
Automating the Conversion of Natural Language Fiction to

Multi-Modal 3D Animated Virtual Environments

A thesis submitted in ful�llment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

of

RHODES UNIVERSITY

by

KEVIN ROBERT GLASS

August 2008

i

Abstract

Popular �ction books describe rich visual environments that contain characters, objects, and be-

haviour. This research develops automated processes for converting text sourced from �ction books

into animated virtual environments and multi-modal �lms. This involves the analysis of unre-

stricted natural language �ction to identify appropriate visual descriptions, and the interpretation

of the identi�ed descriptions for constructing animated 3D virtual environments.

The goal of the text analysis stage is the creation of annotated �ction text, which identi�es

visual descriptions in a structured manner. A hierarchical rule-based learning system is created that

induces patterns from example annotations provided by a human, and uses these for the creation

of additional annotations. Patterns are expressed as tree structures that abstract the input text on

di�erent levels according to structural (token, sentence) and syntactic (parts-of-speech, syntactic

function) categories. Patterns are generalized using pair-wise merging, where dissimilar sub-trees

are replaced with wild-cards. The result is a small set of generalized patterns that are able to

create correct annotations. A set of generalized patterns represents a model of an annotator's

mental process regarding a particular annotation category.

Annotated text is interpreted automatically for constructing detailed scene descriptions. This

includes identifying which scenes to visualize, and identifying the contents and behaviour in each

scene. Entity behaviour in a 3D virtual environment is formulated using time-based constraints

that are automatically derived from annotations. Constraints are expressed as non-linear sym-

bolic functions that restrict the trajectories of a pair of entities over a continuous interval of time.

Solutions to these constraints specify precise behaviour. We create an innovative quanti�ed con-

straint optimizer for locating sound solutions, which uses interval arithmetic for treating time and

space as contiguous quantities. This optimization method uses a technique of constraint relaxation

and tightening that allows solution approximations to be located where constraint systems are

inconsistent (an ability not previously explored in interval-based quanti�ed constraint solving).

3D virtual environments are populated by automatically selecting geometric models or proce-

dural geometry-creation methods from a library. 3D models are animated according to trajectories

derived from constraint solutions. The �nal animated �lm is sequenced using a range of modalities

including animated 3D graphics, textual subtitles, audio narrations, and foleys.

Hierarchical rule-based learning is evaluated over a range of annotation categories. Models

are induced for di�erent categories of annotation without modifying the core learning algorithms,

and these models are shown to be applicable to di�erent types of books. Models are induced

automatically with accuracies ranging between 51.4% and 90.4%, depending on the category. We

show that models are re�ned if further examples are provided, and this supports a boot-strapping

process for training the learning mechanism.

The task of interpreting annotated �ction text and populating 3D virtual environments is suc-

cessfully automated using our described techniques. Detailed scene descriptions are created accu-

rately, where between 83% and 96% of the automatically generated descriptions require no manual

modi�cation (depending on the type of description). The interval-based quanti�ed constraint opti-

mizer fully automates the behaviour speci�cation process. Sample animated multi-modal 3D �lms

are created using extracts from �ction books that are unrestricted in terms of complexity or subject

matter (unlike existing text-to-graphics systems). These examples demonstrate that: behaviour

ii

is visualized that corresponds to the descriptions in the original text; appropriate geometry is

selected (or created) for visualizing entities in each scene; sequences of scenes are created for a

�lm-like presentation of the story; and that multiple modalities are combined to create a coherent

multi-modal representation of the �ction text.

This research demonstrates that visual descriptions in �ction text can be automatically iden-

ti�ed, and that these descriptions can be converted into corresponding animated virtual envi-

ronments. Unlike existing text-to-graphics systems, we describe techniques that function over

unrestricted natural language text and perform the conversion process without the need for man-

ually constructed repositories of world knowledge. This enables the rapid production of animated

3D virtual environments, allowing the human designer to focus on creative aspects.

iii

Acknowledgments

This research would have been impossible without the intellectual and creative drive of Shaun

Bangay, who tirelessly reviewed and critically assessed the work from its start. I would like to

express my sincere gratitude for the many hours of discussion, meticulous proof-reading, extreme

programming, and motivating guidance during this process.

Thanks to all my friends who have engaged in stimulating conversation and provided motiva-

tional support. Particular gratitude goes to Matthew Gibb, who has provided valued proof-reading

services, provided advice from a non-technical perspective, and who has been a driving factor in

the production of this work.

Most importantly I thank my parents and family for their unconditional support.

This work was undertaken in the Distributed Multimedia Centre of Excellence at Rhodes Uni-

versity. This organization provided generous sponsorship of equipment, travel subsidy, and the

test corpora (Penn Treebank and Lancaster/Oslo-Bergen corpus) used in this research. I am also

grateful to the Connexor organization for their provision of the syntactic parser used for this re-

search. My gratitude is also expressed towards the creators of open-source tools and freeware that

made large portions of this research possible.

The �nancial assistance from the Henderson Scholarship and National Research Foundation

(Scarce Skills Scholarship) towards this research is hereby acknowledged. Opinions expressed and

conclusions arrived at, are those of the author and are not necessarily to be attributed to Rhodes

University or the donor.

Contents

1 Introduction 1

1.1 Background . 2

1.2 Problem statement . 3

1.2.1 Text analysis . 4

1.2.2 Interpretation . 5

1.3 Strategy . 5

1.3.1 Automation of text-analysis . 5

1.3.2 Automation of interpretation . 6

1.4 Overview . 7

2 Techniques for converting text to graphics 10

2.1 Introduction . 10

2.1.1 Categorization of text-to-graphics systems 10

2.1.2 Overview . 11

2.2 Language-similar graphics-generation systems . 11

2.2.1 Output as a static image . 12

2.2.2 Output as animated graphics . 13

2.3 Natural language graphics-generation systems . 14

2.3.1 Output as a modi�cation on a pre-existing environment 14

2.3.2 Output as instantiated graphics . 15

2.3.2.1 Output as sequences of photographs 15

2.3.2.2 Output as instantiated 3D environments 16

2.3.2.3 Output as animated graphics . 17

2.4 Fiction-to-animation in context . 19

2.4.1 Trends in text-to-graphics conversion . 21

2.4.2 Motivation for the design of the �ction-to-animation system 21

2.4.3 Fiction-to-animation in relation to other systems 23

2.5 Conclusion . 24

3 Surface annotations for �ction text 26

3.1 Introduction . 26

3.1.1 Problem statement . 26

3.1.2 Problem formulation . 27

iv

CONTENTS v

3.1.3 Context . 29

3.2 Structural properties . 29

3.2.1 Tokens . 29

3.2.2 Sentences . 30

3.2.3 Quotes . 31

3.3 Syntactic properties . 31

3.3.1 Parts-of-speech . 31

3.3.1.1 Parts-of-speech tagging techniques 31

3.3.1.2 Tagger accuracy . 34

3.3.1.3 Summary of �ndings . 38

3.3.2 Syntax . 40

3.3.3 Phrasing . 41

3.4 Case study: the use of surface annotations in identifying Avatars 41

3.5 Conclusion . 42

4 Creation of annotated �ction text 44

4.1 Introduction . 44

4.1.1 Problem statement . 44

4.1.2 Problem formulation . 45

4.1.3 Context . 47

4.2 Related work . 48

4.2.1 Machine learning for information extraction 48

4.2.2 Techniques for pattern induction in information extraction 49

4.2.2.1 Generalization method: compression versus covering 49

4.2.2.2 Direction of rule creation: top-down versus bottom-up 50

4.2.2.3 Type of input text . 50

4.2.3 Hierarchical rule-based learning as a pattern induction mechanism 51

4.3 Induction of rules for creating annotations . 53

4.3.1 Hierarchical patterns and rules . 54

4.3.2 Rule-set creation . 56

4.3.3 Rule generalization . 57

4.3.4 Application of a generalized rule . 58

4.3.5 Generalization of a rule-set . 60

4.3.6 Rule-set application to unseen text . 61

4.4 Algorithms for pattern induction and application 62

4.4.1 Hierarchical patterns and rules . 62

4.4.1.1 Structure of patterns: nodes and trees 62

4.4.1.2 Location and corresponding nodes 63

4.4.1.3 Rules and unmarked trees . 64

4.4.2 Rule-set creation . 65

4.4.3 Rule generalization . 65

4.4.3.1 Node comparison . 66

4.4.3.2 Merge of sequences of children . 67

CONTENTS vi

4.4.4 Application of a generalized rule: matching 72

4.4.5 Generalization of a rule-set . 75

4.4.5.1 Detection of con�icting rules . 76

4.4.5.2 Selection of a generalized rule . 77

4.4.6 Rule-set application to unseen text . 78

4.5 Hierarchical rules for semantic annotations . 79

4.5.1 Rule structure for di�erent annotation categories 80

4.5.1.1 Quotes . 81

4.5.1.2 Settings and Objects . 82

4.5.1.3 Transitions and Relations . 83

4.6 Analysis of hierarchical rule-based learning . 84

4.6.1 Test corpus . 85

4.6.2 Metrics . 86

4.6.3 Sources of experimental error . 87

4.6.4 Results . 88

4.6.4.1 Analysis of generalized rule-set induction 88

4.6.4.2 The e�ect of the book type on pattern induction 90

4.6.4.3 Composition of the example set 94

4.6.4.4 Rule structure for di�erent annotation categories 96

4.6.4.5 Rule-set induction for di�erent annotation quali�ers 97

4.6.4.6 Automatic creation of semantic annotations 100

4.6.5 Summary of �ndings . 102

4.7 Conclusion . 103

5 Constraint-based quanti�cation of behaviour 106

5.1 Introduction . 106

5.1.1 Problem statement . 106

5.1.2 Problem formulation . 107

5.1.3 Context . 109

5.2 Related work . 109

5.2.1 Environment-sensitive reasoning . 110

5.2.1.1 Static environments . 110

5.2.1.2 Dynamic environments . 110

5.2.2 Environment-independent reasoning . 111

5.2.2.1 Static environments . 112

5.2.2.2 Dynamic environments . 112

5.2.3 Interval-based constraint solving as an environment-independent spatial rea-

soning mechanism . 112

5.3 Interval analysis and universally quanti�ed constraint solving 114

5.3.1 Interval analysis . 114

5.3.2 Solution-bounding using interval analysis 116

5.3.3 Constraint propagation using local consistencies 117

5.3.3.1 Hull consistency . 118

CONTENTS vii

5.3.3.2 Box consistency . 119

5.3.4 Sound constraint solving . 120

5.3.5 Alternative formulations of interval constraint solving 123

5.4 Interval-based quanti�ed constraint optimization 123

5.4.1 Optimization using relaxed constraints . 124

5.4.2 Constraint solving over a set of relaxed constraints 126

5.4.3 Optimization through iterative tightening 128

5.4.4 Reduction of execution time . 128

5.4.5 Implementation . 132

5.5 Analysis of the interval-based quanti�ed constraint optimizer 133

5.5.1 Benchmarks . 134

5.5.1.1 Non-quanti�ed benchmarks to verify underlying algorithms 134

5.5.1.2 Quanti�ed benchmarks to verify solving ability 134

5.5.1.3 Quanti�ed �ction-to-animation constraint systems 135

5.5.2 Metrics . 136

5.5.3 Sources of experimental error . 136

5.5.4 Results . 136

5.5.4.1 Parametrization and behaviour of the optimizer 136

5.5.4.2 Implementation of underlying algorithms 137

5.5.4.3 Benchmarks in universally quanti�ed constraint solving 140

5.5.4.4 Benchmarks formulated for virtual environments 141

5.5.5 Summary of �ndings . 143

5.6 Conclusion . 143

6 Population of virtual worlds 146

6.1 Introduction . 146

6.1.1 Problem statement . 146

6.1.2 Problem formulation . 147

6.1.3 Context . 148

6.2 High-level scene descriptions from interpreted annotations 148

6.2.1 Scene segmentation . 149

6.2.2 Identi�cation of entities . 150

6.2.3 Co-reference resolution . 150

6.2.4 Abstract constraints for specifying behaviour 151

6.3 Quanti�ed behaviour in virtual environments . 154

6.3.1 Constrained model trajectories . 154

6.3.1.1 Spatial constraints . 154

6.3.1.2 Constraint systems . 156

6.3.2 Constraint system solving and optimization 158

6.3.2.1 The relaxation constant as a quality metric 158

6.3.2.2 Analysis of quality in �ction-to-animation constraint systems . . 160

6.3.3 Constraint system formulation for feasible optimization 166

6.3.3.1 Sequences of low degree trajectories 166

CONTENTS viii

6.3.3.2 Incremental system optimization 168

6.3.3.3 Combination of segmentation and incremental optimization 168

6.4 Population of animated, multi-modal 3D environments 169

6.4.1 Strategies for instantiating 3D virtual environments 169

6.4.1.1 Object models . 169

6.4.1.2 Model positioning and articulation 170

6.4.1.3 Setting . 171

6.4.2 Strategies for audio . 173

6.4.2.1 Audio narrations . 174

6.4.2.2 Foleys . 174

6.4.3 Strategies for subtitles . 174

6.4.4 Construction of a multi-modal animated �lm 175

6.5 Analysis of the scene creation process . 176

6.5.1 Test corpus . 177

6.5.2 Metrics . 177

6.5.2.1 Consistency of automatically generated content 178

6.5.2.2 Correctness of visual content . 178

6.5.3 Sources of experimental error . 179

6.5.4 Results . 179

6.5.4.1 Consistency of high-level scene descriptions 179

6.5.4.2 Consistency of virtual environment population 181

6.5.4.3 Visual representation of behaviour 181

6.5.4.4 Complex behaviour . 184

6.5.4.5 Consecutive scenes . 189

6.5.4.6 Appropriate media . 193

6.5.4.7 Applicability to di�erent types of books 195

6.5.5 Summary of �ndings . 195

6.6 Conclusion . 196

7 Conclusion 199

7.1 Summary . 199

7.2 Conclusions . 201

7.2.1 Text analysis . 202

7.2.2 Interpretation . 203

7.3 Contributions . 205

7.4 Future work . 206

7.5 State of the art in text-to-graphics research . 207

Bibliography 208

A Properties of raw text 227

CONTENTS ix

B Coarse tag-set and mappings 228

B.1 Coarse tag-set . 228

B.2 Mappings to the coarse tag-set . 228

C Algorithms in quanti�ed constraint solving 231

C.1 Methods for constraint propagation . 231

C.1.1 Fixpoint algorithm . 231

C.1.2 Hull consistency . 232

C.1.3 Box consistency . 234

C.1.4 Inner contracting operator . 235

D Benchmark constraint systems 237

D.1 Example constraint �le . 237

D.2 Non-quanti�ed benchmarks . 238

D.2.1 CLPRevisited . 238

D.2.2 Broyden Banded function . 238

D.2.3 More-Cosnard example . 238

D.3 Quanti�ed benchmarks . 238

D.3.1 Parabola Fitting . 239

D.3.2 Circle . 239

D.3.3 Satellite . 239

D.3.4 Robot . 240

D.3.5 PointPath . 240

D.3.6 Robust 1 . 240

D.4 Fiction-to-animation benchmarks . 241

D.4.1 Front . 242

D.4.2 Scene . 243

D.4.3 Layout3 . 244

D.4.4 WayPoints . 244

D.4.5 Dynamic1Static1 . 245

D.4.6 Dynamic2 . 245

D.4.7 Collision . 246

E Details of manual modi�cations 247

E.1 Cow scene . 247

E.2 Rabbit scene . 248

E.3 Study scene . 249

E.4 Travel sequence . 250

E.5 Follow scene . 251

E.6 House sequence . 252

F Multi-modal animated �lms 253

List of Figures

1.1 Generalization of the �lm-creation activities when using �ction text as a source. . . 2

1.2 Example annotated �ction text, from the Famous Five 1: Five on a Treasure Island

by Enid Blyton (1942). 4

1.3 Example �ction text with surface annotations (tokens, sentences and parts-of-speech),

from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942). 6

1.4 Example set of symbolic analytical constraints that specify behaviour in a virtual

environment. 7

1.5 Example behaviour visualized in a virtual environment. 7

1.6 Multi-modal presentations produced using our strategy for interpreting annotated

�ction text. 8

1.7 Illustration of the �ction-to-animation problems with proposed solution strategies. 8

2.1 Generic text-to-graphics process. 11

2.2 Overview of related text-to-graphics systems. 11

2.3 Language-similar input for the generic text-to-graphics process. 13

2.4 Scene modi�cation using natural language input illustrated with respect to the text-

to-graphics process. 14

2.5 Scene instantiation from natural language narrative illustrated in terms of the generic

text-to-graphics process. 16

2.6 Creation of animated graphics from natural language narrative illustrated in terms

of the generic text-to-graphics process. 18

2.7 Fiction-to-animation process in terms of the generic text-to-graphics process. . . . 22

2.8 Summary of capabilities of related text-to-graphics systems. 25

3.1 Context of the surface annotation creation process with respect to the �ction-to-

animation problem. 29

3.2 Precision and recall value for each tag using the srpt ensemble over the LOB corpus. 40

3.3 Dependency Grammar versus Phrase Structure Grammar (as illustrated by Hudson

(2005)). 40

3.4 Example text annotated in the Avatar category, from the Famous Five 1: Five on

a Treasure Island by Enid Blyton (1942). 42

4.1 Fiction text from the Famous Five 1: Five on a Treasure Island by Enid Blyton

(1942). 45

x

LIST OF FIGURES xi

4.2 Illustration of Object and Relation annotations. 46

4.3 Context of the hierarchical rule-based learning mechanism with respect to the �ction-

to-animation problem. 47

4.4 Structural elements of a sentence arranged as a tree. 53

4.5 Additional syntactic abstractions within the tree structure. 54

4.6 Example of rules indicating a the location of a speech-verb in a sentence. 55

4.7 Di�erent components of hierarchical rule-based learning. 55

4.8 Relationship between text and rules through the application of a rule-set. 56

4.9 Examples of rule generalization. 57

4.10 Example generalized rule containing general and special-purpose wild-cards. 57

4.11 Multiple options for generalization when using a special-purpose wild-card. 58

4.12 Example merges between pairs of rules. 59

4.13 Matching between a generalized rule and a tree generated from an unannotated

sentence. 59

4.14 Example of con�icting rules in a rule-set. 60

4.15 Con�ict detected using conservative matching between rules. 61

4.16 Example use of location to determine corresponding nodes. 64

4.17 Interpretation of location when only a sub-sequence of child nodes are de�ned. . . 64

4.18 Illustration of the enumeration of node sub-sequences. 68

4.19 Illustration of merge between sequences of nodes. 68

4.20 Example of the failure to guarantee that all identical answers are produced by a

merged rule. 75

4.21 Example annotated �ction text, from the Famous Five 1: Five on a Treasure Island

by Enid Blyton (1942). 80

4.22 Example rules for extracting speech-verbs and actors. 81

4.23 Example speaker rule and avatar context model. 82

4.24 Example Setting rule derived from an example from the Famous Five 1: Five on a

Treasure Island by Enid Blyton (1942). 83

4.25 Example Relation rule for annotation type (derived from an example from the Fa-

mous Five 1: Five on a Treasure Island by Enid Blyton (1942)). 84

4.26 Analysis of rule generalization for speech-verb, actor and speaker. 89

4.27 Illustrations of the three most frequently used generalized rules for locating speech-

verb. 90

4.28 Generalized rule-sets resulting from di�erently ordered example sets. 91

4.29 Application of rule-sets learned from a single book to the same or di�erent books

(speaker). 92

4.30 Application of a rule-set learned from di�erent books applied to books of di�erent

type. 93

4.31 Application of a rule-set learned from di�erent books applied to a large corpus of

books of di�erent type. 94

4.32 Training and application for Setting and Object annotations, using only positive

examples. 95

LIST OF FIGURES xii

4.33 Training and application for Setting and Object annotations, using �xed positive

examples and increasing negative examples. 96

4.34 Training and application for Setting and Object annotations, using increasing posi-

tive and negative examples. 96

4.35 Training and application for Transition and Relation triggers using increasing posi-

tive and negative examples. 97

4.36 Training and application for the subject of Transition and Relation annotations. . . 98

4.37 Training and application for the object of Relation annotations. 99

4.38 Training and application for the type of Transition and Relation annotations using

increasing positive negative examples. 99

5.1 Example �ction text indicating spatial positioning and behaviour from the Famous

Five 1: Five on a Treasure Island by Enid Blyton (1942). 107

5.2 Example annotations from �ction text. 108

5.3 Example set of time-based mathematical constraints. 108

5.4 Context of the interval-based quanti�ed constraint optimizer with respect to the

�ction-to-animation problem. 109

5.5 Graphical illustration of solution �nding approach for constraints using universally

quanti�ed variables. 121

5.6 Illustration of set di�erence between two intervals. 122

5.7 Illustration of the composition of a sound interval constraint solver by Benhamou

et al. (2004). 123

5.8 Illustration of interval optimization process. 125

5.9 Illustration of the combination of solutions performed by the inner contracting op-

erator (de�ned in Algorithm 5.1). 127

5.10 Illustration of the components of the interval optimization algorithm. 132

5.11 E�ect of threshold size on solving time. 138

6.1 Example decomposition of �ction text into scenes, from the Famous Five 1: Five

on a Treasure Island by Enid Blyton (1942). 147

6.2 Illustration of the constraint creation and scene creation modules in the �ction-to-

animation process. 148

6.3 Illustration of the interpretation module for creating constraints from annotated

�ction text. 149

6.4 Example of text containing Setting annotations, from the Famous Five 1: Five on

a Treasure Island by Enid Blyton (1942). 149

6.5 Illustration of an entity list and resolved co-reference. 151

6.6 Example abstract constraints derived from annotated behaviour in a �ction extract. 152

6.7 Illustration of the relationship between the presentation time-line and behaviour in

a 3D virtual environment. 153

6.8 Illustration of the spatial relationship described by the near constraint. 155

6.9 Illustration of the spatial relationship described by the noCollide constraint. . . . 155

6.10 Illustration of the spatial relationship described by the directionRelation constraint. 156

LIST OF FIGURES xiii

6.11 Quality of intermediate solutions to benchmarks (without motion) as a function of

execution time. 161

6.12 Solutions to Front and Scene benchmarks depicted graphically. 161

6.13 Quality of approximate solutions to inconsistent constraint systems as a function of

execution time. 162

6.14 Visualization of approximate solutions to inconsistent constraint systems. 162

6.15 Quality of intermediate solutions to theDynamic1Static1 benchmark as a function

of execution time. 163

6.16 Visualization of the solution to theDynamic1Static1 benchmark using a trajectory

of degree 1. 163

6.17 Visualization of the approximate solution to the Dynamic1Static1 benchmark

using a trajectory of degree 2. 164

6.18 Quality of intermediate solutions to the Dynamic2 benchmark as a function of

execution time. 164

6.19 Visualization of approximate solutions of increasing quality for theDynamic2 bench-

mark. 165

6.20 Illustration of constraint system segmentation. 167

6.21 Visualization of a complex trajectory as the sequence of low degree trajectories. . . 167

6.22 Illustration of incremental system optimization. 168

6.23 Illustration of the process used to create quanti�ed trajectories from an abstract

constraint set. 169

6.24 Default humanoid model from the library with orientation, location and bounding

box illustrated. 170

6.25 Armature con�guration and illustration of the default avatar in the three standard

poses. 171

6.26 Illustration of a 3D environment containing models with assigned motion and artic-

ulation. 172

6.27 Example settings generated procedurally. 173

6.28 Example foley description from the Famous Five 1: Five on a Treasure Island by

Enid Blyton (1942). 174

6.29 Example subtitle with speech bubble, representing a quote from talking avatar Julian.175

6.30 Example sequence in Blender constructed automatically from the Famous Five 1:

Five on a Treasure Island by Enid Blyton (1942). 176

6.31 Illustration of automatically generated virtual environment without manual inter-

vention. 182

6.32 Cow scene from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).183

6.33 Follow scene from the World of Tiers 7: More than Fire by Philip Jose Farmer (1993).185

6.34 Rabbit scene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton

(1942). 187

6.35 Rabbit scene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton

(1942). 188

6.36 Study scene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton

(1942). 190

LIST OF FIGURES xiv

6.37 Study scene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton

(1942). 191

6.38 House sequence from Narnia 2: The Lion, the Witch and the Wardrobe by C.S.

Lewis (1950). 192

6.39 Travel sequence from the Famous Five 1: Five on a Treasure Island by Enid Blyton

(1942). 194

7.1 Summary of the problems and automated processes that solve them for the complete

�ction-to-animation task. 200

7.2 Comparative ratings of capabilities for related text-to-graphics systems. 207

C.1 Forward evaluation of a constraint (as illustrated by Benhamou et al. (1999)). . . . 232

C.2 Backward propagation of a constraint (as illustrated by Benhamou et al. (1999)). . 233

List of Tables

2.1 Categorization of related text-to-graphics systems according to input and output. . 20

3.1 Size and content of the four annotated corpora. 27

3.2 Example of manual and automatic labeling. 28

3.3 Precision and recall of our tokenization technique over the Brown corpus. 30

3.4 Accuracy of our sentence boundary detection process. 31

3.5 Freely available parts-of-speech taggers, and the accuracy reported for each. 32

3.6 Number of tokens and tag-set size of the four test corpora. 34

3.7 Accuracy results of various taggers over the di�erent corpora. 35

3.8 Top three contributors to error for each tagger. 36

3.9 Summary of the highest accuracy levels and error reductions over four di�erent

corpora. 39

3.10 Success metrics for the automatic identi�cation of avatars in �ction text. 42

4.1 Reported performance of related pattern-based information extraction techniques

over free text. 51

4.2 Pattern-based learning systems summarized according to text structure, generaliza-

tion strategy and direction of generalization. 52

4.3 Breakdown of manually annotated �ction text corpus. 85

4.4 Summary of annotation categories over corpus. 86

4.5 Summary of results when training with 50% or less of the positive training examples.100

4.6 Evidence in support of a boot-strapping process using the Object annotation category.102

5.1 Summary of parameters for the interval-based quanti�ed constraint optimization

algorithm. 132

5.2 Benchmarks for verifying underlying narrowing and solving algorithms. 134

5.3 Benchmarks for verifying ability to solve universally quanti�ed constraint systems. 134

5.4 Benchmarks for �ction-to-animation constraints. 135

5.5 Optimizer parameters used for experiments. 137

5.6 Performance benchmarks for non-quanti�ed constraint solving. 139

5.7 Performance benchmarks for non-linear, universally quanti�ed constraint solving. . 140

5.8 Performance benchmarks for �ction-to-animation constraints. 142

6.1 Direct mapping between abstract constraints and quanti�ed constraints. 157

xv

LIST OF TABLES xvi

6.2 Descriptions of the source books and chosen scenes. 177

6.3 Degree of consistency for the automatic abstract constraint creation process over six

extracts. 180

6.4 Summary of manual modi�cations to automatically populated virtual environments. 181

A.1 Recognised punctuation, apostrophe and sentence termination symbols. 227

B.1 Coarse tag-set, adapted from the Penn tag-set. 229

B.2 Mappings between the coarse tag-set and the Penn, LOB and SUSANNE tag-sets. 230

Chapter 1

Introduction

Creating an animated �lm from a �ction book is a task that requires a number of repetitive activi-

ties. These include reading and comprehending the original text for creating detailed descriptions of

the �lm, planning the arrangement and behaviour of entities in each scene, constructing geometry

for representing entities visually, and quantifying behaviour for models in the virtual environment.

This research reduces the manual e�ort required for the �lm-creation task by replacing repetitive

activities with automated processes.

Fiction books are popular sources of inspiration for the creation of �lms because they contain

rich visual descriptions regarding background scenery, the layout of people and objects in a scene,

and their interactions. A well known example is J.R.R. Tolkien's The Lord of the Rings that was

adapted to a series of live-action �lms1. This �lm series is notable in the use of computer graphics,

making possible the visualization of fantastical scenes that would have required large quantities of

e�ort and expense to reproduce in reality. In spite of this, the creation of this �lm series required

extensive human e�ort in adapting the original book to a suitable screen-play, in constructing the

geometric models, and in editing and sequencing the �nal �lms (as evident by the list of credits

following any �lm in the series).

Many tasks in the process of transforming a �ction book into an animated �lm have the potential

to be automated using computer technology. Technologies already exist that reduce the e�ort in

the creation of animated graphics, including key-frame animation, inverse-kinematics, motion-

capture, and �uid and cloth simulations. We speculate that additional tasks stand to bene�t

from automation, including the analysis and interpretation of language and the population of

corresponding virtual environments.

We use the term �ction-to-animation to collectively describe the task of converting �ction text

to corresponding virtual environments. The term �ction refers speci�cally to text sourced from

a �ction book. The term animation refers to the creation of moving three-dimensional graphics

in a virtual environment, and the creation of other modalities including audio. We use the term

visualize to describe the creation of graphics that correspond to the original text, but this term

also refers to the creation of content in other modalities.

1Written between 1937 and 1945, �lm premiers between 2001 and 2003.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Generalization of the �lm-creation activities when using �ction text as a source.

1.1 Background

The process of creating an animated �lm is guided by a human director's discretion and creativity,

but this process often includes two generic stages, namely the development of a screen-play and

the development of story-boards. The screen-play is a document that explicitly describes (in a

structured format) the scenes that comprise a �lm and the character interactions within each

scene (Hauge, 1988). Story-boards are constructed from an original screen-play, serving as a plan

for background scenery, positioning of actors and objects in each scene, as well as specifying how

scenes are sequenced to make up a �lm (Cantor and Valencia, 2004). The subsequent construction

and �lming of scenes follows from the story-boards.

In the context of the �ction-to-animation task, the creation of a screen-play and story-boards

requires repetitive manual e�ort. The construction of a screen-play involves a detailed analysis of

the original text to derive a structured intermediate representation of the story. This process calls

for frequent re-examination and multiple readings of the original text. The task of creating story-

boards from the screen-play involves creative interpretation of the described scenes, with regards

to specifying layout and behaviour of objects and characters in a setting. If the �nal presentation

is an animated 3D �lm, then the production includes extensive repetitive e�ort in constructing 3D

models for each character, setting up 3D virtual environments, and explicitly de�ning motion and

articulation in each scene.

We generalize the �ction-to-animation task in terms of two major activities, the text-analysis

activity and the interpretation activity, illustrated in Figure 1.1. The task of creating a screen-play

is an example of a text-analysis activity, while the tasks of creating story-boards and constructing

the 3D environments represent interpretation activities. The screen-play forms the link between

these two activities, and is an example of an intermediate representation of the original story. We

choose an intermediate representation that is expressed in a format more suitable for computer-

based representation (as opposed to a screen-play), and automate the text analysis task using

natural language processing technology. This intermediate representation also allows for automated

planning of virtual environments, from which multi-modal animated 3D �lms are produced.

The methods we select for automating each task are characterized by a central theme, namely

the use of knowledge-poor techniques for performing the conversion process. Knowledge-poor

techniques are characterized by the absence of computer encoded world-knowledge in the form of a

special purpose, manually constructed knowledge-database. The use of a knowledge-base limits the

capability of an automated system to the detail provided by the encoded information. Populating

such a database requires extensive human e�ort, and we believe that no existing knowledge-base

CHAPTER 1. INTRODUCTION 3

caters for the range of concepts potentially posed by �ction text. We believe that the small amount

of knowledge required can be provided by a human without losing the bene�t of automation.

1.2 Problem statement

We investigate the automatic conversion of text sourced from a �ction book into a correspond-

ing multi-modal, animated 3D presentation. We rephrase this problem in terms of the following

hypothesis:

The process of converting a �ction book into an animated 3D �lm can be automated.

To show that automation is supported in the �ction-to-animation process, evidence of automa-

tion is required in the text analysis and interpretation activities illustrated in Figure 1.1. Therefore,

the problems to be investigated in this research are as follows:

Problem 1 (text analysis): Can a suitable intermediate representation be generated from a �c-

tion book?

This problem requires the identi�cation and categorization of visual descriptions in �ction

text and their representation in a structured manner.

Problem 2 (interpretation): Can we create virtual environments that correspond to the inter-

mediate representation?

This problem is concerned with interpreting the intermediate representation for producing

corresponding multi-modal presentations that re�ect the content of the original �ction text.

The worst-case scenario is that the human manually creates an intermediate representation from

an original �ction book, and manually transforms this representation into an animated �lm. This

corresponds to the current �lm-creation process described in Section 1.1. We remove the need for

manual repetitive tasks by automating majority of the text-analysis and interpretation processes.

The above problems are de�ned only in the presence of an intermediate representation that is

structured enough for automatic creation and interpretation by a computer.

Intermediate representation

We use annotated �ction text as an intermediate representation for the �ction-to-animation task.

Descriptions of visual information in the �ction text are marked up in di�erent categories. We refer

to marked up descriptions as semantic annotations, because they identify semantic information

regarding the visual scenes in the story. Figure 1.2 presents an example of original �ction text that

is annotated with semantic annotations (using XML2), and we highlight the following advantages

of this choice of intermediate representation with reference to this example:

• Annotated �ction text identi�es visual properties described in text, as required by problem

1. For example, the avatars that appear in the scene, the nature of the setting, as well as

spatial relations between entities are marked up in the example in Figure 1.2.

2Extensible Markup Language

CHAPTER 1. INTRODUCTION 4

<avatar>Anne</avatar> didn't very much like a big brown <object>cow</object> who <transi-

tion type=�INSIDE� subject=�cow�>came</transition> up <relation type=�near� subject=�cow�

object=�her�>close<relation> and stared at her, but it <transition type=�OUTSIDE� sub-

ject=�it�>went</transition> away when <avatar>Daddy</avatar> told it to.

Figure 1.2: Example annotated �ction text, from the Famous Five 1: Five on a Treasure Island
by Enid Blyton (1942).

• Annotations identify di�erent categories of interpretation activities to be performed, includ-

ing specifying the appearance of the setting, what avatars require visual depiction, and how

they are to be placed or moved in a scene. This satis�es the requirement posed by problem

2 above.

• The structured format of the annotations is conducive to automatic creation and interpreta-

tion while remaining closely associated with the original �ction text.

We re�ne the two �ction-to-animation problems in the following sections, where re�nements are

based on our choice of annotated text as an intermediate representation.

1.2.1 Text analysis

The text analysis problem is concerned with creating semantic annotations over original �ction

text.

Manually creating annotations requires decisions to be made by a human annotator that are

based on experience with natural language and personal discretion. As a result, we do not expect

identical annotations to be created by two di�erent humans. We believe that two factors in�uence

the manual creation of annotations, namely linguistic indicators and world-knowledge. Linguistic

indicators, including the structure of the text and the function of individual words, are used to

convey linguistic concepts to the human. Meaning is derived by combining these concepts with

internal world-knowledge to formulate decisions about how to create annotations. Exactly how

natural language is interpreted and combined with world knowledge is as yet uncertain, and many

con�icting theories exist regarding this process (Schank, 1972; Minsky, 1975; Mandler and Johnson,

1977; Eysenck and Keane, 2000).

Linguistic indicators within natural language are described by commonly accepted theories

of language structure (such as the sentence or the phrase) and syntax (such as verb or noun).

World-knowledge cannot be de�ned in such concrete terms, particularly because each human's

world-knowledge and decision process is determined by individual experiences. We do not attempt

to create a generic world-knowledge representation, but phrase the problem to allow individual

human experience to be captured in the automated process.

We phrase the text analysis problem in terms of the following two sub-problems:

1. Automatically deriving linguistic indicators that identify structural and syntactic properties

of �ction text.

2. Creating semantic annotations using a process that conforms to rules derived from human

created examples (where rules are phrased in terms of structural and syntactic properties of

text).

CHAPTER 1. INTRODUCTION 5

1.2.2 Interpretation

The interpretation problem encompasses all activities required to translate the intermediate rep-

resentation into an animated 3D environment. We identify three activities in this process.

The �rst activity requires a review of the intermediate representation, and the formulation of a

high-level plan regarding the contents and layout of each scene. This corresponds to the creation

of an initial draft of a story-board, which uses artistic and creative discretion on the part of a

human director.

As the story-boards are progressively re�ned, human experience and creativity are used to plan

the layout of each scene, and to ensure that various entities are placed correctly according to either

explicit textual descriptions or common-sense constraints (such as gravity).

The �nal detailed plan is subsequently implemented in a 3D virtual environment, involving a

number of repetitive tasks, such as 3D object modeling, placing and posing models, and key-frame

de�nition (tasks vary according to the modeling facilities used). These tasks are complicated by

current technology that is restricted to two-dimensional interfaces for designing 3D virtual worlds.

This requires multiple views to place objects correctly, as well as a number of interfaces for de�ning

motion, actions, and poses.

The interpretation problem is therefore phrased in terms of three sub-problems:

1. Interpreting semantic annotations to identify which scenes to visualize, the contents of each

scene, and the behaviour of entities in each scene.

2. Planning the exact behaviour in a scene in an automatic manner. This problem is charac-

terized by the inclusion of a temporal dimension because the concept of behaviour implies

time-based activity.

3. Automating the population of a 3D virtual environment with appropriate visual icons, vi-

sualizing the described behaviour, and constructing coherent multi-modal representations of

the �ction text.

1.3 Strategy

We use a collection of automated knowledge-poor techniques for automating the �ction-to-animation

process. The following sections describe our strategies for performing text analysis and interpre-

tation.

1.3.1 Automation of text-analysis

Automating text analysis requires a process that is able to learn about how to create annotations in

a similar manner that would be used by one speci�c human annotator. We automate text analysis

using machine-learning, which models a human's thought processes regarding the annotation task

using examples created by that human. An automatically generated model is used to produce

further annotations.

CHAPTER 1. INTRODUCTION 6

{They/PRP had/VBD it/PRP on/IN the/DT top/NN of/IN a/DT hill/NN ,/@COPY in/IN a/DT sloping/JJ

�eld/NN that/WDT looked/VBD down/RP into/IN a/DT sunny/JJ valley/NN ./@COPY} {Anne/NNP did/VBD

n't/RB very/RB much/JJ like/IN a/DT big/JJ brown/JJ cow/NN who/WP came/VBD up/RP close/VB and/CC

stared/VBD at/IN her/PRP ,/@COPY but/CC it/PRP went/VBD away/RB when/WRB Daddy/NNP told/VBD

it/PRP to/TO ./@COPY}

Figure 1.3: Example �ction text with surface annotations (tokens, sentences and parts-of-speech),
from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).

We propose the following mechanisms for achieving a machine learning approach in automating

the text-analysis problem:

1. Structural and syntactic properties of text are automatically identi�ed in the form of surface

annotations. Structural properties include tokens, sentences, and quotes. Syntactic prop-

erties include parts-of-speech, phrases, and syntactic function (example surface annotations

are provided in Figure 1.3). Surface annotations are created using general natural language

processing tools ranging from automatic tokenizers and sentence splitters to parts-of-speech

taggers and syntactic parsers.

2. We develop a hierarchical rule-based learning mechanism for automating the creation of

semantic annotations. This mechanism induces patterns from manually annotated �ction

text (supplemented with surface annotations) and uses these patterns for the creation of new

annotations.

1.3.2 Automation of interpretation

We automate the interpretation of annotated �ction text in three stages: by interpreting the

annotations to formalize which scenes to portray and identify the contents and behaviour in each

scene; by calculating values that visually re�ect this behaviour in a virtual environment; and by

populating 3D environments with visual geometry.

1. Annotations are interpreted automatically to specify scene detail in a structured manner

using knowledge-poor techniques. The set of scenes to visualize is derived by segmenting the

text into fragments that describe a single physical location (using annotations that identify

physical settings in �ction text). The entities that occur in each scene are identi�ed using

annotations that indicate references to avatars and objects, and are instantiated visually by

selecting geometric models from a library. Behaviour of entities in each scene is expressed

using structured time-quanti�ed constraints (derived from annotations) that describe the

spatial relationships between entities in a scene over intervals of time.

2. We plan behaviour through the creation of symbolic analytical constraints that describe the

behaviour of entities in a virtual environment (examples of which are provided in Figure 1.4).

The solutions to these constraints consist of precise numerical values that represent behaviour

in a virtual environment. We represent the time aspect using interval arithmetic, allowing

behaviour to be speci�ed over contiguous intervals of time. We �nd solutions to constraints

using an interval based quanti�ed constraint optimizer. This approach is bene�cial because

CHAPTER 1. INTRODUCTION 7

• Entity M has a trajectory de�ned as rM (t) = (1− t)pM
0 + tpM

1

• Entity N has a trajectory de�ned as rN (t) = pN
0

Example system of constraints over the two trajectories:
M near N : ||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0∀t ∈ [tstart, tend]
M noCollide N : ||rM (t)− rN (t)||2 − (aM + aN)2 > 0∀t ∈ [tstart, tend]
...

Figure 1.4: Example set of symbolic analytical constraints that specify behaviour in a virtual
environment.

Figure 1.5: Example behaviour visualized in a virtual environment.

it is capable of �nding approximate solutions even where automatically generated constraints

are inconsistent.

3. We populate a 3D virtual environment by automatically instantiating models for each entity

in a 3D environment, and generating geometry for background scenery. Position and motion

are automatically assigned to a model in a scene using the quanti�ed trajectories produced

from the constraint optimization process (illustrated in Figure 1.5).

The result of these processes are multi-modal animated 3D virtual environments, from which

�lms are rendered. Example snap-shots from the �lms created using our automated processes are

illustrated in Figure 1.6.

1.4 Overview

This dissertation describes the methods we use for automating �ction-to-animation in terms of

the corresponding problems de�ned in Section 1.2. These problems and the manner in which they

are related are illustrated in Figure 1.7. The strategies we use for solving each problem are also

illustrated, as are points for human intervention in the process.

CHAPTER 1. INTRODUCTION 8

Figure 1.6: Multi-modal presentations produced using our strategy for interpreting annotated
�ction text.

Fiction book

Problem 1: Text Analysis

 1.1) Linguistic indicators

 1.2) Annotation creation

Problem 2: Interpretation

 2.1) Interpretation of annotations

 2.2) Specification of behaviour
 in a virtual environment

 2.3) Populating 3D environments

Intermediate
representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
of surface annotations

Machine-learning for
automating creat ion

of semantic
annotat ions

Create structured
scene descriptions

Automatic constraint
solving/optimization

Automatic populat ion
of 3D vir tual environment

Human knowledge:
- Manual examples

Human knowledge:
- Clarify l inguistic ambiguity
- Implied scene layout
- Creative ideas

Human knowledge:
- Creative enhancements

Figure 1.7: Illustration of the �ction-to-animation problems with proposed solution strategies.

This exposition is structured according to the identi�ed sub-problems as follows:

• Chapter 2 reviews related text-to-graphics research, highlighting the unique characteristics

of the �ction-to-animation problem. It also motivates the strategies shown in Figure 1.7 for

automating the �ction-to-animation process.

• Chapter 3 describes our strategies for automating the creation of surface annotations over

�ction text (relating to problem 1.1 in Figure 1.7).

• Chapter 4 develops the hierarchical rule-based learning approach for creating semantic anno-

tations in �ction text. This system uses surface annotations resulting from methods developed

in Chapter 3, and automates the creation of the intermediate representation (illustrated as

problem 1.2 in Figure 1.7).

• Chapter 5 develops the method for �nding solutions to systems of time-based symbolic con-

straints. This mechanism is used in the derivation of precise values that represent behaviour

in virtual environments, corresponding to problem 2.2 in Figure 1.7. The capabilities of

this mechanism in�uence the manner in which constraint systems are derived from anno-

tated text, explaining why we present this mechanism before the automated derivation of

constraint systems (problem 2.1).

• Chapter 6 describes techniques for deriving scene detail from annotations, corresponding to

problem 2.1 in Figure 1.7. This includes our strategy for creating structured descriptions

CHAPTER 1. INTRODUCTION 9

of behaviour from annotated text, their conversion into time-based analytical constraints,

and the manner in which the solution-�nding process (described in Chapter 5) is used for

quantifying behaviour. Chapter 6 also develops strategies for instantiating 3D virtual envi-

ronments containing geometric models and background scenery (corresponding to problem

2.3 in Figure 1.7). The creation of multi-modal animated �lms is also covered in this chapter.

• Chapter 7 summarizes the overall strategy for automating the �ction-to-animation task, and

presents the conclusions and contributions resulting from this research.

Chapter 2

Techniques for converting text to

graphics

2.1 Introduction

The problem of automatically converting natural language to graphical representations has been

examined from a number of di�erent perspectives in related research. Techniques vary according to

the style and complexity of language used as input, and according to the type of output required.

This chapter positions the �ction-to-animation problem in relation to existing text-to-graphics

research in these respects.

2.1.1 Categorization of text-to-graphics systems

A text-to-graphics system is an automated computer program that takes a sequence of textual

symbols as input and produces corresponding graphical representations. Text-to-graphics systems

are categorized according to the level of complexity of the input text in relation to its resemblance

to natural language. At the lowest level are systems for which input text is structured formally

according to well de�ned grammars (an example of which is VRML1) allowing unambiguous inter-

pretation by a computer. At the highest level are systems that interpret actual natural language to

create corresponding graphics, but require complex techniques for resolving ambiguities inherent

in natural language. Between these levels of input are systems that take input that is language-

similar, where input bears resemblance to natural language but is structured for interpretation by

a computer.

Low level text-to-graphics systems are of little interest in this research because the input

lacks resemblance to �ction text. Instead, we examine two categories of text-to-graphics sys-

tems: language-similar methods, because these are precursors to high-level systems; and high-level

language-to-graphics systems that successfully transform natural language input into graphical rep-

resentations.

Systems within each category are further distinguished according to the type of output they

produce. A range of di�erent options exists for visualizing text, including modi�cations to existing

1Virtual Reality Modeling Language: http://www.w3.org/MarkUp/VRML/

10

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 11

Input text Text Analysis Interpretat ion
Intermediate

representation
Graphical environment

Static graphics OR
Animated graphics

Figure 2.1: Generic text-to-graphics process.

Text-to-graphics

Language-similar Natural language

Static images

Animated graphics

Scene modif ication Scene instantiation

Robotic-arm manipulation

Photographs

Static 3D graphics

Animated 3D graphics

Agent direction

Embodied conversational agents

Input Complexity

Output task

Output type

Figure 2.2: Overview of related text-to-graphics systems.

graphical environments in response to commands, the creation of line drawings and 3D images,

and the creation of multi-modal 3D animated graphics.

This review highlights the fact that all text-to-graphics systems exhibit similarities with re-

gards to the structure of the process used for conversion. This generic text-to-graphics process is

summarized in Figure 2.1. A text-to-graphics system requires a text-analysis process that converts

the input text into some computer-readable intermediate representation. This representation is

then interpreted to construct or modify a graphical environment, requiring a reasoning process

regarding the layout of a graphical environment. Static images or animated graphics are rendered

from the �nal graphical environment. The design of our �ction-to-animation system conforms to

this generic process, while di�ering in the techniques used to accomplish each task.

2.1.2 Overview

This review categorizes existing text-to-graphics systems according to the level of the input required

by each system, as summarized in Figure 2.2. Section 2.2 describes language-similar systems, while

Section 2.3 describes systems that take natural language as input. Systems are further categorized

according to the type of graphical output produced. Thereafter, the �ction-to-animation system

is discussed in relation to the previously described text-to-graphics systems (Section 2.4).

2.2 Language-similar graphics-generation systems

Systems that produce graphics automatically from language-similar instructions bene�t from the

ability to parse input text in a reliable manner. Various constituents of the input text are recog-

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 12

nized using a formally de�ned grammar. In spite of this, commands that resemble natural language

introduce ambiguity even though the structure of the input is strictly de�ned. Language-similar

input text is used primarily in early techniques for text-based graphics production. Due to limita-

tions in hardware, graphics in the form of line drawings were produced at the time of development

of many of these systems. Even with this restriction in output quality, systems exist that create

both static images as well as animated graphics from the language-similar input.

2.2.1 Output as a static image

Early language-similar graphics-generation systems produce static line drawings in response to

commands issued by a human user. Examples of such systems include the following:

• The Env I system (Boberg, 1972) accepts input such as:

(CREATE A BRICK); (PUT PHOBJ1 ON PHOBJ2); (MAKE PHOBJ1 LONGER)

• The Clowns microworld (Simmons, 1975) accepts instructions such as:

(BOAT ABOVE WATER); (ATTACH BOAT WATER); (DOCK ABOVE WATER)

• The Nalig system (Adorni et al., 1984) requires input nearer to genuine natural language

in the form of:

<subject> <preposition> <object>

• The Put system (Clay and Wilhelms, 1996) accepts commands of the form:

put {�table� on �floor�}

In each of the above cases the system provides a �nite vocabulary and grammar for specifying

commands in the task of controlling the positioning of objects in a scene. The restriction of the

grammar reduces a large amount of ambiguity in the interpretation of the commands because the

function of each token in the input is explicitly de�ned for the computer. However, the use of

natural language terms still presents cases of ambiguity. For example, ambiguous terms such as

�LONGER� in the Env I example (Boberg, 1972), or �on� in the Put system (Clay and Wilhelms,

1996), are interpreted di�erently depending on the objects involved.

All the above systems have the common mechanism of mapping units of input directly to

modules in which hand-coded decision making processes are executed for resolving ambiguity. For

example, Put (Clay and Wilhelms, 1996) interprets commands using image schemas, which are

documents that de�ne how relations are realized in a 3D environment with respect to properties of

the involved entities. For each preposition such as �on� or �at�, a schema encodes world-knowledge

regarding how to handle di�erent cases, for example in placing an item �on the wall� as opposed to

�on the table�. Equivalent reasoning modules are used in Nalig in the form of hand coded rules

(Adorni et al., 1984), or theorems in Env I (Boberg, 1972).

Each of the above systems has the objective of providing an alternative interface for arranging

a graphical environment. In particular, Env I (Boberg, 1972) is concerned with creating and

arranging cubes and wedges in a 3D environment, while Nalig (Adorni et al., 1984) and Put

(Clay and Wilhelms, 1996) are concerned with arranging more general 3D objects annotated with

spatial properties (such as which surface of a geometric object represents the �top�). In contrast, the

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 13

Text Analysis
Language-similar

commands
Interpretat ion

Intermediate
representation

Graphical environment

Static graphics OR
Animated graphics

Using knowledge encoded as:
- Case-frames (PUT)
- Theorems (ENV I)
- Rules (NALIG)
- Suggestions (ANI)

Figure 2.3: Language-similar input for the generic text-to-graphics process.

Clowns microworld (Simmons, 1975) is only concerned with arranging a graphical environment

containing a �nite set of pre-de�ned objects.

In all cases, the input is a command that explicitly describes how a scene must be modi�ed.

This is di�erent to a narrative, which is a collection of descriptions (only some of which refer to

visual aspects), and which is potentially characterized by a temporal aspect.

2.2.2 Output as animated graphics

Early systems exist that convert sequences of language-similar instructions to animated graph-

ics, including the Ani system (Kahn, 1979) and the primitives-based story visualization system

(Narayanan et al., 1995). Sequences of language-similar instructions are provided that specify how

the graphical environments change:

• The Ani system (Kahn, 1979) takes commands as follows:

(CONVEY (wants cinderella (meets cinderella prince)))

(CONVEY (prevents stepmother (meets cinderella prince)))

(�cinderella� and �stepmother� are entities declared previously, and keywords such as �meets�

and �prevents� are associated with speci�c routines)

• The primitives-based story visualization system (Narayanan et al., 1995) takes input in which

verbs are manually replaced with one of Schank's fourteen primitive actions (Schank, 1973).

The sentence �John entered the restaurant� is expressed as:

John PTRANS restaurant

Graphical models are animated by invoking each primitive action in sequential order, although

reasoning is used in the Ani system regarding how to order the visualizations. For instance, the two

CONVEY commands in the above example are executed simultaneously rather than sequentially.

As with language systems that produce static graphics, the restriction on the input language

allows for explicit mapping of natural language keywords to modules that interpret the instructions

graphically. Simple animated graphics are the result in both systems, for example consisting of

applying motion to two-dimensional symbols in Ani.

All language-similar graphics generation systems map units of input to modules in which hand-

coded decision making processes are executed for resolving ambiguity. Because of the structured

form of the input, text analysis is not required. World-knowledge is encoded in various forms for

the interpretation of the intermediate representation, as indicated in Figure 2.3. The mapping

from input symbols to interpretation modules is done directly, a luxury not available when true

natural language is used as input.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 14

Text AnalysisNatural language
commands

Interpretat ion
Intermediate

representation
Graphical environment

Static graphics OR
Animated graphics

Agents programmed
with a repertoire of actions

Templates encoding world knowledge
 (l inguistic and graphical):
- Plan-schemata (AnimNL)
- Paramaterised Action
 Representations (Badler et al., 2000)
- Case frames (KARAI)

Instructions on deriving further
parameters from text

Fil l in world-knowledge for
parameter is ing commands

Syntactic parsing
and matching with

dictionaries of
templates

Detai ls regarding entit ies and layout of environment

Figure 2.4: Scene modi�cation using natural language input illustrated with respect to the text-
to-graphics process.

2.3 Natural language graphics-generation systems

Natural language poses a di�cult problem in terms of the text-to-graphics problem because com-

mands or narratives are expressed in a variety of ways, with varying degrees of ambiguity. In

some systems commands are provided as input in order to modify a pre-constructed graphical en-

vironment or assign behaviours to entities within the environment. Alternatively, natural language

narrative describing a �ctitious environment is used as input, from which a graphical representation

must be created and possibly animated if the input narrative describes actions and events.

2.3.1 Output as a modi�cation on a pre-existing environment

One of the �rst examples of language-based manipulation of a 3D environment is the Shrdlu

system (Winograd, 1972), in which English commands are used to control a virtual robot-arm in a

3D environment. Shrdlu is signi�cant in that it is one of the earliest systems to use grammatically

correct English as input to a graphics-based system, requiring complex syntactic analysis of the

input text. Part of the success of the ambiguity resolution is the restriction to a limited domain,

which contains only a �nite number of entities and permissible actions.

Natural language is often used as the modality for communication between a human operator

and entities within a pre-built virtual environment. In particular, techniques exist that allow for

natural language commands to be issued to agents in a virtual environment (Webber et al., 1995;

Badler et al., 2000; Bindiganavale et al., 2000; Shinyama et al., 2000). Example commands handled

by these systems include:

Walk around the room. (Badler et al., 2000)

Chicken, push the sphere from the left. (Shinyama et al., 2000)

Agents are designed to perform a certain range of actions, and the task of the system is to

determine which action is being described in the input command, and to determine which entities in

the scene are to take part in the action. This process is simpli�ed by the fact that the environments

are pre-constructed, and so data is available regarding every entity in the scene for resolving

ambiguity.

Most systems make use of an intermediate template representation that encodes both knowledge

on how to extract relevant details from the input text, as well as interpret the information for

visualizing actions in the graphical environment, illustrated in Figure 2.4. Information derived

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 15

using syntactic parsing is used to determine which template (schema (Webber et al., 1995), PAR

(Badler et al., 2000) or case frame (Shinyama et al., 2000)) is applicable to a certain input word or

phrase. The chosen template contains instructions regarding how to derive additional information

from the text to parametrize the described action, as well as how to visualize the action graphically

(for instance, by sending the appropriate command to an agent).

Input to systems in this category is provided in the form of commands that are executed

immediately in order to update the graphical environment (or position of the camera (Bersot

et al., 1998)). The aspect of time is handled by implication, in that no reasoning is performed

regarding when an action should occur or how long it should take to execute. Animation occurs in

response to an input command, after which the issuer of the command must wait until the action

is completed.

Non-command input is also used to modify existing environments, speci�cally when animating

embodied conversational agents. Techniques in this area interpret natural language input in terms

of emotional content, and use this information to automatically assign the correct facial expressions

and actions to an avatar (Piesk and Trogemann, 1997). This is the case for the BEAT toolkit, which

derives multi-modal gestures and expressions for an avatar from natural language input (Cassell

et al., 2001). Similar conversion representations to those illustrated in Figure 2.4 are employed,

where multi-step intermediate representations are used to transform text into a form that can be

used to create animated narrator avatars (Kopp et al., 2006; Vilhjálmsson et al., 2007). Virtual

or interactive storytelling is a typical application of embodied conversational agents, where these

agents bring a textual narrative to life (Ladeira, 2006), are used to derive new plots (Theune et al.,

2003; Swartjes and Theune, 2008) or react to input in an intelligent and interactive manner (Tarau

and Figa, 2004). However, the domain of embodied conversational agents and virtual storytelling

di�ers from the �ction-to-animation problem in that these agents are graphical narrators of the

input story, as opposed to graphical representations of the content of the story.

In all the above cases, ambiguity is avoided because textual input is directed to entities that

already exist in a scene. This is indicated in Figure 2.4 by the feedback loop between the graphical

environment and the intermediate representation. This allows the interpretation to be guided

based on the current state of the environment. A more complex formulation of the text-to-graphics

problem is the case in which both the environment and the entities must be created.

2.3.2 Output as instantiated graphics

A number of alternatives exist for creating graphical representations from natural language input,

including producing output as a sequence of photographs, constructing a static 3D environment,

or constructing an animated 3D environment from which animated �lms are rendered.

2.3.2.1 Output as sequences of photographs

An alternative to visualizing natural language text using 3D environments is the use of photographs

correctly matched to concepts in input text (Joshi et al., 2004; Zhu et al., 2007). These approaches

extract keywords from input text that are used as queries into a database of annotated images or an

Internet-based image search engine. One advantage of the text-to-picture approach is that semantic

interpretation of the input text is avoided, rather making use of keywords to visualize the text.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 16

Text AnalysisNatural language
narrat ive

Interpretat ionIntermediate
representation

Graphical environment

Static 3D graphics

Syntactic parsing

Table-lookup of
correct interpretat ion

module

Database of
interpretat ion modules

Knowledge-based
translat ion

Database of annotated
geometr ic models

Knowledge-based
layout reasoning

Examples include:
- Frames (WordsEye)
- "Descriptionary" (3DSV)

Example annotations:
- Spatial tags e.g. "top" surface (WordsEye, 3DSV)
- Parts e.g. "arm", hand (WordsEye)

Database of spatial
interpretat ion modules

Examples include:
- Depiction rules (WordsEye)

Figure 2.5: Scene instantiation from natural language narrative illustrated in terms of the generic
text-to-graphics process.

This allows for large portions of unrestricted text to be visualized as sequences of corresponding

images. The problem with this approach is that images (especially returned from an image search

engine) tend to be poorly annotated, and the lack of syntactic reasoning potentially results in

inappropriate images for a particular keyword (Glass et al., 2007).

2.3.2.2 Output as instantiated 3D environments

Unlike systems that respond to individual natural language commands, some systems create en-

tirely new graphical environments from a narrative describing a scene. This requires both recogni-

tion and creation of new entities, as well as interpretation of the entire discourse to determine the

global layout of the environment (rather than implement instructions one at a time). Examples of

such narratives include:

John uses the crossbow. He rides the horse by the store. The store is under the

large willow. (Coyne and Sproat, 2001)

A brick wall is right of a room. A red rug is in the room. A wooden table is on

the rug. (Zeng et al., 2005)

As illustrated in Figure 2.5, a computer-readable intermediate representation must be created

from the input text. This is done using a database of interpretation modules, which are docu-

ments that contain instructions regarding how to interpret the text in certain scenarios. Surface

annotations of the input text are used to perform a look-up in a database that contains di�erent

categories of interpretation modules. For instance, words annotated as nouns result in a look-up

in the database for a module containing instructions that instantiate an entity in the 3D scene

(Yamada et al., 1992; Zeng et al., 2003, 2005; Seversky and Yin, 2006). Di�erent categories of in-

terpretation modules exist for di�erent types of semantics, including categories for handling nouns,

spatial prepositions, and verbs (Coyne and Sproat, 2001). Each category has a number of de�ned

modules, handling instances that potentially occur within that category. For example, the token

�on� is recognised as a preposition by the parser, and consequently a preposition module is invoked

that determines how to locate the subject entity and the reference entity of the relation from the

text.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 17

The intermediate representation created by the text analysis modules is a translation of the

input language into computer-readable format. For example, WordsEye (Coyne and Sproat,

2001) creates a representation in the following format (ellipsis indicates unquoted portions):

(...

(�node5� (:ENTITY:3D-OBJECTS (�cat-vp2842�)))

(�node6� (:STATIVE-RELATION �on�:FIGURE �node5�:GROUND �node7�))

(�node7� (:ENTITY:3D-OBJECTS (�pool_table-vp8359�...)))...)

The above representation instantiates two entities, and speci�es an �ON� relation between them.

This representation must be interpreted in the visual context, which is done using world knowledge

associated with geometric models and using a number of hand-coded spatial reasoning modules.

Geometric models are annotated with detailed spatial tags, information that describes the

various regions semantically associated with an object. For instance, tags such as �front� and

�behind� are described for each model, as well as more semantically relevant terms such as �at� and

�in�. For instance, the spatial tag �in� would be de�ned to indicate the top surface of a geometric

model of a �bed�, while it would be interpreted as full containment for an model representing

a �bedroom�. Other data is also associated with models including parts, skeletons and function

properties (Coyne and Sproat, 2001).

Spatial tags are used to position objects in the scene. The �ON� example quoted above is

realized by aligning the �top� surface of the �pool_table� object with the �bottom� surface of the

�cat� object (Coyne and Sproat, 2001; Zeng et al., 2005; Seversky and Yin, 2006). Some scene

layout instructions require further world knowledge with regards to spatial representation, such as

the �He rides the horse� example mentioned previously. Additional world knowledge is required

to determine that �rides� must be translated into an �on� relation when referring to a �horse�, but

must be interpreted as an �in� relation if the entity were riding a �car�. WordsEye makes use of

reasoning modules called depiction-rules to perform such reasoning (Coyne and Sproat, 2001).

Alternatives to knowledge-guided interpretation exist for the task of performing scene layout.

The Spatial Representation Interpreter (Sprint) system (Yamada et al., 1992) formulates the

layout problem as a set of constraints, the solutions to which specify the layout of a scene. An

alternative to explicitly annotated object models is presented by Seversky and Yin (2006), in which

3D objects are automatically assigned spatial tags using an automatic process that creates voxel

representations of the geometric models, and then decides which voxels represent the canonical

spatial categories (for example �top� or �bottom�).

The de�ning feature of the above-mentioned systems is the requirement for three categories

of world knowledge. World knowledge must be encoded into the linguistic interpretation modules

so that the intermediate representation is parametrized to the required level. In addition, world

knowledge must be encoded with each geometric model in the database, so that various relations

are realized correctly. World knowledge is also required for reasoning about di�erent types of

spatial relationship. The success of these systems depends on a su�cient quantity of encoded

world knowledge, which requires a large amount of manual e�ort to create.

2.3.2.3 Output as animated graphics

The creation of animated graphics from natural language is the most complex language-to-graphics

application in terms of the requirement to derive temporal information from text. Not only must

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 18

Story narrative Text Analysis Interpretat ionIntermediate
representation

Animated 3D environment

Animated 3D graphics

- Assertions (SDAS)
- Symbolic
 Representation (CarSim)
- LVSR (Confucius)
- Progressively refined
 representations (SWAN)

Knowledge-
based

translat ion

Information
Extraction

Knowledge-
based layout

reasoning

Constraint-
solving

Creation of
surface annotations

OR

OR

Database of
interpretat ion modules

Database of annotated
geometr ic models

Database of spatial
interpretat ion modules

Examples include:
- lexicon of action descriptions (SDAS, Virtual Director)
- frames (Swan)
- external knowledge-bases (Confucius)

Examples include:
- Models rigged with defined actions (SDAS)
- Annotated models (Confucius, SWAN)

Examples include:
- Heuristic rules (SDAS)
- Verb ontology (Confucius)
- Pangu knowledge base (SWAN)

Figure 2.6: Creation of animated graphics from natural language narrative illustrated in terms of
the generic text-to-graphics process.

ambiguities in text be resolved, but concepts such as events or actions must be recognised within

the text and translated into time-based graphical visualizations. Example story narratives provided

as input to such systems include:

• CarSim (Johansson et al., 2005) (equivalent Swedish text):

The bus was on its way from Kandahar towards the capital Kabul when it left the

road while overtaking and overturned, said general Salim Kahn ...

• Confucius (Ma, 2006) (each entered separately):

John put a cup on the table.

John left the gym.

• Swan (Lu and Zhang, 2002) (equivalent Chinese text):

The new queen killed the beautiful princess Snow White with a poisonous apple.

A prince made Snow White alive again. The prince married princess Snow White

in a church.

Each of the above examples are converted into corresponding animated 3D environments. The

CarSim system (Johansson et al., 2005) creates animations speci�c to the �car accident� domain,

and so the variety of objects and actions are limited accordingly. Confucius (Ma, 2006) animates

an action described in a single sentence, while Swan (Lu and Zhang, 2002) animates a story

expressed as simpli�ed Chinese. Other systems not listed above include the Story Driven Animation

System (SDAS) (Takashima et al., 1987) that converts simple children's stories written in Japanese

into animated graphics (in which the primary focus is selecting the correct action with which to

animate a model), and the Virtual Director system (Mukerjee et al., 2000) that makes use of

agents that are programmed to perform certain actions and interactions described in a limited

�urban parks� domain.

We divide methods for the construction of 3D animations from story narratives into two distinct

groups with respect to the text-analysis task, as indicated in Figure 2.6. Knowledge-based text

analysis for creating animations is similar to WordsEye (Coyne and Sproat, 2001) in that a

database of interpretation modules is used to convert input text into a semantic representation.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 19

This database is extended to contain categories for actions or events. Systems that make use of

hand-coded interpretation modules include Confucius (Ma, 2006), Swan (Lu and Zhang, 2002),

SDAS (Takashima et al., 1987) and the Virtual Director (Mukerjee et al., 2000). An alternative to

the knowledge-based method is the use of information extraction techniques to extract fragments

of text that describe visual aspects of a scene, an example of which is the CarSim system (Nugues

et al., 2003; Johansson et al., 2005). The result in both cases is an intermediate representation that

expresses the contents of the input text in a computer-readable format, with the added ability to

specify time-based events (such as the LVSR representation proposed by Ma and McKevitt (2003)).

Spatial layout reasoning is performed using one of two methods in the creation of animations

from the intermediate representation, namely knowledge-based reasoning, and constraint-based

planning. As with WordsEye (Coyne and Sproat, 2001), knowledge-based reasoning requires

geometric models that are annotated with spatial tags and other types of semantic information

(Takashima et al., 1987; Lu and Zhang, 2002; Ma, 2006), as well as modules for interpreting

di�erent kinds of relations and actions (Ma and McKevitt, 2004b). The alternative is the use of

constraints to specify the layout and motion of entities, the solutions to which are used to construct

the graphical environment. Example systems that use this method include CarSim (Egges et al.,

2001) and the Virtual Director (Mukerjee et al., 2000).

The above-mentioned techniques result in animated graphics, which implies that the aspect of

time is relevant in all cases. The Story Driven Animation System (SDAS) (Takashima et al., 1987)

and the Virtual Director (Mukerjee et al., 2000) arrange the visualization of actions according to

the order in which the token (from which actions are derived) appears in the text, and each action

is manually associated a �nite portion of time for execution. Alternatively, speci�c tokens are used

to determine the order of events (for example, �before�, �after� or �during�) using reasoning that

requires data from an external knowledge-base (Lu and Zhang, 2002; Johansson et al., 2005; Ma,

2006).

Of the existing text-to-animation systems described in this section, Confucius, Swan and

CarSim produce results most similar to those required by a �ction-to-animation system, in that

each produces animated 3D graphics from natural language input. We believe that Confucius and

Swan are impressive in their ability to create animated graphics with highly articulated models,

while CarSim is impressive in its ability to process large quantities of unsimpli�ed text with

minimal use of a manually created knowledge-base.

2.4 Fiction-to-animation in context

Related text-to-graphics systems are summarized in Table 2.1 according to the type of input

and output. Language complexity refers to the level of restriction of the input text (in terms

of sentence length, sentence complexity, or subject domain). Output type distinguishes between

systems that modify pre-existing environments, or create new graphical environments. We include

our �ction-to-animation system in this table for comparison. Few systems create 3D animations

(rather than modify) from natural language, and of these only two systems create multi-modal

animated graphics. The �ction-to-animation system is the only example in which unrestricted

natural language is converted to multi-modal animated graphics.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 20

Input Output
Content Complexity Type Mode

C
om

m
an
d
s

N
ar
ra
ti
ve

L
an
gu
ag
e-
si
m
il
ar

R
es
tr
ic
te
d
n
at
u
ra
l
la
n
gu
ag
e

U
n
re
st
ri
ct
ed

n
at
u
ra
l
la
n
gu
ag
e

S
ce
n
e
m
o
d
i�
ca
ti
on

S
ce
n
e
cr
ea
ti
o
n

L
in
e
d
ra
w
in
gs

P
h
ot
og
ra
p
h
s

3D
gr
ap
h
ic
al

sc
en
es

A
n
im

at
ed

3D
gr
ap
h
ic
s

M
u
lt
i-
m
o
d
al

an
im

at
ed

gr
ap
h
ic
s

Env I (Boberg, 1972) 3 3 3 3

Shrdlu (Winograd, 1972) 3 3 3 3 3

Clowns (Simmons, 1975) 3 3 3 3

Ani (Kahn, 1979) 3 3 3 3

Nalig (Adorni et al., 1984) 3 3 3 3

SDAS (Takashima et al., 1987) 3 3 3 3 3

Sprint (Yamada et al., 1992) 3 3 3 3

Primitives-based (Narayanan et al., 1995) 3 3 3 3

AnimNL (Webber et al., 1995) 3 3 3 3

Put (Clay and Wilhelms, 1996) 3 3 3 3

PAR (Badler et al., 2000) 3 3 3 3

Karai (Shinyama et al., 2000) 3 3 3 3

Virtual Director (Mukerjee et al., 2000) 3 3 3 3

WordsEye (Coyne and Sproat, 2001) 3 3 3 3

Beat (Cassell et al., 2001) 3 3 3 3

Swan (Lu and Zhang, 2002) 3 3 3 3

3DSV (Zeng et al., 2003) 3 3 3 3

Story Picturing Engine (Joshi et al., 2004) 3 3 3

CarSim (Johansson et al., 2005) 3 3 3 3

Voxel-based (Seversky and Yin, 2006) 3 3 3 3

Confucius (Ma, 2006) 3 3 3 3

Text-to-Picture (Zhu et al., 2007) 3 3 3

Fiction-to-animation 3 3 3 3

Table 2.1: Categorization of related text-to-graphics systems according to input and output.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 21

2.4.1 Trends in text-to-graphics conversion

Common trends exist in text-to-graphics research, characterized according to the method used for

text analysis and layout interpretation.

A common trend for text analysis is the use of a semantics based approach, which is concerned

with the task of �understanding� the text to the maximum extent possible. This requires syntactic

parsing as well as encoded world-knowledge (Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma,

2006). A contrasting approach is to avoid semantic understanding and rather extract only items

from the input text that are required for creating graphical representations (Johansson et al., 2005).

We observe that systems using the latter approach have less stringent restrictions regarding the

complexity of the input text.

Spatial reasoning is performed using either one of two methods. The most popular method

for positioning objects in a scene is the use of detailed world knowledge in the form of geometric

models annotated with spatial and functional characteristics (Coyne and Sproat, 2001; Zeng et al.,

2003; Ma, 2006). This includes knowledge in the form of interpretation mechanisms for applying

speci�c types of relations or actions to models. An alternative to this approach is the formulation

of constraints that restrict the layout of a scene or trajectory of an object. Solutions to these con-

straints, obtained either as a result of numerical methods (Yamada et al., 1992) or discrete solving

techniques (Johansson et al., 2005), are then transformed into actual graphical representations.

Text-to-graphics systems that require the use of a knowledge-base tend to use custom-built

versions that provide the required data speci�c to the purpose of the individual system (Coyne

and Sproat, 2001; Lu and Zhang, 2002; Ma, 2006). No single formulation exists for the structure

or content of a generalized knowledge base for the text-to-graphics problem.

Existing text-to-graphics techniques aim to automate the entire conversion process, and there

is a strong requirement for external knowledge because natural language is inherently ambiguous.

Rather than include a human element in the conversion process to resolve ambiguity, complex

reasoning systems are implemented to retain full automation. Because of the labour required in

the construction of a knowledge-base, existing systems generally limit the input in some respect.

For instance, WordsEye is limited to short sentences, Confucius allows only a single sentence

to be used as input at a time, while Swan limits the grammar complexity. CarSim does not limit

the complexity of the input text, but does restrict the subject of the text to a single domain. Only

text-to-picture systems do not limit the text complexity because no knowledge-based reasoning is

required.

2.4.2 Motivation for the design of the �ction-to-animation system

Enhanced representations for �ction books range from digital visualizations of physical books

(Chu et al., 2003) and providing ambient sounds e�ects (Back et al., 1999), to virtual interactive

representations (Billinghurst et al., 2001). In all of these approaches the non-textual representations

are generated manually, while interaction with the book is the primary focus. Alternatively, we

address the problem of converting text as it is found in popular �ction books into corresponding

animated graphics, a problem that is an extension to the many text-to-graphics systems presented

in previous sections. Text sourced from popular �ction is an example of a natural language narrative

without any restrictions on complexity or domain.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 22

Fiction book

Problem 1: Text Analysis

 1.1) Linguistic indicators

 1.2) Annotation creation

Problem 2: Interpretation

 2.1) Interpretation of annotations

 2.2) Specification of behaviour
 in a virtual environment

 2.3) Populating 3D environments

Intermediate
representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
of surface annotations

Machine-learning for
automating creat ion

of semantic
annotat ions

Create structured
scene descriptions

Automatic constraint
solving

Automatic populat ion
of 3D vir tual environment

Human knowledge:
- Manual examples

Human knowledge:
- Clarify l inguistic ambiguity
- Implied scene layout
- Creative ideas

Human knowledge:
- Creative enhancements

Information Extraction:
Hierarchical rule-based learning

General purpose
language processing
tools

Knowledge-poor
methods for
interpret ing annotat ions

Interval-based quantif ied
constraint optimizer

Figure 2.7: Fiction-to-animation process in terms of the generic text-to-graphics process.

We design the �ction-to-animation system to include the same generic stages that exist in

other text-to-graphics systems. The automated process consists of a text analysis component and

an interpretation component, both illustrated in Figure 2.7. Each component is constructed using

a set of sub-components that collectively solve the text analysis and interpretation problems.

Text analysis

The text analysis component is designed to automate the creation of semantic annotations in a

manner that adapts to individual human thought processes. We adopt a machine learning approach

to accomplish this, motivated by the use of similar technology in the CarSim system (Johansson

et al., 2005). This approach induces models (from human created examples) regarding how to

identify portions of text as belonging in a particular category. This is in contrast to the majority

of text-to-graphics systems that attempt deep �understanding� of the text through the use of

complex knowledge-bases. The bene�t of the machine-learning approach is that the complexity of

input text is not limited to the ability of any one syntactic parser, nor is there a dependence on

a custom-built knowledge base. This bene�t is demonstrated by the CarSim system in its ability

to handle large quantities of non-simpli�ed language.

We believe that models induced by a machine learning mechanism are more descriptive if they

are supplemented with linguistic information that describes the structure and syntactic features

of the input text. We use the term surface annotations to describe this type of information, and

obtain it using a suite of general purpose natural language processing tools. Existing text-to-

graphics systems generally derive similar information in this manner (Coyne and Sproat, 2001; Lu

and Zhang, 2002; Ma, 2006).

Intermediate representation

The �ction-to-animation system uses annotated �ction text as an intermediate representation.

This is motivated by the machine-learning approach to text analysis, because text can be manually

annotated by humans and used as example data for training. Intermediate representations used by

related systems do not exhibit this property (Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma,

2006).

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 23

Interpretation

The interpretation component is responsible for converting the annotated text into corresponding

animated 3D virtual environments. We divide the interpretation component into three modules,

each of which is guided by a constraint-based formulation of behaviour in the virtual environment.

The �rst module is concerned with interpreting annotations to form spatial constraints that de-

scribe behaviour. The second module is concerned with �nding solutions to these constraints. The

third module uses these solutions to instantiate and populate the virtual environment.

The use of constraint-based formulations of behaviour is motivated by existing systems such

as Sprint (Yamada et al., 1992) and CarSim (Johansson et al., 2005). Both these systems

use constraints to specify behaviour without requiring detailed knowledge to be associated with

individual object models (as opposed to systems like Confucius (Ma, 2006) and Swan (Lu and

Zhang, 2002)).

The manner in which constraints are formed from annotations is dependent on the capabilities

of the constraint solving mechanism used to locate solutions. Behaviour implies a relation with

time, and solving constraints with respect to time is a challenging task. One method is demon-

strated by CarSim (Johansson et al., 2005), which discretizes time into a sequence of instances,

solving constraint systems at each discrete point. We use interval-arithmetic to represent time as

contiguous intervals (preventing discretization), and develop a interval-based constraint optimiza-

tion strategy that is able to �nd solutions to time-based constraints. The interval-based constraint

optimizer represents the second module of the interpretation component.

The �rst module of the interpretation component is concerned with formulating structured

descriptions of the scenes to be visualized. This includes identifying which scenes to portray,

which entities to visualize in each scene, and deciding how to portray these entities visually. This

modules also derives time-based constraints that describe entity behaviour from the annotated text

that can be solved using the interval-based constraint optimizer. We use a suite of knowledge-poor

methods for deriving scene descriptions and formulating constraints.

The third module of the interpretation component involves instantiating and populating virtual

environments that correspond to the annotated �ction text. This involves methods for placing

geometry in a virtual environment (where we prefer 3D geometry for comparability with state

of the art text-to-graphics systems like Swan (Lu and Zhang, 2002), Confucius (Ma, 2006)

and WordsEye (Coyne and Sproat, 2001)), for constructing geometry the represents background

scenery, and animating entities so that they perform the speci�ed behaviour.

2.4.3 Fiction-to-animation in relation to other systems

Four existing text-to-graphics systems are notable with respect to their ability to create 3D graphics

from natural language input, namely WordsEye (Coyne and Sproat, 2001), Confucius (Ma,

2006), CarSim (Johansson et al., 2005) and Swan (Lu and Zhang, 2002). Each of these systems

exhibit strengths and weaknesses with respect to their capabilities in terms of input and output.

We rate these systems according to the quantity, complexity, and domain freedom of the allowed

input, and also according to the output quality.

Some systems restrict the quantity of input severely, such as Confucius, which handles only

a single input sentence at a time. Systems such as WordsEye and Swan do not place an upper

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 24

limit on the number of sentences, but neither of these present examples that extend beyond 20

sentences. CarSim displays the ability to handle unlimited sentence length in its use of a corpus

of 200 newspaper reports. The �ction-to-animation system is most comparable to CarSim in its

ability to handle extracts of increased length.

Sentence complexity is explicitly restricted for the Swan system. We observe that input exam-

ples provided for WordsEye and Confucius are contrived for illustration purposes. In contrast,

CarSim system uses examples sourced from public-domain literature. The �ction-to-animation

system does not use contrived examples, but rather uses text sourced directly from popular �ction

books.

CarSim is the only system that expressly restricts the subject domain of the input text (to

that of �car accidents�), however, all other systems are limited in their ability to handle a general

domain by the extent of the knowledge available to the system. WordsEye, Confucius and

Swan are limited by the level of detail of the knowledge-base, a limitation that is reduced if the

knowledge-bases are improved. The �ction-to-animation system is also limited in this respect.

Only Swan and Confucius have the ability to create multi-modal presentations of the input

text. The �ction-to-animation system also exhibits this capability.

The level of articulation of models (that is, in animating poses and actions) is impressive in

WordsEye, Confucius and Swan. This feature is not exhibited in CarSim, which is only

concerned with translating models of cars or trucks, without model-level articulation. The �ction-

to-animation system articulates models to a certain extent, but not the the level of detail exhibited

in other systems.

The output produced by the CarSim system is always depicted in the same visual scene.

WordsEye and Confucius have the ability to visualize only a single scene at a time, generally

using a textured plane in which objects are placed. Swan has the ability to produce multiple

scenes of this structure. The �ction-to-animation system, however, is able to produce a number of

scenes from a single fragment of input text, where background geometry is procedurally generated

according to the type of scene.

We rate the capabilities of each text-to-graphics system based on the above discussions (each

capability is rated on a scale between 1 and 3). A comparative plot such as the one presented in

Figure 2.8 indicates that the �ction-to-animation system is superior to existing systems, particu-

larly in its ability to simultaneously handle large quantities of input text of unrestricted complexity,

and produce multi-modal animations that occur in a number of scenes.

2.5 Conclusion

This chapter indicates that a variety of methods exist for converting text to graphics, each of which

conforms to a common structure. We show that, especially in the case of natural language input,

knowledge-bases are generally used to assist in interpreting the input text to aid in the construction

of intermediate representations from which graphical outputs are produced. Alternative conversion

processes exist, including the use of information extraction and constraint-based methods that

reduce the reliance on knowledge-bases. The �ction-to-annotation process is based on the latter

techniques, avoiding the requirement for a complex knowledge base.

CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 25

Number of Sentences (1 = single, 2 = less than 20, 3 = greater than 20)
Sentence Complexity (1 = simplified, 2 = contrived, 3 = unrestricted)
Domain Freedom (1 = domain restricted, 2 = knowledge restricted, 3 = no restriction)
Modalities (1 = static graphics, 2 = animated graphics, 3 = animated graphics + other)
Model Articulation (1 = none, 2 = some, 3 = detailed)
Scenes (1 = single unchangeable, 2 = single changeable, 3 = many changeable)

 0

 0.5

 1

 1.5

 2

 2.5

 3

Fiction−to−AnimationSwanCarSimConfuciusWordsEye

A
bi

lit
y

Text−to−Graphics system

Figure 2.8: Summary of capabilities of related text-to-graphics systems.

The �ction-to-animation system is unique in the context of existing text-to-graphics research.

It is the �rst to convert unrestricted text sourced from popular �ction books into multi-modal

3D animations. In addition, the combination of the various components, including an information

extraction module for creating annotations and the interval-based quanti�ed constraint optimizer,

represent new methods in solving the text-to-graphics conversion problem.

This chapter contributes to the text-to-graphics domain in the following respects:

• The common structure that we derive from related techniques contributes to the understand-

ing of the general text-to-graphics problem, and consists of two primary tasks: text analysis

and interpretation. We use this structure for solving the �ction-to-animation problem.

• We identify a gap in text-to-graphics research regarding the conversion of �ction text to

multi-modal animated 3D environments and �lms.

• We provide an innovative classi�cation scheme for related text-to-graphics research, based

on the input and output of each system (Table 2.1 on page 20). This contributes to the �eld

by providing a succinct summary of existing technology in a domain where the approaches

are signi�cantly varied.

Chapter 3

Surface annotations for �ction text

This chapter describes automatic techniques for identifying the structural and syntactic properties

of digitized natural language text (collectively named surface annotations). Structural properties

indicate which portions of the input text are tokens, sentences and quotes. Techniques for deriving

these properties are presented in Section 3.2. Syntactic properties indicate the function of structural

units in conveying the meaning of the text, and include parts-of-speech, syntax and phrasing.

Techniques for deriving syntactic properties are presented in Section 3.3. We demonstrate the use

of structural and syntactic properties in the creation of semantic annotations over �ction text in

Section 3.4. Conclusions regarding the automated techniques are presented in Section 3.5.

3.1 Introduction

3.1.1 Problem statement

We believe that human cognition of natural language is assisted by structural and syntactic proper-

ties of the text. We investigate the identi�cation of these properties in �ction text in the following

respects:

1. Digital �ction text is represented on a computer as a stream of characters, from which

structure must be derived. Structural elements include tokens, sentences, and quotes.

2. Structures in digital �ction text can be classi�ed according to their function or use. We

investigate the derivation of these functional classi�cations, including the identi�cation of

parts-of-speech, syntax, and phrasing.

3. Tasks in the �ction-to-animation process use structural and syntactic properties to aid in

creating semantic annotations. We investigate the levels of accuracy expected in the identi-

�cation of these properties, so that any error produced is quanti�ed for future experiments

that use these properties.

We demonstrate the use of structural and syntactic properties in creating semantic annotations

over �ction text, as a motivation for our belief that these properties assist in the cognition of

natural language.

26

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 27

Tokens Number of sources Range of Content

SUSANNE 130 000 64 sources from 4 genre
categories

(extracts from Brown Corpus).

Press reportage, letters,
biographies, memoirs, technical
writing, adventure and Western
�ction (Sampson, 2007).

WSJ 1 288 623 2499 stories from the 1989 Wall
Street Journal.

Press reportage
(Marcus et al., 1994).

Brown 1 170 775 500 sources, approx. 2000 words
each, from 15 genre categories.

Informative and imaginative
prose (American English)
(Francis and Kucera, 1979).

LOB 1 157 220 500 sources, approx. 2000 words
each, from 15 genre categories.

Informative and imaginative
prose (British English)
(Johansson et al., 1978).

Table 3.1: Size and content of the four annotated corpora.

3.1.2 Problem formulation

Structural and syntactic properties of natural language assist in identifying portions of text that

describe visual characteristics of a scene. For instance, tokens (structural property) in the input

text that are classi�ed as nouns (syntactic property) potentially identify tangible objects in a

scene. This chapter identi�es methods for identifying structural and syntactic properties of natural

language, in the creation of what we term surface annotations.

Structural properties re�ect the structure of the written language, and in this category we

investigate automatic methods for tokenizing �ction text, identifying sentence boundaries and

identifying quoted speech. Syntactic properties re�ect the function of units of text in written

language, and in this category we investigate methods for identifying the parts-of-speech of tokens,

the syntactic function of tokens, and the identi�cation and classi�cation of phrases in the text.

Chapter 4 describes a machine learning approach for creating semantic annotations in �ction

text. This machine learning approach combines human created example annotations with surface

annotations to derive a model of the human's mental processes. This means that the surface

annotations must be provided in an accurate manner so that consistent models are created by

the learning system. We investigate the accuracy with which surface annotations are created over

natural language text using automated processes.

The evaluation of surface annotations requires test data against which the automatically derived

properties can be compared, described in the following section.

Evaluation data

Evaluation data for verifying the correctness of structural and syntactic properties of text is found

in a resource known as an annotated corpus. This is a collection of natural language texts that are

manually labeled to indicate structural or syntactic properties. We use four corpora in this chapter,

namely the Wall Street Journal (WSJ) section of the Penn Treebank (Marcus et al., 1994), the

Brown corpus section of the Penn Treebank (Francis and Kucera, 1979; Marcus et al., 1994), the

Lancaster-Oslo/Bergen (LOB) corpus (Johansson et al., 1978, 1986), and the SUSANNE corpus

(Sampson, 2007). These corpora are widely used in the �eld of natural language processing for

evaluation purposes, and their size and contents are listed in Table 3.1.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 28

Element Gold Standard Automatic Label

e1 A A
e2 B A
e3 A A
e4 C A
e5 A D

Table 3.2: Example of manual and automatic labeling.

The following section provides a brief explanation of popular metrics for performing evaluation

of natural language processing tasks.

Success metrics

General natural language processing is concerned with assigning labels of a certain category to the

original text, as is the case with the creation of surface annotations. The accuracy of an automated

label-creation process is evaluated by checking the correctness of the automatically produced labels.

Example labeling is illustrated in Table 3.2, where each element ei is labeled as either A, B, C

or D. The gold standard refers to the correct labeling of these elements, veri�ed by hand. The

automatic label is assigned to each element using an automatic process.

There are two metrics commonly used for evaluating automatic labeling mechanisms, namely

precision and recall. Precision, as it relates to the example in Table 3.2, measures the accuracy of

the labeler's output:

precision =
number of labels correct

number of labels automatically assigned

The precision for labeling an element as �A� in the automated output in Table 3.2 is 2
4 , because 2

of the 4 assigned �A� labels correspond to the gold standard. Recall is a metric that measures the

ability of the automatic process to correctly label each element:

recall =
number of labels correct

number of labels in gold standard

The recall for labeling an element as �A� in the automated output in Table 3.2 is 2
3 because two

of the three elements labeled �A� in the gold standard are labeled �A� automatically.

In some cases, there is no di�erence between precision and recall. If only the overall success of

the automated process is required (that is, not for any speci�c label type), then precision equals

recall because the number of labels assigned is equal to the number of labels in the gold standard.

In this case, both metrics measure the accuracy of the automated process. Accuracy is 2
5 for the

example in Table 3.2.

All the above metrics are presented as percentages in subsequent sections. The remainder

of this chapter describes automated methods for identifying structural and syntactic properties

of natural language text, and evaluates these methods over large natural language corpora using

precision, recall and accuracy.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 29

Fiction book

Problem 1: Text Analysis

 1.1) Linguistic indicators

 1.2) Annotation creation

Problem 2: Interpretation

 2.1) Interpretation of annotations

 2.2) Specification of behaviour
 in a virtual environment

 2.3) Populating 3D environments

Intermediate
representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
of surface annotations

Machine-learning for
automating creat ion

of semantic
annotat ions

Create structured
scene descriptions

Automatic constraint
solving/optimization

Automatic populat ion
of 3D vir tual environment

Human knowledge:
- Manual examples

Human knowledge:
- Clarify l inguistic ambiguity
- Implied scene layout
- Creative ideas

Human knowledge:
- Creative enhancementsNatural language

processing tools

Figure 3.1: Context of the surface annotation creation process with respect to the �ction-to-
animation problem.

3.1.3 Context

The research presented in this chapter examines the automation of the �rst part of the text-analysis

problem in �ction-to-animation conversion (Figure 3.1). We describe a method for automatically

identifying surface annotations over �ction text. The input to this process is unaltered digitized

�ction text. Surface annotations that are created using automated techniques are used in the

machine learning process for identifying semantic annotations described in Chapter 4.

3.2 Structural properties

The following sections present and evaluate techniques for identifying structural components of

natural language text, including tokens, sentences, and quotes. We assume certain conventions are

used in formatting the digitized input text, which are described in Appendix A.

3.2.1 Tokens

Tokenization is the process of separating sequences of characters into units that resemble words.

The structure of English requires a white space between words, but white-space does not always

separate words and punctuation marks. Examples include sentence-terminating full-stops (Grefen-

stette and Tapanainen, 1994; Mikheev, 2002), abbreviations, and acronyms. Punctuation such as

commas, brackets, and semi-colons also exhibit this feature, as do possessive su�xes and contrac-

tions such as 's, n't and 'll.

Our tokenization strategy is based on the assumption that English words are separated using

white-space. The input stream of characters is tokenized using white-space as a delimiter. Each

token is compared against a lexicon containing 87 309 English words, sourced from the 12dicts

collection (Atkinson, 2003). If a token is a member of this lexicon, then it is recognized as an

English word and is not tokenized any further. Tokens that do not occur in the 12dicts lexicon

are potentially acronyms or abbreviations. The token is checked for membership within a lexicon

of abbreviations and acronyms, sourced from the ANNIE component of the GATE architecture

(GATE, 2005). If a match is found, no further tokenization occurs. If a token is neither an

English word nor an abbreviation, then the token has one or more punctuation marks attached.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 30

Tokens in Brown Tokens found Tokens correct Precision Recall

Brown Corpus 1170775 1180170 1165852 98.79% 99.58%

Table 3.3: Precision and recall of our tokenization technique over the Brown corpus.

The token is split into sub-tokens using punctuation marks, and apostrophe su�xes as delimiters

(identi�ed using manually constructed lists shown in Appendix A). The resulting sub-tokens are

then reprocessed using the above methods until all tokens are classi�ed.

We evaluate our approach using the Brown corpus component of the Penn Treebank (Marcus

et al., 1994). A plain-text version of the corpus is created by re-binding punctuation to words. The

plain-text version is tokenized and the result is compared with the original Brown corpus. Each

token in the Brown corpus is matched with the automatically generated output.

In total, 99.58% of the automatically generated tokens match the original, as listed in Table

3.3. This means that less than 0.5% of the original tokens are incorrectly tokenized.

Our method is an alternative to existing tokenization technology that uses machine learning

methods (Grover et al., 2000; Clark, 2003). The minimal gains in accuracy achieved using these

methods are made at the cost of dramatically increasing the complexity of the tokenization process.

3.2.2 Sentences

Detecting how tokens group together to form sentences is known as sentence boundary disam-

biguation and is dependent on an accurate tokenization process (Mikheev, 2002). This is because

periods used to indicate abbreviations must be correctly di�erentiated from periods used as sen-

tence terminators (full-stops).

We use a custom built sentence boundary disambiguator based on the tokenization approach

described in Section 3.2.1. The process identi�es sentence boundaries based on three sentence

terminating symbols, namely the full-stop, the exclamation mark, and the question mark, each

of which is presumed to be correctly tokenized. If closing quotation marks fall after a sentence

terminator then the last such token encountered becomes the sentence terminating token.

We evaluate this sentence boundary detection algorithm by measuring the accuracy with which

sentence terminators are identi�ed (Mikheev, 2002). We perform this evaluation using the Brown

corpus because it contains sentence termination labels. A plain-text version is created by removing

all sentence boundary information, and this version is passed through our sentence boundary

disambiguator. Two plain-text versions are created: one using correct tokenization as found in the

Brown corpus, and the other tokenized using the method described in Section 3.2.1. The former

evaluates accuracy where no errors occur in the tokenization, while the latter tests the e�ect that

tokenization errors have on the identi�cation of sentence terminators.

The resulting accuracies of the implemented sentence boundary disambiguator are listed in

Table 3.4, showing that the use of this method for identifying sentences produces a small degree

of error. We explain the error in these results by the incorrect tokenization of the portion of the

Brown corpus containing scienti�c documents, where acronyms and special symbols confound our

tokenization method. We do not believe that �ction text exhibits this type of prose. Errors in

tokenization negatively a�ect the identi�cation of sentence boundaries, but recall is reduced by

less than 1%.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 31

Sentences Automatic Correct Precision Recall

Correct Tokens 52108 53560 50166 93.66% 96.27%
Automatic Tokens 52108 56709 49947 88.08% 95.85%

Table 3.4: Accuracy of our sentence boundary detection process.

As with tokenization, more complex techniques based on machine learning produce more accu-

rate results, at the cost of increased algorithmic complexity (Palmer and Hearst, 1994).

3.2.3 Quotes

One feature de�ning �ction text is the presence of quoted text, the function of which is to indicate

the speech of characters in the scene. Quoted speech begins and ends with quotation marks, and

we annotate portions of text between double inverted commas as quotes. We do not investigate

the accuracy with which quoted text is identi�ed because of the straight-forward nature of this

technique.

3.3 Syntactic properties

This section describes methods for deriving syntactic properties of natural language text. We

investigate three di�erent categories: the parts-of-speech of a token; the syntactic function of a

token; and the classi�cation of phrases.

3.3.1 Parts-of-speech

A parts-of-speech tagger automatically assigns labels (tags) to tokens that indicate the word-class

(including noun, verb, adjective). This section investigates a number of publicly available parts-of-

speech taggers. The part-of-speech of a word is dependent on the context in which it is used. For

instance, the word �man� can be placed into two word-classes: noun, in the sentence, �The man

was walking�; and verb in, �He will man the lifeboat�. Autonomous parts-of-speech taggers employ

a machine learning mechanism that formulates a model regarding how to classify a word given its

context. Publicly available parts-of-speech taggers are distributed with customized, pre-trained

models.

This investigation determines the levels of accuracy to be expected from taggers in their pre-

trained form, over di�erent types and genres of text. This work di�ers from previous evaluations

in which each tagger is provided with the same training data before testing (Teufel et al., 1996).

Given the availability of many di�erent types of tagging systems, this section also investigates the

result of combining these taggers into voting ensembles (Glass and Bangay, 2005, 2007b).

3.3.1.1 Parts-of-speech tagging techniques

We identify di�erent classes of freely available parts-of-speech taggers. These are listed in Table

3.5, along with the reported accuracy of each1. The reported accuracies listed in Table 3.5 cannot

1At time of writing, the Association of Computational Linguistics list the POS Tagger, Stanford Tagger and
SVMTool as the top three parts-of-speech taggers available. Source: http://aclweb.org/aclwiki/ [accessed on 26
September 2007].

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 32

Name Type Test Corpus Reported Accuracy

QTag Probabilistic Romanian corpus 98.39%
TreeTagger Decision Tree WSJ 96.36%
Brill Tagger Rule-based WSJ 97.20%

Stanford Tagger Maximum Entropy WSJ 97.24%
SVMTool Support Vector Machine WSJ 97.20%

POS Tagger Bidirectional Perceptron WSJ 97.33%

Table 3.5: Freely available parts-of-speech taggers, and the accuracy reported for each.

be fairly compared because taggers are evaluated using di�erent corpora. The following sections

provide an overview of each tagging mechanism.

Probabilistic tagger

Conventional parts-of-speech taggers, otherwise known as n-gram taggers, are probabilistic taggers

that examine the previous n − 1 words of the current word to establish its word-class. The

QTag tool2 (Tu�s and Mason, 1998) implements a window of three words (trigram), where the

probability of each possible tag for a current word is combined with the likelihood that the tag is

preceded by the two previously assigned tags. The tag with the highest probability is selected. The

initial probabilities are calculated from a training corpus. QTag has only undergone one de�nitive

evaluation over a Romanian corpus consisting of approximately 250 000 words. Accuracies of

between 95.63% and 98.39% are reported (Tu�s and Mason, 1998). The version used in our testing

is trained for English.

Decision tree-based tagger

The TreeTagger3 (Schmid, 1994) is a probabilistic tagger that uses a binary decision tree to estimate

the probability of a tag being appropriate for a speci�c word. The TreeTagger was tested on

100 000 words from the Wall Street Journal corpus (sourced from di�erent portions to those used

for training), achieving an accuracy of 96.36%.

Rule-based tagger

The Brill tagger4 uses a rule-based approach (Brill, 1994), where a set of rules for determining word

tags is created as follows (during training): tags are randomly assigned to the corpus of words,

after which transition rules are learned by correcting the falsely identi�ed word-tags. During the

tagging process, these rules are applied to identify the correct word tag. The Brill tagger was

trained on 600 000 words from the Wall Street Journal corpus, and tested using a separate portion

of the same corpus (containing 150 000 words), achieving an accuracy of 97.2%. The rule-based

tagger is the only non-statistically based tagger in this collection.

2QTag: http://www.english.bham.ac.uk/staff/omason/software/qtag.html [accessed on 25 September 2007]
3TreeTagger: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ [accessed on 25 September 2007]
4Brill Tagger: http://www.cs.jhu.edu/~brill/RBT1_14.tar.Z [accessed on 25 September 2007]

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 33

Maximum entropy tagger

A maximum entropy approach (Toutanova and Manning, 2000; Toutanova et al., 2003) is used for

the tagging tool developed at Stanford University5. For a given word and its context, every tag

in the tag-set is assigned a probability based on data derived during training. The probability of

a tag sequence is calculated for a sequence of words, resulting in a probability distribution. The

tag associated with the distribution exhibiting the highest entropy, or information gain (Schwartz,

1963), is chosen. This tagger was tested on the Wall Street Journal corpus with reported accuracy

rates of up to 97.24%.

Support vector machine tagger

A learning technique based on support vector machines6 (SVM) is also used for parts-of-speech

tagging (Giménez and Marquez, 2003). A dictionary is extracted from a training corpus with all

possible tags for each word. Each word tagged as τ in the training corpus provides a positive

example for tag τ and a negative example for all other tags. A binary SVM is trained for a speci�c

tag τ using these positive and negative examples. When deciding which tag to assign to a word,

the most con�dent tag according to the predictions of all the binary SVMs is selected. A centered

window of seven tokens is used, which is larger than the common window of three tokens in a

trigram tagger. The accuracy of this tagger is reported to be 97.2% over the Wall Street Journal

corpus.

Bidirectional sequence classi�cation tagger

Shen et al. (2007) propose a learning and inference technique called guided learning to cater for

problems inherent in left-to-right classi�cation schemes (such as the maximum entropy and proba-

bilistic approaches). A bidirectional approach is used but this introduces a new problem of selecting

the order in which to conduct the inference process. Guided learning integrates classi�cation of

tokens and inference direction into a single learning task. This tagger7 is tested on the Wall Street

Journal corpus yielding accuracy rates of up to 97.33%.

Combination of parts-of-speech taggers

Ensembles of parts-of-speech tagging systems are constructed based on the premise that, although

each tagger uses the same contextual information regarding the current word to de�ne its tag,

each one makes use of it in a di�erent manner. The combination of parts-of-speech taggers is

demonstrated by van Halteren et al. (1998) where combination techniques range from simple voting,

to the use of second level learners (machine learning techniques that learn which tag to select from

the options presented by the ensemble) (Brill and Wu, 1998; Màrquez et al., 1999; van Halteren

et al., 2001).

Related work in combining taggers ensures that the component taggers are all trained using

identical training data (Teufel et al., 1996; van Halteren et al., 2001). While providing comparable

results, this does not provide a useful indication of �o�-the-shelf� value of each parts-of-speech

5Stanford tagger: http://nlp.stanford.edu/software/tagger.shtml [accessed on 25 September 2007]
6SVMTool: http://www.lsi.upc.edu/~nlp/SVMTool/ [accessed on 25 September 2007]
7POS Tagger: http://www.cis.upenn.edu/~xtag/spinal/ [accessed on 25 September 2007]

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 34

Tokens Tokens
(excluding punctuation)

Full
Tag-set

Tag-set
(excluding punctuation)

SUSANNE 50 325 42 889 353 -
WSJ 1 288 623 1 114 957 48 36
Brown 1 170 775 1 015 425 48 36
LOB 1 157 220 997 906 153 141

Table 3.6: Number of tokens and tag-set size of the four test corpora.

tagger within the ensemble. This study di�ers from existing research by avoiding the pre-training

of each tagger, under the assumption that the trained tagger provided with each tool is the best

trained model for that tool.

3.3.1.2 Tagger accuracy

We evaluate publicly available parts-of-speech taggers with the aim of answering the following

questions:

• Which parts-of-speech tagger produces the most accurate tags over varied natural language

sources?

Majority of parts-of-speech tagging techniques are trained using the Wall Street Journal

corpus. We believe that this corpus is not representative of the style of language used in

�ction. This validation is performed over other corpora including the Brown, LOB and

SUSANNE corpora, all of which contain extracts from �ction books.

• Is a higher accuracy achieved by combining parts-of-speech taggers into a voting scheme?

The use of a voting system potentially improves the accuracy of the produced tags, and we

investigate which combinations of tagging tools, as well as which types of voting methods

produce the best accuracy.

We use the corpora listed in Table 3.6 to answer the above questions. Each corpus uses a di�erent

set of tags to indicate parts-of-speech. For example, the Penn tag-set used for the WSJ corpus

indicates a preposition using the symbol PRP while the tag-set used by the LOB corpus indicates a

preposition using the tag PP. The WSJ uses 48 di�erent tag categories (36 excluding punctuation),

while the LOB corpus uses a set of 153 tags, and the SUSANNE 353. All of the tagging tools

described in Section 3.3.1.1 use the Penn tag-set, making direct comparison over corpora like the

LOB or SUSANNE impossible.

We use an independent coarse tag-set for evaluation to which other tag-sets are mapped. This

tag-set is a simpli�ed version of the Penn tag-set (Marcus et al., 1994). Mapping between tag-

sets is not always direct (Atwell et al., 1994; Teufel, 1995; Atwell et al., 2000; Déjean, 2000). For

instance, mappings of type 1:n occur, where a single tag type in one scheme maps to n tag types in

the coarse tag-set. Avoiding these cases is impossible because of the de�nitions of the tag-sets, and

where such mappings are identi�ed, any sentence in the corpus containing such a tag is removed

from the test corpus (which explains why the SUSANNE corpus is reported as having 50 325 tokens

in Table 3.6, as against its actual 130 000 tokens). The coarse tag-set and the mappings we use

from tag-sets of di�erent corpora are listed in Appendix B.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 35

Reported WSJ LOB Brown SUSANNE

Statistical (QTag) 98.39 70.40 72.87 72.51 76.077
Tree (TreeTagger) 96.36 96.94 91.67 94.45 91.15

Rule-based (Brill Tagger) 97.20 93.10 88.67 92.55 88.45
Maximum Entropy (Stanford) 97.24 91.53 80.21 89.89 85.92

Support Vector Machine (SVMTool) 97.20 98.17 92.17 95.10 90.19
Bidirectional (POS) 97.33 83.36 82.59 84.74 83.02

Table 3.7: Accuracy results of various taggers over the di�erent corpora.

Validation

This experiment validates the accuracy of each of the parts-of-speech taggers listed in Section 3.3.1.1

over the di�erent annotated corpora, with the purpose of answering the following questions:

• Which parts-of-speech tagger produces the highest accuracy over majority of the corpora?

• What is the nature of the errors produced by the parts-of-speech taggers?

We use the pre-trained models distributed with each tagger in this evaluation. Each corpus is

stripped of tags, and the stripped corpus is tagged by each parts-of-speech tagger. A gold standard

is created by mapping the original tags in each corpus to the coarse tag-set. The output of each

tagger is also mapped to the coarse tag-set. Each tag in the automatically tagged corpus is

compared to the corresponding tag in the gold standard, and we measure the percentage of correct

tags with regard to the total number of tokens in the corpus (to calculate accuracy). We do not

include punctuation in this evaluation.

The accuracy of each parts-of-speech tagger over each corpus is listed in Table 3.7. The accu-

racies observed do not correspond to those reported for each tagger in related work, and this is

explained as follows:

• Di�erent test data: majority of the taggers are trained and tested over the WSJ section

of the Penn Treebank, speci�cally tested over only one �fth of this corpus. Results are

expected to decrease as a result of larger test-beds, di�erences in style, genre, and origin of

the language (British versus American).

• Di�erent tag-sets: we expect that a reduced tag-set makes the tagging task simpler. In

the case of the SVM tagger, a higher accuracy than reported in related work is observed

because the coarse tag-set is a direct simpli�cation of the Penn Tag-set. However, mapping

from other tag-sets such as LOB and SUSANNE introduces error, which explains why all

taggers produce lower accuracy scores over these corpora.

The �gures in Table 3.7 re�ect very high accuracies in spite of the above problems. The reduced

accuracies over the LOB corpus are explained by the di�erences between the American and British

lexicons. The SVM tagger produces the most accurate results over the greatest number of corpora.

The top three contributors of error for each tagger are listed in Table 3.8. Each tagger has

di�culties with certain tags across the di�erent corpora. For example, 15.79% of the total error

encountered by QTag over the WSJ corpus is caused by the incorrect assignment of NN instead

of NNP. Many of the errors occurring confuse similar classes of tag. For example, NNP and NN

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 36

WSJ LOB Brown SUSANNE

QTag NNP/NN 15.79% IN/CD 7.71% NNP/NN 9.21% IN/CD 8.71%

IN/CD 6.96% PRP/NN 7.67% IN/CD 7.54% VBN/JJ 6.68%

VBD/JJ 5.07% NNP/NN 6.59% PRP/NN 5.99% PRP/NN 6.31%

Tree NN/JJ 8.31% IN/TO 13.56% NNP/NN 8.12% NN/NNP 23.67%

JJ/NN 7.23% VB/VBG 7.25% NN/JJ 4.84% MD/JJ 4.93%

IN/RB 5.90% NNP/JJ 3.95% NN/NNP 4.82% JJ/NNP 4.80%

Brill IN/DT 8.69% IN/TO 10.00% IN/DT 8.92% NN/NNP 21.28%

VBD/VBN 7.83% IN/DT 6.85% VBD/VBN 7.67% VBD/VBN 7.35%

VB/NN 7.50% RP/IN 5.90% VB/NN 6.57% RP/IN 6.74%

Stanford VBD/VBN 14.98% NN/@COPY@ 9.88% VBD/VBN 14.02% VBD/VBN 16.23%

VB/NN 10.56% IN/@COPY@ 6.39% VB/NN 8.86% NN/NNP 14.81%

JJ/RB 6.29% VBD/VBN 6.21% JJ/RB 5.44% VB/NN 6.92%

SVM NN/JJ 9.71% IN/TO 14.43% NN/NNP 8.34% NN/NNP 26.40%

NN/NNP 6.78% VB/VBG 7.49% NN/JJ 7.66% JJ/NNP 5.51%

JJ/NN 5.60% NN/JJ 4.58% JJ/NN 4.64% VB/VBG 4.61%

POS NNP/NN 38.67% NNP/NN 21.14% NNP/NN 27.02% NNP/NN 23.14%

VBD/VBN 7.24% VBD/VBN 7.50% VBD/VBN 9.05% VBD/VBN 13.02%

VB/NN 5.96% VB/NN 6.67% VB/NN 6.48% VB/NN 6.41%

Table 3.8: Top three contributors to error for each tagger.

both represent nouns, but the former indicates proper nouns as opposed to common nouns. The

same is true for VBD and VBN which both signify di�erent types of verb. This demonstrates

that the type of error encountered is on a very �ne level of detail. If subsequent processes are

only concerned with coarse parts-of-speech detail (for instance, di�erentiating between nouns and

verbs, regardless of �ner classi�cation) then these errors are of no consequence.

In conclusion the SVM tagger most consistently produces the highest accuracy. The majority

of the errors produced are the result of the inability of each tagger to di�erentiate between similar

tag categories, and are of no consequence if only broad tag categories are used.

Ensembles of tagging techniques

The purpose of this experiment is to determine if more accurate tagging can be achieved by

combining the di�erent parts-of-speech taggers. This experiment is designed to answer the following

questions:

• Which voting scheme produces the highest accuracy and reduction in error?

• Which ensemble of taggers produces the highest accuracy and reduction in error?

• What is the nature of the erroneous tags produced by the ensemble of taggers that produce the

highest accuracy?

We investigate di�erent types of voting when combining parts-of-speech taggers:

1. Simple Vote: the tag that is selected by majority of the taggers is chosen. In the case of a

tie, a random tag between the tied parties is chosen.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 37

2. Weighted Vote: each tagger contributes a speci�ed weighting for a particular tag. The tag

with the highest cumulative score is the tag chosen. The following weighting schemes are

tested:

(a) TotAccuracy: each tagger has a weighting equivalent to its overall accuracy, according

to the results listed in Table 3.7.

(b) TagPrecision: according to the weighting scheme de�ned by van Halteren et al. (2001),

a tag-speci�c weighting scheme is employed that uses the precision of the speci�c tagger

with regards to any particular tag. Precision for any tag χ is the percentage of tokens

tagged χ by the tagger that are also tagged thus in the gold standard:

precision =
number χ tags correct

number χ tags assigned by tagger

(c) Precision-Recall: according to the weighting scheme de�ned by van Halteren et al.

(2001), a tag-speci�c weighting scheme is used that not only takes into account how

successful a particular tagger is at tagging a certain tag of type χ, but also the error

that the other taggers in the ensemble experience when assigned a tag of type χ. Error

is derived from a tagger's recall rate, where recall for any tag χ is the percentage of

tokens tagged χ in the gold standard that are also tagged χ by the tagger:

recall =
number χ tags correct

number χ tags in gold standard

Error is calculated as (1− recall), and measures how often a tagger fails to recognize a

speci�c tag. The weighting assigned by tagger τ for tag χ in this scheme is therefore

calculated as follows (where S is the set of taggers in the ensemble):

weightτχ = precisionτ
χ +

∑
∀λ∈S/τ

errorλ
χ

where the set S/τ is the set of taggers, excluding tagger τ .

3. Ranked Vote: each of the taggers is given a rank (between 1 and 5) based on the accuracy

results listed in Table 3.7, with the best scoring tagger assigned a rank of 5. Tag scores are

calculated by adding the ranks of the taggers that voted for each speci�c tag. The tag with

the highest score is chosen.

An alternative to voting is the use of a second level learner for deciding on which tag to choose for

a speci�c word. However, van Halteren et al. (2001) show that these techniques do not perform

well when there is a lack of training data. We do not train the taggers, which means that a second

level learner cannot be trained for this experiment.

We tag each corpus individually using each parts-of-speech tagger. The tag assigned to a

speci�c token by each tagger is used in the voting schemes described above to determine the most

suitable tag for the token. We expect that some ensembles of taggers perform better than others,

and we test every possible combination of taggers. We measure the accuracy of each tagged corpus

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 38

and calculate the reduction in error experienced when using a combination of taggers (based on

the metric de�ned by van Halteren et al. (2001)):

error reduction =
correctensemble − correctbest

total − correctbest
∗ 100

This metric indicates the reduction in error (as a percentage) achieved using an ensemble from

the error produced using the best performing tagger in the ensemble (using the accuracies listed

in Table 3.7). For instance, if an ensemble contains two taggers where the best accuracy of the

two is 99.0%, then assuming the ensemble results in an accuracy of 99.5%, the percentage error

reduction is 50%.

The ensembles resulting in the highest accuracy and largest reduction in error over each corpus

are listed in Table 3.9. In the case of the Brown corpus, the same ensemble achieves the highest

accuracy and the largest reduction in error, and we also show the srpt ensemble as the second

best ensemble over this corpus.

Not all ensembles produce an improvement. Many results listed in Table 3.9 are reduced

from the highest individual accuracy of the component taggers. This is always the case for the

simple voting scheme. The Precision-Recall voting scheme suggested by van Halteren et al. (2001)

produces the most reduction in error, and an increase in accuracy over all the component taggers.

The ensemble containing the SVMTool, the Rule-based tagger, the Probabilistic tagger, and

the Tree tagger (srpt) provide the largest reduction in error over more corpora than any other

ensemble.

We examine the precision and recall results obtained for each tag using the Precision-Recall

voting scheme with the srpt ensemble. The mean precision and recall value for each tag in the

coarse tag-set is graphed in Figure 3.2. The maximum and minimum values (over the set of corpora)

are also indicated using error-bars. High levels of precision and recall are observed over majority

of the tags. However, the ensemble produces poor results over foreign words (FW), particles (RP),

and interjections (UH). However, these classes are unlikely to indicate scene-related information

and are therefore unlikely to contribute to experimental error in subsequent tasks.

This section demonstrates that the error produced by individual parts-of-speech taggers is

reduced using the srpt ensemble with the Precision-Recall voting scheme de�ned by van Halteren

et al. (2001). The majority of the errors produced by this ensemble include tags that are unlikely

to contribute to future scene related, annotation tasks.

3.3.1.3 Summary of �ndings

Publicly available parts-of-speech taggers produce high levels of accuracy without requiring further

training beyond what is provided with each tool. We conclude the following with regards to the

questions posed at the beginning of this section:

• The SVMTool produces the most accurate parts-of-speech tags over di�erent types and styles

of text.

• An ensemble of taggers produces higher accuracies than individual taggers, and the ensemble

consisting of the pre-trained SVMTool, Brill Tagger, QTag, and TreeTagger produces the

largest reduction in error using the Precision-Recall voting scheme.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 39

S
im

p
le

W
ei
gh
te
d

T
ag
P
re
ci
si
on

R
an
ke
d

P
re
ci
si
on
-R
ec
al
l

C
or
p
u
s

M
ax
im
u
m
:

E
n
se
m
b
le

B
es
t

Accuracy

ErrorReduction

Accuracy

ErrorReduction

Accuracy

ErrorReduction

Accuracy

ErrorReduction

Accuracy

ErrorReduction

W
S
J

A
cc
u
ra
cy

s
p

98
.1
7

85
.0
0

-7
17
.8
6

98
.1
7

0
98
.0
7

-5
.3
5

98
.1
7

0
98
.1
7

0
.4
4

E
rr
or

R
ed
u
ct
io
n

p
x

83
.3
6

76
.7
8

-3
9.
52

83
.3
6

0
84
.6
3

7
.6
4

83
.3
6

0
85
.5
3

1
3
.0
6

L
O
B

A
cc
u
ra
cy

s
r
p
t

92
.1
7

91
.5
3

-8
.1
8

92
.4
5

3
.6
7

92
.7
3

7
.2
1

92
.4
5

3
.6
1

92
.7
5

7
.5
1

E
rr
or

R
ed
u
ct
io
n

e
p

80
.2
1

76
.2
9

-1
9.
83

80
.2
1

0
85
.5
5

2
6
.9
6

80
.2
1

0
86
.6
3

3
2
.4
3

S
U
S

A
cc
u
ra
cy

s
r
p
t

91
.1
5

90
.9
8

-1
.9
5

91
.0
9

-0
.7
4

91
.2
3

0
.8
2

91
.0
3

-1
.3
4

91
.6
8

5
.9
6

E
rr
or

R
ed
u
ct
io
n

p
x

83
.0
2

81
.3
9

-9
.5
8

83
.0
2

0
85
.7
2

1
5
.8
9

83
.0
2

0
85
.4
2

1
4
.1
3

B
ro
w
n

A
cc
u
ra
cy

an
d
E
rr
or

R
ed
u
ct
io
n

s
r
t

95
.1

95
.7
6

1
3
.4
8

95
.7
5

1
3
.2
2

95
.8
5

1
5
.2
3

95
.7
5

1
3
.2
2

95
.8
2

1
4
.6
2

(s
ec
on
d
-

b
es
t)

s
r
p
t

95
.1

94
.6
2

-9
.8
7

95
.7
5

1
3
.3

95
.7
2

1
2
.6
9

95
.7
5

1
3
.3
1

95
.7
5

1
3
.2
3

E
n
se
m
b
le
s
ar
e
in
d
ic
at
ed

u
si
n
g
gr
ou
p
in
gs

of
th
e
fo
ll
ow

in
g
le
tt
er
s:

{s
}V

M
T
o
ol
,
{p
}r
ob
ab
il
is
ti
c
ta
gg
er
,
{r
}u
le
b
as
ed

ta
gg
er
,
{t
}r
ee

ta
gg
er
,
M
ax
-{
e}
n
t

ta
gg
er
,
P
O
S
T
ag
ge
r
{x
}.

E
rr
or

re
d
u
ct
io
n
s
ar
e
in
d
ic
at
ed

in
b
ol
d
-i
ta
li
cs
.

T
ab
le
3.
9:

S
u
m
m
a
ry

of
th
e
h
ig
h
es
t
ac
cu
ra
cy

le
ve
ls
an
d
er
ro
r
re
d
u
ct
io
n
s
ov
er

fo
u
r
d
i�
er
en
t
co
rp
or
a.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 40

 0

 0.2

 0.4

 0.6

 0.8

 1

W
R

B

W
P

W
D

T

V
B

Z

V
B

N

V
B

G

V
B

D

V
B

U
H

T
O

R
P

R
B

P
R

P

N
N

P

N
N

M
DJJINF
WE
X

D
T

C
D

 C

C

P
re

ci
si

on
 a

nd
 R

ec
al

l
(m

ax
im

um
 a

nd
 m

in
im

um
 a

cr
os

s
4

co
rp

or
a

sh
ow

n)

Tags

Precision Recall

Figure 3.2: Precision and recall value for each tag using the srpt ensemble over the LOB corpus.

Small birds sing loud songs

(a) Dependency Grammar

phrase

phrasephrase

Small birds sing loud songs

phrase

(b) Phrase Structure Grammar

Figure 3.3: Dependency Grammar versus Phrase Structure Grammar (as illustrated by Hudson
(2005)).

3.3.2 Syntax

Syntactic information indicates the function of tokens in a sentence. This information is also useful

for identifying scene-related descriptions in �ction text. For example, a token identi�ed as a main-

verb potentially identi�es the primary action described in the sentence, while the token identi�ed

as the subject of the main-verb refers to the entity that performs this action.

Information regarding the function of tokens in a sentence is provided by a syntactic parser.

Two theories exist for automatic parsing, namely phrase structure grammar (PSG) and dependency

grammar (DG) (Hudson, 2005). The two are di�erentiated based on whether the basic unit of

sentence structure is the phrase (PSG), or whether the basic unit of structure is the dependency

between two words (DG). This di�erence is illustrated in Figure 3.3, where dependency grammar

is concerned with �nding the dependencies between words in the sentence and the nature of the

dependency (such as subject or object). In contrast, phrase-structure grammar is concerned with

forming groups of words each with a speci�c function, such as noun-phrase or verb-phrase.

We recognize the validity of both syntactic parsing paradigms. However, we choose dependency

grammar as the parsing mechanism for creating surface annotations, implemented as the Functional

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 41

Dependency Grammar (FDG) parser from Connexor8 (Järvinen and Tapanainen, 1998). The

reasons for the choice of the FDG parser are summarized as follows:

• The FDG parser indicates function on a token level (for example subject and object), which

corresponds to the structural properties identi�ed in this section.

• The parsing tool is designed for running text (Tapanainen and Järvinen, 1997), and is not

intended to maintain the grammaticality of the input sentence (Tapanainen, 1999). This

means that ungrammatical sentences are also parsed, which is convenient for �ction books

in which text is not guaranteed to adhere to a formal grammar.

• Dependency structures are successfully used in other text-to-scene conversion systems (Coyne

and Sproat, 2001) in addition to other natural language processing tasks including anaphora-

resolution (Kennedy and Boguraev, 1996; Mitkov et al., 2002).

We do not perform a quantitative evaluation of Connexor parser because of the absence of stan-

dardized corpora containing information indicating functional dependency.

3.3.3 Phrasing

In addition to parts-of-speech and syntax, tokens are grouped into phrases of a speci�c type,

including noun-phrases or verb-phrases. As discussed in Section 3.3.2, phrase structure grammars

o�er the ability to create these groupings, but we use tools that rely on a simpler method called

phrase chunking (Kudo and Matsumoto, 2001).

Phrase chunking is accomplished using similar methods to parts-of-speech tagging, employing

machine learning methods such as statistical methods (Xun et al., 2000), support vector machines

(Kudo and Matsumoto, 2001), or rule-based learning (Ramshaw and Marcus, 1995) to induce

models that identify and annotate phrases in natural language text. We use the LTChunk9 tool,

created by the Language Technology Group in Edinburgh, because of its ability to make use

of already computed parts-of-speech annotations. This tool takes text tagged using the srpt

ensemble as input, and produces text annotated with noun-phrases and verb-phrases.

We do not perform a quantitative evaluation of the phrase chunker due to the lack of standard-

ized test data for this task.

3.4 Case study: the use of surface annotations in identifying

Avatars

This section illustrates the use of surface annotations in the creation of semantic annotations.

One category of semantic annotation identi�es avatars that take part in the described story. An

example of an avatar annotation is presented in Figure 3.4.

The identi�cation of avatars in �ction text is a specialization of the more general natural

language processing problem of identifying named-entities (McDonald, 1996; Bennett et al., 1997;

8Connexor Machinese Syntax: http://www.conexor.fi/ [accessed on 25 September 2007]
9Language Technology Group, Edinburgh: http://www.ltg.ed.ac.uk/software/posdemo.html [accessed on 10

August 2005]

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 42

"Hurrah!" thought <avatar>Julian</avatar>. "He's o� again!" Quietly he stood up, holding
the box.

Figure 3.4: Example text annotated in the Avatar category, from the Famous Five 1: Five on a
Treasure Island by Enid Blyton (1942).

Total Automatic Correct Precision Recall Gender

Book 1 17 25 11 44.0% 64.71% 100.0%
Book 2 25 55 15 27.27% 60.0% 60.0%
Book 3 18 53 15 28.30% 83.33% 80.0%

Table 3.10: Success metrics for the automatic identi�cation of avatars in �ction text.

Borthwick et al., 1998; Cohen and Sarawagi, 2004). This task is concerned with locating fragments

of text that refer to avatars, and determining the gender of each identi�ed avatar.

We make use of surface annotations to identify avatars and determine gender. We traverse every

token in the text (identi�ed using methods in Section 3.2.1), and consider each token annotated

as a proper noun (using the ensemble of parts-of-speech taggers described in Section 3.3.1) as a

candidate avatar. We maintain a list of unique candidates, and maintain a count of the number of

times each candidate is mentioned. Every candidate with a count higher than a certain threshold

is selected as an avatar. All tokens corresponding to a selected avatar are annotated.

We make further use of token and parts-of-speech information to determine the gender of an

avatar. Personal pronouns indicate gender (�he� indicates a masculine reference, �she� indicates a

feminine reference), and we count the number of masculine and feminine personal pronouns within

the immediate vicinity of an avatar annotation (30 tokens to either side of the reference). The

gender with the greatest percentage of personal pronouns in the vicinity of each reference is chosen

as the gender for the speci�c avatar.

We evaluate the success of the avatar and gender identi�cation processes by evaluating the

list of unique avatars identi�ed by the automatic process with respect to a manually created list.

The success with which a set of avatars is automatically derived is listed in Table 3.10 for three

di�erent �ction books. The percentage of correctly identi�ed avatars exceeds 60% in all cases

(recall). The lower precision values indicate that additional avatars are identi�ed erroneously, and

these candidates must be manually deleted from the list by a human. The accuracy with which

gender information is identi�ed is also listed in Table 3.10 for each book, and indicates a high level

of success for the pronoun-based approach.

The avatar identi�cation process is successful in the context of �ction-to-animation conversion,

and demonstrates the use of surface annotations in the identi�cation of scene-related descriptions.

3.5 Conclusion

Structural and syntactic indicators are identi�ed in digitized natural language text using automated

techniques. We conclude the following with respect to the problems identi�ed in Section 3.1:

1. Structural properties of digitized text are identi�ed with a high level of accuracy using

custom-built, knowledge-poor methods.

CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 43

2. Syntactic properties are identi�ed automatically with high levels of accuracy:

(a) Parts-of-speech are identi�ed accurately using publicly available taggers, even over text

that is di�erent in style and genre to the original training data. Accuracy is improved

using an ensemble containing the SVMTool, Brill tagger, QTag and TreeTagger. The

Precision-Recall voting scheme (van Halteren et al., 2001) produces the largest reduction

in error.

(b) Syntactic function of tokens in the input text are identi�ed automatically using the

Connexor FDG parser.

(c) Phrases are identi�ed in the input text using the LTChunk tool.

3. High levels of accuracy (greater than 95% in all quanti�ed results) are expected in the creation

of surface annotations over �ction text.

We believe that the errors produced by these automated processes have minimal impact on future

text-analysis tasks. This belief is motivated by the fact that visual descriptions in �ction text are

intermittent (that is, scattered throughout the text), and the few inconsistencies in the surface

annotations potentially have no relation to these descriptions.

This chapter contributes to the text-to-graphics domain and the automated parts-of-speech

tagging domain in the following respects:

• Text-to-graphics research often regards the creation of surface annotations as a �black-box�

process, and does not examine methods for improving the results of these methods. The work

presented in this chapter studies these problems in detail, allowing future enhancements to

these components to be quanti�ed if required.

• The work we present is the �rst study of automated techniques that evaluate the �o�-the-

shelf� usefulness of parts-of-speech taggers over large corpora. This research also contributes

a reduced tag-set and corresponding maps to permit tagging and validation over a number

of corpora using di�erent tag schemes.

Future work includes the identi�cation of further categories of surface annotation that aid in

subsequent creation of semantic annotations. Categories include the recognition and classi�cation

of named-entities in text, the automatic resolution of ambiguity in the form of pronominal anaphora

and co-reference (a task brie�y examined in Chapter 6).

Chapter 4

Creation of annotated �ction text

This chapter presents hierarchical rule-based learning for automating the creation of annotated

�ction text. We de�ne the concept of an annotation as a mechanism for marking up portions of

text in a particular semantic category (Section 4.1). Related strategies for automatically creating

annotations are investigated in Section 4.2, where we motivate the use of a pattern-based machine

learning technique. This machine learning technique constructs generalized patterns from manually

created example annotations in a particular category, and these patterns are used for producing

annotations (described in Sections 4.3 and 4.4). A range of semantic annotation categories for

the �ction-to-animation task are developed in Section 4.5, and we investigate the properties of

hierarchical rule-based learning in terms of these categories in Section 4.6 using a suite of exper-

iments. Conclusions and contributions of the research presented in this chapter are presented in

Section 4.7.

4.1 Introduction

4.1.1 Problem statement

Popular �ction books consist of natural language descriptions of rich visual environments that

describe characters, objects, and behaviour. We investigate the identi�cation and categorization

of visual descriptions using annotations. This problem is characterized as follows:

1. Fiction text is interpreted di�erently based on an individual human's knowledge and expe-

rience. We investigate the modeling of individual human knowledge and experience in order

to create annotations.

2. Fiction text contains di�erent categories of visual information, a number of which must be

identi�ed for creating an intermediate representation (de�ned in Chapter 1 as the struc-

tured, visual representation of the �ction book). We investigate the induction of models that

automate the creation of di�erent categories of annotation.

3. Categories of visual information are parametrized in �ction text using other portions of text

or by associating semantic information during human interpretation. We investigate methods

for automatically identifying these additional parameters for an annotation.

44

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 45

So her mother handed her some chocolate, and she and the boys munched happily, watching the
hills, woods and �elds as the car sped by.
The picnic was lovely. They had it on the top of a hill, in a sloping �eld that looked down into a
sunny valley. Anne didn't very much like a big brown cow who came up close and stared at her,
but it went away when Daddy told it to.

Figure 4.1: Fiction text from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).

The automatic creation of annotations is a problem de�ned in the context of �ction-to-animation.

A solutions to the above problems should be veri�ed according to its ability to handle di�erent types

of �ction text (for example di�erent authors, genres and target audiences). A solution should also

be capable of reducing the amount of e�ort required in creating the intermediate representation.

4.1.2 Problem formulation

Fiction books contain many types of visual descriptions, examples of which occur in the extract

in Figure 4.1. The setting is established using words such as �hill� and �valley�, while the contents

of the scene are established using references to avatars (for example �Anne�, �Daddy�) and the

objects (�chocolate�, �car�, and �cow�). Spatial relations are indicated between entities (�the cow

who came up close�), and transitions are described that specify an entity's arrival or departure

(�but it went away�). Visual attributes are speci�ed (�big brown cow�) for entities, emotional

expressions (�happily�), and individual actions (�handed her some chocolate�).

We annotate descriptions in �ction text to identify a particular fragment of text as a visual

description, and also to specify the category to which the description belongs. Identifying the

category assists in future interpretation of a description. For example, if the token �cow� is identi�ed

as belonging to the object category, then an automated process can be executed for locating a cow-

shaped geometric model and placing it in a 3D environment (described further in Chapter 6).

An annotation in its simplest form is a marker that identi�es a fragment of text (for example, a

set of tokens) as belonging to a certain category. The following example contains two annotations

in the object category:

The <object>box</object> was on the <object>table</object>.

The above example also contains a description of a spatial relation, indicated by the token �on�.

Spatial relations are parametrized in terms of the involved entities, in this case the subject of the

relation (the entity a�ected by the relation: �box�), and the object of the relation (the reference

point of the relation: �table�), both of which contribute to the meaning. In this respect, multiple

text fragments can form a single annotation, where each fragment plays a speci�c role. The above

example is extended as follows:

The <object>box</object> was <relation subject=�box� object=�table�>on</relation>

the <object>table</object>.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 46

cowTrigger:

OBJECT:

like a big brown cow who came

... very much l ike a big brown <object>cow</object> who came up close . . .

Trigger

(a) Object annotation

behindTrigger:

Type:

Subject:

BEHIND

table

RELATION:

Object: chair

the table behind his uncle’s chair

. . . the table <relat ion type="BEHIND" subject="table" object="chair">behind</relat ion> his uncle’s chair . . .

Text referencesSemantic concept Trigger

(b) Relation annotation

Figure 4.2: Illustration of Object and Relation annotations.

Annotations also specify semantic details regarding the fragment of text they identify. For in-

stance, the token �on� identi�ed in the above example is linked with the semantic concept onTopOf ,

providing for subsequent reasoning regarding the layout of these objects in a virtual environment.

This is speci�ed as another �eld in the annotation:

The <object>box</object> was <relation subject=�box� object=�table�

type=�onTopOf�>on</relation> the <object>table</object>.

The above examples represent annotations using XML1 syntax. Regardless of representation,

we de�ne an annotation as follows:

De�nition 4.1. An annotation is a portion of text marked up in a particular category. Annotations

de�ne the following type of information:

• Trigger : the fragment of text identi�ed as belonging to the category. Every annotation

contains one trigger.

• Text-references: an annotation is quali�ed by zero or more references to other fragments of

text that have a relationship with the trigger.

• Semantic-concepts: an annotation is quali�ed by zero or more semantic-concepts that are

associated with the trigger.

Each category of annotation is parametrized using associated text-references and semantic-

concepts. We use the term quali�er to collectively describe these parameters. Categories such as

object have no associated text-references or semantic-concepts, only identifying a trigger that refers

to an object. A relation annotation identi�es a trigger describing a spatial relation, and is quali�ed

by two text-references (subject and object), and a semantic type indicated by the annotation. These

two categories of annotation are illustrated in Figure 4.2.

Annotated text is conducive to manual creation. We use a graphical interface that allows a

human to select portions of text that belong in a particular category. Annotated text is also

e�ective for human readability, allowing annotations to be viewed or edited in the context of the

surrounding text.

1Extensible Markup Language

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 47

Fiction book

Problem 1: Text Analysis

 1.1) Linguistic indicators

 1.2) Annotation creation

Problem 2: Interpretation

 2.1) Interpretation of annotations

 2.2) Specification of behaviour
 in a virtual environment

 2.3) Populating 3D environments

Intermediate
representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
of surface annotations

Machine-learning for
automating creat ion

of semantic
annotat ions

Create structured
scene descriptions

Automatic constraint
solving/optimization

Automatic populat ion
of 3D vir tual environment

Human knowledge:
- Manual examples

Human knowledge:
- Clarify l inguistic ambiguity
- Implied scene layout
- Creative ideas

Human knowledge:
- Creative enhancements

Hierarchical rule-based learning

Figure 4.3: Context of the hierarchical rule-based learning mechanism with respect to the �ction-
to-animation problem.

The �rst task in creating an annotation in �ction text requires the identi�cation of what frag-

ments of text represent triggers within a particular category. This involves discriminating text

fragments that belong in the category (positive examples) from those that do not (negative exam-

ples). Once a trigger is located, the fragments of text are then located for each de�ned text-reference

(if de�ned for the particular category of annotation), and semantic-concepts are associated with

the annotation.

A human creates annotations using experience with natural language and personal discretion.

We conducted a preliminary experiment in which a group of humans was instructed to create two

categories of annotation over the same extract of �ction text. No two extracts were annotated

in the same way. We speculate that the di�erences are caused by varying interpretations of the

annotation categories and the �ction text. This implies that annotations cannot be objectively

veri�ed, as veri�cation is subjective to the human performing the assessment.

Fiction text should be annotated in a manner that a single human considers correct. This

chapter investigates a machine learning mechanism that uses examples provided by that human

to learn a model for creating similar annotations. Annotations occur in many di�erent categories,

each of which are quali�ed by di�erent combinations of text-references and semantic concepts. The

machine learning system should be capable of deriving models in any category, and for any type

of quali�er.

4.1.3 Context

The research presented in this chapter examines the problem of automating the text-analysis task

of the �ction-to-animation process. The context of this problem within the conversion process is

illustrated in Figure 4.3. We develop a method that automates the creation of annotations over

�ction text, resulting in an intermediate representation. The input to this process is �ction text

annotated with surface annotations, the processes for which are described in Chapter 3. Semantic

annotations are created based on example annotations provided by a human in conjunction with

these surface annotations.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 48

4.2 Related work

The creation of semantic annotations over �ction text is similar to the task of information extrac-

tion. In both cases, fragments of text are identi�ed as belonging within a certain category.

Information extraction is concerned with �lling a structured template rather than marking up

relevant portions of the text. A template consists of a number of slots that are labeled to indicate

the kind of information that can �ll them (Chinchor and Marsh, 1998). For example, a typical

information extraction task is concerned with automatically obtaining details about a �seminar�

from an unstructured text announcement. A template consists of slots that include �title�, �venue�,

and �speaker�; while an information extraction process �lls these slots for each text-based document

that announces a seminar (Cali� and Mooney, 2003).

Subsequent interpretation of the text fragments, including anaphora resolution and co-reference

resolution, are performed as a post-processing phase of the information extraction task (named

discourse processing (Soderland, 1997)). This interpretation is analogous to providing data for

semantic-concepts de�ned in an annotation.

Information extraction methods are developed for a speci�c subject domain, and it is possible

for domain-experts to hand-craft sets of extraction patterns for locating important fragments of

text from documents within that domain. We experimented with this approach in identifying the

speech-verb, actor and speaker of a quote in �ction text (Glass and Bangay, 2007c). The hand

crafted rules produce accurate annotations, but the creation of the rules require many hours of

specialized labour, and can not be applied to di�erent categories of annotation.

We investigate machine learning techniques that perform the information extraction task by

automatically inducing patterns from example data. These methods remove the need for specialized

labour in creating extraction patterns and are adaptable over di�erent categories of data.

4.2.1 Machine learning for information extraction

A machine learning algorithm generates a model or theory regarding how to identify text fragments

that �ll a particular slot in a template. A model is created using training examples (supervised

learning), which are documents containing marked-up text-fragments that are guaranteed to be

correct for the particular slot. Two categories of techniques exist for creating and representing

a model, namely classi�er-based techniques and pattern- or rule-based techniques (Turmo et al.,

2006).

Classi�er-based techniques use statistical models to determine whether a certain fragment of

text should be used to �ll a particular type of slot. These techniques determine the probability

that a fragment of text is a slot-�ller based on the types of features associated with the fragment.

Features consist of meta-data regarding a particular item of text, for example the part-of-speech,

or the syntactic relation between two words. Numerous classi�er-based learning techniques exist

for information extraction based on alternative statistical strategies and feature sets (Freitag, 2000;

Freitag and McCallum, 2000; Chieu and Ng, 2002; Chieu et al., 2003; Bunescu and Mooney, 2004).

The CarSim system (Johansson et al., 2005) makes use of statistical machine learning for the

information extraction task within the text-to-animation process.

Pattern-based techniques for information extraction are concerned with the induction of a set of

patterns that are able to distinguish fragments of text belonging to a particular category. Patterns

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 49

contain constraints that must be satis�ed by a portion of text before a text fragment can be

extracted (Soderland, 1997). An example of a constraint is a sequence of tokens that precede or

follow the fragment of text to be extracted. Patterns also contain a slot-�ller that, assuming the

constraints are satis�ed, de�nes what fragment of text should be extracted to �ll a speci�c slot. An

example pattern �<victim> was murdered� (Cali� and Mooney, 2003) contains �was murdered� as

a constraint. If a similar string is found in the input document, the constraint is satis�ed and the

token appearing just before the constraint is extracted as the �ller of the �victim� slot.

We use a pattern-based method for performing machine learning, but recognize that a classi�er-

based method also has the potential to perform the task of creating annotations. A pattern-based

technique is chosen because it provides direct control over the models induced for categories of

annotation. The link between the chosen set of features and the success of a learned model is

unclear when using statistical techniques (Johansson et al., 2005). Patterns are also created using

a very small set of examples, while statistical models require larger corpora of training data, a

resource that is unavailable in the context of semantically annotated �ction text.

4.2.2 Techniques for pattern induction in information extraction

Pattern induction involves the construction of patterns that identify each example in a set of

training data (Rilo�, 1993, 1996).

Patterns created directly from examples are potentially over-speci�c, therefore limiting their

applicability to only a few examples. Pattern induction algorithms employ generalization so that

the pattern applies to more than a single example (Chai et al., 1999; Harabagiu and Maiorano,

2000). A single pattern can be generalized in a number of di�erent ways, and a scoring technique

is required to select what generalized pattern to use (Basili et al., 2000).

Algorithms that perform generalization are categorized into two groups, those performing com-

pression and those improving coverage (Cali� and Mooney, 2003). Alternatively, algorithms are

categorized in terms of the direction of pattern creation, namely top-down and bottom-up. An-

other distinction between information extraction algorithms is the type of text over which they are

designed to function, categories for which include free, semi-structured and structured text.

4.2.2.1 Generalization method: compression versus covering

Algorithms that perform compression begin with a set of highly speci�c patterns, usually one for

each example. A more general pattern is constructed that replaces a number of speci�c patterns,

but is still able to cover all the input examples (where cover means that a pattern successfully

identi�es the correct element in an example). This process continues until no further compression

is possible (Cali� and Mooney, 2003). General patterns are found by enumerating di�erent gener-

alized versions of the pattern, evaluating each on the example set, and selecting the generalization

that covers the most examples correctly. Alternatively, two patterns are merged, creating a more

generalized pattern that covers both the original patterns (Freitag, 2000).

Covering algorithms begin with a set of examples from which a single pattern is derived at a

time. All of the examples covered by the newly created pattern are then removed from the starting

set. New patterns are created until no more examples remain in the starting set (Soderland, 1997;

Freitag, 1998). The new pattern created is either highly speci�c or generalized. If more than

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 50

one correct generalization is created for a training example, then the pattern providing the best

coverage over the start set is chosen (Ciravegna, 2001).

4.2.2.2 Direction of rule creation: top-down versus bottom-up

The set of examples provided for training a model is divided into positive and negative examples

(Quinlan, 1986). Positive examples contain fragments of text correctly marked for a speci�c slot,

while negative examples contain no such markings. Both are provided to induce patterns that

correctly cover all positive examples while correctly rejecting all negative examples. This cate-

gorization of example data di�erentiates between two approaches for pattern induction, namely

top-down and bottom-up approaches.

Top-down techniques begin with a general pattern that covers all examples (including both

positive and negative training examples). This pattern is iteratively specialized with the aim of

covering more positive examples, while rejecting negative examples (Quinlan, 1990; Soderland,

1999; Freitag, 2000; Turmo and Rodriguez, 2002; Déjean, 2002).

Bottom-up techniques begin with a pattern that explicitly describes one example in the set.

Constraints within the pattern are iteratively generalized, with the aim of increasing the number

of positive examples described by the pattern, while minimizing the coverage over negative ex-

amples (Soderland, 1997; Aseltine, 1999; Ciravegna, 2001; Cali� and Mooney, 2003; Català et al.,

2003). Generalization occurs in di�erent forms, such as comparing two patterns and replacing two

dissimilar portions of the constraints with an abstract concept that describes both, or by replacing

the constraint with a wild-card (Cali� and Mooney, 2003).

4.2.2.3 Type of input text

The type of input text for information extraction tasks is categorized into three classes, namely

structured text, semi-structured text, and free text (Muslea, 1999; Turmo et al., 2006).

Structured text presents the simplest task for information extraction techniques, because for-

matting markers in the text clearly indicate the function of a fragment of text. Example data

includes weather forecasts obtained from web-pages, and extracts from telephone directories (Soder-

land, 1999).

Semi-structured text exhibits structural markers, although these do not always conform to one

single pattern. Examples include seminar announcements where, for example, the seminar title

and speaker is generally indicated in a consistent manner (but are not marked up in any way)

(Soderland, 1999; Ciravegna, 2001; Cali� and Mooney, 2003). Other examples include job-vacancy

announcements (Ciravegna, 2001; Cali� and Mooney, 2003) and rental advertisements (Soderland,

1999).

Free text presents the most challenging task for information extraction where no structural

detail exists in the input text, a characteristic that is exhibited by �ction text. Example test

corpora include terrorist reports sourced from newspapers, in which slots to be �lled from each

report include the entity attacked and the attacking entity (Kim and Moldovan, 1995). Other

examples include reports on management changes of companies (Hu�man, 1996; Soderland, 1997;

Sudo et al., 2003), and reports of disease outbreaks (Patwardhan and Rilo�, 2007; Phillips and

Rilo�, 2007).

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 51

System Test data Precision Recall F-measure

Times
(Chai et al., 1999)

Job listings
(Company name, position,
salary, location,
experience, contact, skills,
bene�ts)

40.4% -

96.8%

53.1% -

83.8%

47.5% -

84.5%

Whisk
(Soderland, 1999)

Management succession
(person in, person out,
organization, post title)

48.5% -

68.9%

46.4% -

61.0%

-

ExDisco
(Yangarber, 2003)

Management succession
(person in, person out,
organization, post title)

Approx.

62% - 89%

Approx.

10% - 90%

-

Crystal
(Soderland, 1997)

Management succession
(person in, person out,
organization, post title)

Approx.

63% - 76%

Approx.

50% - 75%

-

Liep
(Hu�man, 1996)

Management changes 89.4% 81.6% 85.2%

Evius
(Turmo and
Rodriguez, 2002)

Colour 98.77% 88.89% 93.57%

Essence
(Català et al., 2003)

Aircraft crash reports
(crash site, crash date,
aircraft, airline, departure,
destination)

51.2% -

100.0%

39.5% -

75.4%

48.4% -

78.8%

Wave
(Aseltine, 1999)

Latin-American terrorist
reports/hospital discharge
summaries

- - Approx.

49% - 58%

Table 4.1: Reported performance of related pattern-based information extraction techniques over
free text.

Few implemented pattern-based information extraction systems are evaluated using a stan-

dardized test corpus. This makes comparison between systems impossible. Di�erent evaluation

methods are also used in related research, with respect to the number of examples used for testing

and the number of test cases evaluated. Despite these di�erences, reported performance results

over a range of information extraction systems over free text are listed in Table 4.1. This table indi-

cates that precision levels between 40% and 100% are achieved, with recall levels ranging between

10% and 90%. We quote these �gures with caution, because the various tasks are not directly

comparable, and neither are the various slot categories within each task. These �gures highlight

that information extraction over free text is a complex task for which no single technique can be

established as superior. Turmo et al. (2006) present performance results for a range of systems

over semi-structured texts which, as expected, tend to be higher than over free-text.

4.2.3 Hierarchical rule-based learning as a pattern induction mechanism

We present hierarchical rule-based learning for inducing and generalizing patterns from example

annotations. This approach uses a bottom-up compression algorithm, where highly speci�c pat-

terns are created for each positive and negative example in the training set. Patterns are merged

one pair at a time, until no further merges are possible.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 52

Text structure Generalization Direction

Pattern-based techniques: F
re
e

S
em

i-
S
tr
u
ct
u
re
d

S
tr
u
ct
u
re
d

C
om

p
re
ss
io
n

C
ov
er
ag
e

O
th
er

T
op
-d
ow

n

B
ot
to
m
-u
p

Palka (Kim and Moldovan, 1995) 3 3 - -
AutoSlog (Rilo�, 1993, 1996) 3 3 - -
Liep (Hu�man, 1996) 3 3 3 3

Crystal (Soderland, 1997) 3 3 3

Wave (Aseltine, 1999) 3 3 3

Times (Chai et al., 1999) 3 3 - -
(Basili et al., 2000) 3 3 - -
Snowball (Agichtein and Gravano, 2000) 3 3 3

(Harabagiu and Maiorano, 2000) 3 3 - -
Essence (Català et al., 2003) 3 3 3

ExDisco (Yangarber, 2003) 3 3 3

Hierarchical rule-based learning 3 3 3

Whisk (Soderland, 1999) 3 3 3 3 3

Rapier (Cali� and Mooney, 2003) 3 3 3

Srv (Freitag, 1998, 2000) 3 3 3

(LP)2 (Ciravegna, 2001) 3 3 3

Evius (Turmo and Rodriguez, 2002) 3 3 3 3

Table 4.2: Pattern-based learning systems summarized according to text structure, generalization
strategy and direction of generalization.

Hierarchical rule-based learning is compared with related research in Table 4.2, in which

pattern-based machine learning systems are categorized according to the type of text used as

input, the generalization method used, and the direction of the pattern creation. Our system is

one of the few bottom-up compression algorithms designed for use with free text.

The bene�t of the hierarchical rule-based system is the ability to learn many categories of

annotation without modifying the internal learning mechanism. Rather, the structure and contents

of a pattern are manually customized for di�erent annotation categories, although future work

includes the possibility for automating the customization of pattern structures (similar to work by

Shinyama and Sekine (2006)). These patterns provide the ability to incorporate both structural

elements of language (sentence, phrase, quote, and token) as well as syntactic information (parts-

of-speech and syntactic function). Patterns also provide the ability to identify semantic data,

allowing for the semantic-concepts of annotations to be identi�ed. These concepts are learned in

a knowledge-poor fashion, that is in the absence of external knowledge-bases (as opposed to some

existing approaches (Stevenson and Greenwood, 2005; Li and Bontcheva, 2007)).

Existing corpora for evaluating information extraction techniques do not contain marked-up

visual descriptions. These corpora are also created for testing the template-�lling ability of an

automated process. Annotations are di�erent because they identify every fragment of text in a

category as opposed to identifying one term that �lls a slot. This makes existing test data inappro-

priate for evaluating hierarchical rule-based learning with respect to the �ction-to-animation task.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 53

(a) "Not so loud!" said Meg. (b) "I swore not to tell!" gasped Jammes.

Figure 4.4: Structural elements of a sentence arranged as a tree.

Instead, we evaluate hierarchical rule-based learning by performing training and evaluation over a

custom-built corpus of �ction text marked-up with semantic annotations in visual categories.

4.3 Induction of rules for creating annotations

This section develops the concepts for hierarchical rule-based learning. We motivate the concept

of tree-based patterns, and indicate how they are induced, generalized and applied to create an-

notations in �ction text. Detailed algorithms for each step in the process are deferred to Section

4.4, which has the same structure as this section for convenient reference.

Semantic annotations identify visual descriptions in free text, a source that is considered to be

the least structured in the �eld of pattern-based information extraction. We argue that structural

elements exist in free text that can be used to construct patterns for identifying annotations.

Structural elements include units of text such as a sentence, a quote, and a token. Not only do

these elements indicate structure, but they are also related in a hierarchical fashion, where certain

elements encapsulate other elements. Consider the following example from The Phantom of the

Opera by Gaston LeRoux (1911)2:

�Not so loud!� said Meg.

This example exhibits the following structural elements (each element is indicated using square

brackets):

Sentence: [� Not so loud ! � said Meg .]

Quote/Sentence-part: [� Not so loud ! �] [said Meg .]

Token: [�] [Not] [so] [loud] [!] [�] [said] [Meg] [.]

The above example indicates that the sentence contains two structural elements, namely a quote

and a partial sentence. The quote in turn contains a number of tokens. This idea of containment

suggests that the original sentence can be abstracted on di�erent levels using a tree structure to

indicate the relationship between elements, illustrated in Figure 4.4(a). Abstracting text on a

number of levels in this manner presents an opportunity for identifying patterns in text. This

is illustrated by the similar structure exhibited in Figure 4.4(b) where the trees are abstracted

(highlighted), but the tokens are entirely di�erent.

2All subsequent examples in this section are taken from this source, and are possibly modi�ed for illustrative
purposes.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 54

(a) "Not so loud!" said Meg. (b) "I swore not to tell!" gasped Jammes.

Figure 4.5: Additional syntactic abstractions within the tree structure.

Patterns need not contain only structural abstractions, but can also include syntactic abstrac-

tions. For example, the part-of-speech of a token presents an abstraction of the token, while a

phrase type abstracts a group of tokens. The inclusion of syntactic structures is illustrated in

Figure 4.5. The similar portions of the two trees are highlighted, indicating a pattern with �ner

detail to that in Figure 4.4.

The above examples show that hierarchical patterns exist in free text. We present a method for

automatically inducing these patterns with the purpose of learning how to create a given category

of annotation.

This section describes the full process of creating patterns from annotations, combining these

to form a general model regarding a speci�c category of annotation, and applying a set of patterns

to text for the creation of new annotations. The algorithms for performing these functions are

formally presented in Section 4.4.

4.3.1 Hierarchical patterns and rules

Free text has the potential to exhibit a variety of patterns. Given a set of manually created

annotations over �ction text, we are interested in inducing patterns that are able to identify

portions of text as belonging to a particular category of annotation. Consider the following two

annotated examples:

<quote speech-verb=�said� actor=�Meg� speaker=�MEG�>�Not so loud!�</quote> said

Meg.

<quote speech-verb=�gasped� actor=�Jammes� speaker=�JAMMES�>�I swore not to

tell!�</quote> gasped Jammes.

For the sake of demonstration, we consider the task of identifying the speech-verb of the above

quote annotations. Hierarchical trees derived from these sentences are presented in Figure 4.5.

Trees become rules when they are able to identify portions of text that belong in a speci�c category.

Rules are created from the annotated example above, because the annotation indicates which token

functions as the speech-verb of the quote, illustrated in Figure 4.6. In information extraction terms,

all nodes in the tree that are not highlighted represent the �constraint� portion of the rule, while

the highlighted node indicates the location in which to create the annotation. We name this the

answer of the rule, and annotations containing answers are positive examples. Rules derived from

these examples are named positive rules. Answer nodes are the equivalent of the �slot-�ller� in

information extraction, and act as a wild-card because any data can correspond to this node.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 55

Sentence

sentence-partquote

verb proper noun punctpunct adverb adverb adjective punct punct

<speech-verb> Meg ." Not so loud ! "

(a) "Not so loud!" said Meg.

Sentence

sentence-partquote

verb proper noun punctpunct pronoun verb adverb to punctverb punct

<speech-verb> Jammes ." I swore not to "tel l !

(b) "I swore not to tell!" gasped Jammes.

Figure 4.6: Example of rules indicating a the location of a speech-verb in a sentence.

root

A < a n s w e r > C

root

G < a n s w e r > F

A <answer>B</answer> C

G <answer>H</answer> F

Base rule-set:

Example set / t ra in ing set :

root

< a n s w e r >*

General ized rule-set :

*

A B C

G H F

Unannota ted examples:

root

A B C

root

G H F

Unmarked t rees:
1. Create rules for base rule-set

2. Generalize using pair-wise merging

3. Create unmarked trees that have no answers

4. Rule matching to identify answers in unmarked trees,
and create annotat ions over unannotated text

A <answer>B</answer> C

G <answer>H</answer> F

(Can be stripped examples, or unseen text)

Figure 4.7: Di�erent components of hierarchical rule-based learning.

Rules can also indicate when to avoid creating an annotation. In this case, an example is

provided by a human that contains no annotation. A tree is constructed containing no answer

node. We name these negative examples, and their corresponding trees negative rules. In general,

we de�ne a rule as a tree pattern that is created from an example explicitly provided by a human.

We construct trees so that the leaf nodes represent individual tokens in the free text, and the

root node represents a single global abstraction of the input (usually choosing the arbitrary term

�root� as the type for the root node). The levels of abstraction between the leaf nodes and the

root are customized according to a speci�c category of annotation.

The di�erent components of hierarchical rule-based learning are illustrated in Figure 4.7. The

induction of rules from annotated text begins by creating a base rule-set that contains one rule

per example in the example-set. The base rule-set is generalized to create a generalized rule-set,

which is capable of reproducing the original examples and produce further annotations. To test

the generalized rule-set we strip the original examples of their annotations to create unannotated

examples, from which unmarked trees are created (unmarked because they do not contain answers).

Rules in the generalized rule-set are matched with each unannotated example, and annotations are

created where matches occur.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 56

Lorem ipsum dolor sit amet ...

match? No match? Yes

location of answer

Lorem <answer>ipsum</answer> dolor s i t amet . . .

annotate

Construct pattern

Rule-set

Unmarked t ree

Rule Rule

Unmarked t ree

Figure 4.8: Relationship between text and rules through the application of a rule-set.

4.3.2 Rule-set creation

The goal of hierarchical rule-based learning is to construct a model regarding the creation of a

speci�c category of annotation over free text. This model is represented by a rule-set, which is a

collection of rules. The pair of rules presented in Figure 4.6 is considered a rule-set because it is a

set of rules derived from manual examples with the explicit purpose of identifying the speech-verb

of a quote.

The relationship between annotations and a rule-set is illustrated in Figure 4.8. A new anno-

tation is created by constructing a tree for an unannotated example (called an unmarked tree),

and matching this tree with every rule in the rule-set. If all the constraint nodes in a particular

rule are identical in the unmarked tree, then the node in the unmarked tree in the same location

as the answer node in the rule is marked as the answer. The token in the unannotated example

corresponding to this node in the unmarked tree is then annotated. If no matching rules exist in

the rule-set, then the example is not annotated.

Rule-sets are constructed by creating a tree pattern for every example provided by a human.

We expect that a human creates annotations by manually marking-up contiguous extracts of �ction

text. Each extract is automatically sub-divided into positive and negative examples, and a tree

is created that represents each example. Free text is sub-divided using clear structural features

such as tokens, sentences, and quotes (each of which are automatically identi�ed using methods

described in Chapter 3). The structural feature to use for sub-division depends on the category of

annotation.

Assume that rules are to be created for object annotations and that for this category free text is

sub-divided into tokens. In this case, every token represents an example, and a rule is constructed

for every example token in the text. Tokens not annotated as an object create negative rules, while

tokens that are annotated create positive rules.

A rule is created for each example in the input extract, the result of which is a base or start

rule-set.

The constraint portions of the rules in Figure 4.6 are highly speci�c, the consequence of which

is that they match very few sentences other than those responsible for their construction. The

trees illustrated in Figure 4.6 exhibit portions that are identical, forming a pattern common to the

two rules. This observation implies that a generalized rule can be derived by comparing trees, and

keeping only those portions that are similar. This idea is discussed further in the following section.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 57

Sentence

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

<speech-verb> Meg

other phrase

punctuation

punctuation

.

" Not so loud ! " said Meg .

(a) Rule 1

" I swore not to tell ! " said Meg to John .

Sentence

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

<speech-verb> Meg

noun phrase

to

to

to

prep. compl.

proper noun

John

(b) Rule 2

Sentence

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

<speech-verb> Meg

*

(c) Generalised rule

Figure 4.9: Examples of rule generalization.

Sentence

sentence-partquote

verb proper noun punctpunct

<speech-verb> ."

ch

Special purpose wild-card:
Indicates that the children of this node
need only match with a sub-sequence
of children in another tree

General wild-card:
Indicates that any node
may occur in this location

*

Figure 4.10: Example generalized rule containing general and special-purpose wild-cards.

4.3.3 Rule generalization

Consider the example rules presented in Figure 4.9(a) and (b). A large portion of both these trees

is identical, with the exception of the existence of an additional phrase in rule (b). A single rule

can be created that represents both rule (a) and rule (b) by replacing the di�erent portions of the

tree with a wild-card, as shown in Figure 4.9(c). In this example, the highest di�ering node in the

tree is replaced with a wild-card, removing an entire sub-tree. The new tree is generalized, because

it has the potential to match many more trees than the two responsible for its creation.

The rules presented in Figure 4.6 also contain similar patterns, and are di�erent in two portions

of the tree. The nodes indicating �Meg� and �Jammes� are di�erent, and these are generalized by

replacing the nodes with a wild-card. The sub-trees headed by the �quote� nodes are also di�erent.

However, we do not wish to replace the �quote� nodes with a wild-card, because this would remove

an element that is common to both trees. The child nodes of �quote� cannot be replaced by wild-

cards because the rule in Figure 4.6(a) has six children while the rule in Figure 4.6(b) has eight

children, and no decision can be made regarding the number of wild-cards to insert. To solve this

problem, special-purpose wild-cards are speci�ed in nodes when only a sub-sequence of the children

are common. The rule generalized from the two rules in Figure 4.6 is illustrated in Figure 4.10,

and contains the two types of wild-card.

The special-purpose wild-card has the ability to produce a number of generalization options.

This is because numerous sub-sequences of nodes have the potential to be common between two

rules. This is illustrated in Figure 4.11, in which four di�erent options exist for generalizing the two

trees. In all cases the �root� node is common, but the children contain numerous sub-sequences of

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 58

root

A B

root

A B

+
FB

;

ch
root

A

root

B

ch
root

B

ch
root

A

ch

B

; ;
ch

Figure 4.11: Multiple options for generalization when using a special-purpose wild-card.

matching nodes. The choice of which generalized rule to accept depends on whether the generalized

rule still contains an answer (that is, it has not been removed by generalization).

Rule generalization results in the removal of portions of a tree from a rule, but this must be

done with care to prevent the removal of answer nodes. Other nodes in a tree might also be critical

to the structure of a rule and should never be removed in the generalization process. We call nodes

with this characteristic preserved nodes. All answer nodes are preserved, but preserved nodes need

not necessarily be answers. Preserved nodes must never be removed from a rule and as a result, a

wild-card can only be used if it does not result in the removal of a preserved node from the tree.

The idea of comparing two rules and removing dissimilar portions of the trees is named merging,

because we replace two individual rules with one general rule that represents both. In some cases,

a pair of rules contains no similar patterns, in which case a merge is impossible. Merges are also

impossible if two rules contain a similar pattern, but this pattern does not contain all the preserved

nodes in both rules.

Example merge scenarios are presented in Figure 4.12 to illustrate the concept of successful

merging and merge failure. A merge resulting in the insertion of a general wild-card is illustrated

in Figure 4.12(a). A merge in which multiple sub-sequences of children are common resulting in

two merged rules is illustrated in Figure 4.12(b). Additional patterns exist that are common to

these two rules, but none of these contain the preserved node �D�, and so are discarded as viable

generalization candidates. A merge failure is illustrated in Figure 4.12(c), where no common

pattern exists between two rules that does not remove a preserved node.

4.3.4 Application of a generalized rule

A generalized rule has the ability to match correctly with trees other than those from which it was

created. Assume the speech-verb is to be located for the following sentence containing a quote:

�Where are you?� asked Paul.

A tree is constructed from this unannotated sentence, illustrated in Figure 4.13. This tree does

not match with either of the rules in Figure 4.6, because it contains a number of di�erent nodes.

However, the generalized rule derived from these two rules (shown in Figure 4.10) matches with

this tree because of the presence of wild-cards. The token �asked� is annotated as a speech-verb

because the match is successful, and the node containing �asked� is in the same location as the

�speech-verb� node in the rule.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 59

root

A B

D

root

A E

D

root

A

D

+

ch

*

(a) Successful merge, demonstrating insertion of a general wild-card.

root

A B

D

root

A B

D

root

A

D

+

ch

FB

root

A

D

ch

B

;

(b) Successful merge with common child sub-sequences and insertion of special purpose wild-card.

root

A B

D

root

G B

D

+ FAIL
FB

(c) Failed merge, due to the lack of common patterns.

Figure 4.12: Example merges between pairs of rules.

Sentence

sentence-partquote

verb proper noun punctpunct wh-advb verb pronoun punct punct

asked Paul ." Where are you ? "

Sentence

sentence-partquote

verb proper noun punctpunct

<speech-verb> ."

ch

*

only one child node is required
to match, because of "ch"

wild-card in parent

any node in this location wil l match

Tree created f rom un-annotated sentence General ized ru le

Figure 4.13: Matching between a generalized rule and a tree generated from an unannotated
sentence.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 60

root

< a n s w e r > C

root

E B < a n s w e r >

root

E B C

Newly merged rule Previously created rule Tree generated from un-annotated text

Rule-set

*

match? Yes

match? Yes

Both match, but answers in different locations

Figure 4.14: Example of con�icting rules in a rule-set.

4.3.5 Generalization of a rule-set

An annotator presents a set of examples from which a base rule-set is created. Initially, this rule-set

is over-speci�c and applies only to the examples provided. This set of rules must be generalized

so that it has the ability to apply to unseen text, that is, new text for which annotations must be

created.

If two rules can be generalized by identifying common patterns in rules and removing dissimilar

portion, then the base rule-set can be generalized in a similar manner. However, the more rules

compared at once, the less likely that a common pattern exists in the trees that also contains

all the preserved nodes in the same locations. Alternatively, we propose an iterative process in

which pairs of rules are merged at a time until no further merges are possible. Using this method,

generalized rules are likely to be merged multiple times before the process ends.

Given that pairs of rules are merged at a time, the question remains as to which pairs of rules

to merge at each iteration. One approach is to merge every pair of rules in the set, and choose the

merged rule that covers the most examples (Glass and Bangay, 2006).

The rule-set generalization process is characterized by the problem illustrated in Figure 4.14,

namely that a newly merged rule has the potential to con�ict with an existing rule in the set.

A pair of rules con�ict if both can be matched successfully to a tree created from an example

sentence, but which indicate answers in di�erent locations. In Figure 4.14 both rules in the rule-

set match the unannotated tree, yet indicate di�erent answers. If the incorrect rule is chosen, then

an incorrect annotation is created. A con�ict can also occur between a positive and a negative

rule, where both match an example, but where one rule indicates an answer and the other does

not.

Con�icting rules are prevented by matching a newly merged rule with every individual rule

in the rule-set. Rules are trees, and can be matched against one another. If a successful match

occurs, but the answers are in di�erent locations in the trees then a con�ict is found, and the new

merged rule is deemed invalid.

Matching between two rules is di�erent to regular matching because both rules contain answer

nodes and wild-cards. If regular matching is used, the two rules in Figure 4.14 do not match,

but they both match the unannotated tree. However, if the answer nodes are interpreted as wild-

cards (as opposed to a literal string �<answer>�) then the two trees match, but point to di�erent

answers and a con�ict is detected. This is a conservative method because possible con�icting rules

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 61

root

< a n s w e r > C

root

G B < a n s w e r >

root

E B C

Newly merged rule Tree generated from un-annotated text

Rule-setmatch? yes

*
Previously created rule

match? Yes

match? No

but answers different: confl ict

Figure 4.15: Con�ict detected using conservative matching between rules.

are avoided, even if no con�ict exists within the example data. This point is illustrated by Figure

4.15, in which the second rule does not match the unannotated tree, in which case there is no

con�ict. However, a positive match still exists between the rules when interpreting the answer

nodes as wild-cards, and the new merged rule is rejected.

The rule-set generalization process consists of selecting an arbitrary pair of rules and merging

them. If the merge does not fail, then a number of merge candidates are presented. Merge

candidates that remove preserved nodes are discarded. The remaining rules are compared with

every rule in the rule-set to detect if a con�ict occurs, and are discarded if this is the case. A

merged rule is selected from the remaining set of merge candidates and replaces the pair of original

rules in the rule-set (selection strategies are described in Section 4.4.5). This process continues

until no pair of rules can be found that results in a valid merge.

4.3.6 Rule-set application to unseen text

Unseen text is sub-divided into structural units in the same manner used for creating a rule-set,

where a tree is constructed for each unit (see Section 4.3.2). Every rule in the generalized rule-set

is matched against the new tree, and if a match is found, the answer in the tree is located and

the appropriate annotation created. If a negative rule matches the tree, or if no matching rule is

found, then no annotation is created for the unseen example.

We assume that con�icting rules do not exist in the rule-set as a result of the discussion in

Section 4.3.5. In this respect, the �rst matching rule is assumed to point to the same answer as

any subsequent matching rule that potentially exists in the rule-set, and therefore the search ends

when any matching rule is located.

A base rule-set is the most constrained set of rules representing the examples provided by a

human. Assume that the same set of examples is used to create a set of unmarked trees, then

every rule in the base rule-set should be identical to exactly one unmarked tree. In this manner,

annotations in the example data are reproduced by applying the base rule-set to the example

extract.

If an incorrect rule from the base rule-set matches with an unmarked tree then the result

is an erroneous annotation. To avoid this scenario, rules in a base rule-set must be su�ciently

constrained to match only a single unmarked tree (the degree to which a rule is constrained

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 62

depends on the category of the rule, as discussed in Section 4.5). However, if su�cient constraints

cannot be de�ned for a particular category of annotation, we make the following assumption:

Assumption 4.2. (Consistency Assumption) The base rule-set induced by a set of training ex-

amples produces a lower bound regarding the number of accurate matches with the unmarked trees

(that represent the training examples).

The Consistency Assumption (Assumption 4.2) provides for the detection of loss in annotation

ability as a result of generalization. A generalized rule-set should not reduce the number of accurate

matches below the lower bound achieved by the most speci�c base rule-set. An ideal generalization

produces more accurate matches than this lower bound.

4.4 Algorithms for pattern induction and application

This section formally de�nes hierarchical rules and presents algorithms for the construction of a

rule-set, the pairwise generalization of two rules, the generalization of a rule-set, and the application

of a rule-set to unseen text.

4.4.1 Hierarchical patterns and rules

This section de�nes a structure for representing multiple levels of abstracted text, and for indicating

where answers are located.

4.4.1.1 Structure of patterns: nodes and trees

Patterns derived from free text can be abstracted on multiple levels, where a concept on one level

encapsulates zero or more concepts on a more speci�c level. We represent a single concept as a

node, where encapsulation is represented by links between nodes. A node is de�ned as follows:

De�nition 4.3. A node N represents a single concept that is an abstraction of zero or more

specialized concepts. A node has the following properties:

• Type: An identi�er for the concept that the node represents, or a wild-card ω indicating

that the node represents any concept.

• Parent: A link to a single node representing a more abstract concept.

• Children: An ordered set of links to zero or more nodes that represent more specialized

concepts.

• Answer: Indicates whether the concept represented by the node is manually marked as

belonging to a particular annotation category.

• Preserved: Indicates whether the concept can be removed from the linked node structure.

A value of true indicates that the node cannot be removed.

• ChildSubSeq: Indicates whether the concept is represented exclusively by its set of children,
or whether the set of children represents only a sub-sequence of possible children. A value of

true indicates the latter.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 63

Each node contains a single link to an abstract concept, but contains multiple links to more

speci�c concepts. A collection of nodes linked in this manner is called a tree, and contains one

node that has no parent, called the root.

We use the following terminology to refer to certain aspects of a tree: the ancestors of a node N

in a tree is the set of linked nodes between N and (including) the root of the tree; the descendants

of a node N in a tree is a set of all nodes in the tree for which N is an ancestor; the siblings of

a node N are all other nodes in the tree that have the same parent as N ; the depth of a node N

refers to the number of nodes between N and (including) the root (root is at depth 0); and a node

that contains no children is referred to as a leaf node.

The induction of patterns common in a collection of trees is performed using a process of pair-

wise merging, described in Section 4.4.3. This involves a node-by-node comparison of two trees,

where nodes in the same location in a tree are compared. We de�ne the concept of location in the

following section.

4.4.1.2 Location and corresponding nodes

The comparison of two trees involves examining the properties of corresponding nodes. We de�ne

corresponding nodes in terms of the location of two nodes in their respective trees. Location is

expressed in terms of a node's relative position to its siblings and ancestors.

De�nition 4.4. Let the pair
number

siblings
de�ne a node's relative position with respect to its siblings,

where number is the position of the node in the ordered list of siblings, and siblings is the total

number of siblings.

Two nodes in two di�erent sequences are corresponding if their relative positions are identical.

If the sequences contain di�erent numbers of nodes, then the relative position of two nodes cannot

be the same. However, this is not the case if the parent node NP to one of these sequences has

the property childSubSeq(NP) = true. Assume NP is a parent to n nodes but has the possibility

of being a parent to additional nodes (childSubSeq(NP) = true), and NQ is a parent to m nodes

(m > n). The relative position of each child node of NP is de�ned in terms of the number of child

nodes of NQ. Relative position is expressed by the pair
k + number

∗
, given a choice of the value

of k in the range 0 ≤ k ≤ m− n.

De�nition 4.5. Location of a node N is an ordered tuple that contains the relative position of

every node from the root of the tree to the node N (in order of root to N). The number of pairs

de�ning a location for node N is equal to 1 + depth(N). Nodes with identical ordered sequences

of relative position tuples are said to be corresponding.

Location is demonstrated in Figure 4.16. The node E in the �rst tree has the location〈
1
1

;
2
3

;
1
1

〉
, which is identical to the node J in the second tree, indicating that these are

corresponding nodes. The node E in the �rst tree does not correspond to either leaf node in the

third tree, because the location tuples are di�erent.

Location accommodates instances where only a sub-sequence of children are explicitly de�ned

for that node (where childSubSeq(N) = true). For example, in Figure 4.17 the node E corresponds

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 64

A

B C D

E

F

G H I

J

F

G H I

J K

1
1

1
3

2
3

3
3

1
1

1
1

1
3

2
3

3
3

1
1

1
1

1
3

2
3

3
3

1
2

2
2

2
3

1
1

Location(E) =
1
1

2
3

1
1

Location(J) =
1
1

2
3

1
2

Location(J) =

Location(E)=Location(J)

corresponding nodes

1
1

Figure 4.16: Example use of location to determine corresponding nodes.

A

B C D

E

F

G H I

J K

1
1

1
3

2
3

3
3

1
*

1
1

1
3

2
3

3
3

1
4

2
4

1
1

2
3

k + 1
 *

Location(E) =

ch

F

2
* L M

3
4

4
4

Set 0 <= k <= 4-2 :

if k = 0: Location(E) = Location(J); Location(F) = Location(K)

if k = 1: Location(E) = Location(K); Location(F) = Location(L)

if k = 2: Location(E) = Location(L); Location(F) = Location(M)

Figure 4.17: Interpretation of location when only a sub-sequence of child nodes are de�ned.

to node J if k = 0, but correspond to node K if k = 1. However, node E can never correspond to

node M , because the upper limit of k is 2. In cases such as this, the term corresponding applies

for any value of k in its de�ned range.

This de�nition allows nodes from two di�erent trees to be referred to as corresponding. We

also use the concept of location to determine whether two trees contain corresponding answer and

preserved nodes.

4.4.1.3 Rules and unmarked trees

We de�ne two types of trees: those that are constructed from examples provided by a human,

and those that are constructed from text for which an annotation must be created (unseen text).

These are de�ned as rules and unmarked trees respectively:

De�nition 4.6. A rule is a tree representing a positive or negative annotation example provided

by a human. A rule has the following properties:

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 65

• If a node N has the property type(N) = ω (node represents a wild-card type), then the node

has zero children.

• Answer nodes are always preserved, that is any node N with the property answer(N) = true

also has the property preserved(N) = true.

Rules have the potential to contain answer nodes and preserved nodes, depending on the anno-

tations in the input example. Rules also contain wild-cards and childSubSeq markers (if the rules

have been generalized).

Unmarked trees represent text for which an annotation must be created, and therefore contain

no answer or preserved nodes. Unmarked trees are never generalized and never contain wild-cards

or childSubSeq markers:

De�nition 4.7. An unmarked tree represents a unit of input that requires annotation. For every

node N in an unmarked tree, the following properties hold:

• type(N) 6= ω: No wild-cards are permitted in the tree.

• preserved(N) 6= true: No preserved nodes are permitted in the tree.

• answer(N) 6= true: The tree contains no answer nodes.

• childSubSeq(N) 6= true: Children cannot be a sub-sequence of the total set.

The use of the same tree structure for representing rules and unmarked trees has a number

of advantages: the same method for constructing a tree can be employed regardless of whether a

manually annotated example or an unseen unit of text is provided; corresponding nodes in rules

and unmarked trees can be compared to determine whether the trees match; if the trees match then

the node in the unmarked tree that corresponds to the answer node in the rule can be identi�ed,

and the corresponding text annotated as a result.

4.4.2 Rule-set creation

A rule-set is an ordered sequence of rules derived from an extract of annotated text. We denote

an ordered sequence as follows:

S−→ = 〈s1, ..., sn〉

The concept of a rule-set is an example of an ordered sequence:

De�nition 4.8. A rule-set R−→ is an ordered sequence of rules Ri, such that:

R−→ = 〈R1, ..., Rn〉

Algorithm 4.1 creates a single rule for every (positive or negative) example encountered in the

input extract, the result of which is referred to as the base rule-set.

4.4.3 Rule generalization

This section describes an algorithm for creating a generalized rule from two input rules. We de�ne

a valid generalized rule in terms of the following criterion:

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 66

Algorithm 4.1 Rule-set creation.

create(in: extract E containing a number of examples;

out: rule-set R−→ = 〈R1, ..., Rn〉)
begin

while E has more examples do

e←next example in E
construct rule R from example e
append R to R−→

end

Criterion 4.9. A valid generalized rule has the following properties:

1. All preserved nodes in the two input rules exist at the same location in the generalized rule.

2. The generalized rule matches both input rules.

3. The generalized rule indicates answers in the same location as the answers in both input

rules.

A valid generalized rule is only created if both input rules contain preserved and answer nodes

in identical locations. If the two input rules fail to meet these pre-conditions then generalization

fails for this pair of rules.

We present an algorithm that generalizes two rules by traversing the two trees node by node

in a depth-�rst manner, comparing each pair of corresponding nodes. If the concept represented

by both nodes is the same, then a duplicate node is created and inserted into a new generalized

rule. If the nodes do not represent the same concept, then a wild-card is inserted instead and no

further descendants of the nodes are compared. The generalization process fails if the insertion of

a wild-card prevents preserved nodes in the input rules from being duplicated in the generalized

rule.

The traversal through the two trees is accomplished using a recursive function called merge

that compares pairs of nodes, and creates a new generalized tree:

De�nition 4.10. De�ne the function merge(N1, N2) 7→ {N0
merge, ..., N

n
merge}|FAIL to be a func-

tion that takes as input two trees with roots N1 and N2 and produces either a set containing

merged trees N i
merge or FAIL if N1 and N2 cannot be merged.

The merge function operates in two stages. The �rst stage is concerned with comparing the

two input nodes and creating a duplicate or wild-carded node for the generalized rule. The second

stage is concerned with invoking a recursive call to the merge function for merging the children of

the two input nodes.

4.4.3.1 Node comparison

Merging is initially considered between a pair of nodes, where two nodes are used as input to a

process that generates a single, generalized node representing the two input nodes:

De�nition 4.11. De�ne the function combineNodes(N1, N2) 7→ Ncombine|FAIL to be a function

that takes two nodes N1 and N2 as input, and produces either a new node Ncombine, or FAIL if

the nodes cannot be merged. FAIL results if N1 and N2 have the following properties:

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 67

• isPreserved(N1) 6= isPreserved(N2)

• isAnswer(N1) 6= isAnswer(N2)

Otherwise, combineNodes(N1, N2) results in a new nodeNcombine that has the following properties:

• Type:

� if type(N1) = ω or type(N2) = ω, then type(Ncombine)← ω

� if type(N1) 6= type(N2), then type(Ncombine)← ω

� if type(N1) = type(N2), then type(Ncombine)← type(N1) [= type(N2)]

• children(Ncombine)← 〈〉

• isPreserved(Ncombine)← isPreserved(N1) [= isPreserved(N2)]

• isAnswer(Ncombine)← isAnswer(N1) [= isAnswer(N2)]

• childSubSeq(Ncombine)← false

Assume that nodes N1 and N2 are to be merged. The combineNodes function (De�nition 4.11)

has the ability to create a wild-card, which means that the sub-trees of N1 and N2 are irrelevant to

the generalized rule. This is incorrect if these sub-trees contain preserved nodes, which means that

wild-cards should not be created from nodes that are ancestors to preserved nodes. This condition

is enforced using the following function:

checkPreserved(Ncombine, N1, N2) =



Ncombine if type(Ncombine) 6= ω

Ncombine if type(Ncombine) = ω and number of

preserved descendants of N1 and N2 = 0

FAIL if Ncombine = FAIL or type(Ncombine) = ω and

number of preserved descendants (N1 or N2) > 0

Both the combineNodes and checkPreserved functions are encapsulated within a single function:

mergeNodes(N1, N2) = checkPreserved(combineNodes(N1, N2), N1, N2)

The mergeNodes function returns a single node representing both input nodes (or FAIL if

the nodes cannot merge). This node does not have any allocated child nodes. These are assigned

in the next stage of the merge function.

4.4.3.2 Merge of sequences of children

Each node in a pair of input rules has zero or more child nodes. Each child node represents the root

of its own sub-tree, and the merge function is applied recursively to every pair of corresponding

child nodes. Cases exist in which a number of sub-sequences of children from one node can be

merged with a number of sub-sequences of children from another node, as illustrated in Figure

4.18.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 68

A B C

D E

Children of Node 1:

Children of Node 2:

8 possible sub-sequences that can be merged:

merge

C

E

C

D

B

E

B

D

A

E

A

D

B C

D E

A B

D E

sub-sequence tuple

Figure 4.18: Illustration of the enumeration of node sub-sequences.

N
0
ehN

1
dgN

0
cf

N
0
ehN

0
dgN

0
cf

C

F

D

G

E

H

merge

N

N

N

N

N

N

x x
...

0
cf

1
cf

2
cf

0
eh

1
eh

2
eh

Merge function results in more than
one merged node per pair

N
0
cf N

0
dg N

1
eh

N
0
cf N

0
dg N

2
eh

N
2
cf N

1
dg N

1
eh

N
2
cf N

1
dg N

2
eh

Merged sub-sequences:

Sub-sequence to merge:

N

N

0
dg

1
dg

Enumerates every combination
of merge candidates

Figure 4.19: Illustration of merge between sequences of nodes.

We de�ne a function enumerate(C−→, D−→) 7→ {E1−→, ..., En−→} that takes as input two sequences

of nodes C−→ and D−→, and produces all possible sub-sequences of corresponding nodes. Each sub-

sequence Ei−→ is a list of tuples, where each tuple de�nes a pair of nodes to be merged. Ifm = size(C−→)
and n = size(D−→), then the total number of possible sub-sequences generated by enumerate is:

max(n,m)∑
k=0

(n− k)(m− k) (4.1)

The merge function is invoked recursively for each pair of nodes in each sub-sequence. If a pair

does not produce a valid generalized node, then the entire sub-sequence is discarded.

Themerge function returns a set of merge candidates for a single pair of input nodes (De�nition

4.10), as is illustrated in Figure 4.19. Every combination of merge candidates from each pair

in a sequence is enumerated using the × operator as illustrated in the �gure. This process is

encapsulated in the mergeSub(E−→) 7→ {S1−→, ..., Sn−→} function that takes as input a sequence of tuples

E−→ = 〈〈C1, D1〉 , ..., 〈Ck, Dk〉〉, where each tuple represents a pair of nodes to be merged. The

output of this function is a set containing every possible combination of merged sequences:

mergeSub(E−→) = merge(C1, D1)× ...×merge(Ck, Dk)

= {N0
c1d1

, ..., Nx
c1d1
} × ...× {N0

ckdk
, ..., Nz

ckdk
}

= {
〈
N0

c1d1
, ..., N0

ckdk

〉
, ...,

〈
Nx

c1d1
, ..., Nz

ckdk

〉
}

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 69

The mergeSub function is invoked for every enumerated sub-sequence of child nodes. We use

the mergeChildren function to merge every possible sub-sequence of corresponding child nodes.

This function takes as input two sequences of child nodes, enumerates every possible sub-sequence,

merges each sub-sequence, and �nally enumerates all possible merged sub-sequences. If {E1−→, ..., Ek−→}
is the set of enumerated sub-sequence pairs resulting from enumerate(C−→, D−→), then:

mergeChildren(C−→, D−→) = mergeSub(E1−→) ∪ ... ∪mergeSub(Ek−→)

= {M1−→, ...,Mn−→}

The mergeChildren function returns candidate merged sub-sequences of the child nodes of the

two input nodes. A valid sub-sequence contains every preserved child node of the two input nodes.

This is checked as follows:

checkChildPreserved(M−→, C−→, D−→) =



true if number of preserved nodes in C−→ and D−→ =

number of preserved nodes in M−→
false if number of preserved nodes in C−→ and D−→ 6=

number of preserved nodes in M−→

Let Nmerge be a merged node produced from nodes N1 and N2 using mergeNodes(N1, N2).
If more than one sub-sequence of child nodes is produced using mergeChildren, then Nmerge is

cloned for each valid sub-sequence, and the nodes in one sub-sequence become children of one clone

of Nmerge. The set of cloned Nmerge nodes is returned as the result of the merge function.

Algorithm 4.2 de�nes the merge function, where the mergeNodes function is used to create

new generalized nodes, and themergeChildren function is used to recursively merge sub-sequences

of child nodes. This algorithm has two base-cases: if a generalized node is a wild-card, in which

case no further recursion occurs; or if no valid merged sub-sequences of child nodes exist (either if

nodes are leaf nodes, or if no valid merge is possible). In the latter case, the new node Nmerge is

not assigned any child nodes.

The childSubSeq marker is set to true in Nmerge whenever a merged sub-sequence of child

nodes is smaller than the original set of child nodes. This indicates that the set of child nodes

assigned to Nmerge is a sub-sequence of possible child nodes. A special case exists in which no

child nodes are assigned to a clone of Nmerge. In this case, childSubSeq is only set to true if the

original nodes have children.

We prove that the �rst property of generalized rules (generalized rule contains all preserved

and answer nodes, as per Criterion 4.9 on page 66) is satis�ed using the merge function de�ned

by Algorithm 4.2:

Lemma 4.12. Let N1 and N2 be the root nodes of two trees that have preserved and answer nodes

in corresponding locations. Any generalized node Nmerge produced by Algorithm 4.2 contains all

preserved and answer nodes in N1 and N2, in the same location as in N1 and N2.

Proof. All answer nodes are preserved nodes, therefore we only need to prove that all preserved

nodes in the two input trees occur at the same location in a generalized tree. De�ne Ni to be the

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 70

Algorithm 4.2 Merge algorithm.

merge(in: node N1 with children C−→,

node N2 with children D−→;

out: set of merged nodes or FAIL)
begin

Nmerge ← mergeNodes(N1, N2) %% Nmerge has no children yet

M ← {}
if Nmerge 6= FAIL then

if type(Nmerge) = ω then %% Do not recurse if wild-card inserted

M ←M ∪ {Nmerge}
else

E ← mergeChildren(C−→, D−→) %% Recurse

for each e−→ ∈ E do

if checkChildPreserved(e−→, C−→, D−→) then
Nclone ← clone(Nmerge) %% Clone Nmerge for each sub-sequence

children(Nclone)← e−→ %% Assign children to Nclone

%% Indicate if sub-sequence is not complete set of child nodes

childSubSeq(Nmerge) ← (size(e−→) 6= size(C−→) or size(e−→) 6= size(D−→)) or

(childSubSeq(N1) or childSubSeq(N2))
M ←M ∪ {Nclone}

%% Special case: leaf nodes or no valid merges

if checkChildPreserved(〈〉 , C−→, D−→) then
%% Indicate if sub-sequence is not complete set of child nodes

childSubSeq(Nmerge)← (size(C−→) 6= 0 or size(D−→) 6= 0)
M = M ∪ {Nmerge}

if M 6= {} then

return M
else

return FAIL
end

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 71

root node of a tree of height i, and Nj to be a root node of a tree of height j. We employ an

inductive proof in four cases:

Case 1: i = j = 0 and Ni and Nj are both preserved. The mergeNodes function is guaran-

teed to return a merged node Nmerge that is also preserved as speci�ed by the de�nition of

the combineNodes function (because both Ni and Nj are preserved). FAIL can never result

from checkNodes because neither Ni nor Nj have children. If type(Nmerge) = ω in Algorithm

4.2 then Nmerge is the only possible result. Otherwise, the recursive mergeChildren function

is invoked over the children of Ni and Nj , returning an empty sequence because neither of

these nodes have children. checkChildPreserved is guaranteed to return true over the empty

sequence (because there are no children), and the result is the return of the preserved node

Nmerge. The preserved node in the generalized tree is in the same location as in the original

trees.

Case 2: i = j = 1 and Ni and Nj have preserved children in identical locations.

If type(Nmerge) = ω then checkPreserved is guaranteed to return a FAIL, preventing the

possibility of a generalized tree with fewer preserved nodes than in Ni and Nj . Three cases

are possible when merging the sequences of child nodes:

- mergeChildren returns an empty sequence: the special case is encountered, but

checkChildPreserved prevents the addition of Nmerge toM because the number of preserved

child nodes of the input nodes is greater than zero. The result is an empty set M , which

causes the algorithm to result in a FAIL.

-mergeChildren returns a set of sub-sequences, none of which pass the checkChildPreserved

condition: this has the same result as the previous point.

-mergeChildren returns a set of sub-sequences, some of which pass the checkChildPreserved

function: checkChildPreserved guarantees that the number of preserved nodes in the merged

sub-sequence is the same as the number of preserved child nodes of Ni and Nj . If a sub-

sequence is of the same size as the number of children of Ni and Nj (assuming this number

is equal), then the location of the preserved nodes is identical because the sub-sequence is

an exact copy of the child sequences of Ni and Nj . If the sub-sequence is of a reduced size

then it is still guaranteed to contain all preserved nodes because of the checkChildPreserved

function. In this case, childSubSeq(Nmerge) = true, and by the de�nition of location, a value

exists for k so that the preserved nodes in the generalized sub-sequence corresponds with the

preserved child nodes of Ni and Nj .

Case 3: i = 0 and j > 0 where Ni is preserved and Nj is root to a sub-tree containing

preserved nodes: in this case, Nj cannot be a parent to a sub-tree containing preserved nodes

(by de�nition, Ni and Nj must have preserved nodes in identical locations). Therefore, Nj

is the only preserved node in its tree. In this case, the mergeNodes function is guaranteed

to return a preserved merged node Nmerge, and because Nj cannot have preserved children

(and Ni has no children) the insertion of a wild-card never removes preserved nodes.

Case 4: i = x and j = y and Ni and Nj both have preserved descendants. If Ni and Nj is

preserved, then the mergeNodes function is guaranteed to return a preserved merged node

Nmerge, and a FAIL is guaranteed by checkNodes if a wild-card is inserted. Recursive

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 72

invocation of merge eventually results in either Case 1, 2, or 3, each of which guarantee

preserved nodes in the same location in the sub-tree, or FAIL. Every generalized sub-tree

is guaranteed to have preserved nodes in the same location as in the input trees.

We evaluate complexity of the merge algorithm in terms of the number of candidate merged

rules that are produced from a pair of input rules. The worst case occurs if every node in both

rules contains n child nodes (branching factor of n). The enumerate function produces no greater

than n × n2 child sub-sequences (as a result of expression 4.1 on page 68). Assuming there are

siblings to these parent nodes, then the upper bound on the total number of candidate merged

sub-trees is n × n2 × n2 (in the worst case, each parent node corresponds to every other parent

node, resulting in an additional factor of n2). If this occurs for every node in the tree, and if there

are p nodes in a tree, then the total number of merge candidates cannot exceed O(pn5) rules.
The upper bound of merge candidates is never reached due to the insertion of wild-cards that

prevent traversal and duplication of the entire input trees. In addition, merge candidates are

disquali�ed because of failure points in the merge algorithm. Empirical evaluation indicates that

an average branching factor of 2 occurs, where input rules contain on average 30 nodes. This

presents an upper bound of 2× 305 candidate trees, but in practice we observe an average of only

2 candidates created for each pair of rules.

4.4.4 Application of a generalized rule: matching

The matching process compares a given rule with an unmarked tree. If the pattern speci�ed by the

rule exists in the unmarked tree, then the match is successful. Similar to generalization, matching

is performed as a depth-�rst traversal of the rule tree and the unmarked tree, starting at the root.

We refer to a node from the rule as NR, while a node from the unmarked tree is referred to as

NU . As per De�nition 4.7 on page 65, an unmarked tree contains neither wild-cards, childSubSeq

markers, nor answer nodes. The match algorithm is only concerned with checking that correspond-

ing nodes are identical.

Algorithm 4.3 presents the recursive rule-matching process beginning at the root nodes of two

trees NR and NU . If the node under consideration is an answer node, then the corresponding

node NU is marked as an answer. Subsequent checks are performed to ensure that the constraint

portions of the rules are identical. If the node is a wild-card, then the corresponding node NU

can be of any type, and its sub-tree requires no further matching of NU 's children. The result is a

positive match for the current sub-tree.

The type �elds of the corresponding nodes are compared, and if these are di�erent then the

match fails. If they are the same, then the child nodes are matched recursively.

The matching of child nodes depends on the status of the childSubSeq marker. If set to true,

this marker indicates that the sequence of child nodes ofNR is not complete, and may be surrounded

on either side by nodes. In this case, a match occurs only if a sub-sequence of child nodes of NU

can be found, for which each child node results in a positive match with each corresponding child

node of NR. If no matching sub-sequence can be found, then the match fails. If childSubSeq is

set to false, the the entire set of children of NR must match the entire set of children of NU . If

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 73

Algorithm 4.3 Rule matching.

match (in: node NU with children CU−→,

node NR with children CR−→;

out: a Boolean value match indicating a successful match)

begin

if isAnswer(NR) then

isAnswer(NU)← true
if type(NR) = ω then

return true
else

if type(NU) = type(NR) then

if CU−→ = 〈〉 and CR−→ = 〈〉 then

return true
else

if childSubSeq(NR) = true then

if size(CR−→) = 0 then

return true
else

if (a sub-sequence in CU−→ exists that contains the same

number of nodes as in CR−→, and where every node in the

sub-sequence returns positive match with every

corresponding node in CR−→) then

return true
else

return false
else

if (every node in CU−→ returns a positive match with every

corresponding node in CR−→) then

return true
else

return false
else

return false
end

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 74

this is not the case (for example, if NU has a di�erent number of child nodes to NR), then the

match fails. Regardless of the status of childSubSeq, a recursive call to match is made for each

corresponding pair of nodes.

The second property of a generalized rule is that it must match the two rules responsible for

its creation (by Criterion 4.9 on page 66). This property is ensured by the following lemma:

Lemma 4.13. Let R1 be an example rule with root N1, and R2 be an example rule with root N2.

Let R1 contain preserved nodes and answer nodes in the same locations as in R2, and let Nmerge

be the root of a merged rule derived by applying merge(N1, N2) from Algorithm 4.2. Then:

∀Nmerge ∈ merge(N1, N2) : match(Nmerge, N1) = true and match(Nmerge, N2) = true

Proof. To prove that any merge resulting from merge(N1, N2) will match with N1 and N2, all

failure points in the match algorithm (Algorithm 4.3) must be shown not to be reachable when

matching Nmerge = NR (the rule) with N1 = NU or N2 = NU (the unmarked tree). Algorithm 4.3

can result in false in 3 cases:

Case 1: if type(NU) 6= type(NR): By this stage in Algorithm 4.3, it is asserted that type(NR)
is not a wild-card. Algorithm 4.2 employs the function mergeNodes that returns a node

with type equal to either a wild-card ω if type(N1) 6= type(N2) or the type of N1(and N2)

if type(N1) = type(N2). As such, it is impossible for NR to have been created containing a

node in which type(NU) 6= type(NR), which means this case will never occur if NU = N1 or

NU = N2. This case is therefore guaranteed to never be the reason for a match failure.

Case 2: if type(NU) = type(NR) and childSubSeq(NR) = true and no matching sub-sequence

exists: A match failure occurs only if no sub-sequence of child nodes from NU can be found

that match the sequence of child nodes of NR. The existence of NR with size(CR) > 0
indicates that at least one merged sub-sequence of children was produced from the children

of N1 and N2. The match function enumerates and matches every possible sub-sequence of

child nodes of N1 and N2, guaranteeing that the sub-sequence found by merge is also found

by match, making a match failure impossible.

Case 3: if type(NU) = type(NR) and childSubSeq(NR) = false: the property

childSubSeq(NR) = false can only result from merge in two cases: if the type(NR) = ω

because mergeNodes sets this property to false by default and no subsequent changes are

possible if a wild-card is inserted; or if the number of merged child nodes is equal to the

number of child nodes of N1 and N2. The former case does not apply for this point. In

the latter case, NR is guaranteed to contain the full sequence of child nodes identical to the

children of N1 and N2, and therefore a match failure is impossible.

Of the three properties that generalized rules should exhibit, only two are guaranteed by the

merge and match functions. Lemma 4.12 guarantees that any generalized tree contains all pre-

served nodes in the same locations as those in the two input rules. Answer nodes are always

preserved nodes, as per the de�nition of a rule (De�nition 4.6), and therefore answers in a gener-

alized rule are always in the same location as in the input rules. Lemma 4.13 guarantees that a

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 75

A

B < a n s w e r >

A

C C < a n s w e r >

A

< a n s w e r >

ch

+
Locat ion of <answer> the same
as in both input rules because of
ch marker.

A

< a n s w e r >

ch
A

B < a n s w e r >

match

set as answer

A

< a n s w e r >

ch
A

B < a n s w e r >

match

set as answer
INCORRECT CORRECT

Match process enumerates all possible child sub-sequences, to which the merged rule applies in both cases:

OR

Merge two rules:

Apply merged rule
to original rules:

Figure 4.20: Example of the failure to guarantee that all identical answers are produced by a
merged rule.

merged rule generalized from two input rules will always match the two input rules. This ensures

that the generalized rule is capable of replacing both input rules.

The third property of a generalized rule (Criterion 4.9 on page 66) cannot be guaranteed, namely

that the answers produced by the application of the generalized rule are the same answers produced

by both input rules. An example is illustrated in Figure 4.20, which shows a merged rule that

generalizes two input rules. By the de�nition of location, the answer node is in the same location

as in the original rules because of the childSubSeq marker. However, when this rule is matched to

an original rule, the childSubSeq marker results in the enumeration of every sub-sequence of child

nodes. The match algorithm has the potential to match two di�erent enumeration possibilities

and indicate a di�erent answer in either case, one of which is incorrect. The match algorithm

has no method for determining which enumeration possibility is correct, allowing the potential for

incorrect annotations.

The error illustrated in Figure 4.20 is the result of the creation of a merged rule that is not

constrained enough to distinguish between the two input rules. One option for correcting this is

to prevent the use of the childSubSeq marker when a descendant is an answer. However, this

over-constrains rules making them less applicable over unseen text. We avoid this problem by

identifying and preventing only the special cases where con�icts occur, and by performing a post-

merge match between every generalized candidate and the original two rules. If a match occurs

that results in an incorrect answer, then the generalized candidate is discarded. This post-merge

check is a special case concerned with the avoidance of con�icting rules, a scenario dealt with when

generalizing rule-sets.

4.4.5 Generalization of a rule-set

We generalize a rule-set in a pair-wise fashion. We begin with en empty set of merged rules. A

single rule is removed from the base rule-set and added to this set. Thereafter one rule is removed

at a time and merged with every rule in the merged rule-set. This results in a set of generalized

merge candidates, from which only a single candidate is chosen. This candidate replaces the rule in

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 76

Algorithm 4.4 Pairwise rule-set generalization.

generalize(in: S−→ the base rule-set

out: M−→ the merged rule-set)

begin

M−→← 〈〉
O−→← 〈〉 %%Original rule-set

while size(S−→) > 0 do

R← removeF irst(S−→)
O−→← append R to O−→ %% Record original rule to prevent conflicts(
N−→, Rmerge

)
← selectMerge(R,M−→, S−→,O−→)

if N−→ = FAIL then

if (no rule exists in M−→ identical to R and

not isConflict(R,M−→, S−→,O−→)) then

M−→← append R to M−→ %% append non-merged rule to merged set

else

discard rule R %% R causes unresolvable conflict

else

M−→← N−→ %% Replace merged set with updated version

if (no rule exists in S−→ identical to Rmerge) then

append Rmerge to S−→ %% Allow future generalization of Rmerge

end

the merged rule-set that was used for the creation of the candidate. If no valid generalized merge

candidates are produced, then the rule from the base rule-set is appended to the merged rule-set.

This process continues until no further rules exist in the base rule-set. Every time a generalized

merge candidate is added to the merged rule-set, a copy is also appended to the base rule-set to

allow for future generalization of the same rule.

Algorithm 4.4 performs the pair-wise rule-set generalization process. A function called selectMerge

is used to merge the rule R from the base rule-set with every rule in the merged rule-set, returning

a tuple containing the new merged rule-set and the merged rule that was added to it. Before any

merged or unmerged rule is added to the merged rule-set, it is veri�ed to ensure that it does not

cause a con�ict with any existing rule in the merged rule-set (thus ensuring the third property of

generalized rules).

Algorithm 4.4 has a time complexity of O(n2), where n is the number of rules, because of the

merge between every rule in the base rule-set with every rule in the merged rule-set (which in

the worst case contains no merged rules). However, in our experience this scenario never occurs

because merged rules are always produced.

4.4.5.1 Detection of con�icting rules

Con�icting rules are capable of incorrectly matching examples and produce an incorrect answers.

They occur under the following circumstances:

1. Rules in the base rule-set are con�icting;

2. Generalized rules con�ict with rules in the merged rule-set;

3. Generalized rules con�ict with the rules responsible for their creation.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 77

If rules in the base rule-set are con�icting, then the most that can be done is detect when this

occurs, and raise a warning. The structure of the rules should be enhanced to contain more

detailed constraints to avoid con�icting rules, or alternatively the example data should be checked

for inconsistencies.

The second circumstance is avoided by matching every newly generalized rule with every rule

in the merged rule-set, to ensure that no match occurs that results in an incorrect answer.

The third circumstance is illustrated in Section 4.4.4, where a generalized rule con�icts with

both input rules. This is avoided by matching the generalized rule with both input rules, and

discarding the generalized rule if con�icting answers are produced. However, this is a special case

of a larger problem. A newly generalized rule might not con�ict with a rule in the merged rule-set,

or with the two input rules, but it might con�ict with one of the rules in the original base rule-set.

To avoid this, every generalized rule is matched with every rule in the base rule-set (which includes

the two input rules), and is discarded if any con�icting answers are produced.

We de�ne the function matchP (R1, R2) 7→ (Boolean,Boolean) that accepts two rules and

returns a tuple of two Boolean values (match, same). The match variable is assigned the value of

true if the two rules successfully match. The same variable is assigned the value of true if both

the following conditions hold:

• R1 identi�es the correct answer nodes in the R2 tree; and

• R2 identi�es the correct answer nodes in the R1tree.

The matchP function di�ers from the match function in that both input trees can be rules, and so

both contain wild-cards, childSubSeq markers, preserved nodes, and answer nodes. Answer nodes

are considered as wild-cards (as described in Section 4.3.5).

We de�ne con�icting rules to be rules for which the matchP algorithm produces the tuple

(match = true, same = false). We use the function conflictExists(R,R−→) 7→ Boolean to detect

whether a rule R is con�icting with respect to a rule-set R−→ (if any rule M exists in R−→ such that

matchP (R,M) = (true, false)).
Every time a new rule is added to the merged rule-set, all circumstances that result in a con�ict

are checked. This means checking the merged rule-set M−→, the base rule-set S−→, and the original

rule-set O−→ for con�icts. All these checks are encapsulated in the isConflict(R,M−→, S−→,O−→) function
that returns true if the following condition holds:

conflictExists(R,M−→) = true or conflictExists(R, S−→) = true or conflictExists(R,O−→) = true

The isConflict function is used in Algorithm 4.4 in cases where no valid merge candidates are

produced. The rule R is appended to the merged rule-set only if no con�ict is detected.

4.4.5.2 Selection of a generalized rule

Algorithm 4.4 chooses a single rule from S−→ that is merged with every rule in M−→ using the

selectMerge function, which is de�ned in Algorithm 4.5. A merge results in a set of merge

candidates, each of which is checked to determine whether it is a con�icting rule. Once all valid

merge candidates are determined, a single candidate is chosen. We previously explored evaluating

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 78

Algorithm 4.5 Select merged rule-set.

selectMerge(in: rule RC to be merged with any rule in M−→,

merged rule-set M−→,

rule-set S−→ containing rules still to be merged,

rule-set O−→ containing original rules;

out: tuple
(
N−→, Rmerge

)
| FAIL)

begin

W ← {}
for each R in M−→ do

if R is not identical to RC then

V ← merge(R,RC)
if size(V) > 0 then

for each Rm in V do

N−→←M−→/R %% Remove R from M−→
if not isConflict(Rm,M−→, S−→,O−→) then

append Rm to N−→
W ←W ∪ {

(
N−→, Rm

)
}

if W = 〈〉 then

return FAIL
else

choose one tuple from W and return it

end

each merged rule over the example set, choosing the rule that creates the most correct annota-

tions (Glass and Bangay, 2006). However, this method requires repeated rule-set application and

evaluation. Alternatively, we choose the candidate that matches most rules in the merged rule-set

without con�ict (to promote future generalization), removing the application and evaluation steps.

4.4.6 Rule-set application to unseen text

An unmarked tree T is created for each example. The rule-set R−→ is then traversed in order, and

a match is performed between each rule R from this rule-set and T . If a positive match occurs,

then the answer node created in T by the match function is used to create the annotation. This

process is described in Algorithm 4.6.

Assume that the rule-set contains n rules and the example set consists of n examples. Algorithm

4.6 has a run-time complexity of O(n2) because the last rule in each rule-set has the potential to

match every rule in the example set. We observe that this worst-case scenario is never realized.

In general, the apply algorithm is far more e�cient than the generalize algorithm because every

possible merge candidate need not be enumerated, and the match algorithm ends as soon as a

matching candidate is located. As with most machine learning algorithms, the activity of training

requires substantial e�ort (in the order of hours), but the application process requires less e�ort

or resources to execute (in the order of seconds).

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 79

Algorithm 4.6 Rule-set application.

apply(inout: extract E containing a number of examples;

in: rule-set R−→ = 〈R1, ..., Rn〉)
begin

while E has more examples do

e←next example in E
construct unmarked tree T from the example

for i← 1 to n do

if match(T,Ri) = true then

annotate e according to answer nodes in T
break from loop over i

end

4.5 Hierarchical rules for semantic annotations

This section describes the construction of rules for di�erent categories of semantic annotation. We

choose categories that we believe are useful for creating animated 3D virtual environments, and

which also demonstrate the capabilities of hierarchical rule-based learning:

1. Quote: identi�es the avatar responsible for voicing instances of direct speech. A quote

annotation is de�ned in terms of the following quali�ers:

(a) Quote (trigger): the actual quote consisting of a sequence of tokens.

(b) Speech-verb (text-reference): a token in the text that describes the act of speaking. A

quote need not have a speech-verb.

(c) Actor (text-reference): a token in the text that refers to the avatar performing the act of

speaking, and is either a direct reference (for example, �Julian�, �Anne�) or an anaphoric

reference (�he�, �she�). A quote need not have an actor.

(d) Speaker (semantic-concept): We assume that a list of avatars occurring in the book

exists (using a method such as described in Section on page 41 in Chapter on page 26).

This �eld contains the identi�er of the avatar responsible for the speech. Every quote

annotation must identify a speaker.

2. Setting: identi�es tokens that indicate physical location, for example �hill�, �valley�, �bed-

room�, or �town�. This category is de�ned in terms of the following quali�er:

(a) Setting (trigger): a token that describes the physical location of the current scene.

3. Object: identi�es tangible entities, for example furniture, �ora, and fauna. This category

is de�ned in terms of the following quali�er:

(a) Object (trigger): a token that describes a tangible entity in the scene.

4. Transition: identi�es behaviour of an entity in terms of entry or exit from the scene, and

is de�ned in terms of the following quali�ers:

(a) Transition (trigger): a token that indicates an entry or exit.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 80

They had it on the top of a hill, in a sloping �eld that looked down into a sunny <setting>valley</setting>.

<avatar>Anne</avatar> didn't very much like a big brown <object>cow</object> who <transi-

tion type=�INSIDE� subject=�cow�>came</transition> up<relation type=�NEAR� subject=�cow�

object=�her�>close<relation> and stared at her, but it <transition type=�OUTSIDE� sub-

ject=�it�>went</transition> away when <avatar>Daddy</avatar> told it to.

Figure 4.21: Example annotated �ction text, from the Famous Five 1: Five on a Treasure Island
by Enid Blyton (1942).

(b) Subject (text-reference): a token referring to the entity performing the transition. This

token is either a direct reference or an anaphoric reference. Each transition is required

to have an associated subject to be valid.

(c) Type (semantic-concept): describes the type of transition occurring. We de�ne two

alternatives for transition annotations, namely inside and outside. The former indicates

that the entity is moving into the scene, while the latter indicates that the entity is

leaving the scene. Only one of these two is chosen for each transition annotation.

5. Relation: identi�es behaviour in terms of spatial relationships between two entities in the

scene, and is de�ned in terms of the following quali�ers:

(a) Relation (trigger): a token that indicates a spatial relation (for example �on�, �under�,

or �behind�).

(b) Subject (text-reference): a token referring to the entity to which the relation applies.

This token is either a direct reference or an anaphoric reference. Each relation is required

to have an associated subject to be valid.

(c) Object (text-reference): a token referring to the entity that serves as a reference point

for the relation. This token is either a direct reference or an anaphoric reference. Each

relation is required to have an associated object to be valid.

(d) Type (semantic-concept): describes the type of spatial relation being described. We de-

�ne the following semantic relations: near, inFrontOf , behind, toLeftOf , toRightOf ,

onTopOf , and below. Only one of these is chosen for each relation annotation.

An example of �ction text annotated using these categories is presented in Figure 4.21. The follow-

ing section describes the levels of abstraction we include in rules for every category of annotation.

4.5.1 Rule structure for di�erent annotation categories

We design rules so that they contain as many levels of abstraction as possible to support generaliza-

tion. The general principle we adopt for rule structure is as follows: leaf nodes in the trees represent

individual tokens from the input text. Multiple levels of abstraction are provided between the leaf

nodes and the root node. For example, tokens are abstracted using parts-of-speech (resulting in

a parent node for each token node). These nodes are grouped into phrases and sentences, all of

which form descendants of the root node.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 81

context-sentence

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

<speech-verb> Meg

other phrase

punctuation

punctuation

.

Rule

context-sentencecontext-sentence

Root

Sentence

Sentence-structure

Phrase

Parse function

Part-of-speech

Token

......

<quote speech-verb="said" >"Not so loud!"</quote> said Meg.

(a) Speech-Verb

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

said <ac to r>

other phrase

punctuation

punctuation

.

Rule Root

Context

Sentence-structure

Phrase

Parse function

Part-of-speech

Token

context-sentence context-sentencecontext-sentence

... ...

<quote speech-verb="said" actor="Meg" >"Not so loud!"</quote> said Meg.

(b) Actor

(Preserved nodes are highlighted in gray; answer nodes are indicated with dashed borders)

Figure 4.22: Example rules for extracting speech-verbs and actors.

We always mark the answer at a leaf node in a rule because answers are generally tokens.

Additional preserved nodes are included when there is a relation between annotation tasks. For

example, rules that locate the actor of a quote mark nodes that indicate the speech-verb as pre-

served, because we believe that the speech-verb is fundamental in identifying the actor.

Rule-structures can also contain non-textual data to cater for the semantic concepts. We devise

the method of including a sub-tree below the root node that contains a node for every available

semantic concept. Each of these is preserved, but only one is marked as the answer. This ensures

that no semantic concepts are removed during generalization.

The advantage of hierarchical rule-based learning is that rule-structures can be customized for

each category of annotation, without modifying the core induction processes. The structures we

use are described in the following sections.

4.5.1.1 Quotes

Quotes are identi�ed in �ction text with a high level of accuracy (described in Chapter 3). As such,

we consider only the tasks of locating the speaker for each quote. Glass and Bangay (2007c) show

in previous research that this task can be achieved by �rst locating the speech-verb of a quote.

A link is then identi�ed between this token and another in the text that identi�es the actor of

the verb. This token is then used to select a speaker using a set of hand-coded rules. The rule

induction process removes the need for the intermediate steps of locating speech-verbs and actors.

However, we include these annotation quali�ers as toy examples for demonstrating the abilities of

hierarchical rule-based learning.

A rule for identifying the speech-verb of a quote is constructed for each quote trigger. Tokens

from one sentence prior to the quote, the adjoining sentence of the quote (if there is one), and

from one sentence after the quote form leaf nodes of the rule. The node containing the speech-verb

is marked as the answer. Every token is abstracted using parts-of-speech and syntactic function.

Tokens are then grouped into phrases, and then into sentences. A rule in the speech-verb category

is illustrated in Figure 4.22(a).

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 82

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

said Meg

other phrase

punctuation

punctuation

.

Rule Root

Context-size

Sentence-structure

Phrase

Parse function

Part-of-speech

Token

context-sentence context-sentencecontext-sentencecontext-avatars

<answer> 2 3 4 Label (answer)

(a) Speaker

Meg

Jammes

Sorelli

Giry

Buquet

Ma Jammes

1

2

3

4

5

6

Context:

(b) Context-model

(Preserved nodes are highlighted in gray; Answer nodes are indicated with dashed borders)

Figure 4.23: Example speaker rule and avatar context model.

A rule for the actor of a quote is identical in structure, as illustrated in Figure 4.22(b), with

one addition: the token indicating the speech-verb is marked as preserved (to maintain the link

between the actor and the quote).

The formulation of the speaker rule demonstrates the ability to include non-text data in a rule.

We make use of a custom built context-model to provide a list of avatars that occur in a current

scene. An avatar identi�er is placed at the front of this list every time an explicit reference is made

to an avatar. The speaker quali�er identi�es which avatar to choose from the list for a speci�c

quote. This makes possible the identi�cation of speakers involved in two-way dialogue where the

speakers are not indicated explicitly in the text.

A rule for identifying the speaker is constructed in the same manner as rules for speech-verbs

and actors (but actor nodes are marked as preserved). These rules include an additional sub-tree

containing nodes that serve as an index to the context model. An example rule and context model

is illustrated in Figure 4.23. Each index node is marked as preserved to prevent its removal, and

the node indicating the correct index is marked as the answer.

The context model potentially introduces error to the rule-creation process. Assume that a rule

is created for a quote that has avatarM as a speaker, but the context-model for this quote does not

contain the identi�er for M . A possible reason for this is an indirect reference to M that cannot

be resolved correctly by the context model. However, a human resolved this reference during the

creation of the manual annotation. In this case, no answer node can be highlighted during the

creation of the rule because no M exists in the context model. Error introduced in this manner

reduces the lower bound of correct annotations created by the base rule-set and subsequently

generalized rule-sets (by the Consistency Assumption on page 62).

4.5.1.2 Settings and Objects

Setting and Object annotations are similar in that they only require the identi�cation of a single

token as a trigger. We divide an annotated extract into tokens, and create a rule for each token.

Explicitly annotated tokens result in positive rules, and the rest result in negative rules.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 83

context

<se t t i ng> at Polseath

Rule

context-sentence

Root

Context

Sentence

Word

Token

Part-of-speech

WordNet Level 1

.did so love the The

context-
word

context-
word

context-
word

context-
word

context-
word

context-
word

context-
word

context-
word

verb_d adverb verb determiner noun preposition proper_n punct determiner

whole

artifact

context-
word

context-sentence

WordNet Level 2

(Preserved nodes are highlighted in gray; Answer nodes are indicated with dashed borders)

Figure 4.24: Example Setting rule derived from an example from the Famous Five 1: Five on a
Treasure Island by Enid Blyton (1942).

An example rule for identifying Settings is illustrated in Figure 4.24. We believe that tokens

before and after a positive example are important in discriminating whether a token belongs in

a category. Empirical tests indicate that a window consisting of four tokens before and after

the trigger is su�cient to ensure a lower bound of 100% correct matches as per the Consistency

Assumption 4.2 on page 62.

We abstract the trigger token using hypernyms extracted from WordNet. All tokens are ab-

stracted using parts-of-speech, and are grouped into sentences. Preliminary tests indicate that rule

generalization removes surrounding tokens, reducing the discrimination ability of each rule in the

set. We prevent this by inserting a preserved abstracted node (�context-word�) as an ancestor to

each token.

We use the same structure for rules created from Object annotations.

4.5.1.3 Transitions and Relations

Both Transition and Relation annotations identify triggers in their respective categories, a task

that is identical to identi�cation of Setting and Object triggers. We use the same rule-structure

for locating triggers in these categories.

A similar rule structure for Setting triggers are used to identify the subject of a Transition or

Relation annotation. The di�erence is that the trigger of the annotation is marked as preserved,

indicating that there is a relationship between the subject token and the trigger of the annotation.

Rules for the object of a Relation annotation have the same structure as those used to identify the

subject.

Rules for identifying the type of a Relation are structured in the manner illustrated by Figure

4.25. To the right of the rule is a similar structure to Setting rules, but the trigger of the Relation

is marked as preserved. The left child of the root node contains type nodes with the de�ned

semantic concepts for the annotation category. All are marked as preserved, but only the node

corresponding to the type of the example annotation is marked as the answer. Transition rules are

similar, except they only have inside and outside as children to the type node.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 84

context

the breakfast-table

Rule

context-sentence

Root

Context

Sentence

Word

Part-of-speech

Token." said Julian , "

context-
word

context-
word

context-
word

context-
word

context-
word

context-
word

context-
word

context-
word

punct verb_d proper_n punct preposition det noun punct punct

at

context-
word

context-sentence

type

behind inFrontOf < t y p e > onTopOf below inside

... ...

Label (answer)

(Preserved nodes are highlighted in gray; Answer nodes are indicated with dashed borders)

Figure 4.25: Example Relation rule for annotation type (derived from an example from the Famous
Five 1: Five on a Treasure Island by Enid Blyton (1942)).

The order in which the subject, object, and type quali�ers are determined is not signi�cant. A

Transition or Relation annotation is only de�ned if these �elds have data, and so only positive

examples are provided for subject, object, or type, one for each valid trigger.

4.6 Analysis of hierarchical rule-based learning

We examine the properties of hierarchical rule-based learning to determine if it is e�ective in

automatically creating semantic annotations over �ction text. These properties are investigated in

terms of the following questions:

1. Is there a small set of patterns in English that identi�es a large portion of annotations in a

particular category?

Hierarchical rule-based learning is based on the premise that patterns exist for identifying

categories of semantic annotation. We investigate if this is the case, and whether hierarchical

rule-based learning is capable of inducing these patterns.

2. Does the type of book make a di�erence to the types of patterns learned?

Fiction books are written by di�erent authors, in di�erent genres and for di�erent audiences.

We investigate if the patterns induced from one book are applicable to di�erent books, and

whether examples from di�erent books enhance a model induced by the learning system.

3. How does the composition of the example set impact the ability of the induced rule-set in

creating correct annotations?

Some annotation categories contain both negative and positive examples. We investigate the

relationship between these di�erent types with respect to the creation of accurate rule-sets.

4. Can accurate rule-sets be induced for di�erent categories of annotation using the same rule-

structure?

One potential problem with hierarchical rule-based learning is the need for customized rule-

structures for each annotation category. We investigate if the same rule-structure can be

used to induce accurate models for di�erent categories.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 85

Book Series Author Flesch Fog Ave. Words / Sentence

Book 1 A A 95.6 4.7 9.3
Book 2 A A 96.2 5.2 10.5
Book 3 B B 87.8 6.6 11.7
Book 4 B B 88.1 6.6 12.0
Book 5 C C 92.2 6.3 13.0
Book 6 G G 83.6 7.8 13.4
Book 7 C C 90.5 6.9 14.6
Book 8 D D 82.8 8.6 16.7
Book 9 D D 80.0 9.1 17.6
Book 10 E E 77.7 9.6 18.4
Book 11 E E 76.7 10.0 19.2
Book 12 F E 76.3 10.4 20.4
Book 13 F E 64.8 13.9 28.3

Table 4.3: Breakdown of manually annotated �ction text corpus.

5. Can generalized rule-sets be accurately induced for di�erent annotation quali�ers?

Annotations are de�ned in terms of triggers, text references, and semantic concepts. We

investigate if hierarchical rule-based learning is capable of automating the creation of each

quali�er type for di�erent categories of annotation, without modifying the core algorithm.

6. Can hierarchical rule-based learning be used to automate the creation of accurate semantic

annotations?

Assuming that patterns exist for identifying annotations, we investigate if induced patterns

support automation in the following manner:

(a) Can 50% (or less) of the total positive examples be used to identify more than 50% of

the annotations in a category?

(b) How can hierarchical rule-based learning be used to reduce the e�ort required to create

the intermediate representation?

This section presents a suite of experiments and describes a corpus of data used to answer these

questions. Metrics for measuring success are de�ned, and possible sources of experimental error

are discussed.

4.6.1 Test corpus

We create a corpus of �ction that is manually annotated with the semantic categories identi�ed in

Section 4.5. Properties of the books used to construct this corpus are listed in Table 4.3, indicating

which books are from the same series and by the same author. The books are ordered according

to average sentence length and according to readability metrics, namely the Fog Index (Gunning,

1952) (where low scores describe �easy reading�), and the Flesch Index (Flesch, 1949) (where high

scores describe �easy reading�). We observe that the readability indices correlate approximately

with the average sentence length. Books by the same author, and in the same series generally

cluster together in terms of these readability scales.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 86

Tokens Quotes Settings Objects Transitions Relations

speech-verbs actors speakers

Book 1 49662 1109 1109 1229 399 425 108 68

Book 2 50011 1382 1382 1446 - - - -

Book 3 113950 1169 1169 1666 - - - -

Corpus 984036 9675 9674 13913 - - - -

Table 4.4: Summary of annotation categories over corpus.

We consider books to be of di�erent type if they have di�erent authors, and are not clustered

together in Table 4.3. In this respect, Book 1 is similar to Book 2, but is of a di�erent type to

Book 3.

All the books in Table 4.3 contain Quote annotations, but only Book 1 contains annotations

in the other categories. The number of annotated examples in each category is listed in Table 4.4,

which indicates Book 1, 2, and 3 because these are examined individually in the experiments.

4.6.2 Metrics

Experiments are conducted by providing an extract sourced from the corpus of annotated books to

the rule-base learning system. A base rule-set is constructed from a sub-set of the examples in the

extract. The base rule-set is applied to the entire extract to determine the accuracy of the least

generalized rule-set over unseen data. When the number of rules in the base rule-set equals the

total number of examples, the lower bound described in Consistency Assumption 4.2 on page 62

is established for the book. The base rule-set is then generalized using the algorithms presented in

Section 4.4.5. The generalized rule-set is applied to the extract and the resulting annotations are

compared with the original set.

The above process is repeated using base rule-sets of increasing size, until all examples are

included in the base rule-set. The success of each merged rule-set provides an indication of the

relationship between the number of example annotations required and the success of the generalized

rule-set.

Some annotation quali�ers contain both positive and negative examples (Quote: speech-verb,

actor ; Setting: trigger ; Object: trigger : Transition: trigger ; Relation: trigger). In these cases, we

measure the success with which positive annotations are created using:

• False positives: the number of positive annotations created where they should not occur.

The ideal case is a value of zero for this metric.

• False negatives: the number of positive annotations not created where they should occur.

The ideal case is a value of zero for this metric.

• Correct annotations: the sum of true positive and true negative annotations.

• Recall : the ratio of correct annotations to the total number of annotations that should exist:

recall =
number of automatic, correct, positive annotations

number of manual, positive annotations

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 87

This metric determines how well a rule-set identi�es positive annotations, but does not pro-

vide an indication of how well the rule-set avoids creating incorrect annotations. As such, it

should always be viewed in conjunction with precision.

• Precision: the ratio of correct annotations to the total number of annotations created auto-

matically:

precision =
number of automatic, correct, positive annotations

number of automatic positive annotations

This metric provides an indication of the extent to which non-correct annotations are avoided.

However, if the number of automatic positive annotations is small, then the precision ratio is

high, and so this �gure might be deceptive. As such, it should always be viewed in conjunction

with recall.

Some annotation quali�ers are concerned only with positive examples because each annotation

contains exactly one instance (Quote: speaker ; Transition: subject, type; Relation: subject, object,

type). In these cases, the number of false positives is irrelevant, and we are concerned with ensuring

that the correct data is associated with the annotation. We measure success in terms of:

• Accuracy : the ratio of correct annotations to the total number of manual annotations:

accuracy =
number of automatic, correct, annotations

number of manual annotations

4.6.3 Sources of experimental error

We acknowledge the complexity of the English language and its understanding as a source of ex-

perimental error. The manual annotations produced for the corpus of test data are not guaranteed

to consistently follow a single interpretation, and as a result cannot be evaluated as consistently

correct. The possibility exists that identical examples are annotated di�erently, resulting in con-

�icting rules. An example of such a scenario is when the context-model is used for rule-creation,

described in Section 4.5 on page 79. These cases are identi�ed by evaluating the base rule-set over

the example data, allowing a baseline to be established for annotation success (by Consistency

Assumption 4.2 on page 62).

The variety of �ction authors, genres, and target audiences is another source of experimental

error. Examples in a single book need not correlate with examples in other books, because of

di�erent writing styles. We propose a method for mitigating this source of error that involves

training a rule-set with examples sourced from a number of di�erent books.

The structure used to represent rules (de�ned in Section 4.5) is also a source of experimental

error. The de�nition of these structures is based on experience with the learning system, but are

not validated as being the optimum structures for achieving generalized rules, or representing a

speci�c category of annotation. However, we believe that only marginal improvements are possible

given tailored rule-structures for each category of annotation.

The automatically created surface annotations that are used for obtaining structural and syn-

tactic properties of text are also a source of error in these experiments (as a result of the small

portion of error in their creation, as described in Chapter 3). We believe that special purpose

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 88

rules are induced to handle these errors, mitigating the e�ects on overall accuracy, but potentially

resulting in larger generalized rule-sets.

4.6.4 Results

This section describes the individual experiments performed during the investigation of the ques-

tions posed at the beginning of this section.

4.6.4.1 Analysis of generalized rule-set induction

The experiments in this section investigate whether a small set of patterns exist that identify a

large portion of annotations in a particular category.

Can hierarchical rule-based learning induce a small set of patterns from annotated

examples?

We provide the learning system with a set of example annotations and induce generalized rule-

sets from these examples. We evaluate the accuracy with which annotations are created using

the induced patterns. These experiments are conducted for identifying the speech-verb, actor, and

speaker of a quote.

We plot the size of the induced rule-sets (and the number of correct annotations created)

against the increasing number of examples for speech-verb, actor, and speaker annotations in

Figures 4.26(a), (c), and (e) respectively. In all three �gures, the size of the generalized rule-set

is markedly smaller than the base rule-set (wherever the number of provided examples is greater

than zero). This result indicates that a small set of patterns exist for these categories, and that

these patterns are successfully induced using hierarchical rule-based learning.

The generalized rule-sets correctly annotate more examples than provided for training in all

three categories. For example, a rule-set generalized from only 100 examples correctly annotates

nearly 1000 speech-verb examples. This indicates that the induced patterns correctly annotate

additional examples in the text.

The lower bound for accuracy, determined as the number of example annotations correctly

created by the base rule-set, is also indicated in Figures 4.26(a), (c), and (e). The base rule-

sets generated for speech-verbs and actors reproduce the example annotations precisely, but the

base rule-set for speakers produces a reduced number of correct annotations. This is attributed

to weakness in the context model (described in Section 4.5). However, consistency checks on

induced rules reduce this error, demonstrated in that more correct annotations are created by the

generalized rule-set than the base-rule set for any number of examples.

This experiment demonstrates that a small set of patterns exists for identifying annotations,

that these patterns are induced using hierarchical rule-based learning, and that generalized rule-sets

correctly reproduce the example annotations and create further correct annotations.

What is the nature of the induced patterns?

Given a generalized rule-set that is capable of reproducing all the annotated examples correctly,

we examine the nature of the induced rules and their usage over the examples. The relative

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 89

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False positives

False negatives

(a) Training and application for speech-verb

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160

U
sa

ge
 F

re
qu

en
cy

Rule

Relative fequency of rule use

(b) Distribution of generalized rule usage (speech-
verb)

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200
 0

 200

 400

 600

 800

 1000

 1200

 1400

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False positives

False negatives

(c) Training and application for actor

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160

U
sa

ge
 F

re
qu

en
cy

Rule

Relative fequency of rule use

(d) Distribution of generalized rule usage (actor)

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(e) Training and application for speaker

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160 180 200

U
sa

ge
 F

re
qu

en
cy

Rule

Relative fequency of rule use

(f) Distribution of generalized rule usage (speaker)

Figure 4.26: Analysis of rule generalization for speech-verb, actor and speaker.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 90

root

context-sentence

quote

context-sentence

sentence-part

verb-phrase noun-phrase other-phrase

verb proper noun punctuat ion

<speech-verb> *

ch ch

ch

ch ch ch

*

(a) Most frequently used rule.

root

context-sentence

sentence

context-sentence

sentence-part

noun-phrase verb-phrase other-phrase

pronoun verb punctuat ion

<speech-verb> *

ch

ch

ch ch

*

ch

* **

(b) Second most frequently used rule.

root

context-sentence

sentence

context-sentence

sentence-part

verb-phrase noun-phrase other-phrase

verb proper_noun *

<speech-verb>

ch

ch

ch

Julian

ch

* **

(c) Third most frequently used rule.

Figure 4.27: Illustrations of the three most frequently used generalized rules for locating speech-
verb.

distributions of generalized rule-use for speech-verb, actor, and speaker are presented in Figures

4.26(b), (d), and (f) respectively. In the case of the speech-verb a single rule correctly annotates

17.57% of the entire example set, while the top three rules are responsible for correctly annotating

32.62% of the entire example set. This shows that patterns summarize large portions of the example

annotations.

The top three rules from the induced rule-set for speech-verb, are illustrated in Figure 4.27. The

most frequently used rule indicates a quote followed by the speech-verb, which must be followed

by a proper noun. The second most common rule is similar, but indicates that a pronoun should

precede the speech-verb. The third most common rule is similar to the �rst, but is more speci�c, in

that it indicates that �Julian� should be the token following the speech-verb. While applicable to

the book over which the rule was induced, it is not applicable to other books that do not contain

a character named �Julian�. This suggests a question regarding the applicability of an induced

rule-set over di�erent books, as examined in Section 4.6.4.2.

Does the order in which examples are presented in�uence the accuracy of the gener-

alized rule-set?

We investigate whether the order in which examples are provided a�ects the accuracy of the induced

generalized rule-set by providing the learning system with a reversed set of example annotations.

The number of correct speaker annotations using both a non-reversed and a reversed set of examples

is plotted in Figure 4.28. There is a di�erence in the size and accuracy of the generalized rule-sets,

but these di�erences are minimal.

4.6.4.2 The e�ect of the book type on pattern induction

This experiment investigates whether the type of book in�uences the induced rule-sets, and the

applicability of rule-sets over di�erent books.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 91

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Generalized rule-set size - forward
Generalized rule-set size - reverse

Correct (generalized rule-set) - forward
Correct (generalized rule-set) - reverse

Figure 4.28: Generalized rule-sets resulting from di�erently ordered example sets.

Can hierarchical rule-based learning create accurate rule-sets from di�erent types of

books?

We answer this question by inducing rule-sets from books of similar and di�erent types for iden-

tifying the speaker. Book 1 and Book 2 are of similar type, while Book 3 is of a di�erent type to

Books 1 and 2. We evaluate the induced rule-sets over the same books.

The success of applying a base rule-set and generalized rule-set to the same book is plotted

against the size of the example set in Figures 4.29(a), (e), and (i). Correct annotations are created

for all three books, indicating that for these cases hierarchical rule-based learning is e�ective over

di�erent types of books.

Can the rule-set learned over one book be used to create accurate annotations in

di�erent books?

To answer this question, we induce rule-sets using example speaker annotations from one book, and

apply these rule-sets over other books. Book 1, Book 2, and Book 3 are used for this experiment,

comparing the application of rule-sets to similar books (Book 1 and Book 2) and di�erent books

(Book 1 and Book 3).

We are primarily interested in the number of correct annotations created by the generalized

rule-set. The success (the curve labeled as �Correct (generalized rule-set)�) of rule-sets from Book 1

applied to Book 2 is plotted in Figure 4.29(b), while Book 2 applied to Book 1 is plotted in Figure

4.29(d). In both cases, correct annotations are created in the other book, where the use of only 100

rules from one book results in a large number of correct annotations in the other book. Rule-sets

created from Book 1 or 2 applied to Book 3 (Figure 4.29(c) and (f)), and Book 3 applied to Book

1 or 2 (Figure 4.29(g) and (h)), result in markedly fewer correct annotations. This demonstrates

that a rule-set from one book creates accurate annotations in a di�erent book of the same type.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 92

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(a) Book 1 applied to Book 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(b) Book 1 applied to Book 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(c) Book 1 applied to Book 3

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(d) Book 2 applied to Book 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(e) Book 2 applied to Book 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(f) Book 2 applied to Book 3

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(g) Book 3 applied to Book 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(h) Book 3 applied to Book 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

(i) Book 3 applied to Book 3

Figure 4.29: Application of rule-sets learned from a single book to the same or di�erent books
(speaker).

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 93

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

100%/Upper bound: Book 1

100%/Upper bound: Book 2

100%/Upper bound: Book 3

Generalized rule-set size
Correct (Book 1)

Correct (Book 2)
Correct (Book 3)

Figure 4.30: Application of a rule-set learned from di�erent books applied to books of di�erent
type.

The same does not hold for books of a di�erent type. We believe this is due to di�erent writing

styles used by di�erent authors.

Does the accuracy of a rule-set improve over di�erent books if examples from di�erent

books are used for training?

We provide the learning system with example speaker annotations from the three books, using

all the examples from Book 1 �rst, then adding examples from Book 2 and Book 3 in succession.

We chart the number of correct annotations created by each generalized rule-set over each book

in Figure 4.30. As the full set of examples are used from Book 1 and Book 2, so the number of

correct examples identi�ed in these books reaches a maximum (which explains the leveling out

of the curves for these books). There is a marked increase in the number of generalized rules

as examples are added from Book 3. This further substantiates the di�erences in type between

this book and Books 1 and 2. This demonstrates that di�erent books result in rules that are not

necessarily applicable to one another.

Once examples from all three books are used, annotations are created correctly in all three

books. This demonstrates that rule-sets improve in accuracy over di�erent books if examples are

used from di�erent books. This is signi�cant because it shows that a single model can be created

for annotating di�erent books given a variety of examples.

The number of generalized rules resulting from examples from all three books (1176) is smaller

than the total number of generalized rules created individually for each book (194 (Book 1) +
251 (Book 2) + 747 (Book 3) = 1192). This indicates that some patterns exist that are common

between the three books, but which are not induced from each individual book.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 94

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed

N
um

be
r

of
 r

ul
es

Number of examples in training set

Examples from Book 1 Examples from Book 2 Examples from Book 3

Base rule-set size
Generalized rule-set size

Correct (base rule-set)

Correct (generalized rule-set)
False negatives

Figure 4.31: Application of a rule-set learned from di�erent books applied to a large corpus of
books of di�erent type.

How applicable is an induced rule-set to a large corpus of �ction?

We investigate whether generalized rules apply to a large corpus of �ction containing 13 books of

di�erent type. We provide the learning system with example speaker annotations from Books 1,

2, and 3, using all the examples from Book 1 �rst, then adding examples from Book 2 and Book

3 in succession. We apply the generalized set to the corpus of 13 books.

The number of correct annotations is plotted against the number of training examples in Figure

4.31. After the addition of only 100 examples from Book 1, the number of correct annotations

created exceeds 4000 (out of 13 913) over the larger corpus. This indicates that rules induced from

just one book cater for annotations in many di�ering types of books.

We believe that some induced patterns represent fundamental rules in the English language,

which explains their applicability over the large corpus of �ction.

4.6.4.3 Composition of the example set

There are only 399 annotated Settings and 425 annotated Objects in Book 1. If a rule is created

for each token in the book, the number of positive training examples accounts for less than 0.01%

of the total example set (49 662 examples). The experiments in this section investigate the e�ect

that positive and negative examples have on an induced rule-set.

Can an accurate generalized rule-set be created from only positive examples?

We provide the learning system with an example set containing only positive annotations, and

evaluate the induced rule-set over the example set containing positive and negative examples. We

use the Setting and Object annotation categories for these experiments.

The number of false positives, false negatives, precision, and recall are plotted against the

number of training examples in Figures 4.32(a) and (b) for Setting and Object annotations. As

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 95

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(a) Setting

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(b) Object

Figure 4.32: Training and application for Setting and Object annotations, using only positive
examples.

the number of positive examples increases, the number of false negatives decreases. The number

of false positives increases sharply using less than 50 positive annotations, indicating that negative

examples are being erroneously annotated in these categories. This demonstrates that positive

examples alone are not su�cient to create consistent annotations, highlighting the need for negative

examples.

What quantity of negative examples is required to reduce the number of false positives?

We provide the learning system with an example set containing all positive examples and increasing

numbers of negative examples. A continuation from the charts presented in Figures 4.32(a) and

(b) are presented in Figures 4.33(a) and (b) with increasing numbers of negative examples. The

addition of only a small number of negative examples (approximately 150) results in a sharp

decrease in false positives. It is at this point that the negative rules become su�ciently generalized

to apply to many negative examples. In total there are 49 263 negative Setting examples, and

49 237 negative Object examples. The number of false positives are reduced to less than 50

given approximately 400 negative examples for both categories. This demonstrates that far fewer

negative examples are required to prevent false positives than what is available.

What e�ect does the inclusion of both positive and negative examples have on a gen-

eralized rule-set?

The question remains as to whether positive and negative examples impact one another when used

simultaneously to create a generalized rule-set. We provide the learning system with an example

set containing positive and negative annotations, and evaluate the generalized rule-set over the

example set containing all positive and negative examples.

The number of false positives and negatives, along with precision and recall, are plotted in

Figures 4.34(a) and (b). The number of false positives and false negatives does not decrease

homogeneously with the addition of examples. For instance, between approximately 25 and 120

examples there is a marked reduction in the number of false negatives, due to the inclusion of a

general rule that e�ectively identi�es positive annotations. However, this rule does not discriminate

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 96

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 400 500 600 700 800 900 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(a) Setting

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 500 600 700 800 900 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(b) Object

Figure 4.33: Training and application for Setting and Object annotations, using �xed positive
examples and increasing negative examples.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300 350
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(a) Setting

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(b) Object

Figure 4.34: Training and application for Setting and Object annotations, using increasing positive
and negative examples.

negative examples, resulting in an increased number of false positives. This is corrected when a

negative rule is induced that counters the positive rule, explaining the sharp decrease in false

positives where approximately 120 examples are provided.

The discrete nature of the rule-based learning system is demonstrated in these experiments,

speci�cally that single rules have the ability to dramatically alter the accuracy of the generalized

rule-set. The results become more stable (smaller jumps in false positive or false negatives) as

more example rules are provided for training.

This experiment demonstrates that training with both positive and negative examples produces

erratic quantities of false positives and negatives, but less so as further examples are provided.

4.6.4.4 Rule structure for di�erent annotation categories

The charts for Setting and Object in Figures 4.34(a) and (b) exhibit similar characteristics. In

both cases a generalized rule-set smaller than the base rule-set is found that lowers the number

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 97

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(a) Transition

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 a
nn

ot
at

ed
(N

um
be

r
of

 r
ul

es
)

P
re

ci
si

on
 a

nd
 r

ec
al

l

Number of examples in training set

Base rule-set size
Generalized rule-set size

False positives

False negatives
Precision

Recall

(b) Relation

Figure 4.35: Training and application for Transition and Relation triggers using increasing positive
and negative examples.

of false positives and false negatives. This demonstrates that patterns are induced in di�erent

categories of annotation using the same rule-structure (rules for Setting and Object have identical

structures, as shown in Section 4.5). We investigate this observation further in this section.

Similar to Setting and Object annotations, Transition and Relation annotations also identify

triggers in the text, and we investigate if the same pattern structures used for Setting and Objects

can be used for identifying Transition and Relation triggers.

Can accurate patterns be induced for di�erent categories of annotation using the same

rule structure?

We provide the learning system with an example set containing positive and negative annotations

for identifying Transition and Relation triggers, and evaluate the induced rule-set over the example

set containing all positive and negative examples.

The number of false positives and negatives (along with precision and recall) are plotted in

Figures 4.35(a) and (b) for Transition and Relation triggers. A generalized rule-set is always

produced that is smaller than the base rule-set (for Subject, Object, Transition, and Relation).

The number of false positives follows a similar trend, beginning with high numbers, but reducing

sharply after enough negative rules are added.

The induced rule-sets and their ability to create annotations in four di�erent categories demon-

strate that the same rule structure can be used for di�erent categories of annotation. This means

that custom rule-structures need not be designed every time a new annotation category is de�ned.

4.6.4.5 Rule-set induction for di�erent annotation quali�ers

Sections 4.6.4.3 and 4.6.4.4 provide evidence indicating that hierarchical rule-based learning is

e�ective for identifying triggers in �ction text. We investigate whether accurate rule-sets are

induced for text-references and semantic concepts.

We use Transition and Relation annotations for these experiments because both categories

include a text-reference quali�er (subject and object) and both require a semantic-concept to be

associated with the annotation (type). Every Transition and Relation annotation must have exactly

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 98

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 c
or

re
ct

ly
 a

nn
ot

at
ed

(N
um

be
r

of
 r

ul
es

)

A
cc

ur
ac

y

Number of examples in training set

Base rule-set size
Generalized rule-set size

False negatives

Correct
Accuracy

(a) Transition

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 c
or

re
ct

ly
 a

nn
ot

at
ed

(N
um

be
r

of
 r

ul
es

)

A
cc

ur
ac

y

Number of examples in training set

Base rule-set size
Generalized rule-set size

False negatives

Correct
Accuracy

(b) Relation

Figure 4.36: Training and application for the subject of Transition and Relation annotations.

one de�ned subject, object, and type. This means that there are no negative examples for these

quali�ers.

Can patterns be induced for identifying text-references?

We provide the learning system with example Transition or Relation annotations, each of which

has a de�ned subject or object. We evaluate the accuracy of the text-references produced by the

induced rule-set.

Accuracy is plotted against the number of examples used for training in Figures 4.36(a) and (b)

for the subject of Transitions and Relations respectively (�Accuracy� and �Correct� are equivalent

in these graphs, and result in overlapping curves). In both cases a generalized rule-set is created

containing fewer rules than the base rule-set. The generalized rule-set creates a greater number of

correct annotations than examples provided, given enough examples. Transitions require greater

than 30 examples, while Relations require greater than 10 examples (indicated by the divergence

between the Correct/Accuracy curves and the Base rule-set curve).

Accuracy is plotted against the number of training examples in Figure 4.37 for the object of

Relation annotations. The generalized rule-set is smaller than the base rule-set, and given enough

training examples, creates more correct annotations than examples provided.

These experiments demonstrate that generalized patterns are induced for text-reference quali-

�ers that result in the creation of accurate annotations.

Can patterns be induced for associating semantic-concepts to annotations?

We provide the learning system with example Transition or Relation annotations, each of which

has a de�ned type. We evaluate the accuracy of the semantic concept identi�ed for each annotation

produced by the induced rule-sets.

Accuracy is plotted against the number of examples used for training in Figures 4.38(a) and

(b) for the type quali�er of Transition and Relation annotations respectively. Generalized rule-sets

are induced for the type �eld in both the Transition and Relation category, and a greater number

of correct annotations are created using the generalized rule-set than the total number of examples

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 99

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 c
or

re
ct

ly
 a

nn
ot

at
ed

(N
um

be
r

of
 r

ul
es

)

A
cc

ur
ac

y

Number of examples in training set

Base rule-set size
Generalized rule-set size

False negatives

Correct
Accuracy

Figure 4.37: Training and application for the object of Relation annotations.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 c
or

re
ct

ly
 a

nn
ot

at
ed

(N
um

be
r

of
 r

ul
es

)

A
cc

ur
ac

y

Number of examples in training set

Base rule-set size
Generalized rule-set size

False negatives

Correct
Accuracy

(a) Transition

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 e

xa
m

pl
es

 c
or

re
ct

ly
 a

nn
ot

at
ed

(N
um

be
r

of
 r

ul
es

)

A
cc

ur
ac

y

Number of examples in training set

Base rule-set size
Generalized rule-set size

False negatives

Correct
Accuracy

(b) Relation

Figure 4.38: Training and application for the type of Transition and Relation annotations using
increasing positive negative examples.

provided. For example, using only 10 examples, approximately 35 correct type annotations are

created in the Transition category.

These experiments demonstrate that patterns are induced for creating accurate semantic-

concepts. This is a signi�cant contribution in the �eld of information extraction, because it allows

semantic data to be associated with a text-based annotation without an external knowledge-base.

These results indicate that the formulation of the rule structures is �exible enough to be augmented

with non-textual data, and that the generalization process provides for the induction of patterns

even for non-text data.

Can accurate patterns be induced for annotation quali�ers in di�erent categories using

the same rule structure?

The rule structures used for subject and object patterns in the Transition and Relation categories

are identical. The successful induction of generalized rule-sets that create correct annotations in

both categories (shown in Figures 4.36(a) and (b)) demonstrates that the rule-structure need not

be modi�ed for di�erent categories of text-reference. An identical rule structure is used for inducing

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 100

Annotation Quali�er Positive
Annotations

Positive
Examples

Negative
examples

Precision Recall

Quote speech-verb 1109 500 60 97.14% 89.62%
actor 1109 500 60 97.27% 90.94%
speaker 1229 500 - - 76.92%

Setting trigger 399 195 195 70.27% 52.13%

Object trigger 425 210 210 67.06% 53.64%

Transition trigger 108 54 250 96.55% 52.83%
subject 108 54 - - 56.60%
type 108 54 - - 76.41%

Relation trigger 68 34 250 50.0%. 51.4%
subject 68 34 - - 51.4%
object 68 34 - - 57.3%
type 68 34 - - 77.9%

Table 4.5: Summary of results when training with 50% or less of the positive training examples.

patterns for type quali�ers of Transitions and Relations, demonstrating that the same applies for

semantic concepts (shown in Figures 4.38(a) and (b)).

The implication of these results is that the addition of categories of annotation containing text-

references or semantic concepts need not require the custom creation of rule-structures for these

quali�ers.

4.6.4.6 Automatic creation of semantic annotations

All previous experiments verify that hierarchical rule-based learning induces patterns from example

annotations, and substantial evidence is provided indicating that generalized rule-sets produce

greater number of correct annotations than the number of examples provided. We investigate

whether the automatic creation of annotations is truly supported in each semantic annotation

category for the �ction-to-animation task.

Can hierarchical rule-based learning be used to automatically create semantic anno-

tations?

The creation of positive examples is the most arduous task in creating manual examples for training

(because negative examples need not be annotated). We consider automation to be successful if

the provision of 50% (or less) of the total positive annotations results in the creation of more than

50% of the total number of annotations in the book.

We induce a rule-set using 50% or less of the positive annotations in each semantic annotation

category. The precision and recall for every category is listed in Table 4.5 using the induced rule-

set. A recall of greater than 50% is achieved in all categories, demonstrating that the induced

rule-sets produce additional correct annotations.

The creation of triggers is the most di�cult task, indicated by the low recall levels for this

quali�er in all categories. However, highly e�ective rule-sets are induced in some categories, for

example in identifying the speaker of a quote, and the type of a Transition or Relation. Recall

rates are highest where the number of examples available is large (demonstrated by the Quote

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 101

annotations), and we believe that higher recall levels are possible should the corpus be enlarged

with examples in the Setting, Object, Transition, and Relation categories.

These results indicate that the creation of semantic annotations is automated using hierarchical

rule-based learning. We speculate that a human annotator would not create 50% of the total

positive annotations before training the learning system. We develop a boot-strapping method

that uses the learning system to reduce the e�ort in creating annotations.

A boot-strapping method for reducing e�ort in the creation of semantic annotations

The question remains as to the practicality of hierarchical rule-based learning for automating the

creation of semantic annotations. The manual creation of su�cient example data for inducing

accurate rule-sets potentially requires signi�cant e�ort (for example, in creating 50% of the total

number of positive examples).

We propose a boot-strapping method that guides the rule-set creation process through an iter-

ative validation of automatically produced results. We believe that validating a sub-set of anno-

tations requires less manual e�ort than reading the original text and explicitly creating examples.

The boot-strapping process begins with the manual creation of a small set of positive annotations

in a particular category. These are presented as examples to the rule-based learning system along

with a small set of negative examples (that are automatically obtained from the annotated ex-

tract). A rule-set is induced and applied to the entire book, the result of which is a larger number

of annotated examples, some of which are correct, but most of which are likely to be false positives

(as demonstrated in Section 4.6.4.3). An annotator reviews the automatically created annotations

by selecting and marking some annotations as correct or incorrect. A new rule-set is created using

the validated positive and negative examples. This rule-set creates more accurate annotations than

the previous rule-set, and the process of correction is repeated until the annotator is satis�ed with

a set of annotations created by the system.

We demonstrate the validity of the boot-strapping method using the Object annotation cat-

egory. The number of true positives and false positives is recorded each time the generalized

rule-set is applied to the �ction text. The actions taken by a human annotator in creating Object

annotations are summarized in Table 4.6. The human initially creates 15 positive annotations

(corresponding to one chapter of the book). The generalized rule-set created from these examples

results in a total of 254 annotations, 41 of which are correct. The annotator reviews these, and

selects 10 erroneous annotations and 5 additional correct ones, and retrains the model. This results

in 337 annotations, of which 10 are selected as being incorrect (more could be selected depending

on the energy or time available to the annotator). The process repeats until the annotator is

satis�ed or runs out of time. The last set created contains 42 positive annotations and only 32

false positives. The annotator explicitly creates only 15 positive annotations, and validates only

40 automatically generated annotations.

We observe that automatically identi�ed annotations help the annotator re�ne his or her own

idea of which fragments of text belong in a certain category. During the experiment summarized in

Table 4.6, additional annotations are suggested by the learning system that are correct, but were

missed during the creation of the manually annotated corpus. In this respect, the results presented

in Table 4.6 unfairly penalize false positives, where these actually represent inconsistencies in the

original test data.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 102

Human e�ort Automation
Positive

annotations
selected

False positives
deselected

True positives
presented
(425 total)

False positives
presented

Human creates 15 positive annotations; trains:
15 0 41 213

Human selects 10 negative examples, and an additional 5 positive; trains:
20 10 69 268

Human selects 10 negative examples; trains:
20 20 27 15

Human selects 5 positive examples; trains:
25 20 33 15

Human selects 5 positive examples; trains:
30 20 72 159

Human selects 5 negative examples: trains:
30 25 42 32

Table 4.6: Evidence in support of a boot-strapping process using the Object annotation category.

4.6.5 Summary of �ndings

The experiments presented in Section 4.6.4 provide insight into the characteristics of the rule-based

learning system, with respect to the questions posed at the beginning of this section:

1. A small set of patterns exist in natural language that correctly identi�es a large portion of

annotations in a particular category. These patterns are induced using hierarchical rule-based

learning.

2. The type of book makes a di�erence to the number and success of patterns induced by the

learning system. Rules induced from one book are applicable to books of a similar type, but

less so for books of di�erent type. However, including examples from di�erent types of books

increases the accuracy of the induced rule-set over di�erent books.

3. Example sets containing both positive and negative examples produce the best balance be-

tween correct annotation creation, and false positive elimination. However, only a small

sub-set of negative examples is needed to remove the majority of false positives.

4. Accurate rule-sets are induced for di�erent categories of annotation using the same rule-

structure.

5. Accurate rule-sets are induced for di�erent annotation quali�ers (including text-references

and semantic-concepts) using the same rule-structure.

6. Hierarchical rule-based learning automates the creation of semantic annotations. Speci�cally:

(a) 50% of the total examples are generalized into a rule-set that identi�es more than 50%

of the annotations in that category.

(b) Hierarchical rule-based learning reduces the e�ort of creating annotations through the

use of a boot-strapping technique.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 103

4.7 Conclusion

This chapter presents hierarchical rule-based learning as a mechanism for automatically creating

annotations over �ction text. This learning system induces and generalizes patterns from example

annotations provided by a human, and applies these patterns to text to accurately identify addi-

tional annotations. Patterns are structured as trees that abstract input text on di�erent levels.

We present algorithms that automatically create these trees, generalize them, and apply them to

examples in the creation of new annotations.

Hierarchical rule-based learning supports the automatic creation of annotations in �ction text.

With particular reference to the problems listed in Section 4.1.1, we conclude the following:

1. Hierarchical rule-based learning induces patterns that re�ect individual human discretion

regarding the annotation task. Our automated mechanism can be re�ned to match a human's

annotation style, and produce similar annotations to the examples provided.

(a) Hierarchical rules express patterns for identifying annotations, using both structural

and syntactic properties of text. These provide an e�ective mechanism for expressing

patterns in the English language that identify annotations in �ction text.

(b) A model for creating annotations is represented using a set of rules. A rule-set encap-

sulates a wide range of scenarios peculiar to a particular category of annotation. This

is signi�cant in that both common and rare scenarios can be accommodated in a single

model.

(c) The tree-structure of a rule provides for the abstraction of concepts to create generalized

rules. Generalized rules provide for the application of a model to unseen text in the

creation of accurate annotations.

(d) Rules generalized using our algorithms are consistent (indicate the same answers as the

original rules, match with the two rules that result in its creation, and do not con�ict

with other rules). This means annotation ability is not lost during the generalization

process.

(e) Tree matching determines when a rule applies to a portion of text (and create a corre-

sponding annotation). This is made possible by the use of the same tree structure for

representing rules and unseen text.

(f) Generalized rule-sets never produce fewer annotations than non-generalized rule-sets.

The signi�cance is that additional correct annotations are created by a generalized rule-

set, supporting automation.

2. Hierarchical rule-based learning induces models for multiple categories of annotation. This

means that the creation of a rich intermediate representation (containing many annotation

categories) is automated using this technique.

(a) Rule-structures can be tailored for di�erent categories of annotation. The core rule-set

creation, generalization, and application processes are independent of the rule-structure.

Further annotation categories can be de�ned without modifying the fundamental algo-

rithms.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 104

(b) Rule-structures need not be customized every time a new annotation category is de�ned.

Structures exist for successfully deriving rules in multiple categories.

3. Hierarchical rule-based learning quali�es annotations with text-references and semantic con-

cepts. This means that annotations are automatically parametrized appropriately for future

interpretation processes.

(a) Tree-structures provide for the creation of rules that identify quali�ers for an annota-

tion. The implication is that patterns induced by the learning system re�ect structural,

relational and semantic patterns in the English language.

(b) Rules are e�ective in associating semantic concepts to annotations without the use of

an external knowledge-base. This removes the need for subsequent discourse processing

in certain categories of annotation.

Accurate models are induced over di�erent types of �ction text using hierarchical rule-based learn-

ing. Some induced patterns are applicable across di�erent books, but better quality models use

examples sourced from a variety of book types. The boot-strapping process that uses hierarchical

rule-based learning automates the creation of annotations, and also reduces the repetitive task

of creating examples for training a model. We conclude that the creation of the intermediate

representation in the form of annotated �ction text is automated using these methods.

A model induced using hierarchical rule-based learning can potentially be considered a detailed

knowledge-base, which con�icts with our desired knowledge-poor paradigm for achieving the �ction-

to-animation task. However, knowledge-centric systems use manually pre-constructed bases of

specialized knowledge to guide the text analysis process (Coyne and Sproat, 2001; Lu and Zhang,

2002; Ma, 2006). Our technique is knowledge-poor in that it makes no prior assumption (in terms

of encoded knowledge) about how to perform the task, but rather induces assumptions from a

speci�c human. We believe that this distinction is in keeping with the knowledge-poor paradigm

described in Chapter 1.

Hierarchical rule-based learning resembles existing techniques in its ability to learn models for

di�erent categories (although we cannot compare any two of these systems directly, as described

in Section 4.2). Similar to existing information extraction techniques, our method exhibits a wide

range of recall levels, depending on the category of annotation.

The research presented in this chapter contributes innovative work with respect to the text-to-

graphics and information extraction domains:

• The use of a pattern-based information extraction technique for creating semantic anno-

tations is novel in the text-to-graphics �eld. The only other text-to-graphics system that

employs information extraction techniques is CarSim, which uses statistical machine learn-

ing algorithms (Johansson et al., 2005).

• We de�ne a set of semantic annotation categories for identifying visual descriptions in �ction

text. The formalization of these categories contributes to the text-to-graphics domain in that

they are the �rst that are formally speci�ed for handling �ction text.

• We contribute to the domain of information extraction by demonstrating that tree-structures

are e�ective for representing, abstracting, and generalizing patterns in free text.

CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 105

• We provide two innovative methods for generalizing patterns in natural language, using

general and special purpose childSubSeq wild-cards.

• The ability to induce models regarding di�erent quali�ers of annotations such as triggers,

text-references, and semantic concepts contributes to the �eld of information extraction. The

ability to associate semantic data (without the use of a knowledge-base) and thus perform a

type of discourse analysis is a signi�cant contribution.

Future work in this area includes the extension of the corpus of annotated �ction text, in terms of

size and in terms of the categories of annotation created over the corpus.

Chapter 5

Constraint-based quanti�cation of

behaviour

This chapter investigates the problem of quantifying behaviour in a virtual environment from a

constraint-optimization perspective (described in Section 5.1). The use of a constraint optimization

method is motivated in Section 5.2 by comparing alternative approaches to this problem. We

present an innovative optimization technique that locates solutions (or solution approximations)

to constraint systems de�ned over contiguous intervals of time. This technique is based on interval

arithmetic, a brief overview of which is provided in Section 5.3. We develop an interval-based

optimization approach for locating solutions (or solution approximations) to constraint systems

in Section 5.4. Properties of the interval-based optimization approach are investigated using a

suite of benchmarks in Section 5.5. We present conclusions and contributions resulting from our

innovations in Section 5.6.

5.1 Introduction

5.1.1 Problem statement

Fiction books describe the set of entities that exist in an environment and the behaviour of these

entities. We use the term behaviour to refer to the positioning of an entity and its motion within

an environment. Behaviour is identi�ed in �ction text using categories of annotation that sug-

gest spatial constraints between entities (further details on interpreting annotations are provided

in Chapter 6). We investigate the problem of automatically quantifying behaviour in a virtual

environment so that it conforms to spatial constraints prescribed by annotations. In particular:

1. We de�ne virtual environments in terms of space and time, which introduces the problem

of quantifying behaviour that conforms to constraints speci�ed over contiguous intervals of

time.

2. An animated �lm is constructed as a sequence of clips, potentially �lmed out of order. We

investigate the quanti�cation of behaviour at any time-instant in a virtual environment,

106

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 107

Anne didn't very much like a big brown cow who came up close and stared at her, but it went away when Daddy
told it to.

...
He tiptoed by him to the table behind his uncle's chair.

Figure 5.1: Example �ction text indicating spatial positioning and behaviour from the Famous
Five 1: Five on a Treasure Island by Enid Blyton (1942).

without simulating every instant of time in an incremental fashion until the desired state for

�lming is reached.

3. We believe that descriptions in �ction text imply under-constrained behaviour, the quanti�-

cation of which involves a search for valid options. We investigate the problem of searching,

while directing the search towards valid behaviour.

4. We speculate that the more complex the behaviour in the scene, the more di�cult the task

of quantifying the behaviour becomes. This translates to an increased search time. We

investigate the problem of providing behaviour con�gurations that only approximate the

desired behaviour, but which are derived in spite of bounds on computation time.

5. We anticipate that annotations in �ction books are potentially �awed, either because of

inconsistencies in the original narrative or because of inconsistency in manual or automated

annotation creation. Flawed annotations potentially translate to con�icting constraints, and

we investigate the problem of approximating behaviour where such con�icts occur.

We investigate the above problems under the assumption that a process exists for translating

annotations into constraints (see Chapter 6 for this aspect of the problem). This chapter is con-

cerned only with constraint optimization as a method for identifying precise numerical solutions

that quantify visual behaviour.

5.1.2 Problem formulation

Descriptions found in �ction text imply the positioning or behaviour of entities within a scene. An

example of �ction text containing such descriptions is presented in Figure 5.1. These descriptions

are identi�ed using speci�c categories of annotation (for example, Transition or Relation annota-

tions, as demonstrated in Figure 5.2). The Relation annotation illustrated in Figure 5.2(a) speci�es

that a �table� is �behind� a �chair�. The problem in this case is to determine exact coordinates for

the �table� and �chair� objects so that the �behind� spatial-relation holds. The Transition annota-

tion illustrated in Figure 5.2(b) speci�es that a �cow� is �outside� the environment, indicating that

an appropriate motion for the cow must be calculated so that this behaviour is visualized.

The quanti�cation of behaviour involves calculating exact values that describe an entity's be-

haviour in a virtual environment. We de�ne an environment in terms of its dimension, its bound-

aries, and the interval of time over which the environment exists. We name each environment a

scene, de�ned as follows:

De�nition 5.1. De�ne S (dimension, boundary, time) to be a scene speci�ed as a Cartesian space
in a number of dimensions where each dimension is bounded according to a boundary. The scene

exists over the duration speci�ed by time.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 108

behindTrigger:

Type:

Subject:

BEHIND

table

RELATION:

Object: chair

the table behind his uncle’s chair

BEHIND

(a) Relation annotation

wentTrigger:

Type:

Subject:

OUTSIDE

i t <COW>

TRANSITION:

but i t went away when Daddy told i t to.

OUTSIDE

(b) Transition annotation

Figure 5.2: Example annotations from �ction text.

• Entity M has a trajectory de�ned as rM (t) = (1− t)pM
0 + tpM

1

• Entity N has a trajectory de�ned as rN (t) = pN
0

Example system of constraints over the two trajectories:
M near N : ||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0∀t ∈ [tstart, tend]
M noCollide N : ||rM (t)− rN (t)||2 − (aM + aN)2 > 0∀t ∈ [tstart, tend]
...

Figure 5.3: Example set of time-based mathematical constraints.

For example S (2, {[−20, 20], [−20, 20]}, [0, 15]) is a scene in two dimensions, where each dimen-

sion is de�ned over the intervals [−20, 20]. This scene is speci�ed to last for 15 seconds.

A scene contains geometric models representing entities described in the �ction text. Text

annotated in categories such as Relation or Transition constrain a model's behaviour in a scene.

For example, the Relation in Figure 5.2(a) describes a constraint over the behaviour of the �chair�

and �table� models, specifying that the �chair� must be behind the �table�, no matter where the

�table� model is placed in the scene. The Transition illustrated in Figure 5.2(b) speci�es that the

�cow� model must leave the scene, which is interpreted as a constraint on the behaviour of the

�cow� that requires the model to be outside the boundaries of the scene at a certain time.

A scene is de�ned as an n-dimensional Cartesian space, and this allows spatial constraints

to be expressed as symbolic functions. We describe the behaviour of entities in a scene using

trajectories that are constrained according to the annotations. Phrased in this manner, the problem

of behaviour quanti�cation is one of constraint satisfaction. Example trajectories are presented in

Figure 5.3, along with examples of the symbolic functions that constrain these trajectories.

Scenes are de�ned in terms of a space interval (boundary) and a time interval (time). This

means that values must be found for the variables de�ning the trajectories that satisfy the con-

straints both spatially, as well as over a contiguous interval of time. This is represented in Figure

5.3 by the expression ∀t ∈ [tstart, tend]. The inclusion of a temporal aspect to the formulation

of constraints presents a universally quanti�ed constraint satisfaction problem (Benhamou et al.,

2004; Ratschan, 2006), where the time-dimension is said to be universally quanti�ed.

We assume that constraint systems such as those illustrated in Figure 5.3 are created auto-

matically from annotations (see Chapter 6 for details on this process). An automated process has

the potential to create constraints that con�ict within the same system, in which case no solution

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 109

Fiction book

Problem 1: Text Analysis

 1.1) Linguistic indicators

 1.2) Annotation creation

Problem 2: Interpretation

 2.1) Interpretation of annotations

 2.2) Specification of behaviour
 in a virtual environment

 2.3) Populating 3D environments

Intermediate
representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
of surface annotations

Machine-learning for
automating creat ion

of semantic
annotat ions

Create structured
scene descriptions

Automatic constraint
solving/optimization

Automatic populat ion
of 3D vir tual environment

Human knowledge:
- Manual examples

Human knowledge:
- Clarify l inguistic ambiguity
- Implied scene layout
- Creative ideas

Human knowledge:
- Creative enhancements

Interval-based quantif ied
constraint optimizer

Figure 5.4: Context of the interval-based quanti�ed constraint optimizer with respect to the �ction-
to-animation problem.

exists. We prefer an approximate solution to be presented rather than no solution, because this

guarantees quanti�ed behaviour that can be used to populate a scene (no matter how �awed).

The problem investigated in this chapter is automatically �nding values for entity trajectories

that satisfy a system of constraints. Constraints are expressed as non-linear, symbolic functions

that include a universally quanti�ed time variable and spatial variables bounded to intervals.

The solver must produce solutions that satisfy the constraints over contiguous intervals of time

(where constraint systems are consistent), or produce approximations of quanti�ed solutions (where

constraint systems are inconsistent).

5.1.3 Context

The research presented in this chapter examines one sub-problem of the interpretation task in

the �ction-to-animation process. The context of this problem within the conversion process is

illustrated in Figure 5.4. We examine a method that generates precise numerical values that

quantify behaviour in a virtual environment. These values are used in a subsequent component for

populating a virtual environment that corresponds to the �ction text. The input to this process is

a set of constraints derived automatically from an annotation interpretation module (described in

Chapter 6).

5.2 Related work

We name the problem investigated in this chapter spatial reasoning, and this term describes problem

of deriving exact values that quantify an entity's behaviour in a virtual environment so that it

visually corresponds to the behaviour described by annotations. Spatial reasoning is characterized

by the fact that behaviour is speci�ed using high level (non-detailed) instructions, while the precise

values de�ning behaviour in an environment are left to be calculated by an automated process.

We categorize existing spatial reasoning technologies according to the manner in which pre-

cise values are obtained. We identify two categories, namely those that formulate these values

incrementally through direct manipulation of the environment (environment-sensitive), and those

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 110

that phrase the problem in terms of symbolic expressions that are solved independently of the

environment (environment-independent).

5.2.1 Environment-sensitive reasoning

We broadly de�ne environment-sensitive reasoning as the collection of techniques that progress

towards acceptable behaviour by iteratively updating and evaluating behaviours of entities in the

environment. These methods are characterized by a tight coupling with the target environment,

usually including direct manipulation and simulation of the environment in determining values

that describe behaviour. Each state in a time-based environment is the culmination of all previous

states.

We examine environment-sensitive reasoning in two categories, namely those that are concerned

with static environments (containing entities without motion), and those that are concerned with

dynamic environments (containing moving and non-moving entities).

5.2.1.1 Static environments

Spatial reasoning in a static environment is concerned with specifying the location and orientation

of entities within a �nite space. Procedural methods such as those described by Parish and Muller

(2001) use a suite of hand coded rules to guide the placement of roads and buildings in an environ-

ment. This method is environment-sensitive in that the placement of a road segment is a�ected

by the placement of previous road segments in the environment.

An alternative method for spatial reasoning exists where the environment is described by a set

of constraints. Values that satisfy the constraints de�ne the correct geometric layout of entities in

the environment. Environment-sensitive methods for performing the reasoning include stochastic

and constructive methods (Le Roux and Gaildrat, 2003) (however, numerical methods also exist

for these problems as shown in Section 5.2.2). Stochastic methods progressively re�ne the layout

of entities in an environment by perturbing entity locations and evaluating the subsequent envi-

ronment layout (according to the degree to which they satisfy the constraints) (Xu et al., 2002;

Sanchez et al., 2003). Constructive methods build the environment incrementally, by placing a

single entity in the environment and then enumerating and testing every possible location for the

next entity (Baykan and Fox, 1991; Kwaiter et al., 1998; Bonnefoi and Plemenos, 1999; Le Roux

and Gaildrat, 2003), then selecting only valid options.

5.2.1.2 Dynamic environments

Spatial reasoning in a dynamic environment is an example of the motion planning problem. Motion

planning initially emerged as a �eld of study in robotics with the aim of determining a path through

an environment that avoids collisions between an autonomous agent and possible obstacles (and is

sometimes referred to as the Piano Mover's problem in the �eld of Arti�cial Intelligence (Garber

and Lin, 2003)). The motion planning problem is phrased in terms of a start-location and a goal-

location within a workspace that contains several obstacles. The task of an autonomous agent is

to �nd a collision-free path from the start to the goal.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 111

We classify motion planning techniques in two categories, namely global and local techniques,

based on the information available to the agent during the creation of a path (Garber and Lin,

2002).

Global methods assume the prior existence of a populated environment, as well as global knowl-

edge regarding the layout of obstacles within it (Foskey et al., 2001; Garber and Lin, 2002). Prob-

abilistic road-map algorithms are examples of global methods and function by selecting random

samples across the workspace, and then connecting samples with paths (Overmars, 1992; Kavraki

and Latombe, 1994; Overmars and vSvestka, 1995; Salomon et al., 2003). The path from the start

location to the goal location is determined by searching the resulting graph using algorithms such

as A* (Calomeni and Celes, 2006). This algorithm assumes global knowledge in the sense that

the location of obstacles across the environment is available for use by the agent in creating a

graph. Paths that result in collisions with these obstacles are detected and removed. Probabilistic

road-map algorithms cater for static obstacles (Kavraki and Latombe, 1994; Pettré et al., 2003)

and dynamic obstacles (Gayle et al., 2005; van den Berg and Overmars, 2006), and many motion

planning problems make use of some variant of this technique (Koga et al., 1994; Nieuwenhuisen

and Overmars, 2003; Pettré et al., 2003). Another example of a global motion planning tech-

nique is cell decomposition, which breaks the workspace into a number of simple cells (Ku�ner Jr.,

1998; Latombe, 1999), using shortest-path algorithms to determine paths from the start-location

to goal-location.

Local motion planning techniques are employed when an agent does not have global knowledge

of the workspace, and repeatedly observes the environment to detect and avoid obstacles. An

example is the potential-�eld method that associates attractive and repulsive forces to obstacles

in the environment. The agent is attracted to the goal location, while repulsed from obstacles

(Drucker and Zeltzer, 1994; Hong et al., 1997; Ge and Cui, 2002).

Motion planning techniques exist that specify constraints over the motion of an entity, in

addition to the task of �nding a path that avoids collisions. Examples of such constraints include

forcing agents to adhere to physical laws such as gravity and volume preservation (Gayle et al.,

2005), or for maintaining connectivity between joints in articulated models (Garber and Lin, 2002).

These constraints are used in combination with local or global path planning techniques, where

constraints are evaluated to determine whether the next discrete move of the entity satis�es or

minimizes the set of constraints.

Global motion planning techniques are environment-sensitive because they require repeated

queries to the environment for setting up a path, especially where other dynamic entities occur in

a scene. Local motion planning techniques are environment-sensitive because the location of an

entity in an environment is determined in relation to its previous location. If a particular time-

instant in an environment is required (for �lming), then every environmental state prior to the

required time-instant must be simulated to that point.

5.2.2 Environment-independent reasoning

Techniques for spatial reasoning exist that phrase the problem in terms of symbolic functions that

are solved analytically or numerically. These techniques remove the need for simulation or tight

coupling with the environment, and transform behaviour quanti�cation into a general constraint

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 112

satisfaction problem. All that is required is a set of symbolic constraints, a set of variables, and

initial domains for each variable. An independent constraint solver is applied to locate a solution.

We consider approaches for quantifying behaviour in static and dynamic environments.

5.2.2.1 Static environments

Behaviour of entities in a static environment is concerned only with layout. Constraints are for-

mulated as symbolic inequalities that de�ne the layout of the environment, and solving techniques

such as linear programming are used to determine values that satisfy these constraints (de Vries

and Jessurun, 2000).

5.2.2.2 Dynamic environments

Reasoning regarding entities with motion is complicated by the time dimension. In practice, time is

represented as another variable in each constraint. However, solutions must satisfy the constraint

over the entire interval of time. The classical approach is to discretize the time dimension into a

sequence of values, and perform constraint solving at each discrete point (Witkin and Kass, 1988).

This approach is used for text-to-graphics research by the CarSim system (Johansson et al., 2005).

The discretization of time-intervals is avoided in the �eld of automated camera control by

representing time as contiguous intervals rather than breaking the time dimension into discrete

points (Jardillier and Languénou, 1998; Benhamou et al., 2004). Interval methods for motion

planning are based on Interval Analysis, the �eld of mathematics concerned with the use of intervals

of real numbers rather than �nite values during calculations. This allows a time variable to be

represented as a contiguous interval, for example T = [tstart, tend]. An advantage of this approach

is that solutions to constraint systems can be found that are guaranteed to be valid over contiguous

intervals.

Interval arithmetic is used in a number of applications in computer graphics because of its

usefulness in solving systems of constraints, namely ray tracing of parametric surfaces (Toth, 1985;

Mitchell, 1991), contour tracing and implicit surfaces (Mitchell, 1991), collision detection (Snyder

et al., 1993; Redon et al., 2002), and approximations of o�sets/bisectors/medial-axes (Oliveira and

De Figueiredo, 2003).

5.2.3 Interval-based constraint solving as an environment-independent

spatial reasoning mechanism

Both environment-sensitive and environment-independent methods have advantages with respect

to the task of spatial reasoning. Environment-sensitive methods do not require formulations of

explicit expressions that require solving, and are also useful for real-time motion planning. In

contrast, environment-independent methods are characterized by the following advantages:

• A solution determined by an environment-independent method describes entity behaviour

at any point in the scene, without the need for prior states to be calculated �rst. This is

the primary di�erence to environment-sensitive methods that require the environment to

be repeatedly updated, with the e�ect that every state of the environment is a function

of all previous states. In terms of �ction-to-animation conversion, a solution provides the

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 113

ability to instantiate a scene at any point, without pre-constructing the entire duration of

the environment.

• Environment-independent methods separate the problem domain from the solution strategy,

unlike environment-sensitive methods in which the environment is repeatedly updated and

evaluated during the reasoning process. Environment-independent methods pose the problem

as a set of domain independent constraints that are solved using an arbitrary solver. This

solver is independent of the problem domain, and can be improved or replaced without

modifying the original problem.

Based on these observations, we employ an environment-independent method for performing spatial

reasoning. This means that behaviour of entities in a scene is described by systems of constraints

that require solving. Interval-based solving methods have bene�ts unavailable to other forms of

constraint solving (for example linear programming (de Vries and Jessurun, 2000), or Newton-

Rhapson solving (Witkin and Kass, 1988)):

• Time (and other quantities) is represented as contiguous intervals using interval constraint

solving. This is suitable given our de�nition of a scene that speci�es the space and time in

terms of intervals (De�nition 5.1 on page 107).

• Interval arithmetic avoids the need to sample the time dimension at discrete points. Tech-

niques exist in interval-based constraint solving that are capable of providing solutions to

quanti�ed constraint systems, that is, constraints that are speci�ed over contiguous intervals

of time.

• Interval-based techniques solve an entire quanti�ed system in a single operation, rather than

invoking a solver at each discrete time instance. This provides for more e�cient solving.

• The output from an interval constraint solving process is a set of contiguous intervals, any

value from which represents a solution to the constraint system. This provides a range of

valid behaviour options for a scene.

Most applications of interval arithmetic in constraint solving are concerned with locating a solution

to a system of equations or inequalities, speci�cally in the camera control domain (Jardillier and

Languénou, 1998; Benhamou et al., 2004). However, we presume that constraints are automatically

generated by the �ction-to-animation system, and that some automatically generated constraint

systems have the potential to be inconsistent. Existing constraint solvers perform an exhaustive

search of the con�guration space before concluding that no solution exists. An optimization mech-

anism is preferable, so that trajectories are speci�ed even in the absence of a consistent solution.

Optimization techniques exist that are based on interval arithmetic (Snyder, 1992; Huyer and

Neumaier, 1999; Dolgov, 2005), but these methods do not cater for universally quanti�ed variables.

This chapter describes an optimization technique for constraint systems containing universally

quanti�ed variables. This technique is based on existing universally quanti�ed constraint solving

mechanisms (Benhamou and Goualard, 2000; Benhamou et al., 2004).

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 114

5.3 Interval analysis and universally quanti�ed constraint solv-

ing

This section provides a brief introduction to interval arithmetic, after which techniques in interval-

based constraint solving are described. We focus on quanti�ed interval-based constraint solving,

primarily using techniques developed by (Benhamou et al., 2004) and (Benhamou and Goualard,

2000) and relevant portions of this research are described here. Formal descriptions and proofs

of these processes are not reported in this exposition, but are located in the original sources

(Benhamou et al., 1994; Benhamou, 1995; Benhamou and Older, 1997; Benhamou et al., 1999;

Benhamou and Goualard, 2000; Benhamou et al., 2004).

Interval Analysis was pioneered by Moore (1966) as a method for coping with round-o� errors

that occur during calculations performed by machines with limited representation for �oating

point numbers. Real numbers are replaced by intervals that contain them and whose bounds are

described using computer representable numbers. For instance, the constant π is represented as

[3.14, 3.15] rather than a single �oating point number rounded up or rounded down (Benhamou

et al., 2004). Complete theoretical expositions in interval arithmetic and analysis are provided

by Moore (1966) and Neumaier (1990), and the following sections describe only those aspects

necessary for investigating the quanti�ed constraint satisfaction problem.

5.3.1 Interval analysis

This section develops the fundamentals of interval analysis that are used for subsequent constraint

solving techniques. Let R be the set of real numbers. F is the set of computer representable �oating

point numbers, and is a subset of the set of real numbers such that F ⊂ R. A set of real numbers

is represented on a computer by specifying �oating point bounds, as described by the following

de�nition:

De�nition 5.2. Floating point interval (Moore, 1966): A �oating point interval is a set of real

numbers bounded on either side by �oating point numbers. Formally1, given g ∈ F and h ∈ F,
then [g, h] = {r ∈ R|g ≤ r ≤ h}. Therefore, the interval [g, h] contains every real number between

(and including) g and h.

The set of all intervals is denoted as I, and a single interval is denoted using a capital letter

(for example, I = [g, h]). For the remainder of this chapter, unless otherwise stated, small letters

represent �oating point numbers. It is often necessary to refer to the lower or the upper-bound of

an interval, and this is indicated using lower(I) and upper(I) respectively.
The set of primitive operations used for real numbers are extended to interval arithmetic in a

conservative manner. All real numbers that could possibly occur as a result of the operation are

included in the result:

De�nition 5.3. Interval Extension. De�ne ♦(x1, ...xn) 7→ R to be a real-valued operation con-

sisting of n real-valued operands (xi ∈ R). An interval extension of operation ♦ is denoted as

1Similar to Moore (1966), this exposition uses the notation {x|P (x)} for �the set of x such that the proposition
P (x) holds.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 115

�(X1, ..., Xn) 7→ I, which is the corresponding operation extended to function over n �oating-point

intervals (Xi ∈ I), such that:

x1 ∈ X1, ..., xn ∈ Xn ⇒ ♦(x1, ...xn) ⊂ �(X1, ..., Xn)

De�nition 5.3 means that an interval extension of a real valued operation produces an interval

containing the result produced by the corresponding real-valued function if the operands of the

real-valued function fall within the corresponding interval operands. Natural interval extensions

of elementary operations are de�ned by Moore (1966) as follows:

De�nition 5.4. Let A = [a, b] and B = [c, d]. Natural interval extensions of real-valued elementary

operations are de�ned as follows:

• Addition: A⊕B = [a+ b, c+ d]

• Subtraction: A	B = [a− d, b− c]

• Multiplication: A⊗B = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

• Division: A�B = [a, b]⊗ [1/d, 1/c] if 0 /∈ [c, d], unde�ned otherwise

The natural interval extension of a real-valued function f(x1, ..., xn) is the function F (X1, ..., Xn)
constructed by replacing each real-valued elementary operation in f with a corresponding natural

interval extension, and replacing each real value xi with a corresponding interval Xi.

Interval extensions of real-valued functions have an important property, described by the fun-

damental theorem of interval analysis (Moore, 1966; Benhamou et al., 1994). If F (X1, ..., Xn)
is an interval extension of the real valued function f(x1, ..., xn), then the interval produced by

F (X1, ..., Xn) completely contains any real-value produced by f(x1, ..., xn) as long as any real

number xi is in the corresponding interval Xi:

x1 ∈ X1, ..., xn ∈ Xn ⇒ f(x1, ...xn) ⊂ F (X1, ..., Xn)

The fundamental theorem of interval analysis leads to an important property, namely that an

interval extension of a real-valued function is inclusion monotonic. This means that the interval

extension of a function is guaranteed to return an interval containing the real-valued result for any

xi ∈ Xi. This property implies that interval arithmetic is a convenient mechanism for calculating

the range of a real-valued function over a speci�c domain. However, natural interval extensions

are conservative in their approximation. While an interval returned by an interval extension of a

function contains the complete range of the real-valued function, it potentially contains values that

are not in the range. Alternatives to natural interval extensions exist that more tightly bound the

range of a function, but are more computationally expensive to implement (van Hentenryck et al.,

1997).

Union and intersection operators are often used in interval constraint solving. Let I1 and I2 be

two intervals, then the union of the two intervals is the smallest interval containing both I1 and

I2:

I1 ∪ I2 = [min (lower(I1), lower(I2)) ,max (upper(I1), upper(I2))]

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 116

The intersection of two intervals is the largest interval common to I1 and I2. Let

IU = [max (lower(I1), lower(I2)) ,min (upper(I1), upper(I2))], then the intersection is one of two

options:

I1 ∩ I2 =

IU if lower(IU) ≤ upper(IU)

undefined if lower(IU) > upper(IU)

An interval I = [a, a] is called a degenerate interval, and is used to represent constants. A

canonical interval is an interval of the form I = [a, b] where b is the next �oating point value after
a. Canonical intervals are the smallest possible interval representable on a machine with limited

�oating point representation.

The following examples are provided to demonstrate interval arithmetic:

Example 5.5. Let A = [−3, 2] and B = [2, 4] then:

• A⊕B = [−1, 6]; A	B = [−7, 0]; A⊗B = [−12, 8]; A�B = [−1 1
2 , 1]

• A ∪B = [−3, 4]; A ∩B = [2, 2]

• if f(a, b) = a+ 2 ∗ b then F (A,B) = A⊕ 2⊗B = [−3, 2]⊕ [2, 2]⊗ [2, 4] = [1, 10]

The Cartesian product of a set of n intervals is called a box, such that B = I1 × I2 × ... × In.
Boxes are denoted using boldface capitals.

5.3.2 Solution-bounding using interval analysis

Interval analysis lends itself to constraint solving because of its ability to compute the bounds over

the range of a function. For example, assume that the constraint f(x) < 0 must hold given a

certain variable x and a �nite domain for x. If the interval extension F (X) = [a1, a2] (where X is

an interval constructed using the lower bound and upper bound of the domain of x) evaluates to

an interval for which a2 (the upper bound) is less than zero, then the constraint is guaranteed to

hold for all values in X. If a1 (lower bound) is greater than zero then the constraint never holds

for any value in X. These observations are a direct result of the fundamental theorem of interval

analysis. However, because of the exaggerated bounds resulting from natural interval extensions,

the constraint is not guaranteed to hold over the entire domain if 0 ∈ [a1, a2], nor is it guaranteed
to violate the constraint over the entire domain.

Moore (1966) proposes a solution to the problem of exaggerated bounds. The narrower the

domain of a function becomes, the more accurately the interval extension approximates the real-

valued function. For example, a more accurate approximation of the function F (X) is evaluated
by splitting the domain represented by X into a number of smaller sub-intervals and taking the

union of each resulting range: X = [b1, b2] ∪ [b2, b3] ∪ ... ∪ [bn−1, bn]. Speci�cally, Moore (1966)

proves that:

lim
n→∞

n−1⋃
i=1

F ([bi, bi+1]) = {f(x)|x ∈ [b1, bn]}

If a problem is phrased so that all values of x must be found that satisfy f(x) < 0, then interval

arithmetic can be used to locate intervals within X that satisfy the constraint. If the original

domain does not conclusively satisfy the constraint, then the interval X can be recursively split

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 117

until the interval evaluation of the function over the sub-interval conclusively veri�es or violates

the inequality. The method of alternating evaluation and splitting steps forms the basis of an

interval-based constraint solving algorithm, which is concerned with locating all solutions to a set

of non-linear constraints (including inequalities). The search space is evaluated as being a valid

solution, no solution, or indeterminate. In indeterminate cases, the space is split and re-evaluated

in a recursive fashion (Jaulin and Walter, 1993, 1996; Jardillier and Languénou, 1998). No further

splits occur when the intervals become canonical, and no further splits can be represented on the

�oating point machine.

We use the following terminology for constraint solving, assuming that a constraint f(x1, ..., xn) <
0 is de�ned over n variables: the value of each variable xi is drawn from a �nite interval of real

numbers Xi which is the domain of that variable. The domain of the function f is represented by

the box B = X1×...×Xn, and this domain is loosely referred to as the search space or con�guration

space because it is to be searched for solutions that satisfy the constraint.

5.3.3 Constraint propagation using local consistencies

Constraint solving mechanisms bene�t from propagation techniques that remove values from the

search space that cannot possibly satisfy the constraints. Interval arithmetic is shown to be bene-

�cial in this regard (Cleary, 1987; Older and Vellino, 1990; Puget, 1994), and relevant techniques

for this are described in this section.

We make use of an example to illustrate the concepts used for constraint propagation in interval

arithmetic. Consider the following constraint:

c : x+ y = z

This constraint consists of three real valued variables, x, y, and z. Any constraint de�nes a relation

between sets of real values, where values from these sets validate the constraint. In the example

constraint, the relation describes the sets of real numbers for the variables x, y, and z that cause

the constraint to hold (Benhamou and Older, 1997). A relation is expressed using the symbol ρ

and is de�ned as follows:

De�nition 5.6. An n-ary relation ρc is the set of n-tuples of real numbers that validate a constraint

c (Hickey et al., 1998).

A relation di�ers from a solution to a constraint in that a relation describes every possible

tuple of real values that validates the constraint. A solution is a sub-set of the underlying relation:

De�nition 5.7. A solution to a constraint is a sub-set of n-tuples from the relation of the con-

straint.

According to De�nition 5.6, the relation for constraint c is the set of 3 − tuples in R3 that

validates it. Given the initial domain for the constraint represented as a box B = X × Y × Z,
the intersection of the relation and the box ρc ∩B represents a solution to the constraint over the

initial domain.

An initial domain is not always a subset of the relation of the constraint. For example, assume

that each variable x, y, and z have initial domains X = [−3, 2], Y = [1, 2] and Z = [0, 100]. The

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 118

Cartesian product of X, Y , and Z form a box B that encloses all or part of the relation. The box

B = X × Y × Z does not exclusively describe the relation of c because if x = −3 and y = 1 then

x+ y = −2 which is not part of the domain of Z.

It is possible to narrow an initial domain so that it more accurately approximates the relation

by removing portions of the box that violate the constraint. The exact values for ρc are not

known, but ρc ∩ B is approximated using projections of box B that are de�ned according to

properties of the operators involved in the relation (de�ned by Hickey et al. (1998)). For example,

the addition operator implies three relationships, namely that the addition of the operands equals

the sum, and that the di�erence between the sum and one operand equals the other operand

(for both operands). Values violating these properties are removed from the domains using three

corresponding projection operators:

πX(ρc ∩B) = X ∩ (Z − Y)
πY (ρc ∩B) = Y ∩ (Z −X)
πZ(ρc ∩B) = Z ∩ (X + Y)

The Cartesian product of πX , πY , and πZ results in B′, a narrowed box that better approximates

ρc. In the example, Z is reduced to [0, 4] as a result of the πZ projection as follows:

(X + Y) ∩ Z = ([−3, 2] + [1, 2]) ∩ [0, 100] = [−2, 4] ∩ [0, 100] = [0, 4]

Further projections over elementary operations including subtraction, division, and multiplication

are also de�ned by Hickey et al. (1998). Projections are not always su�cient to calculate exact

values for ρc ∩ B, especially when a constraint contains more than a single operation. In cases

such as these, ρc ∩ B can only be approximated using propagation techniques based on hull and

box consistency.

5.3.3.1 Hull consistency

Discarding all real numbers from a box that do not satisfy a constraint is not achievable in the

general case, and so a coarse method called hull consistency is used to calculate the smallest

box containing all ρc ∩ B (Benhamou and Older, 1997). If r is a real number, then the function

Hull(r) 7→ I returns the smallest �oating-point interval I containing r. More generally, the function

Hull�(B) 7→ B′ returns the smallest �oating-point box B′ containing box B (Benhamou et al.,

1994; Benhamou, 1995).

Given a constraint c and a domain expressed as a box B, the term hull consistency is used to

indicate that B represents the smallest box containing ρc. A real constraint c is hull consistent

with respect to a box B if and only if B = Hull�(ρc ∩B) (Benhamou et al., 1999).

Hull consistency is ensured if the smallest box is found that contains all tuples that form the

solution from the initial domain. The relation ρc is potentially comprised of multiple disjoint boxes,

and in this case the hull of this relation contains tuples that are not part of the solution.

Hull consistency is achieved using a hull consistency operator, an algorithm that makes use

of projections to determine the hull of ρc ∩ B. Benhamou et al. (1999) present an algorithm

called HC4, which achieves hull consistency for non-primitive constraints. HC4 is a method for

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 119

narrowing an initial box according to a set of arbitrary constraints, or detecting when a box does

not contain any portion of the relation. The algorithm formulates an evaluation tree for each

constraint, where each node in the tree describes a primitive operation. Projection operators are

invoked at each node in the tree, resulting in a narrowed domain. Domains are narrowed repeatedly

until no further narrowing occurs, a process called chaotic iteration (Apt, 1999). Algorithm HC4
is explained further in Appendix C, and speci�c detail and proofs regarding this algorithm are

provided by Benhamou et al. (1999).

Hull consistency does not guarantee that the returned box contains only the solutions. Part

of the cause of this is that the projection operators are not always able to narrow the domains of

variables any further without the risk of losing valid solutions. Related research also acknowledges

that hull consistency is limited in its ability to handle constraints in which a single variable occurs

multiple times (Benhamou et al., 1994). As a result, a tighter form of narrowing is used based on

the idea of box consistency.

5.3.3.2 Box consistency

The primary problem with hull consistency over complex constraints (constraints containing mul-

tiple instances of the same variable (Benhamou et al., 1994)) is the decomposition of the constraint

expression into elementary operations (at each step in the evaluation tree). This introduces depen-

dency problems between each instance of the same variable (Benhamou et al., 1999). To overcome

this, box consistency avoids decomposition, and hence is able to produce tighter narrowing of an

initial box.

The conditions for box consistency are more complex than for hull consistency. Let a constraint

c contain k variables, where each variable vi is de�ned over a domain Di from the box D. The

constraint is rewritten as a set of k univariate constraints Ci where 1 ≤ i ≤ k. Every variable in

Ci is replaced with its corresponding domain, except for the variable vi. D is box consistent if the

following relation holds (for all 1 ≤ i ≤ k):

Di = Di ∩ {vi ∈ R|Ci(D1, ..., Di−1, vi, Di+1, ..., Di)}

Simply stated, a box D is box consistent if every Di ∈ D represents the hull of the solution to

the ith univariate constraint.

Intervals for Di that exhibit box consistency are determined using an iterative algorithm. Given

a constraint Ci, we replace each variable with its domain in the input box, except for one variable.

This transforms the constraint into a univariate interval function. The bounds on the solutions

in Di to the univariate function are then located. Finding the bounds of Di is achieved by using

root �nding methods (typically the Interval Newton Method) over the univariate function. More

speci�cally, the left most and right most root is located.

Benhamou et al. (1994) de�ne an algorithm called BC4 that achieves box consistency over

a set of constraints, and that is capable of narrowing the initial domain more tightly than hull

consistency. BC4 is also able to detect when a domain contains no solutions. BC4 uses an

algorithm called BC3Revise that achieves box consistency for a single constraint at a time. These

algorithms are described in detail by Benhamou et al. (1999), as well as in Appendix C.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 120

Both hull and box consistency operators are e�ective for removing portions of the search space

that do not form part of a solution to a set of constraints. These narrowing operators are termed

outer contracting operators because they contract the domain as much as possible without removing

any portion of the solution space (Benhamou et al., 2004). However, neither of these techniques

guarantee that a narrowed box contains only solutions, and so outer contracting operators alone

are not su�cient for locating the solution to a set of constraints. Boxes that exclusively contain

solutions are sound, and further methods are required to locate sound solutions to a system of

constraints.

5.3.4 Sound constraint solving

Sound constraint solving techniques produce boxes that contain only solutions. We are interested

in constraint systems de�ned over universally quanti�ed variables, and the de�nition of a solution is

extended to encompass this concept. Constraints with universally quanti�ed variables are required

to hold over the entire contiguous intervals de�ned by these variables. This means the initial

domain of a universally quanti�ed variable must be identical to its corresponding domain in the

solution box:

De�nition 5.8. A solution to a constraint containing a universally quanti�ed variable u contains

the entire initial domain of u.

Outer contracting operators implicitly identify boxes that are not solutions to universally quan-

ti�ed constraints, because any narrowing that occurs over the domain of the universally quanti�ed

variable violates the universal requirement. If this occurs, then the box is guaranteed not be a

universally quanti�ed solution.

An inner contracting operator produces boxes that fall exclusively within the solution space

(Benhamou and Goualard, 2000; Benhamou et al., 2004) and discards all values from the initial

box that do not form part of the solution, as well as values that form part of the solution but

cannot be enclosed in a computer representable box.

An inner contracting operator narrows a domain using the original set of constraints, and

then narrows the domain over the set of negated constraints (that is, where relational symbols

are reversed, for example from > to ≤). Narrowing over the negated constraints removes portions

from the domain that are guaranteed to be non-solutions to the negated constraint. These removed

portions are then guaranteed to be solutions to the original constraints by implication. This process

is illustrated in Figure 5.5 for a constraint that includes a universally quanti�ed variable.

In Figure 5.5(a), the initial box B is narrowed using the outer contracting operator over a

constraint and produces box B′ eliminating some, but not all, invalid ranges of values from the

initial domain. Narrowing operators never discard solution space, and if the universally quanti�ed

variables are narrowed in this step then it means that no solutions exist in B and this box is

discarded.

B′ is then narrowed using the corresponding negated constraint, which is derived by inverting

the relation operator from > to ≤. The result of this narrowing is box B′′, as illustrated in

Figure 5.5(b). This narrowed box contains all solutions and possibly non-solutions to the negated

constraint. However, the di�erence between the original box B′ and this narrowed box B′′ is

guaranteed to be a solution to the original constraint, because it is guaranteed to be a non-solution

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 121

solut ion f(B) < dInitial box B narrowed box B’
(smallest box containing all solutions)

narrowing not
always t ightnarrow over

f(B) < d

t
x

t
x

(a) Step 1: Narrow over constraint.

solution f(B’) >= d

narrowed box B’

narrowed box B’’

box B’

narrow over
f(B’) >= d

t
x

t
x

(b) Step 2: Narrow over negated constraint.

narrowed box B’’

quantif ied solution:
f(P) < d for all t

box B’

t
x

not a quantif ied solution:
f(Q) < d but not for al l t

P Q

locating further solutions requires validating
constraint only over reduced t ime interval in B’’

box B’

t
x

for any value of x, the constraint
is satisfied for the sub-interval of t in b

P’

Q’

Box Set Difference: Option 1 Box Set Difference: Option 2

(c) Step 3: Box set di�erence yields a solution and smaller universally quanti�ed interval.

Figure 5.5: Graphical illustration of solution �nding approach for constraints using universally
quanti�ed variables.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 122

A

B

A-B

(a) Upper bound of A overlaps B

A

B

A-B

(b) Lower bound of A overlaps B

A

B

A-BA-B

(c) A overlaps B, but bounds do not
overlap

A

BA-B

(d) A does not overlap B

A

B

(e) A completely subsumed by B

Figure 5.6: Illustration of set di�erence between two intervals.

to the negated constraint. Using this reasoning, solutions are found without the need to evaluate

the functions and risk exaggerated range bounds. In addition, a solution is identi�ed without

sampling over the universally quanti�ed variable t.

The solution of the negated constraint is the inverted solution of the original constraint, and

any box-set di�erence between B′ and B′′ is guaranteed to be a solution to the original constraint.

Set di�erence is di�erent to the subtraction of intervals, and is illustrated graphically in Figure

5.6. In each example B is subtracted from A, and the set di�erence is unde�ned if B completely

subsumes A (Figure 5.6(e)). If A completely subsumes B then the set-di�erence results in two

intervals (Figure 5.6(c)). Box-set di�erence is the set di�erence of each domain within the two

operand boxes, and potentially returns more than a single box as a result.

Figure 5.5(c) indicates two options for calculating the box set di�erence. The �rst option

yields a solution P that spans all t and is a universally quanti�ed solution (Q is not a universally

quanti�ed solution in this respect). If further solutions are required, then B′′ is searched further

for solutions. This has the e�ect of narrowing the universally quanti�ed domain, because the

constraint is guaranteed to hold for any x over the entire sub-interval of t in Q′.

If a solution is not encountered, then box B′′ is split along any domain except that of the uni-

versally quanti�ed domain, and the process repeated on each sub-box. The process of contracting

and splitting is repeated until boxes become canonical, or solutions are found.

The above technique is capable of locating solutions for universally quanti�ed variables without

requiring an evaluation step, and also enables the reduction in size of the universally quanti�ed

domain. Benhamou et al. (2004) formalize this technique as the ICO2 algorithm that acts as an

inner contracting operator over a single constraint. Solving for a set of constraints is achieved by

�nding all solutions for each constraint in turn, and using the solutions for each constraint as initial

boxes for the next constraint to be considered. The exact algorithm for a system of constraints is

formally described by Benhamou et al. (2004) as the IPA algorithm. IPA is shown to be sound,

that is, boxes returned by the algorithm contain only solutions.

Figure 5.7 illustrates the various components of a sound constraint solver. The IPA algorithm

is used to locate sound solutions to a system of constraints. It uses the ICO2 algorithm to locate

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 123

IPA

ICO2

BC3Revise

Sound constraint solving:

Inner contracting operator:

Outer contracting operator:

Set of constraints

Single constraint

Single negated constraintOuter contracting operator: BC3Revise

Single non-negated constraint

Figure 5.7: Illustration of the composition of a sound interval constraint solver by Benhamou et al.
(2004).

sound solutions for each constraint in turn. The ICO2 algorithm uses a narrowing operator, namely

BC3Revise to narrow the domain over the constraint, as well as over the negated constraint.

5.3.5 Alternative formulations of interval constraint solving

Some interval extensions of primitive operations are more rigorously de�ned to provide interval

evaluations with tighter bounds. For instance, Hickey et al. (2001) indicate that the division op-

eration need not be unde�ned if the denominator interval contains zero, but rather produces two

disjoint intervals. In the techniques described until this point, one interval is used to subsume

disjoint intervals for the reason that preserving disjoint intervals is too computationally expen-

sive (Benhamou et al., 1994). Alternative methods exist that maintain disjoint intervals however

(Chabert et al., 2005), and in some instances this is shown to improve splitting strategies (Batnini

et al., 2005).

Other improvements to the constraint solving technique include detecting and using cycle

information between constraints to optimize chaotic iteration (Lhomme et al., 1998), removing

constraints from the system as they are satis�ed (Borning et al., 1996) and performing interval

narrowing on a parallel architecture (Granvilliers and Hains, 2000). Ratschan (2006) proposes a

more generalized quanti�ed constraint solver that splits the universally quanti�ed domain (unlike

Benhamou et al. (2004) who never split these domains), and ensures that a solution exists for all

sub-domains of the universally quanti�ed domain. We follow the work by Benhamou et al. (2004)

in this chapter.

5.4 Interval-based quanti�ed constraint optimization

This section describes our innovative approach to locating solutions to quanti�ed constraint sys-

tems. Interval-based constraint solvers (such as the one described in Section 5.3.4) fail when faced

with constraint systems that are inconsistent, or are ine�cient for systems in which solutions

consist of small disjoint portions of the search space:

• Constraint solvers are interested in �nding only global solutions. If a constraint system is

inconsistent, then an extensive search is performed without any immediate results. The result

is strictly binary: a solution, or no solution.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 124

• The solver presented in Section 5.3.4 is a split and search algorithm in the worst case.

Unless tailored heuristics are employed (for example alternative space traversal strategies

(Benhamou et al., 2004) or �coordinate search� (Huyer and Neumaier, 1999)) there is no

correlation between the amount of searching performed and the proximity to a solution.

We describe an optimization strategy that addresses both these problems, while maintaining the

ability to locate universally quanti�ed solutions. We use the term optimizer to refer to the proposed

algorithm, and the term solution to refer to a box that satis�es a set of constraints. We use the

term minimizer when referring to a box that approximates a solution.

The optimization strategy described in this section uses the quanti�ed constraint propagation

and sound constraint solving techniques presented in Section 5.3.4. This strategy is able to provide

a minimizer at any point (even if the minimizer is not a proper solution to the constraint system).

The longer the optimization continues, the more the minimizer resembles the actual solution of

the constraint system. If the constraint system is inconsistent, then the minimizer approximates a

solution even though one does not exist.

The following sections describe the concept of relaxed constraints and how these are used to

achieve optimization.

5.4.1 Optimization using relaxed constraints

Our technique for optimization is based on the following conjecture:

Conjecture 5.9. Assume a constraint c with underlying relation ρc can be �relaxed� in some

manner, so that the underlying relation of the relaxed constraint ρδ
c completely contains ρc, that is

ρc ⊆ ρδ
c. We speculate that approximating ρδ

c is a �simpler� task than approximating ρc in the case

where ρc exists, and that ρδ
c is a �minimizer� for the constraint in the case where the constraint is

inconsistent.

Figure 5.8 provides an illustration of Conjecture 5.9, in the case where a solution exists. Assume

some constraint F (B) < 0 is applied over a domain represented by box B. The constraint is

relaxed by rephrasing the constraint as F (B) < δ given a large enough δ. Locating a solution for

this relaxed constraint does not require any splitting or narrowing of B given a large enough δ

. For a reduced value of δ, the task of locating solutions is more di�cult, but still requires less

splitting than the original constraint.

For this exposition we discuss constraints that are phrased in the manner c : f(x1, ..., xn) ≤ 0,
but all the described methods are applicable to other inequality relations. We relax a constraint

by replacing the zero on the right hand side with a value δ (called the relaxation constant) that is

greater than zero, in the following manner:

cδ : f(x1, ..., xn) ≤ δ

We assume that a large enough value of δ exists that causes the constraint to hold over the initial

domains of x1, ..., xn.

Example 5.10. Let c be a constraint de�ned as follows: c : 2x + y ≤ 0 where x ∈ [−2, 4] and
y ∈ [−1, 2]. Evaluating the interval extension of f over the original domain results in F (X,Y) =

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 125

Figure 5.8: Illustration of interval optimization process.

[2, 2] ∗ [−2, 4] + [−1, 2] = [−5, 10]. This interval does not verify the constraint (not all numbers

are less than or equal to zero), and so a relaxation constant δ = 10 is chosen so that F (X,Y) =
[−5, 10] ≤ [10, 10].

Example 5.10 illustrates that an initial value for δ is found using the interval evaluation of

the function over the initial variable domains. This method is used to determine the relaxation

constant, and the initial domain is a solution to the relaxed constraint.

The value of δ is reduced and the newly tightened constraint is solved once again, resulting

in a solution that is a sub-set of the initial domain. The process of reducing δ and solving the

tightened constraint is repeated until δ reaches zero, whereby the resulting solutions are solutions

to the original constraint. If no solutions are found at a speci�c value of δ, then no solutions exist

for the constraint and the solutions for the previous value of δ are minimizers.

This method for constraint optimization produces a focused traversal of the search space,

because portions of the space that are not solutions to a relaxed constraint are removed from the

search-space for a non-relaxed constraint. These portions of space are removed for each value of

δ, and as δ approaches zero the remaining portions of space become closer approximations of the

solution space.

Interval-based constraint solving methods return solutions as boxes, which means that a solution

describes a range of values that satisfy the constraint. Solutions to relaxed constraints provide box

approximations to the actual solutions, and the value of δ indicates the upper bound of deviation

from an actual solution with respect to any range of values comprising an approximate solution.

In this respect, a box returned as an approximate solution potentially contains actual solutions,

where the likelihood increases as δ approaches zero.

The following section describes the method used for solving relaxed constraints at any level of

δ. These constraints potentially contain universally quanti�ed variables.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 126

5.4.2 Constraint solving over a set of relaxed constraints

The method employed for constraint solving at each value of δ is similar to the approach developed

by Benhamou et al. (2004), and is based on the use of an outer and inner contracting operator.

The primary di�erence is that the contracting operators are implemented over a set of constraints

rather than a single constraint at a time.

An outer contracting operator outerContract takes as input a system of constraints C and a

box B representing the domain of the variables in the system of constraints. Three results are

possible, namely an unchanged box, a reduced box, or failure. These are interpreted as follows:

outerContract(C,B) ⊆ B ⇒ existence of a solution in B is indeterminate

outerContract(C,B) = FAIL ⇒ no solution in B

The BC3 algorithm detailed by Benhamou et al. (1994) is used for the outerContract operator.

If the algorithm returns FAIL, this means that no solution exists in the input domain (for instance,

if any universally quanti�ed variable is shrunk then FAIL is returned). The primary function of

the outer contracting operator in the optimization process is to narrow the search space using

constraint propagation and to detect if the search space contains no solutions.

An inner contracting operator innerContract takes as input a system of constraints C and a

box B representing the domain of the variables in the system of constraints. The result is a tuple

(S = {S1, ...,Sn},L) containing a set of solution boxes, and a box L representing a narrowed B.

These are interpreted as follows:

Si ⊆ B ⇒ solutions exist in box B, and Si is a solution

S = {} ⇒ existence of solution in B indeterminate,

but if it does exist, it is in the reduced box L

The primary function of the inner contracting operator is to detect whether an entire box is

a subset of the solution space, that is, detect sound solutions. Leftover space L can neither be

guaranteed to contain solutions, nor guaranteed not to contain solutions.

We design an inner contracting operator that has these properties in the manner described by

Algorithm 5.1. This algorithm is similar to the ICO2 algorithm in that it uses the idea of negated

constraints and box-set di�erence to locate solutions (Benhamou et al., 2004). Algorithm 5.1 is

di�erent from ICO2 because it applies to a set of constraints rather than a single constraint at a

time. The algorithm takes as input a set of constraints, and a box B that is previously narrowed

using the outerContract operator. Each constraint is negated and narrowed individually over

box B and if a FAIL is returned then B is the solution space to the constraint by implication.

Otherwise, the box set di�erence between B and the narrowed box is a solution to the constraint.

Each constraint has the potential to produce a number of disjoint solution boxes. To �nd

a global solution to the set of constraints, an intersection is performed for every combination of

solution boxes produced by each constraint. This is illustrated in Figure 5.9, in which constraint c1

results in three disjoint solutions, constraint c2 results in two disjoint solutions, and constraint c3

results in three disjoint solutions. The
⊎

operator is used to enumerate every possible combination

of disjoint solution boxes from each constraint. The intersection of each combination is a global

solution to the system of constraints.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 127

Algorithm 5.1 Inner contracting operator over a set of constraints.

innerContract(in: constraint set C,
box B previously narrowed by outerContract;

out: tuple (T,L) where:

T is set of solution boxes

L is the narrowed left-over box)

begin

R← {} %% Every combination of solutions

L← ∅ %% Initialize left-over space as empty-set

for each c ∈ C do

S ← {} %% Solutions for this constraint

B′ ← outerContract({c},B) %% Narrow B over single negated constraint

if B′ = FAIL then

add B to S as a solution to this constraint

else

Q← B � B′ %% Box set difference

for each box Q ∈ Q do

add Q to S if universally quantified domain not narrowed

if B′ 6= B then

L← L ∪B′ %% Get union of left-over box

R← R
⊎
S %% Enumerate all combinations of solutions

T ← {}
%% Each set in R contains one solution box for every constraint

for each set V in R do

if intersection between all solutions in V is defined then

add intersection to T
return (T,L)

end

Figure 5.9: Illustration of the combination of solutions performed by the inner contracting operator
(de�ned in Algorithm 5.1).

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 128

The two inner and outer contracting operators function together as a constraint solving mech-

anism. The outerContract operator is used to remove portions of the domain that contain no

solutions, and innerContract is used to identify sound solutions within domains previously nar-

rowed by outerContract. The manner in which these operators are invoked in an optimization

process is described in the following section.

5.4.3 Optimization through iterative tightening

We present an optimization process that repeatedly solves systems of progressively tightened con-

straints. The less relaxed a system of constraints, the more its set of solutions approximates the

actual solutions to the original set of constraints.

A relaxed constraint set is created by relaxing each individual constraint within it. This is

done by evaluating each individual constraint ci over the initial domain, and selecting a δi that

relaxes the constraint su�ciently so that it is validated over the initial domain. The sum of δi

values represents the overall relaxation constant for the constraint set. A relaxed constraint set C

with total relaxation δ is denoted as Cδ.

The constraint optimization algorithm over universally quanti�ed constraints is presented as

Algorithm 5.2, which consists of a pair of nested loops. The inner loop populates a set T with

solutions of the constraint system (using outer and inner contracting operators) for a speci�c

relaxation constant. Boxes for which no solutions are explicitly located are split using the split

function (never splitting universally quanti�ed variables). These split boxes are added to the set

D for further searching and splitting. The inner loop exits when no further boxes exist in D, a

state that occurs when boxes cannot be split any further on a �nite �oating point representation

machine.

After the inner loop exits, the set of solutions at the current level of δ represent current minimiz-

ers to the constraint system. The constraint system is tightened by reducing δi for each constraint,

and the outer loop iterates using the set of solutions at the previous step as initial domains to

be searched. The outer loop exits under three conditions: if there are no domains for the next

iteration, in which case no solution exists for the constraint system; if δ is su�ciently close to zero,

in which case the current solution is a solution to the system; and if the execution time of the

algorithm exceeds a manually speci�ed threshold.

The problem with Algorithm 5.2 is its slowness to converge to a minimum or solution. Boxes

that are indeterminate are split repeatedly at each level of δ until machine precision is reached,

which means that the number of boxes in D grows very quickly. This results in a large portion of

execution time being spent in the inner loop of the algorithm. The next section discusses strategies

for mitigating this problem.

5.4.4 Reduction of execution time

We modify Algorithm 5.2 to reduce the amount of time spent searching for solutions at each level

of δ using a pair of thresholds that are used to exit the inner loop prematurely.

The �rst threshold for exiting the inner loop of Algorithm 5.2 de�nes a maximum number of

solution boxes τsolutions to be found at each value of δ. If the number of solution boxes in T

exceeds this threshold, then the inner loop exits. The other threshold limits the number of split

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 129

Algorithm 5.2 Quanti�ed interval optimizer.

IOPT(in: constraint set C, box B,

precision level for recognizing solutions ε,
time cutoff threshold τtime;

out: set S of solution or minimizer boxes)

begin

Cδ ← constraint set relaxed over initial domain

D ← {B} %% Set of solutions at previous δ
M ← {} %% Minimizers found so far

while size(D) > 0 and δ > ε and time < τtime do

T = {} %% Solutions at this level of δ
while size(D) > 0 and time < τtime do

B← removeF irst(D)
B′ ← outerContract(Cδ,B)
if B′ 6= FAIL then

(Q,L)← innerContract(Cδ,B′)
if size(Q) > 0 then

add all solutions in Q to T
D ← D ∪ split(B′) %% Split for future searching

D ← D ∪ split(L) %% Split for future searching

if size(T) > 0 then %%There are solutions at this δ
D ← T %% Use these solutions as input for reduced δ value

M ← T %% Save these solutions as minimizers

Cδ ← tighten constraint set Cδ(reduce δ)

if δ > ε then %% Outer loop exits without reaching δ = 0
return M %% return minimizers

else

return D %% return solutions

end

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 130

boxes created within the inner loop. If the number of boxes in D exceeds the threshold τsplits,

then the inner loop exits. The use of these thresholds limits the number of iterations performed

by the inner loop. However, the early termination of the inner loop introduces the problem that

potential solutions in D are never recognized.

We use backtracking to avoid the problem introduced by thresholds. When a threshold is

reached, all boxes in D that have not yet been searched are saved, along with the current relaxed

constraint system. If any subsequent searches fail to locate solutions for a tightened constraint

system, the algorithm relaxes the constraints to their previous level, and continues searching the

remaining boxes.

We represent D using a queue structure. At each iteration of the inner loop the �rst box from

D is removed and searched, and if no solutions are found the box is split. Newly split boxes are

appended to the end of D. This process is analogous to a breadth-�rst traversal of a tree. To

reduce the problem introduced by thresholding, we only enable thresholds if each depth in the

implicit search tree is searched to a su�cient degree. In practice, we �nd that searching 200 boxes

at each depth in the tree (before thresholds are enabled) provides adequate performance gains.

These boxes are chosen in a distributed manner so that they are sampled from across the entire

range at a particular depth.

The enhanced interval optimizer is presented as Algorithm 5.3, in which the enhancements from

Algorithm 5.2 are highlighted. Algorithm 5.3 makes use of a variable called δbest, which records the

lowest level of δ for which solutions are found. This is required in the event that backtracking occurs

to distinguish future minimizers from the best solution located until that point. A set called States

is also maintained for backtracking purposes, containing tuples of the form (Cδ = {cδ1 , ..., cδn}, D),
each of which associates a set of relaxed constraints with a set of boxes that still require searching.

The outer loop of Algorithm 5.3 remains unchanged, but the inner loop is modi�ed in a number

of ways. Instead of removing the �rst box from the set D for searching, a box is removed at a

speci�c index to ensure that boxes are sampled from across the current depth of the tree. Newly

split boxes are not immediately added to D for future processing, but are rather added to an

intermediate set N representing the next depth in the tree to be searched. Only in the event that

D becomes empty are the elements in N appended to D. The inner loop only exits if the current

depth has been adequately sampled according to the manually speci�ed factor value (number of

boxes searched at each level) and one of the two thresholds are reached. The inner loop also exits

if a time limit is reached, or no remaining boxes are left for searching at the current value of δ.

The exit of the inner loop results in either a set of solutions for the current value of δ (the set

T), or no solutions (T = {}). If solutions are found and the current δ is less than δbest then these

solutions are minimizers, and the constraint set can be tightened and solved over these solutions.

If no solution is found (T = {}), then a backtrack must occur, relaxing the constraint set to a

previous level of δ that still has unsearched boxes. The decision as to which constraint set and

set of boxes to search at the next iteration of the outer loop is encapsulated in the switchState

function, which either tightens the constraint set, or backtracks to a relaxed constraint set:

switchState(Cδ, T, States) =

(tightened Cδ, T) if size(T) > 0

removeF irst(States) if size(T) = 0

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 131

Algorithm 5.3 Interval optimizer updated for e�ciency.

IOPT2(in: constraint set C, box B,

precision level for recognizing solutions ε,
time cutoff threshold τtime,

solution cutoff threshold τsolutions,

split cutoff threshold τsplits

number of boxes before thresholds enabled factor;
out: set S of solution or minimizer boxes)

begin

Cδ ← constraint set relaxed over initial domain

D ← {B} %% Set of solutions at previous δ
M ← {} %% Minimizers found so far

I δbest ← δ %% Lowest δ found with solutions

I States← {} %% Backtrack states

while size(D) > 0 and δ > ε and time < τtime do

T = {} %% Solutions at this level of δ
I distribution← size(D)/factor %% Calculate how to select search boxes

I removeIndex← 0 %% Index for removing search boxes

I N = {} %% Next level of split boxes

while size(D) > 0 and time < τtime and

I not(removeIndex > size(D) and

I (size(N) > τsplits or size(T) > τsolutions)) do

I B← remove box at index removeIndex from D
I removeIndex← removeIndex+ distribution

B′ ← outerContract(Cδ,B)
if B′ 6= FAIL then

(Q,L)← innerContract(Cδ,B′)
if size(Q) > 0 then

add all solutions in Q to T
I N ← N ∪ split(B′) %% Split for future searching

I N ← N ∪ split(L) %% Split for future searching

I if size(D) = 0 then

I D ← N %% If level is complete, search next level

add all boxes in N to D
I if size(T) > 0 and δ < δbest then

I M ← T
I δbest ← δ
I if size(D) > 0 then add (Cδ, D) to States %% Save state

I (Cδ, D)← switchState(Cδ, T, States) %% Reduce δ or backtrack

if δ > ε then %% Outer loop exits without reaching δ = 0
return M %% return minimizers

else

return D %% return solutions

end

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 132

Parameter Description

ε Level of precision for relaxation constant δ
factor Number of boxes to be searched at each depth before thresholds are enabled
τtime Threshold for execution time
τsolution Threshold for solutions found in inner loop
τsplits Threshold for split boxes created in inner loop

Table 5.1: Summary of parameters for the interval-based quanti�ed constraint optimization algo-
rithm.

IOPT2

outerContract

BC3

BC3Revise

Constraint optimization:

Inner contracting operator:

Outer contracting operator:

Set of constraints

Single constraint

Single negated constraint

innerContract

Set of constraints

Set of constraints

Set of constraints

Figure 5.10: Illustration of the components of the interval optimization algorithm.

The outer loop iterates until δ reaches a su�cient proximity to zero (de�ned by the constant

ε), or until no further backtracking states exist. The outer loop also exits if the time threshold

is reached, in which case the minimizer at the current δbest value is returned as an approximate

solution.

The set of parametrization values for the IOPT2 algorithm is summarized in Table 5.1.

5.4.5 Implementation

We implement the IOPT2 algorithm using components sourced from existing research. Figure

5.10 illustrates that the primary two components of IOPT2 algorithm are the outerContract and

innerContract operators. The outerContract operator is implemented using the BC3 algorithm

de�ned by Benhamou et al. (1994). This algorithm in turn incorporates the BC3Revise (Ben-

hamou et al., 1994, 1999) component for achieving box consistency. The innerContract algorithm

(Algorithm 5.1 on page 127) is based on the ICO2 algorithm de�ned by Benhamou et al. (2004),

in which a single negated constraint is narrowed at a time using the outerContract operator.

We implement interval arithmetic operations in Java, using natural interval extensions of primi-

tive operators described by Moore (1966) and Hickey et al. (2001). Conservative outward rounding

is provided in the implementation using the BigDecimal class available in the Java 1.5 API, which

performs rounding at manually speci�ed levels of precision.

Our implementation of box consistency is di�erent to the method used by Benhamou et al.

(1994). We use a divide and conquer approach for �nding the right-most and left-most roots of

the univariate functions (instead of the Newton method). The Newton method is faster in locating

roots, but it requires the calculation of the derivative of a function, as well as an implementation of

the interval division operator, both of which are non-trivial. For example, the handling of division

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 133

by zero in interval arithmetic is a topic with disputed solutions (Moore, 1966; Hickey et al., 1998).

The divide and conquer approach avoids this issue, at the cost of slower convergence however.

The IOPT2 algorithm performs an initial evaluation of the set of constraint functions to deter-

mine the starting value of δ. Evaluation of an interval function F (B) is performed using an interval

evaluation technique based on centered forms for producing less exaggerated bounds, described by

Moore (1966).

Input constraints are expressed symbolically (examples of which appear in Appendix D) and

are parsed using the Java Expression Parser2. An initial, non-in�nite box B is speci�ed that

represents the search domain for a system of constraints.

5.5 Analysis of the interval-based quanti�ed constraint opti-

mizer

We examine the properties of the interval-based quanti�ed constraint optimizer to determine if

it is e�ective in quantifying behaviour speci�ed by systems of constraints. These properties are

investigated in terms of the following questions:

1. What parametrization values are appropriate for the interval-based quanti�ed constraint op-

timizer?

We investigate the two threshold values τsolutions and τsplits to determine the e�ect these

parameters have on the time taken to locate a solution to a system of constraints.

2. Does the implementation of underlying algorithms compare to reported implementations in

terms of execution time and scalability?

The BC3 algorithm is an important component of both the constraint solving (Section 5.3.4)

and constraint optimization algorithms (Section 5.4). We investigate if our implementation

of this algorithm is comparable to reported implementations.

3. Is the interval-based quanti�ed constraint optimizer able to locate solutions for standard uni-

versally quanti�ed constraint solving benchmarks?

One requirement that we place on the interval-based quanti�ed constraint optimizer is that it

be capable of locating solutions to constraint systems that are consistent. We investigate the

success of the algorithm over standard benchmarks, and compare the optimization algorithm

with an implementation of an existing constraint solver.

4. Is the constraint optimizer capable of locating solutions to constraint systems that describe

relations between stationary and moving entities in a virtual environment?

The �ction-to-animation system is concerned with moving multiple entities around a Carte-

sian space with a time dimension, as prescribed by our de�nition of a scene in Section 5.1.

We investigate benchmarks that perform this task, and determine which of the optimizer or

solver is more applicable for solving these constraint systems.

2JEP: http://www.singularsys.com/jep/ [accessed on 16 June 2008]

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 134

Benchmark Source

CLPRevisited{a,b,c} A toy benchmark described by Benhamou et al. (1994).
Broyden Banded
Functions
{5,10,20,40,80,160}

Used as benchmarks by Benhamou et al. (1994, 1999) to show
scalability to increasing number of variables and constraints.

More-Cosnard
{10,20,40,80}

Used as benchmarks by Benhamou et al. (1994, 1999) to show
scalability to increasing number of variables and constraints.

Table 5.2: Benchmarks for verifying underlying narrowing and solving algorithms.

Benchmark Source

Parabola Fitting, Circle,
Robot, Point-path and
Satellite

Described by Benhamou et al. (2004) as benchmarks for constraint
solving over universally quanti�ed variables.

Robust 1 Used by Ratschan (2006) from the bibliography available from his
website (Ratschan, 2008).

Table 5.3: Benchmarks for verifying ability to solve universally quanti�ed constraint systems.

This section presents a suite of experiments for answering the above questions, and describes

benchmarks used in these experiments. Metrics for measuring success are de�ned, and possible

sources of experimental error are identi�ed.

5.5.1 Benchmarks

We divide benchmarks into three categories: those used to verify underlying algorithm implemen-

tation, those used to validate and compare the ability to solve standard universally quanti�ed

constraint benchmarks, and those that contain constraint systems likely to be created by the

�ction-to-animation process.

5.5.1.1 Non-quanti�ed benchmarks to verify underlying algorithms

The constraint optimizer relies on an implementation of outer and inner contracting operators that

make use of the BC3 algorithm de�ned by Benhamou et al. (1994). The implementation of this

algorithm is evaluated using standard constraint solving benchmarks in related research. These

benchmarks are listed in Table 5.2. The Broyden and Cosnard functions are chosen as benchmarks

because the functions can be increased in terms of the number of variables and constraints, and

provide an indication as to the scalability of the constraint solving implementation.

The benchmarks listed in Table 5.2 are all non-quanti�ed root-�nding problems. Full formula-

tions are listed in Appendix D.

5.5.1.2 Quanti�ed benchmarks to verify solving ability

The goal of the interval-based quanti�ed constraint optimizer is the ability to locate solutions for

constraint systems that include a universally quanti�ed variable. Standard benchmarks exist for

validating this ability, listed in Table 5.3.

All benchmarks de�ned by Benhamou et al. (2004) are concerned with solving constraint sys-

tems in which each constraint contains a single universally quanti�ed variable. Ratschan (2006)

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 135

Benchmark Description

Front Four objects, each constrained to appear inFrontOf and near one of the
others. noCollide constraints over all objects.

Scene Six objects arranged using toRightOf , toLeftOf , inFrontOf , behind,
noCollide and near constraints.

Layout3 Three objects arranged with the noCollide constraint.

WayPoints One object constrained to pass through 3 �xed way-points, using the near
constraint over 3 di�erent time-intervals.

Dynamic1
Static1

One object is static, the other dynamic with trajectories of increasing degree
in each dimension. near and inFrontOf are applied over a sub-interval of
time. noCollide is applied over the entire interval of time.

Dynamic2 Both objects are dynamic, having trajectories of increasing degree in each
dimension. near and inFrontOf are applied over sub-interval of time.
noCollide is applied over entire interval of time.

Collision n objects, each constrained to be near and noCollide with every other object.
Increases in complexity with addition of each object, and for n > 3 is
inconsistent.

Table 5.4: Benchmarks for �ction-to-animation constraints.

de�nes a suite of benchmarks in which each constraint contains more than one quanti�ed vari-

able. Our implementation of the interval-based quanti�ed constraint optimizer currently handles a

single quanti�ed variable per constraint (although many quanti�ed variables per system) because

we anticipate that time is the only universally quanti�ed value in our behaviour quanti�cation

problem. Therefore, out of the six possible �Robust� experiments de�ned by Ratschan (2008) we

only use �Robust 1�, the only benchmark from this suite in which constraints contain at most one

universally quanti�ed variable. Full formulations of these benchmarks are listed in Appendix D.

5.5.1.3 Quanti�ed �ction-to-animation constraint systems

We use a suite of benchmark constraint systems that de�ne the motion of entities in a d-dimensional

Cartesian space. We limit the number of dimensions to three, because greater dimensionality is not

required for visual representation. Entity trajectories are represented as n-degree Bezier splines

de�ned over a universally quanti�ed time variable. The constraint solving task is concerned with

�nding values for the control points of the Bezier splines so that the resulting trajectories satisfy

the de�ned relational constraint over a speci�ed time interval.

These benchmarks are divided into those describing static and those describing dynamic scenes,

summarized in Table 5.4. We phrase constraints in terms of spatial relations (such as inFrontOf

and near) that are motivated and formulated in Chapter 6. For these experiments, we assume

that these benchmarks are representative of constraint systems to be produced by an automated

process. For repeatability, the exact constraint formulations for these experiments are detailed in

Appendix D.

The Front, Scene, Layout3, and Collision benchmarks are used as non-quanti�ed con-

straint solving benchmarks and only contain entities without motion. The WayPoints, Dy-

namic1Static1, and Dynamic2 benchmarks de�ne scenes containing moving entities, and are

used to evaluate constraint optimization for systems containing a universally quanti�ed variable

representing time.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 136

5.5.2 Metrics

Time-to-solution is the most common metric used for evaluating constraint solving techniques

(Benhamou et al., 2004; Ratschan, 2006). We measure this metric as the number of seconds

between the invocation of the solving/optimization process and the detection of a solution.

We also report the δ value for the system of constraints during the constraint optimization

process. This value is recorded once every ten seconds, and in these experiments we are interested

in the following observations:

• δstart: the largest relaxation constant for the system of constraints. The initial domain is a

solution to this system of relaxed constraints.

• δbest: the lowest value of δ achieved by the optimization process at the time of termina-

tion. This value indicates the remaining quantity of tightening required before a solution is

obtained.

5.5.3 Sources of experimental error

A source of experimental error in this investigation is the computer system on which the imple-

mented algorithm is executed. We perform our experiments on a Pentium 4 dual core 1.86GHz

machine with 2GB of memory. The operating system permits multiple simultaneous processes,

which means that the time-to-solution value for the solving/optimizing process is potentially af-

fected by other executing processes. We mitigate this source of error by executing each process

multiple times, and taking the average execution time as the time-to-solution.

Another source of experimental error is the type of rounding performed on a particular machine.

We mitigate this problem using the BigDecimal class, and for all experiments enforce outward

rounding at a precision level of 10−2.

5.5.4 Results

This section describes the individual experiments performed during the investigation of the ques-

tions posed.

5.5.4.1 Parametrization and behaviour of the optimizer

This experiment examines the e�ect of the threshold parameters on the solving and optimizing

ability of the IOPT2 algorithm, and also provides initial insight into the nature of the relaxation

constant. We investigate the following questions:

• What values of τ provide the best compromise between execution time and low values for δ

(where τ refers to both τsolutions and τsplits simultaneously)?

• What is the relationship between the value of the relaxation constant and the amount of

execution time of the optimization process?

We use three benchmarks for this experiment. The Satellite benchmark is used to represent a

common universally quanti�ed solving task, while the Scene benchmark is used as an example

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 137

ε factor τsolution τsplits

10−2 200 120 120

Table 5.5: Optimizer parameters used for experiments.

of a �ction-to-animation task. The Collision7 benchmark is also used as an example of an

inconsistent constraint system.

The experiment is conducted as follows: a value of 5 is chosen for τ and the optimization

process is invoked for a benchmark. The value of δ is recorded at 10 second intervals, until either a

solution is found, or until the total execution time exceeds 90 minutes. This experiment is repeated

ten times, doubling the value of τ for each experiment. This experiment does not investigate the

independent e�ects of τsolutions and τsplits.

The level of precision ε is �xed at 10−2 for all experiments, and the distribution factor at each

level in the search tree is �xed at factor = 200. τtime is �xed at 90 minutes.

We plot the δ value as a function of time in Figure 5.11 for each experiment. For the Satellite

problem time-to-solution is minimal using thresholds of 5, as shown in Figure 5.11(a). However,

using a threshold of 5 the optimization process never reaches a solution in the time allotted for

the Scene benchmark, as shown in Figure 5.11(b). Instead, higher thresholds (of 20 and 80) are

more successful. Thresholds of 10 and 160 produce the two lowest values for δ for the Collision7

benchmark in Figure 5.11(c).

The above observations indicate that a dependence exists between the type of constraint system

being solved and the most appropriate threshold values for minimal execution time. We choose a

threshold value of 120 for the majority of experiments in subsequent sections, because this is an

intermediate value within the range of successful thresholds observed in this experiment. However,

we suggest a rule-of-thumb based on personal experience with the solver stating that this threshold

value should be increased as the number of variables in a constraint system increases.

All three graphs in Figure 5.11 indicate that the value of δ decreases with the progression of

time. The reduction in δ is step-wise in nature, re�ecting the fact that reduction only occurs

when solution boxes are located. The more di�cult the solution �nding process for a particular

δ, the longer the overall relaxation value stays constant. However, the graphs indicate that given

su�cient execution time, solutions or minimizers at low δ levels are located eventually.

These experiments demonstrate that appropriate threshold values for the optimization algo-

rithm are dependent on the type of constraint system being solved, but values re�ected in Table

5.5 are generally successful. All subsequent experiments use these parameter values unless other-

wise indicated. We also conclude that an inverse relationship holds between the amount of time

spent optimizing a constraint system and the value of δ. This means that better approximations

are expected given additional execution time of the algorithm, but the degree of improvement

diminishes the longer the process runs.

5.5.4.2 Implementation of underlying algorithms

This experiment investigates whether the underlying algorithms are implemented to a comparable

level to existing implementations. The reason for this experiment is that our implementation

contains di�erences to existing methods (for example using a divide and conquer approach for

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 138

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

R
el

ax
at

io
n

co
ns

ta
nt

Time / [s]

Threshold: 5
Threshold: 10
Threshold: 20
Threshold: 40
Threshold: 80

Threshold: 160
Threshold: 320
Threshold: 640

Threshold: 1280
Threshold: 2560

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000
 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000

(a) Standard benchmark (consistent): Satellite

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 1000 2000 3000 4000 5000

R
el

ax
at

io
n

co
ns

ta
nt

Time / [s]

Threshold: 5
Threshold: 10
Threshold: 20
Threshold: 40
Threshold: 80

Threshold: 160
Threshold: 320
Threshold: 640

Threshold: 1280
Threshold: 2560

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

(b) Custom benchmark (consistent): Scene

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1000 2000 3000 4000 5000

R
el

ax
at

io
n

co
ns

ta
nt

Time / [s]

Threshold: 5
Threshold: 10
Threshold: 20
Threshold: 40
Threshold: 80

Threshold: 160
Threshold: 320
Threshold: 640

Threshold: 1280
Threshold: 2560

(c) Custom benchmark (inconsistent): Collision7

Figure 5.11: E�ect of threshold size on solving time.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 139

Benchmark Consistent Correct Time / [s] Growth Reported Growth

CLPRevisited(a) Yes 3 1.096 - -
CLPRevisited(b) Yes 3 0.908 - -
CLPRevisited(c) No 3 0.911 - -

Broyden 5 Yes 3 1.253 - -
Broyden 10 Yes 3 2.330 1.860 7.59 (Benhamou et al., 1994)
Broyden 20 Yes 3 5.041 2.164 2.94 (Benhamou et al., 1994)
Broyden 40 Yes 3 12.669 2.513 2.38 (Benhamou et al., 1994)
Broyden 80 Yes 3 38.309 3.024 2.07 (Benhamou et al., 1994)

More-Cosnard 10 Yes 3 2.414 - -
More-Cosnard 20 Yes 3 11.332 4.694 6.333 (Benhamou et al., 1999)
More-Cosnard 40 Yes 3 79.811 7.043 3.052 (Benhamou et al., 1999)
More-Cosnard 80 Yes 3 698.898 8.757 4.724 (Benhamou et al., 1999)

Table 5.6: Performance benchmarks for non-quanti�ed constraint solving.

�nding roots as opposed to the Newton method). We evaluate whether these di�erences impact

scalability, and by doing so, a�ect the ability of an implemented universally quanti�ed constraint

solver and optimizer. We investigate the following questions:

• Can our implementation of underlying algorithms be used to locate solutions to non-quanti�ed

benchmarks?

• Is our implementation comparable to existing implementations in terms of scalability (with

regards to the number of variables and constraints)?

We conduct this experiment using the BC3 algorithm for constraint propagation (Benhamou et al.,

1994) over a number of benchmarks. The �rst benchmark is the CLPRevisited problem described

by Benhamou et al. (1994), which we use to verify that the implemented algorithm is capable of

detecting inconsistent constraint systems. Scalability is investigated using the Broyden-banded

functions and More-Cosnard functions, both of which are systems of constraints with doubling

numbers of variables and constraints. The time-to-solution is recorded for each benchmark.

We evaluate the scalability of the implemented algorithms using the ratio between consecutive

instances of increasingly complex constraint systems. This ratio represents growth, a metric used by

Benhamou et al. (1994) to evaluate the penalty in time that exists when increasing the complexity

of the constraint systems.

The recorded time-to-solution values over the aforementioned benchmarks are listed in Table

5.6. A solution is found for all benchmarks using the implemented algorithm, and the inconsistent

constraint system is correctly identi�ed.

The growth ratio observed for consecutive Broyden and Cosnard functions is also presented

in Table 5.6, along with the corresponding growth �gures observed for related implementations

(Benhamou et al., 1994, 1999). The growth �gures reported for the related implementations are

varied, and do not present constant growth for either the Broyden or the Cosnard functions. This

variability is also re�ected in our implementation, although we report growth �gures within the

same order of magnitude as the reference implementation. We report reduced growth ratios for

some Broyden and Cosnard functions indicating that, up to a point, our implementation produces

better scalability than the related implementation.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 140

Benchmark Reported Solver Optimizer Relaxation constant
(ε = 10−2) Time / [s] Time / [s] Time / [s] δfirst δbest

Parabola Fitting 0.02∗ 0.097 4.292 3.0 0
Circle 0.01∗ 0.500 13.452 4891.09 0

PointPath 7.85∗ 1.151 50.296 146.07 0
Robot 0.01∗ 0.954 5.271 10.98 0
Satellite 0.99∗ 2.860 653.308 79.19 0
Robust 1 < 1+ 0.053 2.561 197.80 0

∗As reported by Benhamou et al. (2004).
+As reported by Ratschan (2006)

Table 5.7: Performance benchmarks for non-linear, universally quanti�ed constraint solving.

These experiments demonstrate that our implementation of constraint propagation and solving

algorithms are comparable to existing implementations, and that our implementation is capable of

locating solutions to standard constraint solving benchmarks. The scalability of our implementa-

tion is also comparable to existing implementations with regards to the number of variables and

constraints in the system.

5.5.4.3 Benchmarks in universally quanti�ed constraint solving

This experiment investigates whether solutions can be found for standard benchmarks in universally

quanti�ed constraint solving using the optimization algorithm. We compare our implementation

of the universally quanti�ed solving process with an implementation reported in related research,

and also investigate how an optimization approach compares over these problems. In particular:

• Is the interval-based quanti�ed constraint optimizer able to locate solutions for standard uni-

versally quanti�ed constraint solving benchmarks?

• Is our implementation of the universally quanti�ed constraint solver comparable to a related

implementation reported by Benhamou et al. (2004)?

• Does the optimization method increase or decrease time-to-solution over standard bench-

marks, and what is the nature of the relaxation constant for these benchmarks?

This experiment is conducted as follows. Each benchmark is solved using our implementation of

the IPA algorithm described in Section 5.3.4 and by Benhamou et al. (2004) and the time-to-

solution recorded. The same benchmark is solved using the optimization algorithm, recording the

time-to-solution, the initial relaxation constant, and the �nal relaxation constant.

The reported solving time (for �nding the �rst solution) for existing systems over the set of

benchmarks is listed in Table 5.7. Our implementation of the IPA solver successfully locates

solutions to all the benchmarks.

The time-to-solution of our implemented solver is greater than the reported time-to-solution of

the existing implementation in all cases except for the PointPath benchmark. We attribute this

fact to a number of factors: our implementation is penalized in execution e�ciency due to the

virtual machine-based execution; our implementation uses a simple depth-�rst traversal across the

search space, as opposed to the heuristic traversal strategies used by Benhamou et al. (2004); and

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 141

the use of the divide and conquer approach for locating roots a�ects the convergence to solutions

(as demonstrated in Section 5.5.4.2). In spite of these di�erences, the reported time-to-execution is

of the same order (both within a range of seconds) in both implementations of the solver, indicating

that the implementations are comparable.

The reported solving time for the constraint optimizer is presented in Table 5.7. We observe

that the optimizer locates solutions to all benchmarks, but the time-to-solution in all cases is larger

than that observed using the solver. This indicates that there is a penalty in execution time for

using an optimization approach rather than a solving approach. We believe that this penalty is

o�set by the availability of an approximate solution at any point during the execution.

The initial values of the relaxation constant for each benchmark are also presented in Table 5.7.

These values vary according to the benchmark, indicating that the interpretation of the constant

is dependent on the formulation of the constraints. However, in all cases the constant reaches zero.

We conclude that our implementation of the constraint solver and optimizer is capable of

locating solutions to benchmarks in universally quanti�ed constraint solving. Our implementation

of the solver is comparable to a related implementation, which means that further evaluations can

be performed using this solver as a representative of the solving strategy (see Section 5.5.4.4, which

compares solving and optimization strategies for �ction-to-animation benchmarks).

5.5.4.4 Benchmarks formulated for virtual environments

This experiment investigates the problem of �nding solutions to constraint systems that are for-

mulated for specifying time-based spatial relations in n-dimensional scenes. We investigate this

problem to determine if the interval optimizer is capable of locating solutions to the types of

constraints that are formulated by an automatic �ction-to-animation process. We investigate the

following questions:

• Is the interval-based quanti�ed constraint optimization algorithm capable of locating solutions

to constraint systems formulated for scenes without motion (non-quanti�ed) as well as scenes

with motion (quanti�ed)?

• Does the constraint optimizer focus the search with the result of locating solutions in less

time?

• Is the interval optimizer capable of producing approximate solutions for inconsistent con-

straint systems?

This experiment is conducted using the set of �ction-to-animation benchmarks discussed in Sec-

tion 5.5.1.3, which include constraint systems that specify scenes with and without motion, as well

as constraint systems that are inconsistent. These benchmarks are solved using the implementa-

tion of the solver, and also using the interval optimizer. Time-to-solution is recorded using both

techniques, and we �x an upper limit of 90 minutes for the solving/optimizing process.

Time-to-solution for each �ction-to-animation benchmark is presented in Table 5.8 for both

the solver and the interval optimizer. The ∞ symbol is used when no solution is found within

the allocated 90 minute period. The interval solver performs poorly over the set of consistent

benchmarks, only �nding a solution for two benchmarks in the set. The interval optimizer locates

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 142

Benchmark Time/[s] Relaxation constant

Name d n τ Solver Optimizer δfirst δbest Time-to-δbest/[s]

Consistent benchmarks without motion:

Front 2 0 120 ∞ 1929.28 3620.63 0 1929.282

Scene 2 0 120 ∞ 2928.03 19339.99 0 2928.03

Layout3 2 0 120 1364.438 60.78 9648.00 0 60.787

Consistent benchmarks with motion:

WayPoints 2 2 120 ∞ 578.768 63871.8 0 578.768

2 3 500 ∞ 2071.92 56615.68 0 2055.775

Dynamic1Static1 1 1 120 218.493 22.53 594 0 22.533

2 1 500 ∞ 173.95 1197.00 0 173.95

2 2 600 ∞ ∞ 927.71 24.20 232.154

Dynamic2 1 1 500 ∞ 337.35 81197.01 0 337.35

2 1 500 ∞ 471.97 324007.02 0 471.97

2 2 600 ∞ ∞ 761070.10 25.08 833.07

Inconsistent benchmarks with and without motion:

Collision4 2 0 120 ∞ ∞ 9546.00 219.54 3882.076

2 1 120 ∞ ∞ 9642.24 4639.15 3213.20

d =dimension; n =degree of trajectory; τ =threshold value for both τsolutions and τsplits

Table 5.8: Performance benchmarks for �ction-to-animation constraints.

solutions to nine of the eleven benchmarks, including benchmarks with and without motion. This

indicates that constraint systems exist where the interval optimizer locates solutions in less time

than the interval solver. We believe that this is because the relaxation process guides the search

towards solutions.

The starting relaxation constant δfirst and the lowest relaxation constant achieved by the

interval optimizer δbest are recorded in Table 5.8. In cases where solutions are located, δbest reaches

zero. Minimizers are found for benchmarks for which no solutions are located, and the relaxation

constant δbest provides an indication of how closely the minimizer approximates a solution through

its distance to zero. We observe that the two consistent benchmarks for which no solutions are

located result in minimizers that are close to zero in comparison with δfirst.

As expected, solutions to inconsistent benchmarks are neither located by the solver nor are

they located by the optimizer. However, the optimizer provides minimizers to both benchmarks,

and in the case of the scene without motion, produces a relaxation constant that is reduced by

97.70%. This result highlights the strength of the optimization approach, in that an approximate

solution is provided even where no solution exists.

Table 5.8 presents the time-to-δbest value, which is the time required to reach the lowest re-

laxation constant for a benchmark. In all cases where solutions are located, this value is equal

to time-to-solution. However, for all inconsistent benchmarks, this value is less than 5400 (90

minutes), indicating that minimizers are located earlier than the cuto� time threshold.

The interval optimizer is e�ective at locating solutions for constraint systems that specify time-

based behaviour. The optimizer focuses the search for solutions such that it locates solutions faster

than the solving technique for these types of constraint systems, and also produces approximate

solutions for inconsistent constraint systems.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 143

5.5.5 Summary of �ndings

The experiments presented in Section 5.5.4 on page 136 provide insight into the properties of the

interval-based quanti�ed constraint optimizer with respect to the questions posed at the beginning

of this section:

1. Threshold values for parametrizing the interval-based quanti�ed constraint optimizer (to

reduce execution time) vary according to the constraint system to be solved. The relaxation

constant decreases as a function of time, and given su�cient time, the optimizer eventually

locates a solution (for consistent systems).

2. Our implementation of the underlying algorithm is comparable to an existing implementation

in terms of its ability to locate solutions to standard benchmarks, as well as in terms of its

scalability with respect to the number of variables and constraints in a system.

3. The interval-based quanti�ed constraint optimizer locates solutions to consistent constraint

systems that contain universally quanti�ed variables. There is a penalty for using an opti-

mization process for �nding solutions to universally quanti�ed constraint systems, which is

o�set by the availability of an approximate solution at any point.

4. The constraint optimizer locates solutions to constraint systems that describe relations be-

tween stationary and moving entities in a virtual environment. It also derives approximate

solutions for inconsistent constraint systems. Systems exist speci�cally in the �ction-to-

animation domain where the trade-o� experienced using the optimizing strategy (as opposed

to a solving strategy) is nulli�ed, and the optimizer locates solutions faster than the solver.

5.6 Conclusion

The interval-based quanti�ed constraint optimizer provides a solution to the problem of quan-

tifying behaviour in a virtual environment. If behaviour is phrased as symbolically formulated

constraints, this mechanism is guaranteed to produce quanti�ed values that satisfy the constraints

or approximate valid behaviour (in cases where constraints con�ict). We conclude the following

with regards to the initial problem statement at the beginning of this chapter:

1. Constraints formulated over contiguous intervals of time and space are represented e�ectively

using interval arithmetic. This enables direct solving of symbolically phrased constraints, and

removes the need to transform systems into discrete representations.

2. Environment-independent spatial reasoning is achieved using an analytical formulation of

constraints and their solutions using interval-based methods. This means that behaviour is

quanti�ed prior to the instantiation of the environment, and provides for the construction of

environments at any point in the duration of a scene (for non-sequential �lming).

(a) The interval-based representation provides for the identi�cation of sound quanti�ed

solutions over a contiguous interval (this conclusion is also reached by Benhamou et al.

(2004)). This ensures that no erratic behaviour is produced in a scene that could

potentially result from aliasing when using discrete solving methods.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 144

(b) Solutions returned by the interval-based solving/optimizing process are also phrased as

contiguous intervals. This provides a range of options for valid behaviour in a scene.

3. The interval-based quanti�ed constraint optimizer directs the search for solutions with the

result that it locates solutions faster than a regular solving algorithm (for �ction-to-animation

benchmarks). Relaxed constraints and iterative tightening successfully prune the search space

posed by the original constraints. This is signi�cant because it reduces search time, and also

establishes a correlation between search time and the proximity of the process to an actual

solution.

4. The interval-based quanti�ed constraint optimizer addresses the trade-o� between locating

valid behaviour con�gurations and the amount of time spent searching for these con�gura-

tions.

(a) The optimization method e�ectively maintains a solution approximation that is re�ned

with further execution of the optimizer. This suggests that a human with limited time

is capable of continuing the �ction-to-animation process with an approximate solution,

but is free to use a more re�ned solution at a later stage if the optimization process

continues.

(b) Optimization time is a�ected by the type of constraint system being solved. The use

of thresholds reduces optimization time, but custom threshold values must be derived

depending on the type of system. We use a rule-of-thumb stating that the greater the

number of variables, the larger these thresholds should be for shorter time-to-solution.

5. A null solution is not the only possibility for inconsistent constraint systems that are cre-

ated automatically. The interval-based quanti�ed constraint optimizer produces approximate

solutions even for inconsistent constraint systems. This guarantees quanti�ed behaviour (re-

gardless of how �awed), despite inconsistencies in the text or annotations.

The interval-based quanti�ed constraint optimizer provides a mechanism for automatically quan-

tifying scene behaviour. The derivation of analytical constraint systems, as well as the conversion

of constraint solutions into corresponding visuals is discussed in Chapter 6.

This chapter contributes innovative work with regards to the text-to-graphics task and interval-

based constraint solving:

• We present the �rst use of interval-based constraint solving in the text-to-graphics domain.

• To the knowledge of the author, this work is the �rst to employ quanti�ed constraint solving

techniques from an optimization perspective rather than a solving perspective. In particular:

� This work presents the �rst method for optimizing universally quanti�ed constraint

systems where a solution is not guaranteed to exist.

� This work is the �rst to provide a mechanism that allows early termination of the

universally quanti�ed solution-�nding process while still providing values that can be

used in subsequent applications.

CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 145

• We contribute to the �eld of interval-based constraint solving through the creation of an inner

contracting operator that functions over a set of constraints (rather than a single constraint

at a time).

• Our method of using a divide and conquer approach for locating roots over univariate func-

tions contributes an alternative strategy for implementing the BC3 algorithm that does not

require the implementation of division or root operators. While resulting in slower con-

vergence, this method does not seriously impact the performance or scalability of solving

methods.

Future work includes investigating further enhancements to the IOPT2 algorithm to speed up

convergence to a minimum or solution. This is particularly important when scaling to the types

and quantity of constraints automatically generated from annotated text. This issue is investigated

further in Chapter 6.

Chapter 6

Population of virtual worlds

This chapter describes the creation of multi-modal animated 3D environments and �lms from an-

notated �ction text. The interpretation process consists of deriving high-level scene descriptions

from the annotations that include the list of scenes to visualize and the contents and behaviour

in each scene (Section 6.2). High-level behaviour is expressed using abstract constraints, and is

quanti�ed in a virtual environment through the optimization of corresponding analytical expres-

sions (Section 6.3). The �nal step in the process automatically populates virtual environments so

that they visually represent the descriptions in the original text (Section 6.4). We evaluate the

interpretation process in terms of the degree of consistency of the automatically generated content,

and in terms of the degree to which the visualized scene corresponds to the original text (Section

6.5). We provide conclusions regarding the automated interpretation process in Section 6.6.

6.1 Introduction

6.1.1 Problem statement

Annotated text forms the intermediate representation of the �ction-to-animation process. Given

the existence of annotations identifying visual descriptions in �ction text, we investigate the inter-

pretation of these annotations for creating corresponding virtual environments. This problem is

characterized as follows:

1. Annotations (in categories such as those described in Chapter 4) identify scene related aspects

of the �ction text. These annotations must be interpreted for creating scene descriptions

(such as: the list of scenes to be visualized; the contents of each scene; and the behaviour of

entities in each scene) in a structured manner.

2. Given the presence of structured scene descriptions, corresponding virtual environments must

be instantiated and populated, a problem that includes: choosing appropriate visual icons

to represent entities described in the text; creating geometry that visualizes appropriate

background scenery; and visualizing the behaviour speci�ed by the annotations. This problem

also includes the automatic construction of multi-modal presentations of the �ction text.

146

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 147

Room:
Anne slept in the next room. Julian ran in and shook her. "Wake up! It's Tuesday! And the sun's shining."
Anne woke up with a jump and stared at Julian joyfully. "It's come at last!" she said. "I thought it never would.
Oh, isn't it an exciting feeling to go away for a holiday!"
Outside:
They started soon after breakfast. Their car was a big one, so it held them all very comfortably. Mother sat in front
with Daddy, and the three children sat behind, their feet on two suitcases. In the luggage-place at the back of the
car were all kinds of odds and ends, and one small trunk. Mother really thought they had remembered everything.
London:
Along the crowded London roads they went, slowly at �rst, and then, as they left the town behind, more quickly.
Country:

Soon they were right into the open country, and the car sped along fast. The children sang songs to themselves, as

they always did when they were happy.

Figure 6.1: Example decomposition of �ction text into scenes, from the Famous Five 1: Five on a
Treasure Island by Enid Blyton (1942).

The virtual environments created from the interpreted text should conform to the descriptions in

the original text. The above problems are investigated under the assumption that annotated text

is available (produced with the aid of the machine learning algorithm in Chapter 4).

6.1.2 Problem formulation

The interpretation of annotated �ction text for creating virtual environments is subjective to the

human performing the task. Previous work interprets a �ction book as an account of a virtual

universe, where events in the book are reported out of order for dramatic purposes (Glass and

Bangay, 2007a). The creation of a virtual universe means �unraveling� the order of events so that

they occur in the correct order in the 3D environment. Fiction text does not always provide explicit

indications of event order, which means that knowledge-rich reasoning must be used to automate

the unraveling process (Ma and McKevitt, 2004a; Ma, 2006).

We use an alternative interpretation that divides a book into a number of scenes (the de�nition

of which is provided in Chapter 5, De�nition 5.1 on page 107), each of which is independent and

considered its own virtual universe. Sequences of tokens in a �ction book describe one particular

scene, examples of which are presented in Figure 6.1. Textual triggers for Setting, Object, Avatar,

Transition, and Relation annotations within each segment of text are interpreted only in the scene

in which they occur.

The identi�cation of which scenes to instantiate forms the �rst part of the interpretation pro-

cess. Subsequent tasks include interpreting annotations for identifying the entities that occur in

each scene, and how these entities behave. We �rst specify these scene details on a high level,

recognizing that ambiguity manifests during the interpretation of annotations. This allows for

human intervention if required. For example, behaviour in a scene is �rst expressed using high-

level abstract constraints that are human readable and conducive to review and modi�cation if

necessary.

We design abstract constraints to allow direct conversion into symbolic analytical equivalents.

Solutions to these constraints quantify behaviour in a virtual environment, and are determined

using the interval-based quanti�ed constraint optimizer (described in Chapter 5).

Given structured scene descriptions and quanti�ed scene behaviour, the �nal step in the inter-

pretation process instantiates animated 3D virtual environments. This includes selecting geometry

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 148

Fiction book

Problem 1: Text Analysis

 1.1) Linguistic indicators

 1.2) Annotation creation

Problem 2: Interpretation

 2.1) Interpretation of annotations

 2.2) Specification of behaviour
 in a virtual environment

 2.3) Populating 3D environments

Intermediate
representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
of surface annotations

Machine-learning for
automating creat ion

of semantic
annotat ions

Create structured
scene descriptions

Automatic constraint
solving/optimization

Automatic populat ion
of 3D vir tual environment

Human knowledge:
- Manual examples

Human knowledge:
- Clarify l inguistic ambiguity
- Implied scene layout
- Creative ideas

Human knowledge:
- Creative enhancements

Geometry selection
Environment instantiat ion

Sequencing

Knowledge-poor identif ication of:
scenes, scene contents and

behaviour

Figure 6.2: Illustration of the constraint creation and scene creation modules in the �ction-to-
animation process.

to represent entities in each environment as well as applying the correct behaviour to entities in

each scene.

Each of the above three problems are investigated in this chapter, namely the interpretation of

annotations for specifying scene descriptions, the quanti�cation of behaviour in a scene, and the

instantiation and population of virtual environments.

6.1.3 Context

The interpretation task of the �ction-to-animation process is investigated in this chapter. The

context of this problem within the conversion process is illustrated in Figure 6.2). We assume

the existence of annotated �ction text, the automatic creation of which is described in Chapter

4. In this chapter we investigate the interpretation of these annotations in creating quanti�ed

constraint systems, solutions to which are found using the interval-based quanti�ed constraint

optimizer described in Chapter 5.

Techniques for automatically populating a virtual environment from interpreted annotations

and quanti�ed behaviour are described in this chapter. The output of these processes includes

multi-modal animated 3D virtual environments, and corresponding animated �lms. The work

presented in this chapter is a more detailed description of research by the same author (Glass and

Bangay, 2008).

6.2 High-level scene descriptions from interpreted annota-

tions

We use the term scene description to collectively describe: the list of scenes to be instantiated

as virtual environments, the contents of each scene, and the behaviour of entities in each scene.

This information is expressed using high-level (but structured) descriptions. This ensures that

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 149

Scene segments Entity descriptors Resolved co-references Abstract constraints

Automatic segmentat ion Identif ication of entit ies
in each scene

Automatic co-reference
resolution

Automatic abstract
constraint creation

Input Opportunity:
- Scene labels
- Segmentations

Input Opportunity:
- Assigned models
- Degree of trajectory

Input Opportunity:
- Anaphora
- Co-reference

Input Opportunity:
- Implied constraints
- Creative suggestions

Annotated Text

Which scenes should
be instant ia ted?

What are the contents
of each scene?

Which ent i t ies per form
 behaviour?

What k ind of
behaviour occurs?

Scene detail:

Knowledge-poor process:

Figure 6.3: Illustration of the interpretation module for creating constraints from annotated �ction
text.

"Mother, have you heard about our summer holidays yet?" said Julian, at the breakfast-table. "Can we go to
Polseath as usual?"
"I'm afraid not," said his mother. "They are quite full up this year."
The three children at the breakfast-table looked at one another in great disappointment. They did so love the
house at <setting>Polseath</setting>. The <setting>beach</setting> was so lovely there, too, and the
bathing was �ne.

"Cheer up," said Daddy. "I dare say we'll �nd somewhere else just as good for you. And anyway, Mother and I

won't be able to go with you this year. Has Mother told you?"

Figure 6.4: Example of text containing Setting annotations, from the Famous Five 1: Five on a
Treasure Island by Enid Blyton (1942).

scene descriptions are human readable (providing for manual modi�cation or for the injection of

creativity), but are also conducive to further processing using automated techniques.

We present a work-�ow of automated knowledge-poor techniques for creating high-level scene

descriptions from annotated �ction text. The di�erent categories are illustrated in Figure 6.3, as

are the knowledge-poor processes used for their creation. This work-�ow permits human interven-

tion for handling exceptions that occur during interpretation not handled by the knowledge-poor

techniques.

The knowledge-poor techniques for producing each category of scene description are discussed

in the following sections.

6.2.1 Scene segmentation

As described in Section 6.1.2, each scene corresponds to a single physical setting. Annotation

categories such as Setting (de�ned in Chapter 4) identify physical settings, and we use these

annotations to segment text into scenes.

Scene descriptions are not always explicitly mentioned in �ction writing, an example of which is

presented in Figure 6.4. The initial setting in this example is not explicitly stated, and every token

up until �Polseath� is automatically assigned a DEFAULT setting. Human intuition indicates that

the described scene is likely to be occurring in a KITCHEN based on evidence from described

objects such as �breakfast-table�. A human is able to specify the correct setting manually for

exceptional cases such as this.

The next step in the abstract constraint creation process is concerned with identifying entities

in each scene.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 150

6.2.2 Identi�cation of entities

The entities that appear in a scene are identi�ed using annotation categories such as Avatar and

Object, and we construct a list of entities identi�ed by these annotations for each scene. We

represent entities using entity descriptors, which are scene-independent structures that associate

information (regarding instantiation in a virtual environment) with each entity mentioned in a

book. Descriptors contain information unique to an entity, including the geometric model to

represent the entity graphically in a virtual environment, and the type of motion associated with

the entity.

An entity descriptor is created for every unique entity in the �ction book. Entities such as

avatars occur in many di�erent scenes, and the same entity descriptor for an entity is used across

di�erent scenes.

When an entity descriptor is created, a geometric model is automatically selected to represent

the entity in a virtual environment. We source models from a library of geometric models. Each

model in the library is annotated with descriptive keywords that are matched against the annotated

tokens. The types of model returned by the library depend on the category of annotation, and for

Avatar and Object categories are as follows:

• Avatars: Avatars are assumed to be human, and only humanoid models are appropriate for

this category. The token annotated in this category is likely to be the name of the avatar and

we use a gazetteer of names to determine the gender, and select the appropriately gendered

model.

• Objects: The token annotated in this category is used as a search term when querying the

model library, matching the search term with the descriptive keywords associated to each

model. In cases where no matching keywords are found, we use synonyms of the annotated

token as search terms (provided by WordNet Fellbaum (1998)). We also use hypernyms of

the annotated token as a search term, abstracting the tokens until no further abstraction is

possible. If no matching models are found, we use a default placeholder object (a cube) to

represent the object visually.

The accurate selection of geometric models depends on the annotation conventions adopted for

creating Object and Avatar annotations. For example, in our annotated version of the Famous

Five 1: Five on a Treasure Island by Enid Blyton (1942), the character Timothy is annotated as

an avatar, but Timothy is actually a dog. This exception is corrected manually.

We also use the annotation category to determine whether a model is static or dynamic in a vir-

tual environment. Avatars are assigned trajectories that permit motion in the virtual environment,

while the trajectories assigned to objects permit no movement.

6.2.3 Co-reference resolution

Ambiguous references to entities exist in the annotated text. For example, anaphora is often used

to refer to entities (the use of �he� or �it�). Annotation categories such as Transition and Relation

potentially identify anaphoric tokens as the subject or object of the behaviour, and these must be

resolved to determine the entities that are involved in the behaviour described by the annotations.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 151

Entities:

Avatars: Objects:

ANNE COW

DADDY

Anne/ANNE didn't very much like a big brown cow/COW who came up close and stared at her/ANNE, but

it/COW went away when Daddy/DADDY told it/COW to.

Figure 6.5: Illustration of an entity list and resolved co-reference.

We resolve instances of personal pronominal anaphora (such as �he� and �she�) by keeping

track of the last explicitly mentioned male and female avatars, and matching the gender of the

anaphoric token with the corresponding gender-matched avatar (avatar gender is determined using

the method described in Chapter 3). Currently, we do not resolve non-gender speci�c pronouns

such as �it� and we do not cater for general anaphoric cases (for example, in the case where the

word �boy� indirectly refers to a speci�c male avatar). Human intervention is permitted to resolve

these exceptions should they occur. Future enhancements to this process include the use of more

sophisticated anaphora resolution techniques (Lappin and Leass, 1994; Nasukawa, 1994; Kennedy

and Boguraev, 1996; Mitkov, 1998; Mitkov et al., 2002; Castaño et al., 2002; Dimitrov, 2002) and

co-reference resolution methods (Baldwin, 1997; Dimitrov, 2002).

An example of an entity list created for a scene from the Famous Five 1: Five on a Treasure

Island by Enid Blyton (1942) is presented in Figure 6.5, which contains entities in the category of

Avatar and Object. The sentence contains examples of resolved co-references with regards to the

entities listed above. The pronoun �her� is automatically linked to the entity �Anne�. Pronouns

such as �it� are resolved manually to the �cow� entity.

6.2.4 Abstract constraints for specifying behaviour

We create a human readable summary of behaviour in a scene using abstract constraints. Abstract

constraints are phrased in terms of the entities involved, the type of behaviour that occurs, as well

as the interval of time over which the behaviour is to take place. They are structured to allow for

automatic conversion into equivalent analytical expressions:

De�nition 6.1. An abstract constraint speci�es a time-quanti�ed relation between two entities

in an environment. Abstract constraints are de�ned in terms of the following �elds:

• Subject: The entity responsible for the behaviour.

• Relation: The type of behaviour described by the constraint.

• Object: The reference entity or anchor point of the behaviour.

• Start-time: The time in the scene at which the behaviour begins.

• End-time: The time in the scene at which the behaviour terminates.

Annotation categories that describe behaviour (such as Transition and Relation) map directly

to abstract constraints. The token in the subject text-reference of the annotation is linked to an

entity descriptor (this link is created during the co-reference resolution step), and the identi�er

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 152

Annotated text:

He/JULIAN stole <transition subject=�he� type=�INSIDE�>in</transition>. ...

He tiptoed by him to the table/TABLE <relation subject=�table� object=�chair�

type=�BEHIND�>behind</relation> his uncle's chair/CHAIR.

Corresponding abstract constraints:
CONSTRAINT 1: CONSTRAINT 2:

Subject: JULIAN Subject: TABLE

Relation: INSIDE Relation: BEHIND

Object: ROOM Object: CHAIR

Start-time: 5 Start-time: 0

End-time: 30 End-time: 30

Figure 6.6: Example abstract constraints derived from annotated behaviour in a �ction extract.

for the descriptor is used for the subject �eld of the constraint. The same applies for the object

text-reference and corresponding �eld in the constraint. The type �eld for both Transition and

Relation annotations is used in the relation �eld of the abstract constraint. An example of a set

of abstract constraints is presented in Figure 6.6.

Abstract constraints are created from annotation categories specifying behaviour (explicit con-

straints), or are created automatically to ensure physical believability in the scene (implicit con-

straints). Implicit noCollide constraints are added for every pair of entities in the scene to ensure

that entities do not interpenetrate. The one exception is the case where one entity is inside another

entity (speci�ed by a Relation annotation). We also create an implicit near constraint for certain

types of Relation annotation, including inFrontOf , behind, toLeftOf , toRightOf , onTopOf

and below.

Temporal information is required for the start-time and end-time �elds. Assume a �ction

book is narrated in the audio modality (corresponding to being read aloud) using, for example,

a speech synthesizer. Language units in the book use a �nite interval of time when verbalized.

Each scene consists of a sequence of language units, and the total time taken for the play-back of

the corresponding audio provides an indication of scene duration, and a reference against which

the time-�elds of abstract constraints can be speci�ed. We describe a time-line derived from

audio narrations as a presentation time-line because it represents the original order of presentation

intended by the author (and avoids the event �unraveling� problem described in Section 6.1.2).

Time information for abstract constraints is derived by calculating the time-value of an anno-

tation trigger with respect to the presentation time-line. Speech synthesis produces audio at the

sentence level, and the timing for an annotation trigger is estimated in terms of the token's o�set

in the sentence and the starting time of the sentence in the scene:

offset of trigger in sentence =
position of token in sentence

number of tokens in sentence
∗ audio length of sentence

start time of trigger = start time of sentence+ offset of trigger in sentence

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 153

t r igger

tr igger

Start: 0s | Length: 2.2s Start: 2.2s | Length: 6.5s

Start: 0s | Length: 2.2s Start: 2.2s | Length: 6.5s Start: 33.1s | Length: 1.1s

Scene: ANNES_ROOM
Start: 0s
Duration: 33.1s

Sequencer

Text

tr igger

Presentation
Time-line

Anne slept in the next room. Julian ran "Wake up! Its Along the crowded London roads... ... Soon they were into open country ...

Start: 8.7s | Length: 1.1s Start: 33.1s | Length: 3.2s Start: 38.1s | Length: 2.6s
...

Start: 8.7s | Length: 1.1s Start: 38.1s | Length: 1.3s

...

Scene: LONDON
Start: 33.1s
Duration: 5s

Scene: COUNTRY
Start: 38.1s
Duration: 12s

tr igger:
TRANSITION: JULIAN INSIDE ANNES_ROOM

3D Scene

Subtit les

Audio

in

Figure 6.7: Illustration of the relationship between the presentation time-line and behaviour in a
3D virtual environment.

An illustration of the relationship between �ction text, the audio �les, and their interpretation

as a presentation time-line is illustrated in Figure 6.7. The manner in which abstract constraints

are synchronized is also indicated.

The derivation of a start-time and end-time for an abstract constraint depends on the category

of annotation from which the constraint is derived:

1. Transition: By default, the start-time of the constraint corresponds to the time of the trigger

of the annotation, while the end-time corresponds to the end of the scene. A sequential list

is maintained for each entity that records all the constraints that apply to it. Once all

constraints are added, each entity's list is traversed from start to end, setting the end-time

of each constraint to the start-time of the following constraint. If the �rst constraint for

an entity is of type inside at a time greater than zero, then an implicit outside constraint

is inserted from time 0 to the start-time of the �rst constraint, to ensure that the entity is

initially outside the scene. Any entities that are not constrained by a transition constraint are

automatically assigned an implicit inside constraint for the duration of the scene to ensure

that they appear in the scene.

2. Relation: The start-time and end-time for relation constraints depend on the trajectory of

the entities involved. If both entities are static, then the constraint is set to last the duration

of the scene (because the entity is unable to move to satisfy the constraint). If a dynamic

entity is involved then the start-time of the constraint is set to the time of the trigger token of

the annotation, while the end-time is set to the end-time of the scene. If a relation constraint

applying to an entity overlaps with an outside constraint for that entity, then the end-time

of the relation constraint is set to be the start-time of the outside constraint for that entity.

This avoids potential con�icts in terms of relations that cannot hold while an entity is outside

the scene.

High-level scene descriptions that are created using the knowledge-poor methods in this section

include: a list of scenes to be instantiated; the contents of each scene (speci�ed using descriptors);

and the behaviour of entities in each scene (speci�ed using abstract constraints). Before a virtual

environment can be instantiated for each scene, precise values that quantify the behaviour in each

virtual environment are required.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 154

6.3 Quanti�ed behaviour in virtual environments

Abstract constraints describe behaviour on a high level, but do not provide precise numerical

values for visualizing behaviour in a virtual environment. If abstract constraints are converted into

symbolic analytical expressions, then the interval-based quanti�ed constraint optimizer described

in Chapter 5 can be used to �nd these values.

We de�ne entity behaviour in terms of location, which is expressed as a function of time so that

entities are capable of moving in the virtual world. We represent this behaviour using trajectories

that are de�ned in terms of a set of variables. These trajectories should conform to the behaviour

summarized in the set of abstract constraints.

6.3.1 Constrained model trajectories

We assume a scene exists over the time interval [t0, t1]. Each modelM in the scene of dimension d is

associated with a trajectory rM
d (t) = [r1(t), ..., rd(t)] parametrized according to time t. Trajectories

are de�ned as parametric curves over time, using for example, a Bezier curve of degree n (Buss,

2003):

rM (t) =
n∑

i=0

Bn
i (t)pi

with the blending function Bn
i (t) = ti(1 − t)n−i. The control points pi specify the shape of the

curve, and consequently the trajectory of the associated model in the scene. The problem of

quantifying behaviour is transformed into �nding values for the control points so that the set of

constraints is satis�ed over the duration of the scene.

Abstract constraints express spatial relations between two entity models over an interval of

time. We de�ne an equivalent analytical constraint as follows:

De�nition 6.2. Quanti�ed Constraint : Let rM (t) and rN (t) be trajectories for two models M

and N respectively. A quanti�ed constraint c(rM , rN , [tstart, tend]) is a symbolic expression that

expresses a relation between the two trajectories that exists for all time between tstart and tend.

Quanti�ed constraints are derived for each abstract constraint. The formulation of the expres-

sion depends on the relation �eld of the abstract constraint. In this exposition, the Transition and

Relation annotation categories are used to specify behaviour (and create abstract constraints),

and expressions must be derived for the di�erent types of behaviour in these categories. Transi-

tion annotations are de�ned as one of two semantic types, namely inside or outside, indicating

whether the entity is inside or outside the scene (described in Chapter 4). A Relation annotation

is one of several types, including inFrontOf , behind, toLeftOf , toRightOf , onTopOf , or below.

Behaviour types are interpreted as spatial relationships between two entities.

6.3.1.1 Spatial constraints

Let M and N be the object models for two items in a scene with dimension d. Assume that each

model is bound using a bounding sphere of radius aM and aN respectively. Let rM (t) and rN (t)
be trajectories for the two models M and N respectively. We de�ne the spatial relations in terms

of three canonical quanti�ed constraints, namely near, noCollide, and directionRelation.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 155

Figure 6.8: Illustration of the spatial relationship described by the near constraint.

Figure 6.9: Illustration of the spatial relationship described by the noCollide constraint.

Near The constraint near(rM (t), rN (t), [tstart, tend]) speci�es that two models must be close to

one another over time interval t ∈ [tstart, tend], expressed in terms of the Euclidean distance as

follows:

||rM (t)− rN (t)||2 < (aM + aN + α)2 ∀t ∈ [tstart, tend]
||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0 ∀t ∈ [tstart, tend]

where α is the minimum distance considered to verify the term �near� (for instance, 1 meter). The

near scenario is illustrated in Figure 6.8.

Abstract constraints with the relation near or inside are converted into expressions of this

type. For near constraints, α is chosen as 1 meter, but for inside constraints there must be no

distance between the two models, and so we use a value of α = 0 for constraints of this type.

NoCollide The constraint noCollide(rM (t), rN (t), [tstart, tend]) speci�es that two models must

not interpenetrate over time interval t ∈ [tstart, tend], expressed in terms of the Euclidean distance

as follows:

||rM (t)− rN (t)||2 > (aM + aN)2 ∀t ∈ [tstart, tend]
||rM (t)− rN (t)||2 − (aM + aN)2 > 0 ∀t ∈ [tstart, tend]

The noCollide scenario is illustrated in Figure 6.9. Abstract constraints with the relation noCollide

are converted into expressions of this type.

DirectionRelation The constraint directionRelation(rM (t), rN (t), [tstart, tend]) speci�es the lo-
cation of M with reference to N . We de�ne u(t) as a direction vector of N , and v(t) as the vector
indicating the direction from N to M , calculated as v(t) = rM (t)− rN (t). For simplicity, the time

parameter is not shown in the following formulations.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 156

Figure 6.10: Illustration of the spatial relationship described by the directionRelation constraint.

Consider Figure 6.10. For model M to be related to N according to the direction u, the angle

ε should be less than a certain value. This is also phrased in terms of the length of the vector w,

which should be less than an amount α, that is ||w|| < α or:

||w||2 < α2

||w||2 − α2 < 0

We calculate w using the projection of v on u: w = v − projuv = v − u
||u||2 (u · v).

Let ε be the angle between u and v, then α is expressed in terms of ε by the trigonometric

relation: sin(ε) = α/||v||. The constraint above is rephrased as follows:

||w||2 − α2 < 0
w ·w − (v · v)sin2(ε) < 0(

v||u||2 − u(u · v)
)
·
(
v||u||2 − u(u · v)

)
/||u||4 − (v · v)sin2(ε) < 0(

(v · v)||u||4 − 2||u||2(u · v)2 + ||u||2(u · v)2
)
/||u||4 − (v · v)sin2(ε) < 0

(v · v)(1− sin2(ε))− (u · v)2/||u||2 < 0
||u||2||v||2cos2(ε)− (u · v)2 < 0

The reference direction of u depends on the type of directional relation being speci�ed. For

example, if an inFrontOf relation is speci�ed, then u is the forward facing direction of the model

N . If rN (t) is of a degree greater than zero (dynamic entity), then the forward direction is the

tangent of the trajectory, calculated using the derivative of rN (t). If N is a static model, then u

is an arbitrary vector (default direction, or speci�ed by a human).

Constraints of type inFrontOf , behind, toLeftOf , toRightOf , onTopOf , or below are de-

�ned using the same formulation of the directionRelation constraint, but varying in the choice of

u for determining the reference direction.

6.3.1.2 Constraint systems

Every abstract constraint for a particular scene is converted into an equivalent quanti�ed constraint,

the result of which is a system of constraints. The mapping used to convert abstract constraints to

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 157

Abstract relation Quanti�ed constraint Parameters

M near N near(rM (t), rN (t), [t0, t1]) α = 1
M inside N near(rM (t), rN (t), [t0, t1]) α = 0
M noCollide N noCollide(rM (t), rN (t), [t0, t1]) -
M inFrontOf N
M behind N
M toRightOf N
M toLeftOf N
M onTopOf N
M below N

directionRelation(rM (t), rN (t), [t0, t1]) ε = 45◦

Table 6.1: Direct mapping between abstract constraints and quanti�ed constraints.

quanti�ed constraints depends on the relation �eld of the abstract constraint and is summarized

in Table 6.1.

We provide an example to illustrate the conversion of abstract constraints into quanti�ed con-

straint systems. Consider the following set of abstract constraints:

CONSTRAINT 1: CONSTRAINT 2: CONSTRAINT 3:

Subject: JULIAN Subject: TABLE Subject: CHAIR

Relation: NEAR Relation: NOCOLLIDE Relation: INFRONTOF

Object: TABLE Object: JULIAN Object: TABLE

Start-time: 0 Start-time: 0 Start-time: 0

End-time: 5 End-time: 5 End-time: 5

For the sake of illustration, we assume that entity descriptors exist for Julian, Table, and

Chair and that geometric models J, T, and C are associated with these respective entities. Each

of these entities is assigned a trajectory, and as described in Section 6.2.2, the avatar is dynamic

(trajectory of degree greater than 0), while the two objects are static (degree 0):

• rJ(t) = (1− t)pJ
0 + tpJ

1

• rT (t) = pT
0

• rC(t) = pC
0

In this example, we assume that the scene is de�ned in two dimensions, that is, each control point

is of the form pi = (xi, zi). The behaviour for this scene is therefore expressed in terms of eight

variables V = {xJ
0 , z

J
0 , x

J
1 , z

J
1 , x

T
0 , z

T
0 , x

C
0 , z

C
0 }. Constraint 1 is phrased in terms of these variables

using the formulation of the near expression:

c1 : near(rJ(t), rT (t), [0, 5])
⇔ ||rJ(t)− rT (t)||2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]
⇔ ||(1− t)pJ

0 + tpJ
1 − pT

0 ||2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]
⇔ ((1− t)xJ

0 + txJ
1 − xT

0))2 + ((1− t)zJ
0 + tzJ

1 − zT
0))2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 158

Constraint 2 is phrased using the noCollide expression:

c2 : noCollide(rJ(t), rT (t), [0, 5])
⇔ ||rJ(t)− rT (t)||2 − (aJ + aT)2 > 0 ∀t ∈ [0, 5]
⇔ ||(1− t)pJ

0 + tpJ
1 − pT

0 ||2 − (aJ + aT)2 > 0 ∀t ∈ [0, 5]
⇔ ((1− t)xJ

0 + txJ
1 − xT

0))2 + ((1− t)zJ
0 + tzJ

1 − zT
0))2 − (aJ + aT)2 > 0 ∀t ∈ [0, 5]

Constraint 3 is phrased in terms of the inFrontOf expression. The trajectories for both Table

and Chair are of degree zero, which means that we cannot use the derivative of rT (t) for the

forward facing direction u. We assume that u = (ux, uz) is a manually assigned default value.

c3 : directionRelation(rT (t), rC(t), [0, 5])
⇔ ||u||2||v||2cos2(ε)− (u · v)2 < 0 ∀t ∈ [0, 5]
⇔ ||u||2||rC(t)− rT (t)||2cos2(ε)−

(
u · (rC(t)− rT (t))

)2
< 0 ∀t ∈ [0, 5]

⇔ (u2
x + u2

z)||pC
0 − pT

0 ||2cos2(ε)−
(
u · (pC

0 − pT
0)
)2
< 0 ∀t ∈ [0, 5]

⇔ (u2
x + u2

z)
(
(xC

0 − xT
0)2 + (zC

0 − zT
0)2
)
cos2(ε)−

(
ux(xC

0 − xT
0) + uz(zC

0 − zT
0)
)2
< 0 ∀t ∈ [0, 5]

A system of constraints C is the conjunction of these constraints:

C ⇔ c1 ∧ c2 ∧ c3

Simultaneous solving is required to locate values for the control points that verify all three of these

equations, a technique for which is described in the following section.

6.3.2 Constraint system solving and optimization

A mechanism for solving systems of simultaneous quanti�ed constraints using interval arithmetic

is described in Chapter 5, namely the interval-based quanti�ed constraint optimizer.

Some scene-related benchmarks evaluated in Chapter 5 cannot be solved using either a solving

or an optimization technique. In this respect, the capability of the solution �nding technique

dictates the level of complexity of the automatically created constraint systems. In this section

we examine what characteristics a constraint system should exhibit so that its solutions are found

in a feasible time using the optimizer presented in Chapter 5. These characteristics in�uence the

manner in which constraint systems are created from abstract constraints.

Solution approximations are provided for benchmarks in Chapter 5 when no solutions are found.

In cases such as these, it is useful to have a measure of the quality for the approximate solution.

In this section we show how a quality metric is obtained during the optimization process.

6.3.2.1 The relaxation constant as a quality metric

The interval-based quanti�ed constraint optimizer uses the concept of relaxed constraints in search-

ing for a solution. Each constraint ci is relaxed by a quantity δi, which we call the relaxation

constant. If the constraint expression is formulated correctly, then δi indicates the level of quality

of the approximate solution.

For quality to have meaning, it must be expressed in terms of a unit that is relevant to the

scene and that is common across all constraints. Distance is an example of such a measure, where

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 159

the level of relaxation indicates how far (for example, in meters) an approximate solution is from

an actual solution. Our formulation of spatial constraints in Section 6.3.1 is expressed in terms of

distance for this reason:

• near: this constraint is expressed as the squared Euclidean distance between two entities

(see Section 6.3.1.1). A relaxed constraint of this form replaces the zero on the right hand

side with a value represented by δ:

||rM (t)− rN (t)||2 − (aM + aN + α)2 < δ

In this case, δ is the squared distance of the approximate solution from the actual solution,

and
√
δ indicates the distance in whichever unit the scene is speci�ed. The closer the value

of
√
δ is to zero, the closer the approximation is to the actual solution. Therefore, quality

for constraints of this type is:

quality =
√
δ

• noCollide: this constraint is also expressed as the squared Euclidean distance between two

entities (see Section 6.3.1.1), and has a relaxation constant of the same formulation:

||rM (t)− rN (t)||2 − (aM + aN)2 > δ

Quality for constraints of this type is also de�ned as:

quality =
√
δ

• directionRelation: this constraint restricts the spatial distance between a model and the

direction vector of the reference model. A relaxed constraint appears as follows:

||u||2||v||2cos2(ε)− (u · v)2 < δ

The above constraint was formulated using zero on the right hand side, which allowed mul-

tiplication throughout by the ||u||2 value. Squared distance is expressed by δ/||u||2, which
means that quality is de�ned as:

quality =

√
δ

||u||2

Each of the above quality values measures the distance of an approximate solution from an actual

solution over a time interval.

Quality for all three constraint types is measured in the same unit (distance). The quality of

an approximate solution to a system of constraints is evaluated as the sum of the quality for each

individual constraint in the system. The closer the total sum is to zero, the better the quality of

the approximate solution.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 160

6.3.2.2 Analysis of quality in �ction-to-animation constraint systems

We investigate the idea of quality with respect to the �ction-to-animation benchmarks used in

Chapter 5, for answering the following questions:

1. Does the quality metric re�ect when an actual solution is located?

2. Does quality improve as the optimization progresses?

3. What e�ect does the degree of the trajectory and the dimensionality of the scene have on the

quality of an approximate solution?

4. What e�ect does the number of constraints have on the quality of an approximate solution?

5. Is there evidence to support the hypothesis that quality re�ects the correctness of behaviour

in a scene?

We investigate these questions with respect to scenes that contain static entities as well as scenes

containing dynamic entities.

Quality in scenes with static entities

We use the Front, Scene, and Layout3 benchmarks to determine the relationship between

quality and execution time for scenes without motion (tested in Chapter 5 and described in detail

in Appendix D). We record the quality metric every ten seconds and plot it against time, limiting

the total execution time to 90 minutes (5400 seconds).

The quality of intermediate approximate solutions is plotted against the execution time of the

optimizer in Figure 6.11. These benchmarks are all consistent, and quality reaches zero at the

same point at which a solution is located for each benchmark. The quality re�ects the point at

which solutions are located, that is, when quality reaches zero as is expected from the design of

these constraints.

Improvement in quality with the progression of time is observed from the graph in Figure 6.11,

indicating that approximate solutions get closer to actual solutions with added optimization time.

The greatest improvement in quality occurs early in the optimization process for both the Front

and Scene benchmarks. This shows that termination of the optimization process is possible before

solutions are located, resulting in solutions of improved quality in relation to the solutions located

earlier.

The solutions to the Front and Scene benchmarks are visualized in Figure 6.12, in which the

forward facing directions manually assigned to each model are indicated. The visualized layout

corresponds to the constraints specifying each scene.

The Collision benchmark is a constraint system specifying a scene that contains an increasing

number of models, where every pair of models is constrained to be near and noCollide. If more than

three models are in the scene, then the constraint system is inconsistent. We optimize constraint

systems describing scenes that contain two to eight models, and record the quality at ten second

intervals for each system.

The quality achieved is plotted against optimization time in Figure 6.13 for each Collision

benchmark. Solutions are quickly located for the two consistent systems (containing two and three

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 161

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000

Q
ua

lit
y

/ [
di

st
an

ce
]

Time / [s]

Layout3
Front

Scene

Figure 6.11: Quality of intermediate solutions to benchmarks (without motion) as a function of
execution time.

(a) Front (b) Scene

B inFrontOf A B near A A inFrontOf B A near B

C inFrontOf B C near B C behind B B near B

D inFrontOf C D near C E toLeftOf B E near B

* noCollide * F toRightOf D F near D

* noCollide *

Figure 6.12: Solutions to Front and Scene benchmarks depicted graphically.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 162

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000

Q
ua

lit
y

/ [
di

st
an

ce
]

Time / [s]

Models: 2
Models: 3
Models: 4
Models: 5
Models: 6
Models: 7
Models: 8

* near *

* noCollide *

Figure 6.13: Quality of approximate solutions to inconsistent constraint systems as a function of
execution time.

(a) 3 Models (consistent):
Quality = 0

(b) 4 Models:
Quality = 101.23

(c) 6 Models:
Quality = 138.71

(d) 8 Models:
Quality = 599.04

Figure 6.14: Visualization of approximate solutions to inconsistent constraint systems.

models respectively). Only approximate solutions can be produced for inconsistent constraint

systems, and the maximum improvement in quality is achieved early in the optimization process.

Minor improvements are made given further execution time.

Figure 6.14 is a visualization of some of the approximate solutions found for the Collision

benchmarks. More interpenetration occurs as models are added to the scene, which corresponds

to worsening levels of quality for each scene. This evidence supports the hypothesis that quality

re�ects the visual correctness of behaviour in a scene.

Quality in scenes with dynamic entities

To determine the relationship between quality and execution time for scenes with motion, we use

the Dynamic1Static1 and Dynamic2 benchmarks tested in Chapter 5 and described in detail

in Appendix D. We use trajectories of increasing degree, and the constraint systems are phrased

in scenes of increasing dimensionality. Every variable in these benchmarks begins with the range

[−10, 10]. We record the quality metric every ten seconds and plot it against time, limiting the

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 163

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000

Q
ua

lit
y

/ [
di

st
an

ce
]

Time / [s]

Dynamic1Static1: Degree 1, dimension 1
Dynamic1Static1: Degree 2, dimension 1
Dynamic1Static1: Degree 2, dimension 2

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500

Figure 6.15: Quality of intermediate solutions to the Dynamic1Static1 benchmark as a function
of execution time.

Object B

Object A

(a) 0 seconds (b) 5 seconds (c) 6 seconds (d) 10 seconds

A inFrontOf B ∀t ∈ [5, 6]
A near B ∀t ∈ [5, 6]

A noCollide B ∀t ∈ [0, 10]

Figure 6.16: Visualization of the solution to the Dynamic1Static1 benchmark using a trajectory
of degree 1.

total execution time to 90 minutes (5400 seconds). We provide animated �lms that visualize the

solutions found for each benchmark in Appendix F.

The recorded quality for the Dynamic1Static1 benchmark is plotted against time in Figure

6.15. No solution is located for the constraint system phrased over trajectories of degree 2 in

a two-dimensional scene. This indicates that the larger the system becomes in terms of degree

and dimension (and consequently the number of variables), the more di�cult the solution �nding

process becomes. In spite of this, a high quality approximate solution is located for this benchmark

early in the optimization process.

The solution of the Dynamic1Static1 benchmark using a trajectory of degree 1 is visualized

in Figure 6.16. The inFrontOf constraint is satis�ed visually at the correct point in the resulting

motion. An approximate solution of this benchmark using a trajectory of degree 2 is visualized in

Figure 6.17. Errors are visible in these scenes (interpenetration of the objects), re�ecting the use

of approximate solutions (and not actual solutions) to create these scenes. This demonstrates a

correlation between quality and the visual correctness of the derived behaviour.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 164

Object A

Object B

x

z

(a) 0 seconds (b) 5 seconds (c) 6 seconds (d) 10 seconds

A inFrontOf B ∀t ∈ [5, 6]
A near B ∀t ∈ [5, 6]

A noCollide B ∀t ∈ [0, 10]

(the forward direction of B is indicated in the �rst image)

Figure 6.17: Visualization of the approximate solution to the Dynamic1Static1 benchmark using
a trajectory of degree 2.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 1000 2000 3000 4000 5000

Q
ua

lit
y

/ [
di

st
an

ce
]

Time / [s]

Dynamic2: Degree 1, dimension 1
Dynamic2: Degree 2, dimension 1
Dynamic2: Degree 2, dimension 2

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Figure 6.18: Quality of intermediate solutions to the Dynamic2 benchmark as a function of
execution time.

Quality is plotted against time for the Dynamic2 benchmark in Figure 6.18. The quality levels

achieved for this benchmark do not come as close to zero compared to the quality achieved with the

Dynamic1Static1 benchmark for trajectories of higher degree and dimension (minimum quality

of 6.86 for Dynamic1Static1, 217.10 for Dynamic2). We attribute this to a greater number of

variables in the Dynamic2 benchmark (more trajectories of a higher degree).

Two visualizations of the approximate solutions of di�ering quality are presented in Figure

6.19 for the Dynamic2 benchmark. The interpenetration is less pronounced in the visualization

produced from the approximation of better quality. This demonstrates the correlation between

quality and the visual correctness of the derived behaviour.

The above experiments demonstrate that the number of constraints does not directly in�uence

the di�culty of the solution �nding problem (as is the case with the number of variables). This

is demonstrated by the fact that the Dynamic2 benchmarks contain fewer constraints than the

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 165

Object A

Object B

x

z

(a) 0 seconds (b) 5 seconds (c) 6 seconds (d) 10 seconds

Quality = 161.32

Object A

Object B

x

z

(e) 0 seconds (f) 5 seconds (g) 6 seconds (h) 10 seconds

Quality = 25.08

A inFrontOf B ∀t ∈ [5, 6]
A near B ∀t ∈ [5, 6]

A noCollide B ∀t ∈ [0, 10]

(the forward direction is the direction of motion of both models, indicated in the �rst image)

Figure 6.19: Visualization of approximate solutions of increasing quality for the Dynamic2 bench-
mark.

Front benchmark, but no solution is found for the former because of the greater number of

variables.

Summary of �ndings and suggestions

The experiments detailed in this section provide evidence to support the following conclusions

(with respect to the questions posed at the beginning of this section):

1. The quality metric re�ects the discovery of an actual solution, that is, when a quality of zero

is encountered.

2. Quality improves as the optimization progresses.

3. Quality re�ects the correctness of visual behaviour in a scene.

4. The greater the number of variables (as a result of higher degree curves or scenes of higher

dimensionality) in a constraint system, the longer the time required for locating a solution

using the optimizer.

5. The number of constraints in a system does not impact the solution �nding process as does

the number of variables.

Conclusions 1, 2, and 3 support the use of the quality metric for evaluating behaviour automatically

quanti�ed for a scene, especially when the optimization process is terminated prematurely due to

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 166

lack of time. Conclusions 4 and 5 in�uence the manner in which we convert abstract constraints into

constraint systems for solving. Based on these conclusions we formulate the following guidelines:

• Trajectories of degree no higher than 2 should be used, to maximize the likelihood of �nding

actual solutions. Otherwise, we expect to terminate the optimization process prematurely

and make use of an approximate solution.

• Scenes must be speci�ed in a maximum of two dimensions, otherwise an approximate solution

is expected.

• No restriction is placed on the number of constraints in a system.

These guidelines disqualify potential constraint systems that are automatically created from ab-

stract constraints. For example, a model that moves back and forth and between other objects

requires a trajectory with a very high degree curve. It is unlikely that the constraint optimization

process will �nd a solution to a constraint system over this trajectory within a feasible time-limit.

The following section describes methods for overcoming these shortcomings of the optimization

process, while still enabling complex scene behaviour.

6.3.3 Constraint system formulation for feasible optimization

Section 6.3.2 indicates that constraint systems with a large number of variables require a large

amount of optimization time to locate solutions of good quality. We reduce the optimization time

by expressing motion as sequences of low degree curves, and solving constraint systems in an

incremental fashion.

6.3.3.1 Sequences of low degree trajectories

We de�ne complex behaviour to be entity motion that includes a number of way-points in a scene.

For example, the story �The man entered the room and approached the table. He then moved

towards the chair.� describes complex behaviour. For illustration, we assume that this story is

converted into the following abstract constraints:

man noCollide room ∀t ∈ [0, 5]
man inside room ∀t ∈ [5, 30]
man near table ∀t ∈ [9, 14]
man near chair ∀t ∈ [14, 30]
man noCollide {table;chair} ∀t ∈ [5, 30]
table noCollide chair ∀t ∈ [0, 30]

A trajectory of a high degree must be attributed to the �man� object to ensure that the model

reaches all the way-points at the correct time. As observed in Section 6.3.2, the higher the degree

the more di�cult the constraint optimization process becomes.

We avoid using trajectories of high degree by constructing a trajectory as a chain of low degree

curves (Christie et al., 2002). We �nd that there is a satisfactory trade-o� between optimization

performance and solution quality using chains of �rst degree curves. We segment trajectories by

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 167

Segmented
constraint system

with transit ional
constraints

Abstract Constraint
System

Transit ional constraint system (system 2)

MAN OUTSIDE ROOM

0 4.5

MAN NEAR TABLE
9 13.5

MAN NEAR CHAIR
14 30

MAN INSIDE ROOM
9 13.5

MAN INSIDE ROOM
14 30

MAN
INSIDE
ROOM

5 8.5

System 1 System 3

System 4

System 5

System 6

System 7

MAN OUTSIDE ROOM

0 5

MAN NEAR TABLE
9 14

MAN NEAR CHAIR
14 30

MAN INSIDE ROOM
9 14

MAN INSIDE ROOM
14 30

MAN
INSIDE
ROOM

5 9

MAN OUTSIDE ROOM
0 5

MAN INSIDE ROOM
5 30

MAN NEAR TABLE
9 14

MAN NEAR CHAIR
14 30

Figure 6.20: Illustration of constraint system segmentation.

Room

Man
x

z

Table

Chair

(a) 5 seconds (b) 8 seconds (c) 12 seconds (d) 18 seconds

Figure 6.21: Visualization of a complex trajectory as the sequence of low degree trajectories.

identifying contiguous segments of time in which the behaviour of an entity is described by a single

low-degree trajectory.

A graphical illustration of a subset of the abstract constraints above is presented in Figure

6.20, as well as an illustration of how the constraints are segmented into a chain of 7 constraint

systems. The duration of the scene is divided into contiguous time intervals during which no new

constraints apply. For each interval a single set of constraints is applicable over the full duration of

that interval. A transitional system is inserted between adjacent intervals allowing a period during

which both sets of constraints must be satis�ed so that model locations blend smoothly from one

interval to the next.

To facilitate e�cient constraint solving, the ending locations for each interval are used as start-

ing locations for solving the following constraint system. If the solution renders the subsequent

constraint system inconsistent, then we use backtracking to locate alternate solutions to the pre-

vious constraint system.

Figure 6.21 presents a visualization of a �nal solution found by the optimizer for the set of

segmented constraint systems derived in Figure 6.20. A solution is located for every segmented

constraint system, meaning that quality value zero is obtained in all cases.

The segmentation method presented in this section is a compromise between context-free be-

haviour quanti�cation and optimization performance. In Chapter 5 we argue that an analytical

approach to constraint solving provides a non-incremental method for quantifying scene behaviour,

whereas the idea of segmentation is inherently incremental. However, the constraint optimization

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 168

MAN (3) TABLE (2)

CHAIR (2)

ROOM (1)

INSIDE
(3)

NO_COLLIDE
(5)

NEAR
(5)

NO_COLLIDE
(4)

NO_COLLIDE
(5)

INSIDE
(3)

INSIDE
(4)

(a) Constraint system illus-
trated as a weighted graph.

MAN (3) TABLE

CHAIR

ROOM

NO_COLLIDE
(5)

NEAR
(5)

NO_COLLIDE
(5)

INSIDE
(4)

TABLE (2)

ROOM (1)

INSIDE
(3)

TABLE

CHAIR (2)

ROOM

INSIDE
(3)

NO_COLLIDE
(4)

1 constraint 2 constraints 4 constraints

(b) Three incrementally solved constraint systems

Figure 6.22: Illustration of incremental system optimization.

process occurs once for an entire scene. Once a solution is found for all the constraint systems, the

context-free advantage is maintained.

6.3.3.2 Incremental system optimization

Some constraint systems contain a large number of variables despite the use of trajectory chaining.

To improve optimization e�ciency, we solve systems in an incremental fashion by �nding solutions

to only a subset of the constraints at a time.

Incremental system optimization is performed by placing static objects �rst, and thereafter

quantifying the motion for dynamic objects. Each entity is assigned a weight based on its trajectory

type, as illustrated in Figure 6.22(a). The setting (room) is assigned weight of 1 (because settings

are assumed to be located at the origin), while static objects are assigned weight of 2. Dynamic

objects (man) are assigned a weight of 3.

Each edge in the graph shown in Figure 6.22(a) represents a constraint, and is assigned a weight

calculated as the sum of the involved entities' weights. The edge with the lowest weight is selected

as the �rst constraint to be solved, as illustrated in Figure 6.22(b), and the edge is removed from

the graph. In the example, the solution to the �rst constraint de�nes the location of �table� for the

remaining constraint systems, removing its variables from any subsequent optimization process.

The process continues iteratively, selecting the edge with the lowest weight as the next constraint

to be optimized until there are no more edges in the graph. At each iteration a single edge is selected

that identi�es the two entities for which trajectories will be quanti�ed in the current iteration. To

avoid inconsistency, any other constraint involving both entities is also added to the constraint

system to be optimized at the current iteration. This process is illustrated in Figure 6.22(b).

This method is a compromise between context-free and incremental behaviour quanti�cation.

We �nd that each constraint system produced using the incremental method is solved rapidly using

the optimizer. Once all constraints are solved, the overall solution is one that can be used to query

the scene behaviour in a context-free manner.

6.3.3.3 Combination of segmentation and incremental optimization

The restrictions imposed on the complexity of constrain systems by the interval-based quanti�ed

constraint optimizer are overcome using constraint trajectory chaining and incremental optimiza-

tion. A set of abstract constraints is �rst segmented into a chain of constraint systems as described

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 169

Figure 6.23: Illustration of the process used to create quanti�ed trajectories from an abstract
constraint set.

in Section 6.3.3.1 and then each segmented constraint system is solved in an incremental fashion

as described in Section 6.3.3.2. This process is illustrated in Figure 6.23.

In summary, this section demonstrates that the interval-based constraint optimizer is limited

in its ability to �nd solutions to scene-related constraint systems. We overcome these limitations

by formulating and optimizing constraint systems in a careful manner, allowing us to exploit the

strengths of the analytical formulation of behaviour in a scene while maintaining the ability to

quantify complex behaviour in a virtual environment.

6.4 Population of animated, multi-modal 3D environments

This section describes the strategies employed for con�guring a three dimensional environment

using scene descriptions derived from the annotations. We investigate strategies for instantiating

virtual environments and combining audio and text-based modalities into a �nal multi-modal

presentation.

6.4.1 Strategies for instantiating 3D virtual environments

The population of a 3D environment for each identi�ed scene involves instantiating models in

the environment, placing or animating these models according to their quanti�ed behaviour, and

instantiating background scenery in the environment.

6.4.1.1 Object models

Each entity that appears in a scene (identi�ed using the process described in Section 6.2.2) is

represented visually in the 3D virtual environment using the model speci�ed in the entity descriptor.

Models sourced from the library are standardized with respect to size and orientation, ensuring

that all objects are scaled to �t within the unit cube (using automatic normalization). All objects

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 170

Figure 6.24: Default humanoid model from the library with orientation, location and bounding
box illustrated.

are oriented to face the positive z-axis, with the up direction facing the positive y-axis. Future

orientations of a model are calculated based on this fact.

Each model in the library is associated with a manually de�ned bounding box from which a

radius is derived for specifying a bounding sphere in the creation of quanti�ed constraints. This

bounding box need not be the hull of the model, because cases exist where the hull produces an

exaggerated radius. For example, the humanoid model illustrated in Figure 6.24 is associated with

a bounding box that is not the hull of the model, but rather approximates the body of the humanoid

because the arms exaggerate the width of the model.

All objects in the library are pre-textured. The current implementation of the library contains

only a limited number of humanoid models, and we use variations in texturing for visual distinc-

tiveness between avatars. Vertices comprising the model are grouped in terms of items of clothing,

including shirt and trousers. The selection of di�erent materials for these vertex groups provides

a simple method for modifying the visual appearance of unique avatars. Descriptors contain the

individual colour and scaling factor for each entity. At present, clothing colour is chosen at random

for each avatar, as is the scaling factor.

6.4.1.2 Model positioning and articulation

Solutions to the quanti�ed constraint systems specify trajectories for every entity, and placement

in a virtual environment consists of ensuring that the models follow the paths dictated by the

corresponding trajectories.

All models face the positive z-axis by default, and currently no constraints are implemented

that specify the orientation of models in a scene. Orientations for dynamic models are derived

using the tangent of the trajectory at each frame in the scene, automatically ensuring that these

models face the direction of motion.

Local articulation is applied to human models in the form of motion capture for a set of three

typical human poses. This requires the following data to be associated with the models extracted

from the library:

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 171

(a) Rest position (b) Stand pose (c) Walk pose (d) Run pose

Figure 6.25: Armature con�guration and illustration of the default avatar in the three standard
poses.

• Skeleton: models are rigged with an appropriate armature, labeled in a standardized manner

so that multiple motion capture con�gurations can be applied. The standard bone structure

and labeling system we use is illustrated in Figure 6.25. Currently, each bone is assigned to a

vertex group on the avatar mesh. If no skeleton is assigned to a model, then no articulation

is applied to the model in the scene.

• Motion Capture Data: Currently, the library of motion capture data contains only three

poses for humanoid models, namely stand, walk, and run, illustrated in Figure 6.25. These

are listed as optional motion capture assignments in the description of a model in the model

library. The selection of an appropriate pose for an avatar at a point in the scene is based

on the velocity of a model at that point. If the velocity is above an upper threshold, the

run pose is selected. If velocity is below a lower threshold, then the stand pose is selected.

Otherwise the walk pose is selected.

The addition of the three basic poses for humanoid models greatly improves the visual richness

of the �nal scene, enhancing the recognition of the humanoid models as representations of people.

The �nal result is a scene containing visual objects and articulated avatars, an example of which

is provided in Figure 6.26. The trajectory of each entity is represented by a coloured curve.

6.4.1.3 Setting

The Setting annotation is used to construct surrounding geometry in the 3D environment. The

challenge with interpreting the Setting annotation is that only a single token is annotated (future

annotation categories potentially identify descriptive phrases regarding the setting).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 172

Figure 6.26: Illustration of a 3D environment containing models with assigned motion and articu-
lation.

We use procedural modeling approaches for creating background scenery because they are able

to construct geometry of unlimited size and scale. This is opposed to a prede�ned model that is not

large or detailed enough for every scene. Procedural methods also create geometry that appears

unique at each invocation, allowing for variation in the appearance of scenery between di�erent

settings.

Currently, we provide a procedural method for three categories of setting, namely terrain,

room, and city. The annotated Setting token must be associated with one of these categories for

the invocation of the appropriate procedure.

WordNet (Fellbaum, 1998) provides a mechanism for categorizing Setting annotations into one

of the three groups. If a Setting annotation is a hyponym of the term �geological formation� or

�geological area�, it is classi�ed as a terrain. Any term with the hypernym �urban area� is classi�ed

as a city, while any term with the hypernym �room� is classi�ed as a room. For example, the word

�study� is a hyponym of �room�, while the terms �London� and �city� are hyponyms of �urban area�

and are classi�ed as cities.

Entity positioning and locomotion is determined before the creation of the setting geometry,

and so a procedural method must adapt to the behaviour of entities in a scene.

Procedural terrain generation Procedural terrain generation is inspired by the work of Mus-

grave et al. (1989) who pioneered this technique using fractional Brownian motion and erosion

simulation techniques. Recent work by Belhadj (2007) provides alternative methods for the proce-

dural terrain generation that allows for the pre-de�nition of ridge and peak points, around which

terrain is constructed automatically. This allows terrain to be created at the correct height to �sup-

port� the entities within the scene wherever they move, while the rest of the terrain is constructed

in a natural-looking manner.

At present, terrain geometry is textured with a �grass� material, but continued research in this

area is underway in terms of populating a terrain with rivers and �ora, and providing high levels

of detail for close-up shots1.

1See the research page on this topic available at http://delta.ru.ac.za/vrsig/currentprojects/

058proceduralterrain/index.html

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 173

(a) Terrain (b) Room (c) City

Figure 6.27: Example settings generated procedurally.

Procedural city generation Procedural city generation is inspired by the work of Parish and

Muller (2001) and Muller et al. (2006), who describe methods for the automatic generation of urban

road networks and buildings. We provide a city generation method that produces only a grid-iron

road-network, representing buildings as textured cubes. The procedure ensures that no buildings

are placed within the radius specifying the dimensions of the scene, so that the entities appear to

fall within a square in the centre of a city. The simple geometry produced by this module provides

visual indication of an urban environment, and continued research is underway in terms of the

creation of autonomous agents for simulating pedestrians. This potentially adds visual richness to

a procedurally generated city.

Procedural room generation A procedure for creating scenery indicating the inside of a room

is constructed by creating geometry for four walls that surround the radius of the scene. Textures

for the walls and �oor are chosen at random from a library. Entities enter or leave a room through

doors that are created wherever an avatar crosses the boundary of the scene. This approach

functions well in most cases because we observe that few transitions occur within a single scene.

In future, constraints could apply to the trajectory of a model that restrict entry and exit to a

single point.

Future enhancements to procedural room generation include inserting models into the scene

that typically would occur in a speci�c type of room. For instance, a �kitchen� would generally

contain a table and some chairs, while a �bedroom� might contain a bed and a cupboard. This

requires further research into the use of databases that provide this type of link between terms

(Sproat, 2001), although such methods would not be considered knowledge-poor.

Visual examples of the three types of procedural setting for the 3D visualization system are

provided in Figure 6.27.

6.4.2 Strategies for audio

Two options for creating audio representations of �ction text are investigated. The �rst option

generates an audio version of the narrative using a text-to-speech synthesizer, while the second

option includes sound e�ects, or foleys, described in the text.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 174

He gave an excited yelp and rushed full-tilt at the surprised rabbit.

Figure 6.28: Example foley description from the Famous Five 1: Five on a Treasure Island by
Enid Blyton (1942).

6.4.2.1 Audio narrations

Audio versions of text are generated using standard text-to-speech technology, such as eSpeak2.

However, we observe that the speech generated is often monotonous and di�cult to follow. While

improvement in the prosody of the speech synthesizer can address this to an extent, we believe

that this problem is alleviated by choosing voices appropriately for each avatar in the story (Zhang

et al., 2003). This adds an element of variation to the audio narrative.

Fiction text contains quoted text representing speech emitted by di�erent characters in the

story. This information is provided in the form of Quote annotations in the �ction text, as identi�ed

in Chapter 4. Each unique avatar identi�ed in the book requires a di�erent voice. Most speech

synthesizers provide a number of voices, usually including a male and female voice. While entirely

new voices can be created for a speech-synthesizer, experience has shown this to be a tedious and

time consuming process (Hood, 2004). Instead, a range of voices is created by choosing a di�erent

pitch for each avatar, within a range that is still appropriate to the speci�ed gender. Each section

of quoted speech is rendered with the appropriate voice, and recorded to an audio �le. Non-quoted

speech is rendered using a default narrator voice.

The use of avatar speci�c voices adds valuable variation to the narrated output, and allows

avatars to be identi�ed by the listener even in dialogue where they are not explicitly named.

6.4.2.2 Foleys

Sound e�ects are often described in �ction text, as illustrated in Figure 6.28. These descriptions

are potentially identi�ed using annotations created by the hierarchical rule-based learning system

in Chapter 4. However, we currently create foley annotations using a specially designed knowledge-

poor method.

We identify nouns such as �yelp� automatically by examining the hypernym (abstraction) tree

of the word provided by WordNet (Fellbaum, 1998). Any word related to �sound� is identi�ed as a

foley, and a corresponding audio �le matching the word is located from an audio library. We use

a foley library structured in the same manner as the model library, where each foley is associated

with a number of keywords. A query to the library containing the triggering word is compared

against foley keywords, returning foleys where positive matches occur.

Sound e�ects further improve the quality of the overall presentation by adding richness to the

audio output.

6.4.3 Strategies for subtitles

We minimize the problem of mispronunciation in synthesized speech by providing concurrent sub-

titles. The text for each segment is rendered as an image that is superimposed over the currently

2eSpeak: http://espeak.sourceforge.net/ [accessed on 10 July 2008]

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 175

Figure 6.29: Example subtitle with speech bubble, representing a quote from talking avatar Julian.

displayed graphics. The times at which subtitles appear are automatically derived from the location

of the corresponding audio �les in the presentation time-line.

We enhance subtitles by wrapping the text in a speech-bubble whenever quoted speech is

encountered, an example of which is presented in Figure 6.29. A graphical representation of the

appropriate avatar provides a visual identi�er unique to the talking character. The use of a visual

avatar simpli�es the identi�cation of the speaking entity, and provides a visual mechanism for

di�erentiating between narration and speech.

The visual component of the subtitles could also serve to bene�t viewers with hearing de�cien-

cies.

6.4.4 Construction of a multi-modal animated �lm

Virtual environments are instantiated in the Blender modeling package 3, which is an open source

3D modeling and animation tool that contains a Python scripting interface as well as a video

sequencing editor. The scripting interface allows for the automatic conversion of annotations and

quanti�ed trajectories into 3D environments. The advantage of using a package such as Blender

is the availability of a number of pre-implemented manipulation tools for computer graphics that

are used to automate the scene creation process.

Positioning and motion within a 3D environment is controlled using Blender's interpolation

(IPO) curve structure (Blender Foundation, 2008), which de�nes a model's translation in a scene

in terms of an independent curve (channel) for each dimension. Each channel corresponds to

a component of an entity's trajectory, and each curve is constructed by tracing the quanti�ed

trajectories for each entity.

Blender allows for the creation of multiple 3D environments, conveniently called scenes, match-

ing our de�nition of the concept in Section 5.1 on page 106 in Chapter 5. Every scene is a separate

3D environment in Blender, from which segments are rendered and placed into the video sequencer

along with subtitles and audio. Timings in the 3D scenes are all based on the audio rendering of

the �ction text. Transitions between di�erent scenes are realized using a basic �cut� technique.

A example sequence produced automatically from annotated �ction text is presented in Figure

6.30. Rendering the �nal sequence results in a multi-modal animated 3D �lm corresponding to the

annotated �ction text.

3Blender: http://www.blender.org/ [accessed on 12 July 2008]

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 176

Figure 6.30: Example sequence in Blender constructed automatically from the Famous Five 1:
Five on a Treasure Island by Enid Blyton (1942).

6.5 Analysis of the scene creation process

We investigate whether corresponding multi-modal animated 3D virtual environments and �lms

are created using the processes described in this chapter. Evidence validating the creation process

is supported by answers to the following questions:

1. Are consistent high-level scene descriptions derived from annotated text?

This question determines whether consistent high-level descriptions of the scenes, their con-

tents and behaviour are created using the automated processes we describe.

2. Are virtual environments populated consistently using high-level scene descriptions?

Once a virtual environment is populated a human has the opportunity to directly modify a

scene in a 3D modeling package. We report on the type and quantity of modi�cations made

by a human as an indication of the consistency with which these environments are populated.

3. Are the automatically populated 3D environments representative of the corresponding text?

This question cannot be answered using quanti�ed methods, due to the subjectivity of lan-

guage and visual interpretation. However, we provide examples of automatically created

environments, and provide a subjective evaluation of each, which is guided in terms of the

following questions:

(a) Is behaviour speci�ed by annotations re�ected in the visual representation?

(b) Can complex behaviour (multiple way-points in a scene) be re�ected in a visual repre-

sentation?

(c) Does the process support sequencing of multiple scenes?

(d) Is appropriate media generated for representing the text?

(e) Are the conversion processes applicable to �ction books of di�erent type (author, series,

readability)?

This section presents a suite of experiments for answering the above questions, and describes test

cases used. Metrics for measuring success are de�ned, and possible sources of experimental error

are identi�ed.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 177

Readability

Description Series: Book Author (year) Fog Flesh

1 Cow scene Famous Five 1:

Five of a Treasure Island

Enid Blyton

(1942)

5.2 96.2

2 Rabbit scene Famous Five 1:

Five of a Treasure Island

Enid Blyton

(1942)

5.2 96.2

3 Study scene Famous Five 1:

Five of a Treasure Island

Enid Blyton

(1942)

5.2 96.2

4 Travel sequence Famous Five 1:

Five of a Treasure Island

Enid Blyton

(1942)

5.2 96.2

5 Follow scene World of Tiers 7:

More than Fire

Philip Jose Farmer

(1993)

6.6 87.8

6 House sequence Chronicles of Narnia 2:

The Lion, the Witch and the Wardrobe

C.S. Lewis

(1950)

6.9 90.5

Table 6.2: Descriptions of the source books and chosen scenes.

6.5.1 Test corpus

We use six extracts from three �ction books of di�erent type (according to the de�nition in Chapter

4, where books from di�erent series and authors are considered to be of di�erent type), listed in

Table 6.2. We present the actual extracts with the visual results in Section 6.5.4.

Each extract is annotated using categories described in Chapter 4, namely with Avatar, Object,

Setting, Transition, and Relation annotations. The annotations are assumed to be correct according

to one human's perception, but need not be correct according to another's, nor are they guaranteed

to be consistent.

The suite of extracts is chosen to illustrate features of the conversion process:

• Extracts 1, 2, 3, and 5 demonstrate the automatic quanti�cation of behaviour in a virtual

world.

• Extract 4 and 6 are extended extracts describing a number of di�erent scenes. We use these

to demonstrate the creation of corresponding sequenced animated �lms with multiple scenes.

• All the extracts are used to demonstrate the automatic insertion and placement of appropriate

geometry and audio material.

The objective evaluation of the above processes is a poorly de�ned problem, which we discuss in

the next section.

6.5.2 Metrics

The measurement of the success of an automatically generated virtual world is a subjective process

because of di�erent human interpretations of �ction text. The results produced by the scene

creation processes are visual in nature, and it is unclear which features in a visual scene should be

measured for quantitative evaluation.

The problem of evaluating automatically generated scenes is encountered in other research in

the text-to-graphics domain. Most related research performs subjective evaluations through the

use of visual examples (Coyne and Sproat, 2001; Lu and Zhang, 2002; Zeng et al., 2003; Joshi et al.,

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 178

2004). In these cases, a small set of example images produced from the original text is provided,

leaving evaluation to the discretion of the reader.

The only other evaluation method we encounter in related text-to-graphics research is user

evaluation, where a group of human subjects is asked to rate the visual content produced by the

automatic system (Johansson et al., 2005; Ma, 2006). However, Johansson et al. (2005) acknowledge

that such studies do not provide a complete re�ection on the capabilities of a system, and results

vary greatly from one human to the next. We believe that this is because such studies do not

objectively evaluate the system. Rather, they evaluate both the human as well as the system.

Subjectivity is involved in comprehending natural language and visual images. The processes we

describe are designed to improve in quality given additional time and patience of the human. These

factors introduce errors into a user-evaluation that are not necessarily caused by the automated

process, and are therefore not measurable.

We perform our evaluations using a subjective (but quantitative) evaluation of the manual

interventions needed to ensure consistency in automatically generated content. The degree to which

automatically produced content matches the text is justi�ed through the use of visual examples.

6.5.2.1 Consistency of automatically generated content

We evaluate whether the content generated at each step in the conversion process requires modi�-

cation and consider content to be consistent if the total amount of generated content exceeds the

amount of manual modi�cations.

We calculate the following metric to determine the level of consistency achieved in the creation

of high-level scene descriptions:

consistency =
total content items−manualmodifications

total content items
∗ 100

The above metric, while providing numeric values, is subjective in nature because the manual

modi�cations are performed at the discretion of an individual human.

We evaluate the consistency of automatically produced virtual environments according to the

type of intervention performed. We categorize manual intervention as deletions, modi�cations,

and insertions, each of which vary in terms of manual e�ort. Insertions are considered the most

di�cult operation because they require the most e�ort and expertise in a 3D modeling environ-

ment. Modi�cations are considered less di�cult because only attributes of the scene are modi�ed,

requiring an intermediate level of expertise and e�ort. Deletions are considered the least di�cult

operation because little expertise is required for this operation. We present the number of each

type of manual operation as an indicator of the degree of consistency.

6.5.2.2 Correctness of visual content

We follow the methods used by WordsEye (Coyne and Sproat, 2001), Swan (Lu and Zhang,

2002), and other text-to-graphics systems (Zeng et al., 2003; Joshi et al., 2004) in using visual

examples as evidence regarding the correctness of the automated content. We critically evaluate

each visual example. However, we maintain that the true level of correctness varies from human

to human, or according to the adage is �in the eye of the beholder�.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 179

6.5.3 Sources of experimental error

As in Chapter 4, we acknowledge the complexity of the English language and its understanding as a

source of experimental error. The manual annotations produced for the corpus of test data cannot

be guaranteed to be consistent or correct, and this potentially produces extraneous or surprising

artifacts in the automatically generated scenes.

The subjectivity of image and �lm comprehension is also a source of experimental error. Similar

to language comprehension, comprehension of the visual and audio modalities is de�ned by human

experience. As such, manual modi�cations and critical evaluations provided for each result are

independent to the evaluator, and need not correlate with another human's opinion.

Our implementation is restricted to particular visual features that avoid potentially biasing

the perceived success of the automation process. We provide an indication of the extent to which

certain features are implemented:

• The set of annotation categories we use are restricted to Avatar, Object, Setting, Transition,

and Relation. Further visual descriptions including grasping of objects, poses, expressions,

and colours are not yet implemented. These factors are not considered during the critical

evaluations of the visual results.

• Following the knowledge-poor theme of this research, certain semantic types associated with

annotations such as Transition and Relation are interpreted literally. For instance, the rela-

tion type inside is interpreted literally in examples such as �in his chair� and �in bed�. These

examples require detailed world-knowledge for correct interpretation, and we leave this to

the human.

• Camera control is not considered during the scene generation process, leaving this to future

work which will take into account the work already performed in this �eld (Drucker and

Zeltzer, 1994; He et al., 1996; Christie et al., 2002; Nieuwenhuisen and Overmars, 2003).

• We produce graphical visualizations that are of intermediate quality in terms of richness,

so that the important aspects of the visualizations are not obfuscated. We avoid the use of

special e�ects and other graphical enhancements in these evaluations.

6.5.4 Results

We present experiments that investigate the questions posed at the beginning of this section.

6.5.4.1 Consistency of high-level scene descriptions

We investigate the consistency with which high-level scene descriptions are created from anno-

tations using the process described in Section 6.2. In particular, we investigate the following

questions:

• Is the majority of the scene descriptions correctly created from interpreted annotations?

• What is the nature of manual intervention in this process?

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 180

Extract Scene segmentation Model descriptors Co-reference Abstract constraints

T
o
ta
l

M
o
d
i�
ed

C
o
n
si
st
en
cy

T
o
ta
l

M
o
d
i�
ed

C
o
n
si
st
en
cy

T
o
ta
l

M
o
d
i�
ed

C
o
n
si
st
en
cy

T
o
ta
l

M
o
d
i�
ed

C
o
n
si
st
en
cy

1 1 0 100% 12 1 91.67% 12 2 83.33% 68 1 98.52%

2 1 0 100% 8 2 75.0% 52 15 71.5% 41 1 97.56%

3 1 1 0% 6 0 100% 40 8 80.0% 45 0 100%

4 6 2 66.67% 10 0 100% 23 0 100% 41 9 78.0%

5 1 0 100% 2 0 100% 11 0 100% 4 0 100%

6 2 0 100% 8 0 100% 28 1 96.43% 44 0 100%

Summary 12 3 83.33% 46 3 93.47% 166 26 84.33% 243 11 95.47%

Table 6.3: Degree of consistency for the automatic abstract constraint creation process over six
extracts.

We investigate these questions using each of the six annotated extracts. We record the amount of

automatically generated content and compare this with the amount of content that is modi�ed by

a human.

The type and degree of manual intervention with respect to each step of the abstract constraint

creation process is listed in Table 6.3. Exact descriptions of the modi�cations are provided in

Appendix E.

Scene segmentation is consistent in the majority of cases. Extracts in which modi�cations are

made do not explicitly mention the scene, and human discretion is used to infer the setting.

The creation of model descriptors is consistent in the majority of cases, and only 3 of the 46

automatically created descriptors are modi�ed manually. The majority of these modi�cations are

concerned with assigning a trajectory of higher degree to objects that are de�ned as static by

default.

Co-reference resolution is achieved at a high level of accuracy. Two scenarios require manual

intervention. The pronoun �it� is not handled by the current implementation, and must be manually

resolved. General co-references, for example �boy�, are also not handled, and must be manually

matched to the correct avatar is some cases. However, these scenarios represent only a small

portion of the total consistent co-reference items created.

Only a small number of the automatically generated abstract constraints require manual mod-

i�cation. The greatest number of modi�cations are made for extract 6. In this case, constraints

are added manually to cater for details not explicitly described in the �ction text. For example,

in extract 6 the character Anne is described as �sleeping�, an activity that a human associates

with a �bed�. This item of furniture is not explicitly stated in the extract, and no corresponding

annotation is created that identi�es it. A human manually inserts an abstract constraint: �Anne

inside bed�. This results in the automatic placement of a bed model in the scene. In spite of these

manual modi�cations, the majority of automatically produced constraints are consistent.

Scene descriptions are created consistently using the knowledge-poor interpretation processes

described in Section 6.2. The types of manual intervention cater for exceptions that require addi-

tional world-knowledge from a human.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 181

Insertion Modi�cation Deletion

1 0 1 3
2 0 1 0
3 0 1 1
4 0 8 1
5 0 1 0
6 0 1 2

Summary 0 13 7

Table 6.4: Summary of manual modi�cations to automatically populated virtual environments.

6.5.4.2 Consistency of virtual environment population

We investigate the consistency with which the population of virtual environments is achieved using

the process described in Section 6.4. We investigate the following questions:

• Do instantiated and populated virtual environments require signi�cant manual modi�cation?

• What is the nature of manual intervention in this process?

We investigate these questions by populating virtual environments for each of the six annotated

extracts. We indicate the number and type of each manual intervention in the virtual environment.

The extent of human intervention in creating virtual environments for each extract is listed

in Table 6.4. No insertions are made to any of the virtual environments, but some modi�cations

and deletions are performed. This indicates that our process is capable of producing a minimum

amount of visual content for a scene, but in some cases it produces more visual content than is

necessary.

The majority of the modi�cations made to the virtual environments are concerned with camera

placement, a function not catered for by the current implementation. The other modi�cations are

discretionary, such as modifying the material of entities in the scene.

The primary cause for deletions in a virtual environment is the creation of content that should

not be visually represented. In all these cases, extraneous content is the result of annotations that

are inconsistent. In this respect, the visualization process is correctly representing the annotated

text, but is not creating a correct visualization according to one human's opinion. This point is

illustrated by the inclusion of a model for �children� in the scene shown in Figure 6.31(a) and (c).

This entity is marked as an avatar in the extract, but it does not make sense in the visual scene,

and is removed by hand. Not all scenes require deletions, an example of which is illustrated in

Figure 6.31(b).

Automatically populated virtual environments do not require signi�cant manual modi�cations,

indicating that they are created consistently. Manual intervention occurs only in the form of

modi�cations and deletions in the virtual environment.

6.5.4.3 Visual representation of behaviour

We conduct two experiments to determine if behaviour described by Transition and Relation

annotation categories is visualized correctly in a scene. We investigate the following questions:

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 182

(a) Extract 1 (b) Extract 2 (c) Extract 3

Figure 6.31: Illustration of automatically generated virtual environment without manual interven-
tion.

• Is the behaviour described by Transition and Relation annotations visualized in the virtual

environment?

• Is quanti�ed behaviour (behaviour de�ned over an interval of time) visualized in a virtual

environment?

We use two extracts from di�erent books in the investigation of the above questions.

Cow scene The cow scene, drawn from the Famous Five 1: Five on a Treasure Island by Enid

Blyton (1942) is annotated as follows:

The picnic was lovely. They had it on the top of a hill, in a sloping �eld that looked down into a

sunny <setting>valley</setting>. <avatar>Anne</avatar> didn't very much like a big brown <ob-

ject>cow</object> who <transition type=�INSIDE� subject=�cow�>came</transition> up <re-

lation type=�near� subject=�cow� object=�her�>close<relation> and stared at her, but it <transi-

tion type=�OUTSIDE� subject=�it�>went</transition> away when <avatar>Daddy</avatar> told

it to. The <avatar>children</avatar> ate enormously, and Mother said that instead of having a tea-picnic

at half-past four they would have to go to a tea-house somewhere, because they had eaten all the tea <ob-

ject>sandwiches</object> as well as the lunch ones!

"What time shall we be at Aunt Fanny's?" asked <avatar>Julian</avatar>, �nishing up the very last <ob-

ject>sandwich</object> and wishing there were more.

"About six o'clock with luck," said <avatar>Daddy</avatar>. "Now who wants to stretch their legs a bit?

We've another long spell in the car, you know." The <object>car</object> seemed to eat up the miles as it

purred along.

A sequence of images taken from the resulting animated �lm is presented in Figure 6.32 (which

is available for viewing in Appendix F). The cow enters and exits the scene at the correct mo-

ments according to the concurrent subtitles and audio, indicating the successful conversion of the

Transition annotations to visual behaviour. The setting is interpreted correctly in providing a

background suitable for the description �valley�, and the appropriate geometric models appear in

the virtual environment.

Follow scene The following scene, taken from the World of Tiers 7: More than Fire by Philip

Jose Farmer (1993), provides an example indicating the strength of phrasing constraints in terms

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 183

Figure 6.32: Cow scene from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 184

of contiguous intervals of time:

"THIS'LL BE IT!" <avatar>KICKAHA</avatar> SAID. "I KNOW IT, KNOW IT! I CAN feel the forces

shaping themselves into a big funnel pouring us onto the goal! It's just ahead! We've �nally made it!"

He wiped the sweat from his forehead. Though breathing heavily, he increased his pace.

<avatar>Anana</avatar> was a few steps <relation type=�BEHIND� subject=�Anana� ob-

ject=�him�>behind</relation> and below him on the steep <setting>mountain</setting> trail. She

spoke to herself in a low voice. He never paid any attention to her discouraging-that is, realistic-words, anyway.

"I'll believe it when I see it."

The above extract speci�es a �following� motion, where the model representing Anana must be

behind the moving Kickaha model over a time interval.

Snapshots from the �nal animated scene are presented in Figure 6.33 (the �lm is available for

viewing in Appendix F). When the sentence �Anana was a few steps behind...� is encountered, the

behaviour quanti�ed by the behind Relation is visualized. The Anana avatar moves to a position

�behind� the Kickaha model. This spatial relation between the two moving entities is maintained

for the entire time interval, illustrated by the last four snapshots in Figure 6.33.

These examples demonstrate that the behaviour speci�ed by Transition and Relation annotation

categories is visualized appropriately. Quanti�ed behaviour is visualized correctly in a virtual

environment.

6.5.4.4 Complex behaviour

This section investigates the visualization of complex behaviour in a scene. We de�ne complex

behaviour as trajectories that include a number of way-points, speci�ed as a chain of low degree

curves (described in Section 6.3.3). We investigate the following question:

• Is the complex behaviour described by Transition and Relation annotations visualized in a

virtual environment?

We use two extracts in the investigation of the above question.

Rabbit scene The Rabbit scene from the Famous Five 1: Five on a Treasure Island by Enid

Blyton (1942) demonstrates complex motion with respect to three di�erent entities in the scene,

namely a rabbit, the avatar Timothy, and the avatar George (we use ellipsis to indicate where text

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 185

Figure 6.33: Follow scene from the World of Tiers 7: More than Fire by Philip Jose Farmer (1993).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 186

is omitted):

"Look! There's a rabbit!" cried <avatar>Dick</avatar>, as a big sandy <object>rabbit</object>

lolloped slowly across the <setting>yard</setting>. It <transition type=�OUTSIDE� sub-

ject=�It�>disappeared</transition> into a hole on the other side. Then another rabbit <transition

type=�INSIDE� subject=�rabbit�>appeared</transition>, sat up and looked at the children, and then

<transition type=�OUTSIDE� subject=�rabbit�>vanished</transition> too. A third rabbit <transi-

tion type=�INSIDE� subject=�rabbit�>appeared</transition>. It was a small one with absurdly big ears

...

... But this was too much for <avatar>Timothy</avatar>. He gave an excited <foley>yelp</foley>

and rushed full-tilt<relation type=�NEAR� subject=�He� object=�rabbit�>at</relation> the surprised

rabbit. ...

Then it turned itself about and tore o� at top speed, its white bobtail going up and down as it bounded

away. It disappeared <relation type=�UNDER� subject=�It� object=�bush�>under</relation> a

gorse <object>bush</object> near the children. <avatar>Timothy</avatar> went after it, vanish-

ing <relation type=�UNDER� subject=�Timothy� object=�bush�>under</relation> the big <ob-

ject>bush</object> too. ...

"Tim! Do you hear me! Come out of there!" shouted <avatar>George</avatar>. "You're not to chase the

rabbits ...

... <avatar>George</avatar> went to fetch him. Just as she got up<relation type=�near� subject=�she�

object=�bush�>to</relation> the gorse <object>bush</object> the scraping suddenly stopped.

This extract contains a number of Transition annotations describing the behaviour of the Rabbit

entity. A number of di�erent behaviours are also speci�ed by Relation annotations: Timothy

rushes towards the Rabbit; the Rabbit moves under a bush; and Timothy follows the rabbit to the

bush. The combination of these di�erent behaviour types results in complex motion in the virtual

environment.

Snap-shots of the �rst portion of the Rabbit scene are presented in Figure 6.34 containing

an outdoor scene with rabbits, some avatars, a bush, and the dog Timothy (the animated �lm is

available for viewing in Appendix F). The rabbit model moves in and out of the scene appropriately.

The sequence of snapshots is continued in Figure 6.35, illustrating the motion of Timothy towards

the rabbit and the subsequent motion of the rabbit towards the bush. The images visualize Timothy

following the rabbit into the bush, as well as the subsequent movement of George to the bush.

Study scene The study scene from the Famous Five 1: Five on a Treasure Island by Enid

Blyton (1942) is an extract describing complex behaviour, as well as describing static scene layout:

He stole <transition type=�INSIDE� subject=�He�>in</transition>. His <avatar>uncle</avatar>

still snored. He tiptoed by him <relation type=�NEAR� subject=�he� object=�table�>to</relation>

the <object>table</object> <relation type=�BEHIND� subject=�table� ob-

ject=�chair�>behind</relation> his uncle's <object>chair</object>. He took hold of the

<object>box</object>. And then a bit of the broken wood of the box fell to the �oor with

a <foley>thud</foley>! His uncle stirred <relation type=�INSIDE� subject=�uncle� ob-

ject=�chair�>in</relation> his <object>chair</object> and opened his eyes. Quick as lightning

the boy crouched down <relation type=�BEHIND� subject=�boy� object=�chair�>behind</relation>

his uncle's <object>chair</object>, hardly breathing.

"What's that?" he heard his uncle say. <avatar>Julian</avatar> didn't move. Then his uncle settled down

again and shut his eyes. Soon there was the sound of his rhythmic <foley>snoring</foley>!

"Hurrah!" thought <avatar>Julian</avatar>. "He's o� again!" Quietly he stood up, holding the

box. On tiptoe he crept to the French window. He slipped <transition type=�OUTSIDE� sub-

ject=�He�>out</transition> and ran softly down the garden path. He didn't think of hiding the box. All

he wanted to do was to get to the other <avatar>children</avatar> and show them what he had done!

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 187

Figure 6.34: Rabbit scene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton
(1942).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 188

Figure 6.35: Rabbit scene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton
(1942).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 189

The above extract describes the motion of the avatar Julian as he sneaks into his uncle's study,

to the table (which is described as being behind his uncle's chair). The boy then exits the scene.

Snap-shots of the �nal animated �lm are presented in Figure 6.36 and Figure 6.37 (available

for viewing in Appendix F). The model representing Julian enters the scene, moves towards the

table, moves behind the chair, and exits the room in a manner that corresponds to the concurrent

subtitles. Quentin moves to his chair at the appropriate moment. This example demonstrates that

complex behaviour is visualized in the form of correct movement through multiple way-points.

We identify problems with Figure 6.36, such as the fact that the box is not placed on the

table. This fact is never explicitly stated in the text however, and the created scene is correct

according to the annotations. One �aw is the initial location of Quentin, who should be in the chair

throughout the scene. This constraint is only implemented from the point at which the annotation

is encountered in the text, resulting in the movement of Quentin to his chair only midway through

the scene. The visualized scene is also missing articulation described in the text, but we do not

evaluate the scene on behaviour that includes crouching, picking up the box, dropping it, or taking

the box out of the scene. These kinds of descriptions are not identi�ed using the current set of

annotation categories.

The results presented in this section demonstrate that complex trajectories are visualized ap-

propriately in a virtual environment.

6.5.4.5 Consecutive scenes

This section investigates whether multiple scenes are visualized in one continuous animated pre-

sentation:

• Is a presentation created that switches correctly from one scene to the next?

We use two extracts in the investigation of the above question.

House sequence The following extract from the Narnia series, The Lion, the Witch and the

Wardrobe by C.S. Lewis (1950) describes two di�erent scenes:

They were sent to the <object>house</object> of an old <avatar>Professor</avatar> who lived in

the heart of the <setting>country</setting>, ten miles from the nearest railway station and two miles

from the nearest post o�ce. He had no wife and he lived in a very large house with a housekeeper called

<avatar>Mrs Macready</avatar> and three servants. (Their names were Ivy, Margaret and Betty, but

they do not come into the story much.) He himself was a very old man with shaggy white hair which grew

over most of his face as well as on his head, and they liked him almost at once; but on the �rst evening when

he <transition type=�INSIDE� subject=�he�>came</transition> out to meet them at the front door

he was so odd-looking that <avatar>Lucy</avatar> (who was the youngest) was a little afraid of him, and

<avatar>Edmund</avatar> (who was the next youngest) wanted to laugh and had to keep on pretending he

was blowing his nose to hide it.

As soon as they had said good night to the <avatar>Professor</avatar> and gone upstairs on the �rst

night, the boys <transition type=�INSIDE� subject=�boys�>came</transition> into the girls' <set-

ting>room</setting> and they all talked it over.

"We've fallen on our feet and no mistake," said <avatar>Peter</avatar>. "This is going to be perfectly

splendid. That old chap will let us do anything we like."

"I think he's an old dear," said <avatar>Susan</avatar>.

"Oh, come o� it!" said <avatar>Edmund</avatar>, who was tired and pretending not to be tired, which

always made him bad-tempered.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 190

Figure 6.36: Study scene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton
(1942).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 191

Figure 6.37: Study scene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton
(1942).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 192

Figure 6.38: House sequence from Narnia 2: The Lion, the Witch and the Wardrobe by C.S. Lewis
(1950).

The above extract begins by describing the location of the Professor's house and the initial

meeting of the characters outside it. The setting then changes to inside the house, in one of the

rooms. A unique scene should be created for each setting, and each scene should be displayed at

the correct moment in the animated �lm.

Snapshots from the �nal animated �lm are presented in Figure 6.38 (available for viewing in

Appendix F). The �rst scene occurs in an outdoor setting, with a model representing a house.

The change in scene is shown from the third snapshot onwards, where the setting is automatically

changed to the room in which the avatars are having a conversation.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 193

Travel sequence The following extract from the Famous Five 1: Five on a Treasure Island by

Enid Blyton (1942) describes a number of successive scene changes:

<avatar>Dick</avatar> and <avatar>Julian</avatar>, who shared a <setting>room</setting>,

woke up at about the same moment, and stared out of the nearby window.

"It's a lovely day, hurrah!" cried <avatar>Julian</avatar>, leaping out of <object>bed</object>. "I

don't know why, but it always seems very important that it should be sunny on the �rst day of a holiday. Let's

wake Anne."

<avatar>Anne</avatar> slept in the next <setting>room</setting>. <avatar>Julian</avatar> ran

<transition type=�INSIDE� subject=�Julian�>in</transition> and shook her.

"Wake up! It's Tuesday! And the sun's shining." Anne woke up with a jump and stared at

<avatar>Julian</avatar> joyfully. "It's come at last!" she said. "I thought it never would. Oh, isn't it

an exciting feeling to go away for a holiday!"

They started soon after breakfast. Their <object>car</object> was a big one, so it held them all very

comfortably. <avatar>Mother</avatar> sat in front with <avatar>Daddy</avatar>, and the three

<avatar>children</avatar> sat behind, their feet on two <object>suitcases</object>. In the luggage-

place at the back of the car were all kinds of odds and ends, and one small <object>trunk</object>.

<avatar>Mother</avatar> really thought they had remembered everything.

Along the crowded <setting>London</setting> roads they went, slowly at �rst, and then, as

they left the <setting>town</setting> behind, more quickly. Soon they were right into

the open <setting>country</setting>, and the <object>car</object> sped along fast. The

<avatar>children</avatar> sang songs to themselves, as they always did when they were happy.

"Are we picnicking soon?" asked <avatar>Anne</avatar>, feeling hungry all of a sudden.

"Yes," said <avatar>Mother</avatar>.

Snap-shots of the automatically produced animated �lm are presented in Figure 6.39 (available

for viewing in Appendix F). Two visually distinct room settings are produced automatically: a city

setting representing London; and an outdoor setting representing �country�. Each scene appears

correctly according to the concurrent subtitles, successfully demonstrating the sequencing ability

of the conversion process.

This results in this section demonstrate that a sequence of scene descriptions in �ction text is

successfully converted into a corresponding presentation that contains appropriate visual changes.

6.5.4.6 Appropriate media

We investigate whether the automated conversion process creates appropriate media for presenting

the story:

• Are geometric models selected that adequately visualize the entities and background scenery

in an environment?

• Does content in di�erent modalities (graphics, audio) represent the �ction text and is it

aligned correctly in the �nal animated presentation?

We do not perform an individual experiment for this investigation, but refer to results from previous

experiments as evidence for answering the above questions.

All the experiments detailed previously in this section produce visual results that depict ap-

propriate visualizations of the entities described in the extracts. This includes the appropriate

visualization of avatars and objects. Each virtual environment created automatically in these

experiments also contains background scenery appropriate to the described setting. These obser-

vations are made with one reservation in mind, namely that the appropriate selection of models is

dependent on the variety of models available in the model library.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 194

Figure 6.39: Travel sequence from the Famous Five 1: Five on a Treasure Island by Enid Blyton
(1942).

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 195

All the aforementioned experiments result in animated �lms that provide evidence in support

of the use of audio narrations, the use of di�erent voices for di�erent avatars, as well as the use

of visually enhanced subtitles. The digital animations available in Appendix F include the audio

modality for each �lm, demonstrating the successful synchronization between the audio (narrations

and foleys), the subtitles, and the behaviour in the graphical scene.

These examples demonstrate that the automated process appropriately selects and creates

geometry for visualizing the described scenes, and supports the creation of presentations that

contain multiple correctly aligned modalities.

6.5.4.7 Applicability to di�erent types of books

Evidence presented in Chapter 4 suggests that books of di�erent type (di�erent author and read-

ability index) impact the success of the automated conversion process. We investigate the following

question:

• Is the automated process for creating multi-modal animated 3D �lms from annotated �ction

text applicable over books of di�erent type?

We do not perform an individual experiment for this investigation, but refer to results from previous

experiments.

The suite of extracts presented in this section are sourced from 3 di�erent �ction books of

di�erent type. Consistent virtual environments and animated �lms are produced from all three

sources. This demonstrates that the automated process is applicable over books of di�erent type,

for the categories of annotation used in these experiments.

6.5.5 Summary of �ndings

We conclude that corresponding multi-modal animated 3D virtual environments and �lms are

created using the processes described in this chapter. This conclusion is supported by the following

observations from the experiments conducted in this section:

1. The creation of high-level scene descriptions (including the identi�cation of scenes, their

content, and behaviour) is performed consistently, requiring minimal human modi�cation.

2. Virtual environments are populated in a manner that requires little signi�cant modi�cation.

3. Automatically generated virtual environments are representative of the input text, speci�cally

with regards to the following aspects:

(a) Behaviour speci�ed by annotation categories such as Transition and Relation is visual-

ized correctly in a virtual environment.

(b) Complex behaviour is visualized correctly in a virtual environment.

(c) Visual sequences containing multiple scenes are created that correctly represent descrip-

tions in the input text.

(d) Appropriate media is chosen for di�erent modalities of representation, including the

selection and creation of visual geometry, and the insertion of audio narrations and

sound e�ects.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 196

(e) The automated process supports the creation of multi-modal animated 3D virtual en-

vironments and �lms across di�erent types of books.

6.6 Conclusion

This chapter presents a process that successfully interprets annotated �ction text to create corre-

sponding multi-modal animated 3D virtual environments and �lms. We summarize this process

in terms of three stages, namely the automatic creation of high level scene descriptions from

annotated �ction text, the quanti�cation of behaviour in virtual environments (using constraint

formulation and optimization), and the instantiation and population of the virtual environments

using automated techniques.

We draw the following conclusions with regards to the original problems stated in Section 6.1.1:

1. The interpretation of annotations is performed successfully in the creation of high-level struc-

tured scene descriptions using knowledge-poor approaches.

(a) The set of annotation categories de�ned in Chapter 4 provide for the automatic speci-

�cation of scene detail. Setting annotations correctly identify the scenes to portray vi-

sually, while Object and Avatar annotations successfully identify the entities contained

in each scene. Transition and Relation annotations specify the behaviour of entities in

each scene. This shows that the limited set of annotation categories we de�ne provides

su�cient detail to specify scenes in a structured and complete manner.

(b) The de�nition of a scene as a �nite space that exists over a contiguous interval of time

(provided in Chapter 5, De�nition 5.1 on page 107) is fundamental to the interpreta-

tion of a book as a collection of independent virtual environments. This justi�es the

segmentation of text according to physical location.

(c) Visual consistency regarding the representation of entities in di�erent environments is

achieved using entity descriptors, which are scene-independent instantiations of each

entity. These descriptors provide for the assignment of unique visual attributes to each

entity, including a representative visual icon, colouring, and motion type.

(d) The link between instantiated entities and the annotations is maintained through the

use of co-reference. A knowledge-poor method successfully creates these links (using

the gender speci�city of personal pronouns), which are used for attributing behaviour

to entities in a scene.

(e) Abstract constraints are fundamental for summarizing time-quanti�ed behaviour in a

structured manner, while still permitting human review and correction. They also

provide a means through which implicit physical restrictions (such as gravity and inter-

penetration) can be de�ned.

(f) Time is derived in a knowledge-poor fashion using synthesized audio equivalents of the

�ction text. This method quanti�es behaviour in a manner that translates to visualiza-

tions corresponding to the descriptions in the text.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 197

(g) Abstract constraints are directly translated into analytical constraints due to their struc-

tured nature. In this manner, a human need not be concerned with complex low level

behaviour reasoning. However, manual control over behaviour is still provided through

the human readable abstract constraints.

(h) The phrasing of constraints in terms of distance provides a valuable ability to measure

the quality of the quanti�ed behaviour during the optimization process (using the opti-

mizer described in Chapter 5). This is particularly useful where the described behaviour

is inconsistent, or the time permitted for constraint optimization is limited. This pro-

vides the designer with an indication of the quality of the current speci�ed behaviour,

allowing optimization to be terminated prematurely if quality is su�ciently high for the

designer's needs.

(i) The disadvantage of the use of analytical constraints for quantifying scene behaviour

is the lack of solving techniques capable of �nding solutions to constraints containing

large numbers of variables. This problem is overcome by expressing trajectories as

sequences of low degree curves (resulting in reduced numbers of variables in each con-

straint system), and incremental solving. Complex behaviour is produced e�ciently,

while maintaining the bene�ts of environment-independent spatial reasoning (described

in Section 5.2.3 on page 112).

2. Virtual environments are successfully instantiated and populated from scene descriptions

using automated techniques. There is no need for repetitive 3D modeling and animation,

and rich virtual environments are created rapidly.

(a) Entities in virtual environments exhibit visual consistency in relation to size and orien-

tation by using 3D models that are standardized in these respects. Entity visualization

is enhanced through the use of motion-capture for realistic articulation.

(b) Detailed background scenery of unlimited size is successfully produced using procedural

methods.

(c) The derivation of time from audio representations of the text provides an accurate

time-line against which multiple modalities (visual, audio, and text) are aligned.

(d) The automated methods support the creation of multiple virtual environments as well

as a coherently sequenced multi-modal animated �lm presentation.

The virtual environments created from automatically interpreted text visually convey the envi-

ronments and behaviour described. This is supported by the range of experiments conducted in

Section 6.5. In summary, multi-modal animated 3D virtual environments and �lms are created

successfully using the techniques described in this chapter.

The techniques presented in this chapter contribute novel innovations regarding the text-to-

graphics task:

• This work presents the �rst use of text sourced from popular �ction books as input for the

creation of animated 3D graphics.

CHAPTER 6. POPULATION OF VIRTUAL WORLDS 198

• We use a knowledge-poor approach that allows human intervention in the conversion pro-

cess. This is di�erent to existing text-to-graphics research which focuses on providing fully

automatic knowledge-centric processes.

• The use of corresponding audio �les for deriving temporal information for quantifying be-

haviour is innovative in the domain of text-to-graphics.

• We present the �rst use of interval-based constraint optimization for determining quanti�ed

scene behaviour. This method is innovative in its ability to measure the quality of derived

behaviour, and no evidence exists in related research regarding similar metrics.

• The methods described in this chapter contribute to the �eld of virtual reality by providing a

mechanism for automatically instantiating and populating virtual environments. Our method

creates virtual environments without the need for extensive manual e�ort in 3D modeling,

environment design and motion quanti�cation.

A number of aspects of the automatic conversion process stand to bene�t from future improve-

ment. Our primary focus is on expanding support for di�erent categories of annotation, including

descriptive phrases that specify visual features such as colour and emotion, as well as articulated

behaviour that includes posing avatar models.

Chapter 7

Conclusion

This chapter summarizes our approach for automating the �ction-to-animation task (Section 7.1).

Conclusions drawn from this research are presented in Section 7.2. We describe signi�cant contri-

butions and innovations in Section 7.3.

7.1 Summary

We view the conversion of �ction text into multi-modal animated virtual environments as two prob-

lems: the analysis of the natural language text to create a structured intermediate representation;

and the interpretation of this intermediate representation for creating a corresponding animated

virtual environment.

Text analysis begins with the creation of surface annotations, which involves identifying the

structural and syntactic properties of �ction text. We use a custom-built text tokenizer and

sentence splitter for identifying structural properties. Publicly available tools provide syntactic

information including parts-of-speech, syntactic function, and phrasing. Accuracies of greater

than 95% can be expected for every category of surface annotation.

We use annotated �ction text as the structured intermediate representation of a �ction book.

We create these annotations using a pattern-based machine learning approach. Rules are induced

from manually provided examples (supplemented with automatically generated surface annota-

tions). The result is a model that creates annotations speci�c to the style of the human who

provides the examples. We believe that error potentially introduced by incorrect surface anno-

tations is accommodated by the induction of special-case rules, and has minimal impact on the

creation of semantic annotations. Models are induced that create correct annotations in di�erent

categories, and success varies according to the category (we report accuracy levels ranging be-

tween 51.4% and 90.4%). We observe that the greater the number of examples provided, the more

accurate the automatically produced annotations become.

The interpretation of the annotated �ction text involves formulating structured scene descrip-

tions, quantifying entity behaviour in a virtual environment, and populating corresponding virtual

environments.

We use knowledge-poor techniques for formulating scene descriptions from annotations. Scene

descriptions include: a list of the di�erent scenes to visualize (using the Setting annotation);

199

CHAPTER 7. CONCLUSION 200

Fiction book

Problem 1: Text Analysis

 1.1) Linguistic indicators

 1.2) Annotation creation

Problem 2: Interpretation

 2.1) Interpretation of annotations

 2.2) Specification of behaviour
 in a virtual environment

 2.3) Populating 3D environments

Intermediate
representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
of surface annotations

Machine-learning for
automating creat ion

of semantic
annotat ions

Create structured
scene descriptions

Automatic constraint
solving/optimization

Automatic populat ion
of 3D vir tual environment

Human knowledge:
- Manual examples

Human knowledge:
- Clarify l inguistic ambiguity
- Implied scene layout
- Creative ideas

Human knowledge:
- Creative enhancements

Knowledge-poor identif ication of:
scenes, scene contents and

behaviour

Geometry selection
Environment instantiat ion

Sequencing

Interval-based quantif ied
constraint opt imization

Hierarchical rule-based learning

Natural language
processing tools

Figure 7.1: Summary of the problems and automated processes that solve them for the complete
�ction-to-animation task.

entities that populate each scene (using Avatar and Object annotations and a library of geometric

models); and structured descriptions of entity behaviour in each scene (by translating Transition

and Relation annotations into time-based constraints). Time values that quantify behaviour are

acquired from audio representations of the text. We observe that between 83% and 96% of the

automatically created scene descriptions (from a set of extracts from �ction text) require no human

modi�cation, validating our knowledge-poor techniques.

Behaviour is quanti�ed in a virtual environment by formulating symbolic time-quanti�ed con-

straints, and subsequently searching for solutions. Constraints are produced automatically, and

are potentially inconsistent due to ambiguity in the text or erroneous annotations. Interval-based

quanti�ed constraint optimization automates the search for constraint solutions, and provides

approximate solutions for inconsistent constraints. This method outperforms existing constraint

solving approaches for the types of constraints produced by our �ction-to-animation system.

Structured scene descriptions and quanti�ed behaviour are used to automate the population

of virtual environments. One virtual environment is created for each scene in a book. We auto-

matically select 3D geometric models from a library and procedurally generate geometry for the

background scenery of each environment. Geometry is animated according to the quanti�ed be-

haviour. Additional modalities are automatically synchronized, including an audio version of the

narration and textual subtitles.

Error introduced by inconsistent semantic annotations has little impact on the interpretation

mechanisms. We provide opportunities for human intervention where errors potentially occur (such

as direct modi�cations to the virtual environment), but processes such as quanti�ed optimization

enable scene creation even where inconsistencies occur. We provide a suite of multi-modal animated

examples to demonstrate that the automatically generated presentations correspond to the original

�ction extracts.

The complete �ction-to-animation process is illustrated in Figure 7.1 (�rst presented as Fig-

ure 1.7 on page 8 in Chapter 1), and is augmented with the innovative methods we use for accom-

plishing each task.

CHAPTER 7. CONCLUSION 201

7.2 Conclusions

The conversion of �ction text into corresponding virtual environments is automated using the

techniques we have developed. Automated processes replace repetitive manual tasks in text analysis

and interpretation, and as a result of this we maintain that:

The process of converting a �ction book into an animated 3D �lm can be automated.

With reference to the original problem statement in Section 1.2 on page 3, we conclude:

1. Text analysis is automated using hierarchical rule-based learning.

This method automatically creates semantic annotations that comprise the structured in-

termediate representation of the �ction book. This is signi�cant because we now have an

automated method for identifying di�erent categories of visual description in �ction text, a

source previously considered as too unstructured and complex to use in the text-to-graphics

context. In this manner we replace the repetitive tasks of manually reading and compre-

hending the text.

2. Virtual environments are populated using techniques that interpret semantic an-

notations.

Interpretation methods automatically derive scene descriptions from semantic annotations,

quantify behaviour in a virtual environment, and populate virtual environments with ge-

ometry. This is signi�cant because it rapidly and deterministically constructs rich virtual

environments that contain both visual detail and dynamic entity interactions. The need for

repetitive tasks such as manual scene planning, 3D modeling and animation is eliminated.

The consequence of this work is a system that reduces the manual e�ort in performing the �ction-to-

animation task, and which can be used as a labour saving device in existing animation work-�ows.

It creates virtual worlds and �lms quickly and cheaply, without requiring specialist expertise.

Annotated �ction text

The central feature of our approach to the �ction-to-animation task is the use of annotated text

as the intermediate representation. Annotated �ction text is bene�cial in a number of respects:

• The human readable format supports a boot-strapping process for training the hierarchical

rule-based learning system. This facilitates the manual creation of examples for the induction

process, and also supports review and correction of automatically produced annotations.

• Annotations are interpreted using automated processes, as a result of the structured for-

mat. This is signi�cant because it provides the mechanism that directly enables portions of

unstructured free text to be used as parameters for procedures that automatically produce

corresponding visual geometry.

• Annotations maintain a direct link between the source text and the resulting interpretation.

This is advantageous for deriving timing information (for behaviour) from annotated trig-

gers, and providing a mechanism for synchronizing multiple modalities. This link is also

CHAPTER 7. CONCLUSION 202

signi�cant because it exposes the relationship between fragments of text and corresponding

visualizations.

• Multiple categories of visual description are identi�ed using annotations. This provides a

rich array of structured visual descriptions, which is easily extensible when required.

• Annotations qualify visual descriptions with other fragments of text, or with semantic in-

formation. Quali�ers parametrize subsequent interpretation modules, resulting in unique

visualizations that correspond to individual descriptions.

The signi�cance of our work in text-analysis and interpretation is discussed in the following sections.

7.2.1 Text analysis

The processes we describe create an intermediate representation of the �ction text:

1. Surface annotations are created for natural language with high levels of accuracy. This limits

the error that is introduced into the subsequent automatic creation of annotations.

2. Accurate models for creating annotations are induced from manual examples using hierar-

chical rule-based learning. The implication is that our automated mechanism can be re�ned

to match to a human's annotation style, and produce similar annotations to the examples

provided.

(a) Tree-structures encapsulate the structural and syntactic properties of text, and gener-

alize concepts to make them more applicable. These provide an e�ective mechanism for

expressing patterns in the English language that identify annotations in �ction text.

(b) A model consists of a set of hierarchical rules, and is capable of describing the wide

range of scenarios peculiar to a category of annotation. This is signi�cant in that both

common and rare scenarios can be accommodated in a single model. The set is also

extensible, which provides for future re�nement of the model by adding rules to deal

with special cases if needed.

(c) A generalized rule-set creates correct annotations in unseen text. This demonstrates

that the induced patterns model the underlying principles used by humans to represent

a particular annotation category.

(d) Rule-structures can be tailored for di�erent annotation categories, without modifying

the core learning algorithms. Accurate models are induced for multiple categories of

annotation, resulting in a more descriptive intermediate representation. This limits

optimizations to a�ect only the rule-structure if there is a need to improve the accuracy

of an induced model in a particular category.

(e) Accurate rule-sets are induced for qualifying annotations with text-references and se-

mantic concepts. This strategy provides semantic information without the need for an

external knowledge base.

CHAPTER 7. CONCLUSION 203

We believe that hierarchical rule-based learning induces models that express fundamental rules

in a human's cognition of English. The provision of enough examples will result in a model that

is applicable to general �ction. However, it is impossible to determine what quantity would be

su�cient for achieving this state given the abundance of available �ction titles.

7.2.2 Interpretation

The processes we describe create animated virtual environments and �lms from annotated �ction

text:

1. Accurate scene descriptions are derived from annotated �ction text. This validates our knowl-

edge poor approaches for interpreting semantic annotations, and shows that the limited set

of annotation categories we de�ne provides su�cient detail to specify scenes. The implication

is that visualizations can be enhanced with the addition of further annotation categories.

(a) A book can be interpreted as a collection of independent virtual environments (scenes).

The concept of a scene provides an elegant method for presenting a consistent ordering

of events, because time is one contiguous interval in each scene. This eliminates the need

to �unravel� the ordering of events (as would be the case if the entire book is interpreted

as one virtual universe).

(b) Visual consistency between di�erent scenes is maintained using entity descriptors. This

is important for the multi-scene property of �ction writing, and ensures that entities

have the same appearance in each virtual environment. This is also signi�cant from a

virtual reality perspective, in that one unique entity is instantiated for representing that

entity in any potential environment.

(c) Annotations are linked correctly to instantiated entities (descriptors) using a knowledge-

poor co-reference technique. This enables behaviour to be attributed to the correct

entities in each scene, regardless of the type of book.

(d) Abstract constraints summarize time-quanti�ed behaviour in a structured manner, while

still maintaining a human readable format. This provides opportunity for human re-

view and correction, while enabling subsequent use of automated techniques. Abstract

constraints also provide a means through which implicit physical restrictions (such as

gravity and interpenetration) can be expressed.

(e) Behaviour that corresponds to the text is quanti�ed (in terms of time) using synthesized

audio. This is signi�cant in that temporal information is provided without the need for

knowledge-based reasoning.

(f) Abstract constraints are directly translated into analytical constraints, due to their

structured nature. In this manner, a human need not be concerned with complex low

level behaviour reasoning. However, manual control over behaviour is still provided

through the human readable abstract constraints.

(g) The phrasing of constraints in terms of distance provides a valuable ability to measure

solution quality during the optimization process. This provides the designer with an

indication of the quality of the current speci�ed behaviour, allowing optimization to be

terminated prematurely if quality is su�ciently high for the designer's needs.

CHAPTER 7. CONCLUSION 204

(h) A disadvantage of using analytical constraints is the limited scalability of solution �nding

methods with respect to the number of variables. Expressing trajectories as sequences

of low degree curves (reducing the number of variables) and incremental solving over-

comes this limitation. Complex behaviour is produced e�ciently, while maintaining the

bene�ts of environment-independent spatial reasoning (described in Section 5.2.3 on

page 112).

2. Interval-based quanti�ed constraint optimization locates solutions that specify time-based

behaviour in a virtual environment. This means that coherent visual behaviour can be

speci�ed between dynamic bodies in our virtual environments.

(a) Constraints formulated over contiguous intervals of time and space are represented ef-

fectively using interval arithmetic. This enables direct solving of symbolically phrased

constraints, and removes the need to transform systems into discrete representations

more suitable for conventional computer-based solving techniques.

(b) Solutions are guaranteed to be consistent over the contiguous time interval. This ensures

that no erratic behaviour is produced in a scene that could potentially result from

aliasing when using discrete solving methods.

(c) Relaxed constraints and iterative tightening narrows the search space in a manner that

tends towards actual solutions. This is signi�cant because it reduces search time (par-

ticularly for �ction-to-animation problems), but also establishes a correlation between

search time and the proximity of the process to an actual solution. The consequence is

that if a designer has patience to wait then a higher quality solution is likely (as opposed

to solving methods where this correlation does not apply).

(d) There is a trade-o� between locating sound solutions and the amount of available search

time. If pressed for time a designer is able to use an approximate solution for subsequent

scene population processes, but is able to incorporate better quality solutions at a later

stage if the optimization is left to continue concurrently.

(e) The interval-based quanti�ed constraint optimizer ensures a behaviour speci�cation

(even for inconsistent constraint systems) through the provision of approximate solu-

tions. The signi�cance is that it enables the automatic creation of constraints from text,

without the need for semantic consistency checking. This provides for the population

of subsequent virtual worlds, regardless of inconsistencies in the text or annotations.

3. Multi-modal virtual environments are populated automatically. There is no need for repeti-

tive 3D modeling and animation, and results in the rapid creation of rich virtual environments

containing both visual and behavioural visualizations.

(a) Entities in virtual environments are represented visually in a coherent and convincing

fashion. The automatically produced environments contain enough basic content to

visually portray concepts in the text.

(b) Multiple modalities (visual, audio, and text) are aligned correctly. We can generate

alternative combinations of modalities for producing varied presentations of the text,

including coherently sequenced multi-modal animated �lm presentations.

CHAPTER 7. CONCLUSION 205

Virtual environments produced from annotated �ction text are signi�cant in that they not only

contain described entities, but they also portray plot-line through the animated behaviour. This

ability is further enhanced by the inclusion of other modalities. We believe that this ability bene�ts

other applications besides the creation of �lms, including populating environments for virtual

reality applications such as interactive storytelling, education or massive multi-player games.

7.3 Contributions

We make a number of novel contributions in the text-to-graphics and associated domains.

The use of a knowledge-poor paradigm for solving the text-to-graphics problem

Existing text-to-graphics systems rely on the existence of a pre-constructed knowledge base. Our

research shows that knowledge-poor techniques are e�ective in producing coherent animated graph-

ics, using only minor human intervention to provide world-knowledge. In all existing research hu-

man intervention is avoided at all costs, usually at the expense of sacri�cing certain scene creation

capabilities due to limitations in the quantity of encoded world knowledge (Coyne and Sproat,

2001; Lu and Zhang, 2002; Ma, 2006). Our research contributes to the text-to-graphics domain

by demonstrating that the bulk of repetitive manual e�ort is eliminated. The restrictions on

knowledge-centric approaches are removed.

The use of text sourced from popular �ction books as a source of input

Most text-to-graphics research uses restricted or contrived language as input (Lu and Zhang,

2002; Zeng et al., 2003; Johansson et al., 2005; Ma, 2006). We source language directly from

popular �ction books, without simplifying or paraphrasing the text. This represents a signi�cant

contribution to the text-to-graphics domain.

Annotated text as an intermediate representation

Our approach of using annotated �ction text as an intermediate representation is novel. Other

existing intermediate representations (such as semantic frames (Coyne and Sproat, 2001) or lexical

visual semantic representations (Ma, 2006)) seldom support automatic creation and interpretation

while simultaneously exhibiting human-readability.

Annotated text is signi�cant in its ability to be extended to di�erent visual categories. Our de�-

nition of annotation categories including Avatar, Object, Setting, Transition and Relation provides

a starting point for future �ction-to-animation development.

Pattern-based machine learning for performing the text analysis task

Existing text-to-graphics systems use widely varying methods for text analysis. The most popular

trend is the combination of syntactic analysis with encoded world knowledge. We use an alter-

native technique based on information extraction. CarSim (Johansson et al., 2005) is the only

text-to-graphics system that uses information extraction, employing a statistical machine learning

CHAPTER 7. CONCLUSION 206

approach. Our approach is innovative because it is the only pattern-based learning mechanism for

performing text analysis.

The hierarchical rule paradigm is novel in the �eld of pattern-based information extraction.

Our use of tree-structures for representing patterns, and our techniques for generalizing these

patterns by pair-wise comparison and insertion of wild-cards is a novel approach to inducing rules

regarding the English language. The ability to induce patterns for di�erent annotation tasks (such

as identifying text fragments in a category, identifying relationships between text fragments, and

associating semantic information) is a signi�cant contribution.

Interval arithmetic for quantifying time-based behaviour

The majority of related text-to-graphics approaches specify behaviour using encoded world-knowledge

(Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma, 2006). Few systems use constraint-based

techniques that do not require detailed knowledge bases (Johansson et al., 2005). We develop a

previously unexplored technique that uses interval-based constraint optimization.

Our method for optimizing universally quanti�ed constraint systems extends the state of the

art in quanti�ed constraint solving. This method is innovative in its ability to provide approximate

solutions to inconsistent quanti�ed constraint systems, as well as provide a quantitative measure

of the quality of these approximations.

We develop a novel approach that overcomes the limitations of solution �nding mechanisms

(in terms of scalability with respect to the number of variables). This approach phrases behaviour

as sequences of low degree trajectories and solves constraint systems in an incremental fashion,

thereby ensuring that the number of variables remains small enough for e�cient solving.

A knowledge-poor approach to deriving time from �ction text

Existing text-to-graphics systems that specify time-based behaviour use knowledge-rich analysis

of the input text to derive temporal information (Lu and Zhang, 2002; Ma and McKevitt, 2003,

2004c; Johansson et al., 2005). Our use of audio representations is a contribution in this respect

because it avoids complex reasoning and analysis, and also creates behaviour that corresponds

visually to the concurrent presentation of the original text.

More e�cient development processes for virtual reality and �lm production

The �ction-to-animation system presented in this research demonstrates that the transformation

of a �ction book into an animated �lm is automated using computer technology. Our automated

system removes the requirement for repetitive manual e�ort in converting the �ction text into

corresponding virtual environments. This is signi�cant because it allows human e�ort to be exerted

elsewhere in the creative process, resulting in environments and �lms that contain rich visual detail

for less cost or e�ort.

7.4 Future work

A weakness in our current implementation of the �ction-to-animation process is the limited range

of annotation categories. Fiction text contains types of descriptions beyond the categories used in

CHAPTER 7. CONCLUSION 207

Number of Sentences (1 = single, 2 = less than 20, 3 = greater than 20)
Sentence Complexity (1 = simplified, 2 = contrived, 3 = unrestricted)
Domain Freedom (1 = domain restricted, 2 = knowledge restricted, 3 = no restriction)
Modalities (1 = static graphics, 2 = animated graphics, 3 = animated graphics + other)
Model Articulation (1 = none, 2 = some, 3 = detailed)
Scenes (1 = single unchangeable, 2 = single changeable, 3 = many changeable)

 0

 0.5

 1

 1.5

 2

 2.5

 3

Fiction−to−AnimationSwanCarSimConfuciusWordsEye

A
bi

lit
y

Text−to−Graphics system

Figure 7.2: Comparative ratings of capabilities for related text-to-graphics systems.

this exposition, including descriptions of entity features and emotion, the identi�cation of poses

and actions of entities in the scene, as well as setting-related detail. Hierarchical rule-based learning

is e�ective for creating di�erent categories of annotation, and will assist in the creation of large

corpora of �ction text containing additional annotated visual descriptions.

The current methods for creating virtual environments are limited in their ability to add visual

detail. This limitation is deliberate in this exposition so as not to obfuscate the results produced

with irrelevant special e�ects. However, techniques stand to be included that add additional

visual bene�t with minimum human e�ort. We place emphasis on techniques that produce visual

geometry procedurally, and we believe that such methods contribute towards solving the problem

of limited libraries of visual media. More advanced forms of model articulation, special e�ects,

texturing, lighting and rendering are candidates for adding detail to virtual environments.

Future investigations also include applications that bene�t from the technology presented in

this research. We believe that these techniques are of use in teaching language concepts, as well

as in automatically creating content for educational and entertainment purposes.

7.5 State of the art in text-to-graphics research

The �ction-to-animation system surpasses existing text-to-graphics research in its combined capa-

bility to handle large quantities of input with little restriction on sentence complexity, and produce

multi-modal presentations consisting of a number of unique scenes. Our approach is superior to

any single related approach in terms of the combination of its input and output capabilities, il-

lustrated using comparative ratings in Figure 7.2. In this respect our �ction-to-animation system

represents a signi�cant contribution to the text-to-graphics domain.

Bibliography

Adorni, G., Manzo, M. D., and Giunchiglia, F. 1984. Natural language driven image gen-

eration. In COLING '84: Proceedings of the 10th International Conference on Computational

Linguistics (Stanford, United States of America). Association for Computational Linguistics,

Morristown, United States of America, 495�500.

Agichtein, E. and Gravano, L. 2000. Snowball: extracting relations from large plain-text

collections. In DL '00: Proceedings of the 5th ACM conference on Digital libraries (San Antonio,

United States of America). Association for Computing Machinery, ACM Press, New York, United

States of America, 85�94.

Apt, K. R. 1999. The essence of constraint propagation. Theoretical Computer Science 221, 1-2,

179�210.

Aseltine, J. H. 1999. WAVE: An incremental algorithm for information extraction. In Proceedings

of the AAAI Workshop on Machine Learning for Information Extraction (Orlando, United States

of America). Association for the Advancement of Arti�cial Intelligence, AAAI Press, Menlo Park,

United States of America.

Atkinson, K. 2003. 12dicts. Website: http://wordlist.sourceforge.net/ [Accessed on 22 November

2005].

Atwell, E., Demetriou, G., Hughes, J., Schriffin, A., Souter, C., and Wilcock, S.

2000. A comparative evaluation of modern English corpus grammatical annotation schemes.

ICAME (International Computer Archive of Modern and Medieval English) Journal 24, 7�23.

Atwell, E., Hughes, J., and Souter, C. 1994. AMALGAM: Automatic mapping among

lexico-grammatical annotation models. In The Balancing Act: Combining Symbolic and Statis-

tical Approaches to Language - Proceedings of the ACL Workshop (Las Cruces, New Mexico),

J. Klavans, Ed. Association for Computational Linguistics, Morristown, United States of Amer-

ica, 21�28.

Back, M., Gold, R., and Kirsch, D. 1999. The SIT book: audio as a�ective imagery for

interactive storybooks. In CHI '99: Extended abstracts on Human factors in computing systems

(Pittsburgh, United States of America). Association for Computing Machinery, ACM Press, New

York, United States of America, 202�203.

208

BIBLIOGRAPHY 209

Badler, N. I., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L., and Palmer, M.

2000. Parameterized action representation for virtual human agents. Embodied conversational

agents, 256�284.

Baldwin, B. 1997. CogNIAC: high precision coreference with limited knowledge and linguistic

resources. In Proceedings of the ACL'97/EACL'97 workshop on operational factors in prac-

tical, robust anaphora resolution (Madrid, Spain). Association for Computational Linguistics,

Morristown, United States of America, 38�45.

Basili, R., Pazienza, M., and Vindigni, M. 2000. Corpus-driven learning of event recognition

rules. In Proceedings of Machine Learning for Information Extraction workshop, held jointly

with the ECAI2000 (Berlin, Germany).

Batnini, H., Michel, C., and Rueher, M. 2005. Mind the gaps: A new splitting strategy for

consistency techniques. In CP '05: Proceedings of the 11th International Conference on Prin-

ciples and Practice of Constraint Programming (Barcelona, Spain). Lecture Notes in Computer

Science, vol. 3709. Springer-Verlag, Berlin, Germany, 77�91.

Baykan, C. and Fox, M. S. 1991. Constraint satisfaction techniques for spatial planning. In In-

telligent CAD Systems III: Practical Experience and Evaluation, P. ten Hagen and P. Veerkamp,

Eds. Springer-Verlag, Berlin, Germany, 187�204.

Belhadj, F. 2007. Terrain modeling: a constrained fractal model. In AFRIGRAPH '07: Pro-

ceedings of the 5th international conference on Computer graphics, virtual reality, visualisation

and interaction in Africa (Grahamstown, South Africa). Association for Computing Machinery,

ACM Press, New York, United States of America, 197�204.

Benhamou, F. 1995. Interval constraint logic programming. In Constraint Programming: Basics

and Trends, A. Podelski, Ed. Springer-Verlag, Berlin, Germany, 1�21.

Benhamou, F. and Goualard, F. 2000. Universally quanti�ed interval constraints. In CP '00:

Proceedings of the 6th International Conference on Principles and Practice of Constraint Pro-

gramming (Singapore). Lecture Notes In Computer Science, vol. 1894. Springer-Verlag, Berlin,

Germany, 67�82.

Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J. 1999. Revising hull and box

consistency. In ICLP '99: Proceedings of the International Conference on Logic Programming

(Las Cruces, New Mexico). MIT Press, Cambridge, United States of America, 230�244.

Benhamou, F., Goualard, F., Languénou, É., and Christie, M. 2004. Interval constraint

solving for camera control and motion planning. ACM Transactions on Computational Logic

(TOCL) 5, 4, 732�767.

Benhamou, F., McAllester, D., and van Hentenryck, P. 1994. CLP(intervals) revisited.

In ILPS '94: Proceedings of the 1994 International Symposium on Logic programming (Santa

Marherita Ligure, Italy). MIT Press, Cambridge, United States of America, 124�138.

Benhamou, F. and Older, W. J. 1997. Applying interval arithmetic to real, integer, and

boolean constraints. The Journal of Logic Programming 32, 1, 1�24.

BIBLIOGRAPHY 210

Bennett, S. W., Aone, C., and Lovell, C. 1997. Learning to tag multilingual texts through

observation. In Proceedings of the 2nd Conference on Empirical Methods in Natural Language

Processing (Providence, United States of America), C. Cardie and R. Weischedel, Eds. Associa-

tion for Computational Linguistics, Morristown, United States of America, 109�116.

Bersot, O., El Guedj, P., Godereaux, C., and Nugues, P. 1998. A conversational agent to

help navigation and collaboration in virtual worlds. Virtual Reality 3, 1, 71�82.

Billinghurst, M., Kato, H., and Poupyrev, I. 2001. The magicbook - moving seamlessly

between reality and virtuality. Computer Graphics and Applications 21, 3, 2�4.

Bindiganavale, R., Schuler, W., Allbeck, J. M., Badler, N. I., Joshi, A. K., and

Palmer, M. 2000. Dynamically altering agent behaviors using natural language instructions. In

AGENTS '00: Proceedings of the 4th international conference on Autonomous agents (Catalonia,

Spain). Association for Computing Machinery, ACM Press, New York, United States of America,

293�300.

Blender Foundation. 2008. Blender manual. Website:

http://wiki.blender.org/index.php/Manual [Accessed on 30 April 2008].

Boberg, R. W. 1972. Generating line drawings from abstract scene descriptions. M.S. thesis,

Massachusetts Institute of Technology, Cambridge, United States of America.

Bonnefoi, P. and Plemenos, D. 1999. Object oriented constraint satisfaction for hierarchi-

cal declarative scene modeling. In WSCG'99: Proceedings of the 7th International Conference

in Central Europe on Computer Graphics, Visualization and Interactive Digital Media (Plzen,

Czech Republic). University of West Bohemia Press.

Borning, A., Anderson, R., and Freeman-Benson, B. N. 1996. Indigo: A local propagation

algorithm for inequality constraints. In Proceedings of the ACM Symposium on User Inter-

face Software and Technology (Seattle, United States of America). Association for Computing

Machinery, ACM Press, New York, United States of America, 129�136.

Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. 1998. NYU: Description

of the MENE named entity system as used in MUC-7. In Proceedings of the 7th Message

Understanding Conference (Fairfax, United States of America).

Brill, E. 1994. Some advances in transformation-based part of speech tagging. In AAAI '94:

Proceedings of the 12th national conference on Arti�cial intelligence (Seattle,United States of

America). Vol. 1. Association for the Advancement of Arti�cial Intelligence, AAAI Press, Menlo

Park, United States of America, 722�727.

Brill, E. and Wu, J. 1998. Classi�er combination for improved lexical disambiguation. In

Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and

17th International Conference on Computational Linguistics (Montréal, Canada), C. Boitet and

P. Whitelock, Eds. Morgan Kaufmann Publishers, San Francisco, United States of America,

191�195.

BIBLIOGRAPHY 211

Bunescu, R. and Mooney, R. J. 2004. Collective information extraction with relational markov

networks. In ACL '04: Proceedings of the 42nd Annual Meeting on Association for Computa-

tional Linguistics (Barcelona, Spain). Association for Computational Linguistics, Morristown,

United States of America, 438.

Buss, S. R. 2003. 3-D Computer Graphics: A Mathematical Introduction with OpenGL. Cam-

bridge University Press, Cambridge, United Kingdom.

Califf, M. E. and Mooney, R. J. 2003. Bottom-up relational learning of pattern matching

rules for information extraction. Journal of Machine Learning Research 4, 177�210.

Calomeni, A. and Celes, W. 2006. Assisted and automatic navigation in black oil reservoir

models based on probabilistic roadmaps. In I3D '06: Proceedings of the 2006 symposium on

Interactive 3D graphics and games (Redwood City, United States of America). Association for

Computing Machinery, ACM Press, New York, United States of America, 175�182.

Cantor, J. and Valencia, P. 2004. Inspired 3D short �lm production. Thompson Course

Technology PTR, Boston, United States of America.

Cassell, J., Vilhjálmsson, H. H., and Bickmore, T. 2001. BEAT: the behavior expression

animation toolkit. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer

graphics and interactive techniques (Los Angeles, United States of America). Association for

Computing Machinery, ACM Press, New York, United States of America, 477�486.

Castaño, J., Zhang, J., and Pustejovsky, J. 2002. Anaphora resolution in biomedical litera-

ture. In Proceedings of the International Symposium on Reference Resolution (Alicante, Spain).

Català, N., Castell, N., and Martín, M. 2003. A portable method for acquiring information

extraction patterns without annotated corpora. Natural Language Engineering 9, 2, 151�179.

Chabert, G., Trombettoni, G., and Neveu, B. 2005. Box-set consistency for interval-based

constraint problems. In SAC '05: Proceedings of the 2005 ACM Symposium on Applied Com-

puting (Santa Fe, New Mexico). Association for Computing Machinery, ACM Press, New York,

United States of America, 1439�1443.

Chai, J. Y., Biermann, A. W., and Guinn, C. I. 1999. Two dimensional generalization in

information extraction. In AAAI '99/IAAI '99: Proceedings of the 16th national conference on

Arti�cial intelligence and the 11th Innovative applications of arti�cial intelligence conference

innovative applications of arti�cial intelligence (Orlando, United States of America). Associa-

tion for the Advancement of Arti�cial Intelligence, AAAI Press, Menlo Park, United States of

America, 431�438.

Chieu, H. L. and Ng, H. T. 2002. A maximum entropy approach to information extraction

from semi-structured and free text. In AAAI '02: Proceedings of the 18th national conference

on Arti�cial intelligence (Edmonton, Canada). Association for the Advancement of Arti�cial

Intelligence, AAAI Press, Menlo Park, United States of America, 786�791.

BIBLIOGRAPHY 212

Chieu, H. L., Ng, H. T., and Lee, Y. K. 2003. Closing the gap: learning-based information

extraction rivaling knowledge-engineering methods. In ACL '03: Proceedings of the 41st An-

nual Meeting on Association for Computational Linguistics (Sapporo, Japan). Association for

Computational Linguistics, Morristown, United States of America, 216�223.

Chinchor, N. and Marsh, E. 1998. MUC-7 information extraction task de�nition v.5.1. In Pro-

ceedings of 7th Message Understanding Conference (Fairfax, United States of America). Web-

site: http://www-nlpir.nist.gov/related_projects/muc/proceedings/ie_task.html [Accessed on

19 May 2008].

Christie, M., Languénou, E., and Granvilliers, L. 2002. Modeling camera control with

constrained hypertubes. In CP '02: Proceedings of the 8th International Conference on Principles

and Practice of Constraint Programming (Ithaca, United States of America). Springer-Verlag,

Berlin, Germany, 618�632.

Chu, Y., Witten, I. H., Lobb, R., and Bainbridge, D. 2003. How to turn the page. In

Proceedings of the 3rd ACM/IEEE-CS joint conference on Digital Libraries (Houston, United

States of America). IEEE Computer Society, Washington DC, United States of America, 186�

188.

Ciravegna, F. 2001. Adaptive information extraction from text by rule induction and generalisa-

tion. In IJCAI: Proceedings of the 17th International Joint Conference on Arti�cial Intelligence

(Seattle, United States of America). Vol. 2. 1251�1256.

Clark, A. 2003. Pre-processing very noisy text. In Proceedings of Workshop on Shallow Processing

of Large Corpora (Lancaster, United Kingdom). Corpus Linguistics.

Clay, S. R. and Wilhelms, J. 1996. Put: Language-based interactive manipulation of objects.

IEEE Computer Graphics and Applications 16, 2, 31�39.

Cleary, J. G. 1987. Logical arithmetic. Future Computing Systems 2, 125�149.

Cohen, W. W. and Sarawagi, S. 2004. Exploiting dictionaries in named entity extraction:

combining semi-Markov extraction processes and data integration methods. In KDD '04: Pro-

ceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data

mining (Seattle, United States of America). Association for Computing Machinery, ACM Press,

New York, United States of America, 89�98.

Coyne, B. and Sproat, R. 2001. Wordseye: an automatic text-to-scene conversion system. In

SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interac-

tive techniques (Los Angeles, United States of America). Association for Computing Machinery,

ACM Press, New York, United States of America, 487�496.

de Vries, B. and Jessurun, A. 2000. Using 3D geometric constraints in architectural design sup-

port systems. In Proceedings of the 8th International Conference in Central Europe on Computer

Graphics, Visualization and Interactive Digital Media (Plzen, Czech Republic).

Déjean, H. 2000. How to evaluate and compare tagsets? A proposal. In LREC 2000: Proceedings

of the 2nd International Conference on Language Resources and Evaluation (Athens, Greece).

BIBLIOGRAPHY 213

Déjean, H. 2002. Learning rules and their exceptions. Journal of Machine Learning Research 2,

669�693.

Dimitrov, M. 2002. A light-weight approach to coreference resolution for named entites in text.

M.S. thesis, University of So�a, So�a, Republic of Bulgaria.

Dolgov, Y. G. 2005. Developing interval global optimization algorithms on the basis of branch-

and-bound and constraint propagation methods. Reliable Computing 11, 5, 343�358.

Drucker, S. M. and Zeltzer, D. 1994. Intelligent camera control in a virtual environment.

In Proceedings of the Graphics Interface Conference (Ban�, Canada), W. A. Davis and B. Joe,

Eds. Canadian Human-Computer Communications Society, 190�199.

Egges, A., Nijholt, A., and Nugues, P. 2001. Generating a 3D simulation of a car acci-

dent from a formal description: the CarSim system. In ICAV3D: Proceedings of the Interna-

tional Conference on Augmented, Virtual Environments and Three-Dimensional Imaging (Ornos,

Mykonos). Mykonos, Greece.

Eysenck, M. W. and Keane, M. T. 2000. Cognitive Psychology: A student's handbook. Psy-

chology Press Ltd, East Sussex, United Kingdom.

Fellbaum, C., Ed. 1998. WordNet: An Electronic Lexical Database. MIT Press, Cambridge,

United States of America.

Flesch, R. 1949. The Art of Readble Writing. Harper and Row, New York, United States of

America.

Foskey, M., Garber, M., Lin, M., and Manocha, D. 2001. A Voronoi-based hybrid motion

planner for rigid bodies. In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE Computer Society, Washington DC, United States of America, 55�60.

Francis, W. N. and Kucera, H. 1979. Manual of information to accompany a standard corpus

of present-day edited American English, for use with digital computers, 2nd ed. Brown University,

Providence, United States of America. Website: http://icame.uib.no/brown/bcm.html [accessed

on 10 September 2007].

Freitag, D. 1998. Toward general-purpose learning for information extraction. In COLING

'98: Proceedings of the 17th international conference on Computational linguistics (Montréal,

Canada). Association for Computational Linguistics, Morristown, United States of America,

404�408.

Freitag, D. 2000. Machine learning for information extraction in informal domains. Machine

Learning 39, 2-3, 169�202.

Freitag, D. and McCallum, A. 2000. Information extraction with HMM structures learned by

stochastic optimization. In Proceedings of the 17th National Conference on Arti�cial Intelligence

and 12th Conference on Innovative Applications of Arti�cial Intelligence (Austin, Texas). Asso-

ciation for the Advancement of Arti�cial Intelligence, AAAI Press, Menlo Park, United States

of America, 584�589.

BIBLIOGRAPHY 214

Garber, M. and Lin, M. C. 2002. Constraint-based motion planning for virtual prototyp-

ing. In SMA '02: Proceedings of the 7th ACM symposium on Solid modeling and applications

(Saarbr ucken, Germany). Association for Computing Machinery, ACM Press, New York, United

States of America, 257�264.

Garber, M. and Lin, M. C. 2003. Constraint-based motion planning using Voronoi diagrams.

Algorithmic Foundations of Robotics V, vol. 7. Springer-Verlag, Berlin, Germany, 541�558.

GATE. 2005. ANNIE: A nearly-new information extraction system. Website:

http://gate.ac.uk/ie/annie.html [Accessed on 22 November 2005].

Gayle, R., Lin, M. C., and Manocha, D. 2005. Constraint-based motion planning of de-

formable robots. In ICRA '05: Proceedings of the 2005 IEEE International Conference on

Robotics and Automation (Barcelona, Spain). IEEE Computer Society, Washington DC, United

States of America, 1046�1053.

Ge, S. S. and Cui, Y. J. 2002. Dynamic motion planning for mobile robots using potential �eld

method. Autonomous Robots 13, 3, 207�222.

Giménez, J. and Marquez, L. 2003. Fast and accurate part-of-speech tagging: The SVM

approach revisited. In RANLP '03: Proceedings of the workshop on Recent Advances in Natural

Language Processing (Borovets, Bulgaria). 153�163.

Glass, K. and Bangay, S. 2005. Evaluating parts-of-speech taggers for use in a text-to-scene

conversion system. In SAICSIT '05: Proceedings of the 2005 annual research conference of the

South African institute of computer scientists and information technologists on IT research in

developing countries (White River, South Africa). Association for Computing Machinery, ACM

Press, New York, United States of America, 20�28.

Glass, K. and Bangay, S. 2006. Hierarchical rule generalisation for speaker identi�cation

in �ction books. In SAICSIT '06: Proceedings of the 2006 annual research conference of the

South African institute of computer scientists and information technologists on IT research in

developing countries (Cape Town, South Africa). Association for Computing Machinery, ACM

Press, New York, United States of America, 31�40.

Glass, K. and Bangay, S. 2007a. Constraint-based conversion of �ction text to a time-based

graphical representation. In SAICSIT '07: Proceedings of the 2007 annual research conference of

the South African institute of computer scientists and information technologists on IT research

in developing countries (Fish River, South Africa). Association for Computing Machinery, ACM

Press, New York, United States of America, 19�28.

Glass, K. and Bangay, S. 2007b. Evaluating and improving morpho-syntactic classi�cation

over multiple corpora using pre-trained, "o�-the-shelf", parts-of-speech tagging tools. In PRASA

'07: Proceedings of the 18th Annual Symposium of the Pattern Recognition Association of South

Africa (Pietermaritzburg, South Africa). 19�24. To appear in the South African Computer

Journal.

BIBLIOGRAPHY 215

Glass, K. and Bangay, S. 2007c. A naïve salience-based method for speaker identi�cation

in �ction books. In PRASA '07: Proceedings of the 18th Annual Symposium of the Pattern

Recognition Association of South Africa (Pietermaritzburg, South Africa). 1�6.

Glass, K. and Bangay, S. 2008. Automating the creation of 3D animation from annotated

�ction text. In IADIS-CGV '08: Proceedings of the IADIS International conference on Com-

puter Graphics and Visualization (Amsterdam, The Netherlands). International Association for

Development of the Information Society, 3�10.

Glass, K., Bangay, S., and Alcock, B. 2007. Mechanisms for multimodality: taking �ction

to another dimension. In AFRIGRAPH '07: Proceedings of the 5th international conference

on Computer graphics, virtual reality, visualisation and interaction in Africa (Grahamstown,

South Africa). Association for Computing Machinery, ACM Press, New York, United States of

America, 135�144.

Granvilliers, L. and Hains, G. 2000. A conservative scheme for parallel interval narrowing.

Information Processing Letters 74, 3-4, 141�146.

Grefenstette, G. and Tapanainen, P. 1994. What is a word, what is a sentence? Problems of

tokenization. In Proceedings of the 3rd International Conference on Computational Lexicography

(Budapest, Hungary). 79�87.

Grover, C., Matheson, C., Mikheev, A., and Moens, M. 2000. LT TTT - a �exible to-

kenisation tool. In LREC 2000: Proceedings of the 2nd International Conference on Language

Resources and Evaluation (Athens, Greece).

Gunning, R. 1952. The Technique of Clear Writing. McGraw-Hill Book Company, New York,

United States of America.

Harabagiu, S. M. and Maiorano, S. J. 2000. Acquisition of linguistic patterns for knowledge-

based information extraction. In LREC '00: Proceedings of the 2nd International Conference

on Language Resources and Evaluation (Athens, Greece).

Hauge, M. 1988. Writing screen-plays that sell. McGraw-Hill Book Company, New York, United

States of America.

He, L., Cohen, M. F., and Salesin, D. H. 1996. The virtual cinematographer: A paradigm

for automatic real-time camera control and directing. Computer Graphics 30, 217�224.

Hickey, T. J., Ju, Q., and van Emden, M. H. 2001. Interval arithmetic: From principles to

implementation. Journal of the ACM 48, 5, 1038�1068.

Hickey, T. J., van Emden, M. H., and Wu, H. 1998. A uni�ed framework for interval

constraints and interval arithmetic. In CP '98: Proceedings of the 4th International Conference

on Principles and Practice of Constraint Programming (Pisa, Italy). Springer-Verlag, Berlin,

Germany, 250�264.

Hong, L.,Muraki, S., Kaufman, A., Bartz, D., and He, T. 1997. Virtual voyage: interactive

navigation in the human colon. In SIGGRAPH '97: Proceedings of the 24th annual conference

BIBLIOGRAPHY 216

on Computer graphics and interactive techniques (Los Angeles, United States of America). As-

sociation for Computing Machinery, ACM Press, New York, United States of America, 27�34.

Hood, M. 2004. Creating a voice for festival speech synthesis system. Tech. rep., Virtual Reality

Special Interest Group, Computer Science Department, Rhodes University, Grahamstown, South

Africa. November.

Hudson, D. 2005. Dependency grammar, a �ve session course. In ESSLLI 2005: Proceedings of

the European Summer School in Logic, Language and Information (Edinburgh, Scotland).

Huffman, S. B. 1996. Learning information extraction patterns from examples. In Connectionist,

Statistical, and Symbolic Approaches to Learning for Natural Language Processing. Vol. 1040.

Springer-Verlag, Berlin, Germany, 246�260.

Huyer, W. and Neumaier, A. 1999. Global optimization by multilevel coordinate search.

Journal of Global Optimization 14, 4, 331�355.

Jardillier, F. and Languénou, E. 1998. Screen-space constraints for camera movements: the

virtual cameraman. Computer Graphics Forum 17, 3, 175�186.

Järvinen, T. and Tapanainen, P. 1998. Towards an implementable dependency grammar. In

COLING-ACL '98: Proceedings of the Workshop on Processing of Dependency-based Grammars

(Montréal, Canada), S. Kahane and A. Polguère, Eds.

Jaulin, L. and Walter, É. 1993. Set inversion via interval analysis for nonlinear bounded-error

estimation. Automatica 29, 4, 1053�1064.

Jaulin, L. and Walter, É. 1996. Guaranteed tuning, with application to robust control and

motion planning. Automatica 32, 9, 1217�1221.

Johansson, R., Berglund, A., Danielsson, M., and Nugues, P. 2005. Automatic text-to-

scene conversion in the tra�c accident domain. In IJCAI '05: Proceedings of the 19th Interna-

tional Joint Conference on Arti�cial Intelligence (Edinburgh, Scotland). 1073�1078.

Johansson, S., Atwell, E., Garside, R., and Leech, G. 1986. The Tagged LOB Corpus:

Users' manual. ICAME, The Norwegian Computing Centre for the Humanities, Bergen, Norway.

Website: http://www.comp.lancs.ac.uk/ucrel/local/lob/ [accessed on 10 September 2007].

Johansson, S., Leech, G. N., and Goodluck, H. 1978. Manual of information

to accompany the Lancaster-Oslo/Bergen corpus of British English, for use with digi-

tal computers. Department of English, University of Oslo, Oslo, Norway. Website:

http://khnt.hit.uib.no/icame/manuals/lob/ [accessed on 10 September 2007].

Joshi, D., Wang, J. Z., and Li, J. 2004. The story picturing engine: �nding elite images

to illustrate a story using mutual reinforcement. In MIR 04: Proceedings of the 6th ACM

SIGMM international workshop on Multimedia information retrieval (New York, United States

of America). Association for Computing Machinery, ACM Press, New York, United States of

America, 119�126.

BIBLIOGRAPHY 217

Kahn, K. 1979. Creation of computer animation from story descriptions. Ph.D. thesis, Mas-

sachusetts Institute of Technology, Cambridge, United States of America.

Kavraki, L. and Latombe, J. 1994. Randomized preprocessing of con�guration for fast path

planning. In Proceedings of the IEEE International Conference on Robotics and Automation.

Vol. 3. IEEE Computer Society, Washington DC, United States of America, 2138�2145.

Kennedy, C. and Boguraev, B. 1996. Anaphora for everyone: Pronominal anaphora resolu-

tion without a parser. In COLING '96: Proceedings of the 16th International Conference on

Computational Linguistics (Copenhagen, Denmark). Association for Computational Linguistics,

Morristown, United States of America, 113�118.

Kim, J. and Moldovan, D. I. 1995. Acquisition of linguistic patterns for knowledge-based

information extraction. IEEE Transactions on Knowledge and Data Engineering 7, 5, 713�724.

Koga, Y., Kondo, K., Kuffner, J., and Latombe, J. 1994. Planning motions with intentions.

In SIGGRAPH '94: Proceedings of the 21st annual conference on Computer graphics and inter-

active techniques (Orlando, United States of America). Association for Computing Machinery,

ACM Press, New York, United States of America, 395�408.

Kopp, S.,Krenn, B.,Marsella, S.,Marshall, A. N., Pelachaud, C., Pirker, H., Thóris-

son, K. R., and Vilhjálmsson, H. H. 2006. Towards a common framework for multimodal

generation: The behavior markup language. In IVA '06: Proceedings of the 6th international

conference on Intelligent Virtual Agents (Marina Del Rey, United States of America).

Kudo, T. and Matsumoto, Y. 2001. Chunking with support vector machines. In NAACL

'01: Proceedings of the 2nd meeting of the North American Chapter of the Association for

Computational Linguistics on Language technologies (Pittsburgh, United States of America).

Kuffner Jr., J. J. 1998. Goal-directed navigation for animated characters using real-time

path planning and control. In CAPTECH '98: Proceedings of the International Workshop on

Modelling and Motion Capture Techniques for Virtual Environments (Geneva, Switzerland),

N. Magnenat-Thalmann and D. Thalmann, Eds. Lecture Notes In Computer Science, vol. 1537.

Springer-Verlag, Berlin, Germany, 171�186.

Kwaiter, G., Gaildrat, V., and Caubet, R. 1998. Modelling with constraints: A bibliograph-

ical survey. In IV '98: Proceedings of the International Conference on Information Visualisation

(London, United Kindom). IEEE Computer Society, Washington DC, United States of America,

211�220.

Ladeira, I. M. 2006. Story experience in a virtual San storytelling environment: A cultural

heritage application for children and young adults. M.S. thesis, University of Cape Town, Cape

Town, South Africa.

Lappin, S. and Leass, H. J. 1994. An algorithm for pronominal anaphora resolution. Compu-

tational Linguistics 20, 4, 535�561.

Latombe, J. 1999. Motion planning: A journey of robots, molecules, digital actors, and other

artifacts. The International Journal of Robotics Research 18, 11, 1119�1128.

BIBLIOGRAPHY 218

Le Roux, O. and Gaildrat, V. 2003. Constraint-based 3D isothetic object layout for declarative

scene modeling. In CISST '03: Proceedings of the International Conference on Imaging Science,

Systems, and Technology (Las Vegas, United States of America). CSREA press, Las Vegas,

United States of America, 320�326.

Lhomme, O., Gotlieb, A., and Rueher, M. 1998. Dynamic optimization of interval narrowing

algorithms. Journal of Logic Programming 37, 1-3, 165�183.

Li, Y. and Bontcheva, K. 2007. Hierarchical, perceptron-like learning for ontology-based in-

formation extraction. In WWW '07: Proceedings of the 16th international conference on World

Wide Web (Ban�, Canada). Association for Computing Machinery, ACM Press, New York,

United States of America, 777�786.

Lu, R. and Zhang, S. 2002. Automatic Generation of Computer Animation: using AI for movie

animation. Lecture Notes in Computer Science, vol. 2160. Springer-Verlag, Berlin, Germany.

Ma, M. 2006. Automatic conversion of natural language to 3D animation. Ph.D. thesis, University

of Ulster, Derry, Ireland.

Ma, M. and McKevitt, P. 2003. Semantic representation of events in 3D animation. In IWCS-

5: Proceedings of The 5th International Workshop on Computational Semantics (Tilburg, The

Netherlands), I. v. d. S. H. Bunt and R. Morante, Eds. 253�281.

Ma, M. and McKevitt, P. 2004a. Interval relations in visual semantics of verbs. Arti�cial

Intelligence Review 21, 3-4, 293�316.

Ma, M. and McKevitt, P. 2004b. Using lexical knowledge of verbs in language-to-vision ap-

plications. In AICS '04: Proceedings of the 15th Arti�cial Intelligence and Cognitive Science

Conference (Castlebar, Ireland), L. McGinty and B. Crean, Eds. Galway-Mayo Institute of Tech-

nology, 255�264.

Ma, M. and McKevitt, P. 2004c. Visual semantics and ontology of eventive verbs. In IJCNLP-

04: Proceedings of the 1st International Joint Conference on Natural Language Processing

(Sanya, China), K.-Y. Su and J.-I. Tsujii, Eds. 278�285.

Mandler, J. M. and Johnson, N. S. 1977. Remembrance of things parsed: Story structure

and recall. Cognitive Psychology 9, 111�151.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. 1994. Building a large annotated

corpus of English: The Penn Treebank. Computational Linguistics 19, 2, 313�330.

Màrquez, L., Rodríguez, H., Carmona, J., and Montolio, J. 1999. Improving POS tagging

using machine-learning techniques. In Proceedings of the 1999 Joint SIGDAT Conference on

Empirical Methods in Natural Language Processing and Very Large Corpora (Maryland, United

States of America). Association for Computational Linguistics, Morristown, United States of

America, 53�62.

McDonald, D. D. 1996. Internal and external evidence in the identi�cation and semantic cat-

egorization of proper names. In Corpus processing for lexical acquisition, B. Boguraev and

J. Pustejovsky, Eds. MIT Press, Cambridge, United States of America, 21�39.

BIBLIOGRAPHY 219

Mikheev, A. 2002. Periods, capitalized words, etc. Computational Linguistics 28, 3, 289�318.

Minsky, M. 1975. A framework for representing knowledge. The Psychology of Computer Vision.

McGraw-Hill Book Company, New York, United States of America, Chapter 6, 211�277.

Mitchell, D. P. 1991. Three applications of interval analysis in computer graphics. In SIG-

GRAPH '91 Course Notes: Frontiers of Rendering (Las Vegas, United States of America).

Association for Computing Machinery, ACM Press, New York, United States of America, 1�13.

Mitkov, R. 1998. Robust pronoun resolution with limited knowledge. In COLING-ACL '98: Pro-

ceedings of the 18th International Conference on Computational Linguistics (Montréal, Canada).

Association for Computational Linguistics, Morristown, United States of America, 869�875.

Mitkov, R., Evans, R., and Oruasan, C. 2002. A new, fully automatic version of Mitkov's

knowledge-poor pronoun resolution method. In CICLing-2002: Proceedings of the 3rd Interna-

tional Conference on Intelligent Text Processing and Computational Linguistics (Mexico City,

Mexico). Lecture Notes in Computer Science, vol. 2276. Springer, Verlag, Berlin, Germany,

168�186.

Moore, R. E. 1966. Interval Analysis. Prentice-Hall, Inc., Englewood Cli�s, United States of

America.

Mukerjee, A., Gupta, K., Nautiyal, S., M.P, M. S., and Mishra, N. 2000. Conceptual

description of visual scenes from linguistic models. Image and Vision Computing 18, 2, 173�187.

Muller, P., Wonka, P., Haegler, S., Ulmer, A., and Gool, L. V. 2006. Procedural

modeling of buildings. In SIGGRAPH '06: Proceedings of the International Conference on

Computer Graphics and Interactive Techniques (Boston, United States of America). Association

for Computing Machinery, ACM Press, New York, United States of America, 614�623.

Musgrave, F. K., Kolb, C. E., and Mace, R. S. 1989. The synthesis and rendering of eroded

fractal terrains. In SIGGRAPH '89: Proceedings of the 16th annual conference on Computer

graphics and interactive techniques (Boston, United States of America). Association for Com-

puting Machinery, ACM Press, New York, United States of America, 41�50.

Muslea, I. 1999. Extraction patterns for information extraction tasks: A survey. In Proceedings of

the AAAI Workshop on Machine Learning for Information Extraction (Orlando, United States of

America). Association for the Advancement of Arti�cial Intelligence, AAAI Press, Menlo Park,

United States of America, 1�6.

Narayanan, A., Manuel, D., Ford, L., Tallis, D., and Yazdani, M. 1995. Language

visualisation: Applications and theoretical foundations of a primitive-based approach. Arti�cial

Intelligence Review 9, 2-3, 215�235.

Nasukawa, T. 1994. Robust method of pronoun resolution using full-text information. In COL-

ING '94: Proceedings of the 15th conference on Computational linguistics (Kyoto, Japan). As-

sociation for Computational Linguistics, Morristown, United States of America, 1157�1163.

BIBLIOGRAPHY 220

Neumaier, A. 1990. Interval Methods for Systems of Equations. Encyclopedia of Mathematics

and its Applications, vol. 37. Cambridge Univeristy Press, Cambridge, United Kingdom.

Nieuwenhuisen, D. and Overmars, M. H. 2003. Motion planning for camera movements in

virtual environments. Tech. rep., Utrecht University, Utrecht, The Netherlands. January.

Nugues, P., Dupuy, S., and Egges, A. 2003. Information extraction to generate visual simu-

lations of car accidents from written descriptions. In ICCSA '03: Proceedings of the 2003 Inter-

national Conference on Computational Science and its Applications (San Diego, United States

of America). Lecture Notes in Computer Science, vol. 2667. Springer-Verlag, Berlin, Germany,

31�40.

Older, W. and Vellino, A. 1990. Extending prolog with constraint arithmetic on real inter-

vals. In Proceedings of the IEEE Canadian Conference on Computer and Electrical Engineering

(Ottawa, Canada). IEEE Computer Society, Washington DC, United States of America.

Oliveira, J. B. and De Figueiredo, L. H. 2003. Robust approximation of o�sets, bisectors,

and medial axes of plane curves. Reliable Computing 9, 2, 161�175.

Overmars, M. H. 1992. A random approach to motion planning. Tech. rep., Department of

Computer Science, Utrecht University, Utrecht, The Netherlands. October.

Overmars, M. H. and vSvestka, P. 1995. A probabilistic learning approach to motion plan-

ning. In WAFR '95: Proceedings of the workshop on Algorithmic foundations of robotics (San

Francisco, United States of America). A. K. Peters, Ltd., Natick, United States of America,

19�37.

Palmer, D. D. and Hearst, M. A. 1994. Adaptive sentence boundary disambiguation. In

Proceedings of the 4th ACL Conference on Applied Natural Language Processing (Stuttgart,

Germany). Morgan Kaufmann Publishers, San Francisco, United States of America, 78�83.

Parish, Y. I. H. and Muller, P. 2001. Procedural modeling of cities. In SIGGRAPH '01:

Proceedings of the 28th annual conference on Computer graphics and interactive techniques (Los

Angeles, United States of America). Association for Computing Machinery, ACM Press, New

York, United States of America, 301�308.

Patwardhan, S. and Riloff, E. 2007. E�ective information extraction with semantic a�nity

patterns and relevant regions. In EMNLP-CoNLL: Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural Language

Learning (Prague, Czech Republic). Association for Computational Linguistics, Morristown,

United States of America, 717�727.

Pettré, J., Laumond, J., and Siméon, T. 2003. A 2-stages locomotion planner for digital

actors. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on

Computer animation (Aire-la-Ville, Switzerland). Eurographics Association, 258�264.

Pettré, J., Laumond, J., and Siméon, T. 2003. 3D collision avoidance for digital actors

locomotion. In IROS '03: Proceedings of the IEEE/RSJ International Conference on Intelligent

BIBLIOGRAPHY 221

Robots and Systems. Vol. 1. IEEE Computer Society, Washington DC, United States of America,

400�405.

Phillips, W. and Riloff, E. 2007. Exploiting role-identifying nouns and expressions for infor-

mation extraction. In EMNLP '07:Proceedings of the 2007 Conference on Empirical Methods in

Natural Language Processing) (Borovets, Bulgaria).

Piesk, J. and Trogemann, G. 1997. Animated interactive �ction: Storytelling by a conver-

sational virtual actor. In VSMM '97: Proceedings of the 1997 International Conference on

Virtual Systems and MultiMedia (Geneva, Switzerland). IEEE Computer Society, Washington

DC, United States of America, 100�108.

Puget, J. 1994. A C++ implementation of CLP. In Proceedings of the 2nd Singapore International

Conference on Intelligent Systems. Singapore.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1, 1, 81�106.

Quinlan, J. R. 1990. Learning logical de�nitions from relations. Machine Learning 5, 3, 239�266.

Ramshaw, L. and Marcus, M. 1995. Text chunking using transformation-based learning. In

Proceedings of the Third Workshop on Very Large Corpora (Cambridge, United States of Amer-

ica), D. Yarovsky and K. Church, Eds. Association for Computational Linguistics, Morristown,

United States of America, 82�94.

Ratschan, S. 2006. E�cient solving of quanti�ed inequality constraints over the real numbers.

ACM Transactions on Computational Logic 7, 4, 723�748.

Ratschan, S. 2008. Applications of quanti�ed constraint solving over the reals bibliography.

Website: http://uivt1.cs.cas.cz/ ratschan/appqcs.html [accessed on 21 March 2008].

Redon, S., Kheddar, A., and Coquillart, S. 2002. Fast continuous collision detection between

rigid bodies. Computer Graphics Forum 21, 3, 279.

Riloff, E. 1993. Automatically constructing a dictionary for information extraction tasks. In

AAAI '93: Proceedings of the 11th National Conference on Arti�cial Intelligence (Washington,

D.C., United States of America). Association for the Advancement of Arti�cial Intelligence,

AAAI Press, Menlo Park, United States of America, 811�816.

Riloff, E. 1996. Automatically generating extraction patterns from untagged text. In AAAI '96:

Proceedings of the 13th National Conference on Arti�cial Intelligence (Portland, United States of

America). Vol. 2. Association for the Advancement of Arti�cial Intelligence, AAAI Press, Menlo

Park, United States of America, 1044�1049.

Salomon, B., Garber, M., Lin, M. C., and Manocha, D. 2003. Interactive navigation in

complex environments using path planning. In I3D '03: Proceedings of the 2003 symposium

on Interactive 3D graphics (Monterey, United States of America). Association for Computing

Machinery, ACM Press, New York, United States of America, 41�50.

Sampson, G. 2007. The SUSANNE analytic scheme. Website:

http://www.grsampson.net/RSue.html [accessed on 10 September 2007].

BIBLIOGRAPHY 222

Sanchez, S., Le Roux, O., Luga, H., and Gaildrat, V. 2003. Constraint-based 3D-object

layout using a genetic algorithm. In 3IA '03: The 6th International Conference on Computer

Graphics and Arti�cial Intelligence (Limoges, France). Laboratoire XLIM - Université de Limo-

ges.

Schank, R. C. 1972. Conceptual dependency: A theory of natural language understanding.

Cognitive Psychology 3, 552�631.

Schank, R. C. 1973. The fourteen primitive actions and their inferences. Tech. rep., Stanford

University, Stanford, United States of America.

Schmid, H. 1994. Probabilistic part-of-speech tagging using decision trees. Tech. rep., University

of Stuttgart, Stuttgart, Germany.

Schwartz, L. S. 1963. Principles of coding, �ltering, and information theory. Spartan Books,

Inc., Baltimore, United States of America.

Seversky, L. M. and Yin, L. 2006. Real-time automatic 3D scene generation from natural

language voice and text descriptions. InMULTIMEDIA '06: Proceedings of the 14th annual ACM

international conference on Multimedia (Santa Barbara, United States of America). Association

for Computing Machinery, ACM Press, New York, United States of America, 61�64.

Shen, L., Satta, G., and Joshi, A. 2007. Guided learning for bidirectional sequence classi�ca-

tion. In ACL 2007: Proceedings of the 45th Annual Meeting of the Association of Computational

Linguistics (Prague, Czech Republic). Association of Computational Linguistics, Association of

Computational Linguistics, Prague, Czech Republic, 760�767.

Shinyama, Y. and Sekine, S. 2006. Preemptive information extraction using unrestricted relation

discovery. In Proceedings of the main conference on Human Language Technology Conference of

the North American Chapter of the Association of Computational Linguistics (New York, United

States of America). Association for Computational Linguistics, Morristown, United States of

America, 304�311.

Shinyama, Y., Tokunaga, T., and Tanaka, H. 2000. �"Kairai�" - software robots understanding

natural language. In Third International Workshop on Human-Computer Conversation (Bellagio,

Italy). 158�163.

Simmons, R. F. 1975. The clowns microworld. In TINLAP '75: Proceedings of the 1975 workshop

on Theoretical issues in natural language processing (Cambridge, Massachusetts). Association

for Computational Linguistics, Morristown, United States of America, 17�19.

Snyder, J. M. 1992. Interval analysis for computer graphics. In SIGGRAPH '92: Proceedings of

the 19th annual conference on Computer graphics and interactive techniques (Chicago, United

States of America). Association for Computing Machinery, ACM Press, New York, United States

of America, 121�130.

Snyder, J. M.,Woodbury, A. R., Fleischer, K., Currin, B., and Barr, A. H. 1993. Inter-

val methods for multi-point collisions between time-dependent curved surfaces. In SIGGRAPH

BIBLIOGRAPHY 223

'93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques

(Anaheim, United States of America). Association for Computing Machinery, ACM Press, New

York, United States of America, 321�334.

Soderland, S. 1999. Learning information extraction rules for semi-structured and free text.

Machine Learning 34, 1-3, 233�272.

Soderland, S. G. 1997. Learning text analysis rules for domain-speci�c natural language pro-

cessing. Ph.D. thesis, University of Massachusetts, Amherst, United States of America.

Sproat, R. 2001. Inferring the environment in a text-to-scene conversion system. In K-CAP '01:

Proceedings of the international conference on Knowledge capture (Victoria, Canada). Associa-

tion for Computing Machinery, ACM Press, New York, United States of America, 147�154.

Stevenson, M. and Greenwood, M. A. 2005. A semantic approach to ie pattern induction. In

ACL '05: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics

(Ann Arbor, United States of America). Association for Computational Linguistics, Morristown,

United States of America, 379�386.

Sudo, K., Sekine, S., and Grishman, R. 2003. An improved extraction pattern representation

model for automatic ie pattern acquisition. In ACL '03: Proceedings of the 41st Annual Meeting

on Association for Computational Linguistics (Sapporo, Japan). Association for Computational

Linguistics, Morristown, United States of America, 224�231.

Swartjes, I. and Theune, M. 2008. The virtual storyteller: story generation by simulation. In

BNAIC '08: Proceedings of the 20th Belgian-Netherlands Conference on Arti�cial Intelligence

(Enschede, The Netherlands). University of Twente, Enschede, The Netherlands, 257�265.

Takashima, Y., Shimazu, H., and Tomono, M. 1987. Story driven animation. In CHI '87:

Proceedings of the SIGCHI/GI conference on Human factors in computing systems and graphics

interface (Toronto, Canada). Association for Computing Machinery, ACM Press, New York,

United States of America, 149�153.

Tapanainen, P. 1999. Parsing in two frameworks: �nite-state and functional dependency gram-

mar. Ph.D. thesis, University of Helsinki, Helsinki, Finland.

Tapanainen, P. and Järvinen, T. 1997. A non-projective dependency parser. In Proceedings of

the 5th Conference on Applied Natural Language Processing (Washington D.C., United States

of America). Association for Computational Linguistics, Morristown, United States of America,

64�71.

Tarau, P. and Figa, E. 2004. Knowledge-based conversational agents and virtual storytelling.

In SAC '04: Proceedings of the 2004 ACM symposium on Applied computing (Nicosia, Cyprus).

Association for Computing Machinery, ACM Press, New York, United States of America, 39�44.

Teufel, S. 1995. A support tool for tagset mapping. In EACL95: Proceedings of the Workshop

SIGDAT (Dublin, Ireland). European Chapter of the Association for Computational Linguistics.

BIBLIOGRAPHY 224

Teufel, S., Schmid, H., Ileid, U., and Schiller, A. 1996. Study of the relation between

tagsets and taggers. Tech. rep., Expert Advisory Group on Language Engineering Standards,

University of Stuttgart, Stuttgart, Germany. May. EAGLES Document EAG-CLWG-TAGS/V.

Theune, M., Faas, E., Nijholt, A., and Heylen, D. 2003. The virtual storyteller: Story

creation by intelligent agents. In TIDSE '03: Proceedings of the 1st international conference

on Technologies for Interactive Digital Storytelling and Entertainment (Darmstadt, Germany).

204�215.

Toth, D. L. 1985. On ray tracing parametric surfaces. In SIGGRAPH '85: Proceedings of the

12th annual conference on Computer graphics and interactive techniques (San Francisco, United

States of America). Association for Computing Machinery, ACM Press, New York, United States

of America, 171�179.

Toutanova, K. and Manning, C. 2000. Enriching the knowledge sources used in a maximum

entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIGDAT conference on Empirical

methods in natural language processing and very large corpora: held in conjunction with the 38th

Annual Meeting of the Association for Computational Linguistics (Hong Kong, China). Vol. 13.

Association for Computational Linguistics, Morristown, United States of America, 63�70.

Toutanova, K., Manning, C., Klein, D., and Singer, Y. 2003. Feature-rich part-of-speech

tagging with a cyclic dependency network. In HLT-NAACL 2003: Proceedings of the 2003

Conference of the North American Chapter of the Association for Computational Linguistics

on Human Language Technology (Edmonton, Canada). Vol. 1. Association for Computational

Linguistics, Morristown, United States of America, 252�259.

Tufis, D. and Mason, O. 1998. Tagging Romanian texts: a case study for QTAG, a language

independent probabilistic tagger. In LREC 1998: Proceedings of the 1st International Conference

on Language Resources and Evaluation (Granada, Spain).

Turmo, J., Ageno, A., and Català, N. 2006. Adaptive information extraction. ACM Com-

puting Surveys 38, 2, 4.

Turmo, J. and Rodriguez, H. 2002. Learning rules for information extraction. Natural Language

Engineering 8, 3, 167�191.

van den Berg, J. and Overmars, M. 2006. Planning the shortest safe path amidst unpre-

dictably moving obstacles. In WAFR '06: Proceedings of the Workshop on Algorithmic Founda-

tions of Robotics (New York, United States of America).

van Halteren, H., Daelemans, W., and Zavrel, J. 2001. Improving accuracy in word class

tagging through the combination of machine learning systems. Computational Linguistics 27, 2,

199�229.

van Halteren, H., Zavrel, J., and Daelemans, W. 1998. Improving data driven wordclass

tagging by system combination. In Proceedings of the 36th Annual Meeting of the Association

for Computational Linguistics and 17th International Conference on Computational Linguis-

tics (Montréal, Canada), C. Boitet and P. Whitelock, Eds. Morgan Kaufmann Publishers, San

Francisco, California, 491�497.

BIBLIOGRAPHY 225

van Hentenryck, P., McAllester, D., and Kapur, D. 1997. Solving polynomial systems

using a branch and prune approach. SIAM Journal on Numerical Analysis 34, 2, 797�827.

Vilhjálmsson, H. H., Cantelmo, N., Cassell, J., Chafai, N. E., Kipp, M., Kopp, S.,

Mancini, M.,Marsella, S.,Marshall, A. N., Pelachaud, C., Ruttkay, Z., Thórisson,

K. R., van Welbergen, H., and van der Werf, R. J. 2007. The behavior markup language:

Recent developments and challenges. In IVA '07: Proceedings of the 7th international conference

on Intelligent Virtual Agents (Paris, France). Lecture Notes in Computer Science, vol. 4722.

Springer, Verlag, Berlin, Germany, 99�111.

Webber, B., Badler, N., Di Eugenio, B., Geib, C., Levison, L., and Moore, M. 1995.

Instructions, intentions and expectations. Arti�cial Intelligence 73, 1-2, 253�269.

Winograd, T. 1972. Understanding Natural Language. Edinburgh University Press, Edinburgh,

United Kingdom.

Witkin, A. and Kass, M. 1988. Spacetime constraints. In SIGGRAPH '88: Proceedings of the

15th annual conference on Computer graphics and interactive techniques (Atlanta, United States

of America). Association for Computing Machinery, ACM Press, New York, United States of

America, 159�168.

Xu, K., Stewart, J., and Fiume, E. 2002. Constraint-based automatic placement for scene

composition. In Proceedings of Graphics Interface (Calgary, Canada). 25�34.

Xun, E., Zhou, M., and Huang, C. 2000. A uni�ed statistical model for the identi�cation

of English BaseNP. In ACL 2000: Proceedings of the 38th Annual Meeting of the Association

for Computational Linguistics (Hong Kong, China). Association for Computational Linguistics,

Morristown, United States of America.

Yamada, A., Yamamoto, T., Ikeda, H., Nishida, T., and Doshita, S. 1992. Reconstructing

spatial image from natural language texts. In COLING '92: Proceedings of the 14th International

Conference on Computational Linguistics (Nantes, France). Vol. 4. Association of Computational

Linguistics, 1279�1283.

Yangarber, R. 2003. Counter-training in discovery of semantic patterns. In ACL '03: Proceedings

of the 41st Annual Meeting on Association for Computational Linguistics (Sapporo, Japan).

Association for Computational Linguistics, Morristown, United States of America, 343�350.

Zeng, X., Mehdi, Q. H., and Gough, N. E. 2003. Shape of the story: Story visualization tech-

niques. In IV '03: Proceedings of the 7th International Conference on Information Visualization

(London, United Kingdom).

Zeng, X., Mehdi, Q. H., and Gough, N. E. 2005. From visual semantic parameterization to

graphic visualization. In IV '05: Proceedings of the 9th International Conference on Information

Visualisation (London, United Kingdom). IEEE Computer Society, Washington DC, United

States of America, 488�493.

BIBLIOGRAPHY 226

Zhang, J., Black, A., and Sproat, R. 2003. Identifying speakers in children's stories for speech

synthesis. In Proceedings of EUROSPEECH '03 (Geneva, Switzerland). Geneva, Switzerland,

2041�2044.

Zhu, X., Goldberg, A., Eldawy, M., Dyer, C., and Strock, B. 2007. A text-to-picture

synthesis system for augmenting communication. In AAAI-07: The Integrated Intelligence Track

of the 22nd AAAI Conference on Arti�cial Intelligence (Vancouver, Canada). Association for

the Advancement of Arti�cial Intelligence, AAAI Press, Menlo Park, United States of America,

1590�1596.

Appendix A

Properties of raw text

We impose the following requirements regarding the input text:

• Characters that occur in the input are sourced only from the standard ASCII domain;

• Paragraphs in the text are separated by a blank line;

• Punctuation that is not part of a recognized set (listed in Table A.1) does not occur in the

text;

• Direct-speech is indicated by inverted commas (�...�) only;

• Direct-speech which spans multiple paragraphs only uses a single set of inverted commas, at

the start of the quote, and after the last token inside the quote.

It is acknowledged that the raw text needs pre-processing to ensure conformance to the above

requirements. Pre-processing is achieved using existing regular expression and command-line tools.

Punctuation --- -- ... ; : , @ # $ % () � � ` ' ~ . ! ? { } []

Apostrophe n't 's 're 'm 've 'd 'll '

Sentence
Terminators

... . ! ?

Table A.1: Recognised punctuation, apostrophe and sentence termination symbols.

227

Appendix B

Coarse tag-set and mappings

B.1 Coarse tag-set

The coarse tag-set used by the �ction-to-animation system is listed in Table B.1. It is a derivative

of the Penn tag-set (Marcus et al., 1994).

B.2 Mappings to the coarse tag-set

Mappings between the coarse tag-set and the Penn, LOB and SUSANNE tagsets are listed in Table

B.2. The * symbol denotes a wild-card.

228

APPENDIX B. COARSE TAG-SET AND MAPPINGS 229

Tag Description

1. CC Co-ordinating Conjunction
2. CD Cardinal Number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. MD Modal
9. NN Noun
10. NNP Proper Noun
11. PRP Pronoun
12. RB Adverb
13. RP Particle
14. TO To
15. UH Interjection
16. VB Verb
17. VBD Verb, past tense
18. VBG Verb, gerund or present participle
19. VBN Verb, past participle
20. VBZ Verb, third person singular present
21. WDT Wh-determiner
22. WP Wh-pronoun
23. WRB Wh-adverb
24. @COPY@ Punctuation

Table B.1: Coarse tag-set, adapted from the Penn tag-set.

APPENDIX B. COARSE TAG-SET AND MAPPINGS 230

C
oa
rs
e
T
ag

P
en
n
T
re
eb
a
n
k

L
O
B

S
U
S
A
N
N
E

C
C

C
C

C
C
*

C
C
*

C
D

C
D

C
D
*;

O
D
*

M
C

D
T

D
T
;
P
D
T

A
T
*;

D
T
*

A
T
*

E
X

E
X

E
X

E
X

F
W

F
W

&
F
O

F
W
*

IN
IN

C
S
*;

IN
*

I*
J
J

J
J
;
J
J
R
;
J
J
S

A
P
*;

J
J
*

J
*

M
D

M
D

M
D

M
D
*;

V
M
*

N
N

N
N
;
N
N
S

N
N
*;

N
R
*;

P
N
*

N
N
*

N
N
P

N
N
P
;
N
N
P
S

J
N
P
;
N
N
P
*;

N
P
*

N
P
*

P
R
P

P
R
P
;
P
R
P
$

P
P
*

P
N
*;

P
P
*;

A
P
P
*

R
B

R
B
;
R
B
R
;
R
B
S

A
B
L
;
Q
*;

R
*

R
*

R
P

R
P

R
P

F
B
;
R
P
*

T
O

T
O

T
O
*

T
O
;
II
t

U
H

U
H

U
H

U
H
*

V
B

V
B

B
E
;
D
O
;
H
V
;
V
B
*

V
B
0;

V
D
0;

V
V
0*

V
B
D

V
B
D

B
E
D
;
B
E
D
Z
;
D
O
D
;
H
V
D
;
V
B
D

V
B
D
Z
;
V
B
D
R
;
V
D
D
;
V
H
D
;
V
V
D
*

V
B
G

V
B
G
;
V
B
P

B
E
G
;
B
E
M
;
B
E
P
;
H
V
G
;
V
B
G

V
B
G
;
V
D
G
;
V
H
G
;
V
V
G
*;

V
B
R
;
V
B
M
;
V
H
0

V
B
N

V
B
N

B
E
N
;
H
V
N
;
V
B
N
;

V
B
N
;
V
D
N
;
V
H
N
;
V
V
N
*

V
B
Z

V
B
Z

B
E
Z
;
D
O
Z
;
H
V
Z
;
V
B
Z

V
B
Z
;
V
D
Z
;
V
H
Z
;
V
V
Z
*

W
D
T

W
D
T

W
D
T
*

D
D
Q
*

W
P

W
P
;
W
P
$

W
P
*

P
N
Q
*

W
R
B

W
R
B

W
R
B

R
R
Q
*

@
C
O
P
Y
@

P
u
n
ct
u
a
ti
o
n

P
u
n
ct
u
a
ti
o
n

Y
*;

G
*

Table B.2: Mappings between the coarse tag-set and the Penn, LOB and SUSANNE tag-sets.

Appendix C

Algorithms in quanti�ed constraint

solving

C.1 Methods for constraint propagation

Constraint propagation is achieved over constraints using interval arithmetic and narrowing algo-

rithms. Each is based on the �xpoint algorithm.

C.1.1 Fixpoint algorithm

The �xpoint algorithm shown in Algorithm C.1 (Benhamou et al., 1994; Benhamou, 1995) imple-

ments the process of chaotic iteration. This process continues to apply narrowing operators to a

set of constraints until no further narrowing occurs over the variable domains.

The problem with Algorithm C.1 is that it works only with primitive constraints. That is, the

constraint c : x+y∗z = t needs to be decomposed into primitive constraints such as cdec = {y∗z =
α, x+ α = t}. The introduction of the new variable α leads to poor domain tightening, especially

when the same variable occurs multiple times in the same constraint.

Algorithm C.1 Fixpoint algorithm.

fixpoint(in: {C1, ..., Cn}; inout: B)

begin

Q← {C1, ..., Cn}
while size(Q) 6= 0 do

C ← removeF irst(Q) %%pop from stack

B′ ← narrow(C,B) %%narrow B with respect to C
if B′ 6= B then

B← B′

Add all constraints (except C) containing variables whose

domains are narrowed in B to Q
return B

end

231

APPENDIX C. ALGORITHMS IN QUANTIFIED CONSTRAINT SOLVING 232

Constraint: 2x = z − y2

Figure C.1: Forward evaluation of a constraint (as illustrated by Benhamou et al. (1999)).

Algorithm C.2 Forward evaluation algorithm (adapted from Benhamou et al. (1999)).

forwardEvaluation(in: node; inout: B)

begin

t← type(node)
case (t) of:

♦: %An operation

foreach child c of node do

forwardEvaluation(c,B)
node.r←Interval extension of ♦ operator, using

interval r of child-nodes as operands

α: %A constant

node.r← [α, α]
Vk: %A variable

node.r← domaink(B)
end

C.1.2 Hull consistency

The algorithm for achieving hull consistency is named HC4 and is de�ned by Benhamou et al.

(1999). The process is divided into two sections, namely forward evaluation and backward propa-

gation of the evaluation tree of the constraint expressions.

Forward Evaluation The forward evaluation process is illustrated in Figure C.1, where the

tree is traversed from the leaves to the root, evaluating the interval extension of each sub-term. The

algorithm recursively traverses down the tree until the leaves are met, where the initial intervals of

the variables and constants are loaded into a temporary variable r in each node. On the upward

run the values for the inner nodes are calculated using the values from the children with respect

to the interval extension of the operator at the current inner node. Algorithm C.2 implements

forward evaluation.

Backward Propagation The process of backward propagation is illustrated in Figure C.2. The

tree is traversed from the root node downwards. At each inner node the children are calculated

according to the projection operator of the current node. The narrowing operation uses the current

values of the children, as well as the value of the current node (which was modi�ed as a result of

APPENDIX C. ALGORITHMS IN QUANTIFIED CONSTRAINT SOLVING 233

Constraint: 2x = z − y2

Figure C.2: Backward propagation of a constraint (as illustrated by Benhamou et al. (1999)).

Algorithm C.3 Backward propagation algorithm (adapted from Benhamou et al. (1999)).

backwardPropogation(in: node; inout: B)

begin

t← type(node)
case t of:

♦: %An operation

D′ ←box constructed from r interval of each child

foreach child of node do

child.r← πi(ρc ∩D′) %% Projection operator for operand of ♦
backwardPropogation(child, B)

Vj: %Variable

Bj ← Bj∩node.r %% intersect domain of variable j
end

the propagation of its parent). Eventually, the propagation reaches the leaf nodes, where the �nal

intervals of the variables are assigned. If the variable occurs more than once, then all intervals

returned for that variable are intersected. Backward propagation is presented in Algorithm C.3.

Further details regarding forward and backward propagation are described by Benhamou et al.

(1999).

Algorithm HC4Revise The forwardEvaluation and backwardPropogation algorithms �t to-

gether into an algorithm called HC4Revise, which is presented in Algorithm C.4. This implements

the constraint narrowing operator for the HC4 algorithm.

Algorithm C.4 HC4Revise (adapted from Benhamou et al. (1999)).

HC4Revise(in: constraint c; inout: box B)

begin

forwardEvaluation(root(c),B)
backwardPropagation(root(c),B)
return B

end

APPENDIX C. ALGORITHMS IN QUANTIFIED CONSTRAINT SOLVING 234

Algorithm C.5 HC4 (as described by Benhamou et al. (1999)).

HC4(in: {c1, ..., cm}; inout: box B)

begin

S ← {c1, ..., cm}
while size(S) 6= ∅ and B 6= ∅ do

c←removeF irst(S) %%pop constraint from stack

B′ ←HC4Revise(c,B)
if (B′ 6= B) then %%box is narrowed

Add all constraints (except c) containing variables whose

domains are narrowed in B′ to S
B← B′

else

Remove c from S
return B

end

Algorithm HC4 TheHC4 algorithm presented in Algorithm C.5 is designed by Benhamou et al.

(1999) for achieving hull consistency over a set of constraints. In a set of constraints, a variable

x may occur in more than a single constraint at a time (for example, x may occur in constraint

c1 and c2). If x's domain is narrowed over constraint c1 then this may lead to further narrowing

of other variables in c2. Algorithm C.5 uses chaotic iteration to achieve a �xpoint, that is, a box

for which hull consistency is achieved over all constraints. A function HC4Revise is executed

that performs the forward and backward propagation steps. A list of constraints is maintained

which indicates which constraints to use for further narrowing of the input box. Constraints are

removed from the list when idempotence is achieved after using the HC4Revise operator (that is,
no change results from narrowing the constraint). If however, the box is modi�ed by HC4Revise,
then all constraints that contain variables whose corresponding intervals in the box were modi�ed

are added to the end of the list.

C.1.3 Box consistency

Box consistency was created to overcome the problem of a constraint containing more than one

instance of a variable. This is done by forming a set of univariate constraints for an input constraint,

where each variable in a univariate constraint is replaced with its domain in the input box, except

for one variable. For box consistency, the left-most and right-most roots de�ne the global bounds

of all possible roots for the function (Benhamou et al., 1994).

We use the shrinkLeft and shrinkRight algorithms to locate the left-most and right-most

roots of a univariate function. The former is de�ned as Algorithm C.6. This algorithm evaluates

the function over the initial interval, discarding it if it contains no roots. If roots are found then the

interval is split, and each sub-division is pushed onto a stack for future root checking. The order

in which the subdivisions are pushed onto the stack determine whether the left-most or right-most

root is to be found. If a canonical interval is found that still contains zero, then this is assumed to

be the left-most (right-most) root, and the algorithm returns successfully. This method is di�erent

from the Newton method for locating roots.

APPENDIX C. ALGORITHMS IN QUANTIFIED CONSTRAINT SOLVING 235

Algorithm C.6 shrinkLeft algorithm.

shrinkLeft(in: univariate function F; inout: interval I)
begin

S ← {I}
while size(S) > 0 do

In ← removeF irst(S) %%pop off stack

X ← F (In) %%Evaluate univariate function over In
if [0, 0] ⊂ X then

V ← split(In)
if size(V) > 0 then

Push intervals in V onto stack S
else

return In %%precision reached, root found

return FAIL %% No roots are found

end

Determining box consistency for a constraint is a matter of �nding the left-most and right-most

roots of each univariate function. If either one of the methods returns FAIL then no root exists.

Algorithm BC3Revise The algorithm that creates the set of univariate constraints and executes

shrinkLeft and shrinkRight is called BC3Revise. If this algorithms returns FAIL then box

consistency over the constraint is not possible (Benhamou et al., 1994).

Algorithm BC3 Box consistency over a set of constraints is achieved in a similar manner to

hull consistency, that is, box-narrowing is repeated until no change occurs in the box of domains

(Benhamou et al., 1994, 1999). Algorithm BC3 is identical to HC4, except that BC3Revise is

used instead of HC4Revise.

Algorithm BC4 Algorithm C.7 is a more e�cient method for box consistency over a set of

constraints. Initially hull consistency is achieved for all the constraints. Once hull consistency is

achieved over the set, box consistency is applied (Benhamou et al., 1999).

C.1.4 Inner contracting operator

Algorithm C.8 implements the inner contracting operator presented by Benhamou et al. (2004).

ICO2 uses an outer contracting operator implemented as the BC3Revise algorithm. The initial

box is narrowed using BC3Revise, and if a universally quanti�ed variable is narrowed, then no

solutions exist. If none are narrowed, then the set of inverted constraints are narrowed using

BC3Revise over B′. The box set di�erence between B′ and B′′ forms the solution to the constraint

set. If further solutions are required, then B′′ is split and processed recursively. If B′′ becomes

canonical the algorithm stops (in this case, if the average width of the box is less than a speci�ed

threshold α).

APPENDIX C. ALGORITHMS IN QUANTIFIED CONSTRAINT SOLVING 236

Algorithm C.7 BC4 (adapted from Benhamou et al. (1994)).

BC4(in: set of constraints C; inout: box B)

begin

repeat

B′ ← B
do

notF inished← false
foreach c ∈ C do

B′′ ← B
HC4Revise(c,B)
notF inished←true if any variables in B′′ that occur once are narrowed,

false if B′′ = FAIL or notF inished already false

while notF inished
if (B 6= ∅) then

BC3(C,B)
until B′ = B or B = ∅
return B

end

Algorithm C.8 Inner contracting operator adapted from Benhamou et al. (2004).

ICO2(in: constraint C,
box B;

out: S containing solution boxes)

begin

B′ ← BC3Revise(C,B)
if universally quantified domains not shrunk then

B′′ ← BC3Revise(C,B′)
S ←box set difference where no shrinking in

universally quantified variables

if width(B′′) < α then

return S
else

(B1, ...,Bk)← splitk(B′′)
apply ICO2(C,Bj) for each split box, add solutions to S
return S

else

return FAIL
end

Appendix D

Benchmark constraint systems

D.1 Example constraint �le

Constraint systems are described in a constraint �le that symbolically represents the constraints:

########## Object 1 in front of Object 0 ###############

CONSTRAINT{

VARS{

xo0cp0

xo1cp0

yo0cp0

yo1cp0

t1*

}

EXPR{

(0.707*(xo1cp0-xo0cp0))+(-0.707*(yo1cp0-*yo0cp0)))^2 -

0.8*(((xo1cp0-xo0cp0)^2 + (yo1cp0-yo0cp0))^2) * (0.707^2+(-0.707)^2)

}

OPERATOR{

>

}

BOUNDARY{

0

}

}

########## Object 1 near Object 0 ###############

CONSTRAINT{

...

}

BOX{

xo0cp0: -10, 10

xo1cp0: -10, 10

yo0cp0: -10, 10

yo1cp0: -10, 10

...

t1: 0.5, 0.6

}

237

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 238

D.2 Non-quanti�ed benchmarks

The three benchmarks used in Chapter 5 for verifying the underlying algorithms are de�ned as

follows:

D.2.1 CLPRevisited

This benchmark is used as a toy example by Benhamou et al. (1994), and is concerned with �nding

the roots of each of the following functions:

f1(x) = x4 − 12x3 + 47x2 − 60x
f2(x) = x4 − 12x3 + 47x2 − 60x+ 24
f3(x) = x4 − 12x3 + 47x2 − 60x+ 24.1 (inconsistent)

In all three cases x is assigned the initial domain [−10, 20].

D.2.2 Broyden Banded function

This example is used as a benchmark by Benhamou et al. (1994) and is concerned with �nding the

roots of the following functions:

fi(x1, ..., xn) = xi(2 + 5x2
i) + 1−

∑
j∈Ji

xj(1 + xj) (1 ≤ i ≤ m)

where Ji = {j|j 6= i & max(1, i− 5) ≤ j ≤ min(m, i+ 1)}.
All domains of xi are initially the interval [−1, 1]. Benchmark systems are created for n =

{5, 10, 20, 40, 80}.

D.2.3 More-Cosnard example

This example is used as a benchmark by Benhamou et al. (1994) and is concerned with �nding the

roots of the following functions (1 ≤ k ≤ m):

fk(xi, ..., xm) = xk +
1
2

(1− tk)
k∑

j=1

tj(xj + tj + 1)3 + tk

m∑
j=k+1

(1− tj)(xj + tj + 1)2


where tj = jh and h = 1/(m + 1). Every xi begins with the initial domain [−4, 5]. Benchmark

systems are created for m = {10, 20, 40, 80}.

D.3 Quanti�ed benchmarks

The following benchmarks are used for testing the ability to solve constraint systems containing

universally quanti�ed variables.

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 239

D.3.1 Parabola Fitting

Used by Jardillier and Languénou (1998) and Benhamou et al. (2004), this benchmark is concerned

with �nding parabolas above a line:

∀t ∈ [0, 2] : at2 + bt+ c ≥ 2t− 1

where the initial domains for a, b and c are [0, 1].

D.3.2 Circle

A collision avoidance problem de�ned by Benhamou et al. (2004):

∀t ∈ [−π, π] :
√

(r1sint− x)2 + (r1cost− y)2 ≥ d1

where the initial domains of x and y are [−5, 5], d1 = 0.5 and r1 = 2.5.

D.3.3 Satellite

A collision avoidance problem de�ned by Benhamou et al. (2004). If

fi(t) =

 xi(t)
yi(t)
zi(t)

 =

 dicosθisinωit+ φi

di (sinψisinθisin(ωit+ φi) + cosψicos(ωit+ φi))
di (−cosψisinθisin(ωit+ φi) + sinψicos(ωit+ φi))


then the constraint system is de�ned as:

∀t ∈ [−π, π] :



distance (f1(t), fj(t)) ≥ s

distance (f2(t), fj(t)) ≥ s
...

distance (fn(t), fj(t)) ≥ s

where s is the minimum distance between satellites (we use s = 1). Three satellites are used in

the benchmark, so n = 3. Each satellite is parametrized as follows:

Parameter Satellite 1 Satellite 2 Satellite 3

di 5.0 5.0 5.0

ωi 1.0 1.0 1.0

φi 0.0 1.0 2.0

θi 0.0 1.0 1.5

ψi 0.0 1.0 1.5

The unknowns to be computed are for a fourth satellite j = n+1, where parameters θj , φj ,ψj ,ωj

all begin with domain [0, 2π].

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 240

D.3.4 Robot

A collision problem de�ned by Benhamou et al. (2004):

∀t ∈ [0, 2] :
√

(x− Px(t))2 + (y − Py(t))2 ≥ d

where

Px(t) = d1sinα1(t) + d2sin (α1(t) + α2(t)− π) + d3sin (α1(t) + α2(t) + α3(t))
Py(t) = d1cosα1(t) + d2cos (α1(t) + α2(t)− π) + d3cos (α1(t) + α2(t) + α3(t))
α1(t) = t+ π/4
α2(t) = 2t− 1
α3(t) = 0.2t+ 0.1

The initial domains for x and y are [0, 5], d = 0.5, d1 = 1.0, d2 = 2.0 and d3 = 1.0.

D.3.5 PointPath

A motion planning problem used by Jaulin and Walter (1996) and Benhamou et al. (2004):

∀t ∈ [0, 1] :

(x(t)− 4.8)2 + (y(t)− 1)2 ≥ 1

y(t) ≥ sin (x(t))

where M(t) =

(
x(t)
y(t)

)
and

M(t) = M0B
3
0(t) + P1B

3
1(t) + P2B

3
2(t) +M1B

3
3(t)

where Bernstein polynomials are:

B3
0(t) = (1− t)3, B3

1(t) = 3t(1− t)2, B3
2(t) = 3t2(1− t), B3

3(t) = t3

Initial domains for P1 and P2 are [−10, 10], M0 = (−1,−0.6)T and M1 = (6, 0)T .

D.3.6 Robust 1

De�ned by Ratschan (2006, 2008):

∀p ∈ [0, 1] :


9 + 48p+ 48q + 32pq > 0

1 + p+ q > 0

−16p− 16q + 16p2 + 16q2 + 7 > 0

where q has the initial domain [−2, 2].

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 241

D.4 Fiction-to-animation benchmarks

The following benchmarks are de�ned for evaluation in terms of �ction-to-animation constraints:

• Near: Four objects, each constrained to appear inFrontOf and near one of the others.

noCollide constraints over all objects.

• Scene: Six objects arranged with using toRightOf , toLeftOf , inFrontOf , behind, noCollide
and near constraints.

• Layout3: Three objects arranged with the noCollide constraint.

• WayPoints: One object constrained to pass through 3 �xed way-points, using the near

constraint over 3 di�erent time-intervals.

• Dynamic1Static1: One object static, the other dynamic having trajectories of increasing

degree in each dimension. near and inFrontOf applied over sub-interval of time, noCollide

applied over entire interval of time.

• Dynamic2: Both objects dynamic, having trajectory of increasing degree in each dimension.

near and inFrontOf applied over sub-interval of time, noCollide applied over entire interval

of time.

• Collision: n objects, each constrained to be near and noCollide with every other object.

Increases in complexity with addition of each object, and for n > 3 no solution exists.

The exact constraints that comprise each benchmark are de�ned in the following sections. Actual

formulations for each type of constraint (such as inFrontOf and near) are presented in Chapter 6.

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 242

D.4.1 Front

Objects Dimensions Degree Quanti�ed variables Initial Domains

4 4 0 0 [−10, 10]

• Trajectory A: rA(t) = pA
0 =

x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajectory B: rB(t) = pB
0 =

x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajectory C: rC(t) = pC
0 =

x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Trajectory D: rD(t) = pD
0 =

x3cp0 (x− dimension)

z3cp0 (z − dimension)

Constraints:

B InFrontOf A uA = (0.707, 0.707)
B Near A

C InFrontOf B uB = (0.707,−0.707)
C Near B

D InFrontOf C uC = (0.707, 0.707)
D Near C

B NoCollide A

C NoCollide A

D NoCollide A

C NoCollide B

D NoCollide B

D NoCollide C

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 243

D.4.2 Scene

Objects Dimensions Degree Quanti�ed variables Initial Domains

6 2 0 0 [−20, 20]

• Trajectory A: rA(t) = pA
0 =

x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajectory B: rB(t) = pB
0 =

x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajectory C: rC(t) = pC
0 =

x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Trajectory D: rD(t) = pD
0 =

x3cp0 (x− dimension)

z3cp0 (z − dimension)

• Trajectory E: rE(t) = pE
0 =

x4cp0 (x− dimension)

z4cp0 (z − dimension)

• Trajectory F: rF (t) = pF
0 =

x5cp0 (x− dimension)

z5cp0 (z − dimension)

Constraints:

A InFrontOf B uB = (1, 0) C NoCollide B

A Near B D NoCollide B

C Behind B uB = (−1, 0) E NoCollide B

C Near B F NoCollide B

E ToLeftOf B uB = (0, 1) D NoCollide C

E Near B E NoCollide C

F ToRightOf D uD = (0,−1) F NoCollide C

F Near D E NoCollide D

B NoCollide A F NoCollide D

C NoCollide A F NoCollide E

D NoCollide A

E NoCollide A

F NoCollide A

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 244

D.4.3 Layout3

Objects Dimensions Degree Quanti�ed variables Initial Domains

3 2 0 0 [−20, 20]

• Trajectory A: rA(t) = pA
0 =

x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajectory B: rB(t) = pB
0 =

x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajectory C: rC(t) = pC
0 =

x2cp0 (x− dimension)

z2cp0 (z − dimension)

Constraints:

A NoCollide B

A NoCollide C

B NoCollide C

D.4.4 WayPoints

Objects Dimensions Degree Quanti�ed variables Initial Domains

1 2 2 3 [−100, 100]

Trajectory A (degree 2), for the time interval t = [0, 1]:

rA(t) = (1−t)2pA
0 +t(1−t)pA

1 +t2pA
2 =


(
(1− t)2 ∗ x0cp0

)
+ (t ∗ (1− t) ∗ x0cp1) +

(
t2 ∗ x0cp2

)(
(1− t)2 ∗ z0cp0

)
+ (t ∗ (1− t) ∗ z0cp1) +

(
t2 ∗ z0cp2

)
Constraints:

A Near B ∀t1 ∈ [0, 0.01] B at (−7.29,−18.98)
A Near C ∀t2 ∈ [0.5, 0.51] C at (−17.28, 0.0)
A Near D ∀t3 ∈ [0.99, 1.0] D at (10.0,−10.0)

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 245

D.4.5 Dynamic1Static1

Objects Dimensions Degree Quanti�ed variables Initial Domains

2 1 to 2 0 to 2 2 [−10, 10]

The following provides the example in 2 dimensions, degree 1 curves, for the time interval

t = [0, 1]:

• Trajectory A: rA(t) = (1− t)pA
0 + tpA

1 =

((1− t) ∗ x0cp0) + (t ∗ x0cp1) (x− dimension)

((1− t) ∗ z0cp0) + (t ∗ z0cp1) (z − dimension)

• Trajectory B: rB(t) = (1− t)pB
0 + tpB

1 =

x1cp0 (x− dimension)

z1cp0 (z − dimension)

Constraints:

A InFrontOf B ∀t1 ∈ [0.5, 0.6] uB =
d

dt
rB(t1)

A Near B ∀t1 ∈ [0.5, 0.6]
A NoCollide B ∀t2 ∈ [0, 1]

D.4.6 Dynamic2

Objects Dimensions Degree Quanti�ed variables Initial Domains

2 1 to 2 0 to 2 2 [−10, 10]

The following provides the example in 2 dimensions, degree 1 curves, for the time interval

t = [0, 1]:

• Trajectory A: rA(t) = (1− t)pA
0 + tpA

1 =

((1− t) ∗ x0cp0) + (t ∗ x0cp1) (x− dimension)

((1− t) ∗ z0cp0) + (t ∗ z0cp1) (z − dimension)

• Trajectory B: rB(t) = (1− t)pB
0 + tpB

1 =

((1− t) ∗ x1cp0) + (t ∗ x1cp1) (x− dimension)

((1− t) ∗ z1cp0) + (t ∗ z1cp1) (z − dimension)

Constraints:

A InFrontOf B ∀t1 ∈ [0.5, 0.6] uB =
d

dt
rB(t1)

A Near B ∀t1 ∈ [0.5, 0.6]
A NoCollide B ∀t2 ∈ [0, 1]

APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 246

D.4.7 Collision

Objects Dimensions Degree Quanti�ed variables Initial Domains

2 to 8 2 0 to 1 0 [−10, 10]

The following provides an example of 4 static objects, although the experiment ranges from 2

to 8 objects, with static or dynamic trajectories.

• Trajectory A: rA(t) = pA
0 =

x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajectory B: rB(t) = pB
0 =

x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajectory C: rC(t) = pC
0 =

x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Trajectory D: rD(t) = pD
0 =

x3cp0 (x− dimension)

z3cp0 (z − dimension)

Constraints:

B Near A B NoCollide A

C Near A C NoCollide A

D Near A D NoCollide A

C Near B C NoCollide B

D Near B D NoCollide B

D Near C D NoCollide C

Appendix E

Details of manual modi�cations

The modi�cations made to the automatically produced scene descriptions and virtual environments

are listed here.

E.1 Cow scene

• Coreference corrections (indicated in bold):

valley. Anne/ANNE did n't very much like a big brown cow/COW who came up close and stared at

her/ANNE, but it/COW went away when Daddy/DADDY told it/COW to. The children/CHILDREN

ate enormously, and Mother/MOTHER said that instead of having a tea-picnic at half-past four they would

have to go to a tea-house somewhere, because they had eaten all the tea sandwiches/SANDWICHES as

well as the lunch ones! "What time shall we be at Aunt Fanny's?" asked Julian/JULIAN, �nishing up

the very last sandwich/SANDWICH and wishing there were more. "About six o'clock with luck," said

Daddy/DADDY. "Now who wants to stretch their legs a bit? We've another long spell in the car, you

know." The car/CAR seemed to eat up the miles as it purred along.

• Abstract constraint creation process:

Scene detail: Modi�cations:

Scene segmentation: - None

Model descriptors: - Cow trajectory increased to degree 1 (from 0)

Coreference: - As shown above.

Abstract constraints: - None

• Modi�cations in 3D modeling environment:

Modi�cation Type: Modi�cations:

Insertion - None

Modi�cation - Camera positioning

Deletion - Removal of �sandwiches� placeholder cube;

- Removal of �sandwich� placeholder cube;

- Removal of �children� model

247

APPENDIX E. DETAILS OF MANUAL MODIFICATIONS 248

E.2 Rabbit scene

• Coreference corrections (indicated in bold):

" Look ! There 's a rabbit ! " cried Dick/DICK , as a big sandy rabbit/RABBIT lollopped slowly across the

yard . It/RABBIT disappeared into a hole on the other side . Then another rabbit/RABBIT appeared ,

sat up and looked at the children/CHILDREN , and then vanished too . The children/CHILDREN were

thrilled . They had never seen such tame rabbits/RABBITS before . A third rabbit/RABBIT appeared .

It/RABBIT was a small one with absurdly big ears , and the tiniest white bob of a tail . It/RABBIT

did n't even look at the children/CHILDREN . It/RABBIT bounded about in a playful way , and then

, to the children/CHILDREN 's enormous delight , it/RABBIT sat up on its/RABBIT hind legs , and

began to wash its/RABBIT big ears , pulling down �rst one and then another . But this was too much

for Timothy/TIM . He/TIM had watched the other two bound across the yard and then disappear without

so much as barking at them . But to see this youngster actually sitting there washing its/RABBIT ears

under his/TIM very nose was really too much for any dog/TIM . He/TIM gave an excited yelp and rushed

full-tilt at the surprised rabbit/RABBIT . For a moment the little thing did n't move . It/RABBIT had

never been frightened or chased before , and it/RABBIT stared with big eyes at the rushing dog/TIM .

Then it/RABBIT turned itself about and tore o� at top speed , its/RABBIT white bobtail going up

and down as it/RABBIT bounded away . It/RABBIT disappeared under a gorse bush/BUSH near

the children/CHILDREN . Timothy/TIM went after it/RABBIT , vanishing under the big bush too .

Then a shower of sand and earth was thrown up as Tim/TIM tried to go down the hole after the rabbit

and scraped and scrabbled with his/TIM strong front paws as fast as he/TIM could . He/TIM yelped

and whined in excitement , not seeming to hear George/GEORGE 's voice calling to him/TIM . He/TIM

meant to get that rabbit ! He/TIM went almost mad as he/TIM scraped at the hole , making it bigger and

bigger . " Tim/TIM ! Do you hear me ! Come out of there ! " shouted George/GEORGE . " You 're not

to chase the rabbits here . You know you must n't . You 're very naughty . Come out ! " But Tim/TIM

did n't come out . He/TIM just went on and on scraping away madly . George/GEORGE went to fetch

him/TIM . Just as she/GEORGE got up to the gorse bush/BUSH the scraping suddenly stopped .

• Abstract constraint creation process:

Scene detail: Modi�cations:

Scene segmentation: - None

Model descriptors: - Rabbit trajectory increased to 1 (from 0);

- Timothy assigned �dog� model (from humanoid model)

Coreference: - As shown above.

Abstract constraint

corrections:

- 1 corrected constraint - TIM NEAR RABBIT, end time reduced

until start of RABBIT UNDER BUSH constraint.

• Modi�cations in 3D modeling environment:

Modi�cation Type: Modi�cations:

Insertion - None

Modi�cation - Camera positioning

Deletion - None

APPENDIX E. DETAILS OF MANUAL MODIFICATIONS 249

E.3 Study scene

• Coreference corrections (indicated in bold):

He/JULIAN stole in . His/JULIAN uncle/QUENTIN still snored . He/JULIAN tiptoed

by him/QUENTIN to the table/TABLE behind his/JULIAN uncle/QUENTIN 's chair/CHAIR .

He/JULIAN took hold of the box/BOX . And then a bit of the broken wood[Remove] of the box/BOX

fell to the �oor with a thud ! His/JULIAN uncle/QUENTIN stirred in his/QUENTIN chair/CHAIR and

opened his/QUENTIN eyes . Quick as lightning the boy/JULIAN crouched down behind his/JULIAN

uncle/QUENTIN 's chair/CHAIR , hardly breathing . " What 's that ? " he/JULIAN heard his/JULIAN

uncle/QUENTIN say . Julian/JULIAN did n't move . Then his/JULIAN uncle/QUENTIN settled down

again and shut his/QUENTIN eyes . Soon there was the sound of his/QUENTIN rhythmic snoring ! "

Hurrah ! " thought Julian/JULIAN . " He/JULIAN 's o� again ! " Quietly he/JULIAN stood up , holding

the box/BOX . On tiptoe he/JULIAN crept to the French window . He/JULIAN slipped out and ran

softly down the garden path . He/JULIAN did n't think of hiding the box/BOX . All he/JULIAN wanted

to do was to get to the other children/CHILDREN and show them what he/JULIAN had done !

• Abstract constraint creation process:

Scene detail: Modi�cations:

Scene segmentation: - Manual delimitation of this scene, since no explicit indicator exists

Model descriptors: - None

Coreference: - As shown above.

Abstract constraint

corrections:

- None

• Modi�cations in 3D modeling environment:

Modi�cation Type: Modi�cations:

Insertion - None

Modi�cation - Camera positioning

Deletion - Deletion of �Children� model

APPENDIX E. DETAILS OF MANUAL MODIFICATIONS 250

E.4 Travel sequence

• Coreference corrections (indicated in bold):

Dick/DICK and Julian/JULIAN , who shared a room , woke up at about the same moment , and stared

out of the nearby window . " It 's a lovely day , hurrah ! " cried Julian/JULIAN , leaping out of bed/BED

. " I do n't know why , but it always seems very important that it should be sunny on the �rst day of a

holiday . Let 's wake Anne/ANNE . " Anne/ANNE slept in the next room . Julian/JULIAN ran in and

shook her/ANNE . " Wake up ! It 's Tuesday ! And the sun 's shining . " Anne/ANNE woke up with

a jump and stared at Julian/JULIAN joyfully . " It 's come at last ! " she/ANNE said . " I thought

it never would . Oh , is n't it an exciting feeling to go away for a holiday ! " They started soon after

breakfast . Their car/CAR was a big one , so it held them all very comfortably . Mother/MOTHER

sat in front with Daddy/DADDY , and the three children/CHILDREN sat behind , their feet on two

suitcases/SUITCASES . In the luggage-place at the back of the car/CAR were all kinds of odds and ends

, and one small trunk/TRUNK . Mother/MOTHER really thought they had remembered everything .

Along the crowded London roads they went , slowly at �rst , and then , as they left the town behind

, more quickly . Soon they were right into the open country , and the car/CAR sped along fast . The

children/CHILDREN sang songs to themselves , as they always did when they were happy . " Are we

picnicking soon ? " asked Anne/ANNE , feeling hungry all of a sudden . " Yes , " said Mother/MOTHER

.

• Abstract constraint creation process:

Scene detail: Modi�cations:

Scene segmentation: - Manual delimitation for setting ANNES_ROOM and OUTSIDE

(scene directly after)

Model descriptors: - None

Coreference: - As shown above.

Abstract constraint

corrections:

- Insertion of JULIAN INSIDE BED; JULIAN NO_COLLIDE BED

to achieve motion of Julian getting out of bed.

- Insertion of BED INSIDE ANNES_ROOM; ANNE_INSIDE BED

to achieve the idea of Anne being in bed (not explicitly state)

- Insertion of JULIAN NO_COLLIDE BED; JULIAN NEAR BED

to cater for implied constraints required for the addition of the new

BED object to the scene.

- Change MOTHER NO_COLLIDE_CAR; DADDY

NO_COLLIDE CAR; CHILDREN NO_COLLIDE CAR to

MOTHER INSIDE CAR; DADDY INSIDE CAR; CHILDREN

INSIDE CAR to ensure avatars inside car, since it is not explicitly

stated in a simple manner in the text.

APPENDIX E. DETAILS OF MANUAL MODIFICATIONS 251

• Modi�cations in 3D modeling environment:

Modi�cation Type: Modi�cations:

Insertion - None

Modi�cation - Camera positioning in 6 scenes (modi�cation)

- Removal of �BOYS� object (deletion)

- Material adjustments in 2 scenes (modi�ction)

Deletion - Deletion of �Children� model

E.5 Follow scene

• Coreference corrections (indicated in bold):

" THIS'LL BE IT ! " KICKAHA/KICKAHA SAID . " I KNOW IT , KNOW IT ! I CAN feel the forces

shaping themselves into a big funnel pouring us onto the goal ! It 's just ahead ! We 've �nally made it ! "

He/KICKAHA wiped the sweat from his/KICKAHA forehead . Though breathing heavily , he/KICKAHA

increased his/KICKAHA pace . Anana/ANANA was a few steps behind and below him/KICKAHA on

the steep mountain trail . She/ANANA spoke to herself/ANANA in a low voice . He/KICKAHA never

paid any attention to her/ANANA discouraging-that is , realistic-words , anyway . " I 'll believe it when

I see it . "

• Abstract constraint creation process:

Scene detail: Modi�cations:

Scene segmentation: - None

Model descriptors: - None

Coreference: - As shown above.

Abstract constraint

corrections:

- None

• Modi�cations in 3D modeling environment:

Modi�cation Type: Modi�cations:

Insertion - None

Modi�cation - Camera positioning

Deletion - None

APPENDIX E. DETAILS OF MANUAL MODIFICATIONS 252

E.6 House sequence

• Coreference corrections (indicated in bold):

They were sent to the house/HOUSE of an old Professor/PROFESSOR who lived in the heart of the country

, ten miles from the nearest railway station and two miles from the nearest post o�ce . He/PROFESSOR

had no wife/MRS BEAVER and he/PROFESSOR lived in a very large house/HOUSE with a house-

keeper called Mrs/MRS MACREADY Macready/MRS MACREADY and three servants . (Their names

were Ivy , Margaret and Betty , but they do not come into the story much .) He/PROFESSOR him-

self/PROFESSOR was a very old man with shaggy white hair which grew over most of his/PROFESSOR

face as well as on his/PROFESSOR head , and they liked him/PROFESSOR almost at once ; but on

the �rst evening when he/PROFESSOR came out to meet them at the front door he/PROFESSOR was

so odd-looking that Lucy/LUCY (who was the youngest) was a little afraid of him/PROFESSOR ,

and Edmund/EDMUND (who was the next youngest) wanted to laugh and had to keep on pretending

he/EDMUND was blowing his/EDMUND nose to hide it . As soon as they had said good night to the Pro-

fessor/PROFESSOR and gone upstairs on the �rst night , the boys/PETER came into the girls/GIRLS '

room and they all talked it over . " We 've fallen on our feet and no mistake , " said Peter/PETER . " This

is going to be perfectly splendid . That old chap will let us do anything we like . " " I think he/PETER 's

an old dear , " said Susan/SUSAN . " Oh , come o� it ! " said Edmund/EDMUND , who was tired and

pretending not to be tired , which always made him/EDMUND bad-tempered .

• Abstract constraint creation process:

Scene detail: Modi�cations:

Scene segmentation: - None

Model descriptors: - None

Coreference: - As shown above.

Abstract constraint

corrections:

- None

• Modi�cations in 3D modeling environment:

Modi�cation Type: Modi�cations:

Insertion - None

Modi�cation - Camera positioning

Deletion - Removal of �Girls� model and �Professor� model

Appendix F

Multi-modal animated �lms

The accompanying DVD contains rendered �lms.

Behaviour Quality

The following videos are provided as described in Chapter 6, Section 6.3.2.2:

• Dynamic1Static1, degree 1

• Dynamic1Static1, degree 2

• Dynamic2, degree 2 (Quality = 25.08)

• Dynamic2, degree 2 (Quality = 161.32)

Animated �lms

The following videos are provided as described in Chapter 6, Section 6.5.4:

1. Cow scene

2. Rabbit scene

3. Study scene

4. Travel sequence

5. Follow scene

6. House sequence

Videos and snapshots are also available at the project web-site:

http://www.cs.ru.ac.za/research/g05g1909/

253

