

Design of a Performance Evaluation Tool for
Multimedia Databases with Special Reference

to Oracle

Submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

By

Tonia Stakemire

Computer Science Department
Rhodes University

Grahamstown
South Africa

April 2003

ABSTRACT

Increased production and use of multimedia data has led to the development of a more

advanced Database Management System (DBMS), like an Object Relational Database

Management System (ORDBMS). These advanced databases are necessitated by the

complexity in structure and the functionality required by multimedia data. Unfortunately, no

suitable benchmarks exist with which to test the performance of databases when handling

multimedia data. This thesis describes the design of a benchmark to measure the performance

of basic functionality found in multimedia databases.

The benchmark, called MORD (Multimedia Object Relational Databases), targets Oracle, a

well known commercial Object Relational Database Management System (ORDBMS) that

can handle multimedia data. Although MORD targets Oracle, it can easily be applied to other

Multimedia Database Management System (MMDBMS) as a result of a design that stressed

its portability, and simplicity. MORD consists of a database schema, test data, and code to

simulate representative queries on multimedia databases.

A number of experiments are described that validate MORD and ensure its correct design and

that its objectives are met. A by-product of these experiments is an initial understanding of the

performance of multimedia databases. The experiments show that with multimedia data the

buffer cache should be at least large enough to hold the largest dataset, a bigger block size

improves the performance, and turning off logging and caching for bulk loading improves the

performance. MORD can be used to compare different ORDBMS or to assist in the

configuration of a specific database.

ACKNOWLEDGEMENTS
I would like to thank my supervisors, Professor David Sewry and Alfredo Terzoli, for their

continuous effort and support throughout the duration of my degree. I would also like to thank

Stefan Krueger for his encouragement and for proof reading various drafts of the thesis.

Finally, I would like to thank the members of the Rhodes University Computer Science

Department and my friends who have helped in many different ways and have made my time

here enjoyable.

i

CONTENTS

CHAPTER 1 : INTRODUCTION ... 1

1.1 MOTIVATION ... 1
1.2 MULTIMEDIA DATABASES AND THEIR PERFORMANCE.. 2
1.3 PROBLEM STATEMENT .. 3
1.4 AIM ... 4
1.5 FOCUS AND SCOPE... 4
1.6 ORGANISATION OF THESIS... 6

CHAPTER 2 : TUNING AND PERFORMANCE EVALUATION OF MULTIMEDIA DATABASES: A

SURVEY .. 8

2.1 MULTIMEDIA DATABASES... 8
2.1.1 Multimedia Data ... 8
2.1.2 Multimedia Databases... 9
2.1.3 Multimedia Applications... 12

2.2 DATABASE TUNING AND CONFIGURATION .. 12
2.2.1 Database Tuning ... 12
2.2.2 Operating System Tuning ... 14
2.2.3 Core Component Tuning Areas .. 15
2.2.4 Additional Database Tuning Areas ... 15

2.3 PERFORMANCE EVALUATION .. 15
2.3.1 Value of Performance Evaluations.. 15
2.3.2 Measuring Performance .. 16
2.3.3 Calculating Performance... 16

2.4 SUMMARY ... 18

CHAPTER 3 : BENCHMARKING DATABASE: A SURVEY.. 19

3.1 OVERVIEW OF BENCHMARK .. 19
3.2 EXISTING BENCHMARKS.. 19

3.2.1 Generic Benchmarks... 20
3.2.1.1 RDBMS - Wisconsin...20
3.2.1.2 ORDBMS - BUCKY..20
3.2.1.3 OODBMS – 007 and predecessors...21

3.2.2 Architecture Benchmarks.. 21
3.2.2.1 AS3AP...21
3.2.2.2 SPEC Benchmark ...21
3.2.2.3 MediaBench ...22
3.2.2.4 Other Architecture Benchmarks...22

3.2.3 Business Benchmarks ... 22
3.2.3.1 TPC Suites..22

3.2.4 Engineering Benchmarks .. 23
3.2.4.1 Sun Benchmark, 007 and Derivatives ..23
3.2.4.2 EDB..24

 ii

3.2.5 Advanced Database Benchmarks.. 24
3.2.5.1 Semantic Benchmark..24
3.2.5.2 Michigan ..25
3.2.5.3 SEQUOIA 2000..25
3.2.5.4 FTR Benchmark ...25

3.3 CRITERIA FOR BENCHMARK .. 25
3.4 DESIGN OF BENCHMARK ... 27

3.4.1 Schema Design.. 27
3.4.2 Test Data ... 29
3.4.3 Workload .. 30
3.4.4 Performance Measurement ... 32
3.4.5 Programming Language.. 33

3.5 PROBLEMS WITH EXISTING BENCHMARKS .. 34
3.5.1 Schema Problems.. 34
3.5.2 Test Data Problems ... 35
3.5.3 Workload Problems .. 35
3.5.4 Programming Language.. 35

3.6 REQUIRED BENCHMARK.. 36
3.7 APPLICATION OF BENCHMARK .. 37
3.8 SUMMARY ... 38

CHAPTER 4 : ORACLE DBMS.. 39

4.1 INTRODUCTION TO ORACLE... 39
4.2 ARCHITECTURE OF ORACLE .. 40
4.3 ORACLE COMPONENTS.. 41

4.3.1 Overall Structure... 41
4.3.2 Oracle Processes ... 42
4.3.3 Server Processes.. 43
4.3.4 Physical Database Files... 44
4.3.5 SGA Memory.. 45

4.3.5.1 Buffer Cache ..46
4.3.5.2 Shared Pool..49
4.3.5.3 Large Pool ...50
4.3.5.4 Redo Log Buffer ...50
4.3.5.5 Java Pool ...50

4.3.6 PGA Memory.. 50
4.4 ORACLE STORAGE... 51

4.4.1 Storage Units... 51
4.4.2 Data Blocks... 51
4.4.3 Extents .. 53
4.4.4 Segments... 54

4.5 ORACLE MULTIMEDIA... 55
4.5.1 InterMedia... 55

 iii

4.5.2 Oracle’s Multimedia Datatypes .. 56
4.5.3 Specialised Multimedia Functionality... 57
4.5.4 Multimedia Storage and Retrieval .. 58

4.6 RELATED ORACLE RESEARCH ... 58
4.6.1 General Oracle Performance Research ... 58
4.6.2 Binary Large Object Performance Research... 59
4.6.3 Multimedia Oracle Performance Research ... 60
4.6.4 Oracle Memory Research.. 61

4.7 ORACLE PERFORMANCE SUMMARY .. 61
4.8 SUMMARY ... 62

CHAPTER 5 : DESIGN OF MORD.. 64

5.1 DESIGN OF A NEW BENCHMARK.. 64
5.2 OBJECTIVES OF MORD ... 65
5.3 DESIGN OF MORD .. 67

5.3.1 Schema Design.. 67
5.3.2 Test Data ... 69

5.3.2.1 Generation of Multimedia Data ...69
5.3.2.2 Format of Multimedia Data ...69
5.3.2.3 Amount of data ...72
5.3.2.4 Testing..72

5.3.3 Workloads... 73
5.3.3.1 Insert Queries...73
5.3.3.2 Select Queries ..74
5.3.3.3 Update Queries ..74
5.3.3.4 Delete Queries..75
5.3.3.5 Testing..75

5.3.4 Performance Measurement ... 76
5.3.4.1 Performance Metric and Precision ..76
5.3.4.2 Timing Mechanism ...77
5.3.4.3 Testing..78

5.3.5 Programming Language.. 78
5.4 APPLICATION OF MORD ... 78
5.5 SUMMARY ... 80

CHAPTER 6 : VALIDATION OF MORD ... 81

6.1 OVERVIEW OF VALIDATION... 81
6.2 METHODOLOGY... 82
6.3 ENVIRONMENT SETUP FOR VALIDATION TESTS... 82

6.3.1 Hardware Configuration ... 82
6.3.2 Oracle Configuration .. 83

6.4 RELEVANCY TESTS.. 85
6.4.1 Design of Relevancy Tests.. 85
6.4.2 Test 1: MORD’s Measurements are Repeatable ... 85

 iv

6.4.3 Test 2: MORD’s Timing Method is Designed Correctly .. 86
6.4.4 Test 3: Specified Queries Can Be Tested by MORD.. 86
6.4.5 Test 4: MORD Can Focus on Certain Datatypes .. 87
6.4.6 Test 5: MORD’s Dataset Composition Can Be Varied... 87

6.5 ADAPTABILITY TESTS.. 90
6.5.1 Design of Adaptability Tests... 90
6.5.2 Test 6: MORD Can Connect to Different Databases .. 91
6.5.3 Test 7: MORD’s Database Design Can Be Modified ... 93
6.5.4 Test 8: The Amount of Data Tested by MORD Can Be Varied ... 93
6.5.5 Test 9: The Granularity of MORD’s Measurement Can Be Varied.. 94

6.6 SIMPLICITY TESTS ... 95
6.6.1 Design of Simplicity Tests.. 95
6.6.2 Test 10: MORD’s Test Data Can Be Extended... 95
6.6.3 Test 11: Functionality Can Be Added to MORD.. 95

6.7 SUMMARY ... 96

CHAPTER 7 : RESULTS AND INFORMAL ANALYSIS ... 98

7.1 FORMAT OF RESULTS .. 98
7.2 RELEVANCY TESTS.. 99

7.2.1 Test 1: Are MORD’s Measurements Repeatable .. 99
7.2.2 Test 2: Is MORD’s Method of Timing Designed Correctly ... 101
7.2.3 Test 3: Can MORD Focus on a Query .. 103
7.2.4 Test 4 and 5: Can MORD’s Dataset Be Altered ... 104

7.3 ADAPTABILITY TESTS.. 107
7.3.1 Test 6: Can MORD Connect to a Different Database ... 107
7.3.2 Test 7: Can the Design of the Database be altered with MORD... 110
7.3.3 Test 8: Is MORD Scalable .. 110
7.3.4 Test 9: Can the Granularity of MORD’s Measurements be Varied .. 113

7.4 SIMPLICITY TESTS ... 117
7.4.1 Test 10: Can Additional Data Easily be Added to MORD ... 117
7.4.2 Test 11: Can Additional Functionality Easily be Added to MORD.. 119

7.5 SUMMARY OF RESULTS ... 120
7.5.1 Relevancy Tests .. 120
7.5.2 Adaptability Tests ... 121
7.5.3 Simplicity Tests .. 121

7.6 SUMMARY ... 121

CHAPTER 8 : CONCLUSION .. 123

8.1 MOTIVATION FOR THESIS .. 123
8.2 AIM OF THESIS .. 124
8.3 CONTRIBUTIONS OF THESIS ... 124
8.4 FUTURE WORK .. 126

 v

REFERENCES .. 127

APPENDIX A: OUTLINE OF MORD’S CODE.. 132

APPENDIX B: INSTALLATION INSTRUCTIONS... 137

APPENDIX C: TABLES OF RESULTS FOR HYPOTHESES.. 140

vi

LIST OF FIGURES

Figure 2-1Outline of database tuning areas ... 13
Figure 3-1 SEQUOIA 2000 schema ([STO93]) .. 27
Figure 3-2 Structure of 007 benchmark modules (Based on figure 2 [CDN93]) .. 28
Figure 3-3 BUCKY benchmark schema structure (Based on figure 1 [CAR97]).. 29
Figure 3-4 Sample EDB benchmark C code.. 33
Figure 3-5 Sample Wisconsin benchmark PERL code .. 34
Figure 4-1 Types of architecture of Oracle (Based on figure 7-1[MCG01]) .. 40
Figure 4-2 Main components of Oracle 9i server (Based on figure 1 [BGB98]).. 41
Figure 4-3 Dedicated and shared server processes (Based on figures 5-1 and 5-2 [BRF01]) 44
Figure 4-4 Relationships between databases, tablespaces, datafiles and tables (Based on figure 4-2 [MCG01])45
Figure 4-5 Main components of Oracle’s SGA memory ... 46
Figure 4-6 Possible actions when data is requested ... 47
Figure 4-7 Screenshot of Oracle's buffer cache advice... 48
Figure 4-8 Screenshot of code and results for cache hit ratio ... 49
Figure 4-9 Relationship of segments, extents, and data blocks (Based on figure 3.1 [MCG01]) 51
Figure 4-10 Format of data blocks (Based on figure 3.2 [MCG01]) .. 52
Figure 4-11 Diagram illustrating data block storage control (Based on figures 3-3 and 3-4 [MCG01]) 53
Figure 4-12 Integration of InterMedia with architecture of Oracle (Based on figure 1-1 [CHI01]).................... 55
Figure 5-1 Types of multimedia data produced in the Rhodes Computer Science Department 66
Figure 5-2 Schema used for multimedia tables ... 68
Figure 5-3 Oracle code to generate a sequence.. 68
Figure 5-4 Additional tables included... 68
Figure 5-5 Code to insert multimedia data into a database.. 73
Figure 5-6 Code to select data with which to replace the old data... 74
Figure 5-7 Code to replace the multimedia data... 74
Figure 5-8 Code to delete data from the table .. 75
Figure 5-9 Code to control the measurement of response time... 77
Figure 5-10 Code to control the measurement of throughput ... 77
Figure 6-1 Screenshot to show how the caching and logging values are controlled .. 87
Figure 6-2 Screenshot to show where the size of the buffer cache is altered .. 89
Figure 6-3 Screenshot of SQL*Plus worksheet to generate database schema.. 92
Figure 6-4 Code to create the document SEQUENCE.. 93
Figure 6-5 Code to create a table to store the document data .. 93
Figure 6-6 Outline of code to include documents.. 95
Figure 6-7 Code to compile and run new Java classes ... 96
Figure 7-1 Distribution of image response times .. 100
Figure 7-2 Summary of variation in the distribution of the results (Test 1) .. 101
Figure 7-3 Timing of individual queries.. 102
Figure 7-4 Difference between timing individual queries and whole loop (Test 2) .. 102
Figure 7-5 Commenting out queries.. 103
Figure 7-6 Increase in performance when caching and logging are turned off (Test 3)..................................... 104

 vii

Figure 7-7 Improvement in performance related to buffer cache and dataset .. 107
Figure 7-8 Screenshot of running services.. 108
Figure 7-9 Increase in performance if the block size is doubled (Test 6) .. 109
Figure 7-10 Screenshot to illustrate that the document table has been created (Test 7) 110
Figure 7-11 Effect of altering the number of items (Test 8) .. 111
Figure 7-12 Effect of altering the number of images for selecting and deleting (Test 8).................................... 112
Figure 7-13 Effect of increasing the size of the data (Test 8).. 113
Figure 7-14 Distribution of time during the insertion of images (Test 9) ... 114
Figure 7-15 Time taken for various tasks of the insert operation with images (Test 9) 115
Figure 7-16 Comparison of distribution when including or excluding PNG images (Test 9)............................. 116
Figure 7-17 Comparison of distribution for different database sizes (Test 9) .. 117
Figure 7-18 Directory and files for document test data .. 118
Figure 7-19 Code to make Oracle aware of the directory .. 118
Figure 7-20 Query result showing the directories in Oracle .. 119
Figure 7-21 Documents results compared with other datatypes results (Test 11) .. 120
B-1 Screenshot of first screen for Oracle database wizard ... 137
B-2 Screenshot of step 5 for database creation ... 138
B-3 Screenshot of SQL*Plus worksheet to generate database schema ... 138
B-4 Code to make Oracle aware of the directory.. 139
B-5 Screenshot of Oracle screen for configuring the database... 139

viii

LIST OF TABLES
Table 2-1 Comparisons of OODBMS, ORDBMS, SQL/MED, and MMDBMS ... 11
Table 3-1 Comparison of benchmarks... 36
Table 4-1 Multimedia datatypes provided by Oracle .. 56
Table 4-2 Results of BLOB experiments (Results taken from [SM99]) ... 60
Table 4-3 Database load performance of 250MB video files (Table from [OIM02]) ... 61
Table 5-1 Characteristics of image data ... 70
Table 5-2 Characteristics of audio data.. 71
Table 5-3 Amount of data stored in each table.. 72
Table 6-1 Summary of hardware configuration for test environment ... 83
Table 6-2 Oracle parameters that are altered... 84
Table 6-3 Database configurations for Test 2 ... 87
Table 6-4 Database and benchmark configurations for Test 5 ... 89
Table 6-5 Database configurations for Test 6 ... 92
Table 6-6 Benchmark configurations for Test 8 .. 94
Table 7-1 Total size of image data (5 executions)... 105
Table 7-2 Expected results for Hypothesis 2 ... 105
Table 7-3 Actual results for Hypothesis 2 ... 106
Table 7-4 Summary of performance improvement for all datatypes ... 109

 1

Chapter 1

: Introduction
Chapter 1 introduces the work done in this thesis. This chapter describes previous

work on multimedia databases, revealing that the performance of such databases

can be problematic. It also explains that the Computer Science Department at

Rhodes University requires a multimedia application and wants to avoid

performance problems. A suitable benchmark is thus required to achieve this.

Unfortunately, such a multimedia benchmark was not found and as a result the

aim of this thesis is to design one.

1.1 Motivation

Multimedia data, such as audio and video data, is often difficult to manage, but with the rapid

increase in the production and use of such data, it is becoming necessary to design and

implement applications to support it. A prime example where it was necessary to design an

application to support a large amount of multimedia data was the 2001 Highway Africa

Conference, which is an annual conference held in South Africa by the Journalism

Department of Rhodes University. At this conference a large quantity of multimedia data was

produced in the form of photographs, articles, audio and video recordings for the use by

delegates and in the daily newspaper and website [HA01]. A Multimedia Database

Management System (MMDBMS) supported this data, which is an enhancement of the

standard Relational Database Management System (RDBMS), as it offers many advantages

over alternative options. Examples of these advantages include those of databases, such as

data consistency, integrity control, and the elimination of redundancy, in addition to more

advanced data modelling capabilities.

 2

The multimedia database was designed, setup, and tested in the several months prior to the

conference. The task of testing it was difficult, due mainly to the lack of suitable testing tools,

as well as insufficient time and knowledge for their design. When the application was put to

use during the week long conference, many unexpected problems were found. Of these

problems, the most significant one was the fact that the system did not respond fast enough to

the users’ requests. To ensure that such problems do not recur, proper testing is essential for

future implementations of multimedia databases.

The Computer Science Department at Rhodes University has a similar situation to the one of

the Highway Africa Conference in that it produces a large amount of multimedia data that

needs to be managed. This multimedia data is predominantly produced by the Centre of

Excellence in Distributed Multimedia, and other research groups, such as the ones in virtual

reality and audio engineering. These groups produce a large quantity of multimedia data, each

with different formats and sizes, as well as unique user requirements. It was again decided

that a multimedia database should be used to store the data in an organised manner. To avoid

the problems encountered with the multimedia database designed for the Highway Africa

Conference, a tool was required to assist in testing the performance of the database before

putting it into operation. This tool can be applied to a MMDBMS to help identify and

eliminate the most significant performance problems. Only fine tuning will then be needed

when the final system is implemented.

1.2 Multimedia Databases and Their Performance

A MMDBMS can be defined as a DBMS that is able to store multimedia data internally and

provide the necessary functionality to manipulate it. The complexity of multimedia data and

the advanced functionality required for its handling means that standard DBMS, such as

Relational DBMS (RDBMS), the type of database most commonly used, cannot handle

multimedia data properly. At best, RDBMS can provide a generic media datatype in the form

of Binary Large Objects (BLOBs), and at worst provide as little as a reference to a location

where multimedia data is held in the file system provided by the operating system. Since the

data in such databases can be altered or deleted without the database even knowing about it,

there is a lack of control over the multimedia data. This inability of RDBMS to handle

multimedia data adequately has led to the development of a more suitable class of DBMS, the

Object Oriented DBMS (OODBMS), which can be extended through the use of object-

oriented mechanisms to handle complex data. OODBMS, however, do not have the relational

structure found in RDBMS, which manages the data in a simple, yet efficient manner. A

 3

hybrid DBMS, which brings together the appealing features of both RDBMSs and

OODBMSs, is an Object Relational Database Management Systems (ORDBMS). ORDBMS

incorporate the relational structure of RDBMS with the ability of OODBMS to handle

complex datatypes. Since ORDBMS are relatively new there is still limited knowledge on

how they work and, as with any DBMS, the performance is of particular interest.

System performance can be defined as how well a system executes a task in a given

environment. To measure the performance of a system, a mechanism such as a benchmark is

often used. A benchmark to measure the performance of a multimedia database should focus

on what is common in a multimedia workload. Database benchmarks, including those

designed for multimedia, are commonly used to compare different databases, but they can

also be used for other purposes. For example, they can be used to assist in the optimal

configuration of a database, where configuration is defined as the process of setting up both

the physical and logical components of the database. Configuration is closely linked to a task

known as tuning, where the configuration of the database is repeatedly modified in order to

reach the best performance under certain constraints [KL99].

1.3 Problem Statement

To measure the performance of any aspect of a multimedia database, including the basic

functionality such as insert, update and delete, a suitable benchmark is required. Despite the

considerable research that has been undertaken to investigate the performance of databases

(shown by the large amount of available literature on this topic), none of the resulting

benchmarks are suitable for multimedia databases. This is mainly because the workloads (way

in which operations are implemented, the type of datasets returned, and the number of users

querying the data) of these benchmarks differ from the workloads found in a multimedia

application. For example, multimedia workloads, unlike other workloads, require complex

queries to perform the basic operations that are performed easily in standard databases. These

unique requirements also make it difficult to adapt the existing benchmarks to suit a

multimedia database. The problem centres on the design of a new benchmark to test the basic

functionality of a multimedia database, which can be developed to measure more advanced

multimedia database functionality in the future.

 4

1.4 Aim

The aim of this thesis is to design a suitable benchmark to evaluate the performance of basic

functionality, especially insert, update and delete operations, in a multimedia databases. This

benchmark is called MORD, which stands for a Multimedia Object Relational Database

benchmark, and it targets the Oracle ORDBMS. Although MORD is designed specifically to

work on Oracle, it is also designed to be adaptable. It is adaptable since most settings of the

benchmark can be changed and the test environment can be altered. For example, the test data

used and queries tested by MORD can be altered.

As with any benchmark, MORD need to be validated to ensure that it includes all of the

required functionality and that the functionality works correctly. Validation of MORD is

performed using a variety of tests run on a selection of Oracle configurations. While

validating MORD, it would also be beneficial to obtain a basic understanding of Oracle’s

performance when dealing with multimedia data. As a result, a secondary goal of testing

MORD is to test whether established database theory that holds for standard data also holds

for multimedia data. Several informal hypotheses are formed, based on such general database

theory, and tested. The testing of these informal hypotheses demonstrates how MORD can be

applied, investigates whether it functions as expected, and gives a better understanding of the

performance of multimedia applications on Oracle.

1.5 Focus and Scope

The focus of this thesis is on the design of a benchmark to evaluate the performance of basic

functionality in multimedia databases. Planning the design of a thesis requires that the

decision is made of whether a broad area is studied in less detail or a specific area is

concentrated on in finer detail. For this thesis the latter was chosen, meaning that the scope

was reduced and MORD could only test a limited area. The options were that MORD either

investigated basic multimedia functionality or that it focused on more advanced specialised

multimedia functionality, but not both. Basic functionality was selected since there are

currently no multimedia database benchmarks (as justified in the next Chapter) and it is not

logical to design a benchmark to test advanced multimedia functionality until one has been

designed for basic functionality.

The aim was achieved by first conducting a comprehensive study of existing benchmarks and

multimedia databases, studying their unique characteristics in particular. MORD was

 5

designed based on the findings of this study. Although MORD was subsequently tested and

preliminary results were obtained from this, a thorough evaluation of Oracle’s performance

was not an objective in this thesis. In future, MORD can be applied to multimedia databases

more thoroughly to obtain results to assist in the configuration of these databases. For this

thesis, the focus is on the design of a benchmark, rather than carrying out an extensive

performance evaluation of a specific database.

MORD is designed to be useful in several different multimedia database environments, where

its scope is determined by a few factors. These factors include: the number of users, the type

and amount of test data, and the kind of operations tested.

MORD’s aim is to measure the fundamental performance of multimedia databases. This

requires a simplified environment and as a result all of the experiments are executed in a

single-user mode.

The amount of test data included with MORD is fairly small, though it is easy to increase it if

necessary. The data consists of a selection of images, audio, and video data, and a limited

selection of documents. Although documents are generally classified as multimedia data, the

main reason for not including a larger collection of them is that they are used in special tests

designed to demonstrate that MORD’s test data can easily be extended to include a different

datatype.

The operations tested by MORD are primitive queries, such as insert, select, and

update, that have been adapted for multimedia data. The time taken to execute some

advanced queries, specific to multimedia data, is also measured. These queries were selected

to explore the backend processing of multimedia data, and include the extraction of metadata,

and the creation of thumbnails from images. The front-end processing, such as the streaming

of data or content-based retrieval is not investigated. The investigation of advanced queries

that are found in standard RDBMS, such as join and aggregate, is also not performed as

they are less relevant in a multimedia environment. Such queries are usually used to either

combine data or perform calculations on it, such as calculating the average value, neither of

which is generally relevant to multimedia data.

The performance metrics that are used to measure the times for the experiments include

response time and throughput, while alternative metrics, such as resource utilisation, are not

 6

considered. They are not relevant to the department and are becoming less important as a

result of the rapid advances in hardware.

1.6 Organisation of Thesis

The next chapter presents the findings of a literature survey on multimedia databases and

database performance. It summarises relevant work on multimedia database to illustrate their

significant issues and problem areas. Following this, the work that has been done on the

configuration and tuning of databases is discussed. Finally, it describes work that has been

carried out on performance and performance evaluations.

Chapter 3 presents a literature survey on existing benchmarks. This chapter goes into detail

about the objectives, design decisions, and characteristics of these benchmarks that make

them unsuitable to evaluate the performance of multimedia databases. This chapter also

describes the requirements of a multimedia database benchmark.

Chapter 4 introduces Oracle, as it is the multimedia database used in this thesis. This chapter

explains how Oracle functions by describing its architecture, its components, and the manner

in which it stores the data. Details on the handling of multimedia data by Oracle as well the

advanced functionality Oracle provides for this data are presented. The chapter ends by

summarising past research on Oracle, and more specifically the sections focussing on

multimedia.

Chapter 5 describes the design of MORD, firstly by specifying MORD’s objectives. This is

followed by specific details on MORD’s design. These details include a description of the

schemas used to create the database tables, MORD’s test data, the functionality that MORD

tests, how MORD measures the time for the tests, and the programming language MORD

uses.

Chapter 6 details the validation tests performed to demonstrate that MORD functions

correctly. This chapter lists MORD’s objectives that need to be tested. This is followed by a

brief description of the test environment, including the specification of the hardware as well

as the configuration of the database. Details are then given on how the validation experiments

have been designed as well as the hypotheses tested that relate to the performance of Oracle.

 7

Chapter 7 presents the results of each of the experiments performed, followed by an informal

analysis. This chapter aims to indicate that MORD performs as expected as well as to give an

initial understanding of how Oracle performs with respect to multimedia data. The most

significant findings as well as unexpected findings are presented again at the end of this

chapter to summarise them.

Chapter 8 concludes the work presented in the previous chapters, showing that the objectives

of the thesis have been met. It also emphasises the most important achievements in this thesis

and includes suggestions for future work.

 8

Chapter 2

2.1.1

: Tuning and Performance

Evaluation of Multimedia Databases: A

Survey
This chapter presents a survey of work related to this thesis. It includes work on

the tuning of multimedia databases, as well as benchmarking. Firstly, it describes

the unique requirements of multimedia databases that set them apart from other

databases. Details are then given about the main areas to consider when tuning a

database. Performance evaluations are discussed next.

2.1 Multimedia Databases

 Multimedia Data

The rapid technological advancements in computing have led to an increase in the production

and use of multimedia data. Multimedia data differs markedly from standard datatypes in both

structure and required functionality. Some of the characteristics listed by Klas and Aberer

[KA95] are temporal aspects, media representation, data volume, data modelling, and

functionality. The temporal aspect refers to the time dependant constraints of multimedia

data. Klas and Aberer explain that time is relevant to multimedia data because it closely

represents reality, where time is a significant factor. For example, a video is usually a

sequence of events that must be shown in the correct order and at the right speed for it to be

represented properly. They classify multimedia data as either time dependant, such as audio

and video, or time-independent, such as images. Media representation refers to the necessity

for new datatypes as well as operations. Built-in datatypes, such as alphanumeric data, are not

appropriate to represent the complex structure of multimedia data. Klas and Aberer suggest

 9

2.1.2

that a modular and efficient representation of different multimedia formats must be supported,

in a transparent manner to the application/user. Data volume refers to the large amount of data

to be processed. Data modelling refers to the more advanced indexing techniques, as well as

semantic and consistent modelling of abstractions needed for multimedia functionality, such

as content-based searching.

 Multimedia Databases

Multimedia databases have evolved from traditional databases, starting with RDBMS.

RDBMS were developed approximately 30 years ago and are currently a popular, well-used

technology that can be implemented easily. They facilitate the efficient storage of data

through the use of tables controlled by mathematical relations, a concept that originated from

work done by Ted Codd in 1970 [CO70]. As a result, they enforce a very rigorous structure

with fixed schemas for their databases. With standard datatypes this is advantageous, as they

are part of the predetermined set of attributes of RDBMS, but it makes it difficult to extend

the datatypes and functionality to support complex datatypes. Examples of RDBMS include:

Microsoft SQL Server and Access, IBM’s DB2, Sybase, and MySQL.

Object-Oriented DBMS (OODBMS) were developed roughly a decade later, with the

intention of overcoming some of RDBMS’s problems, such as their inability to be extended to

handle more complex datatypes. Inherent in OODBMS is an extendible data model that uses

objects, attributes, classes, methods and messages to overcome the inflexibility of RDBMS

[SZ96]. Although this allows the specification and management of complex media objects

through Abstract Data Types (ADT), unfortunately these datatypes are not already integrated

into the system. Another shortcoming of OODBMS is the lack of a standard ad-hoc query

language, such as SQL, with which to manipulate the data [STO96]. Examples of OODBMS

include: Jasmine, GemStone, Ontos, Objectivity, Versant, and STONE Object Store.

A valuable addition to database technology is the recently developed Object-Relational

DBMS (ORDBMS). These DBMS are based on RDBMS technology with the extension of

functionality that was previously limited to OODBMS technology. Such functionality

includes inheritance, complex object support, an extensible type system, and triggers [STO96,

and CAR97]. Stonebraker et al. [STO96] suggest that the development of ORDBMS is the

most striking advance in DBMS functionality since RDBMS were first introduced. Although

ORDBMS are growing in importance, their technology has not reached a stage of maturity

yet. A contributing factor to this is the fact that no standard for ORDBMS exists as ANSI

 10

X3H2 have not completed their work on SQL3 [STO96]. Examples of ORDBMS include:

Informix, Postgres, and Oracle.

A different approach would be to develop SQL itself rather than the database, and although

this would not be considered a ‘true multimedia database’, it is an interesting alternative for

handling multimedia data. SQL/MED, standing for the SQL Management of External Data, is

the new addition to the SQL standard, originating in the early part of 2001. J. Melton et al.

explain that SQL/MED: “offers syntax extensions to SQL as well as a set of routines for use

in developing and managing applications that access both SQL and non-SQL (also known as

external) data”. SQL/MED is divided into two sections; one called the wrapper interface and

the other called the datalink that together manage the external data as if it was stored within

the database. The wrapper interface allows the user to view the external data, while the

datalink allows the server maintain control of the data, such as integrity control. SQL/MED

no longer has the limitation found in RDBMS, as it does not need to have additional datatypes

since the data is stored externally. Its functionality can be extended to include the majority of

the functionality, such as referential integrity, recovery mechanisms, and authorisation

mechanisms [MMJ02], which are not normally found with external data. It still, however, has

to be explicitly implemented and is not integrated into the database. There is also the

limitation that no distinction can be made between the different multimedia datatypes, and

thus specialised functionality, such as cropping images, cannot be implemented.

A specialised database has been designed to support multimedia data, known as a Multimedia

DBMS (MMDBMS). It is largely based on OODBMS technology, with extra functionality to

support multimedia data. This functionality consists of multimedia datatypes as well as

continuous data delivery. MMDBMS may be a viable option in the future, but at present there

are no commercial or even widely used MMDBMS. One example is the AMOS system,

which is one of the most advanced MMDBMS.

To identify which of the DBMS are suitable for handling multimedia data, it is necessary to

compare whether they can support the complex structure and specialised functionality of

multimedia data. Such a comparison is given in Table 2-1, where their built-in datatypes to

handle multimedia, and their functionality to support basic multimedia queries, such as

inserting, as well as advanced multimedia queries, such as streaming, are investigated.

 11

Feature RDBMS OODBMS ORDBMS SQL/MED MMDBMS
Multimedia
Data
Support

Limited to
BLOB and
References

Extended to
support
multimedia data

Often built-in
otherwise
extendible

Extensions in
SQL to support
multimedia data

Built-in support
for all
multimedia data

Query
Languages

SQL only OO languages
and high level
languages only

SQL, high-level
and OO
languages

Advanced SQL
with extensions

Usually OO and
high-level
languages

Multimedia
Functionality

None provided.
Cannot be
added

Limited
multimedia
functionality

Often full
multimedia
functionality

No multimedia
functionality

Full multimedia
functionality

Usage Well-used and
Mature

Well used,
especially for
engineering
applications

Still fairly new,
already
extensively used

Not widely used Used only in
research
environments

Table 2-1 Comparisons of OODBMS, ORDBMS, SQL/MED, and MMDBMS

RDBMS are unsuitable for multimedia data, given their inability to support complex data and

its corresponding functions. Although some RDBMS can support multimedia data by the

inclusion of Binary Large Objects (BLOBs) in their set of attributes, they still do not offer the

required functionality. OODBMS can be used for multimedia databases, but ORDBMS

appear to be the best solution as they integrate the best of both RDBMS and OODBMS

technology. The extendibility of ORDBMS allows for multimedia data to be included as a

built-in datatype of the system that can then be queried using the simple SQL query language,

which is not possible with OODBMS. SQL provides a higher level of protection from

programming errors as well as making the data modelling and querying easier. Since

ORDBMS appear to be the best overall technology to use for multimedia applications, they

are further reviewed briefly.

One of the first types of ORDBMS developed was POSTGRES, originally developed by

Berkeley University [STO96]. It is an open source database, initially based on RDBMS

technology that has been extended and is continuously being improved. Although it is well

suited to handling massive storage and can store large objects, it does not have inherent

support for multimedia data.

Following POSTGRES was the development of Illustra, a commercial ORDBMS that was

later bought out by Informix and became part of the Informix ORDBMS. Informix allowed

users to create manageable and easily distributable multimedia repositories and so became

one of the most popular commercial ORDBMS supporting multimedia data. It achieves this

through Media360, which runs on Informix’s object-relational database, Internet Foundation

2000. Media360 handles multimedia data together with the Informix Dynamic Server/

Universal Data Option (IDS/UD) [INF01]. In 2001, IBM bought Informix and has plans to

 12

2.1.3

2.2.1

integrate it with DB2, especially for multimedia applications. Previously, IBM’s DB2 only

provided user-defined functions, but not user-defined datatypes. This limited its multimedia

capabilities since it only has BLOB datatypes and no support for specialised multimedia

datatypes. Its latest release includes the DB2 AIV Extender suite, which has image, audio, and

video extenders based on technology from Informix’s multimedia data management modules

previously known as datablades. These permit user-defined datatypes and user-defined

functionality to support multimedia data that can be queried using SQL statements.

Another popular ORDBMS with multimedia capabilities is Oracle. Oracle 9i supports

multimedia through an application known as InterMedia which incorporates the datatypes in

the system. It also provides integrated queries and functionality, such as searching by content,

manipulating images and altering the format of the data. At present, Oracle appears to be a

viable ORDBMS for handling multimedia data due to its advanced datatypes and multimedia

functionality.

 Multimedia Applications

There are numerous benefits to the use of multimedia data in an application, including the

addition of sound and colour to what may otherwise be a dull application. The saying, “a

picture can say more than a thousand words” sums up the power that visual information has,

and the addition of sound is no different. This has resulted in the use of multimedia data in

applications that vary from police criminal identification systems to educational systems,

from systems for the movie industry to home shopping websites, just to name a few [SUB98].

Mittag [MIT00] emphasises the increasing importance of using multimedia databases in

education, based on the results produced by his research where he tests its effectiveness.

Another area of particular interest is the use of multimedia databases for virtual reality.

Soetebier et al. [SDB99] proposed a database to store the different components that are

needed to construct their virtual reality environment. The benefits of using a database include,

according to them, easy and central administration, reusability of components, and seamless

integration between the database and their environment.

2.2 Database Tuning and Configuration

 Database Tuning

Sasha and Bonnet [SB02] describe database tuning as making the application run faster. This

can either mean a greater throughput or a faster response time for time-critical applications.

Database tuning involves identifying where the performance is being slowed down, known as

the bottleneck, and tuning this.

The tuning of databases should ideally be automatic so that they can adapt to any variation in

the workload. Much work is being done in this area, but unfortunately difficulties arise from

the fact that each database has a different physical and logical implementation, varied

workload, and specific performance requirements [KL99]. As a result, automatic tuning is yet

to become a built-in feature of commercial databases and database tuning still has to be

performed manually by identifying the bottlenecks and adjusting the configuration of the

database in order to eliminate them.

Sasha and Bonnet studied performance tuning and consider the areas illustrated in Figure

2-1as possible bottlenecks.

 13

nt of these tuning areas are the

omponents of the Operating System (OS). Of these, the highlighted areas, including the

Figure 2-1Outline of database tuning areas

Given the nature of multimedia applications, the most releva

Database Tuning

Index Tuning

Database

Buffers

Amount of

Memory

Scheduling

Locking and

Concurrency Control

Relational

System Tuning

Operating System Hardware Tuning Logging and

Recovery

Tuning the Core Components

Multiprogramming Disk Layout

and Access

c

amount of memory, the disk layout and access, and the database buffers, are the most

significant.

 14

atabase applications [BMK99].

oncz et al. [BMK99] suggest one reason for this is that the speed of CPUs has advanced

he subsystem responsible for the allocation of the buffer space, known as the buffer

n using

LOBs. They evaluated the performance of the database with different configurations,

findin tuning they managed to improve the performance

firstly by enforcing concurrency control, and secondly

y assigning the query its required resources as soon as it becomes available. For example,

while the CPU is servicing one query, another query might be accessing the disk

2.2.2 Operating System Tuning

Main memory is increasingly becoming the bottleneck for d

B

rapidly, which means that they are no longer the bottleneck. Database buffers are the sections

of the main system memory that are reserved for the database’s usage. Database buffers that

contain the required data reduce the disk Input/Output (I/O), and as a result they significantly

improve the performance of a database, as access to main memory is much faster than disk

access [ORS96]. The large size of multimedia data (among other reasons) means that

reducing the amount of I/O is extremely important, and the amount of memory reserved for

the database buffers is crucial for these types of applications.

T

manager, also influences the performance of the database to a large extent [ORS96]. Ozden et

al [ORS96] studied different replacement algorithms used for multimedia storage systems,

and found the currently used approximation algorithms, namely Least Recently Used (LRU)

and Most Recently Used (MRU), yielded poor performance.

Storage access refers to the physical mapping and storage of the data on the underlying disk.

Storage is implemented by dividing the files in which the data is stored into partitions of fixed

length, known as database blocks. To improve the performance of a database, the goal is to

reduce the number of blocks transferred between the disk and main memory. Shapiro and

Miller [SM99] investigated the tuning of both I/O and memory for databases whe

B

g that through memory and I/O

significantly (see section 4.6.2 for more details).

Two other tuning areas of the operating system that are less relevant to multimedia data are

multiprogramming and scheduling. Multiprogramming refers to the concurrent execution of

queries, where performance is improved in a multi-user environment by simultaneously

running queries. This is made possible

b

simultaneously. Scheduling refers to the process of delaying the movement of blocks from the

disk to main memory so that it can reorder them in the most logical manner. The more the

 15

reas

Additional database tuning areas include index tuning and relational system tuning. Index

e schemas and query the data, and thus there is often only

 single way for each DBMS to implement them.

disk-arm movement of the hard drive is reduced by this technique, the larger the performance

improvement. Oracle supports both multiprogramming and scheduling automatically.

2.2.3 Core Component Tuning Areas

Tuning the other core components of the database include issues such as hardware setup,

locking and concurrency control, and logging and recovery, as shown in Figure 2-1. Although

hardware configuration has a large influence on the performance, it is independent of the

database. Locking and concurrency control is relevant only in multi-user environments, while

logging and recovery is necessary to restore a database when something goes wrong. Both of

these are already supported by Oracle.

2.2.4 Additional Database Tuning A

tuning generally improves the performance of a database by reducing the overhead and

amount of time needed to search and retrieve data from the database. It is important in a

multimedia system, as emphasized by Kornacker [KOR99] who studied the high-performance

of extensible indexing in ORDBMS. Indexing is usually automatically implemented in

databases in the best possible manner, and thus studying this tuning area is generally less

important than other tuning areas. Oracle is one such ORDBMS that automatically provides

efficient indexes for multimedia data. Relational system tuning refers to the design of the

database schemas, as well as the design of the queries that access the data stored in the

database. Relational system tuning is less important with multimedia applications since

special code is required to create th

a

2.3 Performance Evaluation

2.3.1 Value of Performance Evaluations

Performance evaluations can be used to assess new algorithms or techniques [CHA95,

CDN93, and STO93]. This is achieved by evaluating the new as well as the older or

previously used technology, and these results can be used to compare and contrast the two

technologies revealing the superior of the two. Performance evaluations can also be used to

highlight the weaknesses of a system to ensure its quality [CHA95, and CAR97]. This is

achieved by evaluating a single system and using the results to identify where the system

performs badly as well as where it excels. Performance evaluations can also be used as a

 16

 the next chapter.) Benchmarks use performance metrics of which the main

vailable ones are response time, throughput, price/performance, and resource utilisation.

Resp the query processing power because it is a measure of the

n the

ext chapter). It is also beneficial to include throughput as it evaluates a database from a

n hundreds of experiments. A

single v

as it d rformance is poor. It is usually beneficial only if the

to compare different systems with the intention of

ranking them. Multiple valued results are more common as they have several uses, including:

identify

diagnostic tool to assist in the efficient implementation of the system [CHA95, RIS00, and

RUN02]. This is achieved by evaluating a single system and altering different parameters to

improve the overall performance.

2.3.2 Measuring Performance

Theoretical information, although useful, has its limitations and it is only through empirical

tests that a true understanding of database performance can be gained. A benchmark is one

mechanism for carrying out performance evaluations empirically. (Benchmarks are discussed

in more detail in

a

onse time is also known as

speed of individual operations or queries. It is the elapsed time from when the user initiates

the query or function until the operation has been completed or committed. For example, the

time from when a key is pressed to the time the result is displayed on the screen. Throughput

differs from response time in that it is a measure of the overall performance of the system. For

example, it can evaluate the amount of data that a database can process on average in one

second. Resource utilisation is a measure of how much a particular resource is used, but it is

not commonly used for database performance evaluations. Rather, it is of greater importance

in the evaluation of a systems’ hardware. Response time is important to database performance

evaluations, as can be seen by the number of previous evaluations that include it, such as

BUCKY, Wisconsin and the Michigan benchmark (These benchmarks are discussed i

n

different aspect.

2.3.3 Calculating Performance

There are two approaches to presenting the results of a performance evaluation. The first is to

generate a single value with which to rank or rate the system, while the second approach is to

produce multiple results, which may be results for tens or eve

alue is much easier to interpret and sometimes also to calculate, but its use is limited

oes not reveal where the pe

performance evaluation is being used

ing weaknesses and strengths, comparing systems, and tuning systems. If a benchmark

 17

turns a moderate number of values, approximately 10 to 20 results, it has the advantage that

etic mean answers the question:

ample, in the

valuation of the performance of hardware [DIX93] since the same results will be obtained

ystems, irrespective of which computer’s times are used as a normalisation

factor [JM95]. The disadvantage of the geometric mean is that it does not preserve total run

of times or rates, or a ratio of times or rates.

 set of times is a measure of how much Time is taken per unit of Somethings, while a set of

re

it can be used for more than just a comparison and is also not too confusing to interpret.

To calculate the performance of a system, some evaluations use the geometric mean while

others use the arithmetic mean and both methods have previously been used in performance

evaluations. To select the most appropriate method for a particular situation it is necessary to

have a greater understanding of the required evaluation. Jacob and Mudge [JM95] wrote a

paper that describes the differences between using geometric, arithmetic, and harmonic

means. In simple terms, geometric mean answers the question:

“If all the quantities had the same value, what would that value have to be in order to

achieve the same product?”

Arithm

“If all the quantities had the same value, what would that value have to be in order to

achieve the same total?”

Harmonic mean is the inverse of the arithmetic mean.

In this paper, they explain which method is most appropriate to use for various calculations by

using examples to illustrate what the results would be for each case. They found that using the

geometric mean has the advantage that it preserves values across normalisation, but that

normalised values must not be averaged. Geometric mean is used, for ex

e

when comparing s

times, which are generally the values that are of most interest when doing a performance

evaluation of a database. For this reason, Jacob and Mudge only consider arithmetic and

harmonic means. They recommend that the harmonic mean be used for calculations with rates

and the arithmetic mean for calculations with times.

The next decision to make is whether to use a set

A

rates is how many Somethings are accomplished per Unit Time. A ratio differs in that it is a

unitless measure which can be calculated using either time or rate. It is used to identify how

much faster a system performs. Jacob and Mudge recommend using the

ArithmeticMean(times) when calculating the response time and using the

 18

armonicMean(rates) when calculating throughput. Based on their argument, arithmetic

ean is the most suitable method of calculating the performance of databases.

.4 Summary

e of multimedia data has lead to the need to store and

anipulate such data efficiently. The problem is that multimedia data is complex in structure

lity that standard RDBMS cannot support. More advanced

 been developed, of which ORDBMS is currently the most suitable for handling

edia data. ORDBMS have the simplicity of RDBMS as well as the advanced

m to work optimally, and as such ORDBMS also need to be

tuned. Significant da

regions, as well as the storage on and access to the physical disk. To assist in the tuning of the

datab as a

bench

H

m

2

The increase in production and us

m

and requires specialised functiona

DBMS have

multim

functionality found in OODBMS.

Databases need to be tuned for the

tabase tuning areas include the buffers that form the database memory

ase, a performance evaluation can be carried out using the appropriate tools, such

mark.

 19

benchmarks. It includes a review of the leading benchmark’s objectives, design

f a system. Database

enchmarks are a subset of benchmarks that are designed to measure the performance of

t of database schemas, test data, a workload to represents the

Chapter 3 : Benchmarking Database: A Survey
The previous chapter surveyed multimedia databases, and the tuning and

evaluation of their performance. This chapter surveys existing database

decisions, and problems. It also describes the requirements of a multimedia

database benchmark.

3.1 Overview of Benchmark

A benchmark is a tool for empirically measuring the performance o

b

specific databases. They consis

users’ actions (such as the queries they execute), and a timing mechanism. In this section,

existing benchmarks are investigated with particular reference to how each of these

components is implemented in the benchmark.

3.2 Existing Benchmarks

Existing database benchmarks can be grouped into four categories: generic, business,

engineering, and advanced. An additional category is architecture benchmarks, which are

hardware benchmarks and not database benchmarks.

 20

.2.1 Generic Benchmarks

of features unique to a type of DBMS, for

he Wisconsin benchmark was designed to test the functionality of RDBMS in a simple yet

scientific manner. It has been widely used in numerous performance evaluations [BDT83] as

he second is to be easily

nderstood so that new queries can be added effortlessly. These objectives have made

lar benchmark and an invaluable tool for RDBMS [RUN02]. Its popularity

BMS, as there were no suitable

ols at the time [CAR97]. The benchmark focuses on the unique ORDBMS features not

ese are row types with inheritance, inter-object references, set-

3

Generic benchmarks evaluate the performance

example testing the performance implications of including inheritance in ORDBMS, and not

features found in a specific type of application, for example testing the performance of any

database with a select intensive workload. These benchmarks are commonly used to

determine whether a specific type of DBMS meets the requirements of the user.

3.2.1.1 RDBMS - Wisconsin

T

well as acting as a guideline to aid designers in creating new benchmarks [RUN02]. This

benchmark has two main objectives. The first is to test all the main components of RDBMS,

including selection, projection, joins, modify, and delete, while t

u

Wisconsin a popu

was also due to its use in testing the performance of database systems in an unbiased manner.

Unfortunately this benchmark is not without problems. Foremost amongst these are that it is

not representative of “real” applications as it is missing tests for some critical functionality,

such as bulk loads and database recovery operations [DEW93]. It was also criticised for

testing single user environments only, but this was not found to be totally true because of the

lack of support for the multi-user benchmark that was later developed.

3.2.1.2 ORDBMS - BUCKY

BUCKY was designed to evaluate the performance of ORD

to

found in standard RDBMS. Th

valued attributes, methods of row objects and ADT attributes and their methods. An

additional objective of this benchmark is to compare the performance of ORDBMS with

RDBMS in order to establish the maturity of ORDBMS technology. ORDBMS schemas and

their equivalent RDBMS schemas are provided so that this can be achieved. BUCKY is

limited in that it does not have the capability to evaluate real systems. It can only evaluate the

performance of the object extensions found in ORDBMS, and not the other functionality

required by real applications.

 21

DN93, CHA95, and RIS00]. ACOB is a simple benchmark, aimed at testing sequential

 of complex objects with the objective of comparing object, page and

.2.2.1 AS3AP

le (AS3AP) benchmark is designed for RDBMS,

es, it has been found to be difficult to transfer to other systems since the database

enerator and the multi-user tests are in reality not portable.

ho wanted to provide a benchmark that could measure the

erformance of the entire computer system [DIX93]. This is achieved by enabling the

ny system independent of its underlying configuration. For example,

3.2.1.3 OODBMS – 007 and predecessors

Several benchmarks have been designed to test OODBMS, such as the Altair Complex-Object

Benchmark (ACOB), Sun benchmark, 007 benchmark, and the HyperModel benchmark

[C

scans, reads and updates

file server architectures [CHA95]. The other three are not only designed to test OODBMS but

also engineering applications in specific, and thus are discussed in section 3.2.4.

3.2.2 Architecture Benchmarks

Architecture benchmarks are designed to evaluate the underlying hardware of a system rather

than the database system. These benchmarks are important nevertheless as their design

requires similar decisions to those made for database benchmarks.

3

The ANSI SQL Standard Scalable and Portab

with a special focus on testing specialised hardware, known as database machines [BOT93].

The AS3AP benchmark consists of both single-user and multi-user experiments with the

objective of being more generic than other benchmarks. The single-user tests are based on the

Wisconsin benchmark, while the multi-user workload represents a mixture of Online

Transaction Processing (OLTP), information retrieval, and long transactions. Additional

objectives of this benchmark are scalability and portability, providing a uniform metric, and

minimising human effort in its implementation. Although it was designed with these

objectiv

g

3.2.2.2 SPEC Benchmark

The Standard Performance Evaluation Cooperation (SPEC) was developed by a consortium of

22 vendor companies w

p

benchmark to run on a

the system can have any value for its components such as the memory system, operating

system, and clock rate. This benchmark tests single processor and multiprocessor machines,

as well as multitasking operations to emulate multi-user workloads. The SPEC benchmark

 22

, and memory

us utilisation.

 to test the architecture of computers include Dhrystone, Linpack

d Whetstone. Although these benchmarks were popular when first developed [DIX93], they

 designed to test the performance of integers

A02]. They consist of several industry standard benchmarks for evaluating

ifferent types of workloads for various applications on RDBMS. TPC used the approach of

produces a single number, which has the advantage that it can easily be used to rank systems.

Unfortunately the usage of the SPEC benchmark is limited as it cannot be used to analyse

systems any further. It also has the problem that it calculates its results using geometric mean,

which is unsuitable for evaluating the performance of databases, as explained in section 2.3.3.

3.2.2.3 MediaBench

MediaBench tests specialised hardware designed to support multimedia and communication

applications [LPM97]. Realistic results were achieved by designing a benchmark that

represents multimedia applications as accurately as possible, and does so using a high-level

programming language. After designing the benchmark, its results were compared to similar

results from SPEC. It was found that MediaBench was valuable since significant statistical

differences were shown between the two benchmarks in at least four areas, including the

achieved instructions-per-clock, instruction cache hit rate, data cache read hit

b

3.2.2.4 Other Architecture Benchmarks

Other benchmarks designed

an

are no longer widely used. Firstly, Dhrystone is

on small machines with simple architecture. This is usually only used for embedded systems,

making Dhrystone largely unrepresentative of any realistic system [LPM97]. Although

Linpack and Whetstone are better than Dhrystone as they are designed to test floating-point

performance [DIX93], they are still too unrepresentative of any realistic system to be widely

used.

3.2.3 Business Benchmarks

Business benchmarks evaluate the performance of applications commonly used in business-

orientated environments, such as On-Line Analytical Processing (OLAP) and Decision

Support Systems (DSS).

3.2.3.1 TPC Suites

The TPC benchmark suites were developed by the Transaction Processing Performance

Council [TR

d

 23

benchmarks through a process of designing, revising, formalising, and

 benchmarks are designed to test engineering applications, which are often

esigned using OODBMS.

 in hypertext environments later replaced this benchmark.

ollowing these, a benchmark known as 007, was designed to measure the performance of a

S, such as the speed of pointer traversals, the efficiency of

developing the

administering rather than attempting to create an all purpose benchmark at once. This process

left some of the earlier benchmarks, namely TPC-A, TPC-B, and TPC-D, obsolete, whereas

others which are more advanced, including TPC-C, TPC-H, TPC-R and TPC-W, are still

widely used. These benchmarks became obsolete since they are unrepresentative of real

applications, and sometimes they are bias towards a single vendor’s system making them

limited in a fair comparison. TPC-C is an order-entry benchmark representing business

applications, while TPC-H and TPC-R both evaluate decision support applications by testing

business oriented queries and concurrent data modification [TRA02]. These decision support

applications are characterised by a large database and complex queries. For this type of

application it is useful to have prior knowledge of the queries, and so TPC-R provides this,

making it different from TPC-H [TRA02]. TPC-W differs from the rest of the TPC suite as it

consists of business activities that are in an electronic commerce environment.

3.2.4 Engineering Benchmarks

Engineering

d

3.2.4.1 Sun Benchmark, 007 and Derivatives

The Sun Benchmark, also known as 001, is based on the EDB benchmark with a few

modifications [CHA95]. The HyperMedia Benchmark that is based on the node-and-link

graph structure often found

F

wide range of features of OODBM

updates and the performance of the query processor [CDN93, and CHA95]. This benchmark

only tests a single user environment given that there is little contention for data by other users

in engineering applications. The 007 benchmark has the advantage over the earlier

benchmarks of testing important functionality which the others missed, such as complex

objects and sparse versus dense traversals. Unfortunately it attempts to be too comprehensive

and is not concise enough, producing too many numbers, which can be tedious to collect, and

confusing to interpret. Another problem with the 007 benchmark is that it mainly covers

engineering tools such as Computer Aided Design (CAD) tools and is not applicable to other

OODBMS.

 24

single user environments for the same reason given

bove. The most significant difference between this benchmark and earlier engineering

ch simpler to implement and understand as it focuses on basic

ML) databases, Geographical Information Systems (GIS), and

ocument retrieval systems.

s a result it has been run on both semantic and relational

atabases. Unfortunately, since a predefined implementation is not enforced, this benchmark

s are dependant on the method chosen, and thus the results

3.2.4.2 EDB

Since performance is crucial when dealing with engineering applications such as CAD tools,

there is a strong need to benchmark the database systems used to support them [CAT93]. This

need brought about the development of the Engineered Database Benchmark (EDB).

Although engineering applications differ considerably, the EDB aims to test the operations

that Cattell found are most frequently performed. These operations consist of insertion and

look up of objects in addition to more complex ad-hoc queries, all in a scalable environment.

Additional aims included testing if systems support one or more of the following: caching the

database in main memory, avoiding the overhead of query optimisation, using pre-computer

links, and making alternative database server architectures available [CHA95]. This

benchmark is only implemented for

a

benchmarks is that it is mu

performance, leaving out functionality that doesn’t affect engineering applications, such as

manipulating BLOB fields, rather than attempting to be a more comprehensive benchmark

[CAT93].

3.2.5 Advanced Database Benchmarks

Advanced database benchmarks evaluate the performance of specialised databases or complex

applications. Such benchmarks include those designed for semantic databases, eXtensible

Mark-up Language (X

d

3.2.5.1 Semantic Benchmark

Rishe et al. [RIS00] proposed a benchmark to measure the performance of semantic

databases. The focus of this benchmark is on databases that require sparse data, complex

inheritance and many-to-many relationships. Their objective was to design a benchmark

where a general statement of the problem is given, instead of enforcing a predefined

implementation. This has the advantage that the benchmark can be implemented efficiently

for any type of database, and a

d

has the disadvantage that the result

can be distorted.

 25

 of relevancy, portability, scalability, and

mplicity. This makes Michigan an important tool for designers, especially when attempting

enchmark was designed to provide the Earth Science (ES) community

ith a method of comparing applications, such as GIS databases [STO93]. The purpose of

ergence of Full-Text document Retrieval systems (FTR) in the late 1980s brought

at it tests content-based searches rather

ple key-word searches.

cific.

m Gray’s Benchmark Handbook for Database and Transaction Processing Systems

3.2.5.2 Michigan

Since XML querying has recently become more important, the Michigan benchmark was

designed to evaluate the performance of such systems [RUN02]. The objective of the

Michigan benchmark is to provide a benchmark for XML databases that is equivalent to the

Wisconsin RDBMS benchmark. It focuses on a variety of representative tasks that XML

databases can perform. Unlike other XML benchmarks, these tasks are the basic queries such

as selections, joins, and aggregations [RUN02], and not those found in a specific application.

Michigan also has the fundamental characteristics

si

to identify bad implementations of XML databases. It does not provide insight to assist in the

selection between different products.

3.2.5.3 SEQUOIA 2000

The SEQUOIA 2000 b

w

SEQUOIA 2000 is to provide a baseline case to judge new technologies, as well as to give the

database community some insight into the ES needs. When considering ES applications the

characteristics that Stonebraker et al. identify are a massive size, complex datatypes, and

sophisticated searching. These characteristics are not exclusive to ES applications, and so

SEQUOIA 2000 has the advantage that it can also be used to benchmark engineering and

scientific applications.

3.2.5.4 FTR Benchmark

The em

about the need for a benchmark to evaluate these systems [DH91]. The FTR benchmark was

developed with the objective of being simple yet still generating a realistic FTR workload.

This workload simulates a multi-user environment where requests to search for and retrieve

documents from what was considered to be large document databases (1GB or more) are

executed. The FTR benchmark has the advantage th

than sim

3.3 Criteria for Benchmark

The criteria that a benchmark must satisfy depend on whether it is generic or domain-spe

Ji

 26

fic benchmarks, for example, a multimedia database benchmark. The rest of this

ction is based on a domain-specific benchmark. Jim Gray lists the four criteria that should

ific benchmark as: portability, relevancy, scalability, and

ark [RUN02].

Portability m ark is easy to implement and use on many different systems.

This criterion is crucial if a benchmark is used to compare systems. For example, SEQUOIA

. Further evidence of the

importance of a relevant benchmark comes from the failure of both the Dhrystone benchmark

and the TPC-E benchmark. The former was unrepresentative of any actual workload

[LPM97], and the relevancy of the latter lay only in a small scope [RIS00].

Scalability means that the large systems. Although

this appears to be one of the less important criteria, as some successful benchmarks do not

d [RUN02]. Examples of such benchmarks are the Sun Benchmark for OODBMS

[CDN93], and DebitCredit and Wisconsin for RDBMS [RUN02, BDT83, and CHA95].

[GRA93] appears to be the de facto work on benchmarks and thus is often used as a design

guideline. Jim Gray believes that generic benchmarks give a general idea of a system’s

performance, but that no single metric can measure all applications. There is thus a need for

domain-speci

se

be satisfied by a domain-spec

simplicity. Benchmark designers generally attempt to follow this guideline, as clearly seen in

the design of the Michigan benchm

eans that the benchm

2000 tested ARCINFO, GRASS, IPW and POSTGRES [STO93], Michigan tested a native

XML database and an ORDBMS [RUN02], and BUCKY tested a standard RDBMS and an

ORDBMS [CAR97].

Relevancy means that the benchmark must measure typical environments and situations rather

than uncommon or insignificant cases. The importance of relevancy is emphasised by the

stress that benchmark researchers place on the benchmark being representative of a real

application. Benchmarks that closely match real workloads, such as TCP-C, TCP-D,

Wisconsin, and SEQUOIA 2000, have been widely accepted

 benchmark is applicable to both small and

include this characteristic, it does increase the usefulness of the benchmarks. It makes the

benchmark applicable to a wider range of systems, as shown by the TPC suite [TRA02, and

STO93], and the Wisconsin Benchmark [DEW93].

Simplicity means that the benchmark is easy to use and extend, and is an important

characteristic of a benchmark as shown by the trend of simple benchmarks becoming popular

and well use

 27

Two additional criteria that Horricks et al. [HPS00] list as being important are reproducibility

and being representative. A benchmark is said to be reproducible if it produces the same

results repetitively, and to be representative if its tests cover a significant area of the whole

input space.

3.4 Design of Benchmark

The design decisions made for existing benchmarks, primarily domain-specific benchmarks,

are reviewed in this section.

3-1.

3.4.1 Schema Design

The data found in a database may change over time but this is always within the constraints of

the schema. The schema controls the overall design of the database and the data must conform

to this design, making schemas an important consideration in the design of benchmarks.

The schemas of existing domain-specific benchmarks are modelled after typical applications

found in the domain being tested. It is difficult for these schemas to represent all possible

models in that domain, and as a result they frequently use a representative subsection of the

domain. This is illustrated by the schema of the SEQUOIA 2000 benchmark that is modelled

after Earth Science applications [STO93] as shown in Figure

RASTER

Time
Location
Band
Data

POINT

Name
Location

POLYGON

Landuse
Location

GRAPH

Identifier
Segment

Figure 3-1 SEQUOIA 2000 schema ([STO93])

The table names, such as Raster and Graph, as well as the data in the tables, such as Time and

Location, found in the SEQUOIA 2000 schema are unique to Earth Science applications since

they describe geographical information. This type of data is not expected in the schemas of

other types of applications.

The schemas of engineering benchmarks are generally modelled on engineering applications.

For example, the 007 benchmark is modelled after an engineering application as shown in

Figure 3-2.

Complex
Assemblies

Base
Assemblies

Composite
Parts and

Documents

Figure 3-2 Structure of 007 benchmark modules (Based on figure 2 [CDN93])

The 007 schema has a separate table to store the information for each of the categories:

complex assemblies, base assemblies, composite parts and documents. These categories and

the type of data related to them is specific to engineering applications and so it is not likely

that the ex

pplication, as shown in Figure 3-3.

act tables would be required by the schemas for other application types.

The TPC suite aims to cover the whole business domain, using individual TPC benchmarks

that focus on subsections of the domain. For example, the TPC-D benchmark has DSS

schemas whereas the TPC-H benchmark has OLTP schemas [TRA02]. The FTR benchmark

is another example, where the benchmark is designed after document systems and as such the

schema is designed as a set of document partitions [DH91].

A slightly different approach to the design of the schema is found in benchmarks that are

designed to evaluate a specific type of technology, often a new technology. Benchmarks

aimed at testing a particular technology have a generic schema that includes the columns

necessary to test unique functionality rather than being modelled on a particular application.

Wisconsin [DEW93] and any of its derivatives [BD84, and BOT93] illustrate this well as their

schemas do not relate to valid applications. BUCKY uses a different approach since its

schema is modelled on a university a

 28

Person

Student Employee

Instructor

Department Enrolled Staff TA Professor

 29

Course CourseSection

courseOffered
dept

Sections
course

Teacher
Teaches

Section

Student
HasTaken

Major
majors

Student

Chair

Employees
WorksIn

Advisor
Advises

Figure 3-3 BUCKY benchmark schema structure (Based on figure 1 [CAR97])

The schema shown in Figure 3-3 is different from the two schemas previously seen in Figure

ark suite. If test

ata is provided it must be decided what method should be implemented to generate the data

and what data constitutes a representative sample (both size and format). Test data is normally

3-1, and 3-2 since it does not have to be modelled for a specific application type. The table

names and data in BUCKY’s schema could be completely different, whereas those of the

SEQUOIA 2000 and 007 schemas cannot be altered as they are based solely on a type of

application. The complex relationships between the tables is important with BUCKY’s

schemas as these relationships are used to test Object-oriented features, such as inheritance.

When a benchmark is designed to test new technology there is usually both a schema relevant

to the new technology as well as a standard relational schema. Since the BUCKY benchmark

is designed to evaluate ORDBMS, it has an Object-Relational (OR) schema which has an

object for each item shown in Figure 3-3, and a relational schema which has all the items

excluding those shaded grey. Rishe et al’s [RIS00] semantic benchmark also has multiple

schemas including a semantic schema, a sparse relational schema, and a compact relational

schema.

3.4.2 Test Data

A well designed benchmark should provide test data as part of the benchm

d

either produced by synthetic means when needed [BD84, RIS00, and RUN02], or provided

with the benchmark.

 30

chmark, where the data generator DBGen is provided with the benchmark.

s a national, regional (x16) and global (x100) size

atabase [STO93], the 007 benchmark has a small, medium, and large size database

ark workload, the type of queries, the resulting dataset, and the number of

sers must all be considered. Benchmark workloads could be representative of a particular

Synthetic data generation is typically used to produce test data when distinct but simple

patterns are required. Examples of such distinct patterns include a normal Gaussian

distribution (where data follows a bell shape) [RIS00], a Zipf distribution (where the data

forms a straight line only when plotted with logarithmic scales on the axes) [RUN02], or

when unique values are required. Examples of benchmarks that generate data synthetically are

the Michigan benchmark [RUN02], where a template is used to generate descriptions, and the

AS3AP ben

It is much more difficult to produce a representative range of multimedia data by synthetic

methods. The SEQUOIA 2000 [STO93] benchmark and the FTR benchmark [DH91] rather

require that their multimedia data has to be downloaded with the benchmark. This method

requires bandwidth to download the data and space to store the data, but allows a finer control

on the test data.

Once the decision of how to provide the data is made, the format and amount of the data has

to be determined. For the test data to be representative of a real workload, the amount of data

must be considered in terms of the size of individual data items as well as the number of data

items. Most benchmarks incorporate some form of scaling so that they cover a wider range of

data sizes. This is achieved by providing multiple sizes of the databases. For example, the

SEQUOIA 2000 benchmark provide

d

[CDN93], and the EDB benchmark has a standard size, a large database (x10), and a huge

database (x100) [CAT93]. Other methods of scaling are seen in the FTR benchmark, which

increases by 1 document partition for every 50 search transactions [DH91], and the Michigan

benchmark, which increases the depth and fan-out values [RUN02]. Wisconsin measures

scale-up by selecting a base hardware configuration and a base database size and

proportionally increases both, for example doubling the size of the database as well as the

number of processors [DEW93]. This method is very concise, but it is generally sufficient to

use size-up, where the hardware configuration remains constant and the database size

increases, to measure the scalability of most operations.

3.4.3 Workload

To define a benchm

u

 31

appli rkload of the 007 benchmark tests queries unique to

application. For example, BUCKY has queries to test the additional feature found in

RDBMS that are not in RDBMS [CAR97]. The value of a workload that only tests a limited

heir benchmark was to assist database developers in

nderstanding and evaluating alternative methods for implementing these basic operations.

ost benchmarks simulate a single user environment, with the exception of Boral et al.

r of copies of the program executing concurrently. This represents the

number of users querying the database simultaneously, and can be up to a maximum of 16 in

their benchm

differen that

all

rograms. The transaction mix controls the queries executed, which is a selection from Query

cation. For example, the wo

engineering workloads, such as the speed of traversal, and the workload of the SEQUOIA

2000 benchmark tests 11 queries that are unique to Earth Science applications. Alternatively,

a benchmark workload could be designed to test the most important functionality in a new

type of

O

amount of functionality might be questioned, as its benefit is quite extensively restricted

[CAR97].

A workload can be designed to test basic or composite queries. The first of these approaches

is often used as the cost of performing composite queries can generally be calculated from the

results of the simple queries. Runapongsa et al [RUN02] used this approach in the Michigan

benchmark, where they only evaluated the basic queries that are performed when using an

XML database. The aim of t

u

Another benchmark that evaluates basic queries is the Wisconsin benchmark, which has

relational operations including selection, projection, deletion and modification, join, and

aggregation. Boral et al’s [BD84] benchmark focuses on the four basic query types that they

feel are adequate to evaluate the performance of a system under a wide variety of workloads.

In contrast, all the queries of the TPC suite are composite in order to simulate a set of queries

usually found in a single transaction.

M

[BD84] who defined a methodology to benchmark multi-user systems. They suggest that three

factors influence the performance of transactions in a multi-user environment:

multiprogramming level, degree of data sharing, and transaction mix. Multiprogramming

level controls the numbe

ark. The degree of data sharing controls the data partition that is accessed. Three

t degrees of data sharing are defined, 0%, 50% and 100%, where 0% means

separate partitions are accessed and 100% means the same partition is accessed by

p

I to Query IV. The code is written so that it accepts these three parameters and tests the

possible outcomes.

 32

sions to be made about the performance metric,

hether the final results are presented as multiple values or condensed into a single value, the

mann e the operations, and the unit that the results

Benchmarks can either present their results as ultiple values, ranging from two to a few

hundred, or they can use a formula to summarise their results into a single value. Examples of

benchmarks that leave the igan, which has 49 tests,

n ks that summ

Q

alued benchmark as these resu

rmance.

It must be decided what should be included in the timing. With response time it is usually

easy to identify what needs to be included, but with throughput it is often more difficult. The

problem is deciding exactly which bytes should be included. Musick and Critchlow [MC99]

explain this dilemma:

“if the system reads 1Mb of useful information from a 3Mb interleaved array, but had

to read the entire 3Mb to get it, was the total amount of data read 1Mb or 3Mb?”

They use apparent throughput, which is much lower than the raw I/O throughput [MC99].

nts, the results are most often recorded in seconds as

en in BUCKY, Wisconsin, and Michigan amongst others. Throughput results are usually

3.4.4 Performance Measurement

Performance measurements require deci

w

er in which the code is implemented to tim

are in.

Performance evaluations can use a single performance metric or multiple performance

metrics. If they use a single performance metric it is usually response time, also known as

elapsed time. For example, response time is used in the Michigan benchmark [RIS00], the

BEAST benchmark [GGD95], and the Wisconsin benchmark [DEW93]. Benchmarks that

implement more than one performance metric include SEQUOIA 2000 [STO93] and the Full-

Text document Retrieval (FTR) benchmark [DH91] which uses response time and

price/performance, and the Transaction Processing Council (TPC) suite [TRA02] which uses

these two as well as throughput.

 m

ir results as multiple values include Mich

and 007, which has 105 tests. Examples of be chmar arise their results into a

single value are BUCKY and EDB. Although SE UOIA 2000 specifies that 11 numbers must

be reported, it is also an example of a single-v lts are used to

calculate a single value that measures the overall perfo

The unit in which the results are recorded, as well as their subsequent formatting must be

decided on. For response time experime

se

 such as queries/unit or Mb/unit where the

 language offers functionality to connect to and query a database as well as to

me the operations. Additional factors influencing the decision are the popularity and easy of

use o nguage at that time. Many of the benchmarks reviewed in this work

measured in Mb/s, but there are variations of this,

time unit can be minutes or even hours.

3.4.5 Programming Language

When designing a benchmark, the programming language is usually selected based on the

functionality that it provides. For example, a database benchmark requires that the

programming

ti

f the programming la

were created around the early 1990s when C and C++ were the most popular languages. This

is reflected in the fact that several of the benchmarks are written in these languages with

embedded SQL [MC99]. For example, the TPC benchmark suite is coded in ANSI C and

ANSI SQL2 [TRA02]. The EDB benchmark is also coded in C and embedded SQL, using a

procedure called time100() that measures the time in seconds. A sample of the structure of

this code is given in Figure 3-4.

Another language of

which uses the PER

statements and the

structure of Wiscons

starttime = time100();

for(j=0;j<mrepeats;j++)

{

 exec sql …;

}

endtime = time100();

printf(… , (endtime-starttime))/100);
33

Figure 3-4 Sample EDB benchmark C code

ten used is PERL. This language is used in the Wisconsin benchmark,

L DBI module to communicate with the databases and execute SQL

Benchmark module to time the operations [DEW93]. A sample of the

in’s code is shown in Figure 3-5.

his sectio

bench

r multime

 Specialised

SEQUOIA

3.5 Proble

T

marks

database. T

programmin

requirement

benchmark.

3.5.1 Schem

The schema

where these

BOT93, CA

fo

that have

benchmarks

multimedia

exist includ

[CDN93], t

attribute [S

these includ

$start_time = new Benchmark;

for($ti=0;$ti<$#table_names;$ti++)

{

 $sth=$dbh->do(“ …”);

}

$end_time = new Benchmark;

print”timestr(timediff($end_time,$start_time))”;
34

s

n summarises the problems, for each aspect of the design, of the existing

one of them is directly suitable to evaluate a multimedia

RIS00]. These benchmarks are not designed

dia applications, and therefore their schemas do not contain any database tables

old multimedia data. Altering the schemas of existing

Figure 3-5 Sample Wisconsin benchmark PERL code

 programming languages have also been implemented, such as MONET for the

2000 Benchmark [STO93].

ms with Existing Benchmark

 to illustrate that n

he main design areas that are reviewed are the schema, test data, workload, and

g language. The measurement of the performance is not reviewed because the

s for this in existing benchmarks do not differ from that of a multimedia

a Problems

s of existing benchmarks usually have tables that consist of several attributes,

 attributes are mostly simple datatypes such as integers, strings or dates [BD84,

R97, CAT93, DEW93, RUN02, and

columns that can h

 may produce a viable multimedia benchmark if they can be adapted to model a

application without too much difficulty. Benchmarks where multimedia attributes

e the 007 benchmark that has documents and associated “graphs of atomic parts”

he FTR benchmark that has documents [DH91], SEQUOIA 2000 that has a raster

TO93], and the TPC-W that has images [TRA02]. The problem is that none of

es more than one multimedia datatype which makes them of limited use.

 35

.5.2 Test Data Problems

enchmark. In the benchmarks

r data gen ternative m tically gen ta are

u or multimedia data. It was not even po of ith

s edia tes t icult to a ssing

f neither the s a ed to handle s nly

a nchmarks alr a them inclu f the

n edia data, the size

o Q ben For

e the MediaBe HERMES project have a limited variety of

i formats [LPM97], while the TPC-W

of all the reviewed benchm

3.5.3 Workload Problems

The existing benchmarks evaluate many different workloads, but none of them focuses on the

unique requirements found m do test the same type of

tatement, but also an operation to upload or

port the data into the database. Another problem is that none of the benchmarks test the

, previously used languages are not as portable or easy to use as desired. It

ould also be beneficial if the programming language had built-in functionality to support

3

A multimedia benchmark must either use an appropriate method to synthetically generate

multimedia data or provide the multimedia data with the b

eviewed, the erators and the al ethod to synthe erate da

nsuitable f ssible to replace the sets test data w

uitable multim t data. The main problem is hat it would be diff dd the mi

ormats as chemas nor the SQL code h s been design uch data. O

 few be eady contain multimedia d ta, but none of de all o

ecessary multimedia datatypes. Of the benchmarks that do include multim

f data is too small,

xample,

with the exception of SE

nch benchmark and the

UOIA 2000 and FTR chmarks.

mage and video [TRA02] only has images. The test data

arks is unsuitable and it cannot effectively be adapted.

in a multimedia workload. Some of the

operations as those needed by multimedia databases, but the complex nature of multimedia

data means that these operations have to be performed using special code as opposed to the

standard code implemented in other benchmarks. For example, the insert operation for

multimedia data not only needs an INSERT s

im

advanced functionality, such as signature generation for images, essential in multimedia

databases. These issues make the workload for a multimedia application significantly

different, making other workloads unsuitable.

3.5.4 Programming Language

Many of the existing benchmarks use languages such as C, C++, and PERL. These languages

appear to be suitable for a multimedia database benchmark as they have the functionality to

connect to databases as well as time the operations. A programming language for a

multimedia database should also, ideally, be easy to alter and port between systems, since

multimedia databases implement their multimedia functionality in their own unique manner.

Unfortunately

w

 36

ltimedia workload must include typical queries that are found in

edia applications to manipulate multimedia data. The benchmark must be able to

 DBMS that supports multimedia data and its required

multimedia data. An example of a programming language that is portable and also has

functionality to support multimedia data is Java.

3.6 Required Benchmark

The required multimedia benchmark must have schemas, test data, and workloads designed

for multimedia applications. The schemas must have at least one table that contains

multimedia data, although ideally there should be a separate table for each multimedia

datatype. Both the schema and the test data should include several types of multimedia data,

especially images, audio, and video data, so that they produce a representative range of

multimedia data. A mu

multim

evaluate the performance of a type of

functionality.

Table 3-1 summarises the main characteristics of each of the benchmarks so that they can be

compared with the requirements of a multimedia benchmark.

Benchmark Schema/Test Data Workload/Focus DBMS

Required Multimedia tables and data Multimedia Applications ORDBMS

Wisconsin No multimedia tables or data Relational Features RDBMS

BUCKY No multimedia tables or data OR Features ORDBMS

AS3AP No multimedia tables or data Relational, OLTP RDBMS

SPEC, MediaBench No multimedia tables or data Computer Architecture None

TPC Suite (C, H, R

and W)

Only TPC-W has images, no

multimedia tables or data

Order-Entry, Business,

OLAP, DSS and Web

RDBMS

EDB and 007 Only Documents in 007 OO Features, Engineering OODBMS

BEAST No multimedia tables or data Active DBMS Workloads ADBMS

FTR Only Documents Document Retrieval FTR Systems

SEQUOIA Only Images GIS Applications GIS Systems

Michigan No multimedia tables or data XML applications XML DBMS

Table 3-1 Comparison of benchmarks

The first consideration is whether the benchmark includes multimedia data in its test data and

schema, and the only benchmarks that do so are TPC-W, 007, FTR, and SEQUOIA 2000.

Unfortunately, these benchmarks each have a single multimedia datatype, thus making the use

as a multimedia database benchmark limited.

 37

hat are similar to, or can

e adapted to, a multimedia workload. The SEQUOIA 2000 benchmark has the workload that

 which includes some of the

most widely used and popular benchmarks, are unfortunately also unsuitable as they are

aimed at business orientated workloads consisting of specific characteristics that differ from

that of multimedia applications. None of the benchmarks have a workload suitable for

multimedia.

The third consideration is whether the DBMS that the benchmark evaluates supports

multimedia data. Since RDBMS cannot support multimedia applications, any benchmark

designed to test these databases is unsuitable. This eliminates benchmarks such as Wisconsin,

all of the TPC suite, AS3AP, and similar benchmarks. Although OODBMS benchmarks are

feasible, they are usually designed for engineering applications that have workloads that differ

significantly from multimedia applications. For example, the number of users, the queries

executed, and the datatypes are different. A fairly well known ORDBMS benchmark is

BUCKY, but unfortunately this benchmark has been designed to evaluate only a limited

number of features. These features are not applicable to a multimedia workload, making this

benchmark unsuitable.

3.7 Application of Benchmark

When implementing benchmarks, there are rules and restrictions that must be followed in

order to ensure the accuracy of the results. An important issue that is seen in several of the

existing benchmarks is the idea of hot and cold databases. A cold database is one where the

cache is empty and the queries take significantly longer, while a hot database has a full cache

and so produces faster, consistent results [CAT93, CDN93, and RIS00]. Examples of

benchmarks that run their tests in both modes are, Rishe et al.’s [RIS00] Semantic benchmark,

EDB, and 007. The general idea of warming up the database is to run the queries a number of

times to fill the cache before the results for the “warm” database can be recorded [CAT93,

CDN93, and RIS00].

The second consideration is whether the benchmarks test workload t

b

is the most similar to that of multimedia applications. This workload has a large amount of

test data, including complex datatypes in the form of maps which could be replaced with

images, and it also tests specialised search functionality. Unfortunately the nature of the

queries in the workload differs significantly from those required by a multimedia application

because they are very specific to GIS applications. The TPC suite,

 38

he next important issue that needs to be considered is whether the benchmark should run in a

etworked environment. This greatly influences the results, and so it is surprising how few

enchmarks specify this. Those that do specify it generally state that the benchmarks must be

plemented in a networked environment. For example, the EDB has a client on one machine

nd the server on a different machine, and some of the TPC suite is especially designed to test

etworked environments.

.8 Summary

Numerous benchmarks exist with which to tabases: Wisconsin,

Bucky, 007, AS3AP, SPEC, MediaBench, TPC suite, Sun, EDB, Semantic, Michigan,

SEQU use:

gener these

bench ility,

and r

The d ata,

work hese

respe ance

of mu arks

and th

T

n

b

im

a

n

3

 measure the performance of da

OIA 2000, and FTR. Current benchmarks are categorised by their intended field of

ic, business, engineering, advanced, and architecture. The objectives of each of

marks were given and they were reviewed in terms of portability, simplicity, scalab

elevancy. Most showed some if not all of these characteristics.

esign of each of these benchmarks was then analysed in terms of its schema, test d

load, performance measurements, programming language and application. In t

cts, no benchmark was found which is designed specifically to evaluate the perform

ltimedia databases. The most significant difference between these existing benchm

e requirements of multimedia benchmarks is the workload.

 39

Chapter 4 : Oracle DBMS
Chapte their

s an ORDBMS

ables to store or access the data, predefined relational operations to

anipulate the data, and integrity rules to control these operations. The inclusion of

a as well as the methods to manipulate it have to be

ecified. These datatypes can then be used within the relational model as if they were one of

the built-in datatypes. With these capabilities, Oracle provides built-in functionality to support

all multimedia datatypes. Multimedia support has only been available in the later versions

including Oracle9i (release 1) version 9.0.1, which is used for the work done in this thesis.

r 2 surveyed multimedia databases and the tuning and evaluation of

performance. A comparison of the different database technologies revealed that

ORDBMS are a viable choice to handle multimedia data. Oracle i

that has support for multimedia datatypes as well as their required functionality.

This chapter provides an overview of Oracle, focusing mainly on the aspects that

affect its performance. It describes the structure of Oracle, covering its

architecture, components, and storage. A review of interMedia, which extends

Oracle to provide the storage and management of multimedia data within the

Oracle database, is presented. This chapter also briefly reports on research that

has already been conducted on Oracle. Finally, a summary is provided of

Oracle’s performance, focusing mainly on multimedia data.

4.1 Introduction to Oracle

Oracle is a commercial ORDBMS that has all the features found in RDBMS as well as some

of the features found in OODBMS. The RDBMS features include a well-defined relational

structure, such as t

m

OODBMS features permits users to extend these features further, giving them, for example,

the ability to define new object types. When new object types are defined to create new

datatypes, both the structure of the dat

sp

le

A distributed architecture is often used to reduce the processing load of a single processor.

 the 2-Tier

architecture.

T

p

4.2 Architecture of Orac

This is achieved by splitting the required processing for a subset of tasks and allocating them

to multiple processors. This improves both the performance and the capabilities of the whole

system. Oracle utilises this technique in its architecture, and thus can be configured using 2-

tier, multi-tier database architecture. These architectures can both be further distributed.

Figure 4-1 illustrates the two architectures and the further distribution of

Database Server

Client

Database Server

Application Server

Client
Client

Database Servers

s

e

m

o

r

a

t

a

a

t

e

40

Figure 4-1 Types of architecture of Oracle (Based on figure 7-1[MCG01])

he 2-tier architecture is also known as client/server architecture as it divides the database

 into a front-end client and a back-end server. Generally, this architecture has the user

rocesses r rent back-

ent machine is very similar. There is at least one application server that acts as

n interface between the client and the database server. Application servers perform most of

ystem

unning on the front-end, while the server processes are running on diffe

nd machines. The tasks of the user processes are to request, process and present data that are

anaged by the server, but they are not responsible for the data access themselves. The task

f the server is to run Oracle software to handle the concurrent, shared data access. The server

eceives the SQL and PL/SQL (Oracle’s procedural SQL language) statements from the client

nd processes them in order to return the required data. A multi-tier architecture differs from

he client/server architecture in that the server machine will have only a subset of the duties,

lthough the cli

he server-side processing such as validating credentials, connecting to databases, or

xecuting user queries, reducing the processing load on the database server. The database

server is now mostly used to store the data and control the operations performed by the

application server.

The third setup shown in Figure 4-1 is a database distributed among multiple database servers,

and even though the data is dispersed between the different servers, the database still appears

to the user as a single logical database.

4.3 Oracle Components

4.3.1 Overall Structure

The main components of the Oracle 9i Server are the server processes and Oracle processes

(for example log writer), the physical database files such as the log files, and the memory

areas including the System Global Area (SGA) and the Process Global Area (PGA). This

section only introduces these components, as they are discussed in greater detail in the

following sections. Figure 4-2 illustrates how Oracle’s components are related.

 41

Figure 4-2 Main components of Oracle 9i server (Based on figure 1 [BGB98])

As just said, Oracle uses two types of processes, Oracle processes and server processes. The

Oracle processes run in the background, performing the general database maintenance

activities, while the server processes execute the database transactions, which makes them the

more active of the two. Although the server processes account for most of the processing, the

BLOCK BUFFER AREA

PPGGAA

Server

Processes

DB Writer Log Writer
Other Oracle

Processes System Monitor

M
et

A
a

–D
at

a
re

a

SSGGAA

DB Files
DB Files

Log Files

 42

r Oracle. Memory access is much faster than disk access, and as a result these

gions store data for fast access. Assigning a larger size for the memory areas will increase

the likelihood that the data is found in memory, which in turn reduces the number of disk

a hybrid structure that includes both shared and private

memory. The shared memory region, known as the SGA, contains shared data as well as

control structures, and is used mainly for communication and synchronisation. The private

memory ed by Oracle when a server process is

Oracle processes are background processes that start when an Oracle instance begins. These

processes integrate functions such as I/O and monitoring of other processes, in order to

 memory to the datafiles. Oracle’s

database writer uses a write-ahead logging algorithm which performs batch writes rather than

Oracle processes perform important functions such as deadlock detection, system monitoring,

writing to the database files, as well as writing the redo logs (records of all the database

transactions).

The physical database files are persistent data structures that include the tablespace files,

control files, data files, and redo log files (details in Appendix A.2). These files include the

actual data of the database as well as database information such as how the physical storage is

arranged. An example of this is the redo log files that keep a compressed log of committed

transactions, which are used to restore the state of the database in the case of a failure.

The memory areas are the sections of the host system’s physical memory that have been

reserved fo

re

accesses, thus improving the performance. However, it should not be too large as this wastes

resources.

Oracle’s memory model uses

 region is known as the PGA and is allocat

created. A PGA memory region is assigned to each server process for its data, as shown in

Figure 4-2. This region contains control and data information for that server process. In

contrast, a single Oracle instance consists of the SGA and the relevant Oracle processes. The

SGA is used to store code, such as database queries, that both the Oracle and server processes

can access.

4.3.2 Oracle Processes

provide better performance and reliability. They include the database writer, log writer,

checkpointer, system monitor, procedure monitor, archiver, recoverer, dispatcher, lock

manager server, job queue monitor, and queue monitor. The purpose of the database writer is

to write the modified data blocks from the buffer cache in

 43

writing to disk after each transaction commit statement. This means that the database writer

only writes when the data in the SGA needs to be replaced, using the least recently used

algorithm, which improves the performance and efficiency of the system. Oracle has a single

background process, the log writer, that groups what are known as commit logs from

independent transactions into a single disk write for more efficient use of the disk bandwidth.

The commit logs become online redo log files, which the archiver can copy to archival

storage. The function of the system monitor and process monitor are similar except that the

system monitor is responsible for the recovery of a failed instance while the process monitor

performs the recovery procedure for a failed user process. System monitor tasks include

cleaning up temporary segments no longer in use as well as coalescing free extents in a

dictionary-managed tablespace (see section 4.4.3 for information on extents). The recoverer is

used to either commit complete transactions, or rollback pending transactions due to a

network or system failure in a distributed environment. Oracle9i is the first release to include

dynamic queuing which is controlled by the job queue monitor and is used for batch

p rocessing. The dispatcher and the queue monitor are optional processes, where the former is

only used in a multithreading environment and the latter is only used with advanced queuing.

The lock manager server process is only used in Oracle9i Real Application Clusters for inter-

instance locking. An Oracle instance is the memory areas in addition to a set of Oracle

processes.

4.3.3 Server Processes

Server processes control the communication between the user and Oracle. These server

processes can vary depending on the number of user processes assigned to each. This is

controlled by the configuration of Oracle, making the server processes either dedicated or

shared, as shown in Figure 4-3.

 44

Figure 4-3 Dedicated and shared server processes (Based on figures 5-1 and 5-2 [BRF01])

A dedicated server process handles only the requests of a single user process (shown on the

right of Figure 4-3), while a shared server process handles multiple user processes (shown on

the left of Figure 4-3). Shared server processes minimise the number of server processes while

maximising the use of available system resources. This means that when many users are

accessing the database concurrently, the shared mode is better. Otherwise the dedicated mode

is more suitable as certain operations, such as shutting down the database, cannot be

performed in shared mode.

4.3.4 Physical Datab

Application

Code

Application

Code

Application

Code

Dispatcher Processes

Oracle
Server Code

System Global Area (SGA) Memory

Response QueuesRequest Queue

Oracle
Server Code Oracle

Server Code

ase Files

The physical database files consist of at least one datafile, only one control file, and at least

two redo log files per database. Datafiles contain all the database data. Figure 4-4 illustrates

the logical relationship between databases, tablespaces, and datafiles. DBFILE1, DBFILE2,

and DBFILE3 are the names of the datafiles in Figure 4-4.

 45

Figure 4-4 Relationship s (Based on figure 4-2
[MCG01])

s ociated with only on o e

 both its data d

r also used to identify both the

tabase is started. The redo log files

onsist of many redo entries, also known as redo records, which record all the changes made

to data to ensure work is never lost. If there is a failure that prevents the modified data from

were supposed to be made

The SGA memory consists of a larger section called the block buffer, covering approximately

80% of the SGA, and a smaller section called the meta-data area (Refer to Figure 4-2). The

block buffer section contains the most recently used disk blocks and is the cache in main

memory, whereas the meta-data section contains the directory information needed to access

ationship s (Based on figure 4-2
[MCG01])

s ociated with only on

tabase is started. The redo log files

onsist of many redo entries, also known as redo records, which record all the changes made

to data to ensure work is never lost. If there is a failure that prevents the modified data from

were supposed to be made

The SGA memory consists of a larger section called the block buffer, covering approximately

80% of the SGA, and a smaller section called the meta-data area (Refer to Figure 4-2). The

block buffer section contains the most recently used disk blocks and is the cache in main

memory, whereas the meta-data section contains the directory information needed to access

Data Tablespace

s between databases, tablespaces, datafiles and tables between databases, tablespaces, datafiles and table

It can be seen from the diagram that datafiles contain tables and indexes, collectively known

as logical database structures. A datafile can be a s e database, while n

or more of these datafiles form a logical unit of database storage called a tablespace. A

control file contains information that specifies the physical structure of the database, including

data such as the actual database name, the names and the locations of files an

redo log files, and a time stamp specifying when it was created. Control files are necessary to

recover the database when there has been a failure, and they a e

database and redo log files that need be opened when a da

It can be seen from the diagram that datafiles contain tables and indexes, collectively known

as logical database structures. A datafile can be a s e database, while one

or more of these datafiles form a logical unit of database storage called a tablespace. A

control file contains information that specifies the physical structure of the database, including

data such as the actual database name, the names and the locations of both its datafiles and

redo log files, and a time stamp specifying when it was created. Control files are necessary to

recover the database when there has been a failure, and they are also used to identify both the

database and redo log files that need be opened when a da

cc

being permanently written to the datafiles, then the changes that being permanently written to the datafiles, then the changes that

can still be obtained from the redo log. A set of redo log files is known as the database's redo

log.

4.3.5 SGA Memory

can still be obtained from the redo log. A set of redo log files is known as the database's redo

log.

4.3.5 SGA Memory

 DBFILE2 DBFILE3

Tables and

Indexes

Tables and

Indexes

Disk Drive 1

Disk Drive 2

System Tablespace

DBFILE1

Tables and

Indexes

 46

the block buffer as well as the space for other buffers and synchronisation data structures. The

size of the SGA memory is controlled by a parameter known as the SGA_MAX_SIZE, which

sets its upper limit. This size cannot be altered after the creation of the database, and thus its

initial size must be calculated so that it is large enough to contain all the components of the

SGA. These components comprise of the buffer cache, shared pool, large pool, log buffer, and

the java pool. Figure 4-5 presents a sample configuration of the SGA, where each segment of

the pie chart represents a different component of the SGA. (The values in this diagram are

only used to illustrate how the SGA can be configured and are not the values used for the

experiments, which are reported on later in the thesis.)

Example SGA Memory Composition

Log Buffer, 28

Large Pool, 1Java Pool, 40
Shared Pool, 120

Buffer Cache, 100

Log Buffer Shared Pool Large Pool Java Pool Buffer Cache

nts can be dynamically increased

or decr al is less

than th 4Mb if the SGA_MAX_SIZE is less than 128Mb, otherwise

it is 16 s, thus there is a

waiting period

4.3.5.1 Buffe

The buffer cac hat

fault pool for the standard block size, as well as one pool for

each non-standard block size. (See section 4.4.2 for information on block size). There are also

two additional pools for the default block size, known as the keep pool and the recycle pool.

The keep pool is for frequently accessed data as it contains buffers that always stay in

 Figure 4-5 Main components of Oracle’s SGA memory

From Oracle version 9 onwards, the sizes of these compone

eased during a session in units of memory called a granule as long as their tot

e SGA_MAX_SIZE. A granule is

Mb. The alteration of the size of these components is not instantaneou

 before the size of other components can be changed.

r Cache

he is the section of the SGA that is reserved for storing the data blocks t

have been retrieved by the most recent queries. (These data blocks can either be ‘modified’, in

that the value of the data has been changed, or ‘unmodified’, in that the value remains the

same.) The buffer cache has a de

memory, while the recycle pool is for less frequently accessed data as the buffers are

continually recycled.

 47

ment StrategyBuffer Cache Replace

then moved to the Most Recently Used (MRU) end of the LRU list. This results

 the other buffers aging, where they are moved toward the LRU end of the LRU list.

equired data is not in the buffer cache, a cache miss, then a free buffer

When the buffer cache is full and more data needs to be retrieved, a buffer-replacement

strategy needs to decide which data blocks are moved out of the buffer cache. To achieve this,

the buffer cache in Oracle is divided into two lists, known as the write list and the Least

Recently Used (LRU) list. The former holds dirty buffers that are the buffers that have been

modified, but have not yet been written to disk. The latter holds a combination of free buffers,

buffers currently being used, called pinned buffers by Oracle, and dirty buffers that have not

yet been moved to the write list. Figure 4-6 illustrates the different scenarios that may occur

when data is requested and the buffer cache is accessed.

Figure 4-6 Possible actions when data is requested

The outcome depends on whether the data is already in the buffer cache, known as a cache hit,

or whether it needs to be moved to the buffer cache, known as a cache miss. A cache hit is

faster, as the data can be read straight from memory rather than from the disk. The buffer that

is accessed is

in

Alternatively, if the r

needs to be located in order to move the data into the buffer cache. This is achieved by

searching through the LRU list from the MRU end until a free buffer is found. Figure shows

what actions are taken when the various situations occur.

• Read Data from Memory

• Move Buffer to MRU End

• Age Other Buffers

Data Request

Reach End of List Find a Free BufferFind a Dirty Buffer

Cache MissCache Hit

• Search Through LRU List Starting at LRU

• Find a Free Buffer to Write Data to

• Move to Write List

 Searching • Continue

• Move Data to Buffer

• Move Buffer to MRU

• Age Other Buffers

• Stop Searching

• Signal DBW0 to Write

Key
MRU= Most Recently Used
LRU=Least Recently Used
DBW0=Database Writer

Dirty Buffers to Disk

4.3.5.1.1 Calculating the Performance of the Buffer Cache

 48

wo methods can be used to aid in the understanding of the effect that the buffer cache has on

the performance of the database. The first method uses Oracle’s V$DB_CACHE_ADVICE, which

T

must be explicitly set to ON. Oracle can then estimate how many physical reads would be

required for twenty different potential cache sizes as illustrated in Figure 4-7.

Figure 4-7 Screenshot of Oracle's buffer cache advice

(It can be seen from Figure 4-7 that Oracle’s graph does not put the values of the cache sizes

on the x axis as expected. These sizes can be found in the table under the ‘Buffers for

Estimate’ column.) The use of the buffer cache advice does, however, introduce an overhead.

The second method uses Oracle’s V$SYSSTAT tables directly, which store information to

calculate the cache hit ratio. The formula for the hit ratio is:

Hit Ratio = 1-((physical reads – physical reads direct – physical reads direct

(lob))/session logical reads)

Where: Session logical reads = total number of requests to access a block

(whether this block is in memory or on the physical disk),

Physical reads = number of accesses to the physical disk,

Physical reads direct = number of accesses to data in memory excluding LOB data

 49

xecuted through the SQL*Plus Worksheet, producing the

sults illustrated in Figure 4-8.

Physical reads direct (lob) = number of accesses to the LOB data from memory.

To obtain the values for these variables, a table called V$BUFFER_POOL_STATISTICS is

queried. Such a query can be e

re

Figure 4-8 Screenshot of code and results for cache hit ratio

A higher cache hit ratio generally indicates that the buffer cache is the correct size, although it

could be skewed by a dataset consisting of the same data being accessed repeatedly.

4.3.5.2 Shared Pool

The shared pool is the portion of the SGA that contains the shared memory components that

all Oracle processes have access to. The components of the shared memory are the library

cache, the dictionary cache, and the buffers for control structures and parallel execution

messages. The library cache contains the parsed and compiled executable code, for example

SQL or PL/SQL code that has recently been referenced. For the SQL code in particular there

is a single SQL area that is shared, and as a result the code can be accessed by all the

applications that issue the same statement. The data dictionary region holds the data

dictionary. The data dictionary includes reference information about the database, such as its

structure and users, and is accessed frequently. The remaining shared memory components

 50

differ from those previously mentioned in that their buffers contain structures that are specific

to a particular instance configuration.

4.3.5.3 Large Pool

The large pool is the portion of the SGA that contains the session information for shared

server systems, the message buffers for parallel execution, and the disk I/O buffers for the

backup and restore processes. It is an optional area that is only relevant if there are parallel

queries and is used where transactions interact with more than one database.

4.3.5.4 Redo Log Buffer

e recovery is necessary. The size of the redo log buffer is set at configuration

me and can be changed only by restarting the database. This cache is however less

signif the other caches as its size is small and it only represents a very small portion

 each java class, such as code vectors and methods, and none of specific

ssion data. In contrast, when using a shared server, the java pool holds both the shared part

The redo log buffer portion of the SGA is used to store the logs of changes made to the

database, known as the redo entries. These redo entries are then written from the redo log

buffer to an active online redo log file on disk by the Log Writer (LGWR). The entries are

used if databas

ti

icant than

of the SGA.

4.3.5.5 Java Pool

The java pool is the portion of the SGA, which stores all session-specific Java code and data

within the Java Virtual Machine (JVM). The java pool is used in different ways, depending on

whether a dedicated or a shared server is running. In a dedicated server, the java pool stores

only the shared part of

se

of as well as the session specific data with the result that the java pool must be larger.

4.3.6 PGA Memory

PGA memory is the region of memory, which contains data and control information for each

server process. This includes the private SQL area that holds the run-time memory needed for

executing SQL statements, and the session memory that holds session variables. A large

portion of PGA memory is also dedicated to the SQL work areas, used for complex

operations, such as sorts and hash-joins. As previously stated, PGA memory is private

memory that is dedicated to a single server process when that process starts. This means that

access is exclusive to the server process that owns it, and it is only written to and read from by

Oracle code acting on behalf of that server process.

4.4 Oracle Storage

4.4.1 Storage Units

The logical storage of the data is controlled by Oracle and is divided into units known as data

blocks, extents, and segments. The relationship of these units is shown in Figure 4-9.

 51

acle stores and retrieves its data in units also known as data blocks.

hese differ from the operating system’s block sizes in that their size is a multiple of the

operating system’s block size. For example if the size of the operating system’s data block is

Figure 4-9 Relationship of segments, extents, and data blocks (Based on figure 3.1 [MCG01])

The smallest unit of space that Oracle can store its data in is a data block. These are also

known as logical blocks, Oracle blocks, or pages. A number of adjacent data blocks can be

grouped together in order to store a specific type of information, and is called an extent. The

largest unit of logical database space is a set of extents that have been allocated for a specific

data structure, called a segment.

4.4.2 Data Blocks

The Operating System stores its data in physical blocks measured in bytes, named data

blocks. Unfortunately, Or

T

8K and its maximum is 32K then Oracle’s data blocks can be 8K, 16K, 24K, or 32K in size.

This size is set when the database is initially created and cannot be altered thereafter.

2K 2K 2K

2K 2K 2K

2K 2K 2K

2K 2K 2K

2K 2K 2K

2K 2K 2K

2K 2K 2K

2K 2K 2K

2K

2K

2K

2K

2K

2K

2K

2K

Ext

28K

Extent

84K

112K Segment

2K Data Block

The format of all Oracle data blocks are the same, independent of the type of data that they

store. Figure 4-10 outlines their format.

 52

h as the address of the block. The other two sections hold information about

the row data stored in the data block. For examp table directory contains details such as

the table that the row data belongs to, while the row directory contains details such as the

location of the row data in the data block. The row data contains table or index data, while the

Figure 4-10 Format of data blocks (Based on figure 3.2 [MCG01])

Each data block contains a header, a table directory, a row directory, free space and row data.

The header, table directory, and row directory contain information required by the data block,

whereas the remaining sections are reserved for the actual data. Collectively the first three

sections are known as overhead. The first section, the header, holds the general data block

information, suc

le, the

free space is designated for inserting new rows as well as for additional space needed when

existing rows are updated. The amount of free space in a data block is controlled by the

variables PCTFREE and PCTUSED, as shown in Figure 4-11.

Header Overhead

Table Directory

Row Directory

Free Space

Row Data

PCTUSED = 40

60% Unused

Space
No new data is
inserted until the
amount of free space
falls below 40%

20% free space

PCTFREE = 20

Block allows row
insert until 80% of
the block is full,
leaving 20% free
for updates.

 53

re either initial extents or incremental extents. The initial extent is a number of data

signs when a table is created, and these are then reserved for the table's

rows even When this initial extent becomes full, Oracle

W en using dicti anaged tablespaces, the s the values

f ge pa NITI nd PCTINCREASE. ecified when

creating the table. The INITIAL eter specif in b of the initial extent,

w ue T pa the ental extent.

PCTINCREASE is t by cr t in the

l tal e f Th SE

i cre s w e s itio t,

called MINEXTENTS and . The former specifies the number of extents that are

allocated when the aximum number of

Figure 4-11 Diagram illustrating data block storage control (Based on figures 3-3 and 3-4 [MCG01])

PCTFREE is the percentage of the block that is reserved for updates, and PCTUSED is the

maximum percentage of the block after which Oracle will no longer consider that data block

for insertion.

4.4.3 Extents

Extents a

blocks that Oracle as

 when no data is inserted.

automatically allocates additional space, called the incremental extent. The incremental extent

can either be the same size as the initial extent, or greater depending on the database

configuration. These extents belong to a tablespace, which manages them either by the data

dictionary or locally.

h onary m pace utilisation is controlled by

or the stora rameters I AL, NEXT, a These are sp

param ies the size ytes

hile the val of the NEX rameter is size in bytes of the increm

he percentage which each in emental exten creases, in relation to

ast incremen

s 0, then all in

xtent allocated

mental extent

or a segment.

ill be the sam

is means that if

ize. Two add

the value of PCTINCREA

nal parameters can be se

MAXEXTENTS

segment is created, while the latter specifies the m

extents that can be allocated to a table. Locally managed tablespaces differ from dictionary

managed tablespaces in that their space is automatically controlled by the system. The system

achieves this by using bitmaps to track the used and free space.

Generally it is better to use locally managed tablespaces if there are a larger number of write

operations such as insert, update or delete and dictionary managed tablespaces if the

data is infrequently modified or read-only. Dictionary managed tablespaces allow the user to

have more control as all the values are set by the user, but unfortunately there is a

performance penalty due to the complex operations that it requires. The benefits of using

locally managed tablespaces are that concurrency is improved, storage operations are faster,

performance is improved, and space allocation is simplified. The disadvantage of using

 54

a for a whole table if it is not partitioned or clustered; otherwise it holds

ne partition for a partitioned table or all of the tables in a cluster. This data segment is

created when the table or cluster of tables are initially created. The second type of segment, an

locally managed tablespaces is that they only support a few datatypes, such as char and

date. This does not include multimedia datatypes, and therefore it is not possible to use it for

a multimedia database.

4.4.4 Segments

There are four different types of segments in Oracle, known as data segments, index

segments, rollback segments, and temporary segments. The first type of segment, a data

segment, holds the dat

o

index segment, holds all of the data for a non-partitioned index or only the data for a single

partition in a partitioned index. The third type of segment, the rollback segment, records the

old values of data that has been changed by a transaction in order to provide a means to

recover the database when necessary. Every database contains at least one rollback segment

and they are only accessible by Oracle. Rollback segments contain several rollback entries

that have details, such as the block information to identify where the changed data was, as

well as the data before the transaction was executed. The last segment type, the temporary

segment, is required as a temporary space for the transitional stages of SQL parsing and

execution when processing queries. The first three types of segments are created in response

to an explicit request of the user, while the temporary segment is automatically generated by

Oracle when necessary.

In Oracle the free segment space can be managed either using bitmaps or freelists. A bitmap

describes the status of each data block, based on the amount of the available space in it in

relation to the total amount of space. This status then varies under the control of Oracle as the

available space is changed. Alternatively freelists can be used, where a list of the data blocks

that have free space available for inserting data is kept. This type of segment management is

not automatic controlled, with the disadvantage that various parameters have to be set before

it can be used. Freelists have the advantage over bitmaps in that they can be implemented for

both locally and dictionary managed tablespaces, whereas bitmaps can only be used for

dictionary managed tablespaces.

 55

4.5 Oracle Multimedia
4.5.1 InterMedia

Oracle InterMedia is a standard feature that extends Oracle9i to provide internal storage and

scalable management of multimedia data. Multimedia data, such as images, audio, video, and

geographical location information, can therefore be managed directly by Oracle in an

integrated manner with other standard data. Among the services that interMedia provides are,

metadata management, support for popular formats, and content-based searching. The

integration of interMedia with the architecture of Oracle, using a 3-tier architecture, is shown

in Figure 4-12.

Thin Client e.g. Thick Client with Tools
Browser with Clipboard for Media Processing and

Parsing, such as JAI/JMF

and BC4J Web Server such as
iAS Apache

Heterogeneous

 JVM
Image Processor JAIMedia Parser

Media Column

interMedia Java Classes
JDBC 2.0

Special
Delivery
Server

Optional External
File Storage

Media
Content
Indexers

Figure 4-12 Integration of InterMedia with architecture of Oracle (Based on figure 1-1 [CHI01])

The multimedia data can either be stored in the tables with the standard data, called

heterogeneous media columns in the diagram, or in external file storage. This storage is

connected to Oracle9i’s Java Virtual Machine (JVM) that provides a server-side media parser

as well as an image processor. The media parser, through either an object-oriented or a

relational interface, parses formats and metadata, as well as registers new formats and

extensions. The image processor performs image processing, such as creating thumbnail-sized

images or image indexing and matching. InterMedia has upgraded its image processor to use

JavaTM Advanced Imaging (JAI) as it offers a rich, open, platform portable imaging package.

The advantage of this is more supported file formats and processing operations, as well as

additional supported file COmpression and DECompression schemes (CODECs). The media

 56

4.5.2 Oracle’s Multimedia Datatypes

Ora al capabilities provided by interMedia and

ed on any HTTP server, and interMedia object types. Table 4-

mparison of the multimedia datatypes provided by Oracle.

 OB interMedia

parser and image processor then connect to the Internet Application Server (iAS) or an

alternative web server that provides access to interMedia through special interMedia Java

classes. These Java classes enable applications on any tier to access, manipulate, and modify

multimedia data stored in the database. This results in applications easily selecting and

operating on result sets that include both traditional relational data and interMedia media

objects. These applications can be run on a thin client with a browser-based interface and a

clipboard provided by interMedia on which multimedia data is manipulated. Alternatively, a

thick client can be implemented, which provides various methods for developing applications.

Among these are media processing and parsing through JAI and the Java Media Framework

(JMF), and building scalable, multi-tier applications with Business Components for Java

(BC4J) that is JDeveloper's programming framework.

cle is an object relational DBMS with addition

so provides different datatypes for multimedia data. These include the support of Binary

Large OBjects (BLOB), large objects located on the file system called BFILEs, URLs

containing multimedia data stor

1 gives a co

BFILE URL BL
Storage Local File HTTP Server In Database In Database
Location System
Transactional
Control

None None Full Control Full

Data Access Read Only Read Only Read/Write Read/Write
Standard
Functionality

Insert-Pointer,
Select, Delete

Insert-Pointer,
Select, Delete

Insert, Select,
Update, Delete

Insert, Select, Update,
Delete

Multimedia
Data Specific
Functionality

None. Pointer
to multimedia
data location

None. Pointer
to multimedia
data location

None. Stored as
unstructured
object

Yes e.g. Content-based
retrieval, scaling images,
streaming video

Table 4-1 Multimedia datatypes provided by Oracle

The table shows that BFILEs and the URL datatypes do not actually store the data in the

database, with the result that the database has limited control over it and no transactional

ontrol is an example of this. These datatypes may be a suitable mechanism for situations

here there is a large reposito edia da o

 a ntr corrup ata

s bett ta se or

interMedia datatypes. The functionality provided by the BLOB datatype is still limited since

the multime erefore no

c

w ry of multim ta that already exists n a file system, but

this solution is not advisable s the limited co ol may lead to tion of data or d

redundancy. Ideally, it i er to store the da within the databa using the BLOB

dia data is only stored as unstructured binary object. There is th

 57

rver, for streaming purposes. This data can be streamed using an Oracle

terMedia plug-in that supports the streaming server, and then delivered to the client, which

present the multimedia information by either the user or an

pplication program. Other advanced functionality provided is streaming capabilities for

audio e data, including content-based retrieval,

pearance. Oracle analysing every image inserted into a

databas pact represen

image’s content, called a feature vector or sign ation about

the colour, texture, shape and position of shapes within the image, within 3000 to 4000 bytes

in general fter th atures have been ted, content-based

presenting a comparison image to interMe InterMedia compares this image’s signature

with the signatures of selected images in the database and then ranks the images from the

differentiation between the different multimedia types with the result that a method specific to

one type of multimedia data, such as scaling images, cannot be provided. InterMedia’s object

types are the most advanced multimedia datatypes, with a different datatype for each kind of

multimedia data. These object types are known as ORDDoc for heterogeneous data,

ORDImage for digitised image data, ORDAudio for digitized audio data, ORDVideo for

digitised video data and ORDSource for any of these four types. An additional method is

available in Oracle for storing video and audio data on specialised media servers, such as

Oracle video se

in

uses the browser-supported streaming player, for playback. In addition to these datatypes that

InterMedia offers for multimedia data, it also provides the methods necessary to manipulate

this multimedia data.

4.5.3 Specialised Multimedia Functionality

Standard database methods, as well as more advanced functionality are provided for

multimedia data by InterMedia. Inserting and selecting are examples of standard

functionality, whereas the extraction and displaying of metadata (information about the data)

are more advanced functionality. InterMedia extracts the metadata that contains general

information, for example the data format, and datatype specific information, for example the

frame rate of video data. This data is then stored in the database under Oracle’s control and

can be used to correctly

a

 and video data, and several methods for imag

generation of thumbnails, scaling, and cropping. Of these, content-based retrieval is fairly

new and more complex than the other functions and thus it is briefly discussed here.

To perform content-based retrieval the information stored in an image must be processed so

that the image can be abstracted in terms of its visual content. This abstraction can then be

used to compare or match images by ap

e and then produces the abstraction by generating a com tation of the

ature. The signature contains inform

. A e sign crea retrieval is done by first

dia.

 58

closes fied

4Kb in line with other row data, and automatically stores larger

ultimedia data out of line. A locator is then generated to point to the location of the actual

data e the actual data, which can be up to 4Gbs, is stored on a

acle Research

.6.1 General Oracle Performance Research

mount of work on evaluating the performance of

t match down until a threshold is reached. Ranking is done based on speci

weightings for the criteria, and the threshold is the value below which images are regarded as

too dissimilar and therefore will be excluded from the result set.

4.5.4 Multimedia Storage and Retrieval

The storage of multimedia data in the database tablespaces is in a manner that optimises space

utilisation and makes access efficient. From the access of the multimedia data, it appears to be

fully integrated with the other standard data but this is not the case. There is an option when

creating a table with multimedia data to specify whether the data is stored in line (with other

data) or out of line (separately). Independent of this specification, Oracle however only stores

data that is less than

m

and is stored in the row, whil

database page that is separate from the other data. This process happens transparently.

Multimedia data is larger than other datatypes and thus its retrieval typically requires a greater

number of disk accesses and more time. To reduce this time various methods can be

implemented, among them are using a bigger block size, increasing the size of the buffer

cache or setting the value for the parameter CHUNK size as large as possible. The first two

methods have been mentioned previously in 4.4.2 and 4.3.5.1 respectively. The CHUNK size is

the number of blocks retrieved simultaneously and is specific to the retrieval of multimedia

data. It can be used to force Oracle to retrieve multiple data blocks together, so reducing the

amount of disk I/O.

4.6 Related Or

4

Oracle Corporation has done a substantial a

their products, including detailed documentation on performance tuning. Among the available

white papers are comparisons with other commercial DBMS, such as Microsoft’s SQL Server

2000 and IBM’s DB2 [OTN02]. White papers are also available on the performance in DSS

(Decision Support System) environments and for E-Business applications. A white paper on

the optimal configuration of physical storage using a Stripe and Mirror method [LO01] is one

such example. In this white paper, Loaiza [LO01] explains that due to the complexity of DSS

workloads, it is difficult to configure the storage efficiently, but Oracle can improve the

 59

• Hardware and operating system performance

tance performance

ed are classified as “select-dominant” and

“Insert/Update-dominant” and their results are shown in Table 4-2.

performance of load operations by using direct Input/Output (I/O) and asynchronous read

ahead. Direct I/O is where the buffer cache is bypassed and the disk is written to directly, and

asynchronous read ahead or double buffering is where multiple asynchronous operations are

performed in one I/O operation. The goal of these is to stop operations from being I/O bound

by producing the maximum disk throughput and usually then making them CPU bound. Other

areas that the white papers focus on are memory management, segment management, and

direct I/O management. Memory management investigates the effect that the dynamic SGA

and buffer cache management have on performance, segment management looks at the effect

of freelists versus bitmaps, and direct I/O management investigates special I/O features. An

example of the latter is data block pre-fetching, which is an internal optimisation that

improves the response time by delaying the reading of a table until a number of satisfying

ROW IDs have been accumulated. Oracle then prepares the buffer cache by issuing

simultaneous I/Os for blocks containing all those ROW IDs. Independent work has been done

by Kreines and Laskey [KL99] on tuning an Oracle database. They emphasise that the

successful tuning of it requires the following to be addressed:

• Oracle ins

• Individual transaction (SQL) performance

Operations should ideally perform at the speed that the physical hardware permits, called the

device speed, but this does not often happen and so I/O determines the upper threshold of the

load performance.

4.6.2 Binary Large Object Performance Research

Shapiro and Miller [SM99] investigated the performance of Oracle when using Binary Large

Objects to make recommendations on how to save storage space and processing time. Binary

Large Objects (BLOBs) is a datatype for storing multimedia data, but in an unstructured

manner (See section 4.5.2). The three storage systems that were investigated are a database

with data stored externally (URL), a database with data stored internally (BLOB datatype), or

a file system, which was UNIX in this case. These storage systems were then tested for three

different database sizes (0.5 GB, 1.5 GB, and 3 GB), and two different BLOB sizes (0.5 GB,

and 5 GB). The two workloads that were test

 60

File System Database - External Database - Internal

Select – Dominant Workload Larger Overhead Small Overhead Small Overhead

Insert/Update Workload Smaller Overhead Medium Overhead Large Overhead

Table 4-2 Results of BLOB experiments (Results taken from [SM99])

hapiro and Miller [SM99] found that for a “Select-dominant” workload similar times were

roduced for internal and external datatypes but the overhead for the file system was larger

an the overhead for these database storage systems. In contrast, for the “Insert/Update-

ominant” workload they found that the database overhead was larger than the file systems,

nd internal database storage took the longest, by a factor of approximately seven. They

suggest that the long time is as a res ons that Oracle

requires for rollback and log informati migrations and

chain

Three and

mem the

perfo that

the st at by

alteri ant”

work

depen here

an in ld be

at lea o 150% of the size of the largest data in the database. Overall, with tuning the

erformance of a database, an improvement in the performance of 60% was achieved. Finally,

database size or the average object size significantly

decreased the performance.

S

p

th

d

a

ult of the large number of I/O operati

on as well as the processing of multiple

ing rows.

 areas of tuning were also examined, namely design tuning, application tuning

ory and I/O tuning. When looking at the areas of tuning they managed to increase

rmance of both workloads by 3% by pinning all the SQL statements, which ensures

atements stay in the library cache. For the memory and I/O tuning it was found th

ng the DATA_BLOCK_SIZE the response time improved by 12% for the “Select-domin

load and 30% for the “Insert/Update-dominant” workload. The response time was

dant on whether the size of the DB_BLOCK_BUFFERs was increased or decreased, w

crease produced an improvement. They conclude that the DB_BLOCK_BUFFERS shou

st equal t

p

they found that an increase in either the

4.6.3 Multimedia Oracle Performance Research

Results from the benchmarking of multimedia applications have been made available by

Oracle [OIM02]. These test the loading and retrieving of multimedia data, but unfortunately

do not include updating, modifying, or deleting of multimedia data. In the loading

experiments, the performance of a workload with between 1 and 8 large (250MB) videos was

investigated. Table 4-3 presents the results obtained for the response time, throughput and %

CPU utilisation for these experiments.

 61

of Streams Elapsed Time (Sec) Throughput (MB/Sec) % CPU Utilisation

1 24.8 10.1 8

2 63.6 7.9 12

4 79.3 12.6 13

8 177.7 11.3 14

Table 4-3 Database load performance of 250MB video files (Table from [OIM02])

They found that the bottleneck was the I/O bandwidth of the I/O controller as a maximum

throughput (12.6 MB/sec) was obtained when a parallel load stream was used. A second

orkload that represented a web environment consisting of 240,000 distinctive objects,

b audio files, was tested. Full results for these tests and the

details of the distribution of data were not given in this white paper. The results that were

se results.

ore, the

orkload is not easy to predict, making tuning of the database difficult. They demonstrate that

.7 Oracle Performance Summary

w

ranging from 4Kb images to 2M

presented were for the throughput of the load experiment, which was found to be 7.5Mb/s,

and the retrieval experiment, which was approximately 7Mb/s. This shows impressive

performance, however the performance enhancements attributable mainly to the specialised

hardware, including RAID, 4GB of RAM and 4 processors, must be considered when

analysing the

4.6.4 Oracle Memory Research

Dageville and Zait [DZ02] completed work that focused on evaluating the performance of

Oracle9i with different configurations for the SQL memory management. They used DSS as

well as OLAP workloads, and focused on SQL Memory, which consists mainly of the Process

Global Area (PGA) memory. Dageville and Zait define two important thresholds known as

the one-pass size and the cache size. The former is the size of the work area needed to process

the input data, whereas the latter is the total size of the work area. Dageville and Zait believe

that the amount of memory greatly affects the performance and thus the work area should be

large enough to accommodate both the input data as well as the auxiliary memory structures.

Problems occur as the amount of memory in a system is limited, and furtherm

w

the system adapts the configuration of the PGA memory to set the optimal values in response

to the workload.

4

Past research on the performance of Oracle, with respect to multimedia data, has shown that

the CPU utilisation is not significant as it is generally below 15%. It was also found that the

 62

ttleneck. This is supported by the findings from work conducted by

hapiro and Miller [SM99]. Although they researched BLOBs rather than multimedia data

nit of space, and has to be a multiple of the size of the operating system’s data block (see

he PGA memory. PGA memory is the private memory that is used for

complex operations, such as sorts and hash-joins, which multimedia data does not generally

require. Although the size of PGA is thus unimportant for multimedia database, the results

from studying the PGA can still be used to help understand the affects of the size of the SGA,

which is important. The SGA is the shared memory region that consists of the buffer cache,

Java pool, large pool, shared pool, and the log buffer [CG01]. Of these components the buffer

cache is the most influential on the database’s performance, especially when dealing with

large data volumes and read intensive workloads. In summary, a performance evaluation of

multimedia databases should focus on memory and I/O tuning.

4.8 Summary

Oracle is a commercial ORDBMS that has built-in

Oracle has opted for a distributed configuration that uses either a client/server architecture or

standard datatypes, BLOBs, multimedia data,

nd the PGA memory region. Although this research acts as a good basis for understanding

maximum throughput was achieved with parallel load streams, suggesting that the I/O

bandwidth was the bo

S

stored using interMedia datatypes, they found that performing I/O tuning improved the

response time by 12% for “select-dominant” workloads and 30% for “Insert/Update-

dominant” workloads. I/O tuning is done by altering the configuration of Oracle’s storage,

more specifically the parameter DB_BLOCK_SIZE [CG01]. This parameter controls the smallest

u

section 4.4.2). Another significant finding from the work done by Shapiro and Miller was that

memory tuning also greatly improved the performance of the database. Memory tuning was

the focus of Dageville and Zait’s research, where they studied the effect of the performance in

relation to the size of t

 functionality to handle multimedia data.

a 3-tier architecture, both of which can be further distributed. The components of Oracle

consist of processes, memory regions, and physical database files. The processes are either

Oracle processes or server process, while the memory regions are either private known as

PGA or shared known as SGA. The physical database files include datafiles, control files, and

redo log files. Oracle’s storage is divided into units with the smallest being data blocks, then

extents, and the largest being segments. Oracle has different datatypes to support multimedia

data such as BFILE (externally), URL (externally), BLOBs, and a more advanced method

through interMedia. InterMedia is a standard feature that extends Oracle to provide the

support for the datatypes and functionality for multimedia data. Research has been conducted

on the performance of Oracle that focuses on

a

 63

further research needs to be conducted on the performance when the performance of Oracle,

handling multimedia data.

 64

ncy. MORD’s components include the database

schema, test data, and workload. The implementation decisions regarding the

is applied correctly to a test multimedia database

system.

5.1 Design of a New Benchmark

The survey presented in chapter 2 revealed that multimedia databases have unique

requirements not found in other databases. A review of the available database technologies

indicated that ORDBMS, suc stems to handle multimedia

especially with

ultimedia database where large data volumes and complex operations are common. Tuning

Chapter 5 : Design of MORD
Chapter 2 reviewed work in the area of multimedia database tuning, while

chapter 3 reviewed work on benchmarks, both relating to this thesis. Chapter 4

provided an overview of Oracle. This chapter describes the design of a new

database benchmark (MORD) that measures the performance of basic

functionality in multimedia ORDBMS. MORD’s objectives include portability,

simplicity, scalability, and releva

performance measurements and programming language to be used are also

discussed in this chapter. Finally, a set of instructions is specified that should be

followed to ensure that MORD

h as Oracle, are the most suitable sy

data. Performance is of the greatest importance with databases, and

m

needs to be carried out, and is most easily achieved using an appropriate benchmark. Various

benchmarks were reviewed in chapter 3, revealing that none of these benchmarks are

designed specifically to evaluate the performance of multimedia databases. The most obvious

shortcoming is that both the test data and the database schemas do not include multimedia

 65

erformance of multimedia databases. Since Oracle is an ORDBMS that adequately handles

multi and its additional functionality, it is used as the target database for the

nce designed, MORD’s functions must be tested for correctness by performing some tests as

re based on the knowledge gained about database

o be portable, a benchmark has to be designed to be applicable to a range of systems. Given

king Java a suitable

nguage to use as it is more portable than other coding languages.

RD is designed to

be scalable by having three databases each of different sizes (small, medium, and large) -

data. It is complex to adapt these benchmarks, as their whole structure is founded on their

schemas and test data. A new benchmark needs to be designed specifically to evaluate the

p

media data

benchmark.

O

discussed in later chapters. These tests a

tuning in chapter 2, as well as the specific Oracle implementation details given in chapter 4.

5.2 Objectives of MORD

The benchmark designed for this thesis, called MORD, must be able to evaluate the

performance of basic functionality in multimedia databases in multimedia databases. It is

therefore a domain-specific benchmark and must satisfy the criteria required of these

benchmarks, which are portability, simplicity, scalability, and relevancy as described in

section 3.3.

T

the nature of multimedia databases, for which no standard implementation is available yet,

portability is difficult, if not impossible to satisfy. In particular, each multimedia database has

its unique datatypes and methods for handling multimedia data, so designing the benchmark

for one type of multimedia database makes it unsuitable for an alternative one. With this in

mind, it is not possible to design MORD to be a fully portable multimedia database

benchmark until multimedia databases have been standardised. Rather the objective when

designing this benchmark was to make it as generic as possible. Important design issues that

influence this are the way that the code is written. For example, it should be modular so that

functions can easily be replaced. Coding language is also important; ma

la

To be simple, a benchmark must be easy to use and extend. These are satisfied by MORD

being designed to be simple both in it ease of use as well as its comprehensibility, which

makes it easy to adapt.

To be scalable, a benchmark must evaluate small and large databases. MO

 66

dding more data can create additional sizes and the amount of data manipulated for each

eo data that is produced in the Computer Science Department

at Rho

a

query can be altered.

Finally, to be relevant, a benchmark must be designed to evaluate standard operations found
in a “real” application. MORD is relevant in that it is designed to test the basic functionality,
such as inserting and deleting, which are essential in all multimedia database applications.
Unfortunately MORD does not fare so well in terms of relevancy in that it does not evaluate
more advanced functionality, such as streaming videos, which would also be found in
multimedia database applications.

MORD was designed to assist with the configuration of multimedia database and thus the test

database must be able to support a variety of datatypes and functions. For example, Figure 5-1

shows the image, audio and vid

des University.

Figure 5-1 Types of multimedia data produced in the Rhodes Computer Science Department

Multimedia data varies both in size, ranging from images of a few kilobytes to video data of

many hundreds of megabytes (in the Computer Science Department at Rhodes University),

and format, ranging from images used for virtual environments to the departmental

photographs (in the Computer Science Department at Rhodes University). MORD must

therefore test a representative range of formats and sizes for image, audio and video data. All

the standard functionality (insert, update, select, and delete) is required by the application, in

addition to some advanced functionality. Examples of the advanced functionality are

signature generation, to enable content-based retrieval, and scaling of images, to generate

thumbnails. MORD should either already be able to, or it should be easy to extend it to,

evaluate the performance of this functionality.

MMuullttiimmeeddii
DDaattaabbaassee

aa
 IImmaaggee DDaattaa ee..gg.. FFaaccee

RReeccooggnniittiioonn,, GGrraapphhiiccss

aanndd DDeeppaarrttmmeennttaall

PPhhoottooggrraapphhss

AAuuddiioo DDaa eerriinnggttaa ee..gg.. AAuuddiioo EEnnggiinnee

VViiddeeoo DDaattaa ee..gg..

RReeccoorrddiinnggss ooff VViiddeeoo

CCoonnffeerreenncciinngg aanndd

 67

ric database within that domain.

The former approach can be used if the applications in that domain are closely matching, and

thus a de application wou e to test mos plications.

For ex , the st engineer ilar and the schema of

the 007 benchma en x the latter

approach are the SEQUOIA 2000 and the FTR benchm ore

generic applications. The s on an Earth Science (ES)

of the multimedia datatypes (image, audio and

tes in each of these. The reason for using disconnected tables is that,

5.3 Design of MORD

This section details the design of MORD’s schema, test data, workloads, and performance

metrics, and describes the manner in which it has been coded.

5.3.1 Schema Design

MORD is a domain-specific benchmark. The schemas of domain-specific benchmarks can

either be modelled on a specific application or a more gene

 schema signed for one ld be adequat t of the ap

ample requirements of mo ing applications are sim

rk is modelled on a specific gineering application. E amples of

arks, which are modelled after m

chema of SEQUOIA 2000 was modelled

application, yet it is generic enough to be used for most ES applications, and the schema of

FTR was modelled on a generic application to store and search for documents. MORD

evaluates multimedia databases, and as such the schema needs to model a multimedia

application. MORD’s schema is designed to represent a generic multimedia database, with

several tables to hold multimedia data of more than one type.

A script achieves the generation of MORD’s schemas, so that it is easy to create or recreate

the tables in the database, making the alterations to the database. The script, given in

Appendix A, creates a separate table for each

video) with three attribu

generally there is no connection between the different multimedia formats. This is similar to

the nature of the data in SEQUOIA 2000, which has four independent tables. In addition,

MORD aims to measure the basic functionality of a multimedia database and this does not

include the synchronisation of different multimedia types which would require linked tables.

As with most benchmarks, such as BUCKY and 007, there is an identifier (id) for each table

which uniquely identifies each entry. In every table, there is also a description of the

multimedia data, to categorise the data by size and format, and the actual multimedia data.

Figure 5-2 presents the schema used in MORD.

IMAGE

PK ImgID

ame
ata

AUDIO

PK AudioID

AudioTitle
AudioData

VIDEO

PK VideoID

ImgN
ImgD

VideoName
VideoData

This datatype can be c

MORD to a differe

datatype char(50), fou

interMedia datatypes:

ORDSYS.Video for vide

umbnails, as shown in

Figure 5-2 Schema used for multimedia tables

Oracle’s NUMBER datatype is used for the identifier, which is then controlled using SEQUENCES

as shown in Figure 5-3.

nt D

the equivalent multimed

the tables before recreati

creation of tables with th

Two additional tables ar

documents, while the

th

These tables are used in

If a benchmark aims to d

to include the schema im
CREATE SEQUENCE VIDEO_sequence
INCREMENT BY 1
START W
NOMAXVALUE
CYC
CHE 1

ITH 1

NO LE
CA 0;
68

hanged to the corresponding primary key datatype when applying

S on ame e standard

nd in mo S. Final multimedia datatype are Oracle’s

ORDSYS.Image for images, for audio, and

hey must be altered to

for image data with the addition of a column for

Figure 5-4.

Figure 5-3 Oracle code to generate a sequence

BM . The descripti attributes (n or title) uses th

st DBM ly, the

 ORDSYS.Audio

os. These datatypes are unique to Oracle and t

ia datatypes for alternative DBMS. The script includes code to drop

ng them in case the tables already exist as the database prohibits the

e same name.

e provided and can be included if required. One of the tables is for

other one is

DOCUMENT

PK DocID

DocTitle
DocData

IMAGE 2

PK ImgID

ImgName
ImgData
Thumbnail

Figure 5-4 Additional tables included

tests to show that MORD’s schemas can be altered.

etermine the maturity of a new technology, such as BUCKY, it needs

plemented in the older database technology with which to compare

 69

, ORDBMS. This is not the case though as MORD’s focus is on the handling of

ultimedia data and not on evaluating ORDBMS as a new technology. Since MORD is not

such it does not need to provide additional schemas, such as relational schemas.

simple datatypes, such as numbers. The

ature of complex data makes it much more difficult to generate synthetically. Multimedia

t conform to any clear pattern and it is also complex in structure,

 The first datatype that is synthetically generated is the description.

This data is produced using a template that has the corresponding category that the data

belongs to substituted where required. The purpose of data is to easily identify the category to

which the data belongs. The second datatype

the results of the new database. It may appear that MORD evaluates the performance of a new

technology

m

a benchmark,

5.3.2 Test Data

A number of factors influence the design of test data: the method of generating the data, the

type and format of the data, and the amount of data.

5.3.2.1 Generation of Multimedia Data

The test data must include unique primary keys, descriptions of the data, and a range of

multimedia data. Many benchmarks synthetically generate the test data, as it is an easy and

reliable method, but this test data is usually only

n

data, in particular, does no

making it difficult to generate. Evidence of this comes from existing benchmarks that include

some multimedia data, for example, the SEQUOIA 2000 benchmark, FTR benchmark, and

TPC-W benchmark, where the multimedia data has been provided rather than synthetically

generated. Similarly, MORD’s multimedia test data consists of pre-existing data.

Although MORD’s multimedia data is provided with the benchmark, the remaining test data

is synthetically generated.

, which could possibly be classified as

synthetically generated although it is not clear-cut, is the id. This data is generated using

Oracle’s INSERT.NEXT_VAL method, which increments each new entry by 1, in conjunction

with its SEQUENCE datatype, which is already implemented in the schema. These ensure a

unique value and a uniform distribution of the data throughout the table.

5.3.2.2 Format of Multimedia Data

MORD differs from other benchmarks in that its test data includes a wider range of

multimedia datatypes and formats. Its multimedia test data includes images, audio, and video

data, which does not have to be unique, but must consist of a representative selection of data.

 70

he formats that Oracle supports dictate the selection of multimedia data. (This support can

dges, an aspect outside the scope of this thesis.)

 Bitmap

MP) file format is a graphics format that was originally designed to be used on the

]. The Tag Interchange File Format (TIFF) file format is a tag-

Format Compression Works Well For Main Difference

T

be extended through cartri

Oracle supports most image formats. Of these, GIF, JPEG, BMP, TIFF, and PNG are

included in the test data. CompuServe developed the Graphic Interchange Format (GIF) file

format in 1987. The Joint Photographic Experts Group (JPEG) file format is named after the

group that created it and was standardised by ISO in 1990 [JPG02, W3C02]. The

(B

Windows platform [STA98

based format that was originally developed by Aldus (now Adobe) [STA98]. Lastly, the

Portable Network Graphics (PNG) file format is the successor to the GIF format with the

significant difference that it is patent-free [PNG02]. The characteristics of these image

formats are given in Table 5-1.

GIF Lossless Compression Few Colours Display Transparency

JPEG Lossy Compression Natural Scenes Great Compression

BMP No Compression Windows Platform Format Reversed

TIFF Lossless Compression None in Particular None

PNG Lossless Compression Few Colours Patent-Free, Portable

Table 5-1 Characteristics of image data

GIF, PNG and TIFF all use lossless compressi pression and

BMP does not use any compression. GIF and PNG are both highly compressed graphics

format using the same type of com ression is dependant on

ample, an image with a few distinct colours

well [STA98]. One of the advantages that GIF files have over most other image

rmats is that they can display transparency so that, for example, the background colours can

n image. TIFF images can be compressed using the lossless LZW

e images [W3C02].

BMP are not compressed and consequently the images are generally larger than alternative

on, while JPEG uses a lossy com

pression, where the degree of comp

the amount of repetition in the image. For ex

compresses

fo

show through an area of a

(Lempel-Ziv Welch). JPEG uses a lossy image compression and thus the decompressed image

is not exactly the same as the original image. This compression is achieved by saving only the

relevant colour information essential to the image in an RGB image, with the result that

greater compression can be achieved. JPEG is most effective for natural or real-world scenes,

such as photographs, and can compress either full-colour or grey-scal

 71

formats [STA98]. The BMP format differs significantly from the other formats in that it stores

image data in the reverse order (from bottom to top and pixels in the order blue/green/red).

Oracle only supports four audio formats, MP3, WAV, AU and AIFF, and of these the first

three are part of the test data. MPEG-1 Audio Layer III (MP3) was originally developed by

the German institute Fraunhofer Gesellschaft (FhG), which still holds its key patents

[FRA01]. It was introduced as a part of the official MPEG-1 standard in 1992 and is largely

thought of as the most successful audio-standard since WAV. Microsoft and IBM developed

the Waveform (WAV) audio format and it was one of the first audio formats, while the

NeXT/Sun (AU) audio fo sed for UNIX [ADO02]. rmat is a common compressed file format u

Table 5-2 shows the characteristics of each of these formats.

Format Compression Advantages Platform

MP3 Lossy Compression Small, Can be Streamed Any Platform

WAV Compressed or Uncompressed Excellent Sound Quality Windows

AU Compressed Widely used on Internet UNIX

Table 5-2 Characteristics of audio data

The MP3 format uses a very powerful type of compression, capable of reducing file sizes

down to about 1MB a minute [ADO02]. Although this is a lossy type of compression, the

sound quality is still excellent as it only removes information that is mostly beyond the

perception of the human ear [ADO02, and FRA01]. This format is also designed to be easy to

ream. WAV is the common audio file format used for Windows and since it offers one of

rms to their Windows Resource Interchange File

ormat (RIFF) specification [MCG02]. This format is called AVI because it interleaves audio

st

the best sound qualities it is a popular format. Unfortunately, this sound quality comes at the

expense that WAV files are large in size whether compressed or uncompressed. For example,

they can be up to 10MB per minute. AU is not a popular audio format, although recently it

has been used more on the Internet.

Oracle only supports three video formats, and all three are used in the test data. They are AVI,

MOV and RM Surprisingly enough, Oracle does not support the MPEG video format, which

is a very popular, widely used video format. The Audio Video Interleaved (AVI) video file

format was defined by Microsoft and confo

F

and video segments. AVI is one of the most common video formats on the PC, where it has

become the de facto standard for video data. MOV on the other hand was developed by one of

Microsoft’s competitors, Apple Macintosh, and is a QuickTime movie. QuickTime movies

 72

he data ranges of each item for each category of

atabase.

age Audio Video

consist of three layers, namely the Movie file, the Media Abstraction Layer, and the Media

Services. RealNetworks originally developed an audio format known as RealAudio, which

was later followed by a video format known as RealMedia (RM) video file format [SON00].

This format is a network based format that was originally designed for the Internet. It allows

the video to be streamed at low bandwidth, and thus with reduced quality.

5.3.2.3 Amount of data

Many benchmarks provide different sized databases. For example, the EDB benchmark has a

standard, large (standard x10), and huge (standard x100) database, and the 007 benchmark has

a small, medium, and large database. MORD also has three database sizes: small, medium,

and large. Table 5-3 shows the total size and t

d

Database Size Im

Range 1KB – 50KB 1KB-500KB 300KB- 3MB
Small

Total 2.5MB 15MB 75MB

Range 50KB – 500KB 500KB- 5MB 3MB-30MB
Medium

Total 25MB 150MB 750MB

Range 500KB - 5MB 5MB – 50MB 30MB – 300MB
Large

Total 250MB 1.5GB 7.5GB

Table 5-3 Amount of data stored in each table

There is an increase in size by a factor of 10 between the small and medium, and medium and

large database sizes, as it can be seen from Table 5-3. To make the total data size there are

approximately twenty entries for each category. The data is distributed so that the first five

ems add up to the same size as the next five items, and all twenty items total the values

rties encoded in the

eader) of the multimedia data. Since this metadata is made accessible to the database, other

methods could then be used to display the metadata and verify that Oracle supported that data

format. It was also verified that each category contained the correct number of items by

attempting to execute the code to insert the data. If that category contained an incorrect

it

given in Table 5-3. MORD differs from other benchmarks in that its total size of test data is

much larger than that found in others.

5.3.2.4 Testing

It was tested that Oracle supports the format of all of MORD’s test data by using Oracle’s

setProperties() method, which reads and interprets the metadata (prope

h

age was printed to identify the data that was causing it. These

5.3.3 Workloads

Previous benchm sent a specific

mented using me

ark further distinguishing MORD’s workload. The unique implementation of

the primitive queries as well as the special functionality makes MORD’s workload very

different from the workloads of other benchmarks.

5.3.3.1 Insert Queries

The insert query is especially important as it determines whether the database is a “true”

multimedia database. With many multimedia databases, the insert operation only creates a

reference to the multimedia data, which remains stored on the file system. A multimedia

database should import the multimedia data into the database so that it is under the full control

of the DBMS. The The first stage is

number of items, an error mess

messages utilise the naming system implemented where each file is named with their category

and a consecutive numbers. For example, the first bitmap image in the small database is called

sm1.bmp.

arks have shown that workloads should either repre

application, or the important functionality required by a type of application. MORD’s

workload tests the latter since it targets a generic multimedia database. As done by the

Michigan and Wisconsin benchmarks, MORD tests primitive queries including insert, select,

update, and delete. However, they have to be imple thods adapted for

multimedia data. Several additional operations, unique to multimedia data, are also included

in the benchm

 insert operation is performed in a number of stages.

executed using a standard SQL insert statement, as shown in the example code for the

image data in Figure 5-5.

In this sta

NEXTVAL(

the primar

but it does

the load
INSERT INTO image(imgid, imagedata, imagename)
VALUES (image_sequence.NEXTVAL,
ORDSYS.ORDImage.init(),
'Images of " + imgNm + " type:"+ imgType + "')")
73

here are datatypes, such as ORDSYS.ORDImage, and methods, such as

Figure 5-5 Code to insert multimedia data into a database

tement t

)and INIT(), that are unique to Oracle. Oracle’s NEXTVAL() method ensures that

y key is unique. Oracle’s INIT() method initialises the multimedia object datatype,

 not upload the data. To upload the data Oracle offers several alternatives, including

FromFile(), loadFromStream(), loadFromByteArray(), and import()

methods. Of these, loadDataFromFile()was chosen for no particular reason other than its

simplicity. setProperties()is used to extract the metadata from the multimedia data and

store it in the database. If MORD is applied to another multimedia database, the methods to

initialise the object and upload the multimedia data as well as the multimedia datatypes have

to be modified.

5.3.3

is measured. The first step is to select the data that is to replace the old data,

hich is achieved by using the code given in Figure 5-6.

.2 Select Queries

The select query is required to retrieve the data, and again this has to be performed using

special code for multimedia data as opposed to the standard select statement used for

ordinary data. Multimedia data not only needs to be retrieved, but it also needs to be presented

correctly, which takes additional processing. Oracle implements such a task using

getContent(), which would have to be altered for a different multimedia database.

5.3.3.3 Update Queries

The update query could either alter or completely replace the data in a database. MORD only

evaluates the latter, where the time taken to replace the multimedia data with the entry in the

row following it

w

Figure 5-6 Code to select data with which to replace the old data

Here it can be seen that the data from the row with imgid + 1 is being selected. The next step

is to replace the multimedia data of the row corresponding to imgid with this data. This is

accomplished using the code shown in Figure 5-7.

The metad

properties

OracleResultSet rs = (OracleResultSet)stmt1.executeQuery(
"select imagedata from image
where imgid=" + (imgid + 1) + "
for update");
OraclePreparedStatement stmt2 =(OraclePreparedStatement)
con.prepareCall("update image

set imagedata= ?
where imgid =" + imgid);

stmt2.setCustomDatum(1,imgobj);
stmt2.executeUpdate();
74

Figure 5-7 Code to replace the multimedia data

ata is extracted from the multimedia data so that each row contains the new

.

.3.3.4 Delete Queries

e

a

5

Data that is no longer relevant should be deleted. Such a task is more complex for multimedia

data as it involves not only deleting the data from the table, but also freeing the space in the

tablespace that data occupied. Freeing the space is important with multimedia data as it often

occupies a large amount space. It can be achieved using Oracle’s deleteContent() method,

followed by the standard SQL delete statement, as given in Figure 5-8.

de

ha

5.3

T

co

da

the

Se

mu

da

To

an

D

en

while (rs2.next())
{

OrdAudio audobj =
(OrdAudio)rs2.getCustomDatum(1, OrdAudio.getFactory());

 audobj.deleteContent();
 OraclePreparedStatement stmt2=

(OraclePreparedStatement)con.prepareCall(
"update audio set audiodata= ? where Audioid =" + audid);

 stmt2.setCustomDatum(1,audobj);
 …
}//while

stmt =(OraclePreparedStatement)con.prepareStatement("

delete from image where imgid="+ imgid);
75

Testing

sts were performed to check that the code for inserting the multimedia data was written

d the necessary

taSources were registered. Additional code was run to play the audio and video data,

Figure 5-8 Code to delete data from the table

leteContent()frees the storage space used by the multimedia data, but this method would

ve to be replaced by the equivalent method for a different multimedia database.

.3.5

rrectly. Initially tests were performed to ensure that the data was actually inserted into the

tabase and that the properties had been extracted. Firstly, the increase in the used space for

 tablespace was analysed to validate that it is proportional to the size of data being inserted.

condly, the original data was relocated and attempts were subsequently made to retrieve the

ltimedia data from the database. This showed that the data was physically stored within the

tabase and that Oracle was not simply using pointers.

 test that the selection process was executed properly, the Java Media Framework (JMF)

d the Java Media Framework Registry (JMFReg) were installed an

suring that it was being retrieved properly.

 76

reviously assigned to the preceding row. Another method used to verify that the update was

y was viewing the data.

 that the data had been deleted from the

no longer in use in several different ways.

tep was to query the dba_free_space table to find out which

locks in the tablespace were marked as free. The space was freed correctly if the block

ORD’s performance measurements require that decisions are made about performance

5.3.4.1 Performance Metric and Precision

A performance metric can be thought of as the value used to measure how well a particular

operation is executed by the system. Two important measures of performance are response

time, which is the average time taken for each query to execute, and throughput, which is the

amount of work accomplished in a given time and so is a measure of the overall performance

of the system. Response time and throughput are closely related: when the response time for

an average query increases, the overall throughput often decreases and vice versa. In MORD,

both of these are measured.

It was decided that the response time experiments should be measured in milliseconds to

obtain accurate results, but these results were then converted to seconds for analysis. Since the

The properties could be used to verify that the data was updated by displaying them before

and after the update. It could be checked that the new properties matched the values

p

performed correctl

Checks were also performed to ensure that the data was deleted from the table and that the

space had been freed. It was easily verified that the entries were deleted from the table by

using a “select id from table” SQL statement which showed if there were any entries

remaining in the tables. It was more difficult to verify

tablespace. DBMS handle the freeing of space

Oracle handles this by marking the data as deleted and only reusing that block when the

tablespace is full and needs the space. (This is the default setting, but changing the value of

certain tablespace parameters can alter it.) To verify that the data was deleted correctly, the

first step was to identify the location of the data in the tablespace prior to executing the

deleteContent() method. This was achieved by viewing the tablespace map and finding the

block identifiers detailing where the data was stored. The next step was to execute

deleteContent(). The final s

b

identifiers matched those of the deleted data.

5.3.4 Performance Measurement

M

metrics, timing precision, and the method of timing the operations.

anipulation of multimedia data usually takes longer than other datatypes, due to its large

ze, it is not necessary for its measuresments to be as fine. As a result, this precision is

fficient. The throughput experiments are measured in queries/sec, but if necessary their

sults can be converted to Mb/sec as the amount of data/query is known.

.3.4.2 Timing Mechanism

he Java method provided by the System library called currentTimeMillis() is able to

ccurately time the operations by retrieving the time from the system clock and converting it

to milliseconds. This Java method i ponse time is

shown in Figure 5-9.

The variable ber of entries measured. For

xample, the user could measure the response time for 10 insert operations or 20 insert

lue assigned to num. The time limit for the throughput

currentTimeMillis()method, as used for

m

si

su

re

5

T

a

s used for MORD, where the code for the res

Figure 5-9 Code to control the measurement of response time

num is determined by the user to control the num

e

ts3 = System.currentTimeMillis();

 for (int i=1; i <=num; i++)

 { … }//for

ts4 = System.currentTimeMillis();

operations, depending on the va

experiments is controlled by the code and uses the

the response time experiments. The code for the throughput experiments is shown Figure

5-10.

The user specifies

looping until the

performed in that

one as it would ha
int count=1;

ts3 = System.currentTimeMillis();

ts4 = System.currentTimeMillis();

while ((ts4-ts3)<timing)

 { …

count++;

ts4=System.currentTimeMillis();

 }//while
77

hen the time was larger than the maximum specified time.

Figure 5-10 Code to control the measurement of throughput

 the value for timing before executing the code. The code then keeps

maximum specified time is reached. The number of queries that are

time are recorded using a count variable. This value is then decreased by

ve only exited w

 78

s entered in the same order, the amount of data processed in that time is

 tests were performed to check that the base case, where no data was

anipulated, produced a time of 0ms. Finally, the correctness of the throughput code was

ce

racle is designed to be integrated with Java and so the multimedia methods are written in

se are standard programming language

his section gives an overview of the issues that should be considered before applying

MOR ical results that can be expected from running MORD and

 well as ensuring that the internal

Since the data is alway

then calculated by adding the sizes of the data up until the count-1 value.

5.3.4.3 Testing

Several tests were run to verify that the performance measurements were correct. Firstly, tests

were performed to confirm that milliseconds are a suitable unit. Running trial experiments

and collecting the results to check that they had adequate variation among them achieved this.

Furthermore,

m

shown by printing the time out at various points during the code to check that it had not

exceeded the maximum time at any point before exiting. These results showed that the

duration of the experiment at various stages during the throughput experiment never exceeded

the maximum time.

5.3.5 Programming Language

MORD is written in Java. Java was chosen primarily for its portability, as Java is designed to

run on multiple platforms with minimal difficulty, and its compatibility with Oracle, sin

O

Java. Additional features that make Java attractive to u

features, such as its simple timing methods, its ability to print the results to a file so that there

are permanent copies of the results, and its database functionality making it easy to connect to

the database. Another option was to use PL/SQL, which is Oracle’s procedural language

combined with SQL. Although this programming language provides all the functionality

needed and works well with multimedia data, it was not used as it would limit the benchmark

to Oracle only.

5.4 Application of MORD

T

D. It also describes the typ

explains the way in which these results can be analysed. Further instructions for the

application of MORD are given in Appendix B. Before applying MORD to a system, the

complete environment, including the database and its surrounding system, needs to be setup.

It is essential that the environment in which MORD is run is kept constant. Consideration

must be taken of how to control the external influences as

 79

environment, the database and its immediate environment, al throughout the

experiments. One of the most signif ons e external influences is

the effect o ected to a ne . A network conne s a negative influence on

the environm ficult to

interpret. The network should be excluded from the environment by running both the client

ediate environment, which includes the physical environment and the manner in

uery takes longer as a result of the

eing cached. Benchmark variables that can be altered must be kept constant,

unless being tested them mber of users should be 1 and the number of

consists of 4 query types, 3 multimedia datatypes, 2 performance metrics, and 3

atabase sizes, thus producing a possibility of 72 results. Usually only a selection of these

 to reduce this number. Each experiment in

MORD should be run multiple times, after which the arithmetic mean or average of the results

om these experiments is calculated to produce a single value. Ideally, the more times the

remains identic

icant factors when c idering th

f being conn twork ction ha

ent, particularly its high level of variability, which makes results dif

and database server on a single machine disconnected from the network. Although this limits

the results to an isolated database, it ensures that the network and other potential external

influences have no effect on the results.

The imm

which the experiments are run, is more difficult to keep constant. An important influence in

controlling the physical environment is to ensure that there are no other significant processes

running on the machine using the CPU and memory while the experiments are executed.

Unnecessary services can be stopped by using the administrator tools of the operating system,

whereas the processes can be closed by using the task manager.

There are several steps that must be taken to control the application of MORD to ensure the

accuracy of the results. The first one is to run the experiments several times to fill the cache so

that the experiments are run on what is known as a hot database, a database with full caches.

An indication that the system is stable is where consecutive results from running MORD

produce closely matching values. This problem not only occurs with the data cache, but also

with the Java cache, as it is shown by the fact that the first q

Java code b

selves, such as the nu

data items should be 20 for image and 5 for audio and video. To keep the database

environment constant a default configuration should be used for all the experiments with only

the parameter under observation altered for each new database configuration tested. Once the

environment has been correctly setup, MORD is applied to the various test systems to produce

results.

MORD

d

options is used or further calculation is used

fr

 80

 is run the m rate the results. Since the results M

 file, a imp c by appr ately

 after t. Alternative dditional be added print

e resul which test ults be

ing also be decided how the results should be presented.

er ho as ma

that the urn nu us values as one single value is too

rough a measure and is es and not to tu them.

mary

a domain-s s designed to evaluate the performance of

multimedia databases. Since a good domain-specific benchmark should be portable, simple,

scalable, and relevant, M s. It is also designed to

 includes the specification of the test data, schema, workload,

erformance measurements, and programming language. The test data includes images, audio,

hen MORD is applied to a system, the environment must be kept constant. Results are made

benchmark ore accu are printed to a icrosoft

Word document permanent record of each lementation an be kept opri

renaming the file each experimen ly, a code can to

information in th t file that identifies the res long to.

Finally, after apply MORD, it must

This includes wheth the final results of MORD s uld be ny values or a single result.

It was decided benchmark should ret

 mainly used to rank databas

mero

ne

5.5 Sum

MORD is pecific benchmark that i

ORD is designed to have these characteristic

be suitable to help with the configuration of the multimedia application that is required by the

Computer Science Department at Rhodes University.

The design of MORD

p

and videos, each of which belongs to a small, medium, or large dataset. The schema includes

three tables, one for each of the three multimedia datatypes tested, as well as two additional

tables to test documents and advanced functionality for images. The workload includes code

to test the insert, select, update, and delete operations, in addition to more advanced code to

generate thumbnail images.

MORD measures response time in milliseconds, and throughput in queries per second.

Timing is determined using Java code and the system clock. MORD is implemented in Java

for its portability and its close relationship to Oracle.

W

more accurate by repeated application of MORD.

 81

daptability refers to the fact that the benchmark is flexible enough to adapt to

st the specific requirements of an application. MORD is adaptable, if it is both portable and

scala k is easy to adjust to suit different

tabase theory is used to form informal

hypotheses that have been proven for ordinary data in Oracle and which are likely also to hold

for multimedia data. The res using this strategy, not only indicate

nality in

ultimedia database performance.

Chapter 6 : Validation of MORD
Chapter 5 described the design of a new multimedia database benchmark,

MORD. This chapter explains the design of tests to verify if MORD achieves its

objectives. The tests are grouped into categories to test if MORD is relevant,

adaptable, and simple to use and extend. Where appropriate, informal hypotheses

based on general database theory are also tested. Such tests help increase the

understanding of multimedia database performance as they indicate that what

holds for standard data also holds for multimedia data.

6.1 Overview of Validation

Validating a benchmark is done by demonstrating that the benchmark achieves its objectives.

The objectives of MORD are that it is relevant, adaptable, and simple. Relevancy refers to the

fact that the benchmark tests common and important situations that would be found in real

applications. A

te

ble. Simplicity refers to the fact that the benchmar

environments as well as being straightforward to extend, thus allowing for the addition of

extra features when necessary.

A suitable approach to validation is to design tests based on general database theory that have

a known outcome. In the case of MORD, general da

ults of validating MORD

that it is designed correctly, but also provide grounding knowledge on basic functio

m

 82

6.2 M

B must be followed. This task is made

asy by comments in the benchmark code that clearly mark the places in which to make such

altera

ground database operations. The results are collected and statistically analysed,

enerally by calculating the arithmetic mean although other methods such as standard

parative study. Even though the work done in this thesis aims to test that

ORD works correctly rather than to obtain performance results, the hardware configuration

ured after designing the experiments, but it is

discuss racle’s

.3.1 Hardware Configuration

configuration is given in Table 6-1.

ethodology

Altering the database configuration and/or the benchmark configuration and executing

MORD in a controlled environment perform the validation tests. The database’s configuration

is altered through Oracle’s user interface, while MORD’s configuration is generally altered

manually by changing the code except for when the test data is altered. When the benchmark

code is altered manually the instructions in Appendix

e

tions.

Each test is run multiple times until five results that are relatively close are recorded, and any

other results are disregarded. This process eliminates random results that are most likely

caused by back

g

deviation are also used. The analysis of the results is used to give an overview of MORD’s

capability and a broad idea of the performance of Oracle’s multimedia database. A more in-

depth analysis is, however, performed for selected aspects of the benchmark, such as the

inserting of images, to provide a greater understanding of the performance in these areas.

6.3 Environment Setup for Validation Tests

Common to the presentation of benchmark results is the detailed description of the hardware

configuration. This is crucial if absolute values are measured and to some extent less

important in a com

M

is still specified to give some perspective on the results. The environment in which the

benchmark is validated only needs to be config

ed here since some of the information in this section, particularly regarding O

configuration, relates to decisions made during the designing of the tests.

6

The main hardware details that need to be presented are the amount of memory, the

processing power, and the physical storage. It is not necessary to have a full scale multimedia

database to validate MORD, and as a result the hardware used in the test environment is

smaller than that required by an average multimedia application. A summary of the hardware

 83

Hardware Component Type Configuration
Memory Standard 1GB
Processor Dual processor - PIII 800MHz
Hard Drive IDE 100GB

Table are co est env

I en that d for the test environment, which is double Oracle’s

m e alue of 512Kb. This amount of memory is large as Oracle requires a

sizeable amount of memory for all applications, and particularly when implementing a

multimedia database.

 less likely the

bottleneck in database operations. A reasonably fast processor is thus sufficient, except for the

occasional application that has highly CPU-intensive operations. A dual PIII processor at a

speed of ation of

physical storage, both in terms of

uantity and type of storage, is significant since disk I/O is often the bottleneck of a database.

This edia data, on account of its typical

meters. Oracle assigns

efault values to them based on the most suitable value for the average application. Since

multi lications, these default values

 6-1 Summary of hardw nfiguration for t ironment

t can be se

inimum recomm

1GB of memory

nded v

 is use

The rapid advances in the processing power of computers have led to it being

800MHz was used to test MORD, which appears to be adequate as the utilis

the processor was for the most part below the 50% threshold during the tests.

In contrast to the processor, the configuration of the

q

is particularly important when dealing with multim

large volume. The environment for testing MORD only has a 100GB IDE hard drive,

although the implementation of multimedia applications should have much larger hard drives

and should be configured using a RAID system.

6.3.2 Oracle Configuration

Oracle’s configuration is controlled by the settings of numerous para

d

media applications differ considerably from standard app

are often unsuitable and need to be changed. Some of Oracle’s parameters can be altered

dynamically whenever necessary, while others only allow their value to be changed when the

database is created. Table 6-2 summarises the significant parameters for the work done in this

thesis.

 84

 Parameter Function Default Possible Values Dynamic
SGA_MAX_SIZE Maximum size of SGA for

the lifetime of the instance
Dependent
on Pools

0MB - OS
Specific

No

DB_BLOCK_SIZE Data block size 2K 2K-32K No
DB_CACHE_SIZE Size of buffer cache 48MB 1 granule

upwards
Yes

SHARED_POOL_SIZE Size of the shared pool 64MB 300Kb - Os
Specific

Yes

JAVA_POOL_SIZE Size of Java pool 20KB 20KB – 2GB Yes
LARGE_POOL_SIZE Size of Large pool for shared

server session memory
0MB 0MB to 2GB Yes

OPEN_CURSORS Max number of open
cursors session can handle

50 1 to 4294967295

Yes

Logging Determines if logging is LOGGING LOGGING/ Yes
performed NOLOGGING

Caching Determines if caching is NOCACHE CACHE/NOCACHE Yes
performed

LOB Cache OFF ON/OFF Yes Determines if caching of
multimedia data performed

Table 6-2 Oracle parameters that are altered

 set to 400MB

for these experiments, which allows for variation in the sizes of the pools, such as the

DB_CACHE_SIZE s of these pools can easily be altered as

the parameters contro is increased to 200MB

since the default valu me of multimedia data. The

speedup

ertain operations in the database. The default setting, which is to have them turned on, is

DB_BLOCK_SIZE and SGA_MAX_SIZE are both static parameters that must be set when the

database is initially created. The default value of DB_BLOCK_SIZE is too small and therefore it

is increased to 8KB for these experiments, which improves the performance when dealing

with multimedia data.

The value of SGA_MAX_SIZE must be as large as the total size of the pools contained in the

SGA (the sum of the buffer cache, shared pool, java pool, and large pool). It is

 and the JAVA_POOL_SIZE. The size

lling them are dynamic. The DB_CACHE_SIZE

e is too small to handle the large volu

JAVA_POOL_SIZE is increased to 40MB as the code is written in Java and may exceed the

default storage reserved. The values of the SHARED_POOL_SIZE and LARGE_POOL_SIZE are not

changed as their values are of less importance given that the experiments are run in dedicated

mode.

Logging and caching are implemented in most databases to enable recovery and

c

used for all of the experiments, except the experiment to explicitly test the effect these values

have on the performance.

 85

MORD is designed to be as relevant as possible, while only focussing throughout on basic,

but essential functionality, as we

A principal requirem nt of a rele ce

test th RD is accurate. Tests at each stag during the design of MORD indicate that it is

designed correctly, but tests are

Unfortunately, proving the accuracy a

benchmark that ures the p mu vail ith

which the results of MORD cou . In ccur e

from monstrati at the manner in which the per s ex in

addit to showi at the resu M mpl st

be tested that the time recorded for multiple queries is equivalent to the total time that would

be recorded if e ORD produces

e variation is explainable, suggest that MORD is accurate.

These methods do not conclusively prove that MORD is accurate, but together they strongly

support the likelihood that it is.

Additionally, MORD is relevant in that it allows the user to select the operation, datatype, and

repetition in the dataset that are tested. This feature is particularly important in a benchmark,

for example, as a user might have an application where it is only relevant to test the insertion

of video data.

6.4.2 Test 1: MORD’s Measurements are Repeatable

To illustrate that the measurements recorded by MORD are repeatable, individual results are

analysed instead of averaging the results as with the other tests. These results are compared to

verify that t rence. The

the more repeatable are MORD’s results.

6.4 Relevancy Tests

6.4.1 Design of Relevancy Tests

ll as including test data consisting of common data formats.

e vant benchmark is to be accurate, and thus it is ne ssary to

at MO e

still needed to show the accuracy of its overall operation.

of MORD is m de difficult by the fact that an alternative

meas erformance of ltimedia databases is not a able w

ld be compared stead, evidence of it being a ate com

 de ng th formance is timed behaves a pected

ion ng th lts obtained from ORD are repeatable. For exa e, it mu

ach individual query was timed. Additional evidence that M

correct results comes from the assessment of hypotheses in the tests that follow. In general,

results that are as expected, or whos

hey are either similar or there is a justifiable reason for their diffe

standard deviation is used to calculate the amount of variation there is between the different

results. The formula for standard deviation is:

√ (n∑x2 – (∑x) 2/n (n-1))

The lower the resulting standard deviation,

 86

ing Method is Designed Correctly

Test ed to measure the response time is designed correctly in

m of the time for performing each individual

l code to time the individual queries and

 loading, as bulk loading influences only the

sert query.

ading, they

re not necessary.

lespace parameters CACHE and LOGGING. The values of the tablespace

eters must either be set to NOCACHE/NOLOGGING, or alternatively CACHE/LOGGING.

6.4.3 Test 2: MORD’s Tim

2 aims to show that the code us

order to verify that MORD’s response time is measured accurately. It must be tested that the

time for the whole loop is equal to the su

operation. This is achieved by including additiona

comparing the times they produce with the total time.

6.4.4 Test 3: Specified Queries Can Be Tested by MORD

The queries that a benchmark is required to evaluate in various contexts are different, and thus

MORD should enable the user to select the operations to be tested. Such a feature is

necessary, for example, in the testing of bulk

in

Bulk loading is essential when a large amount of existing data is inserted into a new

application, either from a file system or an older application. Bulk loading presents a unique

situation in that it is once off and can be restarted if problems occur. Two database operations

that can be configured differently for bulk loading are data caching and logging. Data caching

involves storing data in memory to speed up its subsequent retrieval, while logging involves

the tracking of operations in order to recover a database. Oracle allows both of these database

operations to be turned on or off. They slow down queries and significantly decrease the

database’s performance and so should be turned off if not imperative. For bulk lo

a

While demonstrating that MORD can focus on a specified query, Test 3 reflects a simple

hypothesis about bulk loading (hypothesis 1):

Turning Off Caching and Logging Improves Performance When Bulk Loading

The results of testing this hypothesis can also be used to show the effect on the performance

of caching and logging.

Test 3 investigates the response time for the insert query with all three multimedia datatypes

used in this thesis, that is, images, audio, and video. The relevant parameters for testing

hypothesis 1 include tab

param

(The combination CACHE/NOLOGGING is not permitted by Oracle.) The database configurations

used for Test 2 are shown in Table 6-3.

 Datatype Operation Performance Metric Parameter Settings

Database
Configuration 1

Image, Audio,
Video

Insert Response Time NOCACHE,
NOLOGGING

Database
Configuration 2

Image, Audio,
Video

Insert Response Time CACHE, LOGGING

Table 6-3 Database configurations for Test 2

he values of the parameters can be altered using Oracle’s Enterprise Manager. A screenshot T

displaying Oracle’s interface to alter these parameters is shown in Figure 6-1.

Figure 6-1 Screenshot to show how the caching and logging values are controlled

The expected results from Test 3 include a demonstration that MORD enables the user to

select the required queries, as well as results that reveal the extent to which the performance

can be improved by turning the logging and caching off.

6.4.5 Test 4: MORD Can Focus on Certain Datatypes

The datatypes that a benchmark must evaluate differ according to the application, and thus

MORD should allow the user to select the datatypes that are tested. For example, an

application that is designed to store identification photographs of people and contains no other

multimedia data would have no need to evaluate the perf

verify that MORD can focus on a single datatype, a test is designed in conjunction with the

for the user to alter the composition of MORD’s dataset. For example, a situation where the

ormance of retrieving video data. To

test that follows, Test 5, to evaluate the performance of images only.

6.4.6 Test 5: MORD’s Dataset Composition Can Be Varied

Since the dataset that is affected by the queries of an application can vary, it must be possible

 87

 88

the buffer cache is determined by the

frequency with which the data is accessed. A fa

be in the bu The l it is, the

gre of an store, w the probability that the required data is

sto . If ces the physical I/O

overhead and improves performance, given that memory access is faster than physical disk

access.

rable for multimedia

databases. These ideas can be summarise simply by the following formula:

↑BCS = ↑Prf (Greater ↑Prf as DSR approaches 100 and BCS approaches size of DS)

Whe

 = increase.

mula implies that the performance increase is greater as more of the data in the dataset

 by

ance.

b) It is Large Enough to Hold This Data

In Test 5, the response time is measured for the select and update operations, since they are

the most likely to be affected by the size of the buffer cache. Three different datasets are

tested, where the quantity of data repeated in them differs. Dataset 1 consists of only unique

composition of the dataset is important is the investigation of the effect of the buffer cache.

The chance of data from the dataset being stored in

ctor that improves the likelihood of the data

ing stored

ater the amount

ffer cache is the

data it c

size of the buff

hich increases

er cache itself. arger

red in memory the data is already in the buffer cache it redu

However, there is a limit to the performance improvement that can be gained from increasing

the size of the buffer cache. Essentially, an increase in the cache size over and above the

amount of frequently accessed data would not continue to produce a performance

improvement. The general rule is that the buffer cache should, at a minimum, be large enough

to store the largest data item found in the database, which is often conside

re: BCS = size of the buffer cache,

Prf = performance of the system,

DSR = repetition in the dataset,

 ↑

This for

is repeated, especially if the size of the buffer cache is large enough to contain the entire

dataset. Performance spikes occur when the data is moved out of the cache and replaced

new data, slowing down the perform

Test 5 reflects a hypothesis based on standard buffer cache theory to demonstrate that the

composition of MORD’s dataset has been altered. Hypothesis 2 is as follows:

The Buffer Cache Is Most Effective If

a) The Same Data Is Frequently Accessed and

 89

items for each query and thus has no repetition. Dataset 2 accesses unique data for a quarter of

the test, then for the other three quarters it goes back to the first data item and accesses the

same data previously manipulated. Dataset 3 accesses a single data item repetitively.

Since Test 5 is implem ages only. The most

datasets and configurations tested are shown in Table 6-4.

Dataset BUFFER
CACHE (MB) Performance Metric Operation Datatype

ented in conjunction with Test 4, it is run for im

significant database parameter for this test is the BUFFER_CACHE_SIZE, which controls the

size of the main buffer cache. The three values that are tested for this parameter are selected

based on the sizes of the image dataset, and they are 16MB, 100MB, and 320MB. The

1 16 Response Image Time Insert, Select, Update, Delete

2 16 Response Time Insert, Select, Update, Delete Image

3 16 Response Time Insert, Select, Update, Delete Image

1 100 Response Time Insert, Select, Update, Delete Image

2 100 Response Time Insert, Select, Update, Delete Image

3 100 Response Time Insert, Select, Update, Delete Image

1 320 Response Time Insert, Select, Update, Delete Image

2 320 Response Time Insert, Select, Update, Delete Image

3 320 Response Time Insert, Select, Update, Delete Image

Table 6-4 Database and benchmark configurations for Test 5

The Oracle Enterprise Manager Console is used to change the value of the buffer cache. A

screenshot is shown in Figure 6-2.

Figure 6-2 Screenshot to show where the size of the buffer cache is altered

 90

e buffer cache on the database’s

performance, as well as the most optim

6.5 Adaptability Tests

6 f A lity Te

T ity t w that lable, an preci the

m n

Portability is not achieved in MORD as explained in Section 1. In an attempt to make MORD

acle-specific code must be

placed for a different DBMS. MORD is also designed so that it allows the user to select

differ

ferent Oracle database are similar to those

quire when aluated. These are therefore tested instead, and

although they do not produce compelling evidence of portability, they do demonstrate that

he necessary features for it to be a portable benchmark.

equired to compare the performance

f alternative methods of handling multimedia data, such as BLOBs and Oracle’s InterMedia

dataty functionality, for instance creating

thumbnails or signatures, where columns must be added to tables to store this data. To modify

The expected results for Test 5 should demonstrate the ability to alter the composition of

MORD’s dataset. They should also indicate the effect of th

al size to achieve the best performance.

.5.1 Design o daptabi sts

he adaptabil

easurements ca

ests sho

 be altered.

 MORD is portable, sca d that the sion of

as portable as possible, the code is written in Java, a portable programming language. The

code further supports adaptability by its modular design, which makes it easy to replace

portions of it, and the comments that indicate clearly where Or

re

ent databases to connect to and evaluate.

To prove conclusively that a benchmark is portable, it would have to be shown that it could

evaluate a different DBMS, such as Informix or DB2. The steps necessary to connect to

another database include: adjusting the schema, changing the connection string, and altering

the Oracle specific code in the methods. Such tests could not be performed because of the

unavailability of alternative multimedia databases. However, the steps taken to alter the

Oracle database configuration and connect to a dif

re d another DBMS is being ev

MORD has a number of t

A different Oracle database can either be a database that has been modified, for example, by

adding a new column to a table, or a completely new database that has been created from the

start and uses different storage space. The ability to alter the design of the benchmark’s

database has many uses. For example, this capability is r

o

pe. Another example is the evaluation of extra

a database, adjustments must be made to the schema while evaluating a completely different

 91

bility to measure the performance of databases with

ifferent amounts of data. Varying the amount of data can be interpreted in two different

ways items in each query can be altered,

Finally, MORD is adaptable in that the timing method can be altered in terms of both

granularity and type. Granularity refers to whether individual tasks or whole operations are

measured, whereas the type refers to whether response time or throughput is measured. The

granularity test shows that the measurements taken by MORD can be altered according to the

requirements of the application being tested.

6.5.2 Test 6: MORD Ca

ger

value to the BLOCK_SIZE should improve the performance by increasing the size of the chunks

that the data is divided into.

out the siz

tabase. Hypothesis 3 is as follows:

An Increase in the Block Size Improves the Performance When Dealing With Large

database involves the alteration of the connection string that determines the database

evaluated by MORD.

A scalable benchmark must have the a

d

. The size of data can be changed or the number of

where in both cases the overall volume changes. Having a benchmark that is scalable is

valuable in predicting how the performance of the database will react to an increase in its size,

and can be used to indicate the maximum size of a database to attain a certain level of

performance. The scalability test demonstrates that the amount of data can be varied, both in

number of items and amount of data.

n Connect to Different Databases

The ability to connect to different databases is a common requirement of a benchmark. For

example, if a static database parameter is being examined then a new database is needed for

each value tested as the parameter cannot be modified after the database is initially created.

Such a static parameter is the BLOCK_SIZE, which determines the smallest unit of physical

storage, and as a result controls the amount of disk I/O required for each data item (see

section 4.4.2 for more information on data blocks). If handling larger data, assigning a big

Test 6 reflects a hypothesis based on theory ab e of the data block to demonstrate

that MORD can connect to a different Oracle da

Data

The response time is measured for all three datatypes, that is, images, audio, and videos, as

well as the full set of operations, that is, insert, select, update, and delete. It is sufficient to test

only two values for the BLOCK_SIZE as the primary aim of Test 6 is to demonstrate that

MORD can connect to different databases and not to prove hypothesis 3 fully. These values

are 4K and 8K, rather than the default value of 2K which is too small for multimedia data.

The database configurations are given in Table 6-5.

 Datatype Operation Performance Metric Block Size

Database Image, Audio, Insert, Select,
configuration 1 Video

Update, Delete

Response Time 4K

Database
configuration 2

Image, Audio,
Video

Insert, Select,
Update, Delete

Response Time 8K

Table 6-5 Database configurations for Test 6

The test databases must be created prior to running Test 6. Unfortunately this process is not

automatically performed by PL/SQL scripts or Java code provided by MORD, as it is the case

with the other tasks. The easiest way to create the databases is by using an Oracle wizard.

Once the databases have been created, their schemas must be generated by executing the

schema script generic.sql. It can be run using the SQL*Plus Worksheet as shown in Figure

6-3. (A complete explanation of this procedure is given in Appendix B).

Figure 6-3 Screenshot of SQL*Plus worksheet to generate database schema

 92

e database that MORD tests is determined by the connection string consisting of the

atabase name, username, and password. The connection string’s value can be specified in

ORD’s code.

he results are expected to show that MORD can connect to a different database as well as to

veal the extent to which the BLOCK_SIZE can improve the performance of the database.

.5.3 Test 7: MORD’s Database Design Can Be Modified

est 7 demonstrates that the database design can be modified by altering the

script. This test is not ru the

simplicity test where MORD must be extended to evaluate the performance of the database

when lude

an ad E is

show

he code to create a table for the document data should include a primary key, a column to

d a column to hold a description of the data. The SQL code to

generate such a table is shown in Figure 6-5.

situat

Th

d

M

T

re

6

T generic.sql

n independently, but prepares the database to be used for

 handling documents. The preparation is achieved by modifying the schema to inc

ditional SEQUENCE and a table to support documents. The code to create the SEQUENC

n in Figure 6-4.

Figure 6-4 Code to create the document SEQUENCE

T

store the document data, an

Once

execu

6.5.4

To d

neces

this t
CREATE TABLE DOCUMENT(DocID NUMBER PRIMARY KEY,
 DocData ORDSYS.ORDDoc,
 DocDescription VARCHAR2(200));
Figure

ion where an increa

 these segments of

ted and the creation

 Test 8: The Amoun

etermine the maxim

sary for a benchmar

ask is to test for the
CREATE SEQUENCE DOCUMENT_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE 10;
93

 6-5 Code to create a table to store the document data

se in the data being manipulated produces an equivalent increase in

code have been included in the schema script, the script can be

 of a new table can be verified with the use of Oracle’s interface.

t of Data Tested by MORD Can Be Varied

um size of database that a machine can adequately support, it is

k to test databases of different sizes. One method of accomplishing

existence of linear scale-up. Linear scale-up here can be defined as a

 94

ar linear scale-up

ould occur until a threshold is reached, where the threshold indicates the largest database

e response time is measured for each type of operation. The three values that are

ber of items include a base value, a value half that size, and a value

the response time. For example, if the response time was originally 10ms, by doubling the

number of items inserted the expected response time then becomes 20ms. Ne

sh

size that the system can productively support.

Test 8 reflects a hypothesis based on the theory related to linear scale-up to demonstrate that

the size of MORD’s database can be increased. Hypothesis 4 is given as:

 Increasing the Amount of Data Produces Near Linear Scale-up

The amount of data can be varied both in terms of number as well as size of the items to test

scale-up. The relevant benchmark parameter is the variable that controls the number of data

items for each query. No database parameters are significant.

In Test 8, th

assigned to the num

double that size. The amount of data is assigned the values: small, medium, and large. The

benchmark configurations for Test 8 are given in Table 6-6.

 Datatype Operation Database Size Performance
Metric

Items

Benchmark
configuration 1

Image,
Audio, Video

Insert, select,
update, delete

Small,
Medium, Large

Response
Time

Half

Benchmark Image,
Video

Insert, select,
update, delete

Small,
Medium, Large

Response
Time

Standard
configuration 2 Audio,

Benchmark Image,
conf

Insert, select, Small,
, Large

Response
Time

Double
iguration 3 Audio, Video update, delete Medium

Table 6-6 Benchmark configurations for Test 8

The results of Test 8 are expected to demonstrate that the amount of data can be increased and

to determine whether or not linear scale-up occurs. Results showing a trend of linear scale-up

would provide some evidence that MORD’s results are accurate.

6.5.5 Test 9: The Granularity of MORD’s Measurement Can Be Varied

The ability to alter the granularity of the timing is required, for example, when it is important

to determine which step out of many is slowing done an operation. Test 9 measures the

response time of each individual operation during the insertion of image data. Its results are

subdivided into four sections, namely: initialising the object (IOT), importing data into the

database (IT), extracting the data properties (ET), and generating a thumbnail for images

(TGT). The variables mentioned in parentheses represent the times to complete the various

sections and are related by the following formula:

 Tot = IOT + IT +ET + TGT

6.6 Simplicity Tests

6.6.1 Design of Simplicity Tests

The ease of using MORD should be apparent through all tests, and as such no testing is

performed. It is still necessary to test explicitly whether or not the benchmark’s functionality

and test data can be extended easily. The ability to extend a benchmark makes it adaptable to

future applications, and as a result increases its lifespan.

6.6.2 Test 10: MORD’s Test Data Can Be Extended

The aim of Test 10 is to demonstrate that MORD can be extended to include new data, such

as document data. This document data includes one Microsoft Word document, one Acrobat

Reader document, one Microsoft Excel spreadsheet, and one PowerPoint document. MORD’s

design requires that several steps are taken to prepare test data, and so these must be carried

out for the document data. After these steps have been completed, the new test data is now

ready to be used by MORD in Test 11.

6.6.3 Test 11: Functionality Can Be Added to MORD

Test 11 adds extra functionality to MORD to evaluate the handling of documents, using the

document table created in Test 9 and the document test data prepared in Test 10. This extra

functionality includes the measuring of the response time for inserting and deleting

documents. The code is written in a separate file named DocExperiment.java. The outline of

this code, showing all the methods, is given in Figure 6-6.
public class DocExperiments {

 DocExperiments(…) { … }

… }

public void control (…) { … }

public OracleConnection connect() throws Exception{ … }

public void insertRTStm(…) { … }

public void deleteRTStm(…) {
95

Figure 6-6 Outline of code to include documents

}

 96

of the other

methods are executed. If additional functionality is added, the code can either be run

independently by using a main method, or through the file MultiUser.java by editing this

file to run the new code. To compile and run the code, the commands given in option A

(Figure 6-7) are used for the former, while those given in option B are used for the latter.

Figure 6-7 Code to compile and run new Java classes

The expected result of Test 11 is that the new schema, test data and functionality are all

working correctly, thus proving that MORD can be extended.

6.7 Summary

MORD is validated by testing if it meets its objectives of relevancy, adaptability (portability

and scalabili ese include

the relationship between the sizes of the buffer cache, the

amount of repetition in the data, and the performance.

The adaptability experim that it is

The simplicity experiment is also performed in two tests, which demonstrate how additional

test data, as well as functiona extend MORD. The scalability tests consist

The code has a constructor, a method to connect to Oracle, methods to test the response time

for inserting and deleting the documents, and a method that controls which

Option A

javac DocumentTest.java
java DocumentTest

Option B

javac MultiUser.java
java MultiUser

ty), and simplicity. Relevancy tests consist of six different tests. Th

tests to show that MORD’s measurements are repeatable, the timing code is accurate, specific

operations can be evaluated, the distribution of the workload can be varied, selected datatypes

can be focused on, and the granularity of what is measured can be altered. The relevancy

experiment also tests two hypotheses to determine the effect of turning off the caching and

logging when bulk loading and

ent checks that MORD is as portable as possible and

scalable. The portability tests consist of two tests: the first demonstrates that MORD can

connect to different databases while the second shows that the design of the database can be

modified. The former also tests the performance of Oracle related to the size of its data block.

lity can be added to

 97

The en any special physical

storage hardware, although it does have a relatively large amount of memory and a relatively

er values for

BUFFER_CACHE_SIZE, JAVA_POOL_SIZE, SHARED_POOL_SIZE, and OPEN_CURSORS than the

default Oracle configuration.

of a single test to prove that the amount of data, in both size and number of items, can be

varied. This also tests whether linear scale-up is achievable in Oracle for multimedia data.

vironment in which these tests are performed does not contain

fast processor. The default database configuration for the experiments has larg

 98

Chapter 7 : Results and Informal Analysis
f

wing that its measurements are repeatable,

its timing methods are designed correctly, and that both the queries and dataset

can be altered. The second set of tests indicate that MORD is adaptable by

showing that it can connect to different databases, the design of the databases can

be altered, that it is scalable, and that the granularity of the measurements can be

altered. The last set of tests indicates that MORD is simple to extend in terms of

functionality as well as test data.

7.1 Format of Results

Results are variably presented in the form of bar graphs (Tests 1, 3, 6, 8, 10, and 11), scatter

graphs (Test 1), pie charts (Tests 5 and 9), and tables (Tests 5 and 6). Tables of the full results

can be found in Appendix C.

MORD can be used to measure either throughput or response time, but for the set of

validation tests only the response time is recorded. The response time is measured in

milliseconds, and can be presented as total times (usually given in seconds), the arithmetic

mean, a percentage, or as the values calculated with additional formulas. The total time is the

sum of s, such

The previous chapter detailed the design o tests to validate MORD. This chapter

presents the results and an informal analysis for these tests. The first set of tests

indicate that MORD is relevant by sho

response times for a set of tests, and thus it is calculated for the number of item

as 20 images, multiplied by the number of times the experiment is run, such as 5 runs. The

total response time is used in Test 1 for the scatter graph of raw results, and in Test 8 as it

shows the increase in the total time as the number of items or the database size increases. The

 99

ince MORD is primarily designed to be a comparative tool, it is useful to present the results

using e, such as percentage. For example,

sults are recorded for different data formats, and can be presented either separately or

s the average of the formats for a datatype. The results are given for each format in Test 1

or all datatypes, that is, images, audio, and video, and for all the

perations, that is, insert, select, update, and delete, unless explicitly stated. Since the results

7.2 Relevancy Tests

7.2.1 Test 1: Are MORD’s Mea ts Rep

Test 1 indicates or not ements recorded by MORD are repeatable by

examining the v tween lts of consecutive runs of the benchmark. A scatter

raph is a useful visua es for inserting

and updating a selection of small and medium images are given in Figure 7-1.

average response time is the time taken for a single item and is calculated using the arithmetic

mean. It is used in Test 8 to determine if linear scale-up has been achieved.

S

 a measurement that is not dependant on the total tim

in Test 3 and 6 the results are presented as percentage to show the increase in performance

when caching/logging are turned off and with a large block size. Further calculation is

sometimes necessary; for example, in Test 1 the standard deviation is required.

The re

a

because it evaluates raw results, and in Test 9 as it shows the variation in the distribution of

time between the different formats. Most of the other tests give the average for all of the

formats.

The tests are usually run f

o

are generally similar for the various queries and datatypes, only a selection of the results are

presented in this chapter. The full set of results can be seen in the Excel timesheets included

with the thesis.

suremen eatable

 whether the measur

ariation be the resu

g l aid to display the data distribution. The response tim

12

Insert Small BMP
Insert Small JPG
Insert Small TIF
Insert Medium GIF
Insert Medium JPG

 100

0
0 10 20 30 40 50 60 70

Series

2

8

R
es

po
ns

e
Ti

m
e

(s
ec

)

4

6

10

Insert Medium Tiff
Update Small BMP
Update Small GIF
Update Small TIF
Update Medium BMP
Update Medium GIF
Update Medium JPG

2R
es

3

po
ns

e 4

5

 T
im

e
(

6

7

Se
c)

8

0

1

0 5 10 15

Series

Fi of i

The inset shows the results for in g small BMP and JPG images, where of the

results deviate from with all the results, the response tim at vary

significantly from the other results are excluded. These val re excluded as they are caused

by other influences, such as Oracle background processes, and using them would distort the

result tended to be measured. In the inset gra can clearly be s at two

results for BMP im s and only a le result for JPG s vary considera om the

rest. In the main graph these values have been eliminated in the final result similar

process was used for all the results.

The patterns seen in Figu response times are close

together, indicating that MORD’s measurements are repeatable. The percentage by which the

gure 7-1 Distribution mage response times

sertin some

 the rest of the results. As es th

ues a

s that are in ph it een th

age sing image bly fr

s. A

re 7-1 show that for each set of results the

results vary on average is calculated using the formula:

 (Average Standard Deviation/Arithmetic Mean)*100

The average standard deviation is a measure of the distribution of the response times. It is

divided by the arithmetic mean and converted to a percentage so that it is not dependant on

 101

e size of the response time. Evidence of repeatability comes from small values resulting th

from this calculation. Figure 7-2 gives the averages for each datatype/operation.

1.77%

3.93%

0.80%

0.33%

2.52%

1.40%

2.13%
2.05%

0.69%

2.23%

3.05% 2.99%

0.00%

0.50%

1.50%

2.00%

3.50%

ge
 S

ta
nd

ar
d

D
ev

ia

4.00%

2.50%

3.00%

tio
n/

A
ve

ra
ge

)%

1.00%(A
ve

ra

Insert Select Update Delete
Operations

Image
Audio
Video

Figure 7-2 Summary of variation in the distribution of the results (Test 1)

The largest resulting percentages that are calculated for the three datatypes, namely image,

audio, and video, are all between 5% and 6%. Approximately 73% of the results vary by less

than 3%, and 86% vary by less than 4% showing that the amount of variation is small. An

informal analysis of these results indicates that MORD’s measurements are repeatable, since

the values are reasonably small.

7.2.2 Test 2: Is MORD’s Method of Timing Designed Correctly

Test 2 checks if MORD’s response time method is designed correctly through testing that the

time recorded for each individual loop is approximately equivalent to the time recorded for

the whole loop. This is achieved by running the tests with additional code to measure the time

for each individual operation, as shown in bold in Figure 7-3.

 102

 each individual operation, as measured by timer1, are added up, and the

m of these times is compared to the total time returned by timer2.The difference between

Figure 7-3 Timing of individual queries

The times taken for

ts3 = System.currentTimeMillis();
for (int i=1; i <=num; i++)
{

ts5 = System.currentTimeMillis();

 is:" + timer1 + "\n";

}//for
ts4 = System.currentTimeMillis();

 …
ts6 = System.currentTimeMillis();
timer1 = new String(Long.toString(ts6-ts5));
num1 = new String(Integer.toString(num));
text = "Time to initialise 1 audio object
f.write(text);

timer2 = new String(Long.toString(ts4-ts3));
num1 = new String(Integer.toString(num));
text = "Time for " + num1 + " audio objects is:" + timer1 + "\n";
f.write(text);

su

these is calculated using the formula:

((results for timer2) - ∑ (results for timer1))/ (results for timer2)

The resulting differences for audio data in percentages are shown in Figure 7-4.

0.0%

0.5%

2.5%

1.0%

1.5%

ffe
re

nc
e

in
 R

es
po

ns
e

Ti
m

e
(

2.0%

D
i

%
)

Insert
Upload
Select
Update

wav mp3 au wav mp3 au wav mp3 au

Small Medium Large
Database Size/ Audio Format

Delete

Figure 7-4 Difference between timing individual queries and whole loop (Test 2)

The difference between timing each individual query and the whole loop is small in all cases.

The initialisation of an object, uploading of data, and selecting of that data produce

 103

insignificant differences, while for the other operations this difference is slightly more

noticeable. It can be seen from Figure 7-4 that it never exceeds much more than 2%, and from

further analysis it is calculated that approximately 75% of the values have less than a 1%

difference. An informal analysis of these results suggests that it is sufficient to measure the

whole loop for the response time code.

7.2.3 Test 3: Can MORD Focus on a Query

Test 3 indicates that MORD allows the user to select the queries tested and as a secondary aim

it determines the effect on the performance of using caching and logging when inserting data.

In the design phase tests have been conducted to show that all of the queries work correctly

when selected. To prevent a query from running it must be commented out in the code, as

shown for select and update in Figure 7-5.

Although it is possible to t t accurate results MORD

requires both the insert and delete queries to be performed for every experiment run. If the

insert query is not run, there is no data for the other queries, whereas if the delete query is not

run, there is too m

user can therefore only decide whether the select or update queries are performed.

Figure 7-5 Commented out queries

public void control (String cmd)
 {
 OracleConnection con = null;
 String smviddir, medviddir, larviddir, command;

 try
 {
 …
 if(command=="all")
 {
 callInsert(outData, con);
 //callSelect(outData, con);

 //callUpdate(outData, con);
 callDelete(outData, con);

 }
 …
 }

 commen out any of the queries, to ge

uch data, and so excluding either of these leads to incorrect results. The

Test 3 was run with the insert and delete operation for two different database configurations,

one with caching and logging and the other without these. The results are used to evaluate

Hypothesis 1 and are shown in Figure 7-6.

50%

5%

15%

20%

25%

In
cr

ea
se

 in
 P

er
fo

r

30%

35%

40%

45%

m
an

ce
 (%

)

10%

0%
wav mp3 au avi mov ram

Audio and Video Formats

Small
Medium
Large

Figure 7-6 Increase in performance when caching and logging are turned off (Test 3)

The informal analysis of these results shows that in all cases for audio and video data there is

an improvement in the performance when caching and logging are turned off. Similar results

were found for images. The improvement ranged from just less than 5% to nearly as much as

0%, which is significant. Further analysis is required to determine the reasons for this

ct of altering the size of the

buffer cache in conjunction with varying the amount of repetition in the dataset for image

data.

In these tests it is important that the buffer cache is totally empty prior to running them and,

unlike the other tests, the different database sizes must be tested separately. The reason for

running these tests in such a manner is that the expected results are based on the size of the

5

variation in the results, but from these results it is strongly recommended that caching and

logging are turned off for bulk loading.

7.2.4 Test 4 and 5: Can MORD’s Dataset Be Altered

Test 4 investigates if the composition of MORD’s dataset can be altered to contain a single

datatype, while Test 5 investigates if the repetition in MORD’s dataset can be altered. These

are both shown by testing Hypothesis 2, which examines the effe

 104

 105

dataset. If testing of the different database sizes are mixed, then the amount of data in the

buffer cache will change.

It was expected from prior knowledge of Oracle that the results would show a pattern of

increasing response times for a decrease in the buffer cache size if the size of the unique data

in the dataset exceeds the size of the buffer cache. The size of the unique data is dependant on

the amount of data repeated in each of the three datasets, and is as shown in Table 7-1.

Database Size Small Medium Large

Dataset 1 12.5MB 125.0MB 1250.0MB

Dataset 2 3.0MB 30.0MB 300.0MB

Dataset 3 0.2MB 2.0MB 20.0MB

Table 7-1 Total size of image data (5 executions)

Dataset 1 always has the largest amount of unique data as it consists of only distinctive item

and thus it is the sum ly accesses unique

data for a quarter of the test, while Dataset 3 is the smallest as it accesses a single data item

 of all of the items. Dataset 2 is much smaller as it on

and so is the size of that item.

There should be no effect on the performance if the dataset’s size is smaller than the buffer

cache’s size, otherwise the response time should be larger to varying degrees depending on

the difference between the sizes of the two. Based on this, the expectations are as summarised

in Table 7-2.

Buffer Cache
Size (MB)

Dataset
Type

Response Time
for Small Dataset

Response Time for
Medium Dataset

Response Time for
Large Dataset

1 No Effect Larger Response Time Larger Response Time

2 No Effect Larger Response Time Larger Response Time 16

3 No Effect No Effect Larger Response Time

1 No Effect Larger Response Time Larger Response Time

2 No Effect No Effect Larger Response Time 100

3 No Effect No Effect No Effect

1 No Effect No Effect Larger Response Time

2 No Effect No Effect No Effect 320

3 No Effect No Effect No Effect

Table 7-2 Expected results for Hypothesis 2

 106

This means, for example, that the results for the database configuration with a buffer cache of

320MB should be approximately the same in all cases, with the exception of Dataset 1 with

large data which should have a larger response time. The actual results are given in Table 7-3.

Buffer Cache
Size (MB)

Dataset
Type

Response Time for
Small Dataset (ms)

Response Time for
Medium Dataset (ms)

Response Time for
Large Dataset (ms)

1 7.98 8.95 9.42

2 7.60 8.23 8.38 16

3 7.47 7.55 7.90

1 7.96 8.49 8.86

2 7.69 7.72 8.03 100

3 7.29 7.44 7.47

1 7.80 7.98 8.63

2 7.52 7.62 7.60 320

3 7.30 7.37 7.41

Table 7-3 Actual results for Hypothesis 2

illisecond.

are shown in Figure 7-7.

These results show a general trend, where the entries that were marked as not being affected

are all smaller than 8ms and those that were marked as having a larger response times are all

greater than 8ms. It is also interesting to note that the largest response time was produced for

the database with the smallest buffer cache and the largest dataset. As expected, an informal

analysis of these results suggests that the performance is slower if the dataset is larger than the

buffer cache.

Ideally, the response times should be the same for the tests where the dataset fits into the

buffer cache, but when working with such small values it is difficult to get precise

measurements. Any small variation that is caused, for example, by a background process,

could have easily altered the results by a fraction of a m

A better understanding of the effect that altering the size of the buffer cache and the repetition

in the dataset has on the performance can be gained by calculating the percentage by which

the response time improves. This is achieved for Dataset 1 and Dataset 2 using the formula:

((DS1 – DS2)/ DS1)*100

Where DS1 = Dataset 1

 DS2 = Dataset 2

A similar formula is used for Dataset 2 and Dataset 3. The results from applying this formula

0%

2%

4%

6%

8%

10%

12%

Pe
fo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

sm-320 sm-100 sm-16 med-320 med-100 med-16 lrg-320 lrg-100 lrg-16

Database Size/Buffer Cache Size

DS1 & DS2
DS2 & DS3

Figure 7-7 Improvement in performance related to buffer cache and dataset

An informal analysis of these results shows that the combination of buffer cache size and

dataset affects the results of the smaller database less than it does for the larger database, as

expected. It also shows that when the size of the buffer cache is larger, the effect is smaller.

7.3 Adaptability

data block size.

It is ase, especially if

 Tests

7.3.1 Test 6: Can MORD Connect to a Different Database

Test 6 aims to show that MORD can connect to different databases by testing the performance

of a static parameter. A static parameter requires a different database for each value tested,

which in this case is the one that controls the

important to ensure that MORD is being applied to the correct datab

there is more than one database being tested. This has been established prior to testing

throughout the experiments, but it is explicitly discussed in this test. In Test 6 it is crucial to

test that the correct database is being evaluated for each execution of MORD as it tests more

than one database.

 107

 108

g

down a database can be performed through the Oracle Enterprise Manager Console or by

shutting down the database service for that database. The screenshot in Figure 7-8 shows the

Windows 2000 interface to perform the latter.

The easiest way to verify that a certain database is being accessed is to shutdown the other

databases, and make sure that MORD still runs without producing error messages. Shuttin

Figure 7-8 Screenshot of running services

This screenshot displays a list of the services running during an execution of MORD, where

in this particular case the LARGE database service is the only database open. It can be

resumed that different databases are being evaluated by MORD if the results for Test 6 show

a noticeable variation between the two database configurations. These results also assist in

determining the effect that BLOCK_SIZE has on the performance.

To calculate the improvement in the performance, further calculations must be performed on

the results using the following formula:

(∑(results for 4K) -∑ (results for 8K))/∑(results for 8K)

This formula calculates how much longer it takes, in percentage, when using a value of 4k for

the BLOCK_SIZE as opposed to a value of 8k. The increase in the performance as a result of

using a larger block size can be seen for audio data in Figure 7-9.

p

0%

5%

10%

15%

20%

25%

30%

35%

In
cr

es
e

in
 P

re
fo

rm
an

ce
 (%

)

avi mov rm avi mov ram avi mov ram

Small Medium Large
Format/Database Size

Insert
Select
Update
Delete

Figure 7-9 Increase in performance if the block size is doubled (Test 6)

These results show that the response time decreased in all case for the queries performed on

the audio data when the database had a larger block size, 8k BLOCK_SIZE. The increase in

performance ranges from less than 5% to just more than 30%. Similar results were found for

the other datatypes.

A summary of the results for all the datatypes, images, audio, and video, and all the query

types, insert, update, select, and delete, are shown in Table 7-4.

Datatype % increase in response time
Images 11%
Audio 11%
Video 16%

Table 7-4 Summary of performance improvement for all datatypes

An informal analysis of the results shows an improvement at least 11% in all cases. These

results confirm that MORD has evaluated different databases and suggest that a larger

BLOCK_SIZE improves the performance of the database. Although having a larger BLOCK_SIZE

does come at the cost of possible space inefficiency, multimedia data typically requires large

amounts of space and thus wasting such small amounts is usually inconsequential. It is

implied from these results that, a larger BLOCK_SIZE improves the performance when dealing

with multimedia data, as holds with standard data.
 109

 110

 running this script, the

Oracle Enterprise Manager can be used to check that the table has been created correctly. In

the screenshot shown in Figure 7-10 the details of the DOCUMENT table can be seen.

7.3.2 Test 7: Can the Design of the Database be altered with MORD

Test 7 indicates that the design of MORD’s databases can be altered by adding a table to store

documents. The new table is created, as done with all the other tables, by running the schema

script, which has been altered to include the Document table. After

Figure 7-10 Screenshot to illustrate that the document table has been created (Test 7)

The table consists of three columns to store the , the actual documents, and a

/datatype combinations, the fact that the number of items has increased is evident by the

increase in total response time. Three datasets are used where Dataset 2 consists of double the

number of items in Dataset 1 and half the number of items in Dataset 3. These datasets are

also selected so that their sizes increase by the same proportion.

It is easy to verify that the number of data items manipulated has changed, using either the

SQL query COUNT or the SQL query SELECT and manually counting, whereas it is more

difficult to verify that MORD correctly measured the response time. One method of testing

this is to check if the results are as expected, where the response times for Dataset 1 should be

approximately half the values recorded for Dataset 2, and in turn these values should be

approximately half the size of the values for Dataset 3. This can be seen in Figure 7-11 where

the total response times for inserting and updating are presented.

DOCUMENT ID

description of the documents, as it is supposed to.

7.3.3 Test 8: Is MORD Scalable

Test 8 indicates that MORD allows the user to vary the number of data items manipulated, as

well as test if linear scale-up occurs. When graphing the total times for different

query

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

R
es

po
ns

e
Ti

m
e

(s
ec

)

Image/Insert Audio/Insert Video/Insert Image/Update Audio/Update Video/Update
Datatype/Query Type

Dataset 1
Dataset 2
Dataset 3

irst amount), and Dataset 3 produces the response time

,070 seconds (which is just over four times the first amount). Since there is an increase in the

uggests that MORD is correctly measuring the response time as the

numb

 on the performance, where linear scale-up exists if the average results for a query

pe are the same. The results for selecting and deleting images are used to illustrate this, as

Figure 7-11 Effect of altering the number of items (Test 8)

The results are as expected, as can be illustrated using the results for inserting images. Here,

Dataset 1 produces a response time of 227 seconds, Dataset 2 produces a response time of 439

seconds (which is almost double the f

1

total response times this s

er of items in the dataset is increased.

Further analysis is still required to determine if linear scale-up has occurred. The average

results need to be normalised by dividing the total response time with the number of items for

each. The resulting values can be used to determine the effect that altering the number of

items has

ty

seen in Figure 7-12, where both the total response times and their average values are

presented.

 111

 112

0
1

2

2

8

3

9 9
12

Average Response Time

32 33
38

0

1

8
R 2

3

4

5

6

7
es

po
ns

e
Ti

m
e

(s
ec

)

Select Delete
Operation

Dataset 1-Images
Dataset 2 - Images
Dataset 3- Images

0
5

10

R
es

po
ns 15

20
25

e
Ti

m
e

30
35
40

 (m
s)

Select Delete
Operation

Figure 7-12 Effect of altering the number of images for selecting and deleting (Test 8)

When comparing the results for Dataset 1 and Dataset 2, the response times for the select

queries differ by les imately 3%. These

between Dataset 2 and

a much larger variation than found between

Dataset 1 and Dataset 2, suggesting that a threshold has been reached somewhere between 20

and 40 images. If the number of items was further increased, it is likely that other thresholds

would be identified at there are initial

action e object. If these

actor. If linear scale-up

s than 5% and for the delete queries differ by approx

values are small, showing that in both cases near linear scale-up is achieved. If the variation

 Dataset 3 are compared there is a difference of 25% for the select

query and 16% for the delete query. This is

. Another possible explanation for such results is th

s that take the same amount for all database sizes, such as initialising th

constant times are, for example, divided by a smaller amount when scaling the results, their

resulting values will have a greater effect on the overall results and thus make it seem as

though it takes longer for individual tasks.

To test if a database is scalable, an increase in the number of items as well as an increase in

the size of the items need to be tested. The three database sizes that are measured are small,

medium, and large, where the increase in size is by a factor of 10 for images, and

approximately 7 for medium audio and 5 for large audio. Since the databases are scaled by

about these factors, a rough method of calculating if linear scale-up exists is to scale these

results by dividing the response time for the medium database by the medium database factor

and the large database by the medium factor multiplied by the large f

 113

has occurred, the results should all be the same for a particular query/datatype combination.

Therefore the expected outcome is a pattern where the scaled results are the same for small,

medium and large databases. Figure 7-13 shows the results for inserting and updating both

audio and image data for the three different sized databases, as well as the scaled results for

these.

1.37

6.30

77.91

0.33
1.42

11.41

0.31 0.84

8.30

0.231.35

9.37

0

10

30

40

50

60

70

80

R
es

po
ns

e
Ti

m
e

(s
ec

)

20

 Insert Image Update Audio Update Image
Datatype/Operation

Smal

Insert Audio

l
Medium
Large

1.37

0.70

0.87

0.33

0.14
0.11

0.31

0.09

0.09

0.23
0.14

0.09

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

R
es

po
ns

e
Ti

m
e

(s
ec

)

Insert - Audio Insert - Image Update - Audio Update - Image
Operation/Datatype

Figure 7-13 Effect of increasing the size of the data (Test 8)

It is evident that the databases have been increased in size from the results presented in the

main graph, but it does not appear as if linear scale-up has been achieved from the graph in

the inset. Contrary to expectations, an informal analysis of these results implies that there is

an improvement in the performance when the size of the data increases. This implies that

etter than linear scale-up can be achieved.

bnail. (To measure the time to generate a thumbnail requires that extra functionality is

b

7.3.4 Test 9: Can the Granularity of MORD’s Measurements be Varied

Test 9 investigates if the granularity of MORD’s time measurements can be altered, and

determines where the time is spent during the insertion of images. The response time is

divided into the time to initialise an object, upload data, extract its properties, and generate a

thum

 114

added is altered to include a column in the table to store thumbnails.) The and that the schema

pie chart in Figure 7-14 gives the break down of the average response time to insert images.

21,843,

2,225, 8%

11, 0% 3,001, 11%

Initialise
Upload
Set Properties
Generate Thumbnail81%

ading the

ata takes the next longest amount of time, while the initialisation of the objects takes the

least

Figure 7-14 Distribution of time during the insertion of images (Test 9)

As expected, an informal analysis of these results shows that the generation of thumbnails

takes up a large percentage of time. (Fortunately this task is often not required.) Uplo

d

amount of time.

The results can be further analysed, investigating the performance of different image formats.

Five different formats are tested (section 5.3.2.2), BMP, GIF, JPEG, PNG, and TIFF. The

results presented in Figure 7-15 show a breakdown of the different formats, with a separate

pie for each image’s format.

 115

Small BMP Images
11.5, 1%

131.9, 17%

47.9, 6%

Initialise
Upload
Set Properties
Generate Thumbnail

Small Gif Images 9.4, 4%

70.2, 27

43.7, 17%

141.6,
52%

601.0, 76%

Small JPEG Images10.4,
4%

110.3,
45%

74.0,
31%

47.3,
20%

Small PNG Images

12.7, 1%

69.1, 3%

979.6,
43%

1,194.8,
53%

Small TIFF Images
10.3, 1%

68.6, 9%

76.6,
11%

570.4,
79%

Figure 7-15 Time taken for various tasks of the insert operation with images (Test 9)

These results reveal where the different formats have similar as well as dissimilar response

times for the various tasks. It can be seen from an informal analysis of these results that there

 a difference of approximately 3ms between the response times to initialise the objects,

ggesting that, as expected, this time is not dependant on the format of image. The times to

upload an image and to set the properties of an image are also similar among the formats, with

the former at around 70ms and the latter in the region of 50ms. Some variation does occur,

which suggest that such tasks are influenced by the format of the image. The most noticeable

deviation from the response times of the other formats occurs when setting the PNG

properties, which takes approximately 20 times longer. There also appears to be considerable

variation between the response times to generate thumbnails, suggesting that this task is also

dependant on the format of the images.

Examining the results of the different formats separately can be used to explain performance

patterns and anomalies that would be otherwise inexplicable. An informal analysis of the

results identified one such anomaly is identified in the pie chart in Figure 7-14, where it is

surprisingly seen that the time taken to upload an image is only slightly faster than the time to

set its properties. Based on intuition, it would be expected that the time taken to extract the

image’s properties would be much shorter. Another noticeable irregularity is the fact that the

total time for PNG images is much longer than that of the other image formats. Both of these

irregularities can be explained by the fact that PNG images take a substantial amount of time

is

su

 116

 read the headers and extract its properties (as identified from Figure 7-15), thus skewing

e results. A very different distribution of the time between upload of images and extraction

f the properties can be seen from the results of the informal analysis given in Figure 7-16

hen the response times for the PNG images have been disregarded.

to

th

o

w

Average without PNG

3,155, 97%

96, 3%

Upload
Set Properties

Average with PNG

3,001,
57%

2,225,
43%

istribution when including or excluding PNG images (Test 9)

Figure 7-16 Comparison of d

In the pie chart that excludes PNG, the uploading of the data is considerably larger, at 97%,

than the extracting of the properties, which is only 3%, whereas the pie chart with PNG shows

these values to be similar.

The distribution of the results is not only influenced by the format of the test data but also by

its size. This is illustrated in Figure 7-17 where a different pie chart is given for each database

size.

Initialise
Upload
Set Properties

Small Images 11, 3%

84,
25%

Medium Images 12, 1%

643, 44%

797, 55%

237,
72%

Large Images 12, 0%

5,642,
41%

8,277,
59%

of distribution for different database sizes (Test 9)

estigates if additional test data, such as documents, can be added to MORD. To

 Figure 7-17 Comparison

These pie charts suggest that the initialisation of the object is unaffected by the size of the

image, whereas the uploading of data is totally dependant on it, as expected. The uploading of

the data is 25% for small images, 44% for medium images, and 59% for large images, which

produces an overall increase of 34%.

7.4 Simplicity Tests

7.4.1 Test 10: Can Additional Data Easily be Added to MORD

Test 10 inv

add new test data, the same steps are taken as those used to setup the original test data. (These

are given in Appendix B to setup MORD and again here to explain how new test data is

added.)

The first step is to collect the test data, for example the document data for Test 10, and create

a directory in which this data is placed, for example the Document directory shown in Figure

7-18.

 117

Figure 7-18 Directory and files for document test data

The fi mpatible with the way in which the code

sion assigned by

e OS, such as ‘.ppt’. The document test data consists of data that differs in size as well as

es not issue a warning

message at upload tim

and produce error m

The third step is to en rectory by creating the

directory in Oracle and granting th

directory known to the database, such as

se les must be renamed using a system that is co

to query the data is written. The method that is currently used by MORD is a system where

the new data is named with a prefix, for example ‘doc1’, plus the file exten

th

format, to produce a more representative sample.

The second step is to verify that the access rights of the data are set to read/write so that they

can be uploaded correctly by Oracle. Oracle can only create a link to “read only” data as it

does not have access rights to upload it, and although Oracle do

e, subsequent queries, such as extracting the properties, do not work

essages.

able the database to upload data from a di

e database access to it. Code must be executed to make this

 the sample code given in Figure 7-19.

To chec

Sys.Di

row is t
create or replace directory ORDDOCDIR as ‘DIRECTORY LOCTATION’;

grant read on directory ORDDOCDIR to public with grant option;
118

Figure 7-19 Code to make Oracle aware of the directory

k that this has been executed correctly and that Oracle has access to this directory, the

r$ table can be queried. This produces the results shown in Figure 7-20, where the last

he location of the Document directory.

Figure 7-20 Query result showing the directories in Oracle

7.4

After T

data ca

the fun

It is int

the res the other datatypes. The number of items used in each test must be

duced to a single item per data format, as there is only one entry for each of the document

form

multim

betwee

the ave

.2 Test 11: Can Additional Functionality Easily be Added to MORD

est 10 is complete, Test 11 can be carried out to show if functionality to query such

n also be added to MORD. Tests are run to investigate if test data in Test 10 as well as

ctionality in Test 11 have been added to MORD correctly.

eresting to collect the response times for the document test data and compare them to

ponse times for

re

ats. The previous results have shown that the response time is affected by the size of the

edia data, therefore, based on this the response times for the documents should be in-

n that of image and audio data due to its size. The graph given in Figure 7-21 shows

rage response times for inserting data and deleting data.

 119

34 29

164

60

120

160

180

es
p

m

Document
Image
Audio

140
s)

84 Video

80

100

on
se

 T
im

e
(

89.64

 120

0

20

40

R

Delete

0

10

20

30

40

R
es

po
ns

e
T

50

60

70

80

m
e

(s
ec

s)

1.35 0.63

26.83

90

i

Query Type

Insert
Query Type

Figure 7-21 Documents results compared with other datatypes results (Test 11)

An informal analysis of the results is as expected, thus suggesting that MORD has been

extended correctly.

7.5 Summary of Results

7.5.1 Relevancy Tests

It was indicated that MORD is relevant by performing an informal analysis of the results,

demonstrating that MORD’s results are repeatable, MORD’s designed correctly, the

all standard deviations and Test 2 demonstrates that the timing methods used

by MORD are designed correctly.

easing the size

operations and datatypes that MORD tests can be selected, and the amount of data repeated in

MORD’s dataset can be changed. Test 1 suggests that MORD is repeatable due to

significantly sm

Test 3 and 4 showed that MORD can be altered to focus on a specific operation and datatype,

while Test 5 demonstrated that the composition of the dataset is adjustable. Test 3 also

investigated Hypothesis 1 which states that the speed of insertion is always faster when

logging and caching are turned off. Test 4 and Test 5 together showed that incr

of the buffer cache improved the performance of the select operations as expected.

 121

s portable, scalable, and the

ses and Test 7 showed that

the design of the database is alterable. The informal analysis of the results of Hypothesis 3 in

ber of items or

the size of the data also produced an increase in the response time. The informal analysis of

 MORD’s measurements can be altered came from Test 9.

An informal analysis of the results of this test suggested that the time to upload data is

The simplicity of extending MORD was investigated by the addition of documents to the test

dio data, and an informal analysis of the results revealed that the response

ted to the size of the data.

The validation tests indicate that MORD achieves its objectives, of relevancy, adaptability,

 theory, that have been proven for

ordinary data in Oracle and which are likely to hold for multimedia data. Although the results

ive an initial understanding of multimedia database

7.5.2 Adaptability Tests

It was indicated that MORD is adaptable by demonstrating that it i

granularity of its measurements can be altered. Evidence that suggests that it is portable came

from Test 6 which showed that it can connect to different databa

Test 6 indicated that a shorter response time is produced if using a larger BLOCK_SIZE as

expected.

The scalability of MORD was supported by the fact that an increase in the num

these results produced a trend as given in Hypothesis 4 of near linear scale-up.

Verification that the granularity of

dependant on the size of the data and that the time to initialise an object is minimal.

7.5.3 Simplicity Tests

data as well as the relevant functionality to measure its performance. Tests 10 and 11

combined tested the performance of documents. The size of the documents was between that

of images and au

times were also between these two datatypes. This suggested that the modification was

accurate, since the response time is generally rela

7.6 Summary

and simplicity. As a secondary goal, an informal analysis of results of the tests confirm or

reject informal hypotheses, based on general database

from testing these hypotheses g

performance, a more thorough evaluation is required to fully understand the performance of

multimedia databases.

 122

es and results were collected. These results were statistically analysed to give

an informal overview of MORD’s capability and a broad idea of the performance of Oracle’s

The informal analysis of the results suggests that MORD achieves each of its objectives and

ock size, by

ble.

nvironments. As an aside, they suggest

caching and

logging when possible.

The validation tests were performed by altering the database configuration and/or the

benchmark configuration and executing MORD in a controlled environment. Each test was

run multiple tim

multimedia database.

that it is easy to modify MORD so that it can evaluate a wide range of environments. As an

aside, they suggest that better performance can be gained by using a larger bl

making the buffer cache big enough to contain at least the largest expected dataset, and

turning off caching and logging when possi

The results demonstrate that MORD achieves each of its objectives and that it is easy to

modify MORD so that it can evaluate a wide range of e

that better performance can be gained by using a larger block size, by making the buffer cache

big enough to contain at least the largest expected dataset, and turning off

 123

e design of MORD, while chapter 6 detailed the design of

tests. This chapter concludes the work done in this

mmarises these

contributions, and suggests areas for future work.

sis

The rapid technological advancements in computing have led to an increase in the production

g it more difficult

any advantages over alternative options. A MMDBMS

can be defined as a DBMS that is able to store multimedia data internally as well as providing

elational Database Management Systems

(ORDBMS) appear to be a suitable advanced DBMS, with the capability to handle

hile at the same time allowing for data to be queried using the simple SQL

ew and

there is limited knowledge on their working, further study of their performance is of particular

e of any

ormance of a multimedia database, a benchmark

should focus on what is common in a multimedia workload, such as large datasets and

Chapter 8 : Conclusion
Chapter 5 described th

tests to validate MORD. Chapter 7 presented the results with an informal analysis

of running these validation

thesis, justifying it and explaining what it achieved. It su

8.1 Motivation for The

and use of multimedia data, such as audio and video data. Multimedia data differs markedly

from standard datatypes in both structure and required functionality, makin

to manage. One method of managing such data is a Multimedia Database Management

System (MMDBMS), which offers m

the necessary functionality to manipulate this data, which is not offered by standard DBMS,

such as Relational DBMS (RDBMS). Object R

multimedia data, w

query language. Since multimedia databases, including ORDBMS, are still relatively n

interest.

A mechanism such as a benchmark is often used to measure the performanc

multimedia database. To measure the perf

 124

iff multimedia databases had to be designed.

.2 Aim of Thesis

The goal of this thesis was to design a benchmark that can evaluate the performance of basic

functionality found in multimedia databases, such as the multimedia application required by

the Computer Science Department at Rhodes University. A Multimedia Object Relational

Database (MORD) benchmark is designed for this purpose. MORD targets the Oracle

ORDBMS specifically, but it is designed to be adaptable and can be used, with simple

modifications, to benchmark any other Oracle multimedia database. For example, the test data

used and queries tested by MORD can be altered.

8.3 Contributions of Thesis

MORD is a fully functional multimedia database benchmark that focuses on Basic

functionality and includes database schemas, test data, and code to simulate queries and

measure the response time and throughput of those queries. The schemas are written in SQL

and create tables to store images, audio, and video data, which are all included in the test data.

The test data is grouped into small, medium, and large categories for each of these multimedia

datatypes. The queries that are evaluated by the code are insert, select, update, and delete.

Other significant characteristics of MORD are its simplicity (making it easy to use and

extend), scalability (making it possible to measure different sized databases).

Validation tests were performed to indicate that MORD functions correctly, as well as to

demonstrate the manner in which it can be implemented. Verifying that MORD functions

correctly requires testing that MORD meets all its objectives, of relevancy, adaptability, and

simplicity. Through the validation of these objectives it is demonstrated that MORD’s

components, including schemas, test data, and queries can easily be adapted to suit various

test environments, and that the presentation of the results can also be altered as necessary.

More specifically it is demonstrated that MORD can:

• Connect to different databases

• Evaluate the performance of queries manipulating test data in a range of multimedia

tables

• Evaluate different/additional multimedia tables by altering the schema

• Test various multimedia datatypes and formats

specialised queries, which differs extensively from a non-multimedia workload. A new

benchmark that can be applied to d erent

8

 125

• A ts

• Vary the composition of the dataset

rms of size or number of items

nctionality, such as uploading data

•

•

•

•

•

•

Togeth

multim

As a s s

perform r

lis data also holds for multimedia data.

veral informal hypotheses were formed, based on such database theory, and these were

esults showed that, for Oracle:

proves performance

•

•

•

•

•

• rmats takes much longer than

It must e

validati g

MORD

llow the user to add additional test data, including new types such as documen

• Vary the amount of test data in te

• Evaluate standard multimedia fu

Evaluate the performance of specialised multimedia functionality, such as generating

thumbnails

Add additional functionality to be evaluated or alter the existing functionality

Select the specific query type that is evaluated, such as insert

Select the specific datatype that is evaluated, such as images

Alter the precision and granularity of the timing mechanism

Measure either response time or throughput

er, these capabilities make MORD straightforward to use for a wide range of

edia databases as well as easy to change or enhance when necessary.

econdary goal, the testing of MORD facilitated an initial understanding of Oracle’

ance with respect to multimedia data. This was achieved by testing whethe

estab hed database theory that holds for standard

Se

tested. An informal analysis of their r

• A larger block size im

Performance is generally related to the size of the data, especially for tasks such as

uploading data, but not for tasks such as initialising an object

Performance slows down if the size of the dataset is larger than the buffer cache

Near linear scale-up is achievable and thresholds occur for certain increases in data

If the caching and logging are turned off then the insert operation is faster

Generating thumbnails takes longer than other tasks involved in insertion of images

The time to read the header of some multimedia fo

others, for example, it takes a long time to extract the properties of a PNG images

 be noted that the testing of these informal hypotheses was only a secondary goal of th

on test and more in-depth testing and analysis would have to be performed usin

 to gain a better understanding of the performance of multimedia database.

 126

s and includes:

•

8.4 Future Work

Future work could take several direction

Applying MORD to help design a real system - MORD is to be used to assist in the

configuration of the multimedia application for the Computer Science Department at

ORD can only

•

Rhodes University. This will be achieved by evaluating the performance of a test

environment that meets the requirements of the system. As expected, M

be used for the initial tuning of the database as benchmarks are based on an estimation

of the workload; still has to be performed once the systemfine tuning is operational.

Using MORD to compare different multimedia databases – Since MORD is portable,

it could be adjusted as necessary and applied to two or more different types of

e

s

f

ore advanced environments

multimedia databases. From the results for these applications of MORD it is possibl

to identify the strengths and weaknesses of each database. Recommendations can thu

be made as to which multimedia database should ideally be used for which type o

multimedia application.

• Extending MORD to test m - MORD currently tests a

is isolated from the network, and thus could be extended

consideration of many external factors that did not affect

of web based

•

single-user environment that

to test the performance of a multi-user, networked environment. To test such an

environment requires careful

the MORD’s test environment. For example, the performance

applications varies according to the speed of the network and this must be taken into

consideration.

Adding additional functionality to MORD - MORD could be extended to test

additional functionality, such as signature generation or the cropping of images, and

additional multimedia datatypes and format. This could easily be added in a similar

manner to the other tests, just with the appropriate SQL command.

 127

ferences Re
Benchmarks

[BD84] m Performance

Evalua

[BDT8

System 1983.

[BOT9

Portab

Databa ion, 1993.

[CAR9 d

D.N. S -

SIGMO

 [CAT9 se Benchmark, In the Benchmark

ndbook for Database and Transaction Processing Systems, J. Gray. Morgan Kaufmann,

Witt, J.F. Naughton. The 007 Benchmark. In Proceedings of the

., ay 1993.

[CHA9 ject Databases,

SIGMO

[DEW9

Benchm fmann, second

edition

[DH91

symmet on High

Perform .

[DIX93 r

Databa

D9 A Designer’s Benchmark for Active

atabase Management Systems: 007 Meets the BEAST, Proceedings in second Workshop on

ules in Databases, Athens, Greece, September 1995.

 H. Boral and D.J..DeWitt. A Methodology for Database Syste

tion, 1984.

3] D. Bitton, D.J. DeWitt and C. Turbyfill. Benchmarking Database Systems: A

atic Approach, Proceedings in the Very Large Database Conference,

3] D. Bitton, C. Orji and C. Turbyfill. AS3AP – The ANSI SQL Standard Scalable and

le Benchmark for Relational Database Systems, In the Benchmark Handbook for

se and Transaction Processing Systems, Morgan Kaufmann, second edit

7] M.J. Carey, , J.F. Naughton, M. Asgarian, P. Brown, J.E. Gehrke anD.J. DeWitt

hah. The BUCKY Object-Relational Benchmark. In Proceedings of the 1997 ACM

D International Conference on the Management of Data, Tuscon, Arizona, May 1997

3] R.G.G Cattell. The Engineering Databa

Ha

second edition, 1993.

[CDN93] M.J. Carey, D.J. De

1993 ACM-SIGMOD Conference on the Management of Data, Washington D.C M

5] A.B. Chaudhri. An Annotated Bibliography of Benchmarks for Ob

D Vol. 24 No. 1 Pp 50 – 57, 1995.

3] D.J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future. In the

ark Handbook for Database and Transaction Systems. Morgan Kau

, 1993.

] S. DeFazio and J. Hull. Towards servicing textual database transactions on

ric shared memory, Proceedings in the fourth International Workshop

ance Transaction Processing Systems, Asilomar Conference Centre, September 1991

] K.M. Dixit. Overview of the SPEC Benchmarks, In the Benchmark Handbook fo

se and Transaction Systems. Morgan Kaufmann, second edition, 1993.

[GG 5] A. Geppert, S. Gatziu, and K.R. Dittrich.

D

R

 128

e Benchmark Handbook for Database and Transaction Processing

gan Kaufmann, San Fransico, 1993.

M9 diaBench: A Tool for Evaluating

d Syn zing Multimedia and Communication Systems, 1997.

00 pos ikov, S. Chen. A Benchmarking

ed Data Models, ADBIS-DASFAA Symposium, 2000 .

H.V. Jagadish, and S. Al-Khalifa. The Michigan

ary 2002.

er, J. Frew, K. Gardels, and J. Meredith. The SEQUOIA 2000 Storage

s of the ACM SIGMOD International Conference on Management of

3.

ks. May 2, 2002. [Online].

[GRA93] J. Gray. Th

Systems. Second edition, Mor

[LP 7] C. Lee, M. Potkonjak, W.H. Mangione-Smith. Me

an thesi

[RIS] N. Rishe, A. Vaschillo, D. Vasilevsky, A. Sha hn

Technique for DBMS’s with Advanc

[RUN02] K. Runapongsa, J.M. Patel,

Benchmark: Towards XML Query Performance Diagnostics, Febru

[STO93] M. Stonebrak

Benchmark. Proceeding

Data, Washington DC, 199

[TRA02] Transaction Processing Performance Council benchmar

Available: http://www.tpc.org .

Database Tuning

[BMK99] P. Boncz, S. Manegold, and M. Kersten. Database Architecture Optimized for the

ceedings in the 25th VLDB Conference, Edinburgh,

High-Performance Extensible Indexing, Proceedings in the 25th

Algorithms for

ciples, Experiments, and

new Bottleneck: Memory Access, Pro

Scotland, 1999.

[KOR99] M. Kornacker.

VLDB Conference, Edinburgh, Scotland, 1999.

[ORS96] B. Ozden, R. Rastogi, and A. Silberschantz. Buffer Replacement

Multimedia Storage Systems, Proceedings in the ICMCS Conference, 1996.

[SB02] D. Shasha, and P. Bonnet. Database Tuning: Prin

Troubleshooting Techniques. Morgan Kaufmann, 2002.

Multimedia Databases

[CO70] E.F. Codd. A Relational Model of Data for data of Large Shared Data Banks,

Proceedings in Communications in ACM, 1970.

 129

and Implications on Database

rse on Multimedia Databases in Perspective, University of

za/archive/2001/

[KA95] W. Klas, and K. Aberer. Multimedia Applications

Architectures, In advanced cou

Twente, 1995.

[H http://www.highwA01] ayafrica.org. .

.com/software/data/informix/ids/[INF01] http://www-306.ibm .

or Teaching Statistics, In

 – A status

ts, Eurographics 99.

Large Objects,

as Storage Symposium, March 1999, San Diego.

lational Database Systems: The Next Wave. Morgan

, 1996.

iples of Multimedia Database Systems, Morgan Kaufmann

ifornia, 1998.

[MIT00] H. Mittag. Multimedia and Multimedia Databases f

Proceedings in International Conference on Mathematical Education, July 2000.

[MMJ02] J. Melton, J. Michels, V. Josifovski, K. Kulkarni, P. Schwarz. SQL/MED

report, ACM SIGMOD, September 2002.

 [SDB99] I. Soetebier, R. Dorner, and N. Braun. Seamless Integration of Databases in VR for

Constructing Virtual Environmen

[SM99] M. Shapiro, and E. Miller. Managing Databases with Binary

Proceedings in the 16th IEEE M

[STO96] M. Stonebraker. Object-Re

Kaufmann, San Francisco

[SUB98] V. Subrahmanian. Princ

Publishers, Inc., San Fransico, Cal

Oracle

[BGB98] L.A. Barroso, K. Gharachorloo, and E. Bugnion. Memory System Characterization

ture,

1 acle9i Database Administrators Guide, Oracle

oration Documentation, June 2001.

[CG01] M. Cyran, and C.D. Green, Oracle9i Database Performance Guide and Reference,

Oracle Corporation Documentation, June 2001.

[CHI01] M. Chittister, Oracle9i interMedia Java Classes User’s Guide and Reference, Oracle

Corporation Documentation, June 2001.

of Commercial Workloads, Proceedings in the 25th Symposium on Computer Architec

June 1998.

[BRF0] R. Baylis, K. Rich, and J. Fee. Or

Corp

 130

[DZ02] B. gs in the

28th VLDB Conference, Hong Kong, China, 2002.

scher Oracle 9i Database Concepts, Oracle Corporation

ocumentation, June 2001.

Storage & Retrieval Performance, September 2002,

 Dageville, and M. Zait. SQL Memory Management in Oracle9i, Proceedin

[KL99] D.C. Kreines, and B. Laskey. Oracle Database Administrator, The Essential

Reference, O'Reilly & Associates, Inc.,1999.

[LO01] J. Loaiza. Optimal Storage Configuration Made Easy, Oracle Corporation White

Paper, June 2001.

[MCG01] L. McGee Lu

D

[OIM02] Oracle interMedia Media

Oracle Corporation White Paper,

http://otn.oracle.com/products/intermedia/htdocs/perf_summary.html.

[OTN02] http://otn.oracle.com/deploy/performa ce/content.htmln .

Performance Evaluations

[HPS00] I. Horrocks, P. Patel-Schneider, and R. Sebastiani. An Analysis of Empirical Testing

for Modal Decision Procedures, In IGPL, Vol. 8 No. 3, pp. 293-323, 2000.

[JM95] B. Jacob, and T. Mudge. Notes on Calculating Computer Performance, University of

Michigan Tech report, March 1995.

[MC99] R. Musick, and T. Critchlow. Practical Lessons in Supporting Large-Scale

Computational Science, December 99, SIGMOD.

Multimedia Data

[ADO02]http://www.adobe.com/support/techguides/webpublishing/audio/page3.html.

[FRA01] http://www.iis.fraunhofer.de/amm/techinf/layer3/.

[JPG02] http://www.faqs.org/faqs/jpeg-faq/.

[MCG02] J.F. McGowan, Ph.D. AVI Overview, 2002, http://www.jmcgowan.com/.

[PNG02] http://www.libpng.org/pub/png/.

[STA98] http://acomp.stanford.edu/acpubs/Docs/graphic_file_formats/.

 131

[W3C02] http://www.w3c.org

[SON00] Y. Song, Arizona State University, Video Streaming Applications: QuickTime,
Real, and Windows Media, 2000.

.

 132

pu

 (String dbname, String dbuser, String dbpass) { }

 ImageExperiments(

public OracleConnection co) E cepti

p v se Or n on, S imgNm ing

imgDir, String imgType, int num, BufferedWriter f) { }

p vo e ra ne c n, St mgSize ing

im pe, , ed f

p vo a ra ne c n, St mgSize ing

imgType, int num, BufferedWriter f) { }

p vo e ra ne c n, St mgSize ing

imgType, int num, BufferedWriter f) { }

p c vo I uf ri O acleC on con }

pu c vo S uf ri O a leCo ion co }

voi Up uff rit O a leConnection co) { }

public void callDelete(BufferedWriter D, OracleConnection con) { }

publ

}

A mag rou o
public class Imag

 ImageTP(String dbname, String dbuser, String dbpass) { }

 ImageTP() {

pub Orac ct ne ow t on

pub voi t l io tri Nm, g

imgDir, String imgType, int timing, BufferedWriter f) { }

public void (OracleConnection con, String imgSize, String

imgT

public void updateStm(OracleConnection con, String imgSize, String

imgType, int timing, BufferedWriter f) { }

pub voi eS le io S ring ze,

img , in g, ed)

pub void se er D e onne on)

pub void le er D e onne on)

pub void da er D e onne on)

pub void le er D e onne on)

pub void l (String cmd) { }

}

Appendix A: Outline of MORD’s Code

A.1 Image Response Time Code
blic class ImageExperiments {

 ImageExperiments

) { }

nnect(throws x on { }

ublic oid in rtStm(acleCon ection c tring , Str

ublic id sel ctStm(O cleCon ction o ring i , Str

gTy int num Buffer Writer) {}

ublic id upd teStm(O cleCon ction o ring i , Str

ublic id del teStm(O cleCon ction o ring i , Str

ubli id call nsert(B feredW ter D, r onnecti) {

bli id call elect(B feredW ter D, r c nnect n) {

public d call date(B eredW er D, r c n

ic void control (String cmd) { }

.2 I e Th ghput C de
eTP {

 }

lic leConne ion con ct() thr s Excep i { }

lic d inser Stm(Orac eConnect n con, S ng img Strin

selectStm

ype, int timing, BufferedWriter f) {}

lic d delet tm(Orac Connect n con, t imgSi String

Type t timin Buffer Writer f { }

lic callIn rt(Buff edWriter , Oracl C ction c { }

lic callSe ct(Buff edWriter , Oracl C ction c { }

lic callUp te(Buff edWriter , Oracl C ction c { }

lic callDe te(Buff edWriter , Oracl C ction c { }

lic contro

 133

public class AudioExperiments {

 AudioExperiments a e, pass) { }

 AudioExperiments()

public leConnec n ct

public void inser c e onnection con, String udNm, String

audDir, String audType, int num, BufferedWriter f) { }

public void sele c e onnection con, String udNm, String

audDir, String audType, int num, BufferedWriter f) {}

public void upd c e onnection con, String udNm, String

audDir, String audType, int num, BufferedWriter f) { }

public void dele c e onnection con, String udNm, String

audDir, String audType, int num, BufferedWriter f) { }

public void callIn e e Writer D OracleConnecti n con) { }

publi callSe e e Writer D OracleConnecti n con) { }

public void callUpdate(BufferedWriter D, OracleConnection con) { }

public void callDelete(BufferedWriter D, OracleConnection con) { }

}

A. udio ough e
pub clas

 Audi rim g dbna e, String user, String dbpass) { }

 Audio erim

public OracleConnection connect() throws Exception { }

publ oid m Orac eConnection con, String audNm, String

audDir, String audType, int timing, BufferedWriter f) { }

public void selectStm(OracleConnection con, String audNm, String

{}

pub ic voi ateS (OracleConnection con, String audNm, String

audDir, String audType, int timing, BufferedWriter f) { }

publ oid (OracleConnection con, String audNm, String

audDir, String audType, int timing, BufferedWriter f) { }

public void

public void

publ oid

publ oid

public void c ring md) { }

A.3 Audio Response Time Code

(String dbn m String dbuser, String db

{ }

Orac tion con e () throws Exception { }

tStm(Ora l C a

ctStm(Ora l C a

ateStm(Ora l C a

teStm(Ora l C a

sert(Buff r d , o

c void lect(Buff r d , o

public void control (String cmd) { }

4 A Thr put Cod
lic s AudioTP {

oExpe ents(Strin m db

Exp ents() { }

i vc insertSt (l

audDir, String audType, int timing, BufferedWriter f)

l d upd tm

ic v deleteStm

callInsert(BufferedWriter D, OracleConnection con) { }

callSelect(BufferedWriter D, OracleConnection con) { }

ic v callUpdate(BufferedWriter D, OracleConnection con) { }

ic v callDelete(BufferedWriter D, OracleConnection con) { }

ontrol (St c

}

 134

A
public class VideoExperiments {

 VideoExperiments(String dbname, String dbuser, String dbpass) { }

 VideoExperiments() {

public eConnect e t) throws Except on { }

public void insert l nnection con, tring vidNm, String

vidDir, String vidType, int num, BufferedWriter f) { }

public void select l nnection con, tring vidNm, String

vidDir, String vidType, int num, BufferedWriter f) {}

public void updat l nnection con, tring vidNm, String

vidDir, String vidType, int num, BufferedWriter f) { }

public void delet l nnection con, tring vidNm, String

vidDir, String vidType, int num, BufferedWriter f) { }

public void callIns r d riter D, Oracle onnection con) { }

public allSele r d riter D, Oracle onnection con) { }

callUpdate

ection con) { }

pub ic void rol (ring cm

}

A.6 Video Throughput Code
pub cla deoT

 Vide tr Strin dbuser, Str g dbpass) { }

Vide {

public OracleConnection connect() throws Exception { }

public void insertStm(OracleConnection con, String vidNm, String

vidDir, String vidType, int timing, BufferedWriter f) { }

ng vidNm, String

vidDir, String vidType, int timing, BufferedWriter f) {}

publi void m OracleConn co vidNm, String

vidDir, String vidType, int timing, BufferedWriter f) { }

publi void m OracleCo e c g vidNm, String

vidDir, String vidType, int timing, BufferedWriter f) { }

publ oid (BufferedWriter D, OracleConnection con) { }

publ id (BufferedWriter D, OracleConnection con) { }

publ oid (BufferedWriter D, OracleConnection con) { }

pub d (BufferedWriter D, OracleConnection con) { }

public void control (String cmd) { }

.5 Video Response Time Code

 }

Oracl ion conn c (i

Stm(Orac eCo S

Stm(Orac eCo S

eStm(Orac eCo S

eStm(Orac eCo S

ert(Buffe e W C

 void c ct(Buffe e W C

public void (BufferedWriter D, OracleConnection con) { }

public void callDelete(BufferedWriter D, OracleConn

l cont St d) { }

lic ss Vi P {

oTP(S ing dbname, g in

oTP() }

public void selectStm(OracleConnection con, Stri

c updateSt (ection n, String

c deleteSt (nn ction on, Strin

ic v callInsert

ic vo callSelect

ic v callUpdate

lic voi callDelete

}

 135

p
{
 public static void m ring a]){ }
}

class T mplem un
{

public Test i g str, int n m1){ }
 p void () { }
}

A.8 Schema Code in Generic.Sql
--
-- Drop any tables already created
--
D TA VIDEO;
D TA MAGE;
DROP TAB AUDIO;
ROP TABLE DOCUMENT;

-
-- Drop any sequences already created
--
DROP SEQUENCE VIDEO_sequence;
DROP SEQUENCE IMAGE_sequence;
DROP SEQUENCE AUDIO_sequence;
DROP SEQUENCE DOCUMENT_sequence;

--
-- Create the sequence for the video table
--
CREATE SEQUENCE VIDEO_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE

----------- -------- - -------- --------------

C EATE TA LE VIDEO(dI PRIMARY KEY,
 VideoData ORDSYS.ORDVideo,
 VideoName VARCHAR2(200));

--
-- Create the sequence for the image table
--
CREATE SEQUENCE IMAGE_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE

--
-- ate th age tab
--
CREATE TABLE IMAGE(NUMBER PRIMARY KEY,
 ImageData RDSYS.ORDIma e,

A.7 Main Classes
ublic class MultiUser

ain(St rgs[

est i ents R nable

(Str
run

n u
ublic

ROP
ROP

BLE
BLE I
LE

D

10;

-
-- Create the video table

--- ---- - -

R B Vi D NUMBER

10;

Cre e im le

ImgID
O g

 136

------------ ------- ----- ---------
-- Create the sequence for the audio table
--- ------ ------- ----- ---------
CREATE SEQUENCE AUDIO_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE

--
-- Create th dio tab
--
CREATE TABLE AUDIO(I NUMBER PRIMARY KEY,
 AudioData RDSYS.ORDAUDIO
 AudioTitle ARCHAR2(200));

Throughput Experiments
Str dname user,dp
ImageExperiments(String dbname, String dbuser,String dbpass)
{
 dname me;
 duser= ser;
 dpass ss;
}

ImageExperiments()
{
 dname= rge";
 duser="mmedia";
 dpass="mmedia";
}

public OracleConnection connect() throws Exception
{
 String connectString;

 Sys em.out.pri nam);
 connectString = "jdbc:oracle:thin:@nemesis.ict.ru.ac.za:1521:" +
dname;
 OracleConnection con = (OracleConnection)
 erManage t onnec onnectStri user,dpass);
 con.se oCommit(e ;
 return con;
 }

 ImageName VARCHAR2(200)
);

---- ------ ------- --

--- ---- ------ ------- --

10;

e au le

Audio D
O ,
V

A.9 Constructors and Code to Connect to Database for Response Time and

ing , d ass;

=dbna
dbu
=dbpa

"la

 Class.forName ("oracle.jdbc.driver.OracleDriver");

t ntln(d e

Driv r.ge C tion(c ng,d
tAut fals)

 137

ns
The truction ven in th t n start fter Oracle been installed and the user

has ged ont cle. The t e step d to be tak setup the environment for

MORD to be executed. It is also p esumed that the code and the test data have been copied

acr ries as they were. The main directory is called Benchmark where

MORD’s code is and there are 4 subd rectories called Im ges, Audio, Video, and Documents.

Each of these subdirectories has 3 further subdirectories called small, medium and large

where the test data resides.

B.1 Step 1: Create Database
he easiest way to create the databases is by using an Oracle wizard. This is a 8 step process

w databa must

be selected.

Appendix B: Installation Instructio
 ins

 log

s gi is sec io from a has

o Ora y are h s that nee en to

r

oss in the directo

i a

T

hich starts with the screen shown in Figure B-1, where the option to create a se

B-1 Screenshot of first screen for Oracle database wizard

The steps are ht forwa it ost just being left as the default setting and

clicking on the t button. S important as this step allows the user to change the sizes

of the caches, such as the buffer cache. The screenshot in B-2 shows the screen from which

this arried o

straig rd w h m of them

nex tep 5 is

 is c ut.

 138

cr f ste d tabase creat

B.2 ep 2 rate l

he schemas must be generated by executing the schema script generic.sql. It can be run

u

f ste d tabase creat

B.2 ep 2 rate l

he schemas must be generated by executing the schema script generic.sql. It can be run

u

B-2 S eenshot oeenshot o p 5 forp 5 for aa ion ion

 St St : Gene: Gene Tab Tab es es

TT

sing the SQL*Plus Worksheet as shown in Figure B-3. sing the SQL*Plus Worksheet as shown in Figure B-3.

B ot of works erate s ch

B.3 p 3: S Dat
To setup the tes ctly s to b ed s t an data from

directory. This is achieved by creating the directory in Oracle and gra e databas

-3 Screensh SQL*Plus heet to gen databa e s ema

 Ste etup Test a
t data corre Oracle ha e configur o that i c upload a

 nting th e

ccess to it. Code must be executed to make this directory known to the database, such as the

s

To chec

Sys.Di

B.4 St
The dat

sc s

The but

Here th

l e

m ory

B.5 St
To com

code’s d

a

ample code given in Figure B-4.

reen

arge

em
create or re dire y ORD R a R CTORY TION’

grant read on directory ORDDOCDIR to public with grant option;

place ctor DOCDI s ‘DI E LOCTA ;
139

de to e Ora re o re tory

k t is has cute rectl at O h s acce is dir e

r$ table can be queried.

ep 4 onfig tab
abase must b red eci able a d can ieved fro e

how Figu

B-5 Screenshot of Oracle screen for configuring the database

ton at the bottom of this w ust be selected to alter the initialisat

e OPEN_C ORS must be set to nd th _M X_SIZE e ma

no for t ents, depending t si h s are be d. Th

 n then to c the ache h s the Java

ep 5: Compile and Run MORD
p nd r s fo m

irectory:
av ser
java MultiUser
ALL (if all operations/datatypes)

B-4 Co mak cle awa f the di c

hat th been exe d cor y and th racle a ss to th ectory, th

: C ure Da ase
e configu as sp fied in T 5-2, n be ach m th

n in re B-5.

indow m ion parameters.

URS 3000 a e SGA A must b de

ugh he experim on wha ze cac e ing teste e

tab ca be select onfigure various c s, suc a pool.

ile a un MORD’ code, the llowing co mands must be executed from the

j ac MultiU .java

 140

bles of Results for Hypotheses

C D’s Mea ents ar peatab
Test 1:Table showing the average variation for Images

Appendix C: Ta

.1 MOR surem e Re le

 Insert Select Update Delete Categor verages y A
Bmp 1.925% 5.460% 5% 3. 5.85 097% Insert 1.13%
Gif 0.690% 3.632% 9% 1. 5.02 964% Select 3.71%
Jpg 1.045% 4.638% 1.494% 2.913% Update 2.81%
Png 0.340% 0.316 717%0.280% % 2. Delete 2.76%S

m
al

l

Tif 1.625% 4.550% 1.352 % 3.107%
Bmp 1.439% 3.810% 2% 1 0.51 .760% Insert 0.88%
Gif 0.579% 4.729% 1% 2 0.48 .742% Select 4.42%
Jpg 1.026% 4.487% 0.313% 1.466% Update 0.46%
Png 0.282% 4.340% 0.072% 3.683% Delete 2.39%M

ed
iu

m

Tif 1.091% 4.729% 0.927% 2.310%
Bmp 1.767% 4.521% 1.250% 2.417% Insert 3.31%
Gif 3.654% 2.796% 1.026% 0.707% Select 2.76%
Jpg 5.621% 0.280% 0.794% 1.045% Update 0.90%
Png 2.041% 3.636% 0.144% 1.987% Delete 1.53%La

rg
e

Tif 3.479% 2.563% 1.289% 1.512%
 Average 1.77% 3.63% 1.39% 2.23%

Test 1: Table showing t tion for ata he varia Audio D Cat ory Averages eg

 Insert 0.97%
 Insert Select Update Delete Select 3.41%

wav 0.1572% 4.7640% 0.7456% 3.8350% Update 1.78%
mp3 1.1487% 2.4771% 1.4718% 2.4787% Delete 4.01%

S
m

al
l

au 1.6185% 2.9 3.1272 058%800% % 5.7 Insert 0.66%
wav 0.3923% 1.9 0.6209 432%961% % 5.5 Select 2.77%
mp3 0.5266% 3.0 0.0697 842%401% % 3.4 Update 1.07%

M
ed

iu
m

au 1.0737% 3.2 2.5321 948%643% % 3.6 Delete 4.24%
wav 1.3861% 0.66 2.5965 895%81% % 1.1 Insert 0.75%
mp3 0.6722% 1.2 0.0255 881%761% % 0.2 Select 1.37%

La
rg

e

au 0.1885% 2.17 7.2375% 217%50% 1.2 Update 3.29%
 Average 0.80% 2.52% 2.05% 3.05% Delete 0.90%

Test1: Table showing the variation for Video Data Category Averages

 Insert 0.13%
 Insert Select Update Delete Select 1.71%

avi 0.1404% 0.5034% 32.8602% 3.0 32% Update 0.42%
mov 0.1520% 1.1 0.4819 873%156% % 4.4 Delete 4.43%

S
m

al
l

rm 0.0880% 1.1 0.2773 724%689% % 5.7 Insert 0.51%
avi 0.7242% 3.3 1.1103 475%053% % 1.1 Select 2.17%

mov 0.1759% 2.2 0.9881 149%294% % 3.1 Update 0.93%

M
ed

iu
m

ram 0.6202% 0.9 0.6831 738%615% % 1.5 Delete 1.95%
avi 0.1478% 0.21 0.2293% 995%46% 0.5 Insert 0.36%

mov 0.4838% 0.23 1.0098 525%18% % 5.1 Select 0.31%

La
rg

e

ram 0.4470% 0.4 0.8925 164%709% % 2.0 Update 0.71%
 Average 0.33% 1.40% 0.69% 2.99% Delete 2.59%

 141

C y MORD
 showing the a time tak mages achin

.2 Specified Queries can be Tested b
Test 3:Table verage en for i with no c g

 Insert Category Averages
Bmp 119.6600 Insert 285.280
Gif 122.9300 Insert 2 ,958.320
Jpg 117.2000 Insert 8,937.870
Png 930. 9300 S

m
al

l

Tif 135. 6800
Bmp 808. 2900
Gif 1,039.7000
Jpg 746. 9900
Png 11,468.4 500 M

ed
iu

m

Tif 728. 1700
Bmp 11,576. 4000
Gif 9,889.8 400
Jpg 6,853. 1200
Png 9,471.6300 La

rg
e

Tif 6,898.3600
 Average 4,060.490

Test 3: Ta owing ag aken o w ca hi

ble sh the aver e time t for audi ith no c ng

 Insert Category Averages
wav 1,547.3600 Insert 1,038 9.4 3
mp3 871.1600 Insert 5,576 0 .88

S
m

al
l

au 696.9600 Insert 73,863 2.5 7
wav 8,435.6400
mp3 4,696.8400

M
ed

iu
m

au 3,598.1600
wav 10 0 2,980.640
mp3 74,122.4400

La
rg

e

au 44,487.5000
 Average 26,826.300

Test 3: Table showing the average time taken for video with no caching

 Insert Averages Category
avi 7,652.12 Insert 10,561

mov 6,927.48 Insert 39,429

S
m

al
l

rm 17,101.92 Insert 293,823
avi 36,852.48

mov 36,383.76

M
ed

iu
m

ram 45,050.00
avi 532,093.08

mov 168 ,730.04

La
rg

e

ram 180 ,646.24
 Average 114,604

 142

Test 3: Table showing the average time taken for images with caching

 Insert Category Averages
Bmp 147.6500 Insert 331.036
Gif 311.240 0 Insert 2,1 74.930
Jpg 157.6700 Insert 11,344.954
Png 928.9300 S

m
al

l

Tif 109.6900
Bmp 615.0100
Gif 378.1200
Jpg 377.1600
Png 4,752.1800 M

ed
iu

m

Tif 4,752.1800
Bmp 6,771.7100
Gif 4,902.5800
Jpg 4,394.710 0
Png 33,925.0000 La

rg
e

Tif 6,730.7700
 Average 4,616.973

Test 3: Table showing the avera ta udio w inge time ken for a ith cach g

 Insert Cate erages gory Av
wav 2,348.76 Insert 1,430
mp3 973.16 Insert 8,649

S
m

al
l

au 969.32 Insert 89,483
wav 16,762.00
mp3 5,140.60

M
ed

iu
m

au 4,045.72
wav 107,138.08
mp3 99,840.56

La
rg

e

au 61,471.10
 Average 33,188

T t 3: T show ag aken ith cachines able ing the aver e time t for video w g

 Insert Category Average s
avi 10,730.0000 Insert 17,752.440

mov 13,774.9600 Insert 51,195.200

S
m

al
l

rm 28,752.3600 Insert 341,372.093
avi 57,127.4800

mov 44,940.0400

M
ed

iu
m

ram 5 1,518.0800
avi 637,986.920 0

mov 186,689.3200

La
rg

e

ram 199,440.040 0
 Average 136,773.244

 143

C.3 MORD’s Dataset can be Altered
 32Test 4: Table showing the average time taken for Dataset 1/Buffer Cache 0

 Select Category Averages
Bmp 7.76 Select 7.81
Gif 7.82 Select 7.98
Jpg 7.96 Select 8.63
Png 7. erage 8.199 Av 4S

m
al

l

Tif 7.50
Bmp 7.76
Gif 8.08
Jpg 7.97
Png 8.07 M

ed
iu

m

Tif 8.01
Bmp 8 .61
Gif 8 .44
Jpg 8.58
Png 8.47 La

rg
e

Tif 9.07

Test 4: Table showing the av e ataseerage tim taken D t 2/ Buffer Cache 3
Bmp 7.58 Select 7.52
Gif 7.56 Select 7.62
Jpg 7.66 Select 7.60
Png 7.33 Av 7.58 erage S

m
al

l

Tif 7.49
Bmp 7.66
Gif 7.65
Jpg 7.51
Png 7.65 M

ed
iu

m

Tif 7.64
Bmp 8.0 4
Gif 7.5 6
Jpg 7.35
Png 7.4 9 La

rg
e

Tif 7. 56

Test 4: Table showing the average time taken for Dataset 3/Buffer Cache 320
 Select Categ verages ory A

Bmp 7.63 Select 7.30
Gif 7.36 Select 7.37
Jpg 7.18 Select 7.41
Png 7 Average 7.36.17 S

m
al

l

Tif 7.1 8
Bmp 7 .51
Gif 7 .02
Jpg 6.86
Png 8.11 M
ed

iu
m

Tif 7.36
Bmp 7.35
Gif 7.35
Jpg 7.40
Png 7.46 La

rg
e

Tif 7.50

 144

e 100Test 4: Table showing the average time taken Dataset 1/Buffer Cach
 Select Category Averages

Bmp 8.09 Select 7.96
Gif 7.74 Select 8.49
Jpg 8.14 Select 8.86
Png 7.79 Average 8.44S

m
al

l

Tif 8.04
Bmp 8.28
Gif 8.44
Jpg 8.38
Png 9.06 M

ed
iu

m

Tif 8.28
Bmp 8.75
Gif 8.79
Jpg 8.76
Png 9.08 La

rg
e

Tif 8.92

Test 4: Table showing th age time take se Cache aver n for Data t 2/Buffer e 100
 Select Catego agesry Aver

Bmp 7.96 Select 7.69
Gif 7.50 Select 7.72
Jpg 7.82 Select 8.03
Png 7.35 Average 7.81S

m
al

l

Tif 7.81
Bmp 8.28
Gif 7.51
Jpg 7.50
Png 7.49 M

ed
iu

m

Tif 7.82
Bmp 8.43
Gif 7.65
Jpg 8.12
Png 7.97 La

rg
e

Tif 7.98

Test 4: Table showing ge ti a n for D aset 2/Buffer Cac e 100 the avera me t ke at h
 Select Category Averages

Bmp 7.32 Select 7.29
Gif 7.51 Select 7.44
Jpg 7.14 Select 7.47
Png 7.18 Average 7.40S

m
al

l

Tif 7.28
Bmp 7.81
Gif 7.33
Jpg 7.83
Png 7.02 M
ed

iu
m

Tif 7.19
Bmp 7.68
Gif 7.34
Jpg 7.35
Png 7.65 La

rg
e

Tif 7.33

 145

Test 4: Table showing the average time taken for Dataset 1/Buffer Cache 16
 Select Category Averages

Bmp 7.97 Select 7.98
Gif 8.03 Select 8.95
Jpg 7.97 Select 9.42
Png 7.98 Average 8.78S

m
al

l

Tif 7.96
Bmp 9.53
Gif 9.16
Jpg 8.87
Png 8.76 M

ed
iu

m

Tif 8.44
Bmp 9.84
Gif 9.05
Jpg 9.53
Png 9.07 La

rg
e

Tif 9.61

Test 4: Table showing the average time taken for Dataset 2/Buffer Cache 16
 Select Category Averages

Bmp 7.65 Select 7.60
Gif 7.56 Select 8.23
Jpg 7.64 Select 8.38
Png 7.54 Average 8.07 S

m
al

l

Tif 7.62
Bmp 8.27
Gif 8.18
Jpg 8.18
Png 8.27 M

ed
iu

m

Tif 8.24
Bmp 8.44
Gif 8.35
Jpg 8.42
Png 8.28 La

rg
e

Tif 8.43

Test 4:Table showing the average time taken for Dataset 3/Buffer Cache 16
 Select Category Averages

Bmp 7.51 Select 7.48
Gif 7.34 Select 7.52
Jpg 7.80 Select 7.90
Png 7.51 Average 7.63S

m
al

l

Tif 7.22
Bmp 8.14
Gif 7.13
Jpg 7.51
Png 7.65 M
ed

iu
m

Tif 7.19
Bmp 8.89
Gif 7.57
Jpg 7.86
Png 7.49 La

rg
e

Tif 7.71

 146

C.4 MORD can Connect to a Different Database

Test 6: Table showing the average time taken for Image when block size = 4K

 Insert Select Update Delete Category Averages
Bmp 135.61 11.24 83.66 23.29 Insert 320.40
Gif 152.29 9.07 86.00 23.75 Select 9.69
Jpg 157.81 9.54 115.47 23.43 Update 260.32
Png 989.26 9.22 909.99 23.75 Delete 23.56
Tif 167.03 9.37 106.47 23.57

Bmp 885.94 9.39 526.89 25.32 Insert 1,658.03
Gif 612.83 9.23 479.68 26.10 Select 9.15
Jpg 561.55 9.07 567.19 29.21 Update 1,415.16
Png 5682.19 9.06 4929.07 28.59 Delete 27.54
Tif 547.65 8.98 572.96 28.50

Bmp 6545.00 9.18 4485.48 61.10 Insert 13,083.03
Gif 7213.91 9.22 3991.40 65.32 Select 9.24
Jpg 6659.37 9.38 4458.30 64.69 Update 9,873.50
Png 35109.86 9.22 32044.67 69.23 Delete 64.19
Tif 9887.03 9.22 4387.66 60.62

Average 5020.49 9.36 3849.66 38.43

Test 6: Table showing the average time taken for audio when block
size=4k Category Averages

 Insert Select Update Delete Insert 1594.69
wav 2276.24 354.40 539.32 35.64 Select 295.08
mp3 1511.28 314.08 408.08 33.12 Update 352.97
au 996.56 216.76 111.52 34.92 Delete 34.56

wav 11935.64 2014.36 139.32 64.96 Insert 7237.24
mp3 5708.16 1717.48 2305.08 61.92 Select 1694.35
au 4067.92 1351.20 88.12 65.60 Update 844.17

wav 88320.44 38879.48 181.24 498.16 Delete 64.16
mp3 99365.04 36752.40 25151.88 317.52 Insert 84245.41
au 65050.75 24039.85 99.55 329.05 Select 33223.91

Average 31025.78 11737.78 3224.90 160.10 Update 8477.56
 Delete 381.58

Test 6: Table showing the average time taken for video when block
size=4k Category Averages

 Insert Select Update Delete Insert 15575.65
avi 12975.64 1472.04 3786.84 47.52 Select 1493.81

mov 13814.96 1601.36 3895.64 48.16 Update 4833.73
rm 19936.36 1408.04 6818.72 54.44 Delete 50.04
avi 91845.12 15006.88 23664.36 157.16 Insert 62767.75

mov 44940.04 21377.60 24970.00 159.16 Select 18924.29
ram 51518.08 20388.40 52468.12 408.84 Update 33700.83
avi 454827.52 148735.40 388385.68 2197.04 Delete 241.72

mov 174689.32 60600.60 77368.76 418.48 Insert 268318.96
ram 175440.04 59679.24 75560.60 804.72 Select 89671.75

Average 115554.12 36696.62 72990.97 477.28 Update 180438.35
 Delete 1140.08

 147

Test 6: Table showing the average time taken for Images when block size = 8k

 Insert Select Update Delete Category Averages
Bmp 135.00 8.83 63.44 22.60 Insert 290.94
Gif 121.43 9.04 57.83 22.90 Select 8.92
Jpg 157.67 9.07 97.65 22.64 Update 232.57
Png 930.93 8.74 860.00 22.23 Delete 22.61S

m
al

l

Tif 109.69 8.90 83.92 22.66
Bmp 615.01 8.75 493.75 24.91 Insert 1,304.98
Gif 399.12 8.59 460.93 24.52 Select 8.55
Jpg 395.16 8.75 565.61 24.22 Update 1,353.59
Png 4752.18 8.59 4727.04 23.41 Delete 24.87M

ed
iu

m

Tif 363.45 8.06 520.62 27.27
Bmp 6360.85 8.61 4204.23 41.25 Insert 11,464.98
Gif 4913.58 9.06 3631.56 47.50 Select 8.95
Jpg 5394.71 9.22 4390.62 43.44 Update 9,227.91
Png 33925.00 8.78 29800.14 54.36 Delete 46.44La

rg
e

Tif 6730.77 9.07 4112.99 45.63
 Average 4353.64 8.80 3604.69 31.30

Test 6: Table showing the average time taken for Audio when block
size=8k Category Averages

 Insert 1,370.413
 Insert Select Update Delete Select 255.653

wav 2,228.7600 350.6400 538.2000 31.2800 Update 310.693
mp3 913.1600 214.4400 309.4800 31.1200 Delete 29.973

S
m

al
l

au 969.3200 201.8800 84.4000 27.5200 Insert 6,302.773
wav 9,962.0000 1,639.9600 131.8800 53.1600 Select 1,452.720
mp3 4,900.6000 1,539.4000 2,294.4000 48.8400 Update 837.293

M
ed

iu
m

au 4,045.7200 1,178.8000 85.6000 41.2400 Delete 47.747
wav 82,418.0800 38,300.6400 175.7200 299.3600 Insert 77,643.247
mp3 99,040.5600 29,873.1600 24,625.6400 211.5200 Select 27,816.017

La
rg

e

au 51,471.1000 15,274.2500 84.3500 283.5500 Update 8,295.237
 Average 28,438.811 9,841.463 3,147.741 114.177 Delete 264.810

Test 6: Table showing the average time taken for Video when block
size=8k Category Averages

 Insert 11,379.37
 Insert Select Update Delete Select 1,259.35

avi 10730.00 1262.52 3761.28 33.76 Update 4,296.05
mov 9090.64 1316.16 3818.72 33.40 Delete 35.51

S
m

al
l

rm 14317.48 1199.36 5308.16 39.36 Insert 47,415.40
avi 62727.48 10992.56 22446.32 108.16 Select 14,983.69

mov 43088.72 17626.00 24613.80 103.76 Update 28,712.53

M
ed

iu
m

ram 36430.00 16332.52 39077.48 326.28 Delete 179.40
avi 445986.92 140578.12 272705.04 1575.64 Insert 252,770.01

mov 158714.36 56040.64 70116.28 316.92 Select 85,014.17

La
rg

e

ram 153608.76 58423.76 68347.48 551.92 Update 137,056.27
 Average 103854.93 33752.40 56688.28 343.24 Delete 814.83

 148

Test 6: Comparison of Results

 Insert Select Update Delete
Image-4k 5,020 9.36 3,850 38.43
Image-8k 4,354 8.80 3,605 31.30

Audio-
Insert

Audio -
Select

Audio-
Update

Audio-
Delete

Audio-4k 31,026 11,738 3,225 160
Audio-8k 28,439 9,841 3,148 114

Video-
Insert

Video -
Select

Video-
Update

Video-
Delete

Video-4k 115,554 36,697 72,991 477
Video-8k 103,855 33,752 56,688 343

Test 6: Summary of Performance Improvement Overall
% increase
Images 11.496%
Audio 11.088%
Video 15.968%

Test 6: Summary of Performance Improvement for Each Operation
 Insert Select Update Delete
Images 13.28% 5.93% 6.36% 18.55%
Audio 8.34% 16.16% 2.39% 28.68%
Video 10.12% 8.02% 22.34% 28.08%

Test 6: Performance Improvement for Images

 Insert Select Update Delete
avi 17.31% 14.23% 0.67% 28.96%

mov 34.20% 17.81% 1.97% 30.65%

S
m

al
l

rm 28.18% 14.82% 22.15% 27.70%
avi 31.70% 26.75% 5.15% 31.18%

mov 4.12% 17.55% 1.43% 34.81%

M
ed

iu
m

ram 29.29% 19.89% 25.52% 20.19%
avi 1.94% 5.48% 29.78% 28.28%

mov 9.14% 7.52% 9.37% 24.27%

La
rg

e

ram 12.44% 2.10% 9.55% 31.41%

Test 6: Performance Improvement for Audio

 Insert Select Update Delete
wav 2.09% 1.06% 0.21% 12.23%
mp3 39.58% 31.72% 24.16% 6.04%

S
m

al
l

au 2.73% 6.86% 24.32% 21.19%
wav 16.54% 18.59% 5.34% 18.17%
mp3 14.15% 10.37% 0.46% 21.12%

M
ed

iu
m

au 0.55% 12.76% 2.86% 37.13%
wav 6.68% 1.49% 3.05% 39.91%
mp3 0.33% 18.72% 2.09% 33.38%

La
rg

e

au 20.88% 36.46% 15.27% 13.83%

 149

Test 6: Performance Improvement for Video

 Insert Select Update Delete
Bmp 0.45% 21.44% 24.17% 2.96%
Gif 20.26% 0.33% 32.76% 3.58%
Jpg 0.09% 4.93% 15.43% 3.37%
Png 5.90% 5.21% 5.49% 6.40% S

m
al

l

Tif 34.33% 5.02% 21.18% 3.86%
Bmp 30.58% 6.82% 6.29% 1.62%
Gif 34.87% 6.93% 3.91% 6.05%
Jpg 29.63% 3.53% 0.28% 17.08%
Png 16.37% 5.19% 4.10% 18.12% M

ed
iu

m

Tif 33.63% 10.24% 9.14% 4.32%
Bmp 2.81% 6.21% 6.27% 32.49%
Gif 31.89% 1.74% 9.02% 27.28%
Jpg 18.99% 1.71% 1.52% 32.85%
Png 3.37% 4.77% 7.00% 21.48% La

rg
e

Tif 31.92% 1.63% 6.26% 24.73%

C.5 MORD is Scalable
Test 8:Table showing the average time taken for Images using Dataset 1

 Insert Select Update Delete Category Averages
Bmp 180.920 10.620 129.720 22.800 Insert 386.87
Gif 255.920 10.020 143.100 22.820 Select 9.94
Jpg 204.380 10.320 144.680 22.860 Update 325.31
Png 1,118.460 8.460 1,070.020 22.480 Delete 22.70S

m
al

l

Tif 174.680 10.260 139.040 22.520
Bmp 786.560 9.720 574.980 28.720 Insert 1,329.32
Gif 551.880 8.740 576.260 28.120 Select 8.76
Jpg 579.980 8.760 740.620 24.080 Update 1,318.44
Png 4,160.320 8.420 3,999.100 25.000 Delete 26.06M

ed
iu

m

Tif 567.860 8.140 701.220 24.380
Bmp 5,218.440 9.040 4,868.120 61.880 Insert 11,894.20
Gif 6,809.380 8.420 4,950.300 38.140 Select 8.50
Jpg 6,026.560 8.460 5,600.300 39.360 Update 10,337.43
Png 35,116.880 8.760 30,683.420 38.420 Delete 47.12La

rg
e

Tif 6,299.720 7.800 5,585.020 57.820
 Average 4,536.80 9.06 3,993.73 31.96

Test 8: Table showing the average time taken for Audio using Dataset 1 Category Averages
 Insert 639.733
 Insert Select Update Delete Select 125.467

wav 829.800 143.700 284.300 29.800 Update 195.800
mp3 737.500 142.100 226.700 28.000 Delete 27.933

S
m

al
l

au 351.900 90.600 76.400 26.000 Insert 2,967.133
wav 4,351.500 848.500 126.600 36.000 Select 727.533
mp3 2,732.800 737.400 1,153.200 32.900 Update 455.200

M
ed

iu
m

au 1,817.100 596.700 85.800 32.900 Delete 33.933
wav 103,818.700 29,156.400 185.900 371.800 Insert 63,076.000
mp3 32,361.100 10,792.300 14,725.100 406.200 Select 17,472.500

La
rg

e

au 53,048.200 12,468.800 88.900 119.200 Update 4,999.967
 Average 22,227.622 6,108.500 1,883.656 120.311 Delete 299.067

 150

Test 8: Table showing the average time taken for Videos using
Dataset 1 Category Averages

 Insert 4,463.57
 Insert Select Update Delete Select 258.37

avi 4,634.600 277.500 2,406.300 36.300 Update 3,651.60
mov 4,250.000 234.400 2,161.000 31.400 Delete 36.10

S
m

al
l

rm 4,506.100 263.200 6,387.500 40.600 Insert 23,128.10
avi 41,023.400 237.600 10,436.000 60.800 Select 235.00

mov 11,031.100 235.000 9,201.500 59.300 Update 20,001.07

M
ed

iu
m

rm 17,329.800 232.400 40,365.700 231.300 Delete 117.13
avi 263,228.200 228.400 228,412.400 1,153.200 Insert 209,094.30

mov 205,828.100 232.200 85,834.400 340.400 Select 230.83

La
rg

e

rm 158,226.600 231.900 45,107.800 325.100 Update 119,784.87
 Delete 606.23
 Average 78,895.32 241.40 47,812.51 253.16

Test 8: Table showing the average time taken for Images using Dataset 3

 Insert Select Update Delete Category Averages
Bmp 211.800 13.360 137.365 26.495 Insert 354.297
Gif 207.025 11.875 142.115 27.195 Select 12.377
Jpg 204.535 11.880 144.950 45.550 Update 258.742
Png 972.815 12.815 726.550 26.105 Delete 30.488 S

m
al

l

Tif 175.310 11.955 142.730 27.095
Bmp 1,276.555 11.875 580.140 31.240 Insert 1808.908
Gif 877.195 11.640 581.520 27.335 Select 11.703
Jpg 582.890 11.565 616.500 32.655 Update 1512.477
Png 5,120.155 11.565 5,081.670 29.030 Delete 29.867 M

ed
iu

m

Tif 1,187.745 11.870 702.555 29.075
Bmp 7,571.950 11.720 5,205.320 53.245 Insert 13886.783
Gif 7,377.090 11.560 4,815.095 45.755 Select 11.581
Jpg 8,720.470 11.490 5,264.990 60.605 Update 12782.825
Png 35,871.360 11.485 32,929.040 51.060 Delete 54.115 La

rg
e

Tif 9,893.045 11.650 15,699.680 59.910
 Average 5,349.996 11.887 4,851.348 38.157

Test 8: Table showing the average time taken for Audio using Dataset 3 Category Averages
 Insert 1412.4
 Insert Select Update Delete Select 224.6933

wav 1967.84 286.26 192.2 28.76 Update
mp3 1149.36 200.94 311.56 32.18 Delete 195.94

S
m

al
l

au 1120 186.88 84.06 27.18 Insert 11766.67
wav 16138.74 1589.06 134.06 45.62 Select 1395.32
mp3 8619.06 1507.52 2325.62 56.56 Update 849.1667

M
ed

iu
m

au 10542.2 1089.38 87.82 39.36 Delete 47.18
wav 148949.38 42822.84 177.5 391.26 Insert 109466.8
mp3 99735.32 33716.84 23127.46 319.38 Select 31151.56

La
rg

e

au 79715.6 16915 87.5 195.62 Update 7797.487
 Average 40,881.94 10,923.86 2,947.53 126.21 Delete 302.0867

 151

Test 8:Table showing the average time taken for Video using Dataset 3 Category Averages
 Insert 26,198.75
 Insert Select Update Delete Select 137.68

avi 19,463.74 144.06 3,933.76 45.94 Update 5,042.71
mov 39,165.94 135.76 3,870.92 43.12 Delete 43.89

S
m

al
l

rm 19,966.56 133.22 7,323.46 42.62 Insert 46,639.77
avi 49,268.72 45.30 22,967.18 134.04 Select 45.61

mov 45,499.66 45.30 26,000.00 154.98 Update 28,118.54

M
ed

iu
m

rm 45,150.92 46.24 35,388.44 198.16 Delete 162.39
avi 565,160.84 146.90 211,388.16 1,155.92 Insert 563,854.05

mov 563,201.28 126.26 210,065.60 451.22 Select 140.02

La
rg

e

rm 563,200.02 146.90 210,065.60 503.78 Update 210,506.45
 Average 212,230.85 107.77 81,222.57 303.31 Delete 703.64

Test 8: Comparison of Results

 Insert Select Update Delete
Total Image - Half 226,840 453 199,686 1,598
Total Audio - Half 222,276 61,085 18,837 1,203
Total Video - Half 788,953 2,414 478,125 2,532

Total Image - Normal 438,712 949 365,233 3,286
Total Audio - Normal 684,597 241,995 78,695 2,842
Total Video - Normal 2,816,564 843,810 1,417,583 8,737
Total Image - Double 1,069,999 2,377 970,270 7,631
Total Audio - Double 2,044,097 546,193 147,377 6,311
Total Video - Double 10,611,543 5,389 4,061,128 15,165

 Insert Select Update Delete

Average Image - Half 4,537 9.06 3,994 31.96
Average Audio - Half 22,228 6,109 1,884 120
Average Video - Half 78,895 241 47,813 253

Average Image - Normal 4,387 9.49 3,652 32.86
Average Audio - Normal 28,528 10,019 3,150 120
Average Video - Normal 112,663 33,752 56,703 349
Average Image - Double 5,350 11.89 4,851 38.16
Average Audio - Double 40,882 10,924 2,948 126
Average Video - Double 212,231 108 81,223 303

 Insert Update Insert Update

Small - Audio 1,370.41 310.69 Small - Audio 1,370.41 310.69
Small - Image 331.44 232.57 Small - Video 331.44 232.57

Medium - Audio 6,302.77 843.13 Medium - Audio 700.31 93.68
Medium - Image 1,422.78 1,354.12 Medium - Video 142.28 135.41

Large - Audio 77,909.91 8,295.24 Large - Audio 865.67 92.17
Large - Image 11,407.15 9,370.31 Large - Video 114.07 93.70

 152

C.6 The Granularity of MORD’s Dataset can be Altered
Test 9: Table showing the average time taken by each Image format

 Initialize Upload
Set
Properties

Generate
Thumbnail Category Averages

Bmp 11.46 131.86 47.86 601.04 Initialise 11
Gif 9.42 70.22 43.74 141.56 Upload 84
Jpg 10.36 73.98 47.30 110.26 Set Properties 237
Png 12.74 69.06 979.60 1194.80 Generate Thumbnail 524S

m
al

l

Tif 10.30 76.58 68.56 570.44
Bmp 13.26 661.70 80.84 761.30 Initialise 12
Gif 9.94 630.14 60.16 4674.68 Upload 643
Jpg 8.92 710.94 63.26 328.12 Set Properties 797
Png 14.52 613.50 3706.10 3946.88 Generate Thumbnail 2,020M

ed
iu

m

Tif 11.02 598.26 75.44 389.62
Bmp 15.44 6864.58 169.76 7502.02 Initialise 12
Gif 10.28 9163.92 160.96 39901.96 Upload 8,277
Jpg 10.38 12580.44 203.14 13651.32 Set Properties 5,642
Png 12.68 6478.42 27537.24 246733.94 Generate Thumbnail 62,987La

rg
e

Tif 9.72 6295.20 136.96 7143.76
 Average 11 3,001 2,225 21,843
 Without Png 11 3,155 96 6,315

C.7 MORD can be Extended
Test 10: Table showing the average time taken for Documents and other Test data

 Insert Delete Category Averages
doc 2075 44 Insert 1,350.050
pdf 1603 31 Delete 33.500
ppt 1128 31
xls 594 28

Average Document 1350.05 34
Average Images 629.53 29
Average Audio 26834.87 84
Average Video 89644.33 164

	: Introduction
	Motivation
	Multimedia Databases and Their Performance
	Problem Statement
	Aim
	Focus and Scope
	Organisation of Thesis

	: Tuning and Performance Evaluation of Multimedia Databases:
	Multimedia Databases
	Multimedia Data
	Multimedia Databases
	Multimedia Applications

	Database Tuning and Configuration
	Database Tuning
	Operating System Tuning
	Core Component Tuning Areas
	Additional Database Tuning Areas

	Performance Evaluation
	Value of Performance Evaluations
	Measuring Performance
	Calculating Performance

	Summary

	: Benchmarking Database: A Survey
	Overview of Benchmark
	Existing Benchmarks
	Generic Benchmarks
	RDBMS - Wisconsin
	ORDBMS - BUCKY
	OODBMS – 007 and predecessors

	Architecture Benchmarks
	AS3AP
	SPEC Benchmark
	MediaBench
	Other Architecture Benchmarks

	Business Benchmarks
	TPC Suites

	Engineering Benchmarks
	Sun Benchmark, 007 and Derivatives
	EDB

	Advanced Database Benchmarks
	Semantic Benchmark
	Michigan
	SEQUOIA 2000
	FTR Benchmark

	Criteria for Benchmark
	Design of Benchmark
	Schema Design
	Test Data
	Workload
	Performance Measurement
	Programming Language

	Problems with Existing Benchmarks
	Schema Problems
	Test Data Problems
	Workload Problems
	Programming Language

	Required Benchmark
	Application of Benchmark
	Summary

	: Oracle DBMS
	Introduction to Oracle
	Architecture of Oracle
	Oracle Components
	Overall Structure
	Oracle Processes
	Server Processes
	Physical Database Files
	SGA Memory
	Buffer Cache
	Calculating the Performance of the Buffer Cache

	Shared Pool
	Large Pool
	Redo Log Buffer
	Java Pool

	PGA Memory

	Oracle Storage
	Storage Units
	Data Blocks
	Extents
	Segments

	Oracle Multimedia
	InterMedia
	Oracle’s Multimedia Datatypes
	Specialised Multimedia Functionality
	Multimedia Storage and Retrieval

	Related Oracle Research
	General Oracle Performance Research
	Binary Large Object Performance Research
	Multimedia Oracle Performance Research
	Oracle Memory Research

	Oracle Performance Summary
	Summary

	: Design of MORD
	Design of a New Benchmark
	Objectives of MORD
	Design of MORD
	Schema Design
	Test Data
	Generation of Multimedia Data
	Format of Multimedia Data
	Amount of data
	Testing

	Workloads
	Insert Queries
	Select Queries
	Update Queries
	Delete Queries
	Testing

	Performance Measurement
	Performance Metric and Precision
	Timing Mechanism
	Testing

	Programming Language

	Application of MORD
	Summary

	: Validation of MORD
	Overview of Validation
	Methodology
	Environment Setup for Validation Tests
	Hardware Configuration
	Oracle Configuration

	Relevancy Tests
	Design of Relevancy Tests
	Test 1: MORD’s Measurements are Repeatable
	Test 2: MORD’s Timing Method is Designed Correctly
	Test 3: Specified Queries Can Be Tested by MORD
	Test 4: MORD Can Focus on Certain Datatypes
	Test 5: MORD’s Dataset Composition Can Be Varied

	Adaptability Tests
	Design of Adaptability Tests
	Test 6: MORD Can Connect to Different Databases
	Test 7: MORD’s Database Design Can Be Modified
	Test 8: The Amount of Data Tested by MORD Can Be Varied
	Test 9: The Granularity of MORD’s Measurement Can Be Varied

	Simplicity Tests
	Design of Simplicity Tests
	Test 10: MORD’s Test Data Can Be Extended
	Test 11: Functionality Can Be Added to MORD

	Summary

	: Results and Informal Analysis
	Format of Results
	Relevancy Tests
	Test 1: Are MORD’s Measurements Repeatable
	Test 2: Is MORD’s Method of Timing Designed Correctly
	Test 3: Can MORD Focus on a Query
	Test 4 and 5: Can MORD’s Dataset Be Altered

	Adaptability Tests
	Test 6: Can MORD Connect to a Different Database
	Test 7: Can the Design of the Database be altered with MORD
	Test 8: Is MORD Scalable
	Test 9: Can the Granularity of MORD’s Measurements be Varied

	Simplicity Tests
	Test 10: Can Additional Data Easily be Added to MORD
	Test 11: Can Additional Functionality Easily be Added to MOR

	Summary of Results
	Relevancy Tests
	Adaptability Tests
	Simplicity Tests

	Summary

	: Conclusion
	Motivation for Thesis
	Aim of Thesis
	Contributions of Thesis
	Future Work

	References
	Appendix A: Outline of MORD’s Code
	Appendix B: Installation Instructions
	Appendix C: Tables of Results for Hypotheses

