

 An Object-Oriented Toolkit for Music Notation

 THESIS
 Submitted in Fulfilment of the

 requirements for the Degree of

 MASTER OF SCIENCE (APPLIED COMPUTER SCIENCE)

 by

 Andrew Arnold Eales

 November

 1998

 Supervisor : Dr. R.J. Foss

 Abstract

This thesis investigates the design and implementation of an object-oriented toolkit for music

notation. It considers whether object-oriented technology provides features that are desirable for

representing music notation. The ability to sympathetically represent the conventions of music

notation provides software tools that are flexible to use, and easily extended to represent less

common features of music notation.

The design and implementation of an object-oriented class hierarchy that captures the structural and

semantic relationships of music notation symbols is described. Functions that search for symbols,

and update symbol positions are also implemented. Traditional context-sensitive and spatial

relationships between music symbols may be maintained, or extended to provide notational features

found in modern music. MIDI functionality includes the ability to play music notation and to allow

step-recording of MIDI events.

The toolkit has been designed to simplify the creation of applications that make use of music

notation; example applications are created to demonstrate its capabilities.

Keywords : object-oriented, music notation, computer music.

 i

 Table of Contents

 1. Introduction

 1.1 Computers and Music Notation ... 1

 1.2 Object-Oriented Software Design .. 1

 1.3 Designing Music Notation Software .. 2

 1.4 Music Notation and MIDI ... 2

 1.5 Project Objectives ... 3

 2. An Overview of Music Notation

 2.1 Traditional Music Notation ... 5

 2.2 The Notational Hierarchy .. 6

 2.2.1 Score and Pages ... 7

 2.2.2 Systems and Staves .. 7

 2.2.3 Clefs and Key-Signatures ... 10

 2.2.4 Time-Signatures ... 11

 2.2.5 Bars and Barlines ... 12

 2.2.6 Voices .. 14

 2.2.7 Notes, Rests, and Chords .. 15

 2.2.7.1 Notes ... 15

 2.2.7.2 Rests .. 16

 2.2.7.3 Chords ... 17

 2.2.8 Beams .. 18

 2.2.9 Articulation Symbols and Ornaments 19

 2.2.10 Dynamics, and Auxiliary Symbols 20

 2.2.11 Parts ... 21

 2.3 Classifying Notation Symbols ... 22

 2.3.1 Context-Sensitive Relationships 22

 2.3.2 Semantic Constituents ... 22

 2.3.3 Semantic Modifiers ... 23

 2.3.4 Notational Conveniences .. 23

 2.3.5 Spatially Dependent Symbols ... 24

 ii

 3. Music Notation Software and Software Tools

 3.1 Overview ..25

 3.2 Music Notation Software ... 25

 3.2.1 Finale .. 25

 3.2.2 Encore ...27

 3.2.3 MUSICA .. 29

 3.2.4 Copyist ... 29

 3.2.5 Other Notation Programs ... 30

 3.3 Sequencers and Educational Software ... 31

 3.4 Software Tools for Music Notation ... 32

 3.4.1 Notation Interchange File Format 33

 3.4.2 The Notation Engine ... 34

 3.4.3 Music Fonts .. 34

 3.5 Object-Oriented Music Representation .. 36

4. Designing an Object-Oriented Toolkit for Music Notation

 4.1 Object-Oriented Development Methods .. 37

 4.1.1 Selecting a Method ... 38

 4.2 Object-Oriented analysis and Design ... 39

 4.2.1 The Coad Method ... 39

 4.3 Identifying objects and their relationships 41

 4.3.1 Scores, Pages and Score Templates 42

 4.3.2 Systems and Staves ... 45

 4.3.3 Bars and Barlines ... 48

 4.3.3.1 Bar Representation 51

 4.3.3.2 Barline Relationships 53

 4.3.3.3 Secondary Bars ... 55

 4.3.4 Clefs, Key-Signatures and Time-Signatures 56

 4.4 Voices ... 58

 iiii

4.5 Note, Rest and Chord Relationships ... 59

 4.5.1 Note Structure ... 59

 4.5.2 Rests .. 61

 4.5.3 Chords and MusicEvent Objects 62

 4.6 Beams and Beamed Groups .. 64

 4.7 Irregular Groups ... 67

 4.8 MIDI Message Objects .. 68

 4.9 Part Objects ... 69

 4.10 Defining Object Relationships ... 70

 4.11 Comparing MUSICA and the OOTMN .. 77

 4.11.1 Abstract Classes in MUSICA .. 78

 4.11.2 The MUSICA Class Hierarchy 78

 5. Implementing the Toolkit for Music Notation in C++

 5.1 Selecting a Development Environment .. 81

 5.2 Real-World Models and Machine Models 82
 5.3 An Object-Oriented Implementation of the Model 83

 5.3.1 Creating objects ... 84

 5.3.2 Storing Objects .. 85

 5.3.3 Searching for Objects ... 86

 5.3.4 Moving Objects ... 89

 5.4 Implementing Objects .. 93

 5.4.1 Encoding Music Symbols ... 93

 5.4.2 Representing Notes .. 93

 5.4.2.1 Name Class .. 93

 5.4.2.2 Pitch Class ... 94

 5.4.2.3 Octave Representation 95

 5.4.3 Line Symbols ... 96

 5.4.4 Special Symbols .. 97

 5.4.4.1 Slurs, Ties, and Phrase Markings 97

 5.4.4.2 Beams ... 98

 iv

 5.5 MIDI Playback ... 99

 5.5.1 MIDI Synchronisation ... 100

 5.6 Algorithms used by the OOTMN ... 103

 5.6.1 Creating Beamed Groups .. 103

 5.6.2 Calculating Grouplet Durations 105

 5.6.3 Implementing MIDI Playback ... 106

 6. Examples of Toolkit-Created Applications

 6.1 Designing Applications using the OOTMN 108

 6.2 Notation and Composition software ... 109

 6.2.1 User-interface Design ... 109

 6.2.2 Using the Notation and Composition Program 111

 6.2.3 Secondary Bars, Secondary Stems and

 Split-Stem Chords ... 114

 6.2.4 Toolbar and Menu Options .. 115

 6.2.5 Context-sensitive Symbolic Relationships 116

 6.2.6 MIDI Playback and Recording 117

 6.3 A Harmony Tutor ... 117

 6.3.1 Selecting a Development Environment 118

 6.3.2 Authoring Packages ... 119

 6.3.3 Using the Harmony Tutor .. 120

 6.4 An Embedded Notation Example ... 121

 7. Conclusion

 7.1 Functionality of the OOTMN ... 123

 7.1.1 Simplifying Application Development 124

 7.1.2 Manipulating Notation Symbols 124

 7.1.3 Extensions to Traditional Notation 125

 7.2 Design of the OOTMN .. 125

 7.3 Limitations of the OOTMN ... 126

 7.4 The Borland Development Environment ... 127

 v

 7.5 A Software Engineering Perspective .. 128

 7.5.1 Prototyping ... 128

 7.5.2 Partitioning the Object Model .. 128

 7.5.3 Simplifying the Development Environment 129

 7.6 Future Directions .. 129

 7.6.1 File Formats .. 130

 7.6.2 Algorithmic Enhancements ... 130

 7.6.3 Developing a Music Font ... 131

 7.6.4 Optimising Display Updates .. 131

 7.6.5 Porting the OOTMN .. 132

 7.7 Summary of the Capabilities of the OOTMN 132

 Appendices

 A. The OOTMN User Guide .. 133

 B. The Object-Oriented Toolkit Library Reference 135

 Glossary .. 166

 Bibliography ... 170

 References ... 171

 Index ... 175

 vi

List of Figures

 Figure 2.1 Symbols and their semantic constituents .. 22

 Figure 2.2 Symbols and their associated semantic modifiers 23

 Figure 3.1 The Finale user interface and special tool palette 26

 Figure 3.2 The Encore user interface and symbol palettes 28

 Figure 3.3 Piano roll notation .. 31

 Figure 3.4 Note duration encoding schemes ... 33

 Figure 3.5 Relating ASCII symbols to music symbols 35

 Figure 3.6 Encoding notes in a music font ... 36

 Figure 4.1 An Object and its attributes and methods .. 40

 Figure 4.2 Generalisation-specialisation, and whole-part relationships 40

 Figure 4.3 An instance relationship and its cardinality 41

 Figure 4.4 Score and Score Template objects .. 43

 Figure 4.5 Example of a score template .. 44

 Figure 4.6 System, SystemBracket and Staff objects 47

 Figure 4.7 Bar and Barline objects .. 49

 Figure 4.8 Bar Specialisations and Secondary Bar objects 55

 Figure 4.9 Clef, Time-signature and key-signature objects 57

 Figure 4.10 Voice objects and their relationships ... 58

 Figure 4.11 Structure of a note symbol .. 59

 Figure 4.12 Whole-part structure of a Note object ... 60

 Figure 4.13 Relationship between a Note and Accidental,

 Tie and Slur objects .. 61

 Figure 4.14 A Rest Object .. 61

 Figure 4.15 Chord class as an independent class .. 63

 Figure 4.16 Chord class derived from Class MusicEvent 63

 Figure 4.17 Distinct classes for notes and chord notes 64

 Figure 4.18 Structure of BeamedGroup and Beam objects 65

 Figure 4.19 Relationships between note durations ... 67

 Figure 4.20 Structure of class Grouplet .. 68

 vii

 Figure 4.21 A MidiMessage object ... 68

 Figure 4.22 A Part Object .. 69

 Figure 4.23 Representing notational relationships as classes 71

 Figure 4.24 Object Relationships between classes BeamedGroup,

 Grouplet and Chord ... 72

 Figure 4.25 Complete OOTMN Object Model .. 73-4

 Figure 4.26 Message passing in the OOTMN... 75-6

 Figure 4.27 The Class Hierarchy of MUSICA .. 77

 Figure 4.28 MUSICA Staff and MusicObject objects 78

 Figure 4.29 MUSICA Class MusicObject and its derived classes 79

 Figure 5.1 Relationships between the Windows API,

 the OWL and the OOTMN .. 81

 Figure 5.2 Structure of a MusicSymbol object ... 83

 Figure 5.3 Hierarchical relationships that determine object

 creation and storage ... 85

 Figure 5.4 Searching process modelled by Coad notation 87

 Figure 5.5 Searching process modelled in psuedocode 88

 Figure 5.6 Searching using Polymorphism ... 89

 Figure 5.7 Updating a symbol and it’s dependent symbols modelled using

 Coad notation ... 91

 Figure 5.8 Updating a Note and it’s dependencies positions in psuedocode 92

 Figure 5.9 Pitch classes and note letter names related to the keyboard 94

 Figure 5.10 Hairpin object .. 96

 Figure 5.11 A Cubic Bézier curve ... 97

 Figure 5.12 Beams implemented as rectangles or parallelograms 98

 Figure 5.13 Brace and bracket symbols implemented as bitmaps 99

 Figure 5.14 Implementation of class MidiMessage ... 100

 Figure 5.15 MMT MidiEvent structure .. 101

 Figure 5.16 Calculating MIDI starting times ... 102

 Figure 5.17 Calculating timestamps as MIDI offsets ... 103

 Figure 5.18 Creating BeamedGroup objects .. 104

 viii

 Figure 6.1 Application interface to the OOTMN .. 108

 Figure 6.2 MusicSymbol objects and their associated hitspots.......................... 112

 Figure 6.3 LineSymbol objects and their associated hitspots 112

 Figure 6.4 Options controlling the movement of symbols 113

 Figure 6.5 OOTMN command summary.. 114

 Figure 6.6 The Score Application toolbar ... 115

 Figure 6.7 Palette menus for different music symbols 116

 Figure 6.8 Multimedia Builder and the Harmony Tutor

 executing simultaneously.. 120

 Figure 6.9 Code example of embedded notation ... 122

 Figure 7.1 Display updates using screen and memory device contexts............... 131

 ix

 List of Musical Examples

 Example 2.1 Pitch determination at different hierarchical levels 6

 Example 2.2 An unformatted page consisting of five-line and

 single-line staves ... 8

 Example 2.3 A formatted page consisting of two systems 9

 Example 2.4 Pitch divisions within a staff .. 9

 Example 2.5 Leger lines above and below the staff ... 10

 Example 2.6 Clef relationships ... 11

 Example 2.7 Changing Meter - Leonard Bernstein, America from

 West Side Story ... 12

 Example 2.8 Bars delimited by barlines - Mozart, Piano Sonata

 in C major, K.545 .. 13

 Example 2.9 System Barlines ... 13

 Example 2.10 Barlines derived from a logical grouping of staves 14

 Example 2.11 Parallel voices - Johann Pachelbel,

 Was Got Tutt, das ist wohlgetan ... 14

 Example 2.12 Context-dependencies determining a note’s pitch 15

 Example 2.13 Representation of voices with and without secondary stems 16

 Example 2.14 Note and Rest symbols ... 16

 Example 2.15 Chords and their associated stem .. 17

 Example 2.16 Split-stem chords ... 18

 Example 2.17 Beams grouping notes according to the meter 18

 Example 2.18 Extended beams and fan beams .. 19

 Example 2.19 Articulation Symbols ... 19

 Example 2.20 Notation and execution of ornaments .. 20

 Example 2.21 Notation of separate parts .. 21

 Example 2.22 Parts of example 2.20 notated using distinct voices 22

 Example 3.1 Spatial dependencies in Encore - Andrew Eales,

 The Dark Stream, 3rd mov. measures 1-2 29

 Example 3.2 Copyist example score - Debussy, Reflets dans l’eau 30

 x

 Example 4.1 Placement of Staves, Bars and Barlines -

 Witold Lutoslawski, Dance Preludes .. 46

 Example 4.2 A single staff divided into bars .. 50

 Example 4.3 Starting position of the first bar of a staff 50

 Example 4.4 Barline positions of the first bar of a staff 51

 Example 4.5 Two representations of a bar ... 51

 Example 4.6 Piano / vocal score format ... 52

 Example 4.7 System barlines created from overlapping barlines 53

 Example 4.8 Barline notation used by Igor Stravinsky

 in Abraham and Isaac ... 54

 Example 4.9 Barline notation used by Luciano Berio 54

 Example 4.10 Shared barlines used by the OOTMN ... 55

 Example 4.11 Time-signature positions in modern notation 58

 Example 4.12 Rest notation in a two-voice canon .. 62

 Example 4.13 Brahms, Clarinet Sonata no.1, first movement,

 measures 145 - 149 ... 66

 Example 4.14 Defining notational relationships ... 70

 Example 4.15 Unidiomatic notational relationships .. 72

 Example 5.1 Staves and their bounding rectangles ... 88

 Example 5.2 Name class and staff step relationships 94

 Example 5.3 Octave representation ... 95

 Example 5.4 Implementing MIDI timestamps .. 101

 Example 5.5 Durations of irregular groups ... 105

 Example 5.6 Incomplete bar and cross-staff beams ... 107

 Example 6.1 Dragging Beam objects ... 110

 Example 6.2 OOTMN examples of extended and fan beams 110

 Example 6.3 OOTMN created examples of time-signatures 111

 xi

Acknowledgements

I would like to thank all those who provided assistance and encouragement. My supervisor, Richard

Foss, who suggested the idea, clarified numerous object-oriented issues, and patiently put up with

me. Peter Wentworth of the Rhodes Computer Science Department, who answered my questions

regarding embedded C++ code in Java. Windows Help programmers, Paul Arnot and Michael

Cessna, who provided information concerning the Microsoft Windows Help System. All the Borland

Object Windows Library (OWL) programmers for making their expertise available via the OWL

mailing list and archives. InterSystems Concepts Inc., Formula Software Ltd. and MediaChance

who provide free versions of their multimedia authoring software for evaluation and academic

purposes. Object International Inc., for making their Playground object modelling software available

for self-study and academic usage. Dominic Giampaolo, who placed his code for the calculation of

Bézier splines in the public-domain. Paul Messick, creator of the Music Quest MIDI Toolkit, and the

Maximum MIDI Toolkit. Without the Maximum MIDI Toolkit, implementing MIDI functionality within

the OOTMN (Object Oriented Toolkit for Music Notation) would have been an enormously difficult

task.

 1

1

Chapter 1 Introduction

1.1 Computers and Music Notation

The use of computers to represent and store music notation is a fairly recent development, resulting

from the widespread use of graphic user interfaces and the acceptable resolutions provided by

graphics hardware. The Apple Macintosh platform pioneered applications for music notation during

the mid nineteen-eighties, followed a few years later by software designed for other machine

architectures. Applications that use music notation, tend to make use of programming code that is

application specific. The absence of libraries supporting music notation that can assist programmers

is the primary motivation for this study. Incorporating a library that is application independent into a

project provides a partitioning that is desirable in successful software engineering. Dissatisfaction

with the capabilities of many existing notation packages provided further ideas for the design of a

notation library. Some of the currently available music notation software packages and software

tools for the Microsoft Windows environment.are discussed in chapter three.

1.2 Object-Oriented Software Design

Object-oriented technology models the real world by means of object hierarchies that correspond to

real-world objects and their relationships. Emphasis is placed on modular relationships between data

and the processes that operate on data. Other software engineering methods place emphasis on the

modular design of processes that are not closely coupled to the data that is processed. Music

notation is a problem domain that is naturally object-oriented due to the intricate relationships

between different symbols (objects), and the widely differing characteristics (data) of each symbol.

Consider the following explanation of object-oriented representation given by Stroustrup [Stroustrup,

1988]

“Concepts do not usually come as self-contained entities. On the contrary, most concepts relate to other

concepts in a variety of ways. Therefore, representing concepts as types in a program also requires

ways of expressing the relations between types. C++ lets you specify hierarchically organised classes.

This is the key feature supporting object-oriented programming.”

 2

2

If the term ‘concept’ is regarded a being a music symbol, the above could be directly referring to

music notation.

1.3 Designing Music Notation Software

Existing music notation software may be divided into two broad categories, programs that only

provide a graphic representation of music notation, and applications that allow a graphic

representation to be translated into a sonic realisation. A purely graphic approach is not context-

sensitive, while the sonic interpretation of music symbols requires a high degree of context-

sensitivity within a hierarchical arrangement of different symbols. These two approaches contain a

trade-off regarding the power of visual, symbolic expression, and the ability to unambiguously

interpret a given symbol within the context of other symbols.

Software that is not context-sensitive places no constraints on the user, allowing any available

symbol to be placed anywhere on a page. Symbols that are not directly supported by the software

may be designed in a graphics format and imported into the program. Complex music scores made

from a collage of symbols are easily created using a purely graphical approach. Unfortunately,

graphical computer scores that do not have underlying context-sensitive representations have no

music theoretical meaning at the machine level. The visual score has no underlying machine

representation that can be translated into sonic events, or used for useful musicological research.

Graphical scores can only be viewed on a terminal or printed.

1.4 Music Notation and MIDI

Music notation software that allows a score to be played on a MIDI (Musical Instrument Digital

Interface) device must have an underlying structure that is at least partly compatible with music

theory. Such a system must follow restrictions regarding the placement of symbols, allowing the

user to only place symbols within a meaningful context. Unfortunately, these restrictions may be so

severe as to limit the practical usefulness of the software when confronted with unusual practices

commonly found in twentieth-century music. Conventional music theory contains many exceptions

 3

3

to established convention, while contemporary practices are only limited by the resourcefulness of

the composer. Music notation, is however, a dynamically developing system where new practices

gain widespread acceptance. The MIDI protocol is not described in detail. A complete description of

MIDI may be found in the MIDI specification [International MIDI Association, 1983, or one of the

many texts dedicated to MIDI such as Anderton [Anderton, 1986] and Lehrman [Lehrman, 1993].

1.5 Project Objectives

Many of the ideas central to this research were conceived during the course of designing a library

for music notation, and were not considered prime objectives at the outset. The original conception

of an object-oriented representation of music notation was restricted to a context-sensitive

representation that would only consider traditional music notation. This conception was later

expanded to include non context-sensitive relationships that provide greater flexibility and

extensibility, and allow many modern conventions as an extension of traditional practices. Chapter

two provides an overview of conventional staff notation, as well as examples of modern practices.

The design attempts to emphasise generality, enabling less common aspects of music notation to be

developed from a core set of traditional notational constructs. This design process is discussed in

chapter four. It was hoped that a design could be generated that would be flexible enough to allow

future additions and enhancements. During the course of the design process a slight shift in

emphasis occurred when certain music symbols were discovered to be capable of transformations

that allowed different visual arrangements without undermining underlying context-sensitive

relationships. These symbols function as visual aids and have no influence on the sonic realisation of

the score. Such symbols can be treated in a symbolic, context-free manner once their basic

underlying context-sensitive relationships have been defined. Solutions to many of the limitations

found in music software, as well as to various contemporary notational practices naturally follow the

identification of these symbols. This discovery presented three categories of symbols, context-

sensitive symbols, context-sensitive symbols used out of context while retaining an underlying

context-sensitivity, and symbols that are always context-free i.e. graphical symbols.

 4

4

From this realisation grew the idea of an environment that combines both the symbolic and context-

dependent approaches, with additional relationships that provide graphic flexibility by altering the

visual appearance of symbols having context-sensitive relationships.

Implementation of the toolkit in the C++ programming language, and the design refinements required

for a successful implementation are discussed in chapter five. Chapter six presents applications

created with the OOTMN. Different types of applications require that the toolkit be used in different

ways, providing an evaluation of the functional capabilities of the toolkit. An evaluation of the toolkit,

as well as a discussion of possible enhancements and extensions is presented in chapter seven. This

chapter concludes with a discussion of the software-engineering insights gained from the study and

provides a summary of the capabilities of the toolkit. Detailed information concerning the use of the

toolkit is provided in appendix A and appendix B.

Throughout the text object names are written as proper names to distinguish the object ‘Staff’ from

the music symbol ‘staff’. Object and attribute names consisting of more than one word are joined

together, For example, the English description ‘music symbol’ when used as the name of an object

is notated as ‘MusicSymbol’.

 5

5

 Chapter 2

 An Overview of Music Notation

2.1 Traditional Music Notation
Music staff notation is one of the most powerful and successful symbolic systems invented by

man. A core set of rigorously defined concepts that can be used in a variety of ways, have ensured

the system’s survival and evolution over many centuries. Staff notation is an abstract system that

occurs within the limits of its own conventions, being independent of any individual musical

instrument, or sound generating hardware. The following discussion provides an overview of staff

notation, emphasising areas that are relevant to a computer-based representation. Although the text

covers aspects of elementary music theory, it is not meant to be a music theory tutorial.

‘Traditional notation’ refers to the notational conventions used in Western music, developed during

the seventeenth, eighteenth, and nineteenth centuries. The terms ‘music notation’, or ‘notation’ refer

to traditional practices. Trends during the twentieth-century have retained many of the aspects of

traditional practice while introducing a variety of extensions. These developments have not been

standardised, and may even only exist within the works of a particular composer. In addition to the

common use of notation for performance purposes, staff notation has been modified to represent

purely theoretical concepts found in music theory and analysis. Schenkerian notation, discussed by

Salzer [Salzer, 1962] and others, is an analytical system that uses staff notation to represent the

structure of a work.

Music symbols are notated within a two-dimensional space, the vertical dimension representing pitch

and simultaneity, while the horizontal dimension represents time divisions. Within this basic model, a

wide range of contextual dependencies occur within a hierarchy consisting of a local level,

intermediate levels, and a global level. Intermediate levels are often nested according to the scope

of a particular symbol, in the same way that nested symbols in programming languages have scope

and visibility. Symbols may also be influenced by the next higher level in the absence of local

information, just as the re-declaration of a symbol at a lower level overrides global declarations in

programming languages. Unlike programming language conventions, some symbols such as time and

 6

6

key-signatures do not have a local scope. Their usage alters the globally defined time and key-

signatures, as they are visible from the point of definition to the end of the score. In the following

example pitch interpretation is dependent on the global key-signature of A-flat major which is

overridden at the staff level, the bar level and the note level :

 Example 2.1 Pitch determination at different hierarchical levels.

Staff and bar level key-signatures remain visible until the end of the score unless redefined.

Accidentals have bar scope, they cease to have any influence outside of the bar in which they

occur. The staff-level key-signature may also be interpreted as belonging to the first bar of the

staff. Chapter four discusses the design of the OOTMN and examines different possible

interpretations of relationships between music symbols.

2.2 The Notational Hierarchy

Printed musical works are known as scores, and consist of separate pages bound together in book

form. Analogies between the layout of printed books and music scores do not exist at levels below

the page level. Terms such as ‘phrases’ and ‘sentences’ are used in music theory to denote logical

divisions within the music itself, not to the physical symbolic layout. The following sections introduce

the different components of a printed score, as well as the relationships that exist between different

components.

 7

7

2.2.1 Scores and Pages

A score represents a complete musical work. Large compositions may consist of several

movements, sections that are both related to each other and musically self contained. Computer

representations that allow playback typically store a complete work or a single movement in a single

file.

Global characteristics of a work or movement which occur at the score level include, time-

signatures, key-signatures, and instrumental combinations. We may refer to the ‘time’ of a waltz,

the ‘key’ of a song, or the instrumentation of a string quartet. Instrumentation influences the

physical layout of a score by virtue of the number of instruments and the notational requirements of

specific instruments. Other global characteristics include tempo, instrument transposition and page

formatting information. Although these global characteristics may change during the course of a

work, they are usually (especially within traditional practices) fixed for the entire score, complete

movements, or significant portions of a movement.

2.2.2 Systems and Staves

Physical subdivisions of the score occur as pages, which are convenient sub-divisions of a musical

work in printed form. Pages have no musical connotation, and thus do not influence the musical

content or interpretation of a work. Music manuscript paper traditionally consists of five-line staves.

Manual masking and pasting procedures are required to produce an unformatted page that has

single line percussion staves added as shown in example 2.2. Traditionally, the composer or copyist

adds the required system indications to format the page, as well as the remaining symbols forming

the musical work itself. Orchestral scores can consist of pages where each page has a unique

structure reflecting the orchestration requirements of a particular musical passage.

 8

8

 Example 2.2 An unformatted page consisting of five-line
 and single-line staves

A system denotes a temporal grouping of staves. Musical events occurring on different staves

within the same system are executed simultaneously. Computationally, a system is a process where

each of its constituent staves represents a parallel thread of execution. Staff events within a system

are executed in lockstep according to a fixed temporal division known as the meter. These concepts

are explained later in this chapter.

More than one system may be notated on a single page if the page is large enough to represent the

total number of staves required by multiple systems. Staves are visually grouped by a system line

and a system bracket on the left of the system. Visual separation is enhanced by an optional

separator symbol consisting of two short, angled parallel lines. Example 2.3 shows a page formatted

into two systems, each system consisting of four staves :

 9

9

 System line and Bracket

 Example 2.3 A formatted page consisting of two systems.

Staves are formed by groups of between one and five parallel horizontal lines. These lines provide a

discrete spatial division of the y-axis which is used to indicate pitch. Notes representing different

pitches are notated on, and between staff lines. Actual pitch divisions do not correspond to the

equidistant spatial divisions. Pitch differences are dependent on the particular alphabetic note names

that denote pitch, as well as the use of accidentals. The sequence of note names within a staff is in

turn dependent on the clef (discussed in the next section) notated at the start of the staff. In

example 2.4 the bracketed pitches have an interval (the musical distance between two pitches) of a

semitone, or 100 cents in equal temperament. All other intervals are a tone or 200 cents. This

arrangement is unique to a staff using the treble clef.

 Treble clef

 Example 2.4 Pitch divisions within a staff.

 10

10

 Acoustics makes use of the ‘cent’ unit to denote pitch differences. An octave, the distance

between two notes of the same alphabetic name where one note is double the frequency of the

other, consists of twelve-hundred cents.

As an aid to rapid visual interpretation, staves do not usually have more than five lines. A staff

should not be confused with tablature notational methods that graphically represent the strings of an

instrument. These methods use parallel lines on the y-axis to represent strings, the x-axis indicates

the position on a string that produces a particular pitch. Notes that occur outside of the staff are

notated by means of ledger lines that temporarily extend the staff for a single note as shown in

example 2.5. Staves are not bounded from above or below i.e. the lowest and highest lines of a staff

are determined by the pitch requirements of the notated notes and are not characteristics of the

staff itself.

 Example 2.5 Leger lines above and below the staff.

It is unusual to find notes notated using more than five or six leger lines above or below the staff as

such passages are difficult to read fluently. Ledger lines are often avoided by indicating that a

passage is to be performed an octave higher or lower by placing the signs 8va or 8vb above or

below the passage to be transposed.

2.2.3 Clefs and Key-Signatures

The portion of the pitch space represented by a staff is indicated by placing a clef at the beginning

of the staff. Four different clefs are used according to the range of the instrument and the current

tessitura of the music being notated. Example 2.6 illustrates the relative pitch regions represented by

the treble & , tenor B , and bass ? clefs. The note middle C occurring within the context of each of

 11

11

the clefs is shown as a bold line :

 Example 2.6 Clef Relationships.

The alto clef uses the same symbol as the tenor clef but places middle C on the third, rather than

the fourth line of the staff. The range of an instrument describes the upper and lower bounds of

pitches that may be produced on a particular instrument. Within this range, the emphasis of a

particular tessitura or pitch area often necessitates a clef change to avoid an excessive use of leger

lines.

Tonality (i.e. a key, or pitch centre) is determined by a key-signature that implicitly modifies the

pitch interpretation of notes. A key-signature is only notated at the beginning of every staff. This

convention is not governed by the scope of the key-signature, which extends from the point of

definition to the end of the score, but serves as a reminder to the reader. A key-signature change

may occur at the start of any bar in the score. Discussion of local and global levels in section 2.1

illustrated the possibilities governing key-signature changes.

2.2.4 Time-Signatures

The number of beats occurring in each bar, as well as the duration of each beat is given by a time-

signature consisting of two integers notated one on top of the other within the staff. A time-

signature has no relationship to, and should not be confused with a fraction. The top value defines

the meter i.e. the number of beats occurring in the bar, while the lower value indicates the

durational value associated with each beat. Time-signatures have the same scope as key-signatures,

but unlike key-signatures, are traditionally only notated at the start of a work or when a metric

change occurs.

 12

12

Notation of time signatures has been extended by modern composers to include the use of a

notehead rather than an integer as the lower value, use of multiple upper values, dual time-

signatures, and the placement of time-signatures outside of the traditional position within a staff.

Leonard Bernstein’s musical West Side Story makes use of a changing meter specified by the dual

time-signature of example 2.7. The actual meter of each bar is determined by the grouping of notes

within the bar.

 Example 2.7 Changing Meter - Leonard Bernstein, America from West Side Story.

Grouping of notes in example 2.7 indicates that the meter of bar one is 6/8, while bars two and

three should be treated as 3/4 bars. An underlying quaver duration remains constant for both time-

signatures. Use of a changing meter is another example of a notational convenience, as only one

time-signature is used within a single bar. Use of either time-signature would result in the correct

rhythm as both time signatures have a total duration of six quavers. A changing meter emphasises

the interpretation of a rhythm (i.e. the correct placement of rhythmic accents), it does not influence

the durations forming the meter from which a rhythm is derived.

2.2.5 Bars and Barlines

A staff’s x-axis is divided according to a fixed sum of durational values indicated by the time

signature. Vertical bar lines indicate the start and end of each division. Bar sizes are not

proportional to the durational content of a bar, but are determined by the number of notes within a

bar. In the example below where the barline positions are indicated by arrows, the size of the last

bar can be compared to the size of the first bar :

 13

13

 Example 2.8 Bars delimited by barlines -
 Mozart, Piano Sonata in C major, K.545

Barlines indicate the start and end of the metric division and may occur across individual staves,

across multiple staves, or across an entire system. Example 2.9 illustrates system barlines that span

an entire system :

 Example 2.9 System Barlines.

Example 2.10 shows the use of barlines to logically group staves according to the staff requirements

of the instrumentation which consists of a harpsichord and violoncello :

 14

14

 Example 2.10 Barlines derived from a logical grouping of staves.

By convention bar lines usually overlap so that the right-hand barline of a bar is also the left-hand

barline of the next bar. A detailed discussion of the design challenges posed by barlines is given in

chapter four.

2.2.6 Voices

Voices permit parallel streams of melodies within a single staff. Notes occurring at the same metric

division are played simultaneously. This usage of the term ‘voice’ within a notational context differs

from the traditional contrapuntal concept of a voice as a separate melody, irrespective of the staff

on which the melody is notated. The following example illustrates these differences :

 Example 2.11 Parallel voices - Johann Pachelbel “Was Got Tutt, das ist wohlgetan.”

 15

15

 Three contrapuntal voices (separate melodies) occur in example 2.11, the first voice occupies

the first staff, the remaining two divide the lower staff into two separate streams of events forming

notational voices. This arrangement allows more than one melody to be notated on a single staff.

Notational voices are separate streams of notes (not necessarily complete melodies) that are

visually separated by the direction of the note’s stems, each voice having either ascending or

descending stems.

2.2.7 Notes, Rests and Chords
Notes represent sonic events and have pitch and duration, while rests represent silence. Chords are

groups of notes that sound at the same time.

2.2.7.1 Notes

A note is usually placed on a staff where the clef gives the note an alphabetic name that denotes a

specific pitch. A note that is not placed on a staff has only relative durational attributes implied by

the duration of the symbol itself. Percussion parts that are notated on a single staff provide only

durational information. The pitch of notes on a staff may be modified by key-signatures and

accidentals. Exact pitch (i.e. a specific MIDI key or frequency) can only be assigned to a note after

determining the staff , key-signature and the presence or absence of an accidental. A note’s pitch is

thus contextually dependent on its position on the staff, the staff’s clef, as well as any key-signature

and accidental that may be present. These dependencies are shown in example 2.12 :

 C and F letter names D flat falls within scope Natural overrides F sharp
 from the treble clef of the previous D flat of the key-signature

 C sharp and F sharp A Flat overrides A natural Natural cancels previous
 according to the key-signature of the key-signature sharp symbol

 Example 2.12 Context -dependencies determining a note’s pitch.

 16

16

 As mentioned in section 2.2, accidentals have bar scope, modifying the pitch of all following

notes occupying the same staff step, as well as all notes having the same letter name irrespective of

octave.

A single note can have two stems associated with it, allowing the visual representation of two

voices having identical pitches occurring at the same time to share noteheads. This style of writing

is especially idiomatic of guitar music. Example 2.13 a) illustrates secondary stems associated with

a shared notehead. Example 2.13 b) is an equivalent representation using two separate voices :

 a) b)

 Example 2.13 Representation of voices with and without secondary stems.

Example 2.13 a) is a clearer representation of the passage that uses fewer symbols and beams to

logically group notes.

2.2.7.2 Rests
Rests are symbols that indicate silence for a specified duration. Vertical placement of rests on a

staff is determined by the context in which rest is used. Default positions occur within the staff, it is

only necessary to use other positions when rests belong to different voices. Placement on the y-axis

serves only to indicate a logical positioning as silence (i.e. a non-event) cannot have a definite pitch.

Notes and rests explicitly indicate duration by means of their graphical composition, placement on

the x-axis does not influence duration. Example 2.14 shows note durations, and their associated

rests occupying their default staff positions :

 Durations halve in length

 Durations double in length

 Example 2.14 Note and rest symbols.

 17

17

Notes and rests have relative durational values. In the above example each symbol has a duration

that is twice the duration of the preceding symbol or, half the duration of the succeeding symbol.

The lowest integer of a time-signature defines a reference duration which occurs at a given tempo.

All durations are relative to this reference duration. It is important to realise that actual, performed

durations are dependent on the time-signature and tempo of the music.

2.2.7.3 Chords

The term ‘chord’ has at least three possible meanings. Firstly, a group of notes that sound

simultaneously, usually but not always starting at the same time. In this sense a chord may consist

of notes that exist on distinct staves or systems. As an example consider a ‘chord’ played by an

entire symphony orchestra. Secondly, a group of notes arranged vertically (or as near vertically as

possible on the same staff. Such a chord is notated using a single, common stem for all the notes

that constitute the chord. Thirdly, a special type of chord that forms the basis of a branch of music

theory known as harmony is the four-part chord. Four-part chords consist of four notes that are

notated on a grand staff of two staves, two notes occurring on each staff. Four-part chords are

used in the harmony tutor application discussed in chapter six. The second type of chord is the most

familiar chord, consisting of a vertical grouping of notes having the same duration, with a single

upward or downward stem as illustrated in example 2.15 :

 Example 2.15 Chords and their associated stems.

Use of the term ‘chord’ may also imply a triad where one or more notes occurs more than once. A

chord’s stem starts at the highest or lowest note and traverses all of the notes contained in the

chord. The note at the opposite end from the starting position determines the length of the stem.

Chords are only notated with a stem if their duration requires a stem.

 18

18

Chords that contain notes which share a staff-step but are not enharmonically equivalent (i.e. they

have the same alphabetic name, but have different accidentals) must be specially formatted, as

notes occupying the same staff-step cannot be vertically aligned. Such chords require more than

one stem and are termed ‘split-stem’ chords. Example 2.16 illustrates a split-stem triad and split-

stem dyad :

 Example 2.16 Split-stem chords.

2.2.8 Beams

Notes containing flags (i.e. notes of a quaver / eighth-note duration or less) that share a common

beat are beamed together by replacing shared flags with beams as shown in example 2.17 :

 Example 2.17 Beams grouping notes according to the meter.

A single beam replaces the flags of individual notes, serving as a common flag for all notes having

the same or shorter durational value. Notes that share common beams are referred to as a beamed

group. Beams provide a visual separation of beats in the same way as whitespace visually separates

written words. Rhythmic notation that does not make use of beams is extremely awkward to read

fluently.

 19

19

Twentieth-Century extensions to beam notations include extended beams and fan beams shown in

example 2.18. Extended beams provide a visual grouping of the notes and rests that form a beat.

They typically occur in complex passages that are difficult to read without the logical groupings
indicated by extended beams.

 Example 2.18 Extended beams and fan beams.

Fan beams indicate accelerando and ritardando over the length of the beam, shorter-lengthed notes

occurring at the apex of the fan.

2.2.9 Articulation Symbols and Ornaments

Articulation symbols modify the manner in which a note is performed (i.e. its attack and release in

synthesiser terminology), as well as the note’s duration. Articulation symbols are usually placed on

the opposite side of a notehead from the notehead’s stem. Example 2.19 provides examples of

articulation symbols :

 Example 2.19 Articulation Symbols.

 20

20

 The example at a) is an accent that modifies the attack and duration of the note, b) is a

staccato symbol that shortens duration, c) lengthens duration, while d) is a short, sharp accent. The

slur at e) implies that the length of the first note carries until the onset of the second note.

Ornaments, developed during the seventeenth and eighteenth centuries, are graphic symbols that

represent embellishments of a note or group of notes. These symbols function as a musical

shorthand that must be interpreted by the performer. Examples of ornaments and their interpretation

are shown in example 2.20. The top staff illustrates the notation and execution of two different

turns, the bottom staff illustrates the notation and execution of two different trills.

 Notated Performed Notated Performed

 Example 2.20 Notation and execution of ornaments.

Note the context-sensitive interpretation of the turns, depending on whether the turn occurs on a

note or between two notes. The ending given to the second trill is often not notated but implied by

the style period of the music. Many ornaments, especially trills must be interpreted within a

historical, as well as a notational context. Chapter four presents a general solution to the problem of

correctly performing ornaments using MIDI.

2.2.10 Dynamics, and Auxiliary Symbols

Dynamic symbols such as p (piano, soft), and f (forte, loud) are used to indicate approximate,

relative dynamic levels. Dynamic levels are dependent on the style and tempo of the music, and are

 21

21

 thus difficult to interpret accurately using MIDI. Auxiliary symbols include bowing indications,

formats, and symbols characteristic of particular instruments such as guitar string numbers.

The OOTMN does not presently implement support for auxiliary symbols. Implementation of these

symbols is tedious rather than difficult, due to the vast number of possible symbols.

2.2.11 Parts

A part is the portion of a score that is to be performed on a single instrument. Parts may be notated

on a single staff for wind, string and percussion instruments or, notated on multiple staves for the

harp and keyboard instruments. Instrument parts notated on multiple staves are easily extracted

from a score by simply extracting the required staves. String and wind instruments pose greater

challenges, as parts may or may not share a single staff . The number of staves used, as well as the

notational conventions used within a staff can change from system to system. Example 2.21 shows

a staff used to notate two trumpets. The second trumpet is required to perform the first measure as

indicated by the roman numerals above the measure.

 Example 2.21 Notation of separate parts.

Both trumpets play in bars two and three, although the style of notation differs in each of these bars.

A single voice is used to notate the two trumpets in bar two, two separate voices are utilised in bar

three. Notation software that must extract two separate parts from these three bars, must

determine to which part the first bar belongs, extract the different parts from the single voice of the

second bar, and assign a single voice from bar three to each part. The situation is further

complicated when instruments (such as the two trumpets in the above example) are initially notated

on one staff and then notated on separate staves in another system. Successful part extraction

requires that the exact staff and voice, as well as the relative position within a single voice (highest

pitched, or lowest pitched notes in bar two of the above example) be known for each bar of the

part. Part extraction is simplified by restricting parts to a particular staff and voice as illustrated by

the example below which is an alternative way of notating example 2.21 :

 22

22

 Example 2.22 Parts of example 2.21 notated using distinct voices.

Such an arrangement requires that the user abide by the restrictions imposed by the software which

are dependent on the underlying representation scheme.

2.3 Classifying Notational Symbols

Music symbols can be classified in a variety of ways. Categories that may be useful to computer-

based representations are suggested in the following sections.

2.3.1 Context-sensitive Relationships

Music notation is a highly context sensitive symbolic system where symbols are interpreted within

the context of other symbols. Three types of context-sensitive relationships exist. Firstly, symbols

that must occur to successfully determine the meaning of certain other symbols. These symbols

function as semantic constituents. Secondly, symbols that function as semantic modifiers may

modify the meaning of another symbol, but are not required for interpretation. A symbol that can be

modified by another symbol has a default interpretation in the absence of any modifier symbol. A

third type of symbol (presented in section 2.3.4) does not alter the semantic interpretation of other

symbols but functions as a notational convenience.

2.3.2 Semantic Constituents

The following table shows symbols and their associated semantic constituents :

 23

23

 Symbol Semantic constituent

 Staff Clef

 Bar Barline

 Note Staff, (Leger line)

 Figure 2.1 Symbols and their semantic constituents .

Note that partial representations are possible, a staff without a clef or notes not notated on a staff

may be used to represent rhythmic durations. These practices are limited to specific situations such

as the notation of percussion instruments. In most cases the symbols of figure 2.1 require the

presence of a semantic constituent.

2.3.3 Semantic Modifiers

The table of figure 2.2 shows symbols and their associated semantic modifiers which alter the

meaning of the symbol :

 Symbol Semantic Modifier

 Note Accidental, Dot, Dynamic Sign,
 Hairpin, Articulation, Octave sign.

 Rest Dot.

 Chord < same as for note >

 Figure 2.2 Symbols and their associated semantic modifiers.

Semantic modifiers are only used as required. The symbols that they modify have an unambiguous

semantic interpretation in the absence of a modifier.

2.3.4 Notational Conveniences

Notational conveniences are graphic symbols having no underlying meaning within the OOTMN. This

characteristic only occurs within a computer representation of music notation that consists of an

 24

24

 underlying machine representation and a graphic representation. Altering the graphic view

does not influence the machine representation. The duration characteristic of a note, as well as the

properties of beams and barlines provide examples. Once a note's duration is fixed, the notehead

symbol may be changed without altering the duration of the note. Such an alteration to the traditional

printed score would change the meaning of the note, as the graphic (printed) representation is the

only representation. Beams exist as a durational indicator (replacing the flags of notes beamed

together) as well as a grouping mechanism that aids performers in correct rhythmic interpretation.

Computer representations can change the function of a beam to exclude durational information. This

is made possible by the existence of the notes that are beamed before the beam is formed. Thus the

note durations exist independently of the beam, which only serves as a grouping mechanism. The

positions of barlines determines the extent of a bar. A barline’s length can be altered without

changing its position, allowing modern barline notations that do not influence the size of a bar. The

design of barlines and beams are discussed in detail in chapter four.

2.3.5 Spatially Dependent Symbols

Symbols having semantic constituents and semantic modifiers establish their relationships by means

of a spatial relationships that provide clear visual interpretations. These relationships can be altered

to provide visual arrangements characteristic of modern notation. The spatial relationships between

a staff and its clef and time-signature provide an example. Once the association between a staff

and a clef, or a staff and a time-signature is formed, the clef or time-signature may be moved

outside of the staff without altering the existing relationship.

This chapter illustrated conventional aspects of music notation. Developments during the twentieth

century have included both radical departures from common practice, as well as a myriad of

extensions that retain traditional elements. Contemporary music notation is discussed by Cole,

[Cole, 1974]. Many of these innovations are extremely difficult to achieve in software. Suggestions

for solving some of these problems based on the notational relationships discussed in this chapter

are presented in chapter five.

 25

25

 Chapter 3

 Music Notation Software and Software Tools

3.1 Overview
A wide variety of commercial notation packages are available, as well as a number of shareware

and freeware programs. Some of these programs are discussed and evaluated in this chapter. Other

software that utilises music notation, including sequencer software and music education software

are also mentioned. Music notation software tools that are discussed include a proposed standard

for the storage and representation of musical scores, and a notation library similar to the OOTMN.

3.2 Notation Packages

In a competitive market, commercial vendors are reluctant to provide technical information

regarding their products. The observations that follow are thus limited to general observations that

centre around the user’s impression, rather than an evaluation of the software design. Since the late

nineteen-eighties two of the leading commercial notation programs have been Finale from Coda

Music Technology, and Encore from Passport Designs. Although both products are able to typeset

and playback music notation, they have widely differing capabilities as well as different approaches

to the design of a user interface.

3.2.1 Finale

During 1997, Coda Music Technologies released Finale97 which followed version four of Finale.

The most interesting aspect of Finale97 is a design architecture that allows third-party developers to

provide software modules termed ‘plugins’ that can be seamlessly integrated with Finale. This

feature allows Finale to be extended for specific tasks such as the analysis of musical works. Finale

makes use of TrueType fonts, allows MIDI playback and real-time transcription of MIDI input, and is

able to represent an astounding variety of notational complexities. Finale’s weakest point is the

awkward user interface that is not always intuitively constructed. The user of Finale97 is presented

with the opening window shown in figure 3.1 An incomplete staff, that does not occur within the

context of a page is a disconcerting introduction to the user. The main tool window on the right-hand

 26

26

side may change the menu options depending on the category of operations selected. A Special

Toolbox category opens the palette shown to the left of the main palette that provides a variety of

beaming and stem movement options.

 Figure 3.1 The Finale user interface and special tool palette

Use of these different options is not always intuitive, creating a steep learning curve for the user.

Despite these difficulties, Finale is extremely powerful, and has developed a loyal following of

sophisticated users.

Finale’s design philosophy, as illustrated by the options in figure 3.1 is to create high-level solutions

to a wide variety of notation problems. The user cannot directly interact with music notation

symbols without first selecting the desired operation from a menu. By contrast, the OOTMN

attempts to implement sophisticated operations from a collection of elementary click and drag

operations within a general WYGIWYS (‘What You Get Is What You See’) page-oriented view.

 27

27

 Many of the less common notational constructs do not require separate functionality to be built

into the programming

code. Chapter four and five illustrate how many modern extensions to conventional music notation

can be implemented as natural extensions of traditional practice.

It is probable that Finale does not have an object-oriented design, the awkward user-interface is the

result of a tight coupling between the user interface and the different modules that make up the

program. Coda Music Technologies has never made a serious attempt to improve the user

interface. Finale users, who tend to be musically sophisticated and computer literate, are prepared to

spend the time and effort required to gain proficiency in the use of the software.

3.2.2 Encore

Encore has an intuitive interface that allows tasks to be achieved quickly and effortlessly. The page-

oriented user interface, as well as click and drag insertion and editing are the strongest features of

Encore’s design. Figure 3.2 shows the user interface with symbol palettes on the left, and toolbar at

the top. Most symbols are simply dropped into position and adjusted by dragging. The style of the

windows and palettes suggests that the software was developed using Borland C++. The score

processor presented in chapter six makes use of a user interface that closely resembles the user

interface design of Encore. Many of the ideas behind the design of the OOTMN were conceived as

a result of personal experience using Encore. The software has a rigid context-sensitive design that

makes any unusual use of notation difficult to implement. Examples include staves which cannot be

individually moved, time-signatures and key-signatures that are given default positions that cannot be

altered, beams that are constrained to be parallel to each other, and stems that cannot be manually

adjusted. This rigidity can be extremely frustrating to the user, who is forced to add graphic

symbols, and to develop unorthodox methods of using the available tools to achieve the desired

layout.

 28

28

 Figure 3.2 The Encore user interface and symbol palettes.

The weakest aspect of Encore’s design is the failure to implement a formatting scheme that retains

spatial relationships among symbols. Example 3.1 illustrates the breakdown of spatial relationships

after Encore determines note spacing and attempts to align symbols vertically following the opening

of a file. The slurs, dynamic indications and hairpin in the clarinet part have not retained their

original spatial relationships to the notes that they are associated with. Accidental spacings are also

not handled correctly, as can be seen by the second note in the bassoon part which is preceded by a

flat which is placed on the stem of the first note. Notation software cannot rely on algorithms to

correctly format symbols when loading a score from a file. File storage schemes should store the

absolute positions of symbols or calculate symbol offsets from absolute reference points.

 29

29

 Example 3.1 Spatial dependencies in Encore
 Andrew Eales : The Dark Stream 3rd mov. measures 1-2

Despite the well-designed user interface, Encore is not suitable for typesetting scores of even

moderate complexity.

3.2.3 MUSICA

MUSICA is a music notation package developed by the computer music laboratory of the Faculty of

Electrical Engineering at the Israel Institute of Technology. The latest, and possibly last version of

the software is version three. Of particular interest is version two, which was made available with

the source code and limited design documentation. From the design documentation a partial object

model can be constructed. A discussion of this object model and the design of MUSICA is deferred

until the end of chapter four, where a useful comparison to the object model of the OOTMN can be

made.

3.2.4 Copyist

Sion Software’s Copyist does not support MIDI playback or recording. It is a typesetting program,

that uses graphical symbols having no relationship to each other. A symbol editor that allows users

to add user-defined symbols to the software provides the user with almost unlimited visual

possibilities. Example 3.2 is an example of a complex score created with Copyist :

 30

30

 Example 3.2 Copyist example score - Debussy, Reflets dans l’eau.

The OOTMN provides a graphics mode that ignores context-sensitive symbolic relationships, allowing

scores to by created as collages of symbols. Activating graphics mode destroys existing symbolic

relationships, allowing the software to provide similar functionality to Copyist. A score created by

OOTMN graphics cannot be converted into an equivalent context-sensitive representation.

The OOTMN attempts to make use of the expressive power of graphic symbols as well as a level of

context-sensitivity that allows MIDI realisation of a score.

3.2.5 Other Notation Programs

The above discussion omits mention of many notation programs that are available, by focusing on

three programs that illustrate three broad categories of software design. Important developments in

the evolution of Windows music software include the current development of Sibelius by Sibelius-

Software [Sibelius-Software, 1998], and Igor by Technoligor [Technoligor, 1998]. Sibelius has an

excellent reputation [Sibelius-Software, 1998], but currently only runs on the Acorn Archimedes

RISC architecture. A Windows version is scheduled to be released in September 1998. Technoligor

[Technoligor, 1998], provides a detailed comparison between Igor and Finale and claims that Igor

 31

31

will be the most sophisticated notation software available, and at the same time extremely user-

friendly.

Many shareware and freeware packages are available via the Internet. Unfortunately, most of

these programs have limited functionality and are not suitable for professional use. A notation

program that may be important in the future development of notation software deserves mention.

RoseGarden [Cannam, 1997] is a system consisting of a free notation editor and separate

sequencing program that are able to communicate with each other [Computer Music Journal, 1997].

Originally written for machines running UNIX, the alpha Windows version 1.0 is difficult to evaluate

as it is obviously not complete. The concept of separate notation and sequencing programs that are

able to communicate with each other is a development that may well become a standard practice in

the future.

3.3 Sequencers and Educational Software
MIDI Sequencers are programs that implement multi-track recording facilities using MIDI. The first

Windows sequencers provided a numeric display of MIDI data, or graphic displays where notes are

represented as horizontal bars. Length of a graphic bar denotes duration, vertical positioning

represents the pitch by means of the position relative to the corresponding key on the keyboard.

Figure 3.3 illustrates this ‘piano roll’ notation which derives its name from the paper rolls used to

 Time

 Pitch MIDI NoteOn MIDI NoteOff

 32

32

 Figure 3.3 Piano Roll Notation

store pianola performances. Piano roll notation avoids the problems encountered with staff notation

by reducing both pitch and durational information to a single symbol notated on a two-dimensional

graph. Unfortunately, all semantic connotations associated with traditional notes are lost in the

process, as MIDI data does not provide sufficient information to accurately represent staff notation.

MIDI does not differentiate between enharmonic spellings of pitches which have different semantic

connotations in music theory as each key of the keyboard is represented by an integer. A note’s

starting and ending times are used to determine MIDI durations, no representation of the actual

notated note duration exists. Notated staccato crotchets performed as quavers separated by quaver

rests cannot be unambiguously represented by MIDI data. Many sequencers such as Cakewalk from

Twelve-Tone systems, and MasterTracks from Passport Designs have implemented notation

windows that have limited editing and formatting capabilities. Future software releases will no doubt

integrate sequencer and notation software into an environment that is not wholly dependent on MIDI

data allowing greater control over notational layouts.

Educational products such as the MIBAC Music Theory lessons from MIBAC Corporation implement

music notation as fixed graphical symbols represented by Windows bitmaps. Playback is

accomplished by associated MIDI or Wave files. Software that implements notation as fixed

graphical images allows no interaction from the user. Exercises are restricted to drills that are of a

multiple-choice or yes/no format. Exercises that allow the creation of answers, such as the

construction of a scale by placing notes and accidentals at their correct positions are of greater

instructional value. Users may also correct only those portions of an exercise that are incorrect.

Chapter six illustrates the use of the OOTMN to implement a harmony tutor that allows the user to

interactively complete the given exercises.

3.4 Software tools for Music Notation

At the start of this study in 1996 no software tools that supported the creation of music notation

were available. The only software that was available was a limited set of command-line tools that

were able to read and write NIFF (Notation Interchange File Format) scores [Grande, 1996]. NIFF is

an emerging standard for the binary representation of musical scores. In early 1998 the Notation

Engine, a class library in C++ that has identical goals to the OOTMN appeared.

 33

33

3.4.1 Notation Interchange File Format

NIFF is a standard file format for representing music notation data. Development of NIFF began in

1994 when six leading music notation software vendors agreed to develop a standard file format for

representing music notation data. In January 1995, one of the co-sponsors, Coda Music Technology

withdrew from the project and announced that they would publish information concerning the

different file formats used by Finale. Coda expressed concern that the NIFF project was behind

schedule and doubted the ability of NIFF to provide adequate representation of Finale scores. At the

beginning of 1998 Coda started to provide information concerning its proprietary file formats.

[Coda Music Technology, 1998]

The proposed NIFF standard emphasises efficient data storage by using representations that require

the fewest number of bits. Consecutive integers represent durations, rather than a more intuitive

representation such as reciprocal representation used by the DARMS encoding scheme described by

Brinkman [Brinkman, 1990] shown in figure 3.4. A trade-off occurs between a representation that

is semantically meaningful, and a representation that efficiently utilises computer storage.

 Note Reciprocal Duration NIFF Duration

 h 2 3

 q 4 4

 e 8 5

 Figure 3.4 Note duration encoding schemes.

The current version of NIFF, version 6a appeared in August 1995, and is available from the Internet

web site http://mistral.ere.umontral.ca:80/~belkina/NIFF.doc.html (note that the ftp site

blackbox.cartah.washington.edu that appears in the NIFF documentation, and is found at some

Internet sites is no longer used for the NIFF project).

 34

34

3.4.2 The Notation Engine

The Notation Engine is a C++ class library that facilitates the development of applications using

music notation in the Microsoft Windows or Apple Macintosh environments. The developer, Mark

Walsen [Walsen, 1998] describes the design of the library :

 “The Notation Engine has been designed from the start as a library with a clean separation from

 application user interface code. Yet, the Notation Engine also performs many user interface related

 tasks, such as: hit detection of objects in a window; selection and highlighting of objects; and direct

 manipulation of objects, such as dragging the shape of hairpin crescendo marks.”

The above quotation could easily have appeared in the introduction to this study. The Notation

engine currently supports full or partial implementations of the following features :

 i) makes use of a proprietary True-Type font.

 ii) hit detection of notation objects.

 iii) management of currently selected objects.

 iv) highlighting of selected objects.

 v) functions that add, delete, and update the properties of objects.

 vi) recording and playback of MIDI.

 vii) importing and exporting of MIDI Files.

 viii) transcription of MIDI to Notation.

 ix) printing of scores.

Notation software supplies the notation engine with source code. It would be most interesting to

undertake a detailed comparison of both the design and implementation techniques used in the

Notation Engine and the OOTMN. Unfortunately, the high cost of the Notation Engine excludes an

evaluation of the product at the present time.

3.4.3 Music Fonts

Symbols used in music notation may be drawn using existing graphics primitives, designed as

bitmaps, or make use of current TrueType or Postscript font technology. Unlike bitmaps, TrueType

 35

35

and Postscript fonts have the advantage of being scaleable. TrueType has become the

defacto standard under the Microsoft Windows environment with software vendors developing their

own proprietary music fonts. TrueType and Postscript technologies offer similar performance

characteristics. [McGowen, 1993]. TrueType fonts can distort or disappear at certain reductions,

depending on the printer hardware, while Postscript fonts require a font manager, such as the

Adobe Type Manager from Adobe Systems to download fonts to the printer. Postscript fonts can

create a situation where complex scores result in printer memory overflows during the downloading

process.

Designing a True-type music font is a tedious, rather than a difficult process that requires expensive

commercial software. According to Petzold [Petzold, 1992] a font has no copyright, only the font

name may be copyrighted. Petzold points out that to avoid copyright infringements, Microsoft has

had to rename the traditional typefaces found in its software products. As an example, the Times

Roman font appears as MS Sans Serif in Microsoft software. True-Type fonts in the Microsoft

Windows environment usually use the standardised ASCII character set and not the OEM standard

for character representation. No standard exists for defining a set of music symbols, or for the

mapping of symbols to the ASCII character set. Despite the lack of standardisation, different fonts

often make use of the same ASCII symbols to represent music symbols in a logical manner. Some

ASCII symbols suggest a visual relationship to music symbols as shown in figure 3.5 :

 & = & ? = ? # = # = = =

 Figure 3.5 Relating ASCII symbols to music symbols.

Other symbols are represented by alphabetic characters that suggest the name of a symbol such as

‘q’ for quarter-note and ‘h’ for half-note. Uppercase and lowercase letters represent the note’s

stem direction as illustrated by figure 3.6 :

 36

36

 e = e E = E q = q Q = Q h = H H = h

 Figure 3.6 Encoding notes in a music font.

Huron [Huron, 1992] describes these pictorial and alphabetic mappings between symbols as pictorial

mnemonics and initialisms.

The metrics (i.e. the proportional characteristics) of a font are important, as these values control the

placement and alignment of symbols. Commercial music fonts align characters on the left-hand top

or bottom positions of the area occupied by a symbol. Alignment characteristics differ from font to

font and may even differ for different symbols within a single font. A standard governing the

placement and alignment of characters would greatly simplify the programming of applications that

make use of music fonts.

3.5 Object-Oriented Music Representation

A clear distinction should be drawn between representations of musical notation such as the

OOTMN and the Notation Engine, and representations of musical structure such as the MUSIKUS

system [Lande, 1995]. MUSIKUS encodes the musical structure of a work in purely musical terms,

without providing any information regarding the visual notation of the work. Pope [Pope, 1996]

discusses different object-oriented music representations, some of which provide various types of

graphical representations of a score’s structure. Pope points out that graphical representations,

including music notation are an application dependent characteristic that are not part of the musical

representation itself. i.e. the graphical symbols forming the notation of a score are determined by an

underlying machine representation. This characteristic is discussed in chapters five and six. The

next chapter discusses the design of an object-oriented representation of music notation that is

centred around the relationships that exist between different music notation symbols.

 37

37

Chapter 4

 Designing an Object-Oriented Toolkit for

 Music Notation

4.1 Object-Oriented Development Methods

During the nineteen-nineties a variety of methods have emerged that can be used for the analysis

and design of object-oriented software. The object paradigm is generally regarded as an alternative,

superior approach to the traditional software engineering methods of functional decomposition, or

'top-down' structured development [Stroustrup, 1988]. Different methodologies emphasise different

aspects of the system, and also have different notational conventions. The Unified Modelling

Language (UML) is a welcome attempt to standardise the graphic notation used in object-oriented

modelling. Developed by Jim Rumbaugh, Grady Booch, and Ivar Jacobson [Project Technology,

1997], UML places emphasis on the design and implementation of the design, rather than the

conventions used to produce a design. A valuable discussion of various approaches and methods

used in object-oriented development can be found in Carmichael [Carmichael, 1994]. Especially

interesting is the contribution by Hodgson [Carmichael, 1994] that attempts to place different

development methods in perspective by considering the meaning of object-oriented development,

rather than the characteristics of individual development methodologies.

Different approaches to software development within an object-oriented framework are found by

viewing the system from different perspectives. System design can be governed by three different

points of departure; an event driven approach, a structural approach, and an approach that

emphasises the data within the system. These distinctions do not exclude the use of a particular

method, as all object models consist of objects, as well as the methods and data that they

encapsulate. Rumbaugh [Rumbaugh, 1991] combines different views of a system by means of

different models that relate an object model to data-flow and functional representations of the

system.

 38

38

An event-driven view derives objects from the grouping of external events and system responses.

This approach has its origins in methods developed for real-time software development such as the

method developed by Ward and Mellor [Ward and Mellor, 1985]. Objects, by their very nature, lend

themselves to this type of development; as a single object can be seen as a closed system that

communicates with the outside world by sending and receiving messages. Structural approaches

proceed by first identifying the objects in a system; followed by the data requirements of each

object i.e. its attributes, and the methods that manipulate object data. This type of development is

advocated by Coad and Yourdon [Coad, 1991], Coad [Coad, 1997], and Booch [Booch, 1991].

Data-driven designs are typically found in database systems that emphasise the logical grouping of

data to form objects that encapsulate related data. Viewed from the object level, event driven and

data-driven approaches proceed as a bottom-up process, while a structural approach proceeds top-

down.

4.1.1 Selecting a Method

Choice of a particular method depends mainly on the level of detail required at both the analysis and

design stages. The level of detail is governed by the development environment, as well as the

problem domain. Many design methods are intended to be used for the most complex applications,

where extremely detailed models, as well as documentation that facilitates communication during

development is desirable. Smaller systems do not require such detailed specification, and may

require little communication between members of a small development team.

One of the main features of successful development is understanding what is to be done, as well as

how to do it. A level of detail that is not appropriate to the domain and development environment is

likely to hinder development. A model that lacks required information cannot provide sufficient

understanding, while unnecessary detail only serves to add complexity to the system. Experience

gained during the design of the OOTMN indicated that the process of design should be a fluid

process - rigorous, yet flexible. Design procedures should strike a delicate balance between these

two aspects. The former providing clarity and focus, while the latter allowing changes to be easily

made when necessary. The Coad/Yourdon Analysis Method [Coad, 1991], and its successor

developed by Coad [Coad, 1997] are development methods that emphasise clarity and simplicity.

 39

39

 These methods allow a clear, yet rigorous design to be developed without sacrificing necessary

detail or flexibility.

4.2 Object-Oriented Analysis and Design

Many object-oriented development methods clearly separate analysis and design. The

Coad/Yourdon method covers object-oriented design in a separate volume [Coad, 1992]. Later

work by Coad [Coad, 1997] abandons a rigid separation of the analysis and design phases, treating

these two aspects as complementary, alternating processes.

4.2.1 The Coad Method

Coad recommends that the purpose of the system be clearly identified before embarking on the

design. The following defines the purpose of the OOTMN as conceived at the start of the project :

 “To design an object-oriented library for music notation that accurately captures the hierarchical

 ordering of relationships between music symbols.”

At a later point when design and implementation were proceeding simultaneously and a greater

insight into system objects and their relationships had been achieved the purpose of the system was

expanded to include a definition of system functionality :

 "To design an object-oriented library for music notation that

 1. accurately captures the hierarchical ordering of relationships between music

 symbols, and

 2. preserves context -sensitive and spatial relationships between symbols and their

 musical meaning, but is not constrained by these relationships."

Design decisions during software development should attempt to capture the elementary

functionality of objects, as well as anticipating less common situations. Although it is common to

consider software functionality within the context of its most common usage, this context should not

be so constrained that it does not allow the software to be used in other ways. A trade-off occurs

between completeness of implementation within a limited context, and the ability to be useful within

a wider context. Object-oriented technology specifically emphasises completeness of

 40

40

 implementation as a process that develops from a generalised, limited implementation to

specific, detailed implementations.

Objects and object relationships are represented by diagrams that use a specific notation. Objects

are represented by a box that contains the object’s name, attributes and methods (functions) :

 Object Name

 Position Attributes

 Draw Methods

 Figure 4.1 An Object and its attributes and methods.

The symbol represents specialisation. For example, a class Table is a specialisation of the

more general class Furniture. The symbol represents a whole -part structure. For example, a

Wheel object is a part of a Bicycle object. In the examples below, object B is a specialisation of

object A, and object D is a part of object C.

 A C

 B D

 Figure 4.2 Generalisation-specialisation, and whole-part relationships.

 41

41

A line between two objects indicates an instance relationship. Instance relationships indicate a

‘knowledge of’ relationship between two objects. For example, an Accidental is not part of a Note,

but influences a note. Viewed another way, the Accidental is ‘visible’ to the Note object. All

relationships also have a cardinality, as shown by the numerals used in figure 4.3 :

 Accidental 1 0. . 1 Note

 Figure 4.3 An instance relationship and its cardinality.

A note is related to zero or one accidentals, while an accidental must have a relationship to a single

note. i.e. accidentals cannot exist on their own.

4.3 Identifying objects and their relationships

Determining what objects should be represented in a system, as well as the relationships between

objects is crucial to a successful design. The process of finding objects ranged from identifying

trivially obvious objects, to considering less obvious objects that were sometimes later discarded as

their implications for the system as a whole were comprehended. Groups of objects may have

structural relationships that can be represented in different ways. These different possibilities must

be evaluated to obtain the most useful representation, as well as the representation that most

faithfully captures relationships inherent in the subject matter being modelled.

The descriptions that follow are limited to the core objects and their attributes identified during

object analysis. For the sake of brevity and clarity, many attributes that are self-explanatory are not

discussed. The description progresses from examining elementary object attributes and their

relationships to more complex interactions, mimicking the evolution of the design.

 42

42

4.3.1 Scores, Pages and Score Templates

Using the conventions of the printed score as the basis for design, a Score object forms the highest

level of the object hierarchy. A Score is an aggregation of Pages, and also holds information which

is required by objects at lower levels of the object hierarchy. Attributes within the Score object are

usually global attributes that are required at different levels of the hierarchy. Details that influence

specific lower-level objects are stored in a ScoreTemplate object which defines the structure of a

score. The relationship between Score, ScoreTemplate and Page objects is shown in figure 4.4.

The music font attribute is the name of the MS Windows font used by the score. It is assumed that

the font is installed in Windows, and is available to the OOTMN. MetronomeState and

AutospaceState are switches that turn the MIDI metronome on or off and determine whether notes

and rests must be automatically spaced or not. The other attributes are global values that are used

as default values at lower levels of the object hierarchy. Score attributes define global variables

(corresponding to musical abstractions) that can be used to create appropriate objects where

required within the object hierarchy. Attributes such as key and time-signatures should not be

confused with objects having the same name. The “key” or “time” of a musical work defines, but

does not represent the actual key and time-signatures found in a score. Left and right margins are

the default margins for all pages, staff size is the default spacing between the lines of a staff. MIDI

resolution is the number of clock ticks per beat. MIDI implementation and MIDI clocks are discussed

in chapter five. ScoreState is a value used by methods that search for objects and update the

positions of objects. These methods are explained in detail in the next chapter. Transpose is a

method that transposes a set of notes by a specified interval. The remaining methods are self-

explanatory.

 43

43

 Score 0. . 1 1 Score Template

 Music Font Staff Information
 Key Signature Staff Name
 Time Signature Number of lines
 Tempo Staff Size
 MIDI Resolution Clef
 Top Margin Time Signature
 Bottom Margin Number of bars
 Right Margin Transposition
 Left Margin Tempo
 SystemsPerPage Key Signature
 StavesPerSystem
 BarsPerStaff Grouping Information
 System Spacing Start Staff
 Staff Spacing End Staff
 Staff Size Grouping Bracket
 StaffLength
 ScoreState
 AutospaceState
 MetronomeState
 Current Dynamic 1 . . n
 CurrentVoice
 StemDirection 1
 Current Bar
 Page
 AddPage
 DeletePage PageNumber
 Play LeftMargin
 Transpose RightMargin
 TopMargin
 BottomMargin

 Play
 DrawPage
 UpdateLayout
 GetMusicEvents
 GetNotes
 FindBar
 DrawBeams
 DeleteSymbol

 Figure 4.4 Score, Score Template and Page Objects.

 44

44

 A ScoreTemplate object holds detailed information for each staff found within a system. This

information is used when creating the staff throughout the score. Scores that are not template-

based, make use of global Score attributes when creating Staff objects. Specifying the time-

signature and number of bars for each staff may appear to be unusual, but is included to allow the

future development of multi-metric music. i.e. music that consists of different, metric strands

occurring simultaneously. Grouping information allows staves to be visually grouped using square

brackets or braces. Consider the following example of a template for a work written for violin, Bb

clarinet, tambourine, and piano in F major. The score template would be :

 Staff Information

 Staff Name Violin Clarinet Tambourine Piano Piano
 Number of lines 5 (default) 5 1 5 5
 Staff Size --------------------------- default --

 Clef Treble Treble none Treble Bass

 Key Signature F maj G maj none F maj F maj

 Time Signature

 Number of bars ------------------------- global value from Score ------------------------

 Transposition none Maj 2nd down none none none

 Tempo ------------------------- global value from Score ------------------------

 Grouping Information

 Start Staff Piano / RH

 End Staff Piano / LH

 Grouping Bracket Brace

 Figure 4.5 Example of a score template.

Computer representations have the ability to distort the traditional page-oriented format of a score

by providing virtual views that are not bounded by the physical display. A score may scroll

horizontally or vertically with intermediate positions that destroy traditional conceptual divisions

provided by the page. It is often extremely difficult for the trained composer or performer to

visualise larger sections

 45

45

 of a work without page divisions. Sequencer software packages that have traditionally used

graphic methods to represent music commonly make use of virtual linear views. Linear views are

not appropriate to the subject matter of music notation, and may be used as an option, but should

never replace a page-oriented ordering scheme.

4.3.2 Systems and Staves

Traditionally, all staves occurring within a system are aligned vertically at their starting and ending

points. In works such a Lutoslawkski’s Dance Preludes, shown in example 4.1, the composer

notates staves only when required for each instrument. i.e. bars that only contain rests are left blank

To ensure that scores such as this example can be represented, great care must be taken not to

constrain relationships between objects. For example, a system that requires its constituent staves to

start at the same x co-ordinate, does not allow the starting position of individual staves to be

adjusted. Such a design constraint excludes representation of the score of example 4.1. System

objects serve to provide a semantic, and visual association between their constituent staves. This

visual association traditionally groups staves by means of a system line and bracket. Utilisation of a

different visual arrangement does not undermine the semantic integrity of a System object. It is

interesting to note the unusual positioning of time-signatures in this example, a feature supported by

the OOTMN which is discussed in section 4.3.4 and illustrated in chapter six.

 46

46

 Example 4.1 Placement of Staves, Bars and Barlines - Witold Lutoslawski ,Dance Preludes.

To ensure that scores such as the above example can be represented, great care must be taken not

to constrain relationships between objects. For example, a system that requires its constituent

staves to start at the same x co-ordinate, does not allow the starting position of individual staves to

be adjusted. Such a design constraint excludes representation of the score of example 4.1. System

objects serve to provide a semantic, and visual association between their constituent staves.

 47

47

 Page
 1. . n System

 1 SystemNumber

 BreakBarlines
 FormatBarlines
 UpdateBarlines
 LayoutSystem 2. . n
 DrawSystem
 UpdateKeySign 1

 UpdateTimeSign Barline

 0. . 1 1. . n

 1 1

 SystemBracket Staff

 Position StaffName
 Symbol StaffNumber
 Number of lines
 Update Position Bounding Rectangle
 Draw Size
 Position
 End Position

 Update Position
 Draw
 GetStaffStepPos
 GetRestStepPos
 GetStaffStep
 LayoutStaff
 GetStaffStep
 GetMIDIKeyStep
 GetBottomY
 DrawBoundRect

 Figure 4.6 System, SystemBracket and Staff objects.

A system bracket that consists of a line, and either a square or curly bracket enhances the visual

grouping of staves within a system. Semantically, all events occurring within a vertical time-slice are

 48

48

performed simultaneously. Systems and staves have a number attribute. SystemNumber is the

number of a System object within a Page, StaffNumber is the number of a Staff within a System.

Numbers start at the top of a Page or System and proceed downwards. A Stave’s end position

attribute gives the length of each staff. To provide maximum flexibility none of the positional

attributes of a staff are constrained in any way. The bounding rectangle attribute defines the actual

vertical starting and ending positions of each Staff. MusicSymbol objects falling within this rectangle

are related to a single Staff. FormatBarlines ensures that all barlines are correctly aligned.

LayoutSystem divides the x-axis of System by the number of bars and places Barlines at

appropriate x co-ordinates. BreakBarlines allows barlines to be broken within a single system.

UpdateKeySign and UpdateTimeSign set the key and time-signature for all staves belonging to the

System. GetStaffStepPos and GetStaffStep translate a staff step to a screen position and vice-versa

relating pitch information to staff positions and screen co-ordinates. GetMIDIKeyStep determines

the MIDI key for a given staff step.

4.3.3 Bars and Barlines

The relationship between staves, bars and barlines presented some of the most challenging problems

during the development of the OOTMN. A bar has no position of its own, the left and right barlines

associated with each bar give the starting and ending positions of the bar on the x-axis. Bars have

two different bar numbers, a local bar number that indicate the bar’s order within the staff on which

it occurs, and a global bar number representing its number from the start of the score. Global

numbers are required to locate unique bars, and to facilitate playback. The duration attribute

specifies the total duration of the bar, which can be used to ensure that a bar does not contain more

notes and rests than allowed by the time-signature.

 49

49

 Staff System
 1. . n 1. . n

 1 1

 Bar 2 1. . n BarLine

 Local Bar Number Position
 Global Bar Number EndPosition
 Total Duration BarlineSymbol
 Tempo Side
 BarRect
 Draw
 Play UpdatePosition
 Layout Bar SetXPosition
 DrawBar
 UpdateVoiceSymb
 Clef AddMusicEvent
 AddNote

 KeySignature TimeSignature

 Figure 4.7 Bar and Barline objects.

A tempo attribute allows tempo changes to occur on bar boundaries. Initially, each bar was time-

stamped according to the NIFF standard with a time-tag indicating the total elapsed time from the

start of the score. During MIDI implementation, it was found that this information was not required

to correctly implement timing, and posed certain limitations on the software. Implementation of MIDI

timing is discussed in greater detail in chapter five. Instance connections between a Bar and its

Clef, Key and TimeSignature objects are discussed in section 4.3.4. LayoutBar formats all notes

and rests within a bar using a simple positional formula derived from rhythmic durations.

By default, a single barline object represents both the left and right-hand barlines of adjacent bars.

A flexible design must, however, allow different barlines to occupy bar boundaries where required

by the score. Bars can divide a single staff equally as shown in example 4.2. Left and right-hand

 50

50

By default, a single barline object represents both the left and right-hand barlines of adjacent bars.

A flexible design must, however, allow different barlines to occupy bar boundaries where required

by the score. Bars can divide a single staff equally as shown in example 4.2. Left and right-hand

barlines belonging to adjacent bars overlap each other by sharing the same horizontal position. This

arrangement places the starting position of the first bar at the start of the staff. The key-signature,

time-signature and clef that are traditionally notated at the start of each staff form part of the first

bar of the staff.

 Example 4.2 A single staff divided into bars.

This scheme is intuitively appealing, as all bars may denote key, time, and clef changes at the start

of a bar. However, the addition of a repeat barline as the left-hand barline of the first bar in

example 4.3 suggests that the portion of a staff to the left of the left-hand barline is not part of the

bar itself :

 Example 4.3 Starting position of the first bar of a staff.

The line at the left-hand starting position of a staff is not a barline (as assumed in example 4.2), but

a system line that denotes the start of a system. This is further illustrated by example 4.4, where the

clef, key and time-signatures are behind the left-hand first barline of the first bar. Changes that

 51

51

 occur in the first and third bars are in front of the left-hand barline. In practice, the key change

in the first bar would usually be notated at the end of the previous staff, avoiding the redundancy of

the key-signature at the start of the staff. Although unusual, example 4.4 is not theoretically

incorrect.

 Example 4.4 Barline positions of the first bar of a staff.

Clef and signature changes at the start of a staff belong to the staff and not to the first bar, as the

area between the system line and the start of the first bar belongs to the staff. If this area is

interpreted as belonging to a bar, a distinction must be drawn between the first bar of a staff and all

other bars, resulting in two distinct bar objects. Such a representation is more complex than

necessary and should be discarded in favour of a single bar object representation. This scheme also

distorts the meaning of a staff, denying that a staff may have clef, time and key-signature attributes.

4.3.3.1 Bar Representation

The concept of a bar can have two interpretations as illustrated in example 4.5. A bar can

encompass either the vertical area across all staves forming a system (area A), or the area within a

single staff (area B). Both of these areas are bounded by barlines.

 Example 4.5 Two representations of a bar.

 52

52

English language reference to a bar across multiple staves is simply achieved by use of the bar

number. Reference to a bar within a specific staff qualifies the bar number with the staff number or

instrument name, providing an unambiguous reference to either area A or area B. The terms

‘system- bar’ and ‘staff-bar’ provide a convenient distinction, the former referring to area A, and

the latter to area B.

Defining system-bars provides a vertical grouping of events which may be useful should the parsing

of events during playback be performed on each bar in turn. All notes occurring at a given metric

division of the system are easily accessible. Barlines that traverse the entire system such as the

barlines of example 4.5 logically flow from system-bars. Unfortunately, system-bars create

problems regarding the constituent parts of a staff, as well as the relationships between barlines and

a bar. If a system consists of staves, a system-bar consists of vertically adjacent areas of multiple

staves, requiring that a staff be constrained to occur within a bar. Such a definition of a staff does

not occur within music theory, and is not conceptually satisfying. Blank manuscript paper does not

consist of bars which must be filled in with staves, the bar is always subordinate to the staff.

Barlines are often not contiguous lines across an entire system, being broken to reflect individual

instruments, or groups of instruments as shown by the common piano-vocal or piano-solo instrument

format of example 4.6 :

 Example 4.6 Piano / vocal score format.

Where barlines are broken within a system, system-bars are delimited by multiple barlines.

 53

53

System-bars implicitly require that left and right-hand barlines share x co-ordinates. Multi-metric

music (music where different parts, or instruments have different time-signatures) cannot be

accommodated by a system-bar representation that requires barline alignment. Different durational

contents would require multiple barlines at mutually exclusive positions, destroying the metric

function of the barline. Given the above limitations, bars are represented in the OOTMN as staff-

bars. The use of staff-bars provides greater flexibility and is consistent with notational practice, but

poses interesting problems concerning the use of barlines.

4.3.3.2 Barline Relationships

Staff bars can only have a single left-hand and a single right-hand barline. Barlines that occur

across multiple staves, or an entire system pose the opposite problem to the problem of breaking

barlines discussed in the previous section. Barlines must be joined to encompass more than a single

staff as shown in example 4.7 :

 Example 4.7 System barlines created from overlapping barlines.

The barline at (a) extends across the entire system, and is created by the vertical alignment of the

barlines at (b), (c), and (d). Note that barlines occurring on staves preceding the last staff must be

extended across the space between staves. Design of the OOTMN initially followed this scheme

which was also implemented in C++. The NIFF specification [Grande, C, 1995, p.46] allows a

barline to have a flag that specifies its extent from a starting position at the top of a staff. This flag

can indicate the starting and ending point of a barline as :

 a) the top of a staff, and the bottom of the last staff of a system, or

 b) the top of a staff, and the top line of the next staff, (as in figure 4.7b) and c), or

 54

54

 c) the bottom of a staff, and the top of the next staff i.e. the barline occurs only in the

 spaces between adjacent staves (not through staves)

This specification suggests that many commercial products use the representation scheme of

example 4.7 described above. Despite a successful implementation of this design, it was felt to be

conceptually unsatisfactory and was abandoned.

Throughout the design process an attempt was made to place as few constraints as possible on both

the placement of, and relationships between different objects. Examples from the literature such as

the opening of Lutoslawski’s Dance Preludes, Stravinsky’s Abraham and Isaac , and the barline

notations used by Luciano Berio described by Cole [Cole, 1974] require unusual spatial

relationships between symbols. The following examples illustrate these unconventional notations:

 Example 4.8 Barline notation used by
 Igor Stravinsky in Abraham and Isaac.

 Example 4.9 Barline notation used by Luciano Berio.

It was later realised that a bar need not have unique barlines, unless adjacent bars required different

symbols for their respective left and right-hand barlines. A single barline may be shared by multiple

bars occurring vertically across a system, as well as adjacent bars. The OOTMN implements

 55

55

barlines as shared barlines where any barline that crosses a staff is deemed to delimit the bars

occurring on that staff as shown in example 4.10 :

 Example 4.10 Shared barlines used by the OOTMN.

The barlines at (a) and (b) determine the starting and ending positions of Bar1 and extend across a

single staff. Barlines at (c) and (d) extend across multiple staves and are shared by bars two, three

and four. This view of barlines is consistent with the musician’s view of a barline as an indivisible

symbol. Where barlines are broken within a system, new Barline objects are added to the system.

The single system in figure 4.10 has six visible barlines within three system bars. Barline objects

have no direct relationship to Staff objects. A System object stores and maintains Barlines, which

are utilised by Bars to indicate the starting and ending positions of a bar.

4.3.3.3 Secondary Bars

A secondary bar is an interesting concept, specially developed for the OOTMN. Secondary bars

allow ornaments to be correctly notated and played by implementing in standard notation, both the

notated and performed versions of the ornament. A secondary bar occupies the same position as its

parent bar from which it is derived.

 56

56

 Bar 1 1 Bar (Secondary Bar)

 Ending Bar

 Ending Number

 Figure 4.8 Bar specialisations and SecondaryBar objects.

Only the parent bar can be performed via MIDI, the secondary bar functions solely as a graphic

representation of the ornament. This scheme allows the performance version of the ornament to be

notated exactly as required. A secondary bar and its associated primary bar cannot be visible at the

same time, as they occupy identical positions within a staff. Bars that have additional functionality

such as first and second-time bars are derived from class Bar. The OOTMN does not presently

support different types of Bar objects having specialised functions such as repeat, and first and

second time bars. These specialisations can easily be derived from a successful bar representation.

4.3.4 Clefs, Key-Signatures and Time-Signatures

The clef, key-signature and time-signature are by default inherited (in the English, and not the

object-oriented sense of the word) by staves from the global attributes contained in the Score

object. A staff may override the global settings as required by the score structure, or the changing

musical context. There is, however, a crucial distinction between a clef, key-signature, or time-

signature at the score and staff levels. The Clef, Key-signature and Time-signature associated with

a Staff are actual objects, influenced by the corresponding score attribute information. This

distinction results from the difference between a higher-level concept of “key” (such as the key of

F minor) and the physical manifestation of F minor as four flats occupying specific positions on a

particular staff. Similarly, a global numeric representation of a clef or time-signature does not

provide any information about the placement of symbols, or any other information which may be

useful to the software.

 57

57

 Representation of time-signatures divides the upper and lower values of a time-signature into

distinct objects. This scheme allows for greater flexibility when displaying a time-signature or

altering its position. Modern conventions that change the appearance of a time-signature’s lower

value, or display a time-signature in a different position from the conventional placement within the

staff are easier to implement with a time-signature consisting of two objects. Clef, Time -signature

and Key-signature objects form instance relationships with Staff and Bar objects.

 Staff 1 1.. n Bar

 1 1 1 1

 1 1 1 1 1 1

 Clef TimeSign KeySign

 Position Position Position
 ClefType Spacing
 Draw Key
 Draw UpdatePosition
 UpdatePosition Draw
 UpdatePosition
 1 1

 TimeSignMeter TimeS ignValue

 Position Position
 Meter Duration
 DisplayMode
 Draw Draw
 UpdatePosition UpdatePosition

 SplitTimeMeter

 First Value
 Second Value

 Figure 4.9 Clef, Time-signature and Key-signature objects.

 58

58

 Multiple clefs can be associated with a single Bar object, allowing more than one clef change

to occur within the bar. All other relationships are unary relationships as a staff can only have a

single clef or key-signature or time-signature. (excluding the use of changing meters discussed in

chapter two). The DisplayMode attribute of class TimeSignValue determines whether a numeric or

symbolic (i.e. note) representation is to be used for the lower value of a time-signature. Class

SplitTimeSignMeter allows a composite representation of the form x + y to be used as the top

value

of a time-signature. Example 4.11 shows modern time-signature conventions made possible by the

time-signature representation of figure 4.9 :

 Example 4.11 Time-signature positions in modern notation.

4.4 Voices

Voice objects function only as containers that separate the streams of music events that make up a

musical voice within a bar. Separation of musical voices allows editing and playback of individual

voices, as well as simplifying the formatting of the notes and rests within a bar. Stem directions can

be set within a particular voice to provide correct visual separation between voices. Different MIDI

timbres (i.e. synthesiser patches) can also be assigned to independent voices.

 59

59

 Bar
 1. . 4
 1

 Voice

 Timbre
 Stem Direction 0. . n 1
 MusicEvent
 Insert MusicEvent
 Delete MusicEvent
 CreateChord
 FindChord
 GetXPosition

 Figure 4.10 Voice objects and their relationships.

4.5 Note, Rest and Chord Relationships

Class MusicEvent is a class from which objects that have a sonic realisation are derived. Notes

correspond to the musical concept of a tone, Rests correspond to silence. Note objects that have a

starting and ending time are directly translated into MidiMessage objects. Rests are regarded as

having no starting or ending time, a Rest’s duration attribute only provides the starting time of the

next note following the rest.

4.5.1 Note Structure

A note may consist of only a note-head, or a note-head with a stem, or a stemmed note with one or

more flags as shown in figure 4.11 :

 60

60

 Stem flag-end endpoint Flags

 w Notehead h x Stem notehead-end endpoint

 Figure 4.11 Structure of a note symbol.

An object-oriented design consistent with music theory views a Note object as a whole-part

structure consisting of a notehead, one or two stems and one or more flags as shown in figure 4.12.

This representation is simplified by considering the notehead as an attribute of class note, rather

than a separate object. A Notehead class would have only two attributes, the symbol that represents

the notehead and its position. The position attribute is made redundant by the Note object having a

position attribute. Single attribute classes often indicate a redundancy where the class as a whole

can be represented as an attribute rather than an object, hence we view notehead as an attribute of

Note and not as a class.

 61

61

 Note
 Position
 Notehead
 Colour
 PlayState

 GetMIDI
 GetMIDIKey
 GetNameClass
 GetPitchClass
 GetOctave
 CreateStem
 AddSecStem
 GetNormStaffStep
 UpdateDepend
 Draw
 UpdatePosition

 1. . 2

 1

 Stem Flag
 Position 0.. 5 1 Position
 Direction NumberOfFlags
 SetSide
 Draw Draw
 UpdatePosition UpdatePosition

 Figure 4.12 Whole -part structure of a Note object.

Stem objects use the flag-end endpoint co-ordinates as a primary reference point. To ensure

maximum flexibility, the notehead-end endpoint is not related to the position of the notehead. A Note

may have a secondary stem, allowing ascending and descending stems to be attached to a single

notehead. Flags are dependent on the existence of a stem, a note cannot consist of a notehead, no

stem and flags. A single flag object encapsulates all of the flags associated with a particular

duration by storing the number of flags. Thus a semi-quaver note has a single flag object that

records the number of flags as two. It is unnecessary to associate multiple flag objects with notes

having durations shorter than a quaver, as class Flag does not require any specialised functionality.

 62

62

 In fact, a Flag object could easily be made redundant and implemented as an attribute of class

Note.

Allowing Flag objects to be moved independently of a Note or Stem object, provides maximum

flexibility, but requires that Flags be implemented as an object rather than an attribute. Note objects

also have instance connections to Tie and Slur objects that function as semantic modifiers discussed

in section 2.33. A Slur or Tie object connects two Notes as shown in figure 4.13 :

 Note 1 2 Slur
 1 Position
 MidPoint

 DrawBeziér
 1 Draw
 Update Position
 Accidental Tie
 Position Position
 xOffset
 Accidental type Draw
 Update Position Update Position
 Draw

 Figure 4.13 Relationship between a Note and Accidental, Tie and Slur objects.

4.5.2 Rests

While being simpler objects than notes, Rest objects have an interesting property in that they do not

have a specific pitch, but have a staff step attribute as shown in figure 4.14 :

 Rest

 Position
 StaffStep

 Draw
 UpdatePosition
 GetMIDI

 Figure 4.14 A Rest Object.

 63

63

A Rest’s staff step is used to position a rest on the y-axis. Rests have default positions in the centre

of the staff (shown in example 2.9) that are only used when a single voice is notated on a staff.

Multiple voices require that rests be positioned so as to achieve a satisfactory visual separation

within the tessitura of the voice to which the rest belongs. Placement of rests on the y-axis is

achieved by positioning the rest at a staff step. Especially important are semi-breve and minim rests,

that are distinguished by their position directly above or below a staff line. Example 4.12 shows a

canon with a minim rest in the upper voice notated above the staff, clearly indicating that it belongs

to the upper voice :

 Example 4.12 Rest notation in a two -voice canon.

4.5.3 Chords and MusicEvent Objects

All objects that have a sonic realisation are derived from class MusicEvent. Notes correspond to

musical tones, while rests represent silence. Notes are implemented by being directly translated into

MidiMessage objects, while Rests serve only to separate Notes. MIDI implementation of

MusicEvents is discussed in detail in section 5.5. Chord objects can be directly derived from class

MusicEvent (i.e. a chord is a symbol that can be directly translated into a sonic event) or, a Chord

can be viewed as an aggregation of notes. In the latter case, the individual Notes form the sonic

representation of the chord while the Chord object itself has no base class. These two

representations are shown in figure 4.15 , and figure 4.16. Both representations are consistent with

music theory, viewing a chord as a collection of notes.

 64

64

 MusicEvent

 Duration
 Dot
 StaffStep

 Rest Note 1 2. . n Chord

 Figure 4.15 Class Chord as an independent class.

 MusicEvent

 Rest Note 1 2. . n Chord

 Figure 4.16 Chord class derived from Class MusicEvent.

It is generally preferable to favour higher-levels of conceptual abstraction and to give preference to

whole-part relationships where the whole has direct control over its constituent parts. Figure 4.16

provides the highest level of abstraction (a Chord is a MusicEvent in its own right, even though it

consists of Note objects which are also MusicEvent objects), while also allowing direct control over

its constituent parts. An alternative arrangement that clearly separates individual notes from the

notes that form a chord is shown in figure 4.17 :

 65

65

 MusicEvent

 Rest Note Chord

 2. . n

 1

 ChordNote

 Figure 4.17 Distinct classes for notes and chord notes.

This representation has merit in its clear functional separation, but is unnecessary, as all the attribute

requirements for a ChordNote that is a part of a chord are contained within a Note object.

Chord representation is also influenced by the choice of note representation. A chord can be viewed

as a collection of noteheads and a single stem, or a collection of notes where one note has a stem.

As mentioned in section 4.4.1 the OOTMN does not make use of notehead objects, and thus

represents chords as a single note containing a stem (i.e. the stem note of the chord) and one or

more notes without stems. The stem extends from the highest note downwards, or from the lowest

note upwards. Notes can be translated into sonic events, while noteheads are purely graphic

symbols that cannot be mapped onto a sonic realisation.

4.6 Beams and Beamed Groups

Semantic connections between flags and beams and especially their relationship to notes, provided

an insight that became an important aspect of the design process. Computer implementations of

music notation differ from the printed score in that the visual representation made up of symbols on

the display screen has an equivalent underlying machine representation. Printed scores have no

other representation scheme, the graphic symbols are the complete representation. The beams of a

 66

66

beamed group thus function to indicate both the durations of notes and their grouping in a printed

score.

In many computer representation schemes (including the OOTMN) beams do not determine note

durations as all Note durations have already been specified before the creation of a beamed group.

i.e. Notes are placed onto the staff and then beamed together. Duration is an attribute of a Note

object and is not influenced by whether the note is attached to a beam or has flags. Beams are only

graphic symbols that visually group notes. Beams function as the ‘notational conveniences’

discussed in section 2.3.4. Because beams do not influence the notes that they group, they can be

graphically manipulated without influencing the semantics of the score. BeamedGroup objects

create a relationship between a set of beams and a set of notes as shown in figure 4.18. A

BeamedGroup has no attributes but consists of a large number of methods that are required to

manage the complex relationships that exist between the notes and the beams. FindBeamPoints and

SetStems calculate Beam positions and shrink or stretch stems when creating a BeamedGroup.

 Beamed Group

 GetBeamedNote
 SetStems 1. . n 1
 2. . n FindBeamPoint
 1 IsCommonBeam Beam
 Note GetTopBeam Beam Number
 GetBottomBeam
 SetBeams Draw
 GetFurthestBeam IsSelectedObject
 UpdatePosNote UpdatePosition
 UpdateStems
 UpdateAllBeams
 UpdatePosition
 DrawAllBeams

 Figure 4.18 Structure of BeamedGroup and Beam objects.

 67

67

CommonBeam determines which notes of a BeamedGroup have the same duration and thus share a

Beam. UpdatePosNote updates a BeamedGroup’s state after a Note has been moved. SetBeams

and UpdateStems adjust Beams or Stems after a Beam is moved. UpdatePosition alters the

positions of all Beams in a BeamedGroup. The remaining methods are self-explanatory.

Although beams are usually used to group notes according to metric divisions indicated by the time-

signature, they should not be restricted to metric divisions i.e. consist only of notes that occur on the

same beat. Composers use beams to indicate logical divisions of musical material, or to emphasise

articulations. The example below from Brahms’s first clarinet sonata illustrates the use of beams to

emphasise articulation. The lower staff is a reconstruction of the original material of the top staff,

but adheres to conventional practice.

 Example 4.13 Brahms, Clarinet Sonata no.1
 First movement, measures 145 - 149.

Notes are articulated in groups of two, consisting of the quaver on the second-half of a beat and the

quaver on the first-half of the next beat. Note how the emphasis on the articulation is lost in the

version notated on the lower staff which uses a conventional metric beaming. Beams forming a

beamed group are constructed by an algorithm that creates the beams required by the set of notes

forming a beamed group. This original algorithm is presented in chapter five.

 68

68

4.7 Irregular Groups

Irregular groups are groups of notes, rests, and chords whose durations are altered to represent

durations that cannot be accommodated by the limited number of durational symbols used in music

notation. Symbols representing duration have binary relationships as shown in figure 4.19 :

 w
 h = 1/2 of w
 q = 1/2 of h
 e = 1/2 of q
 x = 1/2 of e

 Figure 4.19 Relationships between note durations.

Durations that do not have a binary relationship to one of the available symbols (i.e. they have a

duration that is as a third, fifth, or some other non-binary related value) must be notated as an

irregular group. Grouplet objects encapsulate all irregular groups i.e. duplets, triplets, etc. Accurate

representation is achieved by using four durations that correspond to the NIFF specification. These

four integral values are the face number, face duration, actual number, and actual duration. The

face number and duration represent the number of notated (i.e. written) notes and their durations.

Actual number and duration represent the actual number of notes and their durations.

Three e durations performed in the time of two e durations is the most commonly

encountered triplet. Using the representation scheme of four values :

 Face Number = 3, Face duration = e
 Actual number = 2 , Actual duration = e

Thus three notated quavers are to be played in the actual total time occupied by two quavers. Each

notated quaver has a performed duration of one-third of a crotchet. Class Grouplet is shown in

figure 4.20 :

 69

69

 Grouplet

 FaceNumber 2. . n
 FaceDuration
 Actual number 1
 ActualDuration
 BracketOffset MusicEvent
 DeleteEvent

 1
 1

 GroupBracket

 BracketType

 CalcBracketPosition
 Draw
 UpdatePosition

 Figure 4.20 Structure of class Grouplet.

4.8 MidiMessage Objects

Notes have instance relationships to MidiMessage objects. MidiMessage objects form an interface

between the OOTMN and the Maximum MIDI Toolkit (MMT) by encapsulating the MidiEvent

structure of the MMT. The MMT is described in detail in the following chapter.

 MidiMessage 1 2 Note

 MidiEvent

 Figure 4.21 A MidiMessage object.

 70

70

Only Note objects are translated into MidiMessage objects, a chord being represented in MIDI terms

by its constituent notes. Rests cannot be translated into MidiMessage objects as MIDI does not have

messages that represent silence. Rests only update the time before the start of the next note event

following the rest. This process is discussed in chapter five.

4.9 Part Objects

A part, introduced in section 2.2.11 is usually a portion of a score that is to be performed on a single

instrument. A Part object contains a complete Score object that represents the required notation

extracted from the main score. Figure 4.22 shows a Part object.

 Part
 Staves 1 . . 3

 VoiceNumber

 ExtractPart

 m

 1

 Score

 Figure 4.22 A Part Object.

A Part can extract notation from any voice using one to three staves. Method ExtractPart inserts a

new Score object representing the part into the Part object. The OOTMN presently only extracts

single staves.

 71

71

4.10 Defining Object Relationships

Defining relationships between objects from the viewpoint of the musician often leads to

relationships that, while logical, are complex and difficult to implement. A musician would regard

example 4.14 a) as a grouplet embedded within a beamed group :

 a) b)

 Example 4.14 Defining notational relationships.

Example 4.14 b) illustrates that graphic beam relationships between a single note and a chord are

implemented as a relationship between two notes. As discussed in section 4.5.3 only one Note of

the Chord object contains a Stem.

Musicians rely on groupings and sub-groupings to provide information for the correct interpretation

of relationships. Computer representations directly capture relationships by logically organising

related data, relationships are not dependent on hierarchical orderings derived from human visual

groupings. For example, the OOTMN class BeamedGroup organises the required data by relating

Beam and MusicEvent objects. Initially, object analysis regarded a beamed group as consisting of

notes, rests, chords and grouplets following the visual, hierarchical interpretation outlined above. The

object model of figure 4.23 captures these relationships :

 72

72

 Grouplet Beamed Group

 Chord

 Note

 Rest

 Figure 4.23 Representing notational relationships as classes.

The recursive nature of the relationships (both Grouplets and BeamedGroups contain the same

objects, and BeamedGroups contain Grouplets) makes the model more complex than

necessary.

A Grouplet is not required to be an explicit part of a beamed group. The Grouplet and

BeamedGroup objects provide a visual relationship that implies that the grouplet is part of a

BeamedGroup due to their common constituent parts. i.e. the required visual relationship is a side-

effect of the computer representation. Figure 4.24 illustrates this relationship by providing an object

model that corresponds to the musical fragment of example 4.14 a) :

 73

73

 BeamedGroup

 Note Note Note Note Rest Note Note

 Chord Grouplet

 Figure 4.24 Object Relationships between classes BeamedGroup,
 Grouplet and Chord.

The design philosophy of the OOTMN that attempts to define symbolic relationships using a as few

constraints as possible allows the existence of relationships that are syntactically correct, but are

idiomatically unsatisfactory due to their poor visual grouping. Example 4.15 shows two fragments

that each have a grouplet and a beamed group that overlap each other :

 Example 4.15 Unidiomatic notational relationships.

As beamed groups usually imply a metric grouping, beamed notes that form a unit greater (as in

example 4.15) or less than the prevailing metric unit are awkward to comprehend.

Figure 4.25 shows an object model that is derived from the objects and their relationships discussed

in this chapter :

 74

74

 Object Model p1

 75

75

 Figure 4.25 Complete OOTMN Object Model.

 76

76

 77

77

 Figure 4.26 Message passing in the OOTMN.

Figure 4.26 shows the flow of messages between objects. Individual messages are not shown, the

model summarises the relationship between two objects where one sends messages to another.

4.11 Comparing MUSICA and the OOTMN

The MUSICA notation program which was introduced in chapter two included documentation and

the source code of the software. This documentation allows an understanding of the high-level

 78

78

Figure 4.26 shows the flow of messages between objects. Individual messages are not shown, the

model summarises the relationship between two objects where one sends messages to another.

4.11 Comparing MUSICA and the OOTMN

The MUSICA notation program which was introduced in chapter two included documentation and

the source code of the software. This documentation allows an understanding of the high-level

structure of the software which is not easily obtained by studying the source code on its own. An

object model of the MUSICA project, constructed from the available information, is shown in figure

4.27 and figure 4.28 :

 MelodyParameters
 Melody Name
 Text Colour

 Melody PartParameters

 Name
 Multiplicity
 Edit Ymin
 Instrument Name

 Staff Part

 Figure 4.27 The class hierarchy of MUSICA.

 79

79

 StaffParameters

 Staff Width

 Staff MusicObject
 n 1

 Figure 4.28 MUSICA Staff and MusicObject objects.

4.11.1 Abstract Classes in MUSICA

Most of the objects used in the project are derived from a template (having the suffix ‘parameter’

appended to the class name) that is implemented as an abstract class. Abstract classes define

templates by allowing derived classes to inherit attributes common to the category of classes

defined by the abstract class. Abstract classes may not be instantiated, i.e. they cannot be created

as objects in their own right as they function purely as templates. In figure 4.27 class Melody is

derived from the abstract class MelodyParameters. Part and Staff classes are also derived from

their respective abstract base classes. Figure 4.28 illustrates a staff object and its abstract base

class.

Abstract classes thus provide a higher level of abstraction by factoring attributes common to all

possible derived classes. They also support polymorphism which allows base class objects to act in

accordance with the derived classes that they represent. Polymorphism is treated in more detail in

the next chapter where the implementation of the OOTMN is discussed.

4.11.2 The MUSICA Class Hierarchy

The highest-level class is the Melody class which represents the musical events occurring on a

specific staff. Class Part defines a logical grouping of staves that defines the requirements of a

particular instrument. Attribute mutiplicity defines the number of staves required to notate the

 80

80

instrument. For example, a piano would usually have a multiplicity of two, an organ would have a

multiplicity of three.

Striking similarities in design to the OOTMN are apparent at certain levels of the object hierarchy.

Class MusicSymbol corresponds to the OOTMN class of the same name, class ContinuousObject is

similar to the OOTMN class LineSymbol. These classes shown in the diagram below are discussed

in detail in chapter five.

 Music Symbol

 Point Object Continuous Object

 Note Hairpin

 Figure 4.29 MUSICA Class MusicObject and its derived classes.

Considering the abstract classes used in the MUSICA project, the question arises as to whether

many of these classes are necessary. For example, do all staves differ sufficiently to warrant

representation as an abstract class ? The answer is no, as different staves should not have different

attributes or functionality. A staff does not represent a class of objects. Any characteristic

differences between different types of staves can be adequately captured by attribute values within

the class itself. Abstract classes are best used when objects share a few common attributes. Class

PointObject is not strictly necessary if one of the points of class ContinuousObject is regarded as a

reference point that can be an attribute of class MusicSymbol (i.e. all symbols, whether continuous

or not have a primary reference point). This approach is followed in the OOTMN. The overall

 81

81

impression gained from studying the MUSICA code is that the design process was mainly driven by

object-oriented methodology, at the expense of the subject-matter being modelled. The design may

have centred around the software technology due to a lack of insight into the subject-matter, or may

have been the result of the designer pre-conceiving the design in terms of the capabilities offered by

an object-oriented implementation. By contrast, the OOTMN was designed by first deriving an

object model of music notation, and then considering the implications of representing the model in a

programming language. The design process described in this chapter provides an object model that

is elegant and creates a clarity of purpose that is necessary to successfully implement the OOTMN

in a programming language.

 82

82

 Chapter 5

 Implementing the Toolkit for Music Notation

5.1 Selecting a Development Environment

Borland C++ version 4 and Borland’s Object Windows Library (OWL) were used to implement the

OOTMN. In retrospect, this may have not been the best choice of development environment, but

was judged to be a suitable environment at the time that the decision was made. A variety of

factors, including hardware platforms, MIDI development and compiler speed influenced the choice

of development environment. The project was developed on multiple machines, including Intel 486-

66 and Pentium MMX architectures. Borland C++ ver. 5 was not used as it does not perform well

on a 486 processor. Previous experience with the Microsoft Visual C++ compiler proved this

product to be significantly slower than the Borland Compiler. The OOTMN is implemented as

sixteen-bit Windows code, due to the availability of a sixteen-bit MIDI library. Although a thirty-two

bit development environment would have been preferable, the overhead associated with

implementing MIDI functionality ruled out a thirty-two bit implementation. Relationships between the

different components of the development environment are shown in figure 5.1 :

 Windows API

 Object Windows Library

 MMT Application OOTMN
 Program

 Figure 5.1 Relationships between the Windows API,
 the OWL, the MMT and the OOTMN.

Borland’s OWL provides an object-oriented encapsulation of the Microsoft Windows Application

Programmer’s Interface (API). Windows development occurs as a mixture of application code in

 83

83

 the chosen development language and Windows API functions that form an interface between

the application and the Windows environment. The OOTMN and MMT are implemented as libraries

that are used by application programs. Use of the Borland OWL does not prevent an application

from bypassing the Borland libraries and directly using API function calls. The OOTMN occasionally

makes direct use of certain Windows API functions if these functions are easier to use than their

OWL equivalents. Borland’s container class library arrays are used to store sorted collections of

objects such as MusicEvent and MidiMessage objects. These arrays automatically sort notes, rests

and chords according to horizontal position, and MidiMessage objects according to timestamps.

5.2 Real-world models and machine models

The previous chapter examined the development of a model of music notation that only considered

the development process in terms of the subject matter itself. Computer software and especially

object-oriented software, attempts to model the real-world. It can never recreate or be the real

world. Models derived from analysis of the subject matter often require further refinement to be

elegantly implemented in a programming language.

Real-world objects (and object models) derive structural relationships from whole-part relationships

(aggregation), and generalisation-specialisation relationships. Instance relationships are relationships

or interactions between objects that are not of a structural nature. The model developed in the

previous chapter is almost entirely based on whole-part relationships, containing very few

generalisation-specialisation relationships. The gen-spec relationships that do occur, do not exist

within the most important relationships such as those between systems, staves and barlines that

occur at the centre of the object hierarchy. Whole-part relationships are implemented in a

programming language by means of pointers that relate whole to part (and if necessary vice-versa)

or, by nesting declarations of the parts within the whole. The structure and implementation of a

whole-part relationship using pointers is no different from the structure and implementation of

traditional data structures such as linked lists. Object-oriented technology provides no specific

means of accessing and manipulating aggregate relationships. Maintenance of these relationships is

left to the programmer. Gen-spec relationships provide powerful object-oriented functionality that is

 84

84

 directly supported by object-oriented programming languages such as the C++ language. A

real-world model that is to be successfully implemented in a software environment should be

adapted to conform to the characteristics and idiosyncrasies of that environment. Such adaptation

does not imply that object relationships be altered in any way. Careful thought and further analysis

of the problem domain can result in enhancements to the object model that simplify implementation,

while retaining relationships that accurately model the subject matter.

5.3 An Object-Oriented Implementation of the Model

Considering the toolkit for music notation as a whole, it is desirable to identify operations that would

be useful to applications built using the toolkit. Three such operations were identified, searching for

objects, moving objects, and the playback of objects that can be translated into sound. Most of the

objects identified in the object model directly correspond to music symbols. Hairpins, notes, rests,

barlines and many other objects have direct graphic counterparts of the same name. Common

characteristics of these objects can be factored out to produce an abstract base class MusicSymbol

shown in figure 5.2 :

 MusicSymbol

 Position

 IsSelectedObject
 UpdatePosOffset
 Draw

 Figure 5.2 Structure of a MusicSymbol object.

Abstract classes cannot be directly implemented (i.e. instantiated), they serve as templates for the

creation of derived classes. Class MusicSymbol implements searching for objects and the updating

of object positions using the object-oriented runtime functionality provided by gen-spec relationships.

 85

85

Classes that are derived from the abstract base class MusicSymbol are able to implement methods

appropriate for their particular context. For example, updating the position of a Note requires that

the position of its Stem object also be updated. Polymorphism (discussed in section 5.3.3) and the

ability to override methods inherited from a base class provide this functionality. The Attribute

Position and method Draw are self-explanatory. The other methods are explained in section 5.3.3.

5.3.1 Creating Objects

Barlines were initially modelled as forming part of a bar, and this relationship was implemented by

means of pointers from a Bar object to its left and right-hand Barlines. When this approach was

abandoned in favour of barlines not being part of any object, but reflecting multiple relationships to

bars and staves, a problem was encountered in determining which object should be responsible for

creating barlines.

By default, the OOTMN creates initial barlines that span an entire system. Creation of the object

hierarchy proceeds in such a way that each object creates its constituent parts. A System object

creates its first Staff, this Staff in turn creates its first Bar. The newly created Bar should be able

to have pointers to the Barlines which determine its extent. These instance relationships should be

defined by parameters that are passed to the Barline objects’ constructor. Unfortunately, at the time

of the first Bar’s creation the entire System has not been created. The last Staff of a System

determines the initial ending position of Barline objects. Partial construction of objects i.e. leaving

object attributes undefined to be updated at a later stage by a different section of code is a poor

object-oriented programming practice. When two objects are dependent on each other and the one

cannot create the other, they should both be created within the function which implements their

dependent relationship, or, by a higher-level object where feasible. A solution was devised where

System objects create their immediate constituents (i.e. Staff objects), as well as the parts of these

constituents (i.e. Bars), as well as all Barlines. It must be emphasised that Barline objects do not

have any continuous relationship to Staff objects. Barlines require the position of Staff objects only

when being constructed, after which they have no contextual dependencies. The relevant portion of

the object hierarchy is shown in figure 5.3 :

 86

86

 System
 array 1.. n of Staff System creates Staves
 array 1..n of Barline System creates Barlines
 create Staff::Bar

 Staff
 array 1..n of Bar

 m
 1
 2 1
 Bar Barline

 Figure 5.3 Hierarchical relationships that determine
 object creation and storage.

After all objects have been created, a System updates all Staves, Bars and Barlines to capture the

relationships that exist between them. Bar objects still form part of a Staff, but because of the

complex relationships involving Barlines, a Staff does not create its own Bars.

5.3.2 Storing Objects

Relationships usually determine where an object is stored in a program. Aggregation implies that the

parts of the whole are stored in the whole, either directly using nested objects, or in the case of the

OOTMN, indirectly using pointers to objects.

Barlines determine the extent of one or more bars, starting (initially) from the top of one staff and

ending at the bottom of another. They thus have a relationship to Bars, determining the starting and

ending positions of Bars on the x-axis. The left-hand and right-hand barlines of adjacent bars share

the same horizontal position. Operations such as breaking a barline between staves requires that a

single Barline object be replaced by two Barline objects. Moving Barlines requires that overlapping

Barlines be synchronised. To facilitate these operations it is desirable that all Barlines be stored in a

 87

87

 single data structure where they are easily accessible. If Barlines are not stored together and

are only accessible by means of the pointers determining object relationships (i.e. via Bar objects),

operations on Barlines become difficult to implement. Barlines are stored within the highest level

object where a significant relationship exists. As outlined above, Barlines have significant

relationships to Bars but are created by System objects. As a barline exists within a single system

(a barline denotes a temporal division and thus cannot traverse multiple systems), Barlines are

stored at the System level as illustrated by figure 5.3.

5.3.3 Searching for Objects

Each class derived from class MusicSymbol has a non-virtual method FindSymbol that directs the

search towards a specific object’s constituent parts. The method is non-virtual as each object is

responsible for searching its constituent parts. When method FindSymbol finds an object, the object

is cast to its base class (MusicSymbol) and returned all the way up the object hierarchy via the

successive FindSymbol() calls that found it. This process is illustrated using Coad notation in figure

5.4 and psuedocode in figure 5.5

Two other non-virtual methods that return boolean values, IsSelectedObject and ContainsObject

assist the search. IsSelectedObject determines whether an object is selected or not by performing

hit-testing on each MusicSymbol object examined during the search process. ContainsObject directs

the search to the appropriate System, Staff, Bar or MusicEvent where the object is to be found.

F" dSrrbol
IFioaS,mbd]
.. Cont"moObjO<;t

" "",.
{fnd Symt.al]
.. 1'lLS6ite1edC)l:ljtICI

" ,,~
(F,~

·CorI~..,

•

ELSE
[f'indSymix>l)
.. Col'ltO,MObjeet

"
ENO:F

E~O'-

 89

89

 MusicSymbol* ms = ptrPage->FindSymbol(point)

 Page::FindSymbol (point)
 for each System
 for each Staff {
 if (SelectedObject (Staff))
 return (MusicSymbol) Staff;
 else if (Staff.ContainsObject ())
 return Staff.FindObject (point);
 else return NULL;
 } //for

 Staff::FindSymbol (point)
 for each Bar {
 if Bar.ContainsObject(point)
 for each Voice
 if Voice.ContainsObject(point)
 for each MusicEvent
 if (SelectedObject (MusicEvent))
 return (MusicSymbol) MusicEvent;
 else if (ContainsObject (MusicEvent))
 return MusicEvent.FindObject (point);
 else return NULL;

 Figure 5.5 Searching process modelled in psuedocode.

Staves have a bounding rectangle shown in example 5.1 that determines how far notes and rests

may exist above or below the staff. As a staff is conceptually unbounded, the bounding rectangle

removes conflicts of association occurring between MusicEvent objects and adjacent staves.

 Example 5.1 Staves and their bounding rectangles.

 90

90

Bars also contain bounding rectangles determined by the x-axis of the staff bounding rectangle and

their left and right-hand barlines. These rectangles are used by the ContainsObject method to

constrain the search process within a specific Staff or Bar.

5.3.4 Moving Objects

Object-oriented systems derive their expressive power from polymorphism, the ability to bind an

appropriate derived class method to a base-class pointer at run-time. A pointer to any class derived

from a common base class can be stored as a base class pointer. At run-time the method from the

appropriate class will be bound to the pointer depending on the actual class of object pointed to.

Such methods are known as virtual methods. Consider the following simple psuedocode example

that implements a search using polymorphism and virtual methods in a mouse-driven environment :

 class Base {

 virtual void Print(“”); //virtual method

 };

 class D1 : public Base {

 void Print { >>“Apples class D1; } //virtual method

 };

 class D2 : public Base {

 void Print() { >>“Pears class D2”; } //virtual method

 };

 main() {

 Base* ptrBase = NULL;

 if (Click) ptrBase = FindObject(position);

 if (NULL != ptrBase) ptrBase->Print();

 }

 FindObject (position) {

 for all Pear objects if (found at position) return (ptrBase) Pear;

 for all Apple objects if (found at position) return (ptrBase) Apple;

 Figure 5.6 Searching using Polymorphism.

 91

91

The output depends on whether the user clicks on an object of type D1 or D2. The base class

pointer ptrBase invokes the Print method of either D1 or D2 depending on the actual derived object

pointed to by ptrBase. Method FindObject searches for both Pear and Apple objects.

An identical process may be used to update the positions of music notation objects that are moved,

as well as their spatially dependent objects, given the existence of a meaningful base class. Objects

that can be moved are all derived from a base class MusicSymbol. As mentioned in section 5.3 not

all objects are of class Music Symbol. Only objects that are notation symbols which that can be

selected and moved are music symbols. Score, Page, Voice, System, Beamed Group, Irregular

Group and Bar are not derived from class MusicSymbol.

Class MusicSymbol has a data member Position which holds the x and y co-ordinates of each

MusicSymbol object, and a virtual method UpdatePosition. This method updates the values stored in

MusicSymbol::Position, and updates all symbols that are spatially dependant on the symbol being

updated. UpdatePosition polymorphically invokes the appropriate method to update a symbol’s

position from a pointer to a MusicSymbol object returned from the search process. Position stores

actual screen co-ordinates and is the primary reference point of the symbol. NIFF refers to such a

point as an anchor. Dependent symbols are updated by virtual or non-virtual functions of the same

name (UpdatePosition). This process is illustrated in figure 5.5 using a scenario view for the process

involved in updating a system’s position. A second example is given in figure 5.6 which illustrates

updating a Note’s position in psuedocode. The function Note::UpdatePosition is implemented as a

virtual function that updates the note’s position. Note::UpdatePosition also contains non-virtual

functions that update its dependencies by means of an offset calculated as the difference between

the Note’s old and new positions. This offset is passed as a parameter to UpdatePosition and is not

part of the OOTMN, being calculated by the user interface of the application program.

-- -•

,~ .
•

1·::= I 1;:-;: I
.... 1 P I.., --

,

FigUr. n lJpd:lIlnp 5lnt>ol ""d iI', dopcodcnl ,ymbol. nlOdcl k d "sing Cood nOOllioo.

 93

93

 MusicSymbol* ms ->UpdatePosition(point);

 ms points to class Note

 class MusicSymbol {
 TPoint& Position;
 void UpdatePosition (offset) { //non-virtual example
 Position = Position + offset; }
 virtual void UpdatePosition (offset); //virtual example
 // pure virtual function
 }

 class Note : public MusicSymbol {
 void UpdatePosition (offset) { //virtual method
 Offset = Position - point;
 Position = point;
 ptrStem ->UpdatePosition (Offset); } // non-virtual method

 } //directly invoked

 class Stem : public MusicSymbol {

 // method inherited from base class
 MusicSymbol::UpdatePosition (Offset);

 // or override method for

 // special functionality

 }

 Stem updates all objects having spatial dependencies

 Figure 5.8 Updating a Note and it’s dependencies positions in psuedocode.

Figure 5.8 assumes that the base class pointer ms points to a valid derived object. As the pointer ms

points to a Note object, polymorphism ensures that the method Note::UpdatePosition is invoked. The

Note object is then able to update all symbols that have a context-sensitive relationship to it. In

figure 5.8 it updates its Stem, Stem in turn can update all objects spatially dependent on it such as

Flags or Beams.

 94

94

5.4 Implementing Objects

Significant differences exist between representing music symbols in a graphic context (i.e. for

display on a computer terminal) and representing symbols in a manner that is useful within music

theory. It is essential that objects be represented in terms of the subject matter. This is good

programming practice and avoids additional application code that must convert representations to a

suitable format.

5.4.1 Encoding Music Symbols

Computer storage requires numeric representations of symbols. Many schemes exist including the

popular DARMS code described by Brinkman [Brinkman, 1990], and the NIFF encoding format.

Integer encodings used in the OOTMN attempt to follow the NIFF format to facilitate the future

import and export of NIFF files.

5.4.2 Representing Notes

Encoding musical pitch presents several implementation problems resulting from the octave

repetition of the seven alphabetic pitch names and the enharmonic equivalents found in the

chromatic system. Unambiguous representation of a note within the context of music theory

requires that a note be able to determine its name class, pitch class and octave. Staff steps (and

thus note names) do not provide a representation of all possible pitches, being limited to the seven

diatonic pitches of C major. Unambiguous representation of musical pitch is described by Brinkman

[Brinkman, 1990] and Dyer [Dyer, 1986].

5.4.2.1 Name Class

The alphabetic characters A to G form a name class (i.e. a set of names) that map onto NIFF staff

steps according to the clef used. Staff steps are constants with zero always referring to the lowest

line of the staff. The musical name of a staff step is contextually dependent on the clef associated

with a staff. A name class is a mapping of alphabetic note names onto the integers 0 . .6. The

following diagram illustrates the relationship between note names, name classes and staff steps

within the context of the treble clef :

 95

95

 Example 5.2 Name class and staff step relationships.

All notes having the same name map onto the same name class irrespective of whether they have

accidentals or not. Thus the notes C, Cb, Cbb, C# and Cx all have a name class representation of

zero.

5.4.2.2 Pitch Class

A Pitch class represents all twelve chromatic pitches by indicating the distance of a pitch from the

name class 0 (i.e. the note name ‘C’) in semitones. Figure 5.9 shows pitch class representations

related to note letter names on the keyboard. Pitch class representation does not distinguish

between enharmonic equivalents, both F# and Gb are PC 6 as they are both six semitones from PC

zero.

 C# D# F# G# A# C# D# F# G# A#
 Db Eb Gb Ab Bb Db Eb Gb Ab Bb

 C D E F G A B C D E F G A B
 Pitch classes 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

 Figure 5.9 Pitch classes and note letter names related to the keyboard.

Representation of music notes requires careful consideration, as a simple numeric encoding of a

musical note has little usefulness within the domain of music theory. The name class, pitch class and

octave are required to provide an unambiguous representation of a particular note.

 96

96

Class MusicSymbol stores the screen co-ordinates of a Note object. A Note has a staff step

attribute and an instance connection to an Accidental object. The staff step allows computation of a

name class, while a pitch class can be computed from the staff step and accidental value. Name

and pitch class values are used in transposition (i.e. the calculation of intervals) within the OOTMN

and can be used by application programs built using the OOTMN. The harmony tutor presented in

chapter six makes use of name and pitch class representations to generate appropriate exercises, as

well as to evaluate completed exercises.

5.4.2.3 Octave Representation

Octave placement can be indicated by the accepted standard notation that assigns a unique integer

to each octave range between consecutive occurrences of the note names ‘B’ and ‘C’ :

 Example 5.3 Octave representation.

Octave placement is not used internally by the OOTMN. Octave encoding is usually only required by

purely numeric encoding schemes that do not make use of staff steps. The OOTMN note class does

have a method that returns the octave number of a Note should an application require it. Name

class, pitch class and octave representations can be packed into a single numeric representation

creating what Brinkman [Brinkman, 1990] refers to as a Binomial Pitch Representation. This

representational scheme was considered for representing the pitch of Note objects, but was rejected

in favour of a representation that emphasises the position of a Note by means of staff step and

position attributes.

 97

97

5.4.3 Line Symbols

As discussed in section 5.3, all available symbols have a reference position stored in the base class

MusicSymbol. This position forms a reference point around which a hit spot is created for hit-

testing. Certain Symbols such as hairpins contain more than one hit spot. Such symbols are usually

created from a set of line segments which can be stored in an array as a set of points. Class

LineSymbol is the base class for all objects that consist of a set of points. Hairpin, Beam, Stem and

Bracket objects are all derived from class LineSymbol.

 The hairpin symbol shown in figure 5.10 consists of two line segments between points one and two,

and points two and three. It is desirable to be able to stretch the symbol horizontally, adjust the

vertical position of the whole symbol and to open or close the hairpin. A hitspot at each of the three

points defining the placement of the symbol accomplishes these tasks. Hitspot two adjusts the entire

symbol along the y-axis or stretches the symbol to the left. Hitspots one and three stretch to the

right and open or close the hairpin around point two.

 1

 2 3

 Figure 5.10 Hairpin object hitspots.

Line Symbols are derived from class MusicSymbol, retaining a primary reference point (given by

MusicSymbol::Position), while having an array of points that specify secondary reference points

used for hit-testing. Member function IsSelectedObject, which returns a boolean value for music

symbols, is implemented to return an index identifying the hitspot of a line symbol. This arrangement

exploits a convention of the C programming language which regards zero as representing boolean

false and any positive integer as boolean true. A LineSymbol’s array of points also simplifies

drawing the symbol by storing data used by the Draw method which is implemented as a virtual

method.

 99

99

5.4.4 Special Symbols

Most music symbols are atomic entities obtained from the available symbols of the TrueType font

used by the OOTMN. Certain symbols are more complex, requiring the use of an algorithm to create

the symbol, or requiring symbols that cannot be created from graphics primitives supported by the

Windows API. Symbols that cannot be created algorithmically and implemented using Windows

graphic functions must be loaded as bitmap resources.

5.4.4.1 Slurs, Ties, and Phrase Markings

Slurs, ties and phrase markings are implemented as cubic Bézier splines (curves) which are

commonly used in computer graphics applications. Bézier curves are described by Taylor [Taylor,

1994] and Glassner [Glassner, 1990]. The structure of a cubic Bézier curve is shown in figure 5.11 :

 p0 p1

 . .

 p2 p3

 Figure 5.11 A cubic Bézier curve.

Cubic Bézier curves consist of four points. Two points determine the starting and ending positions of

the curve, the other two points are control points that determine the shape of the curve. In figure

5.11 p2 and p3 are the starting and ending points, p0 and p1 form the control points.

The algorithm used to compute the set of Bézier points was obtained on the Internet from a C

language program written by Dominic Giampaolo [Giampaolo, 1996], who has placed the code in the

public domain. In order to create a curve that closely approximates an engraver’s slur, a double

curve is used by the OOTMN where the starting and ending points are the same. The control points

are separated by a single screen pixel on the y-axis, creating a curve that is thicker towards its

midpoint.

 100

100

Slurs, Ties and phrase markings are all implemented by means of the same double Bézier curve.

Slurs and Ties are semantically different, depending on the context within which the same visual

symbol is used. Slurs indicate a group of notes that must be articulated together (each note as long

as possible) and form instance connections to two adjacent notes of differing pitch, or two non-

adjacent notes. Ties which add the durations of the two notes that they tie together must have

instance connections to two adjacent notes of the same pitch. Phrase markings which indicate the

start and end of a musical phrase must be implemented separately to distinguish them from slurs.

5.4.4.2 Beams

A beam is implemented as a LineSymbol and constructed by using a Windows graphic function that

draws a polygon from a set of points. Two left-hand and two right-hand points always share the

same position on the x-axis, ensuring that the vertical sides of a beam are aligned to the two stems

at each end of the beam. Beams are therefore always rectangles or parallelograms, as shown in

figure 5.12 :

 Figure 5.12 Beams implemented as rectangles or parallelograms.

 101

101

5.4.4.3 Bitmaps

Certain symbols such as the bracket and brace shown in figure 5.13 cannot be created from

graphics functions that are part of the Windows API and are not provided by TrueType fonts. These

symbols must be drawn into a score using bitmaps that are loaded into memory by the OOTMN.

Use of bitmaps allows the symbol to be stretched or shrunk to the size required by the application.

 Figure 5.13 Brace and bracket symbols
 implemented as bitmaps.

5.5 MIDI Playback
MIDI output is accomplished by making use of the Maximum MIDI Programmers’ Toolkit Lite. This

toolkit provides a variety of functions for the control of a MIDI interface and its associated data

stream. A detailed description of the Maximum MIDI Toolkit (MMT) is provided by the designer

Paul Messick [Messick, 1997]. Example code provided with the toolkit that makes use of buffers to

store MIDI data was altered to make use of the Borland C++ container classes. Allocating memory

buffers within Windows is a much more complicated and error prone process than using predefined

container classes. The Borland container classes also have the advantage of automatically sorting

data. This ensures that events sorted by their associated timestamps are output to the MIDI port at

the correct time.

Buffering of MIDI data is automatically provided by the MMT using a fixed-size internal buffer. It is

the application programmer’s responsibility to ensure that the buffer does not overflow. The MMT

sends a message to the application’s window when the internal buffer has been filled by MIDI event

structures. The application must stop filling the MMT buffer and wait for a second message

indicating that the buffer is ready to receive data. The OOTMN facilitates MIDI playback by

 102

102

converting Note objects to MidiMessage objects. The MIDIMessage class is shown in figure 5.14,

which encapsulate a MMT MidiEvent structure. MidiEvent structures encapsulated within each

Note object are output to a selected MIDI port.

 class MidiMessage {

 public : MidiEvent me; // MMT MidiEvent structure

 MusicEvent* ptrMusicEvent;

 MidiMessage() { me.status=0; me.data1=0;

 me.data2=0; me.time = 0; }

 MidiMessage(MusicEvent*, BYTE, BYTE, BYTE, DWORD);

 ~MidiMessage() {}

 DWORD operator == (const MidiMessage& mm) const
 { return me.time == mm.me.time; }
 DWORD operator < (const MidiMessage& mm) const
 { return me.time < mm.me.time; }
 };

 Figure 5.14 Implementation of Class MidiMessage.

Data member me is a MMT MidiEvent structure shown in figure 5.15. Overloading the = and <

operators facilitates sorting of MidiMessage objects according to the starting time specified by the

time field of the MidiEvent structure. A MidiMessage object also stores a pointer to its associated

MusicEvent object which allows greater flexibility to be used in the algorithm that implements MIDI

playback.

5.5.1 MIDI Synchronisation

MIDI output ports as implemented by the MMT are asynchronous receivers that output data as soon

as it is received. or output the data at a specified time, offset from the previous received message.

The serial MIDI data stream consists of messages where each message has a time tag specifying

the time offset from the preceding message. The MMT buffer stores MidiEvents and ensures that

they are output to the MIDI interface at the time specified by the time field. Musical events that

 103

103

occur simultaneously have a time tag of zero and are processed sequentially at the hardware speed

of 31.25 Kbaud. The human ear cannot separate musical notes that are very close together,

perceiving a closely separated sequential stream as simultaneous notes [Pierce, 1983].

MusicEvent objects (Notes, Rests and Chords) are used to create corresponding MidiMessage

objects. Each MidiMessage object translates into two MMT MidiEvent structures, a NoteON

message at the start of a note and a NoteOFF at the end of a note. Rests do not translate into a

MidiMessage, but are used to increment the elapsed time before the occurrence of the next NoteON

message. Chords, consisting of multiple notes are processed by providing equal starting and ending

times for each Note object.

 struct MidiEvent {
 DWORD time;
 BYTE status;
 BYTE data1;
 BYTE data2;
 BYTE data3;
 };

 Figure 5.15 MMT MidiEvent structure.

The data1 field is the pitch defined as a keyboard key number. Data2 is the MIDI velocity used by

the OOTMN to implement Dynamic objects. The time associated with each event is used to specify

a MIDI timestamp offset. The process of time conversion is a two-step process illustrated using the

rhythmic fragment of example 5.4 :

 Example 5.4 Implementing MIDI timestamps.

 104

104

Timestamp values are calculated by using the number of clock pulses per beat. Clock pulses are

obtained by the MMT from a Windows timer. The maximum resolution is 960 clock pulses per beat.

If the example above uses 960 pulses for each crotchet, the number of clock pulses per bar

is 3 * 960 = 2880. Thus the first bar starts at t0 and the second bar starts at t2880. The first step in

time calculation determines starting times for each event in a bar. The starting times for each event

(numbered 1 to 7) offset from the start of the bar are as follows :

 Event 1 2 3 4 5 6 7__

 Start t 0 960 1440 1920 1920 0 1920

A MIDI NoteON message occurs for each note at its corresponding starting time, with the exception

of the rest at event two which only serves to increment the bar’s counter by the duration of a

quaver or 480 clock pulses. Each event’s ending time is given by its start time + its duration. The

quaver rest has no ending time as illustrated below :

 Event 1 2 3 4 5 6 7__

 End t 0+960 - 1440+480 1920+960 1920+9601 0+1920 1920+960

A MIDI noteOFF message occurs for each note at its ending time. By combining the noteON and

noteOFF messages the table in figure 5.16 indicating the starting times of all MIDI messages is

constructed :

 MessageTime 0 960 1440 1920 2880

 MIDI Message ON 1 OFF 1

 ON 6 OFF 6

 ON 3 OFF 3

 ON 4 OFF 4

 ON 5 OFF 5

 ON 7 OFF 7

 Figure 5.16 Calculating MIDI starting times.

 105

105

The second step converts the starting times into offsets representing the difference between

adjacent starting times. These offsets form the time tags of MIDI messages. The offset of an event

n is :

 starting t(n) - starting t(n-1)

Only the first event of a group of events occurring at the same time is tagged with an offset, all

other events have a time tag of 0. Referring to the table above : ON 6, OFF 3, ON 4, ON 5 and ON

7 have time tags of 0. By storing MidiMessage objects ordered by increasing starting times,

corresponding MIDI time tags are easily calculated giving the stream of MIDI messages of figure

5.17:

 MIDI Time tag 0 0 960 480 480 0 0 0 0_

 Event ON 1 ON 6 OFF 1 ON 3 OFF 6 OFF 3 ON 4 ON 5 ON7

 2880 0 0_

 OFF 4 OFF 5 OFF 7

 Figure 5.17 Calculating timestamps as MIDI offsets.

5.6 Design of Algorithms for the OOTMN
Certain toolkit operations require the use of fairly complex algorithms. Beaming of notes and MIDI

playback presented challenging problems that required an algorithmic solution. All algorithms used

by the toolkit, with the exception of the calculation of Bézier curves, are original algorithms.

5.6.1 Creating Beamed Groups

BeamedGroup objects consist of all beams used to beam a group of notes. An elementary

formatting scheme places the beam from the first note’s stem to the last note’s stem. Designing an

algorithm that attempts to format different groups of notes correctly would be difficult and

unnecessary, given that beams can be manually adjusted to conform to any visual requirements.

Output results from a formatting algorithm described by Assayag [Assayag, 1988] are not always

 106

106

 satisfactory, and influenced the decision not to include an elaborate formatting algorithm.

Maximum flexibility is achieved by use of an algorithm that handles common cases, coupled with the

ability to manually configure beams for a variety of less trivial beam configurations.

Beams are created from the quaver level to the level of the shortest note duration, the endpoints of

the beam are determined by the endpoints of the stems of the first and last note of the beamed

group. Flag objects that form part of stem objects are deleted and stems belonging to notes falling

between the first and last notes are shortened or lengthened to terminate within the beam. This

process is illustrated in figure 5.18 :

 Figure 5.18 Creating BeamedGroup objects.

 107

107

5.6.2 Calculating Grouplet Durations

The structure of grouplet objects was presented in section 4.6. Durations of notes that form part of

a grouplet are calculated using the face durational value of the note and the four values that define a

grouplet. The grouplet in example 5.5 a) consists of three e face durations performed in the

time of two e actual durations. The second quaver face duration is further sub-divided into two

semi-quavers. Example 5. b) is a quintuplet of five x face durations performed in the time of

four x actual durations, with the second note having a larger face value than the grouplet

face value :

 a) b)

 Example 5.5 Durations of irregular groups.

Performed durations are always calculated as a portion of the actual duration of the entire grouplet.

Shorter or longer values are calculated according to general rhythmic relationships that increase or

decrease values by powers of two .

In example 5.5 a) Total actual duration = grouplet actual number * grouplet actual duration

 = 2 * e

 Note Number Face Duration Performed Duration

 1 e Total actual duration / 3

 2 x 1/2 of Total actual duration / 3

 3 x 1/2 of Total actual duration / 3

 4 e 1/3 of total

 108

108

In example 5.5 b) Total actual duration = grouplet actual number * grouplet actual duration

 = 4 * x

 Note Number Face Duration Performed Duration

 1 x Total actual duration / 5

 2 e Total actual duration / 5 * 2

 3 x Total actual duration / 5

 4 x Total actual duration / 5

 5 x Total actual duration / 5

5.6.3 Implementing MIDI Playback
Calculation of MIDI timestamps was introduced in section 5.5.1. The algorithm that facilitates MIDI

playback proceeds bar by bar processing each voice within a bar. Voices that are complete i.e. they

contain MusicEvents that fill the entire voice according to the time-signature, are processed

immediately with the associated MidiEvents being placed in the MMT buffer. Incomplete voices

such as the voice in the lower staff of example 5.6 a) require additional processing. Each

MidiMessage object has an instance relationship to its associated Note object. Notes that occur in

an incomplete voice are aligned to Note objects in a complete voice that share the same x co-

ordinate . In example 5.6 a) the note on the lower staff is aligned to the third crotchet of the upper

staff. The OOTMN always attempts to assign timings to events using known event timings as a

reference point.

 109

109

 a) b)

 Example 5.6 Incomplete bar and cross-staff beams.

Cross-staff beams such as those in example 5.6 b) are processed by attempting to process all the

notes within each BeamedGroup object. Should all the voices in a bar be incomplete or the parsing

process fail, the MusicEvents of an incomplete Voice are assumed to start at the beginning of the

bar.

The playback algorithm processes a single bar at a time using the above procedures providing a

powerful and flexible playback environment. Initial attempts to develop a playback algorithm

followed the NIFF specification by associating a timestamp with each bar. Each bar contained a

timestamp attribute that indicated the total elapsed time. This attribute was found to be redundant,

starting playback at a bar other than the first bar requires the timestamp to be ignored as MIDI

playback always starts from time zero. It is unclear as to why the NIFF standard associates a

timestamp with each bar.

Chapter five examined the C++ implementation of the OOTMN, as well as the algorithms required

by specialised notation functions and MIDI playback. The next chapter describes the practical use of

the OOTMN by examining the development of applications built using the toolkit for music notation.

 110

110

 Chapter 6

 Examples of Toolkit-Created Applications

6.1 Designing Applications using the OOTMN
All software design methodologies emphasise a separation of the user-interface from the actual

application program. This approach requires that the user interact with the program by means of

well-defined functions that link user commands to the application code. As an example of this

separation consider the use of a mouse to interact with a program. All code that manipulates, or

pertains to the mouse in any way resides in the user-interface of the software. The user-interface

determines the information required by the application (usually the state of the mouse buttons or the

mouse position) and provides this information to the application. The design of the OOTMN

emphasises this separation by providing methods that allow an application program to manipulate the

objects provided by the OOTMN. Figure 6.1 shows this interface which was partially included in the

complete object model presented at the end of chapter four :

 Application

 Score Page

 MusicSymbol

 Other OOTMN objects

 Figure 6.1 Application interface to the OOTMN.

 111

111

 Much of the functionality provided by the toolkit is made available by methods in the Score,

Page and MusicSymbol objects. Global settings are stored in the Score object, searching and hit-

testing starts from the Page level. The updating of an object’s position, as well as the positions of all

other symbols that are spatially dependent on the object are performed by MusicSymbol objects.

More specialised operations are made available by user interaction with specific OOTMN objects.

Examples of how a Microsoft Windows user-interface interacts with the toolkit can be found by

studying the ‘pagewin.cpp’ files which form part of the notation and harmony tutor example

applications presented in this chapter. Especially interesting are the OWL functions within the user-

interface that process mouse and keyboard input. These functions invoke the OOTMN methods that

perform searching and the updating of object positions.

6.2 Notation and Composition Software

The notation and composition software application provides a rigorous testing environment for the

OOTMN. Apart from testing the general correctness of the various methods associated with objects

in the OOTMN, this application also tests whether the individual objects are able to provide the levels

of functionality required to successfully implement complex music notation software. Not every

aspect of the application is discussed in detail. The following sections provide a summary of the

available commands and menu options. Although the program does not attempt to provide the

functionality of a commercial application, it has exceeded expectations in some of the tasks that it

performs.

6.2.1 User Interface Design

Given a pencil and a piece of paper, the elementary school music student and the accomplished

composer perform many identical, elementary tasks. These tasks should exists at a high level in the

user interface, complex operations that are infrequently used are hidden at lower levels. All

operations are implemented as simple click-and-drag operations within a WYSIWYG (What you see

is what you get) environment. The user-interface is similar to the interface employed by ‘Encore’

which was discussed in chapter three. As pointed out in chapter three, notation programs that use

complex menu operations to perform tasks are not conforming to the visually-oriented design of the

 112

112

Windows environment. The possible operations on Beam objects shown in example 6.1 serve as an

example of this design philosophy :

 a) b) c)

 q q q q q q

 Example 6.1 Dragging Beam objects.

Beam positions are adjusted by using the left-hand mouse button to click on a beam and drag it to

the required position while holding the button down. By default, beams are adjusted vertically by

dragging the middle or either end as shown in example 6.1a). All beams belonging to a beamed

group are automatically adjusted. Use of the <shift> key adjusts individual beams vertically as

shown in example 6.1 b). Pressing the <ctrl> key allows individual beams to be extended both

vertically and horizontally as illustrated in example 6.1 c). These operations allow modern

conventions such as the extended beams and fan beams of example 6.2 to be created by simply

extending the basic operations that adjust conventional beams. The design of the OOTMN does not

prevent this logical extension of functionality.

 Example 6.2 OOTMN examples of extended and fan beams.

 113

113

 Time-signatures are modified in a similar way. A complete time-signature may be dragged to

any position, while use of the <shift> key adjusts the position of only the upper or lower value of a

time-signature. The symbolic and split time-signatures of example 6.3 must be implemented by

selecting

menu options that set the display method (numeric or symbolic) for a time-signature, or obtain the

required values for a split time-signature.

 Symbolic time-signature Split time-signature

 Example 6.3 OOTMN created examples of time-signatures.

6.2.2 Using the Notation and Composition Program

Objects are inserted by selecting them from the different palettes. Chords are created by entering a

note at the same x co-ordinate as an existing note. All objects may be selected by clicking on the

object or one of its hitspots using the left-hand mouse button as outlined in the previous section.

Figure 6.1 provides a summary of the hitspots for each symbol. MusicSymbol objects (that are not

LineSymbols) have a single hitspot located at the centre of the symbol. LineSymbols listed in figure

6.2 can have their hitspots made visible by pressing the <Tab> key. Pressing <Tab> a second time

hides the hitspots.

 114

114

 Symbol Hitspot/s

 Staff Top left-hand corner.

 Barline Top or bottom of barline.

 Note Centre of notehead.

 Rest Centre of rest symbol.

 Chord Any Note belonging to the Chord.

 Dynamic Centre of dynamic symbol.

 Clef Centre of clef symbol.

 Time-signature Centre of top or bottom symbol.

 Key-Signature Centre of key-signature.

 Figure 6.2 MusicSymbol objects and their associated hitspots.

 LineSymbol Hitspot/s

 Beam Centre, left, or right of beam.

 Hairpin Three points forming the endpoints of

 the two lines forming the hairpin.

 Slur, Tie, Phrase Endpoints and two internal Bézier

 control points.

 Stem Endpoints of the line forming the stem.

 Barline Endpoints of the line forming the barline.

 Figure 6.3 LineSymbol objects and their associated hitspots.

Symbols can also be selected by double-clicking the symbol with the left-hand mouse button.

Symbols selected in this manner are highlighted. An appropriate symbol must be selected in this way

before invoking a menu corresponding to the selected symbol. All symbols are moved by dragging

them with the left-hand mouse button held down. Figure 6.3 provides a summary of the

 115

115

default actions, as well as the command keys that provide enhanced capabilities when dragging

symbols with the mouse :

 Symbol Command Key Description

 Staff none Moves the staff, automatically aligning all system

 staves on the x-axis. The y-axis positions of all staves

 below the staff being moved are automatically adjusted.

 All bar sizes, as well as MusicEvent positions within a

 bar are automatically adjusted..

 <shift>

 <ctrl>

 Barline none Sets a barline’s position on the x-axis.

 <ctrl> Sets top or bottom y-axis position, as well as

 x-axis position of a barline

 Beam none Adjusts all beams of a beamed group on

 the y-axis.

 <shift> Sets right or left-hand y-axis positions of

 individual beams.

 <ctrl> Sets right or left-hand x and y-axis positions of

 individual beams.

 Chord none Moves the entire chord on the x-axis.

 <shift> Moves individual chord notes on the x and y axes.

 Figure 6.4 Options controlling the movement of symbols.

Details of the methods that implement these options can be found in the OOTMN reference guide

given in Appendix A. Additional commands recognised by the OOTMN include the following :

 116

116

 Command Action

 <esc> Moves to select mode after insertion or

 deletion of a symbol, or cancels the selection

 of a symbol.

 Deletes the selected symbol that is highlighted.

 Group selection Hold the right mouse button down and drag

 across a group of notes.

 Beams a group of selected notes (see group

 selection above).

 <G> Creates a grouplet from a group of selected notes.

 (see group selection above).

 Figure 6.5 OOTMN command summary.

Clicking the left-hand mouse button anywhere on a page cancels the selection of a symbol.

6.2.3 Secondary Bars, Secondary Stems and Split-Stem Chords

A secondary bar must first be created by double -clicking the bar that is to have a secondary bar

with the left-hand mouse button, and selecting the secondary bar option from the bar menu. To

make the secondary bar visible, the right-hand mouse button is double-clicked in the bar containing a

secondary bar. Double -clicking the right-hand mouse button within the bar toggles the view from the

parent bar to the secondary bar and vice-versa.

Secondary stems (discussed in section 2.2.7.1), as well as note’s primary stem can be created or

deleted by double-clicking a note to select it, activating the Note menu and setting the stem

attributes as desired. Split-stem chords (illustrated in example 2.16) are created by graphically

altering an existing Chord object. A split-stem chord can be created by the following sequence of

events :

 117

117

 a) creating a Chord by inserting Notes at the same x co-ordinate.

 b) dislocating the desired Note or Notes from the Chord by dragging them with the

 <shift> key depressed.

 c) adding a Stem and / or secondary stem as required.

 d) dragging the Stem or Stems to the required position.

6.2.4 Toolbar and Menu Options

Toolbar options are shown in figure 6.6. Voice buttons select voices for both insertion of notes and

rests , as well as playback. A (All) plays all voices but inserts music events into voice one. Auto

stem direction sets the appropriate stem direction according to the position of the note on the staff.

A specific stem direction can be set using the stem-up or stem-down buttons. The arrow button

(corresponding to the <esc> key) is used to cancel the insertion or deletion of objects, allowing

objects to be selected and/or dragged.

 Stem direction Play, Stop
 Up, Down, Auto Step record Grouplet Graphic mode

 Voice selection Select mode Print Insert graphic Page back
 Erase mode Stop graphic insert Page forward

 Figure 6.6 The Score Application toolbar.

Step record allows step-recording from a selected MIDI input device. Note durations must be

selected from the note palette before playing the required pitch on a MIDI instrument. The stop

button ends both playback and recording. The grouplet button opens a dialog box that allows

specification of the desired grouplet. Insert graphic / stop insert graphic allows context-sensitive

 118

118

symbols such as accidentals and clefs to be inserted as graphics. Graphics mode destroys context-

sensitive relationships and treats each symbol as a graphic object.

Staff, Bar and Note menus require that appropriate object be selected by double-clicking with the

left mouse button before activating the appropriate menu. The palette menus shown in figure 6.7

activates palettes containing different categories of symbols :

 Figure 6.7 Palette menus for different music symbols.

Hairpin and slur symbols are the last items within the dynamic and articulation palettes. Some of

these symbols can be inserted to form context-sensitive relationships as described in the next

section.

6.2.5 Context-sensitive Symbolic Relationships

Articulation and dynamic symbols are inserted as context-sensitive symbols by adding the symbol to

an existing note by selecting the required articulation or dynamic and inserting it directly onto the

 119

119

 note’s notehead. Hairpins and slurs require a relationship with two Note objects. A hairpin or

slur is inserted by selecting the symbol from the appropriate palette and then clicking on two note

objects.

This process creates instance connections between the two Note objects and the Hairpin or Slur

object where the notes define the starting and ending positions of the hairpin or slur. Moving either

of the Note objects automatically adjusts the position of the dependent object. The dependent object

can be moved on its own, creating a spatial offset from the object on which it is dependent. This

offset relationship is maintained by the OOTMN.

6.2.6 MIDI Playback and Recording

A MIDI output port must be opened using the MIDI menu before starting playback. All available

MIDI ports are detected by the application and made available to the user. Clicking on a bar with the

left-hand mouse button places the caret within the selected bar. Playback begins from the currently

selected bar, with only the selected voice or voices being played. Similarly, a MIDI input port must

be opened using the MIDI menu before starting to record. Input begins from the currently selected

bar as indicated by the position of the caret. Duration is selected from the note palette, pitch being

determined by the keyboard key number of the MIDI ON message received by the OOTMN.

6.3 A Harmony Tutor

Existing commercial applications for theoretical music education concentrate on elementary music

skills. Skills such as note recognition, durational comprehension, and the identification of intervals

and chords form a relatively simple problem domain. Mapping of the subject domain to computer

software is often further simplified by using exercises having a true/false or multiple choice format.

Such exercises have little value where reasoning skills and conceptual insight are required from the

student. Higher-level skills such as harmony, melody writing and counterpoint require evaluation

mechanisms that are difficult to implement in software. The harmony tutor application is limited in

 120

120

 scope and uses simple evaluation functions. Evaluation of extended exercises having a richer

harmonic vocabulary would require the use of an expert system.

Harmony is the study of chords, including their construction and their relationships to other chords.

This sub-discipline of music theory extends from elementary principles that may be taught in the

secondary school to non-trivial research topics. The tutorial provides introductory-level tuition in the

completion of four-part perfect cadences where the soprano and bass voices are given. Use of the

tutor is covered in section 6.3.4.

6.3.1 Selecting a Development Environment for a Harmony Tutor

In addition to the interactive exercises created by the OOTMN, it is desirable to be able to include

tutorial matter consisting of text and musical examples that are only graphical images. The

Microsoft Windows Help system was investigated as a possible development environment. Help

files for Windows applications are created separately from the application using a compiler placed in

the public domain by Microsoft. In addition to the familiar hypertext links, extended functionality

within help files can be achieved using third-party products that exist as dynamic link libraries.

These libraries create additional windows within help files known as embedded windows. The

envisaged application would make use of an embedded window containing the interactive

component of the harmony tutor. Text-based tutorial matter would surround the embedded window.

After examining more than fifteen packages that provide development environments for the creation

of help files, and studying the Microsoft Help Development Kit (freely available as part of the

compiler), the idea was reluctantly abandoned. According to Arnote [Arnote, 1996], embedded

windows are never able to receive keyboard or mouse focus as the main help window always has

the input focus. Mouse input can only be achieved by an indirect process that transfers information

from the main window to the embedded window. Cessna [Cessna, 1996] advised that an alternative

solution whereby the help window is embedded in an application window would not be feasible.

Java is an interpreted, object-oriented programming language specifically developed for writing

applications that execute within a web browser. The Java Development Kit is freely available from

the developers, Sun Microsystems Inc.[Sun Microsystems, 1995] Java also allows functions written

in other programming languages, known as ‘native methods’, to be embedded in Java applications.

 121

121

 Such an environment has the potential to provide an ideal development environment for

educational music software. The text capabilities of HTML, coupled with Java’ ability to integrate

programming code such as the OOTMN could allow a music education application to execute within

a web browser. Educational software that is compatible with world-wide-web browsers has many

advantages. Web browsers are freely available, and allow a separation between the development

and execution environments of the software product. Distributed control, and updating of software

is also possible via the Internet. According to Wentworth [Wentworth, 1997], the use of native

methods within Java is an aspect of the language that has not been fully and freely implemented, as

the unrestricted use of native methods poses serious security risks on the Internet. The possibility of

a Java environment not being able to provide the required level of functionality resulted in this idea

not being seriously investigated.

6.3.2 Authoring Packages

Software packages that facilitate the creation of software for interactive education or presentation

purposes are referred to as authoring software. An initial Internet search for suitable authoring

software produced disappointing results; available packages were either of poor quality, or

demonstration versions having extremely limited functionality. Three packages that were potentially

useful were eventually discovered and evaluated.

Everest is a sophisticated, object-oriented authoring package from InterSystem Concepts Inc.

[InterSystem Concepts, 1998]. Formula Graphics developed by Formula Software [Formula

Software, 1988] emphasises graphic operations. MultiMedia Builder from MediaChance Software

[MediaChance Software, 1988] is the least sophisticated of the three packages, but is easy to use

and provides a solid set of core functions that are adequate for most applications. Problems

encountered while using Everest and Formula Graphics resulted in the decision to make use of

MultiMedia Builder for the harmony tutor. These problems included erratic z-order (z-axis from the

monitor screen to the viewer) placement of graphics by Everest and the hiding of the harmony tutor

window by Formula Graphics. Example 6.1 illustrates tutorial matter created with Multimedia

Builder and the Harmony Tutor executing simultaneously, providing the illusion that the application is

part of the tutorial :

 122

122

 Figure 6.8 Multimedia Builder and the Harmony Tutor
 executing simultaneously.

The harmony tutor is written as a separate Windows application that executes in its own window

after being activated from within MultiMedia Builder using the software’s ability to launch external

applications.

6.3.3 Using the Harmony Tutor

Exercises are completed by selecting a note from the note palette and adding alto and tenor voices

to the two given chords. A new exercise is selected by clicking the <Next> button. Soprano and alto

voices share the top staff, tenor and bass voices share the bottom staff. The appropriate voice must

be selected from the voice buttons on the left before inserting a note. Evaluation functions make use

of note representations using the name and pitch-classses discussed in section 5.4.2. Errors that are

detected and indicated by the evaluation functions of the program include :

 123

123

 a) incorrect notes i.e. notes that do not belong to the chord.

 b) doubling of the major third in a chord.

 a) parallel fifths and octaves between any voices of adjacent chords.

 b) a falling leading-tone within the dominant - tonic chord progression.

The user is able to clear all error messages, correct the errors by moving the incorrect note (or

notes) and allow the program to evaluate the exercise again. Program instability often arises from

attempting to correct notes - the reasons for this are not clear as the application is built from the

same library as the notation program.

An interesting aspect of the harmony tutor is that the default spacing between staves was found to

be insufficient. Alto or tenor voices (especially the tenor) may require up to three leger lines. To

accommodate leger lines, four-part harmony requires that the two staves forming a system should

be spaced further apart than is the norm for notating most instrumental music. Additional functions

that set the spacing between staves within a system had to be added to the toolkit to allow the

programmer to control the spacing between adjacent staves. Unlike the notation software, the

Harmony Tutor required that an additional class be created to represent the subject matter in a

meaningful way. Class HarmonyChord encapsulates the four notes that form a four-part chord.

Evaluation functions are able to evaluate the structure of a HarmonyChord object as well as the

progression that exists between two HarmonyChord objects.

6.4 An Embedded Notation Example

This example illustrates the use of a subset of the toolkit’s features to quickly and easily create

music notation in a visual form only. Figure 6.2 illustrates the simplicity of the code below taken

from the example application. Because of its simplicity, this score has certain restrictions. It cannot

be played and does not support any form of user interaction.

 124

124

 ScorePtr = new Score(this, 1, 44, 1, 3, ""); //create a Score
 ptrPage = new Page(this, 1); //create a Page
 ScorePtr->ptrPageArray->Add(ptrPage); //add the Page to the Score
 Note* ptrNote = new Note(4, 0, 0); //create a Note
 ScorePtr->InsertNote(ptrNote, 1, 1, 1); //add the Note to the first voice
 //of the first bar of the first staff.
 ptrNote = new Note(4, 6, 0);
 ScorePtr->InsertNote(ptrNote, 1, 1, 1);

 Figure 6.9 Code example of embedded notation.

Information concerning the creation of applications using features of the ‘basic’ mode of the

OOTMN can be found in appendix A. This example illustrates the ease with which simple melodies

can be created using the OOTMN. In practice, it is probably easier to paste a graphic image from a

notation program into an application for illustrative purposes than to create the fragment using the

toolkit.

This chapter introduced three applications created with the OOTMN. Chapter seven evaluates the

OOTMN by examining the strengths and weaknesses of the toolkit, as well as examining the project

as a whole.

 126

126

 Chapter 7

 Conclusion

A comprehensive, objective evaluation of the toolkit for music notation is a difficult task from the

perspective of the designer. Faced with a large number of features, some fully implemented, others

capable of further extension, it is difficult to place the toolkit as a whole in perspective. Many design

aspects of the toolkit can be further refined, and undergo further testing. No apology is made for

these limitations, as the development of a commercial strength library or application is not the aim of

this study. The following sections examine the functionality, design and limitations of the toolkit.

A discussion of the software engineering insights gained from the project and future development

possibilities are also included in this chapter.

7.1 Functionality of the OOTMN

The OOTMN attempts to illustrate that careful design using object-oriented technology produces a

powerful, yet flexible library that offers natural solutions to many music notation problems.

Flexibility, as well as a wide range of functionality (illustrated in the previous chapter) are

characteristics provided for by the design. Extensions to the capabilities of the toolkit are achieved

within the basic design, which elegantly captures the structural and semantic relationships which

exist within music notation. The strength of the toolkit lies in the rigour of its design, which always

centres around the subject matter. Functional aspects of the toolkit, such as hit-testing, searching

and context-sensitive positional updates discussed in chapter five, are built on top of the hierarchy of

musical objects by extending the hierarchy to accommodate these features. These enhancements do

not detract from the integrity of the representation of traditional music notation. MIDI realisation is

also implemented within the model of music notation. Aspects of the OOTMN not directly concerned

with representing music notation never influenced, nor preceded the design, they were always

accommodated within the design.

 127

127

 7.1.1 Simplifying Application Development

As a library, the OOTMN is intended to simplify the development of any application that makes use

of music notation, including applications that require interaction with the user. The score processing

application discussed in chapter six is difficult to implement, as it requires a complex user interface,

and a large functional capability from the toolkit. The Harmony Tutor is an application that requires

less complex processing as far as notation is concerned. Implementing the notational requirements

of the harmony tutor was very easy. Complexity resides in the evaluation of the exercises, which

form part of the subject matter and are not related to the toolkit’s implementation of a

representation of music notation.

In considering the effectiveness of the OOTMN it is encouraging to note that most of the time spent

during this study was concerned with problems within the Windows environment, especially the

Borland development environment. Relatively little time was spent solving problems within the

toolkit itself or use of the MMT to implement MIDI playback. The OOTMN greatly simplifies

application development in that only the user interface and any specialised functionality required by

the application need be coded. Although the toolkit provides invaluable functionality, it cannot hide

the inherent complexity of the subject matter.

7.1.2 Manipulating Notation Symbols

Chapters four and five illustrated that a structural hierarchy of objects and their relationships is only

the first step in creating a useful object-oriented representation. Successful integration of functional

requirements within the structural hierarchy provides expressive power to the system as a whole .

Hit-testing, searching and updating positional relationships between symbols require complex

operations that are implemented in a high-level manner. The implementation hides complexity and

emphasises the clear separation of an application’s user interface from the internal functions of the

toolkit. Applications interact with the internal representation of a musical score by means of clearly

defined functions that attempt to operate at the highest level of abstraction possible. The user need

not be aware of the internal functionality of the OOTMN, nor the structure of the underlying object

hierarchy.

 128

128

 7.1.3 Extensions to Traditional Notation

One of the most satisfying features of the toolkit is the ability to graphically manipulate barlines,

time-signatures, staves, beams and stems to achieve modern notational conventions. These

conventions are not obtained at the expense of destroying underlying context-sensitive relationships,

allowing MIDI playback to be independently developed to accurately interpret the visual score.

Integrating traditional context-sensitive relationships with a partial graphical freedom, provides for a

flexible environment. Features characteristic of modern notation do not have to be separately

implemented, as they are built on the conventions of traditional notation. The example score by

Lutoslawski shown in example 4.1, as well as the beam, time-signature and split-stem chord

examples discussed in section 6.2 are easily created (with one exception mentioned in section 7.2)

using the example notation program. Most commercial notation programs do not cater for modern

notational practices; those that do (such as Finale discussed in chapter three) require complex

operations to achieve the desired notational constructs.

7.2 Design of the OOTMN
The design of the current version of the OOTMN can be improved. Flaws in the design, as well as

aspects of the design that can be enhanced became apparent during implementation of the toolkit.

The use of bounding rectangles associated with staves discussed in section 5.3.3 has a side-effect.

MusicEvent objects belonging to a particular staff that are moved outside of the staff’s bounding

rectangle are lost. Searches are directed by whether an object falls within or outside of a particular

bounding rectangle. There are two possible solutions to this problem. The searching process can

perform an exhaustive search or, the storage relationships of objects can be revised. Revising the

object hierarchy is preferable as it enhances the toolkit as a whole . A clear separation of the visual

and functional roles of objects would eliminate the need for staves to have bounding rectangles.

MusicEvent objects (having a functional, non-visual role) are derived from the base class

MusicSymbol and stored in the Voice objects to which they belong. MusicSymbol objects (having a

functional and visual role) representing all the symbols contained within a Page should be stored

within the Page object. Each Note object would have two representations, a symbolic representation

at the Page level and a sonic representation at the Voice level.

 129

129

The relationships between Bars, Voices, and MusicEvents used in the present design can possibly

be improved. As outlined in chapter four, Bar objects consist of multiple Voices. Voice objects

should possibly be implemented as higher-level abstractions that are not constrained to exist within

Bars, as musical voices exist outside of, and across bar divisions. Bars would then consist of

MusicEvents that would have instance connections to Voices. Although this representation is

intuitively more satisfying, it does not alter, nor enhance the functionality of the OOTMN in any way.

As discussed in section 5.4.3, class LineSymbol is derived from class MusicSymbol. This derivation

implies that a LineSymbol object has a reference position (given by the Position attribute of class

MusicSymbol), as well as an array of points defining the symbol in class LineSymbol. The first point

in the array contains the same x and y co-ordinates as the position attribute inherited from

LineSymbol. It may be preferable to avoid this duplication by not deriving class LineSymbol from

class MusicSymbol. Considering the four points determining a slur as an example, there is no reason

why any single point should form a primary reference point. This redundancy is the result of a

design decision that derives all symbols from class MusicSymbol. Staff objects should possibly be

derived from class LineSymbol, providing hotspots at the top left-hand and top right-hand points of a

staff. Staves can then be dragged from the left or right-hand sides allowing the notation of scores

such as the Lutoslawski example of figure 4.1 that require staves that are shorter than the right-

hand page margin.

7.3 Limitations of the OOTMN

MIDI functionality is limited to correct playback of notes, rests and dynamic symbols. Support for

different MIDI channel and patch configurations are provided through the channel and patch

attributes of Staff and Voice objects which presently make use of default settings. Hairpin and

Articulation objects do not currently influence the MIDI data stream during playback. They can

easily be extended to provide MIDI capabilities in the same way that MIDI functionality was added to

Dynamic objects after they were implemented as visual symbols. MIDI capabilities should ideally

form part of the toolkit. Limitations regarding the use of the MMT within a segmented memory

model discussed in chapter five prevented a MIDI implementation from within the toolkit.

 130

130

7.4 The Borland Development Environment
The Object Windows Library is fairly intuitive to use and provides a robust object-oriented

development environment. Unfortunately, a steep learning curve is encountered that is the result of

poor documentation rather than the OWL environment itself. Poor documentation encourages an

undesirable trial-and-error approach to application development. Despite these shortcomings,

Borland provides window management functions and a mechanism to respond to Windows

messages that allows for a compact and clear layout of application code.

Use of the Borland container classes created serious development problems that have never been

satisfactorily resolved. Container classes used in the OOTMN are defined as follows :
 typedef TContainerClass <object> Container or,

 typedef TIContainerClass <object> Container

The first definition defines a direct container that stores objects using the storage scheme defined by

TContainerClass. These storage schemes are modelled on classical data structures. The second

definition defines an indirect container that stores pointers to objects indicated by the ‘I’ appended

to the name of the storage scheme. In attempting to circumvent container class problems the

following definition was also used :

 typedef ContainerClass <object*> Container

This definition explicitly forces the storage of pointers to objects and requires that the programmer

manage memory allocation by deleting the objects referenced by the pointers stored in the container

as well as removing the pointers from the container. Despite attempting to use these three container

definitions with a variety of different methods provided for the management of container classes,

problems occurred that were not evident when testing smalle r programs that prototyped OOTMN

object storage. It is probable that Borland containers are not always able to accurately determine

memory requirements resulting in the corruption of memory when deleting objects from containers

or removing the container object from memory.

 131

131

7.5 A Software Engineering Perspective

It is most valuable to consider some of the insights gained from the development of the OOTMN.

In particular, what aspects of the design and implementation processes would be approached

differently ? The following is a summary of some of these aspects :

7.5.1 Prototyping

Prototypes are partial implementations that provide an evaluation of a design. However, partial

solutions may not reflect the true characteristics of the system which may only become apparent

with a more detailed implementation. A critical level of implementation which is not easy to

determine is required before any worthwhile appraisal can be made. A lack of familiarity with the

functioning of the OWL resulted in early prototypes that did not have sufficient detail to rigorously

test the design. The complex development environment provided by Microsoft Windows creates an

implementation overhead that focuses the developer on the environment rather than the design.

Prototyping should make use of a skeleton user interface and attempt to partition the object model

as discussed in the next section. Because of the complex relationships that exists between many of

the objects, a detailed implementation of a portion of the object model is preferable to a partial

implementation of the entire object model.

7.5.2 Partitioning the Object Model

Portions of the object model that exhibit a relatively high-degree of independence can be developed

as an independent functional unit. MIDI implementation was greatly simplified due to the simple

relationship between Note objects and MidiMessage objects that occurred naturally in the object

model. The only other objects within the OOTMN that directly influence MIDI playback are Dynamic

objects which only have an indirect influence via Note objects played at a given dynamic level.

Further examination of the object model reveals a natural partition between Voice and MusicEvent

objects. A Voice is only related to two other objects, it is part of a Bar and Consists of

MusicEvents. By contrast, a Bar is related to eight other objects. Development of the object model

from the Voice level downwards (with simple staff and bar objects required by MusicEvents) could

 132

132

 have proceeded independently of the portion of the object model from the Bar level upwards.

These partitions could be combined by simply adding the spatial dependencies between MusicEvent

and Staff objects.

7.5.3 Simplifying Software Development

Aspects of the development environment that create problems that may not be satisfactorily

resolved should be abandoned at an early stage if at all possible. Unstable software tools result in an

enormous loss of time and productivity. The Borland container classes should have been replaced

by a different container class library or a container class specifically written for the OOTMN. The

time required to develop a container class may have been significantly less than the time spent

attempting to utilise the Borland classes.

Windows95, being a multi-threaded rather than a multi-tasking operating system provides a poor

development environment. Errors during program development freeze or crash the machine,

requiring that the machine be rebooted. WindowsNT or IBM’s OS/2 are true multi-tasking

operating systems that do not allow applications to corrupt the operating system. Such operating

systems would provide a more productive development environment.

Use of memory should be closely monitored, especially when developing Windows applications, as

memory leaks (failure to de-allocate heap memory) and memory corruption can have catastrophic

consequences as mentioned above. Use of a freely available memory monitor, ‘MemWatch’

developed by Terry Richards [Richards, 1995] indicated some memory leaks that could be rectified.

Unfortunately, the utility also indicated memory leaks in Borland example applications.

Documentation provided with the utility indicated that memory allocation and de-allocation

performed by the OWL could not always be accurately determined.

7.6 Future Directions

The OOTMN can be extended to include a number of features that are not currently implemented.

Support for storage formats, the addition of editing functions and the real-time transcription of MIDI

input are the major extensions that are necessary to support commercial score processing

applications. Development of a music font that aligns symbols according to reference points

 133

133

 contained in the NIFF specification and the use of a memory device context to increase the

speed of display updates would also be useful extensions.

7.6.1 File Formats

Translation of Score objects into different file formats would allow the storage of data, as well as

further processing of the data representing a musical work. Useful storage formats are the NIFF and

MIDI formats, which have a standard representation. Although MIDI does not provide for an

adequate representation of music notation, Score objects are easily translatable into MIDI files.

Commercial notation packages offer real-time conversion of MIDI input to music notation, although

the results are often unsatisfactory. Durational quantisation of MIDI input (i.e. determining rhythmic

values according to a reference duration) is an algorithmic process that is independent of symbolic

conventions. Translation into other music representational formats such as DARMS [Brinkman,

1990] allows musicological research into the structure and stylistic features of works. This is an

extremely important area of theoretical research that has not been sufficiently explored due to the

absence of support for standard representations. NIFF can provide exciting opportunities for

theoretical music research.

7.6.2 Algorithmic Enhancements

Conversion of real-time MIDI input, and automatic graphical formatting capabilities are desirable

features, unfortunately, both of these are non-trivial tasks. The OOTMN performs automatic

formatting of the contents of a bar using a simple spacing algorithm based on the rhythmic duration

of MusicEvent objects. Correspondence with Walsen [Walsen, 1998] revealed that these are two

features of the Notation Engine discussed in chapter three that are still under development.

Score structure and the structure of individual pages present interesting challenges. Pages may be

incomplete (i.e. contain fewer staves than the first page of the score) or, have additional staves

added to them within a single score. Such a score must keep track of the staff names and MIDI

channel assignments across pages having different structures. The unique identification of each

staff , as well as the ability to dynamically assign MIDI channels for the staves of each page during

playback can allow different pages to have different formats.

 133

133

7.6.3 Developing a Music Font

The OOTMN requires a music font that is tailored to the requirements of the toolkit. Such a font

should attempt to adhere to the NIFF standard regarding the reference positions of different music

symbols. Positional idiosyncrasies that exist in the music font used for the OOTMN had to be dealt

with on a trial and error basis as they were encountered. Use of a font where positional attributes,

spacing characteristics and reference points are known will greatly simplify future development. a

study of existing music fonts can provide valuable information for the design of a font.

7.6.4 Optimising Display Updates

Optimising the drawing of a page using a memory device context as described by Schildt

[Schildt, 1995] is necessary to prevent unnecessary screen flickering during the drawing of a page.

The screen device context is updated by copying the relevant area of the screen from a memory

device context rather than redrawing the entire display area. To support such a scheme, the

OOTMN must draw symbols to both a memory device context and a screen device context as shown

in figure 7.1. Updating of the display is accomplished by means of Windows forcing the display to

be repainted or the OOTMN explicitly invalidating a portion of the screen.

 Display Device
 Context
 Application

 Display
 Memory Device
 Context
 Windows

 Figure 7.1 Display updates using screen and memory device contexts.

 134

134

7.6.5 Porting the OOTMN

The negative impact of the Borland Object Windows environment on the development of the toolkit

was mentioned in chapter five. The fact that the MMT is not able to support 32 bit Windows

development under Borland C++ was also discussed. Considering these factors, it is not viable to

proceed with further development using Borland C++ and Object Windows. The entire toolkit

should be ported to Microsoft Visual C++ using the Microsoft Foundation Classes. These classes

provide an object-oriented encapsulation of the windows API in much the same way as the Object

Windows Library and are directly supported by the thirty-two bit Maximum MIDI Toolkit. Porting

the toolkit to a UNIX environment under XWindows would also be an interesting possibility.

7.7 Summary of the Functionality of the OOTMN

The following is a summary of the features of the toolkit for music notation :

 i) Supported symbols are notes, rests, accidentals, dynamics, hairpins, slurs, ties,

 clefs (treble, bass, alto, tenor) and articulation symbols.

 ii) MIDI playback of scores.

 iii) Automatic chord creation. Notes can be dragged out of a chord and stems added to

 individual notes to form split-stem chords.

 iv) Automatic beam creation. Beams can be adjusted vertically and horizontally. Beams

 can be adjusted to represent extended and fan beams. Cross-staff beaming with limited

 MIDI playback is also supported.

 v) Grouplets of any duration can be represented and are correctly performed via MIDI.

 vi) Intelligent playback of incomplete bars.

 vii) Automatic hit-testing of all symbols.

 viii) Automatic updating of context-sensitive relationships between symbols.

 ix) Symbols can be placed anywhere on a page.

 x) Symbols may be treated as context-sensitive, purely graphic symbols or, a mixture of

 both types of symbols.

 135

135

 Appendix A

 The OOTMN User Guide

1. Introduction

The toolkit consists of a single library file (toolkit.lib) that is linked into an application.

The toolkit may be used in three different modes, each mode behaves differently and is suited to

different applications.

1.1 Basic Mode

Requires the least coding effort but has the following restrictions :

 1.1.1 Score and Page Objects are not supported, systems and staves form the

 highest level of the object hierarchy.

 1.1.2 Only single-line staves or a grand (piano) staff are supported. A staff

 or system that uses playback may only be one line long. As many staves

 or systems as needed may be created in a window but they will not provide

 continuous MIDI playback; playback will stop at the end of a line.

 1.1.3 No user interaction is supported. i.e. the methods used have a very limited

 context-sensitivity. For example, a note cannot be dropped onto a staff, it

 must be explicitly assigned to a staff-step from the code.

1.2. Default Mode
Default mode does not place any restrictions on the use of the toolkit, it does however make certain

assumptions when creating objects :

1.2.1 Staves are created with the standard five lines.

1.2.2 The time-signature 4 | 4 is used for all staves.

1.2.3 The key-signature of C major / a minor (i.e. no sharps or flats) is used.

1.2.4 Treble clefs are used for all staves.

 136

136

1.3. Template Mode

Provides the most flexibility but requires the most coding. Template mode creates a musical score

from a template object that must be created before creating the score. Using a template facilitates

individual key-signatures, time -signatures, and clefs for each staff, as well as the ability to specify

grouping of staves and the breaking of barlines within a system.

2. The Score Object and Global Data

A Score object MUST be created when using the toolkit in either simple, default or template

mode.

The score object contains important data that is used globally within the toolkit. To make the Score

object visible to all source files the variable ScorePtr should point to the Score object and be

visible to the entire application. The constructor need not be invoked with all parameters, as some of

the parameters have default values which are indicated in the documentation.

3. Windows and Pages

In order to maintain type compatibility with the internal declarations used by the toolkit, a window

that is passed to a page constructor should be of type TWindow. If an application uses a window

object derived from TWindow or TFrameWindow, the window pointer should be cast to the base

class TWindow before being used as a parameter to the page object’s constructor.

 137

137

Appendix B

 The Object-Oriented Toolkit Library Reference

 Basic Toolkit Reference

Class

Score___

Class Score holds global information about the musical score.

Constructor

Score (TWindow* ptrPageWindow, int KeySign, int TimeSign,

 int NumStaves, int NumBars);

Creates a Score Object with the specified number of staves, number of bars, time-

 signature and time signature.

Parameters :

 PageWindow* ptrPageWindow

 Window in which the score is to be displayed. Applications should derive class

 PageWindow from the Borland base class TWindow.

 int KeySign

 Specifies the number of sharps or flats : 1 to 7 sharps, or 8 to 14 flats.

 int TimeSign

 Specifies the Time signature as a single two digit number. Common time is 44,

three minims is 32.

 int NumStaves

 Specifies the number of staves. The score will by default have a single system consisting

 of the specified number of stave. Range of values : 1..2

 int NumBars

 Determines the number of bars for each staff. Range of values : 1..n

 138

138

Destructor

~Score();

Member functions

BOOL OpenMIDIOut (int MIDIport);

 Opens the MIDI output port specified by MIDIport.

 MIDIport may range from 0 (MIDIMapper) to the total number of available MIDI devices.

void Play ();

 Plays the score using a previously opened MIDI port.

void Format();

 Adjusts the spacing of all notes and rests in the score.

SetVoice (int StaffNumber, int VoiceNumber);

 Sets the currently active voice on the staff specified by StaffNumber to the voice

 specified by VoiceNumber. VoiceNumber values may be 1 or 2.

 Voice number one has upward stems, while voice number two has downward stems.

InsertNote (Note* ptrNote, int StaffNumber, int BarNumber, int VoiceNumber);

 Inserts a note belonging to voice VoiceNumber, in the bar specified by BarNumber.

 BarNumber is a bar which occurs on the staff specified by StaffNumber. The note will

 be placed after any other notes or rests.

InsertRest (Rest* ptrRest, int StaffNumber, int BarNumbe r, int VoiceNumber);

 Inserts a rest belonging to voice VoiceNumber, in the bar specified by BarNumber

 BarNumber is a bar which occurs on the staff specified by StaffNumber. The rest will

 be placed after any other notes or rests.

DeleteMusicEvent (int BarNumber, int VoiceNumber, int EventNumber);

 Deletes a note or rest belonging to voice VoiceNumber, in the bar specified by

 BarNumber. EventNumber is the number of the event starting from the left-hand

 side of the specified bar.

BeamNotes (int StaffNum, int BarNum, int VoiceNum,

 int StartingNote, int EndingNote);

Beams a group of notes belonging to the specified staff, bar, and voice. The first note is specified by

StartingNote, and the second note by EndingNote.

 139

139

Class Note___

Class note is derived from class MusicEvent which is derived from the base class

MusicSymbol. Note objects automatically construct their stems and flags as required.

Constructor

Note (int Duration, int StaffStep, i nt Accidental);

 Constructs a note specifying its duration, pitch and optional accidental.

Parameters :

 int Duration Possible values : 1 ..7 where

 1 = whole note, 4 = crotchet and 7 = demi-semi-quaver.

 int StaffStep

 The lowest line of the staff is staff step 0, extending upwards using positive

 integers, and downwards using negative integers.

 int Accidental

 Possible values : 0 = no accidental, 1 = #, 2 = x, 3 = b, 4 = bb.

Destructor

 ~Note();

Member Functions

Class

Rest___

Constructor

 Rest (int Duration, int StaffStep);

 See class Note for possible values.

Destructor

 ~Rest();

 140

140

 Default / Template Toolkit Reference

Global Data

ScorePtr
 Points to the score object.

Score class___

A single Score object holds global data essential to the correct functioning of the toolkit. A pointer to

the score object must be visible to the entire application. This object should be created before any

other toolkit objects, as many toolkit objects require both data and functions provided by the Score

object.

Constructor

Score (TWindow* ptrWindow, int SystemsPerPage, int StavesPerSystem,

 int BarsPerStaff, int StaffSize = 2, int StaffLines = 5,

 int KeySign = 0, int TimeSign = 44, int Tempo = 80);

Parameters :

TWindow* ptrWindow

 ptrWindow specifies the main window of the application.

int SystemsPerPage

 The number of systems contained by each page.

int StavesPerSystem

 The number of staves forming each system.

int StaffSize

 The size of the staff Possible values 1 . . 3. Default = 2.

int StaffLines

 Number of lines for each Staff. Possible values 1 . . 5. Default = 5.

int KeySign

 Global key-signature of the score. Possible values : 0 = no key-signature.

 1 . . 7 sharps, 8 . .14 (i.e. 1 . . 7) flats. Default = 0.

 141

141

int TimeSign

 Specifies the Time signature as a single two digit number. Common time is 44, three

quavers is 38.

int Tempo

 Specifies tempo in beats per minute. Possible values : 1..max.

Destructor

~Score()

Public member functions

void AddPage (Page* ptrPage);

 Adds a new page to the score.

void DeletePage (int PageNumber);

 Deletes the page at PageNumber from the score.

int GetCurrentPageNo ();

 Returns the number of the currently active page..

void SetCurentPageNo (int PageNumber);

 Sets the current page to the page specified by page number.

Page* GetPage();

 Returns a pointer to the currently active page.

LoadFont (LPSTR FontName);

 Loads the Windows TrueType font specified by FontName returning a

 handle to the font. Returns NULL if the font cannot be loaded.

void Draw (TDC& dc, int Flag);

 Draws the currently active score page using the device context specified by dc.

 Flag indicates whether hitspot rectangles should be drawn for line symbol objects.

 Possible values : 0 = do not draw hitspots, 1 = draw hitspots.

int GetCurrentVoice ();

 Returns the number of the currently active voice. Possible values 1 . . 4.

void SetCurre ntVoice (int VoiceNumber);

 Sets the currently active voice to the voice specified by VoiceNumber.

 142

142

char* GetStaffName (int StaffNumber) ;

 Returns the name of this staff..

int GetGroupStemDir (NoteArray* ptrNoteArray);

 Returns the ‘average’ stem direction for the Note objects in ptrNoteArray.

 Returned values : 1 = up stem, 0 = down stem.

NoteArray* SetGroupStems (NoteArray* ptrNoteArray, int direction);

 Sets stems of all note objects in ptrNoteArray to the specified direction.

 Values for direction : 1 = up stem, 0 = down stem. Returns a NoteArray where all notes

 have stems set to the specified direction.

void Transpose (NoteArray*, int Transposition);

 Transposes the notes in note array by the number of semitones specified by transposition.

 Values : positive values transpose upwards, negative values downwards.

Page* FindPage (int BarNumber);

 Returns pointer to the page that contains the bar specified by BarNumber.

 BarNumber is the global bar number from the start of the score.

int GetSystPerPage();

 Returns the global default number of systems per page.

int GetStavesPerSyst ();

 Returns the global default number of staves per system.

int GetBarsPerStaff ();

 Returns the global default number of bars per staff.

void SetMIDIVelocity (int DynamicID, int MIDIVelocity);

 Sets the MIDI velocity specified by value for the dynamic symbol specified by dynamic.

 DynamicID values : ppp = 1, pp = 2, p = 3, mp = 4, mf = 5, f = 6, ff = 7, fff = 8.

 MIDIVelocity : 0 . . 127

int GetMIDIVelocity (int DynamicID) ;

 Returns the MIDI velocity associated with the dynamic DynamicID.

 See SetMIDIVelocity for DynamicID values.

 143

143

Public Data Members

BOOL AlignBarlines;

Determines whether barlines are drawn for each staff or across the entire system.

 Possible values : TRUE draws barlines across system, FALSE draws barlines for each staff.

BOOL AutoSpace

 Determines whether notes and rests must be automatically spaced within bars

 Possible values : TRUE = auto space on, FALSE = auto space off.

MusicSymbol* ptrMusicSymbol

 Hold the currently selected MusicSymbol object. NOTE : this value must be set before

 attempting operations on a selected object.

Page class__

Class Page represents a single page of a score that is displayed in a window. All symbols belonging

to a page with the exception of MusicEvent objects should be added to, or deleted from a page

using the AddSymbol and DeleteSymbol functions described below.

Constructor

Page (TWindow* ptrPageWindow, int PageNumber, char* PageTitle = “”);

 Constructs a new page displayed in the window specified by ptrPageWindow having the

 specified page number and title.

Parameters :

TWindow* ptrPageWindow

 The window in which to display the page. This window should be derived from the Borland

 classes TFrameWindow or TWindow.

Destructor

~Page();

 144

144

Public Member Functions

MusicSymbol* FindSymbol (TPoint& Point);

 Searches for a MusicSymbol object at screen position point. Returns NULL if no symbol

 exists at that position, or a pointer to the symbol if it is found.

Bar* FindBar (TPoint& Point);

 Returns a pointer to the bar that contains the position specified by Point.

Bar* GetNextBar (Bar* ptrBar);

 Returns a pointer to bar following the bar specified by ptrBar.

System* GetSystem (int SystemNumber);

 Returns a pointer to the system on this page having the number specified by

 system number.

MusicEventArray* GetMusicEvents (TRect* Rectangle);

 Returns a pointer to an array of music events contained within the rectangle

 Rectangle.

NoteArray* GetNotes (TRect* Rectangle);

 Returns a pointer to an array of notes contained within the rectangle Rectangle.

inline int GetPageNumber() ;

 Returns the PageNumber;

inline int GetTopMargin();

 Returns the top margin of the page.

inline int GetBottomMargin();

 Returns the bottom margin of the page.

inline int GetLeftMargin();

 Returns the left margin of the page.

inline int GetRightMargin();

 Returns the right margin of the page.

void AddSymbol (MusicSymbol* ptrMusicSymbol);

 Add the symbol ptrMusicSymbol to the page.

 MusicSymbol can be any object derived from class MusicSymbol.

void DeleteSymbol (MusicSymbol* ptrMusicSymbol);

 Deletes the symbol ptrMusicSymbol from the page.

 145

145

MusicSymbol Class __

Class MusicSymbol is the base class from which all objects that are music symbols are

derived. Note that MusicSymbol is an abstract base class and is invoked by the constructors

of classes derived from it.

Constructor

MusicSymbol (TPoint& point);

 Constructs a MusicSymbol object at the screen position given by point.

Destructor

~MusicSymbol();

Public member functions

virtual void UpdatePosition (TPoint& point);

 Sets the position of MusicSymbol to the screen position specified by point.

virtual void DrawBoundsRect();

 Draws a rectangle around the music symbol.

inline TPoint& GetPosition();

 Returns a TPoint object representing the symbol’s position.

inline void SetPosition (TPoint& point);

 Sets the position of the symbol to the position specified by point.

void SetPosx (int xpos);

 Sets the x co-ordinate of the symbol to the position specified by point.

void SetPosy (int ypos);

 Sets the y co-ordinate of the symbol to the position specified by point.

int GetDrawState();

 Returns the visibility state of the MusicSymbol object. 0 = hidden, 1 = visible.

void SetDrawState (int State);

 Sets the visibility state of the MusicSymbol object. 0 = hidden, 1 = visible.

inline int GetDrawState();

 Returns the current visibility state of a music symbol, 0 = hidden, 1 = visible.

inline void SetDrawState (int State);

 Sets the visibility of a symbol, State may be : 0 = hidden, 1 = visible.

 146

146

System class__

Class System represents a logical grouping of staves on a page. Systems are numbered

from 1 (starting at the top of a page) to the number of systems on a page.

Constructor

System (int PageNumber, TPoint& point, int SystemNumber);

Parameters :

int PageNumber

Number of the page containing this system.

TPoint& point

point is the starting position of the system, system number represents

int SystemNumber

Number of this system on the page (from the top downwards) starting from 1.

Destructor

~System();

Public Member Functions

void UpdatePosition (int StaffNumber, TSize& offset);

 Updates the positions of all system staves lower than and including the staff specified by

 StaffNumber by the x and y offsets specified by offset.cx and offset.cy.

Staff* GetStaff (int StaffNumber);

 Returns the staff on this system having a number StaffNumber.

inline int GetSystemNumber();

 Returns the SystemNumber of this system.

void SetTime (int Top, int Bottom, int Split1, int Split2);

 Sets the time signature for all bars within this system. Top and Bottom define the top and

 bottom values of the time-signature. Split1 and Split2 define two values to be used as the

top values in a composite time-signature. (Thus Top = Split1 + Split2). For a time -signature

 that is not a composite time-signature these values should be set to zero.

void SetTime (Bar* ptrBar, int Top, int Bottom, int Split1, int Split2);

 Sets the time signature for all bars sharing the same vertical position on this system as the

 bar given by ptrBar. Top and Bottom define the top and bottom values of the time-

signature.

 147

147

Split1 and Split2 define two values to be used as the top values in a composite time-signature. (Thus

Top = Split1 + Split2). For a time-signature that is not a composite time-signature these values

should be set to zero.

Connector class___

Base class : MusicSymbol

Class connector represents symbols such as brackets and curly braces that are used to group

staves.

Constructor

Connector (Staff* ptrFirstStaff, Staff* ptrSecondStaff, int Symb) ;

 Creates a connector object that connects the two staves specified by ptrFirstStaff and

 ptrSecondStaff. Symbol specifies the graphic symbol used as a connector.

 Possible values for Symbol : 0 = Bracket, 1 = Brace.

Destructor

~Connector();

Public Member Functions :

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

 .

 148

148

Staff class__

Base class : MusicSymbol

Constructor

Staff (System* ptrParent, TPoint& StaffPosition, int StaffNumber, int StaffSize = 3,

 int NumLines = 5, char* StaffName = "") ;

Parameters :

System* ptrParent

 Points to the system that contains this staff.

TPoint& StaffPosition

 The screen position of this staff.

int StaffNumber

 The number of this staff within it’s parent system.

int StaffSize

 The size of this staff. Possible values : 1 . . 3 (largest). Default = 3.

int NumLines

 The number of lines of this staff. Possible values 1 . . 5. Default = 5.

char* StaffName

 The name of this staff. Default = “”.

Destructor

~Staff();

Public Member Functions

int GetStaffStepPos (int Ypos);

 Returns the nearest y-axis position (that is a valid staff step) to the y co-ordinate Ypos.

 Each line or space on the staff is represented by an integer staff step. Step 0 is the lowest

 line of the staff. Staff steps extend upwards using positive integers and downwards using

 negative integers.

int GetYPos (int StaffStep);

 Returns the y co-ordinate of the staff step StaffStep. See above for an explanation of staff

 step.

int GetStaffStep (int ypos);

 Returns the staff step at the y co-ordinate ypos. See above for an explanation of staff step.

 149

149

void SetClef (int ClefType);

 Sets the clef of this staff to ClefType. See the clef constructor for possible values.

inline int GetBottomy();

 Returns the y co-ordinate of the bottom line of this staff.

Bar* FindBar (TPoint& point);

 Returns the bar that contains the screen position point. Returns NULL if a bar is

 not found.

Bar* GetBar (int BarNumber);

 Returns the bar on this staff having the bar number specified by BarNumber.

inline Clef* GetClef();

 Returns a pointer to this staff’s clef.

void SetClef (Clef* ptrClef);

 Sets the clef of this staff to the clef specified by ptrClef. If the staff contains notes they

 are automatically moved to retain their original pitches.

void DrawLegerLines (TPoint& point);

 Draws leger lines from point to the top or bottom of the staff depending on whether point

 lies above or below the staff.

inline int GetStaffNumber();

 Returns this staff’s number.

inline int GetNumLines();

 Returns the number of lines of this staff.

inline int GetStaffSize();

 Returns the size of this staff.

inline System* GetptrParentSystem();

 Returns a pointer to this staff’s parent system.

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

 150

150

inline void SetDrawState(int state); See MusicSymbol.

Bar class__

Base Class : none

Constructor :

Bar (int BarNumber, Staff* ptrParentStaff);

Parameters :

int BarNumber

 The number of this bar within the staff starting from 1 - the leftmost bar of the staff.

Staff* ptrParentStaff

 Specifies the staff which contains this bar.

Destructor

~Bar();

Public Member Functions

Voice* GetVoice (int VoiceNumber);

 Returns a pointer to the voice occurring in this bar having a voice number of VoiceNumber.

inline int GetLxpos();

 Returns the left barline’s x co-ordinate.

inline int GetRxpos();

 Returns the left barline’s x co-ordinate.

Clef* GetClef();

 Returns the clef at the start of the bar.

Clef* GetClef (int xpos);

 Returns the clef that is operative at the horizontal position in the bar given by xpos.

void DrawBoundsRect();

 Draws this bar’s bounding rectangle.

void AddNote (int StaffStep, int Duration, int Direction, int Accidental);

 Adds a Note object of pitch StaffStep, a duration specified by Duration, a stem direction

 specified by Direction and an accidental specified by Accidental. The function creates the

 note and accidental objects. The note is added to the currently selected voice.

 151

151

See Score::GetCurrentVoice (); NOTE : for non-trivial applications it is preferable to use

 Voice::AddEvent(MusicEvent*);

inline Bar* GetBar (int BarNo);

 Returns the bar number of this bar.

inline int GetBarNumber();

 Returns the bar number of this bar relative to its parent staff.

inline int GetGlobalNumber();

 Returns the bar number of this bar from the start of the score.

Clef class__

Class clef represents musical clef symbols and is associated with Staff or Bar objects via a

staff or bar ptrClef attribute.

Base class : MusicSymbol

Constructor

Clef (int ClefType, TPoint& Position);

 Constructs a clef object of type ClefType at the window point Position.

Parameters :

int ClefType

 Specifies the symbol for this clef object.

 Possible values : 0 = Percussion, 1 = Treble, 2 = Bass, 3 = Tenor, 4 = Alto.

TPoint& Position

 The screen position of the clef.

Destructor :

~Clef();

Public Member Functions :

int GetClefType();

 Returns the type of clef. Possible values returned are :

 0 = Percussion, 1 = Treble, 2 = Bass, 3 = Tenor, 4 = Alto.

inline TPoint& GetPosition(); See MusicSymbol.

 152

152

 inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

KeySign class___

Base Class : MusicSymbol

Constructor

KeySign (Staff* ptrStaff, int Key, TPoint& point);

KeySign (Bar* ptrBar, int Key, TPoint& point);

Parameters :

Staff* ptrStaff or, Bar* ptrBar

 Parent object for this key-signature.

int Key

 Specified the number of sharps or flats for this key-signature.

 Possible values : 0 = no key-signature, 1 . . 7 sharps, 8 . . 14 (i.e. 1 . . 7) flats.

TPoint& point

 Position of the key-signature.

Destructor

~KeySign();

Member Functions

inline int GetKeyValue()

 Returns the number of sharps or flats of this key-signature

 Possible values : 0 = no key-signature, 1 . . 7 sharps, 8 . . 14 (i.e. 1 . . 7) flats.

void SetKeyValue (int key)

 Sets the number of sharps or flats of this key-signature specified by key.

 Possible values : 0 = no key-signature, 1 . . 7 sharps, 8 . . 14 (i.e. 1 . . 7) flats.

inline int GetSpacing();

 Returns an integer representing the spacing between accidentals used for this key-signature

 153

153

void SetSpacing (int spacing)

 Sets the spacing used by accidentals for this key-signature.

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

TimeSign class__

Constructor

TimeSign (int meter, int value, TPoint& point);

Parameters :

int meter

 The top integer of the time-signature.

int value

 The bottom integer of the time-signature.

TPoint& point

 The position of the time-signature in screen co-ordinates.

Destructor

~TimeSign();

Member Functions

TimeSignMeter* GetTSignMeter();

 Returns a pointer to the TSignMeter (top value) object of this key-signature.

TimeSignValue* GetTSignValue();

 Returns a pointer to the TSignValue (bottom value) object of this key-signature.

void SetSplit (int FirstValue, int SecondValue);

 Converts this time-signature to a composite time-signature where the top value is displayed

 as : FirstValue + SecondValue.

inline TPoint& GetPosition(); See MusicSymbol.

 154

154

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState (int State); See MusicSymbol.

TimeSignMeter class___

 Base class : MusicSymbol

 NOTE : The constructor and destructor are handled by the TimeSign object, they

 should not be explicitly invoked. See class TimeSign for obtaining a pointer to

 a TimeSignMeter object.

Member Functions :

void SetMeter (int Meter);

 Sets the value (number of beats) for this TimeSignMeter object.

 Possible values : Any integer.

int GetMeter();

 Returns the metric value for this TimeSignMeter object. See SetMeter.

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

TimeSignValue class___

 Base class : MusicSymbol

 Represents the lower value of a time-signature. NOTE : The constructor and destructor

 are handled by the TimeSign object, they should not be explicitly invoked. See class

 TimeSign for obtaining a pointer to a TimeSignMeter object.

 155

155

Member Functions :

void SetDuration (int Duration);

 Sets the lower-value to the value specified by Duration.

 Possible values : 6 = x 5 = e 4 = q 3 = h
int GetDuration();
 Returns the durational value of this time-signature. See SetDuration for possible values.

void SetDisplayMode (int Mode);

 Sets the way in which the lower value is displayed for this time-signature.

 Possible values : 0 = numeric, 1 = symbolic (i.e. a note)

int GetDisplayMode();

 Returns the current display mode for this time-signature’s lower value.

 See SetDisplayMode for possible values.

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

Grouplet class__

Base Class : none

Constructor :

Grouplet (MusicEventArray* ptrMusicEventArray, int FaceNumber, int FaceDuration,

 int ActualNumber, int ActualDuration);

Parameters :

int FaceNumber
 The notated number of durations in the grouplet. For a triplet of 3 e in the time of 2 e
 the FaceNumber is three.

 156

156

int FaceDuration
 The notated durational value of the grouplet. For a triplet of 3 e in the time of 2 e
 the FaceDuration is 5 (quaver).

int ActualNumber
 The actual number of durations in the grouplet. For a triplet of 3 e in the time of 2 e
 the ActualNumber is two.

int ActualDuration

 The actual durational value of the grouplet. For a triplet of 3 e in the time of 2 e
 the ActualDuration is 5 (quaver).

 NOTE : no restrictions exist as to the range of the above values.

Destructor :

~Grouplet();

GroupBracket class__

Base Class : LineSymbol : MusicSymbol

Constructor :

GroupBracket(Grouplet* ptrParentGrouplet, TPoint& Position, int Symbol);

Destructor :

~GroupBracket();

Member Functions

TPoint CalcBracketPos();

 Returns the starting position of the bracket. Also calculates the points stored in

 class LineSymbol determining the position of the bracket.

int GetBracketDirection();

 Returns the direction of the bracket. Possible values : 1 = up, 0 = down.

 157

157

MusicEvent Class___

Base Class : MusicSymbol

Class MusicEvent is a base class for note and rest objects.

Constructor

MusicEvent (TPoint& point);

Destructor

MusicEvent();

Member Functions

WORD GetEventTime();

 Returns the MIDI duration of this MusicEvent.

void DrawLegerLines();

 Draws leger lines for this MusicEvent. All leger lines required by the note or rest are

 drawn above or below the staff as required by the position of this MusicEvent object.

inline void SetDuration (int duration);

 Sets the duration of this MusicEvent to the value specified by duration.

 Possible values : 1 = W 2 = w 3 = h 4 = q 5 = e 6 = x 7 = thirty-

second.

inline int GetDuration();

 Returns the duration of this MusicEvent. See SetDuration for possible values.

int GetStaffStep();

 Returns the staff step of this MusicEvent.

 Possible values : -n . . 0 (lowest line of the staff) . . n

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

 158

158

Voice class___

Constructor

Voice (Bar* ptrParentBar, int VoiceNumber);

Constructs a voice object belonging to the bar specified by ptrParentBar having a voice

number specified by VoiceNumber.

Destructor

~Voice();

Member Functions

MusicSymbol* GetMusicEvent (TPoint& point);

 Returns the MusicEvent at position point.

void AddEvent (MusicEvent* ptrMusicEvent);

 Adds the MusicEvent object specified by ptrMusicEvent to this voice.

 NOTE : a Note object added at the same position as an existing Note object

 automatically creates a new CChord object.

int GetXPosition();

 Returns the correct x position for automatically spacing events within a voice.

BOOL IsFull();

 Returns TRUE if this voice contains notes and rests whose total duration equals that of

 the time-signature for the bar in which this voice occurs. Returns FALSE otherwise.

void SetStemDirection (int Direction);

 Sets the default stem-direction for this voice. Possible values : 1 = up, 0 = down.

int GetStemDirection() ;

 Returns the default stem direction for this voice. See SetStemDirection for possible

values.

inline int GetVoiceNumber();

 Returns the voice number of this voice.

inline Voice* GetVoice (int VoiceNumber);

 Returns the voice having a voice number of VoiceNumber.

inline Bar* GetptrParentBar() ;

 Returns the parent bar of this voice.

 159

159

CChord class___

Base class : MusicEvent : MusicSymbol

Constructor

CChord (Note* ptrFirstNote, Note* ptrSecondNote);

 Creates a chord from the two notes ptrFirstNote and ptrSecondNote. A single stem is set

 for the entire chord, existing stems belonging to chord notes are deleted where necessary.

Destructor

~CChord();

Member Functions

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

Accidental

class__

Base class : MusicSymbol

Constructors

Accidental (int AccidType, TPoint& position);

 Constructs an accidental at screen position Position. Possible values of AccidType :

 2 = double-sharp, 1 = sharp, 0 = natural, -1 = flat, -2 = double flat

Accidental (Note* ptrNote, int AccidType);

 Constructs an accidental object of AccidType associated with the note ptrNote.

 See above for AccidType values.

Destructor

~Accidental();

 160

160

Member Functions

inline int GetValue();

 Returns the value of this accidental. See above for possible values.

inline void SetValue (int value);

 Sets the value of this accidental. See above for possible values.

inline int GetOffset();

 Returns the offset of this accidental from it’s associated note object.

inline void SetOffset (int offset);

 Sets the offset of this accidental from its associated note object.

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

Note class__

Constructors

Note (Voice* ptrVoice, int Duration, TPoint& Position);

 Constructs a Note object belonging to the voice specified by ptrVoice at screen

 position Position. See MusicEvent::SetDuration for possible durational values.

]Note (Voice* ptrVoice, int Duration, int Accidental, int Dot);

 Constructs a Note object belonging to the voice specified by ptrVoice at screen position

 Position. See MusicEvent::SetDuration for possible durational values.

 See Accidental::SetValue for possible values.

Destructor

~Note();

Member Functions

int GetNameClass();

 Returns the name class of this note. Values : C = 0 . . B = 12

 161

161

int GetPitchClass();

 Returns the pitch class of this note. Values : C = 0 . . B = 11

int GetOctave();

 Returns the octave of this note.

inline int GetStaffStep();

 Returns the staff step of this note.

int GetDefaultNoteHead (int NoteHead);

 Returns the symbol currently used as the notehead for this note.

void SetNoteHead (int NoteHead);

 Sets the note head of this note to the symbol specified by NoteHead.

Stem* SetStem (Voice* ptrVoice);

 Creates a stem object for this note

virtual MidiMessage* GetMidi ();

 Returns a MidiMessage object corresponding to this note.

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

WORD GetEventTime(); See MusicEvent.

void DrawLegerLines();See MusicEvent.

inline void SetDuration (int duration); See MusicEvent.

inline int GetDuration(); See MusicEvent.

int GetStaffStep();See MusicEvent.

Rest class__

Base class : MusicEvent : MusicSymbol

Constructors

 Rest (Voice* ptrVoice, int Duration, TPoint& Position, Grouplet* ptrGrouplet);

 162

162

Rest (Voice* ptrVoice, int Duration, TPoint& Position);

Destructor

~Rest();

Member Functions

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

WORD GetEventTime(); See MusicEvent.

void DrawLegerLines();See MusicEvent.

inline void SetDuration (int duration); See MusicEvent.

inline int GetDuration(); See MusicEvent.

int GetStaffStep();See MusicEvent.

Stem class__

Base class : LineSymbol : MusicSymbol

NOTE : A Stem object need not be explicitly created. Creation of a Note object

 automatically creates an associated stem.

Member Functions

void SetDirection (int StemDirection);

 Sets this stem’s direction to the direction specified by StemDirection.

 0 = down, 1 = up.

inline int GetDirection();

 Returns the direction of this stem, 0 = down, 1 = up.

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

 163

163

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

Flag class__

Base class : MusicSymbol

NOTE : A Stem object need not be explicitly created. Creation of a Note object

 automatically creates an associated stem.

Functionality for class flag is not currently implemented. All functions are performed by the stem

class that is associated with a flag object.

MidiMessage class___

Constructor

 MidiMessage (BYTE Status, BYTE KeyNum, BYTE Velocity, DWORD

Time);

Parameters :

BYTE Status

BYTE KeyNum

BYTE Velocity

DWORD Time

Destructor

~MidiMessage();

BeamedGroup class__

Base class : none

 BeamedGroup objects encapsulate all the notes and beams of a group of notes that are

 beamed together.

 164

164

Constructor

BeamedGroup (NoteArray* ptrNoteArray);

 Creates a BeamedGroup consisting of the note objects contained in the array

 ptrNoteArray.

Destructor

~BeamedGroup();

Public Member Functions :

void DrawAllBeams (TDC& dc, int Flag);

 Draws all the beams of this beamed group using the device context specified by dc .

void UpdateAllBeams (TSize& offset, int Flag);

 Updates the positions of all beams according to the value of flag.

 Possible flag values : 1 = update left-hand side positions,

 2 = update right-hand side positions,

 3 = update left and right-hand side positions.

void UpdatePosNote (Note* ptrNote, TSize& Offset);

UpdatePosNote should be called after moving a note that is part of a beamed group. This

function ensures that the stem of a note that is moved is correctly adjusted within the

beamed group. ptrNote represents the Note object that has been moved. Offset is the

offset on the x and y axes given by offset.cx and offset.cy.

Dynamic class__

Base class : MusicSymbol

Constructor

Dynamic (int DynamicID, TPoint& point);

 Creates a dynamic of type DynamicID at the screen position point.

Dynamic (int DynamicID, int yPos, MusicSymbol* ptrParentMusicSymbol);

 Creates a dynamic of type DynamicID at the vertical screen position ypos.

 The dynamic has an instance connection to the music symbol ptrParentMusicSymbol.

The dynamic’s x screen co-ordinate is taken from the x co-ordinate of music symbol

 ptrParentMusicSymbol.

 165

165

Destructor

~Dynamic();

Member Functions

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

Tie class___

Base class : LineSymbol : MusicSymbol

Constructor

Tie (Note* ptrNote1, Note* ptrNote2);

Member Functions

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

Destructor

~Tie();

Hairpin class___

Base class : LineSymbol : MusicSymbol

Constructor

Hairpin (TPoint& Position);

 166

166

 Constructs a hairpin object at position point.

Hairpin (MusicEvent* ptrFirstEvent, MusicEvent* ptrSecondEvent);

 Constructs a hairpin object with instance connections to ptrFirstEvent and

 ptrSecondEvent.

Destructor

~Hairpin();

Member Functions

inline TPoint& GetPosition(); See MusicSymbol.

inline void SetPosition (TPoint& point); See MusicSymbol.

void SetPosx (int xpos); See MusicSymbol.

void SetPosy (int ypos); See MusicSymbol.

int GetDrawState(); See MusicSymbol.

inline void SetDrawState(int state); See MusicSymbol.

Barlineclass__

Base class : LineSymbol : MusicSymbol

Constructor

Barline(System* ptrSystem, TPoint& point, int LowerYpos, int Symbol);

 Constructs a barline within the system ptrSystem, starting from the upper position point and

 extending to a lower position given by the x co-ordinate of point and y co-ordinate

 lowerYpos. The barline is drawn according to the symbol given by Symbol. Possible values

 for symbol : 1 = normal, 2 = thin double-line, 3 = thin / thick line

Destructor

~Barline();

Member Functions

void SetXPos(int xpos);

 Sets the x co-ordinate of this barline to the value specified by xpos.

inline int GetBottomY();

 Returns the y co-ordinate of the bottom of the barline.

inline void SetBottomY(int ypos);

 Sets the y co-ordinate of the bottom of the barline to the value given by ypos.

 167

167

inline void SetSymbol(int Symbol) ;

 Sets the barline symbol to the symbol specified by Symbol. See the constructor for

 possible values.

inline int GetSymbol();

 Returns the integer representing the symbol used to draw this barline.

inline void SetSide (int BarSide);

 Sets the side of the bar that this barline belongs to.

 Possible values for BarSide : 1 = left-hand side, 0 = right-hand side.

inline int GetSide() ;

 Returns the side of this barline. See SetSide for possible values.

Part class__

Base class : none

 Part objects represent a part extracted from a score.

Constructor

Part (Staff* ptrStaff, int VoiceNumber);

 Constructs a part objects consisting of the contents of the voice specified by VoiceNumber

 occurring on the staff specified by ptrStaff .

Part (Staff* ptrStaff1, Staff* ptrStaff2);

Part (Staff* ptrStaff1, Staff* ptrStaff2, Staff* ptrStaff3);

 Constructs a part object consisting of the contents of the specified staves .

Destructor

~Part();

 168

168

 Glossary

Abstract base class A base class that serves as a template from which other classes can be
derived. An abstract class cannot be instantiated (i.e. constructed) as it is only a high-level
abstraction of a class of objects.

Accidental Sign immediately preceding a note that modifies the pitch of a note. A sharp or
double-sharp raises the pitch, a flat or double -flat lowers the pitch. A natural cancels the effect of a
sharp or flat.

Aggregate (Whole -part) relationship Relationships between objects where an object is defined
as being ‘a part of’ another object.

Articulation Symbol Notation symbols used to indicate articulation (the manner in which a note is
performed.)

Attribute A data member encapsulated within an object. Typically a characteristic of the object.

Auxiliary Symbol Music notation symbols that are instrument specific.

Bar A temporal unit occurring across a system. Bar lines indicate the starting and ending position
positions of a bar. The total durational content of a bar is given by the time-signature.

Barline Vertical lines drawn across a system that indicate the starting and ending positions of
bars.

Base class A class forming the highest-level of an object hierarchy from which other more
specialised classes are derived.

Beam A thick horizontal or sloping line used to group notes having the duration of a quaver or
less. A single beam replaces the flags of the beamed notes.

Beamed group Set of notes that are visually joined together by means of one or more beams.

Beat (Meter) A metric unit within a bar.

Cardinality (between objects) The number of objects that exist within a relationship with
another object.

Cent Measurement of pitch used in physics. Twelve-hundred cents = one octave.

Changing meter Application of one of multiple time-signatures to a bar depending on the metrical
grouping found within the bar.

 169

169

Chord A group of notes that are performed simultaneously.

Class Collection of objects that have a similar description and thus characteristics in common.

Clef Symbol associated with a staff that indicates the actual pitches designated by the staff.

Context-sensitive relationship Relationship between two entities where modification of one
entity implies a modification of the second entity.

Cross-staff beam A beam that connects notes notated on more than one staff.

Dynamic Alphabetic symbol or symbols denoting loudness. Usually notated below the staff
they influence all succeeding notes. f (forte) = loud, p (piano) = soft. Often used together
with m (mezzo) = medium.

Ending bar A bar that is the last bar of a repeating section of music and is only performed once
during either the first or second performance of the passage.

Enharmonic A note that has a different syntax to another note but shares the same pitch.

Extended beam A beam that is extended to start or end before or after the first or last stem of
notes forming a beamed group.

Flag Symbol attached to the end of the stem of a note that indicates duration.

Generalisation-Specialisation relationship Relationship where one class is a specialisation of
another. The specialised class is termed a derived class, the general class is termed a base class.

Grouplet Generic term that refers to any irregular group. A group of notes that divides the meter
by an amount that results in durations that cannot be notated by the available durational symbols for
notes and rests.

Group bracket Symbol (either a slur or a rectangular bracket) that visually groups the notes
forming a grouplet.

Hairpin Symbol consisting of two sloping lines that converge at one end used to indicate a
diminuendo or crescendo.

Harmony The study of the construction of chords, as well as the relationships between chords.

Instance relationship A relationship where one object is aware of the existence of one or more
instances of a different object. Usually a semantic connection exists between the two objects.

Key-signature Sharps or flats notated at the beginning of a staff or bar. Usually indicates the key
(i.e. tonal centre) of the music.

 170

170

 Leger line Lines that extend the staff above or below the usual five lines. Used only for the
notation of specific notes that are notated above or below the staff.

Line -symbol Class of OOTMN objects that are symbols that are constructed from one or more
line segments.

Method A member function encapsulated within an object. Usually used to perform operations on
the object’s attributes or to communicate with other objects.

Music symbol Class of OOTMN objects that are graphic symbols used to notate music.

NIFF (Notation In terchange File Format) File representation designed specifically for music
notation based on the Microsoft RIFF format.

Notational Convenience Term developed for the OOTMN denoting a music symbol that has a
purely visual, graphic function.

Ornament Group of notes conforming to a well-defined pattern that may be notated using an
abbreviation represented by a symbol.

(Operator) Overloading Assigning a user-defined meaning that differs from the traditional
meaning associated with an operator symbols found in a programming language.

Part The portion of a score that is intended to be performed on a single instrument.

Piano-roll notation Graphic representation of MIDI notes that represents pitch on the y-axis and
duration on the x-axis.

Polymorphism The ability of a base class to dynamically select an appropriate derived-class
method during program execution.

Real-time System A software system that must immediately respond to system inputs.

Rest Music notation symbol used to denote silence. The length of the silence depends on the
particular symbol used.

Secondary bar A virtual bar that exists as an alias for a bar. Invented for the OOTMN, only the
alias can be performed allowing the MIDI realisation to differ from the written notes.

Semantic Constituent A symbol that is required for the semantic interpretation of another
symbol.

Semantic modifier A symbol that modifies the semantic interpretation of another symbol.

Sequencer Software that facilitates the recording, manipulation and playback of MIDI (and
possibly audio) data.

 171

171

 Slur Symbol that connects two notes that do not have the same pitch. The first note is to be
performed for as long as possible - until the start of the second note.

Split-meter time-signature A time-signature having two values that represent the meter.
Equivalent to the alternation of two separate meters.

Split-stem chord A chord having one or more additional stems that allow the notation of chord
notes occupying the same staff-step.

Staff Horizontal lines used to denote musical pitch. Notes and rests are notated on or between the
lines of a staff which traditionally consists of five lines.

Stem A vertical line attached to the notehead of a note.

System A group of staves that are visually grouped together. All notes and rests occupying the
same vertical time-slice are performed at the same time.

System line / System bracket The vertical line and bracket or brace that visually connect staves
at their starting positions on the left of the page.

Tempo The frequency at which metric units occur. Measured in beats per minute.

Tie Symbol in the form of an arc that connects two notes of the same pitch that are performed as
a single duration representing the sum of the durations of the two notes.

Timbre Tone quality of a sound determined by the harmonic spectrum of the sound. MIDI timbres
are provided by synthesiser patches.

Time -signature Two integer values notated at the beginning of a staff or bar. The top value
indicates meter, the bottom value specifies the durational value of each metric unit.

Tonality The pitch (key) centre of a musical work or passage.

Unified Modelling Language (UML) An object-oriented design notation that attempts to
provide a standard notation for object diagrams.

Voice A single melodic thread within multiple melodic threads that are notated on a single staff.

 172

172

 Bibliography

Borland International, Reference Manuals for Borland C++ ver. 4.0 and ver. 5.0

Cantù, M. and Tendon, S. Borland C++ 4.0 Object-Oriented Programming.
 Random House, New York, 1994.

Cilwa, P. Borland C++ Insider : The Guide To Hard-To-Find and Undocumented Features.
 John Wiley, New York, 1994.

Coplien, J.O Advanced C++ : Programming Styles and Idioms.
 AT&T Bell Telephone Laboratories, 1992.

Johnsonbaugh, R. and Kalin, M. Object-Oriented Programming in C++.
 Prentice Hall, New Jersey, 1995.

Kelley, A. and Pohl, I. C by Dissection : The Essentials of C Programming.
 Benjamin / Cummings, Redwood City, 2nd ed., 1992.

Shammas, N.C. What Every Borland C++4 Programmer Should Know.
 Prentice-Hall,

Stroustrup, B. The C++ Programming Language.
 AT&T Bell Telephone Laboratories, 2nd ed., 1991.

Thayer, R.H. and Dorfman, M. System and Software Requirements Engineering.
 IEEE Computer Society Press, Los Almitos, 1990.

 173

173

 References

Anderton, C. MIDI For Musicians.
 Amsco Publications, New York, 1986.

Arnote, P. Personal electronic mail concerning embedded windows in help files
 parnote@sky.net, 1996.

Assayag, G. and Timis, D. A Toolbox for Music Notation.
 Proceeding of the International Computer Music Conference, Montreal, 1986.

Booch, G. Object Oriented Design with Applications.
 Benjamin/Cummings, Redwood City, 1991.

Brinkman, A. Pascal Programming for Music Research.
 University of Chicago Press, Chicago, 1990.

Carmichael, A. Object Development Methods.
 SIGS Books Incorporated, New York, 1994.

Cannam, C., Green, A. Rosegarden Notation Editor and MIDI Sequencer
 http://www.maths.bath.ac.uk/~masjpf/rose.html, 1997

Cessna, M. Personal electronic mail concerning embedded windows in help files
 mcessna@wordmission.org, 1996.

Clements, P.J. A System for the Complete Enharmonic Encoding of Musical Pitches and
Intervals.
 Proceedings of the International Computer Music Conference,
 Computer Music Association, 1986.

Coad, P. Object Models - Strategies, Patterns, and Applications.
 Yourdon Press, 2nd ed, 1997.

Coad, P. and Yourdon, E. Object-Oriented Analysis.
 System Software Requirements and Engineering. ed. Thayer, R.H., Dorfman, M.
 IEEE Computer Society Press, Los Alamitos, 1990.

Coad, P. and Yourdon, E. Object-Oriented Analysis.
 Yourdon Press, New Jersey, 2nd Ed. 1991.

Coad, P. and Yourdon, E. Object-Oriented Design.
 Yourdon Press, New Jersey, 1992.

 174

174

Cole, H. Sounds and Signs : Aspects of Musical Notation.
 Oxford University Press, 1974.

Computer Music Journal - Review of Rosegarden Notation and Sequencer Software.
 CMJ vol. 21(2), MIT Press, 1997.

Dyer, L.M. MUSE : An Integrated Software Environment for Computer Music Applications.
 Proceedings of the International Computer Music Conference,
 Computer Music Association, 1986.

Formula Software Ltd. The Formula Graphics Multimedia Authoring System.
 www.FormulaGraphics.com

Forte, A. The Structure of Atonal Music.
 Yale University Press, New Haven, 1973.

Giampolo, D. ‘C’ source code to compute Bézier curves.
 dbg@sgi.com, 1996.

Glassner, A.S. Graphics Gems.
 Academic Press, Cambridge, 1990.

Grande, C. Notation Interchange File Format Specification version 6a.
 http://mistral.ere.umontral.ca:80/~belkina/NIFF.doc.html, 1995.

Huron, D. Design Principles in Computer-Based Music Representation.
 in Marsden, A. , Pople,A. eds. Computer Representations and Models in Music.
 Academic Press, London, 1992.

InterSystem Concepts. The Everest authoring System.
 www.insystem.com, 1998.

Lande, T.S. and Vollsnes, A.O. Object Oriented Music Analysis.
 Computers and the Humanities, vol. 28, 1995.

Lehrman, P.D. and Tully, T. MIDI for the Professional.
 Amsco Publications, New York, 1993.

McGowan, A. Encore 3.0 Installation Guide.
 Passport Designs Inc, Half Moon Bay, California, 1993.

MediaChance Software. The MultimediaBuilder Authoring System.
 www.mediachance.com, 1988.

MIDI 1.0 Specification.
 International MIDI Association, California, 1983.

 175

175

Messick, P. Maximum MIDI : Music Applications in C++.
 Manning Publications, 1997.

Messick, P. Posting regarding use of the MMT with the 32 bit Borland Compiler.
 MMT user’s forum, www.maxmidi.com

Music Quest Inc. and Messick, P.A. MIDI Programmer’s ToolKit for Windows.
 Music Quest Inc., Plano, 1994.

Richards, T. ‘Memwatch’ Memory Monitor.
 OWL Archives www.ioc.ee/owl, 1985.

Petzold, C. Programming Windows 3.1.
 Microsoft Press, 1983.

Pierce, J.R. The Science of Musical Sound.
 Scientific American Library, 1983.

 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W.
 Object-Oriented Modelling and Design.
 Prentice-Hall, 1991.

Schildt, H. Windows 95 Programming : Nuts and Bolts for Experienced Programmers.
 McGraw-Hill, Berkeley, California, 1995.

Sibelius-Software
 www.sibelius-software.com, 1998.

Stroustrup, B. A Better C ?
 Byte - the small systems Journal, August 1988,

Salzer, F. Structural Hearing.
 Dover, 1962.

Straus, J.N. Introduction to Post-Tonal Theory.
 Prentice-Hall, London, 1990.

Sun Microsystems. Java Development Kit ver. 1.1
 Sun Microsystems, 1996.

Taylor, W.F. The Geometry of Computer Graphics.
 Wadsworth and Brooks, Belmont, 1992.

Technoligor Software
 www.igortech.pi.se, 1998.

 176

176

Walsen, M. Description of the Notation Engine.
 www.notation.com, 1998.

Walsen, M. Personal electronic mail concerning features of the Notation Engine.
 markwa@notation.com, 1998.

Ward, P., Mellor, S. Structured Development for Real-Time Systems.
 Prentice-Hall, New Jersey, 1985.

Wentworth, P. Discussion regarding Java native code.
 pw@cs.ru.ca.za, 1997.

 177

177

 Index

 A B
 Abstract class, 78-9, 83 Bar, 12-14, 50-522
 Accidental, 6, 15-16, 18, 23, 39-41, 94 Bar (Secondary), 55
 Accidental object, 61, 95, 153 Bar object, 48-9, 55
 Acoustics, 10 Barline, 12-14, 50-55, 84
 Aggregation, 62, 82, 85-6 Barline object, 48-9, 84-6, 164
 Algorithm, 97, 103-4, 106-7, 130 Beam, 16, 18-9,23, 28, 98, 110
 Anderton, C., 3 Beam (extended), 19, 110
 Apple Macintosh , 1 Beam (fan), 19, 110
 Articulation, 66 Beam (cross-staff), 107
 Articulation symbol, 19, 23 Beam object, 65-6
 ASCII characters, 35 Beam symbol, 93
 Attribute, 40, 163 Beamed group 64, 103-10
 Auxiliary symbol, 20, 165 BeamedGroup object, 63
 Beaming algorithm, 103
 Berio, L., 54
 Bernstein, L., 12
 Bézier curve, 97
 Binomial pitch representation, 95
 Bitmap, 99
 Booch, G., 37-8
 Borland C++, 27, 75, 81, 94, 127
 Brace, 99
 Bracket, 99
 Brahms, J., 66
 Brinkman, A., 93

 C D
 C programming language, 96 DARMS code, 33, 93
 Canon, 602 Dynamic symbols, 20
 Clef, 10-11, 51, 56 Durations, 16
 Clef object, 57 Dyer, L.M., 93
 Cent, 10
 Changing meter, 12
 Chord, 17-18
 Chord (split-stem) 18
 CChord object, 62-4
 Coad, P., 38-9
 Container classes, 127
 Context-sensitive relationship, 22, 116-17
 COPYIST, 29-30
 Cross-staff beam, 107

 178

178

 E F
 Eales, A.A., 29 FINALE, 25-27
 Embedded notation example, 121-122 Flag, 59
 Encoding music symbols, 93-4 Flag object, 60
 ENCORE, 27-28, 109 Font (Music), 34-35, 131
 EVEREST authoring software, 119 FORMULA graphics, 119

 G H
 Generalisation-specialisation, 40, 77-78 Hairpin, 96
 Giampaolo, 97 Hairpin class, 163
 Grouplet, 65, 100 Harmony tutor, 117-121
 Grouplet object, 68, 153 Hierarchy (notation), 6
 GroupBracket object, 68 Hitspot, 111-12
 HTML, 118

 I J
 IGOR, 30 Jacobson, I., 37
 Inheritance, 78-79, 84, 92 Java, 118
 Initialism, 36
 Instance relationship, 40-41, 49, 56, 61, 68,
 82-4, 95, 98
 IrregularGroup (see grouplet)

 K L
 Key-Signature, 5-6, 10-11, 28, 56 Leger line, 10, 121, 147
 Key-Signature object, 150 Lehrman, T., 3
 LineSymbol class, 96
 Lutoslawski, W., 46, 54

 M N
 Macintosh (Apple), 1 Name class, 93
 NIFF, 33, 52, 103 NOTATION ENGINE, 34
 Maximum MIDI toolkit (MMT), 94-95 Notation program - commands, 112-14
 Mellor, S., 37 Notation program - MIDI usage, 109
 Notation program, 105, 107 Notational convenience, 23
 Messick, P., 94 Note, 15-16
 Method, 40 Note object, 60-61, 63-4, 68, 71,
 Microsoft Foundation Classes, 94 Note name, 94
 MIDI, 2-3, 31, 94-96 Note representation, 93-5
 MIDI implementation, 99-103 Note Structure, 59
 MIDI playback, 99, 106-7, 117 Notehead, 59
 MIDI recording 117
 MIDI resolution, 98
 MIDI synchronisation, 97-99
 MidiEvent structure 96-97
 MidiMessage object, 66, 76, 96, 98-99
 Model, 77

 179

179

Moving objects, 89-92

 Mozart, W.A., 13
 MULTIMEDIA BUILDER, 119-20
 MUSICA, 29, 78-80
 MusicEvent object, 62-3, 155
 Music font, 34-5, 138
 Music Notation, 1-2
 MusicSymbol object, 83-4, 143
 MUSIKUS, 36

 O P
 OOTMN code example, 122 Pachelbel, J., 14
 OOTMN (functionality of), 132 Page, 7
 OOTMN (limitations of), 126 Page object, 42-3
 Object, 40 Palette (notation application), 116
 Object model, 73-76, 82-3 Part, 21-22
 Object notation, 40 Part object, 69, 165
 Object-Oriented analysis, 39, 77 Phrase symbol, 92-93
 Object-Oriented design, 1, 39 Piano roll notation, 31
 Object-Oriented development methods, 37 Pitch-Class, 94
 Object-Oriented music representation, 36 Pictorial mnemonic, 36
 Object-Oriented programming, 1 Pitch, 6, 9, 16
 Object-Oriented representation of music, 36 Postscript font, 35
 Object relationships, 70-72 Prototyping, 128
 Object storage, 85
 Object Windows library (OWL), 81
 Octave, 10, 90
 Operator overloading, 100
 Ornaments, 20

 R S
 Reciprocal duration code, 33 Salzer, F., 5
 Rest, 16-17 Schenkerian notation, 5
 Rest object, 61 Score, 7
 RoseGarden, 30 Score object, 42-3
 Rumbaugh, J., 37 ScoreTemplate object, 43-44
 Secondary bar, 55-6, 114
 Secondary stem, 110
 Semantic constituent, 22-3
 Semantic modifier, 23
 Scope (of symbols), 5
 Score, 7
 Searching, 86-88
 SIBELIUS, 30
 Slur object, 61
 Slur symbol, 97
 Software Design, 2
 Software Engineering, 128
 Software tools, 33
 Spatial dependency, 24

 180

180

 SplitTimeSignMeter object, 56
 Split-stem chord, 18, 114
 Stroustrup, B., 1
 Staff, 7-11, 45-6
 Staff object, 47
 Staff step, 88-90
 Stem, 59
 Stem object, 60
 Stravinsky, I., 53
 Symbolic time-signature, 107
 System, 7-9, 45-6
 System object, 47
 SystemBracket object, 47

 T U
 Tie object, 60 Unified Modelling Language (UML), 37
 Tie symbol, 97 UNIX, 30, 132
 Time-signature, 11-12, 56 User interface design, 107
 Time-signature (split), 111
 Time-signature (symbolic), 111
 TimeSign object, 57, 151
 TimeSignMeter object, 57, 152
 TimeSignValue object, 57, 152
 True-Type font, 35
 Toolbar (Notation application), 115

 V W
 Visibility (of symbols) 5 Ward, P., 38
 Visual C++, 81 Whole-part structure, 40, 77
 Voice, 14-15, 103 Windows API, 75
 Voice object, 58

 X Y
 Xwindows, 132 Yourdon, E., 38-9

