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Abstract 

Characterising transcription factor binding sites (TFBS) is an important problem in 

bioinformatics, since predicting binding sites has many applications such as predicting gene 

regulation. ChIP-seq is a powerful in vivo method for generating genome-wide putative 

binding regions for transcription factors (TFs). CentriMo is an algorithm that measures 

central enrichment of a motif and has previously been used as motif enrichment analysis 

(MEA) tool. CentriMo uses the fact that ChIP-seq peak calling methods are likely to be 

biased towards the centre of the putative binding region, at least in cases where there is direct 

binding. CentriMo calculates a binomial p-value representing central enrichment, based on 

the central bias of the binding site with the highest likelihood ratio. In cases where binding is 

indirect or involves cofactors, a more complex distribution of preferred binding sites may 

occur but, in many cases, a low CentriMo p-value and low width of maximum enrichment 

(about 100bp) are strong evidence that the motif in question is the true binding motif. Several 

other MEA tools have been developed, but they do not consider motif central enrichment. 

The study investigates the claim made by Zhao and Stormo (2011) that they have identified a 

simpler method than that used to derive the UniPROBE motif database for creating motifs 

from protein binding microarray (PBM) data, which they call BEEML-PBM (Binding Energy 

Estimation by Maximum Likelihood-PBM). To accomplish this, CentriMo is employed on 13 

motifs from both motif databases. The results indicate that there is no conclusive difference 

in the quality of motifs from the original PBM and BEEML-PBM approaches. CentriMo 

provides an understanding of the mechanisms by which TFs bind to DNA. Out of 13 TFs for 

which ChIP-seq data is used, BEEML-PBM reports five better motifs and twice it has not had 

any central enrichment when the best PBM motif does. PBM approach finds seven motifs 

with better central enrichment. On the other hand, across all variations, the number of 

examples where PBM is better is not high enough to conclude that it is overall the better 

approach. Some TFs bind directly to DNA, some indirect or in combination with other TFs. 

Some of the predicted mechanisms are supported by literature evidence. This study further 

revealed that the binding specificity of a TF is different in different cell types and 

development stages. A TF is up-regulated in a cell line where it performs its biological 

function. The discovery of cell line differences, which has not been done before in any 

CentriMo study, is interesting and provides reasons to study this further.
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CHAPTER 1: INTRODUCTION 

Transcription factors (TFs) are proteins that bind to specific sequences in DNA and activate 

or repress the expression of their target genes. One of the greatest challenges facing 

bioinformatics is the understanding of the complex mechanisms regulating gene expression. 

Predicting binding sites has many applications such as predicting gene regulation and also 

predicting how genetic variation alters the normal expression of the gene. This study involves 

the use of ChIP-seq data to characterise transcription factor binding sites (TFBS). ChIP-seq 

has proven to be a powerful method for mapping in vivo locations of TFs (Hu et al., 2010). 

Knowledge of how DNA-protein interactions regulates gene expression is crucial  for 

understanding biological processes (Valouev et al., 2008). Chromatin immunoprecipitation is 

used to study the interactions between DNA and proteins.  

In the ChIP-seq process, DNA is cross-linked to a specific protein resulting in DNA-protein 

complexes. The cross-linked DNA is broken into short pieces (usually 0.2 to 1kb) suitable for 

sequencing (Jothi et al., 2008). An antibody against the protein of interest is added to the 

complex to isolate DNA that has been bound to the protein. This is followed by high 

throughput DNA sequencing. Sequencing output is mapped against a reference genome to 

infer TF binding location. A peak calling algorithm is then used to identify centered ChIP-seq 

regions. Computational analysis is applied to get biological information from a TF’s ChIP-

seq data. When binding sites have been validated the next step is to find how TFs bind at 

genomic regions (Whitington et al., 2011). Transcription factors may bind directly to the 

corresponding DNA sequences making it possible to declare a sharp peak. There are cases 

where TFs may show indirect binding (TFs may bind to their target DNA, then other TFs 

bind to these) or cooperative binding (when TFs bind in combination with cofactors).  

A TFBS is generally represented using a motif. Motif are patterns that appear more often in a 

DNA sequence and they have a biological function (Patrik, 2006). Motifs are represented 

using a position weight matrix (PWM) (Wasserman & Sandelin, 2004). In a PWM, the rows 

have a numeric score for each of the four DNA bases at each position (columns) (Nishida et 

al., 2009). A motif is sometimes named as its consensus sequence with ambiguous positions 

with the appropriate code (see Table 1-1) for ambiguous positions 

(www.bioinformatics.org/sms2/iupac.html).   
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Table 1-1:  IUPAC DNA codes. 

 

This study aims to investigate the mechanisms by which TFs bind to DNA and compare two 

methods (BEEML-PBM and PBM) for creating motifs from protein binding microarray 

(PBM) data. PBM is a technique used to measure in vitro TF-DNA (double stranded) binding 

affinities. The detailed information on TF binding specificity is obtained from the 

microarrays representing all possible 10bp long binding sites. A fluorophore-antibody 

complex specific to the epitope is used to tag the protein bound array. Successful TF-DNA 

interactions are those showing enrichment on the brightest probes on the array. TF binding 

specificities are represented using position weight matrices (PWMs); the assumption that all 

motifs exert independent binding effect is not true for all TFs. There are some cases where 

Nucleotide Code Base 

A Adenine 

C Cytosine 

G Guanine 

T (or U) Thymine (or Uracil) 

R A or G 

Y C or T 

S G or C 

W A or T 

K G or T 

M A or C 

B C or G or T 

D A or G or T 

H A or C or T 

V A or C or G 

N any base 
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nucleotide in one position depends on the nucleotide(s) on the other position (Berger & 

Bulyk, 2009). Different methods have been developed to estimate the quantitative specificity 

of TF-DNA binding. Some of these methods consider statistical analysis of TF’s binding 

sites, while others are based on probabilistic model of binding. Probabilistic models have a 

disadvantage of not considering the non-linear association among binding energy and 

probability which may contain crucial functional sites (Zhao et al., 2009). BEEML-PBM 

algorithm is an extension of the BEEML (an approach that takes the TF’s concentration into 

consideration when predicting the binding sites) algorithm for estimation of TFs model 

specificity. It is used to estimate the maximum likelihood of binding energies between 

protein-DNA associations based on the model of specificity (Zhao & Stormo, 2011). 

The limitations that the currently used motif enrichment analysis (MEA) tools are facing are 

the selection of background sequences, poor ChIP-seq data and highly enriched co-factor 

binding sites. To overcome these limitations, this study uses CentriMo, an algorithm that 

measures central enrichment of a motif as a MEA tool (for more details on CentriMo see 

section 2.1). CentriMo is superior to other MEA tools because it does not require selection of 

background sequences. In CentriMo, the flanking regions serve as a control. In cases of poor 

ChIP-seq data quality CentriMo can point to a problem. As an example, if a TF is expected to 

have a clear binding specificity but CentriMo has a high p-value or other indications of less 

specific binding, the possibility that the ChIP-seq experiment has failed is considered. 

CentriMo is also used against a wider motif database to determine whether there may be 

cofactors, cooperative binding or indirect binding. This overcomes the problem with highly 

enriched co-factor binding sites (Bailey and Machanick, 2012).  
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1.1 LITERATURE REVIEW  

1.1.1 TRANSCRIPTION 

To understand the mechanism of binding between DNA and TFs it is important to have an 

idea of what DNA is and also how TFs are involved in gene regulation. DNA is a unit of 

heredity found in almost all living organisms (except RNA viruses). DNA is an essential 

molecule in life. The information about proteins is encoded in it. The process of protein 

synthesis requires DNA as a starting material. DNA replicates itself and is transcribed to 

mRNA. mRNA is then translated into a protein product (Crick, 1970). Structurally, DNA is 

made up of a deoxyribose sugar, a base and a phosphate. DNA is made up of four bases 

adenine (A), cytosine (C), guanine (G) and thymine (T). Adenine and guanine are long 

double ring purines and thymine and cytosine are short single ring pyrimidines.  The DNA 

bases need to be complementary to each other so as to form a stable double helix structure. 

For base pairing a purine is paired with a pyrimidine and the opposite is true. The two 

polynucleotide bases in DNA coil around each other and run in opposite directions. The two 

DNA bases are joined together by hydrogen bonds and the pairing is specific. Adenine forms 

a pair with thymine  and guanine base pairs with cytosine (Watson and Crick, 1953). 

As mentioned earlier that the greatest problem is to understand the complex mechanisms 

regulating gene expression, so an overview of the TF’s mechanism of action in transcription 

is important. Transcription refers to the synthesis of RNA from a DNA template. 

Transcription is divided into three main steps including initiation, mRNA chain elongation 

and chain termination. Initiation involves the correct binding of RNA polymerase to the core 

promoter of the transcription start site and control of transcription rate. During elongation, 

nucleotides are covalently added to the 3’ end of the growing chain producing the mRNA 

transcript. Termination occurs when the stop codon is recognized and RNA polymerase is 

released (Roeder, 1996; von Hippel, 1998; Maston et al., 2006).  

The most important concept to understand is the regulation of transcription since the 

predicted binding sites play a major role in transcription. The regulation of transcription is 

controlled by the interaction between cis regulatory elements and trans factors. The 

interaction of these molecules forms transcriptional regulatory system. The regulatory region 

consists of the promoter and TFBS where RNA polymerase and TFs bind (Balleza et al., 

2009).  
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1.1.1.1 TRANSCRIPTIONAL CONTROL 

Transcriptional control is required to ensure that the genes are transcribed only when they are 

needed and are switched off when not needed. Each cell can control when and how a 

particular gene is expressed. Usually, transcription is controlled at the promoter region during 

initiation. The promoter region has the initiation site, where transcription starts. Nearly all 

genes contain long or short regulatory DNA sequences. These sequences need to be 

recognised by TFs to perform their function. It is the DNA sequence together with the protein 

molecules that control transcription. This DNA-protein interaction is strong and highly 

specific (Kadonaga, 2004). TFs interpret genetic information and direct the appropriate 

response to the transcriptional machinery. The specificity of protein coding genes is 

controlled by sequence specific DNA binding proteins. TFs interpret and transmit 

information from DNA sequence to the factors and cofactors that mediate RNA synthesis 

from the DNA template. Transcription is regulated by the collective action of TFs together 

with RNA polymerase, an enzyme responsible for the synthesis of RNA from DNA template. 

It also relies on various enzymes involved in modification of histones and other proteins. 

Three classes of RNA polymerase have been identified; these are RNA polymerase I, II and 

III. RNA polymerase II was found to play an important role in transcription of protein coding 

regions (Lee et al., 2004). 

 

1.1.1.2 POST-TRANSCRIPTIONAL CONTROL 

Gene expression is controlled at various stages and to cluster the information present in the 

genome, cells need to interact and coordinate with different layers of regulation. Post 

transcriptional levels of gene regulation include transcript turnover and translational control 

and these are the main parts of gene expression. The regulation of gene expression is an 

essential process in biology and is important for cell proliferation and differentiation during 

development. To assign a correct biological function, cells gather intrinsic and extrinsic 

information and coordinate several regulatory mechanisms of gene expression. At any stage, 

errors in regulation of gene expression can cause disease. Transcriptional control is an 

important step in gene regulation and is not as complex as post-transcriptional regulation. The 

complexity is due to the interconnection between the steps of different pathways of DNA and 

proteins. The control is accomplished by a combination of different RNA-binding proteins 

(RBPs). RBPs regulate a specific set of mRNAs. Small interfering RNAs, microRNAs and 
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protein effector complexes bind each other and control the degradation and translation of a 

particular transcript as a complex (Mata et al., 2005).  

 

TRANSCRIPT TURNOVER 

The degradation rate is regulated by control elements located in the 3’-untranslated regions 

(UTRs) of mRNA and these regions are recognised by many RBPs. Degradation occurs in the 

cytoplasm of both human and yeast cells (Wilusz & Wilusz, 2004). Even though most 

expression profiling methods are based on control of transcription, the target measured is the 

mRNA steady state levels which show the production and the stability of the transcript. 

mRNA turnover has been determined in various organisms by measuring mRNA levels at 

various time intervals after RNA polymerase II has been inactivated and this indicates the 

importance of decay in mRNA levels control (Khodursky & Bernstein, 2003). Like 

transcription rate, decay rate is also controlled. The half-life of mRNA depends on the 

composition of the molecular complex. As an example, transcripts that encode core metabolic 

proteins show a longer half-life compared to those encoding transcription factors (Wang et 

al., 2002). Transcripts with shorter half-lives allow dramatic changes in mRNA levels as a 

response to various conditions; this might be good for transcripts encoding regulatory 

proteins (Yang et al., 2003).  

 

REGULATION OF TRANSLATION 

Post-transcriptional regulation of gene expression also occurs during the translation stage and 

it involves global and transcript-specific actions to control protein synthesis. Proteins are 

regulated by post-transcriptional modifications and protein degradation (Lackner & Bahler, 

2008). Transcript-specific regulation is specific to a particular group of mRNAs and is 

modulated by various mechanisms.  It involves the interaction between RBPs and control 

element found in the UTRs of the target transcript. Translational regulation is crucial in cases 

where a sudden change in protein level is required. This includes cellular response to 

particular conditions and apoptosis, control of cell growth and division and cell 

differentiation and development. Conditions that lead to inhibition of translation show 

increase in the synthesis of proteins needed for cell survival. There is evidence that de-
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regulation of control of translation can cause cancer (Watkins & Norbury, 2002; Pandolfi, 

2004). The level of translation is measured by separating transcripts according to the number 

of associated ribosomes, the resulting segments are then examined with microarrays to get 

information about the control of translation (Beilharz & Preiss, 2004). 
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1.1.2 MOTIF DISCOVERY TOOLS 

The study reviews motif discovery tools because it is important to know the limits on the 

quality of found motifs, when performing a quality measure. MEA is one form of quality 

measure. To put the research examples in context it is a good idea to know a bit about motifs 

and how TFs differ. 

 

Motif discovery tools can discover motifs corresponding to the TF’s DNA-binding domain. 

Ab initio methods can discover the DNA-binding motif of the ChIP-ed transcription factor 

from ChIP-seq peak regions. MEME is one of the most widely used motif discovery tools and 

DREME is a more recent example. Given a set of DNA sequences in FASTA format 

containing likely binding sites these methods discover motifs in DNA sequences. The 

methods search the input sequence and report the statistically significant sites they then  

represent as motifs. There are web based tools available in MEME suite. The MEME motif 

discovery algorithm performs both DNA and protein sequence motif discovery. It discovers 

TF binding sites and protein-protein interaction domains. To improve accuracy repeats may 

be masked from the input sequence (http://www.repeatmasker.org). By default, MEME 

searches for up to 3 motifs and considers the motif width between six and fifty, but users can 

change these default settings. The output is a coloured graphical alignment and the E-value, 

which is a measure of statistical significance of the motif. A low E-value indicates that the 

motif is statistical significant (Sharma et al., 2011).  MEME output can be sent to other web 

services such as MAST to find if are there any genes containing the motif found by MEME. 

The user has the option of choosing the database to search (Bailey et al., 2006).  

 

The performance of these tools had been tested. A study on Saccharomyces cerevisiae 

microarray data which include Rox1p and YAP1 was conducted. The aim was to identify the 

TF binding motifs of these genes based on their over-expression in the upstream region of the 

gene using MEME (input sequence sizes of 10, 25, 50 and 100). The MEME approach failed 

to find a motif matching known ROX1 consensus. For input size of ten sequences the correct 

YAP1 motif was ranked first by MEME and third for both 25 and 50 sequences. For 

sequence size 100, MEME did not find the motif (Conlon et al., 2003). The fact that MEME 

fails to find a known ROX1 binding site shows that we cannot only rely on its output. It is 

therefore important to use more than one method to be certain about the results. 
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DREME is a motif discovery tool used to find short (up to 8 bases) core DNA-binding motifs 

based on regular expressions. This algorithm is very fast, can analyse a large ChIP-seq 

datasets and can complete the motif search in minutes. Most algorithms fail to find a motif 

from ChIP-seq regions if the input consists of thousands of sequences. The algorithms use a 

fraction of the data, thus decreasing the specificity of motif discovery. DREME can discover 

primary and co-factor motifs and indicates the mechanism of binding of the TF. It is simpler, 

but shares some similarities with other algorithms like Trawler and Amadeus (Linhart et al., 

2008) . In the interest of speed DREME search is restricted to regular expressions. The search 

is both exhaustive and heuristic. The Fisher exact test is used to locate statistically significant 

and discriminative motifs. To avoid self-overlapping motifs, DREME does not count the 

number of times the motif has occurred, but the number of sequences containing the motif in 

both data sets (Bailey, 2011). The algorithm takes two DNA sequences as input and a 

threshold is set, and then searches for regular expressions using a heuristic approach. The 

search is iterated until no new motif with an E-value less than a given threshold is found.  

 

The performance of DREME was evaluated and compared with other motif discovery 

methods using ChIP-seq datasets. The evaluation considered the speed and ability to identify 

primary and secondary motifs. The study was conducted from mouse erythrocytes, mouse 

embryonic stem cells and human lymphoblastic cell lines. The output was compared to a 

database of known motifs using TOMTOM (Gupta et al., 2007). The author ran DREME, 

MEME (Bailey & Elkan, 1995) and nestedMICA (Down & Hubbard, 2005) using 13 mouse 

embryonic stem cell (mESC) ChIP-seq datasets. The two methods show poorer performance 

on more than 500 sequences than DREME. Other algorithms, WEEDER (Pavesi et al., 2004), 

Trawler and Amadeus were performed on the same datasets (Bailey, 2011). After running for 

134 hours on E2f1 dataset nestedMICA did not finish. Bailey reports that DREME found 

about 33 significant motifs in mESC ChIP-seq data and these motifs correlate with the input. 

DREME found ChIP-ed FT motifs in 10 out of 13 mESC ChIP-seq data sets. The hypothesis 

that the known Nanog motif cannot be found was rejected when DREME found it. This 

suggests that DREME is superior to other methods. Chen et al., 2009 used WEEDER and 

nestedMICA motif discovery algorithms and reported that there is no motif for E2f1. Using 

DREME, Bailey found the motif matching known E2f1 in the E2f1 ChIP-seq dataset. A 

previous study of E2f1 ChIP-chip data also failed to find the E2f1 motif. DREME found 
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more cofactor motifs compared to other algorithms, however, it was slower than Amedeus 

and Trawler. 

The MEME-ChIP tool set is used to analyse ChIP-seq peaks of large DNA data sets. It can be 

used as a both motif discovery and a motif enrichment analysis tool. It identifies and 

visualizes motifs. MEME-ChIP (Machanick & Bailey, 2011) employs both MEME and 

DREME algorithms in the discovery of motifs. The discovered motifs are visualized and their 

binding affinity is inferred. MEME is complemented by DREME, which uses a non-

probabilistic model and restricted in finding short motifs. MEME-ChIP compares the motifs 

found by the two algorithms to a database of known motifs using TOMTOM algorithm. The 

input to MEME-ChIP is a set of FASTA formatted sequences each not less than 100bp long 

centered on the ChIP-seq peak. The sequence is centered and trimmed to 100bp. The 

resulting fragments are input to DREME and MEME algorithms to produce motifs. 

Machanick & Bailey. (2011) used MEME-ChIP and analysed ChIP-seq regions for T-cell 

acute lymphocytic leukemia 1 (Tal1) reported by (Kassouf et al., 2010)  and report that both 

MEME and DREME found a known Tal1 motif. MEME found evidence that Tal1 forms a 

complex with GATA-1, but DREME did not find this complex. DREME reported Tal1 to be 

less significant than GATA-1 motif, indicating that this TF binds together with GATA-1. 

DREME found nine significant motifs while MEME found three (Machanick & Bailey, 

2011). All results from previous studies indicate that no method is superior to another, 

therefore revealing the importance of using more than one tool so as to be certain about the 

results. Also it is important to include relevant previous knowledge.  

In contrast to the above mentioned motif discovery algorithms, the PBM approach differs 

from them in that it does not start with DNA containing likely binding sites. The PBM 

approach aims to examine the TF binding specificity in an unbiased manner. PBM 

experiment measures the double stranded DNA-TF binding affinity. In a PBM experiment, a 

double stranded DNA containing 10 nucleotides long binding sites is bound by an epitope-

tagged TF (Berger et al., 2006). This is followed by a wash step to remove all unbound TFs. 

The bound TFs are then labelled with a fluorophore tagged antibody specific for the protein. 

The microarray is now scanned in triplicate for the spots that are specifically bound by the 

TF. A p-value for specific binding is calculated for each spot based on its log likelihood ratio 

relative to the standard deviation of the Gaussian distribution. The binding site motif 

corresponds to the highly bound spot (Mukherjee et al., 2004). 
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A previous PBM study of mouse TFs suggested that TF-DNA interaction energies are 

complex (Badis et al., 2009). They report that 41 of 104 TFs studied had secondary binding 

preferences not captured by the primary PWM. They also report that 89 TFs were better 

represented by a linear combination of multiple PWMs than single PWM. They used 3 

different methods to find PWMs and observed that no one method is superior to the others. 

Using 10 nucleotides long PWM compared to 8 nucleotides long sequence reduces the 

number of required model parameters to thirty. Simple model specificity allows easy analysis 

of TFs binding specificity to DNA (Zhao & Stormo, 2011). 

BEEML method infers binding site sequences. Unlike other methods used to infer sequence 

motifs, BEEML considers the effect of a TF concentration and non-specific factors that 

contribute to the binding affinity (Zhao et al., 2009). BEEML-PBM algorithm is an extension 

of the BEEML algorithm for estimation of TFs model specificity. It is used to estimate the 

maximum likelihood of binding energies between protein-DNA associations based on the 

model of specificity. The advantage of using this method is that it minimises the number of 

parameters used to model the specificity of the TF. In cases where a large number of 

parameters is required, it becomes difficult to make predictions. Considering the binding 

energy solves this problem as each base pair contributes independently to the total binding 

energy  (Zhao & Stormo, 2011).  

 

In previous studies using BEEML-PBM, Zhao and Stormo (2011) found that their simple 

PWM model of specificity performs very well for most TFs. The authors then evaluated the 

ability of the PWM to predict TF binding preferences on a different PBM data.  They used 

two arrays with different probes for PBM experiments, each representing all possible 10 

nucleotides long binding sites. However, since the arrays have different probes, there was no 

clear explanation of the differences in probe intensities. The authors then conducted the same 

study now using 8 nucleotides long sequences instead of 10 nucleotides long sequences. 8-

mer median intensities provide information about the variance of TF that can be explained by 

the PWM model. Zhao and Stormo found that a single BEEML-PBM PWM is sufficient to 

give enough information about PBM data. This supports the study conducted on the mouse 

factor Plagl1, where the PWM estimated from replicate one performs very well on replicate 

two data (Mukherjee et al., 2004). Zhao and Stormo’s findings disagree with Badis et al.,’s 

(2009) conclusion that Plagl1 requires multiple PWMs. The BEEML-PBM PWM is 
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qualitatively not the same as the primary PWM identified by Badis et al., 2009. Zhao and 

Stormo suggested that a single BEEML-PBM PWM performs better than a combination of 

primary and secondary PWMs in the UniPROBE database (Zhao & Stormo, 2011). This 

study aims to investigate if the BEEML–PBM approach is better than the original PBM 

approach using CentriMo as a central motif enrichment tool. 

1.1.3 MOTIF ENRICHMENT ANALYSIS (MEA) TOOLS 

MEA tools are used to find under-represented and over-represented known motifs in a set of 

genes. Once the TFBS has been found it is important to extract biologically relevant 

information from it. As mentioned that the problem that we are currently facing is to 

determine the mechanism of gene regulation. MEA aims to determine which DNA-binding 

motifs are involved in regulation of transcription of a set of genes. The algorithm works by 

discovering enrichment of known binding motifs in the gene regulatory regions. As input, 

MEA takes in a set of genomic DNA sequences believed to be co-regulated and a set of 

known DNA-binding motifs discovered by motif discovery tools for a TF of interest. It then 

determines which (if any) of the discovered motifs may be direct regulators of the genes. 

MEA is becoming more and more useful as the number of known DNA-TF binding motif 

databases increases (McLeay & Bailey, 2010). 

MEME-ChIP uses the AME algorithm to perform motif enrichment analysis. AME inputs a 

set of DNA sequences in FASTA format and motif database file(s) in MEME format. AME 

finds enriched motifs from a given database of known motifs. AME ranks the motifs by 

computing their Fisher exact test p-value based on the number of sites for each motif above a 

threshold in the original sequences versus a shuffled version of the original sequences 

(McLeay & Bailey, 2010). Compared with other tools AME has an advantage of allowing a 

very large set of data and is capable of detecting very low levels of enrichment of TF-DNA 

binding motifs that ab initio discovery algorithms fail to detect. This algorithm achieves 

higher sensitivity by restricting the motif search to DNA binding motifs that have been 

already identified. The input sequences are trimmed by MEME-ChIP to 100bp and AME is 

performed using these sequences. AME as used in MEME-ChIP compares the sequences 

with databases of known motifs and outputs statistical enrichment. A previous study indicates 

that AME was successful in finding a known Tal1 binding motif. AME reports that Tal1 

binds in combination with GATA1 and these TFs function in erythropoiesis. AME algorithm 

found Tal1 ChIP-seq regions to be enriched for fifteen known vertebrate motifs. Tal1 was 
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found to be less enriched than Tal1-GATA-1 complex. The authors applied the AME 

algorithm to NFIC ChIP-seq regions to determine a motif matching a known consensus 

sequence, which other algorithms fail to find. AME found the motif and ranked it 85
th

 out of 

532 motifs in JASPAR and UniPROBE databases (Machanick & Bailey, 2011).  

Clover is a MEA algorithm that identifies functional sites in DNA sequences. The input to 

clover is a set of DNA sequences having similar functions. It then compares the input to TF 

binding patterns and identifies which motifs are statistically over-represented. Firstly the 

method calculates the raw score, to measure the quality of the motif found in the input 

sequence. Secondly, it calculates the p-value corresponding to the raw score. A very low p-

value (<0.01) shows that the motif is over-represented in the input sequence, suggesting that 

the motif has a biological function. A higher p-value (>0.99) means that the motif is over-

represented in the background sequence rather than in the input sequence (Frith et al., 2004). 

McLeay & Bailey, (2010) used yeast TF binding data available from ChIP-chip experiments, 

considering only the data with known DNA-binding motifs. The aim was to investigate the 

ability of MEA methods to determine and rank the known motif of the ChIP-ed TF from 237 

yeast ChIP-chip data set. Four MEA methods (Fisher, mHG, Ranksum and Clover) were 

tested for the ability to identify a known yeast TF motif. They used ChIP-chip fluorescence p-

value as the biological signal. The authors observed that Clover performed very well 

compared to other methods. Clover identified ChIP-ed TF in all yeast datasets in 

consideration. The correct TF was ranked in the 84th percentile by the superior method, 

clover, and the 80
th

 percentile by mHG-YFP. Ranksum-YFP had poor performance compared 

with other three methods. They found that no method identified a ChIP-ed TF very well on 

all datasets. Clover was found to be a better method especially if the data has low signal to 

noise.  

 

PASTAA is also a MEA method that predicts the binding affinity of a transcription factor to a 

promoter. This method is primarily designed to determine TFs involved in regulation of 

tissue specific transcription. Genes expressed in response to a particular signal are believed to 

have the same binding location for the same TF. The method scans the promoter regions of 

the genes expressed together and identifies over-represented sequence patterns. The method 

is sensitive to repeat-containing sequences. Wasserman & Fickett, (1998) were the first to use 

PASTAA and successfully predict the TFs involved in the regulation of muscle specific 

genes. Other studies by (Frith et al., 2004; Qian et al., 2005; Yu et al., 2006) found more TF-
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tissue associations. The authors were interested in proximal promoters of tissue specific 

genes obtained from EST data. A method requires a correct definition of a set of genes co-

regulated by a particular factor. The information about these groups of genes can be extracted 

from Gene Ontology (Hill et al., 2002) and KEGG databases. PASTAA ranks the genes 

based on the predicted TF-promoter binding affinity. The idea is that the target genes of the 

TF are expected to rank high. The degree of gene-tissue association from the ranked list is 

expected to match another ranking of the same gene (McLeay & Bailey, 2010). 

 

The performance of PASTAA method has been tested on other examples. Roider et al., 

(2009) used the yeast genome-wide datasets on in vitro TF–DNA interactions for the three 

TFs (Rap1, Mig1 and Abf1) from (Mukherjee et al., 2004), and in vivo ChIP–chip data from 

Harbison et al. (2004) for more than 200 TFs in different cellular conditions. They then 

analysed the data sets corresponding to 25 TFs for which position specific frequency matrix 

(PFMs) is available in TRANSFAC. Odom et al., (2004) conducted a study where they 

measured the binding of HNF1, HNF4 and HNF6 to human promoters. PASTAA uses the 

available data (p-values) to rank the promoters for a given TF. PASTAA reports a significant 

overlap between predicted targets and experimentally bound sequences. The ChIP-chip data 

for the 3 TFs in question was analysed to test the ability of PASTAA to determine enrichment 

of TF targets from a set of vertebrate sequences. As input, they ranked promoter sequences 

based on their binding affinity to HNF in consideration. PASTAA reports the highest 

association for position frequency matrices (PFMs) corresponding to HNF1 and HNF4. The 

HNF6 motif was ranked fifth. Their findings agree with Smith et al.'s (2005) results who 

found the same factors as highly associated with HNF6 dataset.  

 

CentriMo is a new algorithm, which measures central enrichment of a motif and has 

previously been used as a MEA tool. CentriMo is based on the idea that ChIP-seq peak 

calling methods are likely to be biased towards the centre of the putative binding region, at 

least in cases where there is direct binding. CentriMo calculates a binomial p-value 

representing central enrichment, based on the central bias of the binding site with the highest 

likelihood ratio. In cases where binding is indirect or involves cofactors, a more complex 

distribution of preferred binding sites may occur. CentriMo works by identifying the best 

binding site in each sequence, based on the log likelihood ratio, for a given motif. The 

algorithm does not score a sequence if no site has a score above a set log likelihood ratio 
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threshold (default: 5). It calculates a binomial p-value for each central bin width, counting the 

number of “best” sites inside and outside the bin, and selects the lowest p-value, as well as 

recording the bin width of the lowest p-value. In cases where the CentriMo distribution has a 

clear central peak and a very low p-value (10x10
-1000

 or less) and low p-value in a very 

narrow window, then we are confident that there is a direct binding by a single factor. 

 

The algorithm has been used as a CMEA tool and its performance has been compared to 

other MEA tools. A previous study has been conducted on an NFIC dataset. The aim was to 

find a motif matching the known in vitro motif from NFIC dataset. Different methods such as 

MEME, DREME, WEEDER, Amadeus and Trawler were employed and failed to find this 

motif. The consensus sequence of a motif found by DREME only matches half of the NFIC 

motif consensus sequence. This motif is less significant because it ranks nineteenth out of 24 

motifs. The AME algorithm also failed to rank this motif. Using CentriMo it was found that 

the known NFIC motif is the most centrally enriched among 532 motifs in the combined 

JASPAR and UniPROBE database, although the width was too large and the number of 

ChIP-seq regions containing a known motif was small. This indicates how CentriMo can be 

useful even if the ChIP-seq data used is of low quality and when the motif discovery 

algorithms have failed. Of the five motifs that CentriMo reported three matches with a known 

consensus (Bailey and Machanick, 2012).  

In previous studies DREME and SELEX were used to identify motifs from the Nanog ChIP-

seq data. However, the two did not agree. Bailey and Machanick. (2012) then used CentriMo 

to decide which motif is correct. To decide between the Nanog motifs found by DREME and 

SELEX, CentriMo confirmed that a motif found by DREME represents in vivo binding of 

Nanog in mouse embryonic stem cell (mESC). The authors used CentriMo and changed the 

last position of the CVATYA (found by DREME) motif to cytosine or thymine. A drop in 

central enrichment was observed, indicating the importance of adenine rather than cytosine 

and thymine for Nanog binding. CentriMo was also used to analyse E2f1 dataset. CentriMo 

reports that E2f1 does not bind directly to DNA, but in combination with others, since all the 

motifs in the combined JASPAR and UniPROBE database found by CentriMo were not 

centrally enriched. The findings suggested that GABPA binds DNA in close proximity to 

E2f1. In previous studies by (Bieda et al., 2006) it was suggested that YY1 interacts with E2f 

family (E2F2 and E2f3) to stimulate transcription. The finding, using CentriMo that 
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suggested cooperative binding between YY1 and E2f1 supports this study (Bailey & 

Machanick, 2012).  

These results show that including central motif enrichment can be useful. CentriMo is 

superior to other algorithms as a previous study by (Bailey & Machanick, 2012) indicated 

that CentriMo can be used in ChIP-seq data as a MEA tool and to determine direct or 

cooperative TF-DNA binding in ChIP-seq data. CentriMo can be used or is useful in cases 

where motif discovery algorithms have failed to discover a motif. 

 

1.1.4 CLASSIFICATION OF TRANSCRIPTION FACTORS 

The mechanism of gene regulation can be better understood if the classes where TFs belong 

are known. TFs are classified into different groups based on their DNA binding domains 

(DBD). This classification aids when a novel protein is identified. To understand the 

biological function of the protein, it has to be classified into a correct class. Proteins are 

grouped based on their biological functions. To date, computational methods have been used 

to classify TF and non-TF proteins (Qian et al., 2006). Also, TFs are classified based on 

TFBS clustering using information content. Therefore, any TF belonging to a specific TF 

class category has a chance of binding to any TFBS of the same group (Reddy et al., 2006). 

This classification information can be useful when CentriMo gives ambiguous results and 

also to validate if we have found a correct motif. The DBD mediates interactions between 

TFs and their target DNA. Various TFs can bind to the same regulatory sequence (Wittkopp, 

2010). TFs are classified based on DBD structure. Many TFs share a similar DBD and hence 

the same binding site and specificity. As an example, there are 17 Kruppel-like factors (Klf) 

family members in mammals. The DBD of these factors is characterized by the presence of 

conserved Cys2His2 zinc fingers that bind to a CACC-box motif (Pearson et al., 2008). 

Therefore, knowledge of the relevant TF is important.  

 

The basic helix-loop-helix (HLH) structure consists of two amphipathic alpha helices on the 

amino-terminal and hydrophobic residues at the carboxyl-terminal end. The helices are 

connected by amino acid residues of different length that form reverse turns and loops 

(Luscombe et al., 2000). TFs that belong to this family play a vital role in the transcriptional 

network of most developmental stages. They play a role in cell proliferation and 
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differentiation, cell lineage determination, sex determination, and other essential processes in 

organisms ranging from yeast to mammals. HLH proteins are distinguished by the presence 

of conserved bipartite domains for DNA binding and protein–protein interaction. A basic 

residue motif permits HLH proteins to bind to an E-box (CANNTG). A second motif of 

hydrophobic residues (HLH domain) allows these proteins to interact and to form either as 

both a homodimer or heterodimer (Atchley & Fitch, 1997). 

 

The zinc finger motif characterizes the zinc finger-type TFs and is one of the common motifs 

in the eukaryotic cell  found from enzymes to TFs (Suzuki et al., 2005). The zinc finger 

motifs bind to G-C rich DNA sequences (Yang et al., 2009). The DBD of this class of TFs is 

characterized by the presence of nine repeats of a 30 amino acid sequence of the form 

Tyr/Phe-Xaa-Cys-Xaa-Cys-Xaa2, 4-Cys-Xaa3-Phe-Xaa- Leu-Xaa2- His-Xaa3 4- His-Xaa5, 

where Xaa is a variable amino acid (Miller et al., 1985). These repeats have two consistent 

pairs of histidine and cysteine residues, which co-ordinate a single zinc atom. This results in a 

finger-like structure with conserved phenylalanine and leucine residues and some basic 

residues in the finger project from the surface of the protein. The contact is between the tips 

of the fingers and the major groove of the DNA and other fingers bind on the opposite sides 

of the helix (Pabo & Sauer, 1992). The largest group of TFs in eukaryotic genomes is made 

up of zinc coordinating proteins. The DNA binding motif is distinguished by the tetrahedral 

coordination of zinc ions and conserves cysteine and hisitine residues. The zinc coordinating 

motifs are not restricted to DNA binding. They are also common in domains involved in 

protein-protein interactions (Luscombe et al., 2000). 

 

The leucine zipper is a domain of the basic region leucine zipper (B-ZIP) transcription 

factors. This domain plays an important role in dimerization and leucines appear every 7 

residues. The structure of this class of TFs was proposed by Crick in 1953. It consists of 

lysine and arginine in the N-terminal region that bound to the major groove of DNA and also 

forms a dimer GCN4 that binds to DNA. The C-terminal region is made up of an amphipathic 

alpha helix that forms the leucine zipper through dimerization. In previous studies the 

interaction of leucine zipper proteins with DNA was examined. The DNA binding specificity 

of the leucine zipper proteins is not yet well understood. The homodimers bind to a 

palindromic DNA sequence, while heterodimers bind to any half site. For DNA binding, the 

leucine zippers have to come into contact with each other in a way that basic regions are in 
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the major groove of DNA. To determine biological function (which is the important problem 

in bioinformatics) for this class of proteins, it is important to use proteins that act against the 

functioning of B-ZIP genes and repress DNA binding. This repression shows whether a 

family of B-ZIP TFs in question activates or inhibits transcription. A study of the leucine 

zipper region amino acids shows that all seven residues that form B-ZIP proteins are 

conserved (Krylov et al., 2001). 

 

1.1.5 OVERVIEW OF TFs AND THEIR BINDING PARTNERS  

Literature evidence for the sample TFs used for this study (see section 2.4) is needed to 

validate if the motifs identified using CentriMo are true binding motifs, rather than 

concluding based only on CentriMo output. Prior evidence is also useful in cases where the 

CentriMo distributions are not well centered and it becomes less clear what has happened, as 

in cooperative or indirect binding cases.  

Max is a member of the basic helix-loop-helix protein family. Max has been shown to form a 

heterodimer with Myc and Mad proteins and regulate gene expression by binding to the E-

box DNA sequence (Larsson et al., 1997; Hurlin et al., 2006). The authors reported that Myc 

and Max interact with each other via helix-loop-helix/Leucine zipper domain and specifically 

bind an ACGTG DNA sequence. C-Myc always requires interaction with Max to perform its 

functions as a TF. Mad family TFs also interact with Max and recognize the same binding 

sequence as Myc. Their findings lead to a hypothesis that Max, Myc and Mad TFs form a 

network to perform their functions as transcriptional regulators. Egr1 is a member of the 

immediate early gene family. It is essential in the control of cell growth, differentiation and 

apoptosis. A previous study reported that Egr1 performs its function by directly interacting 

and activating the promoter. Wagner et al. (2008) reported that Egr1 share a similar binding 

site with Sp family members. Egr1 also known as krox-24, ZIF268, and TIS8, is an early 

response protein and is a member of zinc finger family of TFs. The Egr1 DBD contains 3 

zinc fingers positioned between amino acids 332-416 in the C-terminal region of the protein. 

Egr1 binds to G-C rich regions of DNA sequences (Yan et al., 2000). 

The Ets family is characterized by the presence of a unique Ets domain that binds to purine-

rich DNA sequence. Members of the Ets family have different binding specificities; a single 

amino acid change in the Ets domain can lead to a change in DNA binding specificity. A 

change in moloney sarcoma virus enhancer sequence reduces Elf-1 binding but does not 
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affect Ets-1 binding (Oikawa et al., 2003). Tcf is the family of TFs consisting of four 

members, that is, Tcf-1, Lef-1, Tcf-3, and Tcf-4 and they bind in the minor groove of a DNA 

sequence. Gustavson et al. (2004) found that the binding sites for Tcf have a G/C base pair at 

position 8 of the binding site (TTCAAAGG) show an  increase in Lef-1 HMG box binding 

affinity. TCF protein family (Elk1, SAP1 and SAP2) and the myocardin protein family (Mkl1 

and Mkl) are known Srf cofactors (Halene et al., 2010).  

A previous work on analysis of  the Srf data set has shown that Srf motifs are highly similar 

to Ets1 and GABP (Wallerman & Motallebipour, 2009). A prior publication using QuEST 

reports that Srf and GABP peaks are in close proximity to another, suggesting that the two 

TFs interact with each other. Srf and GABP are thought to function as transcription 

activators. Srf is a member of the Mad family of TFs expressed in hematopoietic cells. It has 

been shown to play an important role in muscle differentiation. Its role in hematopoiesis is 

not yet understood. Mkl1 has been found to bind in combination with Srf and to function in 

megakaryopoiesis. Srf has been found to have binding specificity to CCTTATATGG 

consensus sequence. Srf is activated by interaction with its co-factors to enhance transcription 

(Valouev et al., 2008).  

A study on analysis of Irf4 data sets suggests that Irf4 forms a complex with Jundm2 

secondary and binds DNA cooperatively with it. The authors used SpaMo to predict the 

interactions between Irf4 and Jundm2 TFs (Whitington et al., 2011). A prior study on  

computational analysis of Irf4 from ChIP-chip experiments reports that both Irf4 and Irf5 

recognize the same consensus sequence (CGAAAC) (Badis et al., 2009). Irf4 is an interferon 

regulatory factor essential for lymphocyte activation. Irf4 associates with NFATc2 to 

facilitate NFATc2-driven transcriptional activation of the IL-4 promoter. Irf4 physically 

interacts with NFATc2 to perform this. Irf4 combines with NFATc2 and the IL-4–inducing 

TF, c-maf, to augment IL-4 promoter activity. The identification of Irf4 as a partner for 

NFATc2 in IL-4 gene control gives an essential molecular function for Irf4 in T helper cell 

differentiation (Rengarajan et al., 2002).  

 

GATA3 is expressed in T cells and erythroid cells and it does encodes a polypeptide 

containing two zinc fingers almost similar (92% identity) to GATA-1. A previous study 

indicates that GATA-3 binds to an AGATAG sequence in human T cell receptor alpha 
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enhancer (Ho et al., 1991). The GATA family of TFs recognizes  the WGATAR consensus 

sequence (Ko & Engel, 1993).  

 

POU2f2 is a member of the POU class 2 family of TFs characterized by the presence of POU 

domain. POU domain is divided into two subdomains, POU specific (POUs) subdomain and 

POU homeodomain (POUh). These domains consist of helix turn helix motifs. A previous 

study reports that POU interacts with oct-1 and oct-2, which also belong to POU family. This 

suggests that POU family TFs interact with other TFs containing a POU domain and 

cooperatively bind DNA (Veenstra et al., 1997). Most Pou domain binding sites identified are 

A/T rich. The co-activator domains have been identified from DNA-binding sites and 

examined. The Pou homeodomain binds to the TAAT region of the binding region while the 

specific domain is flexible can bind to either GARAT or TAATGARAT regions. The 

expressed Pou domain protein  in the developing nervous system has been suggested to play 

an important role in embryogenesis (Ryan & Rosenfeld, 1997).  

 

A previous study suggests interactions between Foxa2, GABP and Hnf4a (Wallerman & 

Motallebipour, 2009). Fang et al. (2012) conducted a study and examined the DNA binding 

specificity of three members of the nuclear receptor family, that is, Hnf4a, Nr2f2 and Rxra by 

PBM and reported that Rxra does not bind to DNA in the absence of Nr2f2. Fang et al. (2012) 

used PBM data and reported that Rxra binding sites are almost identical to those of Nr2f2. 

The authors also suggested competitive binding between these two TFs, Rxra was found to 

activate transcription, while Nr2f2 inhibits transcription. 
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1.2 PROBLEM STATEMENT  

To date, a lot of work has been done in predicting transcription factor binding sites (TFBS). 

However, the underlying mechanism of how transcription factors bind to DNA is not yet 

fully understood (Ahmad et al., 2004). Knowledge of how DNA-protein interactions regulate 

gene expression is crucial for understanding biological processes. To understand these 

processes it is important that the motifs in the sequence and their binding factors are known. 

Generally, the shared motifs can be found using motif discovery tools, but the problem with 

ab initio methods is that they do not give information about factors thought to bind to the 

predicted motifs. MEA tools include this information by showing which motifs bind to which 

factors. A TFBS is generally represented using a motif, a representation of the probability 

that a given base is present at a given position in a DNA sequence where binding occurs. If a 

motif is a good representation of a TFBS for a particular TF, we expect to find that motif 

over-represented in locations in DNA that are likely binding sites. There are various ways 

this over-representation can be measured, including measuring the match of a motif to every 

possible binding site, and comparing the probability of the level of matching found to a 

background probability.  

 

Several MEA tools that detect statistical over-representation of a motif in a set of DNA 

sequenced have been developed and published (Liu et al., 2003; Zheng et al., 2003; Elkon et 

al., 2003; Sharan et al., 2003; Haverty et al., 2004). Most previously used methods tend to 

discard important information by collapsing matrix scores at each position to a binary 

quantity that is above or below the threshold. The methods are also unclear whether to count 

one match per sequence, a few matches per sequence or all matches in each sequence. It has 

been found that the regulatory regions of higher eukaryotes usually contain multiple binding 

sites for the same TF (Papatsenko et al., 2002). Therefore taking multiple sequence matches 

into consideration is useful in the discovery of motifs by statistical representation. MEA tools 

are used to find under-represented and over-represented known motifs in a set of genes. The 

latest-generation technology for identifying TFBS, ChIP-seq, produces a large set of short 

DNA sequences that a particular TF should have bound to, if the experiment was error-free. 

The mechanism of binding is not always straightforward because many TFs bind only in 

combination with others (cofactors), and some only bind indirectly (other TFs bind to the 

DNA, and they bind to these). MEA tools are becoming more and more useful as the number 

of known DNA-TF binding motif databases increases (McLeay & Bailey, 2010). 
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To investigate which method for creating motif databases is better than the other, CentriMo is 

used as a central motif enrichment analysis (CMEA) tool to compare motifs for a given TF 

from ChIP-seq experiment corresponding to TFs for which there are UniPROBE and 

BEEML-PBM motifs. It is expected that, should the BEEML-PBM approach be comparable 

to PBM, it should perform competitively as measured by the number of examples for which it 

achieves a lower CentriMo p-value than PBM for a like motif. The claim made by Zhao and 

Stormo (2011) that their approach is simpler and on the whole produces acceptable results is 

validated using CentriMo. CentriMo is a statistical method that ranks motifs based on the 

central enrichment p-value. This algorithm solves the problem of choosing background 

sequences as the flanking sequences perform this function. CentriMo can be used as a tool for 

motif enrichment analysis and for comparing variants on a motif.  CentriMo can differentiate 

if the central enriched motif is a result of direct DNA binding of the ChIP-ed TF or is a result 

of co-factor motifs. Also, the algorithm is faster compared to other MEA tools. It compares 

known motifs with the input sequence and returns the site-probability curve in minutes. 

CentriMo is useful in cases where motif discovery algorithms have failed to discover a motif 

(Bailey & Machanick, 2012). Other MEA tools are appropriate in cases where central 

enrichment is inadequate, for instance, in detecting cofactors. 
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1.3 AIMS AND OBJECTIVES 

This study aims to investigate the claim made by Zhao & Stormo. (2011) that they have 

identified a simpler method than that used to derive the UniPROBE motif database for 

creating motifs from protein binding microarray (PBM) data (Berger et al., 2006), which they 

call the BEEML-PBM (Binding Energy Estimation by Maximum Likelihood for PBMs). A 

specific claim made of the Zhao-Stormo is that the BEEML-PBM method is not only simpler, 

but provides comparable specificity to the UniPROBE PBM method. 

 The approach is to use CentriMo as a central motif enrichment analysis tool to compare 

motifs for a given TF. Should BEEML-PBM approach be comparable to PBM, it should 

perform competitively as measured by the number of TFs for which it achieves a lower 

CentriMo central enrichment p-value than PBM for a like motif. CentriMo measures central 

enrichment of the TFBS represented by a motif in a set of DNA sequences. To measure the 

quality of motifs from BEEML-PBM and the UniPROBE motif databases, the degree of 

central enrichment of motifs from each database is tested. 

A secondary goal of this study is to identify cases where a motif is of poor quality, or there 

are problems with ChIP-seq data set. The purpose of MEA is to find which motifs from a 

database of known motifs are most "enriched" by a particular measure and see if the motif or 

motifs associated with binding are the most enriched, as further evidence that de novo motif 

finders have found the right motifs. 

The approach analyses a set of candidate TFs and determines where a particular TF binds in a 

DNA sequence, and which cluster of similar TFs are involved in a particular co-operative 

binding. Since this is a statistical method it is expected to rank motifs directly involved in 

DNA binding near the top.  

The study also aims to identify alternative motifs in the literature and use CentriMo on ChIP-

seq data that correspond to those motifs and gives comparisons of the alternative motifs. 

 

RESEARCH QUESTION 

Does BEEML-PBM method gives better or worse motifs compared to the PBM method used 

to create the UniPROBE motif database? This work is extended by evaluation of the quality 

of motifs in different cell lines using CentriMo. 
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CHAPTER 2: METHODS 

This study uses CentriMo as a central motif enrichment analysis (CMEA) tool on BEEML-

PBM and UniPROBE databases to investigate the claim made by Zhao and Stormo (2011) 

that they have identified a simpler method than that used to derive the UniPROBE motif 

database for creating motifs from PBM. CentriMo is also used against a wider motif database 

to determine whether there may be cofactors or indirect binding. CentriMo is useful in cases 

of poor ChIP-seq data quality, where it can point to a problem. If there is a TF expected to 

have a clear binding specificity but CentriMo has a high p-value or other indications of less 

specific binding, the possibility that the ChIP-seq experiment has failed is considered. 

Because there is no method that is perfect, AME and SpaMo are used for further 

investigation. SpaMo is used to validate the CentriMo output especially in cases where 

CentriMo distribution is not well centered and it is less clear what has happened. SpaMo 

infers physical interactions between a given TF and TFs that bind at a neighbouring sites at 

the DNA interface. AME is employed as an independent measure to see if CentriMo has 

found the correct motifs. AME can give an indication of an over-represented TF or TFs that 

are not well centred, and that is useful for picking up cofactors or if CentriMo fails to find a 

well centred TF for a reason like indirect binding, AME may find enrichment of TFs to which 

the TF of interest binds. 

2.1 CENTRIMO 

CentriMo is an algorithm that measures central enrichment of a motif and has previously 

been used as MEA tool. CentriMo takes a set of equal length (500bp) genomic sequences in 

FASTA format and TF binding motifs as input. These sequences are centered on the ChIP-

seq peaks. CentriMo is based on the idea that ChIP-seq peak calling methods are likely to be 

biased towards the center of the putative binding region, at least in cases where there is direct 

binding. CentriMo works by identifying the best binding site in each sequence, based on the 

log likelihood ratio, for a given motif. The algorithm does not score a sequence if no site has 

a score at or above a set threshold (default: 5). It calculates a binomial p-value for each 

central bin width, counting the number of “best” sites inside and outside the bin, and selects 

the lowest p-value, as well as recording the bin width of the lowest p-value. In cases where 

binding is indirect or involves cofactors, a more complex distribution of preferred binding 

sites may occur. A low CentriMo p-value and low width of maximum enrichment (about 

100bp) are strong evidence that the motif in consideration is the true binding motif. When the 
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CentriMo distribution has a clear central peak, a very low p-value (sometimes on the order of 

10
-1000

 or less) and a minimal p-value in a very narrow window, this indicates binding by a 

single factor. CentriMo also plots the site-probability curve with the center of the curve as 

position zero. CentriMo is run with the database described in section 2.4 against the ChIP-seq 

binding regions. For all CentriMo results reported here, the default threshold score of ≥ 5 bits 

is used. A previous study has shown that using a threshold between 3 to 8 bits generally gives 

the same results. (Bailey and Machanick, 2012).  

As a further evidence that the lack of distinct peaks in CentriMo distributions is a result of 

indirect or cooperative binding, CentriMo is run using a compendium of motifs containing all 

vertebrate motifs in the JASPAR CORE 2009 database (Sandelin et al., 2004) and the 

UniPROBE mouse database. The procedure is the same as above except that now the 

UniPROBE and JASPAR motif databases are used. A script that trims the sequences to 

500bp and converts the file into a FASTA file is created and CentriMo is run on the 

command line. For the script used, see the appendix. 

2.2 SPAMO 

The spaced motif analysis (SpaMo) algorithm determines enriched spacings and identifies the 

interactions between a given motif and TFs that form complexes with the given TF. SpaMo 

takes in a set of DNA sequences in FASTA format for a given TF, a primary motif 

represented as a PWM (Stormo, 2000) and a database of secondary motifs. The algorithm 

tries to find enriched motif spacing patterns by searching for the strongest primary motif 

binding site for the given TF then searches the neighbouring sites for secondary motif binding 

sites and then calculates the probability of the spacing relative to the primary TF. It applies a 

binomial test to assess significance of the enriched spacings. SpaMo outputs a graph of 

secondary-primary motif site displacement. The graph is divided into four categories, 

indicating the position where primary and secondary motifs appear on the same strand and 

when they appear on opposite strands. The output also shows the position (downstream or 

upstream) of the secondary motif site relative to the primary motif site. Analysing these 

resulting displacements is useful as they indicate physical interactions between the TFs. 

Some TFs share the same DNA binding domain and therefore bind with same specificity. 

Because multiple TFs can bind to the same consensus sequence, it is important that the prior 

knowledge of a given TF is applied so as to identify the TF corresponding to the reported 

secondary motif spacing enrichment (Whitington et al., 2011).  
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2.3 AME 

AME is used as an independent measure for this research. Like CentriMo, AME is a MEA 

tool that given an input sequence, searches for the enriched DNA binding motifs in one or 

more databases of known motifs. Unlike CentriMo, AME is not based on central enrichment. 

Using AME, the motif enrichment from databases of known motifs (BEEML-PBM and 

UniPROBE) is compared to motifs reported by CentriMo. The enrichment p-values are 

compared to explore if the two algorithms find the same motif. AME inputs a set of DNA 

sequences in FASTA format and motif database files in MEME format. Given a set of equal 

size DNA sequences (500bp) used for CentriMo, AME finds enriched motifs from a given 

database of known motifs. AME ranks the motifs by computing their Fisher exact test p-value 

based on the number of sites for each motif above a threshold in the original sequences versus 

a shuffled version of the original sequences (McLeay & Bailey, 2010). AME outputs two 

files, HTML and a text file. For the script used, see the appendix. 

 

2.4  DATA 

The ENCODE project (The ENCODE Project Consortium, 2011) contains ChIP-seq data for 

many TFs. A total of 13 TFs is used in this study. The  ChIP-seq data used is from the 

ENCODE project,  corresponding to TFs for which there are UniPROBE (Newburger et al., 

2009) and hence BEEML-PBM (Zhao & Stormo, 2011) motifs. Because ENCODE data are 

from diverse sources, the variations are minimized as far as possible. Since GM12878 is the 

most studied and common cell line in the ENCODE project, for example, where that cell line 

is available, ChIP-seq sequences from that cell line are used. The data used for the study are 

from the HudsonAlpha Institute for Biotechnology (HAIB) (tables 2-1 and 2-2) and 

Stanford/Yale/USC/Harvard (table 2-3) laboratories. However, Stanford/Yale/USC/Harvard 

laboratory only contains the ChIP-seq data for only 3 out of 13 TFs used in this study. Table 

2-4 summarises the useful information about the cell lines used. The ENCODE peak file is 

converted into a BED file, which is then submitted to the UCSC genome browser (Karolchik 

et al., 2004) to obtain a FASTA sequence. The coordinates of ChIP-seq sequences are 

widened to 500 bp centered on the peaks, and repeat-masked sequence data is used (hg19). 

For each TF, a custom motif database containing all BEEML-PBM and UniPROBE motifs 

for that TF is created.   
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TF Cell line Protocol Treatment 

Egr1 GM12878 Biorupter, PCR 1-round None  

Hnf4a HepG2 Biorupter, PCR 1-round None  

Ets1 GM12878 ChIP AMpure XP EtoH, 0.02% 1h 

Foxa2 HepG2 Biorupter,PCR 1-round None 

Gata3 T-47D Sonicator,PCR 1-round DMSO_002pct 

Irf4 GM12878 PCR 1-round None 

Max K562 Sonicator,PCR 1-round None 

Nr2f2 K562 ChIP AMpure XP None 

Pou2f2 GM12878 PCR 1-round None 

Rxra GM12878 PCR 1-round None  

Sp4 H1-hESC ChIP AMpure XP None 

Srf GM12878 PCR 1-round None  

Tcf3 GM12878 PCR 1-round None 

 

Table 2-1: Data used to run CentriMo. 

The table columns show the TF name, cell line (representing the tissue in which the ChIP-seq 

experiment was carried out), protocol and treatment (if any) used for ChIP-seq experiment. 

The TFs used are available from ENCODE Project. 
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Table 2-2:Data used to investigate variations across cell lines. 

The TF ChIP-seq data obtained from different cell lines than those in table 2-1. The results 

are compared with those found using the cell lines in table 2-1. Columns as in table 2-1. 

 

TF Cell line Control  Treatment 

Max A549 IgG-rab None  

Gata3 MCF-7 UCDavis input control None  

Hnf4a HepG2 Standard control forskolin 

Table 2-3: ChIP-seq data from ENCODE/Stanford/Yale/USC/Harvard Lab. 

Stanford/Yale/USC/Harvard Lab contains only 3 TFs that have motifs in the BEEML-PBM 

and hence UniPROBE motif database. This data is used to validate variation across cell lines 

using ChIP-seq data from different laboratories and also to validate  the consistency with the 

previous cell lines used . 

 

 

 

 

TF Cell line Protocol Treatment 

Egr1 H1-hESC Sonicator,PCR 1-round None  

Rxra H1-hESC Sonicator,PCR 1-round None  

Srf H1-hESC PCR 1-round None 

Ets1 A549 ChIP AMpure XP EtoH, 0.02% 1h 

Foxa2 A549 Sonicator,PCR 1-round EtoH, 0.02% 1h 

Gata3 A549 ChIP AMpure XP None 

Max A549 ChIP AMpure XP None 

Nr2f2 HepG2 ChIP AMpure XP None 

Pou2f2 GM12891 PCR 1-round None 
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Cell line Description 

 

Tissue karyotype 

GM12878  lymphoblastoid cell line 

 

blood normal 

GM12891  lymphoblastoid cell line 

 

blood normal 

H1-hESC embryonic stem cell 

 

embryonic stem cell normal 

HepG2 derived from a male patient with 

hepatocellular carcinoma 

liver cancer 

K562 produced from a female patient with 

chronic myelogenous leukemia 

blood cancer 

A549 derived from a lung carcinoma 

 

epithelium cancer 

MCF-7 derived from mammary glands 

 

breast  cancer 

T-47D dpithelial cell line derived from a 

mammary ductal carcinoma 

breast cancer 

Table 2-4: Explanation of cell lines. 

Table 2-4 is adapted from the ENCODE sites (http://encodeproject.org/ENCODE/cellTypes.html) and 

ENCODE Project common cell types, last updated 9 March 2012, online: 

http:www.genome.gov/26524238. 

  

http://encodeproject.org/ENCODE/cellTypes.html
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CHAPTER 3:  RESULTS 

CentriMo is used as a CMEA tool for a given TF to investigate which method gives better 

motifs between the BEEML-PBM and the original PBM method used to create UniPROBE 

motif database. We expect that should the BEEML-PBM approach be comparable to PBM it 

should perform competitively as measured by the number of TFs for which it achieves a 

lower p-value than PBM for a like motif. AME and SpaMo are used as tools for further 

investigation. SpaMo infers physical interactions between a given TF and TFs bound at a 

neighbouring sites at the DNA interface. AME can give an indication of an over-represented 

TF or TFs that are not well centred, and that is useful for picking up cofactors or if CentriMo 

fails to find a well centred TF for a reason like indirect binding. The results also show the 

binding specificity of the TFs in different cell lines. 

3.1 Comparing the BEEML-PBM motifs with the PBM motifs using CentriMo 

A total of thirteen TF ChIP-seq data from ENCODE project is analysed using CentriMo on 

combined BEEML-PBM/UniPROBE motif database. For all CentriMo results reported here, 

the threshold score of ≥ 5 bits is used. CentriMo results fall into four different categories 

based on the motif’s central enrichment. The  categories involve motifs with: (i)  clear central 

enrichment with well defined peaks from both motif databases, (ii) central enrichment with 

less sharply defined peaks, (iii) central enrichment from only one database (UniPROBE), and 

(iv)  no motif from either database with central enrichment. 

3.1.1 Motifs with clear central enrichment from both motif databases 

Of the 13 TFs analysed five (Egr1, Max, Nr2f2, Gata3 and Hnf4a) show a clear central 

enrichment with well-defined unimodal peaks and bin widths of about 100bp from both motif 

databases. The TFs also have statistically significant central enrichment p-values. A low p-

value and narrow bin width indicate direct DNA binding. BEEML-PBM has the lowest p-

value for 3 out of 5 cases, and in one of the two cases where the UniPROBE motif has the 

lowest p-value, it is the secondary motif (see Table 3-1). The slight shift away from the center 

on the Hnf4a motifs may be due to the peak calling algorithm failing to correctly locate the 

binding site. The binding motifs for Max from both databases show that Max is an E-box TF; 

E-box TFs bind to the CANNTG sequence. 
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 CentriMo Distribution Logos 
  

p-values 
Sequences 
Best DB 

Matches Width 

 

  
  

  
Egr1_primary 

1.6e-1095   8926 107 

 
  

    
6.0e-830 

  
4996 

  

 
  

sci09.v2_Egr1_2580 10295 107 

 
  

 
sci09.v1_Egr1_2580 

  UniPROBE 
4565 95 

 Egr1      1.6e-761   

 

  
  

 

 
  39273 121 

 
  

Sci09.v2_Max_3863    9.2e-1636       

 
  

  
5.3e-1544 

  
34165 115 

 
  

Sci09.v2_Max_3864 43838 

 
  

  
2.8e-1338 

BEEML-PBM 
38834 115 

Max 

  

Sci09.v1_Max_3864 
 

 

  
    

  
  2.4e-492   19010 127 

   
 Sci09.v1_Nr2f2_2192           

   

    
2.7e-485 

24408 
19039 121 

   

Sci09.v2_Nr2f2_2192 BEEML-PBM 

   

    
2.0e-473          14747 

           
129  Nr2f2 

  

Nr2f2_primary   
 

    
 

4.0e-535   23083 141 

   

 Sci09.v2_Gata3_4964           

   

    
2.3e-527 

26299 
23380 125 

   

Sci09.v2_Gata3_1024 BEEML-PBM 

   

    
1.4e-521 

 
23851 125 

 Gata3     
 
Sci09.v1_Gata3_1024 

  
 

  

 

  7.0e-1159   15072 129 

   

 Hnf4_secondary           

   

    
3.9e-670 

24405 
22073 127 

   

Sci09.v1_Hnf4a_2640 UniPROBE 

   
    

9.5e-624 
  

 22216 127  
 Hnf4a     Sci09.v2_Hnf4a_2640   

Table 3-1: BEEML-PBM and UniPROBE successes.  

The 5 TFs all have reasonably well-centred peaks and low p-values. Columns from left to 

right: TF name and CentriMo distribution, logos for the first three highly enriched motifs, 

central enrichment p-value, database of the lowest p-value motif and number of ChIP-seq 

sequences, and for each motif, number of sequences containing a motif and bin width. 

BEEML-PBM motifs names all start with “sci”.  
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3.1.2 Central enrichment with less sharply defined peaks 

The second set of results includes three TFs (Foxa2, Irf4, and Sp4) that have central 

enrichment, but the peaks are not well centered and the region of maximal central enrichment 

is less narrowly centered (about 200bp). But the motifs show statistically significant central 

enrichment p-values. The broad bin width and a lack of well centered distribution could be 

due to various reasons including poor resolution of the ChIP-seq experiment, indirect 

binding, cooperative binding (more than one motif may have a central tendency) or ChIP-seq 

failure. Because there are so many reasons for a CentriMo distribution that differs from a 

strongly unimodal distribution, further investigation and literature evidence are required. Of 

the 3 TFs, UniPROBE has the lowest central enrichment p-value motif for two motifs (Foxa2 

and Irf4) (see table 3-2). CMEA against a wider motif database to determine whether there 

may be cofactors, cooperative binding or indirect binding can provide evidence that these TFs 

are involved in cooperative binding. Cofactors can affect the CentriMo distribution in that 

their motifs can be more centrally enriched than the motif of the ChIP-ed factor. Also indirect 

binding can affect the distribution because the motifs that bind directly to DNA may appear 

more enriched than the motif for the ChIP-ed TF (Bailey & Machanick, 2012). Therefore it is 

important to take the presence of cofactors into consideration because they might lead to false 

conclusions if their effect is not considered. 
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CentriMo distribution  
  
Logos 

 
p-values 
 

Sequences  

Width 
Best DB 

 Matches 
 

 
       

 

  
  

 
  

  

 
  

 

  

  
  

  Foxa2_primary 4.3e-202     7099  224 

  

  

  
 

  
    8472     

  
  

   Sci09.v2_Foxa2_2380 2.3e-199  UniPROBE  7944 199 

Foxa2 
   

 

   
  

 

        
  
Sci09.v1_Foxa2_2380 

1.8e-197    7950 199 

 
 

  

  
 

  
        

 

  

  

   Sci09.v1_Sp4_1011 6.4e-72    5971  237 

  

  

  

 

    

 
 
 

8.7e-69 

6063   
 
 
 

206 
Sp4_primary BEEML-PBM 

 
 5348 

Sp4 

  
  

   
 

7.9e-22 
  

   
 

176 
  
Sp4_secondary 

    
 5276 

  
    

   
 

  
 
 

  
  

     

  
  

  Irf4-primary  1.8e-104    9159  180 

  

  

  
 

  
    19205 

UniPROBE 
    

  
  

  Sci09.v2_Irf4_3476  4.0e-88    16712 183 

Irf4 
  

  

 

  
  

 
 

2.0e-81  
  

  
  
 

183        Sci09.v1_Irf4_3476   16650 
 

 

 

 

         Table 3-2: BEEML-PBM and UniPROBE CentriMo. 

The distributions show central enrichment with less sharply-defined peaks – for Foxa2 and 

Irf4 UniPROBE has the lowest p-value motifs (4.3 x10
-202 

and 1.8x10
-104

, respectively). 

Columns as in Table 3-1. 
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3.1.3 Central enrichment from only one database 

In the third category, only UniPROBE motifs have central enrichment for Pou2f2 and Srf 

with a narrow region of maximal enrichment 73bp and 51bp, respectively.  POU TFs have 

two different binding domains, octamer (ATGCAAAT) and POU. A POU binding domain 

can be octamer or homeodomain containing (ATTA) binding sequence (Sharif et al., 2001; 

Lennard et al., 2006). The Pou2f2 BEEML-PBM motif has insignificant p-value (1.0), 

implying it is junk, but contains a correct homeodomain binding site ATTA (Table 3-3). The 

UniPROBE motif is centered and has a significant central enrichment p-value, suggesting the 

motif represents the true binding site. For Srf, CentriMo finds a p-value and distribution of 

best sites only for UniPROBE motifs (only Srf primary and secondary) and does not find any 

motif from the BEEML-PBM database with sites above the score threshold. Further 

investigation is needed to confirm if the BEEML-PBM database does not contain motifs that 

represent the true binding motifs of Srf. 

 

CentriMo distribution            Logos p-values 
Sequences 
Best DB 

Matches Width 

 

 

  

      

 

  

  

1.4e-38 

 
20589 

 
UniPROBE 

8761 73 

 

Pou2f2_3748.1 

  
 
Pou2f2 

  
  

 

  
  

  

 

16100 1 
Cell08_Pou2f2  1.0 

         
 

        

 
  

  7.5e-35 
 

1514 51  

 
  

  Srf_primary   43838     

 

 
  

   
 

  
 

2106 2  
  

   1.0 UniPROBE 

 
  

    
  Srf       Srf_secondary     

Table 3-3: BEEML-PBM fails. 

In each example, only 1 motif (both from UniPROBE) has significant central enrichment. 

BEEML-PBM motifs all have names starting with “cell” or “sci”. BEEML-PBM Srf motifs 

are too low in information for a meaningful a logo (column 2). Table columns as in Table 3-

1.
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3.1.4 No motif from either database with central enrichment 

For three TFs (Ets1, Rxra and Tcf3) there is no motif from either database with central 

enrichment. CentriMo reports the BEEML-PBM and UniPROBE motifs with statistically 

insignificant central enrichment p-values (Table 3-4). This could be due to poor antibody 

performance or ChIP-seq experiment failure. Further investigation is needed to be sure. In 

previous studies it has shown that Ets1 interacts with bHLH-zip proteins especially TFE3 and 

USF and activate transcription. The authors suggested that Ets1 and TFE3 interacts directly 

with each other (Tian et al., 1999). That Centrimo fails to find centrally enriched motifs on 

both databases suggests that these TFs bind cooperatively with other TFs or may be that there 

are no motifs in the databases that accurately represent the true binding motif.  

The Tcf3 distribution is the opposite shape to that expected for all variations, suggesting that 

binding is more likely away from the center. Also the central enrichment p-value for all the 

motifs is insignificant (1.0). However, the Tcf3 UniPROBE primary motif (rank third) shows 

the Tcf binding consensus sequence (TTCAAAGG) suggested by prior studies (Gustavson et 

al., 2004).  It is possible that the inverse distribution is due to the peak calling algorithms 

failing to localise the binding site. The distribution of Rxra is flat. Rxra has been found to 

function as a helping protein for retinoic acid receptors (RARs). Therefore it forms a complex 

with other receptors (Huan et al., 1992). The lack of central enrichment could be due to 

complex mode of binding as suggested by the literature or CentriMo failure. Further 

investigation is needed to get a valid reason.  
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CentriMo distribution           Logos 
  

p-values 
Sequences 
Best DB 

Matches Width 

 

 
   

  
 
  
Sci09.v1_Tcf3_3787 
 

 
1.0   23991 1 

  

  

      
1.0 

  
22437 1 

  

  

  Sci09.v2_Tcf3_3787 32044 

  

  

  
 

 
 

 
1.0 

None 
 18318 2 

 Tcf3 
 

    Tcf3_primary   

 
 

  

  
 

 
 

 

        

  

  

  
  
Embo10_Ets1_deBrujin 

 0.53 1086  966  3 

  

 

  
 

    
  

  
  

 
  None     

Ets1 
 

     Ets1_primary    0.57    568  8 

 
 

    

  

 

  

  

 
 

0.77 

  
 
 
 

2291 

 
 
 

64 
Rxra_primary 4411 

  

  

  
 
 

  

  None    
 

141   

  

  Sci09.v1_Rxra_1035  1.0    3517 

 Rxra 

  

   
 
Sci09.v2_Rxra_1035   

1.0 
   

 3731 
 

141   

  

    

Table 3-4: CentriMo fail.  

Neither the PBM nor BEEML-PBM motifs are centered. Columns as in Table 3-1. 
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3.2 CentriMo results visualization using logos 

Logos are used to visualise the motifs for the most highly enriched motifs reported by 

CentriMo, and are shown in column 2 of all tables in chapter 3. The motifs are extracted from 

UniPROBE and BEEML-PBM databases. A logo combines different important information 

into a single graphical output. It shows the consensus sequence for the input and the amount 

of information it contains. It represents the predominance and the relative frequency of each 

residue at each position and outputs graphical represented bases at each position. The height 

of each base at each position is proportional to the information contained in that base. Bases 

represented by bigger symbols are more conserved than those with smaller symbols (Koch et 

al., 2006). The conserved positions have 2 bits of information. In cases where two of the four 

bases have an equal chance (50%) of occurring, they contain 1 bit of information. If all four 

bases appear equally often that position contains no information. If the sample is small it is 

possible for the information content to be overestimated, therefore a small sample correction 

has to be employed. The total information content of a motif is directly proportional to its 

expected frequency of occurring within a random DNA sequence (Patrik, 2006).  

A sequence logo provides more information about the binding site compared to the consensus 

sequence. Useful binding information can be extracted from logos. Each position of the logo 

output contains a stack of bases (A/T/G/C) indicating how often each residue appears at a 

particular position. The conserved bases are represented by bigger symbols and less 

conserved bases by smaller symbols. Sometimes it is not clear which base is preferred at a 

particular position. In this case the graphical output contains a mixture of bases in one 

position. The base that appears more often is on the top of the stack. The overall height of the 

stack in a position is consistent with the information contained in the binding site in that 

position. The lower height of the base indicates the possibility of alternative bases at that 

position (Schneider et al., 1990).  

Logos indicate that more biological information can be extracted from the well centered 

motifs (table 3-1, column 2). Interestingly, the most highly enriched motifs in Gata3 ChIP-seq 

dataset are represented by the WGATAR consensus sequence. This supports the two 

independent previous studies (Ko et al., 1993; Tallack et al., 2010). Using logos it is clear that 

Egr1 binds to the G-C rich region DNA sequences as suggested in previous studies (Yan et 

al., 2000; Kubosaki et al., 2009). Both the BEEML-PBM and PBM approaches report 

CANNTG motif binding site for Max, and this is consistent with Larsson et al.'s (1997) 
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findings. The finding that a centrally enriched UniPROBE motif for Irf4 (table 3-2) has a 

CGAAAC binding site is consistent with a prior publication (Badis et al., 2009). From these 

results it is observed that centrally enriched motifs appear to be more conserved (bigger 

letters) compared to the ones that are not centrally enriched as in Tcf3 BEEML-PBM motif 

examples.  
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3.3 Independent measure: AME 

AME is used as an independent measure for comparison with CentriMo results. AME ranks 

enriched motifs based on the enrichment p-value, compared to CentriMo which ranks motifs 

based on central enrichment. Compared with other tools, AME has an advantage of allowing 

a very large set of data and is capable of detecting very low levels of enrichment of TF-DNA 

binding motifs that ab initio discovery algorithms fail to detect. Both algorithms achieve 

higher sensitivity by restricting the motif search to DNA binding motifs that have already 

been identified. The algorithm calculates the enrichment p-value by Fisher exact test using a 

shuffled version of the original sequences as a background. As mentioned earlier that 

CentriMo results are divided into four categories. For each category of results one TF is 

chosen to run AME. The aim is to observe if CentriMo results are consistent with AME 

results so as to be certain that CentriMo  has found correct motifs. 

For all AME results reported here a threshold p-value of 0.001 and a custom database 

(BEEML-PBM and UniPROBE) for each motif are used. The UniPROBE motif for Egr1 that 

ranked first by CentriMo now ranks second by AME (fig 3-1). This indicates the importance 

of considering central motif enrichment. For Irf4, the centrally enriched motifs reported by 

CentriMo are less enriched using AME (figure 3-2). For Pou2f2, motifs reported by AME 

have lower p-values compared to those reported by CentriMo (figure 3-3). Both methods rank 

the octamer first followed by a homeodomain motif.  

 

 

 

 

 

 

Figure 3-1: AME analysis of Egr1 motifs. 

From left, figure shows the logos for the highly enriched motif according to the enrichment p-

values, TF name and p-value for each enriched motif. 
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Figure 3-2: AME analysis of Irf4 motifs. 

Irf4 analysed using ChIP-seq data from the ENCODE project. Columns as in figure 3- 1. 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: AME analysis of Pou2f2 motifs. 
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Tcf3 motifs  are too low in information for a meaningful logo (figure 3-4 (a)). The Tcf3 

example is repeated using AME on the entire database. AME ranks E-box motifs as the most 

enriched motifs in Tcf3 ChIP-seq peak regions (fig 3-4 (b)). The results suggest cooperative 

or indirect binding of Tcf3. From the literature it is known that Tcf3 binds in cooperation 

with TAL1, which has an E-box motif (CANNTG) (Kassouf et al., 2010). Interestingly, the 

highly enriched E-box TFs have statistical significant p-values (0.0). These results show that 

E-box is a very common motif, therefore, the TF cannot be identified purely based on binding 

specificity.  

 

 

 

 

 

(a) Tcf3 motif on the custom database. 

 

 

 

 

 

 

 

 

 

 

(b) Further investigation of Tcf3 motif on the entire database. 

Figure 3-4: AME analysis of Tcf3 motifs. 
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The p-values for Ets1 motifs are still not that low. The UniPROBE motif contains a known 

binding site. Ets1 has been found to be associated with different types of human cancers and 

has been shown to bind to GGA(A/T) motif (Wei et al., 2010). That Ets1 is not over-

represented suggest binding in combination with other TFs. Further investigation using AME 

on the entire database shows that the most enriched motifs are the  BEEML-PBM motifs for 

Zbtb7b. Ets1 motif does not appear near the top of the list of enriched motifs. Zbtb is also 

involved in oncogenesis (Stogios et al., 2007). The enriched motifs contain mostly C’s 

indicating that there are a lot of similar binding sites in that region. The results suggest that 

Ets1 bind in combination with other TFs involved in cancer. 

 

 

 

 

 

   

(a) Ets1 motif on the custom database. 

 

 

 

 

 

 

 

 

 

(b) AME analysis of Ets1 motifs on the entire database 

Figure 3-5: AME analysis of Ets1 motifs. 
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3.4 Comparing central motif enrichment from different cell lines 

Transcription is controlled by the interactions between TFs and the genome. However, it is 

difficult to associate variation in genome sequence with that in TF binding because of the 

differences in individuals and cell types (Reddy et al., 2012). GM12878, H1-hESC and K562 

are the most studied cell lines in the ENCODE project. The K562 cell line is derived from 

plural effusion in patients with chronic myelogenous leukemia (CML) (Lozzio et al., 1975). 

GM12878, K562 and H1-hESC are tier 1 cell lines derived from lymphoblastoid cells, CML 

and embryonic stem cells, respectively (Raney et al., 2011). Tier 1 ENCODE TFs may be 

higher quality experiments. More information on cell lines is shown in table 2-4. In general, 

the differences in cell lines could be due to different antibodies used create that particular cell 

line and also the peak calling algorithm used to declare the TF ChIP-seq regions. And also 

differences in development stages and disease. 

 

In a total of 13 TFs used in the study, only 9 TFs are available from more than one cell line. 

The cell lines are shown in table 2-2. CentriMo is used on these 9 TFs and the results are 

compared with those of the first case study. To confirm if the five clearly centrally enriched 

motifs (table 3-1) are involved in direct DNA binding, CentriMo is employed to the same TFs 

using ChIP-seq data from different cell lines, except for Hnf4a which is available only in one 

cell line. It is observed that the the distribution is now less clearly centered and has a broader 

bin width compared to the first cell lines used (table 3-5). This suggests that TFs have 

different binding specificity in the different cell lines. Gata3 results show that it is involved in 

direct binding when treated with DMSO_002pct compared to the cell line without treatment 

(table 3-5). Gata3 is up-regulated in T-47D cell line than in A549 cell line. T-47D is a breast 

cancer cell line (Strom et al., 2004) and Gata3 has been shown to be highly expressed in 

breast cancer cells (Voduc et al., 2008). The Nr2f2 motifs have the lowest p-values in K562 

cell line (table 3-1) compared to HepG2 cell line (table 3-5). Overall, the study shows that the 

binding specificity of the TF depends on its biological function and the tissue type (normal 

versus cancer). As an example, cancer associated TFs have higher binding specificity to 

cancer cell lines compared with normal cell lines.  
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CentriMo distribution  Logos p-values Sequences Matches Width 

 

  
  

 
Egr1_primary 

1.4e-78 

 

2114 113 

 

  
 sci09.v1_Egr1_2580 

 
 

1.4e-56 2712 
2576 115 

 
  

  
    

Egr1 

  
    

 

    

 
  

 sci09.v2_Egr1_2580  2.5e-54 
 

 2565  113 

 

  

  

 
 
ci09.v2_Max_3863 

1.6e-95 

 

28485 145 

 

  

  
 
Sci09.v2_Max_3864 

1.1e-94 

 

24321 107 

 
  

  1.2e-90 31878 28425 145 

Max 

  
 Sci09.v1_Max_3864   

 

    

 

  
    

  
 
Nr2f2_primary 

8.5e-108   2686 131 

   

  
 
Sci09.v2_Nr2f2_2192 

1.7e-100 

 

3085 133 

   

 
 

3512 
  

Nr2f2 
  

 
Sci.v1_Nr2f2_2192 
 

4.6e-95  

 

3086  131  

 

    
  
 
Sci09.v2_Gata3_4964 

1.3e-28   5233 125 

 

 
 

  

 
 
Sci09.v2_Gata3_1024 

1.4e-27 

 

5252 179 

   

  1.5e-27 5842 5389 179 

   
 Sci09.v1_Gata3_1024   

 

    

Gata3 
  

    

 

    

 

Table 3-5: TFs variability in different cell lines. 

Variability check using CentriMo on the same TFs, but from different cell lines than those in 

table 2-1. For the cell lines used see table 2-2. Columns from left to right: TF name and 

CentriMo distribution, logos for the graphed motifs, central enrichment p-values, number of 

ChIP-seq sequences, and for each motif, number of sequences containing a motif and bin 

width. 
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Foxa2, Irf4, and Sp4 TFs have central enrichment, but the peaks are not well centered. Of 

these 3 TFs, only Foxa2 is available in different cell lines. CentriMo is run on Foxa2 ChIP-

seq data from A549 cell line (table 3-6). The distribution is now better centered compared to 

the first case using the HepG2 cell line. The BEEML-PBM motif that ranked third in the first 

case is now the most highly centrally enriched motif and the p-value is now low (4.3e-202 

versus 4.6e-580). The UniPROBE motif that ranks first now ranks second. The over-

expression of Foxa2 in A549 cell line (derived from lung carcinoma) versus HepG2 is 

interesting and consistent with the previous studies suggested that Foxa2 is over-expressed in 

human lung carcinoma cell lines (Tang et al., 2011). That the distribution is not well centered 

in different cell lines could be an artifact of peak calling algorithm or that Foxa2 binds DNA 

indirectly or in combination with other TFs. Previous studies have shown that Foxa2 binds 

DNA in combination with other TFs (Wederell et al., 2008). Using TFBS models from 

TRANSFAC on Foxa2 peaks a prior study’s findings show enrichment of HNF4, NHF1, 

CoupTF, GATA4 and Pax6, which are known to interact with Foxa2 (Odom et al., 2006; 

Gauthier et al., 2002). The possibility of Foxa2 cooperative binding is validated using 

CentriMo against a wider motif database in section 3.5. 

 

CentriMo distribution Logos p-values Sequences Matches Width 

  

  

  
 
Sci09.v1_Foxa2_2380 

 

4.6e-580 
 
 

27361 

23900 143 

  

  

 
 

Foxa2_primary 
3.4e-512 

 

18083 142 

  

  

  
    

  

   

  

 

    

Foxa2  
  

 Sci09.v2_Foxa2_2380  6.1e-447 
 

 23908  141 

 

Table 3-6: Foxa2 CentriMo distribution. 

Central enrichment of Foxa2 motif from A549 cell line. Table columns as in table 3-5. 
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In Srf and Pou2f2 results there is no change in the p-values for the Pou2f2 BEEML-PBM and 

Srf secondary UniPROBE motifs, supporting CentriMo evidence that there is no motif in the 

BEEML-PBM database for Pou2f2 and Srf with central enrichment. The UniPROBE motifs 

have the lowest p-values here compared to GM12878 cell line. Overall, the results suggest 

that the BEEML-PBM binding motif for Pou2f2 is more likely away from the center and 

there is no motif in the BEEML-PBM database that represents a true binding motif for Srf. 

  

CentriMo distribution Logos   p-values Sequences Matches Width 

 

  

    

Pou2f2_3748.1 

 
 
 
 

2.0e-90 

  

10125 119 

 

 

  
1.0 

    

 
  

    22696 18588 1 
Puo2f2 

  
Cell08_Pou2f2_3748   

   
     

  
   

   
    

 
    

 

  
  

 Srf_primary   
2.8e-273 

 

2136 97 

 
  

    
    

3485     

 
  

    
 

 
              

Srf 

  
    

 1.0 
 

    

 
  

 Srf_secondary   
 

        2630  2 

 

Table 3-7: Further investigation of the BEEML-PBM failure. 

Validation of CentriMo results using Srf and Pou2f2 ChIP-seq from H1-hESC and GM12891 

cell lines, respectively. Table columns as in table 3-5. 
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Using GM12878 cell line, Ets1 has no centrally enriched motif from either database. Now 

using A549 cell line the motifs have an improved statistically significant p-value and the 

distribution is now centered. Ets1 motif from GM12878 cell line has a different binding 

specificity compared to A549 cell line. The results suggest that Ets1 is up-regulated in cancer 

cells compared with normal cells. That different cell lines produce very different results 

illustrates that we cannot just download arbitrary data and process it without thinking about 

what it represents; maybe that cell line is one where that particular TF is down-regulated. The 

H1-hESC cell line is more enriched for Rxra compared with GM12878 cell line. Retinoic 

acids have been found to play a role in the development of vertebrate embryos. This is 

consistent with CentriMo results that Rxra is up-regulated in embryonic stem cells. Although 

the p-value is now statistically significant, the window of central enrichment not very narrow 

(about 160bp) (table 3-8). This could be due to poor ChIP-seq data resolution.  

 

CentriMo distribution Logos p-values Sequences Matches Width 

 

 
 

  

  
        

  

  
  1.2e-73 

 
11102 201 

  

  

 Embo10_Ets1_deBruijn   

11401 

    

  

1.6e-72 7938 184 
  

  
  

  

  
 Ets1-primary   

 Ets1 

  
    

 
 

 

  

  
 
Rxra_primary 

1.1e-32   
 

430 
 

158 

  

  
 Sci09.v1_Rxra_1035 

 
 

5.2e-28 
596 

 
 

507 

 
 

159 

  

  

  
    

  

  
          

  

  
  

 9.1e-26 
   

 515 
 

 153  Rxra 

  
 Sci09.v2_Rxra_1035   

 

Table 3-8: Further investigation of CentriMo failure. 

Validation of CentriMo results using the same TFs, but from different cell lines. Ets1 is from 

A549 cell line and Rxra is from the H1-hESC cell line. Columns as in Table 3-5. 
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Comparing motifs found using ChIP-seq data from HAIB lab with that from SYDH lab. 

To date, ENCODE has a small sample of TFs that are in both the BEEML-PBM and 

UniPROBE databases. The SYDH lab contains only 3 TFs that have motifs in both databases. 

The CentriMo results are compared with those from the HAIB lab. The results using ChIP-

seq data obtained from different laboratories agree with each other providing evidence that 

Max, Hnf4a and Gata3 are centrally enriched (table 3-9). Like in the ChIP-seq data from 

HAIB lab, these results show that Hnf4a secondary is the most highly enriched motif in 

Hnf4a peaks. Overall, CentriMo results using ChIP-seq data from HAIB lab and SYDH lab 

are similar. 

CentriMo distribution Logos p-values Sequences Matches Width 

 

  
 

  

 
   

 
    

  
  

 Sci09.v2_Max_3863 1.2e-294 
 

19397 133 

  
  

 
   

 
    

  
  

    21281     
  

  
 Sci09.v2_Max_3864 2.5e-285 

 
17153 125 

  
  

 
   

 
    

  Max 
 

 Max_primary 3.4e-257 
 

11302 133 

 

  
 

    
 
         

  
  

 Hnf4a_secondary 1.6e-163 
 

4301 117 

  
  

    
 

    

  
  

 
   6373     

  
  

 Sci09.v1_Hnf4a_2640 1.2e-129 
 

6037 113 

  
  

 
   

 
    

  Hnf4a    Sci09.v2_Hnf4a_2640 1.1e-122   6032 119 

 

  
 

  

 
   

 
    

  
  

 Sci09.v2_Gata3_4964 3.0e-289 
 

9033 125 

  
  

 
   

 
    

  
  

    10287     
  

  
 Sci09.v2_Gata3_1024 4.3e-281 

 
9094 125 

  
  

 
   

 
    

  Gata3    Sci09.v1_Gata3_1024 6.6e-271   9232 125 

Table 3-9: ChIP-seq data from the ENCODE/Stanford/Yale/USC/Harvard Lab. 

The cell lines used are shown in table 2-3. 
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3.5 CentriMo run on combined JASPAR/UniPROBE database 

Because the different cell lines do not always agree, further investigation is performed using 

CentriMo on combined JASPAR/UniPROBE database to see whether the highly centrally 

enriched motifs correspond to the ChIP-ed TF or are results of co-factors. Also JASPAR 

provides alternatives, making it possible to check if a previous failure arose because both 

BEEML-PBM and PBM failed to find a good motif. The output is compared to see whether 

CentriMo on combined JASPAR/UniPROBE gives similar results to those obtained using 

CentriMo on combined BEEML-PBM/UniPROBE database, using the same TFs and cell 

lines. For all CentriMo results reported here, the TF cell lines in table 2-1 are used.  

 

The CentriMo distribution for Egr1, Max, Nr2f2, Gata3 and Hnf4a TFs is unimodal and well 

centered agreeing with our previous study using BEEML-PBM and UniPROBE databases 

(see table 3-10). CentriMo reports UniPROBE Gata6 motif and JASPAR GATA1 motif to be 

centrally enriched (ranks first and fourth, respectively) in GATA3 peaks. This is consistent 

with a prior study which reports that Gata3 and Gata1 TFs share 92% identity (Ho et al., 

1991). GATA3 ranks tenth and thirteenth by JASPAR and UniPROBE, respectively. The 

sharp peaks in the Egr1 site probability plot also suggest direct DNA binding. Interestingly, 

the UniPROBE motif for Sp4 ranks third. A previous study by (Wagner et al., 2008) reports 

that Egr1 shares similar binding sites with Sp family members, but they only report 

interaction with Sp1.  

The peak of the site-probability curve for Max is very well centered indicating direct DNA 

binding. The JASPAR motifs for Mycn and Myc are most centrally enriched in Max ChIP-

seq data and these motifs are very similar to Max. The findings show that using CentriMo 

and a specified motif database(s) a motif from the same family as the ChIP-ed factor is most 

likely to be centrally enriched. The central enrichment of Myc peaks in Max ChIP-seq data 

reported by CentriMo is in agreement with Larsson et al.'s (1997); Orian et al.'s (2003); 

Hurlin et al.'s (2006) findings. The JASPAR motif of Hnf4a ranks first and the peak is well 

centered (table 3-10) indicating direct DNA binding. This finding is consistent with the prior 

studies where the authors used chromatin immunoprecipitaton together with promoter 

microarrays to find the genes occupied by Hnf1a, Hnf4a, and Hnf6 in human liver cells. They 

concluded that Hnf4a takes part in the regulation of the liver transcriptomes by directly 

interacting with actively transcribed genes (Odom et al., 2004). From these results it can be 

concluded that these five TFs have direct binding. 
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CentriMo distribution  Logos p-values Sequences Matches Width 

 
  

 

  

 
  
 

1.6e-1095   8926 107 
  

  
 Egr1_primary         

  
  

 
  
 

 
10295     

  
  

 Egr1MA0162.1 4.9e-1072   7585 106 

  
  

 
  
 

        
  Egr1    Sp4_primary 7.0e-434   8529 112 

 
  

 

  

 
  
 

1.6e-1967 
 

30219 121 

  
  

 Mycn_MA0104.2   
 

    

  
  

 
  
 

  43838     

  
  

 Myc MA0147.1 1.1e-1752 
 

30766 121 

  
  

 
  
 

  
 

    
  Max 

 
 Mycn MA0104.2 5.8e-1639 

 
29786 117 

 
  

 

    
 
  
 

1.9e-532   10592 157 
  

  
 GAT1 MA0300.1         

  
  

 
  
 

 
24408     

  
  

 DAL80 MA0289.1 5.1e-490   11672 156 

  
  

 
  
 

        
  Nr2f2 

 
 Nr2f2_primary 2.0e-473   14747 129 

 
  

 

    
 
  
 

5.0e-389   16236 106 
  

  
 Gata6_primary         

  
  

 
  
 

  26299     
  

  
 GZF3 MA0309.1 3.1e-369   13944 107 

  
  

 
  
 

 
  

 
  

  Gata3    Foxa2_MS0047.2 2.0e-368   17271 157 

 
  

 

  

 
  
 

        
  

  
 HNF4A_MA0114.1 1.3e-1938   21389 136 

  
  

 
  
 

        
  

  
 NR2F1 MA0017.1 1.5e-1504 24405 14731 139 

  
  

 
  
 

        
  Hnf4a    Hnf4a_secondary 7.0e-1159   15072 129 

Table 3-10: CentriMo run on combined JASPAR/UniPROBE database. 

Table shows: the ChIP-ed TF name and the distribution of the first five highly enriched 

motifs ranked according to their central enrichment p-values. Table columns as in table 3-5. 
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The JASPAR motif for Foxa2 ranks first (table 3-11), indicating that Foxa2 is highly 

enriched. But the peak is still not well centered as in the first case using BEEML-PBM and 

UniPROBE databases. In prior studies Foxa2 has been found to bind together with other TFs 

to control gene expression. Previous studies have suggested cooperative binding between 

Foxa2 and HNF4a, HNF6, CREB1, USF1, HNF1a or GATA4 (Odom et al., 2006; Bossard & 

Zaret, 1998). Using SAGE their findings revealed new interactions, including HNF4, HNF1 

and GATA4, as well as novel TFs such as Maz, Mazr and Smad3, all of which are expressed 

in the adult liver. Also Foxa2 interacts with proteins in close proximity and binds DNA 

through those TFs. CentriMo ranks motifs of the fox family first and the motifs suggested 

from the literature are not enriched. The most highly enriched JASPAR motif for Foxa2 has a 

TTT consensus sequence appearing more than once. This shows the variation in DNA 

binding specificity.  It is possible that the motif matches with other TFs with low information 

content and might bind to the sequences that are not true binding motifs. Therefore, further 

investigation is still needed to be certain whether Foxa2 binds cooperatively or not.   

 

For the Irf4 dataset, the highly enriched motifs are the JASPAR motif for GCN4 and the 

UniPROBE secondary motif for Jundm2 (table 3-11). The observed off-center peaks in Irf4 

distribution and the literature evidence confirm that Irf4 binds DNA in combination with 

Jundm2 secondary, which shows a statistically significant central enrichment p-value (7.7e-

150) and ranks second in Irf4 ChIP-seq peaks. This supports Whitington et al.,'s finding 

(2011). The authors used SpaMo and reports that Irf4 binds in combination with Jundm2 

secondary. CentriMo ranks UniPROBE motifs for Irf4 and Irf5 seventh and twelfth, 

respectively. Irf4 is less enriched suggesting cooperative binding with the highly enriched 

motifs. The GABPA motif (ranks third) is similar to Sfpi1 motif (ranks first) reported by 

AME.  

 

For Sp4, the results suggest that Sp4 binds indirect or in combination with other TFs 

especially Klf family. The most centrally enriched motifs in Sp4 ChIP-seq peak are Klf7 and 

Klf4 ranked by UniPROBE and JASPAR, respectively (table 3-11). Literature evidence, 

which indicated that Klf binding domains are similar to that of Sp family (Waby et al., 2008)  

and CentriMo results using combined JASPAR/UniPROBE database and on different cell 

lines suggest that the observed off-center peak distributions are results of cooperative 

binding. 
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CentriMo distribution   Logos   p-values Sequences Matches Width 

 

  
 

  

  
 

 

 
 

 

 
  

  

  

  
Foxa2_MA0047.2 

  
6.6e-271    7124  203 

  

  

  
  
  

  8472     

  

  

     1.2e-215   7395 220 
FOXA1_MA0148.1 

  

  

  
 

    

 

    

 Foxa2       
 
Foxa2_primary 

4.3e-202   7099 224 

 

  
 

  

  
 

 
 

 

 
  

  

  

  

  
  
 Klf7_primary 

6.7e-79    5494  219 

  

  

  
 

 
 

 

  6063 

 

  

  
  

   btd MA0443.1 9.6e-74   5367 243 

  

  

  
 

 
 

 

    

 

  

 Sp4        Klf4 MA0039.1 1.3e-71   5619 217 

  

  

  
 

  
  

 

  

  

  

  
 GCN4 MA0303.1 
  

3.4e-153 

 

 6928  152 

  

  

  
 

  
 

  19205     

  
  

   Jundm2_secondary 7.7e-150   7592 153 

  

  

  
 

 
 

 

  

 

    

 Irf4       GABPA MA0062.2 8.5e-122   9723 170 

 

Table 3-11: Investigating the mechanism of binding. 

Investigating the mechanism of binding (indirect or cooperative) using CentriMo on 

combined JASPAR/UniPROBE motif database. Columns as in Table 3-5. 
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For both Pou2f2 and Srf, GABPA motifs from the JASPAR database are highly centrally 

enriched (table 3-12). None of the enriched motifs look like a POU domain in Pou2f2 data 

set. CTCF had been suggested to interact with Oct4, which is a POU TF (Lee et al., 2012). 

The enrichment of CTCF suggests that it interacts with POU TFs. Previous studies have 

shown that GABP  is recruited together with Oct1 (POU TF) at the enhancer region in GABP 

mediated transcription (Phillips et al., 2000). The enrichment of GABP motifs in Srf data set 

supports the two independent prior studies, where there authors report that the two TFs bind 

in close proximity to each other (Wallerman et al., 2009; Valouev et al., 2008). In previous 

studies, it has been shown that Srf binds in combination with Tcf protein family, which 

includes Elk1, SAP1 and SAP2 and myocardin proteins (Mkl1 and Mkl2) (Miano, 2003; 

Miralles et al., 2003). Also interesting, the JASPAR motif for Elk4 (Tcf family member) 

ranks third in the Srf ChIP-seq regions indicating that Srf interacts with most members of the 

Tcf family. That the JASPAR motif for Srf is highly centrally enriched in its dataset shows 

that the BEEML-PBM method failed or there is no motif in the BEEML-PBM database that 

accurately represent the true binding motif. The JASPAR motif for Srf is similar to PBM 

motif, suggesting JASPAR has a better version. 

CentriMo distribution Logos   p-values Sequences Matches Width 

 
 

 

  

  
  

 
  

  

 
  

 GABPA_MA0062.2  2.3e85    11483  206 

 
  

      20589     

 
  

  
CTCF MA0139.1 

9.2e-79   7610 122 

 
  

            

 
  

 
  

 
  

  
 Pou2f2      Gabpa_primary  7.7e-69    9236  232 
 

  

    
 

 
  

 
  

 
 SRF MA0083.1 

 1.8e-142 

 

 869  125 

 
  

      5068     

 
  

 
  3.7e-112 

 

3155 164 

 
  

 GABPA MA0062.2   

 

    

 
  

    
 

 
  

 Srf     
  
ELK4 MA0076.1 

 4.1e-90    1870  172 

Table 3-12: Further investigation of BEEML-PBM approach failure.   

Table shows the CentriMo output on combined JASPAR/UniPROBE motif database as a 

further investigation for BEEML-PBM approach failure. Columns as in Table 3-5. 
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Again, the Ets1 motif does not appear in the set of reported enriched motifs (table 3-13) 

indicating that there is no motif in the databases that represents the true binding motif. It is 

possible that the enriched motifs in Ets1 ChIP-seq regions are binding partners of Ets1. In 

previous studies it has been shown that Ets1 functionally and physically interacts with 

different TFs and other proteins. Most proteins that directly contact Ets1 bind to the Ets 

domain (Dittmer, 2003). Other proteins interact with the exon VII domain, the N-terminal 

part of Ets1 or the activation domain. Some proteins, such as Sp100 or TFE3, interact with 

several domains of the Ets1 protein (Wasylyk et al., 2002; Tian et al., 1999). A number of 

TFs had been found to control the transcriptional activity of Ets1 by regulating Ets1 DNA 

binding affinity. Ets1 has also been shown to increase the DNA binding activity of its 

partners (Kim et al., 1999).  

Both methods fail to find an Rxra motif with central enrichment. The distribution is almost 

flat. This could be due to the low quality of the ChIP-seq data as results of errors or 

contamination incorporated during sample preparation or the antibody used is not specific to 

the TF.  The UniPROBE motif for HNf4a ranks first, suggesting that Rxra binds DNA in 

combination with Hnf4a. Hnf4a has been suggested as the homodimer receptor for RXRs 

(retinoid X receptors). The central enrichment of the JASPAR motif for Nr2f1 (table 3-13) is 

interesting knowing that Rxra does not bind to DNA in the absence of Nr2f2 (Fang et al., 

2012). The previous study only suggested binding with Nr2f2 and this study shows that Rxra 

binds with most members of the nuclear receptor family of TFs. RXRs has been found to 

form heterodimers with RARs (retinoic acid receptors) and stimulate their binding 

(Mangelsdorf et al., 1995). RXRs bind to the human response element. Interestingly, the 

UniPROBE motif for Rara is enriched supporting the previous evidence of RXR/RAR 

heterodimer formation. The enrichment of RORA and other motifs shows that Rxra binds in 

combination with any nuclear receptor family of TFs. Therefore lack distinct peak could be 

due to cooperative binding. 
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For Tcf3, CentriMo finds that E-box motifs are generally centrally enriched. The first ten 

motifs in order of CentriMo p-value are E-boxes (the first three motifs are shown in table 3-

13). This supports our previous finding using AME which reported enrichment of Ascl2 and 

Tcfe2a which are also E-box TFs. Tcf3 example demonstrates how CentriMo “failures” can 

be informative. Had we not known that Tcf3 binds in cooperation with a TF with an E-box 

motif, CentriMo results would have provided a reason to investigate this possibility. The 

results show that the motif for a ChIP-ed TF or a member of its family appears to have most 

statistical significant central enrichment p-value. 

 

CentriMo distribution Logos    p-values   Sequences Width 

 

  
    

 

  2.5e-360   128 

 
   

  

 Tcfe2a_primary       

  

  

 

  
 

    32044   

  

  

 Ascl2_primary 2.1e-321   150 

  
Tcf3 

  

 

  
 

        

       NHLH1_MA0048.1 8.1e-320   165 

 

  
 

  

    2.10E-51   129 

  

  

 SWI4 MA0401.1       

  

  

 
 
MBP1 MA0329.1 

  7.20E-20       1086 194 

  

  

          

 Ets1 

  

  
MBP1 MA0330.1 

1.10E-13   84 

 
 

        1.50E-50   214 

  

  

 Hnf4a-primary       

  

  

      8357   

  

  

 RORA_1MA0071.1 1.30E-49   151 

  
Rxra 

  
  

 
 
 NR2F1_MA0017.1 

   2.70E-48           215 

 

Table 3-13: Investigation on enriched motifs with off-centred peaks.  

Further investigation on CentriMo results where there is no motif from BEEML-PBM and 

UniPROBE databases with central enrichment. Columns as in table 3-5.
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3.6 Further investigation of CentriMo results using SpaMo 

To explore if the lack of a distinct peak in the CentriMo distribution for Foxa2, Sp4 and Irf4 

results from complex binding or binding in close proximity to another TF, spaced motif 

analysis (SpaMo) is used. SpaMo detects enriched spacings and identifies the interactions 

between a given motif and TFs that form complexes with the given TF. The algorithm tries to 

find enriched motif spacing patterns by searching for the strongest primary motif binding site 

for the given TF then searches the neighbouring sites for secondary motif binding sites and 

then calculates the probability of each spacing from the primary TFs (Whitington et al., 

2011). SpaMo takes in a set of DNA sequences in FASTA format for a given TF, a primary 

motif represented as a PWM (Stormo, 2000) and a database of secondary motifs. For primary 

motif input, we use the most highly enriched motif ranked by CentriMo and use BEEML-

PBM and UniPROBE databases as secondary motif databases. SpaMo is also used to validate 

if the centrally enriched motifs reported by CentriMo represent direct binding, we expect not 

to find a single conserved spacing if these TFs bind directly to DNA. 

The CentriMo distribution for Foxa2, Irf4 and Sp4 suggests that these TFs bind in 

combination or in close proximity with other TFs. Investigating this possibility using SpaMo 

for Irf4, the results show one conserved spacing downstream on the same strand with a p-

value of 9.1e-6 (fig. 3-6). The larger gap of 18bp between primary and secondary motifs 

suggests the formation of multi-protein-DNA interactions. The results suggest that Irf4 is 

likely to bind to DNA as a complex with Gabpa. This is in agreement with CentriMo results 

using JASPAR/UniPROBE database in which Gabpa motifs are statistically enriched in Irf4 

ChIP-seq regions. The JASPAR motif for Gabpa ranks third and UniPROBE motif ranks 

fifth. SpaMo also reports Jundm2 from BEEML-PBM database as a secondary motif with 

similar spacing and this is also supported by literature evidence, which suggested complex 

binding between Irf4 and Jundm2 (Whitington et al., 2011). SpaMo found a lot of E-box TFs 

as secondary motifs in Irf4 ChIP-seq data suggesting cooperative binding or binding in close 

proximity to E-box motifs, see appendix B. 
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Figure 3-6: Evidence of Irf4 binding partners during DNA binding. 

Shown from the left is SpaMo histogram, p-values histogram and on the right are sequence 

logos for the primary motif (top) and secondary motif (bottom). The red line on the histogram 

represents statistically enriched spacing. 

 

Figure 3-7a shows that two spacings are enriched for Sp4 on different strands. The positions 

for the enriched spacings are upstream on the same strand (p-value = 2.9e-05) and upstream 

on the opposite strand (p-value = 1.5e-37). The spacings enrichment observed on different 

quadrants suggests that the two TFs are more likely to bind in close proximity to each other 

than as a complex. The Sp4 motif logo shows that it binds in a G-C rich region and the 

secondary motifs appear as truncated versions of the primary, indicating the "secondary" 

(Klf7) is not really a binding site for another motif but just an indication that there are a lot of 

similar sites in that region. The results also show two enriched spacing very close to each 

other in one quadrant (upstream on the same strand) with p-values of 0.0019 and 0.045 (fig. 

3-7b). Also the p-values are not that low indicating that the instances of that spacing is not 

very high.  
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(a) Sp4 motif with two enriched spacings on different strands. 

 

 

 

 

 

 

 

 

(b) Sp4 motif with two enriched spacings on the same strand. 

Figure 3-7: Searching for evidence of Sp4 complex formation during DNA binding. 
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Figure 3-8 shows a complex binding formation between Foxa2 and Obox1. The histogram 

shows one significant motif spacing in one quadrant with a p-value of 7.6e-05. The small gap 

of 3bp between Foxa2 primary and Obox1 secondary motifs may indicate dimer formation. A 

complex binding with Hoxa1 and Rara is also suggested. The detected enriched spacing logo 

shows that primary motif is different from the secondary motif, suggesting complex 

formation with one or more distinct TFs. These results indicate that the lack of distinct 

CentriMo distribution peak may be a result of complex binding or binding in close proximity. 

Foxa2 has been suggested to bind DNA in combination with other TFs, but combination with 

Obox1 reported by SpaMo had not been suggested. 

 

 

 

 

 

 

 

  

  

Figure 3-8: Searching for evidence of Foxa2 complex formation during DNA binding. 

 

For Srf, the predicted binding partner is Rfxdc2 BEEML-PBM motif.  A secondary motif has 

very low information for a meaningful logo (fig. 3-9a). The results suggest that there is no 

motif in the BEEML-PBM database that represents the true binding motif for Srf. A gap 

between primary and secondary motif is too large (32bp) suggesting that Srf is involved in 

multi-protein/DNA complex formation. This is in agreement with prior studies which 

suggested that Srf is involved in SAP-1/SRF/c-fos SRE DNA complex binding. Srf is known 

to form a complex with Ets proteins like SAP-1 and Elk1 (Mo et al., 2001). Interestingly, 

using CentriMo on combined JASPAR/UniPROBE Elk4 motif is centrally enriched on Srf 

ChIP-seq regions suggesting indirect or complex binding. SpaMo also detected enriched 
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spacing with Erg and Rax. Because Srf is almost a palindrome the two enriched spacings on 

opposite strands when Elf2 is a secondary motif can be treated as one spacing (fig. 3-9b) 

since the second spacing could be the result of the reverse strand binding. 

 

 

 

 

 

 

            

  

(a) Motif spacing with a large gap (32bp). 

 

 

 

 

 

 

 

 

 

(b) Two enriched spacings on different strands and position. 

Figure 3-9: Searching for evidence of Srf complex formation during DNA binding. 
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SpaMo reports several enriched spacings for Egr1 on different orientations suggesting it does 

not bind to DNA in combination with other TFs. Egr1 binds in a G-C rich region and the Sp4 

secondary (fig. 3-10) indicates that there are a lot of similar binding sites in that region. A 

prior study has reported that Egr1 binds to similar binding sites to the Sp binding site and 

physically interact with Sp1 to facilitate maximal IL-2Rβ promoter activity. They also report 

that Sp1, Sp3 and Egr1 bind to the -170 to -139 enhancer region of the human IL-2Rβ 

promoter (Lin et al., 1997). SpaMo results do not support the physical interaction between 

Egr1 and Sp4. Wagner et al., (2008) also suggested that Egr1 and Sp1 share a similar binding 

site. Also there are several spacings with low p-value for that "secondary" motif indicating 

that the TFs do not bind DNA cooperatively. This supports the CentriMo evidence that Egr1 

binds directly to DNA. 

 

 

 

 

 

 

 

 

Figure 3-10: Searching for evidence of Egr1 complex formation during DNA binding. 

 

 

 

 

 

. 
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From the category of the CentriMo results where there is no motif from either database with 

central enrichment Ets1 is chosen and used to run SpaMo. The aim is to investigate whether 

CentriMo has failed to find a correct motif or the ChIP-seq data used is of low quality 

therefore the correct motif is not centrally enriched. A single observed spacing in one 

quadrant (fig. 3-11) suggests complex binding with Atf1 TF. A recent study shows that Ets1 

DNA binding depends on partner proteins. These proteins bind to adjacent sequences of Ets 

binding site (EBS). The authors solved the crystal structure of Ets1 and found a homodimer. 

The authors also performed DNA binding modelling and report that the Ets1 dimer can bind 

to two antiparallel pieces of DNA. The Ets1 DNA binding dimer resulted in the formation of 

additional intermolecular protein-DNA interactions, indicating the complex formation is 

cooperative (Babayeva et al., 2012). SpaMo results suggest cooperative binding with Atf1. 

CentriMo results suggest that the mechanism of Ets1 binding is indirect or cooperative. Also 

AME suggests cooperative binding with TFs involved in cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11: Searching for evidence of Ets1 complex formation during DNA binding. 
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Using  AME  and CentriMo on combined JASPAR/UniPROBE none of the enriched motifs 

look like a POU motif. Further investigation using SpaMo  shows that Pou2f2 binds  in 

combination with  TFs containing ATTTGCAT (octamer) motif (fig. 3-12a) or homeodomain 

TFs containing ATTA motif (fig. 3-12b). SpaMo also found Cxr, Hoxd8, NK7.1, Phox2b, 

Pou2f1, eve and Otx2 to have significant spacing in one or different quadrants indicating 

complex binding or binding nearby these TFs. These TFs are members of the homeo family. 

 

 

 

 

 

 

 

 

 

 

 

(a) POU-octamer interaction. 

 

 

 

 

 

 

 

 

 

 

 

(b) Pou-homeodomain interaction. 

Figure 3-12: SpaMo analysis of Pou2f2 motifs.   
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CHAPTER 4: DISCUSSION 

CentriMo can be used as a CMEA tool to compare motifs for a given TF and can identify a 

better method for creating motifs from PBM. A low CentriMo p-value and low width of 

maximum enrichment (about 100bp) are strong evidence that the motif in consideration is the 

true binding motif. When the CentriMo distribution has a clear central peak, a very low p-

value (sometimes of the order of 10
-1000

 or less) and a minimal p-value in a very narrow 

window, there is a clear case of binding by a single factor. Where the peak of the site-

probability plot is not well centered, it becomes less clear what has happened. Possibilities 

include, (i) problems with the ChIP-seq experiment that has failed to localise the binding 

sites, (ii) problems with peak calling failing to localise the binding site, (iii) the specific tissue 

type or cell line may have unusual binding specificity, (iv) no motif in the database(s) that 

accurately represents the true binding motif, (v) more complex instances of binding where 

identifying a single site related to a motif may be problematic (Wang et al., 2011), resulting 

in peaks that are not centered. This could be due to indirect binding; where there is no motif 

corresponding to the TF in question is well-centered on the binding regions or cooperative 

binding, where the TF binds in combination with other TFs and their motifs become highly 

enriched. Also it could be that the CentriMo algorithm may have failed. 

 

Using CentriMo, it is possible to compare central motif enrichment from two different 

databases directly based on the above mentioned features. CMEA is applied to ChIP-seq data 

together with databases of known motifs. In this study the quality of motifs from the 

BEEML-PBM and UniPROBE databases is compared. CentriMo provides the evidence that 

Egr1, Max, Nr2f2, Gata3 and Hnf4a bind directly to DNA. Using CentriMo on combined 

BEEML-PBM/UniPROBE database (containing 980 motifs) and also on combined 

JASPAR/UniPROBE (containing 862 motifs) the distribution for these TFs is centrally 

enriched with low p-values. CentriMo provides evidence that Irf4, Sp4 and Foxa2 bind DNA 

in combination with other TFs. The CMEA findings are validated using SpaMo, which infers 

physical interactions between a given TF and nearby TFs and literature evidence. The 

agreement in the SpaMo, AME and CMEA analysis shows that the binding of these TFs is 

cooperative. CentriMo shares some similarity with SpaMo. SpaMo predicts the enriched 

spacings between the DNA binding site of the ChIP-ed TF and the co-factor. CentriMo and 

SpaMo use a binomial test to detect enriched spacings. 
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CentriMo also shows that TFs from different cell lines have different binding specificity 

depending on the tissue type and the stage of development. As an example, Ets1 from 

GM12878 and A549 cell lines shows a huge difference, from a flat distribution to a centered 

peak (p-value of 0.53 versus 1.2e-73). The GM12878 cell line is derived from the human 

lymphoblastiod cells in the blood tissue infected with Epstein-Barr virus while A549 (first 

developed by D.J Giard in 1972) is the epithelial cell line derived from a lung carcinoma 

tissue. Ets1 has been found to play a role in cellular differentiation in hematopoietic cells and 

to facilitate invasive behavior of epithelial cancer cells (Dittmer, 2003). The previous studies 

have shown that Ets1 is over-expressed in ovarian cancer cells indicating it up-regulates key 

enzymes involved in antioxidant defense. Their overall finding was that, Ets1 plays an 

important role in response to oxidative stress in ovarian cancer cells (Verschoor et al., 2010). 

Therefore, Ets1 has a higher binding affinity in A549 cell line compared with GM12878 cell 

line, indicating it is where the TF is up-regulated.  

Rxra also shows a big difference in central enrichment, a p-value of 0.77 versus 1.1e-32 in 

GM12878 and H1-hESC cell lines, respectively. The H1-hESC cell line is derived from the 

human embryonic stem cells developed from the in vitro fertilised egg. This cell line was 

developed due to lack of hepatic tissue useful for the treatment of liver disease and drug 

discovery (Zamule at al., 2011). The retinoids (Rxra) are needed for normal growth and has 

been found to be involved in various physiological processes such as vision, reproduction and 

cell differentiation (Abdel-Bakky et al., 2011). Rxra has a strong binding affinity in H1-hESC 

cell line and is involved in reproduction. 

The T-47D cell line is more enriched for Gata3 compared to A549 cell line (1.3e-28 versus 

4.0e-535). T-47D is the epithelial cell line derived from a mammary ductal carcinoma in 

breast tissue. The results suggest that Gata3 is associated with breast cancer than lung cancer. 

The enrichment of Gata3 in T-47D is interesting knowing that it plays a crucial role in 

regulation of epithelial cell phenotype in various stages of development of mammary glands 

(Naylor et al., 2007). It has been shown that Gata3 is expressed by epithelium in mammary 

glands (Visvader et al., 2003). CentriMo findings agree with the prior studies that expression 

of Gata3 is associated with breast cancer. It has been suggested that Gata3 maintains a 

differentiated state in breast epithelial cells. Also the abnormal expression has been found in 

breast, pancreatic and cervical cancers (Usary et al., 2004; Gulbinas et al., 2006; Steenbergen 

et al., 2002), respectively.  
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For Egr1, the distribution is well centered when the ChIP-seq data from GM12878 is used, 

but when using H1-hESC cell line the p-value becomes less significant (1.6e-1095 versus 

1.4e-78). Because Egr1 plays a role in control of homeostasis of hematopoietic cells (Min et 

al., 2008) and that GM12878 cell line is derived from blood tissue is consistent with 

CentriMo findings that Egr1 is highly enriched or up-regulated in GM12878 than in H1-

hESC cell line.  

Overall, the results show that a particular TF may be down-regulated or up-regulated in a cell 

line depending on the tissue type used to create that cell line and also on the biological 

function of the TF. CentriMo is developed recently and not much prior work has been done. 

The discovery of  cell line differences, which has not been done before in any CentriMo 

study, is interesting and provides reasons to study this further. This is treated as a case for 

future investigation because currently, the ENCODE project has a small number of TFs that 

are in the UniPROBE and hence BEEML-PBM database. Also CentriMo results show that 

the motif for a ChIP-ed TF or a member of its family may appear to be highly enriched. As in 

Max example, the most highly enriched motifs are Myc and Mycn motifs, which are very 

similar to Max.  

Various MEA tools have been developed, but they do not consider central enrichment of a 

motif. MEA determines whether motifs appear more often than expected by chance in a given 

TF ChIP-seq peak regions. CentriMo is able to infer direct, indirect and cooperative binding 

with some of the predictions supported by evidence from prior publications. CentriMo is 

useful in cases of poor ChIP-seq data quality, it can point to a problem. If there is a TF 

expected to have a clear binding specificity but CentriMo has a high p-value or other 

indications of less specific binding, the possibility that the ChIP-seq experiment has failed is 

considered. The study shows that there is no motif in the BEEML-PBM database that 

accurately represents the true binding motif of Pou2f2 and Srf while UniPROBE has the 

binding motifs corresponding to these TFs. In cases where CentriMo does not give clear 

central enrichment, using SpaMo on combined BEEML-PBM/UniPROBE database shows 

that the off-center peaks or the lack of distinct peak in CentriMo distribution result from 

cooperative binding or binding in close proximity to other TFs. SpaMo results show that 

Pou2f2 binds in combination or nearby TFs containing octamer or homeodomain binding 

sites. It is also found that both BEEML-PBM and UniPROBE databases have no binding 



 

67 
 

motif for Tcf3 with central enrichment. The lack of central enrichment is possible if the 

binding is most likely away from the center an artifact of the peak calling algorithm used.  

Motifs involved in direct, indirect or cooperative binding are not clearly visible if central 

enrichment is not taken into consideration. AME ranks the motifs differently from CentriMo. 

As an example, the UniPROBE motif for Egr1 ranks first by CMEA and has significant p-

value. However, using AME on the same TF used for CentriMo the same motif is now less 

enriched with less significant p-value compared to CentriMo p-value. Centrally enriched 

motifs reported by CentriMo are less enriched in AME. Using AME there is no improvement 

in the quality of motifs that show poor central enrichment indicating CMEA is a better 

method than standard MEA tools. However, AME can give an indication of an over-

represented TF or TFs that are not well centred, and that is useful for picking up cofactors or 

if CentriMo fails to find a well centred TF for a reason like indirect binding, AME may find 

enrichment of TFs to which the TF of interest binds. Table 4-1 below summarises the 

important findings and some known properties for each TF used in this study. 

TF Database Cofactors Specificity 

in cancer 

Comments 

Egr1 UniPROBE no no Up-regulated in normal cells 

Hnf4a UniPROBE no yes Associated with liver cancer 

Max BEEML-PBM no yes Associated with leukemia 

Nr2f2 BEEML-PBM Not clear yes Centrally enriched in lung cancer cells  

Gata3 BEEML-PBM no yes Highly associated with breast cancer  

Foxa2 UniPROBE yes yes Enriched in lung cancer cells 

Irf4 UniPROBE yes No evidence Binds mostly with E-box TFs 

Sp4 BEEML-PBM yes No evidence Binds mostly with Klf family members 

Pou2f2 UniPROBE yes No evidence Binds with octamer or homeodomain 

Srf UniPROBE yes No evidence Binds in combination with Ets proteins 

Ets1 BEEML-PBM yes yes Up-regulated in lung cancer cell line 

Rxra UniPROBE yes no Up-regulated in normal cells 

Tcf3 None yes No evidence E-box is the common motif 

Table 4-1: Summary of each TF. 

Table columns from left to right show: The TF name, database of the lowest p-value, TF 

involved in cooperative binding, up-regulation of TF in normal versus cancer cells and 

comments.  
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CHAPTER 5: CONCLUSION 

 

The sample (13 TFs) is too small to draw general conclusions. Out of the total of 13 TFs, 

BEEML-PBM twice has not had any central enrichment when the best PBM motif does. In 

total the BEEML-PBM approach reports five motifs and UniPROBE approach finds seven 

motifs with better central enrichment. On the other hand, across all variations, the number of 

examples where PBM is better is not high enough to convince us that it is overall the better 

approach. There are some cases where multiple motifs found by the BEEML-PBM are of 

highly variable quality. A difficulty with a comprehensive study is that the match between 

available ChIP-seq data sets and motifs in the UniPROBE data set is poor. ENCODE may be 

one of the biggest collections of ChIP-seq data, but currently it contains only a small sample 

of TF peak regions that are in the UniPROBE and hence BEEML-PBM database.  

 

There is no motif in the BEEML-PBM database that accurately represents the true binding 

motif of Pou2f2 and Srf TFs. Irf4, Sp4, Tcf3 and Foxa2 bind DNA cooperatively with other 

TFs. Ets1 is highly associated with cancer. CentriMo results suggest that a TF involved in 

cancer is more enriched in cancer cell lines than in normal cell lines. It is also found that a 

cell line can make a big difference. This study revealed that the binding specificity of a TF is 

different in different cell types and development stages. A TF is up-regulated in a cell line 

where it performs its biological function. The main contribution of this study is the discovery 

of cell line differences, which has not been done before in any CentriMo study. This finding 

is interesting and provides reasons to study the relationship between TFs and tissue types 

further.  

 

At this point there is no conclusive difference in the quality of motifs from the original PBM 

and BEEML-PBM approaches. Because there are so many reasons for a CentriMo 

distribution that differs from a strongly unimodal distribution, we treat such scenarios as 

cases for further investigation, rather than drawing unequivocal conclusions. 
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FUTURE PROSPECTS 

 

That both approaches fail on several examples supports the case that evaluation of any found 

motif against in vivo data is essential. Further evaluation should consider the cause of failure. 

This should address the following questions: 

(i) Are cases that appear to fail a result of a poor motif? 

(ii) Errors in the ChIP-seq experiment?  

(iii)  Unusual or novel binding specificity?  

(iv) A failure of CentriMo? or 

(v) A more complex mode of binding?  

These questions for “failed” cases can be evaluated by: 

(i) Comparing the “failed” motif to one found by ab initio motif discovery tools, 

(ii) comparing the CentriMo results presented here with that for another ChIP-seq 

data set for the same TF, and 

(iii) determining whether there is a case where CentriMo’s statistical approach does 

not work. 

Any reasonable study of the quality of an in vitro or in silico derivation of motifs should be 

compared against the ground reality of in vivo data. Seeking out ChIP-seq data sets against 

which to evaluate both the PBM and BEEML-PBM approaches is important to enhance these 

analysis techniques further. 

  



 

70 
 

BIBLIOPGRAPHY 

Abdel-Bakky, M. S., Hammad, M. A., Walker, L. A., & Ashfaq, M. K. (2011). Tissue factor 

dependent liver injury causes release of retinoid receptors (RXR-α and RAR-α) as lipid 

droplets. Biochemical and biophysical research communications, 410(1), 146-51. 

Elsevier Inc. doi:10.1016/j.bbrc.2011.05.127 

Ahmad, S., Gromiha, M. M., & Sarai, A. (2004). Analysis and prediction of DNA-binding 

proteins and their binding residues based on composition, sequence and structural 

information. Bioinformatics, 20(4), 477-86. doi:10.1093/bioinformatics/btg432 

Atchley, W. R., & Fitch, W. M. (1997). A natural classification of the basic helix – loop – 

helix class of transcription factors. Proc. Natl. Acad. Sci. USA, 94, 5172-5176. 

Babayeva, N. D., Baranovskaya, O. I., & Tahirov, T. H. (2012). Structural basis of Ets1 

cooperative binding to widely separated sites on promoter DNA. PloS one, 7(3), e33698. 

doi:10.1371/journal.pone.0033698 

Badis, G., Berger, M. F., Philippakis, A. A., Talukder, S., Gehrke, A. R., Jaeger, S. A., Chan, 

E. T., et al. (2009). Diversity and complexity in DNA recognition by transcription 

factors. Science, 324(5935), 1720-3. doi:10.1126/science.1162327 

Bailey, T. L. (2011). DREME: motif discovery in transcription factor ChIP-seq data. 

Bioinformatics, 27(12), 1653-1659. doi:10.1093/bioinformatics/btr261 

Bailey, T. L., & Elkan, C. (1995). The value of prior knowledge in discovering motifs with 

MEME. Proc. Int. Conf. Intell. Syst. Mol. Biol, 3, 21-29. 

Bailey, T. L., & Machanick, P. (2012). Inferring direct DNA binding from ChIP-seq. Nucleic 

Acids Research, 40(17) e128. doi:10.1093/nar/gks433 

Bailey, T. L., Williams, N., Misleh, C., & Li, W. W. (2006). MEME: discovering and 

analyzing DNA and protein sequence motifs. Nucleic acids research, 34(Web Server 

issue), W369-73. doi:10.1093/nar/gkl198 

Balleza, E., Lopez-Bojorquez, L. N., Martinez-Antonio, A., Resendis-Antonio, O., Lozada-

Chavez, I., Balderas-Martinez, Encarnacion, S., et al. (2009). Regulation by 

transcription factors in bacteria: beyond description. FEMS microbiology, 33, 133-151. 

doi:10.1111/j.1574-6976.2008.00145.x 

Beilharz, T. H., & Preiss, T. (2004). Translational profiling: the genome-wide measure of the 

nascent proteome. Briefings in functional genomics & proteomics, 3(2), 103-111. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15355593 

Berger, M. F., & Bulyk, M. L. (2009). Universal protein binding microarrays for the 

comprehensive characterization of the DNA binding specificities of transcription factors. 

Nat Protoc., 4(3), 393-411. doi:10.1038/nprot.2008.195. 



 

71 
 

Berger, M. F., Philippakis, A. A., Qureshi, A. M., He, F. S., Estep, P. W., & Bulyk, M. L. 

(2006). Compact, universal DNA microarrays to comprehensively determine 

transcription-factor binding site specificities. Nature biotechnology, 24(11), 1429-35. 

doi:10.1038/nbt1246 

Bieda, M., Xu, X., Singer, M. A., Green, R., & Farnham, P. J. (2006). Unbiased location 

analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human 

genome. Genome research, 16(5), 595-605. doi:10.1101/gr.4887606 

Bossard, P., & Zaret, K. S. (1998). GATA transcription factors as potentiators of gut 

endoderm differentiation. Development, 125, 4909-4917. 

Conlon, E. M., Liu, X. S., Lieb, J. D., & Liu, J. S. (2003). Integrating regulatory motif 

discovery and genome-wide expression analysis. Proceedings of the National Academy 

of Sciences of the United States of America, 100(6), 3339-44. 

doi:10.1073/pnas.0630591100 

Crick, F. (1970). Central Dogma of Molecular Biology. Nature, 227(6), 561-563. 

Dittmer, J. (2003). The Biology of the Ets1 Proto-Oncogene. Molecular Cancer, 2, 1-21. 

Down, T. A., & Hubbard, T. J. P. (2005). NestedMICA: sensitive inference of over-

represented motifs in nucleic acid sequence. Nucleic acids research, 33(5), 1445-53. 

doi:10.1093/nar/gki282 

Elkon, R., Linhart, C., Sharan, R., Shamir, R., & Shiloh, Y. (2003). Genome-wide in silico 

identification of transcriptional regulators controlling the cell cycle in human cells. 

Genome research, 13(5), 773-80. doi:10.1101/gr.947203 

Fang, B., Mane-padros, D., Bolotin, E., Jiang, T., & Sladek, F. M. (2012). Identification of a 

binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors. 

Nucleic Acids Research, 1-14. doi:10.1093/nar/gks190 

Frith, M. C., Fu, Y., Yu, L., Chen, J.-F., Hansen, U., & Weng, Z. (2004). Detection of 

functional DNA motifs via statistical over-representation. Nucleic acids research, 32(4), 

1372-81. doi:10.1093/nar/gkh299 

Gauthier, B. R., Schwitzgebel, V. M., Zaiko, M., Mamin, A., Ritz-laser, B., & Philippe, J. 

(2002). Hepatic Nuclear Factor-3 (HNF-3 or Foxa2) Regulates Glucagon Gene 

Transcription by Binding to the G1 and G2 Promoter Elements. Molecular 

Endocrinology, 16(1), 170-183. 

Gulbinas, A., Berberat, P. O., Dambrauskas, Z., Giese, T., Giese, N., Autschbach, F., Kleeff, 

J., et al. (2006). Aberrant gata-3 expression in human pancreatic cancer. The journal of 

histochemistry and cytochemistry, 54(2), 161-9. doi:10.1369/jhc.5A6626.2005 

Gupta, S., Stamatoyannopoulos, J. a, Bailey, T. L., & Noble, W. S. (2007). Quantifying 

similarity between motifs. Genome biology, 8(2), R24. doi:10.1186/gb-2007-8-2-r24 



 

72 
 

Gustavson, M. D., Crawford, H. C., Fingleton, B., & Matrisian, L. M. (2004). Tcf binding 

sequence and position determines beta-catenin and Lef-1 responsiveness of MMP-7 

promoters. Molecular carcinogenesis, 41(3), 125-39. doi:10.1002/mc.20049 

Halene, S., Gao, Y., Hahn, K., Massaro, S., Italiano, J. E., Lin, S., Kupfer, G. M., et al. 

(2010). Serum response factor is an essential transcription factor in megakaryocytic 

maturation. Blood, 1-26. doi:10.1182/blood-2010-01-261743 

Haverty, P. M., Hansen, U., & Weng, Z. (2004). Computational inference of transcriptional 

regulatory networks from expression profiling and transcription factor binding site 

identification. Nucleic acids research, 32(1), 179-188. doi:10.1093/nar/gkh183 

Hill, D. P., Blake, J. A., Richardson, J. E., & Ringwald, M. (2002). Extension and Integration 

of the Gene Ontology ( GO ): Combining GO Vocabularies With External Vocabularies. 

Genome Research, 12, 1982-1991. doi:10.1101/gr.580102.11 

Ho, I., Vorhees, P., Marin, N., Oakley, B. K., Tsai, S., Orkin, S. H., & Leiden, J. M. (1991). 

Human GATA-3 : a lineage-restricted transcription factor that regulates the expression 

of the T cell receptor Ol gene. The EMBO journal, 10(5), 1187-1192. 

Hu, M., Yu, J., Taylor, J. M. G., Chinnaiyan, A. M., & Qin, Z. S. (2010). On the detection 

and refinement of transcription factor binding sites using ChIP-Seq data. Nucleic acids 

research, 38(7), 2154-67. doi:10.1093/nar/gkp1180 

Huan, B., & Siddiqui, A. (1992). Retinoid X receptor RXR alpha binds to and trans-activates 

the hepatitis B virus enhancer. Proceedings of the National Academy of Sciences of the 

United States of America, 89(19), 9059-63. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=50064&tool=pmcentrez&re

ndertype=abstract 

Hurlin, P. J., & Huang, J. (2006). The MAX-interacting transcription factor network. 

Seminars in cancer biology, 16(4), 265-74. doi:10.1016/j.semcancer.2006.07.009 

Jothi, R., Cuddapah, S., Barski, A., Cui, K., & Zhao, K. (2008). Genome-wide identification 

of in vivo protein-DNA binding sites from ChIP-seq data. Nucleic acids research, 

36(16), 5221-31. doi:10.1093/nar/gkn488 

Kadonaga, J. T. (2004). Regulation of RNA Polymerase II Transcription by Sequence-

Specific DNA Binding Factors. Cell, 116, 247-257. 

Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., Haussler, D., & 

Kent, W. J. (2004). The UCSC Table Browser data retrieval tool. Nucleic acids 

research, 32(Database issue), D493-6. doi:10.1093/nar/gkh103 

Kassouf, M. T., Hughes, J. R., Taylor, S., Cheng, Y., King, D. C., & Dore, L. C. (2010). 

Genome-wide identification of TAL1’s functional targets : Insights into its mechanisms 

of action in primary erythroid cells. Genome research, 1064-1083. 

doi:10.1101/gr.104935.110 



 

73 
 

Khodursky, A. B., & Bernstein, J. A. (2003). Life after transcription--revisiting the fate of 

messenger RNA. Trends in genetics, 19(3), 113-5. doi:10.1016/S0168-9525(02)00047-1 

Kim, W., Sieweke, M., Ogawa, E., Wee, H., Englmeier, U., Graf, T., & Ito, Y. (1999). 

Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their 

autoinhibitory domains. The EMBO Journal, 18(6), 1609-1620. 

Ko, L. J., & Engel, J. D. (1993). DNA-Binding Specificities of the GATA Transcription 

Factor Family. Molecular and cellular biology, 13(7), 4011-4022. 

Koch, J., & Bu, T. R. (2006). Sequence analysis LogoBar : bar graph visualization of protein 

logos with gaps. Bioinformatics, 22(1), 112-114. doi:10.1093/bioinformatics/bti761 

Krylov, D., & Vinson, C. R. (2001). Leucine Zipper. Encyclopedia of life sciences, Nature, 1-

7. 

Kubosaki, A., Tomaru, Y., Tagami, M., Arner, E., Miura, H., Suzuki, T., Suzuki, M., et al. 

(2009). Genome-wide investigation of in vivo EGR-1 binding sites in monocytic 

differentiation. Genome biology, 10(4), R41. doi:10.1186/gb-2009-10-4-r41 

Lackner, D. H., & Bahler, J. (2008). Translational Control of Gene Expression : From 

Transcripts to Transcriptomes. International Review of Cell and Molecular Biology, 

271(08), 199-251. doi:10.1016/S1937-6448(08)01205-7 

Larsson, L., Bahram, F., Burkhardt, H., & Lüscher, B. (1997). Analysis of the DNA-binding 

activities of Myc/Max/Mad network complexes during induced differentiation of U-937 

monoblasts and F9 teratocarcinoma cells. Oncogene, 15, 737-748. Retrieved from 

http://ukpmc.ac.uk/abstract/MED/9264414 

Lee, B., & Iyer, V. R. (2012). Genome-wide Studies of CCCTC-binding Factor (CTCF) and 

Cohesin Provide Insight into Chromatin Structure and Regulation. The Journal of 

biological chemistry, 287(37), 30906-13. doi:10.1074/jbc.R111.324962 

Lee, Y., Kim, M., Han, J., Yeom, K., Lee, S., Baek, S. H., & Kim, V. N. (2004). MicroRNA 

genes are transcribed by RNA polymerase II. The EMBO journal, 23, 4051-60. 

doi:10.1038/sj.emboj.7600385 

Lennard, M. L., Wilson, M. R., Miller, N. W., Clem, L. W., Warr, G. W., & Hikima, J.-ichi. 

(2006). Oct2 transcription factors in fish--a comparative genomic analysis. Fish & 

shellfish immunology, 20(2), 227-38. doi:10.1016/j.fsi.2005.01.011 

Lin, J. X., & Leonard, W. J. (1997). The immediate-early gene product Egr-1 regulates the 

human interleukin-2 receptor beta-chain promoter through noncanonical Egr and Sp1 

binding sites . Mol. Cell. Biol., 17(7), 3714–3722. 

Linhart, C., Halperin, Y., & Shamir, R. (2008). Transcription factor and microRNA motif 

discovery : The Amadeus platform and a compendium of metazoan target sets. Genome 

Research, 18, 1180-1189. doi:10.1101/gr.076117.108.2 



 

74 
 

Liu, R., McEachin, R. C., & States, D. J. (2003). Computationally identifying novel NF-

kappa B-regulated immune genes in the human genome. Genome research, 13(4), 654-

61. doi:10.1101/gr.911803 

Lozzio, C. B., & Lozzio, B. B. (1975). Human chronic myelogenous leukemia cell-line with 

positive Philadelphia chromosome. Blood, 45(3), 321-334. 

Luscombe, N., Austin, S., Berman, H., & Thornton, J. (2000). An overview of the structures 

of protein-DNA complexes. Genome biology, 1(1), 1-10. Retrieved from 

http://genomebiology.com/2000/1/1/rEVIEWS/001 

Machanick, P., & Bailey, T. L. (2011). MEME-ChIP: motif analysis of large DNA datasets. 

Bioinformatics, 27(12), 1696-1697. doi:10.1093/bioinformatics/btr189 

Mangelsdorf, D. J., & Evanst, R. M. (1995). The RXR Heterodimers and Orphan Receptors. 

Cell, 83, 841-850. 

Maston, G. A., Evans, S. K., & Green, M. R. (2006). Transcriptional regulatory elements in 

the human genome. Annual review of genomics and human genetics, 7, 29-59. 

doi:10.1146/annurev.genom.7.080505.115623 

Mata, J., Marguerat, S., & Bähler, J. (2005). Post-transcriptional control of gene expression: a 

genome-wide perspective. Trends in biochemical sciences, 30(9), 506-14. 

doi:10.1016/j.tibs.2005.07.005 

McLeay, R. C., & Bailey, T. L. (2010). Motif Enrichment Analysis: a unified framework and 

an evaluation on ChIP data. BMC bioinformatics, 11, 1-11. doi:10.1186/1471-2105-11-

165 

Miano, J. (2003). Serum response factor: toggling between disparate programs of gene 

expression. Journal of Molecular and Cellular Cardiology, 35(6), 577-593. 

doi:10.1016/S0022-2828(03)00110-X 

Miller, J., McLachlan, A., & Klug, A. (1985). Repetitive zinc-binding domains in the protein 

transcription factor IIIA from Xenopus oocytes. The EMBO journal, 4(6), 1609-1614. 

Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554390/ 

Min, I. M., Pietramaggiori, G., Kim, F. S., Passegué, E., Stevenson, K. E., & Wagers, A. J. 

(2008). The transcription factor EGR1 controls both the proliferation and localization of 

hematopoietic stem cells. Cell Stem Cell, 2(4), 380-91. doi:10.1016/j.stem.2008.01.015 

Miralles, F., Posern, G., Zaromytidou, A., & Treisman, R. (2003). Actin Dynamics Control 

SRF Activity by Regulation of Its Coactivator MAL. Cell, 113, 329-342. 

Mo, Y., Ho, W., Johnston, K., & Marmorstein, R. (2001). Crystal Structure of a Ternary 

SAP-1 / SRF / c-fos SRE DNA Complex. Journal of Molecular Biology, 314, 495-506. 

doi:10.1006/jmbi.2001.5138 



 

75 
 

Mukherjee, S., Berger, M. F., Jona, G., Wang, X. S., Muzzey, D., Snyder, M., Young, R. A., 

et al. (2004). Rapid analysis of the DNA Binding Specificities of Transcription Factors 

with DNA Microarrays. Nature genetics, 36(12), 1331-1339. doi:10.1038/ng1473.Rapid 

Naylor, M. J., & Ormandy, C. J. (2007). Gata-3 and mammary cell fate. Breast cancer 

research : BCR, 9(2), 302-303. doi:10.1186/bcr1661 

Newburger, D. E., & Bulyk, M. L. (2009). UniPROBE: an online database of protein binding 

microarray data on protein-DNA interactions. Nucleic acids research, 37(Database 

issue), D77-82. doi:10.1093/nar/gkn660 

Nishida, K., Frith, M. C., & Nakai, K. (2009). Pseudocounts for transcription factor binding 

sites. Nucleic acids research, 37(3), 939-44. doi:10.1093/nar/gkn1019 

Odom, D. T., Dowell, R. D., Jacobsen, E. S., Nekludova, L., Rolfe, P. A., Danford, T. W., 

Gifford, D. K., et al. (2006). Core transcriptional regulatory circuitry in human 

hepatocytes. Molecular systems biology, 2, 1-5. doi:10.1038/msb4100059 

Odom, D. T., Zizlsperger, N., Gordon, D. B., Bell, G. W., Nicola, J., Murray, H. L., Volkert, 

T. L., et al. (2004). Control of Pancreas and Liver Gene Expression by HNF 

Transcription Factors. Science, 303(5662), 1378-1381. 

doi:10.1126/science.1089769.Control 

Oikawa, T., & Yamada, T. (2003). Molecular biology of the Ets family of transcription 

factors. Gene, 303, 11-34. Retrieved from 

http://www.sciencedirect.com/science/article/pii/s0378111902011563 

Orian, A., van Steensel, B., Delrow, J., Bussemaker, H. J., Li, L., Sawado, T., Williams, E., et 

al. (2003). Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor 

network. Genes & development, 17(9), 1101-14. doi:10.1101/gad.1066903 

Pabo, C., & Sauer, R. (1992). Transcription factors: structural families and principles of DNA 

recognition. Annual review of biochemistry, 61, 1053-95. Retrieved from 

http://www.annualreviews.org/doi/pdf/10.1146/annurev.bi.61.070192.005201 

Pandolfi, P. P. (2004). Aberrant mRNA translation in cancer pathogenesis: an old concept 

revisited comes finally of age. Oncogene, 23(18), 3134-7. doi:10.1038/sj.onc.1207618 

Papatsenko, D. A., Makeev, V. J., Lifanov, A. P., Regnier, M., Nazina, A. G., & Desplan, C. 

(2002). Extraction of Functional Binding Sites from Unique Regulatory Regions: The 

Drosophila Early Developmental Enhancers. Genome Research, 12(3), 470-481. 

doi:10.1101/gr.212502 

Patrik, D. (2006). What are DNA sequence motifs ? Nature Biotechnology, 24(4), 423-425. 

Pavesi, G., Mereghetti, P., Mauri, G., & Pesole, G. (2004). Weeder Web : discovery of 

transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic 

Acid Research, 32, 199-203. doi:10.1093/nar/gkh465 



 

76 
 

Pearson, R., Fleetwood, J., Eaton, S., Crossley, M., & Bao, S. (2008). Krüppel-like 

transcription factors: a functional family. The international journal of biochemistry & 

cell biology, 40(10), 1996-2001. doi:10.1016/j.biocel.2007.07.018 

Phillips, K., & Luisi, B. (2000). The virtuoso of versatility: POU proteins that flex to fit. 

Journal of molecular biology, 302(5), 1023-39. doi:10.1006/jmbi.2000.4107 

Qian, J., Esumi, N., Chen, Y., Wang, Q., Chowers, I., & Zack, D. J. (2005). Identification of 

regulatory targets of tissue-specific transcription factors: application to retina-specific 

gene regulation. Nucleic acids research, 33(11), 3479-91. doi:10.1093/nar/gki658 

Qian, Z., Cai, Y., & Li, Y. (2006). Automatic transcription factor classifier based on 

functional domain composition. Biochemical and biophysical research, 347, 141-144. 

doi:10.1016/j.bbrc.2006.06.060 

Raney, B. J., Cline, M. S., Rosenbloom, K. R., Dreszer, T. R., Learned, K., Barber, G. P., 

Meyer, L. R., et al. (2011). ENCODE whole-genome data in the UCSC genome browser 

(2011 update). Nucleic acids research, 39(Database issue), D871-5. 

doi:10.1093/nar/gkq1017 

Reddy, D. A., Prasad, B. V. L. S., & Mitra, C. K. (2006). Functional classification of 

transcription factor binding sites : Information content as a metric. Journal of Integrative 

Bioinformatics, 1-13. 

Reddy, T. E., Gertz, J., Pauli, F., Kucera, K. S., Varley, K. E., Newberry, K. M., Marinov, G. 

K., et al. (2012). Effects of sequence variation on differential allelic transcription factor 

occupancy and gene expression. Genome research, 22, 860-9. 

doi:10.1101/gr.131201.111 

Rengarajan, J., Mowen, K. A., McBride, K. D., Smith, E. D., Singh, H., & Glimcher, L. H. 

(2002). Interferon Regulatory Factor 4 (IRF4) Interacts with NFATc2 to Modulate 

Interleukin 4 Gene Expression. Journal of Experimental Medicine, 195(8), 1003-1012. 

doi:10.1084/jem.20011128 

Roeder, R. G. (1996). The role of general initiation factors in transcription by RNA 

polymerase II. Trends in Biochemical Sciences, 21(9), 327-335. 

Roider, H. G., Manke, T., O’Keeffe, S., Vingron, M., & Haas, S. a. (2009). PASTAA: 

identifying transcription factors associated with sets of co-regulated genes. 

Bioinformatics, 25(4), 435-42. doi:10.1093/bioinformatics/btn627 

Ryan, A. K., & Rosenfeld, M. G. (1997). POU domain family values: flexibility, 

partnerships, and developmental codes. Genes & Development, 11(10), 1207-1225. 

doi:10.1101/gad.11.10.1207 

Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W., & Lenhard, B. (2004). 

JASPAR: an open-access database for eukaryotic transcription factor binding profiles. 

Nucleic acids research, 32(Database issue), D91-4. doi:10.1093/nar/gkh012 



 

77 
 

Schneider, T. D., & Stephens, R. M. (1990). Sequence logos : a new way to display 

consensus sequences. Nucleic Acids Research, 18(20), 6097-6100. 

Sharan, R., Ovcharenko, I., Ben-Hur, A., & Karp, R. M. (2003). CREME: a framework for 

identifying cis-regulatory modules in human-mouse conserved segments. 

Bioinformatics, 19(Suppl 1), i283-i291. doi:10.1093/bioinformatics/btg1039 

Sharif, N. M., Radomska, H. S., Miller, D. M., & Eckhardt, L. A. (2001). Unique Function 

for Carboxyl-Terminal Domain of Oct-2 in Ig-Secreting Cells. Journal of Immunology, 

167, 4421-29. 

Sharma, S., Singh, R., Rana, S., & Uniyal, R. (2011). IDENTIFICATION OF MOTIFS IN 

BIOACTIVE PEPTIDES PRECURSORS. International Journal of Bioinformatics and 

Biosciences, 1(1), 13-26. Retrieved from 

http://www.ssjournals.com/index.php/ijbar/article/view/221 

Smith, A. D., Sumazin, P., Das, D., & Zhang, M. Q. (2005). Mining ChIP-chip data for 

transcription factor and cofactor binding sites. Bioinformatics, 21, i403-12. 

doi:10.1093/bioinformatics/bti1043 

Steenbergen, R. D. M., Oudeengberink, V. E., Kramer, D., Schrijnemakers, H. F. J., 

Verheijen, R. H. M., Meijer, C. J. L. M., & Snijders, P. J. F. (2002). Down-Regulation 

of GATA-3 Expression during Human Papillomavirus-Mediated Immortalization and 

Cervical Carcinogenesis. American Journal of Pathology, 160(6), 1945-1951. 

Stormo, G. D. (2000). DNA binding sites: representation and discovery. Bioinformatics, 

16(1), 16-23. 

Strom, A., Hartman, J., Foster, J. S., Kietz, S., Wimalasena, J., & Gustafsson, J.-åke. (2004). 

Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast 

cancer cell line T47D. PNAS, 101(6), 1566-1571. 

Suzuki, T., Aizawa, K., Matsumura, T., & Nagai, R. (2005). Vascular implications of the 

Krüppel-like family of transcription factors. Arteriosclerosis, thrombosis, and vascular 

biology, 25(6), 1135-41. doi:10.1161/01.ATV.0000165656.65359.23 

Tallack, M. R., Whitington, T., Yuen, W. S., Wainwright, E. N., Keys, J. R., Gardiner, B. B., 

Nourbakhsh, E., et al. (2010). A global role for KLF1 in erythropoiesis revealed by 

ChIP-seq in primary erythroid cells. Genome research, 20(8), 1052-63. 

doi:10.1101/gr.106575.110 

Tang, Y., Shu, G., Yuan, X., Jing, N., & Song, J. (2011). FOXA2 functions as a suppressor of 

tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung 

cancers. Cell research, 21, 316-26. Nature Publishing Group. doi:10.1038/cr.2010.126 

The ENCODE Project Consortium. (2011). A User’s Guide to the Encyclopedia of DNA 

Elements ( ENCODE ). PLoS biology, 9(4), 1-21. doi:10.1371/journal.pbio.1001046 



 

78 
 

Tian, G., Erman, B., Ishii, H., Samudra, S., Tian, G., Erman, B., Ishii, H., et al. (1999). 

Transcriptional Activation by ETS and Leucine Zipper-Containing Basic Helix-Loop-

Helix Proteins. Molecular and Cellular Biology, 19(4), 2946–2957. 

Usary, J., Llaca, V., Karaca, G., Presswala, S., Karaca, M., He, X., Langerød, A., et al. 

(2004). Mutation of GATA3 in human breast tumors. Oncogene, 23(46), 7669-78. 

doi:10.1038/sj.onc.1207966 

Valouev, A., Johnson, D. S., Sundquist, A., Medina, C., Batzoglou, S., Myers, R. M., & 

Sidow, A. (2008). Genome-Wide Analysis of Transcription Factor Binding Sites Based 

on ChIP-seq Data. Nature Methods, 5(9), 829-834. doi:10.1038/nmeth.1246.Genome-

Wide 

Veenstra, G., Vliet, P. van der, & Destrée, O. (1997). POU domain transcription factors in 

embryonic development. Molecular biology reports, 24, 139-155. Retrieved from 

http://www.springerlink.com/index/L85022G003802284.pdf 

Verschoor, M. L., Wilson, L. A., Verschoor, C. P., & Singh, G. (2010). Ets-1 regulates 

energy metabolism in cancer cells. PloS one, 5(10), e13565. 

doi:10.1371/journal.pone.0013565 

Visvader, J. E., & Lindeman, G. J. (2003). Transcriptional regulators in mammary gland 

development and cancer. The International Journal of Biochemistry & Cell Biology, 

35(7), 1034-1051. doi:10.1016/S1357-2725(03)00030-X 

Voduc, D., Cheang, M., & Nielsen, T. (2008). GATA-3 expression in breast cancer has a 

strong association with estrogen receptor but lacks independent prognostic value. 

Cancer epidemiology, biomarkers & prevention, 17(2), 365-73. doi:10.1158/1055-

9965.EPI-06-1090 

Von Hippel, P. H. (1998). An Integrated Model of the Transcription Complex in Elongation, 

Termination, and Editing. Science, 281, 660-665. doi:10.1126/science.281.5377.660 

Waby, J. S., Bingle, C. D., & Corfe, B. M. (2008). Post-Translational Control of Sp-Family 

Transcription Factors. Current genomics, 9, 301-311. 

Wagner, M., Schmelz, K., Dörken, B., & Tamm, I. (2008). Transcriptional regulation of 

human survivin by early growth response (Egr)-1 transcription factor. International 

journal of cancer. Journal international du cancer, 122(6), 1278-87. 

doi:10.1002/ijc.23183 

Wallerman, O., & Motallebipour, M. (2009). Molecular interactions between HNF4a, 

FOXA2 and GABP identified at regulatory DNA elements through ChIP-sequencing. 

Nucleic Acids Research, 37(22), 7498-7508. doi:10.1093/nar/gkp823 

Wang, X., & Zhang, X. (2011). Pinpointing transcription factor binding sites from ChIP-seq 

data with SeqSite. BMC systems biology, 5(2), 1-14. BioMed Central Ltd. 

doi:10.1186/1752-0509-5-S2-S3 



 

79 
 

Wang, Y., Liu, C. L., Storey, J. D., Tibshirani, R. J., Herschlag, D., & Brown, P. O. (2002). 

Precision and functional specificity in mRNA decay. Proceedings of the National 

Academy of Sciences of the United States of America, 99(9), 5860-5. 

doi:10.1073/pnas.092538799 

Wasserman, W W, & Fickett, J. W. (1998). Identification of regulatory regions which confer 

muscle-specific gene expression. Journal of molecular biology, 278(1), 167-81. 

doi:10.1006/jmbi.1998.1700 

Wasserman, Wyeth W, & Sandelin, A. (2004). Applied bioinformatics for the identification 

of regulatory elements. Nature reviews Genetics, 5(4), 276-87. doi:10.1038/nrg1315 

Wasylyk, C., Schlumberger, S. E., Wasylyk, C., Schlumberger, S. E., Criqui-filipe, P., & 

Wasylyk, B. (2002). Sp100 Interacts with ETS-1 and Stimulates Its Transcriptional 

Activity. Molecular and Cellular Biology, 22(8), 2687-2702. 

doi:10.1128/MCB.22.8.2687 

Watkins, S. J., & Norbury, C. J. (2002). Translation initiation and its deregulation during 

tumorigenesis. British journal of cancer, 86, 1023-1027. doi:10.1038/sj/bjc/6600222 

Watson, J., & Crick, F. (1953). The structure of DNA, 532-539. Retrieved from 

http://symposium.cshlp.org/content/18/123.short 

Wederell, E. D., Bilenky, M., Cullum, R., Thiessen, N., Dagpinar, M., Delaney, A., Varhol, 

R., et al. (2008). Global analysis of in vivo Foxa2-binding sites in mouse adult liver 

using massively parallel sequencing. Nucleic acids research, 36(14), 4549-64. 

doi:10.1093/nar/gkn382 

Whitington, T., Frith, M. C., Johnson, J., & Bailey, Timothy, L. (2011). Inferring 

transcription factor complexes from ChIP-seq data. Nucleic Acids Research, 39(15), 1-

11. doi:10.1093/nar/gkr341 

Wilusz, C. J., & Wilusz, J. (2004). Bringing the role of mRNA decay in the control of gene 

expression into focus. Trends in genetics, 20(10), 491-7. doi:10.1016/j.tig.2004.07.011 

Wittkopp, P. (2010). Variable transcription factor binding: a mechanism of evolutionary 

change. PLoS biology, 8(3), 2-4. doi:10.1371/journal.pbio.1000342 

Yan, S., Pinsky, D., Mackman, N., & Stern, D. (2000). Egr-1: is it always immediate and 

early? The Journal of Clinical Investigation, 105(5), 553-554. Retrieved from 

http://www.jci.org/cgi/content/abstract/105/5/553 

Yang, E., Nimwegen, E. V., & Zavolan, M. (2003). Decay rates of human mRNAs: 

correlation with functional characteristics and sequence attributes. Genome research, 13, 

1863-1872. doi:10.1101/gr.1272403.7 

Yang, Z., Wen, H., Minhas, V., & Wood, C. (2009). The zinc finger DNA-binding domain of 

K-RBP plays an important role in regulating Kaposi’s sarcoma-associated herpesvirus 



 

80 
 

RTA-mediated gene expression. Virology, 391(2), 221-31. 

doi:10.1016/j.virol.2009.06.014 

Yu, X., Lin, J., Zack, D. J., & Qian, J. (2006). Computational analysis of tissue-specific 

combinatorial gene regulation: predicting interaction between transcription factors in 

human tissues. Nucleic acids research, 34(17), 4925-36. doi:10.1093/nar/gkl595 

Zamule, S. M., Coslo, D. M., Chen, F., & Omiecinski, C. J. (2011). Differentiation of human 

embryonic stem cells along a hepatic lineage. Chemico-biological interactions, 190(1), 

62-72. Elsevier Ireland Ltd. doi:10.1016/j.cbi.2011.01.009 

Zhao, Y., Granas, D., & Stormo, G. D. (2009). Inferring binding energies from selected 

binding sites. PLoS Computational Biology, 5(12), 1-8. 

doi:10.1371/journal.pcbi.1000590 

Zhao, Y., & Stormo, G. D. (2011). Quantitative analysis demonstrates most transcription 

factors require only simple models of specificity. Nature Biotechnology, 29(6), 480-483. 

Zheng, J., Wu, J., & Sun, Z. (2003). An approach to identify over-represented cis-elements in 

related sequences. Nucleic Acids Research, 31(7), 1995-2005. doi:10.1093/nar/gkg287 

 

WEBSITE REFERENCES  

http://genome.ucsc.edu/ENCODE/ (used for CentriMo,SpaMo and AME sequence retrieval) 

http://meme.nbcr.net (used to run SpaMo) 

  

http://genome.ucsc.edu/ENCODE/
http://meme.nbcr.net/


 

81 
 

APPENDIX 

Lines typed on the command line have a "$" in front to distinguish from script files. 

APPENDIX: A 

Motif extraction  

$ export tf=Irf4 

 

$ export dbdir=$HOME/meme/db/motif_databases 

 

$ export db=zhao2011  #can be any database 

 

$ grep $tf $dbdir/$db.meme 

 

#MOTIF sci09.v1_Irf4_3476 UP00018#output 

 

#MOTIF sci09.v2_Irf4_3476 UP00018 

 

$ meme-get-motif -id sci09.v1_Irf4_3476 -id sci09.v2_Irf4_3476 

< $dbdir/$db.meme > $dbdir/$tf-$db.meme 

 

 

Script 

#The script obtains a FASTA file from  hg 19, given a BED file: get-fasta.bash 
 

#!/bin/bash 

ddir=$HOME/Downloads 

width=500 

genome=hg19 

 

gdir=$HOME/Downloads 

gfile=all-repeat-N.fa 

for tf in Irf4 

do 

  echo $tf 

 

  if [ -e /tmp/${pre}${tf}.fa ] 

 

  then 

    rm -f /tmp/${pre}${tf}.fa 

  fi 

 

  bed-widen  -width ${width} < ${ddir}/${pre}${tf}.peaks | 

fastaFromBed -fi ${gdir}/${gfile} -bed - -fo 

/tmp/${pre}${tf}.fa 

  fasta-remove-all-n -excl N < /tmp/${pre}${tf}.fa > 

${ddir}/${pre}${tf}.fa 

done 

script provided by Prof Philip Machanick 
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 CentriMo on combined BEEML-PBM/UniPROBE database (command line) 
 

$./get-fasta.bash  

 

$ centrimo --verbosity 1 -oc Irf4_centrimo Downloads 

/Irf4/Irf4.fa ~/meme/db/motif_databases/Irf4.meme 

 

 

#The Irf4.meme file contains the motifs from BEEML-PBM and UniPROBE databases. 
 

 

CentriMo on combined JASPAR/UniPROBE database (command line) 
 

$centrimo --verbosity 1 -oc Irf4_centrimo 

Project/JASPAR_UniPROBE_CentriMo/Irf4/Irf4.fa/home/ntombi/meme

/db/motif_databases/uniprobe_mouse.meme 

$HOME/meme/db/motif_databases/JASPAR_CORE_2009.meme 

 

 

CEQLOGO COMMAND LINE 
 

$ceqlogo -i Irf4-uniprobe_mouse.meme -t Irf4 > Irf4.eps 

 

#can use motif from any database. 

#ceqlogo is one of many ways used to generate motif logos. 
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AME SCRIPT 

#!/bin/bash 

 

if [ $# -lt 2 ] 

 

then 

 

   echo "USAGE: $0 fastafile DB+" 

 

   echo "must supply fasta file plus at least one DB" 

 

   exit 1 

 

fi 

 

export tf=`echo $1|cut -d '-' -f 1` 

 

echo "TF="$tf 

 

export seq=$1 

 

shift 

 

export DBs=$* 

 

fasta-dinucleotide-shuffle -f $seq -t -dinuc > $tf-shuffled.fa 

 

cat $seq $tf-shuffled.fa > $tf-w_bg.fa 

 

ame --verbose 1 --oc ${tf}_ame_out --fix-partition `getsize 

$seq | cut -f 1 -d " "` --bgformat 0  $tf-w_bg.fa $DBs 
 
 

#script provided by Philip Machanick 
 

#For script explanation, see AME electronic data. 
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APPENDIX: B 
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Figure 1: Evidence that Irf4 binds in combination with E-box motifs. 

 


