Design of a Performance Evaluation Tool for
Multimedia Databases with Special Reference
to Oracle

Submitted in fulfilment of the requirements for the degree of
MASTER OF SCIENCE
By
Tonia Stakemire
Computer Science Department
Rhodes University

Grahamstown
South Africa

April 2003

ABSTRACT

Increased production and use of multimedia data has led to the development of a more
advanced Database Management System (DBMS), like an Object Relational Database
Management System (ORDBMS). These advanced databases are necessitated by the
complexity in structure and the functionality required by multimedia data. Unfortunately, no
suitable benchmarks exist with which to test the performance of databases when handling
multimedia data. This thesis describes the design of a benchmark to measure the performance

of basic functionality found in multimedia databases.

The benchmark, called MORD (Multimedia Object Relational Databases), targets Oracle, a
well known commercial Object Relational Database Management System (ORDBMS) that
can handle multimedia data. Although MORD targets Oracle, it can easily be applied to other
Multimedia Database Management System (MMDBMS) as a result of a design that stressed
its portability, and simplicity. MORD consists of a database schema, test data, and code to

simulate representative queries on multimedia databases.

A number of experiments are described that validate MORD and ensure its correct design and
that its objectives are met. A by-product of these experiments is an initial understanding of the
performance of multimedia databases. The experiments show that with multimedia data the
buffer cache should be at least large enough to hold the largest dataset, a bigger block size
improves the performance, and turning off logging and caching for bulk loading improves the
performance. MORD can be used to compare different ORDBMS or to assist in the

configuration of a specific database.

ACKNOWLEDGEMENTS
I would like to thank my supervisors, Professor David Sewry and Alfredo Terzoli, for their
continuous effort and support throughout the duration of my degree. I would also like to thank
Stefan Krueger for his encouragement and for proof reading various drafts of the thesis.
Finally, I would like to thank the members of the Rhodes University Computer Science
Department and my friends who have helped in many different ways and have made my time

here enjoyable.

CONTENTS

CHAPTER 1 : INTRODUGCTION ..ottt st n et sn bbb e an e 1
L1 MOTIVATION ...ttt s et st a e sa e b s eas et e aesaesaesbesae e 1
1.2 MULTIMEDIA DATABASES AND THEIR PERFORMANCEcc.tetetiiiniinieniinieniteetetetententestesaeeueeseenensensenseneens 2
1.3 PROBLEM STATEMENTutoutiiteitetentententteteeteeetestetentestestesuteuteseensessesaessesaeeueeueessentensensestesbesueeueeneensensensensensens 3
L4 ATV ottt a e et a e bbb et a et b e s h e bt saeeae et a et e b sae e 4
1.5 FOCUS AND SCOPE......ccutiuieuieiteuieteniente sttt ettt et ste st et sat et ettt esae s b sae e bt eaeebs et e st eaesteebesueenee st ensenaensensesaeas 4
1.6 ORGANISATION OF THESIS.......cctiiiiiiiiiiitiiiieietetee sttt sttt et s s et sa et sbe e 6

CHAPTER 2 : TUNING AND PERFORMANCE EVALUATION OF MULTIMEDIA DATABASES: A

SURVEY ettt bbbt bt e e R R R R e R oA R e R e R R R e R e R R R Rt Rt R et en e e r b nne s 8
2.1 MULTIMEDIA DATABASES ..ottt st st st s 8
2.1.1 MUltimedia Datac.ooouiiiiiiieieee ettt sttt ettt ettt ettt e e n e n e e beene e aeenees 8
2.1.2 Multimedia Databases..........cccueiieruieriieie ettt ettt sttt ettt et sae ettt e e st e s e e nbe et e aeenees 9
2.1.3 Multimedia APPLCATIONS.......c.cccvieeieirieiietieteeee et ste et eteete et e steesteebeesbeessesssesseesseesseesseessesseesseeseenns 12
2.2 DATABASE TUNING AND CONFIGURATIONcecuiriiiiniinienieententetetentesiesueeseeseennessesensesaeenesseeunessensensessesnenne 12
2.2.1 Database TUNINEcceeruierrieiierieteeteseesteesseeteestesstesseesseesseesseassesssesssesseessessseessesssesssesseesseessesssenssens 12
2.2.2 Operating SyStemM TUNINGc..ccveevveriieriertieiteeteeeeseesteesseeseesseessesseesseesseesseessesssesseesseessesssesssesssesseens 14
2.2.3 Core Component TUNING ATCASccverueerieerieeieeteseeneeesteeteeteesaessaesseesseessessesssesseesseensesssesssessesseens 15
2.2.4 Additional Database TUNING ATCAScceerveeruerreerierieriterieeeeeteetessaesseesseessesssesssesseesseeseasesssessesseens 15
2.3 PERFORMANCE EVALUATIONcoctiiiiiiitiitiniteitetetenteste sttt ettt ettt st sae et et eaenae st s b sbeeae et essenaenaenbenaeas 15
2.3.1 Value of Performance Evaluations..........cccoeoiiiiiiiiiiiiieeeeee ettt 15
2.3.2 Measuring PerfOrmanCecocuiviiriiriieiieieces ettt sttt et st e e 16
2.3.3 Calculating PerfOrmance............ceeveiierieriieii ettt ettt e st e e e teebeesaeseaesseesseesseesseessesssenseans 16
2.4 SUMMARY L.ttt sttt s sttt a e s h e b st h et a e a e b s h e bttt a et he e eneeae s 18
CHAPTER 3 : BENCHMARKING DATABASE: A SURVEYoooiiiiiiee s 19
3.1 OVERVIEW OF BENCHMARKoocuiiiiiiiiiiiiiiiiiiiiiieine sttt st st e 19
3.2 EXISTING BENCHMARKS.cotetertintintentietteieeitetententestestesteeueeseensentestesbesatebeeseensessensensesatebesseeueeneensennensensenee 19
3.2.1 Generic BenChMArKSc.oooiiiiiiiiie ettt ettt ettt st 20
3.2.1.1 RDBMS = WISCOMSII ...ttt ettt sttt 20
3.2.1.2 ORDBMS - BUCKY ... 20
3.2.1.3 OODBMS — 007 QNA PFredeCeSSOFS........c..coueeiiieieiieieeiee ettt et 21

3.2.2 Architecture BenChmarks..........oocooiiiiiiiii et 21
3221 ASPAP..co oo 21
3.2.2.2 SPEC BEHCHIMATK ..ottt ettt ettt ettt e st ene e b neenneeneens 21
3.2.23 MEAIABENCH ...ttt 22
3.2.24 Other Architecture BenCRMAFEKSc.cccioioiiiiioiiiiii it 22

3.2.3 Business BeNCRMAIKScc.ooiiiiiiiiiiiiieee ettt ettt 22
3.2.3.1 TP C SUITES ..ottt ettt ettt a ettt e h e st ekt ea e bt e s e b et e bt ne et n e ea e s et et eaeenee 22

3.2.4 Engineering BencChmarkscocooiiiiioiieiee ettt et 23
3.24.1 Sun Benchmark, 007 QIA DEFIVALIVESccceeeeeeeeeeeeeeeeeeeeeeeeee ettt 23
3.2.4.2 EDB. ...ttt a ettt ettt et e ettt e nneeenee e 24

3.2.5 Advanced Database BENCRMATKSooiiiiiiiiiiiie et aae e s enaeee s 24

3.2.5.1 SEMANLIC BENCAMATEKccooooveieiieiieeee ettt 24
3252 IMECHIGAN ... ettt ettt h e h et h et ettt ettt enean 25
3.2.53 SEQUOIA 20000.......c.cccoiiiiiiiiaiieitaieet ettt ettt sttt sb ettt et
3.2.54 FTR Benchmark
3.3 CRITERIA FOR BENCHMARKoooiiiiiiiiiiiiiiiiiiieieie sttt st st st s 25
3.4 DESIGN OF BENCHMARKocutiiiiiiiiitiitiitiiiieiet et sttt st st st s 27
3.4.1 SCREMA DESIZIN . .evietietietiee ettt ettt e bt e e et e st esae e st e et e enteenteeneeeneeaseeseenseenseeneesneene 27
T O <) D - SRR PRRRRR 29
343 WOTKIOAQ ...ttt etttk b e e bt bt e st ea s e s et e e bt eeeebeeneense s e s e aaesaeeneenean 30
3.4.4 Performance MEASUTEINIENLc.eeruieriieiieieitieittent ettt st steeste et eateeste st eesbeenbeebeemtesaeesaeesaeeneeenee 32
3.4.5 Programming LanGUAZE........c..ccuerierieriieriietieteetestaesteesteeseessesseesseesssesseesseessesssesssessesssesssesssesssesseenns 33
3.5 PROBLEMS WITH EXISTING BENCHMARKScocuiiiiiiiniiiiiiiieieieniesie sttt st et 34
3.5.1 SChema PrODICINIS ...c..coueiiiiiiiiitintere ettt ettt et be s ebe ettt et b i 34
3.5.2 Test Data PTODICIIScc.eeuiiiiiiniiiirieeiceceet ettt ettt be sttt b i 35
3.5.3 WOrkIoad PrODICINScc.eeiuiiiiiiieiieiiee ettt ettt ettt et e st e bt e st e st eteeneesneesneenseenee 35
3.5.4 Programming LANGUAZEc.cecveruieruieiiieiieie ettt ettt e ee st e ste et et e eseeeseesaeesbeeneenaeeneesneesneenseenee 35
3.6 REQUIRED BENCHMARKccoiiitturitieeeieeiteeeeeeeeeeeiateeeeeeseeesaateeeeeseessestsssseesesesssassseesessanssssseeeeesssnsanseeeeesas 36
3.7 APPLICATION OF BENCHMARK ...c.cootiitiitiiiiiiieiteietenie sttt ettt et eteste st st sae ettt ensesseaesaesaeebesseeaneseessenaesaeeneeae 37
B8 SUMMARY ..ttt s et a e bt a e s h e bt ae bt a et saeeneeae 38
CHAPTER 4 : ORACLE DBIMS ...ttt bbbt sb ettt n bbb e 39
4.1 INTRODUCTION TO ORACLE......cutiiiiiiiiiiiiiiiiiieiete ettt st s st sa e s 39
4.2 ARCHITECTURE OF ORACLEccutetitintintintietteiteutetententesteeueeutestentesesaesatsbesueeseeneensensensessesaeeueemeensensensensensens 40
4.3 ORACLE COMPONENTS ...c..cruteuteutetetentintestteueesteutetentestesteeteeutessentensensesaeabesueeueestensesestesbesbeeueeneensensensensenuens 41
4.3.1 OVEIAIL STIUCKUIEeetiieietieee ettt ettt ettt sttt eae e st et et e s besteeb e saeeseeneensebeeeeebeeaeeseeneenseaseeeeeneeneens 41
4.3.2 OFACIE PIOCESSES -..uvevietieuieuieieieie et et et et et e e te s te et e eaeest et e beebeeteebeeateseeneensebeebeebeeaeeneeneansenseeeeeseeneens 42
4.3.3 SETVET PIrOCESSES....cutiutiiieiieiiieiteett ettt ettt ettt ettt ettt e et ee e s bt e bt e bt e bt eatesaeesbeesbee bt enbeenneeanens 43
4.3.4 Physical Database FIleS.........ccvecviriiiiiiiiieiiiieeie ettt sttt te e s e staesteesteesseesseesaesseesseesseenseessenssens 44
4.3.5 SGA MEIMOTYeiiiiiiiiieteei ettt ettt ettt e sb et ettt e bt e e bt e e bt e e bt e s bt e e beeebteesstesabeeeseeenbaeebeesbaeenseeens 45
4.3.5.1 BUIFET CAUCRE ...ttt ettt 46
4.3.5.2 SHAFEA POOL. ...ttt ettt ettt e ht e sttt e et et e et et e e ae et enees 49
4.3.5.3 LAPGE POOL ...ttt ettt ettt et eneeneas 50
4.3.5.4 REAO LOG BUSFET ..ottt ettt ettt 50
4.3.5.5 Java Pool
4.3.0 PGA MEIMOTYeiiiiieiiieiie ettt ettt ettt e stte ettt et e e bt e esae s beeesteeabbeensaesabaeensaeensseensseensseenseessaeenssenns 50
4.4 ORACLE STORAGEciitiiiiiiiiiiiieieite sttt ettt st ettt b e s ea et e a et besae bt e en et e saesaeeneeneen 51
44,1 StOTAZE UNILS.....eeiieiieieieriieiieie et eteste st e st e e ebeetesatesseesseesseenseesseessessaesseenseenseansesnsesnsesseanseenseensennsens 51
4.4.2 Data BLOCKSeetitiitiiteeieeitetet ettt sttt ettt sttt bt b e sa ettt st be b eae 51
25 {31 LSS 53
R T4 11 1<) 1 L1 USSR 54
4.5 ORACLE MULTIMEDIAc..toutiitiieiitentiete ettt ettt st st sttt et s st bt saeeue et esse s esaesaesaeebeeste e eneaennesaeereeneen 55
T B 0117 01 (10 - OSSOSO USSP 55

4.5.2 Oracle’s Multimedia DatatyPescceeueeueeierierieiesie ettt sttt et e ae st see bt et enee e e sesseeeeenes 56

4.5.3 Specialised Multimedia FUnCtionality...........ccccvieeiiiiiiienieieiieie et esae e seee e sseeseesseennens 57
4.5.4 Multimedia Storage and RetrieValccceeviieiiiiiiiiiiecieeeeee et esbeeeee s 58
4.6 RELATED ORACLE RESEARCHccoiiiiiiiiiiiiiiiiiiieictec et st 58
4.6.1 General Oracle Performance ReSearchccccoeviiiriiiiiiiniininiccetece e 58
4.6.2 Binary Large Object Performance Research.............ccooeiiiiiiiiiiiiie e 59
4.6.3 Multimedia Oracle Performance ReSearchcooccoviiiieiiiiiiiiceee e 60
4.6.4 Oracle Memory RESCAICH. ..ottt sttt e e sae e enas 61
4.7 ORACLE PERFORMANCE SUMMARYocutiuiiuiiuiiiietentenientteteestestetentesuessessesseeseessessessessessesueeneensensensensessensens 61
4.8 SUMMARY ...ttt ittt ettt sttt ettt s e b sttt a e st b e s h e bt e a et s h e bt et ettt be e ene e 62
CHAPTER 5 : DESIGN OF MORDciiiiiiiiiee et bttt sh bt n e e sne e 64
5.1 DESIGN OF A NEW BENCHMARKccooiiiiiiiiiiiiiiiiiiiiieie sttt sttt s 64
5.2 OBJECTIVES OF MORDc.oiiiiiiiiiiiiiiiiiiiiccec s e 65
5.3 DESIGN OF MORD ..ottt ettt ettt ettt a e et e besae bt et eae st e ste b sueeneene 67
5.3.1 SCREMA DESIZIN .. evietieiieiieie ettt ettt et e e ettt e s et e st et e e et enteeneeeseesseenseeseensesneesneene 67
5.3.2 TESE DIALA ...ttt ettt h e bbbt et h e h e bt et e a bt et e ehteeh e e b e e bt e bt et e saeesaeenae 69
5321 Generation of Multimedia DALccccooeeiiiioiiiiiiiiceee e 69
5322 Format of Multimedian DIccccocoeiiiiiiiiiiieit ettt e 69
5323 AMOUNE Of AALA ...ttt ettt 72
5.3.24 TESTING. ..ottt ettt et eaeen 72

5.3.3 WOTKIOAAS ...ttt sttt ettt b e bbbt et et a et s b bt eaeene 73

5331 Insert Queries
5.3.3.2 Select Queries

5333 UPAQEE QUETIES ...ttt ettt 74
5334 DCLOIE QUETTOS ..ottt ettt et h e ettt ettt ettt ae s 75
5335 TOSTING. ..ottt ettt et ettt ae s 75

5.3.4 Performance MEASUTEINIENEcc.eiruieriieriieieitierttent ettt st steeste et et e este st eesbeenbee bt entesaeeseeesaeeneeenee 76
5.34.1 Performance Metric Qnd PFECISIONc.ccoiiiiiiieieeeiiee ettt ettt eeean 76
5342 TEMANG MECHATISI ...ttt ettt ettt b et ettt b e e et eneenee 77
5343 TOSTING. ..ottt ettt et ettt eaeen 78

5.3.5 Programming LaANGUAZE..........cc.eeuerierieerieeieetesetesteesteeseesbeesaesseesseesseessesssesssesseesseensessseessesssesseesseenses 78
5.4 APPLICATION OF MORDoiiiiiiiiiiiiiiiicic et s 78
5.5 SUMMARY ..ottt e h b e sb e s 80
CHAPTER 6 : VALIDATION OF MORD ...ttt sne s 81
6.1 OVERVIEW OF VALIDATION.....ceiitimtintentintteuteutetentensestesuesueesteseensensentessesueeseeseensensensensesatesesseensensensensensensenne 81
6.2 METHODOLOGY ...euvttivteuteutentetentesttete sttt entensetesae s bt saesteeutessesensentesaeebesueeusententesesteebesueesteneensensentensesueeseens 82
6.3 ENVIRONMENT SETUP FOR VALIDATION TESTS....c.cccutriiiiiiiieiieieieientenienieete ettt sie et eve et eesnesae e 82
6.3.1 Hardware CONTIGUIALIONoiuiiiiiiiieietieieietet ettt ettt bt et eat et e et et e ebesbeebe e st ensesenseseeeaeas 82
6.3.2 Oracle CONTIGUIATION ...c..eevuieiiiiiiieiiesieteeteeteetesteesteesteesbeesbessaesseesseesseesseessesssesssessaesseessesssesssesseenns 83
6.4 RELEVANCY TESTS.....iiuiiiiiiiiieieiientieteete ettt st et st ettt a et sae e ene 85
6.4.1 Design Of REIEVANCY TESES......cccuirieriieiieiieieeteetesttee ettt st et e et et et e esaessaesseesseenseensesnsesneesneenseenes 85
6.4.2 Test 1: MORD’s Measurements are Repeatable.........ccoeviiiiiiirienieniieiieie e 85

il

6.4.3 Test 2: MORD’s Timing Method is Designed Correctlycccooiririeienienieiisescsceee e 86

6.4.4 Test 3: Specified Queries Can Be Tested by MORDccioiiiiiniieiiciiceeeeeeeee e 86
6.4.5 Test 4: MORD Can Focus on Certain DatatyPescccvevveeeviiiiiienieniieiieieeieseesieesie e enesesesseesseenns 87
6.4.6 Test 5: MORD’s Dataset Composition Can Be Varied...........ccoocverieriieiiieiinieniesieeee e 87
6.5 ADAPTABILITY TESTS....couiiiiiiiiiiiiiiiiciieice sttt st st 90
6.5.1 Design of Adaptability TeSTS......cooierieiieieie ettt ettt ettt ee et e eeseeesneesee e 90
6.5.2 Test 6: MORD Can Connect to Different Databasescccoceveerieriieiiieiieieseeccee e 91
6.5.3 Test 7: MORD’s Database Design Can Be Modifiedcccooiiiriiiiiiieeiiec e 93
6.5.4 Test 8: The Amount of Data Tested by MORD Can Be Variedccccooiiiiiiiiiiieenceceeeee 93
6.5.5 Test 9: The Granularity of MORD’s Measurement Can Be Varied...........cccccoveevivienieneenienicieens 94
6.6 SIMPLICITY TESTS ...ttt sttt st b e b bt st es et ae st saeeneens 95
6.6.1 Design Of SIMPICIEY TESS...cueiciirieriierieiieie ettt ettt et e st et et e esaessaessaesseeseensesnnesseesneenseenes 95
6.6.2 Test 10: MORD’s Test Data Can Be Extended...........ccccecveviiiininininiiiiiciciecscececeteenese e 95
6.6.3 Test 11: Functionality Can Be Added t0 MORDccooiiiiiiiiiiieieeee et 95
6.7 SUMMARY ..ciutititintiettett ettt ettt sbe st ebt ettt et e bt s et e bt sheeue et et et e st e e bt sbeebe et eas et et e bt sa e ebeeaeean et entenaene e b et 96
CHAPTER 7 : RESULTS AND INFORMAL ANALYSIS ...t 98
7.1 FORMAT OF RESULTSeutiuiiiiitiientieiestt ettt sttt sttt et et be st bt sttt ae st bt sat st eeaennestesbesaeeneens 98
7.2 RELEVANCY TESTS ..ottt sttt sttt s ettt sa e st sae e ene 99
7.2.1 Test 1: Are MORD’s Measurements Repeatable...........covvvviiiiiienieniieiieiecieceeseee e 99
7.2.2 Test 2: Is MORD’s Method of Timing Designed Correctlyoccovvvevienieniieciieieeiecieseeeeeeeeee. 101
7.2.3 Test 3: Can MORD FOCUS 0N @ QUETYeiiuiiiiiiiiiiieiteeiie ettt ettt et 103
7.2.4 Test 4 and 5: Can MORD’s Dataset Be Alteredccooieiieiiiiiiiiieieeeeee e 104
7.3 ADAPTABILITY TESTS....couiiuiiieiiieniinieietete ettt sttt ettt et sttt st ettt st et ebe et oo neaesaesae v 107
7.3.1 Test 6: Can MORD Connect to a Different Database...........ccoceoviroiiiiniiniiiiiiieieececeeee, 107
7.3.2 Test 7: Can the Design of the Database be altered with MORD..........cccooiiviieviiniiniiieeeeeee, 110
7.3.3 Test 8: IS MORD SCalabIec..ooueiuiiiiiiiiieieieeeeee ettt sttt 110
7.3.4 Test 9: Can the Granularity of MORD’s Measurements be Varied..........ccceevevveeienienienieeeeeeen. 113
7.4 SIMPLICITY TESTS ..ottt et 117
7.4.1 Test 10: Can Additional Data Easily be Added to MORDcccociiiiiiiiieieeeeceeeee e 117
7.4.2 Test 11: Can Additional Functionality Easily be Added to MORD..........cccocviiieiiiiniiieeeeee, 119
7.5 SUMMARY OF RESULTScutiuiiititiniinientiettetetetesteste sttt ettt etesae st s st sae st et eaeaestesbesaeebeeaeennennennensesaenes 120
7.5.1 REIEVANCY TESSveuiuieuieiieniete ettt ettt ettt ettt e e et e b e bt st e e bt eseese e e enteaaeebeebeeneese et ensenseaeeeneene 120
7.5.2 AdaPLability TESEScvieiiiiiiiieieetieste et et e et e st esteebeebeesaesteesteesseesseesseessesseesseesseesseessesssesseenseessenssens 121
7.5.3 STMPIICIEY TESES ..veuvvevieiieiiiieieieettesteeteeete et e st este e beesbesseeseeesseesseesseasseasaessaesseesseessesssesssesseenseessenssens 121
7.6 SUMMARYooiiiiiiiiiitiitiiti ettt sttt e h ettt b e s h b st a e e s 121
CHAPTER 8 1 CONCLUSION ..ottt e n bbbt neeane b sre s 123
8.1 MOTIVATION FOR THESIS ...cutiteiieeiieateiteie sttt ettt sttt st ettt et et eb e sttt et se e bt saeeae e enaenaenaeenes 123
8.2 AIM OF THESIS ...euteiieitetetentiete ettt ettt sttt ettt et st b e sa ettt e b se e bt ebe et et et et e st e bt sueeueemeensenneneenes 124
8.3 CONTRIBUTIONS OF THESIScuutiuiiiieuteiieientieie ettt ettt sttt sttt st et eb e st ae st bt st enenaennesaeenes 124
84 FUTURE WORKcuviiiiiieiiiiintiete ittt ettt sttt ettt et sttt sat e et et e s e sa e bt saeeas et et e ae st e e bt sueensennennennenaenes 126

v

REFERENGCESo bbbt b e bbbt e e e e r e 127

APPENDIX A: OUTLINE OF MORD’S CODE........ccciiiiii s 132
APPENDIX B: INSTALLATION INSTRUCTIONS.........coiiiiiiiii s 137
APPENDIX C: TABLES OF RESULTS FOR HYPOTHESES.........cccoiiiiieeee e 140

LIST OF FIGURES

Figure 2-10utline of database tUNING QFEASccccccueouiriiririiiiiit ettt 13
Figure 3-1 SEQUOIA 2000 SChema ([STOI3])cveiieieiieieiieee ettt 27
Figure 3-2 Structure of 007 benchmark modules (Based on figure 2 [CDN93])cccooeiiieioiiniiiiiiieiieseee 28
Figure 3-3 BUCKY benchmark schema structure (Based on figure 1 [CARI7]).....cccoooeioieioiiiiiiiiiiiieiiee 29
Figure 3-4 Sample EDB benchmark C COde.................occcouiiiiiiiiiiiiiiiietet ettt 33
Figure 3-5 Sample Wisconsin benchmark PERL COde.................c.ccccociioiiiiiiiiiiiiiiiieieeeee e 34
Figure 4-1 Types of architecture of Oracle (Based on figure 7-1[MCGOL])c.cccooeevvieiiiiiiiaiiiceeieeieeienens 40
Figure 4-2 Main components of Oracle 9i server (Based on figure 1 [BGBI8])......cccoovvueviiviiiiiiiiiiinianienens 41
Figure 4-3 Dedicated and shared server processes (Based on figures 5-1 and 5-2 [BRFO1])cccccccevevvenn.. 44
Figure 4-4 Relationships between databases, tablespaces, datafiles and tables (Based on figure 4-2 [MCGO01])45
Figure 4-5 Main components of Oracle’s SGA MEMOFYcccccuioiioiiiieiieee ettt 46
Figure 4-6 Possible actions when data is FeqUESTEd.cccciioiioiiiieiiiii ettt 47
Figure 4-7 Screenshot of Oracle's buffer cache advice....................ccccocueieieieiiiiiiiieieieeeeee e 48
Figure 4-8 Screenshot of code and results for cache Rit FALIOccccoveveiiiciiiiiiiieeeeeee e 49
Figure 4-9 Relationship of segments, extents, and data blocks (Based on figure 3.1 [MCGOI])c..c......... 51
Figure 4-10 Format of data blocks (Based on figure 3.2 [MCGOL])cccccooeieciieiiiiianieiieieee e 52
Figure 4-11 Diagram illustrating data block storage control (Based on figures 3-3 and 3-4 [MCGO01])............ 53
Figure 4-12 Integration of InterMedia with architecture of Oracle (Based on figure 1-1 [CHIOI]).................... 55
Figure 5-1 Types of multimedia data produced in the Rhodes Computer Science Department............................ 66
Figure 5-2 Schema used for multimedia tADIescccccooioiiiiiiiiiiiieet et 68
Figure 5-3 Oracle code t0 generate a SEQUENCE......................ccoooiioiioiiiiiieet ettt 68
Figure 5-4 Additional tables MCIUAEd........................ccoccuevieiiiiiiiiiie ettt 68
Figure 5-5 Code to insert multimedia data into @ dat@base.......................ccccoooivecieciiiiienieeiieciee e 73
Figure 5-6 Code to select data with which to replace the old data.....................cccccocoociiciivioininiiniiiiiiitieen, 74
Figure 5-7 Code to replace the multimedia data.......................ccccocouiiioiiiiioiiiiiiiiniit st 74
Figure 5-8 Code to delete data from the tADBleccoooiiiiiiiiioiiiiiiiee et 75
Figure 5-9 Code to control the measurement Of FESPONSE LIME.ccccueeeeeeeieaieeieeeeee et 77
Figure 5-10 Code to control the measurement oOf thFOUZRPULc.ccoooueimiiiiii e 77
Figure 6-1 Screenshot to show how the caching and logging values are controlled..................ccccccvvovniianiiann.. 87
Figure 6-2 Screenshot to show where the size of the buffer cache is altered................c..cccccoovvvviiciiciavieniannnnn, 89
Figure 6-3 Screenshot of SOQL*Plus worksheet to generate database SChema.................ccccoovveeeeeieceeeiieniiennnns 92
Figure 6-4 Code to create the document SEQUENCE.............cccccooiiiiiiiiiiioiiiiieniie sttt 93
Figure 6-5 Code to create a table to store the doCUMEnt dQta...................c..ccoovvecieiiiiiieiieiieee e 93
Figure 6-6 Outline of code t0 include dOCUMENLES................c.cccuiiiiiiiiiiieet ettt et 95
Figure 6-7 Code to compile and run Rew JAVA CLASSEScccceioiioeiieiieei ettt 96
Figure 7-1 Distribution of image FeSPONSE HIMESc.evueiueeeiiae it ettt sttt ettt e ettt eeeaaeeneeneas 100
Figure 7-2 Summary of variation in the distribution of the results (Test 1)c.ccooeiveiviioiiviniiiiieieeeeeee 101
Figure 7-3 Timing of iNAIVIAUAL QUETIES..............c.c.cccveevieciiaiieiieeieeeeeie ettt ettt be e ense e e 102
Figure 7-4 Difference between timing individual queries and whole [00p (Test 2)c.cccoovvecveceivieeeennnannn. 102
Figure 7-5 COMMENTIING OUE QUEFTES............c.ccoeiiuiiiiiiiieiiieieeie ettt ettt 103
Figure 7-6 Increase in performance when caching and logging are turned off (Test 3).......c.cccoevevveivenoeennane. 104

V1

Figure 7-7 Improvement in performance related to buffer cache and datasetccoceeeeeeoenenencnacne. 107

Figure 7-8 Screenshot Of FUNNING SEFVICESc..ccvccuvecuieiieieeieeeieeie ettt ettt beesbe s snseenae e 108
Figure 7-9 Increase in performance if the block size is doubled (TeSt 6)ccccveeeeciecieiieeiieiieieeeeeeene 109
Figure 7-10 Screenshot to illustrate that the document table has been created (Test 7)cccccooevevenincencnne. 110
Figure 7-11 Effect of altering the number of items (Test 8)cecivoiioiioiiiiiiiiiiiiieeeeee e 111
Figure 7-12 Effect of altering the number of images for selecting and deleting (Test 8).........cccccceveeivevceennne. 112
Figure 7-13 Effect of increasing the size of the dat@ (TeSt 8).........ccccccuiveioiiiiiiiiiieit e 113
Figure 7-14 Distribution of time during the insertion of images (Test 9)cccuviioeoioieceiineie e 114
Figure 7-15 Time taken for various tasks of the insert operation with images (Test 9)ccccceeevcevcencencnnnnne. 115
Figure 7-16 Comparison of distribution when including or excluding PNG images (Test 9)..........cc..cccceeneen... 116
Figure 7-17 Comparison of distribution for different database sizes (TeSt 9)ccccccovvvevvvevieceeceiieneenneann. 117
Figure 7-18 Directory and files for document test dataccccocueoueocniniiiiiiiiiiiieieeeeee e 118
Figure 7-19 Code to make Oracle aware 0f the direcCtoryc.cocuceoiiecniniiiiiiiieiiieeeee e 118
Figure 7-20 Query result showing the directories in OFACleccccooviioiiicieiciiiiiieeeeeee e 119
Figure 7-21 Documents results compared with other datatypes results (Test 11)c.ccoocvevcieoiioiioenoeennne. 120
B-1 Screenshot of first screen for Oracle database Wizard.....................cccccoooeooiioiiciioiaiiiieieeseee e 137
B-2 Screenshot of step 5 for database CrEALIONc.ccoveiiiiiciii ettt 138
B-3 Screenshot of SOQL*Plus worksheet to generate database SCRemacc.cccvecvecvesiveneeneeneeeeenens 138
B-4 Code to make Oracle aware 0f the diFeCtory................cccceevveeieiiiiiiieeieeeeeee ettt 139
B-5 Screenshot of Oracle screen for configuring the database...................c.ccoocuevcievievieceeiiiieiieee e 139

vii

LiIST OF TABLES

Table 2-1 Comparisons of OODBMS, ORDBMS, SOL/MED, and MMDBMScccooovviiiiiiiiiiiieiieniens 11
Table 3-1 CompariSOn Of DENCHIMAFEKS..............cccccciviiiiiiiiiiiiieeee ettt et e 36
Table 4-1 Multimedia datatypes provided by OFACIe....................cccooviioiiiiiiiieii et 56
Table 4-2 Results of BLOB experiments (Results taken from [SM99])cccoovoiiiiiiiiieiieieee e 60
Table 4-3 Database load performance of 250MB video files (Table from [OIMO2])ccccoooiiciioiiiiioiaaen, 61
Table 5-1 CharacteriSticS Of IMAZE AATAcc.coecuioi ettt ettt ettt 70
Table 5-2 Characteristics Of QUAIO AALQ..................c...ccoccueeeeieeiiiiiieiee ettt sreeereese s e 71
Table 5-3 Amount of data stored in @ACH LADIe.....................c..ccococvieuiiiiiiieieciecie et 72
Table 6-1 Summary of hardware configuration for test enVIFONIMENLc.c..ccoecereeeseeieeieeie e seeeneeenee e e 83
Table 6-2 Oracle parameters that Are QIEEFEd...................ccccoeiiriiiiiiiiiiiiieeee et 84
Table 6-3 Database cONfIGUIALIONS JOF TOST 2...........cccueiieiieieee ettt ettt es 87
Table 6-4 Database and benchmark configurations for TeSt 5ccooeioieiiieiieiiieeeeee e 89
Table 6-5 Database cORfIGUIALIONS fOF TEST O...........occuiiaieieiee ettt ettt 92
Table 6-6 Benchmark configurations fOr TESE &ccuiuauaeieeeeee ettt ettt 94
Table 7-1 Total size of image data (5 eXCCULIONS)c..cceeveeveieeiieeie ettt sre e ese e esae e 105
Table 7-2 Expected results for HYDOTRESIS 2cc.cccoeceeiueiieeieeeieeie ettt ettt esae e snaesnae e 105
Table 7-3 Actual results for HYPOIRESIS 2cccccoiioiiiioieiiieieee sttt 106
Table 7-4 Summary of performance improvement for all dQtALYPESccccooceviirciiiiioiiciinininiinieeiceeeenen 109

viii

Chapter 1 : Introduction

Chapter I introduces the work done in this thesis. This chapter describes previous
work on multimedia databases, revealing that the performance of such databases
can be problematic. It also explains that the Computer Science Department at
Rhodes University requires a multimedia application and wants to avoid
performance problems. A suitable benchmark is thus required to achieve this.
Unfortunately, such a multimedia benchmark was not found and as a result the

aim of this thesis is to design one.

1.1 Motivation

Multimedia data, such as audio and video data, is often difficult to manage, but with the rapid
increase in the production and use of such data, it is becoming necessary to design and
implement applications to support it. A prime example where it was necessary to design an
application to support a large amount of multimedia data was the 2001 Highway Africa
Conference, which is an annual conference held in South Africa by the Journalism
Department of Rhodes University. At this conference a large quantity of multimedia data was
produced in the form of photographs, articles, audio and video recordings for the use by
delegates and in the daily newspaper and website [HAOI]. A Multimedia Database
Management System (MMDBMS) supported this data, which is an enhancement of the
standard Relational Database Management System (RDBMS), as it offers many advantages
over alternative options. Examples of these advantages include those of databases, such as
data consistency, integrity control, and the elimination of redundancy, in addition to more

advanced data modelling capabilities.

The multimedia database was designed, setup, and tested in the several months prior to the
conference. The task of testing it was difficult, due mainly to the lack of suitable testing tools,
as well as insufficient time and knowledge for their design. When the application was put to
use during the week long conference, many unexpected problems were found. Of these
problems, the most significant one was the fact that the system did not respond fast enough to
the users’ requests. To ensure that such problems do not recur, proper testing is essential for

future implementations of multimedia databases.

The Computer Science Department at Rhodes University has a similar situation to the one of
the Highway Africa Conference in that it produces a large amount of multimedia data that
needs to be managed. This multimedia data is predominantly produced by the Centre of
Excellence in Distributed Multimedia, and other research groups, such as the ones in virtual
reality and audio engineering. These groups produce a large quantity of multimedia data, each
with different formats and sizes, as well as unique user requirements. It was again decided
that a multimedia database should be used to store the data in an organised manner. To avoid
the problems encountered with the multimedia database designed for the Highway Africa
Conference, a tool was required to assist in testing the performance of the database before
putting it into operation. This tool can be applied to a MMDBMS to help identify and
eliminate the most significant performance problems. Only fine tuning will then be needed

when the final system is implemented.

1.2 Muultimedia Databases and Their Performance

A MMDBMS can be defined as a DBMS that is able to store multimedia data internally and
provide the necessary functionality to manipulate it. The complexity of multimedia data and
the advanced functionality required for its handling means that standard DBMS, such as
Relational DBMS (RDBMS), the type of database most commonly used, cannot handle
multimedia data properly. At best, RDBMS can provide a generic media datatype in the form
of Binary Large Objects (BLOBs), and at worst provide as little as a reference to a location
where multimedia data is held in the file system provided by the operating system. Since the
data in such databases can be altered or deleted without the database even knowing about it,
there is a lack of control over the multimedia data. This inability of RDBMS to handle
multimedia data adequately has led to the development of a more suitable class of DBMS, the
Object Oriented DBMS (OODBMS), which can be extended through the use of object-
oriented mechanisms to handle complex data. OODBMS, however, do not have the relational

structure found in RDBMS, which manages the data in a simple, yet efficient manner. A
2

hybrid DBMS, which brings together the appealing features of both RDBMSs and
OODBMSs, is an Object Relational Database Management Systems (ORDBMS). ORDBMS
incorporate the relational structure of RDBMS with the ability of OODBMS to handle
complex datatypes. Since ORDBMS are relatively new there is still limited knowledge on

how they work and, as with any DBMS, the performance is of particular interest.

System performance can be defined as how well a system executes a task in a given
environment. To measure the performance of a system, a mechanism such as a benchmark is
often used. A benchmark to measure the performance of a multimedia database should focus
on what is common in a multimedia workload. Database benchmarks, including those
designed for multimedia, are commonly used to compare different databases, but they can
also be used for other purposes. For example, they can be used to assist in the optimal
configuration of a database, where configuration is defined as the process of setting up both
the physical and logical components of the database. Configuration is closely linked to a task
known as tuning, where the configuration of the database is repeatedly modified in order to

reach the best performance under certain constraints [KL99].

1.3 Problem Statement

To measure the performance of any aspect of a multimedia database, including the basic
functionality such as insert, update and delete, a suitable benchmark is required. Despite the
considerable research that has been undertaken to investigate the performance of databases
(shown by the large amount of available literature on this topic), none of the resulting
benchmarks are suitable for multimedia databases. This is mainly because the workloads (way
in which operations are implemented, the type of datasets returned, and the number of users
querying the data) of these benchmarks differ from the workloads found in a multimedia
application. For example, multimedia workloads, unlike other workloads, require complex
queries to perform the basic operations that are performed easily in standard databases. These
unique requirements also make it difficult to adapt the existing benchmarks to suit a
multimedia database. The problem centres on the design of a new benchmark to test the basic
functionality of a multimedia database, which can be developed to measure more advanced

multimedia database functionality in the future.

1.4 Aim

The aim of this thesis is to design a suitable benchmark to evaluate the performance of basic
functionality, especially insert, update and delete operations, in a multimedia databases. This
benchmark is called MORD, which stands for a Multimedia Object Relational Database
benchmark, and it targets the Oracle ORDBMS. Although MORD is designed specifically to
work on Oracle, it is also designed to be adaptable. It is adaptable since most settings of the
benchmark can be changed and the test environment can be altered. For example, the test data

used and queries tested by MORD can be altered.

As with any benchmark, MORD need to be validated to ensure that it includes all of the
required functionality and that the functionality works correctly. Validation of MORD is
performed using a variety of tests run on a selection of Oracle configurations. While
validating MORD, it would also be beneficial to obtain a basic understanding of Oracle’s
performance when dealing with multimedia data. As a result, a secondary goal of testing
MORD is to test whether established database theory that holds for standard data also holds
for multimedia data. Several informal hypotheses are formed, based on such general database
theory, and tested. The testing of these informal hypotheses demonstrates how MORD can be
applied, investigates whether it functions as expected, and gives a better understanding of the

performance of multimedia applications on Oracle.

1.5 Focus and Scope

The focus of this thesis is on the design of a benchmark to evaluate the performance of basic
functionality in multimedia databases. Planning the design of a thesis requires that the
decision is made of whether a broad area is studied in less detail or a specific area is
concentrated on in finer detail. For this thesis the latter was chosen, meaning that the scope
was reduced and MORD could only test a limited area. The options were that MORD either
investigated basic multimedia functionality or that it focused on more advanced specialised
multimedia functionality, but not both. Basic functionality was selected since there are
currently no multimedia database benchmarks (as justified in the next Chapter) and it is not
logical to design a benchmark to test advanced multimedia functionality until one has been

designed for basic functionality.

The aim was achieved by first conducting a comprehensive study of existing benchmarks and

multimedia databases, studying their unique characteristics in particular. MORD was

4

designed based on the findings of this study. Although MORD was subsequently tested and
preliminary results were obtained from this, a thorough evaluation of Oracle’s performance
was not an objective in this thesis. In future, MORD can be applied to multimedia databases
more thoroughly to obtain results to assist in the configuration of these databases. For this
thesis, the focus is on the design of a benchmark, rather than carrying out an extensive

performance evaluation of a specific database.

MORD is designed to be useful in several different multimedia database environments, where
its scope is determined by a few factors. These factors include: the number of users, the type

and amount of test data, and the kind of operations tested.

MORD’s aim is to measure the fundamental performance of multimedia databases. This
requires a simplified environment and as a result all of the experiments are executed in a

single-user mode.

The amount of test data included with MORD is fairly small, though it is easy to increase it if
necessary. The data consists of a selection of images, audio, and video data, and a limited
selection of documents. Although documents are generally classified as multimedia data, the
main reason for not including a larger collection of them is that they are used in special tests
designed to demonstrate that MORD’s test data can easily be extended to include a different
datatype.

The operations tested by MORD are primitive queries, such as insert, select, and
update, that have been adapted for multimedia data. The time taken to execute some
advanced queries, specific to multimedia data, is also measured. These queries were selected
to explore the backend processing of multimedia data, and include the extraction of metadata,
and the creation of thumbnails from images. The front-end processing, such as the streaming
of data or content-based retrieval is not investigated. The investigation of advanced queries
that are found in standard RDBMS, such as join and aggregate, is also not performed as
they are less relevant in a multimedia environment. Such queries are usually used to either
combine data or perform calculations on it, such as calculating the average value, neither of

which is generally relevant to multimedia data.

The performance metrics that are used to measure the times for the experiments include

response time and throughput, while alternative metrics, such as resource utilisation, are not

5

considered. They are not relevant to the department and are becoming less important as a

result of the rapid advances in hardware.

1.6 Organisation of Thesis

The next chapter presents the findings of a literature survey on multimedia databases and
database performance. It summarises relevant work on multimedia database to illustrate their
significant issues and problem areas. Following this, the work that has been done on the
configuration and tuning of databases is discussed. Finally, it describes work that has been

carried out on performance and performance evaluations.

Chapter 3 presents a literature survey on existing benchmarks. This chapter goes into detail
about the objectives, design decisions, and characteristics of these benchmarks that make
them unsuitable to evaluate the performance of multimedia databases. This chapter also

describes the requirements of a multimedia database benchmark.

Chapter 4 introduces Oracle, as it is the multimedia database used in this thesis. This chapter
explains how Oracle functions by describing its architecture, its components, and the manner
in which it stores the data. Details on the handling of multimedia data by Oracle as well the
advanced functionality Oracle provides for this data are presented. The chapter ends by
summarising past research on Oracle, and more specifically the sections focussing on

multimedia.

Chapter 5 describes the design of MORD, firstly by specifying MORD’s objectives. This is
followed by specific details on MORD’s design. These details include a description of the
schemas used to create the database tables, MORD’s test data, the functionality that MORD
tests, how MORD measures the time for the tests, and the programming language MORD

uses.

Chapter 6 details the validation tests performed to demonstrate that MORD functions
correctly. This chapter lists MORD’s objectives that need to be tested. This is followed by a
brief description of the test environment, including the specification of the hardware as well
as the configuration of the database. Details are then given on how the validation experiments

have been designed as well as the hypotheses tested that relate to the performance of Oracle.

Chapter 7 presents the results of each of the experiments performed, followed by an informal
analysis. This chapter aims to indicate that MORD performs as expected as well as to give an
initial understanding of how Oracle performs with respect to multimedia data. The most
significant findings as well as unexpected findings are presented again at the end of this

chapter to summarise them.

Chapter 8 concludes the work presented in the previous chapters, showing that the objectives
of the thesis have been met. It also emphasises the most important achievements in this thesis

and includes suggestions for future work.

Chapter 2 : Tuning and Performance
Evaluation of Multimedia Databases: A

Survey

This chapter presents a survey of work related to this thesis. It includes work on
the tuning of multimedia databases, as well as benchmarking. Firstly, it describes
the unique requirements of multimedia databases that set them apart from other
databases. Details are then given about the main areas to consider when tuning a

database. Performance evaluations are discussed next.

2.1 Multimedia Databases

2.1.1 Multimedia Data

The rapid technological advancements in computing have led to an increase in the production
and use of multimedia data. Multimedia data differs markedly from standard datatypes in both
structure and required functionality. Some of the characteristics listed by Klas and Aberer
[KA95] are temporal aspects, media representation, data volume, data modelling, and
functionality. The temporal aspect refers to the time dependant constraints of multimedia
data. Klas and Aberer explain that time is relevant to multimedia data because it closely
represents reality, where time is a significant factor. For example, a video is usually a
sequence of events that must be shown in the correct order and at the right speed for it to be
represented properly. They classify multimedia data as either time dependant, such as audio
and video, or time-independent, such as images. Media representation refers to the necessity
for new datatypes as well as operations. Built-in datatypes, such as alphanumeric data, are not

appropriate to represent the complex structure of multimedia data. Klas and Aberer suggest

that a modular and efficient representation of different multimedia formats must be supported,
in a transparent manner to the application/user. Data volume refers to the large amount of data
to be processed. Data modelling refers to the more advanced indexing techniques, as well as
semantic and consistent modelling of abstractions needed for multimedia functionality, such

as content-based searching.

2.1.2 Multimedia Databases

Multimedia databases have evolved from traditional databases, starting with RDBMS.
RDBMS were developed approximately 30 years ago and are currently a popular, well-used
technology that can be implemented easily. They facilitate the efficient storage of data
through the use of tables controlled by mathematical relations, a concept that originated from
work done by Ted Codd in 1970 [CO70]. As a result, they enforce a very rigorous structure
with fixed schemas for their databases. With standard datatypes this is advantageous, as they
are part of the predetermined set of attributes of RDBMS, but it makes it difficult to extend
the datatypes and functionality to support complex datatypes. Examples of RDBMS include:
Microsoft SQL Server and Access, IBM’s DB2, Sybase, and MySQL.

Object-Oriented DBMS (OODBMS) were developed roughly a decade later, with the
intention of overcoming some of RDBMS’s problems, such as their inability to be extended to
handle more complex datatypes. Inherent in OODBMS is an extendible data model that uses
objects, attributes, classes, methods and messages to overcome the inflexibility of RDBMS
[SZ96]. Although this allows the specification and management of complex media objects
through Abstract Data Types (ADT), unfortunately these datatypes are not already integrated
into the system. Another shortcoming of OODBMS is the lack of a standard ad-hoc query
language, such as SQL, with which to manipulate the data [STO96]. Examples of OODBMS
include: Jasmine, GemStone, Ontos, Objectivity, Versant, and STONE Object Store.

A valuable addition to database technology is the recently developed Object-Relational
DBMS (ORDBMS). These DBMS are based on RDBMS technology with the extension of
functionality that was previously limited to OODBMS technology. Such functionality
includes inheritance, complex object support, an extensible type system, and triggers [STO96,
and CAR97]. Stonebraker et al. [STO96] suggest that the development of ORDBMS is the
most striking advance in DBMS functionality since RDBMS were first introduced. Although
ORDBMS are growing in importance, their technology has not reached a stage of maturity

yet. A contributing factor to this is the fact that no standard for ORDBMS exists as ANSI
9

X3H2 have not completed their work on SQL3 [STO96]. Examples of ORDBMS include:

Informix, Postgres, and Oracle.

A different approach would be to develop SQL itself rather than the database, and although
this would not be considered a ‘true multimedia database’, it is an interesting alternative for
handling multimedia data. SQL/MED, standing for the SQL Management of External Data, is
the new addition to the SQL standard, originating in the early part of 2001. J. Melton et al.
explain that SQL/MED: “offers syntax extensions to SQL as well as a set of routines for use
in developing and managing applications that access both SQL and non-SQL (also known as
external) data”. SQL/MED is divided into two sections; one called the wrapper interface and
the other called the datalink that together manage the external data as if it was stored within
the database. The wrapper interface allows the user to view the external data, while the
datalink allows the server maintain control of the data, such as integrity control. SQL/MED
no longer has the limitation found in RDBMS, as it does not need to have additional datatypes
since the data is stored externally. Its functionality can be extended to include the majority of
the functionality, such as referential integrity, recovery mechanisms, and authorisation
mechanisms [MMJ02], which are not normally found with external data. It still, however, has
to be explicitly implemented and is not integrated into the database. There is also the
limitation that no distinction can be made between the different multimedia datatypes, and

thus specialised functionality, such as cropping images, cannot be implemented.

A specialised database has been designed to support multimedia data, known as a Multimedia
DBMS (MMDBMY). It is largely based on OODBMS technology, with extra functionality to
support multimedia data. This functionality consists of multimedia datatypes as well as
continuous data delivery. MMDBMS may be a viable option in the future, but at present there
are no commercial or even widely used MMDBMS. One example is the AMOS system,

which is one of the most advanced MMDBMS.

To identify which of the DBMS are suitable for handling multimedia data, it is necessary to
compare whether they can support the complex structure and specialised functionality of
multimedia data. Such a comparison is given in Table 2-1, where their built-in datatypes to
handle multimedia, and their functionality to support basic multimedia queries, such as

inserting, as well as advanced multimedia queries, such as streaming, are investigated.

10

Feature RDBMS OODBMS ORDBMS SQL/MED MMDBMS
Multimedia | Limited to Extended to | Often built-in | Extensions in | Built-in support
Data BLOB and support otherwise SQL to support | for all
Support References multimedia data | extendible multimedia data multimedia data
Query SQL only OO languages | SQL, high-level | Advanced SQL | Usually OO and
Languages and high level | and OO | with extensions high-level
languages only | languages languages
Multimedia | None provided. | Limited Often full [No multimedia | Full multimedia
Functionality | Cannot be multimedia multimedia functionality functionality
added functionality functionality
Usage Well-used and | Well used, Still fairly new, | Not widely used Used only in
Mature especially for already research
engineering extensively used environments
applications

Table 2-1 Comparisons of OODBMS, ORDBMS, SOQL/MED, and MMDBMS

RDBMS are unsuitable for multimedia data, given their inability to support complex data and
its corresponding functions. Although some RDBMS can support multimedia data by the
inclusion of Binary Large Objects (BLOBs) in their set of attributes, they still do not offer the
required functionality. OODBMS can be used for multimedia databases, but ORDBMS
appear to be the best solution as they integrate the best of both RDBMS and OODBMS
technology. The extendibility of ORDBMS allows for multimedia data to be included as a
built-in datatype of the system that can then be queried using the simple SQL query language,
which is not possible with OODBMS. SQL provides a higher level of protection from
programming errors as well as making the data modelling and querying easier. Since
ORDBMS appear to be the best overall technology to use for multimedia applications, they

are further reviewed briefly.

One of the first types of ORDBMS developed was POSTGRES, originally developed by
Berkeley University [STO96]. It is an open source database, initially based on RDBMS
technology that has been extended and is continuously being improved. Although it is well
suited to handling massive storage and can store large objects, it does not have inherent

support for multimedia data.

Following POSTGRES was the development of Illustra, a commercial ORDBMS that was
later bought out by Informix and became part of the Informix ORDBMS. Informix allowed
users to create manageable and easily distributable multimedia repositories and so became
one of the most popular commercial ORDBMS supporting multimedia data. It achieves this
through Media360, which runs on Informix’s object-relational database, Internet Foundation
2000. Media360 handles multimedia data together with the Informix Dynamic Server/
Universal Data Option (IDS/UD) [INFO1]. In 2001, IBM bought Informix and has plans to

11

integrate it with DB2, especially for multimedia applications. Previously, IBM’s DB2 only
provided user-defined functions, but not user-defined datatypes. This limited its multimedia
capabilities since it only has BLOB datatypes and no support for specialised multimedia
datatypes. Its latest release includes the DB2 AIV Extender suite, which has image, audio, and
video extenders based on technology from Informix’s multimedia data management modules
previously known as datablades. These permit user-defined datatypes and user-defined

functionality to support multimedia data that can be queried using SQL statements.

Another popular ORDBMS with multimedia capabilities is Oracle. Oracle 9i supports
multimedia through an application known as InterMedia which incorporates the datatypes in
the system. It also provides integrated queries and functionality, such as searching by content,
manipulating images and altering the format of the data. At present, Oracle appears to be a
viable ORDBMS for handling multimedia data due to its advanced datatypes and multimedia
functionality.

2.1.3 Multimedia Applications

There are numerous benefits to the use of multimedia data in an application, including the
addition of sound and colour to what may otherwise be a dull application. The saying, “a
picture can say more than a thousand words” sums up the power that visual information has,
and the addition of sound is no different. This has resulted in the use of multimedia data in
applications that vary from police criminal identification systems to educational systems,
from systems for the movie industry to home shopping websites, just to name a few [SUB9S].
Mittag [MITO00] emphasises the increasing importance of using multimedia databases in
education, based on the results produced by his research where he tests its effectiveness.
Another area of particular interest is the use of multimedia databases for virtual reality.
Soetebier et al. [SDB99] proposed a database to store the different components that are
needed to construct their virtual reality environment. The benefits of using a database include,
according to them, easy and central administration, reusability of components, and seamless

integration between the database and their environment.

2.2 Database Tuning and Configuration

2.2.1 Database Tuning

Sasha and Bonnet [SB02] describe database tuning as making the application run faster. This

can either mean a greater throughput or a faster response time for time-critical applications.

12

Database tuning involves identifying where the performance is being slowed down, known as

the bottleneck, and tuning this.

The tuning of databases should ideally be automatic so that they can adapt to any variation in
the workload. Much work is being done in this area, but unfortunately difficulties arise from
the fact that each database has a different physical and logical implementation, varied
workload, and specific performance requirements [KL99]. As a result, automatic tuning is yet
to become a built-in feature of commercial databases and database tuning still has to be
performed manually by identifying the bottlenecks and adjusting the configuration of the

database in order to eliminate them.

Sasha and Bonnet studied performance tuning and consider the areas illustrated in Figure

2-1as possible bottlenecks.

Database Tuning

) - Relational
Index Tuning Tuning the Core Components
System Tuning
Locking and Operating System Hardware Tuning Logging and

Concurrency Control Recovery

Multiprogramming Amount of Disk Layout Database Scheduling

Memory and Access Buffers

Figure 2-10utline of database tuning areas

Given the nature of multimedia applications, the most relevant of these tuning areas are the
components of the Operating System (OS). Of these, the highlighted areas, including the
amount of memory, the disk layout and access, and the database buffers, are the most

significant.

13

2.2.2 Operating System Tuning

Main memory is increasingly becoming the bottleneck for database applications [BMK99].
Boncz et al. [BMK99] suggest one reason for this is that the speed of CPUs has advanced
rapidly, which means that they are no longer the bottleneck. Database buffers are the sections
of the main system memory that are reserved for the database’s usage. Database buffers that
contain the required data reduce the disk Input/Output (I/O), and as a result they significantly
improve the performance of a database, as access to main memory is much faster than disk
access [ORS96]. The large size of multimedia data (among other reasons) means that
reducing the amount of I/O is extremely important, and the amount of memory reserved for

the database buffers is crucial for these types of applications.

The subsystem responsible for the allocation of the buffer space, known as the buffer
manager, also influences the performance of the database to a large extent [ORS96]. Ozden et
al [ORS96] studied different replacement algorithms used for multimedia storage systems,
and found the currently used approximation algorithms, namely Least Recently Used (LRU)
and Most Recently Used (MRU), yielded poor performance.

Storage access refers to the physical mapping and storage of the data on the underlying disk.
Storage is implemented by dividing the files in which the data is stored into partitions of fixed
length, known as database blocks. To improve the performance of a database, the goal is to
reduce the number of blocks transferred between the disk and main memory. Shapiro and
Miller [SM99] investigated the tuning of both I/O and memory for databases when using
BLOBs. They evaluated the performance of the database with different configurations,
finding that through memory and I/O tuning they managed to improve the performance

significantly (see section 4.6.2 for more details).

Two other tuning areas of the operating system that are less relevant to multimedia data are
multiprogramming and scheduling. Multiprogramming refers to the concurrent execution of
queries, where performance is improved in a multi-user environment by simultaneously
running queries. This is made possible firstly by enforcing concurrency control, and secondly
by assigning the query its required resources as soon as it becomes available. For example,
while the CPU is servicing one query, another query might be accessing the disk
simultaneously. Scheduling refers to the process of delaying the movement of blocks from the

disk to main memory so that it can reorder them in the most logical manner. The more the

14

disk-arm movement of the hard drive is reduced by this technique, the larger the performance

improvement. Oracle supports both multiprogramming and scheduling automatically.

2.2.3 Core Component Tuning Areas

Tuning the other core components of the database include issues such as hardware setup,
locking and concurrency control, and logging and recovery, as shown in Figure 2-1. Although
hardware configuration has a large influence on the performance, it is independent of the
database. Locking and concurrency control is relevant only in multi-user environments, while
logging and recovery is necessary to restore a database when something goes wrong. Both of

these are already supported by Oracle.

2.2.4 Additional Database Tuning Areas

Additional database tuning areas include index tuning and relational system tuning. Index
tuning generally improves the performance of a database by reducing the overhead and
amount of time needed to search and retrieve data from the database. It is important in a
multimedia system, as emphasized by Kornacker [KOR99] who studied the high-performance
of extensible indexing in ORDBMS. Indexing is usually automatically implemented in
databases in the best possible manner, and thus studying this tuning area is generally less
important than other tuning areas. Oracle is one such ORDBMS that automatically provides
efficient indexes for multimedia data. Relational system tuning refers to the design of the
database schemas, as well as the design of the queries that access the data stored in the
database. Relational system tuning is less important with multimedia applications since
special code is required to create the schemas and query the data, and thus there is often only

a single way for each DBMS to implement them.

2.3 Performance Evaluation

2.3.1 Value of Performance Evaluations

Performance evaluations can be used to assess new algorithms or techniques [CHA9S,
CDNO93, and STO93]. This is achieved by evaluating the new as well as the older or
previously used technology, and these results can be used to compare and contrast the two
technologies revealing the superior of the two. Performance evaluations can also be used to
highlight the weaknesses of a system to ensure its quality [CHA95, and CAR97]. This is
achieved by evaluating a single system and using the results to identify where the system

performs badly as well as where it excels. Performance evaluations can also be used as a
15

diagnostic tool to assist in the efficient implementation of the system [CHA9S5, RIS00, and
RUNO2]. This is achieved by evaluating a single system and altering different parameters to

improve the overall performance.

2.3.2 Measuring Performance

Theoretical information, although useful, has its limitations and it is only through empirical
tests that a true understanding of database performance can be gained. A benchmark is one
mechanism for carrying out performance evaluations empirically. (Benchmarks are discussed
in more detail in the next chapter.) Benchmarks use performance metrics of which the main
available ones are response time, throughput, price/performance, and resource utilisation.
Response time is also known as the query processing power because it is a measure of the
speed of individual operations or queries. It is the elapsed time from when the user initiates
the query or function until the operation has been completed or committed. For example, the
time from when a key is pressed to the time the result is displayed on the screen. Throughput
differs from response time in that it is a measure of the overall performance of the system. For
example, it can evaluate the amount of data that a database can process on average in one
second. Resource utilisation is a measure of how much a particular resource is used, but it is
not commonly used for database performance evaluations. Rather, it is of greater importance
in the evaluation of a systems’ hardware. Response time is important to database performance
evaluations, as can be seen by the number of previous evaluations that include it, such as
BUCKY, Wisconsin and the Michigan benchmark (These benchmarks are discussed in the
next chapter). It is also beneficial to include throughput as it evaluates a database from a

different aspect.

2.3.3 Calculating Performance

There are two approaches to presenting the results of a performance evaluation. The first is to
generate a single value with which to rank or rate the system, while the second approach is to
produce multiple results, which may be results for tens or even hundreds of experiments. A
single value is much easier to interpret and sometimes also to calculate, but its use is limited
as it does not reveal where the performance is poor. It is usually beneficial only if the
performance evaluation is being used to compare different systems with the intention of
ranking them. Multiple valued results are more common as they have several uses, including:

identifying weaknesses and strengths, comparing systems, and tuning systems. If a benchmark

16

returns a moderate number of values, approximately 10 to 20 results, it has the advantage that

it can be used for more than just a comparison and is also not too confusing to interpret.

To calculate the performance of a system, some evaluations use the geometric mean while
others use the arithmetic mean and both methods have previously been used in performance
evaluations. To select the most appropriate method for a particular situation it is necessary to
have a greater understanding of the required evaluation. Jacob and Mudge [JM95] wrote a
paper that describes the differences between using geometric, arithmetic, and harmonic

means. In simple terms, geometric mean answers the question:

“If all the quantities had the same value, what would that value have to be in order to

achieve the same product?”
Arithmetic mean answers the question:

“If all the quantities had the same value, what would that value have to be in order to
achieve the same total?”

Harmonic mean is the inverse of the arithmetic mean.

In this paper, they explain which method is most appropriate to use for various calculations by
using examples to illustrate what the results would be for each case. They found that using the
geometric mean has the advantage that it preserves values across normalisation, but that
normalised values must not be averaged. Geometric mean is used, for example, in the
evaluation of the performance of hardware [DIX93] since the same results will be obtained
when comparing systems, irrespective of which computer’s times are used as a normalisation
factor [JM95]. The disadvantage of the geometric mean is that it does not preserve total run
times, which are generally the values that are of most interest when doing a performance
evaluation of a database. For this reason, Jacob and Mudge only consider arithmetic and
harmonic means. They recommend that the harmonic mean be used for calculations with rates

and the arithmetic mean for calculations with times.

The next decision to make is whether to use a set of times or rates, or a ratio of times or rates.
A set of times is a measure of how much 7Time is taken per unit of Somethings, while a set of
rates is how many Somethings are accomplished per Unit Time. A ratio differs in that it is a
unitless measure which can be calculated using either time or rate. It is used to identify how
much faster a system performs. Jacob and Mudge recommend using the

ArithmeticMean(times) ~when calculating the response time and using the

17

HarmonicMean(rates) when calculating throughput. Based on their argument, arithmetic

mean is the most suitable method of calculating the performance of databases.

2.4 Summary

The increase in production and use of multimedia data has lead to the need to store and
manipulate such data efficiently. The problem is that multimedia data is complex in structure
and requires specialised functionality that standard RDBMS cannot support. More advanced
DBMS have been developed, of which ORDBMS is currently the most suitable for handling
multimedia data. ORDBMS have the simplicity of RDBMS as well as the advanced
functionality found in OODBMS.

Databases need to be tuned for them to work optimally, and as such ORDBMS also need to be
tuned. Significant database tuning areas include the buffers that form the database memory
regions, as well as the storage on and access to the physical disk. To assist in the tuning of the
database, a performance evaluation can be carried out using the appropriate tools, such as a

benchmark.

18

Chapter 3 : Benchmarking Database: A Survey

The previous chapter surveyed multimedia databases, and the tuning and
evaluation of their performance. This chapter surveys existing database
benchmarks. It includes a review of the leading benchmark’s objectives, design
decisions, and problems. It also describes the requirements of a multimedia

database benchmark.

3.1 Overview of Benchmark

A benchmark is a tool for empirically measuring the performance of a system. Database
benchmarks are a subset of benchmarks that are designed to measure the performance of
specific databases. They consist of database schemas, test data, a workload to represents the
users’ actions (such as the queries they execute), and a timing mechanism. In this section,
existing benchmarks are investigated with particular reference to how each of these

components is implemented in the benchmark.

3.2 Existing Benchmarks

Existing database benchmarks can be grouped into four categories: generic, business,
engineering, and advanced. An additional category is architecture benchmarks, which are

hardware benchmarks and not database benchmarks.

19

3.2.1 Generic Benchmarks

Generic benchmarks evaluate the performance of features unique to a type of DBMS, for
example testing the performance implications of including inheritance in ORDBMS, and not
features found in a specific type of application, for example testing the performance of any
database with a select intensive workload. These benchmarks are commonly used to

determine whether a specific type of DBMS meets the requirements of the user.

3.2.1.1 RDBMS - Wisconsin

The Wisconsin benchmark was designed to test the functionality of RDBMS in a simple yet
scientific manner. It has been widely used in numerous performance evaluations [BDT83] as
well as acting as a guideline to aid designers in creating new benchmarks [RUNO02]. This
benchmark has two main objectives. The first is to test all the main components of RDBMS,
including selection, projection, joins, modify, and delete, while the second is to be easily
understood so that new queries can be added effortlessly. These objectives have made
Wisconsin a popular benchmark and an invaluable tool for RDBMS [RUNO2]. Its popularity

was also due to its use in testing the performance of database systems in an unbiased manner.

Unfortunately this benchmark is not without problems. Foremost amongst these are that it is
not representative of “real” applications as it is missing tests for some critical functionality,
such as bulk loads and database recovery operations [DEW93]. It was also criticised for
testing single user environments only, but this was not found to be totally true because of the

lack of support for the multi-user benchmark that was later developed.

3.2.1.2 ORDBMS - BUCKY

BUCKY was designed to evaluate the performance of ORDBMS, as there were no suitable
tools at the time [CAR97]. The benchmark focuses on the unique ORDBMS features not
found in standard RDBMS. These are row types with inheritance, inter-object references, set-
valued attributes, methods of row objects and ADT attributes and their methods. An
additional objective of this benchmark is to compare the performance of ORDBMS with
RDBMS in order to establish the maturity of ORDBMS technology. ORDBMS schemas and
their equivalent RDBMS schemas are provided so that this can be achieved. BUCKY is
limited in that it does not have the capability to evaluate real systems. It can only evaluate the
performance of the object extensions found in ORDBMS, and not the other functionality

required by real applications.

20

3.2.1.3 OODBMS - 007 and predecessors

Several benchmarks have been designed to test OODBMS, such as the Altair Complex-Object
Benchmark (ACOB), Sun benchmark, 007 benchmark, and the HyperModel benchmark
[CDNO93, CHA9S5, and RIS00]. ACOB is a simple benchmark, aimed at testing sequential
scans, reads and updates of complex objects with the objective of comparing object, page and
file server architectures [CHA95]. The other three are not only designed to test OODBMS but

also engineering applications in specific, and thus are discussed in section 3.2.4.

3.2.2 Architecture Benchmarks

Architecture benchmarks are designed to evaluate the underlying hardware of a system rather
than the database system. These benchmarks are important nevertheless as their design

requires similar decisions to those made for database benchmarks.

3221 AS’AP
The ANSI SQL Standard Scalable and Portable (AS’AP) benchmark is designed for RDBMS,

with a special focus on testing specialised hardware, known as database machines [BOT93].
The AS’AP benchmark consists of both single-user and multi-user experiments with the
objective of being more generic than other benchmarks. The single-user tests are based on the
Wisconsin benchmark, while the multi-user workload represents a mixture of Online
Transaction Processing (OLTP), information retrieval, and long transactions. Additional
objectives of this benchmark are scalability and portability, providing a uniform metric, and
minimising human effort in its implementation. Although it was designed with these
objectives, it has been found to be difficult to transfer to other systems since the database

generator and the multi-user tests are in reality not portable.

3.2.2.2 SPEC Benchmark

The Standard Performance Evaluation Cooperation (SPEC) was developed by a consortium of
22 vendor companies who wanted to provide a benchmark that could measure the
performance of the entire computer system [DIX93]. This is achieved by enabling the
benchmark to run on any system independent of its underlying configuration. For example,
the system can have any value for its components such as the memory system, operating
system, and clock rate. This benchmark tests single processor and multiprocessor machines,

as well as multitasking operations to emulate multi-user workloads. The SPEC benchmark

21

produces a single number, which has the advantage that it can easily be used to rank systems.
Unfortunately the usage of the SPEC benchmark is limited as it cannot be used to analyse
systems any further. It also has the problem that it calculates its results using geometric mean,

which is unsuitable for evaluating the performance of databases, as explained in section 2.3.3.

3.2.2.3 MediaBench

MediaBench tests specialised hardware designed to support multimedia and communication
applications [LPM97]. Realistic results were achieved by designing a benchmark that
represents multimedia applications as accurately as possible, and does so using a high-level
programming language. After designing the benchmark, its results were compared to similar
results from SPEC. It was found that MediaBench was valuable since significant statistical
differences were shown between the two benchmarks in at least four areas, including the
achieved instructions-per-clock, instruction cache hit rate, data cache read hit, and memory

bus utilisation.

3.2.2.4 Other Architecture Benchmarks

Other benchmarks designed to test the architecture of computers include Dhrystone, Linpack
and Whetstone. Although these benchmarks were popular when first developed [DIX93], they
are no longer widely used. Firstly, Dhrystone is designed to test the performance of integers
on small machines with simple architecture. This is usually only used for embedded systems,
making Dhrystone largely unrepresentative of any realistic system [LPM97]. Although
Linpack and Whetstone are better than Dhrystone as they are designed to test floating-point
performance [DIX93], they are still too unrepresentative of any realistic system to be widely

used.

3.2.3 Business Benchmarks

Business benchmarks evaluate the performance of applications commonly used in business-
orientated environments, such as On-Line Analytical Processing (OLAP) and Decision

Support Systems (DSS).

3.2.3.1 TPC Suites

The TPC benchmark suites were developed by the Transaction Processing Performance
Council [TRAO02]. They consist of several industry standard benchmarks for evaluating

different types of workloads for various applications on RDBMS. TPC used the approach of

22

developing the benchmarks through a process of designing, revising, formalising, and
administering rather than attempting to create an all purpose benchmark at once. This process
left some of the earlier benchmarks, namely TPC-A, TPC-B, and TPC-D, obsolete, whereas
others which are more advanced, including TPC-C, TPC-H, TPC-R and TPC-W, are still
widely used. These benchmarks became obsolete since they are unrepresentative of real
applications, and sometimes they are bias towards a single vendor’s system making them
limited in a fair comparison. TPC-C is an order-entry benchmark representing business
applications, while TPC-H and TPC-R both evaluate decision support applications by testing
business oriented queries and concurrent data modification [TRAO02]. These decision support
applications are characterised by a large database and complex queries. For this type of
application it is useful to have prior knowledge of the queries, and so TPC-R provides this,
making it different from TPC-H [TRAO02]. TPC-W differs from the rest of the TPC suite as it

consists of business activities that are in an electronic commerce environment.

3.2.4 Engineering Benchmarks

Engineering benchmarks are designed to test engineering applications, which are often

designed using OODBMS.

3.2.4.1 Sun Benchmark, 007 and Derivatives

The Sun Benchmark, also known as 001, is based on the EDB benchmark with a few
modifications [CHA95]. The HyperMedia Benchmark that is based on the node-and-link
graph structure often found in hypertext environments later replaced this benchmark.
Following these, a benchmark known as 007, was designed to measure the performance of a
wide range of features of OODBMS, such as the speed of pointer traversals, the efficiency of
updates and the performance of the query processor [CDN93, and CHA95]. This benchmark
only tests a single user environment given that there is little contention for data by other users
in engineering applications. The 007 benchmark has the advantage over the earlier
benchmarks of testing important functionality which the others missed, such as complex
objects and sparse versus dense traversals. Unfortunately it attempts to be too comprehensive
and is not concise enough, producing too many numbers, which can be tedious to collect, and
confusing to interpret. Another problem with the 007 benchmark is that it mainly covers
engineering tools such as Computer Aided Design (CAD) tools and is not applicable to other
OODBMS.

23

3.24.2 EDB

Since performance is crucial when dealing with engineering applications such as CAD tools,
there is a strong need to benchmark the database systems used to support them [CAT93]. This
need brought about the development of the Engineered Database Benchmark (EDB).
Although engineering applications differ considerably, the EDB aims to test the operations
that Cattell found are most frequently performed. These operations consist of insertion and
look up of objects in addition to more complex ad-hoc queries, all in a scalable environment.
Additional aims included testing if systems support one or more of the following: caching the
database in main memory, avoiding the overhead of query optimisation, using pre-computer
links, and making alternative database server architectures available [CHA95]. This
benchmark is only implemented for single user environments for the same reason given
above. The most significant difference between this benchmark and earlier engineering
benchmarks is that it is much simpler to implement and understand as it focuses on basic
performance, leaving out functionality that doesn’t affect engineering applications, such as
manipulating BLOB fields, rather than attempting to be a more comprehensive benchmark

[CAT93].

3.2.5 Advanced Database Benchmarks

Advanced database benchmarks evaluate the performance of specialised databases or complex
applications. Such benchmarks include those designed for semantic databases, eXtensible
Mark-up Language (XML) databases, Geographical Information Systems (GIS), and

document retrieval systems.

3.25.1 Semantic Benchmark

Rishe et al. [RISO0] proposed a benchmark to measure the performance of semantic
databases. The focus of this benchmark is on databases that require sparse data, complex
inheritance and many-to-many relationships. Their objective was to design a benchmark
where a general statement of the problem is given, instead of enforcing a predefined
implementation. This has the advantage that the benchmark can be implemented efficiently
for any type of database, and as a result it has been run on both semantic and relational
databases. Unfortunately, since a predefined implementation is not enforced, this benchmark
has the disadvantage that the results are dependant on the method chosen, and thus the results

can be distorted.

24

3.2.5.2 Michigan

Since XML querying has recently become more important, the Michigan benchmark was
designed to evaluate the performance of such systems [RUNO2]. The objective of the
Michigan benchmark is to provide a benchmark for XML databases that is equivalent to the
Wisconsin RDBMS benchmark. It focuses on a variety of representative tasks that XML
databases can perform. Unlike other XML benchmarks, these tasks are the basic queries such
as selections, joins, and aggregations [RUNO2], and not those found in a specific application.
Michigan also has the fundamental characteristics of relevancy, portability, scalability, and
simplicity. This makes Michigan an important tool for designers, especially when attempting
to identify bad implementations of XML databases. It does not provide insight to assist in the

selection between different products.

3.2.5.3 SEQUOIA 2000

The SEQUOIA 2000 benchmark was designed to provide the Earth Science (ES) community
with a method of comparing applications, such as GIS databases [STO93]. The purpose of
SEQUOIA 2000 is to provide a baseline case to judge new technologies, as well as to give the
database community some insight into the ES needs. When considering ES applications the
characteristics that Stonebraker et al. identify are a massive size, complex datatypes, and
sophisticated searching. These characteristics are not exclusive to ES applications, and so
SEQUOIA 2000 has the advantage that it can also be used to benchmark engineering and

scientific applications.

3.25.4 FTR Benchmark

The emergence of Full-Text document Retrieval systems (FTR) in the late 1980s brought
about the need for a benchmark to evaluate these systems [DH91]. The FTR benchmark was
developed with the objective of being simple yet still generating a realistic FTR workload.
This workload simulates a multi-user environment where requests to search for and retrieve
documents from what was considered to be large document databases (1GB or more) are
executed. The FTR benchmark has the advantage that it tests content-based searches rather

than simple key-word searches.

3.3 Criteria for Benchmark

The criteria that a benchmark must satisfy depend on whether it is generic or domain-specific.

Jim Gray’s Benchmark Handbook for Database and Transaction Processing Systems

25

[GRA93] appears to be the de facto work on benchmarks and thus is often used as a design
guideline. Jim Gray believes that generic benchmarks give a general idea of a system’s
performance, but that no single metric can measure all applications. There is thus a need for
domain-specific benchmarks, for example, a multimedia database benchmark. The rest of this
section is based on a domain-specific benchmark. Jim Gray lists the four criteria that should
be satisfied by a domain-specific benchmark as: portability, relevancy, scalability, and
simplicity. Benchmark designers generally attempt to follow this guideline, as clearly seen in

the design of the Michigan benchmark [RUNO2].

Portability means that the benchmark is easy to implement and use on many different systems.
This criterion is crucial if a benchmark is used to compare systems. For example, SEQUOIA
2000 tested ARCINFO, GRASS, IPW and POSTGRES [STO93], Michigan tested a native
XML database and an ORDBMS [RUNO02], and BUCKY tested a standard RDBMS and an
ORDBMS [CAR97].

Relevancy means that the benchmark must measure typical environments and situations rather
than uncommon or insignificant cases. The importance of relevancy is emphasised by the
stress that benchmark researchers place on the benchmark being representative of a real
application. Benchmarks that closely match real workloads, such as TCP-C, TCP-D,
Wisconsin, and SEQUOIA 2000, have been widely accepted. Further evidence of the
importance of a relevant benchmark comes from the failure of both the Dhrystone benchmark
and the TPC-E benchmark. The former was unrepresentative of any actual workload

[LPM97], and the relevancy of the latter lay only in a small scope [RIS00].

Scalability means that the benchmark is applicable to both small and large systems. Although
this appears to be one of the less important criteria, as some successful benchmarks do not
include this characteristic, it does increase the usefulness of the benchmarks. It makes the
benchmark applicable to a wider range of systems, as shown by the TPC suite [TRA02, and
STO93], and the Wisconsin Benchmark [DEW93].

Simplicity means that the benchmark is easy to use and extend, and is an important
characteristic of a benchmark as shown by the trend of simple benchmarks becoming popular
and well used [RUNO2]. Examples of such benchmarks are the Sun Benchmark for OODBMS
[CDN93], and DebitCredit and Wisconsin for RDBMS [RUNO02, BDT83, and CHA95].

26

Two additional criteria that Horricks et al. [HPS00] list as being important are reproducibility
and being representative. A benchmark is said to be reproducible if it produces the same
results repetitively, and to be representative if its tests cover a significant area of the whole

input space.

3.4 Design of Benchmark

The design decisions made for existing benchmarks, primarily domain-specific benchmarks,

are reviewed in this section.

3.4.1 Schema Design

The data found in a database may change over time but this is always within the constraints of
the schema. The schema controls the overall design of the database and the data must conform

to this design, making schemas an important consideration in the design of benchmarks.

The schemas of existing domain-specific benchmarks are modelled after typical applications
found in the domain being tested. It is difficult for these schemas to represent all possible
models in that domain, and as a result they frequently use a representative subsection of the
domain. This is illustrated by the schema of the SEQUOIA 2000 benchmark that is modelled
after Earth Science applications [STO93] as shown in Figure 3-1.

RASTER POINT POLYGON GRAPH

Time Name Landuse Identifier
Location Location Location Segment
Band
Data

Figure 3-1 SEQUOIA 2000 schema ([STO93])

The table names, such as Raster and Graph, as well as the data in the tables, such as Time and
Location, found in the SEQUOIA 2000 schema are unique to Earth Science applications since
they describe geographical information. This type of data is not expected in the schemas of

other types of applications.

The schemas of engineering benchmarks are generally modelled on engineering applications.
For example, the 007 benchmark is modelled after an engineering application as shown in

Figure 3-2.

27

Complex
Assemblies
Vv
T COCO LD
Base
Assemblies ‘
Vv

o ana (|)« | :
e L O C O)

Figure 3-2 Structure of 007 benchmark modules (Based on figure 2 [CDN93])

The 007 schema has a separate table to store the information for each of the categories:
complex assemblies, base assemblies, composite parts and documents. These categories and
the type of data related to them is specific to engineering applications and so it is not likely

that the exact tables would be required by the schemas for other application types.

The TPC suite aims to cover the whole business domain, using individual TPC benchmarks
that focus on subsections of the domain. For example, the TPC-D benchmark has DSS
schemas whereas the TPC-H benchmark has OLTP schemas [TRA02]. The FTR benchmark
is another example, where the benchmark is designed after document systems and as such the

schema is designed as a set of document partitions [DH91].

A slightly different approach to the design of the schema is found in benchmarks that are
designed to evaluate a specific type of technology, often a new technology. Benchmarks
aimed at testing a particular technology have a generic schema that includes the columns
necessary to test unique functionality rather than being modelled on a particular application.
Wisconsin [DEW93] and any of its derivatives [BD84, and BOT93] illustrate this well as their
schemas do not relate to valid applications. BUCKY uses a different approach since its

schema is modelled on a university application, as shown in Figure 3-3.

28

Employees
WorksIn

/’—— Person -=a

}
|

(s
\

Employee |==—«

Major \ |
majors : | Instructor = -— |
Student \ | |
HasTaken ~=t-< I |
| 1 |
| |
(Department> (Enrolled Staff Professor
A Teacher
courseOffered Sectlon Advisor Teaches

dept Student Advises
Sections
Course course CourseSectlon

Chair

Figure 3-3 BUCKY benchmark schema structure (Based on figure 1 [CAR97])

The schema shown in Figure 3-3 is different from the two schemas previously seen in Figure
3-1, and 3-2 since it does not have to be modelled for a specific application type. The table
names and data in BUCKY’s schema could be completely different, whereas those of the
SEQUOIA 2000 and 007 schemas cannot be altered as they are based solely on a type of
application. The complex relationships between the tables is important with BUCKY’s

schemas as these relationships are used to test Object-oriented features, such as inheritance.

When a benchmark is designed to test new technology there is usually both a schema relevant
to the new technology as well as a standard relational schema. Since the BUCKY benchmark
is designed to evaluate ORDBMS, it has an Object-Relational (OR) schema which has an
object for each item shown in Figure 3-3, and a relational schema which has all the items
excluding those shaded grey. Rishe et al’s [RIS00] semantic benchmark also has multiple
schemas including a semantic schema, a sparse relational schema, and a compact relational

schema.

3.4.2 Test Data

A well designed benchmark should provide test data as part of the benchmark suite. If test
data is provided it must be decided what method should be implemented to generate the data
and what data constitutes a representative sample (both size and format). Test data is normally
either produced by synthetic means when needed [BD84, RIS00, and RUNO2], or provided

with the benchmark.
29

Synthetic data generation is typically used to produce test data when distinct but simple
patterns are required. Examples of such distinct patterns include a normal Gaussian
distribution (where data follows a bell shape) [RIS00], a Zipf distribution (where the data
forms a straight line only when plotted with logarithmic scales on the axes) [RUNO2], or
when unique values are required. Examples of benchmarks that generate data synthetically are
the Michigan benchmark [RUNO2], where a template is used to generate descriptions, and the
AS’AP benchmark, where the data generator DBGen is provided with the benchmark.

It 1s much more difficult to produce a representative range of multimedia data by synthetic
methods. The SEQUOIA 2000 [STO93] benchmark and the FTR benchmark [DH91] rather
require that their multimedia data has to be downloaded with the benchmark. This method
requires bandwidth to download the data and space to store the data, but allows a finer control

on the test data.

Once the decision of how to provide the data is made, the format and amount of the data has
to be determined. For the test data to be representative of a real workload, the amount of data
must be considered in terms of the size of individual data items as well as the number of data
items. Most benchmarks incorporate some form of scaling so that they cover a wider range of
data sizes. This is achieved by providing multiple sizes of the databases. For example, the
SEQUOIA 2000 benchmark provides a national, regional (x16) and global (x100) size
database [STO93], the 007 benchmark has a small, medium, and large size database
[CDNO93], and the EDB benchmark has a standard size, a large database (x10), and a huge
database (x100) [CAT93]. Other methods of scaling are seen in the FTR benchmark, which
increases by 1 document partition for every 50 search transactions [DH91], and the Michigan
benchmark, which increases the depth and fan-out values [RUNO02]. Wisconsin measures
scale-up by selecting a base hardware configuration and a base database size and
proportionally increases both, for example doubling the size of the database as well as the
number of processors [DEW93]. This method is very concise, but it is generally sufficient to
use size-up, where the hardware configuration remains constant and the database size

increases, to measure the scalability of most operations.

3.4.3 Workload

To define a benchmark workload, the type of queries, the resulting dataset, and the number of

users must all be considered. Benchmark workloads could be representative of a particular
30

application. For example, the workload of the 007 benchmark tests queries unique to
engineering workloads, such as the speed of traversal, and the workload of the SEQUOIA
2000 benchmark tests 11 queries that are unique to Earth Science applications. Alternatively,
a benchmark workload could be designed to test the most important functionality in a new
type of application. For example, BUCKY has queries to test the additional feature found in
ORDBMS that are not in RDBMS [CAR97]. The value of a workload that only tests a limited
amount of functionality might be questioned, as its benefit is quite extensively restricted

[CAR97].

A workload can be designed to test basic or composite queries. The first of these approaches
is often used as the cost of performing composite queries can generally be calculated from the
results of the simple queries. Runapongsa et al [RUNO02] used this approach in the Michigan
benchmark, where they only evaluated the basic queries that are performed when using an
XML database. The aim of their benchmark was to assist database developers in
understanding and evaluating alternative methods for implementing these basic operations.
Another benchmark that evaluates basic queries is the Wisconsin benchmark, which has
relational operations including selection, projection, deletion and modification, join, and
aggregation. Boral et al’s [BD84] benchmark focuses on the four basic query types that they
feel are adequate to evaluate the performance of a system under a wide variety of workloads.
In contrast, all the queries of the TPC suite are composite in order to simulate a set of queries

usually found in a single transaction.

Most benchmarks simulate a single user environment, with the exception of Boral ef al.
[BD84] who defined a methodology to benchmark multi-user systems. They suggest that three
factors influence the performance of transactions in a multi-user environment:
multiprogramming level, degree of data sharing, and transaction mix. Multiprogramming
level controls the number of copies of the program executing concurrently. This represents the
number of users querying the database simultaneously, and can be up to a maximum of 16 in
their benchmark. The degree of data sharing controls the data partition that is accessed. Three
different degrees of data sharing are defined, 0%, 50% and 100%, where 0% means that
separate partitions are accessed and 100% means the same partition is accessed by all
programs. The transaction mix controls the queries executed, which is a selection from Query
I to Query IV. The code is written so that it accepts these three parameters and tests the

possible outcomes.

31

3.4.4 Performance Measurement

Performance measurements require decisions to be made about the performance metric,
whether the final results are presented as multiple values or condensed into a single value, the
manner in which the code is implemented to time the operations, and the unit that the results

are in.

Performance evaluations can use a single performance metric or multiple performance
metrics. If they use a single performance metric it is usually response time, also known as
elapsed time. For example, response time is used in the Michigan benchmark [RIS00], the
BEAST benchmark [GGD95], and the Wisconsin benchmark [DEW93]. Benchmarks that
implement more than one performance metric include SEQUOIA 2000 [STO93] and the Full-
Text document Retrieval (FTR) benchmark [DH91] which uses response time and
price/performance, and the Transaction Processing Council (TPC) suite [TRA02] which uses

these two as well as throughput.

Benchmarks can either present their results as multiple values, ranging from two to a few
hundred, or they can use a formula to summarise their results into a single value. Examples of
benchmarks that leave their results as multiple values include Michigan, which has 49 tests,
and 007, which has 105 tests. Examples of benchmarks that summarise their results into a
single value are BUCKY and EDB. Although SEQUOIA 2000 specifies that 11 numbers must
be reported, it is also an example of a single-valued benchmark as these results are used to

calculate a single value that measures the overall performance.

It must be decided what should be included in the timing. With response time it is usually
easy to identify what needs to be included, but with throughput it is often more difficult. The
problem is deciding exactly which bytes should be included. Musick and Critchlow [MC99]

explain this dilemma:

“if the system reads IMb of useful information from a 3IMb interleaved array, but had
to read the entire 3Mb to get it, was the total amount of data read 1Mb or 3Mb?”

They use apparent throughput, which is much lower than the raw I/O throughput [MC99].

The unit in which the results are recorded, as well as their subsequent formatting must be
decided on. For response time experiments, the results are most often recorded in seconds as

seen in BUCKY, Wisconsin, and Michigan amongst others. Throughput results are usually

32

measured in Mb/s, but there are variations of this, such as queries/unit or Mb/unit where the

time unit can be minutes or even hours.

3.4.5 Programming Language

When designing a benchmark, the programming language is usually selected based on the
functionality that it provides. For example, a database benchmark requires that the
programming language offers functionality to connect to and query a database as well as to
time the operations. Additional factors influencing the decision are the popularity and easy of
use of the programming language at that time. Many of the benchmarks reviewed in this work
were created around the early 1990s when C and C++ were the most popular languages. This
is reflected in the fact that several of the benchmarks are written in these languages with
embedded SQL [MC99]. For example, the TPC benchmark suite is coded in ANSI C and
ANSI SQL2 [TRAO02]. The EDB benchmark is also coded in C and embedded SQL, using a
procedure called time100() that measures the time in seconds. A sample of the structure of

this code is given in Figure 3-4.

starttime = timel00();
for(J=0; j<mrepeats;j++)
{
exec sql ..;
}
endtime = timel00();
printf(.. , (endtime-starttime))/100);

Figure 3-4 Sample EDB benchmark C code

Another language often used is PERL. This language is used in the Wisconsin benchmark,
which uses the PERL DBI module to communicate with the databases and execute SQL
statements and the Benchmark module to time the operations [DEW93]. A sample of the

structure of Wisconsin’s code is shown in Figure 3-5.

33

$start_time = new Benchmark;
for($ti=0;$ti<$#table_names;$ti++)
{

$sth=$dbh->do(*“ ..””);
}
$end_time = new Benchmark;
print”timestr(timediff($end_time,$start_time))”;

Figure 3-5 Sample Wisconsin benchmark PERL code

Specialised programming languages have also been implemented, such as MONET for the

SEQUOIA 2000 Benchmark [STO93].

3.5 Problems with Existing Benchmarks

This section summarises the problems, for each aspect of the design, of the existing
benchmarks to illustrate that none of them is directly suitable to evaluate a multimedia
database. The main design areas that are reviewed are the schema, test data, workload, and
programming language. The measurement of the performance is not reviewed because the
requirements for this in existing benchmarks do not differ from that of a multimedia

benchmark.

3.5.1 Schema Problems

The schemas of existing benchmarks usually have tables that consist of several attributes,
where these attributes are mostly simple datatypes such as integers, strings or dates [BD84,
BOT93, CAR97, CAT93, DEW93, RUNO02, and RIS00]. These benchmarks are not designed
for multimedia applications, and therefore their schemas do not contain any database tables
that have columns that can hold multimedia data. Altering the schemas of existing
benchmarks may produce a viable multimedia benchmark if they can be adapted to model a
multimedia application without too much difficulty. Benchmarks where multimedia attributes
exist include the 007 benchmark that has documents and associated “graphs of atomic parts”
[CDN93], the FTR benchmark that has documents [DH91], SEQUOIA 2000 that has a raster
attribute [STO93], and the TPC-W that has images [TRA02]. The problem is that none of

these includes more than one multimedia datatype which makes them of limited use.

34

3.5.2 Test Data Problems

A multimedia benchmark must either use an appropriate method to synthetically generate
multimedia data or provide the multimedia data with the benchmark. In the benchmarks
reviewed, the data generators and the alternative method to synthetically generate data are
unsuitable for multimedia data. It was not even possible to replace the sets of test data with
suitable multimedia test data. The main problem is that it would be difficult to add the missing
formats as neither the schemas nor the SQL code has been designed to handle such data. Only
a few benchmarks already contain multimedia data, but none of them include all of the
necessary multimedia datatypes. Of the benchmarks that do include multimedia data, the size
of data is too small, with the exception of SEQUOIA 2000 and FTR benchmarks. For
example, the MediaBench benchmark and the HERMES project have a limited variety of
image and video formats [LPM97], while the TPC-W [TRAO02] only has images. The test data

of all the reviewed benchmarks is unsuitable and it cannot effectively be adapted.

3.5.3 Workload Problems

The existing benchmarks evaluate many different workloads, but none of them focuses on the
unique requirements found in a multimedia workload. Some of them do test the same type of
operations as those needed by multimedia databases, but the complex nature of multimedia
data means that these operations have to be performed using special code as opposed to the
standard code implemented in other benchmarks. For example, the insert operation for
multimedia data not only needs an INSERT statement, but also an operation to upload or
import the data into the database. Another problem is that none of the benchmarks test the
advanced functionality, such as signature generation for images, essential in multimedia
databases. These issues make the workload for a multimedia application significantly

different, making other workloads unsuitable.

3.5.4 Programming Language

Many of the existing benchmarks use languages such as C, C++, and PERL. These languages
appear to be suitable for a multimedia database benchmark as they have the functionality to
connect to databases as well as time the operations. A programming language for a
multimedia database should also, ideally, be easy to alter and port between systems, since
multimedia databases implement their multimedia functionality in their own unique manner.
Unfortunately, previously used languages are not as portable or easy to use as desired. It

would also be beneficial if the programming language had built-in functionality to support

35

multimedia data. An example of a programming language that is portable and also has

functionality to support multimedia data is Java.

3.6 Required Benchmark

The required multimedia benchmark must have schemas, test data, and workloads designed
for multimedia applications. The schemas must have at least one table that contains
multimedia data, although ideally there should be a separate table for each multimedia
datatype. Both the schema and the test data should include several types of multimedia data,
especially images, audio, and video data, so that they produce a representative range of
multimedia data. A multimedia workload must include typical queries that are found in
multimedia applications to manipulate multimedia data. The benchmark must be able to
evaluate the performance of a type of DBMS that supports multimedia data and its required

functionality.

Table 3-1 summarises the main characteristics of each of the benchmarks so that they can be

compared with the requirements of a multimedia benchmark.

Benchmark Schema/Test Data Workload/Focus DBMS
Required Multimedia tables and data Multimedia Applications ORDBMS
Wisconsin No multimedia tables or data | Relational Features RDBMS
BUCKY No multimedia tables or data | OR Features ORDBMS
AS3AP No multimedia tables or data | Relational, OLTP RDBMS
SPEC, MediaBench | No multimedia tables or data | Computer Architecture None

TPC Suite (C, H, R | Only TPC-W has images, no | Order-Entry, Business, RDBMS
and W) multimedia tables or data OLAP, DSS and Web

EDB and 007 Only Documents in 007 OO Features, Engineering | OODBMS
BEAST No multimedia tables or data | Active DBMS Workloads ADBMS
FTR Only Documents Document Retrieval FTR Systems
SEQUOIA Only Images GIS Applications GIS Systems
Michigan No multimedia tables or data | XML applications XML DBMS

Table 3-1 Comparison of benchmarks

The first consideration is whether the benchmark includes multimedia data in its test data and
schema, and the only benchmarks that do so are TPC-W, 007, FTR, and SEQUOIA 2000.
Unfortunately, these benchmarks each have a single multimedia datatype, thus making the use

as a multimedia database benchmark limited.

36

The second consideration is whether the benchmarks test workload that are similar to, or can
be adapted to, a multimedia workload. The SEQUOIA 2000 benchmark has the workload that
is the most similar to that of multimedia applications. This workload has a large amount of
test data, including complex datatypes in the form of maps which could be replaced with
images, and it also tests specialised search functionality. Unfortunately the nature of the
queries in the workload differs significantly from those required by a multimedia application
because they are very specific to GIS applications. The TPC suite, which includes some of the
most widely used and popular benchmarks, are unfortunately also unsuitable as they are
aimed at business orientated workloads consisting of specific characteristics that differ from
that of multimedia applications. None of the benchmarks have a workload suitable for

multimedia.

The third consideration is whether the DBMS that the benchmark evaluates supports
multimedia data. Since RDBMS cannot support multimedia applications, any benchmark
designed to test these databases is unsuitable. This eliminates benchmarks such as Wisconsin,
all of the TPC suite, AS’AP, and similar benchmarks. Although OODBMS benchmarks are
feasible, they are usually designed for engineering applications that have workloads that differ
significantly from multimedia applications. For example, the number of users, the queries
executed, and the datatypes are different. A fairly well known ORDBMS benchmark is
BUCKY, but unfortunately this benchmark has been designed to evaluate only a limited
number of features. These features are not applicable to a multimedia workload, making this

benchmark unsuitable.

3.7 Application of Benchmark

When implementing benchmarks, there are rules and restrictions that must be followed in
order to ensure the accuracy of the results. An important issue that is seen in several of the
existing benchmarks is the idea of /ot and cold databases. A cold database is one where the
cache is empty and the queries take significantly longer, while a 4ot database has a full cache
and so produces faster, consistent results [CAT93, CDNO93, and RIS00]. Examples of
benchmarks that run their tests in both modes are, Rishe et al. ’s [RIS00] Semantic benchmark,
EDB, and 007. The general idea of warming up the database is to run the queries a number of
times to fill the cache before the results for the “warm” database can be recorded [CAT93,

CDNO3, and RIS00].

37

The next important issue that needs to be considered is whether the benchmark should run in a
networked environment. This greatly influences the results, and so it is surprising how few
benchmarks specify this. Those that do specify it generally state that the benchmarks must be
implemented in a networked environment. For example, the EDB has a client on one machine
and the server on a different machine, and some of the TPC suite is especially designed to test

networked environments.

3.8 Summary

Numerous benchmarks exist with which to measure the performance of databases: Wisconsin,
Bucky, 007, AS3AP, SPEC, MediaBench, TPC suite, Sun, EDB, Semantic, Michigan,
SEQUOIA 2000, and FTR. Current benchmarks are categorised by their intended field of use:
generic, business, engineering, advanced, and architecture. The objectives of each of these
benchmarks were given and they were reviewed in terms of portability, simplicity, scalability,

and relevancy. Most showed some if not all of these characteristics.

The design of each of these benchmarks was then analysed in terms of its schema, test data,
workload, performance measurements, programming language and application. In these
respects, no benchmark was found which is designed specifically to evaluate the performance
of multimedia databases. The most significant difference between these existing benchmarks

and the requirements of multimedia benchmarks is the workload.

38

Chapter 4 : Oracle DBMS

Chapter 2 surveyed multimedia databases and the tuning and evaluation of their
performance. A comparison of the different database technologies revealed that
ORDBMS are a viable choice to handle multimedia data. Oracle is an ORDBMS
that has support for multimedia datatypes as well as their required functionality.
This chapter provides an overview of Oracle, focusing mainly on the aspects that
affect its performance. It describes the structure of Oracle, covering its
architecture, components, and storage. A review of interMedia, which extends
Oracle to provide the storage and management of multimedia data within the
Oracle database, is presented. This chapter also briefly reports on research that
has already been conducted on Oracle. Finally, a summary is provided of

Oracle’s performance, focusing mainly on multimedia data.

4.1 Introduction to Oracle

Oracle is a commercial ORDBMS that has all the features found in RDBMS as well as some
of the features found in OODBMS. The RDBMS features include a well-defined relational
structure, such as tables to store or access the data, predefined relational operations to
manipulate the data, and integrity rules to control these operations. The inclusion of
OODBMS features permits users to extend these features further, giving them, for example,
the ability to define new object types. When new object types are defined to create new
datatypes, both the structure of the data as well as the methods to manipulate it have to be
specified. These datatypes can then be used within the relational model as if they were one of
the built-in datatypes. With these capabilities, Oracle provides built-in functionality to support
all multimedia datatypes. Multimedia support has only been available in the later versions

including Oracle9i (release 1) version 9.0.1, which is used for the work done in this thesis.

39

4.2 Architecture of Oracle

A distributed architecture is often used to reduce the processing load of a single processor.
This is achieved by splitting the required processing for a subset of tasks and allocating them
to multiple processors. This improves both the performance and the capabilities of the whole
system. Oracle utilises this technique in its architecture, and thus can be configured using 2-
tier, multi-tier database architecture. These architectures can both be further distributed.

Figure 4-1 illustrates the two architectures and the further distribution of the 2-Tier

architecture.
= =
_ L1
= | Database Server —— | Database Server
N N

L) L

Database Servers

Application Server

Client Client

I

Client

Figure 4-1 Types of architecture of Oracle (Based on figure 7-1[MCGO01])

The 2-tier architecture is also known as client/server architecture as it divides the database
system into a front-end client and a back-end server. Generally, this architecture has the user
processes running on the front-end, while the server processes are running on different back-
end machines. The tasks of the user processes are to request, process and present data that are
managed by the server, but they are not responsible for the data access themselves. The task
of the server is to run Oracle software to handle the concurrent, shared data access. The server
receives the SQL and PL/SQL (Oracle’s procedural SQL language) statements from the client
and processes them in order to return the required data. A multi-tier architecture differs from
the client/server architecture in that the server machine will have only a subset of the duties,
although the client machine is very similar. There is at least one application server that acts as
an interface between the client and the database server. Application servers perform most of
the server-side processing such as validating credentials, connecting to databases, or

executing user queries, reducing the processing load on the database server. The database

40

server is now mostly used to store the data and control the operations performed by the

application server.

The third setup shown in Figure 4-1 is a database distributed among multiple database servers,
and even though the data is dispersed between the different servers, the database still appears

to the user as a single logical database.

4.3 Oracle Components

4.3.1 Overall Structure

The main components of the Oracle 91 Server are the server processes and Oracle processes
(for example log writer), the physical database files such as the log files, and the memory
areas including the System Global Area (SGA) and the Process Global Area (PGA). This
section only introduces these components, as they are discussed in greater detail in the

following sections. Figure 4-2 illustrates how Oracle’s components are related.

SGA

Server

Processes

Other Oracle
Processes

PGA

DB Files . .
Log Files DB Files

Figure 4-2 Main components of Oracle 9i server (Based on figure 1 [BGB98])
As just said, Oracle uses two types of processes, Oracle processes and server processes. The
Oracle processes run in the background, performing the general database maintenance
activities, while the server processes execute the database transactions, which makes them the

more active of the two. Although the server processes account for most of the processing, the

41

Oracle processes perform important functions such as deadlock detection, system monitoring,
writing to the database files, as well as writing the redo logs (records of all the database

transactions).

The physical database files are persistent data structures that include the tablespace files,
control files, data files, and redo log files (details in Appendix A.2). These files include the
actual data of the database as well as database information such as how the physical storage is
arranged. An example of this is the redo log files that keep a compressed log of committed

transactions, which are used to restore the state of the database in the case of a failure.

The memory areas are the sections of the host system’s physical memory that have been
reserved for Oracle. Memory access is much faster than disk access, and as a result these
regions store data for fast access. Assigning a larger size for the memory areas will increase
the likelihood that the data is found in memory, which in turn reduces the number of disk
accesses, thus improving the performance. However, it should not be too large as this wastes

resources.

Oracle’s memory model uses a hybrid structure that includes both shared and private
memory. The shared memory region, known as the SGA, contains shared data as well as
control structures, and is used mainly for communication and synchronisation. The private
memory region is known as the PGA and is allocated by Oracle when a server process is
created. A PGA memory region is assigned to each server process for its data, as shown in
Figure 4-2. This region contains control and data information for that server process. In
contrast, a single Oracle instance consists of the SGA and the relevant Oracle processes. The
SGA is used to store code, such as database queries, that both the Oracle and server processes

can access.

4.3.2 Oracle Processes

Oracle processes are background processes that start when an Oracle instance begins. These
processes integrate functions such as I/O and monitoring of other processes, in order to
provide better performance and reliability. They include the database writer, log writer,
checkpointer, system monitor, procedure monitor, archiver, recoverer, dispatcher, lock
manager server, job queue monitor, and queue monitor. The purpose of the database writer is
to write the modified data blocks from the buffer cache in memory to the datafiles. Oracle’s

database writer uses a write-ahead logging algorithm which performs batch writes rather than
42

writing to disk after each transaction commit statement. This means that the database writer
only writes when the data in the SGA needs to be replaced, using the least recently used
algorithm, which improves the performance and efficiency of the system. Oracle has a single
background process, the log writer, that groups what are known as commit logs from
independent transactions into a single disk write for more efficient use of the disk bandwidth.
The commit logs become online redo log files, which the archiver can copy to archival
storage. The function of the system monitor and process monitor are similar except that the
system monitor is responsible for the recovery of a failed instance while the process monitor
performs the recovery procedure for a failed user process. System monitor tasks include
cleaning up temporary segments no longer in use as well as coalescing free extents in a
dictionary-managed tablespace (see section 4.4.3 for information on extents). The recoverer is
used to either commit complete transactions, or rollback pending transactions due to a
network or system failure in a distributed environment. Oracle9i is the first release to include
dynamic queuing which is controlled by the job queue monitor and is used for batch
processing. The dispatcher and the queue monitor are optional processes, where the former is
only used in a multithreading environment and the latter is only used with advanced queuing.
The lock manager server process is only used in Oracle9i Real Application Clusters for inter-
instance locking. An Oracle instance is the memory areas in addition to a set of Oracle

Processcs.

4.3.3 Server Processes

Server processes control the communication between the user and Oracle. These server
processes can vary depending on the number of user processes assigned to each. This is
controlled by the configuration of Oracle, making the server processes either dedicated or

shared, as shown in Figure 4-3.

43

Application Application

Application I
Code Code
Dispatcher Processes I

Oracle Oracle
Oracle Server Code Server Code
Server Code H 1 I

Code

A

System|Global Area (SGA) Memory

A 4 ~
Request Queue H Response Queues UJ

Figure 4-3 Dedicated and shared server processes (Based on figures 5-1 and 5-2 [BRF01])

A dedicated server process handles only the requests of a single user process (shown on the
right of Figure 4-3), while a shared server process handles multiple user processes (shown on
the left of Figure 4-3). Shared server processes minimise the number of server processes while
maximising the use of available system resources. This means that when many users are
accessing the database concurrently, the shared mode is better. Otherwise the dedicated mode
is more suitable as certain operations, such as shutting down the database, cannot be

performed in shared mode.

4.3.4 Physical Database Files

The physical database files consist of at least one datafile, only one control file, and at least
two redo log files per database. Datafiles contain all the database data. Figure 4-4 illustrates
the logical relationship between databases, tablespaces, and datafiles. DBFILE1, DBFILE2,
and DBFILE3 are the names of the datafiles in Figure 4-4.

44

i System Tablespace i i Data Tablespace |

i Tables and i i Tables and Tables and i

: Indexes b Indexes Indexes !

! . DBFILEI; “.DBFILE2 DBFILE3:_,.......»‘
Disk Drive 1 Disk Drive 2

Figure 4-4 Relationships between databases, tablespaces, datafiles and tables (Based on figure 4-2
[MCGO01])

It can be seen from the diagram that datafiles contain tables and indexes, collectively known
as logical database structures. A datafile can be associated with only one database, while one
or more of these datafiles form a logical unit of database storage called a tablespace. A
control file contains information that specifies the physical structure of the database, including
data such as the actual database name, the names and the locations of both its datafiles and
redo log files, and a time stamp specifying when it was created. Control files are necessary to
recover the database when there has been a failure, and they are also used to identify both the
database and redo log files that need be opened when a database is started. The redo log files
consist of many redo entries, also known as redo records, which record all the changes made
to data to ensure work is never lost. If there is a failure that prevents the modified data from
being permanently written to the datafiles, then the changes that were supposed to be made
can still be obtained from the redo log. A set of redo log files is known as the database's redo

log.

4.3.5 SGA Memory

The SGA memory consists of a larger section called the block buffer, covering approximately
80% of the SGA, and a smaller section called the meta-data area (Refer to Figure 4-2). The
block buffer section contains the most recently used disk blocks and is the cache in main

memory, whereas the meta-data section contains the directory information needed to access

45

the block buffer as well as the space for other buffers and synchronisation data structures. The
size of the SGA memory is controlled by a parameter known as the SGA_MAX_SI1ZE, which
sets its upper limit. This size cannot be altered after the creation of the database, and thus its
initial size must be calculated so that it is large enough to contain all the components of the
SGA. These components comprise of the buffer cache, shared pool, large pool, log buffer, and
the java pool. Figure 4-5 presents a sample configuration of the SGA, where each segment of
the pie chart represents a different component of the SGA. (The values in this diagram are
only used to illustrate how the SGA can be configured and are not the values used for the

experiments, which are reported on later in the thesis.)

Example SGA Memory Composition

Log Buffer, 28

Buffer Cache, 100

h, Pool, 12
Java Pool, 40 Shared Pool, 0

Large Pool, 1

\ O Log Buffer B Shared Pool O Large Pool B Java Pool O Buffer Cache \

Figure 4-5 Main components of Oracle’s SGA memory

From Oracle version 9 onwards, the sizes of these components can be dynamically increased
or decreased during a session in units of memory called a granule as long as their total is less
than the SGA_MAX_SIZE. A granule is 4Mb if the SGA_MAX_SIZE is less than 128Mb, otherwise
it is 16Mb. The alteration of the size of these components is not instantaneous, thus there is a

waiting period before the size of other components can be changed.

4.35.1 Buffer Cache

The buffer cache is the section of the SGA that is reserved for storing the data blocks that
have been retrieved by the most recent queries. (These data blocks can either be ‘modified’, in
that the value of the data has been changed, or ‘unmodified’, in that the value remains the
same.) The buffer cache has a default pool for the standard block size, as well as one pool for
each non-standard block size. (See section 4.4.2 for information on block size). There are also
two additional pools for the default block size, known as the keep pool and the recycle pool.

The keep pool is for frequently accessed data as it contains buffers that always stay in
46

memory, while the recycle pool is for less frequently accessed data as the buffers are

continually recycled.

Buffer Cache Replacement Strategy

When the buffer cache is full and more data needs to be retrieved, a buffer-replacement
strategy needs to decide which data blocks are moved out of the buffer cache. To achieve this,
the buffer cache in Oracle is divided into two lists, known as the write list and the Least
Recently Used (LRU) list. The former holds dirty buffers that are the buffers that have been
modified, but have not yet been written to disk. The latter holds a combination of free buffers,
buffers currently being used, called pinned buffers by Oracle, and dirty buffers that have not
yet been moved to the write list. Figure 4-6 illustrates the different scenarios that may occur

when data is requested and the buffer cache is accessed.

Key
MRU= Most Recently Used
LRU=Least Recently Used
DBWO0=Database Writer
Cache Hit Cache Miss
e Read Data from Memory e Search Through LRU List Starting at LRU
e Move Buffer to MRU End ¢ Find a Free Buffer to Write Data to
e Age Other Buffers %\
[Find a Dirty Buffer] [Find a Free Buffer] [Reach End of List]
e Move to Write List e Move Data to Buffer o Stop Searching
e Continue Searching ¢ Move Buffer to MRU e Signal DBWO to Write
e Age Other Buffers Dirty Buffers to Disk

Figure 4-6 Possible actions when data is requested

The outcome depends on whether the data is already in the buffer cache, known as a cache hit,
or whether it needs to be moved to the buffer cache, known as a cache miss. A cache hit is
faster, as the data can be read straight from memory rather than from the disk. The buffer that
is accessed is then moved to the Most Recently Used (MRU) end of the LRU list. This results
in the other buffers aging, where they are moved toward the LRU end of the LRU list.
Alternatively, if the required data is not in the buffer cache, a cache miss, then a free buffer
needs to be located in order to move the data into the buffer cache. This is achieved by
searching through the LRU list from the MRU end until a free buffer is found. Figure shows

what actions are taken when the various situations occur.
47

4.3.5.1.1 Calculating the Performance of the Buffer Cache

Two methods can be used to aid in the understanding of the effect that the buffer cache has on
the performance of the database. The first method uses Oracle’s V$DB_CACHE_ADVICE, which
must be explicitly set to ON. Oracle can then estimate how many physical reads would be

required for twenty different potential cache sizes as illustrated in Figure 4-7.

#% Buffer Cache Size Advice - LARGE . b x|
Buffer Cache Size Advice
1.02

:]

=

=)

D0

: \

2

E 1.01

=

£

@

g

£ 100

=

[X)

2 \

¥ 100

&

1.00
1] 1] 1] 1] 1] 1] 1] 1] 1] 1] 0 04 04 04
Cache Size (MB)
= Change in physical reads for various cache sizes
® Current cache size
Estimated Physical Reads
Fool Block Size Size ForEsti... |Buffers For E... Estd Physical ... Estd Physical ... =
DEFALLT 8192 6.2656 a02 1.0177 1]
DEFALLT 8182 128313 1604 1 a
DEFALLT 8182 18.7969 2406 1 a
DEFALLT 8182 250625 3208 1 1]
DEFALLT 8182 31.3281 4010 1 a
DEFALULT 8182 37.5938 4812 1 a -
Refresh)l Close)l Help)l

Figure 4-7 Screenshot of Oracle's buffer cache advice

(It can be seen from Figure 4-7 that Oracle’s graph does not put the values of the cache sizes
on the x axis as expected. These sizes can be found in the table under the ‘Buffers for

Estimate’ column.) The use of the buffer cache advice does, however, introduce an overhead.

The second method uses Oracle’s V$SYSSTAT tables directly, which store information to

calculate the cache hit ratio. The formula for the hit ratio is:

Hit Ratio = 1-((physical reads — physical reads direct — physical reads direct
(lob))/session logical reads)

Where. Session logical reads = total number of requests to access a block
(whether this block is in memory or on the physical disk),
Physical reads = number of accesses to the physical disk,
Physical reads direct = number of accesses to data in memory excluding LOB data

48

Physical reads direct (lob) = number of accesses to the LOB data from memory.

To obtain the values for these variables, a table called V$BUFFER_POOL_STATISTICS is
queried. Such a query can be executed through the SQL*Plus Worksheet, producing the

results illustrated in Figure 4-8.

% SOL*Plus Worksheet

File Edi ORACLE
select name, physical_reads, db_block_gets, consistent gets,

1-(physical_reads/(db_block_gets + consistent_gets)) "Hit Ratio”

from V$BUFFER_FOOL_STATISTICS:

W 3 %

?
%

S0L*Plus: Release 9.0.1.0.1 - Production on Sat Feb & 15:14:29 2003

() Copyright 2001 Oracle Corporation. All rights reserwved.

PHYSICAL READS DE_BLOCE GETS CONSISTENT GET3 Hit Ratio

4228 38137 551800 992833133

Figure 4-8 Screenshot of code and results for cache hit ratio

A higher cache hit ratio generally indicates that the buffer cache is the correct size, although it

could be skewed by a dataset consisting of the same data being accessed repeatedly.

4.3.5.2 Shared Pool

The shared pool is the portion of the SGA that contains the shared memory components that
all Oracle processes have access to. The components of the shared memory are the library
cache, the dictionary cache, and the buffers for control structures and parallel execution
messages. The library cache contains the parsed and compiled executable code, for example
SQL or PL/SQL code that has recently been referenced. For the SQL code in particular there
is a single SQL area that is shared, and as a result the code can be accessed by all the
applications that issue the same statement. The data dictionary region holds the data
dictionary. The data dictionary includes reference information about the database, such as its

structure and users, and is accessed frequently. The remaining shared memory components

49

differ from those previously mentioned in that their buffers contain structures that are specific

to a particular instance configuration.

4.3.5.3 Large Pool

The large pool is the portion of the SGA that contains the session information for shared
server systems, the message buffers for parallel execution, and the disk I/O buffers for the
backup and restore processes. It is an optional area that is only relevant if there are parallel

queries and is used where transactions interact with more than one database.

4.3.5.4 Redo Log Buffer

The redo log buffer portion of the SGA is used to store the logs of changes made to the
database, known as the redo entries. These redo entries are then written from the redo log
buffer to an active online redo log file on disk by the Log Writer (LGWR). The entries are
used if database recovery is necessary. The size of the redo log buffer is set at configuration
time and can be changed only by restarting the database. This cache is however less
significant than the other caches as its size is small and it only represents a very small portion

of the SGA.

4355 Java Pool

The java pool is the portion of the SGA, which stores all session-specific Java code and data
within the Java Virtual Machine (JVM). The java pool is used in different ways, depending on
whether a dedicated or a shared server is running. In a dedicated server, the java pool stores
only the shared part of each java class, such as code vectors and methods, and none of specific
session data. In contrast, when using a shared server, the java pool holds both the shared part

of as well as the session specific data with the result that the java pool must be larger.

4.3.6 PGA Memory

PGA memory is the region of memory, which contains data and control information for each
server process. This includes the private SOL area that holds the run-time memory needed for
executing SQL statements, and the session memory that holds session variables. A large
portion of PGA memory is also dedicated to the SQL work areas, used for complex
operations, such as sorts and hash-joins. As previously stated, PGA memory is private

memory that is dedicated to a single server process when that process starts. This means that

50

access is exclusive to the server process that owns it, and it is only written to and read from by

Oracle code acting on behalf of that server process.

4.4 Oracle Storage

4.4.1 Storage Units

The logical storage of the data is controlled by Oracle and is divided into units known as data

blocks, extents, and segments. The relationship of these units is shown in Figure 4-9.

Y
Y
\\
112K Segment N
\
\

AY
S 2K

RN R Ext Extoqt
S 2K

~o | 28K 84K
N T —KT—7T 2K |4 2K Data Block

2Ki 2K | 2K [oK
1

2K | 2K | 3K

2k [2K 2K | 2R

X

2K | 2K | 2K}

Figure 4-9 Relationship of segments, extents, and data blocks (Based on figure 3.1 [MCGO01])

The smallest unit of space that Oracle can store its data in is a data block. These are also
known as logical blocks, Oracle blocks, or pages. A number of adjacent data blocks can be
grouped together in order to store a specific type of information, and is called an extent. The

largest unit of logical database space is a set of extents that have been allocated for a specific

data structure, called a segment.

4.4.2 Data Blocks

The Operating System stores its data in physical blocks measured in bytes, named data
blocks. Unfortunately, Oracle stores and retrieves its data in units also known as data blocks.
These differ from the operating system’s block sizes in that their size is a multiple of the
operating system’s block size. For example if the size of the operating system’s data block is
8K and its maximum is 32K then Oracle’s data blocks can be 8K, 16K, 24K, or 32K in size.

This size is set when the database is initially created and cannot be altered thereafter.
51

The format of all Oracle data blocks are the same, independent of the type of data that they

store. Figure 4-10 outlines their format.

Overhead Header

Table Directory

Row Directory
Free Space

Row Data

Figure 4-10 Format of data blocks (Based on figure 3.2 [MCGO01])

Each data block contains a header, a table directory, a row directory, free space and row data.
The header, table directory, and row directory contain information required by the data block,
whereas the remaining sections are reserved for the actual data. Collectively the first three
sections are known as overhead. The first section, the header, holds the general data block
information, such as the address of the block. The other two sections hold information about
the row data stored in the data block. For example, the fable directory contains details such as
the table that the row data belongs to, while the row directory contains details such as the
location of the row data in the data block. The row data contains table or index data, while the
free space is designated for inserting new rows as well as for additional space needed when
existing rows are updated. The amount of free space in a data block is controlled by the

variables PCTFREE and PCTUSED, as shown in Figure 4-11.

PCTFREE = 20 PCTUSED = 40
. i >
(
—— [—
I
60% Unused
Block allows row Space .
insert until 80% of No new data is

inserted until the
amount of free space
falls below 40%

the block is full,
leaving 20% free
for updates.

Figure 4-11 Diagram illustrating data block storage control (Based on figures 3-3 and 3-4 [MCGO01])

PCTFREE is the percentage of the block that is reserved for updates, and PCTUSED is the
maximum percentage of the block after which Oracle will no longer consider that data block

for insertion.

4.4.3 Extents

Extents are either initial extents or incremental extents. The initial extent is a number of data
blocks that Oracle assigns when a table is created, and these are then reserved for the table's
rows even when no data is inserted. When this initial extent becomes full, Oracle
automatically allocates additional space, called the incremental extent. The incremental extent
can either be the same size as the initial extent, or greater depending on the database
configuration. These extents belong to a tablespace, which manages them either by the data

dictionary or locally.

When using dictionary managed tablespaces, the space utilisation is controlled by the values
for the storage parameters INITIAL, NEXT, and PCTINCREASE. These are specified when
creating the table. The INITIAL parameter specifies the size in bytes of the initial extent,
while the value of the NEXT parameter is the size in bytes of the incremental extent.
PCTINCREASE is the percentage by which each incremental extent increases, in relation to the
last incremental extent allocated for a segment. This means that if the value of PCTINCREASE
is 0, then all incremental extents will be the same size. Two additional parameters can be set,
called MINEXTENTS and MAXEXTENTS. The former specifies the number of extents that are
allocated when the segment is created, while the latter specifies the maximum number of
extents that can be allocated to a table. Locally managed tablespaces differ from dictionary
managed tablespaces in that their space is automatically controlled by the system. The system

achieves this by using bitmaps to track the used and free space.

Generally it is better to use locally managed tablespaces if there are a larger number of write
operations such as insert, update or delete and dictionary managed tablespaces if the
data is infrequently modified or read-only. Dictionary managed tablespaces allow the user to
have more control as all the values are set by the user, but unfortunately there is a
performance penalty due to the complex operations that it requires. The benefits of using
locally managed tablespaces are that concurrency is improved, storage operations are faster,

performance is improved, and space allocation is simplified. The disadvantage of using

53

locally managed tablespaces is that they only support a few datatypes, such as char and
date. This does not include multimedia datatypes, and therefore it is not possible to use it for

a multimedia database.

4.4.4 Segments

There are four different types of segments in Oracle, known as data segments, index
segments, rollback segments, and temporary segments. The first type of segment, a data
segment, holds the data for a whole table if it is not partitioned or clustered; otherwise it holds
one partition for a partitioned table or all of the tables in a cluster. This data segment is
created when the table or cluster of tables are initially created. The second type of segment, an
index segment, holds all of the data for a non-partitioned index or only the data for a single
partition in a partitioned index. The third type of segment, the rollback segment, records the
old values of data that has been changed by a transaction in order to provide a means to
recover the database when necessary. Every database contains at least one rollback segment
and they are only accessible by Oracle. Rollback segments contain several rollback entries
that have details, such as the block information to identify where the changed data was, as
well as the data before the transaction was executed. The last segment type, the temporary
segment, is required as a temporary space for the transitional stages of SQL parsing and
execution when processing queries. The first three types of segments are created in response
to an explicit request of the user, while the temporary segment is automatically generated by

Oracle when necessary.

In Oracle the free segment space can be managed either using bitmaps or freelists. A bitmap
describes the status of each data block, based on the amount of the available space in it in
relation to the total amount of space. This status then varies under the control of Oracle as the
available space is changed. Alternatively freelists can be used, where a list of the data blocks
that have free space available for inserting data is kept. This type of segment management is
not automatic controlled, with the disadvantage that various parameters have to be set before
it can be used. Freelists have the advantage over bitmaps in that they can be implemented for
both locally and dictionary managed tablespaces, whereas bitmaps can only be used for

dictionary managed tablespaces.

54

4.5 Oracle Multimedia
4.5.1 InterMedia

Oracle InterMedia is a standard feature that extends Oracle9i to provide internal storage and
scalable management of multimedia data. Multimedia data, such as images, audio, video, and
geographical location information, can therefore be managed directly by Oracle in an
integrated manner with other standard data. Among the services that interMedia provides are,
metadata management, support for popular formats, and content-based searching. The
integration of interMedia with the architecture of Oracle, using a 3-tier architecture, is shown

in Figure 4-12.

Thin Client e.g. Thick Client with Tools
Browser with Chpboard for Media Processing and
Parsing, such as JAI/JMF
Web'Server such as and BC4J
iAS Apache
interMedia Java Classes
JDBC 2.0
Special -
Delivery |— | Media Parser | | Image Processor JAI | Media
Server A Content
VM 4 Indexers
Heterogeneous
Media Colu)
Optional External
— File Storage

Figure 4-12 Integration of InterMedia with architecture of Oracle (Based on figure 1-1 [CHI01])

The multimedia data can either be stored in the tables with the standard data, called
heterogeneous media columns in the diagram, or in external file storage. This storage is
connected to Oracle9i’s Java Virtual Machine (JVM) that provides a server-side media parser
as well as an image processor. The media parser, through either an object-oriented or a
relational interface, parses formats and metadata, as well as registers new formats and
extensions. The image processor performs image processing, such as creating thumbnail-sized
images or image indexing and matching. InterMedia has upgraded its image processor to use
Java™ Advanced Imaging (JAI) as it offers a rich, open, platform portable imaging package.
The advantage of this is more supported file formats and processing operations, as well as

additional supported file COmpression and DECompression schemes (CODECs). The media

55

parser and image processor then connect to the Internet Application Server (iAS) or an
alternative web server that provides access to interMedia through special interMedia Java
classes. These Java classes enable applications on any tier to access, manipulate, and modify
multimedia data stored in the database. This results in applications easily selecting and
operating on result sets that include both traditional relational data and interMedia media
objects. These applications can be run on a thin client with a browser-based interface and a
clipboard provided by inferMedia on which multimedia data is manipulated. Alternatively, a
thick client can be implemented, which provides various methods for developing applications.
Among these are media processing and parsing through JAI and the Java Media Framework
(JMF), and building scalable, multi-tier applications with Business Components for Java

(BCA4J) that is JDeveloper's programming framework.

4.5.2 Oracle’s Multimedia Datatypes

Oracle is an object relational DBMS with additional capabilities provided by interMedia and
so provides different datatypes for multimedia data. These include the support of Binary
Large OBjects (BLOB), large objects located on the file system called BFILEs, URLs
containing multimedia data stored on any HTTP server, and interMedia object types. Table 4-

1 gives a comparison of the multimedia datatypes provided by Oracle.

BFILE URL BLOB interMedia
Storage Local File HTTP Server In Database In Database
Location System
Transactional | None None Full Control Full
Control
Data Access Read Only Read Only Read/Write Read/Write
Standard Insert-Pointer, | Insert-Pointer, | Insert, Select, Insert, Select, Update,
Functionality | Select, Delete Select, Delete Update, Delete | Delete
Multimedia None. Pointer | None. Pointer | None. Stored as | Yes e.g. Content-based
Data Specific | to multimedia | to multimedia | unstructured retrieval, scaling images,
Functionality | data location data location object streaming video

Table 4-1 Multimedia datatypes provided by Oracle

The table shows that BFILEs and the URL datatypes do not actually store the data in the
database, with the result that the database has limited control over it and no transactional
control is an example of this. These datatypes may be a suitable mechanism for situations
where there is a large repository of multimedia data that already exists on a file system, but
this solution is not advisable as the limited control may lead to corruption of data or data
redundancy. Ideally, it is better to store the data within the database using the BLOB or
interMedia datatypes. The functionality provided by the BLOB datatype is still limited since

the multimedia data is only stored as unstructured binary object. There is therefore no
56

differentiation between the different multimedia types with the result that a method specific to
one type of multimedia data, such as scaling images, cannot be provided. /nterMedia’s object
types are the most advanced multimedia datatypes, with a different datatype for each kind of
multimedia data. These object types are known as ORDDoc for heterogeneous data,
ORDImage for digitised image data, ORDAudio for digitized audio data, ORDVideo for
digitised video data and ORDSource for any of these four types. An additional method is
available in Oracle for storing video and audio data on specialised media servers, such as
Oracle video server, for streaming purposes. This data can be streamed using an Oracle
interMedia plug-in that supports the streaming server, and then delivered to the client, which
uses the browser-supported streaming player, for playback. In addition to these datatypes that
InterMedia offers for multimedia data, it also provides the methods necessary to manipulate

this multimedia data.

4.5.3 Specialised Multimedia Functionality

Standard database methods, as well as more advanced functionality are provided for
multimedia data by InterMedia. Inserting and selecting are examples of standard
functionality, whereas the extraction and displaying of metadata (information about the data)
are more advanced functionality. InterMedia extracts the metadata that contains general
information, for example the data format, and datatype specific information, for example the
frame rate of video data. This data is then stored in the database under Oracle’s control and
can be used to correctly present the multimedia information by either the user or an
application program. Other advanced functionality provided is streaming capabilities for
audio and video data, and several methods for image data, including content-based retrieval,
generation of thumbnails, scaling, and cropping. Of these, content-based retrieval is fairly

new and more complex than the other functions and thus it is briefly discussed here.

To perform content-based retrieval the information stored in an image must be processed so
that the image can be abstracted in terms of its visual content. This abstraction can then be
used to compare or match images by appearance. Oracle analysing every image inserted into a
database and then produces the abstraction by generating a compact representation of the
image’s content, called a feature vector or signature. The signature contains information about
the colour, texture, shape and position of shapes within the image, within 3000 to 4000 bytes
in general. After the signatures have been created, content-based retrieval is done by first
presenting a comparison image to interMedia. InterMedia compares this image’s signature

with the signatures of selected images in the database and then ranks the images from the
57

closest match down until a threshold is reached. Ranking is done based on specified
weightings for the criteria, and the threshold is the value below which images are regarded as

too dissimilar and therefore will be excluded from the result set.

4.5.4 Multimedia Storage and Retrieval

The storage of multimedia data in the database tablespaces is in a manner that optimises space
utilisation and makes access efficient. From the access of the multimedia data, it appears to be
fully integrated with the other standard data but this is not the case. There is an option when
creating a table with multimedia data to specify whether the data is stored in line (with other
data) or out of line (separately). Independent of this specification, Oracle however only stores
data that is less than 4Kb in line with other row data, and automatically stores larger
multimedia data out of line. A locator is then generated to point to the location of the actual
data and is stored in the row, while the actual data, which can be up to 4Gbs, is stored on a

database page that is separate from the other data. This process happens transparently.

Multimedia data is larger than other datatypes and thus its retrieval typically requires a greater
number of disk accesses and more time. To reduce this time various methods can be
implemented, among them are using a bigger block size, increasing the size of the buffer
cache or setting the value for the parameter CHUNK size as large as possible. The first two
methods have been mentioned previously in 4.4.2 and 4.3.5.1 respectively. The CHUNK size is
the number of blocks retrieved simultaneously and is specific to the retrieval of multimedia
data. It can be used to force Oracle to retrieve multiple data blocks together, so reducing the

amount of disk 1/O.

4.6 Related Oracle Research

4.6.1 General Oracle Performance Research

Oracle Corporation has done a substantial amount of work on evaluating the performance of
their products, including detailed documentation on performance tuning. Among the available
white papers are comparisons with other commercial DBMS, such as Microsoft’s SQL Server
2000 and IBM’s DB2 [OTNO02]. White papers are also available on the performance in DSS
(Decision Support System) environments and for E-Business applications. A white paper on
the optimal configuration of physical storage using a Stripe and Mirror method [LOO01] is one
such example. In this white paper, Loaiza [LOO1] explains that due to the complexity of DSS

workloads, it is difficult to configure the storage efficiently, but Oracle can improve the

58

performance of load operations by using direct Input/Output (I/O) and asynchronous read
ahead. Direct I/O i1s where the buffer cache is bypassed and the disk is written to directly, and
asynchronous read ahead or double buffering is where multiple asynchronous operations are
performed in one I/O operation. The goal of these is to stop operations from being I/O bound
by producing the maximum disk throughput and usually then making them CPU bound. Other
areas that the white papers focus on are memory management, segment management, and
direct 1/0O management. Memory management investigates the effect that the dynamic SGA
and buffer cache management have on performance, segment management looks at the effect
of freelists versus bitmaps, and direct //O management investigates special I/O features. An
example of the latter is data block pre-fetching, which is an internal optimisation that
improves the response time by delaying the reading of a table until a number of satisfying
ROW IDs have been accumulated. Oracle then prepares the buffer cache by issuing
simultaneous 1/Os for blocks containing all those ROW IDs. Independent work has been done
by Kreines and Laskey [KL99] on tuning an Oracle database. They emphasise that the

successful tuning of it requires the following to be addressed:

e Hardware and operating system performance
e Oracle instance performance

¢ Individual transaction (SQL) performance

Operations should ideally perform at the speed that the physical hardware permits, called the
device speed, but this does not often happen and so I/O determines the upper threshold of the

load performance.

4.6.2 Binary Large Object Performance Research

Shapiro and Miller [SM99] investigated the performance of Oracle when using Binary Large
Objects to make recommendations on how to save storage space and processing time. Binary
Large Objects (BLOBs) is a datatype for storing multimedia data, but in an unstructured
manner (See section 4.5.2). The three storage systems that were investigated are a database
with data stored externally (URL), a database with data stored internally (BLOB datatype), or
a file system, which was UNIX in this case. These storage systems were then tested for three
different database sizes (0.5 GB, 1.5 GB, and 3 GB), and two different BLOB sizes (0.5 GB,
and 5 GB). The two workloads that were tested are classified as “select-dominant” and

“Insert/Update-dominant” and their results are shown in Table 4-2.

59

File System Database - External | Database - Internal

Select — Dominant Workload | Larger Overhead Small Overhead Small Overhead

Insert/Update Workload Smaller Overhead | Medium Overhead Large Overhead

Table 4-2 Results of BLOB experiments (Results taken from [SM99])

Shapiro and Miller [SM99] found that for a “Select-dominant” workload similar times were
produced for internal and external datatypes but the overhead for the file system was larger
than the overhead for these database storage systems. In contrast, for the “Insert/Update-
dominant” workload they found that the database overhead was larger than the file systems,
and internal database storage took the longest, by a factor of approximately seven. They
suggest that the long time is as a result of the large number of I/O operations that Oracle
requires for rollback and log information as well as the processing of multiple migrations and

chaining rows.

Three areas of tuning were also examined, namely design tuning, application tuning and
memory and I/O tuning. When looking at the areas of tuning they managed to increase the
performance of both workloads by 3% by pinning all the SQL statements, which ensures that
the statements stay in the library cache. For the memory and I/O tuning it was found that by
altering the DATA_BLOCK_SIZE the response time improved by 12% for the “Select-dominant”
workload and 30% for the “Insert/Update-dominant” workload. The response time was
dependant on whether the size of the DB_BLOCK_BUFFERs was increased or decreased, where
an increase produced an improvement. They conclude that the DB_BLOCK_BUFFERS should be
at least equal to 150% of the size of the largest data in the database. Overall, with tuning the
performance of a database, an improvement in the performance of 60% was achieved. Finally,
they found that an increase in either the database size or the average object size significantly

decreased the performance.

4.6.3 Multimedia Oracle Performance Research

Results from the benchmarking of multimedia applications have been made available by
Oracle [OIMO02]. These test the loading and retrieving of multimedia data, but unfortunately
do not include updating, modifying, or deleting of multimedia data. In the loading
experiments, the performance of a workload with between 1 and 8 large (250MB) videos was
investigated. Table 4-3 presents the results obtained for the response time, throughput and %

CPU utilisation for these experiments.

60

of Streams | Elapsed Time (Sec) Throughput (MB/Sec) | % CPU Utilisation
1 24.8 10.1 8
2 63.6 7.9 12
4 79.3 12.6 13
8 177.7 11.3 14

Table 4-3 Database load performance of 250MB video files (Table from [OIM02])

They found that the bottleneck was the I/O bandwidth of the I/O controller as a maximum
throughput (12.6 MB/sec) was obtained when a parallel load stream was used. A second
workload that represented a web environment consisting of 240,000 distinctive objects,
ranging from 4Kb images to 2Mb audio files, was tested. Full results for these tests and the
details of the distribution of data were not given in this white paper. The results that were
presented were for the throughput of the load experiment, which was found to be 7.5Mb/s,
and the retrieval experiment, which was approximately 7Mb/s. This shows impressive
performance, however the performance enhancements attributable mainly to the specialised
hardware, including RAID, 4GB of RAM and 4 processors, must be considered when

analysing these results.

4.6.4 Oracle Memory Research

Dageville and Zait [DZ02] completed work that focused on evaluating the performance of
Oracle9i with different configurations for the SQL memory management. They used DSS as
well as OLAP workloads, and focused on SQL Memory, which consists mainly of the Process
Global Area (PGA) memory. Dageville and Zait define two important thresholds known as
the one-pass size and the cache size. The former is the size of the work area needed to process
the input data, whereas the latter is the total size of the work area. Dageville and Zait believe
that the amount of memory greatly affects the performance and thus the work area should be
large enough to accommodate both the input data as well as the auxiliary memory structures.
Problems occur as the amount of memory in a system is limited, and furthermore, the
workload is not easy to predict, making tuning of the database difficult. They demonstrate that
the system adapts the configuration of the PGA memory to set the optimal values in response

to the workload.

4.7 Oracle Performance Summary

Past research on the performance of Oracle, with respect to multimedia data, has shown that

the CPU utilisation is not significant as it is generally below 15%. It was also found that the
61

maximum throughput was achieved with parallel load streams, suggesting that the I/O
bandwidth was the bottleneck. This is supported by the findings from work conducted by
Shapiro and Miller [SM99]. Although they researched BLOBs rather than multimedia data
stored using interMedia datatypes, they found that performing I/O tuning improved the
response time by 12% for “select-dominant” workloads and 30% for “Insert/Update-
dominant” workloads. I/O tuning is done by altering the configuration of Oracle’s storage,
more specifically the parameter DB_BLOCK_SI1ZE [CGO01]. This parameter controls the smallest
unit of space, and has to be a multiple of the size of the operating system’s data block (see
section 4.4.2). Another significant finding from the work done by Shapiro and Miller was that
memory tuning also greatly improved the performance of the database. Memory tuning was
the focus of Dageville and Zait’s research, where they studied the effect of the performance in
relation to the size of the PGA memory. PGA memory is the private memory that is used for
complex operations, such as sorts and hash-joins, which multimedia data does not generally
require. Although the size of PGA is thus unimportant for multimedia database, the results
from studying the PGA can still be used to help understand the affects of the size of the SGA,
which is important. The SGA is the shared memory region that consists of the buffer cache,
Java pool, large pool, shared pool, and the log buffer [CG01]. Of these components the buffer
cache is the most influential on the database’s performance, especially when dealing with
large data volumes and read intensive workloads. In summary, a performance evaluation of

multimedia databases should focus on memory and I/O tuning.

4.8 Summary

Oracle is a commercial ORDBMS that has built-in functionality to handle multimedia data.
Oracle has opted for a distributed configuration that uses either a client/server architecture or
a 3-tier architecture, both of which can be further distributed. The components of Oracle
consist of processes, memory regions, and physical database files. The processes are either
Oracle processes or server process, while the memory regions are either private known as
PGA or shared known as SGA. The physical database files include datafiles, control files, and
redo log files. Oracle’s storage is divided into units with the smallest being data blocks, then
extents, and the largest being segments. Oracle has different datatypes to support multimedia
data such as BFILE (externally), URL (externally), BLOBs, and a more advanced method
through interMedia. InterMedia is a standard feature that extends Oracle to provide the
support for the datatypes and functionality for multimedia data. Research has been conducted
on the performance of Oracle that focuses on standard datatypes, BLOBs, multimedia data,

and the PGA memory region. Although this research acts as a good basis for understanding
62

the performance of Oracle, further research needs to be conducted on the performance when

handling multimedia data.

63

Chapter 5 : Design of MORD

Chapter 2 reviewed work in the area of multimedia database tuning, while
chapter 3 reviewed work on benchmarks, both relating to this thesis. Chapter 4
provided an overview of Oracle. This chapter describes the design of a new
database benchmark (MORD) that measures the performance of basic
functionality in multimedia ORDBMS. MORD'’s objectives include portability,
simplicity, scalability, and relevancy. MORD’s components include the database
schema, test data, and workload. The implementation decisions regarding the
performance measurements and programming language to be used are also
discussed in this chapter. Finally, a set of instructions is specified that should be
followed to ensure that MORD is applied correctly to a test multimedia database

System.

5.1 Design of a New Benchmark

The survey presented in chapter 2 revealed that multimedia databases have unique
requirements not found in other databases. A review of the available database technologies
indicated that ORDBMS, such as Oracle, are the most suitable systems to handle multimedia
data. Performance is of the greatest importance with databases, and especially with
multimedia database where large data volumes and complex operations are common. Tuning
needs to be carried out, and is most easily achieved using an appropriate benchmark. Various
benchmarks were reviewed in chapter 3, revealing that none of these benchmarks are
designed specifically to evaluate the performance of multimedia databases. The most obvious

shortcoming is that both the test data and the database schemas do not include multimedia

64

data. It is complex to adapt these benchmarks, as their whole structure is founded on their
schemas and test data. A new benchmark needs to be designed specifically to evaluate the
performance of multimedia databases. Since Oracle is an ORDBMS that adequately handles
multimedia data and its additional functionality, it is used as the target database for the

benchmark.

Once designed, MORD’s functions must be tested for correctness by performing some tests as
discussed in later chapters. These tests are based on the knowledge gained about database

tuning in chapter 2, as well as the specific Oracle implementation details given in chapter 4.

5.2 Objectives of MORD

The benchmark designed for this thesis, called MORD, must be able to evaluate the
performance of basic functionality in multimedia databases in multimedia databases. It is
therefore a domain-specific benchmark and must satisfy the criteria required of these
benchmarks, which are portability, simplicity, scalability, and relevancy as described in

section 3.3.

To be portable, a benchmark has to be designed to be applicable to a range of systems. Given
the nature of multimedia databases, for which no standard implementation is available yet,
portability is difficult, if not impossible to satisfy. In particular, each multimedia database has
its unique datatypes and methods for handling multimedia data, so designing the benchmark
for one type of multimedia database makes it unsuitable for an alternative one. With this in
mind, it is not possible to design MORD to be a fully portable multimedia database
benchmark until multimedia databases have been standardised. Rather the objective when
designing this benchmark was to make it as generic as possible. Important design issues that
influence this are the way that the code is written. For example, it should be modular so that
functions can easily be replaced. Coding language is also important; making Java a suitable

language to use as it is more portable than other coding languages.

To be simple, a benchmark must be easy to use and extend. These are satisfied by MORD
being designed to be simple both in it ease of use as well as its comprehensibility, which

makes it easy to adapt.

To be scalable, a benchmark must evaluate small and large databases. MORD is designed to

be scalable by having three databases each of different sizes (small, medium, and large) -
65

adding more data can create additional sizes and the amount of data manipulated for each

query can be altered.

Finally, to be relevant, a benchmark must be designed to evaluate standard operations found
in a “real” application. MORD is relevant in that it is designed to test the basic functionality,
such as inserting and deleting, which are essential in all multimedia database applications.
Unfortunately MORD does not fare so well in terms of relevancy in that it does not evaluate
more advanced functionality, such as streaming videos, which would also be found in
multimedia database applications.

MORD was designed to assist with the configuration of multimedia database and thus the test
database must be able to support a variety of datatypes and functions. For example, Figure 5-1
shows the image, audio and video data that is produced in the Computer Science Department

at Rhodes University.

Audio Data e.g. Audio Engineering

Npme

Multimedia
Database

Image Data e.g. Face

Recognition, Graphics

and Departmental

Photographs Video Data e.g.

ﬁ Recordings of Video
S/

Conferencing and

Figure 5-1 Types of multimedia data produced in the Rhodes Computer Science Department

Multimedia data varies both in size, ranging from images of a few kilobytes to video data of
many hundreds of megabytes (in the Computer Science Department at Rhodes University),
and format, ranging from images used for virtual environments to the departmental
photographs (in the Computer Science Department at Rhodes University). MORD must
therefore test a representative range of formats and sizes for image, audio and video data. All
the standard functionality (insert, update, select, and delete) is required by the application, in
addition to some advanced functionality. Examples of the advanced functionality are
signature generation, to enable content-based retrieval, and scaling of images, to generate
thumbnails. MORD should either already be able to, or it should be easy to extend it to,

evaluate the performance of this functionality.

66

5.3 Design of MORD

This section details the design of MORD’s schema, test data, workloads, and performance

metrics, and describes the manner in which it has been coded.

5.3.1 Schema Design

MORD is a domain-specific benchmark. The schemas of domain-specific benchmarks can
either be modelled on a specific application or a more generic database within that domain.
The former approach can be used if the applications in that domain are closely matching, and
thus a schema designed for one application would be adequate to test most of the applications.
For example, the requirements of most engineering applications are similar and the schema of
the 007 benchmark is modelled on a specific engineering application. Examples of the latter
approach are the SEQUOIA 2000 and the FTR benchmarks, which are modelled after more
generic applications. The schema of SEQUOIA 2000 was modelled on an Earth Science (ES)
application, yet it is generic enough to be used for most ES applications, and the schema of
FTR was modelled on a generic application to store and search for documents. MORD
evaluates multimedia databases, and as such the schema needs to model a multimedia
application. MORD’s schema is designed to represent a generic multimedia database, with

several tables to hold multimedia data of more than one type.

A script achieves the generation of MORD’s schemas, so that it is easy to create or recreate
the tables in the database, making the alterations to the database. The script, given in
Appendix A, creates a separate table for each of the multimedia datatypes (image, audio and
video) with three attributes in each of these. The reason for using disconnected tables is that,
generally there is no connection between the different multimedia formats. This is similar to
the nature of the data in SEQUOIA 2000, which has four independent tables. In addition,
MORD aims to measure the basic functionality of a multimedia database and this does not

include the synchronisation of different multimedia types which would require linked tables.

As with most benchmarks, such as BUCKY and 007, there is an identifier (id) for each table
which uniquely identifies each entry. In every table, there is also a description of the
multimedia data, to categorise the data by size and format, and the actual multimedia data.

Figure 5-2 presents the schema used in MORD.

67

IMAGE AUDIO VIDEO

PK | ImglD PK | AudiolD PK | VideolD
ImgName AudioTitle VideoName
ImgData AudioData VideoData

Figure 5-2 Schema used for multimedia tables

Oracle’s NUMBER datatype is used for the identifier, which is then controlled using SEQUENCES

as shown in Figure 5-3.

CREATE SEQUENCE VIDEO_sequence
INCREMENT BY 1

START WITH 1

NOMAXVALUE

NOCYCLE

CACHE 10:

Figure 5-3 Oracle code to generate a sequence

This datatype can be changed to the corresponding primary key datatype when applying
MORD to a different DBMS. The description attributes (name or title) uses the standard
datatype char(50), found in most DBMS. Finally, the multimedia datatype are Oracle’s
interMedia datatypes: ORDSYS.Image for images, ORDSYS.Audio for audio, and
ORDSYS.Video for videos. These datatypes are unique to Oracle and they must be altered to
the equivalent multimedia datatypes for alternative DBMS. The script includes code to drop
the tables before recreating them in case the tables already exist as the database prohibits the

creation of tables with the same name.

Two additional tables are provided and can be included if required. One of the tables is for
documents, while the other one is for image data with the addition of a column for

thumbnails, as shown in Figure 5-4.

DOCUMENT IMAGE 2
PK | DoclID PK [ImglD
DocTitle ImgName
DocData ImgData
Thumbnail

Figure 5-4 Additional tables included

These tables are used in tests to show that MORD’s schemas can be altered.

If a benchmark aims to determine the maturity of a new technology, such as BUCKY, it needs

to include the schema implemented in the older database technology with which to compare
68

the results of the new database. It may appear that MORD evaluates the performance of a new
technology, ORDBMS. This is not the case though as MORD’s focus is on the handling of
multimedia data and not on evaluating ORDBMS as a new technology. Since MORD is not

such a benchmark, it does not need to provide additional schemas, such as relational schemas.

5.3.2 Test Data

A number of factors influence the design of test data: the method of generating the data, the

type and format of the data, and the amount of data.

5.3.2.1 Generation of Multimedia Data

The test data must include unique primary keys, descriptions of the data, and a range of
multimedia data. Many benchmarks synthetically generate the test data, as it is an easy and
reliable method, but this test data is usually only simple datatypes, such as numbers. The
nature of complex data makes it much more difficult to generate synthetically. Multimedia
data, in particular, does not conform to any clear pattern and it is also complex in structure,
making it difficult to generate. Evidence of this comes from existing benchmarks that include
some multimedia data, for example, the SEQUOIA 2000 benchmark, FTR benchmark, and
TPC-W benchmark, where the multimedia data has been provided rather than synthetically

generated. Similarly, MORD’s multimedia test data consists of pre-existing data.

Although MORD’s multimedia data is provided with the benchmark, the remaining test data
is synthetically generated. The first datatype that is synthetically generated is the description.
This data is produced using a template that has the corresponding category that the data
belongs to substituted where required. The purpose of data is to easily identify the category to
which the data belongs. The second datatype, which could possibly be classified as
synthetically generated although it is not clear-cut, is the id. This data is generated using
Oracle’s INSERT.NEXT_VAL method, which increments each new entry by 1, in conjunction
with its SEQUENCE datatype, which is already implemented in the schema. These ensure a

unique value and a uniform distribution of the data throughout the table.

5.3.2.2 Format of Multimedia Data

MORD differs from other benchmarks in that its test data includes a wider range of
multimedia datatypes and formats. Its multimedia test data includes images, audio, and video

data, which does not have to be unique, but must consist of a representative selection of data.

69

The formats that Oracle supports dictate the selection of multimedia data. (This support can

be extended through cartridges, an aspect outside the scope of this thesis.)

Oracle supports most image formats. Of these, GIF, JPEG, BMP, TIFF, and PNG are
included in the test data. CompuServe developed the Graphic Interchange Format (GIF) file
format in 1987. The Joint Photographic Experts Group (JPEG) file format is named after the
group that created it and was standardised by ISO in 1990 [JPG02, W3C02]. The Bitmap
(BMP) file format is a graphics format that was originally designed to be used on the
Windows platform [STA98]. The Tag Interchange File Format (TIFF) file format is a tag-
based format that was originally developed by Aldus (now Adobe) [STA98]. Lastly, the
Portable Network Graphics (PNG) file format is the successor to the GIF format with the
significant difference that it is patent-free [PNGO02]. The characteristics of these image

formats are given in Table 5-1.

Format | Compression Works Well For Main Difference
GIF Lossless Compression Few Colours Display Transparency
JPEG | Lossy Compression Natural Scenes Great Compression
BMP No Compression Windows Platform Format Reversed
TIFF Lossless Compression None in Particular None

PNG Lossless Compression Few Colours Patent-Free, Portable

Table 5-1 Characteristics of image data

GIF, PNG and TIFF all use lossless compression, while JPEG uses a lossy compression and
BMP does not use any compression. GIF and PNG are both highly compressed graphics
format using the same type of compression, where the degree of compression is dependant on
the amount of repetition in the image. For example, an image with a few distinct colours
compresses well [STA98]. One of the advantages that GIF files have over most other image
formats is that they can display transparency so that, for example, the background colours can
show through an area of an image. TIFF images can be compressed using the lossless LZW
(Lempel-Ziv Welch). JPEG uses a lossy image compression and thus the decompressed image
is not exactly the same as the original image. This compression is achieved by saving only the
relevant colour information essential to the image in an RGB image, with the result that
greater compression can be achieved. JPEG is most effective for natural or real-world scenes,
such as photographs, and can compress either full-colour or grey-scale images [W3C02].

BMP are not compressed and consequently the images are generally larger than alternative

70

formats [STA98]. The BMP format differs significantly from the other formats in that it stores

image data in the reverse order (from bottom to top and pixels in the order blue/green/red).

Oracle only supports four audio formats, MP3, WAV, AU and AIFF, and of these the first
three are part of the test data. MPEG-1 Audio Layer IIT (MP3) was originally developed by
the German institute Fraunhofer Gesellschaft (FhG), which still holds its key patents
[FRAO1]. It was introduced as a part of the official MPEG-1 standard in 1992 and is largely
thought of as the most successful audio-standard since WAV. Microsoft and IBM developed
the Waveform (WAV) audio format and it was one of the first audio formats, while the
NeXT/Sun (AU) audio format is a common compressed file format used for UNIX [ADOO02].

Table 5-2 shows the characteristics of each of these formats.

Format | Compression Advantages Platform

MP3 Lossy Compression Small, Can be Streamed | Any Platform

WAV Compressed or Uncompressed | Excellent Sound Quality | Windows
AU Compressed Widely used on Internet | UNIX

Table 5-2 Characteristics of audio data

The MP3 format uses a very powerful type of compression, capable of reducing file sizes
down to about 1MB a minute [ADOO02]. Although this is a lossy type of compression, the
sound quality is still excellent as it only removes information that is mostly beyond the
perception of the human ear [ADO02, and FRAO1]. This format is also designed to be easy to
stream. WAV is the common audio file format used for Windows and since it offers one of
the best sound qualities it is a popular format. Unfortunately, this sound quality comes at the
expense that WAV files are large in size whether compressed or uncompressed. For example,
they can be up to 10MB per minute. AU is not a popular audio format, although recently it

has been used more on the Internet.

Oracle only supports three video formats, and all three are used in the test data. They are AVI,
MOV and RM Surprisingly enough, Oracle does not support the MPEG video format, which
is a very popular, widely used video format. The Audio Video Interleaved (AVI) video file
format was defined by Microsoft and conforms to their Windows Resource Interchange File
Format (RIFF) specification [MCGO02]. This format is called AVI because it interleaves audio
and video segments. AVI is one of the most common video formats on the PC, where it has
become the de facto standard for video data. MOV on the other hand was developed by one of
Microsoft’s competitors, Apple Macintosh, and is a QuickTime movie. QuickTime movies

71

consist of three layers, namely the Movie file, the Media Abstraction Layer, and the Media
Services. RealNetworks originally developed an audio format known as RealAudio, which
was later followed by a video format known as RealMedia (RM) video file format [SONOO].
This format is a network based format that was originally designed for the Internet. It allows

the video to be streamed at low bandwidth, and thus with reduced quality.

5.3.2.3 Amount of data

Many benchmarks provide different sized databases. For example, the EDB benchmark has a
standard, large (standard x10), and huge (standard x100) database, and the 007 benchmark has
a small, medium, and large database. MORD also has three database sizes: small, medium,

and large. Table 5-3 shows the total size and the data ranges of each item for each category of

database.

Database Size Image Audio Video

Range 1KB - 50KB 1KB-500KB 300KB- 3MB
small Total 2.5MB 15MB 75MB

Medium Range | 50KB - 500KB | 500KB- 5MB 3MB-30MB
Total 25MB 150MB 750MB

Range 500KB - SMB 5MB - 50MB 30MB - 300MB

Large Total 250MB 1.5GB 7.5GB

Table 5-3 Amount of data stored in each table

There is an increase in size by a factor of 10 between the small and medium, and medium and
large database sizes, as it can be seen from Table 5-3. To make the total data size there are
approximately twenty entries for each category. The data is distributed so that the first five
items add up to the same size as the next five items, and all twenty items total the values
given in Table 5-3. MORD differs from other benchmarks in that its total size of test data is

much larger than that found in others.

5.3.2.4 Testing

It was tested that Oracle supports the format of all of MORD’s test data by using Oracle’s
setProperties() method, which reads and interprets the metadata (properties encoded in the
header) of the multimedia data. Since this metadata is made accessible to the database, other
methods could then be used to display the metadata and verify that Oracle supported that data
format. It was also verified that each category contained the correct number of items by

attempting to execute the code to insert the data. If that category contained an incorrect
72

number of items, an error message was printed to identify the data that was causing it. These
messages utilise the naming system implemented where each file is named with their category
and a consecutive numbers. For example, the first bitmap image in the small database is called

smli.bmp.

5.3.3 Workloads

Previous benchmarks have shown that workloads should either represent a specific
application, or the important functionality required by a type of application. MORD’s
workload tests the latter since it targets a generic multimedia database. As done by the
Michigan and Wisconsin benchmarks, MORD tests primitive queries including insert, select,
update, and delete. However, they have to be implemented using methods adapted for
multimedia data. Several additional operations, unique to multimedia data, are also included
in the benchmark further distinguishing MORD’s workload. The unique implementation of
the primitive queries as well as the special functionality makes MORD’s workload very

different from the workloads of other benchmarks.

5.3.3.1 Insert Queries

The insert query is especially important as it determines whether the database is a “true”
multimedia database. With many multimedia databases, the insert operation only creates a
reference to the multimedia data, which remains stored on the file system. A multimedia
database should import the multimedia data into the database so that it is under the full control
of the DBMS. The insert operation is performed in a number of stages. The first stage is
executed using a standard SQL insert statement, as shown in the example code for the

image data in Figure 5-5.

INSERT INTO image(imgid, imagedata, imagename)
VALUES (image_sequence.NEXTVAL,
ORDSYS.ORDImage.init(),
"Images of " + iImgNm + " type:"+ ImgType + "))

Figure 5-5 Code to insert multimedia data into a database

In this statement there are datatypes, such as ORDSYS.ORDImage, and methods, such as
NEXTVALQand INIT(), thatare unique to Oracle. Oracle’s NEXTVAL() method ensures that
the primary key is unique. Oracle’s INIT() method initialises the multimedia object datatype,
but it does not upload the data. To upload the data Oracle offers several alternatives, including

the loadFromFile(), loadFromStream(), loadFromByteArray(), and import()

73

methods. Of these, loadDataFromFile(Qwas chosen for no particular reason other than its
simplicity. setProperties()is used to extract the metadata from the multimedia data and
store it in the database. If MORD is applied to another multimedia database, the methods to
initialise the object and upload the multimedia data as well as the multimedia datatypes have

to be modified.

5.3.3.2 Select Queries

The select query is required to retrieve the data, and again this has to be performed using
special code for multimedia data as opposed to the standard select statement used for
ordinary data. Multimedia data not only needs to be retrieved, but it also needs to be presented
correctly, which takes additional processing. Oracle implements such a task using

getContent(), which would have to be altered for a different multimedia database.

5.3.3.3 Update Queries

The update query could either alter or completely replace the data in a database. MORD only
evaluates the latter, where the time taken to replace the multimedia data with the entry in the
row following it is measured. The first step is to select the data that is to replace the old data,

which is achieved by using the code given in Figure 5-6.

OracleResultSet rs = (OracleResultSet)stmtl.executeQuery(
"select imagedata from image
where imgid=" + (imgid + 1) +
for update™);

Figure 5-6 Code to select data with which to replace the old data

Here it can be seen that the data from the row with imgid + 1 is being selected. The next step
is to replace the multimedia data of the row corresponding to imgid with this data. This is

accomplished using the code shown in Figure 5-7.

OraclePreparedStatement stmt2 =(OraclePreparedStatement)
con.prepareCall (""'update image

set imagedata= ?

where imgid =" + imgid);
stmt2.setCustomDatum(l1, imgobj);
stmt2._.executeUpdate();

Figure 5-7 Code to replace the multimedia data

The metadata is extracted from the multimedia data so that each row contains the new

properties.

74

5.3.3.4 Delete Queries

Data that is no longer relevant should be deleted. Such a task is more complex for multimedia
data as it involves not only deleting the data from the table, but also freeing the space in the
tablespace that data occupied. Freeing the space is important with multimedia data as it often
occupies a large amount space. It can be achieved using Oracle’s deleteContent() method,

followed by the standard SQL delete statement, as given in Figure 5-8.

while (rs2.next())
{
OrdAudio audobj =
(OrdAudio)rs2._getCustombDatum(l, OrdAudio.getFactory());
audobj .deleteContent();
OraclePreparedStatement stmt2=
(OraclePreparedStatement)con.prepareCall(
"update audio set audiodata= ? where Audioid =" + audid);
stmt2.setCustomDatum(l,audobj);
Y/ /uhile
stmt =(OraclePreparedStatement)con.prepareStatement("
delete from image where imgid="+ imgid);

Figure 5-8 Code to delete data from the table

deleteContent()frees the storage space used by the multimedia data, but this method would

have to be replaced by the equivalent method for a different multimedia database.

5.3.3.5 Testing

Tests were performed to check that the code for inserting the multimedia data was written
correctly. Initially tests were performed to ensure that the data was actually inserted into the
database and that the properties had been extracted. Firstly, the increase in the used space for
the tablespace was analysed to validate that it is proportional to the size of data being inserted.
Secondly, the original data was relocated and attempts were subsequently made to retrieve the
multimedia data from the database. This showed that the data was physically stored within the

database and that Oracle was not simply using pointers.

To test that the selection process was executed properly, the Java Media Framework (JMF)
and the Java Media Framework Registry (JMFReg) were installed and the necessary
DataSources were registered. Additional code was run to play the audio and video data,

ensuring that it was being retrieved properly.

75

The properties could be used to verify that the data was updated by displaying them before
and after the update. It could be checked that the new properties matched the values
previously assigned to the preceding row. Another method used to verify that the update was

performed correctly was viewing the data.

Checks were also performed to ensure that the data was deleted from the table and that the
space had been freed. It was easily verified that the entries were deleted from the table by
using a “select id from table” SQL statement which showed if there were any entries
remaining in the tables. It was more difficult to verify that the data had been deleted from the
tablespace. DBMS handle the freeing of space no longer in use in several different ways.
Oracle handles this by marking the data as deleted and only reusing that block when the
tablespace is full and needs the space. (This is the default setting, but changing the value of
certain tablespace parameters can alter it.) To verify that the data was deleted correctly, the
first step was to identify the location of the data in the tablespace prior to executing the
deleteContent() method. This was achieved by viewing the tablespace map and finding the
block identifiers detailing where the data was stored. The next step was to execute
deleteContent(). The final step was to query the dba_free_space table to find out which
blocks in the tablespace were marked as free. The space was freed correctly if the block

identifiers matched those of the deleted data.

5.3.4 Performance Measurement

MORD’s performance measurements require that decisions are made about performance

metrics, timing precision, and the method of timing the operations.

5.3.4.1 Performance Metric and Precision

A performance metric can be thought of as the value used to measure how well a particular
operation is executed by the system. Two important measures of performance are response
time, which is the average time taken for each query to execute, and throughput, which is the
amount of work accomplished in a given time and so is a measure of the overall performance
of the system. Response time and throughput are closely related: when the response time for
an average query increases, the overall throughput often decreases and vice versa. In MORD,

both of these are measured.

It was decided that the response time experiments should be measured in milliseconds to

obtain accurate results, but these results were then converted to seconds for analysis. Since the
76

manipulation of multimedia data usually takes longer than other datatypes, due to its large
size, it is not necessary for its measuresments to be as fine. As a result, this precision is
sufficient. The throughput experiments are measured in queries/sec, but if necessary their

results can be converted to Mb/sec as the amount of data/query is known.

5.3.4.2 Timing Mechanism

The Java method provided by the System library called currentTimeMillis() is able to
accurately time the operations by retrieving the time from the system clock and converting it
to milliseconds. This Java method is used for MORD, where the code for the response time is

shown in Figure 5-9.

ts3 = System.currentTimeMillis();
for (int 1=1; i <=num; i++)
{ . }//for

ts4 = System.currentTimeMillis();

Figure 5-9 Code to control the measurement of response time

The variable num is determined by the user to control the number of entries measured. For
example, the user could measure the response time for 10 insert operations or 20 insert
operations, depending on the value assigned to num. The time limit for the throughput
experiments is controlled by the code and uses the currentTimeMi I lis(Q)method, as used for
the response time experiments. The code for the throughput experiments is shown Figure

5-10.

int count=1;

ts3 = System.currentTimeMillis();

ts4 = System.currentTimeMillis();
while ((ts4-ts3)<timing)
{
count++;
ts4=System.currentTimeMillis();
}Y//while

Figure 5-10 Code to control the measurement of throughput

The user specifies the value for timing before executing the code. The code then keeps
looping until the maximum specified time is reached. The number of queries that are
performed in that time are recorded using a count variable. This value is then decreased by

one as it would have only exited when the time was larger than the maximum specified time.

77

Since the data is always entered in the same order, the amount of data processed in that time is

then calculated by adding the sizes of the data up until the count-1 value.

5.3.4.3 Testing

Several tests were run to verify that the performance measurements were correct. Firstly, tests
were performed to confirm that milliseconds are a suitable unit. Running trial experiments
and collecting the results to check that they had adequate variation among them achieved this.
Furthermore, tests were performed to check that the base case, where no data was
manipulated, produced a time of Oms. Finally, the correctness of the throughput code was
shown by printing the time out at various points during the code to check that it had not
exceeded the maximum time at any point before exiting. These results showed that the
duration of the experiment at various stages during the throughput experiment never exceeded

the maximum time.

5.3.5 Programming Language

MORD is written in Java. Java was chosen primarily for its portability, as Java is designed to
run on multiple platforms with minimal difficulty, and its compatibility with Oracle, since
Oracle is designed to be integrated with Java and so the multimedia methods are written in
Java. Additional features that make Java attractive to use are standard programming language
features, such as its simple timing methods, its ability to print the results to a file so that there
are permanent copies of the results, and its database functionality making it easy to connect to
the database. Another option was to use PL/SQL, which is Oracle’s procedural language
combined with SQL. Although this programming language provides all the functionality
needed and works well with multimedia data, it was not used as it would limit the benchmark

to Oracle only.

5.4 Application of MORD

This section gives an overview of the issues that should be considered before applying
MORD. It also describes the typical results that can be expected from running MORD and
explains the way in which these results can be analysed. Further instructions for the
application of MORD are given in Appendix B. Before applying MORD to a system, the
complete environment, including the database and its surrounding system, needs to be setup.
It is essential that the environment in which MORD is run is kept constant. Consideration

must be taken of how to control the external influences as well as ensuring that the internal

78

environment, the database and its immediate environment, remains identical throughout the
experiments. One of the most significant factors when considering the external influences is
the effect of being connected to a network. A network connection has a negative influence on
the environment, particularly its high level of variability, which makes results difficult to
interpret. The network should be excluded from the environment by running both the client
and database server on a single machine disconnected from the network. Although this limits
the results to an isolated database, it ensures that the network and other potential external

influences have no effect on the results.

The immediate environment, which includes the physical environment and the manner in
which the experiments are run, is more difficult to keep constant. An important influence in
controlling the physical environment is to ensure that there are no other significant processes
running on the machine using the CPU and memory while the experiments are executed.
Unnecessary services can be stopped by using the administrator tools of the operating system,

whereas the processes can be closed by using the task manager.

There are several steps that must be taken to control the application of MORD to ensure the
accuracy of the results. The first one is to run the experiments several times to fill the cache so
that the experiments are run on what is known as a ot database, a database with full caches.
An indication that the system is stable is where consecutive results from running MORD
produce closely matching values. This problem not only occurs with the data cache, but also
with the Java cache, as it is shown by the fact that the first query takes longer as a result of the
Java code being cached. Benchmark variables that can be altered must be kept constant,
unless being tested themselves, such as the number of users should be 1 and the number of
data items should be 20 for image and 5 for audio and video. To keep the database
environment constant a default configuration should be used for all the experiments with only
the parameter under observation altered for each new database configuration tested. Once the
environment has been correctly setup, MORD is applied to the various test systems to produce

results.

MORD consists of 4 query types, 3 multimedia datatypes, 2 performance metrics, and 3
database sizes, thus producing a possibility of 72 results. Usually only a selection of these
options is used or further calculation is used to reduce this number. Each experiment in
MORD should be run multiple times, after which the arithmetic mean or average of the results

from these experiments is calculated to produce a single value. Ideally, the more times the

79

benchmark is run the more accurate the results. Since the results are printed to a Microsoft
Word document file, a permanent record of each implementation can be kept by appropriately
renaming the file after each experiment. Alternatively, additional code can be added to print

information in the result file that identifies which test the results belong to.

Finally, after applying MORD, it must also be decided how the results should be presented.
This includes whether the final results of MORD should be as many values or a single result.
It was decided that the benchmark should return numerous values as one single value is too

rough a measure and is mainly used to rank databases and not to tune them.

5.5 Summary

MORD is a domain-specific benchmark that is designed to evaluate the performance of
multimedia databases. Since a good domain-specific benchmark should be portable, simple,
scalable, and relevant, MORD is designed to have these characteristics. It is also designed to
be suitable to help with the configuration of the multimedia application that is required by the

Computer Science Department at Rhodes University.

The design of MORD includes the specification of the test data, schema, workload,
performance measurements, and programming language. The test data includes images, audio,
and videos, each of which belongs to a small, medium, or large dataset. The schema includes
three tables, one for each of the three multimedia datatypes tested, as well as two additional
tables to test documents and advanced functionality for images. The workload includes code
to test the insert, select, update, and delete operations, in addition to more advanced code to

generate thumbnail images.
MORD measures response time in milliseconds, and throughput in queries per second.
Timing is determined using Java code and the system clock. MORD is implemented in Java

for its portability and its close relationship to Oracle.

When MORD is applied to a system, the environment must be kept constant. Results are made

more accurate by repeated application of MORD.

80

Chapter 6 : Validation of MORD

Chapter 5 described the design of a new multimedia database benchmark,
MORD. This chapter explains the design of tests to verify if MORD achieves its
objectives. The tests are grouped into categories to test if MORD is relevant,
adaptable, and simple to use and extend. Where appropriate, informal hypotheses
based on general database theory are also tested. Such tests help increase the
understanding of multimedia database performance as they indicate that what

holds for standard data also holds for multimedia data.

6.1 Overview of Validation

Validating a benchmark is done by demonstrating that the benchmark achieves its objectives.
The objectives of MORD are that it is relevant, adaptable, and simple. Relevancy refers to the
fact that the benchmark tests common and important situations that would be found in real
applications. Adaptability refers to the fact that the benchmark is flexible enough to adapt to
test the specific requirements of an application. MORD is adaptable, if it is both portable and
scalable. Simplicity refers to the fact that the benchmark is easy to adjust to suit different
environments as well as being straightforward to extend, thus allowing for the addition of

extra features when necessary.

A suitable approach to validation is to design tests based on general database theory that have
a known outcome. In the case of MORD, general database theory is used to form informal
hypotheses that have been proven for ordinary data in Oracle and which are likely also to hold
for multimedia data. The results of validating MORD using this strategy, not only indicate
that it is designed correctly, but also provide grounding knowledge on basic functionality in

multimedia database performance.

81

6.2 Methodology

Altering the database configuration and/or the benchmark configuration and executing
MORD in a controlled environment perform the validation tests. The database’s configuration
is altered through Oracle’s user interface, while MORD’s configuration is generally altered
manually by changing the code except for when the test data is altered. When the benchmark
code is altered manually the instructions in Appendix B must be followed. This task is made
easy by comments in the benchmark code that clearly mark the places in which to make such

alterations.

Each test is run multiple times until five results that are relatively close are recorded, and any
other results are disregarded. This process eliminates random results that are most likely
caused by background database operations. The results are collected and statistically analysed,
generally by calculating the arithmetic mean although other methods such as standard
deviation are also used. The analysis of the results is used to give an overview of MORD’s
capability and a broad idea of the performance of Oracle’s multimedia database. A more in-
depth analysis is, however, performed for selected aspects of the benchmark, such as the

inserting of images, to provide a greater understanding of the performance in these areas.

6.3 Environment Setup for Validation Tests

Common to the presentation of benchmark results is the detailed description of the hardware
configuration. This is crucial if absolute values are measured and to some extent less
important in a comparative study. Even though the work done in this thesis aims to test that
MORD works correctly rather than to obtain performance results, the hardware configuration
is still specified to give some perspective on the results. The environment in which the
benchmark is validated only needs to be configured after designing the experiments, but it is
discussed here since some of the information in this section, particularly regarding Oracle’s

configuration, relates to decisions made during the designing of the tests.

6.3.1 Hardware Configuration

The main hardware details that need to be presented are the amount of memory, the
processing power, and the physical storage. It is not necessary to have a full scale multimedia
database to validate MORD, and as a result the hardware used in the test environment is
smaller than that required by an average multimedia application. A summary of the hardware
configuration is given in Table 6-1.

82

Hardware Component | Type Configuration
Memory Standard 1GB
Processor Dual processor - PIII 800MHz

Hard Drive IDE 100GB

Table 6-1 Summary of hardware configuration for test environment

It can be seen that 1GB of memory is used for the test environment, which is double Oracle’s
minimum recommended value of 512Kb. This amount of memory is large as Oracle requires a
sizeable amount of memory for all applications, and particularly when implementing a

multimedia database.

The rapid advances in the processing power of computers have led to it being less likely the
bottleneck in database operations. A reasonably fast processor is thus sufficient, except for the
occasional application that has highly CPU-intensive operations. A dual PIII processor at a
speed of 800MHz was used to test MORD, which appears to be adequate as the utilisation of
the processor was for the most part below the 50% threshold during the tests.

In contrast to the processor, the configuration of the physical storage, both in terms of
quantity and type of storage, is significant since disk I/O is often the bottleneck of a database.
This is particularly important when dealing with multimedia data, on account of its typical
large volume. The environment for testing MORD only has a 100GB IDE hard drive,
although the implementation of multimedia applications should have much larger hard drives

and should be configured using a RAID system.

6.3.2 Oracle Configuration

Oracle’s configuration is controlled by the settings of numerous parameters. Oracle assigns
default values to them based on the most suitable value for the average application. Since
multimedia applications differ considerably from standard applications, these default values
are often unsuitable and need to be changed. Some of Oracle’s parameters can be altered
dynamically whenever necessary, while others only allow their value to be changed when the
database is created. Table 6-2 summarises the significant parameters for the work done in this

thesis.

&3

Parameter Function Default Possible Values | Dynamic
SGA_MAX_SIZE Maximum size of SGA for Dependent | OMB - OS No
the lifetime of the instance on Pools Specific
DB_BLOCK_SIZE Data block size 2K 2K-32K No
DB_CACHE_SIZE Size of buffer cache 48MB 1 granule | Yes
upwards
SHARED_POOL_SIZE Size of the shared pool 64MB 300Kb - Os Yes
Specific
JAVA_POOL_SIZE Size of Java pool 20KB 20KB - 2GB Yes
LARGE_POOL_SIZE Size of Large pool for shared | OMB OMB to 2GB Yes
server session memory
OPEN_CURSORS Max number of open 50 1 t0 4294967295 | Yes
cursors session can handle
Logging Determines if logging is LOGGING LOGGING/ Yes
performed NOLOGG ING
Caching Determines if caching is NOCACHE CACHE/NOCACHE | Yes
performed
LOB Cache Determines if caching of OFF ON/OFF Yes
multimedia data performed

Table 6-2 Oracle parameters that are altered

DB_BLOCK_SIZE and SGA_MAX_SIZE are both static parameters that must be set when the
database is initially created. The default value of DB_BLOCK_SI1ZE is too small and therefore it
is increased to 8KB for these experiments, which improves the performance when dealing

with multimedia data.

The value of SGA_MAX_SIZE must be as large as the total size of the pools contained in the
SGA (the sum of the buffer cache, shared pool, java pool, and large pool). It is set to 400MB
for these experiments, which allows for variation in the sizes of the pools, such as the
DB_CACHE_SIZE and the JAVA_POOL_SI1ZE. The sizes of these pools can easily be altered as
the parameters controlling them are dynamic. The DB_CACHE_SIZE is increased to 200MB
since the default value is too small to handle the large volume of multimedia data. The
JAVA_POOL_SIZE is increased to 40MB as the code is written in Java and may exceed the
default storage reserved. The values of the SHARED_POOL_SIZE and LARGE_POOL_SIZE are not
changed as their values are of less importance given that the experiments are run in dedicated

mode.

Logging and caching are implemented in most databases to enable recovery and speedup
certain operations in the database. The default setting, which is to have them turned on, is
used for all of the experiments, except the experiment to explicitly test the effect these values

have on the performance.

84

6.4 Relevancy Tests

6.4.1 Design of Relevancy Tests

MORD is designed to be as relevant as possible, while only focussing throughout on basic,
but essential functionality, as well as including test data consisting of common data formats.
A principal requirement of a relevant benchmark is to be accurate, and thus it is necessary to
test that MORD is accurate. Tests at each stage during the design of MORD indicate that it is
designed correctly, but tests are still needed to show the accuracy of its overall operation.
Unfortunately, proving the accuracy of MORD is made difficult by the fact that an alternative
benchmark that measures the performance of multimedia databases is not available with
which the results of MORD could be compared. Instead, evidence of it being accurate come
from demonstrating that the manner in which the performance is timed behaves as expected in
addition to showing that the results obtained from MORD are repeatable. For example, it must
be tested that the time recorded for multiple queries is equivalent to the total time that would
be recorded if each individual query was timed. Additional evidence that MORD produces
correct results comes from the assessment of hypotheses in the tests that follow. In general,
results that are as expected, or whose variation is explainable, suggest that MORD is accurate.
These methods do not conclusively prove that MORD is accurate, but together they strongly
support the likelihood that it is.

Additionally, MORD is relevant in that it allows the user to select the operation, datatype, and
repetition in the dataset that are tested. This feature is particularly important in a benchmark,
for example, as a user might have an application where it is only relevant to test the insertion

of video data.

6.4.2 Test 1. MORD’s Measurements are Repeatable

To illustrate that the measurements recorded by MORD are repeatable, individual results are
analysed instead of averaging the results as with the other tests. These results are compared to
verify that they are either similar or there is a justifiable reason for their difference. The
standard deviation is used to calculate the amount of variation there is between the different

results. The formula for standard deviation is:

N (3’ — (Xx)*/n (n-1))

The lower the resulting standard deviation, the more repeatable are MORD’s results.

85

6.4.3 Test 2: MORD’s Timing Method is Designed Correctly

Test 2 aims to show that the code used to measure the response time is designed correctly in
order to verify that MORD’s response time is measured accurately. It must be tested that the
time for the whole loop is equal to the sum of the time for performing each individual
operation. This is achieved by including additional code to time the individual queries and

comparing the times they produce with the total time.

6.4.4 Test 3: Specified Queries Can Be Tested by MORD

The queries that a benchmark is required to evaluate in various contexts are different, and thus
MORD should enable the user to select the operations to be tested. Such a feature is
necessary, for example, in the testing of bulk loading, as bulk loading influences only the

insert query.

Bulk loading is essential when a large amount of existing data is inserted into a new
application, either from a file system or an older application. Bulk loading presents a unique
situation in that it is once off and can be restarted if problems occur. Two database operations
that can be configured differently for bulk loading are data caching and logging. Data caching
involves storing data in memory to speed up its subsequent retrieval, while logging involves
the tracking of operations in order to recover a database. Oracle allows both of these database
operations to be turned on or off. They slow down queries and significantly decrease the
database’s performance and so should be turned off if not imperative. For bulk loading, they

are not necessary.

While demonstrating that MORD can focus on a specified query, Test 3 reflects a simple
hypothesis about bulk loading (hypothesis 1):

Turning Off Caching and Logging Improves Performance When Bulk Loading

The results of testing this hypothesis can also be used to show the effect on the performance

of caching and logging.

Test 3 investigates the response time for the insert query with all three multimedia datatypes
used in this thesis, that is, images, audio, and video. The relevant parameters for testing
hypothesis 1 include tablespace parameters CACHE and LOGGING. The values of the tablespace
parameters must either be set to NOCACHE/NOLOGGING, or alternatively CACHE/LOGGING.

86

(The combination CACHE/NOLOGGING is not permitted by Oracle.) The database configurations

used for Test 2 are shown in Table 6-3.

Datatype Operation | Performance Metric | Parameter Settings
Database Image, Audio, | Insert Response Time NOCACHE,
Configuration 1 | Video NOLOGGING
Database Image, Audio, | Insert Response Time CACHE, LOGGING
Configuration 2 | Video

Table 6-3 Database configurations for Test 2

The values of the parameters can be altered using Oracle’s Enterprise Manager. A screenshot
displaying Oracle’s interface to alter these parameters is shown in Figure 6-1.

#N Benchmark

ki Oracle Enterprise Manager Console Standalone

nfiguration Help DRACLE
Enterpriseiianager

LARGE - MMEDIA A
lj?zlnstance General Constraints Storage Loh Storage Statistics Constraints Storage

Schema ™ Parallel

- Advanced Qu Degree: @ Default © Value

S Array Type

Lagging
- Cluster =

. ® | OGGIMNG - Redo logs are generated. Updates are slower but recoverable.
o Database Lin

&
[c:
3
3
F-_JDimension T MNOLOGGING - Mo redo logs are generated. Updates are faster but not recoverable.
- Function

= Index I Place frequently accessed data to the top of the buffer cache. (CACHE)

m&-JJava Source

- Materialized 4

- Materialized 4

[~ MONITORING - Collects modification statistics on a table.

Figure 6-1 Screenshot to show how the caching and logging values are controlled

The expected results from Test 3 include a demonstration that MORD enables the user to
select the required queries, as well as results that reveal the extent to which the performance

can be improved by turning the logging and caching off.

6.4.5 Test 4: MORD Can Focus on Certain Datatypes

The datatypes that a benchmark must evaluate differ according to the application, and thus
MORD should allow the user to select the datatypes that are tested. For example, an
application that is designed to store identification photographs of people and contains no other
multimedia data would have no need to evaluate the performance of retrieving video data. To
verify that MORD can focus on a single datatype, a test is designed in conjunction with the

test that follows, Test 5, to evaluate the performance of images only.

6.4.6 Test 5: MORD’s Dataset Composition Can Be Varied

Since the dataset that is affected by the queries of an application can vary, it must be possible

for the user to alter the composition of MORD’s dataset. For example, a situation where the
87

composition of the dataset is important is the investigation of the effect of the buffer cache.
The chance of data from the dataset being stored in the buffer cache is determined by the
frequency with which the data is accessed. A factor that improves the likelihood of the data
being stored in the buffer cache is the size of the buffer cache itself. The larger it is, the
greater the amount of data it can store, which increases the probability that the required data is
stored in memory. If the data is already in the buffer cache it reduces the physical 1/0O
overhead and improves performance, given that memory access is faster than physical disk

accCess.

However, there is a limit to the performance improvement that can be gained from increasing
the size of the buffer cache. Essentially, an increase in the cache size over and above the
amount of frequently accessed data would not continue to produce a performance
improvement. The general rule is that the buffer cache should, at a minimum, be large enough
to store the largest data item found in the database, which is often considerable for multimedia

databases. These ideas can be summarise simply by the following formula:
1BCS = 1Prf (Greater 1Prf as DSR approaches 100 and BCS approaches size of DS)

Where: BCS = size of the buffer cache,
Prf = performance of the system,
DSR = repetition in the dataset,

1 = increase.

This formula implies that the performance increase is greater as more of the data in the dataset
is repeated, especially if the size of the buffer cache is large enough to contain the entire
dataset. Performance spikes occur when the data is moved out of the cache and replaced by

new data, slowing down the performance.

Test 5 reflects a hypothesis based on standard buffer cache theory to demonstrate that the
composition of MORD’s dataset has been altered. Hypothesis 2 is as follows:

The Buffer Cache Is Most Effective If

a) The Same Data Is Frequently Accessed and
b) It is Large Enough to Hold This Data

In Test 5, the response time is measured for the select and update operations, since they are
the most likely to be affected by the size of the buffer cache. Three different datasets are

tested, where the quantity of data repeated in them differs. Dataset 1 consists of only unique

88

items for each query and thus has no repetition. Dataset 2 accesses unique data for a quarter of
the test, then for the other three quarters it goes back to the first data item and accesses the

same data previously manipulated. Dataset 3 accesses a single data item repetitively.

Since Test 5 is implemented in conjunction with Test 4, it is run for images only. The most
significant database parameter for this test is the BUFFER_CACHE_SI1ZE, which controls the
size of the main buffer cache. The three values that are tested for this parameter are selected
based on the sizes of the image dataset, and they are 16MB, 100MB, and 320MB. The

datasets and configurations tested are shown in Table 6-4.

Dataset C AEEEFEEB) Performance Metric Operation Datatype
1 16 Response Time Insert, Select, Update, Delete Image
2 16 Response Time Insert, Select, Update, Delete Image
3 16 Response Time Insert, Select, Update, Delete Image
1 100 Response Time Insert, Select, Update, Delete Image
2 100 Response Time Insert, Select, Update, Delete Image
3 100 Response Time Insert, Select, Update, Delete Image
1 320 Response Time Insert, Select, Update, Delete Image
2 320 Response Time Insert, Select, Update, Delete Image
3 320 Response Time Insert, Select, Update, Delete Image

Table 6-4 Database and benchmark configurations for Test 5
The Oracle Enterprise Manager Console is used to change the value of the buffer cache. A

screenshot is shown in Figure 6-2.

% Oracle Enterprise Manager Console Standalone

S Metwork
Bl General Recovery | Resource Monitors
é}DDa!anasas
9 L 3 DvLAN SGA Farameters
e -kl KAUNA 5 -
9 8 B charedPool: |61 |©
-2 LARGE - MMEDIA AS §
P L @ nstance B Bufercache: [200 |-
i on —
Lrgoroot o [
— Java Pool =
v
E Total SGA: 10477018 MB
0 - JResource Plang)s
‘@ . Buffer Cache Size Advica
S—
m & User Segsion Parameters
st secury The maximum number of ugers who can be concurrentt jven i
- by connected to the database st any given time. The PROCESSES
E% Storage initialization parameter is hased on the value of the maximum number of ugers and the number of background processes
Qg @5 Replication
&3 OLAP Max. Concurrent Users: 700 =
‘% S JvM The maximum amount of memary to use for a sort. Larger values of SORT_AREA_SIZE impraves efficiency of large sorts
AR Workspace
i oG WEDIA Sort Area Size: 1024/
>-8 MEDIA_ATHENAICT F
55 0EM Under peak load when all concurrent users are using their max sart size allocation, the overall pga memary consumption will be at
least 716800 KB
>8] OEMRER S
o TEST

Figure 6-2 Screenshot to show where the size of the buffer cache is altered

89

The expected results for Test 5 should demonstrate the ability to alter the composition of
MORD’s dataset. They should also indicate the effect of the buffer cache on the database’s

performance, as well as the most optimal size to achieve the best performance.

6.5 Adaptability Tests
6.5.1 Design of Adaptability Tests

The adaptability tests show that MORD is portable, scalable, and that the precision of the

measurements can be altered.

Portability is not achieved in MORD as explained in Section 1. In an attempt to make MORD
as portable as possible, the code is written in Java, a portable programming language. The
code further supports adaptability by its modular design, which makes it easy to replace
portions of it, and the comments that indicate clearly where Oracle-specific code must be
replaced for a different DBMS. MORD is also designed so that it allows the user to select

different databases to connect to and evaluate.

To prove conclusively that a benchmark is portable, it would have to be shown that it could
evaluate a different DBMS, such as Informix or DB2. The steps necessary to connect to
another database include: adjusting the schema, changing the connection string, and altering
the Oracle specific code in the methods. Such tests could not be performed because of the
unavailability of alternative multimedia databases. However, the steps taken to alter the
Oracle database configuration and connect to a different Oracle database are similar to those
required when another DBMS is being evaluated. These are therefore tested instead, and
although they do not produce compelling evidence of portability, they do demonstrate that

MORD has a number of the necessary features for it to be a portable benchmark.

A different Oracle database can either be a database that has been modified, for example, by
adding a new column to a table, or a completely new database that has been created from the
start and uses different storage space. The ability to alter the design of the benchmark’s
database has many uses. For example, this capability is required to compare the performance
of alternative methods of handling multimedia data, such as BLOBs and Oracle’s InterMedia
datatype. Another example is the evaluation of extra functionality, for instance creating
thumbnails or signatures, where columns must be added to tables to store this data. To modify

a database, adjustments must be made to the schema while evaluating a completely different

90

database involves the alteration of the connection string that determines the database

evaluated by MORD.

A scalable benchmark must have the ability to measure the performance of databases with
different amounts of data. Varying the amount of data can be interpreted in two different
ways. The size of data can be changed or the number of items in each query can be altered,
where in both cases the overall volume changes. Having a benchmark that is scalable is
valuable in predicting how the performance of the database will react to an increase in its size,
and can be used to indicate the maximum size of a database to attain a certain level of
performance. The scalability test demonstrates that the amount of data can be varied, both in

number of items and amount of data.

Finally, MORD is adaptable in that the timing method can be altered in terms of both
granularity and type. Granularity refers to whether individual tasks or whole operations are
measured, whereas the type refers to whether response time or throughput is measured. The
granularity test shows that the measurements taken by MORD can be altered according to the

requirements of the application being tested.

6.5.2 Test 6: MORD Can Connect to Different Databases

The ability to connect to different databases is a common requirement of a benchmark. For
example, if a static database parameter is being examined then a new database is needed for
each value tested as the parameter cannot be modified after the database is initially created.
Such a static parameter is the BLOCK_S1ZE, which determines the smallest unit of physical
storage, and as a result controls the amount of disk I/O required for each data item (see
section 4.4.2 for more information on data blocks). If handling larger data, assigning a bigger
value to the BLOCK_SI1ZE should improve the performance by increasing the size of the chunks

that the data is divided into.

Test 6 reflects a hypothesis based on theory about the size of the data block to demonstrate
that MORD can connect to a different Oracle database. Hypothesis 3 is as follows:

An Increase in the Block Size Improves the Performance When Dealing With Large
Data

The response time is measured for all three datatypes, that is, images, audio, and videos, as

well as the full set of operations, that is, insert, select, update, and delete. It is sufficient to test

91

only two values for the BLOCK_SIZE as the primary aim of Test 6 is to demonstrate that
MORD can connect to different databases and not to prove hypothesis 3 fully. These values
are 4K and 8K, rather than the default value of 2K which is too small for multimedia data.

The database configurations are given in Table 6-5.

Datatype Operation Performance Metric | Block Size
Database Image, Audio, | Insert, Select, | Response Time 4K
configuration 1 Video Update, Delete
Database Image, Audio, | Insert, Select, | Response Time 8K
configuration 2 Video Update, Delete

Table 6-5 Database configurations for Test 6

The test databases must be created prior to running Test 6. Unfortunately this process is not
automatically performed by PL/SQL scripts or Java code provided by MORD, as it is the case
with the other tasks. The easiest way to create the databases is by using an Oracle wizard.
Once the databases have been created, their schemas must be generated by executing the
schema script generic.sql. It can be run using the SQL*Plus Worksheet as shown in Figure

6-3. (A complete explanation of this procedure is given in Appendix B).

[SOL*Plus Worksheet

File Edit “Worksheet Help ORACLE

[i0: \Eenchmark generic. sql|

L ¥ &

?
%

B

Tahle created.

Sequence created.

Tahle created.

Sequence created.

Tahle created.

Figure 6-3 Screenshot of SOL*Plus worksheet to generate database schema

92

The database that MORD tests is determined by the connection string consisting of the
database name, username, and password. The connection string’s value can be specified in

MORD’s code.

The results are expected to show that MORD can connect to a different database as well as to

reveal the extent to which the BLOCK_SI1ZE can improve the performance of the database.

6.5.3 Test 7: MORD’s Database Design Can Be Modified

Test 7 demonstrates that the database design can be modified by altering the generic.sql
script. This test is not run independently, but prepares the database to be used for the
simplicity test where MORD must be extended to evaluate the performance of the database
when handling documents. The preparation is achieved by modifying the schema to include
an additional SEQUENCE and a table to support documents. The code to create the SEQUENCE is

shown in Figure 6-4.

CREATE SEQUENCE DOCUMENT_sequence
INCREMENT BY 1
START WITH 1
NOMAXVALUE
NOCYCLE
CACHE 10;

Figure 6-4 Code to create the document SEQUENCE

The code to create a table for the document data should include a primary key, a column to
store the document data, and a column to hold a description of the data. The SQL code to

generate such a table is shown in Figure 6-5.

CREATE TABLE DOCUMENT(DocID NUMBER PRIMARY KEY,
DocData ORDSYS.ORDDoc,
DocDescription VARCHAR2(200));

Figure 6-5 Code to create a table to store the document data

Once these segments of code have been included in the schema script, the script can be

executed and the creation of a new table can be verified with the use of Oracle’s interface.

6.5.4 Test 8: The Amount of Data Tested by MORD Can Be Varied

To determine the maximum size of database that a machine can adequately support, it is
necessary for a benchmark to test databases of different sizes. One method of accomplishing
this task is to test for the existence of linear scale-up. Linear scale-up here can be defined as a

situation where an increase in the data being manipulated produces an equivalent increase in
93

the response time. For example, if the response time was originally 10ms, by doubling the
number of items inserted the expected response time then becomes 20ms. Near linear scale-up
should occur until a threshold is reached, where the threshold indicates the largest database

size that the system can productively support.

Test 8 reflects a hypothesis based on the theory related to linear scale-up to demonstrate that

the size of MORD’s database can be increased. Hypothesis 4 is given as:
Increasing the Amount of Data Produces Near Linear Scale-up

The amount of data can be varied both in terms of number as well as size of the items to test
scale-up. The relevant benchmark parameter is the variable that controls the number of data

items for each query. No database parameters are significant.

In Test 8, the response time is measured for each type of operation. The three values that are
assigned to the number of items include a base value, a value half that size, and a value
double that size. The amount of data is assigned the values: small, medium, and large. The

benchmark configurations for Test 8 are given in Table 6-6.

Datatype Operation Database Size | Performance | # Items
Metric
Benchmark Image, Insert, select, | Small, Response Half

configuration 1 | Audio, Video | update, delete Medium, Large | Time

Benchmark Image, Insert, select, | Small, Response Standard
configuration 2 | Audio, Video | update, delete Medium, Large | Time

Benchmark Image, Insert, select, | Small, Response Double
configuration 3 | Audio, Video | update, delete Medium, Large | Time

Table 6-6 Benchmark configurations for Test 8

The results of Test 8 are expected to demonstrate that the amount of data can be increased and
to determine whether or not linear scale-up occurs. Results showing a trend of linear scale-up

would provide some evidence that MORD’s results are accurate.

6.5.5 Test 9: The Granularity of MORD’s Measurement Can Be Varied

The ability to alter the granularity of the timing is required, for example, when it is important
to determine which step out of many is slowing done an operation. Test 9 measures the
response time of each individual operation during the insertion of image data. Its results are
subdivided into four sections, namely: initialising the object (/OT), importing data into the

database (I/7), extracting the data properties (E7), and generating a thumbnail for images
94

(TGT). The variables mentioned in parentheses represent the times to complete the various

sections and are related by the following formula:

Tot = 10T+ IT +ET + TGT
6.6 Simplicity Tests
6.6.1 Design of Simplicity Tests

The ease of using MORD should be apparent through all tests, and as such no testing is
performed. It is still necessary to test explicitly whether or not the benchmark’s functionality
and test data can be extended easily. The ability to extend a benchmark makes it adaptable to

future applications, and as a result increases its lifespan.

6.6.2 Test 10: MORD’s Test Data Can Be Extended

The aim of Test 10 is to demonstrate that MORD can be extended to include new data, such
as document data. This document data includes one Microsoft Word document, one Acrobat
Reader document, one Microsoft Excel spreadsheet, and one PowerPoint document. MORD’s
design requires that several steps are taken to prepare test data, and so these must be carried
out for the document data. After these steps have been completed, the new test data is now

ready to be used by MORD in Test 11.

6.6.3 Test 11: Functionality Can Be Added to MORD

Test 11 adds extra functionality to MORD to evaluate the handling of documents, using the
document table created in Test 9 and the document test data prepared in Test 10. This extra
functionality includes the measuring of the response time for inserting and deleting
documents. The code is written in a separate file named DocExperiment. java. The outline of

this code, showing all the methods, is given in Figure 6-6.

public class DocExperiments {
DocExperiments(..) { .. }
public OracleConnection connect() throws Exception{ .. }
public void insertRTStm(..) { .. }
public void deleteRTStm(..) { .. }
public void control (..) { . }

Figure 6-6 Outline of code to include documents

95

The code has a constructor, a method to connect to Oracle, methods to test the response time
for inserting and deleting the documents, and a method that controls which of the other
methods are executed. If additional functionality is added, the code can either be run
independently by using a main method, or through the file MultiUser.java by editing this
file to run the new code. To compile and run the code, the commands given in option A

(Figure 6-7) are used for the former, while those given in option B are used for the latter.

Option A

Javac DocumentTest. java
Java DocumentTest
Option B

jJavac MultiUser.java
jJava MultiUser

Figure 6-7 Code to compile and run new Java classes

The expected result of Test 11 is that the new schema, test data and functionality are all

working correctly, thus proving that MORD can be extended.

6.7 Summary

MORD is validated by testing if it meets its objectives of relevancy, adaptability (portability
and scalability), and simplicity. Relevancy tests consist of six different tests. These include
tests to show that MORD’s measurements are repeatable, the timing code is accurate, specific
operations can be evaluated, the distribution of the workload can be varied, selected datatypes
can be focused on, and the granularity of what is measured can be altered. The relevancy
experiment also tests two hypotheses to determine the effect of turning off the caching and
logging when bulk loading and the relationship between the sizes of the buffer cache, the

amount of repetition in the data, and the performance.

The adaptability experiment checks that MORD is as portable as possible and that it is
scalable. The portability tests consist of two tests: the first demonstrates that MORD can
connect to different databases while the second shows that the design of the database can be

modified. The former also tests the performance of Oracle related to the size of its data block.

The simplicity experiment is also performed in two tests, which demonstrate how additional

test data, as well as functionality can be added to extend MORD. The scalability tests consist

96

of a single test to prove that the amount of data, in both size and number of items, can be

varied. This also tests whether linear scale-up is achievable in Oracle for multimedia data.

The environment in which these tests are performed does not contain any special physical
storage hardware, although it does have a relatively large amount of memory and a relatively
fast processor. The default database configuration for the experiments has larger values for
BUFFER_CACHE_SIZE, JAVA_POOL_SIZE, SHARED POOL_SIZE, and OPEN_CURSORS than the

default Oracle configuration.

97

Chapter 7 : Results and Informal Analysis

The previous chapter detailed the design of tests to validate MORD. This chapter
presents the results and an informal analysis for these tests. The first set of tests
indicate that MORD is relevant by showing that its measurements are repeatable,
its timing methods are designed correctly, and that both the queries and dataset
can be altered. The second set of tests indicate that MORD is adaptable by
showing that it can connect to different databases, the design of the databases can
be altered, that it is scalable, and that the granularity of the measurements can be
altered. The last set of tests indicates that MORD is simple to extend in terms of

functionality as well as test data.

7.1 Format of Results

Results are variably presented in the form of bar graphs (Tests 1, 3, 6, 8, 10, and 11), scatter
graphs (Test 1), pie charts (Tests 5 and 9), and tables (Tests 5 and 6). Tables of the full results
can be found in Appendix C.

MORD can be used to measure either throughput or response time, but for the set of
validation tests only the response time is recorded. The response time is measured in
milliseconds, and can be presented as total times (usually given in seconds), the arithmetic
mean, a percentage, or as the values calculated with additional formulas. The total time is the
sum of response times for a set of tests, and thus it is calculated for the number of items, such
as 20 images, multiplied by the number of times the experiment is run, such as 5 runs. The
total response time is used in Test 1 for the scatter graph of raw results, and in Test 8 as it

shows the increase in the total time as the number of items or the database size increases. The

98

average response time is the time taken for a single item and is calculated using the arithmetic

mean. It is used in Test 8 to determine if linear scale-up has been achieved.

Since MORD is primarily designed to be a comparative tool, it is useful to present the results
using a measurement that is not dependant on the total time, such as percentage. For example,
in Test 3 and 6 the results are presented as percentage to show the increase in performance
when caching/logging are turned off and with a large block size. Further calculation is

sometimes necessary; for example, in Test 1 the standard deviation is required.

The results are recorded for different data formats, and can be presented either separately or
as the average of the formats for a datatype. The results are given for each format in Test 1
because it evaluates raw results, and in Test 9 as it shows the variation in the distribution of
time between the different formats. Most of the other tests give the average for all of the

formats.

The tests are usually run for all datatypes, that is, images, audio, and video, and for all the
operations, that is, insert, select, update, and delete, unless explicitly stated. Since the results
are generally similar for the various queries and datatypes, only a selection of the results are
presented in this chapter. The full set of results can be seen in the Excel timesheets included

with the thesis.

7.2 Relevancy Tests

7.2.1 Test 1: Are MORD’s Measurements Repeatable

Test 1 indicates whether or not the measurements recorded by MORD are repeatable by
examining the variation between the results of consecutive runs of the benchmark. A scatter
graph is a useful visual aid to display the data distribution. The response times for inserting

and updating a selection of small and medium images are given in Figure 7-1.

99

12

+ Insert Small BMP
Insert Small JIPG

x Insert Small TIF

+ Insert Medium GIF

- Insert Medium JPG
Insert Medium Tiff

= Update Small BMP

8 1 Update Small GIF

¢ Update Small TIF
Update Medium BMP

+++++-"'. Update Medium GIF

Update Medium JPG

10 ~

Response Time (sec)
(o]

X
X7 x XX

Response Time (Sec)
o [N w S (92} (o] ~ [oe}

10 15

[
[

o

(&)

Series
O T T T T T T 1
0 10 20 30 40 50 60 70

Series

Figure 7-1 Distribution of image response times

The inset shows the results for inserting small BMP and JPG images, where some of the
results deviate from the rest of the results. As with all the results, the response times that vary
significantly from the other results are excluded. These values are excluded as they are caused
by other influences, such as Oracle background processes, and using them would distort the
results that are intended to be measured. In the inset graph it can clearly be seen that two
results for BMP images and only a single result for JPG images vary considerably from the
rest. In the main graph these values have been eliminated in the final results. A similar

process was used for all the results.

The patterns seen in Figure 7-1 show that for each set of results the response times are close
together, indicating that MORD’s measurements are repeatable. The percentage by which the

results vary on average is calculated using the formula:
(Average Standard Deviation/Arithmetic Mean)*100

The average standard deviation is a measure of the distribution of the response times. It is

divided by the arithmetic mean and converted to a percentage so that it is not dependant on

100

the size of the response time. Evidence of repeatability comes from small values resulting

from this calculation. Figure 7-2 gives the averages for each datatype/operation.

3.93%

4.00%—

3.50% —

3.05% 2.99%

3.00%

2.52%

2.50%
2.13%

2.00% — 1.77% O Image

B Audio
O Video

1.50%—

0.80%

(Average Standard Deviation/Average)%

1.00%—

0.50%

Insert Select Update Delete
Operations

Figure 7-2 Summary of variation in the distribution of the results (Test 1)

The largest resulting percentages that are calculated for the three datatypes, namely image,
audio, and video, are all between 5% and 6%. Approximately 73% of the results vary by less
than 3%, and 86% vary by less than 4% showing that the amount of variation is small. An
informal analysis of these results indicates that MORD’s measurements are repeatable, since

the values are reasonably small.

7.2.2 Test 2: Is MORD’s Method of Timing Designed Correctly

Test 2 checks if MORD’s response time method is designed correctly through testing that the
time recorded for each individual loop is approximately equivalent to the time recorded for
the whole loop. This is achieved by running the tests with additional code to measure the time

for each individual operation, as shown in bold in Figure 7-3.

101

ts3 = System.currentTimeMillis();
for (int i=1; i <=num; i++)

{
ts5 = System.currentTimeMillis();
ts6 = System.currentTimeMillis();
timerl = new String(Long.toString(ts6-ts5));
numl = new String(Integer.toString(num));
text = "Time to initialise 1 audio object is:™ + timerl + "\n";
f.write(text);
Y/ /for

ts4 = System.currentTimeMillis();

timer2 = new String(Long.toString(ts4-ts3));

numl = new String(Integer.toString(num));

text = "Time for " + numl + " audio objects is:" + timerl + '"\n";
f.write(text);

Figure 7-3 Timing of individual queries

The times taken for each individual operation, as measured by timerl, are added up, and the
sum of these times is compared to the total time returned by timer2.The difference between

these is calculated using the formula:

((results for timer2) - 2 (results for timerl))/ (results for timer2)

The resulting differences for audio data in percentages are shown in Figure 7-4.

2.5%

2.0%

S

Py

£

'_

o 1.5% —

%]

c

a

@ @ Insert
o W Upload
c

T 1.0%—+ | 0O Select
b= 0O Update
(0]

§ M Delete
£

0.5%—

0.0%74

wav mp3 au

Small Medium Large
Database Size/ Audio Format

Figure 7-4 Difference between timing individual queries and whole loop (Test 2)

The difference between timing each individual query and the whole loop is small in all cases.

The initialisation of an object, uploading of data, and selecting of that data produce
102

insignificant differences, while for the other operations this difference is slightly more
noticeable. It can be seen from Figure 7-4 that it never exceeds much more than 2%, and from
further analysis it is calculated that approximately 75% of the values have less than a 1%
difference. An informal analysis of these results suggests that it is sufficient to measure the

whole loop for the response time code.

7.2.3 Test 3: Can MORD Focus on a Query

Test 3 indicates that MORD allows the user to select the queries tested and as a secondary aim
it determines the effect on the performance of using caching and logging when inserting data.
In the design phase tests have been conducted to show that all of the queries work correctly
when selected. To prevent a query from running it must be commented out in the code, as

shown for select and update in Figure 7-5.

public void control (String cmd)
{

OracleConnection con = null;
String smviddir, medviddir, larviddir, command;

try
{

i F(command=="al I'")

calllnsert(outbata, con);
//callSelect(outData, con);
//callUpdate(outData, con);
callDelete(outData, con);

Figure 7-5 Commented out queries

Although it is possible to comment out any of the queries, to get accurate results MORD
requires both the insert and delete queries to be performed for every experiment run. If the
insert query is not run, there is no data for the other queries, whereas if the delete query is not
run, there is too much data, and so excluding either of these leads to incorrect results. The

user can therefore only decide whether the select or update queries are performed.
Test 3 was run with the insert and delete operation for two different database configurations,

one with caching and logging and the other without these. The results are used to evaluate

Hypothesis 1 and are shown in Figure 7-6.

103

50% —

45%

40%

35%

30%

25% — @ Small

| B Medium
20% — 0O Large

Increase in Performance (%)

15%

wav mp

0%
3 au avi mov ram
Audio and Video Formats

Figure 7-6 Increase in performance when caching and logging are turned off (Test 3)

The informal analysis of these results shows that in all cases for audio and video data there is
an improvement in the performance when caching and logging are turned off. Similar results
were found for images. The improvement ranged from just less than 5% to nearly as much as
50%, which is significant. Further analysis is required to determine the reasons for this
variation in the results, but from these results it is strongly recommended that caching and

logging are turned off for bulk loading.

7.2.4 Test 4 and 5: Can MORD’s Dataset Be Altered

Test 4 investigates if the composition of MORD’s dataset can be altered to contain a single
datatype, while Test 5 investigates if the repetition in MORD’s dataset can be altered. These
are both shown by testing Hypothesis 2, which examines the effect of altering the size of the
buffer cache in conjunction with varying the amount of repetition in the dataset for image

data.
In these tests it is important that the buffer cache is totally empty prior to running them and,

unlike the other tests, the different database sizes must be tested separately. The reason for

running these tests in such a manner is that the expected results are based on the size of the

104

dataset. If testing of the different database sizes are mixed, then the amount of data in the

buffer cache will change.

It was expected from prior knowledge of Oracle that the results would show a pattern of
increasing response times for a decrease in the buffer cache size if the size of the unique data
in the dataset exceeds the size of the buffer cache. The size of the unique data is dependant on

the amount of data repeated in each of the three datasets, and is as shown in Table 7-1.

Database Size | Small Medium Large
Dataset 1 12.5MB 125.0MB 1250.0MB
Dataset 2 3.0MB 30.0MB 300.0MB
Dataset 3 0.2MB 2.0MB 20.0MB

Table 7-1 Total size of image data (5 executions)

Dataset 1 always has the largest amount of unique data as it consists of only distinctive item
and thus it is the sum of all of the items. Dataset 2 is much smaller as it only accesses unique
data for a quarter of the test, while Dataset 3 is the smallest as it accesses a single data item

and so is the size of that item.

There should be no effect on the performance if the dataset’s size is smaller than the buffer
cache’s size, otherwise the response time should be larger to varying degrees depending on
the difference between the sizes of the two. Based on this, the expectations are as summarised

in Table 7-2.

Buffer Cache | Dataset | Response Time | Response Time for | Response Time for
Size (MB) Type for Small Dataset | Medium Dataset Large Dataset
1 No Effect Larger Response Time | Larger Response Time
16 2 No Effect Larger Response Time | Larger Response Time
3 No Effect No Effect Larger Response Time
1 No Effect Larger Response Time | Larger Response Time
100 2 No Effect No Effect Larger Response Time
3 No Effect No Effect No Effect
1 No Effect No Effect Larger Response Time
320 2 No Effect No Effect No Effect
3 No Effect No Effect No Effect

Table 7-2 Expected results for Hypothesis 2

105

This means, for example, that the results for the database configuration with a buffer cache of
320MB should be approximately the same in all cases, with the exception of Dataset 1 with

large data which should have a larger response time. The actual results are given in Table 7-3.

Buffer Cache | Dataset | Response Time for Response Time for Response Time for
Size (MB) Type Small Dataset (ms) Medium Dataset (ms) | Large Dataset (ms)

1 7.98 8.95 9.42

16 2 7.60 8.23 8.38

3 7.47 7.55 7.90

1 7.96 8.49 8.86

100 2 7.69 7.72 8.03

3 7.29 7.44 7.47

1 7.80 7.98 8.63

320 2 7.52 7.62 7.60

3 7.30 7.37 7.41

Table 7-3 Actual results for Hypothesis 2

These results show a general trend, where the entries that were marked as not being affected
are all smaller than 8ms and those that were marked as having a larger response times are all
greater than 8ms. It is also interesting to note that the largest response time was produced for
the database with the smallest buffer cache and the largest dataset. As expected, an informal
analysis of these results suggests that the performance is slower if the dataset is larger than the

buffer cache.

Ideally, the response times should be the same for the tests where the dataset fits into the
buffer cache, but when working with such small values it is difficult to get precise
measurements. Any small variation that is caused, for example, by a background process,

could have easily altered the results by a fraction of a millisecond.

A better understanding of the effect that altering the size of the buffer cache and the repetition
in the dataset has on the performance can be gained by calculating the percentage by which
the response time improves. This is achieved for Dataset 1 and Dataset 2 using the formula:

((DS1 —DS2)/ DS1)*100

Where DS1 = Dataset 1

DS2 = Dataset 2

A similar formula is used for Dataset 2 and Dataset 3. The results from applying this formula
are shown in Figure 7-7.

106

12%—

10% —

8% —

6% —
@I DS1&DS2

B DS2 & DS3

4%

Peformance Improvement (%)

2% —

0% —
sm-320 sm-100 sm-16 med-320 med-100 med-16 Irg-320 Irg-100 Irg-16

Database Size/Buffer Cache Size

Figure 7-7 Improvement in performance related to buffer cache and dataset

An informal analysis of these results shows that the combination of buffer cache size and
dataset affects the results of the smaller database less than it does for the larger database, as

expected. It also shows that when the size of the buffer cache is larger, the effect is smaller.

7.3 Adaptability Tests
7.3.1 Test 6: Can MORD Connect to a Different Database

Test 6 aims to show that MORD can connect to different databases by testing the performance
of a static parameter. A static parameter requires a different database for each value tested,

which in this case is the one that controls the data block size.

It is important to ensure that MORD is being applied to the correct database, especially if
there is more than one database being tested. This has been established prior to testing
throughout the experiments, but it is explicitly discussed in this test. In Test 6 it is crucial to
test that the correct database is being evaluated for each execution of MORD as it tests more

than one database.

107

The easiest way to verify that a certain database is being accessed is to shutdown the other
databases, and make sure that MORD still runs without producing error messages. Shutting
down a database can be performed through the Oracle Enterprise Manager Console or by
shutting down the database service for that database. The screenshot in Figure 7-8 shows the
Windows 2000 interface to perform the latter.
#, Services P] [
| acion wew || = o [EE FRB[(2]» = 0w |

Tree I Mame # | Description | Skatus | Startup Tvpe | Log O:I

% Services (Local) i cle Forms Server L Aukomatic i
%Oracle OLAP 9.0.1.0.1 Marual Locals
%Oracle OLAP Agent Manual Locals
% OracleCraHomed02ClientCacheg0 Manual Locals
% CracleCraHome9040ent Aukarnatic Locals
% OracleCraHome20ClientCache Marual Locals
% OracleCraHome0HTTPServer Aukarnatic Locals
% OracleOraHomed0Managementse, . Marual
% OracleOraHomed0PagingServer Manual
% CracleCraHome205MNMPPeerEnca. . Manual
% OracleCraHome05hMPPeerMast. .. Manual
% OracleCraHome20ThSListener Started Aukarnatic Locals
% OracleServiceDYLAN Aukarnatic Locals
% OracleServicek ALNA Aukarnatic Locals
% OracleServicel ARGE Starked Aubomatic Locals
% OracleServiceMEDTA Aukarnatic Locals
% OracleServiceOEM Manual Local=
% OracleServiceOEMREP Manual Locals
% OracleServiceTEST Automatic Locals
%Performance Logs and Alerts Configures... Manual Locals >
4 4

Figure 7-8 Screenshot of running services

This screenshot displays a list of the services running during an execution of MORD, where
in this particular case the LARGE database service is the only database open. It can be
presumed that different databases are being evaluated by MORD if the results for Test 6 show
a noticeable variation between the two database configurations. These results also assist in

determining the effect that BLOCK_SI1ZE has on the performance.

To calculate the improvement in the performance, further calculations must be performed on

the results using the following formula:
(Uresults for 4K) -2 (results for 8K))/2(results for 8K)

This formula calculates how much longer it takes, in percentage, when using a value of 4k for
the BLOCK_SIZE as opposed to a value of 8k. The increase in the performance as a result of

using a larger block size can be seen for audio data in Figure 7-9.

108

35%]

30%

25%

g

[

[$)

=4 — -

g 20%— N

o

E O Insert
£ 15%f] | |m Select
e O Update
g 0O Delete
£

10%—

5%

0% 4

avi mov

avi mov ram
Medium Large

Format/Database Size

Figure 7-9 Increase in performance if the block size is doubled (Test 6)

These results show that the response time decreased in all case for the queries performed on
the audio data when the database had a larger block size, 8k BLOCK_SI1ZE. The increase in
performance ranges from less than 5% to just more than 30%. Similar results were found for

the other datatypes.

A summary of the results for all the datatypes, images, audio, and video, and all the query

types, insert, update, select, and delete, are shown in Table 7-4.

Datatype % increase in response time
Images 11%
Audio 11%
Video 16%

Table 7-4 Summary of performance improvement for all datatypes

An informal analysis of the results shows an improvement at least 11% in all cases. These
results confirm that MORD has evaluated different databases and suggest that a larger
BLOCK_SIZE improves the performance of the database. Although having a larger BLOCK_SI1ZE
does come at the cost of possible space inefficiency, multimedia data typically requires large
amounts of space and thus wasting such small amounts is usually inconsequential. It is
implied from these results that, a larger BLOCK_SIZE improves the performance when dealing

with multimedia data, as holds with standard data.
109

7.3.2 Test 7: Can the Design of the Database be altered with MORD

Test 7 indicates that the design of MORD’s databases can be altered by adding a table to store
documents. The new table is created, as done with all the other tables, by running the schema
script, which has been altered to include the Document table. After running this script, the

Oracle Enterprise Manager can be used to check that the table has been created correctly. In

the screenshot shown in Figure 7-10 the details of the DOCUMENT table can be seen.

File Mavigator Object Tools Configuration Help DRACLE
Enterprisshanager

I Refresh Group

_JSequence
3 Synanyrm Name [DOCUMENT
CITable Schera: [MMEDIA |

Tablespace: [MULTIMEDIA |

General Constraints Storage COptions Loh Storage Statistics Constraints Storage

Bl AURCRASISEUTILITY
- CTHEYS

E-a HR

- WDEYS

o MME DA

Table: @ Standard © Groanized Wsing (ndex (0 W Use Ahstract Datatype
Columns

D F g Wl

Mame Schema Datatype Size Scale Ref MNulls? DefaultValue Scope Schema | Scope Tahle

DocID =Mone= NUMBER il 0
DOCDATA ORDSYS ORDDOC v
DOCDESCRIPTION | <Mone= WARCHARZ | 200 v

Figure 7-10 Screenshot to illustrate that the document table has been created (Test 7)

The DOCUMENT table consists of three columns to store the ID, the actual documents, and a

description of the documents, as it is supposed to.

7.3.3 Test 8: Is MORD Scalable

Test 8 indicates that MORD allows the user to vary the number of data items manipulated, as
well as test if linear scale-up occurs. When graphing the total times for different
query/datatype combinations, the fact that the number of items has increased is evident by the
increase in total response time. Three datasets are used where Dataset 2 consists of double the
number of items in Dataset 1 and half the number of items in Dataset 3. These datasets are

also selected so that their sizes increase by the same proportion.

It is easy to verify that the number of data items manipulated has changed, using either the
SQL query COUNT or the SQL query SELECT and manually counting, whereas it is more
difficult to verify that MORD correctly measured the response time. One method of testing
this is to check if the results are as expected, where the response times for Dataset 1 should be
approximately half the values recorded for Dataset 2, and in turn these values should be
approximately half the size of the values for Dataset 3. This can be seen in Figure 7-11 where

the total response times for inserting and updating are presented.

110

4,500

4,000

3,500+

3,000+

O Dataset 1
2,500 W Dataset 2
O Dataset 3

2,000+

Response Time (sec)

1,500

1,000

500

Image/insert Audio/Insert Video/Insert Image/Update Audio/Update Video/Update
Datatype/Query Type

Figure 7-11 Effect of altering the number of items (Test 8)

The results are as expected, as can be illustrated using the results for inserting images. Here,
Dataset 1 produces a response time of 227 seconds, Dataset 2 produces a response time of 439
seconds (which is almost double the first amount), and Dataset 3 produces the response time
1,070 seconds (which is just over four times the first amount). Since there is an increase in the
total response times this suggests that MORD is correctly measuring the response time as the

number of items in the dataset is increased.

Further analysis is still required to determine if linear scale-up has occurred. The average
results need to be normalised by dividing the total response time with the number of items for
each. The resulting values can be used to determine the effect that altering the number of
items has on the performance, where linear scale-up exists if the average results for a query
type are the same. The results for selecting and deleting images are used to illustrate this, as
seen in Figure 7-12, where both the total response times and their average values are

presented.

111

Average Response Time
407 33
—~ 35
[%2)
£ 30
“E_’ 251
= 207
8 % 151 12
74§
o
—~ 0
8 6 Select Delete
22 5 Operation O Dataset 1-Images
g > m Dataset 2 - Images
E o4l s O Dataset 3- Images
]
@ 2
2 3
3 1 2
x 2
0
1,
0,
Select Delete
Operation

Figure 7-12 Effect of altering the number of images for selecting and deleting (Test 8)

When comparing the results for Dataset 1 and Dataset 2, the response times for the select
queries differ by less than 5% and for the delete queries differ by approximately 3%. These
values are small, showing that in both cases near linear scale-up is achieved. If the variation
between Dataset 2 and Dataset 3 are compared there is a difference of 25% for the select
query and 16% for the delete query. This is a much larger variation than found between
Dataset 1 and Dataset 2, suggesting that a threshold has been reached somewhere between 20
and 40 images. If the number of items was further increased, it is likely that other thresholds
would be identified. Another possible explanation for such results is that there are initial
actions that take the same amount for all database sizes, such as initialising the object. If these
constant times are, for example, divided by a smaller amount when scaling the results, their
resulting values will have a greater effect on the overall results and thus make it seem as

though it takes longer for individual tasks.

To test if a database is scalable, an increase in the number of items as well as an increase in
the size of the items need to be tested. The three database sizes that are measured are small,
medium, and large, where the increase in size is by a factor of 10 for images, and
approximately 7 for medium audio and 5 for large audio. Since the databases are scaled by
about these factors, a rough method of calculating if linear scale-up exists is to scale these
results by dividing the response time for the medium database by the medium database factor

and the large database by the medium factor multiplied by the large factor. If linear scale-up

112

has occurred, the results should all be the same for a particular query/datatype combination.
Therefore the expected outcome is a pattern where the scaled results are the same for small,
medium and large databases. Figure 7-13 shows the results for inserting and updating both

audio and image data for the three different sized databases, as well as the scaled results for

these.
77.91
80— 1.40+
1.20 [
70+
o 1.004
[}
3 L
60 £ 080
-
b
c 0.60 =
o 2
@ 50 2
0
= o 0.40-
[}
E N
ld_.) 40+ 0.207 = Small
2 B Medium
8. 0.00+ = O Large
) Insert - Audio Insert - Image Update - Audio Update - Image
o 30 :
04 Operation/Datatype

Insert Audio Insert Image Update Audio Update Image
Datatype/Operation

Figure 7-13 Effect of increasing the size of the data (Test 8)

It is evident that the databases have been increased in size from the results presented in the
main graph, but it does not appear as if linear scale-up has been achieved from the graph in
the inset. Contrary to expectations, an informal analysis of these results implies that there is
an improvement in the performance when the size of the data increases. This implies that

better than linear scale-up can be achieved.

7.3.4 Test 9: Can the Granularity of MORD’s Measurements be Varied

Test 9 investigates if the granularity of MORD’s time measurements can be altered, and
determines where the time is spent during the insertion of images. The response time is
divided into the time to initialise an object, upload data, extract its properties, and generate a

thumbnail. (To measure the time to generate a thumbnail requires that extra functionality is

113

added and that the schema is altered to include a column in the table to store thumbnails.) The

pie chart in Figure 7-14 gives the break down of the average response time to insert images.

11,0% 3001, 11%

2,225, 8%

@ Initialise
W Upload
21,843, [J Set Properties
81% 0 Generate Thumbnail

Figure 7-14 Distribution of time during the insertion of images (Test 9)

As expected, an informal analysis of these results shows that the generation of thumbnails
takes up a large percentage of time. (Fortunately this task is often not required.) Uploading the
data takes the next longest amount of time, while the initialisation of the objects takes the

least amount of time.

The results can be further analysed, investigating the performance of different image formats.
Five different formats are tested (section 5.3.2.2), BMP, GIF, JPEG, PNG, and TIFF. The
results presented in Figure 7-15 show a breakdown of the different formats, with a separate

pie for each image’s format.

114

Small BMP Images :
115, 1% B Inifialise Small Gif Images 9.4, 4%
131.9,17% W Upload 141.6,
O Set Properties 5204
O Generate Thumbnail
47.9, 6%
Small TIFF Images
10.3, 1% 76.6,
11%
686, 9% 437, 17%

601.0, 76%

Small JPEG Imagédd-4,
4%

570.4,
79%

110.3,
45%

1,194.8,
53%

74.0,
31%

47.3,
20%

Small PNG Images

Figure 7-15 Time taken for various tasks of the insert operation with images (Test 9)

These results reveal where the different formats have similar as well as dissimilar response
times for the various tasks. It can be seen from an informal analysis of these results that there
is a difference of approximately 3ms between the response times to initialise the objects,
suggesting that, as expected, this time is not dependant on the format of image. The times to
upload an image and to set the properties of an image are also similar among the formats, with
the former at around 70ms and the latter in the region of 50ms. Some variation does occur,
which suggest that such tasks are influenced by the format of the image. The most noticeable
deviation from the response times of the other formats occurs when setting the PNG
properties, which takes approximately 20 times longer. There also appears to be considerable
variation between the response times to generate thumbnails, suggesting that this task is also

dependant on the format of the images.

Examining the results of the different formats separately can be used to explain performance
patterns and anomalies that would be otherwise inexplicable. An informal analysis of the
results identified one such anomaly is identified in the pie chart in Figure 7-14, where it is
surprisingly seen that the time taken to upload an image is only slightly faster than the time to
set its properties. Based on intuition, it would be expected that the time taken to extract the
image’s properties would be much shorter. Another noticeable irregularity is the fact that the
total time for PNG images is much longer than that of the other image formats. Both of these

irregularities can be explained by the fact that PNG images take a substantial amount of time

115

to read the headers and extract its properties (as identified from Figure 7-15), thus skewing
the results. A very different distribution of the time between upload of images and extraction
of the properties can be seen from the results of the informal analysis given in Figure 7-16

when the response times for the PNG images have been disregarded.

Average without PNG

96, 3%

Average with PNG

2,225,
43%

3,155, 97%

@ Upload
M Set Properties

Figure 7-16 Comparison of distribution when including or excluding PNG images (Test 9)

In the pie chart that excludes PNG, the uploading of the data is considerably larger, at 97%,
than the extracting of the properties, which is only 3%, whereas the pie chart with PNG shows

these values to be similar.
The distribution of the results is not only influenced by the format of the test data but also by

its size. This is illustrated in Figure 7-17 where a different pie chart is given for each database

size.

116

Small Images 11, 3% B Initialise
H Upload

O Set Properties

237,
2%

12, 0%

Medium Images 12, 1% Large Images

5,642,
41%
643, 44%

797, 55%
8,277,
59%

Figure 7-17 Comparison of distribution for different database sizes (Test 9)

These pie charts suggest that the initialisation of the object is unaffected by the size of the
image, whereas the uploading of data is totally dependant on it, as expected. The uploading of
the data is 25% for small images, 44% for medium images, and 59% for large images, which

produces an overall increase of 34%.

7.4 Simplicity Tests
7.4.1 Test 10: Can Additional Data Easily be Added to MORD

Test 10 investigates if additional test data, such as documents, can be added to MORD. To
add new test data, the same steps are taken as those used to setup the original test data. (These
are given in Appendix B to setup MORD and again here to explain how new test data is

added.)

The first step is to collect the test data, for example the document data for Test 10, and create
a directory in which this data is placed, for example the Document directory shown in Figure

7-18.

117

File Edit Yew Favorites Tools Help

==

G Back + o= - | Q) 5earch |%Fo\ders @“ﬁ Lrigl ¢ | N

Address ID Dacument

B

Folders X L 1 Mame # | Size | Type | Madified

ﬁ Deskiop ﬁ L4 docl Jdoc 634 KB Microsoft Word Document 2000/11/20 11:46

E-@ My Documents b ﬁdocl pdf 702KE Adobe Acrobat Document 2003/02/08 04:57
D My sBooks Document ducl .ppt 460KE Microsoft PowerPoint Presentation 2002/09(15 05:11
@ My Pictures docl.xls 199KE Microsoft Excel Warkshest 2003/02{06 04:24

-1 Iy Webs

Select an item to view its description,

EIQ My Computer

&5 3% Floppy (83)
“Q Local Disk {i:)

EHEI Media (D)

H = g Benchrark

See also

Iy Documents

Iy Metwork, Places
My Cornputer

@ Document
B Imnage
{1 Results

{:l DE_backup

Figure 7-18 Directory and files for document test data

These files must be renamed using a system that is compatible with the way in which the code
to query the data is written. The method that is currently used by MORD is a system where
the new data is named with a prefix, for example ‘docl’, plus the file extension assigned by
the OS, such as ‘.ppt’. The document test data consists of data that differs in size as well as

format, to produce a more representative sample.

The second step is to verify that the access rights of the data are set to read/write so that they
can be uploaded correctly by Oracle. Oracle can only create a link to “read only” data as it
does not have access rights to upload it, and although Oracle does not issue a warning
message at upload time, subsequent queries, such as extracting the properties, do not work

and produce error messages.

The third step is to enable the database to upload data from a directory by creating the
directory in Oracle and granting the database access to it. Code must be executed to make this

directory known to the database, such as the sample code given in Figure 7-19.

create or replace directory ORDDOCDIR as “DIRECTORY LOCTATION?;
grant read on directory ORDDOCDIR to public with grant option;

Figure 7-19 Code to make Oracle aware of the directory

To check that this has been executed correctly and that Oracle has access to this directory, the
Sys.Dir$ table can be queried. This produces the results shown in Figure 7-20, where the last

row is the location of the Document directory.

118

%% Table Editor - “SYS"."DIR$" o =] |
r'ﬁ CBJ# L AUDL. & 0OS5_PATH &
_[._4;_ Mood e ... relddemolschematproduct_medial
f‘}? 30e0 e o Treldadmimrddwicreatel
gl] M08 e ... relfdemolschematsales_histand
33IBET e ... | DBenchmarkilmageismall
ﬁ 33663 e ... | DBenchmarkAudiatsmall
33EEI e ... | DBenchmarkWideatsmall
33E¥0 e ... | DBenchmarkIMAGEImedium
33T e ... | DBenchmarkAudiotimedium
33672 e ... | DBenchmarkVideaimedium
33IBYI e ... | DBenchmarkiiMAGElarge
33T e ... | DBenchmarkidudiollarge
33IBYE e ... | DBenchmarkividedllarge
33E¥E e ... | DBenchmarkDocument
W o | e Jsrowso]] owse s i

Figure 7-20 Query result showing the directories in Oracle

7.4.2 Test 11: Can Additional Functionality Easily be Added to MORD

After Test 10 is complete, Test 11 can be carried out to show if functionality to query such
data can also be added to MORD. Tests are run to investigate if test data in Test 10 as well as

the functionality in Test 11 have been added to MORD correctly.

It is interesting to collect the response times for the document test data and compare them to
the response times for the other datatypes. The number of items used in each test must be
reduced to a single item per data format, as there is only one entry for each of the document
formats. The previous results have shown that the response time is affected by the size of the
multimedia data, therefore, based on this the response times for the documents should be in-
between that of image and audio data due to its size. The graph given in Figure 7-21 shows

the average response times for inserting data and deleting data.

119

180+

160+ @ Document

140 O Image
g O Audio
e 1207 0 Video
£
= 100+
g 80,
S 90+
§ 60-
© 40+]
a 70
(8]
20 S 60
0 ()
£ i
Delete = 50
Query Type °C(,,’ 40+ 26.83
- —
2 304
1%}
Q P——
& 20+ 135 063
10+
0,
Insert
Query Type

Figure 7-21 Documents results compared with other datatypes results (Test 11)

An informal analysis of the results is as expected, thus suggesting that MORD has been

extended correctly.

7.5 Summary of Results

7.5.1 Relevancy Tests

It was indicated that MORD is relevant by performing an informal analysis of the results,
demonstrating that MORD’s results are repeatable, MORD’s designed correctly, the
operations and datatypes that MORD tests can be selected, and the amount of data repeated in
MORD’s dataset can be changed. Test 1 suggests that MORD is repeatable due to
significantly small standard deviations and Test 2 demonstrates that the timing methods used

by MORD are designed correctly.

Test 3 and 4 showed that MORD can be altered to focus on a specific operation and datatype,
while Test 5 demonstrated that the composition of the dataset is adjustable. Test 3 also
investigated Hypothesis 1 which states that the speed of insertion is always faster when
logging and caching are turned off. Test 4 and Test 5 together showed that increasing the size

of the buffer cache improved the performance of the select operations as expected.

120

7.5.2 Adaptability Tests

It was indicated that MORD is adaptable by demonstrating that it is portable, scalable, and the
granularity of its measurements can be altered. Evidence that suggests that it is portable came
from Test 6 which showed that it can connect to different databases and Test 7 showed that
the design of the database is alterable. The informal analysis of the results of Hypothesis 3 in
Test 6 indicated that a shorter response time is produced if using a larger BLOCK_SIZE as

expected.

The scalability of MORD was supported by the fact that an increase in the number of items or
the size of the data also produced an increase in the response time. The informal analysis of

these results produced a trend as given in Hypothesis 4 of near linear scale-up.

Verification that the granularity of MORD’s measurements can be altered came from Test 9.
An informal analysis of the results of this test suggested that the time to upload data is

dependant on the size of the data and that the time to initialise an object is minimal.

7.5.3 Simplicity Tests

The simplicity of extending MORD was investigated by the addition of documents to the test
data as well as the relevant functionality to measure its performance. Tests 10 and 11
combined tested the performance of documents. The size of the documents was between that
of images and audio data, and an informal analysis of the results revealed that the response
times were also between these two datatypes. This suggested that the modification was

accurate, since the response time is generally related to the size of the data.

7.6 Summary

The validation tests indicate that MORD achieves its objectives, of relevancy, adaptability,
and simplicity. As a secondary goal, an informal analysis of results of the tests confirm or
reject informal hypotheses, based on general database theory, that have been proven for
ordinary data in Oracle and which are likely to hold for multimedia data. Although the results
from testing these hypotheses give an initial understanding of multimedia database
performance, a more thorough evaluation is required to fully understand the performance of

multimedia databases.

121

The validation tests were performed by altering the database configuration and/or the
benchmark configuration and executing MORD in a controlled environment. Each test was
run multiple times and results were collected. These results were statistically analysed to give
an informal overview of MORD’s capability and a broad idea of the performance of Oracle’s

multimedia database.

The informal analysis of the results suggests that MORD achieves each of its objectives and
that it is easy to modify MORD so that it can evaluate a wide range of environments. As an
aside, they suggest that better performance can be gained by using a larger block size, by
making the buffer cache big enough to contain at least the largest expected dataset, and

turning off caching and logging when possible.

The results demonstrate that MORD achieves each of its objectives and that it is easy to
modify MORD so that it can evaluate a wide range of environments. As an aside, they suggest
that better performance can be gained by using a larger block size, by making the buffer cache
big enough to contain at least the largest expected dataset, and turning off caching and

logging when possible.

122

Chapter 8 : Conclusion

Chapter 5 described the design of MORD, while chapter 6 detailed the design of
tests to validate MORD. Chapter 7 presented the results with an informal analysis
of running these validation tests. This chapter concludes the work done in this
thesis, justifying it and explaining what it achieved. It summarises these

contributions, and suggests areas for future work.

8.1 Motivation for Thesis

The rapid technological advancements in computing have led to an increase in the production
and use of multimedia data, such as audio and video data. Multimedia data differs markedly
from standard datatypes in both structure and required functionality, making it more difficult
to manage. One method of managing such data is a Multimedia Database Management
System (MMDBMS), which offers many advantages over alternative options. A MMDBMS
can be defined as a DBMS that is able to store multimedia data internally as well as providing
the necessary functionality to manipulate this data, which is not offered by standard DBMS,
such as Relational DBMS (RDBMS). Object Relational Database Management Systems
(ORDBMS) appear to be a suitable advanced DBMS, with the capability to handle
multimedia data, while at the same time allowing for data to be queried using the simple SQL
query language. Since multimedia databases, including ORDBMS, are still relatively new and
there is limited knowledge on their working, further study of their performance is of particular

interest.
A mechanism such as a benchmark is often used to measure the performance of any

multimedia database. To measure the performance of a multimedia database, a benchmark

should focus on what is common in a multimedia workload, such as large datasets and

123

specialised queries, which differs extensively from a non-multimedia workload. A new

benchmark that can be applied to different multimedia databases had to be designed.

8.2 Aim of Thesis

The goal of this thesis was to design a benchmark that can evaluate the performance of basic
functionality found in multimedia databases, such as the multimedia application required by
the Computer Science Department at Rhodes University. A Multimedia Object Relational
Database (MORD) benchmark is designed for this purpose. MORD targets the Oracle
ORDBMS specifically, but it is designed to be adaptable and can be used, with simple
modifications, to benchmark any other Oracle multimedia database. For example, the test data

used and queries tested by MORD can be altered.

8.3 Contributions of Thesis

MORD is a fully functional multimedia database benchmark that focuses on Basic
functionality and includes database schemas, test data, and code to simulate queries and
measure the response time and throughput of those queries. The schemas are written in SQL
and create tables to store images, audio, and video data, which are all included in the test data.
The test data is grouped into small, medium, and large categories for each of these multimedia
datatypes. The queries that are evaluated by the code are insert, select, update, and delete.
Other significant characteristics of MORD are its simplicity (making it easy to use and

extend), scalability (making it possible to measure different sized databases).

Validation tests were performed to indicate that MORD functions correctly, as well as to
demonstrate the manner in which it can be implemented. Verifying that MORD functions
correctly requires testing that MORD meets all its objectives, of relevancy, adaptability, and
simplicity. Through the validation of these objectives it is demonstrated that MORD’s
components, including schemas, test data, and queries can easily be adapted to suit various
test environments, and that the presentation of the results can also be altered as necessary.

More specifically it is demonstrated that MORD can:

e Connect to different databases

e Evaluate the performance of queries manipulating test data in a range of multimedia
tables

e Evaluate different/additional multimedia tables by altering the schema

e Test various multimedia datatypes and formats
124

Allow the user to add additional test data, including new types such as documents
Vary the composition of the dataset

Vary the amount of test data in terms of size or number of items

Evaluate standard multimedia functionality, such as uploading data

Evaluate the performance of specialised multimedia functionality, such as generating
thumbnails

Add additional functionality to be evaluated or alter the existing functionality

Select the specific query type that is evaluated, such as insert

Select the specific datatype that is evaluated, such as images

Alter the precision and granularity of the timing mechanism

Measure either response time or throughput

Together, these capabilities make MORD straightforward to use for a wide range of

multimedia databases as well as easy to change or enhance when necessary.

As a secondary goal, the testing of MORD facilitated an initial understanding of Oracle’s

performance with respect to multimedia data. This was achieved by testing whether

established database theory that holds for standard data also holds for multimedia data.

Several informal hypotheses were formed, based on such database theory, and these were

tested. An informal analysis of their results showed that, for Oracle:

A larger block size improves performance

Performance is generally related to the size of the data, especially for tasks such as
uploading data, but not for tasks such as initialising an object

Performance slows down if the size of the dataset is larger than the buffer cache

Near linear scale-up is achievable and thresholds occur for certain increases in data

If the caching and logging are turned off then the insert operation is faster

Generating thumbnails takes longer than other tasks involved in insertion of images
The time to read the header of some multimedia formats takes much longer than

others, for example, it takes a long time to extract the properties of a PNG images

It must be noted that the testing of these informal hypotheses was only a secondary goal of the

validation test and more in-depth testing and analysis would have to be performed using

MORD to gain a better understanding of the performance of multimedia database.

125

8.4 Future Work

Future work could take several directions and includes:

Applying MORD to help design a real system - MORD is to be used to assist in the

configuration of the multimedia application for the Computer Science Department at
Rhodes University. This will be achieved by evaluating the performance of a test
environment that meets the requirements of the system. As expected, MORD can only
be used for the initial tuning of the database as benchmarks are based on an estimation

of the workload; fine tuning still has to be performed once the system is operational.

Using MORD to compare different multimedia databases — Since MORD is portable,

it could be adjusted as necessary and applied to two or more different types of
multimedia databases. From the results for these applications of MORD it is possible
to identify the strengths and weaknesses of each database. Recommendations can thus
be made as to which multimedia database should ideally be used for which type of

multimedia application.

Extending MORD to test more advanced environments - MORD currently tests a

single-user environment that is isolated from the network, and thus could be extended
to test the performance of a multi-user, networked environment. To test such an
environment requires careful consideration of many external factors that did not affect
the MORD’s test environment. For example, the performance of web based
applications varies according to the speed of the network and this must be taken into

consideration.

Adding additional functionality to MORD - MORD could be extended to test

additional functionality, such as signature generation or the cropping of images, and
additional multimedia datatypes and format. This could easily be added in a similar

manner to the other tests, just with the appropriate SQL command.

126

References

Benchmarks

[BD84] H. Boral and D.J..DeWitt. 4 Methodology for Database System Performance
Evaluation, 1984.

[BDT83] D. Bitton, D.J. DeWitt and C. Turbyfill. Benchmarking Database Systems: A
Systematic Approach, Proceedings in the Very Large Database Conference, 1983.

[BOT93] D. Bitton, C. Orji and C. Turbyfill. AS’AP — The ANSI SOL Standard Scalable and
Portable Benchmark for Relational Database Systems, In the Benchmark Handbook for

Database and Transaction Processing Systems, Morgan Kaufmann, second edition, 1993.

[CAR97] M.J. Carey, D.J. DeWitt, J.F. Naughton, M. Asgarian, P. Brown, J.E. Gehrke and
D.N. Shah. The BUCKY Object-Relational Benchmark. In Proceedings of the 1997 ACM-
SIGMOD International Conference on the Management of Data, Tuscon, Arizona, May 1997

[CAT93] R.G.G Cattell. The Engineering Database Benchmark, In the Benchmark
Handbook for Database and Transaction Processing Systems, J. Gray. Morgan Kaufmann,

second edition, 1993.

[CDNO93] M.J. Carey, D.J. DeWitt, J.F. Naughton. The 007 Benchmark. In Proceedings of the
1993 ACM-SIGMOD Conference on the Management of Data, Washington D.C.,May 1993.

[CHA95] A.B. Chaudhri. An Annotated Bibliography of Benchmarks for Object Databases,
SIGMOD Vol. 24 No. 1 Pp 50 — 57, 1995.

[DEW93] D.J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future. In the
Benchmark Handbook for Database and Transaction Systems. Morgan Kaufmann, second

edition, 1993.

[DH91] S. DeFazio and J. Hull. Towards servicing textual database transactions on
symmetric shared memory, Proceedings in the fourth International Workshop on High

Performance Transaction Processing Systems, Asilomar Conference Centre, September 1991.

[DIX93] K.M. Dixit. Overview of the SPEC Benchmarks, In the Benchmark Handbook for

Database and Transaction Systems. Morgan Kaufmann, second edition, 1993.

[GGDY5] A. Geppert, S. Gatziu, and K.R. Dittrich. A Designer’s Benchmark for Active
Database Management Systems: 007 Meets the BEAST, Proceedings in second Workshop on
Rules in Databases, Athens, Greece, September 1995.

127

[GRA93] J. Gray. The Benchmark Handbook for Database and Transaction Processing

Systems. Second edition, Morgan Kaufmann, San Fransico, 1993.

[LPM97] C. Lee, M. Potkonjak, W.H. Mangione-Smith. MediaBench: A Tool for Evaluating

and Synthesizing Multimedia and Communication Systems, 1997.

[RISO0] N. Rishe, A. Vaschillo, D. Vasilevsky, A. Shaposhnikov, S. Chen. 4 Benchmarking
Technique for DBMS'’s with Advanced Data Models, ADBIS-DASFAA Symposium, 2000 .

[RUNO2] K. Runapongsa, J.M. Patel, H.V. Jagadish, and S. Al-Khalifa. The Michigan
Benchmark: Towards XML Query Performance Diagnostics, February 2002.

[STO93] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The SEQUOIA 2000 Storage
Benchmark. Proceedings of the ACM SIGMOD International Conference on Management of
Data, Washington DC, 1993.

[TRAO2] Transaction Processing Performance Council benchmarks. May 2, 2002. [Online].

Available: http:// www.tpc.org .

Database Tuning

[BMK99] P. Boncz, S. Manegold, and M. Kersten. Database Architecture Optimized for the
new Bottleneck: Memory Access, Proceedings in the 25™ VLDB Conference, Edinburgh,
Scotland, 1999.

[KOR99] M. Kornacker. High-Performance Extensible Indexing, Proceedings in the 25t
VLDB Conference, Edinburgh, Scotland, 1999.

[ORS96] B. Ozden, R. Rastogi, and A. Silberschantz. Buffer Replacement Algorithms for
Multimedia Storage Systems, Proceedings in the ICMCS Conference, 1996.

[SBO2] D. Shasha, and P. Bonnet. Database Tuning: Principles, Experiments, and
Troubleshooting Techniques. Morgan Kaufmann, 2002.

Multimedia Databases

[CO70] E.F. Codd. 4 Relational Model of Data for data of Large Shared Data Banks,

Proceedings in Communications in ACM, 1970.

128

[KA95] W. Klas, and K. Aberer. Multimedia Applications and Implications on Database
Architectures, In advanced course on Multimedia Databases in Perspective, University of

Twente, 1995.

[HAO1] http://www.highwayafrica.org.za/archive/2001/.

[INFO1] http://www-306.ibm.com/software/data/informix/ids/.

[MITO0] H. Mittag. Multimedia and Multimedia Databases for Teaching Statistics, In

Proceedings in International Conference on Mathematical Education, July 2000.

[MMJO02] J. Melton, J. Michels, V. Josifovski, K. Kulkarni, P. Schwarz. SOL/MED — A status
report, ACM SIGMOD, September 2002.

[SDB99] 1. Soetebier, R. Dorner, and N. Braun. Seamless Integration of Databases in VR for
Constructing Virtual Environments, Eurographics 99.
[SM99] M. Shapiro, and E. Miller. Managing Databases with Binary Large Objects,

Proceedings in the 16™ IEEE Mas Storage Symposium, March 1999, San Diego.

[STO96] M. Stonebraker. Object-Relational Database Systems: The Next Wave. Morgan

Kaufmann, San Francisco, 1996.

[SUB9S8] V. Subrahmanian. Principles of Multimedia Database Systems, Morgan Kaufmann

Publishers, Inc., San Fransico, California, 1998.

Oracle

[BGBI98] L.A. Barroso, K. Gharachorloo, and E. Bugnion. Memory System Characterization
of Commercial Workloads, Proceedings in the 25" Symposium on Computer Architecture,

June 1998.

[BRFO1] R. Baylis, K. Rich, and J. Fee. Oracle9i Database Administrators Guide, Oracle

Corporation Documentation, June 2001.

[CGO1] M. Cyran, and C.D. Green, Oracle9i Database Performance Guide and Reference,

Oracle Corporation Documentation, June 2001.

[CHIO1] M. Chittister, Oracle9i interMedia Java Classes User’s Guide and Reference, Oracle

Corporation Documentation, June 2001.

129

[DZ02] B. Dageville, and M. Zait. SOL Memory Management in Oracle9i, Proceedings in the
28" VLDB Conference, Hong Kong, China, 2002.

[KL99] D.C. Kreines, and B. Laskey. Oracle Database Administrator, The Essential
Reference, O'Reilly & Associates, Inc.,1999.

[LOO1] J. Loaiza. Optimal Storage Configuration Made Easy, Oracle Corporation White
Paper, June 2001.

[MCGO1] L. McGee Luscher Oracle 9i Database Concepts, Oracle Corporation

Documentation, June 2001.

[OIMO2] Oracle interMedia Media Storage & Retrieval Performance, September 2002,
Oracle Corporation White Paper,

http://otn.oracle.com/products/intermedia/htdocs/perf summary.html.

[OTNO2] http://otn.oracle.com/deploy/performance/content.html.

Performance Evaluations

[HPSO00] I. Horrocks, P. Patel-Schneider, and R. Sebastiani. An Analysis of Empirical Testing
for Modal Decision Procedures, In IGPL, Vol. 8 No. 3, pp. 293-323, 2000.

[JM95] B. Jacob, and T. Mudge. Notes on Calculating Computer Performance, University of
Michigan Tech report, March 1995.

[MC99] R. Musick, and T. Critchlow. Practical Lessons in Supporting Large-Scale
Computational Science, December 99, SIGMOD.

Multimedia Data

[ADOO02]http://www.adobe.com/support/techguides/webpublishing/audio/page3.html.

[FRAO1] http://www.iis.fraunhofer.de/amm/techinf/layer3/.

[JPGO2] http://www.fags.org/fags/jpeg-fag/.

[MCGO02] J.F. McGowan, Ph.D. AVI Overview, 2002, http://www.jmcgowan.cony/.

[PNGO02] http://www.libpng.org/pub/png/.

[STA98] http://acomp.stanford.edu/acpubs/Docs/graphic_file formats/.

130

[SONOO] Y. Song, Arizona State University, Video Streaming Applications: QuickTime,
Real, and Windows Media, 2000.

[W3CO02] http://www.w3c.org.

131

Appendix A: Outline of MORD’s Code

A.1 Image Response Time Code

public class ImageExperiments {

ImageExperiments(String dbname, String dbuser, String dbpass)

ImageExperiments() { }

public OracleConnection connect() throws Exception { }

public void insertStm(OracleConnection

con, String imgNm,

imgDir, String imgType, int num, BufferedWriter ¥) { }

public void selectStm(OracleConnection con, String imgSize,

imgType, int num, BufferedWriter) {}

public void updateStm(OracleConnection con, String imgSize,

imgType, int num, BufferedWriter) { }

public void deleteStm(OracleConnection con, String imgSize,

imgType, int num, Bufferedwriter) { }

public void calllnsert(BufferedWriter D, OracleConnection con)

public void callSelect(BufferedWriter D, OracleConnection con)

public void callUpdate(BufferedWriter D, OracleConnection

public void callDelete(BufferedWriter D, OracleConnection

public void control (String cmd) { }

A.2 Image Throughput Code
public class ImageTP {

ImageTP(String dbname, String dbuser,

ImageTP({ }

String dbpass)

public OracleConnection connect() throws Exception { }

public void insertStm(OracleConnection

imgDir, String imgType, int timing, BufferedwWriter f) { }

con)

con)

con, String imgNm,

public void selectStm(OracleConnection con, String imgSize,

imgType, int timing, BufferedWriter) {}

public void updateStm(OracleConnection con, String imgSize,

imgType, int timing, BufferedWriter) { }

public void deleteStm(OracleConnection con, String imgSize,

imgType, int timing, BufferedWriter T)
public void calllnsert(BufferedWriter D,
public void callSelect(BufferedWriter D,
public void callUpdate(BufferedWriter D,
public void callDelete(BufferedWriter D,
public void control (String cmd) { }

132

{1}

OracleConnection
OracleConnection
OracleConnection
OracleConnection

con)
con)
con)
con)

String

String

String

String

{1}

{1}

{1}
{1}

String

String

String

String

{1}

{1}

{1}
{1}

A.3 Audio Response Time Code

public class AudioExperiments {

AudioExperiments(String dbname, String dbuser, String dbpass)
AudioExperiments(Q) { }
public OracleConnection connect() throws Exception { }

public void

audDir,
public
audDir,
public
audDir,
public
audDir,
public
public
public
public
public
}

insertStm(OracleConnection con, String audNm,

String audType, int num, BufferedWriter) { }

void selectStm(OracleConnection con, String audNm,
String audType, int num, BufferedWriter) {}

void

updateStm(OracleConnection con, String audNm,

String audType, int num, BufferedWriter) { }

void deleteStm(OracleConnection con, String audNm,

String audType, int num, BufferedWriter f) { }

void
void
void
void

void

calllnsert(BufferedWriter D, OracleConnection con)
callSelect(BufferedWriter D, OracleConnection con)
callUpdate(BufferedWriter D, OracleConnection con)
callDelete(BufferedWriter D, OracleConnection con)
control (String cmd) { }

A.4 Audio Throughput Code
public class AudioTP {

AudioExperiments(String dbname, String dbuser, String dbpass)
AudioExperiments() { }
public OracleConnection connect() throws Exception { }

public
audDir,
public
audDir,
public
audDir,
public
audDir,
public
public
public
public
public

void

insertStm(OracleConnection con, String audNm,

String audType, int timing, BufferedWriter) { }
void selectStm(OracleConnection con, String audNm,

String audType, int timing, BufferedWriter) {}

void

updateStm(OracleConnection con, String audNm,

String audType, int timing, BufferedWriter) { }
void deleteStm(OracleConnection con, String audNm,

String audType, int timing, BufferedWriter f) { }

void
void
void
void

void

calllnsert(BufferedWriter D, OracleConnection con)
callSelect(BufferedWriter D, OracleConnection con)
callUpdate(BufferedWriter D, OracleConnection con)
callDelete(BufferedWriter D, OracleConnection con)
control (String cmd) { }

133

String

String

String

String

{1}

{1}

{1}
{1}

String

String

String

String

{1}

{1}

{1}
{1}

A.5 Video Response Time Code

public class

VideoExperiments {

VideoExperiments(String dbname, String dbuser, String dbpass)
VideoExperiments() { }

public
public
vidDir,
public
vidDir,
public
vidDir,
public
vidDir,
public

OracleConnection connect() throws Exception { }

void insertStm(OracleConnection con, String vidNm,

String vidType, int num, BufferedWriter) { }

void selectStm(OracleConnection con, String VvidNm,

String vidType, int num, BufferedWriter) {}

void updateStm(OracleConnection con, String VvidNm,

String vidType, int num, BufferedWriter) { }

void deleteStm(OracleConnection con, String VvidNm,

String vidType, int num, BufferedWriter f) { }
void calllnsert(BufferedWriter D, OracleConnection

public void callSelect(BufferedWriter D, OracleConnection
public void callUpdate(BufferedWriter D, OracleConnection
public void callDelete(BufferedWriter D, OracleConnection
public void control (String cmd) { }

by

A.6 Video Throughput Code

public class

VideoTP {

VideoTP(String dbname, String dbuser, String dbpass) { }
VideoTP({ }

public
public
vidDir,
public
vidDir,
public
vidDir,
public
vidDir,
public
public
public
public

OracleConnection connect() throws Exception { }

con)
con)
con)
con)

void insertStm(OracleConnection con, String vidNm,

String vidType, int timing, BufferedWriter) { }

void selectStm(OracleConnection con, String VvidNm,

String vidType, int timing, BufferedWriter) {}

void updateStm(OracleConnection con, String vidNm,

String vidType, int timing, BufferedWriter) { }

void deleteStm(OracleConnection con, String VvidNm,

String vidType, int timing, BufferedWriter £) {
void calllnsert(BufferedWriter D, OracleConnection
void callSelect(BufferedWriter D, OracleConnection
void callUpdate(BufferedWriter D, OracleConnection
void callDelete(BufferedWriter D, OracleConnection

public void control (String cmd) { }

134

}

con)
con)
con)
con)

String

String

String

String

{1}

{1}

{1}
{1}

String

String

String

String

{1}

{1}

{1}
{1}

A.7 Main Classes

public class MultiUser

{
}

public static void main(String args[]){ }

class Test implements Runnable

public Test(String str, int numl){ }
public void runQ) { }

¥
A.8 Schema Code in Generic.Sql

DROP TABLE VIDEO;
DROP TABLE IMAGE;
DROP TABLE AUDIO;
DROP TABLE DOCUMENT;

DROP SEQUENCE VIDEO_sequence;
DROP SEQUENCE IMAGE_sequence;
DROP SEQUENCE AUDIO_sequence;
DROP SEQUENCE DOCUMENT_sequence;

CREATE SEQUENCE VIDEO_sequence
INCREMENT BY 1
START WITH 1
NOMAXVALUE
NOCYCLE
CACHE 10;

CREATE TABLE VIDEO(VidID NUMBER PRIMARY KEY,
VideoData ORDSYS.ORDVideo,
VideoName VARCHAR2(200));

CREATE SEQUENCE IMAGE_sequence
INCREMENT BY 1
START WITH 1
NOMAXVALUE
NOCYCLE
CACHE 10;

CREATE TABLE IMAGE(ImgID NUMBER PRIMARY KEY,
ImageData ORDSYS.ORDImage,

135

ImageName VARCHAR2(200)
)

CREATE SEQUENCE AUDIO_sequence
INCREMENT BY 1
START WITH 1
NOMAXVALUE
NOCYCLE
CACHE 10;

CREATE TABLE AUDIO(AudiolD NUMBER PRIMARY KEY,
AudioData ORDSYS.ORDAUDIO,
AudioTitle VARCHAR2(200));

A.9 Constructors and Code to Connect to Database for Response Time and

Throughput Experiments

String dname, duser,dpass;
ImageExperiments(String dbname, String dbuser,String dbpass)

{
dname=dbname;
duser=dbuser;
dpass=dbpass;
}
ImageExperiments()
{
dname=""large"';
duser="mmedia";
dpass=""mmedia"’;
}
public OracleConnection connect() throws Exception
{
String connectString;
Class.forName (“oracle.jdbc.driver.OracleDriver™);
System.out.printin(dname);
connectString = "jdbc:oracle:thin:@nemesis.ict.ru.ac.za:1521:" +
dname;
OracleConnection con = (OracleConnection)
DriverManager.getConnection(connectString,duser,dpass);
con.setAutoCommit(false);
return con;
by

136

Appendix B: Installation Instructions

The instructions given in this section start from after Oracle has been installed and the user
has logged onto Oracle. They are the steps that need to be taken to setup the environment for
MORD to be executed. It is also presumed that the code and the test data have been copied
across in the directories as they were. The main directory is called Benchmark where
MORD’s code is and there are 4 subdirectories called Images, Audio, Video, and Documents.
Each of these subdirectories has 3 further subdirectories called small, medium and large

where the test data resides.

B.1 Step 1: Create Database
The easiest way to create the databases is by using an Oracle wizard. This is a 8 step process
which starts with the screen shown in Figure B-1, where the option to create a database must

be selected.

& Oracle Database Configuration Assistant, Step 1 of 8 : Dperations

Select the aperation you want to perform

® Create a database
" Configure database options in a datahase
" Delete a database

T Manage Templates

Cancel)] Help J]

B-1 Screenshot of first screen for Oracle database wizard

The steps are straight forward with most of them just being left as the default setting and
clicking on the next button. Step 5 is important as this step allows the user to change the sizes
of the caches, such as the buffer cache. The screenshot in B-2 shows the screen from which

this is carried out.

137

E : Dracle Database Configuration Assistant. Step 5 of 7 : Initialization Parameters

womon | Auths | Gaging FisLocaons|

" Typical
M. na. of concurtently connected users: [z0 IS]
Percentage of physical mermory (126 MB) for Oracle: [70 =
Database Type: [Multipurpose]
Show distribution of SGA..
® Custarn
Shared Pool: |54525952 E |El\ftes -
Buffer Cache: [40 [z [MEvtes ~
Java Poal; |2097152D B |Elyles -
Large Pool: [To48578 2] [Bytes =
Total Memory for Oracle: 113 M Bytes

All Initialization Farameters... File Location Yariahles...
Cancel Help <« Back

Finigh)

B-2 Screenshot of step 5 for database creation
B.2 Step 2: Generate Tables

The schemas must be generated by executing the schema script generic.sql. It can be run

using the SQL*Plus Worksheet as shown in Figure B-3.

B s0L*Plus Worksheet o =] 3
File Edit heet Help ORACLE

Table created.

Jequence created.

Table created.

Fequence created.

Table created.

ol |

R ——————S—(

B-3 Screenshot of SOL*Plus worksheet to generate database schema

B.3 Step 3: Setup Test Data

To setup the test data correctly Oracle has to be configured so that it can upload data from a

directory. This is achieved by creating the directory in Oracle and granting the database

138

access to it. Code must be executed to make this directory known to the database, such as the

sample code given in Figure B-4.

create or replace directory ORDDOCDIR as “DIRECTORY LOCTATION~”;
grant read on directory ORDDOCDIR to public with grant option;

B-4 Code to make Oracle aware of the directory

To check that this has been executed correctly and that Oracle has access to this directory, the

Sys.Dir$ table can be queried.

B.4 Step 4: Configure Database

The database must be configured as specified in Table 5-2, and can be achieved from the

screen shown in Figure B-5.

ise Manager Console Administrator:SYSMAN Management S erver: pjlee-pc2.us.oracle.com

ORACLE

Enterprisshanager
= Recovery Resource Monitors
7 Report Definitions
SHJDatabases
e—}%dlsum 538 - sys AS SYEDBA

é—*\nstance

& e @M

@ Open
[™ Show Al States

Database and Instance Information
Host Kame: dlsun 5638
DB Name MEESOS0

-~ H DB Yersion: QracleBi Enterprise Edition Release 8.2.0.0.0 - Production
&3 Resource Plan Schedule . Wyith the Paritioning, and Objects options

E&Bchema Instance MName: mees0odl

[)—&Sgcuriw . Instance Start Time: 07-Feb-2001 04:53:35 PM
-l Storage 4| RestrictedMode: Mo -
E>€£§Rephcanun Archive Log Mode: NOARCHIVELOG
E-Epvin Read Only Mode:

- disuntg42 Started with: 2fdbs/spiile.ora

-5 disun1673

-5 disunt 678 All Initialization Parameters...

[
[
:
-3 disunt 830
[
[;
[

- Jin-Doubt Transactions
= Resource Consumer Groups
E-JResource Plans

il
?

}8 oraB15.us oracle.com
o8 ORG0_smpintiab1 world
}Q orclworld

=2 nilee 1S nracle cam - YR AS RYF:I’!HA‘ ¥ Annly
¥

B-5 Screenshot of Oracle screen for configuring the database

The button at the bottom of this window must be selected to alter the initialisation parameters.
Here the OPEN_CURSORS must be set to 3000 and the SGA_ MAX SIZE must be made
large enough for the experiments, depending on what size caches are being tested. The

memory tab can then be select to configure the various caches, such as the Java pool.

B.5 Step 5: Compile and Run MORD

To compile and run MORD’s code, the following commands must be executed from the

code’s directory:

javac MultiUser.java
jJava MultiUser
ALL (if all operations/datatypes)

139

Appendix C: Tables of Results for Hypotheses

C.1 MORD’s Measurements are Repeatable

Test 1:Table showing the average variation for Images

Average

Insert Select Update | Delete
1.925% | 5.460% | 5.855% | 3.097%
0.690% | 3.632% | 5.029% | 1.964%
1.045% | 4.638% | 1.494% | 2.913%
0.340% | 0.280% | 0.316% | 2.717%
1.625% | 4.550% | 1.352% | 3.107%
1.439% | 3.810% | 0.512% | 1.760%
0.579% | 4.729% | 0.481% | 2.742%
1.026% | 4.487% | 0.313% | 1.466%
0.282% | 4.340% | 0.072% | 3.683%
1.091% | 4.729% | 0.927% | 2.310%
1.767% | 4.521% | 1.250% | 2.417%
3.654% | 2.796% | 1.026% | 0.707%
5.621% | 0.280% | 0.794% | 1.045%
2.041% | 3.636% | 0.144% | 1.987%
3.479% | 2.563% | 1.289% | 1.512%

1.77% 3.63% 1.39% 2.23%

Insert
Select
Update
Delete

Insert
Select
Update
Delete

Insert
Select
Update
Delete

Test 1: Table showing the variation for Audio Data

Small

Large Medium

Average

| Insert Select Update Delete

0.1572% | 4.7640% | 0.7456% | 3.8350%
1.1487% | 2.4771% | 1.4718% | 2.4787%
1.6185% | 2.9800% | 3.1272% | 5.7058%
0.3923% | 1.9961% | 0.6209% | 5.5432%
0.5266% | 3.0401% | 0.0697% | 3.4842%
1.0737% | 3.2643% | 2.5321% | 3.6948%
1.3861% | 0.6681% | 2.5965% | 1.1895%
0.6722% | 1.2761% | 0.0255% | 0.2881%
0.1885% | 2.1750% | 7.2375% | 1.2217%

0.80% 2.52% 2.05% 3.05%

Testl: Table showing the variation for Video Data

Medium Small

Large

Average

Insert Select Update Delete
0.1404% | 2.8602% | 0.5034% | 3.0332%
0.1520% | 1.1156% | 0.4819% | 4.4873%
0.0880% | 1.1689% | 0.2773% | 5.7724%
0.7242% | 3.3053% | 1.1103% | 1.1475%
0.1759% | 2.2294% | 0.9881% | 3.1149%
0.6202% | 0.9615% | 0.6831% | 1.5738%
0.1478% | 0.2146% | 0.2293% | 0.5995%
0.4838% | 0.2318% | 1.0098% | 5.1525%
0.4470% | 0.4709% | 0.8925% | 2.0164%

0.33% 1.40% 0.69% 2.99%

140

Insert
Select
Update
Delete
Insert
Select
Update
Delete
Insert
Select
Update
Delete

Insert
Select
Update
Delete
Insert
Select
Update
Delete
Insert
Select
Update
Delete

C.2 Specified Queries can be Tested by MORD

Test 3:Table showing the average time taken for images with no caching

Insert Category Averages

119.6600 Insert 285.280
122.9300 Insert 2,958.320
117.2000 Insert 8,937.870
930.9300
135.6800
808.2900
1,039.7000
746.9900
11,468.4500
728.1700
11,576.4000
9,889.8400
6,853.1200
9,471.6300
6,898.3600

Average 4,060.490

Test 3: Table showing the average time taken for audio with no caching

Insert Category Averages

= 1,547.3600 Insert 1,038.493
£ 871.1600 Insert 5,576.880
@ 696.9600 TR 73.863.527
E 8,435.6400
S 4,696.8400
= 3,598.1600
o 102,980.6400
2 74,122.4400
= 44,487.5000

Average 26,826.300

Test 3: Table showing the average time taken for video with no caching

Category Averag

7,652.12
6,927.48
17,101.92
36,852.48
36,383.76
45,050.00
532,093.08
168,730.04
180,646.24
114,604

Insert
Insert 293,823

Large Medium Small

Average

141

Test 3: Table showing the average time taken for images with caching

Insert
147.6500 Insert
311.2400 Insert
157.6700 Insert 11,344.954
928.9300
109.6900
615.0100
378.1200
377.1600
4,752.1800
4,752.1800
6,771.7100
4,902.5800
4,394.7100
33,925.0000
6,730.7700
Average 4,616.973

Test 3: Table showing the average time taken for audio with caching

2,348.76

Insert
Insert

16,762.00
5,140.60
4,045.72

107,138.08

99,840.56

61,471.10

Large Medium Small

Average

Test 3: Table showing the average time taken for video with caching

Insert
10,730.0000 Insert 17,752.440
13,774.9600 Insert 51,195.200
28,752.3600 Insert 341,372.093
57,127.4800
44,940.0400
51,518.0800

637,986.9200

186,689.3200

199,440.0400

Average | 136,773.244

T
£
(99}
S
=
S
]
=
o
=
@
_|

142

C.3 MORD’s Dataset can be Altered

Test 4. Table showing the average time taken for Dataset 1/Buffer Cache 320
Select
7.76 Select
7.82 Select
7.96 Select
7.99 Average 8.14
7.50
7.76
8.08
7.97
8.07
8.01
8.61
8.44
8.58
8.47
9.07

Test 4: Table showing the average time taken Dataset 2/ Buffer Cache 3
7.58 Select

7.56 Select

7.66 Select

7.33 Average 7.58
7.49
7.66
7.65
7.51
7.65
7.64
8.04
7.56
7.35
7.49
7.56

Test 4: Table showing the average time taken for Dataset 3/Buffer Cache 320

Select Category Averag
7.63
7.36 Select
7.18 Select
7.17 Average 7.36
7.18
7.51
7.02
6.86
8.11
7.36
7.35
7.35
7.40
7.46
7.50

143

Test 4. Table showing the average time taken Dataset 1/Buffer Cache 100

Select
8.09
7.74
8.14
7.79
8.04
8.28
8.44
8.38
9.06
8.28
8.75
8.79
8.76
9.08
8.92

Select

Select
Select
Average

8.44

Test 4: Table showing the average time taken for Dataset 2/Buffer Cache 100

Select
7.96
7.50
7.82
7.35
7.81
8.28
7.51
7.50
7.49
7.82
8.43
7.65
8.12
7.97
7.98

Test 4: Table showing the avera

Category Averag
Select

Select
Select
Average

7.81

e time taken for Dataset 2/Buffer Cache 100

Select
7.32
7.51
7.14
7.18
7.28
7.81
7.33
7.83
7.02
7.19
7.68
7.34
7.35
7.65
7.33

ory Averag
Select

Select
Select
Average

144

7.40

Test 4. Table showing the average time taken for Dataset 1/Buffer Cache 16

ory Averag
Select

Select
Select
Average

8.78

Select
7.65
7.56
7.64
7.54
7.62
8.27
8.18
8.18
8.27
8.24
8.44
8.35
8.42
8.28
8.43

Select

Select
Select
Average

8.07

Test 4:Table showing the average time taken for Dataset 3/Buffer Cache 16

Select
7.51
7.34
7.80
7.51
7.22
8.14
7.13
7.51
7.65
7.19
8.89
7.57
7.86
7.49
7.71

ory Averag
Select

Select
Select
Average

145

7.63

C.4 MORD can Connect to a Different Database

Test 6: Table showing the average time taken for Image when block size = 4K

Insert Select Update Delete
135.61 11.24 83.66 23.29
152.29 9.07 86.00 23.75
157.81 9.54 115.47 23.43
989.26 9.22 909.99 23.75
167.03 9.37 106.47 23.57
885.94 9.39 526.89 25.32
612.83 9.23 479.68 26.10
561.55 9.07 567.19 29.21

5682.19 9.06 | 4929.07 28.59

547.65 8.98 572.96 28.50

6545.00 0.18 | 4485.48 61.10

7213.91 9.22 | 3991.40 65.32

6659.37 9.38 | 4458.30 64.69

35109.86 9.22 | 32044.67 69.23

9887.03 9.22 | 4387.66 60.62

Average [5020.49 9.36 | 3849.66 38.43

Test 6: Table showing the average time taken for audio when block

Category Averages

320.40

Select

Update
Delete

9.69

260.32

23.56

Insert

1,658.03

Select

Update

Delete

Insert

9.15

1,415.16

27.54

13,083.03

Select

Update

9.24

9,873.50

Delete

size=4k

Insert Select Update Delete
2276.24 354.40 539.32 35.64
1511.28 314.08 408.08 33.12
996.56 216.76 111.52 34.92
11935.64 2014.36 139.32 64.96
5708.16 1717.48 2305.08 61.92
4067.92 1351.20 88.12 65.60
88320.44 38879.48 181.24 498.16
99365.04 36752.40 25151.88 317.52
65050.75 24039.85 99.55 329.05
Average 31025.78 11737.78 3224.90 160.10

Test 6: Table showing the average time taken for video when block

64.19

Select
Update
Delete

Insert

Select
Update
Delete
Insert
Select
Update
Delete

7237.24
1694.35

84245.41
33223.91
8477.56

Insert
Select

Update

Delete

Insert

Select

Update

Delete

Insert

Select

size=4k
[Insert Select Update Delete

12975.64 1472.04 3786.84 47.52
13814.96 1601.36 3895.64 48.16
19936.36 1408.04 6818.72 54.44
91845.12 15006.88 23664.36 157.16
44940.04 21377.60 24970.00 159.16
51518.08 20388.40 52468.12 408.84
454827.52 148735.40 388385.68 2197.04
174689.32 60600.60 77368.76 418.48
175440.04 59679.24 75560.60 804.72
Average 115554.12 36696.62 72990.97 477.28

146

Update
Delete

ory Averages

15575.65

1493.81

4833.73

50.04

62767.75

18924.29

33700.83

241.72

268318.96

89671.75

180438.35

1140.08

Test 6: Table showing the average time taken for Images when block size = 8k

Insert Select Update Delete
135.00 8.83 63.44 22.60 Insert
121.43 9.04 57.83 22.90 Select
157.67 9.07 97.65 22.64 Update
930.93 8.74 860.00 22.23 Delete
109.69 8.90 83.92 22.66
615.01 8.75 493.75 24.91 Insert
399.12 8.59 460.93 24.52 Select
395.16 8.75 565.61 24.22 Update
4752.18 8.59 4727.04 23.41 Delete
363.45 8.06 520.62 27.27
6360.85 8.61 4204.23 41.25 Insert
4913.58 9.06 3631.56 47.50 Select
5394.71 9.22 4390.62 43.44 Update
33925.00 8.78 | 29800.14 54.36 Delete
6730.77 9.07 4112.99 45.63
Average 4353.64 8.80 3604.69 31.30

1,304.98

1,353.59

11,464.98

9,227.91

Test 6: Table showing the average time taken for Audio when block

size=8k

Insert

Select

Delete

Large Medium Small

Update

2,228.7600

350.6400

538.2000

31.2800

913.1600

214.4400

309.4800

31.1200

969.3200

201.8800

84.4000

27.5200

9,962.0000

1,639.9600

131.8800

53.1600

4,900.6000

1,539.4000

2,294.4000

48.8400

4,045.7200

1,178.8000

85.6000

41.2400

82,418.0800

38,300.6400

175.7200

299.3600

99,040.5600

29,873.1600

24,625.6400

211.5200

51,471.1000

15,274.2500

84.3500

283.5500

Average

28,438.811

9,841.463

3,147.741

114.177

Test 6: Table showing the average time taken for Video when block

Category Averag

Insert
Select
Update

Delete

Insert
Select
Update
Delete

Insert

Select

Update
Delete

1,370.413
255.653
310.693

6,302.773
1,452.720
837.293

77,643.247
27,816.017
8,295.237
264.810 |

size=8k

Insert

Select

Update

Delete

10730.00

1262.52

3761.28

33.76

9090.64

1316.16

3818.72

33.40

14317.48

1199.36

5308.16

39.36

62727.48

10992.56

22446.32

108.16

43088.72

17626.00

24613.80

103.76

36430.00

16332.52

39077.48

326.28

445986.92

140578.12

272705.04

1575.64

158714.36

56040.64

70116.28

316.92

T
S
n
£
=
5
5}
=
o
o
(]
-

153608.76

58423.76

68347.48

551.92

Average 103854.93

33752.40

56688.28

343.24

147

ory Averag

Insert
Select
Update
Delete

Insert
Select

Update
Delete
Insert
Select

Update
Delete

11,379.37
1,259.35
4,296.05

47,415.40
14,983.69
28,712.53

252,770.01
85,014.17
137,056.27

Test 6: Comparison of Results

Image-4k
Image-8k

Audio-4k
Audio-8k

Video-4k
Video-8k

Insert
5,020

4,354

Audio-
_Insert
31,026
28,439

Video-

Insert
115,554
103,855

Select
9.36
8.80

Audio -
Select
11,738
9,841

Video -

Select
36,697
33,752

Update
3,850
3,605

Audio-
Update
3,225
3,148

Video-

Update
72,991
56,688

Test 6: Summary of Performance Improvement Overall

% increase

11.496%
11.088%
15.968%

Delete
38.43
31.30

Audio-
Delete

Video-
Delete

Test 6: Summary of Performance Improvement for Each Operation

Insert Select Update Delete

13.28% 5.93% 6.36% 18.55%

8.34% 16.16% 2.39% 28.68%

10.12% 8.02% 22.34% 28.08%

Test 6: Performance Improvement for Images
Insert Select Update Delete
= 17.31% 14.23% 0.67% | 28.96%
= 34.20% 17.81% 1.97% | 30.65%
o 28.18% 14.82% 22.15% | 27.70%
g 31.70% 26.75% 5.15% | 31.18%
% 4.12% 17.55% 1.43% | 34.81%
= 29.29% 19.89% 25.52% [20.19%
() 1.94% 5.48% 29.78% | 28.28%
% 9.14% 7.52% 9.37% | 24.27%
- 12.44% 2.10% 9.55% | 31.41%
Test 6: Performance Improvement for Audio
Insert Select Update Delete

= 2.09% 1.06% 0.21% | 12.23%
e 39.58% 31.72% 24.16% 6.04%
» 2.73% 6.86% 24.32% | 21.19%
g 16.54% 18.59% 5.34% | 18.17%
g 14.15% 10.37% 0.46% | 21.12%
= 0.55% 12.76% 2.86% | 37.13%
) 6.68% 1.49% 3.05% | 39.91%
% 0.33% 18.72% 2.09% | 33.38%
— 20.88% 36.46% 15.27% | 13.83%

148

Test 6: Performance Improvement for Video

Insert Select Update Delete
0.45% 21.44% 24.17% 2.96%
20.26% 0.33% 32.76% 3.58%
0.09% 4.93% 15.43% 3.37%
5.90% 5.21% 5.49% 6.40%
34.33% 5.02% 21.18% 3.86%
30.58% 6.82% 6.29% 1.62%
34.87% 6.93% 3.91% 6.05%
29.63% 3.53% 0.28% | 17.08%
16.37% 5.19% 4.10% | 18.12%
33.63% 10.24% 9.14% 4.32%
2.81% 6.21% 6.27% | 32.49%
31.89% 1.74% 9.02% | 27.28%
18.99% 1.71% 1.52% | 32.85%
3.37% 4.77% 7.00% | 21.48%
31.92% 1.63% 6.26% | 24.73%

C.5 MORD is Scalable

Test 8:Table showing the average time taken for Images using Dataset 1

Insert Select Update Delete
180.920 | 10.620 129.720 | 22.800 Insert
255.920 | 10.020 143.100 | 22.820 Select
Jpg 204.380 | 10.320 144.680 | 22.860 Update
Png 1,118.460 8.460 1,070.020 | 22.480 Delete
Tif 174.680 | 10.260 139.040 | 22.520
Bmp 786.560 9.720 574.980 | 28.720 Insert 1,329.32
Gif 551.880 8.740 576.260 | 28.120 Select
Jpg 579.980 8.760 740.620 | 24.080 Update 1,318.44
Png 4,160.320 8.420 3,999.100 | 25.000 Delete
Tif 567.860 8.140 701.220 | 24.380
Bmp 5,218.440 9.040 4,868.120 | 61.880 Insert 11,894.20
Gif 6,809.380 8.420 4,950.300 | 38.140 Select
Jpg 6,026.560 8.460 5,600.300 | 39.360 Update 10,337.43
Png 35,116.880 8.760 | 30,683.420 | 38.420 Delete
Tif 6,299.720 7.800 5,585.020 | 57.820
Average 4,536.80 9.06 3,993.73 31.96

Test 8: Table showing the average time taken for Audio using Dataset 1 ory Averages

Insert 639.733

Insert Select Update Delete Select 125.467

= 829.800 143.700 284.300 29.800 Update 195.800
S 737.500 142.100 226.700 | 28.000 Delete 27.933
@ 351.900 90.600 76.400 | 26.000 | [GEEGESS 2,967.133
g 4,351.500 848.500 126.600 | 36.000 Select 727.533
§ 2,732.800 737.400 1,153.200 32.900 Update 455.200
b 1,817.100 596.700 85.800 | 32.900 Delete 33.933
o 103,818.700 | 29,156.400 185.900 | 371.800 [WEIE=Iie 63,076.000
% 32,361.100 | 10,792.300 | 14,725.100 | 406.200 Select 17,472.500
- 53,048.200 12,468.800 88.900 | 119.200 Update 4,999.967
Average 22,227.622 6,108.500 1,883.656 | 120.311 Delete 299.067

149

Test 8: Table showing the average time taken for Videos using

Dataset 1 Averages
Insert 4,463.57

| Insert Select Update Delete Select 258.37
= 4,634.600 | 277.500 2,406.300 36.300 UloJoEI-I 3,651.60
£ 4,250.000 | 234.400 2,161.000 31.400 Delete 36.10
@ 4,506.100 | 263.200 6,387.500 40.600 Insert 23,128.10
g 41,023.400 | 237.600 | 10,436.000 60.800 Select 235.00
g 11,031.100 | 235.000 9,201.500 59.300 Ulofe 1= 20,001.07
= 17,329.800 | 232.400 | 40,365.700 231.300 Delete 117.13
o 263,228.200 | 228.400 | 228,412.400 | 1,153.200 Insert 209,094.30
= 205,828.100 | 232.200 | 85,834.400 340.400 Select 230.83
- 158,226.600 | 231.900 | 45,107.800 325.100 UloJo 10 119,784.87

Delete 606.23

| | Average | 7889532 | 241.40| 4781251 253.16 |

Test 8: Table showing the average time taken for Images using Dataset 3

Insert Select Update Delete Category Averages
211.800 13.360 137.365 | 26.495 Insert 354.297
207.025 11.875 142.115 | 27.195 Select 12.377
204.535 11.880 144.950 | 45.550 Update 258.742
972.815 12.815 726.550 | 26.105 Delete 30.488
175.310 11.955 142.730 | 27.095

1,276.555 11.875 580.140 | 31.240 _Insert 1808.908
877.195 11.640 581.520 | 27.335 Select 11.703
582.890 11.565 616.500 | 32.655 Update 1512.477

5,120.155 11.565 5,081.670 | 29.030 Delete 29.867

1,187.745 11.870 702.555 | 29.075

7,571.950 11.720 5,205.320 | 53.245 Insert 13886.783

7,377.090 11.560 4,815.095 | 45.755 Select 11.581

8,720.470 11.490 5,264.990 | 60.605 Update 12782.825

35,871.360 11.485 32,929.040 | 51.060 Delete 54.115
9,893.045 11.650 15,699.680 | 59.910
Average 5,349.996 11.887 4,851.348 | 38.157

Test 8: Table showing the average time taken for Audio using Dataset 3 ory Averages

Insert

Insert Select Update Delete Select 224.6933
1967.84 286.26 192.2 28.76 Update
1149.36 200.94 311.56 32.18 Delete

1120 186.88 84.06 27.18 Insert 11766.67

16138.74 1589.06 134.06 45.62 Select 1395.32

8619.06 1507.52 2325.62 56.56 Update 849.1667
10542.2 1089.38 87.82 39.36 Delete

148949.38 42822.84 1775 | 391.26 Insert 109466.8

99735.32 33716.84 23127.46 | 319.38 Select 31151.56

79715.6 16915 87.5 | 195.62 Update 7797.487

Average 40,881.94 10,923.86 2,947.53 | 126.21 Delete 302.0867

T
£
9]
S
=
S
]
p=
o
)
]
@©
|

150

Test 8:Table showing the average time taken for Video using Dataset 3

Category Averages

Insert 26,198.75
Insert Select Update Delete Select 137.68
= 19,463.74 144.06 3,933.76 45.94 Update 5,042.71
S 39,165.94 135.76 3,870.92 43.12 Delete 43.89
@ 19,966.56 133.22 7,323.46 42.62 Insert 46,639.77
g 49,268.72 45.30 22,967.18 134.04 Select 45.61
% 45,499.66 45.30 26,000.00 154.98 Update 28,118.54
= 45,150.92 46.24 35,388.44 198.16 Delete 162.39
o 565,160.84 146.90 211,388.16 1,155.92 Insert 563,854.05
% 563,201.28 126.26 210,065.60 451.22 Select 140.02
- 563,200.02 146.90 210,065.60 503.78 Update 210,506.45
Average 212,230.85 107.77 81,222.57 303.31 Delete 703.64
Test 8: Comparison of Results
Insert Select Update Delete
Total Image - Half 226,840 453 199,686 1,598
Total Audio - Half 222,276 61,085 18,837 1,203
Total Video - Half 788,953 2,414 478,125 2,532
Total Image - Normal 438,712 949 365,233 3,286
Total Audio - Normal 684,597 | 241,995 78,695 2,842
Total Video - Normal 2,816,564 | 843,810 | 1,417,583 8,737
| Total Image - Double 1,069,999 2,377 970,270 7,631
Total Audio - Double 2,044,097 | 546,193 147,377 6,311
Total Video - Double 10,611,543 5,389 | 4,061,128 15,165
Insert Select Update Delete
Average Image - Half 4,537 9.06 3,994 31.96
Average Audio - Half 22,228 6,109 1,884 120
Average Video - Half 78,895 241 47,813 253
Average Image - Normal 4,387 9.49 3,652 32.86
| Average Audio - Normal 28,528 10,019 3,150 120
| Average Video - Normal 112,663 33,752 56,703 349
Average Image - Double 5,350 11.89 4,851 38.16
Average Audio - Double 40,882 10,924 2,948 126
Average Video - Double 212,231 108 81,223 303
Insert Update Insert Update
Small - Audio 1,370.41 310.69 SINEURWAI ol 1,370.41 | 310.69
Small - Image 331.44 232.57 Small - Video 331.44 | 232.57
Medium - Audio 6,302.77 843.13 Medium - Audio 700.31 93.68
Medium - Image 1,422.78 | 1,354.12 Medium - Video 142.28 135.41
Large - Audio 77,909.91 | 8,295.24 Large - Audio 865.67 92.17
Large - Image 11,407.15 | 9,370.31 Large - Video 114.07 93.70

151

C.6 The Granularity of MORD’s Dataset can be Altered

Test 9: Table showing the average time taken by each Image format

Set Generate

Initialize | Upload Properties | Thumbnail
Bmp 11.46 131.86 47.86 601.04
9.42 70.22 43.74 141.56
= ofe 10.36 73.98 47.30 110.26
Png 12.74 69.06 979.60 1194.80
10.30 76.58 68.56 570.44
Bmp 13.26 661.70 80.84 761.30
9.94 630.14 60.16 4674.68
S oe 8.92 710.94 63.26 328.12
' Png 14.52 613.50 3706.10 3946.88
11.02 598.26 75.44 389.62
Bmp 15.44 | 6864.58 169.76 7502.02
q 10.28 | 9163.92 160.96 39901.96
= ofe 10.38 | 12580.44 203.14 13651.32
Png 12.68 | 6478.42 27537.24 | 246733.94
9.72 | 6295.20 136.96 7143.76
Average 11 3,001 2,225 21,843
Without Png 11 3,155 96 6,315

C.7 MORD can be Extended

Test 10: Table showing the average time taken for Documents and other Test data

Initialise
Upload
Set Properties
_Generate Thumbnail |

Initialise

Upload

Set Properties
Generate Thumbnail

Initialise
Upload
Set Properties
Generate Thumbnail

Average Document
Average Images
Average Audio
Average Video

Insert Delete
2075 44
1603 31
1128 31
594 28
1350.05 34
629.53 29
26834.87 84
89644.33 164

152

Insert

Delete

Category Averages

1,350.050

33.500

	: Introduction
	Motivation
	Multimedia Databases and Their Performance
	Problem Statement
	Aim
	Focus and Scope
	Organisation of Thesis

	: Tuning and Performance Evaluation of Multimedia Databases:
	Multimedia Databases
	Multimedia Data
	Multimedia Databases
	Multimedia Applications

	Database Tuning and Configuration
	Database Tuning
	Operating System Tuning
	Core Component Tuning Areas
	Additional Database Tuning Areas

	Performance Evaluation
	Value of Performance Evaluations
	Measuring Performance
	Calculating Performance

	Summary

	: Benchmarking Database: A Survey
	Overview of Benchmark
	Existing Benchmarks
	Generic Benchmarks
	RDBMS - Wisconsin
	ORDBMS - BUCKY
	OODBMS – 007 and predecessors

	Architecture Benchmarks
	AS3AP
	SPEC Benchmark
	MediaBench
	Other Architecture Benchmarks

	Business Benchmarks
	TPC Suites

	Engineering Benchmarks
	Sun Benchmark, 007 and Derivatives
	EDB

	Advanced Database Benchmarks
	Semantic Benchmark
	Michigan
	SEQUOIA 2000
	FTR Benchmark

	Criteria for Benchmark
	Design of Benchmark
	Schema Design
	Test Data
	Workload
	Performance Measurement
	Programming Language

	Problems with Existing Benchmarks
	Schema Problems
	Test Data Problems
	Workload Problems
	Programming Language

	Required Benchmark
	Application of Benchmark
	Summary

	: Oracle DBMS
	Introduction to Oracle
	Architecture of Oracle
	Oracle Components
	Overall Structure
	Oracle Processes
	Server Processes
	Physical Database Files
	SGA Memory
	Buffer Cache
	Calculating the Performance of the Buffer Cache

	Shared Pool
	Large Pool
	Redo Log Buffer
	Java Pool

	PGA Memory

	Oracle Storage
	Storage Units
	Data Blocks
	Extents
	Segments

	Oracle Multimedia
	InterMedia
	Oracle’s Multimedia Datatypes
	Specialised Multimedia Functionality
	Multimedia Storage and Retrieval

	Related Oracle Research
	General Oracle Performance Research
	Binary Large Object Performance Research
	Multimedia Oracle Performance Research
	Oracle Memory Research

	Oracle Performance Summary
	Summary

	: Design of MORD
	Design of a New Benchmark
	Objectives of MORD
	Design of MORD
	Schema Design
	Test Data
	Generation of Multimedia Data
	Format of Multimedia Data
	Amount of data
	Testing

	Workloads
	Insert Queries
	Select Queries
	Update Queries
	Delete Queries
	Testing

	Performance Measurement
	Performance Metric and Precision
	Timing Mechanism
	Testing

	Programming Language

	Application of MORD
	Summary

	: Validation of MORD
	Overview of Validation
	Methodology
	Environment Setup for Validation Tests
	Hardware Configuration
	Oracle Configuration

	Relevancy Tests
	Design of Relevancy Tests
	Test 1: MORD’s Measurements are Repeatable
	Test 2: MORD’s Timing Method is Designed Correctly
	Test 3: Specified Queries Can Be Tested by MORD
	Test 4: MORD Can Focus on Certain Datatypes
	Test 5: MORD’s Dataset Composition Can Be Varied

	Adaptability Tests
	Design of Adaptability Tests
	Test 6: MORD Can Connect to Different Databases
	Test 7: MORD’s Database Design Can Be Modified
	Test 8: The Amount of Data Tested by MORD Can Be Varied
	Test 9: The Granularity of MORD’s Measurement Can Be Varied

	Simplicity Tests
	Design of Simplicity Tests
	Test 10: MORD’s Test Data Can Be Extended
	Test 11: Functionality Can Be Added to MORD

	Summary

	: Results and Informal Analysis
	Format of Results
	Relevancy Tests
	Test 1: Are MORD’s Measurements Repeatable
	Test 2: Is MORD’s Method of Timing Designed Correctly
	Test 3: Can MORD Focus on a Query
	Test 4 and 5: Can MORD’s Dataset Be Altered

	Adaptability Tests
	Test 6: Can MORD Connect to a Different Database
	Test 7: Can the Design of the Database be altered with MORD
	Test 8: Is MORD Scalable
	Test 9: Can the Granularity of MORD’s Measurements be Varied

	Simplicity Tests
	Test 10: Can Additional Data Easily be Added to MORD
	Test 11: Can Additional Functionality Easily be Added to MOR

	Summary of Results
	Relevancy Tests
	Adaptability Tests
	Simplicity Tests

	Summary

	: Conclusion
	Motivation for Thesis
	Aim of Thesis
	Contributions of Thesis
	Future Work

	References
	Appendix A: Outline of MORD’s Code
	Appendix B: Installation Instructions
	Appendix C: Tables of Results for Hypotheses

