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Abstract 

This thesis presents a Virtual Sculpting system, which addresses the problem of Free-Form 

Solid Modelling. The disparate elements of a Polygon-Mesh representation, a Directly 

Manipulated Free-Form Deformation sculpting tool, and a Virtual Environment are drawn 

into a cohesive whole under the mantle of a clay-sculpting metaphor. This enables a 

user to mould and manipulate a synthetic solid interactively as if it were composed of 

malleable clay. The focus of this study is on the interactivity, intuitivity and versatility of 

such a system. To this end, a range of improvements is investigated which significantly 

enhances the efficiency and correctness of Directly Manipulated Free-Form Deformation, 

both separately and as a seamless component of the Virtual Sculpting system. 
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Chapter 1 

Introduction 

1.1 Solid Modelling 

Solid Modelling is a significant subdiscipline of Computer Graphics concerned with de

signing three-dimensional objects on computer. The field has diverse applications, both in 

manufacturing, where, under the guise of Computer Aided Design (CAD), it is pervasive, 

and as a component in most Computer Graphics creation pipelines. For instance, it is 

critical to the design of cars, ships and aircraft, complex mechanical parts and architectural 

structures, as well as Computer Animated models and Virtual Reality scenes. These two 

spheres mirror the division of Solid Modelling into functional and free-form [Miller 1986]. 

Free-Form Modelling is concerned only with the aesthetics of the final shape. In contrast, 

Functional Modelling considers factors such as aerodynamics, joint angles, volume, and 

response to heat and stress, typically through mechanisms such as Finite Element Analysis. 

This is not, however, a clear separation so much as a continuum of constraint. At one pole, 

a computer sculptor is influenced only by his imagination and at the other, a gear train 

may have to satisfy a plethora of constraints. Alternatively, the design of a motor vehicle's 

shell, which must link engineering considerations with a nebulous sleekness, would fall 

somewhere in between. 
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Free-Form Solid Modelling is guided by three criteria: 

1. Intuitivity. The user should be able to apply insight garnered from everyday tasks to 

an unfamiliar modelling environment. 

2. Interactivity. The response-time of the system should be such that delays do not 

hinder creative design. 

3. Versatility. The user should be able to convert intentions and requirements into a 

designed result with ease and precision. 

These principles exist in constant tension. Focusing on one aspect tends to wrench the 

others out of balance. Enhanced versatility, for example, may increase conceptual and 

computational complexity to the detriment of the intuitive and interactive facets of a system. 

During construction, a modelling system must be measured constantly against these ideals. 

1.2 Classification of Modelling Systems 

Free-Form Solid Modellers can be separated into three components: Representation, Tools 

and Environment. These correspond loosely to data-structures, algorithms and interfaces. 

1.2.1 Representation 

A Representation is a means of encoding the shape of a solid object. Some modelling 

systems may capture properties such as colour and texture, but for free-form design, shape 

is sufficient. There are four principle categories of representations [Foley et ai1991]: 

1. Boundary Representations (B-Reps). Here, an object is defined by its topological 

boundary and the internal structure is ignored. B-Reps may be either Polyhedral, 

where the surface is a faceted approximation composed of adjoining polygons, or 

Non-Polyhedral, where the surface is sewn from parametric bicubic patches. The 

Polygon-Mesh is an example of a Polyhedral B-Rep. At its most elementary it 
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consists of a list of faces, each of which is a sequence of pointers into a vertex list. 

In contrast, the popular Non-Uniform Rational B-Spline (NURBS) supports a Non

Polyhedral B-Rep. A NURBS patch is tersely defined by a web of control points 

much as an elastic sheet is distorted by weights. 

2. Cell Decomposition. The solid is formed by "glueing" together primitive elements 

which are themselves solids that may vary in size, shape and orientation. For example, 

Spatial Occupancy Enumeration is a variant in which all the primitives are identical 

cubes known as Voxels (Volume Elements) in analogy to Pixels (Picture Element). 

These Voxels can be visualized as slotting into compartments in a three-dimensional 

grid. 

3. Constructive Solid Geometry (CSG). Again a solid is built from primitives (spheres, 

cylinders, etc.) but instead of simple non-intersecting adjacency they are combined 

with Regularized Boolean Set Operations (union, intersection and difference). Typ

ically CSG solids are stored as a tree structure, where the leaf nodes are primitives, 

internal nodes are set operations, and the root solid is evaluated by a depth-first walk. 

4. Binary Space Partitioning (BSP). Here a solid is sliced out of world co-ordinate 

space. Each slice is created by a plane which partitions space into two domains, one 

within and the other outside the solid. 

1.2.2 Tools 

A tool metaphor is unusually appropriate when referring to methods of transforming solids. 

A direct comparison can be made with a craftsman's use of a range of tools in realizing a 

design. A solid modeller would select techniques on the basis of the solid's representation 

and desired shape, just as a craftsman would employ different tools depending on his 

materials and intentions. 

Solid Modelling tools can be placed in three categories [Coquillart 1987]: 

1. Modifiers. Modifiers are tools that perturb the shape of an existing object, either 

within a limited area, or across the object's entirety. Examples of the latter are the 
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tapering, twisting and bending tools [Barr 1984]. These are proportional applications 

of the affine transformations (scaling, rotation and translation). By contrast, free-form 

surface moulding falls in the former category and is a staple of Solid Modelling. At 

its most primitive it involves displacing individual vertices and at its most advanced 

it allows complex widespread deformations. 

2. Combiners. These methods create a synthesis of objects. Foremost among them 

are the Regularized Boolean Set Operations: Union, Intersection and Difference. 

These are three-dimensional analogues of the familiar two-dimensional set opera

tions, extended so as to encompass solids. Regularized Boolean Set Operations are 

supported across the spectrum of Solid Modellers and their use is even mandated by 

representations such as Constructive Solid Geometry. 

3. Constructors. Unlike the other classes of tools that modify previously developed 

objects, constructors build solids from nothing. At its most painstaking this entails 

entering vertex co-ordinates directly and expecting the computer to interpolate these 

values in creating a solid. Fortunately, there are less excruciating constructors such as 

primitive instancing, sweeping and lofting. Primitive instancing allows the selection 

of one of a family of parametrised three-dimensional primitives. A sweep object is 

constructed by sliding a two-dimensional contour along a curved path, with a goblet 

or wine glass being a typical result. Lofting forms objects by interpolating a series of 

cross-sections and is often applied to the definition of hulls, fuselages and car-bodies. 

1.2.3 Environment 

There is a strong symbiotic relationship between Solid Modelling and Human Com

puter Interaction, with each discipline feeding off innovations in the other. This is 

probably because the design of three-dimensional shapes is an inherently difficult task 

[Requicha and Rossignac 1992] which involves the user directly. Thus, design environ

ments vary as widely as their application domains, and the range in 10 devices and interac

tion styles is bewildering. Fortunately, modelling systems can be separated at a fundamental 

level into two classes: 
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1. Two-Dimensional. Interaction is funnelled through two-dimensional media. A 

typical interface would accept input from a mouse or light-pen and output a set of 

orthogonal views. 

2. Three-Dimensional. The environment is controlled by and responds with three

dimensional mechanisms. Such systems are generally driven by six-degree-of

freedom devices and display stereoscopic images. 

Some environments span this division with a hybrid of two and three-dimensional tech

niques. 

1.3 Polygon-Mesh Representation 

The Polygon-Mesh is the most elementary, stripped-down representation capable of unam

biguously encoding a solid. It is an evaluated hierarchical structure of faces, edges and 

vertices, which often serves as a link between the domains of modelling and rendering. 

Typically, more sophisticated unevaluated representations are reduced to a Polygon-Mesh 

before being piped to the rendering engine. The weaknesses of the Polygon-Mesh stem 

from approximation. It breaks curved surfaces into planar subdivisions (polygonal facets) 

that only hint at the intended curves. This is disastrous when accuracy is a prerequisite and 

tolerances are hair-fine, as in many functional applications. However, Free-Form Modelling 

does not enforce such rigour and benefits considerably from the speed and simplicity of the 

Polygon-Mesh. 

1.4 Sculpting Tools 

There is a class of Free-Form Modifiers whose premise is the deformation of solids in a 

physically realistic fashion. They loosely simulate carving or moulding inelastic substances, 

such as modelling clay, Plasticine and silicone putty. 

There is considerable research into adapting Finite Element Theory to this task. In essence 
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the Finite Element Method subdivides a solid or its boundary into small regular elements, 

imposes a set of forces such as gravity, inertia, internal stress and external pressure, and 

then calculates an equilibrium of shape among the volume elements. This approach is 

highly realistic, since it directly incorporates mechanics, but it is space and computation 

intensive. For instance, the interaction of a hand and ball in a grasping task has been 

modelled [Gourret et a11989] down to the level of muscle, skin and bone flexion and de

formation, but only in a Computer Animation context where individual frames may take 

hours to process. Also, a variety of precise deformation phenomena have been developed 

[Terzopoulos and Fleischer 1988], namely Viscoelasticity (where shape is fluid under sus

tained pressure but reacts like solid rubber to transient force), Plasticity (where the solid 

deforms irrevocably under pressure) and Fracture (which simulates tearing and shredding 

in brittle substances). Again, this is utilized in Computer Animation although the au

thors claim that "it should be possible to animate such inelastic dynamics in real-time in 

three dimensions on a supercomputer" [Terzopoulos and Fleischer 1988]. Since then the 

use of Finite Elements has been honed through a range of restrictions. The Shape Wright 

[Celniker and Gossard 1991] paradigm restricts interactive deformation to toggling surface 

parameters such as bending resistance and internal pressure. Here design is in three stages: 

first the shape's character lines are traced as curve segments, then the solid's "skin" is 

stretched between these curves, and finally surface parameters are adjusted. An alternative 

approach is to limit the choice of initial shapes to simple primitives (spheres, ellipsoids, etc.) 

while allowing sophisticated deformation [Metaxas and Terwpoulos 1992]. The pinnacle 

of this trend is the merging of a Triangular B-Spline Patch Representation with physically 

based Finite Element Methods [Qin and Terzopoulos 1995]. 

At the other end of the complexity spectrum are the proportional affine transformations 

[Barr 1984] and Decay Functions [Bill and Lodha 1994]. The former mimics tapering by 

scaling proportionally along an axis, twisting by progressive rotation along an axis and 

bending by a combination of rotation and translation. The latter propagates the translation 

of a vertex to its surrounding region according to a bell, cusp or cone-shaped template. 

Both tools are extremely efficient but of limited utility. For example, Decay functions do 

not cater for the complex interaction of a multiplicity of translated vertices and proportional 

affine transformations offer only specific stylized alterations. 

Between these extremes are the constraint-based tools of Variational Solid Modelling 
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[Welch and Witkins 1992] and Directly Manipulated Free-Form Deformation 

[Hsu et aI1992, Borrel and Bechmann 1992] that meld efficiency and versatility. Varia

tional Surfaces are infinitely malleable and have no fixed controls. They are defined by a 

collection of constraining points and curves, much as an elastic sheet would be stretched 

over a bed of spikes. Later topology enhancements [Welch and Witkins 1994] snap, slice 

and smooth these sheets together to form complex solids. Directly Manipulated Free-Form 

Deformation (DMFFD) is less constructive and more modifying, and is based on an am

bient space-warp controlled by dragging points on the solid's surface. Both techniques 

are independent of representation, but in a subtly different sense. Variational surfaces are 

underlying and can be realized in any representation, while DMFFD is overlaying and can 

be applied to any representation. At their core, both rely on Linearly Constrained Opti

mization, a numerical scheme for optimizing an objective function (in this case a "fitness" 

metric such as continuity) while obeying a set of linear constraints (the directly manipUlated 

points and curves). DMFFD has an edge in efficiency since it optimizes a sum of squares 

while Variational Surfaces are forced to optimize a more general quadratic function. 

1.5 Virtual Environments 

Virtual Reality is a protean field with almost as many definitions as their are proponents. 

These range from the pragmatic to the esoteric, but all include the key elements of inter

action (the user and environment respond to each other in real-time) and immersion (the 

user has the illusion of being inside the environment) [Rheingold 1991]. A good working 

definition in this regard is: 

'~ human-computer interface where the computer and its devices create a sensory environ

ment that is dynamically controlled by the actions of the individual so that the environment 

appears real to the participant. 1/ [Latta 1991] 

In some circles Virtual Reality is regarded as a critical failure. This perception is due 

to a handful of factors. Current environments are plagued by high latency (a jarring de

lay between the user initiating an action and the system responding) and low l'esolution 

(a grainy block-like display of the Virtual Environment). The title of the field itself has 

contributed to overblown expectations, with the result that researchers now employ less 

ambitious terminology, such as Virtual Environments and Augmented Reality. Despite 
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this pessimism, the fledgling discipline is viewed by many [Requicha and Rossignac 1992, 

Nielson 1993, Jacobson 1994] as an ideal interface for Solid Modelling due to its intrinsi

cally three-dimensional and interactive nature. Virtual Reality is sometimes described as "a 

solution in search of a problem" and one researcher [Requicha and Rossignac 1992] goes 

so far as to attribute to Solid Modelling the role of the driving "problem". 

There has been some nascent research in this area. Galyean's Sculpting System 

[Galyean and Hughes 1991] utilizes a Voxmap data-structure (in analogy to Bitmap) to 

store a Cell Decomposition representation. A range of tools such as a "toothpaste tube", 

which trails Voxels across the solid's surface, a "heat gun", which deletes Voxels and "sand

paper", which averages Voxels across the surface, are implemented and controlled with a 

Polhemus Isotrak device, which locates the position and orientation of a sensor. 

3-Draw [Sachs et ai1991] constructs skeletal objects by tracing curves and cross-sections 

in three dimensions with two Polhemus trackers; one fastened to a pen, with which the 

wireframe is sketched, and the other to a stylus, which serves as a frame of reference: 

3DM (Three-Dimensional Modeller) [Butterworth et ai1992] borrows from the success of 

two-dimensional drawing programs. The user selects from a virtual toolbox with extrusion, 

sweeping, primitive instancing, cutting, pasting, and copying functions. The system em

ploys a VPLEyephone head-mounted display for stereoscopic viewing, a Polhemus tracker 

mounted on head and hand, and a proprietary Pixel-Plane graphics rendering engine. 

MOVE (Modelling Objects in a Virtual Environment) [Brijs et ai1993] focuses on improv

ing depth perception (with devices such as virtual walls and workbenches) and feedback 

(through sight, sound and tactile cues) in simple design tasks, such as scaling, connecting 

and separating objects, and moving vertices. 

DesignSpace [Chapin et ai1994] is an ongoing project intended to support mechanical 

design. The project has proceeded on two primary fronts: dextrous manipulation, where 

hand-eye co-ordination in Virtual Reality is enhanced, and remote collaboration, where 

several people participate simultaneously and interactively in a design. 

THRED (Two Handed Refining Editor) [Shaw and Green 1994] incorporates both hands, 

each tracked by a Polhemus sensor, into the process of modelling polygonal surfaces. The 
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dominant hand selects and manipulates vertices, while the less dominant hand sets such 

contexts as the position and orientation of the scene and level of subdivision of the surface. 

These exploratory forays do not (with the exception of DesignSpace) exploit the true 

potential of Virtual Reality in Solid Modelling, since deformation is either specified by 

a single three-dimensional point (1HRED, 30M, 3-Draw, Galyean Sculpting) or limited 

glove input (MOVE), and in most cases (1HRED, MOVE, 30M, 3-Draw), only rudimentary 

modifiers are implemented. 

1.6 Focus of Research 

This project imposes a clay-sculpting metaphor on the Free-Form Solid Modelling process. 

The intention is to link the familiar physical action of moulding clay to the unfamiliar task 

of computerised shape design. The underlying concern in this project is the balance and 

enhancement of the triad of Free-Form Modelling principles: interactivity, intuitivity and 

versatility. 

Three pivotal design decisions were made early in this research. The Polygon-Mesh, with its 

uncluttered simplicity and efficiency, was chosen as a representation. Directly Manipulated 

Free-Form Deformation was selected as a sculpting tool, because it is intuitive in its fluid, 

graceful deformations, versatile in its scope of application, and comparatively interactive. 

A Virtual Environment was picked as the interface because the elements of interaction and 

immersion contribute a "hands-on" immediacy, and thus intuitivity, to modelling. 

The Free-Form Solid Modelling system developed in this thesis can now be characterized. It 

binds a Polygon-Mesh representation, Directly Manipulated Free-From Deformation tools 

and a Virtual Environment within the cohesive framework of a clay-sculpting metaphor. 

This thesis focuses on the interactivity, intuitivity and versatility of such a system. 
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1. 7 Thesis Organisation 

The remainder of this thesis is structured as follows: 

• Chapter 2 (Foundations) presents the basics of Directly Manipulated Free-Form 

Deformation and considers the innate strengths and weaknesses of the three tiers, 

Splines, Free-Form Deformation and Direct Manipulation, that make up the tech

nique. 

• Chapter 3 (Least Squares Solution Methods) focuses on the efficiency of DMFFD. 

The core computation, a linearly constrained least squares optimization, is examined, 

and a new, considerably less space- and computation-intensive algorithm is developed. 

• Chapter4 (Topology and Correctness Issues) focuses on the correctness ofDMFFD. 

The situations in which DMFFD creates invalid self-intersecting solids are discussed. 

Methods of refining and decimating the Polygon-Mesh in order to maintain a smooth 

sculpted appearance are also considered. 

• Chapter 5 (Applications) describes the RhoVeR (Rhodes Virtual Reality) system 

which forms a testbed for Virtual Sculpting. Two illustrative applications, glove

based moulding and dynamic surface sketching, are developed. 

• Chapter 6 (Conclusion) presents concluding remarks and suggests directions for 

future research. 

• Appendix A (Colour Plates) displays the Virtual Reality equipment and illustrates 

Glove-based Moulding. 

• Appendix B (Directly Manipulated Free-Form Deformation Program Extracts) 

lists pivotal sections of the Virtual Sculpting system code. 

• Appendix C (Specification of the Rho VeR System) provides design and implemen

tation details of the Rhodes Virtual Reality System. 
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Chapter 2 

Foundations 

Free-Form Deformation, when coupled with Direct Manipulation, is a powerful and versatile 

approach to Solid Modelling. The technique allows the displacement of one or more points 

on a solid, with the surface surrounding these points conforming as if the solid were 

composed of malleable clay. Directly Manipulated Free-Form Deformation (DMFFD) 

provides intuitive control and predictable, aesthetic results but is burdened by notorious 

inefficiency. DMFFD relies on an intricate body of theory, built in three tiers: Splines, Free

Form Deformation and Direct Manipulation. This chapter is devoted to an exploration of 

this theory. The mathematics, data structures, algorithms and, most importantly, efficiency 

concerns are examined at each level. 

2.1 Splines 

At the turn of the century the term spline was widespread only in ship design. It meant a 

strip of flexible metal which had been contoured with weights to fit the shape of a boat's 

keel. Appropriately, when ship design was computerised, so too was the spline. 

In its modern usage a spline is the basis for a curve that is regulated by a series of control 

vertices. Splines fall into two categories: Interpolating, where the curve passes through 

the control vertices and Approximating, where the vertices guide and channel the curve. 

16 



A spline-based curve is a piecewise polynomial that is compo sited of segments joined 

smoothly end to end. Each of these segments is a weighted sum of control vertices with the 

weights determined by a spline-function. 

This description will be clarified by the development of the Uniform Rational Basis-Spline, 

a family of approximating splines with many useful properties [Bartels et al1987] . 

2.1.1 Uniform Rational Basis-Splines 

2.1.1.1 Linear (First Order) 

y 

~ , 
• , 
• Q, 
, 
• v, , 
• , 
• , 
• , 
L , Q, 
• , 
• , 
• 

V4 , 

[A] 
L_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~~ X 

Weight Accorded to \{+l 

~ , 
11 .... 

B' (u) , 
, 

B (u) 
o 

o ---Q)~)-------I o----Q ;-)~)--i >u 

[B] 

Figure 2.1: The Uniform Linear B-Spline. [A] An example curve. [B] The basis-functions. 

A simple polygonal arc (a sequence of straight line-segments) can be considered a rudimen

tary spline and will provide a foundation for higher-order generalizations. A line-segment 

(Q ,) can be parametrised with a control variable (u) so as to interpolate its endpoints (11; 

and 11;+1) as: 

Q,(u) = u· 11;+1 + (1 - u) . 11; u E [0, 1J (2.1) 

For instance, P = Q1(0.2) = 0.8 . VI + 0.2 · V, = (5,8.6) in figure 2.1. Now Equation 2.1 

can be recast in summation notation. 
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1 

Qi(U) - L B;(u) . 1I;+r U E [0,1] (2.2) 
r=O 

B~(u) (1- u) 

Bi(u) u 

Ba and B{ are the basis functions of the Uniform Linear B-Spline. The terminology of the 

previous section can now be clarified. Each segment (Qi(U)) is a sum of control vertices 

(11; and Vi+!) weighted by a spline basis (BJ and BD. The linearity of this spline manifests 

itself in two ways: The bases are first-order (linear) polynomials in u and consequently 

each segment (Q i) is a linear function of u. 

2.1.1.2 Quadratic (Second Order) 
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0 ------- 1; __ >u 
Q ,.,(u) i 

Figure 2.2: The Uniform Quadratic B-Spline. [A] An example curve. [BJ The basis
functions. 

Stepping up from linear to quadratic splines makes each segment dependent on an extra 

vertex (notice the increase in the index of summation from equation 2.2 to 2.3). 
2 

Qi(U) - L B;(u). 1I;+r u E [0,1] (2.3) 
r;;;;O 

B~(u) 

B~(u) 

_ 1 _ u + lu2 
2 2 

Bi(u) -

l + u - U2 
2 

lU2 
2 
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Each segment now traces a non-interpolating quadratic curve (as is clear from figure 2.2), 

since the basis-functions (BJ, B{, BD are second-order polynomials. The same number of 

control vertices now define fewer segments, but each segment is smoother and more refined. 

The polygonal arc joining the control vertices (Vo to V4) is termed a control polygon and 

a segment is contained on or within the control polygon of its contributing vertices. Linear 

B-Splines, for instance, coincide with their control polygon. 

2.1.1.3 Cubic (Third Order) 
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Figure 2.3: The Uniform Cubic B-Spline. [A] An example curve. [B] The basis-functions. 

The generalization can be further extended to cubic splines, which produce even more 

tapered effects. 

3 

Qi(U) = L: B;(u) ·1I;+r uE[O,I] (2.4) 
r=O 

Bg(u) HI - 3u + 3u2 
- u3

) 

Bf(u) H4 - 6u2 + 3u3
) 

Bi(u) - HI + 3u + 3u2 
- 3u3

) 

B~(u) - lu3 
6 

The pattern continues as each segment is influenced by 4 (order + 1) control vertices 

(11;,11;+1,11;+2,11;+3), each of which is scaled by a cubic basis-function (Bg, Br, B~, B~). 
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2.1.1.4 Properties 

With this background in place, the pivotal properties of Uniform B-Splines can be examined. 

• Continuity. A piecewise curve is considered to be of en continuity if at every 

point along the curve the nth derivative exists and is continuous. In particular, 

this condition must hold at the joints between segments. This provides a useful 

measure of curve continuity. The basis-functions of figures 2.1,2.2 and 2.3 track the 

influence of a single control vertex across neighbouring segments. The continuity 

of the basis-functions and the curves born of them are identical because each curve 

segment is merely a linear combination of scaled basis-functions (as is evident from 

equations 2.2 - 2.4). The basis-functions of figure 2.1 exhibit only Co or positional 

continuity, which explains the jagged appearance of their corresponding curves. In 

contrast, quadratic and cubic B-splines produce e1 and e 2 continuity respectively. 

• Local Control. Each segment of a curve is determined by a fixed subset (cardinality 

order + 1) of control vertices. Conversely, a single control vertex affects only a 

portion (order + 1 segments) of the curve. Thus B-Splines allow detailed design of 

subsections of a curve. 

• Convex Hull. Every segment lies entirely within its control polygon, and the entire 

curve is confined within the convex hull of all control vertices. A convex hull can 

be visualized as an elastic band snapped around the outside of the vertices. These 

properties impart a useful degree of predictability to Uniform B-Splines. 

• Efficiency. The inherent simplicity of the Uniform B-Spline family enhances their 

speed above that of more convoluted splines. There are two key factors in this: (a) the 

uniformity of the parametrisation of u which spans a set [0,1] interval and (b) the 

dedication of all free variables (order + 1 coefficients of each basis-function) to 

attaining e order-1 continuity and none to extraneous concerns such as interpolation. 

Evaluating the basis-functions for a given parameter value u becomes progressively 

more costly from linear (1 addition) to cubic B-Splines (10 multiplications and 8 

additions). 
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2.1.2 Other Splines 

Splines are a field of intense interest and frenetic research. There are many extensions to Uni

form B-Splines, for instance Non-Uniform Rational B-Splines (NURBS) [Foley et ai1991], 

which relax the uniform unit interval restriction and are much in vogue, as well as i3-Splines 

[Bartels et ai1987J, which introduce bias and tension parameters. Their collective purpose 

is to allow finer control over the curve and increase the diversity of shape and continuity. 

However, these enhancements are unnecessary in this context because splines are hidden 

from the user under several layers of indirection. The enhanced splines invariably introduce 

extra parameters, which would damage the illusion of sculpting because their effects are 

often neither intuitive nor obvious. Further, this added complexity always carries a baggage 

of extra calculation. 

2.2 Free-Form Deformation 

Free-Form Deformation (FFD) employs an unusual approach to Solid Modelling. It warps 

the space surrounding an object and thereby transforms the object indirectly. An analogy 

would be setting a shape inside a square of jelly and then flexing this jelly, resulting in a 

corresponding distortion in the embedded shape. 

This is achieved by imposing a lattice of control vertices on a portion of world co-ordinate 

space. These can be pictured as hooks plunged into the jelly, which are used to distort its 

shape. Any point in this demarcated space becomes a weighted sum of these lattice control 

vertices. 

The lattice is a direct extension of the splines introduced in the previous section. While 

splines can be anchored in a space of any dimension, they remain strictly one-dimensional. 

It is helpful to picture an infinitely thin ribbon twisting and contorting through the air. 

This dichotomy arises from the different dimensions of the control vertices (\1;), which 

are points in the world co-ordinate space of the modelling application (generally two or 

three-dimensional), and the basis-functions, which are reliant on a single parameter u and 

are thus one-dimensional. FFD extends spline-curves to two-dimensional areas and three-
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dimensional volumes, so that the dimensions of the spline and its control vertices match. 

At each step up in dimension an extra parameter is introduced, v for areas and then w for 

volumes, and the control polygon becomes first a control grid, then a control lattice. Under 

this generalization a spline volume is traced out by: 

'" '" '" 
Qi,j,k(U, v, w) - 2: 2: 2: B;(u) . B~(v). B:(w) . v,+rJ+s,k+t (2.5) 

r=O 3=0 t=O 

u,v,wE [O,l] 

Ct = the order of the spline 

V = a vertex in the control lattice 

E'" the basis functions, BO = linear, Bl = quadratic, B2 = cubic 

u, v, w = control variables 

Q a point in the spline volume 

WarpinU 

Vo,] ~,3 V2,3 '{,J 
~.- ----- -----~ -- -- -_. - --: .. -- -- --- -- -., 

\ v2,z ... ····· .... 
. ~~ 
\ ,...... ~~~ · , 

r::::l Spline Area 

· , · , 
Y,} ..... . ···.V ....... WeftinV 

'.' 
, · ··· ·_·::..~ l i • Control Vertex 
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'{t; ", .... //--p 
! ··.V 

: 3,1 

', ... . 
~,: ......... . 
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1,0 2.0 3,0 

Figure 2.4: Two-dimensional Cubic B-Spline Area defined by a Control Grid. 

It is instructive to compare this with the curves of the previous section (equations 2.2 - 2.4). 

Here the position of points trapped in the spline volume are dictated by (Ct + 1)3 control 

vertices instead of a mere (a + 1) and each control vertex is scaled by three basis-functions 

rather than one. 

Equation 2.5 is manifested in the distorted patch of figure 2.4. This is a two-dimensional 
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area based on a cubic B-spline, so that the w parameter is dispensed with and the area is 

determined by 16 (4 x 4) control vertices. For Example: P(0.2, 0.0) = (1.143,0.938) 

with Vo,o = (0.0,0.0) and YJ,3 = (3.0,3.0) in world co-ordinates. 

The piecewise nature of spline-curves is maintained so that areas and volumes can be 

stitched together. In the case of spline areas, adding (a + 1) control vertices in either 

direction enlarges the surface by a cell in that direction. Spline volumes require a slice of 

(a + 1) x (a + 1) vertices to create adjoining cells. 

• • • • • • • • • • 

• rEB] • • K ···.f..···/ • 
" : ~ 

. (;< .. ~ ... ~ ... :L • • ... ..... • ... .. ... • • • 

L ..... ~ ...... ..l • • • y···t····X • 

• • • • • • • • • • 
[1] [2) 

• • • • • 
• 

• Lattice Vertex • /$ \ • 
--- - --- Cell Boundary 

• • ~-- - ---- - .. --- -- - -"\ • • -\ i ./ FFD Object 

\- ------_!_ -----_. ! - Vertex Alteration • • 
• 

• • • • • 
[3) 

Figure 2.5: The Three Stages of FFD. [1] Embedding the Object, [2] Moving Lattice 
Vertices, [3] Deforming the Object. 

Now, the Free-Form Deformation process can be unfolded into three stages (as shown in 

figure 2.5) : 

1. An undistorted or base-state lattice is generated. It has vertices spaced regularly 

in orthogonal u, v, w directions. This demarcates a number of box-shaped (or 

parallel piped) spline volumes, hereafter referred to as cells. This is analogous 

to taking a cube of jelly fresh from its mould. Then the surface points of the 
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designed object are parametrised within this lattice. They are located within a ceIl 

(referenced by the i,j, k index of its corner lattice vertex) and given local u, v, w co

ordinates relative to the cell origin (0.0, 0.0, 0.0) and maximum extent (1.0,1.0,1.0). 

If equation 2.5 is applied to a given parametrisation at this stage, the original point is 

recaptured. In terms of the metaphor, the shape being squished is set inside the jeIly. 

2. A number of lattice vertices are displaced, with a consequent distortion of lattice 

ceIls. This equates to flexing the jelly by wrenching on the embedded hooks. 

3. The parametrised surface points (i,j, k and u, v, w) are churned through equation 2.5 

to spawn an altered shape, whose deformation mirrors that of the ceIls in which it 

lies. So, by the analogy, the inset shape is warped along with its cocooning jeIly. 

~ ... ... ,. ....... , . ..... .. , .... .. ~ .. .... ., ........ , ..... ,' .... .. ~ 

~ .. ...... ~- --~- --~- -~ -- ~- --~- --~ ......• 
t ....... + --.. ---+- --+- -+ --t --; 
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:Lt~EE' , '~~t:l: 
I I I I 
I I I I 

t.· ···.---~- - - --+-- ........ . 
I I I I I I I 

I I I I : I I .+ --.,. --+ --;- --0- - -t - -; .. .... ~ 
I I I I ' I I 

J I I I : ' I 

.~- - -~- - -~- - + -- ~- - -.- - -. " • 

.....• 

...... 

........... ........... ...... ............. .... ............... ...... . 

-- Deformable 
Zone 

Influenced 
Zone 

Phantom 
Zone 

Figure 2.6: A FFD lattice showing Deformable, Influenced and Phantom Zones. 

The fringes of the lattice may, without careful attention, produce anomalous continuity 

degradation. To prevent this, the lattice is partitioned into three rings. At the centre is the 

deformable zone, with any number of vertices and their corresponding ceIls. Around this lies 

the influenced zone of cells affected by the movement of control vertices in the deformable 

zone. At the edges a phantom zone of static vertices guards against boundary conditions. 

These phantom vertices are preferred to the tripling up of vertices previously proposed 

[Hsu et al1992], since this introduces additional complexity into the FFD algorithm. 
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Figure 2.7: Free-Form Deformation 
Purpose: Displace object points with Free-From Deformation. 
Given: V A 3D lattice of control vertices, 

P A list of object points, 
m The number of entries in P. 

Return: An FFD-altered version of P. 
Data 
Structures: (i, j, k) Indices of a lattice ceH, 

(til V, w) Co-ordinates within a lattice ee11. 

FOR O! = 1,2, ... , m 
IF Pa lies within the influenced or deformable zones 
of the lattice TIIEN 

parametrise Pa. with (i, i, k) indices 
and (u , v, w) co-ordinates 
P" .....-(0.0,0.0,0.0) 
FORr=0, ... ,3 

FOR s = 0, ... ,3 
FORt = 0, ... ,3 

P" .....-P" + Vi+'J+.,k+' X B;(u) x B:(v) X Bl(w) 

A two-dimensional analogue of a multi-cell cubic B-spline lattice is detailed in figure 2.6, 

and the FFD algorithm associated with this data structure is outlined in figure 2.7. 

This highlights the inherent inefficiency of FFD. Every point of an object within the scope 

of the lattice (potentially hundreds) undergoes 64 iterations involving 3 multiplications 

and an addition. The basis-functions can be calculated outside the inner loop, but their 

calculation, as well as the parametrisation of surface points, still adds significantly to this 

inefficiency. 

There are, however, several means of improving matters: 

• In the original FFD [Sederberg and Parry 1986J and later extensions, the lattice is 

allowed arbitrary orientation relative to the world co-ordinate (x, y and z) axes. This 

does not increase the range of possible deformations and it substantially complicates 

the evaluation of local co-ordinates. Instead, the (u, v, w) axes of the lattice are 

oriented so that they lie parallel to the (x, y, z) axes . 

• There may be cells whose control vertices are unaltered and which do not perturb 

points falling within them. Instead of executing the body of the FFD loop only to 

return the original point unchanged, a Boolean index, which flags cells with altered 
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vertices, can be consulted. In this way, if a lattice control vertex is moved, then the 

64 cells influenced by this vertex are marked in the index. 

• The Uniform Cubic B-Splines are the most efficient of all the splines with comparable 

smoothness. However, if the user is willing to accept less tapered results, then the 

Uniform Quadratic B-Splines of equation 2.3 can be substituted to good effect. 

Now the inner loop has 27 (3 x 3 x 3) iterations and the calculation of the basis

functions is almost twice as fast. Technically, this is downgrading from continuity of 

second derivatives (class C2
) in the case of the Cubic B-Spline, to continuity of first 

derivatives (class C1) for the Quadratic B-Spline. 

The Free-Form Deformation technique was first presented in a seminal paper 

[Sederberg and Parry 1986], which has sparked widespread academic research and com

mercial application. There are three primary avenues along which FFD has developed: 

• Animation. FFD has cross-pollinated well with the discipline of Computer Anima

tion. Layered Construction for Deformable Animated Characters 

[Chadwick et a11989] builds animated figures from their articulated skeletons out

wards and FFD is utilized to simulate the flex and ripple of the muscle and tissue 

layers. Animated Free-Form Deformation [Coquillart and Jancene 1991] gradually 

translates objects through a distorted lattice to induce dynamic deformations. For 

instance, a tube can be made to bulge and swell progressively down its length. 

• Generalisation. There were two aspects of the original FFD 

[Sederberg and Parry 1986] which invited generalisation: the base-state lattice with 

its structure of vertices regularly spaced in a parallel piped arrangement, and the Bezier 

curve underpinnings. NURBS-Based Free-Form Deformations 

[Lamousin and Waggenspack 1994] substitutes Non-Uniform Rational B-Splines in 

place of Bezier curves and thus allows vertices to be unevenly spaced along the orthog

onal axes of the initial lattice. ExtendedFree-FormDeformation [Coquillart 1990] in

troduces complex configurations for base-state lattices, which fit more snugly around 

the object being shaped and thereby establish greater control and predictability. 

• Direct Manipulation. Deformation of N-Dimensional Objects 

[Borrel and Bechmann 1992] provides a method for controlling the surface of an 
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embedded solid directly. The same results were independently and more narrowly 

formulated in Direct Manipulation of Free-Form Deformation [Hsu et 011992]. It is 

this last avenue which is explored in the next section. 

2.3 Direct Manipulation 

Controlling deformations by moving lattice vertices, while producing sculpted results, tends 

to be cumbersome and counter-intuitive. Specifying even simple deformations requires a 

good working knowledge of Splines and FFD. Also, the display of the lattice tends to 

clutter the screen and obscure the object being created. It would be preferable for the user 

to drag object points directly and have the surrounding points conform as if the object 

were malleable clay. This is the intention behind the Direct Manipulation (OM) extensions 

to FFD [Hsu et 011992, Borrel and Bechmann 1992]. For instance, pushing or pulling a 

single object point will create dimples or mounds in the object's surface. More complex 

manipulation can be achieved by simultaneously moving several points and calculating the 

lattice changes required to induce these effects. The general principle behind DMFFD is 

first to reverse-engineer alterations in the lattice vertices, and then apply this new lattice to 

the original object. 

To achieve this some mathematical foundations must first be layed. The algorithm of 

figure 2.7 can be concisely expressed in matrix form: 

AX=B 

where ~ is an m X 3 matrix formed directly from the list P, 

with each row capturing the (x, y, z) co-ordinates of an object point. 

I X I is an n X 3 matrix of the co-ordinates of all the lattice vertices (V"j,k) 

that affect the points in B. It can be formed by cycling through points in P 

and placing in X, without duplication, all vertices that influence a point. 

[I] is an m X n matrix of blended basis functions with the weight entry in 

column i of A matched to its vertex in row i of X. A particular (i, j) entry of A 

is zeroed if the vertex in row j of X does not affect the point in row i of B. 
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EXAMPLE 

v 

VO,1 Vl ,l V2,1 .. - ---------------- -~ - - - - - - - - ---- - -- -- - . ; 21>-
: P2 
, , 

Po ' , , , , 
.---------------- --<1-------- ----- -----<1 

VOO V IO V20 
u 

The above diagram shows a two-dimensional base-state linear lattice with a triangle inset. 

The triangle has points Po, PI, P2 with parametrisations of (uo , vol, (Ul' vJ), (U2, V2 )' The 

equation below is in essence a recasting of equation 2.5. 

VO,D 

[ B o,o ("O , .o ) B1,o(uo,tJo) 0 BO,l(tto , tJO) BI ,l (Ullt va) 

B",L~) ] 
Vl,O 

[ ~: ] BOIO (~lltJl) B1,o(Ul, tJl) 0 BO ,l(U,l ,vd Bl ,l (t.t.lo tJl ) 
V2 ,o 

; 

BO,O(U2,VZ) Bl,0(tL2' \12) 0 BO,l (UZ, tJZ) 
VO,1 

Vl ,l 

VZ, l 

B',j(u,.); B!{u) X B}(u) 

Normally FFD evaluates the altered positions of object points (B) by multiplying the basis 

matrix of spline weights (A) and the list of control vertices (X) , but Direct Manipulation 

reverses this. The user specifies a selection of object points and their intended motion (B), 

and the alteration in vertices (X) is found. In mathematical terms we seek to find X in the 

equation AX = B, given A and B. Figure 2,8 unfolds Direct Manipulation in three steps: 

1. Setup A base-state lattice is established, the object is embedded and the user defines 

a number of Direct Manipulation vectors of the form "move this object point from 

here to there". In concrete terms matrices A and B are created. The algorithm for 

this step is presented below in Figure 2.9. 

2. Lattice Vertex Determination The alterations in Lattice Vertices necessary to satisfy 

the DM vectors are reverse-engineered. This is an extremely involved task which 

consumes by far the bulk of computation, and it is the focus of the next chapter. 
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Figure 2.8: Three Stage Direct Manipulation. [1] Setup, [2] Lattice Vertex Determination, 
[3] Object Transformation. 

3. Object 'Iransformation The entire object undergoes FFD (as per the algorithm of 

Figure 2.7). Notice from figure 2.8 how the twin demands of matching DM vectors 

and a smooth clay-like deformation are satisfied. 
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Figure 2.9: Direct Manipulation Setup 
Purpose: Prepare the Mathematical Foundations of Direct 

Manipulation. 
Given: V A 3D FFD lattice, 

D A set of Directly Manipulated object points, 
tlD A set of Direct Manipulation vectors, 
m The number of DM points. 

Return: A The matrix of Basis functions, 

Data 

B The DM vectors (tlD) captured in matrix form, 
I An index matching lattice vertices 

to columns of A, 
n the length of I and number of columns in A. 

Structures: (i, j, k) Indices of a lattice cell, 
(u, v) w) Co-ordinates within a lattice cell. 

set I to empty 
n<--O 
FOR", = 1,2, ... ,m 

(1) Parametrise D~, finding the cell address (i, j , k) and 
local co·ordinates (u, v, w) in V. 

(2) Assign the vector components of b..Da to Ba,l. BQ ,2. Ba,3 

FOR r = 0, ... ,3 
FOR s = 0, ... ,3 

FORt = 0, ... ,3 
Find the position (13) of (i + r, j + s, k + t) in I 
IF not found THEN 

n<--n+l 
f3 <-- n 
In <-- (i + r, j + s, k + t) 

A~,p <-- B~(u) . B~(v) . B~(w) 
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2.4 Concluding Remarks 

The foundations of Directly Manipulated Free-Form Deformation (DMFFD), a sophisti

cated sculpting tool, have been established. The approach carries considerable benefits: 

• Aesthetic. Deformations are moulded and tapered due to the Uniform Rational B

Spline substrate. This imparts a fluid clay-like consistency to the solid being modelled 

and reinforces the sculpting metaphor. 

• Intuitive. The "Pick-and-Drag" interface that Direct Manipulation overlays on Free

Form Deformation is simple and effective. 

• Local Control. The extent of deformations is dependent on the size and spread of 

the FFD lattice. A fine lattice allows intricate, detailed deformation, while a coarse 

lattice is needed for global changes. 

• Representation Independence. Finding surface points is fundamental to all repre

sentation schemes. Since FFD is point-based it is independent of the formulation of 

its embedded solid [Sederberg and Parry 1986]. 

However, inefficiency remains a worrisome consideration, despite the range of improve

ments presented thus far. The kernel of computation in DMFFD is the reverse-engineering 

of the lattice and this is addressed in the next chapter. 
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Chapter 3 

Least Squares Solution Methods 

At this juncture the foundations of Directly Manipulated Free-Form Deformation are in 

place. However, the core computation, a reverse-engineering of lattice vertices, remains to 

be considered. It is this calculation that is the principal source of inefficiency in DMFFD. 

In the previous chapter DMFFD was considered in terms of the relationship between three 

matrices: a basis matrix of spline weights (A), a matrix of lattice vertex co-ordinates (X), 

and a matrix of altered object points (B). In this chapter these matrices are arranged into a 

system of linear equations AX = B and the problem is reduced to finding X, given A and 

B, using a construction known as the Pseudo-inverse. These theoretical underpinnings are 

discussed in the next section, culminating in a concise statement of the problem. 

The bulk of the chapter is devoted to a discussion of four methods for solving this problem: 

the Naive Pseudo-inverse [Noble 1969], Normal Equation [Lawson and Hanson 1974], 

Greville [Greville 1960] and Householder [Lawson and Hanson 1974] schemes. These 

approaches are outlined and compared with regard to efficiency, accuracy and space con

sumption. Here efficiency is measured as the number of multiplications and divisions 

required by an algorithm. Additions and subtractions are ignored in this evaluation since 

they are of a similar order to, and consume less computation time than, multiplications and 

divisions. Space consumption is measured as the amount of floating point storage over and 

above that required for A, X and B. Finally, in considering accuracy, the degeneration in 

the significant digits of the solution X relative to the matrix B is measured. 
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The remainder of the chapter focuses on selecting one numerical scheme for DMFFD 

according to these measures. An effective and novel enhancement is then made to the 

chosen scheme by exploiting the structure of the basis matrix (A). Finally, this improved 

DMFFD algorithm is presented in its entirety and its efficiency demonstrated. 

3.1 Theoretical Underpinnings 

3.1.1 Systems of Linear Equations 

Direct Manipulation of Free-Form Deformation may be posed in terms of solving a system 

of linear equations. Such systems are traditionally written in matrix notation as Ax = b. 

Here A is an m x n matrix of coefficients and x and b are n-dimensional and m-dimensional 

column vectors respectively. Both A and b are predetermined and the problem involves 

finding solution values for the set of unknowns x . 

This process is very well-defined when A is square (m = n) and non-singular, that is an 

inverse denoted by A - 1 exists. This inverse is constructed so that x can be solved explicitly 

as x = A -lb. If the right-hand-side vector b is altered, a corresponding solution x can be 

found without re-evaluating A -1. The inverse provides a theoretical underpinning for a 

plethora of solution methods. 

Less well documented are solutions to underdetermined and overdetermined systems. 

In the former case there are more unknowns than equations (m < n in A) and one or more 

of the unknowns becomes free or variable, spawning an infinite number of solutions. In 

the latter case there are more equations than unknowns (m > n in A) and there is no exact 

solution, since not all of the constraints can be met. 

A further complication is the rank of A. This can be defined as the dimension of the 

row space of A [Johnson et a11993]. In concrete terms this is equivalent to the number of 

nonzero rows that A has after it is reduced to row echelon form. Two further exigencies must 

now be considered: A may have full rank (Rank(A) = m) so that every row contributes 

constraints, or be rank deficient (Rank(A) < m) if some rows of A are linear combinations 
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of others. Further, if A is rank deficient, so that one row is a constant multiple of another, 

and the same relationship does not hold in corresponding entries of b then the system is 

inconsistent. More strictly, consistency implies that the same linear dependence relations 

that hold in A must also hold in b. If a rank deficient system is consistent then one or more 

rows are redundant. 

So, four classes of linear systems have been introduced: full rank underdetermined, rank 

deficient underdetermined, full rank overdetermined, and rank deficient overdetermined 

systems. None of these systems have solutions in the traditional sense of a single numerical 

match for every entry of x. Overdetermined systems allow only approximate solutions and 

underdetermined systems have an infinity of available solutions. In the overdetermined case, 

a vector which minimizes the sum of squares (or norm) of the residual error ( IIAx - bll ) 
is considered ideal [Lawson and Hanson 1974] since it is closest in a least squares sense to 

an exact solution. In the underdetermined case a solution is selected to minimize the sum 

of squares of the solution vector ( IIxll ) and this corresponds to finding the closest solution 

to the zero vector. 

Direct Manipulation can be posed in terms of the underdetermined full rank least squares 

problem, which can be simply stated: 

The Underdetermined Full Rank Least Squares Problem 

Minimize IIx ll (or equivalently xT x) subject to Ax = b 

where A E umxn , x E ~n, b E ~m 

and umxn is the underdetermined m x n matrix space defined by 

u mxn C ~mxn, Rank(umxn ) = m and m < n. 

3.1.2 The Pseudo-inverse 

The Pseudo-inverse, represented by A+, extends the definition of the inverse A-I to under

and overdetermined situations. Many of the properties of the inverse carryover in this 

generalization. For instance, A + is dependent solely on the coefficient matrix A. The 

explicit solution x = A+b coincides with the normal interpretation when A is square (ie. 
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A+ = A-I), the solution vector with minimum norm when A is underdetermined, and the 

norm of the residual error when A is overdetermined. The Pseudo-inverse thus solves the 

underdetermined full rank least squares problem under consideration and can be evaluated 

using the following result [Noble 1969]: 

Theorem 3.1 (Noble 1969J For A E umxn the solution of the equation Ax = b that 

minimizes xT x is x = A + b, where the Pseudo-inverse A + is the unique n x m matrix given 

by A+ = AT(AATJ-'. 

Proof [Noble 1969] 

The Method of Lagrange Multipliers states that minimizing g(x) subject to 

h( x) = 0 is equivalent to minimizing the Lagrange multiplier M = g(x) + )..h(x). 

This method is employed to minimize xT x subject to Ax = b. We form 

M = xT x + 2),T(Ax - b), where).. is an 1 x m row vector 

of Lagrange mUltipliers with the factor 2 introduced for convenience. 

This has a minimum when ~~ = 0 

~~ = 2xT - 2)..T A = 0 

:;.-xT=)..TA 

:;.- (xTf = ()..T A)T 

:;.-1 x = AT)..I ........ .. ........ (i) 

and ~~ = 0 j = 1, ... , m 
J 

f!Jf: = 2(Ax - b) = 0 

:;.- 1 Ax = b I .................. (ii) 

Now substitute (i) into (ii) to obtain 

AAT).. = b 

i = 1, . . . ,n 

:;.-).. = (AATJ-'b (since AAT is nonsingular) 

Substituting this expression for)" into (i) yields 

x = AT(AATJ-'b as required. 
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Pmperty 3.2 The Pseudo-inverse of a row vector v is v+ = Iiv ll-2 vT . 

Proof 

We have 
n 

vvT = L:v; = IIv li 2 

i=l 

Property 3.3 If AX = B with A E umxn , X E !Rn xp, B E !Rmxp and X = A+ B 

then every column of X is a least squares solution to a system formed with corresponding 

columns of B. 

Proof 

[1] Each column of B is an m X 1 column vector bi, i = 1, ... , p and each column of X 

is an n x 1 column vector X i , i = 1, . .. ,po 

[2] Now X = A+ B is equivalent to Xi = A+bi, i = 1, . . . , I from the definition of 

matrix multiplication. 

[3) By Theorem 3.1 each Xi is a least squares solution to the 

underdetermined full rank least squares problem. 

The central problem of DMFFD can now be stated: 

Direct Manipulation Problem Statement 

If AX = B and A E umxn , X E !Rnxp and B E !Rmxp 

then a solution equivalent to X = A + B must be found. 

36 



3.2 Solution Schemes 

3.2.1 Naive Pseudo-inverse 

The unknown matrix X can be nai"vely found by a brute-force construction of the Pseudo

inverse A+. From Theorem 3.1 we get X = AT(AATtl B. Here C = AAT is inverted 

by the method of Gauss Reduction with backward substitution on an augmented matrix 

(see figure 3.2) familiar from elementary linear algebra [Burden and Faires 1993]. The 

inverse, while useful in theoretical contexts, is avoided in practical applications since it 

carries a heavy computation overhead (notice the m3 term contributed by the inversion in 

the efficiency analysis of Figure 3.1). Later methods will circumvent this inversion in the 

interests of speed. 

Figure 3.1: Analysis of the NaIve Pseudo-inverse 

Efficiency: [1] m 2n 
[2] m 3 + ~m2 - ~m 
[3 ] m 2n 
[4] mnp 

= 12m2n + m 3 + mnp I 

Extra Space: C + D + E 
= m 2 +m2+mn 

=12m2+mn l 
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Figure 3.2: NaIve Pseudo-inverse 
PuIpose: Find a Least Squares Solution to AX _ B 

by the Naive Pseudo-inverse method 
derived from [Hsu et a11992, Burden and Faires 1993]. 

Given: A, B Matrices of m x nand m X p dimensions 
Return: X An n X p solution matrix. 
Data 
Structures: 0, D, E Matrices of m x m, m X m and n x m 

dimensions respectively. 

[1] C <-- AAT 

[2] (find D = C-1 explicitly and inefficiently by Gauss-Reduction with 
partial pivoting on an augmented matrix) 
D<--J 
FORh= 1,2, ... ,m 

IF Ch,h = 0 THEN (pivot element is zero) 
>. <-- 0 
FORi=h+l,h+2, ... ,m 

IF Ci,h > >. THEN 
A+-- Ci.,h 
swp+-- i 

IF>' = 0 THEN 
ERROR: matrix C is singular 

ELSE 
Exchange rows hand 8WP in C and D 

FOR i = h + 1, h + 2, ... , m (clear column) 
r <-- - Ci.hICh,h 
FOR j = h + 1, h + 2, ... , m 

Gi,j +-- Gi.,j + rCh,j 
FORj = 1,2, .. . ,h 

Di,j +-- Di.,} + rDhJ 

FOR h = m, m - 1, ... , 1 (backward substitution) 
FOR i = m, m - 1, . .. ,1 

m 

Di" h +-- Di,h - L Ci.,jDj,h 

i=;'+1 

D'.h <-- D',hIC", 
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3.2.2 Method of Normal Equations 

The method of Normal Equations sidesteps explicit inversion by exploiting two structural 

properties of C = AAT: [1] C is symmetric and [2] C is non-negative definite since 

it is symmetric and xTCx ~ 0 [Lawson and Hanson 1974]. These two attributes are 

requirements for Choleski Factorization [Burden and Faires 1993], a powerful technique 

for solving square linear systems and implicitly building the inverse. Under the Method of 

Normal Equations calculation of X = A+ B = AT(AAT)-l B is subdivided into 3 steps 

(see Figure 3.4): 

1. C = AAT by matrix multiplication of the lower triangle and using symmetry to build 

the remainder of C. 

2. D = C- 1 B by Choleski Factorization 

3. X = AT D by matrix multiplication 

The consequent improvement in speed is roughly fourfold as can be seen by comparing 

Figure 3.1 and Figure 3.3. 

Figure 3.3: Analysis of Method of Normal Equations 

Efficiency: 

Extra Space: 

Accuracy: 

[1]lm2n 
[2] fm3 + ~m2 - ~m + m sqrts [Burden and Faires 1993] 
[3] m 2p + mp [Burden and Faires 1993] 
[4] mnp 

= I ~m2n + ~m3 + m 2p + mnp I 

C+L+y+D 
= m 2 + im2 + m + mp 

= I ~m2 + m + mp l 

This is proportional to the square of 
the condition number of A [Golub and Van Loan 1989] 
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Figure 3.4: Method of Normal Equations 
Purpose: Find a Least Squares Solution to AX = B 

by the Method of Normal Equations with a Choleski 
Factorization found in [Burden and Faires 1993]. 

Given: A, B Matrices of m X nand m x p dimensions. 
Return: X An n x p solution matrix. 
Data 
Structures: 0, D, L Matrices of m x m, ~m x ~m and m x p 

dimensions respectively. 

[1] (form C <-- AAT) 
FOR; = 1,2, ... , m (standard matrix multiplicatwn of lower triangle) 

FORj = 1,2, ... ,; 
n 

C,,; <-- L A"A;" 
Ie=l 

IF; of j THEN Cj" <-- C',j upper triangle mirrors lower 

[2] (find a lower triangular factorizationL by Choleski Decomposition) 
L

"
, <--.jCW 

FOR j = 2,3, ... , m 
Lj,1 <-- Cj,l/ L", 

FOR; = 2,3, ... , m - 1 
i- I 

Li,i - ~Lt,k 
, -~I.----~.---

Li,i. +- VOi,i - Li,i 

FOR j = ; + 1,; + 2, ... , m 
i-I 

Lj,i +- L,Lj,kLi,/r; 
.1:= 1 

Lj,' <-- (Cj" - Lj,;)/L", 
m- I 

Lm,m- LL~.k 
,-I 

Lm,m +- VCm,m Lm,m 

[3] (use the Choleski Factorization to solve for D) 
FOR k = 1,2, ... ,p 

YI <-- B"d L
"

, 
FOR; = 1,2, .. . ,m 

i-I 

Yi +---- L,Li,iYi 
j=l 

y, <-- (B", - y,)/L", 
Dm,k +-- Ym/ Lm,m 
FORi = m-l,m- 2, ... ,1 

m 

Di,le +-- L. Lj,iDj,k 

j=itl 

D". <-- (y, - D".) / L", 
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3.2.3 Greville's Method 

A touted alternative to the previous two schemes has been derived [GreviIle 1960J. Gre

ville's approach relies on a recursive decomposition of the Pseudo-inverse. This requires 

some additional notation: Ak is the m x k submatrix encompassing the first k columns 

of A, At is the corresponding k x m Pseudo-inverse and ak is the m x 1 vector of the 

k-th column of A. Now Theorem 3.4 provides a mechanism for successively introducing 

columns of A and thereby recursively building A +. 

Theorem 3.4 [Greville 1960J At, the Pseudo-inverse of the submatrix Ako is dependent 

solely on Atv A k- I and ak. Their relationship is defined as follows: 

At = [ ALe-de ] 

where d = Atl ak 

and e is determined by: e = ak - A k- 1 d 

IFe =f 0 THEN 

e = e+ 

ELSE IF e = 0 THEN 

e = (1 + dTd)-IJT AL 

Proof 

This proof is too convoluted for presentation here (see [Greville 1960J for details). 

Notice that we have a means of evaluating the Pseudo-inverse of a row vector v as 

v+ = li v li - z vT (from Property 3.2). This can be applied unchanged to column vectors. 

It is now possible to calculate A + beginning from At (the Pseudo-inverse of the first column 

of A) and iterating until A! (the Pseudo-inverse of A) is reached, as is done in figure 3.6. 

The analysis of this algorithm (see figure 3.5) contradicts its purported strength 

[Borre I and Bechmann 1992J, especially in the light of its inefficiency. However, the 

method has two redeeming attributes: 
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• Column Updating and Downdating of A does not force a complete recalculation of 

the Pseudo-inverse A+. Unfortunately Direct Manipulation is row oriented in this 

respect and only ever requires adding or removing rows of A . 

• The algorithm is independent of the relative dimensions of m and n in A so that it 

can be applied unchanged to both the under- and overdetermined cases. 

Figure 3.5: Analysis of Greville's Method 

Efficiency: [1 J 2m 
[2J mn2 - mn 
[3aJ 2mn - 2m OR 
[3bJ ~mn2 - ~mn + mn - m + n2 - n 
[4J ~mn2 - ~mn 
[5J mnp 

= 1 ~mn2+mnp l 

Extra Space: P + a + c + d + e 
= mn+m+n + m+m 
= Imn+ 3m+ nl 
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Figure 3.6: Greville's Method 
Purpose: Find a Least Squares Solution to AX _ B 

by Greville's Method found in [Greville 1960]. 
Given: A, B Matrices of m x nand m x p dimensions. 
Return: X An n x p solution matrix. 
Data 
Structures: P An n x m Matrix which stores 

the partial pseudo-inverse 
a,c,d,e intermediate vectors 

[1) (find the Pseudo-inverse of column 1 of A) 
m 

>. <- 1/2)Ai,,)2 
i=l 

FOR i = 1,2, ... , m 

PI,i ~ )'A" l 
Prow +-- 1 

(iterative calculation of P = At) 
FOR k = 2,3, . . . ,n 

[2) FOR i = 1,2, ... , m 

[3 a) 

[3b) 

ai +-- Ai,k 

d<-Pa 
A", <- k - 1 (A set temporarily to A.-I) 
c<- Ad 
FORi=1,2, ... ,m 

Ci +-- a, - c, 

lFcopOTIffiN 
I 

e<- W e 

ELSE (c = 0) 
n 

<><-1/(1+ Ldt) 
i=1 

e <- ",fI' P 

[4) (determine At) 
FOR i = 1,2, ... , k - 1 

FOR j = 1,2, ... , m 

Pi,j +-- Pi.,j - diej 

Prow +-- Prow + 1 
FORj = 1,2, ... , m 

Pk,j'l- ej 

[5 ) X <- PB 
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3.2.4 Householder QR Factorization 

There is an alternative characterization of the Pseudo-inverse which is based on an orthog

onal decomposition of A and which leads to an effective numerical scheme for least squares 

solutions. Briefly a matrix Q is orthogonal if QT Q = I. An orthogonal matrix Q has the 

property of preserving Euclidian length under multiplication, thus IIQyl1 = Iiyli. 

We are now in a position for an alternative definition of the Pseudo-inverse. 

Theorem 3.5 [Lawson and Hanson 1974J Let A E umxn . Given an orthogonal decom

position A = H [R 0 1 K T , where H E ~mxm and K E ~nxn are orthogonal and 

R E ~mxm, then the Pseudo-inverse is given by: 

A+ = K [ R;l ] HT 

A + is uniquely defined by A, and does not depend on the orthogonal decomposition of A. 

It is important to remember that finding the inverse of a square, upper or lower triangular 

matrix is particularly simple since it is already in row echelon form and the computationally 

demanding Gauss Reduction step can be bypassed. So an orthogonal decomposition which 

leaves R in this form is ideal. Such a decomposition is called a QR factorization. 

Theorem 3.6 [Lawson and Hanson 1974J If A E umxn then there exists a factorization 

of A such that A = 1m [ R 0 1 QT where Q is orthogonal and R is zero above the main 

diagonal. 

Notice that the decomposition A = 1m [R 0 1 QT satisfies all the conditions of theo-

[ 
R-l ] 

rem 3.5 so that A+ = Q DIm. An implicit algorithm for finding X, given the QR 

orthogonal decomposition of theorem 3.6, can now be derived. 

Derivation of figure 3.8 

A = 1m [R 01 QT 

=} AQ = [R 0 1 QTQ 

=} AQ = [ R 0 1 I (Q is orthogonal and so QTQ = I) 
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[1] IAQ = [R 0 II 
X=A+B 

[ R-
1 

] ,*X=Q 0 B (by theorem 3.5) 

,*X=Q [ R-' B ] 
0 

(block multiplication) 

[2] I solve for Y in RY = B I 

[3] Ix = Q [:] I (Y = R-'B) 

Further, there exists a stable method for determining Q known as the Householder Factor

ization [Lawson and Hanson 1974) which is used frequently in eigenvalue problems. 11 is 

presented here without derivation. 

Figure 3.7: Analysis of Householder QR Factorization 

Efficiency: [1] mn - ~m2 + m - n 
[2] m2n + m 2 

- ~m3 - mn - ~m 
[3] !m2p - ~mp + mp - p 
[4]2mnp - m 2p + 2mp - 2np 

= I m2n - ~m3 - ~m2p + 2mnp I 

Extra Space: Y + h (Q, R are stored over A except for h) 
=Imp+nl 

Accuracy: This is proportional to the Condition Number of A 
[Golub and Van Loan 1989] 
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Figure 3.8: Householder QR Factorization 
Purpose: Find a Least Squares Solution to AX _ B 

by Householder QR Factorization 
found in [Lawson and Hanson 1974J. 

Given: A, B Matric;es of m x nand m X p dimensions. 
Return: X An n x p solution matrix. 
Data 
Structures: Q 

Y,R 
A Householder Decomposition 
intennediate matrices 

[1] Create Q - Householder Decomposition 

[2]R +-- AQ (apply householder decomposition) 

[3 ] (solve for RY = B) 
FORk=l, ... ,p 

Y"k +-- B"k/A", 
FORi=2,3, .. . ,m 

i - I 

y; ,. +-- B· ,. - """ .. y; • ',,0\) l ,II' L.JJ. 4. ,J ). 
j=l 

¥i,k +-- Yi,k/ Ri, ;' 

(X = [ Y 0]) 
FORi= l,2, ... ,m 

Xi>k~ Yi,k 
FORi = m+l,m+2, ... ,n 

Xi,k +-- 0 

[4] X +--QX (apply householder decomposition to X) 
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Figure 3.9: Comparison of Numerical Schemes 

I Efficiency I Extra Space 

Naive Pseudo-inverse 2m2n + m 3 + mnp 2m2+mn 

Normal Equations ~m2n + ~m3 + m2p + mnp ~m2+m+mp 

Greville ~mn2 +mnp mn+ 3m+n 

Householder m 2n - ~m3 - ~m2p + 2mnp mp+n 

3.2.5 Evaluation 

In selecting an underdetermined least squares solution scheme, Greville's Method and the 

Naive Pseudo-inverse can be dismissed. The Naive Pseudo-inverse is in all ways an inferior 

version of the Method of Normal Equations, and Greville's Method excels only in a column 

updatingldowndating situation where A remains largely unaltered. AB is apparent from 

Figure 3.9, only the Method of Normal Equations and Householder QR Factorization are 

serious contenders. 

Householder QR factorization has two main advantages: 

1. It is a stable and accurate scheme and can thus be applied to a broader, more poorJy

conditioned class of matrices [Golub and Van Loan 1989]. Also the resolution of the 

solution matrix X will not be markedly inferior to that of the right-hand-side matrix 

B. 

2. It is a remarkably compact approach since most intermediate steps of the algorithm 

overwrite entries of the coefficient matrix A. This does not, however, apply to a 

sparse matrix structure where zero entries of A are stored implicitly. Paradoxically 

the Normal Equation method is stronger here. For example: ABsume that A has 1
2
0 
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density (ie. 20% of matrix entries are nonzero) and dimensions m = 10, n = 100 and 

p = 1. Then the Method of Normal Equations and Householder QR Factorization 

will require ~m2 + 2m = 170 and l~mn + m + n = 910 extra floating-point 

storage respectively. This occurs because the Householder scheme requires that A be 

expanded into an explicit form. 

The Method of Normal Equations has an edge in efficiency over Householder QR Fac

torization. The literature claims that it is twice as efficient [Lawson and Hanson 1974] 

but this is only true when n is far larger than m (n ~ m) because then the m 3 term in 

the efficiency expression (refer to figure 3.9) becomes relatively insignificant. Accuracy 

considerations (we need 1]2 precision to get the accuracy that Householder QR Factorization 

could achieve with 1] precision [Lawson and Hanson 1974]), mean that this method must 

rely on well-conditioned matrices. 

In the final analysis the tradeoff is between the requirements of efficiency, in which the 

Method of Normal Equations is paramount, and space and accuracy, where Householder 

QR Factorization is preferable. 

3.3 Direct Manipulation Specifics 

At this stage, a least squares scheme is selected from those outlined and Direct Manipulation 

specific enhancements are made to it. Finally, these improvements are incorporated in a 

complete Direct Manipulation algorithm whose superior performance is demonstrated. 

DMFFD corresponds exactly to a least squares solution of an underdetermined linear system. 

The nuances of this equivalence can be summarized as follows : 

Given a system of linear equations AX = B where 

B is an m X p matrix of direct manipulation vectors, 

X is an n X p matrix of change vectors for lattice control vertices, 

A is an m X n basis matrix with spline coefficients that give weighting to entries of X, 

m is the number of directly manipulated (DM) points on the models surface 

(between 0 and 64), 
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n is the number of influenced lattice vertices 

(ranging from 64 clustered around a single cell to potentially 

over 4000 if DM points are widely scattered across the lattice), and 

p the number of axes in the modelling application (3-dimensional in this case). 

Direct Manipulation aims to reverse-engineer X from values of A and B. 
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Figure 3.10: An Efficiency Comparison of Least Squares Methods 

In determining the required alteration in lattice vertices dictated by X , efficiency is the 

primary concern and space consumption and accuracy are of secondary importance. As 

long as they remain within generous limits they are subsumed in the interests of real

time performance. With this in mind Figure 3.10 is a speed-based comparison of the 

four approaches of the previous section in a representative Direct Manipulation context. 

The methods were executed on a SPARCserver 10. All the directly manipulated points 

(m ranging from 1 to 60 along the x-axis) are concentrated in a single cell (n is fixed 

at 64). As expected, the Naive Pseudo-inverse and Greville's Method perform poorly. 

Less predictably perhaps, the Method of Normal Equations does not differ markedly from 
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Householder QR Factorization. These results are not anomalous however, since they can 

be arrived at independently via efficiency analysis. In order for a significant divergence to 

occur between the two methods n must be an order of magnitude greater than m. 

On the basis of this comparison the Method of Normal Equations is chosen over and above 

the other schemes. However, the performance of this approach remains disturbing. For 

example: 60 DM points seeded across 10 adjacent cells requires at least 0.132 seconds 

to evaluate. This is equivalent, without even accounting for rendering overhead, to 7.6 

frames per second, which is considerably below the interactivity cutoff of 15 frames per 

second. To maintain real-time response, either the number of cells, or the number of directly 

manipulated points would have to be severely curtailed, both of which would hamstring the 

utility of Direct Manipulation. 
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Figure 3.11: Enhanced Direct Manipulation 
Purpose: Reverse-engineer lattice vertices for Direct Manipulation 

using the Method of Nonnal Equations [Lawson and Hanson 1974] 
with special-purpose enhancements. 

Given: V A 3D FFD lattice, 
D A set of Directly Manipulated object points, 
~D A set of Direct Manipulation vectors, 
m The number of DM points. 

Return: An altered version of the 3D FFD lattice V 
Data 
Structures: (i, j, k) Indices of a lattice cell, 

(s, t, u) Co-ordinates within a lattice cell, 
(S, T, U)Spline storage arrays, 
A,B,C,D,L 

Intermediate Matrices, 
A Sparse basis matrix 
Aindex An index of Lattice Cells corresponding to A 

[1] (create compact basis matrix A and right-hand·side matrix B) 
row+- 0 
n<--O 
FOR ~ = IJ2) .. 'lm 

IF Da is within the scope of the lattice 
(i) Parametrise Da, finding the cell address (i, j, k) and 

local co-ordinates (5, t, u) in V. 
(ii) Assign the vector components of ~Da to Brow, b Brow,'}., B row ,3 

Aindexrow, l +-- i 
Aindexrow ,2 +-- j 
Aindexrow ,3 +-- k 
FORa=1,2, ... ,4 

Sa <-- B~(s) 
T. <-- B~(t) 
U. <-- B~(u) 

FOR a = 1,2, ... ,4 
FORb= 1,2, ... ,4 

FORc= 1,2, ... ,4 
Ar otLI ,(l,b ,c +-- Sa X Tb X Uc 

row +-- row + 1 
m+-- row 
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[2J (form the normal equations C = AAT from A) 
FOR row = IJ2 J ••• J m 

FOR col = 1 J 2, ... I row 
FOR dim = 1,2,3 

(determine the degree of overlap in the current dimension) 
overlap +-- Aindex row dim - Aindexcof d~m 
IF overlap E [O,3J' , 

startrowdim +--- overlap 
startcoldim +- 0 
extentdi.m +- 4 - overlap 

IF overlap E [-1, -3J 
startrowdim +- 0 
startcoldim +-- overlap x -1 
extent dim +- 4 + overlap 

OTHERWISE 
extent dim +-- 0 

v <--0 
FOR a = 1) . .. J extent l 

FOR b = 1, ... , extent2 
FOR c = 1, ... , extent3 

v +-- v + Arow ,a+startrow 1 ,b+&tartrOtLI2,c+&tartrotLIJ 

X A co!,a+6tarteO/l ,b+,tartcoll ,c+, tarte-of:! 

Crow,col +-- V 

Ccol,row +-- V 

[3J (find a lower triangular factorization L by Choleski Decomposition) 

L1,1 <-- ,;cw 
FOR j = 2,3, ... , m 

Lj,1 <-- Cj,J/ L 1,1 

FORi= 2,3, ... ,m-1 
i-l 

Li,i +-- ELt,k 
k -1>1,----_,

Li,i +-- yCi,i Lt,i. 

FORj = i+ l,i+ 2, .. . ,m 
i-I 

L ·· <-- "'L· cL· c J,l L..J }, .. ','" 
k=1 

Lj,' <-- (Cj,' - Lj,')/ L", 
m-I 

Lm,m +-- L: L~,k 
k-I 

Lm,m +-- VCm,m - Lm,m 
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[4] (use the Choleski Factorization to solve for D) 
FORk=I , 2, ... ,p 

Yl +-- Bl ,k/Ll,l 
FORi=I,2, ... ,m 

i-I 

y, ~ L:L"iYj 
j :=1 

y, +-- (B". - V,) ! L", 
Dm,k +-- Ym / Lm,m 
FOR i = m - 1, m - 2, . . . , 1 

m 

Di ,k +- L Lj ,i.Dj ,k 
j::;;i+ l 

D" . +- (y, - D".)! L", 

[5] FOR", = 1,2, . . . , m 
FOR a = 1,2,,, . ,4 

FOR b = 1,2, .. . ,4 
FOR c = 1, 2, " . , 4 

i +- Aindexa.l 

j +- AindexCt ,2 

k +- Aindexa,3 

basis +- Aa,G.&,c 

assign Da,l> Do,2) Da,3 to delta 
Vi+a-lJ +b-l ,ktc-l +-- delta 

Fortunately, by exploiting the structure of the basis matrix A, the Method of Normal 

Equations can be made independent of the number of lattice cells with little consequent 

overhead. This crucial and novel enhancement is founded in the sparse construction of A 

and is achieved by delaying the flattening of the 3-dimensionallattice and hence optimizing 

the formation of C = AAT (step (1] in Figure 3.4). Each row of A has 64 spline coefficient 

entries, which are weights for a contiguous 4 x 4 x 4 block of lattice vertices, and the 

remainder are zero filled. A is a sparse matrix. For example: 60 DM points spread across 

10 adjacent cells leads to 30.8% density in A. It can thus benefit from compaction. A 

is replaced by a sparse-matrix structure A, which, for each row, stores the index and 64 

spline weights of the lattice block. Originally each i, j entry of C = AAT was formed by 

multiplying corresponding entries in row i and j of A and summing across the row. In terms 

of A, we intersect lattice cubes i and j and sum the multiplied vertices of the overlapping 

region (step [2] of figure 3.11). After this, the method proceeds as before, until X = AT D 

is reached, where allowance must again be made for A. This algorithm appears both in 
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figure 3.11 and the code of Appendix B. 

Time in Seconds 

0.15 

0.05 
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9 10 
8 

Number of Cells 

Figure 3.12: Comparison of Ordinary and Improved versions of the Method of Normal 
Equations for Direct Manipulation across Multiple Cells 

Figure 3.12 demonstrates the efficacy of this algorithm. The unenhanced Method of Normal 

Equations degrades exponentially in both space and time in proportion to the square of the 

number of cells (O(cells 2)). It takes 0.132 seconds with 60 DM points spanning 10 cells. 

This is by no means an extreme or unrepresentative case. 

In contrast the enhanced scheme is independent of the number of cells. It introduces some 

calculation overhead so that it requires a 2 lattice cell spread to break even. Counter to 

intuition, performance actually improves as the number of cells increases because lattice 

cubes overlap less and there are hence fewer multiplications. The costliest operation 

(reading off Figure 3.12) consumes 0.058 seconds at 60 DM points and a single cell. This 

is well below the interactivity cutoff. 
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3.4 Concluding Remarks 

A DMFFD algorithm, which combines a new, compact construction of the basis (or coef

ficient) matrix with a Choleski Factorization of Normal Equations has been developed in 

this chapter. This is a considerable improvement on the NaIve Pseudo-inverse of the origi

nal [Hsu et aI1992]. In a representative deformation task, with sixty Direct Manipulation 

vectors scattered across ten adjacent cells, it increases speed by over an order of magnitude 

( NaIve Pseudo-inverse = 0.4925s, Enhanced Normal Equations = 0.0365s, Speedup Factor 

= 13.7). Most importantly, the technique has been made independent (in both speed and 

time requirements) of the spread of Direct Manipulation vectors across lattice cells. 

55 



Chapter 4 

Topology and Correctness Issues 

This chapter remedies the weaknesses in Directly Manipulated Free-Form Deformation. 

There are two principal shortcomings that must be addressed: DMFFD can cause self

intersecting shapes by folding a solid through itself, and the smoothness of the Polygon

Mesh degrades under the constant flexing of DMFFD. 

These problems and their solutions, are clarified in terms of the topology and correctness 

of a Polygon-Mesh representation in the subsequent Definition of Terms. This is followed 

by an investigation of the circumstances under which DMFFD contravenes correctness by 

engendering self-intersecting solids. Finally refinement (subdividing faces) and decimation 

(amalgamating faces), two complementary topology-altering schemes which sustain mesh 

smoothness, are considered. 

4.1 Definition of Terms 

The terms topology and correctness need to be defined with reference to a Polygon-Mesh 

representation. 

A Polygon-Mesh is built out of vertices, edges and faces. Two vertices serve as the endpoints 

of an edge, three edges in turn bound a face, and faces surround and enclose the volume of 

the solid. The whole collection must obey the following rules in order to encode a valid 
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solid: 

1. Euler's Formula must be satisfied: 

V-E+F=2 

where V, E and F are, respectively, the number of vertices, edges and faces in the 

solid. 

2. Each edge must connect two vertices. 

3. Each edge must be shared by exactly two faces. 

4. At least three edges must meet at each vertex. 

5. Each face must be formed from a triangle of three edges. 

6. Faces must not interpenetrate. 

DMFFD is considered correct if it maintains the validity of a solid, as circumscribed by 

these six rules. The restrictions are slightly more rigorous than required [Foley et ai1991], 

since the fifth rule can be relaxed to encompass more complex polygons. However, a 

triangle will, by definition, always lie in a plane regardless of the contortion of its vertices. 

The same does not apply to higher-order polygons. 

Topology is the study of the characteristics of mathematical surfaces. It is a rich and varied 

field, which will receive only cursory treatment here. The primary topological concern in 

this context is the number and relationship of vertices, edges, faces and holes in a solid. 

DMFFD is a "tweak" operator [Foley et ai1991], which shifts vertices but does not alter 

the solid's topology: an edge remains an edge, and a face remains a face, no matter how 

contorted the edge or face becomes. Thus, a solid is said to be topologically invariant 

under Directly Manipulated Free-Form Deformation. This implies that a doughnut can 

be transformed into a topologically equivalent coffee cup through the agency of DMFFD. 

Also, this topological invariance preserves the first five rules of validity under DMFFD. It 

is only the precept that faces must not interpenetrate that may be contravened. 
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4.2 Self-Intersection 

Self-Intersection occurs when a solid is contorted to such an extent that it becomes folded 

in on itself, with some faces interpenetrating, and the inner surface of the solid partially 

exposed. Not only is this physically unrealistic but it also undermines the operations that 

rely on the object's validity. The rendering process, for example, becomes riddled with 

artefacts and glitches. Unfortunately, solids are prone to self-intersection when acted on by 

OMFFO, a defect to which the author found no reference. To remedy this, a brief study is 

made of the different circumstances under which OMFFO spawns self-intersection. This 

work also prescribes guidelines for avoiding these situations . 
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Figure 4.1: Overextension. [A] Initial solid and OM vector, [B] Self-intersection after 
OMFFO, [C] The OM vector and its zone of immediate influence. 

CASE 1: Overextension. Local control is a valuable feature of FFO. It implies that a 

OM vector anchored in a particular lattice cell will only significantly affect object points 

in a bounded region surrounding that cell. So, only a limited volume of object points 

is influenced, but these points may be dragged by the OM vector into undisturbed space 

outside of this volume. Such an effect is illustrated in figure 4.1 and leads to the following 

simple prohibition: 

Direct-Manipulation vectors may not extend beyond their volume of immediate influence. 
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Figure 4.2: Overconstraint. [Aj Initial solid and DM vectors, [Bj Self-intersection after 
DMFFD, [C] The DM vectors and their interaction. 

CASE 2: OverconstrainL Despite this restriction, object points may still be displaced 

through unaltered portions of the solid, if DM vectors are steeply constrained. This is evi

denced in figure 4.2 where two closely-spaced object points are wrenched in diametrically 

opposite directions. Self-intersection arises from attempting to interpolate the resulting 

gradient. These anomalies can be detected as follows: two line segments are formed by 

joining the heads and the tails of the DM vectors. The slope and length of these segments 

are then compared. This is summed up in the following principle: 

A set of Direct-Manipulation vectors must not constrain object points along too steep a path. 
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Figure 4.3 : Folding. [Aj Initial solid and DM vectors, [Bj Self-intersection after DMFFD, 
[C] The DM vectors and their Collision Zones. 
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CASE 3: Folding. If two or more DM vectors clash they may inadvertently buckle FFD 

space and generate self-intersection. TWo such DM vectors are in conflict (see figure 4.3) 

if their Collision Zones overlap. The Collision Zone of a vector is a surrounding volume 

whose extent increases with lattice cell size and the angle between the DM vectors under 

consideration. For example, the DM vectors of figure 4.3 push in opposite directions and 

as a consequence have enlarged Collision Zones. 

The Collision Zones of two Direct-Manipulation vectors must not overlap. 

These three prohibitions are somewhat overexacting and will occasionally exclude a valid 

set of DM vectors. They are also informal and heuristic and there is scope in this area for 

further mathematically rigorous research. 

4.3 Refinement 

The Polygon-Mesh is, by nature, only an approximation of a smoothly sculpted solid. 

Imagine covering a solid completely with large triangular tiles and then comparing this 

shell against the original curved and intricate shape. A perfect sphere might, for example, 

be roughly modelled by an octahedron. The symptoms of an inadequate approximation are a 

jagged, sharp-edged appearance and the disappearance of smaller features. To compensate, 

a fine mesh should cover the detailed, highly-curved areas while a coarser mesh spans the 

remainder of the solid. But even an initially adequate mesh may fail under the contortions of 

DMFFD. Firstly, DMFFD forcibly stretches the Polygon-Mesh thereby expanding faces and 

jeopardizing the smoothness of later deformations. Secondly, if the lattice is fine-grained 

and the directly-manipulated vectors are tightly packed, relative to the size of faces, then 

the intricacies of the deformation may be forfeit. 

For these reasons, an adaptive ('efinement scheme is essential. Adaptive refinement 

involves recursively subdividing faces in a Polygon-Mesh as required by a deformation, 

It consists of two tasks: testing a face against some splitting criterion and if necessary 

tessellating the face according to a subdivision method. Pre- and post-deformation images 

60 



of the solid must be maintained. The splitting test is applied to a distorted face while its 

undistorted version is required for actual subdivision, with new vertices then undergoing 

deformation. 

4.3.1 Splitting Criterion 

a - Averaging Plane 

d - Distance to Plane 

e - Edge 

s - Edge Shadow cast 
on Plane 

Figure 4.4: The Distance to Averaging Plane Criterion 

One measure of the continuity of a portion of the Polygon-Mesh is the angle between 

adjacent faces: the more acute the angle, the greater the discontinuity. This observation 

is the basis for a modified distance to averaging plane [Schroeder et ai1992] splitting 

criterion. A central vertex and its loop of adjacent vertices are considered (figure 4.4). A 

plane which averages the loop is constructed and the distance from this plane to the focal 

vertex is calculated. Then, the total area of all triangles within the loop is determined. 

If the ratio of the distance and combined area is above some tolerance then the cycle of 

triangles is a candidate for refinement. This is only a representative angle-based test; more 

sophisticated and computationally exorbitant approaches are possible. 

However, an elegant heuristic test is preferred. A single triangle is selected and its longest 

edge compared against the extent of a lattice cell. The face is accepted for subdivision 

according to the formula: 

edgelength 1 ----';-;-----'- > -
eel/extent 4 

Edge length is chosen in preference to face area since thin elongated triangles cause dis

continuities disproportionate to their surface area. Also, cell extent is measured by the 

shortest cell edge because lattice cells are parallel piped and not square. While superfluous 
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subdivision may sometimes result from this approach, it has the advantages of relying only 

on information local to a single triangle, a predetermined degree of subdivision and sheer 

simplicity. 

4.3.2 Subdivision Methods 

.~. 

VV-Type VE-Type 

Figure 4.5: Ill-Formed Triangles 

A subdivision method, which partitions a triangle or cluster of triangles into smaller ele

ments, must now be considered. Such a method will be selected according to the following 

attributes: 

• Validity Preservation. The subdivision must rigorously adhere to the rules prescrib

ing a solid's validity, as outlined previously. 

• Efficiency Conservation. The subdivision process should be lean and efficient so 

that the system's interactivity is not hampered. Also, the growth in vertices and faces 

should be curtailed, since each new vertex must undergo deformation and each new 

face further burdens rendering. 

• Regular Triangulation. The formation of thin needle-like triangles should be 

avoided. There are two classes of ill-formed triangles [Shimada and Gossard 1995]: 

vv-type, where two vertices lie in close proximity and ve-type, formed by moving 

a vertex close to an edge (see figure 4.5). An optimal triangle obeys the Max-Min 

Angle Principle [Schumaker 1993], which ensures that all angles in a triangle are 

above a threshold value. 
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• Minimal Propagation. Propagation is the spilling over of subdivision into adjacent 

faces which is sometimes necessary to enforce triangularity. It may, however, lead to 

complications if the neighbouring faces in turn require refinement. 

These qualities are ranked in descending importance: Validity is crucial while minimal 

propagation is merely desirable. 

[A]~ .. . ..... " ~ 
......... . New Edge 

[B] ;;. -- Old Edge 

• Vertex 

[C] b. ;;. ~ 

Figure 4.6: Subdivision Methods: [a] Section-Halving, [b] Quaternary Subdivision, [c] 
Centre Subdivision, [d] Delauney Triangulation. 

Four validity preserving subdivision methods are detailed in figure 4.6: Section-Halving, 

Quaternary Subdivision, Centre Subdivision and Delauney Triangulation. Section-Halving 

[Wiirdenweber 1983] involves connecting the midpoint of the longest edge to its opposite 

vertex. A mirroring edge must be placed in the triangle incident on the bisected edge. 

Thus, a vertex, two edges and two extra faces are introduced, and a single propagation is 

mandated. In Quaternary Subdivision [Bill and Lodha 1994], a triangle is split into four 

by dividing all the edges and joining the bisection vertices. Propagation under this method 
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must expand to all adjacent faces. A Centre Subdivision [Wordenweber 1983] sets a new 

vertex in the centre of the triangle, with edges radiating outwards to the corners. There is 

no subsequent propagation. Delauney Triangulation is a powerful approach that imposes 

an optimal mesh on a cloud of unstructured vertices. It can be harnessed to the current task 

by first erasing all edges in a bounded portion of the mesh, then placing extra vertices inside 

this region, and finally applying Delauney Triangulation to remesh the gap. 

Of all these methods Delauney Triangulation is the most regular but also the most calculation 

intensive. Centre Subdivision is the complete opposite: it is highly local and efficient but 

proliferates narrow triangles. Section-Halving is more moderate but may still generate 

ill-formed triangles when propagating. In contrast, Quaternary Subdivision functions well 

in linking subdivisions across a premarked patch of faces . It also conserves efficiency and 

promotes regularity. For these reasons, Quaternary Subdivision is fused with a Heuristic 

splitting criterion into an adaptive refinement scheme, which is presented in figure 4.7. 

4.4 Decimation 

Polygon-Mesh decimation is the antithesis of refinement. Instead of inserting extra vertices, 

edges and faces, they are whittled away, making the mesh coarser but also less complex. 

There are several motives for this decimation. Firstly, the adaptive refinement scheme 

introduced in the previous section is somewhat loose and sacrifices exactitude for efficiency. 

A consequence is the insertion of superfluous faces which need to be pared away. Secondly, 

if a mesh is too intricate, this will adversely affect the rendering rate. Sometimes mesh 

complexity must be sacrificed in the interests of interactivity. 

Many of the important properties of refinement apply equally to its complement. However, 

while validity preservation, regular triangulation and minimal propagation remain vital, 

efficiency conservation is relegated to a lesser role. The efficiency of Polygon-Mesh 

decimation is not as critical because, unlike refinement, it is not tightly bonded to DMFFD, 

and can be slotted between bouts of modelling when the system is relatively unencumbered. 
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Figure 4.7: Adaptive Refinement 
Purpose: Check marked faces against a Heuristic Splitting 

Criterion and if necessary subdivide these faces according 
to Quaternary Subdivision. 

Given: F a face list of n entries with defonned faces marked. 
V a vertex list, 
cut a heuristic constant, 
cell the minimum length of a cell. 

Return: altered face list F and vertex list V. 
Data 
Structures: B a bisection Jist whose entries correspond to faces in :F, 

Cl, e2, eacdge vectors of a face, 
VI, '1.)2, v3vertcx indices of a face, 
hl ' b21 ba edge bisectors. 

[1 J (Test marked faces against the Heuristic Splitting Criterion) 
FORi = 1 •.. . • n 

IF F, is marked THEN 
Get VI, '1,)2, V3 vertex indices of :Fj. 
ei +-- VV:I - VVI 
ei +-- Vus - VU:l 
c-; +-- VUt - VU3 

len <-- maximum of lell. le21.le' l 
IF (len/cell < cut) THEN 

Unmark :F, 
(Now only those faces needing refinement are marked) 

[2J (Subdivide those marked faces that remain) 
FORi=1 •.. . ,n 

IF F, is marked THEN 
IF B.,1 oF 0 THEN 

bt oj-- 8,,1 
OTHERWISE 

v <-- (V., + V.,)/2 
Place v in the vertexlist V 
bi +-- new index of v 

... Similarly determine bisectors b2 of edge '1,)2'1,)3 

and ba of edge '1,)3'1,)1 

Get VI , V2, Va vertex indices of :Fi 
Create new faces b1 b,ba, b1 v,b,. b,vaba. baVlbl 
Remove F. 
Get adh. adj" adja indices of faces adjacent to F, 
FORk=1, ...• 3 

Get Vl, V2, Va vertex indices of :FadJl< 
IF b. bisects VI v, edge THEN 

IF adik is marked THEN 

Badh.,l +-- h 
OTHERWISE 

Create new triangles v1b,\;va, b'\;V2Va 

Remove :Fad,; Jo 

... Sim.ilarly check if bk bisects V2VS or VaVl and 
either alter B or split Fa4i, appropriately 
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Figure 4.8: Deletion Criterion 
Purpose: Determine if a loop of triangles requires decimation. 

Modified from [Schroeder et aI1992]. 
Given: A loop of triangles with 

rii triangle normals, 
x~ triangle centres, 
Ai triangle areas, 

if central vertex, 
cut a constant of elim.ination. 

Return: PASS or FAlL on Ihe deletion test. 
Data 
Structures: Area 

Dist 

N 
X 

total arca of the lriangle loop, 
distance from the central vertex 
to the averaging plane, 
averaging plane nonnal, 
point on the averaging plane. 

Area <-- ~A, 

N <-- (~ni A,l/Area 
N<--N/ INI 
X <-- (~xi A'l/ Area 
Dist <-- IN . (1i - xli 
IF (Dist/Areal < cut TIffiN 

RETURN PASS 
OTIlERWISE 

RETURN FAIL 

The Polygon-Mesh decimation algorithm is adapted from research into reducing models 

that are captured from scanned or sampled data [Schroeder et aI1992) . The method is 

fourfold: (1) A vertex is selected, (2) it is tested against a deletion criterion which may 

trigger (3) the removal of the vertex along with its incident edges and finally (4) the resulting 

cavity is retriangulated. 

The deletion criterion employed in this work is the enhanced distance to averaging plane 

test, which appeared in the previous section. This was originally [Schroeder et al1992) 

applied to an evenly-spaced Polygon-Mesh extrapolated from such sources as computed 

tomography and magnetic resonance scanning, where distance was an adequate measure of 

angularity. It does not, however, suffice in the presence of adaptive refinement, since this 

caters for sinuousity of miniscule triangles in a limited locale. This localized convolution 

will be washed away unless the size of its faces are taken into account, as is done in the 
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deletion criterion of figure 4.8. 

[A] [B] 
Invalid 

Invalid 

Valid 

[C] [D] 

Figure 4.9: Triangulating a Loop: [A] A loop of vertices, [B] Three speculative splits, [C] 
Subsidiary loops, [D] A final triangulation. 

In the final stage of decimation, a non-planar loop of vertices is retriangulated according 

to a recursive loop splitting procedure [Schroeder et aI1992], shown in figure 4.9. At the 

top level a split line, which joins two non-adjacent vertices and divides the loop in half, 

is generated. A splitting plane orthogonal to the averaging plane and passing through this 

split line, is then created. The speculative split becomes an edge in the final triangulation on 

passing two tests. (1) The two subsidiary loops must fall on opposite sides of the splitting 

plane. (2) No vertex of either loop should pass too close to the plane or ill-formed triangles 

will result. Once a split is ratified, the subsidiary loops become candidates for triangulation. 

This recursion proceeds until every loop is reduced to a triangle. In the event of failure, 

the decimation procedure backtracks prior to vertex removal and then proceeds to a new 

vertex. The algorithm associated with this procedure is shown in figure 4.10. 
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Figure 4.10: Loop Splitting 
Purpose: Recursively triangulate a 3D loop oEvertices 

Extracted from [Schroeder et aI1992]. 
Given: Vk a Joop of vertices, 

k an ordered set selected from II ... j m, 
cut a constant of aspect ratio. 

Return: FAILURE or 
SUCCESS and a list of vertex pairs. 

Data 
Structures: SPa splitting plane, 

Tl, T2 boolean test flags. 

REPEJITEDLY 
Select a new two-element subset (i, j) from k in which: 

(i)i<j, 
(ii) i and j are not consecutive elements in k, 
(iii) i must not be the last element of k while j is the first 

IF this is not possible THEN 
RETURN FAILURE 

OIHERWISE 
Fonn SP a spli tting plane orthogonal to the 
averaging plane and passing tbrough Vi, Vj 

(Test for ill·formed triangles) 
T2<-- TRUE 
FOR p = successive elements of k 

IF (p f. i) AND (p f. j) THEN 
IF (distance from vp to SP) / (length of edge v, - Vj < cut) THEN 

T2<-- FALSE 

(Test the separation of subsidiary loops) 
Tl<-- TRUE 
IF vp FOR P = successive elements of k from i + 1, ... , j - 1 
are not on one side of S P THEN 

Tl <-- FALSE 
IF vp FOR p = successive elements of k from 1, .. . , i -I and j + 1, ... , m 
are not on the opposite side of S P THEN 

Tl<-- FALSE 

IF Tl AND T2 are both TRUE THEN 
CALL Loop Splitting 

passing (vp, p = a subset of k from i + 1, ... , j - 1) and 
returning a set of vertex pairs PI 

CALL Loop Splitting 
passing (vp , p = a subset of k from 1, ... , i -I and j + 1, ... , m) 
returning a set of vertex pairs P2 

IF both Loop Splits return SUCCESS THEN 
RETURN SUCCESS along with PI, P2 and (i, j) 
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4.5 Concluding Remarks 

Over the span of this chapter, several disturbing failings in DMFFD have been raised 

and resolved. Categories of self-intersection were identified, and specific restrictions 

recommended in each case. Subsequently, Refinement and Decimation, two mechanisms 

for balancing the smoothness and complexity of the Polygon-Mesh, were presented. 
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Chapter 5 

Applications 

The preceding chapters presented a correct and efficient free-form sculpting tool. Attention 

now devolves upon a Virtual Reality interface to support this tool. In this chapter, a 

Virtual Testbed that uses the RhoVeR (Rhodes Virtual Reality) system is presented and two 

sculpting applications are discussed: interactive surface sketching, where a solid's shape 

is captured on computer by tracing a tracker over its surface, and glove-based moulding, 

where a virtual lump of clay is kneaded by a dataglove-directed virtual hand. 

5.1 RhoVeR 

The Rho VeR system is intended as a flexible foundation and springboard for designing 

Virtual Environments. The central premise of the system, in keeping with previous work 

at Rhodes University [Bangay 1993], is generality. This is apparent in the following 

characteristics of Rho VeR: 

• Distributed. The system harnesses multiple interconnected processors. 

• Multiplatform. The system functions across a range of Unix-based operating systems 

and hardware configurations. Currently Linux, SunOS and Solaris are supported. 
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• Multiprogramming. The system allows independant processes to execute concur

rently on a single machine. 

An application can select from among these features. In its full generality, Rho VeR caters 

for multiple processes executing on multiple machines, each with a different Unix-based 

operating system resident. 

These features are realized in Rho VeR with a modular event-driven scheme. Each process 

is an instance of a module, be it of input, output, world or object type. The core of each 

process is an event-handling loop which accepts, processes and generates events, to and 

from other processes. Inter-process event-passing utilizes the Unix Socket, a sophisticated 

mechanism for establishing pipe-like communication between processes across a network. 

Data distribution is implemented as a combination of Virtual Shared Memory (VSM) and 

local process cacheing. Logically, Virtual Shared Memory corresponds to the database 

being replicated in every process. Physically, the database is only duplicated once on 

every machine and processes have recourse to this data through Unix Shared Memory, a 

mechanism for granting processes common access to a block of memory. The VSM stores 

information which is of global significance, such as an object's position and orientation. 

Local data, such as an object's shape, is cached in the associated process, and is only 

accessible through a data request event. Further details on the implementation of Rho VeR 

appear in Appendix C. 

5.2 The Virtual Sculpting Testbed 

The flexibility of Rho VeR is exploited in assembling a Virtual Sculpting Testbed, the 

purpose of which is to experiment with Directly Manipulated Free-Form Deformation in a 

Virtual Environment. 

A process/event structure for this testbed is detailed in figure 5.1. This reflects the stable 

state of the testbed and ignores the flurry of initialization events. On the input end, the 

system combines, in various configurations, a pair of left- and right-hand Fifth Dimension 

Technologies (SDT) 5thGloves and a Polhemus InsideTRAK device. The SthGlove is 
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VSM 
Global Data 

Global Data Global Data 
Polhemus Position and Orientation 
InsideTRAK 

~ Device Driver Sculpted 

Controller ~ Object ~ Mesa 

~nd 
Objects Rendering 

Instigation Engine 
DMFFD 

5thGlove Functionality 
Device Driver Data Stream 

Figure 5.1: Process-Event Structure of a Virtual Sculpting Testbed 

sewn from form-fitting black Lycra with fibreoptics outlining each finger (see Appendix 

A). Finger flexion is measured by refraction caused as the fibreoptic thread is bent. This 

data is transmitted to a PC Serial Port at a rate of roughly sixteen updates per second. 

The Polhemus InsideTRAK couples a magnetic transmitter with two sensors. Each sensor 

contains a set of perpendicular coils for determining its position and orientation relative 

to the transmitter. The device plugs into an ISA (Integrated Systems Architecture) slot on 

a host PC and data is placed alternately by each sensor onto the ISA bus at a combined 

rate of sixty updates per second. This hardware is matched by RhoVeR's InsideTRAK 

and 5th Glove device driver software, which pipes extracted position, orientation and finger 

bend data to controller objects. 

The Virtual Shared Memory (VSM) serves as a central collation area for data of global 

significance, and it is accessible to all processes. It is from here that Controller Objects and 

the Mesa rendering engine extract system information, and to here that the Sculpted and 

Controller Objects register their ongoing changes. 

Controller objects fulfil a dual function as virtual objects and control agents. A virtual 

hand is a typical controller object. It is a hierarchical virtual object comprising a palm and 

five finger-shaped solids, whose position and orientation are dictated by the device drivers 

and stored in Virtual Shared Memory. It is also a control agent which instigates events in 

response to global conditions, such as an intersection of the controller and hand object's 
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bounding spheres. 

The Sculpted Object is a mutable solid that has recourse to DMFFD functionality and 

responds to events from the Controller Objects. This response may be a trivial repositioning, 

or a complex shape alteration. In the latter case, the following occurs: the initiating event 

is analyzed, a set of Direct Manipulation vectors is constructed and fed to the DMFFD 

subsystem, the prescribed changes in locally cached vertices are effected and the shape

change counter in the VSM is incremented. 

The Mesa three-dimensional graphics library is a platform independent OpenGL lookalike. 

It emulates the command syntax and state-machine of OpenGL, Silicon Graphic's Applica

tion Programming Interface (API). The Rendering Engine for this testbed utilizes Mesa for 

display, under the Linux, SunOS and Solaris operating systems. Complete shape, colour, 

position and orientation information for every object in the testbed is stored in this process, 

and is updated from the VSM or Sculpted Object cache as required. 

The sculpting applications, which fill the remainder of this chapter, fit seamlessly within 

the framework of this Virtual Sculpting Testbed. 

5.3 Interactive Surface Sketching 

Surface Reconstruction strives to form a computer replica of a physical object from sampled 

information. At its most general, this means crafting a shape of arbitrary topology from 

an unorganized mass of three-dimensional points. This is an extremely exacting operation 

which can be simplified by exploiting the structure inherent in most sampling processes. In 

this regard, three classes of sampling have been identified [Hoppe et ai1992]: 

• Range Data. This is typically a rectangular grid of depth values (from sensor to 

solid) generated by the regular horizontal and vertical sweep of a laser range finder. 

To build a complete model, either the solid must be spun, or the sensor successively 

relocated, so that the data can be integrated from varying viewpoints. 
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• Contours. Here, a stack of cross-sections or contours is accumulated slice by slice. 

This procedure deals poorly with protuberances orthogonal to the scanning axis and 

complex branching structures. Nevertheless, many medical scanning techniques fall 

in this category . 

• Interactive Surface Sketching. A model is gradually evolved by recording the path 

of a tracker traced across the surface of the object. 3-DRA W [Sachs et a11991] is a 

progenitor of surface sketching and it produces three-dimensional free-form curves 

matched to the motion of a stylus with Polhemus tracker attached. 

DMFFD offers an elegant solution to this last problem. At a physical level, the user grasps 

in one hand the real-world object to which a Polhemus tracker (designated as the reference) 

is taped. The other hand is used to slide the second tracker (referred to as the tracer) over 

the object's surface. The inclusion of a reference tracker means that the object can be turned 

and moved freely during sketching as long as both trackers remain in contact. On a logical 

plane, an enclosing sphere is progressively deformed with each successive tracer position, 

while previous points are simultaneously pinned in place. 

There are three restrictions imposed on this sketching: 

1. Ordered Sampling. The stream of tracker positions must be picked up and dealt 

with in sequence. 

2. No Holes. The real-world object being sketched must have no holes that pass entirely 

through the object. Otherwise simple solids, such as tori and coffee cups, are thus 

forbidden. 

3. Smooth Tracing. Tracker movement must be gradual and controlled, with no abrupt 

changes in either speed or direction. 

With these properties in mind, interactive DMFFD-based surface sketching proceeds in 

three stages: 

1. As a preliminary, a bounding sphere, which entirely surrounds the object, is fashioned 

(see figure 5.2). This is accomplished by waving the tracer in broad circles around 
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Bounding Sphere 

&undingBo 

• • 

• 

• 

Figure 5.2: Creating a Bounding Sphere 

the physical object. A cloud of points is churned out and stored relative to the 

reference tracker. A cube, and subsequently a sphere, which enfold this cloud, are 

then generated. The bounding sphere is an independent virtual sculpted object and a 

rough first-pass analogue of the physical object. 

2. Next, the sculpted object is contained in a lattice grid and the tracer placed against the 

physical object. Then the sphere is pressed in by OMFFO towards the reference and 

tracer positions. This completes the setup steps and the pivotal sketching iteration 

can now be outlined. 

3. As each successive tracer location is received it is processed as shown in figure 5.3: 

[A] It is ignored if it is too close to any of the previously collected points. This sepa

ration allows accidental retracing of portions of the solid and prevents overconstraint. 

[B] A OM point (1) on the surface of the sculpted object is determined. This pro

cedure relies on the current tracer (To) and two previous tracer (Tb T2) positions 

as well as the distance from To to T, denoted by D. A fourth point (P) is placed 

co-linear with T, and T2 and a distance D beyond TI . Then I is the closest point to 

P on the surface. The associated OM vector is from this intersection I to To. 
[C] Next a set of OM points and associated vectors are collated. The first element in 

these sets are the point I and vector I -> To. After this, all those previous OM points 

lying within the same or neighbouring lattice cells as I are included and pinned into 

place with null OM vectors. 

[0] Finally, the sculpted object undergoes OMFFO and a better fit to its mirroring 
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Figure 5.3: Surface Sketching Loop [Aj Distance Testing, [Bj Determining new DM point 
and vector, [C] Building Pinning Points, [DJ Direct Manipulation 

object in the real world is obtained. 

5.4 Glove-based Moulding 

The intention of Glove-based moulding is to enrich the clay-sculpting analogy by controlling 

interaction and deformation with a dataglove. From the user's viewpoint the twisting, 

translation and flexing of the dataglove are mirrored by a virtual hand, which kneads 

and manipulates a virtual lump of clay. Dataglove directed DMFFD has been suggested 

[Hsu et aI1992J, but neither specified nor implemented until now. 

The glove-based moulding procedure takes as its input two successive snapshots of the 

position, orientation and finger flexion of a dataglove. These pre- and post-images of 

the glove are then processed with reference to the sculpted object, and a set of Direct 

Manipulation points and vectors are generated. For DMFFD purposes the virtual hand is 

defined by a set of evenly distributed controller points. An individual moulding operation 

proceeds in three steps (as per figure 5.4): 
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1. Two complete sets of three-dimensional controller point positions are extracted from 

the pre- and post-images of the glove. 

2. The corresponding controller points in each hand image are joined by a controller 

segment. 

3. Each controller segment is enclosed by a parallel piped volume, which is then inter

sected with the sculpted object's surface to yield a collection of Direct Manipulation 

points and vectors. 
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Figure 5.4: Glove-based Moulding: [AJ Pre- and Post-Images of the Virtual Hand with 
Controller Points, [BJ controller segments joining selected controller points, [C] Direct 
Manipulation vectors and Sculpted Object deformation. 

There are several additional points worth noting about this procedure: 

• There is some processing to eliminate those occluded controller segments which lie in 

the shadow of others, and some DM vectors are weeded out to prevent overconstraint. 

• The lattice that accompanies this Direct Manipulation is linked to the initial spacing 

of controller points. This means that by scaling the hand in proportion to the sculpted 

obj ect, the scope and effect of deformations can be varied. 

• Changes in the data glove must not be overly rapid relative to the data capture rate, 

otherwise some of the intricacies of its motion, and hence deformation, will be lost. 

Appendix A provides colour plates which illustrate this application. 
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5.5 Concluding Remarks 

This chapter has tested the utility of DMFFD in a Virtual Environment with two repre

sentative applications: interactive surface sketching and glove-based moulding. These 

applications have successfully abstracted away from specifying Directly Manipulated vec

tors, to a more intuitive interface. 
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Chapter 6 

Conclusion 

6.1 Conclusions 

A Virtual Sculpting system has been developed to address the task of Free-Form Solid 

Modelling. The disparate elements of a Polygon-Mesh representation, a Directly Manipu

lated Free-Form Deformation sculpting tool, and a Virtual Environment have been drawn 

into a cohesive whole under the mantle of a clay-sculpting metaphor. The principles of 

intuitivity, versatility and, especially interactivity have been re-examined at every stage of 

development and several novel enhancements considered. 

Measures to reinforce the clay-sculpting analogy have had concomitant benefits for intu

itivity. Firstly, the Quadratic or Cubic Uniform Rational B-Spline foundations of DMFFD 

guarantee smoothly moulded surfaces (of C 1 or C2 continuity respectively). There was a 

danger that the approximation inherent in the Polygon-Mesh representation combined with 

the constant flexing induced by DMFFD would compromise this smoothness, but this has 

been solved by the mesh refinement and decimation schemes of Chapter 4. Secondly, the 

ease with which deformations are specified and controlled has been improved. The origi

nal Free-Form Deformations (Sederberg and Parry 1986] were instigated by repositioning 

control vertices in a lattice. Later Direct Manipulation extensions (Hsu et ai1992] allayed 

this indirection and obfuscation by providing a mechanism for dragging points on a solid's 

surface directly. In this work, the directly manipulated points are, in turn, subsumed into 
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Virtual Controllers such as a "hand", "suction-cup" or "surface sketcher". Also, A Virtual 

Environment is an intrinsically three-dimensional interface. This alone contributes con

siderable intuitivity. Finally, this work raised and resolved the issue of self-intersection, 

an occasional counter-intuitive side-effect of DMFFD. The circumstances under which it 

occurred were identified and measures for avoiding it were prescribed. 

One of the attractive features of Directly Manipulated Free-Form Deformation is its versa

tility. The scope of DMFFD can be tuned between highly localised and completely global 

deformations; it is point-based and thus largely representation independent, and has a wide 

range of potential applications. 

Free-Form Deformation is notoriously inefficient, and this is exacerbated by the Direct 

Manipulation extensions. Considerable attention has been paid to efficiency issues over the 

course of this thesis, and it is here that the main contribution lies. In Chapter 2, three simple 

but effective alterations of Free-Form Deformation were proposed. In Chapter 3, the core 

computation of Direct Manipulation, a least squares solution to an underdetermined system 

of linear equations was analyzed. A method based on a Choleski Factorization of Normal 

Equations was found to provide a fourfold increase in speed over the original approach 

[Hsu et aI1992). A unique modification of this method, which made it both considerably 

more compact and independent of the spread of Direct Manipulation across lattice cells, 

was then effected. These enhancements combine to make a qualitative difference in the 

viability of DMFFD as an interactive sculpting tool. 

6.2 Future Work 

At each layer of the Free-Form Modelling system developed in this thesis, there are oppor

tunities for additional exploration, experimentation and enhancement. These directions for 

future research span the Foundations (Chapter 2), Topology (Chapter 4), and Applications 

(Chapter 5) sections of this thesis. 
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6.2.1 Replacing the Underlying Splines 

This work is founded on the Quadratic and Cubic Uniform Rational B-Splines because 

of their continuity, local control, convex hull, and above all efficiency properties, but the 

substitution of Non-Uniform Rational B-Splines (NURBS) or ,a-Splines might be advanta

geous. NURBS would allow simultaneous intricate convolution and widespread gradation, 

depending on how tightly or loosely packed the NURBS lattice cells were in a particular 

region. For ,a-Splines, the apparent consistency of the sculpted solid could be varied by 

tuning the bias and tension parameters. The difficulty would be incorporating these splines 

into the mathematics of DMFFD. Another challenge would be to substitute splines seam

lessly so that the increased versatility does not overwhelm either interactivity or the illusion 

of sculpting. 

6.2.2 Complex Lattices 
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Figure 6.1: Undesirable Volume-based effects. 
Deformation. 

[A] Pre-Deformation, [B] Post-

The FFD lattice in this work is severely restricted. Lattice cells are identical parallel pi peds 

fixed in line with the co-ordinate axes. In general, these restrictions augment intuitivity and 

do not in any way curtail the range of possible deformations. However, there is a counter

intuitive side-effect that stems from the volume-oriented nature of FFD (see figure 6.1). 

This can only be circumvented by varying the size [Lamousin and Waggenspack 1994] or 
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shape [Coquillart 1990) of cells within the lattice, but again incorporating these into Direct 

Manipulation is far from trivial. A lattice that is tailored to fit an object will retain desirable 

and prevent undesirable volume warping, but this intuitivity can only be gained at the 

expense of interactivi ty. 

6.2.3 Analysis of Self·Intersection 

The study of self-intersection in Chapter 4 was informal and heuristic. The problem 

would benefit from formal and mathematically rigorous analysis. The product of this 

research would be either a classification that precisely separated valid and invalid Direct 

Manipulation, or, preferably, a modification of the DMFFD mechanism, to inhibit self

intersection without disallowing particular Direct Manipulations. 

6.2.4 Piercing Holes in the Solid 

A solid is normally topologically invariant under DMFFD. Thus, no vertices, edges, faces 

or holes are ever introduced by DMFFD itself. This is why the applications of Chapter 5 

are limited to cohesive solids, which have no holes and can be bulged and expanded into a 

topologically equivalent sphere. An exacting but natural extension of the previous section 

would be to replace self-intersection with hole creation, thereby mimicking the perforation 

of clay and expanding the diversity of possible shapes. 

6.2.5 Further Applications 

The Interactive Surface Sketching and Glove-Based Moulding of Chapter 5 are the fore

runners of an abundance of potential DMFFD applications: 

1. Two-Handed Glove-Based Moulding. Left and right-handed datagloves can be used 

in tandem to manipulate a solid. There is an increase in possible self-intersections, but 

this is more than counterbalanced by the enriched precision, power and ease-of-use 

engendered by this approach. 
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2. Extrusion. Up until now, surface points have generally been pushed inwards rather 

than dragged outwards. An extrusion mode could be implemented, perhaps with a 

"sticky fingers" or "suction-cup" paradigm. 

3. Imprinting. A two-dimensional figure, such as a letter, numeral or symbol can be 

defined by a linked sequence of stencil-points set in a plane. This plane is then 

pressed into a solid and direct manipulation vectors extracted from the motion of the 

stencil-points intersecting with the solid's surface. The associated deformation will 

stamp or imprint the original figure into the solid. 

4. Sculpted Set Operations. The previous technique may be extrapolated to imprinting 

or merging a three-dimensional actor with a solid in a fashion analogous to conven

tional set operations , except that the result is tapered rather than sliced and suggestive 

of an impenetrable actor interacting with a malleable object. The difficulty here is 

determining the frequency and distribution of stencil-points on the boundary of the 

actor. 
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Appendix A 

Colour Plates 

84 



Figure A. 1: The Polhemus InsideTRAK. 
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Figure A.2: The Fifth Dimension Technologies 5thGlove. 
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Figure A.3: Glove-based Moulding. 
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Appendix B 

Directly Manipulated Free-Form 

Deformation Program Extracts 

;* file: ffd.h 

*' 

author: James Gain 

project: virtual Sculpting 

notes: An enhanced implementation of Free-Form Deformation (Sederburg and Parry) 

with Direct Manipulation Extensions (Hsu). 

#include "vector.h" 

#include "matrix.h" 

#define MAXLATDIM 50 

#define LATDIHCUBED 125000 

#define MAX3LATDIM 150 

#define DEGREE 3 II 2 implies Cl and 3 implies C2 

/* LATTICE: An initially uniform subdivision of 3-space into URBS cells. 

lat_origin: The origin of the lattice cell space. 

grid_origin: The origin of the lattice grid space. 

span: The extent of the lattice along the x, y and z axes. 

1, m, n: 

grid: 

cell: 

delpoints: 

delcells : 

The number of deformable and influenced cells 

along the x, y, z axes. 

A 3-dimensional matrix which holds the control point 

positions of the lattice . 

length of an individual cell along the x, y and z axes. 

An index of boolean entries corresponding to grid and 

flagging changes in control points from their initial 

uniform state 

An index of boolean entries flagging whether a point 
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located in the flagged cel l will be moved under FFD */ 

class lattice 

{ point lat_origin, grid_origin; 

vector span, cell; 

int l,m/n; 

double * grid[MAXLATDIM]; 

char delpointS(MAXLATDIM] [MAXLATDIM] lMAXLATDIM]; 

char delcel l s[MAXLATDIM] [MAXLATDIM] [MAXLATDIM]; 

matrix mat{B]i 

basismtx B; 

1* locatepnt: locate a point in the FFD lattice 

given: pnt = an undeformed 3d point 

return: i,j,k = the indices of pnt's cell 

lac = the local co-ordinates of pnt in that cell 

error : 0 if the point is outside the scope of the ffd lattice 

2 if the point is in an influenced cell 

1 if the point is in a deformable cell */ 

int lattice::locatepnt(point & pnt,int & i,int & j,int & k, point & lac); 

/* get: retrieve a grid point stored as an increment 

given: u, v, w index of control point position in grid 

return: pnt the point at this position */ 

inline void get(int U , int v, int w, point & pnt) 

{ int vconst, wconst; 

vconst v * MAX3LATD1Mi 

wconst w * 3; 

pnt.x (grid[u)[vconst + wconst]; 

pnt.y (grid[u)[vconst + wconst+l]i 

pnt.z (grid[u)[vconst + wconst+2]i 

1* incr: increase a grid points value 

given: u, v, w = index of control point position in grid 

pnt = increment value */ 

inline void incr(int u, int v, int w, point pnt) 

{ int vconst, wconst; 

} 

vconst 

wconst 

v * MAX3LATDIMi 

w * 3; 

(grid[u)) [vconst + wconst) +- pnt.x; 

(grid[u]) [vconst + wconst+l] += pnt.Yi 

{grid[u])[vconst + wconst+2} += pnt.z; 
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} ; 

/* set: place a grid points val ue 

given u, v, w ; index of control point position in grid 

pnt = new grid point */ 

inline void set(int u , int v, int w, point pnt) 

{ int vconst, wconst; 

vconst 

wconst 

v * MAX3LATDIM; 

w * 3; 

(grid[u]) [vconst + wconst] = pnt.x; 

(grid[u)[vconst + wconst+l] pnt.y; 

(grid[u]) [vconst + wconst+2] pnt.z; 

public: 

/* default constructor: allocate memory for lattice structure and 

initialize variables */ 

lattice(); 

/* reset: initialize the lattice 

given: (parameters for the deformable region) 

base = the lattice origin; 

dx, dy, dz = the range of the lattice along x , y and z axes; 

i, j, k - number cells along x, y, z axes */ 

void lattice::reset(point base,double dx,double dy,double dz, 

int i,int j , int k); 

/* clear: re-establish a base- state lattice */ 

void lattice::clear(); 

/* mUltirnanip: multiple point direct manipulation of a FFD lattice. 

given: sizeq = number of DM points 

q = coords of OM points 

deltaq ; OM motion vectors 

return: alter the corresponding lattice grid points *j 

void lattice: :rnultirnanip(int sizeq, point * q, vector * deltaq); 

/* applyFFD: Apply the FFD lattice to a single point in 3D space. 

given: objpoint ; the point to be deformed 

error: 1 if objpoint is altered 

o if it is not */ 

int lattice: :applyFFD (point & objpoint); 
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1* file: ffd.c 

*' 

author: James Gain 

project: Virtual Sculpting 

notes: An enhanced implementation of Free-Form Deformation (Sederburg and parry) 

with Direct Manipulation Extensions (HSU). 

#include <stdlib.h> 

#include <math.h> 

#include <string. h> 

#include "urbs.h" 

#include "ffd.b" 

1* locatepnt *1 
int lattice::locatepnt(point & pnt,int & i , int & j,int & k, point & lac) 

{ int retval; 

} 

vector PminusOrigin, scale; 

1* stagel: locate point as scaling of span vector. */ 
PminusOrigin - pnt - lat_origin; 

scale = PminusOrigin I span; 

1* stage2: if scale is < 0 > 1 return 0 otherwise locate it in local 

cell (i,j,k) and assign new co-ordinates (loc) *1 
if «scale . i < 1.0)&&(scale.i >~ O.O}&&(scale.j < 1.0)&&(scale.j >- 0.0) 

&&(scale.k < 1.0)&&(scale.k >= 0.0» 

{i (int) (scale.i * (double) 1 ); 

} 

j - (int) (scale.j * (double) m); 

k :lll (int) (scale.k * (double) n); 

loc.x z «double) 1 

loc . y = 

* scale.i) 

scale.j) 

- (double) i; 

- (double) j; 

loc.z -

«double) m 

( (double) n * scale.k) - (double) k; 

if «i < DEGREE) I I (i >- i-DEGREE) I I (j < DEGREE) I I (j >- m-DEGREE) 

II (k < DEGREE) II (k >- n-DEGREE» 

1/ influenced zone cells 

retval - 2; 

else 

1/ deformable zone cells 

retval .., 1; 

else 

retval - 0; 

return retval; 
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1* default constructor *1 
lattice::lattice() 

{ register int create; 

long tmpsizei 

1 - OJ m E 0; n = 0; 

for(create ~ 0; create < MAXLATDIMi create++) 

tmpsize - (MAX3LATDIM * MAXLATDIM) * sizeof(double); 

grid[create] - (double *) malloc(tmpsize)i 

if(grid[create] == NULL) 

printf("ERR (ffd.lattice) e .,> unable to allocate lattice grid\n"); 

for(create - 0; create < 6; create++) 

mat[create].create(64, 64); 

B.create(64}; 

1* reset *1 
void lattice::reset(point base,double dx,double dy,double dz, 

int i , int j,int k) 

{ register lnt a, h, Ci 

II adjustment for influenced cells 

span.i c: dx; 

span.j ... dYi 

span.k = dz; 

I i + DEGREE * 2; 
m "" j + DEGREE * 2; 

n - k + DEGREE * 2; 

H«( l+l»MAXLATDIM) I I «m+1»MAXLATDIK) II «n+1) > MAXLATDIM» 

fprintf(stderr, "ERR (ffd.reset) ==> lattice dimensions exceed 

limits\n") ; 

cell. i 

cell. j 

cell. k 

span.i I «double) i); 

span.j I «double ) j); 

span.k I «double) k)i 

lat_origin - base + (cell * «double) DEGREE * -1.0»; 

#if (DEGREE ~- 2) 

grid_ origin = base + (cell * -2.5); 

#else 

grid_origin '" base + (cell * -4.0); 

#endif 
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) 

II adjust for influenced cells 

span.i cell.i * (double) Ii 

span.j = cell.j * (double) m; 

span.k - cell.k * (double) n; 

II reset delpoints and delcells 

memset(delpoints, 0, LATOIMCUBED); 

memset{delcells, 0, LATDIMCUBED)i 

1* clear *1 

void lattice::clear() 

i memset(delpoints, 0, LATDIMCUBED)i 

meroset(delcells, 0, LATDIMCUBED); 

) 

1* multimanip *1 
void lattice: :multimanip(int sizeq, point * q, vector * deltaq) 

int btill, inside, i, j, k; 

double basis; 

double basis_S[DEGREE+l], basis_t[DEGREE+l], basis_u[DEGREE+l]; 

point delta, coord; 

int ro, n, dim; 

double value, y(64); 

index curr, xindex , yindex; 

register int xi, xj, xk, a , b, c, yi, yj, yk , row 

if(sizeq > 0) 

{ 

II create basis matrix B 

for(bfill = 0; bfill < sizeqj bfill++) 

{ inside = this->locatepnt(q[bfill), i,j,k,coord)i 

if (inside == 1) 

far(a - i-DEGREE; a <= i+DEGREE; a++) 

for(b = j-OEGREE; b <= j+DEGREEi b++) 

for(c : k- DEGREE; c <- k+DEGREEj c++) 

delcells[a)[b][c] - 1; 

0, col 

mat[5].put(row, 0, deltaq [bfill).i); 

mat[5].put(row, 1, deltaq[bfill].j)j 

roat[5].put(row, 2, deltaq[bfillJ.k}; 

II copy deltaq 

#if (DEGREE -= 2) 

quad_ba5isarray(caord .x, basis_5); 

quad_basisarray(coord.y, basis_t); 

quad_basisarray(coord.z, basis_u); 

#else 
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) 

cubic_basisarray(coord.x, basis_ s); 

cubic_basisarray(eoord.y, basis_t); 

eubic_basisarray(coord.z, basis_u); 

#endif 

B.putindex(row, i, j, k): 

for(a = 0; a <= DEGREE: a++) 

for(b - 0: b < - DEGREE: h++) 

forte 0: c <- DEGREE; c++) 

row++ i 

basis - basis_ s(a] * basis_t(b] * basis_u(e]; 

B.putval(row, a, h, c, basis): 

B.row "" row; 

mat[S].row a row: mateS] .eol = 3: 

II form normal equations f rom basis matrix B 

m - B.row: 

mat[l] .row m: mat[l]. eol - m: 
for(row = 0: row < m: row++) 

for(eol 0; col < = row: col++) 

{ 

xindex B.getindex(row); 

yindex B.getindex(eol); 

switeh(yindex.i - xindex.i) 

{ case 0, xi 

case " xi 

case 2, xi 

case 3, xi 

case -1: xi 

case -2' xi 

case -3: xi 

default: i = 

) 

switch(yindex.j 

{ case 0, xj 

case " xj 

case 2, xj 

case 3, xj 

case -1, xj 

case -2: xj 

case -3: xj 

0; 

1 ; 

2; 

3; 

0; 

0; 

0; 

0; 

-
0; 

1 ; 

2; 

3; 

0; 

0; 

0 ; 

yi 0; i 

yi - 0; i 

yi 0; i 

yi - 0; i 

yi 1 ; 

yi 2; 

yi 3; 

break: 

xindex.j) 

yj = 0; j 

yj O- j 

yj 0; j 

yj 0; j 

yj 1 ; 

yj 2 ; 

yj - 3-

default: j = 0; break: 

) 

switch(yindex.k - xindex.k) 

-
= 

-
i -
i -
i -

j 

j -
j 

DEGREE+li break; 

DEGREE: break; 

DEGREE-I: break; 

DEGREE-2; break; 

DEGREE: break; 

DEGREE- I: break; 

DEGREE-2; break: 

DEGREE+l: break; 

DEGREE; break: 

DEGREE-I: break; 

DEGREE-2; break: 

DEGREE: break; 

DEGREE-I; break: 

DEGREE-2; break; 
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{ case 0, xk 0; yk - 0; k . DEGREE+lj break; 

case " xk : 1 ; yk 0; k DEGREE; break; 

case 2, xk 2; yk O' k· DEGREE-I; break; 

case 3, xk - 3; yk O· k - DEGREE- 2; break; 

case -1: x k 0; yk = 1 ; k DEGREE ; break; 

case -2: xk - 0; yk - 2; k • DEGREE-I; break; 

case -3: x k O· yk - 3; k = DEGREE-2; break; 

default : k = 0; bre ak; 

} 

val ue = 0 . 0; 

forCa 0; a < i' a ++) 

forCb = 0; b < j; b++) 

forCe - OJ C < k; c++ ) 

value += B.getval(row, a+xi , b+xj , c+xk) 

* B.ge tval(co l , a+yi, b+yj, c+yk) ; 

mat[l].put(row , col,value)j 

II by symmetry upper triangle mirrors lower 

for(j = 1; j < mi j++) 

forCi R 0; i < j ; i++) 

mat[l).put(i/ j, mat[l].get(j, i»; 

1/ Choles ki Factorization 

value = sqrt(mat [ l ) .get(O,O»j 

rnat ( 2).put(O,O, value); 

for(j - 1; j < mj j ++ ) 

mat [ 2} . put(j, 0 , mat[l].get(j, O} / value); 

forCi - 1; i < em- I); i ++ ) 

value "" 0 . 0; 

for(k = OJ k < i; k++) 

va l ue += mat[2] . get(i, k) * mat [2).get(i, k); 

mat [ 2).put(i, i , sqrt(mat[I).get(i, i) - value»; 

for(j - i+l; j < m; j ++ ) 

value - 0.0 ; 

for(k 0; k < ii k++) 

value +- mat(2).get(j, k) * mat[2) . get(i , k); 

mat [ 2].put(j, i , (mat(I ). get(j , i) - value)/mat ( 2 ] .get(i, i»; 

} 

value - 0.0; 

for(k - 0; k < (m- l ); k++) 

value +m mat [ 2 ] .get(m-l, k) * mat(2] . get(m- l , k); 

mat(2) . put(m-l, m- l , sqrt(mat [ l) . qet(m-l, m-l) - value»; 

for (dim - 0; dim < 3; dim++) 
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} 

yeO] - mat[5].get(O,dim)/mat[2).get(0,0); 

for(i - 1; i < m; i++) 

value"" 0.0; 

for(j - 0; j < i; j++ ) 

value += mat[2].get(i, j) 11' y{j.Ji 

y[i] - (mat[5].get(i,dim) - value)/mat[2].get(i t i); 

} 

mat{3].put(m-l, dim, y[m-l] I mat[2].get(m-1 t m-l»; 

for(i - (m-2); i >= OJ i--) 
value,.. 0.0; 

for(j - i+1; j < m; j++) 

value += mat[2].get(j, i) 11' mat(3).get(j, dim); 

mat[3].put(i, dim, (y[i] - value)/mat[2].get(i, ill; 

II mult mat[3] by Btranspose and alter lattice 

for(row = 0i row < mi row++) 

curr = B.getindex(row); xi - curr.i; xj - curr.j; xk 

for(a - 0; a <= DEGREE; a ++ ) 

} 

for(b - 0; b <= DEGREE; b++) 

for(c = 0; c <= DEGREE; c++) 

value B. getval (row, " b , c) ; 

delta . x value * mat[3J.get(row, 0) ; 

delta.y value * mat[3J.get(row , 1) ; 

delta.z :: value * mat[3] .get(row, 2) ; 

II add directly t o lattice 

if(delpoints[xi+a][xj+b][xk+c]) 

this->incr(xi+a, xj+b, xk+c, delta); 

else 

delpoints[xi+a][xj+b][xk+c] ~ 1; 

this->set(xi+a, xj+b, xk+c, delta); 
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1* applyFFO *1 
int lattice: :applyFFO (point & objpoint) 

{ double basisx[DEGREE+IJ, basisY[DEGREE+l], basisZ[DEGREE+l 1, 

} 

accuffiX, accumy, accumz, weight, tweenweight; 

register int a, b, c, i, j, k; 

point pnt, coord; 

int U t v, w; 

if (this->locatepnt(objpoint, U t v, w, coord» 

i = U; j = Vi k - wi 

if(delcells[iJ[j](k]) 

{ 

} 

#if (DEGREE == 2) 

quad basisarray(coord.x, basisX)i 

quad_bas isarray(coord.y, basisY)i 

quad_basisarray(coord.z, basisZl; 

#else 

cubic_basisarray(coord.x, basisX)i 

cUbic_basisarray(coord.y, basisY): 

cubic_ basisarray(coord .z , basisZ); 

#endif 

aecumx 0.0; 

accumy 0.0; 

aceumz 0.0: 

for(a = 0; a <= DEGREE; a++) 

tor(b ~ 0; b <= DEGREE; b++) 

{ tweenweight - basisX[a] * basisY[b]i 

forCe = 0: c <= DEGREE; c++) 

} 

weight = tweenweight * basisZ[c]; 

if(delpoints[i+a](j+b][k+c ]) 

II grab modified grid point from memory 

this->get(i+a,j+b,k+c , pnt); 

accumx += pnt.x * weight; 

accumy += pnt.y * weight: 

accumz += pnt.z * weight; 

objpoint.x += accumxi 

objpoint.y += accumYi 

objpoint.z += accumz; 

return 1; 

return 0: 
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j* file: matrix.h 

*f 

author: James Gain 

project: Virtual Sculpting 

notes: standard matrix and sparse basis matrix functions 

#include <stdio.h> 

#define MAXMATDIM 70 

class index 

t pUblic: 

}; 

int i, j, ki 

j* index: default constructor *j 

index( ) 

{ i = 0; 

j 0; 

k 0; 

} 

struct cell 

{ double block[4][4][4]; 

} ; 

class basismtx 

{ cell * mtX[MAXMATDIM]; 

index latloc[MAXMATDIM]; 

public: 

int row, col; 

j* create: allocate and initialize a basis matrix */ 

void create(int down); 

j* get: returns the value (at getrow, i, j, k) or index (getrow) 

of the matrix */ 

inline double getval(int getrow, int i, int j, int k) 

return (* mtx[getrow]).block[i][j][k]; 

} 

inline index getindex(int getrow) 

return latloc[getrOW]i 

} 

97 



) ; 

/* put: inserts a value or index at position (putrow) 

of the matrix */ 

inline void putval(int putrow, int i, int j, int k, double val) 

(* mtx[putrow]).block[i][j)[k] = val; 

) 

inline void putindex(int putrow, int Ii, int lj, int lk) 

{ 
latloc[putrow).i li; 

latloc[putrow).j lj; 

latloc[putrow).k lk; 

class matrix 

{ pUblic: 

) ; 

int row, col; 

double * mtX[MAXMATDIM]; 

/* create: allocate and initialize a matrix */ 

void create(int down,int across); 

/* get: returns the value at position (getrow, getcol) of the matrix */ 

inline double get(int getrow, int getcol) 

return «rntx[getrow])[getcol]); 

/* put: inserts a value at position (putrow, putcol) of the matrix */ 

inline void put(int putrow, int putcol, double val) 

{ 
«mtx[putrow]){putcol) val; 

) 
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1* file: vector.h 

*/ 

author: James Gain 

project: Virtual Sculpting 

notes: Basic vector arithmetic library. 

class point 

{ public: 

} ; 

double x,y,z; 

1* point: default constructor *1 
point(); 

class vector 

pUblic: 

} ; 

double i, j, k; 

1* vector: default constructor *1 
vector(); 

1* (*) scale: scale the vector by a scalar factor c *1 
friend vector operator *(vector v, double c); 

1* (I) divide: divide the first vector by the second *1 
friend vector operator I(vector a, vector b); 

1* (-) difference of points: create a vector from point p t o point Q (Q-P) *1 
friend vector operator -(point p, point q); 

1* (+) pnt plus vec: find the point at the head of a vector which 

is placed with its tail at p *1 
friend point operator +(point p, vector v); 
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1* file: urbs. h 

author: James Gain 

project: Virtual Sculpting 

notes: A library for uniform Rational Basis Spline (URBS) support. 
Of 

1* cubic_basisarray: Return an array containing all the spans (-3,-2,-1,0) of a 

cubic B-Spline associated with u. *1 
void cubic_basisarray(double u, double * array); 

1* quad_ basisarray: Return an array containing all the spans (-2,-l,O) of a 

quadratic B-Spline associated with u. *1 
void quad_basisarray(double u, double * array); 

1* file: urbs.c 

author: James Gain 

project: virtual Sculpting 

notes: A library for uniform Rational Basis spline (URBS) support. 

Of 

#include "urbs.h" 

1* cubic_basisarray *1 

void cubic_basisarray(double u, double * array) 

{ double usquared, ucubed, u3, usquared3, ucubed3j 

} 

usquared = u * u; 

ucubed = usquared * u; 

u3 = 3.0 * u; 

usquared3 = 3.0 * usquared; 

ucubed3 = 3.0 * ucubed; 

array[3] (ucubed/6.0); 

array[2] «1.0+(u3)+(usquared3)-(ucubed3»/6.0)j 

array[l] 

array[O] 

( (4.0-(6*usquared)+(ucubed3»/6.0)j 

«1.O-(u3)+(usquared3)-ucubed)/6.0); 

1* quad_basis array *1 

void quad_ basisarray(double u, double * array) 

{ double usquared, usquaredhalf; 

} 

usquared = u * Uj 

usquaredhalf 0.5 * usquared; 

array[2] 

array[l] 

array[O] 

usquaredhalf; 

0.5 + u usquared; 

= 0.5 - u + usquaredhalfi 
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Appendix C 

Specification of the Rho VeR System 

This appendix describes the Virtual Reality system as designed by the members of the Rhodes Virtual Reality 

Special Interest Group. The system consists of a number of processing modules capable of running on a 

variety of platfonns and contains the communication modules to allow transfer of data between these various 

architectures. 

This specification details the function of each module and the manner in which interaction between the 

modules is expected to occur. 

C.l Overview 

Each virtual world will contain a number of instances of various types of modules. Each module consists of 

some data associated with a process. Each process is capable of running concurrently with any other process. 

The processes communicate using two mechanisms. An event-passing facility allows any process to com

municate with any other process. A virtual shared memory makes a common data structure available to all 

processes. 
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C.2 Interprocess Communication Facilities 

C.2.1 Event-passing 

All processes are capable of communicating directly with any other process by sending it a message (referred 

to in this document as an event). The possible events are predefined. Most processes will contain an event 

processing loop which will detennine their behaviour when an event of a certain type is received. 

C.2.2 The virtual shared memory 

The virtual shared memory maintains a data structure which is replicated on all machines used by the virtual 

reality system. Only one copy of this replicated database will be maintained per machine, regardless of the 

number of modules running on that machine. Any process may read from this data structure. The data 

structure contains an entry for every object process (defined later), and only the corresponding object process, 

or its parent (defined later), may update that entry. Updates are achieved by sending an update event to tbe 

VSM Manager module on the machine. 

C.3 The global data structures 

C.3.1 The distributed data base 

The data base distributed by the VSM consists of a table containing entries for every module in the virtual 

world. Each record in the table consists of the following fields: 

• Identifier: This is a unique value for each module in the world.) 

• Type of module: Allows object modules to be distinguisbed so tbat the relevance of tbe other fields 

can be determined. 

• Position: Position of the object in the virtual world. 

• Orientation: Orientation of the object in the virtual world. 

• Boundary: Border of the object. for collision detection. At present this will be the radius of the 

bounding sphere. 

• Parent identifier: Identifier of the parent object, equal to its own Identifier if it bas no parent. 

• Controller identifier: Identifier oftbe controlling object. 
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• Set of change counters: Give the number of updates to the shape data below to aHow processes to 

update local copies when these change. 

• Generic attributes: attributes which may be useful in various worlds. A fixed number are available 

and will be specified as a table containing pairs of values, the attribute identifier (e.g. Mass, Density) 

and the attribute value (e.g. lOkg,5g!m3) . 

C.3.2 The shape data 

Each object process contains some large tables of data that may be used by other objects. These tables are 

not used sufficiently often to justify distributing them everywhere. They will be sent in response to events 

requesting them, usually when the requesting process notices a change in the change counter for the table. 

The following tables may be found: 

• Polygon data: The vertex information for the shape of the object 

• Colour: Colour values for the pieces of the object 

• Texture: Details of texture maps for pieces of the object 

• Generic tables: For temperature and other characteristics of the object 

• Device data table: Raw device data for when the object is associated with a particular device 

• World attribute list: A list of attributes active in a particular world, usually maintained by the world 

module. 

• Machine name table: A list of address for all other modules, indexed by the identifier field of the 

distributed data base, usually maintained by the world module. 

C.3.3 Local values 

Each object will contain a tree of its child objects. This will not be shared. 

C.4 The modules 

The following modules are available. Each module description gives the function of the module and specifies 

the manner in which it must respond to events. 

All modules share a common event response structure. They will contain the following skeleton: 
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Loop 

Event = GetEvent 0; 
Case Event of 

EndCase 

EndLoop 

Some modules, for example the input device drivers which do not respond to incoming events, can be exempted 

from the event polling and evaluation. 

At startup, each module must send an event to the world module specifying its address. 

C.4.1 The communication modules 

C.4.1.1 The Virtual Shared Memory Manager module 

The VSM Manager module has onc instance per machine. It accepts only update events and discards those 

which are from processes that do not have appropriate permission to update the data base. It is responsible 

for transmitting the updates to other machines involved in the virtual world system. 

The VSM manager responds to two events, an Update from a process wishing to modify its own data, and 

an Underground Update from other VSM managers to transfer approved updates from other machines. Tbe 

response to tbese events is as follows: 

Update: 

Cbeck if sending process owns tbe field to be updated 

If not, return immediately, no error message is scnt 

Update local entry 

Send UndergroundUpdates to tbe otber VSM Managers 

UndergroundUpdate: 

Update local entry 

The VSM Manager bas a role to play at system startup. The world module starts up one VSM Manager per 

machine. Tbe VSM Manager must start any other modules local to tbat macbine. 
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C.4.2 The World Control modules 

C.4.2.1 The World module 

The world module provides centralised control and decides policy for each world. Different worlds will be 

completely independent systems whose interaction will be tbrough the corresponding world control modules. 

The world modules provides attribute control for the other modules, to regulate a consistent world view. An 

attribute list may be retrieved from tbe world module to set tbe default behaviour of the object modules. 

The world module may also have a role to play in centralised object control, and in access control to tbe 

world. It can also enforce global attributes, such as gravity and collision detection. 

The world module maintains a table of addresses for each module in the world. This table is part oftbe shape 

data for tbe world module. 

The world module is involved in system initialization. It is started first and is responsible for starting VSM 

Managers on each machine involved in the system. As modules are started up, they report their addresses to 

the world module, which must tben update ils table. 

C.4.2.2 The Object modules 

The object modules control objects in the virtual world. Each objectis supplied with a standard event-handling 

routine which controls the roaMer in which it responds to incoming events. Only if this routine perntits wi]1 

the object call a user specified routine to react to the event. In some cases both the user routine and the default 

routine will execute. 

Objects may be grouped in hierarchies. This hierarchy is a tree structure with the root node referred to as the 

parent object. Unless an event is specifically intended for the child process, it will be directed to the parent 

object. The parent will then send any relevant infonnation to its children. 

Objects are also responsible for maintaining and distributing tbeir sbape dala on reques!. This is normally 

handled by tbe default event processing routines. 
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C.4.3 Output Modules 

C.4.3.1 Video Output 

This renders the world from the viewpoint of a particularobjec!. It may bave to query object shape databases 

for information needed to draw the object. These queries will only occur if the change counters have changed 

in value. 

C.4.4 Input Modules 

C.4.4.1 Device drivers 

These interact with the input devices and transmit their raw data to the object representing the device. For 

example, finger positions arc transmitted 10 the hand object. 

c.s Event-passing 

Event-passing is handled at a lower level than the sections described previously. The interface to the event 

handling routines is handled by two routines: 

• Send Event: sends an event of a particular type, together with any required data, to a specified process . 

• Get Event: if an event is available, then the type of event, source process and any additional data is 

returned, otherwise NULL is returned. The data will be in the correct fonn for the architecture; any 

conversion necessary is perfonned by the Get Event procedure. 

The data component of the event and its data is converted to a standard format (currently that used by Sparc 

Solaris 2.2) as part of SendEvent, and converted back to a format suitable for the local processor as part of 

GetEvent. Currently this is done on a global basis by exchanging the endian order on groups of 4 bytes. 

C.S.1 Send Event 

The send event routine will operate as follows: 

void SendEvent (Destination, EventType, EventDataSize, EventData) 
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1. If there is no existing connection with the destination process: 

(a) Fetch the destination address from the world module. 

(h) Open a connection to the destination process. 

2. Add the event to the queue of outgoing messages. 

3. Attempt to send messages from the queue. 

4. Poll incorrung connections for events, and add any to the incorrting queue. 

C.S.2 Get Event and GetMatchingEvent 

The GetEvent routine will operate as follows: 

1. Check for, and open any new connections to other processes. 

2. Poll incorrung connections for events, and add any to the incoming queue. 

3. Attempt to send messages from the outgoing queue. 

4. Iftbere is an event in the incoming queue which matches the required criteria, then return that event. 

5. Return NULL. 

GetMatchingEvent is intended to allow events to be received out of order. in the special cases where a reply 

is required before any further processing can be done. GetEvent uses the same function. but will match the 

first available event. 

The format conversion occurs just before the events are added to the appropriate queues. 
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