processor

utilization since the allocation is in response to the run-time state of the processors.

However, allocation decisions taken at run-time incur a certain run-time usage of both

processor and communication resources. Allocation costs are thus paid each time the program

is executed while costs for static allocation are paid only once for each allocation made. As

a result, computationally intensive allocation algorithms are not appropriate for dynamic

allocation. The dynamic allocation algorithm can either be centralized or distributed, and Gaj

-10-

A Step Towards Automatic Configuration

et al [GAJ8S] survey various implementations which use these two approaches.

Static allocation is proposed for portable occam, since it is more suited to transputer

networks: dynamic allocation requires global communication which is expensive in a transputer

network. As mentioned in section 1, the allocation stage is viewed as being separate from

compilation. The allocator uses the output of the compiler together with a description of the

target network, provided by the user, and produces a code packet for each transputer to

execute. A disadvantage of static allocation, already mentioned, is that it is impossible, at

compile-time, to predict how often a channel will be used or how much processor time a

process will require. This information is obviously important to any allocation algorithm since

the algorithm must minimize communication overheads while maintaining an even load balance

amoung the transputers. In order to address this disadvantage, it is proposed that the run­

time system, for portable occam, provide facilities for recording ron-time statistics of

processor and channel usage by each daughter process. Allocation is then viewed as an

iterative process, with the program being configured, executed, reconfigured and re-executed

until the user is satisfied with the allocation. An iterative approach to allocation is also

taken by Mellor et al [MEL86].

3.2.1 The use of Slatistics in Allocation

The idea of using statistics of the run-time behaviour of a program in order to aid th.e

allocation process has been used by Fisher [FIS81] to aid allocation by his Bulldog compiler

and Mellor et al [MEL86] propose this as an extension to their multiprocessor implementation

of Modula-2.

Such a statistics-gathering facility obviously creates run-time overheads, and the user should

be given the choice of invoking it or not. The run-time behaviour (execution pattern) of a

program usually depends on the input data it is given, and thus the statistics which are

calculated would differ depending on the input data used. Hence, the user has a degree of

influence over the allocation: by using cumulative statistics averaged over a wide range of

input data sets, the resultant configuration should be optimized for a generalized program

execution pattern; by using statistics gathered using a specific set of input data, the

configuration can be fme-tuned for optimal execution of a certain program behaviour.

The choice of exactly what run-time statistics should be calculated is dependent on the

requirements of the allocation algorithm in use.

-11-

A Step Towards Automatic Configuration

3.2.2 The Network Map

The allocator needs a description of the target transputer network in order to map daughters

to transputers. The advent of the C004 electronic switching components, for configuring the

transputer interconnections under software control, gives the allocator the freedom to

configure the network topology so as to best suite the virtual interconnections required. If

the links can be connected only manually, the topology must be regarded by the allocator as

being fixed and must be supplied in the network map.

Other information required IS the number of transputers in the network and their type.

Because of the existence of special purpose transputers, such as graphic and disk controllers,

the allocator needs to be aware of such transputers so as to appropriately place processes

which make use of these special facilities.

3.3 Priority

The PRI PAR construct of occam assigns priority to daughter processes. The order of priority

is implied by the textual order of the component processes in the source code, with the first

process having the highest priority. In occam, these processes must execute pseudo­

concurrently and the processor always executes the process with the highest priority which

has not terminated or been blocked while waiting for 1/0.

In portable occam, daughter processes do not necessarily execute on the same processor and a

change in the semantics of the PRI PAR construct is required. The priority ordering is used

to resolve any contention that might exist for the same processor or communication hardware

by always giving preference to the competing process with the highest priority. This change

in semantics does not guarantee that, when a process with a certain priority is executing, all

processes with a lower priority are unable to execute.

3.4 Summary and Criticisms

The proposal for portable occam provides a more natural partitioning of an occam program

into allocatable units, than does the PLACED PAR construct. The partitioning of portable

occam gives every concurrent process the potential to execute on a separate processor and

does not place restrictions on the programmer's use of the language, as does the PLACED PAR

-12-

A Step Towards Automatic Configuration

construct. The programmer is free to specify these concurrent processes and to declare as

many channels as might be required between them, without regard for a particular target

network. By abstracting the use of the language from allocation issues, the proposal not only

allows more freedom in the use of the language but also results in portable source code being

produced. This abstraction bears the cost of making multiprocessor implementation more

difficult and less efficient.

The efficiency cost is incurred by the necessity to relax the dedicated nearest-neighbour-only

communication found in occam. Instead, portable occam allows channels to share the same

communication path and to communicate with indirectly connected processors via the

forwarding of messages. The message forwarding overhead depends on the allocation and is

preferable to a communications bus structure since it does not necessarily place an upper

bound on the number of possible processors. By clustering heavily communicating processes

onto the same or nearby processor(s), the message forwarding overhead can be reduced.

The essential implementation difficulty of portable occam is the assumption that the

implementation will provide the allocation automatically, without any user interaction.

Although a limited study period did not allow for an investigation into allocation algorithms, it

is perhaps w.orthwhile identifying some requirements of such an algorithm.

*

*

*

The most important criterion is that the resultant allocation should be efficient

enough to outweigh the effort of hand allocation by the user. As pointed out in

section 1, efficient allocation is of particular importance to real-time programmers,

since an inefficient allocation can result in timing constraints Dot being met and

hence the incorrect execution of the program. For real-time programs, the

allocation algorithm would need to be supplied with these timing constraints in

order to ensure that the allocation does not cause incorrect program execution.

Since the allocation algorithm can only make use of estimated information regarding

run-time behaviour, it is doubtful whether satisfying such timing constraints can be

guaranteed (assuming a solution exists).

The algorithm must be able to take into account a non-homogeneous multiprocessor

system, where various processors have differing capabilities, memory sizes and

communication links.

Electronically reconfigurable interprocessor connections allow the allocation

algorithm to determine the network configuration. Although this should result in

-13-

•

A Step Towards Automatic Configuration

more efficient allocations being found, it adds yet another dimension to the

allocation algorithm. Simply fmding an optimal allocation is not sufficient; an

optimal combination of allocation and network configuration must be found.

The allocation, despite all the complexities, must be done within a reasonable

period.

These allocation algorithm considerations, coupled with the inefficiency imposed by global

communication, support the approach of static, rather than dynamic, allocation adopted in

portable occam.

Automatic allocation and allocation specified in the source code represent opposite ends of the

allocation spectrum. The goal of automatic allocation is an ideal one and requires a great

deal of further research, yet it must be achieved if concurrent software is to be truly

portable. True portability implies that the user has the ability to retarget the software via an

entirely mechanical process. The user should not be expected to understand the structure of

the software nor to make any direct or indirect changes to the source code. In the middle of

the allocation spectrum lie those approaches, such as adopted by Bishop el al [BIS87], Mellor

el al [MEL86] and the implementation presented in section 4, where allocation is separated

from the source code but must still be supplied by the user. A degree of portability is

achieved in that the source code need not be directly modified for reallocation. However,

user-supplied allocation essentially amounts to indirect modification of the source code with

the user still requiring an understanding of the software in order to perform an intelligent

allocation. Mellor el al [MEL86] propose to go one step further by allO\ving a combination of

automatic and user-supplied allocation.

At this stage, the middle-spectrum approach is the most practical one for short-term solutions.

For real-time applications, automatic allocation does not appear to be considered as a viable

approach by leaders in the field [GUT86], and Kirrmann el al [KIR86] support the middle­

spectrum approach.

-14-

Implementation

4 Implementation

Portable occam has been partially implemented 1 in order to discover any implementation

difficulties or inefficiencies inherent in the proposal and to provide a system on which

allocation issues can be demonstrated and experimented with. It is a partial implementation of

the proposal in that priorities, run-time statistics and an allocation algorithm have not been

implemented. In addition, only those constructs most fundamental to the occam language are

implemented and are based on the definition of occam given in the occam programming manual

[OCC83]. The PRI ALT, PRI PAR and WAIT constructs were not implemented, nor were slices.

Vector channels were not ccmpletely implemented and obviously the PLACED PAR ccnstruct is

made redundant by automatic allocation. A restriction was placed on the use of global

variables by daughter processes and is discussed in section 4.3.2. The motivation for this

restriction is solely to simplify the ccmpiler and wonld not be required by a more

sophisticated implementation.

An important aspect of the implementation is that the network of IBM PCs used, closely

reflects a transputer network (with which occam is synonymous). The relevance of Fisher's

multiprocessor implementation of occam [FIS86] is restricted in that the processors are

interconnected by a token ring. The choice of IBM PCs over transputers was simply for

economic and practical reasons: IBM PCs are easily accessible at Rhodes University and

provide well-documented hardware on which a run-time support system can be implemented;

transputers are not so easily available and Inmos has been criticized [MA Y87b] for the poor

machine-level documentation made available.

HUL [CLA86] is a concurrent language, developed at Rhodes University, based on occam and is

designed to exploit interrupt-generating boolean variables while using control structures based

on human-like commands. An existing single-processor implementation of HUL [SAN8S] was

used as a springboard for the implementation. The HUL implementation consisted of a

compiler/interpreter system written in UCSD-Pascal executing on a Sage II computer.

Adapting this implementation to a multiprocessor implementation of occam involved extensive

modification of both the compiler and interpreter. It was decided to use Turbo-Pascal instead

of USCD-Pascal because of the facilities offered by Turbo-Pascal for access to I/O ports and

operating system function calls. These facilities were required in order to implement

interprocessor communication, and the HUL implementation was therefore translated into

Turbo-Pascal executing on an IBM PC under MS-DOS. This implementation was then

1 program listings available under a separate cover

-IS-

Implementation

extensively modified to compile, allocate, load and execute an occam program on an IBM PC

network.

4.1 Implementation Outline

FIgIl!e 4

C"",, 11 er ntennedlate
code

Implementation Components

•

t nterpreter

Interpreter

interpreter

•

The basic components of the implementation are illustrated in Figure 4. The compiler

produces intermediate language codes (ILCs) which can be executed by a stack-based

interpreter; identical copies of the interpreter are executed by each processor in the network.

The allocator uses a user-supplied allocation and network map to create an allocation table

and network map for each processor. The loader then sends to each interpreter the complete

set of ILCs, generated by the compiler, together with an allocation table and network map.

At this stage, each interpreter has the ability to execute any daughter process if instructed to

do so. It is not necessary that the loader supply each processor with the code for the entire

program, but this was done because the ILCs produced by the compiler are not relocatable.

Fisher [FIS861, in his multiprocessor implementation of occam, uses the alternative strategy of

supplying each processor only with tbe code it requires.

In the current implementation of portable occam, the allocation is performed eacb time tbe

program is executed, and tbus the allocation and loading stages are not separated. It is a

trivial extension to separate tbese two pbases so tbat allocation need not be done for every

execution. Tbe allocation/loading phase is done by a processor of the user's cboice. Once all

the processors in the network bave been loaded, the processor whicb performed the loading

automatically begins execution of the outermost occam process. Tbis would be a restriction if

-16-

Implementation

the allocation was done via an algorithm, rather than the user, and could easily be overcome

by the loading phase instructing a processor, determined by the algorithm, to execute the

outermost process.

On reaching that point m the code where a daughter process is invoked, the processor

consults the configuration table to determine which processor is to execute that daughter, and

instructs the relevant processor (which could be itself) to proceed. Each processor maintains

a list of daughter processes it has been instructed to execute, and executes them on a time-

slice basis. A daughter process may, m turn, invoke its own daughter processes

(granddaughters) in the manner described above.

The implementation is a simple one and has much scope for improvement. The following

sections describe the most interesting implementation issues, outline the solutions adopted,

criticize these and suggest possible alternatives.

4.2 Communication Issues

4.2.1 Packet Communication

In order to facilitate the mUltiplexing of many occam channels onto a single virtual link, all

messages are sent in the form of packets. Only complete packets may be multiplexed, not

elements within a packet. The structure of a message packet is shown in Figure 5.

...

/
tail

Figure 5

n words ...

message
contents

n

rressage
length

chan

channel
nuooer

Structure of Message Packet

0

routing
fnformatfon

head

Each element of the packet is a 16-bit word. At the head of the message packet is a set of

port numbers, which must be in the range 1..4. This sequence of port numbers is terminated

by a zero. Each port number refers to one of the serial ports of the four-port serial card

contained in each IBM PC of the network and is used to indicate the virtual link on which

-17-

Implementation

the packet is being sent. On receiving a message packet, the communications routine of the

processor examines the first number of the packet. A zero indicates that the message is

destined for that processor, and the communications routine decodes the message packet and

acts accordingly. If the first number of the message packet is non-zero, then it must be in

the range 1..4 and indicates on which port the communications routine is required to forward

the message. The routine does not send that first number, but forwards the remaining

elements of the packet. Thus the message is routed through the network in accordance with

this sequence of port numbers until the zero appears at the head of the message, indicating

that it has arrived at its destination. Figure 6 shows the sequence of port numbers needed in

order to create the virtual link between processor 1 and 5 in the network shown.

Figure 6

.... ---­
~

virtua 1

.. rest of packet I 0 '1

1 ink _,

3 3

\
\ ,

\

Message Packet Routing Information

On receiving a message packet destined for itself, the communications routine examines the

channel number. A channel number of zero indicates that the message is a system message,

and aU other numbers indicate the unique identification number assigned to each run-time

instance of an occam channel. The method used to generate these numbers is described in

section 4.3.4.2. These identification numbers allow many channels to be multiplexed to a

single, virtual interprocessor connection. System messages are passed between the interpreters

in the network and are used to communicate loading information, instructions to initiate the

execution of a process and to halt all process execution.

An interrupt routine performs low-level I/O on the four-port serial card. Each port is given

an input and output bnffer. The interrupt routine simply sends all bytes in the output buffer

-18-

Implementation

to the port and places, in the input buffer, all bytes received on that port. The interpreter

polls these buffers after the execution of each ILC, and on the detection of a complete

message packet, performs the necessary operation on it. An additional, virtual port (assigned

the port number zero) is defined for compatibility reasons, and is used by the interpreter for

sending messages to itself.

4.2.2 The Formation of the Network Map

The network map provides the mapping of virtual links to physical links and, in this

implementation, must be provided in its fullest form by the user. In order to avoid

calculation of the shortest paths between processors, the user is required to provide, for each

ordered pair of processors, the set of port numbers which the first processor must place at

the head of a message packet destined for the second processor. Figure 7 shows a network

and the network map which must be supplied. This information is entered, using a text

editor, into a fIle and read by the allocator. The text enclosed ill curly brackets is for

explanation purposes only and does not form part of the network map.

Fignre 7

3

o
30

330

1 0

o
30

1 1 0

1 0

o

{number of processors in network}

{from processor 1 to processor 1}

{t to 2)
{1 to 3)

{2 to 1)
{2 to 2)
{2 to 3)
{3 to 1)

{3 to 2)
{3 to 3)

Example Network Map

4.2.3 Message Communication and Synchronization

The implementation of synchronized communication on a multiprocessor system requires thatJ

for a simple message exchange on the program level, a number of asynchronous protocols must

be exchanged at run-time in order to ensure synchronization. Occam allows only input guards

-19-

Implementation

in a guarded command which significantly simplifies these protocols, but makes the expression

of some algorithms far more cumbersome [BOR86] . Bornat [BOR86] has proposed a protocol

for a generalized version of occam allowing both input and output guards in a guarded

command, and the significant increase in protocol complexity introduced by a bi-directional

guarded command is clearly apparent. In this implementation, only the input guard to a

guarded command is allowed but the protocol mechanism used allows for an extension of the

implementation to include bi-directional guarded commands.

Allowing any daughter process to execute on any processor introduces a major difficnlty in

implementing channels. A daughter process may execute on a different processor to her

parent and yet both may make use of channels declared global to them. As a result, a

channel does not necessarily remain mapped to the same virtual link throughout program

execution. To illustrate this, consider the following example:

Example!

CHAN aChannel:

2 VAR x,y,z:

3 PAR

4 SEQ

5 aChannel? x

6 PAR - (i)

7 I aChannel? y I - (iii)

8 L z: ~ 1 I - (iv)

9 SEQ

10 aChannel ! 1 .- (iI)

11 aChannel !2

The same convention is adopted as for Figure 2 where the blocked code indicates the daughter

processes, each of which could execute on a different processor. In example 1, process (iii)

sends on aChannel which is also used by her parent process (i). Assume that processes (i),

(ii) and (iii) are mapped to the separate processors (1), (2) and (3) respectively. The first

communication occurs when process (i) executes the ? primitive in line 5 and process (ii)

executes the ! primitive in line 10. For this communication, aChannel is mapped to the virtual

link between processor (1) and processor (2). However, when process (iii) executes its ?

primitive (line 3) and process (ii) executes the ! primitive of line 11, aChannel is mapped to

the virtual link between processor (2) and processor (3). This change in channel mapping

occurs at some stage during the execution of process (i) and cannot be predicted by processor

(2) . Hence the channel mapping for a particular communication can only be determined when

the synchronization between the two communicating processes has been established.

-20-

Implementation

This implementation problem does not arise m multiprocessor implementations of standard

occam because of the limited allocation allowed by the PLACED PAR construct. The allocation

forces all processes which may send on a particular channel to execute on the same processor.

Similarly, all processes which may receive on a particular channel must execute on one

processor and thus the mapping of a channel to a physical link remains static throughout

program execution.

4.2.3.1 A Hierarchial Re-routing Approach

This section presents and criticizes and initial solution devised in an attempt to solve the

problem of dynamically changing channel to virtual link mappings. This approach was not

implemented due to its run-time inefficiency.

In this solution, two protocol messages are used:

RTS - Request To Send. Sent by the sending process to the receiving process

when it is able to send a message on a channel.

PTS - Permission To Send. Sent by the receiving process to the sending process

when an R TS has been received and the receiving process is ready to accept

the message.

The sending process sends an RTS to the receiving process, and passively waits until it

receives a ITS. It then immediately sends the message and continues with execution. The

receiving process is given the responsibility of ensuring synchronization by only sending a ITS

when it is ready to receive and the sender has indicated its willingness to send. The

asymmetry of this protocol allows for an easy implementation of the unidirectional guarded

command provided by the ALT construct of occam. The process executing the ALT simply

waits until synchronization is possible with one or more of the input gnards, as indicated by

any R TS message received. The first guarded process which is detected as being ready, is

executed.

This solution relies on the sending and receiving processes being able to direct the messages

to each other. As explained in section 4.2.3, the identities of the processors on which the

partners in the communication are executing can only be determined after synchronization. It

-21-

Implementation

was decided that the sender and receiver should always assume that their outermost partner

process was still active, and direct all their message packets to the processor on which their

outermost partner process executes. The identity of this processor can be determined at load

time, after allocation. If the outermost process has already spawned daughter processes, and

is thus temporarily inactive, the processor must re-route the message packets to the processor

executing the daughter who has inherited use of that channel. Thus the message packets are

routed from parent to daughter to granddaughter etc. until it reaches the currently active

child process. This re-routing is illustrated in Figure 8. On terminating, a daughter must

pass back to her parent any message packets which she did not satisfy. Thus message packets

are treated in a fashion analogous to reference parameters.

FIgure 8 Illustration of Message Re-routing

This message re-routing leads to great run-time overheads in communications, which increase

as the hierarchy of processes inheriting the use of a channel grows. Furthermore, the

calculation of communication times is greatly complicated.

4.2.3.2 The Approach of a Third-Party Channel Supervisor

This section presents a more efficient method than that of section 4.2.3.1, and is the solution

adopted in this implementation. In this approach, three components can be identified and are

illustrated in Figure 9. In addition to the sender and receiver, a third-party, the matcher, is

defmed and may exist on a processor which does not execute either the sender or the

receiver. A separate matcher exists for each instance of a channel and is a run-time facility

-22-

Implementation

provided by the processor. The task of the matcher IS to monitor the status of the channel

and co-ordinate synchronization. The processor which was executing the process in which one

or more channels are declared is assigned the task of matcher for those channels. The sender

and receiver processes use the matcher to negotiate a synchronous message exchange between

them, by sending all their protocol messages to the matcher. Since the matcher remains on

the same processor throughout the existence of that channel, the mapping of these protocol

messages to a virtual link is static and can be determined at the loading stage. When

synchronization has occurred, the matcher can inform the sender of the receiver's location

and the sender can then send the message directly to the receiver's processor.

[BOR86) also makes use of a matcher in his protocol for bi-directional guarded commands.

Bornat

MATCHER

RTR(r)

I ~
rressage

RECEIVER SENDER

Figure 9 Illustration of Protocol

The following protocol messages are defined:

RTS(s) - Request To Send: sent by sender to matcher where s is the identification

number of the sender's processor.

RTR(r) - Request To Receive: sent by the receiver to the matcher where r IS the

identification number of the receiver's processor.

PTS(r) - Permission To Send: sent by the matcher to the sender where r is the

processor identification number, as supplied by the receiver, to which the

sender must direct the actual message.

RFS(r) - Request For Status: sent to the matcher by a process executing an ALT

construct. The matcher replies with an ATS if it has already received an

-23-

Implementation

RTS. The reply is sent to the processor indicated by r.

ATS Able To Send: sent by the matcher in reply to a RFS(r) query if the

matcher has already received an RTS(s) message. The reply is sent to the

processor indicated by r.

UTS Unable To Send: sent by the matcher in reply to a RFS(r) query if the

matcher has not yet received an RTS(s) message. The reply is sent to the

processor indicated by r.

The execution of an occam ! primitive simply involves an RTS(s) being sent to the matcher,

and the process is then placed on a send-queue and sleeps. When a PTS(r) message is

received the process is woken, sends its message to the processor indicated by r and continues

execution.

An occam ? primitive is equally simple. The process sends an RTR(r) message to the matcher,

is then placed on a receive-queue and sleeps. When the actual message is received from the

sender, the message is stored at the appropriate address and the process is woken.

The AL T construct is slightly more complicated. For each guarded process, the conditions of

the guard are evaluated. An input guard is treated, at this stage, as a condition. It is

evaluated by sending an RFS(r) to the channel matcher and waiting for a reply. An ATS

reply causes the input guard to be evaluated as true and a UTS reply results in a false

evaluation. The flrst guarded process whose conditions all evaluate to true is executed and

the input guard is now treated as a ? primitive and executed.

Each channel is stored as two words. One word is the unique run-time identiflcation number

for the channel and the other word is the identiflcation number of the processor providing the

matching function.

The solution discussed here is far more effIcient than that of section 4.2.3.1 since no message

re-routing is involved. By creating an independent matcher, not only is the re-routing of

messages overcome but the relationship between sender and receiver is also symmetric since

they both depend on the matcher for synchronization. Because this structure is similar to

that used by Bornat [BOR86j, his protocol for bi-directional guarded commands could be

implemented as an extension.

-24-

Implementation

The implementation of the ALT construct could be made more efficient by using an idle-wait

protocol rather than the existing busy-wait protocol. A busy-wait protocol is one in which a

process must periodically poll a variable in order to establish whether another process IS

willing to communicate. An idle-wait protocol is one where a process simply indicates its

willingness to communicate and waits for a willing partner to reply [BOR86]. An idle-wait

protocol is obviously more efficient since polling uses processing and communication resources

unnecessarily.

4.3 Issues Relating to Daughter Processes

4.3.1 Language Restrictions Introduced to Daughter Invocation

Daughter processes are the components into which, according to portable occam, the program

is partitioned for allocation purposes. This partitioning has a hierarchial structure since a

daughter process has the ability to spawn its own daughters. Daughter processes are invoked

using the PAR construct of occam:

PAR
01

02

03

where Dl, D2, D3 ... indicate invocations of daughter processes. Occam allows these daughter

processes to be either named processes, declared using a PROC declaration, or unnamed

processes, where the definition of the process is placed at its point of invocation. The syntax

of occam governing the use of global variables by daughter processes does not allow for the

-25-

easy partitioning of daughters by the compiler. Consider the following example:

Example 2

VAR x, y:
SEQ

x : == 1

y: = 2

PAR

IX:=X+1 .. (i)

VARz:

SEQ .. ~i)

z:= y
z;= z + 1

Implementation

Here, daughter process (i) makes use of the global variable X, modifying its value and thus

using it as a named process would use a reference parameter. Note that the non-interference

rules of occam disallow process (ii) from either reading or modifying the contents of x.

Process (ii) makes use of the global variable y, but only reads the value of y and does not

modify it. The non-interference rules of occam allow process (i) to also read the contents of

y but neither process may change the value of y. Process (ii) is using Y in the manner of a

value parameter.

In standard occam, process (i) and process (ii) must execute on the same processor as their

parent process, and the global variables can be easily accessed Vla common memory. However,

since this implementation allows both process (i) and process (ii) to execute on different

processors, the current values of all global variables used by them must be sent to their

processors when they are invoked. If a global variable is modified by a daughter, its value

must be returned to the parent processor when the daughter terminates. Global variables must

therefore be treated as implied parameters to the daughter process.

In order to keep the compiler simple, it was decided to disallow the use of unnamed processes

as daughter processes. Furthermore, named processes invoked as daughters may only reference

local variables. This forces the programmer to import, as actual parameters to a daughter

process, all global variables used by that daughter, including her children, and to explicitly

state whether they will be used as reference or value parameters. This greatly simplifies the

compiler, since only those variables used as actual parameters need be passed to the processor

executing the daughter.

-26-

Implementation

Two daughter processes can be prevented from both attempting to modify a global variable by

introducing the following rule: a variable may be passed as a reference parameter to only one

daughter process. This allows more freedom in the use of global variables than is allowed by

the non-interference rules of occam. The following examples illustrate this:

Example 3

VARx:

SEQ

x:= 1

PAR

x: = x + 1

VARz:

SEQ

z: = x
z:=z+l

Example 4

PROC Dl (VAR a) =

a:=a+1:

PROC D2 (VAL a) =

a;=a+1 :

SEQ

x: = 1

PAR

Dl (x)

D2(x)

Example 3 is illegal due to the non-interference rules of occam, since the value of x which is

assigned to z is not defmed, and could either be 1 or 2. Example 4, which obeys the

restrictions introduced in this section, allows x to be used by both daughters and the use of

parameters clearly defmes the value of X, when used by process D2, as being 1.

The syntax restrictions outlined in this section result in more verbose programs but, in

addition to simplifying the compiler, makes the use of global variables by concurrent processes

more distinct.

4.3.2 Daughter Invocation

The compiler checks the use of actual parameters by daughter processes according to the

restrictions defined in section 4.3.1. Checks are also made on the use of charmel parameters

by daughter processes to ensure, as far as possible, the legal use of charmels and to detect

some obvious cases of deadlock.

At run-time, the allocation table is used to determine the processor to which a particular

invocation of a daughter process has been allocated. Each invocation of a daughter is

assigned a unique number, calculated at run-time. The method used to determine these

numbers is explained in section 4.3.4.3. Each number indicates an offset into the allocation

-27-

Implementation

table where the identification number of the processor allocated to that daughter can be

found.

The parent process, having determined where a daughter is to execute, sends that processor a

system message instructing it to initiate execution of the daughter. The start address of the

code for the daughter is supplied together with additional information required by the

daughter to calculate unique numbers for its channels and daughters. A new, separate stack is

allocated to each daughter and is simply assigned a default size, regardless of the of the

daughter's space requirements for locally declared variables and channels. This simplistic

approach makes inefficient use of stack memory and a better approach would be to take into

account varying workspace requirements as is done by Fisher [FIS86]. It is difficult to

calculate exact space requirements for parameters, as is discussed in the next section, and for

arithmetic calculations.

4.3.2.1 The Parameter Passing Mechanism used

Occam allows vectors (l-dimensional arrays) of unspecified length to be used as formal

parameters to named process declarations. Since the compiler cannot calculate the amount of

space which must be reserved for the actual parameter passed, indirection is used, as

illustrated in Figure 10.

Ir-IP2 address

~PI address

prepare for PI '

Figure 10

••••••• • • •
: Actual I

PI

• •

rr---i P2 address

't==J PI address

push PI

Actual
PI

•
P 2 address

PI · address

prepare for P2

Parameter Passing

. -
I

: Actua 1

',. P2

Actual
PI

~

...
f-

push P2

P2 address

PI address

A parameter is passed by pointing the formal parameter location to the current top of the

stack. The actual parameter is then pushed onto the stack, the next formal parameter is

pointed to the top of the stack and next actual parameter is then pushed on the stack etc.

-28-

Implementation

This mechanism is used for both sequential and daughter processes.

4.3.2.2 Parent-Daughter Parameter Passing

The parameter passing, described in section 4.3.2.1, relies on a strict ordering of events. The

parent process cannot simply send all the parameters as a single unit, because the size of

each parameter is not known by the daughter. Instead, the parameters are each sent

separately. The daughter process fIrst points the formal parameter to the top of the stack,

then receives the actual parameter from the parent and stacks it, then points the next formal

parameter to the top of the stack etc. The synchronous message passing of occam provides a

natural mechanism to enforce this synchronization between parent and daughter in the manner

described by Figure 11.

FIgure 11

Occam Program

PROC D1 (VAL a VAR b) ~

PROC D2(VAL c) ~

VAR x, y, z:
SEQ

x: = 1

y:~ 2

z:= 3

PAR

D1 (x, y)

D2(z)

Implementation

CHAN Olin, Dlout, D2in:

PROC D1 (VAL a VAR b) ~

SEQ

Olin 7 a
Olin? b

D10ut ! b

PROC D2 (VAL c) ~

SEQ

02in ? c

VAA X, y, z:
SEQ

x: = 1

y:~ 2

z:= 3

{ in itiate execution of 01 on some processor}

Olin! x
Dlout I y

{ initiate execution of 02 on some processor}

D2in! z

Dlout? y

An illustration of the use of channels to pass parameters to daughters

-29-

Implementation

The compiler automatically declares a channel between a parent and each of its daughters.

This channel IS used as a bi-directional channel to send parameters to a daughter, after

invoking it, and to receive the new values of any reference parameters before the daughter

terminates. The channel is used as a bi-directional channel so as to make more efficient use

of the space of unique numbers used to identify channels. This is possible since only the

system makes use of the channel in a defined manner.

As can be seen from Figure 11, the daughters are invoked in the sequence of their textual

ordering in the PAR construct. The order of this invocation does not affect the logical

behaviour of the program but might affect the efficiency of its execution. Assume process

D2, in Figure 11, took very much longer to execute than process D1 and is thus the critical

process in determining the completion time for the entire PAR construct. Because D1 is

instantiated before D2, this completion time is unnecessarily increased and could be shortened

if the order was reversed. The ideal order of daughter instantiation is thus in the order of

their expected execution times, with the process having the longest execution time being

instantiated first. This is obviously difficult to implement, but a better implementation

strategy to that of Figure 11 might be to use an AL T construct for sending parameters to all

daughters.

Alternately, the parameter passmg need not be synchronized at all and could be passed to

each process in one packet as an asynchronous system message. The sizes of the parameters

would need to be specified in the system message. This is probably the best solution since

the daughters would be instantiated virtually simultaneously, delayed only by communication

delays.

4.3.2.3 Parent-Daughter Synchronization

The parent process, having spawned its daughters, must delay any execution of its subsequent

processes until all daughters have terminated. Again, the synchronous commnnication of occam

is used to implement this. Each daughter, having sent back all reference parameters to its

parent, sends a synchronizing message (! ANY) to the parent process using the channel

reserved for parameters. This indicates the completion of the daughter process and the parent

simply receives a synchronizing message from each daughter in turn. The order in which this

is done does not affect efficiency. Figure 12 shows this technique.

-30-

Occam Program

PROC D1 =

PROC D2 =

SEQ
PAR

D1

D2

{continue further execution}

Implementation

CHAN D10ut, D20ut:

PROC D1 =

D10ut ! ANY:

PROC D2 =

D20ut! ANY:

SEQ

{ initiate execution of 01 }

{ initiate execution of D2 }
D10ut 7 ANY

D20ut7 ANY

. { continue further execution}

Figure 12 The use of Channels to Synchronize Parent with Daughters

4.3.3 Code Generation for Named Processes

Implementation

A named process may be called as a sequential and/or daughter process. This requires that

code be generated to cater for both types of invocation. The compiler, when parsing a named

process, determines whether the process makes reference to any non-local variables. Should

this occur, that named process is disqualified, in terms of the restrictions defmed in section

4.3.1, from being called as a daughter process. In this case, code is generated which is

suitable only for sequential invocation, and the compiler ensures that only ' such invocations

occur. If, however, the named process references local variables only, it is possible for it to

be invoked as a sequential or a daughter process, and code suitable for both cases must be

generated.

The difference between the code for a sequential and for a concurrent process IS that the

concurrent process must include

code for parameter passing and synchrouization via channels, as described in sections 4.3.2.2

and 4.3.2.3.

-31-

Implementation

4.3.4 Name allocation

This section deals with the allocation of unique identification numbers (names) to daughter

processes, channels and processors so that they may each be identified by the system. The

efficient llse of this name space IS a problem for concurrent systems which allow recursion,

including dynamic dataflow systems [VEE86]. Recursion prevents the compiler from being able

to determine the number of software entities in existence at some particular stage and thus

prevents efficient utilization of the name space. Occam does not allow recursion, either

direct or indirect, and this greatly simplifies name allocation.

4.3.4.1 Processor Name Allocation

The allocation of names to processors does not present a problem since the number of

processors in the system is specified by the user in the network map. The identification

number of each processor is implied in the ordering of the information in the network map,

and the loader supplies each processor with a unique identification number.

4.3.4.2 Channel Name Allocation

The channel name allocation scheme described here relies on the absence of recursion in

occam. This makes it possible for the compiler to determine, for each process call, the

maximum amount of channel name space required by that process for naming local channels.

This name space includes the requirements of all processes called directly or indirectly by that

process.

A calling process is thus able to supply each called process with an adequately sized subset of

its own channel name space. This subspace is used by the called process for generating

unique names for its own local channels, and for subdividing into further subspaces for

processes which it calls.

Sequential processes may use overlapping channel name spaces since they do not exist

concurrently. Daughter processes must be given disjoint spaces.

When parsing the body of a process, the compiler assigns a consecutive number to each local

channel declared, starting from 1. This number represents an offset into the subspace

-32-

Implementation

assigned to each invocation of the process.

On generating code to call a process, the compiler assigns an offset nwnber to that

invocation. This number represents an offset into the subspace of the calling process where

the base of the subspace of the called process is to be found. The called process generates

unique channel identification numbers by adding the offset of a channel to the base of the

subspace assigned to it.

4.3.4.3 Daughter Name Allocation

The allocation table is a I-dimensional array where each array index represents a particular

invocation of a daughter process and the corresponding element contains the name of the

processor to which that daughter invocation has been assigned. Daughter name allocation

refers to the mapping of daughter invocations to allocation table indexes.

The method used here is similar to that used to allocate channel names, in that each daughter

process invoked is supplied with a base index. The code generated for a daughter process

uses offsets from this base to calculate absolute indexes into the allocation table. This allows

different invocations of the same daughter process to execute the same code but, by using

different bases, different sections of the allocation table are referenced. Thus children

processes of these various invocations can be independently allocated.

The iterative invocation of daughters by means of a WHILE construct causes the same

locations in the allocation table to be referenced and hence the allocation of daughters

remains the same for each iteration.

-33-

Summary and Conclusions

5 Summary and Conclusions

The proposal and implementation presented here represent a small, but significant, step

towards portable occam. At present, allocation must be specified from within an occam

program, binding the program to a specific transputer network. Tills facilitates the simple,

efficient multiprocessor implementation of occam but requires that program design and

expression be compromised according to the target hardware. While this might be beneficial

to some real-time programmers it is a weakness for non real-time applications where the

benefits gained from hardware abstraction are worth the price of less efficient execution.

Complete abstraction from hardware implies that a programmer has the ability to construct

and execute a program without any knowledge of the target hardware. The occam

implementation is thus required to perform allocation without assistance from the user. The

proposal suggests changes to occam, needed to abstract the source code from a specific

transputer network, and some run-time facilities needed to support automatic configuration.

The only change the proposal makes to the syntax of the language is in eliminating the

PLACED PAR construct. The software partitioning and the communication restrictions,

embodied by tills construct, seriously limit the set of possible allocations of an occam program.

Instead, it is proposed that every component process of a PAR construct be an allocatable

unit, as this is the finest degree of concurrency explicit in the language. Communication is

relaxed to allow any logical network of channels to be mapped to any physical communications

topology. This generalized communication must be slower in terms of communication times but

need not necessarily use CPU resources. It is plausible that the link adapter of the

transputer could be designed to handle message forwarding and channel multiplexing

autonomously.

The implementation brought to light an overhead not immediately ohvious from the proposal.

The finer partitioning of an occam program results in the communications path for a particular

channel changing during execution. The more sophisticated protocol required to deal with

this, results In more protocol messages for a single language-level communication.

Furthermore, the fact that two communicating processes reside on the same processor does not

imply that their communication places no burden on the communications hardware. The

matcher function might be provided by a separate processor and protocol messages may,

therefore, be external communications; only the actual message transfer is guaranteed to be

simply a memory transfer.

The proposal suggests the use of run-time statistics in order to support a static allocation

-34-

Summary and Conclusions

algorithm in its decision-making, however, the implementation did not cover this aspect. It

would be an interesting extension to implement some allocation algorithm and explore the

affect of using run-time statistics. The success of automatic configuration ultimately rests on

the proficiency of the algorithm and its ability to adapt to user requirements.

The current implementation, despite not providing complete hardware abstraction, does allow

an occam program to be written independently of any hardware considerations. The program

can then be separately allocated without recompiling the source code, and executed on a

multiprocessor system. This provides a useful tool for demonstrating various allocations and

examining program behaviour in a truly concurrent environment. It also provides a stepping­

stone towards the automatic configuration of occam programs.

-35-

Bibliography

Bibliography

[ADA84] Ada Programming Language Reference Manual (1984) United States Department of
Defence.

[BIS87] Bishop, J.M., Adams, S.R., Prichard, D.J. (1987) Distributing Concurrent Ada
Programs by Source translation, Software - Practice and Experience, 17(12),859-884.

[BOR86] Bornat,R. (1986) A Protocol for Generalized occam, Software - Practice and
Experience, 16(9),783-799.

[BOT86] Bottomley, R. (1986) The Meiko Computing Surface : a reconfigurable supercomputer,
lEE Colloquium: The Transputer: Applications and case studies, lEE Digest, 91.

[BRI75] Brinch Hansen, P. (1975) The programming language Concurrent Pascal, IEEE Trans.
Software Eng., 1(2), 199-206.

[BRI78] Brinch Hansen, P. (1978) Distributed Processes a concurrent programming concept,
Comm. ACM, 21(11), 934.

[CHU80] Chu, W.W., Holloway, L.J., Lan, M., Efe, K. (1980) Task Allocation In Distributed
Data Processing, Computer, 13(11), 57-69.

[CLA86] Clayton, P.G. (1986) A Notation for Programming with the use of Human-like
Control Structures, Tech. Doc. 86/1, Department of Computer Science, Rhodes
University, Grahamstown.

[C0080] Cook, R.P. (1980) ·MOD - a language for distributed programming, IEEE Trans.

[CR087]

Software Eng., 6(6), 563.

Crookes, D., Morrow, P.J 0, Milligan,
implementing a language for
Microprogramming, 21, 559-566.

P., Scott, N.S., Kilpatrick, P.L. (1987) Notes on
Transputer Networks, Microprocessing and

[FAY87] Fay, D.Q.M. and Das, P.K. (1987) Hardware reconfiguration of Transputer networks
for distributed object-orientated programming, Microprocessing and
Microprogramming, 21, 623-628.

[FIS81] Fisher, J.A. (1981) Trace Scheduling: A Technique for Global Microcode Compaction,
IEEE Trans. Computers, 30(7), 478-490.

[FIS86] Fisher, AJ. (1986) A Multi-processor Implementation of occam, Software - Practice
and Experience, 16(10), 875·892.

[GAJ85] Gajski, D.D., Peir, J. (1985) Essential Issues in Multiprocessor Systems, Computer,
18(6),9·27.

[GUT86] Guth, R. (1986) (Ed.) Computer Systems for Process Control, Proc. Brown Boveri
Symposium on Computer Systems for Process Control (1985: Brown Boveri Research
Centre), Plenum Press, New York.

[HIL86] Hill, D.T (1986) Simulating a Transputer, Honours Project, Dept. Computer Science,
Rhodes University, Graharnstown.

·36·

Bibliography

[HOA78] Hoare, C.A.R (1978) Communicating Sequential Processes, Comm. ACM, 21(8), 666-
677.

[JON85] Jones, G. (1985) Programming in 'occam', PRG-43, Oxford University Computing
Laboratory, Oxford, U.K.

[OCC83] Occam Programming Manual (1983) Inmos Ltd., Bristol, U.K.

[KIR86] Kirrmann, H., Lalive D'Epinay, T., Stoeckler, H.P. (1986) Architectures for Process
Control, in Computer Systems for Process Control, Plenum Press, New York.

[KRU84] Kruskal, C.P., Wiess, A. (1984) Allocating Independent Subtasks on Parallel
Processors, Proc. In t'l Conf. Parallel Processing, 236-240.

[MA T87] Mattos, P. (1987) Program Design for Concurrent Systems, Tech. Note 5, Inmos Ltd.,
Bristol, U.K.

[MA Y83] May, D. (1983) Occam, Sigplan Notices, 18(4), 69-79.

[MA Y84] May, D. and Taylor, R. (1984) Occam, Microprocessors and Microsystems, 8(2), 73-
79.

[MA Y85] May, D. and Shepherd, R. (1985) Occam and the Transputer, in Concurrent
Languages in Distributed Systems, eds. G.L. Reijns and E.L.Dagiess, Elsevier Science
Publishers, North Holland.

[MA Y87a] May, D. (1987) Occam2 Language Definition,Inmos Ltd., Bristol, U.K.

[MA Y87b] Mayer-Lindenburg, F. (1987) FIFTH on the Transputer, Microprocessing and
Microprogramming, 19(5),367-373.

[MEL86] Mellor, P.V., Dubery, J.M., Whitehead, D.G. (1986) Adapting Modula-2 for distributed
systems, Software Eng. Joumal, September, 184-189.

[NEW86] Newport, J.R. (1986) An introduction to Occam and the development of parallel
software, Software Eng. Journal, July, 165-169.

[POU86] Pountain, D. (1986) Personal Supercomputers, Byte, 11(7),363-368.

[POU87] Pountain, D. (1987) Power to the Transputer, P C World, 5(8), 124-127.

[SAN85] Sanger, W.L. (1985) TIle HUL Parser, Honours Project, Department of Computer
Science, Rhodes University, Grahamstown.

[SHA87] Shatz, S.M., Wang, J. (1987) Introduction to Distributed-Software Engineering,
Computer, 20(10), 23-31.

[STA85] Sta=ers, R.A. (1985) Ada on Distributed Hardware, in Concurrent Languages in
Distributed Systems, eds. G.L. Reijns and E.L.Dagiess, Elsevier Science Publishers,
North Holland.

[TRA85] Transputer Reference Manual (1985) Inmos Ltd., Bristol, U.K.

[VEE86] Veen, A.H (1986) Dataflow Machine Architecture, ACM Comput. Surveys, 18(4), 365-
396.

-37-

Bibliography

[WIR77] Wirth, N. (1977) Modula: A language for modular multiprogramming, Software­
Practice and Experience, 7(1), 3-35.

[WIR82] Wirth, N. (1982) Programming in Modula-2, Springer-Verlag, New York.

-38-

