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Abstract

Digital audio network technologies are becoming more prevalent in audio related environments.
Yamaha Corporation has created a digital audio network solution, named mLAN (music Local
Area Network), that uses IEEE 1394 as its underlying network technology. IEEE 1394 is a digital
network technology that is specifically designed for real-time multimedia data transmission.

The second generation of mLAN is based on the Plural Node Architecture, where the control of
audio and MIDI routings between IEEE 1394 devices is split between two node types, namely
an Enabler and a Transporter. The Transporter typically resides in an IEEE 1394 device and is
solely responsible for transmission and reception of audio or MIDI data. The Enabler typically
resides in a workstation and exposes an abstract representation of audio or MIDI plugs on each
Transporter to routing control applications. The Enabler is responsible for configuring audio and
MIDI routings between plugs on different Transporters. A Hardware Abstraction Layer (HAL)
within the Enabler allows it to uniformly communicate with Transporters that are created by
various vendors. A plug-in mechanism is used to provide this capability. When vendors create
Transporters, they also create device-specific plug-ins for the Enabler. These plug-ins are created
against a Transporter HAL Application Programming Interface (API) that defines methods to
access the capabilities of Transporters.

An Open Generic Transporter (OGT) guideline document which models all the capabilities of
Transporters has been produced. These guidelines make it possible for manufacturers to create
Transporters that make use of a common plug-in, although based on different hardware architec-
tures. The introduction of the OGT concept has revealed additional Transporter capabilities that
are not incorporated in the existing Transporter HAL API. This has led to the underutilisation of
OGT capabilities.

The main goals of this investigation have been to improve the Enabler’s plug-in mechanism, and
to incorporate the additional capabilities that have been revealed by the OGT into the Transporter
HAL API. We propose a new plug-in mechanism, and a new Transporter HAL API that fully
utilises both the additional capabilities revealed by the OGT and the capabilities of existing
Transporters.
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Chapter 1

Introduction

As digital audio technologies continue to outplay analog audio technologies, the projected de-
mand for digital audio networks is inevitably increasing. Digital audio networks, among other
capabilities, allow remote control over the routing of audio between audio sources and audio
receivers. Some of the application areas of digital audio networks include, but are not limited to,
broadcast and recording studios, stadiums, houses of worship, hotels, and convention centres. A
number of technologies have been developed to meet the audio network requirements in a variety
of environments. Some of these technologies are being used in professional audio environments,
where the demand for premium quality and functionality is high. This research was initiated
because of a need to expose optimal functionality within a professional audio network.

1.1 Analog and Digital Audio Routing

Audio may be represented in two main forms, namely analog and digital. Analog audio repre-
sentation takes the form of a varying electrical voltage signal. Fluctuations in this signal have a
significant impact on the nature of the resulting audio quality. As a result, any unwanted signal
induced in transmission wires such as radio frequency interference, and interferences from other
sources such as power cables, cannot be distinguished from the desired signal. Noise can be re-
duced in analog audio transmission by, for example, making use of balanced cables and applying
various forms of modulation.

On the other hand, digital audio is mostly derived from analog audio. The varying electrical
voltage signals are converted to discrete on/off pulses. This implies that there are two possible

1
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states for digital audio, the on state and the off state, making it easier to remove the effects of
unwanted noise. Although Rumsey and Watkinson [1993] suggest that an analog signal’s digital
counterpart requires more bandwidth, they indicate that another benefit of digital audio is that
different types of audio signals may be carried on the same physical link without interfering with
each other. In addition, Watkinson [2001] shows how the lower cost of ownership of digital
equipment, when compared with that of analog equipment, is leading to a drop in demand for
analog equipment.

There are two common alternatives to routing both digital and analog audio from audio sources to
audio destinations, namely the use of point-to-point cabling between the source and destination
devices, and the use of digital audio networks. These alternatives are described below.

1.1.1 Point-to-Point Cabling

In this form of routing, a predefined physical signal path needs to be set up between the source
and destination audio devices, as shown in Figure 1.1. Patch bays may be used to allow for

Figure 1.1: Simple Audio Studio Configuration with Point-to-Point Cable Routing

flexible audio path configurations. A patch bay can be viewed as a central routing device which
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facilitates the connection of outputs to inputs. Typically, outputs and inputs of the various audio
devices are connected to the patch bay. Connections between the outputs and inputs may be done
manually using patch leads or via the control of software on a host device, such as a computer.
Okai-Tettey [2005] highlights how the myriad of analog and digital audio connectors and their
corresponding cable types (as shown in Figure 1.1) leads to complications in management of
audio routings. The various types of connectors include: “MIDI, RCA, phone jacks, BNC,
AES/EBU, SPDIF, ADAT, TDIF, and MADI” [Okai-Tettey, 2005]. Some of the complications
include:

• The cable clutter that results from the use of many different types of cables, which leads to
time intensive installations and reconfigurations.

• Signal loss in environments with long analog cable runs, and the costs involved in attempt-
ing to minimise such losses.

• The costs incurred in purchasing all the different types of cables for the various connectors.

1.1.2 Digital Audio Networks

Okai-Tettey [2005] discusses the results from a survey conducted by the AES Technical Com-
mittee on Networked Audio Systems (AES TC-NAS) [Gross, 2006]. Notably, apart from other
important aspects such as the amount of latency and cost requirements, three important points
were highlighted by the survey, and these include:

1. The need for open and multi-sourced technology standards in audio networks.

2. The importance of control and monitoring capabilities within audio networks.

3. Lack of preference between the use of standalone infrastructure or ubiquitous data com-
munications infrastructure that is already in place.

A number of digital audio network technologies that resolve some of the problems in point-to-
point cable based networks exist. The most common technologies make use of Ethernet as the
underlying network technology. In order to ensure guaranteed quality of service (QoS), most
manufacturers of Ethernet based solutions have implemented their own proprietary protocols
above the Ethernet protocol. As a result, most of these protocols, although they use the same un-
derlying network technology (Ethernet), are not interoperable. Yamaha Corporation introduced
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the use of IEEE 1394 [IEEE Std. 1394, 1995; IEEE Std. 1394a, 2000; IEEE Std. 1394b, 2002] in
digital audio networks through its music Local Area Network (mLAN) project [Yamaha Corpo-
ration, 2007]. Unlike Ethernet, IEEE 1394 was created for multimedia data transmission, which
makes it ideal for audio and video networks. A common feature of both IEEE 1394 and Ethernet
based networks is that they both require a single cable for device interconnectivity. This thesis
focuses on the IEEE 1394 based audio network alternative.

1.2 Problem Statement

IEEE 1394, commonly known as FireWire, is a digital network interface technology that allows
professional audio equipment, PCs, and electronic devices to be interconnected using a single
cable. Among other features, IEEE 1394 is used in audio networks because of its low latency,
deterministic data transmission, and simultaneous transmission of audio data with control data
[Anderson, 1999].

The International Electrotechnical Commission (IEC) has created an Audio and Music (A/M)
Data Transmission Protocol [IEC, 2005]. This protocol describes the formatting of audio and
music1 data that is transmitted over IEEE 1394. Various manufacturers have created chips
(ASICs2) that comply with the A/M Data Transmission Protocol requirements. Furthermore,
the 1394 Trade Association has documented an architecture known as the “Plural Node Archi-
tecture” [1394 Trade Association, 2004], which originated from Yamaha Corporation’s mLAN
project. The Plural Node Architecture splits connection management of IEEE 1394 audio devices
between two nodes types, namely an Enabler and a Transporter.

The Transporter node typically resides in an IEEE 1394 audio device and its sole responsibility
is to encapsulate and extract audio and MIDI data in a manner that complies with the A/M Data
Transmission Protocol. The Transporter also exposes a Transporter Control Interface which al-
lows an Enabler to access and modify A/M Data Transmission Protocol parameters. The Enabler
node resides in a controlling IEEE 1394 device, typically a workstation. It provides a high level
abstraction of the audio channel end-points on each Transporter and is responsible for making
and breaking connections between these end-points.

When manufacturers create Plural Node audio devices, they provide a Transporter Control Inter-
face on each device, which accepts low level device-specific commands from a device-specific

1Data such as MIDI.
2Application-Specific Integrated Circuits
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Enabler plug-in. The Transporter Control Interface forwards these commands to the A/M Data
Transmission Protocol layer of the device. There is variation in the hardware design of the var-
ious manufacturers’ chips. In order for an Enabler to transparently control Transporters with
different hardware designs, a Transporter Hardware Abstraction Layer (HAL) Application Pro-
gramming Interface (API) is defined for the Enabler. The Transporter HAL API defines a stan-
dard set of methods that the Enabler uses to access the capabilities of Transporters. Manufactur-
ers create their device-specific plug-ins for an Enabler against its Transporter HAL API.

The mLAN project created its version of an Enabler, their own chips (ASICs), and defined
a Transporter HAL API to access their chip capabilities [Yamaha Corporation, 2002c, 2001,
2003a]. We refer to the mLAN project’s Transporter HAL API as the current Transporter HAL
API. A new version of the Enabler, known as the Redesigned Enabler, has been created by Okai-
Tettey [2005]. The Redesigned Enabler continues to use the current Transporter HAL API.

In an attempt to create an open, standards-based implementation of a Transporter, and also to
ease the task of manufacturers, the Audio Engineering Society’s SC-02-12-G Task Group has
produced an Open Generic Transporter (OGT) guideline document [Audio Engineering Society
- Standards Committee, 2005]. This document provides a high level abstract description of a
possible Transporter design paradigm, which encapsulates the underlying functions of the A/M
Data Transmission Protocol. In particular, if manufacturers design Transporters in accordance
with the OGT guidelines, there will be no need to create their own device-specific Transporter
plug-ins, since they can make use of a common, open, generic Transporter plug-in.

Although the main motivation for the OGT guideline document was manufacturer convenience,
it has also revealed additional Transporter capabilities that were not planned for by the existing
mLAN Enablers at the time of their implementation. An Enabler accesses Transporter capa-
bilities via the methods defined in its Transporter HAL API. The current mLAN Enablers have
been designed to facilitate connection management between IEEE 1394 audio devices with HAL
plug-ins that are written against the current Transporter HAL API.

Our investigation made use of the Redesigned Enabler. An OGT HAL plug-in has been imple-
mented for this Enabler against the current Transporter HAL API. However, the difference in
Transporter design philosophies assumed at the time of defining the current Transporter HAL
API and those that the OGT guideline is based on have led to underutilisation of OGT capabil-
ities. While the OGT guideline document reveals some additional Transporter capabilities, the
Enabler is restricted to only utilising capabilities defined in the current Transporter HAL API.
The current Transporter HAL API does not define methods to access these additional Transporter
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capabilities. Such a restriction within the Enabler also restricts the capabilities available to high
level end-user connection management applications that make use of the Enabler.

This research primarily aimed to investigate how the additional Transporter capabilities revealed
by the OGT guideline document can be incorporated into the Enabler, by revealing these capa-
bilities in the Transporter HAL API. However, the current Transporter plug-in mechanism that
is used by the Enabler was also found to be problematic. The main problems with this plug-in
mechanism are with regards to the existence of binary dependence between the Enabler and its
associated Transporter HAL plug-ins, and some inadequacies within the mechanism used for
Transporter HAL API versioning.

The outcomes of the research were:

• A new Transporter plug-in mechanism that reduces the level of binary dependence between
the Enabler and Transporter HAL plug-ins, whilst allowing for robust Transporter HAL
API versioning.

• A new Transporter HAL API that completely reflects the OGT capabilities that were lack-
ing in the mLAN project’s Transporter HAL API.

• Proof of concept HAL implementations against our proposed Transporter HAL API in or-
der to demonstrate feasibility of our proposed Transporter HAL API in completely utilising
capabilities of both OGT-based and non-OGT-based Transporters.

• Modified versions of the Redesigned Enabler, and a high level connection management
application, to demonstrate how users can utilise the additional Transporter capabilities
that have been revealed by the OGT guideline document.

1.3 Document Structure

Chapter 2 describes the current state of digital audio networking. A brief background of some
existing Ethernet based digital audio network technologies and mLAN (an IEEE 1394 based al-
ternative) is given. The chapter is concluded by highlighting motivations for further investigation
of IEEE 1394 audio networking with mLAN.

Chapter 3 provides background information on IEEE 1394. In addition, a description of the work
produced by the mLAN project is given. Important sections of the standards on which mLAN is
based are also described in detail.
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Chapter 4 analyses the designs and implementations of the current Transporter plug-in mecha-
nism and the current Transporter HAL API. These two sections of the HAL comprise the two key
investigation areas that are discussed in this thesis. Shortcomings within these two investigation
areas are highlighted in this chapter.

Chapter 5 describes our proposal for a new HAL plug-in mechanism, which resolves shortcom-
ings identified for the first of the two key investigation areas that are mentioned in Chapter 4.

Chapter 6 describes our proposal for a new Transporter HAL API, which resolves shortcomings
identified for the second of the two key investigation areas that are mentioned in Chapter 4.

Chapter 7 highlights some innovations that have resulted from our proposed Transporter HAL
API, which is described in Chapter 6. Here, modifications made to an existing connection man-
agement application are discussed and the resulting enhancements to end-user capabilities are
shown.

Chapter 8 concludes the thesis by revisiting the context of the investigation, highlighting key
motivations for the investigation, highlighting main shortcomings within the current implemen-
tations, and how these shortcomings were resolved.



Chapter 2

Current State of Digital Audio Networking

A number of digital audio network technologies exist. Ethernet is the most common network
technology that is used by most of the existing digital audio network solutions. The main ad-
vantage gained from the use of Ethernet is that of convergence. In particular, the use of Ethernet
for audio networks implies that existing data communications infrastructure within homes and
professional audio environments can be used, hence no extra costs are incurred in creating new
infrastructure. In spite of such benefits, various manufacturers have created their own protocols
(proprietary and non-interoperable in most cases) that guarantee the quality of service (QoS)
required for real-time audio distribution. Unlike Ethernet based solutions, mLAN is a digital
network interface technology that uses IEEE 1394 as its underlying network technology. The
main advantage of IEEE 1394 is that it was created for transmission of real-time multimedia
data, hence QoS is guaranteed in its standard form. This chapter highlights the existing, or up-
coming, audio network technologies and their capabilities. To conclude the chapter, motivations
for closer investigation of IEEE 1394 based audio networks are provided.

2.1 Existing Audio Networks

A survey conducted by the Audio Engineering Society’s Technical Committee on Networked
Audio Systems (AES TC-NAS) revealed that there is a readiness for digital audio networking
in all audio related contexts, since digital technologies continue to edge out analog technologies
[Gross, 2006]. Because of this, there have been many attempts at audio network solutions. Given
below are the most significant products arising from these attempts.

8
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• CobraNetTM by Peak Audio (now owned by Cirrus Logic) [Cirrus Logic, 2007]

• EtherSound by Digigram [Digigram, 2006]

• LivewireTM by Telos Systems (Axia Audio) [Telos Systems/Axia Audio, 2007]

• Media-Accelerated Global Information Carrier (MAGIC) by Gibson [Gibson Musical In-
struments, 2003]

• SuperMAC, an implementation of “AES50-2005” [Audio Engineering Society, 2005a] by
Sony, Oxford [Oxford Technologies, 2007a]

• SmartBuss by Intelligent Media Technologies [Intelligent Media Technologies, Inc., 2007]

• DANTE Project by AudinateTM [Audinate, 2007], a company founded by researchers at
National ICT Australia (NICTA) Research Institute [National ICT Austria, 2007]

• HearBus by Hear Technologies [Hear Technologies, 2007]

• A-Net Pro64 by Aviom Technologies [Aviom, Inc., 2007]

• Roland Ethernet Audio Communication (REAC) by Roland Systems Group [Roland Sys-
tems Group, 2007]

• mLAN (music Local Area Network) by Yamaha Corporation [Yamaha Corporation, 2007]

All these products are Ethernet based, with the exception of mLAN which is based on IEEE 1394
(FireWire). We will look at four of the most important Ethernet based audio network technologies
and mLAN. We give motivations for a closer investigation of IEEE 1394 audio networking using
mLAN.

2.1.1 Overview of Existing Digital Audio Network Technologies

2.1.1.1 CobraNetTM by Peak Audio/Cirrus Logic

Cirrus Logic is providing CobraNetTM technology to transport high quality uncompressed dig-
ital audio in real-time on a switched Ethernet or dedicated Ethernet repeater Local Area Net-
work (LAN) [Cirrus Logic, 2006]. CobraNetTM technology comprises hardware (a CobraNetTM

interface), a network protocol, and firmware. A CobraNetTM interface has standard Ethernet
connectors that enable it to be connected to an Ethernet network. Three main communications
services are provided by CobraNetTM, namely isochronous audio data transport, sample clock
distribution, and control and monitoring data transport.



CHAPTER 2. CURRENT STATE OF DIGITAL AUDIO NETWORKING 10

The CobraNetTM protocol operates at the “OSI1 Layer 2” [McClain, 1991]. It is possible for
CobraNetTM devices to co-exist with other data communications devices that make use of the
Internet Protocol (IP) for data transmission [Cirrus Logic, 2006]. However, CobraNetTM itself
does not use IP to transport audio. Four basic packets types are used by CobraNetTM devices,
namely the beat packet, isochronous data packet, reservation packet, and serial bridge packet.
The beat packet is a multicast packet, transmitted periodically by only one CobraNetTM device
on a network, containing network operating parameters, a clock, and transmission permissions.
Isochronous data packets contain the uncompressed audio data and are transmitted upon receipt
of the beat packet. A reservation packet is a multicast packet used to allocate bandwidth and
establish connections between CobraNetTM interfaces. Serial bridge packets are used to bridge
asynchronous serial data between CobraNetTM interfaces.

Routing of audio within a CobraNetTM network occurs in terms of Bundles [Gray, 2004]. In
particular, a Bundle is the basic unit of data which contains up to eight audio sub-channels. No
information could be found relating to support for MIDI transportation. With reference to the
packets described above, Bundles make up the isochronous data packets. Each Bundle has a
Bundle number that is used to identify it, and to determine where and how the data is sent. Audio
connections can be made between CobraNetTM devices by assigning the destination CobraNetTM

interface the same Bundle number as the one that is assigned to a transmitting CobraNetTM inter-
face. CobraNetTM interfaces contain one or more Synchronous Serial Interfaces (SSIs) that carry
multiplexed audio data into and out of the interfaces. Depending on the mode in use, a Bundle

may be sent to all devices on the network (multicast), just one device (unicast), or a selected set
of devices (private).

Depending on audio network requirements, there are CobraNetTM integrated circuits that can
support up to 32 full-duplex output and input audio channels [Cirrus Logic, 2006]. Sample rates
of 48 kHz and 96 kHz, and resolutions of 16, 20, or 24 bits are configurable on a CobraNetTM

interface. Although CobraNetTM interfaces at 48 kHz and 96 kHz may co-exist on the same
network, audio cannot be exchanged between interfaces with different sample rates. In addition,
latency values of 1.33 ms, 2.66 ms, and 5.33 ms may be selected on a CobraNetTM network.
Sample rate, resolution, and latency combinations may affect the allowable Bundle capacity. For
example, the default mode of operation is 5.33 ms latency at 48 kHz. However, changes to
latency, sample rate, or resolution may result in restrictions on the Bundle capacity as shown in
Table 2.1 for a CobraNetTM module known as the CM-1. As shown in the table, lower latency
modes have fewer restrictions with regards to the number of audio channels allowed in a Bundle.

1 Open Systems Interconnection
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Channels per Bundle
Latency 16 bit,

48 kHz
20 bit,
48 kHz

24 bit,
48 kHz

16 bit,
96 kHz

20 bit,
96 kHz

24 bit,
96 kHz

5.33 ms 8 8 7 5 4 3
2.66 ms 8 8 8 8 8 7
1.33 ms 8 8 8 8 8 8

Table 2.1: Bundle Capacity Limits (for CM-1) as a Function of Ethernet Packet Size [Cirrus
Logic, 2006]

This is because lower latency is achieved by transmitting smaller audio packets at a higher rate,
therefore the main restriction is the maximum size of an Ethernet packet. However, low latency
modes place additional demands on network performance such as the need to reduce forwarding
delays across the network by the same factor. Such demands require additional network design
rules to be complied with.

CobraNetTM over switched Ethernet enables co-existence with ordinary computer data on the
same network [Bayburn, 2004]. However, there may be problems if, for example, the computers
attached to the network use 10 Mb/s Network Interface Cards (NICs), while packets are sent
at 100 Mb/s. Multicast Bundles are sent to all devices on the network. Most Fast Ethernet
switches have dual 10/100 Mb/s ports. For example, if eight Bundles fill a Fast Ethernet (100
Mb/s) switch port that is connected to a 10 Mb/s NIC, the NIC will be saturated and will start
dropping packets. Cirrus Logic have a number of solutions to this problem, which include, but
are not limited to, using 100 Mb/s NICs for computers, refraining from use of multicast Bundles,
using managed switches to exclude certain devices from receiving multicast packets, and using
separate networks for either audio or data.

Control, monitoring, and connection management of CobraNetTM devices is done via a high-
speed parallel host processor, or via Ethernet using the Simple Network Management Protocol
(SNMP) [Cirrus Logic, 2007]. D&R Electronica has created software, “CobraNetTM Manager”
[D&R Electronica, 2007], that allows SNMP-based control, monitoring, and connection manage-
ment on a CobraNetTM network. This software allows for full remote control over the network
and can be customised to monitor and control other non-CobraNetTM device-specific parameters.

2.1.1.2 EtherSound by Digigram

EtherSound is a Digigram patented technology that provides high quality audio transport over
standard switched Ethernet networks [Digigram, 2006]. There are currently two implementa-
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tions, namely ES-100 and ES-Giga, which are 100 Mb/s and 1 Gb/s network implementations
respectively. EtherSound technology is fully compatible with IEEE 802.3x standards. The tech-
nology comprises a proprietary network protocol (OSI Layer 3 [McClain, 1991]) that has been
created by Digigram. This protocol is built above the standard Ethernet (IEEE 802.3) Data Link
Layer (OSI Layer 2). EtherSound frames are transported via a dedicated LAN and require an
available bandwidth of at least 100 Mb/s full-duplex.

The ES-100 and ES-Giga implementations support up to 64 and 256 channels, respectively, of
24-bit full-duplex PCM2 digital audio at 48kHz [Digigram, 2006]. Control data is also trans-
ported between connected nodes. For the ES-Giga implementation, a data path is also available
to carry proprietary control traffic, including Ethernet based protocols such as IP. The typical
end-to-end latency time is 5 samples (that is, 104 µs at 48 kHz) excluding analog-to-digital and
digital-to-analog conversions. However, the latency time is 1.5 ms when the conversions are
included.

Sample rates of 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, and 192 kHz are supported. These sam-
ple rates have different capabilities, but can be used simultaneously. For example, the ES-100
network has a total audio channel capacity of 64 at 48 kHz, 32 at 96 kHz, and 16 at 192 kHz.

EtherSound networks are fully synchronous and carry their own clock [Digigram, 2006]. One
device on the network is designated to be the Primary Master and the rest will be slaves. In
this setup, the Primary Master generates the network audio clock using its own local clock or
an external clock. The slave devices generate their clocks from the EtherSound network. Up to
eight consecutive devices can be kept in phase depending on the network architecture.

Three network topologies are supported, namely daisy chain, star, and ring topologies [Digigram,
2006]. The star topology, which may not be used with hubs, requires switches and only supports
uni-directional audio transport. Control of EtherSound devices is done via reads and writes to
the devices’ internal registers. Some registers are reserved for configuring EtherSound protocol
parameters while others are left free for manufacturers to add their own customs controls.

Registers may be accessed in one of two possible ways, namely:

1. By an embedded application running on the EtherSound device, such as a digital signal
processor (DSP), microcontroller, or field programmable gate (FPGA) array.

2. Through software running on a PC that is connected to the EtherSound device. An SDK is
also available which simplifies the development of custom PC-based control applications.

2 Pulse-code modulation
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Digigram provides ESControl [Digigram, 2007], a Microsoft Windows based graphical
user interface, to control one or more EtherSound networks. ESControl is based on a client-
server approach. A server application is connected to the EtherSound network, while a
client application, capable of connecting to the server via TCP/IP from anywhere, provides
a matrix based user interface, as shown in Figure 2.1. This allows connections to be made

Figure 2.1: ESControl Graphical User Interface [Digigram, 2006]

between devices, in addition to controlling and monitoring device parameters. The diagram
shows devices and their inputs on the vertical axis, and devices and their outputs on the
horizontal axis. A connection between an input of one device and output of another can be
made by clicking on the intersection between the output and the input.

2.1.1.3 LivewireTM by Axia Audio

Axia Audio, a division of Telos Systems, has created its patented LivewireTM technology for
use in broadcast studios [Telos Systems/Axia Audio, 2007]. This technology transmits multiple
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channels of real-time uncompressed digital audio, device control messages, programme asso-
ciated data, and routine network traffic, using a single CAT-6 Ethernet cable or fibre link over
switched Ethernet. A 100Base-T segment can carry 25 stereo channels of 48 kHz, full-duplex,
24-bit PCM audio. LivewireTM networks make use of Ethernet switches in order to guarantee
the QoS that is required for real-time audio distribution. The advantage of switches is that audio
data can be prioritised, allowing it to take precedence over other data. A proprietary transport
protocol ensures that input-to-output latency is less than 1 ms per network hop.

The building blocks of LivewireTM networks are called “audio nodes” [Telos Systems/Axia Au-
dio, 2007]. There are five node variants, namely an Analogue Node, an AES/EBU node, a
Microphone node, a Router Selector node, and a GPIO node. These nodes provide an interface
between conventional audio equipment and a LivewireTM network. In order to ensure reliabil-
ity of network operations and low delays, audio nodes run a version of Linux on an embedded
processor, and have built-in web servers that allow for remote configuration and control via a
web browser. An Axia Windows driver is also available to make a PC appear as an “audio node”
on a LivewireTM network. This adds the capability of exchanging audio between PCs and other
“audio nodes” on the network.

Signal routing, control, and monitoring may be done within a LivewireTM network by using a
Microsoft Windows PC client-server software package called PathfinderPC [Telos Systems/Axia
Audio, 2004]. One or more servers communicate with all the nodes in a LivewireTM network,
offering redundant common points of control. Multiple clients can connect to each of the servers
from where presets can be set up to allow for quick global or local studio changes. A virtual patch
bay user interface, as shown in Figure 2.2, ensures that the task of signal routing is intuitive, and
allows users to make routings by, for example, clicking on the destination to be routed to, and
then selecting the source. Route points can also be locked to prevent other users of the system
from mistakenly changing routings that are in use. PathfinderPC can also combine audio and
machine logic into a single “virtual router”, allowing simultaneous full-duplex routing of audio
and GPIO. A “watch” can also be placed on a destination device in order to switch to a backup
source in the event that the currently routed source fails.
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Figure 2.2: PathfinderPC User Interface for Audio Routing [Telos Systems/Axia Audio, 2004]

2.1.1.4 SuperMAC and HyperMAC by Oxford Technologies

SuperMAC and HyperMAC are complementary technologies that have been created by Sony Pro
Audio Lab, Oxford, for sample clock and multi-channel audio interconnection using CAT-5/6
cables [Oxford Technologies, 2007a]. The technologies are optimised for applications requiring
low latency and high reliability via Ethernet physical layer audio data transmission. Latency is
as low as three cycles at 44.1 kHz and 48 kHz sample rates, that is, 68 µs and 63 µs respectively.

SuperMAC is an implementation, and also the origin, of the AES50-2005 standard [Audio En-
gineering Society, 2005a]. The standard specifies the capability to transmit up to 48 channels (at
44.1 kHz and 48 kHz) of full-duplex 24-bit digital audio in a variety of formats using a single
CAT-5 (or better) structured data cable. This technology is designed for use in studio environ-
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ments. The 100Base-TX physical layer of Fast Ethernet is used to transport digital audio data
frames. A 64fs

3 audio clock signal is transmitted in parallel with the audio data via the extra
signal pairs of the structured data cable. SuperMAC also provides a 5 Mb/s full-duplex packet-
switched Ethernet data channel for generic data communication, such as control and status data
[Oxford Technologies, 2007b].

Complementary to SuperMAC, HyperMAC uses Gigabit Ethernet physical layer technology via
conventional CAT-6 or fibre optic cable. HyperMAC effectively provides the same service as
SuperMAC, although with much higher capacity. This technology has not been standardised
yet, but Sony intends submitting the HyperMAC protocol specification for standardisation. In
addition, HyperMAC makes it possible to use standard Gigabit Ethernet switching hardware for
signal distribution. There are eight streams, as shown in Figure 2.3, each with the same capacity
as a SuperMAC link.

Figure 2.3: HyperMAC Channel Capacity [Oxford Technologies, 2007b]

Each stream may be associated with one of four independent asynchronous sample clocks and
may carry different audio formats at different sample rates. This allows multiple audio streams of
different asynchronous audio sample rates to be carried at the same time. The formats shown in
Figure 2.3 are “AES3” [Audio Engineering Society, 2003] and Sony Corporation’s “DSDTM” (or

3 fs refers to a base audio sampling frequency [Audio Engineering Society, 2005b]. This may be 44.1 kHz or 48
kHz regardless of other sample frequency multipliers used in high resolution digital audio.
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Direct Stream DigitalTM) [Audio Engineering Society, 2005b]. HyperMAC also provides a 100
Mb/s full-duplex packet-switched Ethernet data channel for generic data communication that is
independent of the audio. This is used for control and status monitoring, or sending compressed
video signals [Oxford Technologies, 2007b].

Sony has created a SuperMAC/HyperMAC router that acts as a studio hub for interconnecting a
number of AES50/SuperMAC or HyperMAC-equipped devices [Oxford Technologies, 2007a].
Figure 2.4 shows an example of a layout with one HyperMAC link and two SuperMAC links,
although more links are possible. Generic Ethernet traffic for control applications is packet-

Figure 2.4: Schematic Example of SuperMAC/HyperMAC Interconnected System [Oxford
Technologies, 2007a]

switched and also accessible from any connected device, while audio is channel-switched and
has low latency.

The router may be controlled from another workstation or studio device via a TCP/IP-over-
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Ethernet interface. A snapshot of an application which shows the number of channels available
on each router port to allow control over routing is shown in Figure 2.5.

Figure 2.5: Sony’s SuperMAC/HyperMAC Router Control Application [Oxford Technologies,
2007b]

“AES47-2006” [Audio Engineering Society, 2006] is a standard for transmission of professional
audio across metropolitan- and wide-area networks over public asynchronous transfer mode
(ATM) networks. Sony Pro-Audio Lab are working in collaboration with Nine Tiles Networks to
develop “Audiolink 2” [Nine Tiles Networks Ltd., 2007], a SuperMAC-to-AES47 bridge. This
bridge will provide an integrated local/long-haul solution for audio routing and device control.
Discussion of metropolitan- and wide-area audio networks is beyond the scope of this thesis.

2.1.1.5 mLAN by Yamaha Corporation

mLAN (music Local Area Network) technology has been created by Yamaha Corporation. It is a
digital audio network interface technology that uses the IEEE 1394 high performance serial bus
standard and its amendments [IEEE Std. 1394, 1995; IEEE Std. 1394a, 2000; IEEE Std. 1394b,
2002]. The IEEE 1394 serial bus offers high-speed communications and isochronous (real-time)
data transmission. mLAN is also based on the IEC 61883-6 specification [IEC, 2005].

IEEE 1394, commonly known as FireWire, allows PCs and a variety of high performance multi-
media devices to be interconnected using a single cable [Anderson, 1999]. In its standard form,
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IEEE 1394 is simple, allows for low cost implementations, and supports isochronous data trans-
mission between devices. It is based on, and adds serial bus specific extensions to, the interna-
tional ISO/IEC 13213 specification, which is also formally known as “Information Technology -
Microprocessor Systems - Control and Status Registers (CSR) Architecture for Microcomputer
Buses” [IEC, 1994]. Theoretically, the architecture supports up to 1024 buses with up to 64
nodes on each bus. Therefore, the maximum number of nodes supported on an IEEE 1394 net-
work is 65536. One of the node addresses is reserved for broadcast. This reduces the maximum
number of possible physical nodes per bus to 63, resulting in a maximum network capacity of up
64512 nodes.

There are two main forms of transfers defined for an IEEE 1394 serial bus, namely asynchronous
and isochronous transfers [Anderson, 1999]. Asynchronous transfers are periodic data transfers
with guaranteed delivery. Read, write and lock transactions comprise the asynchronous transfers.
Read and write transactions return data from and write data to a specified memory address within
a node, respectively. Lock transactions are atomic read-modify-write operations. On the other
hand, the rate of data transfer, as opposed to guaranteed delivery, is crucial for isochronous trans-
fers. These transfers involve, for example, audio or video data which needs to be transferred at
a constant rate in order for it to be reproduced without distortions. Consequently, in isochronous
transactions, data is sent in the form of isochronous packets from a source node to a target node at
regular intervals (every 125 µs). The most important component of an isochronous packet is the
isochronous channel number. All isochronous packets from a source node bear an isochronous
channel number (which is not in use by any other source node on the network) in the range 0
to 63 inclusive. Isochronous packets bearing the same channel number comprise an isochronous

stream. More than one target node may receive the same isochronous stream.

The original IEEE 1394 [IEEE Std. 1394, 1995] specification and its first amendment, IEEE
1394a [IEEE Std. 1394a, 2000], support speeds of 100, 200, and 400 Mb/s in any acyclic net-
work topology. The second IEEE 1394 amendment, IEEE 1394b [IEEE Std. 1394b, 2002],
remains backwards compatible with previous versions, but defines speeds of 800 Mb/s, 1.6 Gb/s,
and 3.2 Gb/s, and single hop distances of up to 100m in any network topology. The IEEE P1394c
Working Group is working on an amendment that defines features and mechanisms which pro-
vide gigabit speed using CAT-5 cabling over single hop distances of up to 100m [IEEE P1394c
Working Group, 2007].

As mentioned in the first paragraph of this section, mLAN is based on the IEC 61883-6 spec-
ification. This specification, also known as the “Audio and Music (A/M) Data Transmission
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Protocol”, describes the formatting of audio and music4 data [IEC, 2005]. Audio and/or music
data in AM8245 quadlet (32-bit) format is packaged into a “Common Isochronous Packet (CIP)”
[IEC, 2003]. This CIP makes up the payload of the standard IEEE 1394 isochronous packet.
Each quadlet occupies a particular stream position, known as a sequence, within the packet clus-
ter.

Various manufacturers have created application-specific integrated circuits (ASICs) that com-
ply with the IEC 61883-6 specification. Yamaha Corporation created their own chips, namely
mLAN-NC1 and mLAN-PH2. The mLAN-NC1 is capable of simultaneously transmitting and
receiving eight sequences of audio data, two sequences of non-audio data, and four sequences of
MIDI data streams, or transmitting and receiving one sequence of non-audio data and eight se-
quences of MIDI data streams [Yamaha Corporation, 2001]. On the other hand, the mLAN-PH2
chip is capable of simultaneously transmitting and receiving 32 audio data sequences [Yamaha
Corporation, 2003a]. Up to four mLAN-PH2 chips may be used simultaneously, in addition to an
mLAN-NC1 chip, giving a maximum full-duplex audio channel count of 128 at 48 kHz and eight
MIDI data streams. The IEC 61883-6 specification also defines a mechanism for the transmission
of audio clock information and a maximum transfer latency of 354.17 µs [IEC, 2005].

The 1394 Trade Association has documented an architecture known as the “Plural Node Archi-
tecture” [1394 Trade Association, 2004] (also known as the Enabler/Transporter Architecture)
which splits connection management of IEEE 1394 audio devices over two node types, namely
a Transporter and an Enabler . The Transporter resides in the audio device and is responsible for
the encapsulation and extraction of audio/MIDI data in accordance with the A/M Data Trans-
mission Protocol. The Transporter also exposes a Transporter Control Interface that allows it to
be controlled by an Enabler. The Enabler, which typically resides in a workstation, is responsi-
ble for making or breaking connections between Transporters. A plug-in mechanism is used by
the Enabler to facilitate hardware independent Transporter control by the Enabler. In particular,
vendors typically create their Transporters using hardware architectures of their choice. In order
to get mLAN compliance, software plug-ins are provided, for each different type of Transporter,
to allow the Enabler to communicate with the Transporters in a device-specific manner. Second
generation mLAN devices are based on the Plural Node Architecture.

Yamaha Corporation provides Audio Stream Input/Output (ASIO) drivers for Mac OS 9 and
Windows operating systems [Holton, 2003]. Windows Driver Model (WDM) drivers are also
provided for Windows. Yamaha Corporation and Apple Inc. have collaborated to produce low

4Data such as MIDI.
5 8-bit label and 24-bit data
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latency drivers for Mac OS X as an integral part of the operating system. The use of these drivers
makes mLAN compatible with any sequencer6 or digital audio workstation (DAW) that supports
ASIO, WDM, or Mac OS X Core Audio and Core MIDI.

Audio routings on an mLAN network may be configured via a graphical user application such
as the one shown in Figure 2.6. Each of the five devices shown in the diagram has two plug
lists, one labelled “IN” and the other labelled “OUT”. To make a connection, a user selects a
source plug from the source device’s “OUT” plug list and a destination plug from the destination
device’s “IN” plug list. After the selections are made, a virtual cable is drawn between the source
and destination plugs, as shown in Figure 2.6. When a connection is made, the destination plug
is set to receive the audio data at the sequence position at which the source plug is transmitting
within the source device’s isochronous stream. Connection state may also be saved to a file to
allow for quick reloading of setups. MIDI messages, encapsulated in isochronous packets, are
used for device control in an mLAN network.

6A device or piece of software that allows the user to record, play back, and edit audio or MIDI data.
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Figure 2.6: Snapshot of mLAN Graphic Patchbay
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2.2 Motivation for Further Investigation of IEEE 1394 Audio
Networking with mLAN

The rest of this thesis focuses on mLAN and its Plural Node Architecture implementation. The
IEEE 1394 high performance serial bus, in its standard form, provides all the required capabili-
ties for real-time audio transmission. In particular, quality of service is guaranteed, since IEEE
1394 was specifically designed for multimedia data transmission. As a result, mLAN devices
can co-exist with other IEEE 1394 devices on the same network without need for any special
constraints to ensure that network performance is not compromised. Although IEEE 1394 is a
specialised network infrastructure, results from a survey conducted by the AES TC-NAS show
that there is lack of preference between the use of standalone infrastructure or ubiquitous data
communications infrastructure already in place [Gross, 2006].

As mentioned above, mLAN is based on open industry standards. Some companies, other than
Yamaha Corporation, that are providing mLAN devices include: PreSonus Audio Electronics,
TerraTec Electronic, Apogee Electronics Corporation, and Kurzweil Music Systems. The use
of a plug-in mechanism by the Enabler, as described in section 2.1.1.5, abstracts the underlying
hardware specifics from the Enabler, while providing a means for interoperability across vendors.

The capability of viewing a workstation as an “mLAN device”, through the use of drivers such as
WDM and ASIO, greatly enhances the use of mLAN in recording studios. Unlike most existing
solutions, mLAN networks also facilitate the transmission of MIDI data in addition to audio and
word clock synchronisation data.

This investigation was carried out within the Audio Engineering Research Group in the Depart-
ment of Computer Science at Rhodes University, South Africa. This research group has, for
some time, been working in collaboration with Yamaha Corporation, Japan, in enhancing the
mLAN audio network technology.

2.3 Chapter Summary

This chapter has shown how the readiness for audio networking in all audio related contexts has
resulted in a number of digital audio network solutions from various vendors. Most of these so-
lutions build upon existing Ethernet data communications infrastructure. Above Ethernet, most
vendors have introduced their own proprietary techniques that guarantee QoS and provide inter-
faces with conventional audio equipment. Such proprietary techniques have resulted in the loss
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of interoperability across vendors. Four Ethernet based solutions have been described in order
to highlight their capabilities. mLAN, an IEEE 1394 based audio network technology that was
created by Yamaha Corporation, has also been described.

Motivations have been provided to show why we chose to investigate mLAN audio networking.
These motivations include the favourable nature of IEEE 1394 with regards to audio and video
transmission, an open-standards-based approach, capability for transmission of both audio and
MIDI data, capability to stream audio between a PC and any of the devices in an mLAN network,
and the on-going collaborative relationship with Yamaha Corporation, the creators of mLAN, in
improving the technology.

The next chapter, Chapter 3, provides a more detailed overview of IEEE 1394 and mLAN tech-
nologies. The concepts introduced in section 2.1.1.5 are explored further.



Chapter 3

IEEE 1394 and music Local Area Network
Technology

Chapter 2 has introduced the underlying concepts of mLAN technology. In particular, mLAN is
primarily based on the IEEE 1394 and IEC 61883-6 specifications. This chapter focuses on IEEE
1394 and mLAN in more detail. An overview of the IEEE 1394 architecture and its features is
given. These features include the nature of data transmission and the underlying transmission
protocol. A description of mLAN will follow, where the first and second generations of mLAN
are explored, together with reasons for moving from the first to the second generation. Second
generation mLAN is the foundation of our investigation and therefore warrants a more detailed
description. In this regard, the Plural Node Architecture (introduced in section 2.1.1.5) will be
highlighted. In the context of the Plural Node Architecture, the Open Generic Transporter (OGT)
concept is introduced. The OGT concept sets the context for the next chapter, Chapter 4, which
highlights the shortcomings that our investigation aimed to resolve.

3.1 IEEE 1394 Architecture Overview

Section 2.1.1.5 on page 18 has given a brief introduction to some of the capabilities of the IEEE
1394 high performance serial bus that make it desirable for use in real-time audio transmission.
Some of these capabilities include, but are not limited to [Anderson, 1999]:

• Scalable performance through support of speeds of 100 Mb/s, 200 Mb/s, 400 Mb/s, 800

25
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Mb/s, 1.6 Gb/s, and 3.2 Gb/s.1

• Plug and play support through the self-configuration process that is done by the nodes.

• Hot insertion and removal of devices on the network without requiring the system to be
powered down.

• Support for isochronous and asynchronous transfers which ensure that isochronous appli-
cations are guaranteed constant bandwidth.

• Peer-to-peer communication which eliminates host processor/memory bottlenecks.

This section focuses on some of the internals of the IEEE 1394 high performance serial bus that
allow for the abovementioned capabilities. An overview of the ISO/IEC 13213 specification and
the IEEE 1394 protocol layers is given.

3.1.1 The ISO/IEC 13213 (ANSI/IEEE 1212) Specification

This specification, more formally known as “Information Technology - Microprocessor Systems
- Control and Status Registers (CSR) Architecture for Microcomputer Buses” [IEC, 1994], de-
fines a set of core features that are implemented by a variety of buses, including IEEE 1394
[Anderson, 1999]. For simplicity, this specification is referred to as the “CSR architecture”.
The specification defines a number of features that attempt to reduce the amount of customised
software required to support a bus standard, enable interoperability between bus nodes based on
different platforms, provide support between different bus types, and improve software trans-
parency between multi-bus implementations.

Some of the features defined by the CSR architecture and implemented by the IEEE 1394 specifi-
cation include: node architectures, address space, common transaction types, Control and Status
Registers (CSRs), configuration ROM structure, and message broadcast mechanisms to all nodes.
Each of these functions is described below, as adapted from Anderson [1999].

3.1.1.1 Node Architecture

The logical and physical organisation of devices attached to a CSR architecture compliant bus
is represented by modules, nodes, and units, as shown in Figure 3.1. A module contains one or

1At the time of this writing, there were no known Plural Node devices that implemented speeds of 1.6 Gb/s and
3.2 Gb/s
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Figure 3.1: Module, Node, and Unit Architecture

more nodes and represents a physical device attached to the bus. Nodes are logical entities within
a module that are visible to initialisation software and contain CSRs and ROM entries that are
mapped into the initial node address space (see section 3.1.1.2 below). Most of the CSRs and
ROM entries are only required for system initialisation. Units are functional subcomponents of
a node that identify processing, memory, or I/O functionality. Units typically operate indepen-
dently and are controlled by their own software drivers. Unit registers are mapped into the node

address space and are accessible via unit specific software drivers. A description of the node

address space follows.

3.1.1.2 Node Address Space

32- and 64-bit addressing models are defined by the CSR architecture. However, the IEEE 1394
specification only supports the 64-bit addressing model. Up to 1024 buses with up to 64 nodes
on each bus are supported. Figure 3.2 shows the 64-bit address space that the IEEE 1394 specifi-
cation implements. As shown in Figure 3.3, the most significant 10 bits (bits 0 to 9) identify the
target bus, while the next six bits (bits 10 to 15) identify the target node on the specified bus. The
least significant 48 bits (bits 16 to 63) define the 256 terabytes (TB) of memory address space
for each node. The 256 TB address space for each node is divided into the following blocks (as
shown in Figure 3.2):

• Initial memory space
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Figure 3.2: 1394 Node Address Space

Figure 3.3: 64-bit Address Components

• Private space

• Initial register space (shown as Reg space in Figure 3.2)

◦ CSR architecture register space

◦ Serial bus space

◦ ROM

◦ Initial units space

The private space is reserved for a node’s local use while the initial register space defines stan-
dardised locations used for serial bus configuration and management [Anderson, 1999].

3.1.1.3 Transfers and Transactions

As mentioned in section 2.1.1.5 on page 18, there are two main forms of transfers, namely
asynchronous and isochronous transfers. The former applies to transactions where guaranteed
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delivery is of prime importance, while the latter applies to transactions where data needs to be
transmitted at a constant rate. Asynchronous and isochronous transfers are performed simulta-
neously by sharing the overall bus bandwidth. Bandwidth allocation is based on 125 µs intervals
that are known as cycles.

Asynchronous transfers are packaged into asynchronous packets that use an explicit 64-bit ad-
dress to target a particular node. Read, write and lock transactions, as described in section 2.1.1.5
on page 18, comprise asynchronous transfers. All asynchronous transfers are guaranteed at least
20% of the overall bus bandwidth. Nodes wishing to initiate asynchronous transactions are not
guaranteed any specific amount of bus bandwidth but are rather guaranteed fair access to the
bus via a fairness interval. Here, each node with pending asynchronous transfers gets access
to the bus exactly once during during a single fairness interval. The maximum asynchronous
packet payload sizes are shown in Table 3.1. The serial bus also provides CRC error checking

Transmission Speed Maximum Data Payload Size (Bytes)
100 Mb/s 512
200 Mb/s 1024
400 Mb/s 2048
800 Mb/s 4096
1.6 Gb/s 8192
3.2 Gb/s 16384

Table 3.1: Maximum Payload Size for Asynchronous Transfers [Anderson, 1999]

mechanisms and response codes that are used to verify the integrity of data that is transferred.
These error checking mechanisms are useful in generating confirmation responses (acknowl-
edgements), directed to the initiator of a transfer, regarding the success or failure of the transfer.
Acknowledgements may result in the initiator retrying the transfer in the event of failure.

Isochronous transfers are packaged into isochronous packets that target one or more devices
based on a 6-bit channel number associated with the transfer. The channel number is used by
target nodes (isochronous listeners) to access a memory buffer, optionally residing in the node’s
256 TB address space, within the host application. Section 3.1.2 describes the role of the host
application within an IEEE 1394 node. Isochronous talkers (transmitting devices) are required
to request bus bandwidth, allocated on a per cycle basis, from an isochronous resource manager

(IRM) node. If bandwidth is available for an isochronous transfer, the corresponding channel
receives a guaranteed timeslice during each 125 µs cycle. Up to 80% (100 µs) of the over-
all bus bandwidth may be allocated to isochronous transfers. Unlike asynchronous transfers,
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isochronous transfers are not acknowledged by target nodes, since the rate of transfer is more
important than guaranteed delivery. The maximum isochronous packet payload sizes are limited
by either the available bus bandwidth or the sizes specified in Table 3.2.

Transmission Speed Maximum Data Payload Size (Bytes)
100 Mb/s 1024
200 Mb/s 2048
400 Mb/s 4096
800 Mb/s 8192
1.6 Gb/s 16384
3.2 Gb/s 32768

Table 3.2: Maximum Payload Size for Isochronous Transfers [Anderson, 1999]

Figure 3.4 shows the structure of an isochronous packet. The data length field specifies the pay-

Figure 3.4: Isochronous Packet Structure

load size of the packet in bytes. The isochronous data format tag is used to indicate the format of
the packet’s data, such as the Common Isochronous Packet (CIP) format that is used as the gen-
eral packet format for audiovisual data over IEEE 1394 [IEC, 2003]. The channel field specifies
a 6-bit channel number (ranging from 0 to 63 inclusive) mentioned above. The tcode field rep-
resents the transaction code. This transaction code conveys information that assists isochronous
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listeners in determining the nature of the transaction and hence, in determining the format of the
remainder of the packet. The sy field represents an application-specific synchronisation code.

3.1.1.4 Control and Status Registers (CSRs)

CSRs are a group of core registers that support functions common to all CSR architecture compli-
ant buses. They provide standardised offset locations within the initial register space as described
in section 3.1.1.2. Only a subset of the CSRs are required for the IEEE 1394 serial bus as shown
in Table 3.3.

Offset
(hex)

Register Name Description

000 STATE_CLEAR State and control information.

004 STATE_SET Sets state clear bits.

008 NODE_IDS Specifies the 16-bit node ID value.

00C RESET_START Resets the state of a node.

:

018-01C SPLIT_TIMEOUT_HI
SPLIT_TIMEOUT_LO

Implemented by transaction capable
nodes to timeout split transaction retries.

:

200-3FC Serial Bus Dependent Registers unique to the IEEE 1394 bus.

Table 3.3: CSR Registers Implemented by the IEEE 1394 Bus

As shown above, registers from offset 200 (hex) to 3FC (hex) are reserved for the sole pur-
poses of IEEE 1394. Table 3.4 on page 32 shows a list of these registers. Of importance to us
are the CYCLE_TIME, BUS_TIME, BUS_MANAGER_ID, BANDWIDTH_AVAILABLE, and
CHANNELS_AVAILABLE registers. We now describe the roles of these registers.

Nodes capable of isochronous transfers implement the CYCLE_TIME and BUS_TIME registers.
These registers are initialised by the bus manager node, or, in the absence of the bus manager
node, the isochronous resource manager node . After initialisation, the registers are updated via
a 24.576 MHz clock within the node. The bus manager node is responsible for verifying that
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Offset
(hex)

Register Name Description

200 CYCLE_TIME Used by isochronous capable nodes as a
common time reference.

204 BUS_TIME Used by cycle-master capable nodes to
keep track of bus time.

208 POWER_FAIL_IMMINENT Used to notify that power is about to fail.

20C POWER_SOURCE Used to validate power failure
notifications.

210 BUSY_TIMEOUT Timeout on transaction retries.

214-218 Not used Reserved for future use.

21C BUS_MANAGER_ID The physical ID of the bus manager node.

220 BANDWIDTH_AVAILABLE Used to manage isochronous bandwidth.

224-228 CHANNELS_AVAILABLE A 64-bit mask that keeps track of
isochronous channel usage.

22C MAINT_CONTROL Used for diagnostics.

230 MAIN_UTILITY Used for debugging.

234-3FC Not used Reserved for future use.

Table 3.4: Serial Bus Dependent Registers for the IEEE 1394 Bus

the root node is cycle master capable (via the node’s config ROM space). The manner in which
the root node is determined is described in section 3.1.2.1. A cycle start packet is broadcast
by the cycle master every 125 µs. The cycle master delivers the contents of its CYCLE_TIME
register in the cycle start packet and each node will update its CYCLE_TIME register based on
this value.

The BUS_MANAGER_ID register is implemented within nodes capable of being the isochronous
resource manager. The register contains the node ID of the node that is the bus manager. Non-
isochronous resource manager nodes are able to access this register within the isochronous re-
source manager, and then request bus manager facilities from the bus manager node.
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As mentioned in section 3.1.1.3, nodes wishing to perform isochronous transfers ought to ac-
quire the required bandwidth prior to transmission. The BANDWIDTH_AVAILABLE register
keeps track of the available bandwidth in terms of allocations units. Each allocation unit cor-
responds to the time required to transfer 32 bits of data when the data rate is 1600 Mb/s, this
being, 20 ns. The maximum usable bandwidth on an mLAN network is 4915.20 allocation units
[Yamaha Corporation, 2002d]. In addition to obtaining bandwidth, a node must also acquire a
free isochronous channel number via the CHANNELS_AVAILABLE register of the isochronous
resource manager node before isochronous transmission proceeds.

3.1.1.5 Configuration ROM

Sets of ROM entries are defined to provide configuration information during node initialisation.
Information provided by these ROM entries includes specifying node capabilities as well as
identifying the software drivers and diagnostic software for a device. Two ROM formats are
defined, namely the minimal and general formats. The minimal format only contains a vendor
identifier, while the general format contains a vendor identifier, a bus information block, and a
root directory containing information entries and/or pointers to other directories such as the ones
that Yamaha Corporation introduced for all mLAN devices [Yamaha Corporation, 2003b].

3.1.1.6 Message Broadcast

The CSR architecture defines an optional broadcast mechanism to allow sending of messages to
multiple nodes on a bus. All broadcast messages are addressed to a node ID of 63. However,
when a node receives a broadcast message, no acknowledgement is sent back to the initiator,
since it leads to bandwidth contention on the bus, as all nodes receiving the broadcast message
attempt to send acknowledgements at the same time.

3.1.2 IEEE 1394 Protocol Stack

A number of Ethernet based audio network technologies discussed in section 2.1.1 on page 9
build upon the Open System Interconnection (OSI) reference model [McClain, 1991]. This
model forms the basis of data network protocols and other standards that enable multivendor
equipment interoperability. IEEE 1394 defines its own protocol stack comprising four layers,
namely bus management, transaction, link, and physical layers [Anderson, 1999]. Figure 3.5
shows the relationship between these layers.
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Figure 3.5: IEEE 1394 Protocol Layers

3.1.2.1 Physical Layer

This layer provides the actual interface to the serial bus, and is responsible for receiving bits that
make up packets from the serial bus, as well as sending bits that make up packets onto the bus.
The physical layer, also known as the PHY, is implemented in chip form and is commonly asso-
ciated with two or three FireWire ports. An important role of the physical layer is to participate
in the bus configuration process. This bus configuration process is initiated by power up of a
device on the bus, or addition of a new device to the bus, and removal of a device from the bus.
There are three main procedures performed during this configuration process, as shown in Figure
3.6. In particular, bus initialisation (bus reset) is carried out first, followed by tree identification,

Figure 3.6: Bus Configuration Process
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which is then followed by self identification.

During bus initialisation, all nodes are forced to return to their initial states in preparation for
the tree identification process. Any previously established topology will be cleared during this
process. Upon completion of bus initialisation, the tree identification process commences. This
process results in one node being identified as the root node. When tree identification is complete,
the root node coordinates the self identification process. During self identification, each node
selects a unique node ID (commonly referred to as a physical ID) and broadcasts a self-ID packet

to announce its identity, in addition to specifying parameters required for bus management. On
completion of the self identification process, and thus the bus configuration process, nodes can
start performing transactions across the bus. The execution of the bus configuration process may
have interrupted other transactions, therefore bus arbitration occurs before any data is transferred
in order to determine which node has access to the bus.

3.1.2.2 Link Layer

The link layer is also implemented in chip form. For asynchronous transactions, it provides the
interface between the transaction layer and the physical layer, as shown in Figure 3.5. Section
3.1.1.3 mentioned that asynchronous transfers are acknowledged. This creates two roles between
nodes involved in such transfers, namely a requester and a responder. A requester is a node that
initiates an asynchronous transaction, while a responder is the node targeted by the requester.
The responder is so called because it is required to send an acknowledgement packet back to the
requester as notification of success or failure of a transfer. The requester’s link layer converts
requests from the transaction layer to asynchronous packets, which are forwarded to the PHY for
transmission over the IEEE 1394 cable. Requests received by the link layer from the transaction
layer contain information such as destination address, transaction type, data length, the data to
be transmitted, speed of transmission, retry code, and the transaction label. When asynchronous
packets are received by responder’s PHY, they are forwarded to the link layer for decoding, and
if they are destined for the node they are passed on to the transaction layer.

For isochronous transactions, the link layer provides the interface between the host application
(usually an isochronous software driver) and the physical layer, as shown in Figure 3.5. Dur-
ing isochronous transmission, the link layer receives information such as channel number, data
length, data to be transferred, and the speed of data transfer from the application. This informa-
tion is used by the link layer to create isochronous packets that are forwarded to the PHY for
transmission over the IEEE 1394 cable. Conversely, when the link layer receives an isochronous



CHAPTER 3. IEEE 1394 AND MUSIC LOCAL AREA NETWORK TECHNOLOGY 36

packet from the PHY, it decodes the channel number. If the packet is destined for the node, it is
forwarded to a software driver within the host application.

3.1.2.3 Transaction Layer

The transaction layer is a software layer exclusively for handling asynchronous transactions.
This layer receives data transfer requests from applications and converts these to one or more
transaction requests. Transaction requests are in the form of the read, write, and lock transac-
tions described in section 2.1.1.5 on page 18. On reception, the transaction layer notifies the
application of the receipt of the packet.

3.1.2.4 Bus Management Layer

The bus management layer handles bus configuration and management functions for each node.
There are three main roles that provide support for a completely managed bus, namely cycle
master, isochronous resource manager, and bus manager. Section 3.1.1.4 described some of the
services provided by these three roles. In addition, other bus management services that exist
include publishing topology and speed maps, enabling the cycle master, and power management
control. A topology map gives bus generation information, a summary of the nodes on a bus,
and their IDs. Speed map information is used to get the maximum allowable transaction speed
between nodes. Power management control is necessary when there are nodes that require power
from the bus. The bus manager node may also update the BANDWIDTH_AVAILABLE regis-
ter of the isochronous resource manager node in order to reserve the 20% bus bandwidth for
asynchronous transfers.

3.2 Audio and Music Data Transmission Protocol

As mentioned in section 2.1.1.5 on page 18, audio and MIDI data transmission on an mLAN
network complies with the IEC 61883-6 specification [IEC, 2005]. This specification is based
on a document initiated by Yamaha Corporation but later adopted by the 1394 Trade Association
(1394 TA). This 1394 TA document is known as the “Audio and Music Data Transmission Proto-
col” [1394 Trade Association, 2002]. The IEC 61883-6 specification is the sixth part in a series
of IEC standards (IEC 61883) that relate to the transmission of audio, video, and multimedia
data over IEEE 1394 .
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3.2.1 The Common Isochronous Packet (CIP) Format

The IEC 61883-1 specification [IEC, 2003] is the first part of the IEC 61883 standards. Among
other things, it defines the general packet format for audiovisual data over IEEE 1394. This
general packet format is known as the Common Isochronous Packet (CIP) format. The IEC
61883-6 makes use of this CIP format for transmission of audio and MIDI data. Figure 3.7
shows how the CIP builds upon the standard IEEE 1394 isochronous packet that has been shown
in Figure 3.4. The CIP header fields that are of importance to us include SID, DBS, DBC, FMT,

Figure 3.7: The Common Isochronous Packet Structure

FDF, and SYT. A description of these fields follows.

SID: This is the source identifier which represents the 6-bit physical ID of the node that sent the
packet.

DBS: This is the data block size. Audiovisual data in the CIP data section is clustered into one
or more data blocks.
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DBC: A running count of the transmitted data blocks.

FMT: Identifies the type of data being transmitted within the CIP data section.

FDF: This is the format dependent field used to identify sub-formats such as the event type

(described in 3.2.2) and to convey other information such as sampling frequency.

SYT: A field indicating the time at which a particular data block (event) within the packet should
be presented at the receiver.

The most important concept in the IEC 61883-6 specification, as identified by Fujimori and Foss
in "A New Connection Management Architecture for the Next Generation of mLAN" [Fujimori
and Foss, 2003], is that of a sequence. An isochronous packet comprises a number of packet

clusters known as data blocks. Each data block contains audio samples and MIDI messages
that occur at a particular point in time. This simultaneous availability of audio samples and
MIDI messages on the transmitter is called an event. Audio samples and MIDI messages within
each data block are arranged in order, where each position within the data block is known as
a sequence. Thus, each sequence corresponds to a particular position within an isochronous
packet cluster. Figure 3.8 shows an example of an isochronous packet with six data blocks.

Figure 3.8: An Isochronous Stream with Sequences

Six data blocks is the typical number at 48 kHz, since isochronous packets are transmitted at
8 kHz (every 125µs). Each data block in the isochronous packet has a number of quadlets
(32-bit elements). These quadlets are the AM824 (8-bit label and 24-bit Audio/Music data)
formatted audio samples and/or MIDI messages, where the position of a quadlet corresponds to
the sequence that it belongs to. Figure 3.8 shows five quadlets per data block.
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Another important aspect to note is that up to eight MIDI data streams may be carried within
a single sequence [IEC, 2005]. This is achieved by multiplexing the MIDI messages from the
MIDI data streams onto a single sequence (position) within the successive data blocks. Figure
3.9 illustrates MIDI multiplexing, where the fourth data block position has been assigned to
a MIDI sequence. Successive quadlets at this sequence position will contain MIDI messages

Figure 3.9: Multiplexing MIDI Data Streams

of successive data streams. The diagram shows messages from five MIDI data streams within
a single sequence. Since up to eight MIDI data streams may be multiplexed within a single
sequence, every eighth data block will have, at position four, the next message for the first MIDI
data stream. Multiplexing of MIDI is possible, since the rate of MIDI transmission is lower than
that required for audio.

Nodes may transmit CIP packets containing data or empty packets. There are two main packet
transmission methods, namely blocking and non-blocking transmission [1394 Trade Association,
2002]. In non-blocking transmission, a non-empty CIP packet is transmitted when one or more
events arrive in a nominal isochronous cycle. Blocking transmission, on the other hand, waits
until a fixed number of events have arrived before transmitting the CIP packet.

3.2.2 Audio and MIDI Data Transmission Formats

As mentioned in section 3.2.1 above, audio and music data is transmitted in a format known as
AM824. The AM824 is one of three event types defined by the IEC 61883-6 specification [IEC,
2005]. The other two event types are 32-bit floating point data and 24-bit * 4 Audio Pack, and
are described in more detail in the IEC 61883-6 specification. We focus on the AM824 event
type, since it is commonly used within mLAN audio networks. The generic format of AM824
data is shown in Figure 3.10. Receivers capable of receiving AM824 data are required to check
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Figure 3.10: Generic AM824 Format [IEC, 2005]

the label for each AM824 sequence being received.

Different label values have different meanings based on the type of data transmitted. For ex-
ample, while audio and MIDI data may both be AM824 formatted, their labels are necessarily
different in order to distinguish the two. Table 3.5 lists the various AM824 label values and gives
descriptions of the data subformats that they represent. The values in the table are indicated as

Value Description
0016- 3F16 IEC 60958 Conformant
4016- 4F16 Multi-bit Linear Audio
5016 - 5716 One bit audio (plain)
5816 - 5F16 One bit audio (encoded)
6016 - 6716 High precision multi-bit linear audio
7016 - 7F16 Reserved
8016 - 8316 MIDI Conformant
8416 - 8716 Reserved
8816 - 8B16 SMPTE Time Code Conformant
8C16 - 8F16 Sample count
9016 - BF16 Reserved
C016 - EF16 Ancillary data
F016 - FF16 Reserved

Table 3.5: AM824 LABEL Definition

ranges between two hexadecimal numbers. This allows the different subformats to be further
qualified and convey meaningful information about the data to the receiver, such as the number
of valid bits within a 24-bit data segment.

We have shown how audio samples and MIDI data are packaged into packets for transmission on
the serial bus. In addition to this, the IEC 61883-6 specification defines a mechanism to ensure
that the audio samples have a similar time relationship to each other, at the receiver side, as they
did when they were generated at the transmitter side. This mechanism takes into account the
delay in packet transmission from a source device to a destination device, and also the fact that
audio sampling clock frequencies on the two devices, while nominally the same, differ slightly.
The next section describes this mechanism.
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3.2.3 Transmission of Timing Information

The IEC 61883-6 specification defines an implementation-dependent mechanism for the syn-
chronisation of a slave device’s clock to a master device’s clock [IEC, 2005]. This mechanism
mainly depends on the cycle master/cycle slave relationship described in section 3.1.1.4 as well
as the SYT field of the CIP header shown in Figure 3.7.

When an mLAN device transmits isochronous packets that contain audio samples, it time stamps
these packets with a value that is read from its CYCLE_TIME register (see section 3.1.1.4),
with a delay offset (TRANSFER_DELAY) added to it. This value (CYCLE_TIME + TRANS-
FER_DELAY), also known as the presentation time, is held within the SYT field of the CIP
header. The default TRANSFER_DELAY value is 354.17 µs + 125 µs. This default value takes
into account the maximum latency time of CIP transmission through an arbitrated bus reset. A
receiving device extracts this time stamp and uses it to recreate the sampling frequency of the
transmitted audio samples. Phase locked loop (PLL) techniques are usually used for this sam-
pling frequency recreation. However, a discussion of PLL techniques is beyond the scope of this
thesis.

3.3 mLAN (music Local Area Network) Technology

We have described the fundamental standards on which mLAN is based, as specified by the
IEEE 1394 and IEC 61883-6 specifications. Section 2.1.1.5 on page 18 introduced the concept
of the Plural Node Architecture. Second generation mLAN devices are based on the Plural Node
Architecture and these were the focus of our investigation.

This section gives an overview of the first and second generations of mLAN. We focus more on
the second generation of mLAN. In particular, we give a detailed overview of the Plural Node
Architecture. In the context of the Plural Node Architecture, the concept of the Open Generic
Transporter (OGT) is introduced. The OGT concept sets the context for the next chapter, Chapter
4, which fully describes the need for our investigation.

3.3.1 First Generation mLAN (mLAN Version 1)

This generation of mLAN audio networks is based on the IEEE 1394 Trade Association’s AV/C
(Audio Video Control) protocol [1394 Trade Association, 2001b]. In particular, this mLAN
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implementation uses a set of vendor dependant commands that are part of the AV/C protocol
suite. A set of data structures known as descriptors and info blocks reside in the devices and are
implemented by the processor and ROM [1394 Trade Association, 2001a], as shown in Figure
3.11. These descriptors and info blocks hold information about plugs such as channel number,

Figure 3.11: mLAN Version 1 Architecture [Fujimori and Foss, 2003]

sequence number to receive, type (MIDI or audio), and the connections between plugs. There
are also word clock plugs that enable sampling clock synchronisation relationships. With ref-
erence to Figure 3.11, connection management requests from the workstation’s graphical user
application are fulfilled by sending vendor dependant commands to devices on the IEEE 1394
bus.

The main advantage of this architecture is that mLAN plug abstractions are implemented within
the devices. Hence, the state of the plugs can be stored in non-volatile memory within the devices
[Fujimori and Foss, 2003]. This allows devices, without any external intervention, to restore their
previous state after a power cycle. In spite of such an advantage, a number of problems with this
architecture led to the creation of the second generation of mLAN. These problems include:
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• The implementation of plug abstractions within the device requires a lot of memory, and
hence, raises the cost of providing mLAN compatibility.

• Any changes in implementation, such as bug fixes and upgrades, require firmware upgrades
in all mLAN compatible devices.

• Non-mLAN chip vendors wishing to provide mLAN compatibility within their chipsets
require considerable effort and mLAN expertise to provide the necessary mLAN plug ab-
stractions.

• Not all applications require the level of complexity provided by mLAN plug abstractions,
especially in fixed installations that may only need an initial setup using isochronous chan-
nel number and sequence selections.

3.3.2 Second Generation mLAN (mLAN Version 2) and the Plural Node
Architecture

This is the current generation of mLAN. It is based on the Plural Node Architecture, and was
created to resolve the problems identified in section 3.3.1 regarding the first generation of mLAN.
As described in section 2.1.1.5 on page 18, and also shown in Figure 3.12, the Plural Node
Architecture splits connection management of IEEE 1394 audio devices between an Enabler
node and a Transporter node. As a result of this split, the Plural Node Architecture is also known
as the Enabler/Transporter Architecture. This approach allows for flexible upgrades, and the
capability for hardware vendors to easily make their hardware mLAN compatible.
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Figure 3.12: mLAN Version 2 Architecture [Fujimori and Foss, 2003]

3.3.2.1 The Enabler

As shown in Figure 3.12, the Enabler comprises three layers, namely the mLAN Plug Abstrac-
tion, A/M Manager, and Hardware Abstraction layers. Figure 3.13 shows a representation of
these layers. A detailed discussion of an Enabler can be found in a PhD thesis entitled “High
Speed End-To-End Connection Management in a Bridged IEEE 1394 Network of Professional
Audio Devices” [Okai-Tettey, 2005]. This Enabler, a product of a Yamaha Corporation initiative,
was created by Okai-Tettey [2005], and was used for our investigation. In the remainder of this
thesis, we refer to this Enabler as the Redesigned Enabler. In cases where reference is made to
Yamaha Corporation’s original Enabler implementation, we use the term Basic Enabler to make
the distinction. A brief description of each of the Enabler layers follows.
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Figure 3.13: The Enabler’s Layers and Interfaces

mLAN Plug Abstraction Layer

This is the top layer which implements a number of mLAN plugs. These plugs can be viewed as
terminators for the audio and music data sequences that are transmitted and received by Trans-
porters. In particular, this layer implements input and output mLAN plug abstractions for all pos-
sible sequence end-points on all Transporters under the Enabler’s control. An API (Application
Programming Interface) that may be used by connection management applications is provided
by this layer.

A/M Manager Layer

Located below the mLAN Plug Abstraction layer, this layer is responsible for reading audio and
music data transmission and reception parameters from the associated Transporters, and updating



CHAPTER 3. IEEE 1394 AND MUSIC LOCAL AREA NETWORK TECHNOLOGY 46

these parameters in response to requests from the mLAN plug abstraction layer. Each Transporter
under the control of the Enabler has a Transporter object that keeps its state information and
handles requests from both the mLAN plug abstraction layer and the actual Transporter.

Hardware Abstraction Layer

This layer provides the Enabler with a uniform interface to different Transporter implementa-
tions [Yamaha Corporation, 2002c]. Non-mLAN chip manufacturers acquire mLAN compliance
via this layer, in conjunction with the Transporter Control Interface. The role of the Transporter
Control Interface is described in section 3.3.2.2. There is variation in the way in which param-
eters are set up for A/M transmission and reception across manufacturers. Consequently, each
manufacturer provides a software plug-in that translates A/M configuration requests from the
Enabler’s A/M Manager layer into proprietary requests that the Transporter Control Interface
of that particular manufacturer will understand. The Enabler discovers the various device node
types , and loads device-specific plug-ins that can communicate, at a low level, with their re-
spective Transporters. Currently, Microsoft’s Component Object Model (COM) is used in the
Windows implementation of the Enabler as the mechanism for plug-in loading [Yamaha Cor-
poration, 2004b]. Linux and Macintosh implementations follow the same design as used for
Windows but make use of a shared library mechanism instead of COM. Yamaha Corporation
has defined a Transporter Hardware Abstraction Layer (HAL) Application Programming Inter-
face(API) that manufacturers can use to create software plug-ins for their devices. The current
Transporter HAL API was initially designed to access the capabilities of Yamaha Corporation’s
chips (ASICs). This Transporter HAL API is fully described in Appendix A. In addition to
knowing the capabilities exposed by the Transporter HAL API, manufacturers also need to know
the mechanism used by the Enabler to load their plug-ins. This plug-in loading mechanism is
described in Chapter 4.

3.3.2.2 The Transporter

The Transporter, typically residing in an IEEE 1394 audio device, is dedicated to isochronous
data transmission and reception [Yamaha Corporation, 2002a]. Transporters may operate in one
of two modes, namely “B Mode” and “B-Pro Mode”[Yamaha Corporation, 2002c]. In particular,
a Transporter that always requires an Enabler for A/M data transmission is called a “B Mode”
Transporter. On the other hand, a Transporter that is capable of Connectionless Isochronous
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Transmission (CIT) is called a “B-Pro Mode” Transporter. In CIT, a Transporter broadcasts
or receives A/M data on isochronous channels that are restored from the device’s non-volatile
memory.

Figure 3.14 shows the components of a Transporter node. In its simplest form, a Transporter

Figure 3.14: Components of a Transporter Node [Yamaha Corporation, 2002c]

consists of an A/M Protocol Layer, and a Transporter Control Interface for modifying the A/M
Protocol Layer parameters via the serial bus. The Transporter Control Interface provides an
implementation of the node’s private space. Section 3.1.1.2 has described the private space as
the section of a node’s address space that is reserved for the node’s local use. The private space

also points to other configuration spaces that are implemented by a Transporter. The Enabler
accesses these configuration spaces via the Transporter Control Interface. A Transporter depends
on an Enabler to set its A/M Protocol Layer parameters for data transmission and reception.
Transporters capable of CIT implement an additional component, namely the CIT Manager.
When a device is powered up, the CIT Manager loads the A/M Protocol Layer of the Transporter
with an entire set of A/M parameters from the Transporter’s non-volatile memory known as
the Boot Parameter Memory. An Enabler is responsible for storing data in the Boot Parameter
memory.

A number of chips (ASICs) that are responsible for the encapsulation (at the transmitter side) and
subsequent extraction (at the receiver side) of audio and MIDI data in accordance with the A/M
Data Transmission Protocol (IEC 61883-6 specification) have been created. Yamaha Corpora-
tion, for example, have created the “mLAN-NC1” [Yamaha Corporation, 2001] and “mLAN-
PH2” [Yamaha Corporation, 2003a] chips. Each of the chips has a transmission FIFO that re-
ceives audio or MIDI data from its input pins, packages the data into isochronous packets and
sends out the packets onto the IEEE 1394 bus. For data reception, there are FIFO buffers that
receive audio samples from the audio sequences and MIDI messages from the MIDI sequences.
Selection of an isochronous stream and sequence within that stream is done via a pair of registers
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for each buffer as shown in Figure 3.15. The channel register (shown as “Chan” in the dia-

Figure 3.15: mLAN Sequence Selection [Fujimori and Foss, 2003]

gram) specifies the isochronous channel number of the isochronous packets that are received by
the FIFO buffer, while the sequence number register (shown as “Seq” in the diagram) indicates
the position of the sequence that is extracted by the FIFO buffer from each isochronous packet
cluster of the received isochronous packets.

3.3.3 The Open Generic Transporter Guideline Document

In the context of the Plural Node Architecture, the Audio Engineering Society’s SC-02-12-G
Task Group has produced an Open Generic Transporter (OGT) guideline document in order
to ease the task of manufacturers [Audio Engineering Society - Standards Committee, 2005;
Kounosu, Fujimori, Laubscher, and Foss, 2005]. If manufacturers design Transporter Control
Interfaces conforming to the Open Generic Transporter guideline document, there will be no
need to create the manufacturers’ own HAL plug-ins for the Enabler, since they can make use of
a common, open, generic Transporter HAL plug-in.

The OGT guideline document indicates a number of functional blocks that comprise a generic
Transporter, and can be controlled via a set of registers [Kounosu et al., 2005]. This set of reg-
isters and their locations comprise the “open” interface. The Enabler makes use of this interface
to control a Transporter. Manufacturers are not required to utilise the OGT guideline and the op-
tion to create a Transporter and HAL plug-in with a closed Transporter-HAL interface remains
available.
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3.3.3.1 Generic Transporter Architecture

The generic Transporter is modelled by a Generic Transporter Block as shown in Figure 3.16.

Figure 3.16: Generic Transporter Overview [Audio Engineering Society - Standards Committee,
2005]

Two sub-blocks exist within the Generic Transporter Block, namely the node application and
the node controller blocks. The node application represents the hosting device and its range of
legacy audio and MIDI plugs. The node controller represents the IEEE 1394 node that is hosted
by the device. The Enabler sends control commands to the Transporter Control Interface via a
number of generic registers. These commands are then forwarded to the A/M Transport block
to perform actual encapsulation and extraction in terms of the underlying hardware/software
supplied by the Transporter’s vendor. The Transport Restoration block allows the Transporter to
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resume transmissions in the absence of an Enabler.

3.3.3.2 Generic Architecture of the A/M Transport Block

Figure 3.17 shows the generic architecture for the A/M Transport block. In the diagram, the

Figure 3.17: A/M Transport Block [Audio Engineering Society - Standards Committee, 2005]

Sync block handles the synchronisation functionality, while the Plug block handles connection
management functionality. A detailed description of how synchronisation is handled may be
found in the IEC 61883-6 specification [IEC, 2005]. An important point to be noted at this point
is the introduction of the ISP-NCP model within the A/M Transport block. An Isochronous
Stream Plug (ISP) represents an input or output for a single isochronous stream to or from the
IEEE 1394 bus [Audio Engineering Society - Standards Committee, 2005]. On the other hand,
a Node Controller Plug (NCP) represents an input or output for a single monaural channel of
audio or a single cable of MIDI to or from the node application. NCPs are thus equivalent
to the terminators (sequence end-points) described in section 3.3.2.1 under the “mLAN Plug
Abstraction” heading. One or more NCPs may be dynamically or statically associated with
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each ISP. This results in the static or dynamic clustering of multiple sequence end-points to an
isochronous stream.

3.4 Chapter Summary

This chapter has outlined how real-time data transmission, with guaranteed QoS, is handled on an
IEEE 1394 high performance serial bus. IEEE 1394 is based on the ISO/IEC 13213 (ANSI/IEEE
1212) specification. IEEE 1394 uses some of, and also extends, the features defined in this
specification. Isochronous and asynchronous transfers are the two main forms of data transfer
on an IEEE 1394 serial bus. Isochronous transfers are packaged in isochronous packets for
the transmission of real-time audio and video data. Asynchronous transfers are packaged in
asynchronous packets for the transmission of periodic data that requires guaranteed delivery. We
have also described the roles of the four IEEE 1394 protocol layers, namely bus management,
transaction, physical, and link layers in transmission of isochronous and asynchronous packets.

Encapsulation and extraction of audio and MIDI data in mLAN networks is done in accordance
with the IEC 61883-6 specification. This specification is commonly known as the Audio and
Music Data Transmission Protocol. The nature of isochronous packets, audio and MIDI data
transmission formats, as well as the transmission of timing information, have been described.

Two generations of mLAN have been described. The second generation of mLAN, on which
our investigation was based, has been described in detail. This second generation of mLAN
is based on the Plural Node Architecture, also known as the Enabler/Transporter Architecture,
which splits connection management between two nodes types, namely an Enabler (residing in
a workstation) and a Transporter (residing in an IEEE 1394 audio device). The Enabler interacts
with Transporters using a plug-in mechanism. A Transporter Hardware Abstraction Layer (HAL)
Application Programming Interface (API) has been defined to access Transporter capabilities of
different Transporter implementations in a uniform manner. In the context of the Plural Node
Architecture, the concept of an Open Generic Transporter (OGT) has been introduced.

The next chapter, Chapter 4, looks more closely at the two main areas of our investigation,
namely the plug-in loading mechanism and the Transporter HAL API that governs the Enabler
and Transporter interaction. The chapter aims to highlight shortcomings of the existing plug-in
mechanism and Transporter HAL API.



Chapter 4

Current HAL Design and Implementation

Chapter 3 has given a detailed description of mLAN technology and its underlying standards.
There are two generations of mLAN, namely the first and second generations. Our investiga-
tion focused on the second generation of mLAN, where connection management of IEEE 1394
audio devices is split between two node types, namely an Enabler (residing in a workstation)
and a Transporter (residing in an IEEE 1394 audio device). The Enabler has a Hardware Ab-
straction Layer (HAL) that makes it possible to achieve compatibility with different Transporter
implementations. The HAL is implemented using a plug-in mechanism. A Transporter HAL
Application Programming Interface (API) exists. This Transporter HAL API exposes capabili-
ties of Transporters to the Enabler in a uniform manner. Manufacturers provide device-specific
implementations of the Transporter HAL API for their hardware via device-specific plug-in im-
plementations. The Enabler loads these device-specific plug-ins before interacting with devices.
The concept of the Open Generic Transporter was introduced to ease the task of manufacturers
by providing an open-standards-based implementation of a Transporter, which eliminates the
need for device-specific plug-ins from each manufacturer.

This chapter describes evaluations that were done for two main components of the current HAL
design and implementation, namely the plug-in mechanism and the Transporter HAL API. The
introduction of the OGT concept has revealed inadequacies within the current Transporter HAL
API. Shortcomings that were identified from our evaluations are highlighted in this chapter.

4.1 Current Redesigned Enabler Design Overview

Figure 4.1 shows an object model of the Basic Enabler. The diagram models an IEEE 1394 bus

52
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Figure 4.1: Basic Enabler Object Model [Yamaha Corporation, 2004b]

as the CmLANBus class. The bus has a number of mLAN devices (CmLANDevice class) which
host Transporter modules (CmLANMetaTransporter class). Transporters are a further classi-
fied as either standalone device Transporters or PC Transporters1. Standalone device Trans-
porters are modelled by the CmLANTransporter class while PC Transporters are modelled by
the CmLANPC class. In the object model, there are six main components that represent the
Hardware Abstraction Layer (HAL), namely CTransporterPlugin, IHAL_PLUG, CVendorTrans-

porter, CTransporter, CPCTransporter, and CMetaTransporter. The C1394Device class defines
functionality required to handle asynchronous transactions such as read, write and lock opera-
tions on the IEEE 1394 bus. Recall, from section 3.3.2.1 on page 44, the use of the term Basic
Enabler to refer to the Yamaha Corporation’s original Enabler implementation and Redesigned
Enabler to refer to the one created by Okai-Tettey [2005]. The Basic Enabler was the start-
ing point for other Enabler implementations under Windows, Linux, and Macintosh platforms
[Yamaha Corporation, 2004b]. A detailed discussion of the Basic Enabler is beyond the scope
of this thesis. However, reference is made, for comparison purposes, to its plug-in mechanism
which was adopted by the Redesigned Enabler with some modification.

1PC Transporters are implemented on a PC workstation as opposed to a standalone device.
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The model above was redesigned to produce the Redesigned Enabler. Figure 4.2 shows the ob-
ject model for the Redesigned Enabler. This model more closely describes the components of

Figure 4.2: Redesigned Enabler Object Model [Okai-Tettey, 2005]

an IEEE 1394 bus. Specifically, the Enabler (IEEE1394Enabler class) resides in a workstation
that may contain one or more IEEE 1394 interface cards (IEEE1394Interface class). Each in-
terface card is connected to an IEEE 1394 network (IEEE1394Network class) which comprises
a number of buses (IEEE1394Bus class). Each bus contains a number of IEEE 1394 devices
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(IEEE1394Device class). IEEE 1394 devices may be bridge portals (IEEE1394BridgePortal

class), mLAN devices (MLANDevice class), or any device that implements the IEEE 1394 pro-
tocol (UnknownDevice class). Bridge portals implement the 1394 bridge specification, “IEEE
Standard for High Performance Serial Bus Bridges” [IEEE, 2005]. A discussion of bridge por-
tals is beyond the scope of this thesis. Okai-Tettey [2005] discusses bridge portals in more
detail. We are interested in mLAN devices. Each mLAN device hosts a Transporter module
(MLANTransporter class) which contains a node application block (NodeApplication class) and a
node controller block (NodeController class). The roles of these two blocks have been described
in section 3.3.3.1 on page 49. We explore this model further, since it formed the foundation of
our investigation.

4.2 Current Redesigned Enabler HAL Design Overview

Figure 4.3 shows the object model of the HAL for the Redesigned Enabler. This HAL design

Figure 4.3: Redesigned Enabler Hardware Abstraction Layer Object Model [Okai-Tettey, 2005]

has been derived from the Basic Enabler’s HAL design. In the model, two interfaces have been
defined to access the node application and node controller capabilities of a Transporter, namely
IHAL_APPLICATION and IHAL_TRANSPORTER respectively. The purposes of the remaining
classes shown in the object model are as follows:
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• The IEEE1394Device class defines general functionality for an IEEE 1394 device includ-
ing asynchronous transaction functionality such as read, write, and lock operations.

• The Transporter abstract class defines methods that are necessary to control IEC 61883-6
transmission and reception for any Transporter. This functionality is used by both stan-
dalone device Transporters and PC Transporters.

• The DeviceTransporter abstract class defines node controller methods that are specific to
standalone device Transporters, although in a hardware independent manner.

• The PCTransporter abstract class defines node controller methods that are specific to PC
Transporters, although in a platform independent manner.

• The VendorTransporter class provides a device-specific implementation of the node con-
troller component of a standalone device Transporter.

• The OSPCTransporter class provides a platform-specific implementation for the node con-
troller component of a PC Transporter.

• The TransporterNodeApplication abstract class defines methods to control the node ap-
plication component of a Transporter. These methods are implemented by the Vendor-

TransporterNodeApplication and OSPCNodeApplication classes for device-specific Trans-
porters and platform-specific PC Transporters, respectively.

We refer to the collection of methods that are defined to access the capabilities of Transporters
as the Transporter HAL API. The Transporter HAL API comprises methods defined by the fol-
lowing abstract classes: Transporter, DeviceTransporter, TransporterNodeApplication, and PC-

Transporter, as well as the methods that are defined by the IHAL_TRANSPORTER and IHAL_A-

PPLICATION interfaces, as shown in Figure 4.3.

Table 4.1 shows equivalent components of the HALs for both the Basic and Redesigned Enablers.
Some features of the Redesigned Enabler are not available in the Basic Enabler and are marked
N/A in the table. A closer look at the table reveals that the only components that differ between
the Basic and Redesigned Enabler HALs are the node application specific components, which the
latter implements. Recall, from section 3.3.3.1 on page 49, that the node application represents
the hosting device and its range of legacy audio and MIDI plugs, as well as word clock sources.
In addition, there is no equivalent OSPCTransporter class in the Basic Enabler, due to design
refinements made in the Redesigned Enabler.
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Redesigned Enabler HAL Component Equivalent Basic Enabler HAL Component
DeviceTransporterPlugin CTransporterPlugin
IHAL_TRANSPORTER IHAL_PLUG
IHAL_APPLICATION N/A
TransporterNodeApplication N/A
VendorTransporterNodeApplication N/A
OSPCNodeApplication N/A
DeviceTransporter CTransporter
VendorTransporter CVendorTransporter
PCTransporter CPCTransporter
OSPCTransporter N/A (Implemented within CPCTransporter)
Transporter CMetaTransporter
IEEE1394Device C1394Device

Table 4.1: Comparison of Redesigned and Basic Enabler HALs

With reference to Figure 4.3, we now describe the roles of each of the components of the HAL.
The Transporter abstract class encapsulates the functionality of a typical Transporter device
[Okai-Tettey, 2005]. In particular, it declares methods to access and modify the A/M Protocol
Layer (described in section 3.3.2.2 on page 46) of a Transporter. These include methods to set the
transmission or reception isochronous channel number, sequence number, subsequence number,
isochronous transmission speed, sample rate, and event type of the isochronous stream data. In
addition, there are methods defined to modify the SYT synchronisation channel number.

Section 2.1.1.5 on page 18 introduced the concept of drivers that allow a PC to act as an mLAN
device. Consequently, this leads to two types of Transporters which are modelled by the classes
DeviceTransporter and PCTransporter. Device Transporters are implemented as standalone de-
vices, while PC Transporters are implemented on a PC workstation with an IEC 61883-6 capable
driver. These classes define extra methods that are more specific than the common Transporter
methods. The DeviceTransporter and PCTransporter classes define standard methods that are
required to be implemented by the hardware abstraction layers of the various vendor or PC Trans-
porters, namely VendorTransporter and OSPCTransporter class implementations. For example,
device Transporters that are based on different hardware architectures have different hardware-
specific implementations for the VendorTransporter class. Similarly, there are different OSPC-

Transporter class implementations for different operating systems such as Macintosh, Windows,
and Linux.

The Transporter HAL API also defines an optional node application component. This functional-
ity is encapsulated in the TransporterNodeApplication abstract class. Methods of this base class
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allow direct access to the capabilities and resources implemented by a Transporter’s host device,
such as manipulating the legacy hardware plugs of a device or modifying volume for a device’s
plugs. These methods are intended to be implemented by vendor- or platform-specific implemen-
tations which are modelled by VendorTransporterNodeApplication and OSPCNodeApplication

classes respectively.

Lastly, the DeviceTransporterPlugin class represents the Enabler’s Transporter HAL plug-in
class. A mandatory query interface mechanism is implemented by this class to determine the
presence of the interfaces IHAL_APPLICATION and IHAL_TRANSPORTER. IHAL_TRANSPO-

RTER, named IHAL_PLUG in the Basic Enabler, is a mandatory interface that acknowledges the
implementation of the node controller component HAL API within a HAL plug-in. This node
controller component provides access to the A/M Protocol Layer of a Transporter. On the other
hand, the presence of the IHAL_APPLICATION interface acknowledges the implementation of
the node application component HAL API within a HAL plug-in. This node application compo-
nent provides access to the host implementation of a Transporter device. When vendors create
Transporter HAL plug-ins for the Redesigned Enabler, they are required to provide implemen-
tations for IHAL_TRANSPORTER methods and others, optionally, for IHAL_APPLICATION, as
part of the implementation for the DeviceTransporterPlugin class. The methods defined by the
IHAL_TRANSPORTER interface are:

• CreateTransporter

• DisposeTransporter

• GetHALVendorID

• GetHALModelID

The methods defined by the IHAL_APPLICATION interface are:

• CreateNodeApplication

• DisposeNodeApplication

The next section describes the current plug-in loading mechanism that is recommended by
Yamaha Corporation and has been adopted for the Redesigned Enabler with some modification.
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4.3 Current Transporter Plug-In Mechanism

Yamaha Corporation has defined a plug-in mechanism that can be used by software developers
wishing to create plug-ins for mLAN devices [Yamaha Corporation, 2004b]. It is important to
understand this mechanism in order to successfully create plug-ins that are compliant with a
corresponding Enabler. There may be a variety of Enabler implementations and each may define
its own plug-in loading mechanism. This implies that plug-ins written for a particular Enabler
implementation are not necessarily loadable using another Enabler implementation.

Figure 4.4 shows a sequence diagram demonstrating part of the process of device enumera-
tion within the Redesigned Enabler. This process is initiated when a new device is identi-

Figure 4.4: Redesigned Enabler Device Enumeration Sequence Diagram

fied on a given bus. This results in the series of events shown in the figure. In particular, a
static CreateIEEE1394Device member function of the IEEE1394Device class is called by the
IEEE1394Bus instance. This CreateIEEE1394Device static member function then gets the con-
fig ROM information from the device. From the config ROM information, it determines whether
the device is a bridge portal or an mLAN device. Bridge portals are used in a multi-bus envi-
ronment [Okai-Tettey, 2005]. A discussion of bridging is beyond the scope of this thesis. For
our purposes, we are interested in mLAN Devices within a single-bus environment. When the
CreateIEEE1394Device member function ascertains that the identified device is an mLAN de-
vice, a static CreateMLANDevice member function of the MLANDevice class is called. This
CreateMLANDevice static member function determines if the device is a PC Transporter or a
device Transporter. If the mLAN device is a device Transporter, a new instance of the MLAN-

DeviceTransporter class is created, otherwise a new instance of the MLANPCTransporter class
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is created.

At the time of this writing, the PC Transporter was not implemented in terms of a plug-in since
it resides in the same PC that runs the Enabler. We explore the creation of an MLANDevice-

Transporter instance further. Figure 4.5 shows a sequence diagram for the creation of an MLAN-

DeviceTransporter instance. This follows the plug-in loading mechanism suggested by Yamaha

Figure 4.5: CreateMLANDeviceTransporter Sequence Diagram

Corporation. In particular, a static Create member function of the DeviceTransporter class is
called. In this member function, the HAL ID of the device is retrieved and a search is done to
check if a plug-in with a matching HAL ID is already loaded. If no plug-in is already loaded,
an attempt is made to load the plug-in, in a platform-specific manner, through creation of a new
instance of the DeviceTransporterPlugin class. Bear in mind that the HAL ID comprises the
HAL Vendor ID and the HAL Model ID, which are defined within the config ROM of all mLAN
devices [Yamaha Corporation, 2003b].

Once the plug-in is loaded, a device-specific Transporter object is created via the plug-in’s Cre-

ateTransporter member function. Transporter creation within a plug-in is fulfilled in terms
of a call to the IHAL_TRANSPORTER interface’s CreateTransporter function, where the im-
plementation is plug-in-specific as mentioned in section 4.2. A pointer to the device-specific
Transporter object is passed back to the plug-in instance, which also passes the pointer to
the DeviceTransporter class, and eventually back to the MLANDeviceTransporter object. The
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MLANDeviceTransporter object makes use of this pointer, for the duration of its existence,
to directly access the vendor-specific implementation of the DeviceTransporter class, which
includes the vendor-specific A/M Protocol Layer implementation defined by the Transporter

class. When the device is removed from the bus, the device-specific Transporter object is then
deleted via the DeviceTransporterPlugin class’ DisposeTransporter member function. Similar
to the CreateTransporter member function, this member function is fulfilled in terms of a call to
the IHAL_TRANSPORTER interface’s DisposeTransporter method where the implementation is
plug-in specific.

In the event of updates to the Transporter HAL API, the Enabler’s direct use of a device-specific
Transporter object pointer to access the vendor-specific capabilities of Transporters is error
prone. An example of one such update is the addition of new methods to the DeviceTransporter

class. Bear in mind that methods of the DeviceTransporter class are part of the Transporter HAL
API that is used by the Enabler to access the vendor-specific capabilities of Transporters, as
described in the introduction to section 4.2. In such a cases, direct use of the Transporter ob-

ject pointer works well if the Enabler and the Transporter plug-in share exactly the same function

prototypes for the DeviceTransporter class, and hence the Transporter HAL API. However, if up-
dates are only made to the Enabler’s DeviceTransporter class without making similar updates to
the DeviceTransporter class for all Transporter plug-ins, problems may occur when the Enabler
loads plug-ins that are based on earlier versions of the DeviceTransporter class. These problems,
most likely runtime exceptions, arise when the Enabler attempts to access new methods of the
DeviceTransporter class, while the plug-ins do not provide the required implementation. This
implies that, at the Transporter HAL API level, there is some form of binary dependence between
the Enabler and its Transporter plug-ins. Such binary dependence complicates the possibility of
maintaining different versions of the Transporter HAL API.

The above description of the Redesigned Enabler plug-in mechanism is also true for the Basic
Enabler with regards to creation and disposal of the device-specific Transporter object. However,
the Basic Enabler’s IHAL_PLUG interface, the equivalent of IHAL_TRANSPORTER interface in
the Redesigned Enabler, defines an additional CallTransporter function. Rather than making
use of the device-specific Transporter object pointer to directly access the capabilities of Trans-
porters, all Transporter HAL API methods are accessed via this intermediary CallTransporter

function.

Figure 4.6 shows an example of an object model for a generic plug-in for the Basic Enabler.
Based on this model, the sequence diagram shown in Figure 4.7 shows an example of how a
CTransporter class method, namely GetSYTSyncChannel, is accessed via the intermediary Call-
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Figure 4.6: Generic Plug-In Object Model for the Basic Enabler [Yamaha Corporation, 2004b]

Transporter function of the IHAL_PLUG interface. As shown in Table 4.1, the CTransporter

Figure 4.7: CallTransporter Sequence Diagram for the Basic Enabler [Yamaha Corporation,
2004b]

class of the Basic Enabler HAL is equivalent to the DeviceTransporter class of the Redesigned
Enabler HAL. The sequence diagram in Figure 4.7 shows that the CallTransporter function takes
two arguments, namely a device-specific Transporter object pointer (TransporterPtr) and a se-
lector ID (GetSYTSyncChannel). The selector ID is a unique numerical identifier that corre-
sponds to a particular method of the Transporter HAL API. The CallTransporter function of the
CGenericHALPlug class resolves the selector ID and chooses the right method to call, namely
DeviceFunc_GetSYTSyncChannel. The DeviceFunc_GetSYTSyncChannel method then makes
use of the Transporter object pointer to call its corresponding GetSYTSyncChannel method. An
important advantage of the intermediary CallTransporter function is that changes in the Trans-
porter HAL API are detected when the selector ID is resolved. If the ID cannot be resolved by
a plug-in, the most likely reason is that the method is not supported by the version of the Trans-
porter HAL API in use and a meaningful error return value is sent back to the Enabler before any
runtime exceptions occur. This advantage, however, comes at the price of additional overhead
incurred by an additional CallTransporter function call before accessing any Transporter HAL
API method. In addition, each new method of the Transporter HAL API requires a new selector
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ID to be defined. This selector ID is shared by the Enabler and all Transporter plug-ins, since it
acts as a unique identifier for each of the Transporter HAL API methods. When creating Trans-
porter plug-ins, care must be taken to ensure that these selector IDs match the methods that they
represent. Consequently, the use of selector IDs to enable Transporter HAL API versioning via
an intermediary CallTransporter function call becomes inherently error prone.

In the above overview of the HAL plug-in mechanism there has been an indication that plug-ins
are loaded in a platform-specific manner. We now discuss how plug-in loading is handled on
three popular workstation platforms, namely Windows, Linux, and Macintosh. These platform-
specific plug-in loading techniques flesh out the sequence of events that occur upon creation of
the DeviceTransporterPlugin object, as shown in the sequence diagram in Figure 4.5.

4.3.1 Windows Transporter Plug-In Loading Mechanism

As mentioned in section 3.3.2.1 on page 44 under the “Hardware Abstraction Layer” heading,
plug-in loading on Windows makes use of Microsoft’s COM mechanism. This approach to
Transporter plug-in loading for the Enabler is described in more detail in the “mLAN Trans-
porter Plug-In Mechanism” [Yamaha Corporation, 2004b] document. We now describe how the
Redesigned Enabler makes use of this COM mechanism. Figure 4.8 shows a sequence diagram
which describes the creation of a DeviceTransporterPlugin object on Windows. We focus on the
constructor of the DeviceTransporterPlugin class, since it loads a plug-in with a given HAL ID2.

The starting point of the constructor is the loading of COM libraries by calling the CoInitialize

function [Yamaha Corporation, 2004b]. This is followed by an iterative search of the Windows
registry for a Transporter plug-in (known as a component in Windows) with a matching HAL
ID. The registry acts like a database where applications and components store information about
themselves, such as their location on the hard drive. The registry comprises entries, known as
keys, that are arranged hierarchically. Values may be associated with these keys. All Transporter
plug-in components would have previously loaded their information into the registry. An exam-
ple of keys leading to a Transporter plug-in key is:

HKEY_LOCAL_MACHINE\SOFTWARE\YAMAHA\HAL_DEMO\HAL_NCP0405

The key above is just one out of a number of Transporter plug-in (also known as HAL plug-
in) keys for various Transporters that the Redesigned Enabler interacts with, as shown in the
snapshot in Figure 4.9.

2HAL ID is a combination of HAL Vendor ID and HAL Model ID.
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Figure 4.8: Plug-In Loading Mechanism for Windows

When searching the registry, a handle to the HAL_DEMO registry key is obtained. For each
HAL plug-in that exists under the HAL_DEMO key, as shown in Figure 4.9, an instance of
the component’s IHAL_TRANSPORTER interface is created using a CoCreateInstance COM
function. This COM function requires information about the plug-in such as the class iden-
tifier (CLSID3) and interface identifier (IID4), shown as CLSID_CHAL_TRANSPORTER and
IID_IHAL_TRANSPORTER respectively, in Figure 4.8. This information, passed as function
arguments, is stored in the individual HAL plug-in keys such as the HAL_NCP0405 key (the se-
lected key in Figure 4.9). The CoCreateInstance function creates a single uninitialised object of
the class associated with a specified CLSID [Microsoft Developer Network, 2007a]. Upon suc-
cessful creation of the component’s instance, the HAL ID is queried using the GetHALVendorID

and GetHALModelID functions of the IHAL_TRANSPORTER interface. In some implementa-

3Uniquely identifies a COM component.
4Uniquely identifies an interface that may be implemented by a COM component.



CHAPTER 4. CURRENT HAL DESIGN AND IMPLEMENTATION 65

Figure 4.9: Snapshot of HAL Plug-In Registry Contents

tions, GetHALVendorID and GetHALModelID functions are grouped into one function that is
named GetHALDescription. If the HAL ID of the plug-in matches that of the device’s config
ROM, one can be certain that the plug-in has been successfully loaded and the newly created
DeviceTransporterPlugin object is stored in an array of DeviceTransporterPlugin objects. The
existence of the optional IHAL_APPLICATION interface is queried and, if available, a pointer
to the interface is also stored. Subsequent calls to the DeviceTransporterPlugin object are then
fulfilled via functions defined in either the IHAL_TRANSPORTER or IHAL_APPLICATION in-
terfaces of the plug-in. These include the CreateTransporter and DisposeTransporter functions
of the IHAL_TRANSPORTER interface, and, if the present, the CreateNodeApplication and Dis-

poseNodeApplication functions of the IHAL_APPLICATION interface.

We have described the plug-in loading mechanism on the Windows platform in detail above. Fig-
ure 4.10 shows a high level conceptual diagram that summarises this plug-in loading mechanism.
In particular, before a plug-in is loaded, a HAL ID is retrieved from a device’s config ROM in or-
der to identify the plug-in to load. COM libraries are then loaded and an iterative search through
all plug-in keys in the registry is done. For each plug-in key, an instance of the HAL plug-in
is created and the HAL ID is compared, until the one with a matching HAL ID is found. Once
a matching HAL ID is found, the plug-in is loaded and the node application implementation is
queried. Thereafter, HAL plug-in functions such as CreateTransporter can be accessed.
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Figure 4.10: Conceptual Diagram for the Plug-In Loading Mechanism on Windows

4.3.2 Linux Transporter Plug-In Loading Mechanism

Within Linux, there is neither a concept of a registry nor COM, hence the DeviceTransporter-

Plugin class implementation takes a different form from that of Windows. At the time of this
writing, the “mLAN Transporter Plug-In Mechanism” [Yamaha Corporation, 2004b] document
did not specify mechanisms for plug-in loading on platforms other than Windows. However,
source code was available for the Linux implementation of the Redesigned Enabler. We describe
the plug-in loading mechanism on the Linux platform based on our understanding of the source
code.

As highlighted by Okai-Tettey [2005], plug-in loading on Linux follows a shared library ap-
proach. Shared libraries (also known as shared objects or dynamically linked libraries) are
groupings of object files [Mitchell, Oldham, and Samuel, 2001]. All objects that compose a
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shared library are combined into a single file. This single file uses the .so (standing for shared
object) file extension, and the file name always begins with lib. Code within shared libraries
may be loaded and unloaded dynamically during runtime, which is what the Enabler requires of
Transporter plug-ins.

In the context of the Enabler/Transporter Architecture, all Linux-based Transporter plug-in im-
plementations are in the form of shared libraries that expose the functions GetHALDescription,

CreateTransporter, DisposeTransporter, CreateNodeApplication, and DisposeNodeApplication

[Okai-Tettey, 2005]. Each of these functions is represented by a pointer within the Enabler’s
DeviceTransporterPlugin class. These functions are exposed without any function name man-
gling. Function name mangling is a form of compiler encoding that adds additional information
about the function to its name and results in a “funny-looking” name [Mitchell et al., 2001]. C
compilers do not mangle names. However, C++ functions require that mangling be suppressed
by defining Transporter plug-in functions with the extern “C” declaration such as:

extern “C” void GetHALDescription(...)

All Transporter plug-ins for the Linux implementation of the Redesigned Enabler are stored in a
common location on the hard drive, namely /usr/local/lib/HALs. As was done for Windows, the
constructor of the Linux Enabler’s DeviceTransporterPlugin class is explored in more detail in
order to analyse the plug-in loading mechanism on Linux. Figure 4.11 shows a sequence diagram
which gives an outline of the implementation of this shared library approach.

The starting point in the constructor of the DeviceTransporterPlugin class under Linux is locat-
ing the shared libraries of all Transporter plug-ins. This is done by calling a function of the form:

system("find /usr/local/lib/HALs/lib*.so.?

-fprint PlugInFileDump");

This function results in the creation of a text file named PlugInFileDump which contains the full
path names, each on a separate line, of each unique Transporter plug-in shared library within the
location /usr/local/lib/HALs. An example of one such path name is /usr/local/lib/HALs/libMY16-

_mLAN.so.1, for the MY16_mLAN5 Transporter plug-in shared library.

An iterative search for the plug-in with a matching HAL ID is done. Using each of the path
names in the PlugInFileDump text file, each of the corresponding shared libraries is dynami-
cally loaded by using the dlopen function. The dlopen function returns a handle/pointer to the
loaded shared library. This pointer to the shared library, in conjunction with the textual name
of a function (such as “GetHALDescription”), can be passed to the dlsym function in order to

5A name referring to Yamaha’s 01V Mixing desk Transporter.
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Figure 4.11: Plug-In Loading Mechanism for Linux

get the address of the named function within the loaded shared library. This is the reason why
function names, as mentioned above, should be free of any name mangling. The next step, after
loading the library within each iteration, is to get the address of the GetHALDescription function
by calling the dlsym function. Upon getting the address of the GetHALDescription function, the
function is called in order retrieve the HAL ID of the plug-in represented by the shared library. If
the HAL ID matches that of the device’s config ROM, the addresses of the mandatory functions,
CreateTransporter and DisposeTransporter, are retrieved by calling the dlsym function appro-
priately. Assuming that all the mandatory functions are present, the addresses of the optional
functions, CreateNodeApplication and DisposeNodeApplication, are also retrieved calling the
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dlsym function again. All function addresses that are retrieved are stored in pointers defined for
each function within the DeviceTransporterPlugin class of the Enabler. It is these pointers to
function addresses that are used to fulfil subsequent function calls, such as CreateTransporter,
that are made via a DeviceTransporterPlugin object. If the address of any mandatory function
cannot be retrieved, or the HAL ID of the plug-in does not match the device’s, the shared library
is unloaded by calling the dlclose function.

Figure 4.12 shows a high level conceptual diagram to summarise the Linux plug-in loading
mechanism process described above. In particular, the HAL ID for the plug-in to be loaded

Figure 4.12: Conceptual Diagram of the Plug-In Loading Mechanism on Linux

is supplied. Shared libraries for all Transporter plug-ins on the Enabler are located, followed
by a search through all the plug-ins in the shared library location. For each shared library, until
the one with the matching HAL ID is found, the shared library is opened and addresses for the
mandatory functions are retrieved before the HAL ID is verified. When a shared library with a
matching HAL ID is found, one can be certain that the plug-in has been successfully loaded and
the addresses for the optional HAL plug-in functions such as those for the node application are
retrieved. Thereafter, any of the HAL plug-in functions can be accessed.
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4.3.3 Macintosh Transporter Plug-In Loading Mechanism

At the time of this writing, there was no Macintosh implementation for the Redesigned Enabler
that made use of the existing plug-in mechanism. However, Okai-Tettey [2005] mentions that a
shared library approach similar to that of Linux could be used. Macintosh is a UNIX-based op-
erating system which makes it possible to use the dynamic loader compatibility (DLC) functions
mentioned above, namely dlopen, dlsym, and dlclose [Apple Computer, Inc., 2006b,d].

4.3.4 Shortcomings of the Current Transporter Plug-In Mechanism

There is a shortcoming resulting from the Redesigned Enabler’s direct use of a device-specific
Transporter object pointer to access the capabilities of a Transporter. This shortcoming relates
to versioning. In particular, problems arise upon updates to the Transporter HAL API. Updating
the Transporter HAL API may take the form of, for example, the introduction of additional
methods to the Transporter or DeviceTransporter classes shown in Figure 4.3. In such cases,
backwards compatibility problems arise when the Enabler interacts with Transporter plug-ins,
which are implemented based on earlier versions of the Transporter HAL API, and do not provide
implementations for all the methods that are defined in later versions of the Transporter HAL
API. This implies that a certain level of binary dependence exists between an Enabler and its
associated Transporter plug-ins.

In the context of the above shortcoming, it became clearer why Yamaha Corporation has an
intermediary CallTransporter function in their IHAL_PLUG plug-in interface. Any request to
access the capabilities of a Transporter that are exposed by the Transporter HAL API goes via
the plug-in’s CallTransporter function, where it is resolved and the corresponding function of the
device-specific Transporter object is called. Any differences between the Transporter HAL API
versions on which a plug-in and the Enabler are based are resolved within the CallTransporter

function. Consequently, plug-ins based on earlier versions of the Transporter HAL API remain
fully functional, except that functionality defined by newer versions of the Transporter HAL API
is not available. The Enabler is notified of such differences if the CallTransporter function fails
to resolve any request from the Enabler. It is then possible for an appropriate error message to
be reported back to the Enabler without affecting its operation.

While the use of an intermediary CallTransporter function allows for Transporter HAL API
versioning, it adds to the overhead incurred when making calls to any Transporter HAL API
functions. Bearing in mind that many Transporter HAL API functions may be called before au-
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dio/MIDI connections are made between Transporters, such an overhead is undesirable, although
it is functional. Box [1998] refers to this approach as a handle class approach. In addition to
the cost of making two function calls, first to CallTransporter and then to the actual function
being called, Box [1998] suggests that for APIs with hundreds or thousands of methods, writing
forwarding routines for each API method becomes tedious and error prone. In the case of the
CallTransporter forwarding routine, each Transporter HAL API function is associated with a
selector ID that uniquely identifies the function. When the Enabler calls a function, it provides
the CallTransporter function with the selector ID of the function to call and a pointer to the
Transporter object for which the function is to be called. Upon receiving such a request, the
CallTransporter function calls the appropriate function based on its interpretation of the selector
ID. Each selector ID should map to exactly one Transporter HAL API function. The process of
interpreting the selector ID and mapping it to the correct function requires great care by ensuring
that definitions of selector IDs within the Enabler and Transporter plug-in are exactly the same.
Consequently, this makes the process of Transporter plug-in writing error prone.

It became apparent that the plug-in loading mechanism described above needed further investi-
gation in order to come up with a plug-in mechanism solution that:

• Allows for better Transporter HAL API versioning.

• Reduces the level of binary dependence between the Enabler and Transporter plug-ins.

• Eliminates the need for an intermediary function call before accessing any method of
Transporter HAL API.

Bearing in mind these primary needs, a successful solution was one that allowed for ease of
portability of the plug-in loading mechanism across different platforms. As shown above in sec-
tions 4.3.1 and 4.3.2, the only differences in plug-in loading implementations are conveniently
isolated within the DeviceTransporterPlugin class. Such an object oriented design eases porta-
bility of the Enabler’s plug-in implementation, requiring minimal changes. We aimed to retain
such flexibility, although with an improved underlying plug-in loading mechanism.

4.4 Current Transporter HAL API

Up to this point, we have been discussing the plug-in loading mechanism. As mentioned in the
introduction to this chapter, the plug-in loading mechanism is the first of the two components
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of the HAL that we investigated. The second component, the interaction between the Enabler
and each Transporter, is accomplished via a pointer to a Transporter object. The Transporter ob-

ject is created via the CreateTransporter function of the IHAL_TRANSPORTER interface. The
interaction between the Enabler and the Transporter is carried out within the confines of the
collection of methods that compose the Transporter HAL API. The current Transporter HAL
API has been created to fully utilise the capabilities of Yamaha Corporation’s hardware archi-
tecture and node design, although plug-ins may be written to achieve interoperability with other
vendor-specific Transporter implementations. In this section, we begin by revisiting Yamaha
Corporation’s Transporter design, on which the current Transporter HAL API is based. We end
the section by highlighting shortcomings of the current Transporter HAL API in the context of
the OGT guideline document.

4.4.1 Yamaha Corporation’s Transporter Design

4.4.1.1 Transporter Hardware Architecture

Section 3.3.2.2 on page 46 introduced the two main chips (ASICs) that Yamaha Corporation
has produced, namely the mLAN-NC1 and mLAN-PH2 chips. The mLAN-NC1 is capable of
simultaneously transmitting and receiving eight sequences of audio data, two sequences of non-
audio data, and four sequences of MIDI data streams, or transmitting and receiving one sequence
of non-audio data and eight sequences of MIDI data streams [Yamaha Corporation, 2001]. On
the other hand, the mLAN-PH2 chip is capable of simultaneously transmitting and receiving
32 audio data sequences [Yamaha Corporation, 2003a]. Up to four mLAN-PH2 chips can be
cascaded together, in addition to an mLAN-NC1 chip, giving a maximum full-duplex audio
channel count of 128 at 48 kHz, and eight MIDI data streams.

The most common chip arrangement that is currently in Yamaha Corporation’s products com-
prises one mLAN-NC1 and one mLAN-PH2 chip. An evaluation board known as the MAP4
Evaluation board [Yamaha Corporaton, 2003] implements this arrangement, although without
the host specific hardware components that are commonly found on audio mixing desks and
synthesisers. We used this board as a reference to an existing Yamaha-specific hardware archi-
tecture that is compatible with the current Transporter HAL API. The chip arrangement within
the MAP4 Evaluation board is based on the Node Controller Package 5 (NCP05) design [Yamaha
Corporation, 2002b]. To mention in passing, the NCP05 design makes use of one mLAN-NC1
and two, instead of one, mLAN-PH2 chips. However, for the remainder of this thesis, we focus
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on the arrangement with a single mLAN-PH2 chip. We now discuss the most important features
of the mLAN-NC1 and mLAN-PH2 chips.

Recall from section 3.1.2.2 on page 35 that the link layer controller is important for isochronous
and asynchronous transfers. One of the main reasons why the mLAN-PH2 is used in conjunc-
tion with the mLAN-NC1 chip is that the mLAN-PH2 chip does not have a link layer con-
troller [Yamaha Corporation, 2001, 2003a]. For isochronous and asynchronous transactions, the
mLAN-PH2 chip relies on the link layer controller which the mLAN-NC1 chip implements. In
NCP05-based designs, such as the MAP4, the mLAN-PH2 handles the transmission and recep-
tion of audio data only while the mLAN-NC1 handles the transmission and reception of MIDI
data only. It should be borne in mind that the mLAN-NC1 chip can also transmit and receive
audio data, as mentioned in the first paragraph of this section. However, this audio capability is
not used in the presence of the mLAN-PH2 chip.

4.4.1.2 Transporter Node Design

Section 3.3.2.2 on page 46 introduced the role of the Transporter Control Interface of a Trans-
porter, namely to allow access and modification of A/M protocol parameters in a hardware spe-
cific manner. The Transporter Control Interface is implemented in the IEEE 1394 node’s private

space. In the context of Yamaha Corporation’s NCP05-based hardware, a Transporter node de-
sign exists. It is this node design that determines the nature of the Transporter Control Interface
for NCP05-based hardware. We have described the 1394 node address space as shown in Fig-
ure 3.2 on page 28. Table 4.2 shows a typical serial bus address map for NCP05-based IEEE
1394 audio devices. We focus on the node’s private space which describes the Transporter
Control Interface. The absolute address of the top of the private space is 0xFFFFE0000000.
A PRIVATE_SPACE_MAP table is implemented at the top of the private space. This PRI-
VATE_SPACE_MAP table specifies the offsets and sizes of four main register blocks of the
Transporter Control Interface. These four registers blocks are Boot Parameter Space, Core Space,
mLAN Space, and Node Application Space. Table 4.3 shows the PRIVATE_SPACE_MAP for
NCP05-based hardware, where the register offsets are relative to the top of the private space

(0xFFFFE0000000).



CHAPTER 4. CURRENT HAL DESIGN AND IMPLEMENTATION 74

Register Address Description
0000 0000 0000 Initial Memory Space

FFFF DFFF FFFF
FFFF E000 0000 PRIVATE_SPACE_MAP

FFFF E000 F000 Boot Parameter Space
FFFF E000 F7FF

FFFF E100 0000 Core Space
FFFF E9FF FFFF

FFFF EC00 C000 mLAN Space
FFFF EC00 C107

FFFF EE00 0000 Node App Space
FFFF EEFF FFFF
FFFF EFFF FFFF
FFFF F000 0000 Register Space (CSR)

FFFF F000 03FF
FFFF F000 0400 CSR ROM

FFFF F000 07FF
FFFF F000 0800 Initial Units Space

FFFF FFFF FFFF

Table 4.2: NC1-Transporter Address Map: Serial Bus Addressing

Register Name Offset Length Description
BOOT_PAR_SPACE_OFFSET +000 32 bits Boot parameter area offset
BOOT_PAR_SPACE_SIZE +004 32 bits Boot parameter area size
CORE_SPACE_OFFSET +008 32 bits Core area offset
CORE_SPACE_SIZE +00C 32 bits Core area size
MLAN_SPACE_OFFSET +010 32 bits mLAN area offset
MLAN_SPACE_SIZE +014 32 bits mLAN area size
NODE_APP_SPACE_OFFSET +018 32 bits Node application area offset
NODE_APP_SPACE_SIZE +01C 32 bits Node application area size

Table 4.3: NC1-Transporter Address Map: PRIVATE_SPACE_MAP
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We now give an overview of the main roles of the four main register blocks of the Transporter
Control Interface for NCP05-based hardware. The Boot Parameter Space, described in sec-
tion 3.3.2.2 on page 46, is the Transporter’s non-volatile memory from which a Transporter’s
A/M protocol parameters are restored after a power cycle. The Core Space specifies addresses
that are used to modify A/M protocol parameters for the chips that are used by a Transporter,
namely the mLAN-NC1 and mLAN-PH2 chips. A complete listing of the Core Space registers
for the mLAN-NC1 [Yamaha Corporation, 2001] and mLAN-PH2 [Yamaha Corporation, 2003a]
chips is given in the relevant specifications for the chips. The mLAN Space defines registers that
are used to keep track of the isochronous resources (channel number and bandwidth) that are in
use for data transmission by both chips. Table 4.4 shows a summary of the mLAN Space regis-
ters, where the offsets are relative to the top of the mLAN Space. The current Transporter HAL
API is associated with the Core and mLAN Spaces. The Node Application Space provides the
host system with inbound/outbound asynchronous packet bridging services. In the remainder of
this subsection, we show how some of the important transmission and reception A/M parameters
relate to the mLAN Space and Core Space registers.

For MIDI transmission, a transmission FIFO6 buffer exists within the mLAN-NC1 chip. This
FIFO buffer receives MIDI messages from the chip’s pins and multiplexes them onto a single
sequence within isochronous packets for transmission on the IEEE 1394 bus. MIDI multiplex-
ing has been described section 3.2.1 on page 37. Prior to transmission, an isochronous channel
number and bandwidth are allocated for the chip to transmit its isochronous stream (compris-
ing a single sequence with multiplexed MIDI messages). The channel number is stored in a
Core Space register associated with the mLAN-NC1 chip. Similarly, for audio transmission, a
transmission FIFO buffer exists within the mLAN-PH2. This transmission FIFO receives audio
samples from the chip’s pin and packages the audio in a number of sequences. An isochronous
stream comprising up to 32 audio sequences is transmitted onto the IEEE 1394 bus. As with
the mLAN-NC1 chip, an isochronous channel number and bandwidth are allocated prior to data
transmission. The channel number and the number of sequences per packet cluster are each
written to a Core Space registers that are associated with the mLAN-PH2 chip.

6First-In-First-Out
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Register Name Offset Length Description
ENABLER_ADDRESS +000 64 bits The node ID for the Enabler

and its 48-bit interrupt
register address.

TRANSPORTER_MODE +008 16 bits Specifies whether or not a
transporter should recall its
previous state upon a power
cycle.

-reserved- +00A 16 bits Not in use.
BANDWIDTH_REQUEST_1 +00C 16 bits Holds a number of

bandwidth allocation units to
be requested from the IRM
node after bus reset.

CHANNEL_REQUEST_1 +00E 16 bits Holds an isochronous
channel number to be
requested from the IRM node
after bus reset.

BANDWIDTH_REQUEST_2 +010 16 bits Holds an additional number
of bandwidth allocation units
to be requested from the IRM
node after bus reset.

CHANNEL_REQUEST_2 +012 16 bits Holds an additional
isochronous channel number
to be requested from the IRM
node after bus reset.

-reserved- Not in use.
SERIALPORT_DATA_ADDR +020 64 bits An address to which data

received on serial port 2 will
be relayed to.

SERIALPORT_DATA_OUT +028 32 bits Data written to this register
will be output on serial port
2.

-reserved- Not in use.
IDENTIFY +100 16 bits Non zero writes to this

register will cause the port
LEDs of the hardware to
blink in order to allow for
device identification.

POSTED_WRITE_PARTITION +104 32 bits Used by the Node
Application Space.

Table 4.4: NC1-Transporter Address Map: mLAN Addressing
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Isochronous channel numbers and bandwidth allocated for transmission, using both chips of an
NCP05-based Transporter, are written to mLAN Space registers for re-allocation in the event
of a bus reset. For example, the channel number and bandwidth for the mLAN-NC1 chip are
written to the CHANNEL_REQUEST_1 and BANDWIDTH_REQUEST_1 registers of the mLAN
Space (shown in Table 4.4) respectively. The additional channel number and bandwidth to
be allocated for the mLAN-PH2 chip are written to the CHANNEL_REQUEST_2 and BAND-

WIDTH_REQUEST_2 registers of the mLAN Space (shown in Table 4.4) respectively. If any
resources cannot be re-allocated, isochronous transmission stops.

For audio reception, FIFO buffers exist within the mLAN-PH2 chip to receive audio samples
from the audio sequences. For each FIFO buffer, there are associated Core Space registers that
enable isochronous channel and sequence number selection, as shown in Figure 3.15 on page 48.
The channel number uniquely identifies the isochronous stream to receive, while the sequence
number specifies the offset of the sequence to pick up within each isochronous packet cluster
of the isochronous stream. Similarly, for MIDI data reception, FIFO buffers exist that extract
MIDI messages from the MIDI sequences of an isochronous stream. In addition to the channel
and sequence number Core Space registers associated with the mLAN-NC1 chip, there are addi-
tional Core Space registers for the mLAN-NC1 that allow for selection of a subsequence number
within a particular sequence. Subsequence numbers are only relevant for MIDI, since up to eight
MIDI messages can be multiplexed on each sequence. A subsequence number is equivalent to a
multiplex index. A detailed description of MIDI multiplexing has been given in section 3.2.1.

Recall from section 3.2.3 on page 41 that synchronisation is required between the audio trans-
mitting and receiving devices. Core Space registers associated with the mLAN-PH2 chip are
available to specify whether the source of synchronisation word clock is internal within the
Transporter or is received via the SYT field of incoming isochronous packets. Although sim-
ilar Core Space registers associations are possible for the mLAN-NC1 chip, these registers are
ignored, since the mLAN-NC1 chip is solely for MIDI transmission and reception. MIDI trans-
mission and reception does not require such word clock synchronisation.

An overview of Yamaha Corporation’s generic hardware capabilities has been given in this sub-
section. The current Transporter HAL API fully utilises all capabilities of Yamaha Corporation’s
hardware. The next subsection highlights the shortcomings of the current Transporter HAL API
in utilising the capabilities of the Open Generic Transporter.
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4.4.2 Shortcomings of the Current Transporter HAL API in the Context
of the OGT Guideline Document

With reference to Figure 4.3 on page 55, the Transporter HAL API components that govern in-
teraction between an Enabler and Transporters include the Transporter, DeviceTransporter, PC-

Transporter, and the optional TransporterNodeApplication classes. Vendor-specific Transporter
implementations technically inherit and provide implementations for these classes. We do not
explore the optional TransporterNodeApplication class implementations in detail, since the main
focus of our investigation was on the mandatory node controller components of the Transporter
HAL API. At the time of this writing, the OGT guideline document did not specify any guide-
lines for the optional node application component of a Transporter. However, Chapter 5 describes
how our proposed plug-in loading mechanism affects the manner in which the capabilities of a
Transporter’s node application component are accessed. A full description of the Transporter,
DeviceTransporter, and PCTransporter classes is given in Appendix A on page 206. Although
we describe these classes in terms of the Redesigned Enabler, it should be borne in mind that they
are based on the Basic Enabler specification which has been documented by Yamaha Corporation
in the “mLAN Enabler Software Specification” [Yamaha Corporation, 2004a].

We now look at the shortcomings of the current Transporter HAL API capabilities, provided by
the abstract Transporter, DeviceTransporter, and PCTransporter classes, in the context of the
OGT guideline document. Reference is made to some of the functions described in Appendix A.

4.4.2.1 Isochronous Stream and Sequence End-Point Associations

In the context of the current Transporter HAL API, input isochronous streams correspond to
isochronous streams that are received by a Transporter from the IEEE 1394 bus, while out-
put isochronous streams refer to those that are sent onto the bus for transmission. The maxi-
mum number of isochronous channels/streams that can be received or transmitted by a device is
queried via the GetMaxIsochChannels function of the Transporter class and shown below.

GetMaxIsochChannels(isInput, ∗pNumIsochChannels) (4.1)

An isInput argument is used by the above function and also by the majority of Transporter HAL
API functions. This argument is a boolean value that specifies the direction of the streams,
namely input or output. In particular, isInput is true for inputs (reception) and false for outputs
(transmission). It is important to understand this input/output concept since it is fundamental
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to Transporter control. Each isochronous stream is referred to by an isochID. An isochID is a
number within the range defined by the relation 0 ≤ isochID ≤ ∗pNumIsochChannels −
1, where *pNumIsochChannels is the maximum number of isochronous channels of a given
direction returned by the GetMaxIsochChannels function (function (4.1)).

The current Transporter HAL API views each of the isochronous streams, described above, as
having static associations with a number of sequences of different types. Two types of sequences
are defined, namely audio and MIDI sequences. The maximum number of sequences of a partic-
ular type, for each isochronous stream, is queried via the following Transporter class function:

GetMaxSequences(isInput, isochID, seqType, ∗pMaxSequences) (4.2)

Each of these sequences is identified by a sequence ID, seqID, and is in turn associated with
a number of subsequences. The seqID is a number within the range defined by the relation
0 ≤ seqID ≤ ∗pMaxSequences − 1, where *pMaxSequences is the maximum number of
sequences of a particular type, for a given isochronous stream (identified by isochID and isInput).
The value for *pMaxSequences is returned by the GetMaxSequences function (function (4.2)) as
shown above. For each of the sequences, the maximum number of subsequences is queried via
another Transporter class function, namely:

GetMaxSubsequences(isInput, isochID, seqType, seqID, ∗pNumSubs) (4.3)

Each of the subsequences is identified by a subsequence ID, subID. The subID is a number
within the range defined by the relation 0 ≤ subID ≤ ∗pNumSubs − 1, where *pNumSubs

is the maximum number of subsequences of a given sequence (identified by a combination of
isInput, isochID, seqType and seqID parameters). The value for *pNumSubs is returned by the
GetMaxSubsequences function (function (4.3)) as shown above. Subsequences are important
when transmitting data that can be multiplexed, such as MIDI data. However, for data that
cannot be multiplexed such as audio, the maximum number of subsequences is one, hence the
only valid subID is zero. From a higher level, the Enabler views the combination of isInput,

isochID, seqType, seqID and subID as uniquely identifying each of the sequence or subsequence
end-points of a Transporter. These end-points represent the high level plug abstractions of the
“mLAN Plug Abstraction Layer” described in section 3.3.2.1 on page 44.

We can now look at how the above Transporter class functionality is implemented in terms
of the MAP4 hardware design. With regards to transmission, each of the transmission FIFO
buffers on the mLAN-NC1 and mLAN-PH2 chips described in section 4.4.1 above, for example,
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corresponds to a single output isochronous stream. The output stream corresponding to the
mLAN-PH2 chip’s FIFO buffer is associated with a maximum of 32 audio sequences, each with
exactly one subsequence. The output stream corresponding to the mLAN-NC1 chip’s FIFO
buffer is associated with one MIDI sequence that has eight multiplexed subsequences. This
relationship for the transmission FIFO buffers of the two chips is shown in Figure 4.13. It should

Figure 4.13: MAP4 Transmission FIFO Buffer Model for Current Transporter HAL API

be borne in mind that the diagram serves to demonstrate the concept only and does not show
all the sequences. In particular, only six of the possible 32 audio sequences are shown for the
mLAN-PH2 chip. Similarly, only six of the possible eight MIDI subsequences are shown for the
mLAN-NC1 chip.

On the other hand, for reception, each of the reception FIFO buffers on either of the chips corre-
sponds to an input isochronous stream/channel that is associated with one sequence, which has
exactly one subsequence. This implies that each reception sequence or subsequence end-point
can receive a sequence or subsequence from a unique isochronous stream, although more than
one end-point can receive from the same isochronous stream. Thus, the number of end-points
is equivalent to the maximum number of possible unique transmitters that a device can receive
from. This relationship for the reception FIFO buffer of the MAP4 is shown in Figure 4.14. Note
that the diagram serves to demonstrate the concept only and does not represent all reception
FIFO buffers that are present on the mLAN-NC1 and mLAN-PH2 chips of the MAP4. For MIDI
reception, there are additional Core Space registers that are not shown for each FIFO buffer.
These registers allow for modification of the subsequence number, in addition to the sequence
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Figure 4.14: MAP4 Reception FIFO Buffer Model for Current Transporter HAL API

number. The subsequence number is only relevant to MIDI, since up to eight MIDI messages
can be multiplexed on a single sequence.

On the Windows platform, the PCTransporter class is implemented in terms of a Windows
mLAN streaming driver. It should be borne in mind that the mLAN streaming driver is tightly
coupled with the Transporter class interface. This streaming driver exposes four input isochronous
streams and one output isochronous stream. The single output isochronous stream is associated
with up to 32 audio sequences with exactly one subsequence each, and up to two MIDI sequences
with eight subsequences each. Two of the input isochronous streams are each associated with
one MIDI sequence with eight subsequences. The remaining two input isochronous streams are
each associated with 24 audio sequences which have exactly one subsequence. Additionally, one
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of the two remaining input isochronous streams is also associated with a MIDI sequence with
one subsequence.

As shown by the above descriptions for the MAP4 and the Windows implementation of the PC-

Transporter class, it is evident that the current Transporter class functionality assumes a static
association between isochronous streams and a number of sequence or subsequence end-points
that terminate the streams. In particular, as shown in Figures 4.13 and 4.14, each isochronous
stream is associated with a fixed number of sequences. Each sequence is in turn associated with a
fixed number of subsequences, hence the static associations. These static constraints have influ-
enced the choice of Transporter HAL API member functions, namely the GetMaxIsochChannels,
GetMaxSequences, and GetMaxSubsequences functions (functions (4.1), (4.2), and (4.3)) which
are described in this subsection starting from page 78.

In an effort to preserve bandwidth used by output isochronous streams, the number of sequences
that are actually transmitted may be reduced or increased as needed via the following Transporter

class function:

SetNumSequences(isInput, isochID, seqType, numSequences) (4.4)

The implications of the static associations imposed by the Transporter class were further inves-
tigated in the context of the OGT plug-in implementation against the current Transporter HAL
API. An important concept of the OGT that has been described in section 3.3.3.2 on page 50 is
the possibility of static or dynamic clustering of multiple sequence end-points to an isochronous
stream. This is made possible by the static or dynamic ISP to NCP associations.

The OGT’s static ISP to NCP associations fit well with the interface defined by the Transporter

class. However, dynamic associations pose certain problems, particularly on the input side of a
Transporter. Unlike the MAP4 design, the OGT allows for implementations where the number of
possible input isochronous streams (ISPs) is less than the number of input sequence end-points
(NCPs). This implies that the number of input ISPs, as opposed to the number of sequence end-
points in the case of the MAP4, determines the maximum possible number of transmitters that
an OGT-based device can receive from. The advantage of dynamic association in this case is that
if, for example, a connection is made to a particular NCP (sequence end-point), an available ISP
is dynamically associated with the NCP. An ISP is available if it is not receiving any isochronous
streams, or if it is neither associated with any active NCPs nor receiving SYT timing information.
The ISP is set to receive isochronous streams with a particular channel number, while the NCP
is set to receive a particular sequence of the isochronous stream. When all ISPs are in use, all
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connections from other transmitted isochronous streams will fail unless one of the ISPs in use
has a channel number that already matches that of the source isochronous stream for the new
connections.

As shown above, the OGT relies on dynamic association between input ISPs and input NCPs
for optimal functionality. On the other hand, the Transporter class interface imposes a static
association constraint. The current OGT HAL plug-in implementation deals with this constraint
by introducing a level of complexity to the implementation. In particular, such complexities
have led to the creation of a software memory mapping structure, which represents each NCP
as a sequence end-point that is statically associated with a virtual input isochronous stream as
shown in Figure 4.15. A virtual isochronous stream emulates the role of a reception FIFO buffer

Figure 4.15: OGT Plug-In Mapping Structure Implementation for the Current Transporter HAL
API

in terms of a design such as that for NCP05-based hardware architectures. When the GetMax-

IsochChannels function (function (4.1) on page 78) is called to query the maximum number of
input isochronous streams that an OGT-based Transporter can receive, the number returned is
equivalent to the number of virtual input isochronous streams. Consequently, the GetMaxSe-

quences and GetMaxSubsequences functions (functions (4.2) and (4.3) on page 79) both return
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the value one as the maximum number of sequences and subsequences respectively, for either
audio or MIDI sequence types. The Enabler, via the vendor-specific Transporter class implemen-
tation, configures OGT-based Transporters in terms of the static associations between the NCPs
and the virtual isochronous streams. Within the OGT plug-in, the API functions are fulfilled in
terms of dynamic associations between ISPs and NCPs.

Amongst other information, each of the virtual isochronous streams keeps track of the identifier
(ID) of its associated NCP in terms of the OGT register set, and also the ID of the associated ISP
in terms of the OGT register set. NCPs are dynamically associated with available ISPs when the
channel number is set for each virtual isochronous stream via the SetIsochChannel function of
the Transporter class as shown below:

SetIsochChannel(isInput, isochID, isochChannel) (4.5)

Figure 4.16 shows a four-step process that summarises the process of associating NCPs with ISPs
as described above. The first step is the instruction to set a particular channel number to a given

Figure 4.16: Current Transporter HAL API: ISP-to-NCP Association Process

virtual isochronous stream by calling the SetIsochChannel function. Step two of the process
relates to the retrieval of the ID of the NCP that is associated with the virtual isochronous stream.
Step three of the process comprises a search for an available ISP, and if an ISP is found, its ID
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is retrieved. The last step results in an association between the NCP and the ISP. In terms of the
OGT register set, there is an NCP register, the NCP_ISP_ID register, that keeps track of the ID
of the NCP’s associated ISP. It is the dynamic modification of this register that results in dynamic
NCP-to-ISP associations. The level of complexity introduced by the virtual isochronous stream

concept can be removed by having a Transporter HAL API that inherently allows for dynamic
isochronous stream (ISP) to sequence end-point (NCP) association.

4.4.2.2 Starting and Stopping of Transmission or Reception

The Transporter class defines functions to collectively start and stop isochronous transmission
or reception for all isochronous streams of a given direction. These functions are:

Start(isInput) (4.6)

Stop(isInput) (4.7)

Recall that output isochronous streams relate to the transmission side of a device. Collective
control such as the above is a hardware specific constraint that does not always hold for all Trans-
porters. In particular, the firmware for Yamaha Corporation’s NCP05-based designs imposes the
restriction that all chips commence or stop transmission/reception at the same time. However,
in the context of the OGT, isochronous streams (ISPs) may be controlled individually unless
otherwise specified. For output isochronous streams, collective control may result in wastage of
isochronous resources. For example, there may be more than one output ISP sending packets
onto the IEEE 1394 bus from an OGT-based device. With the current Start function of the Trans-

porter class (function (4.6)), all output ISPs have to be started simultaneously. As mentioned
in section 3.1.1.4 on page 31, before isochronous transmission starts, each transmitter (output
ISP in terms of OGT) is allocated the necessary isochronous resources, namely an isochronous
channel number and bandwidth. Supposing that only one of the output ISPs is required for
transmission, all other output ISPs are wastefully allocated resources. This isochronous resource
wastage reduces the total available isochronous resources on the IEEE 1394 network for each
OGT device that is transmitting, and hence reduces the maximum possible number of simulta-
neously transmitting devices on the network. A need for a Transporter HAL API that allows for
individual control over ISPs, where possible, became apparent. It should be borne in mind that
no isochronous resource allocation is done for reception, and hence collective control over input
ISPs does not result in resource wastage.
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4.4.2.3 Word Clock Source Selection

With reference to the Redesigned Enabler object model shown in Figure 4.2 on page 54, when
the Enabler enumerates the sequence end-points on a Transporter, it also creates an MLAN-

DeviceSyncBlock object. In the current implementation, this object is associated with the first
isochronous stream that has at least one audio sequence end-point. Synchronisation between a
master device’s clock and a slave device’s clock is then handled via the corresponding MLANDe-

viceSyncBlock objects for each Transporter on the network. Section 3.2.3 on page 41 mentioned
how synchronisation of a slave device’s clock to a master device’s clock is done. In particular,
timing information is transmitted from the master device, via the SYT field of the CIP header,
to the slave device. The Transporter class interface allows for this control via the following
functions:

GetSY TSynchChannel(∗pIsochChannel) (4.8)

SetSY TSynchChannel(isochChannel) (4.9)

The GetSYTSyncChannel function gets the isochronous channel number of the isochronous streams
on which a device receives SYT timing information for synchronisation. If the device is not us-
ing SYTs for synchronisation, an invalid channel is returned. Conversely, SetSYTSyncChannel

specifies the isochronous channel number for the packets that a device receives SYT timing in-
formation from. When an invalid channel number is specified, the device does not use SYT
timing information for synchronisation. In such cases, the device is said to be operating using its
local word clock source. The local word clock source is usually a device’s built-in/internal clock
(crystal oscillator).

From the above, the Transporter class interface assumes that a device can operate in two modes,
namely using internal or SYT word clock sources. The former represents a word clock master
device while the latter represents a word clock slave. The OGT defines the possibility of having
additional local word clock sources. We refer to these additional local word clock sources as
external word clock sources. Figure 4.17 shows an example of five possible word clock sources
that may be present on an OGT-based Transporter. External word clock sources are so called
because they do not necessarily originate from a built-in device clock but may originate from a
source, external to the device, such as an external voltage controlled crystal oscillator (VCXO) or
by reading the sample rate information of incoming ADAT or AES/EBU digital audio streams.
While the OGT allows for selection of such external word clock sources within a device, the
current Transporter class interface assumes that devices not acting as word clock slaves can only
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Figure 4.17: Example of Word Clock Sources on an Open Generic Transporter

use their built-in word clock sources. There is no mechanism available to select the external
word clock sources. With reference to Figure 4.17, the current Transporter HAL API allows for
selection of word clock sources labelled 1 and 2. All other word clock sources labelled 3, 4,
and 5 cannot be selected. This constraint leads to the underutilisation of OGT capabilities and
indicated another inadequacy of the current Transporter HAL API. In particular, we identified
a need to allow for more flexible word clock source selection within the Transporter HAL API,
which takes into account external word clock sources.

4.4.2.4 Multiple Word Clock Outputs

One of the roles of the the MLANDeviceSyncBlock object (mentioned in section 4.4.2.3) in setting
up the word clock master-slave relationships is to ensure that the sampling frequencies of the
master and slave device clocks are the same. The current Transporter class interface allows
sampling frequencies to be set for each isochronous stream via the function:

SetSFC(isInput, isochID, sfc) (4.10)

However, Transporter plug-ins are currently implemented in such a way that changes made to
the sampling frequency (SFC) of the isochronous stream that is associated with the MLANDe-
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viceSyncBlock object result in similar changes to SFCs for all other isochronous streams on a
device. This implies that the current Enabler/Transporter implementation assumes that devices
can only transmit or receive audio sequences that are sampled at one common sampling fre-
quency.

While the current implementation demonstrates a single/common SFC assumption, the OGT
guideline refines this approach by defining a number of word clock outputs (Sync Output Mod-
ules in terms of the OGT register set [Audio Engineering Society - Standards Committee, 2005]).
Each word clock output can be associated with one of a number of concurrently usable word
clock sources. A word clock source’s sampling frequency is set independent of other concur-
rently usable word clock sources. Each of the ISPs, input or output, is in turn associated with
one of a number of word clock outputs. ISPs are then associated with a number of NCPs. This
implies that NCPs associated with a particular ISP operate at the sampling frequency that is de-
termined by the ISP’s associated word clock output. The word clock source associated with the
word clock output ultimately determines the sampling frequency in use. This means that a Trans-
porter is capable of simultaneously transmitting or receiving audio sequences that are sampled at
different sampling frequencies. All sequences within a single isochronous stream share the same
sampling frequency. Therefore, in order to concurrently use different sampling frequencies, the
audio sequences have to belong to different isochronous streams. However, it should be borne in
mind that audio connections cannot be made between source and destination plugs that are using
different sampling frequencies.

The SetSFC function (function (4.10)) suggests that it may be possible to achieve the same re-
sult with the current Transporter HAL API, since SFCs can be set for each isochronous stream
individually. However, upon further investigation, it became apparent that the Transporter class
interface does not provide a mechanism to query the number of different sample rates that can be
concurrently used on device, a feature that is inherent within the word clock output concept of
the OGT. At the time of this writing there were no OGT firmware implementations that imple-
mented more than one word clock output. However, to cater for this future need, the Transporter
HAL API ought to expose such capabilities to the Enabler.

4.4.2.5 Handling Device-Specific Transporter Quirks

There are some quirks that are inherent within the operation of certain Transporters as a result
of aspects such as their underlying hardware capability restrictions. An example of a quirk
for NCP05-based Transporters is the reduction in the number of audio channels that can be
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transmitted or received at high (88.2 kHz and above) sample rates. This is because more data is
transmitted at high sample rates, while there are restrictions in the amount of data that the chips
can process per unit time. This ultimately reduces the total number of sequences that may be
transmitted or received by a device per data block. In dealing with this quirk in particular, the
current Transporter HAL API merely reduces the number of plugs that are visible to connection
management applications when sample rates are changed from low to high sample rates. The
change in the number of plugs that are visible to connection management applications upon
sample rate changes leads to a non-obvious design which may result in users being “surprised”
by system behaviour [Galitz, 2002].

The OGT guideline document takes into account such quirks by defining a Plug Layout Table
implementation which is composed of a number of Plug Layouts. A Plug Layout represents a
mutually exclusive Transporter configuration. Each Plug Layout contains a number of NCPs,
ISPs, word clock outputs and word clock sources that are concurrently usable. The current
Transporter HAL API has no concept of a Plug Layout Table. In the case of the OGT plug-
in implementation against the current Transporter HAL API, changes to Plug Layouts are only
made upon changes in sample rate since the Transporter HAL API does not explicitly cater for
Plug Layouts.

The Plug Layout concept mentioned above was explored further and bandwidth was identified
as another possible aspect that can be dealt with by Plug Layouts. In particular, in environ-
ments where routing requirements are known in advance, manufacturers can create various Plug
Layouts that ensure optimal bandwidth usage. For example, in situations where the maximum
number of audio channels required for transmission is known, the manufacturer can create a Plug
Layout that exactly uses the required bandwidth. Such a possibility implies that changing Plug
Layouts upon sample rate changes only may lead to an inadequacy when dealing with this type
of quirk using the current Transporter HAL API. A need for an API that allows for a structured
way of dealing with the various quirks of devices became clearer.

4.5 Chapter Summary

This chapter has highlighted shortcomings of the current plug-in loading mechanism. We have
identified the need for a plug-in loading mechanism that allows for robust Transporter HAL API
versioning while reducing the level of binary dependence between the Enabler and Transporter
plug-ins. We have shown how Yamaha Corporation’s original mechanism attempted to resolve
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this. However, further investigation revealed that, although it is functional, the mechanism is
error prone and leads to an increased overhead incurred as a result of the need for an intermediary
function to resolve any Transporter HAL API function calls.

In addition to highlighting the shortcomings of the current plug-in mechanism, we have also
revealed the shortcomings of the current Transporter HAL API in the context of the OGT guide-
line document. These shortcomings stem from inadequacies of a Transporter HAL API that was
designed prior to the existence of the OGT concept. The shortcomings include:

• Complexities introduced to the OGT plug-in implementation in order to accommodate the
dynamic ISP to NCP associations.

• Bandwidth wastage and its consequences on the overall performance of an mLAN network.

• The restrictive word clock source selection which leads to underutilisation of certain OGT
capabilities.

• Unclear representation of a future need for Transporters to simultaneously operate at mul-
tiple sampling frequencies.

• Lack of a structured way to deal with quirks within different devices.

The next chapter, Chapter 5, describes the design and implementation of our proposed plug-in
mechanism. Our plug-in mechanism sought to resolve the shortcomings identified in this chapter
relating to the current plug-in mechanism.



Chapter 5

Proposed Transporter Plug-In Mechanism

Chapter 4 has highlighted shortcomings within the current Transporter plug-in mechanism and
Transporter HAL API. These two components comprised the two main research areas for our in-
vestigation. In this chapter, we describe how the shortcomings of the current plug-in mechanism
were resolved.

The Transporter plug-in mechanism was refined to allow for robust Transporter HAL API ver-
sioning with minimal binary dependence between the Enabler and Transporter plug-ins. Our
proposed plug-in mechanism is based on the fundamentals of COM, and mainly uses pointers
to interfaces as opposed to pointers to objects. The use of COM fundamentals allows us to use
Microsoft COM in its standard form for the Windows plug-in implementation. However, we
also show how we implement these COM fundamentals on two other popular platforms, namely
Linux and Macintosh.

5.1 Proposed Redesigned Enabler Design Overview

Figure 5.1 shows our proposed object model for the Redesigned Enabler. By comparing this
object model with the current Redesigned Enabler object model shown in Figure 4.2 on page 54,
it can be seen that the mandatory NodeController class now depends on an INC_PLUGIN COM
interface. The INC_PLUGIN COM interface defines methods that are required to access the
node controller capabilities of Transporters. Similarly, the NodeApplication class now depends
on an INA_PLUGIN COM interface. The INA_PLUGIN COM interface defines methods that
are required to access the node application capabilities of Transporters.

91
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Figure 5.1: Proposed Redesigned Enabler Object Model

Recall from section 4.4.2 that our investigation focused on the mandatory node controller com-
ponent of Transporters. We did not explore the node application component, since, at the time
of this writing, the OGT guideline document did not specify any node application capabilities
that could be utilised by OGT-based Transporters. For this reason, the NodeApplication class
in Figure 5.1 is not expanded in terms of its associated components, except for showing its de-
pendence on the INA_PLUGIN COM interface. However, the NodeController class has been
expanded to show its associated components in addition to its dependence on the INC_PLUGIN

COM interface.

The next section describes our proposed Transporter HAL model in the context of our proposed
Redesigned Enabler design as shown in Figure 5.1.
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5.2 Proposed Enabler HAL Design Overview

Recall from section 4.3.4 that we aimed to create a plug-in mechanism that:

• Allows for better Transporter HAL API versioning.

• Reduces the level of binary dependence between the Enabler and Transporter plug-ins.

• Eliminates the need for an intermediate function call for each Transporter HAL API func-
tion call.

• Is portable across different operating systems.

Figure 5.2 illustrates our proposed HAL object model. We highlight the conceptual simplic-

Figure 5.2: Proposed Redesigned Enabler Hardware Abstraction Layer Object Model

ity of our proposed design by comparing it with the current Redesigned Enabler HAL design
as shown in Figure 4.3 on page 55. Our design is based on the understanding of COM as an
object-oriented, interface-based programming architecture [Troelsen, 2000]. In particular, we
have defined two fundamental COM interfaces, namely INC_PLUGIN and INA_PLUGIN. The
INC_PLUGIN COM interface defines methods that access the mandatory node controller ca-
pabilities of Transporters, while the INA_PLUGIN COM interface defines methods that access
the optional node application capabilities of Transporters. The VendorTransporter class is a
COM component that provides device-specific implementations for INC_PLUGIN COM inter-
face methods and, optionally, for INA_PLUGIN COM interface methods.

In building dynamically composable systems, such as an Enabler and its associated Transporter
plug-ins, interfaces are treated as immutable binary and semantic contracts that never change
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[Box, 1998]. Once defined, any additional interface methods are defined in their own new
COM interfaces which are also implemented by the VendorTransporter class. This allows for
Transporter HAL API versioning using techniques that are inherent within COM. In particular,
there is a mechanism that allows for querying of COM interfaces that are implemented by the
VendorTransporter class in addition to the mandatory INC_PLUGIN COM interface. For ex-
ample, if additional Transporter HAL API methods are required to access new node controller
capabilities of Transporters, a new COM interface that defines methods to access the additional
node controller capabilities is created. Figure 5.3 shows how a new node controller COM in-
terface, INC_PLUGIN_v2, is added to the original model shown in Figure 5.2. It is possible to

Figure 5.3: Proposed Transporter HAL API Versioning

query the existence of the INC_PLUGIN_v2 COM interface for any Transporter plug-in via its
mandatory INC_PLUGIN COM interface. Note that the manner in which the existence of the
INC_PLUGIN_v2 COM interface is queried is also similar to the manner in which the existence
of the optional INA_PLUGIN COM interface is queried.

The IUnknown COM interface is the parent of all COM interfaces [Armstrong and Patton, 2000;
Box, 1998; Troelsen, 2000]. It is the only COM interface that does not derive from another COM
interface. All legal COM interfaces must derive from IUnknown directly, or indirectly from one
other COM interface which derives from IUnknown either directly or indirectly. The IUnknown

interface defines a QueryInterface method to query the existence of COM interfaces that the
VendorTransporter class may implement. In addition, two other methods are defined to manage
the lifetime of a VendorTransporter COM component, namely AddRef and Release. The C++
definition of IUnknown is shown below as adapted from Box [1998]:

interface IUnknown {
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virtual HRESULT STDMETHODCALLTYPE

QueryInterface(REFIID riid, void **ppv) = 0;

virtual ULONG STDMETHODCALLTYPE AddRef(void) = 0;

virtual ULONG STDMETHODCALLTYPE Release(void) = 0;

};

The STDMETHODCALLTYPE macro is required to produce COM-compliant stack frames for
the target platform. For example, with the Microsoft C++ compiler, the macro expands to __std-

call when targeting Win32 platforms. HRESULTs are 32-bit integers that provide information to
the caller’s runtime environment about the type of errors that may have occurred when a COM
method is called. Virtually all COM methods return an HRESULT. The QueryInterface method is
used for runtime type discovery which enables identification, using interface GUIDs (REFIID),
of interfaces that a COM component implements. The AddRef method is used to notify a COM
component (VendorTransporter in terms of Figure 5.2) that an interface pointer has been dupli-
cated. Conversely, the Release method notifies a COM component that an interface pointer has
been destroyed and any resources that the object held on behalf of the client1 can be released.
The use of AddRef and Release methods by clients is known as reference counting. Reference
counting is essential for effective COM usage, and rules are provided as a guideline for when
AddRef or Release ought to be called [Box, 1998; Troelsen, 2000]. Since our proposed design
attempts to handle plug-in loading in a pure COM manner, one of the implications of the design
is that the Enabler is required to handle reference counting explicitly. Such reference counting
has been implemented in accordance with the various guidelines available.

As shown in Figure 5.2, the VendorTransporter class is associated with an I_IEEE1394Device in-
terface. We defined this interface in an attempt to remove binary dependence between the Enabler
and Transporter plug-ins. The I_IEEE1394Device interface defines methods that enable Trans-
porter plug-ins to carry out asynchronous transactions. Transporter plug-ins use asynchronous
transactions to send control commands to the actual Transporters on a network, in order to fulfil
connection management requests from an Enabler. In addition, functionality to get a handle to an
I_IEEE1394Bus pointer is available. The definition of the I_IEEE1394Device interface is shown
below:

class I_IEEE1394Device{

public:

1The Enabler is the client in this context, since it is responsible for loading Transporter plug-ins.
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//Asynchronous transaction functionality

virtual OSError ReadQuadlet(...) const = 0;

virtual OSError ReadBlock(...) const = 0;

virtual OSError WriteQuadlet(...) const = 0;

virtual OSError WriteBlock(...) const =0 ;

virtual OSError CompareAndSwap(...) const = 0;

//Return the bus interface pointer

virtual I_IEEE1394BusPtr GetIEEE1394BusInterfacePtr()

= 0;

};

As shown above, the I_IEEE1394Device interface is associated with an I_IEEE1394Bus inter-
face. The I_IEEE1394Bus interface defines methods that Transporter plug-ins can use to query,
allocate, and de-allocate isochronous resources (bandwidth and isochronous channel numbers)
on the IEEE 1394 bus. The definition of the I_IEEE1394Bus interface is shown below:

class I_IEEE1394Bus {

public:

virtual OSError GetChannelsAvailable(...) const = 0;

virtual OSError AllocateChannel(...) = 0;

virtual OSError AllocateChannel(...) = 0;

virtual OSError ReleaseChannel(...) = 0;

virtual OSError GetBandwidthAvailable(...) const = 0;

virtual OSError AllocateBandwidth(...) = 0;

virtual OSError ReleaseBandwidth(...) = 0;

virtual void GetBusGeneration(...) const = 0;

};

Although the use of virtual functions in the I_IEEE1394Device and I_IEEE1394Bus interfaces
restricts the implementation of the Enabler and Transporter plug-ins to C++, we have reduced
the binary dependence between the Enabler and its associated Transporter plug-ins. Figure 4.3
on page 55 shows how, in the current Enabler implementation, the VendorTransporter interface
is ultimately dependent on the Transporter and IEEE1394Device classes. This creates a binary
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dependence between Transporter plug-ins and the Enabler, since Transporter plug-ins are de-
pendent on an Enabler library which contains the implementation of the functions that are now
defined by our I_IEEE1394Device and I_IEEE1394Bus interfaces above. The dependence on
an Enabler library implies that the implementation of Transporter plug-ins is also restricted to
the programming language in which the Enabler is written, namely C++. Thus, while our pro-
posed mechanism maintains this C++ restriction, it decouples the implementation between the
Enabler and its associated Transporter plug-ins. An Enabler library is no longer required for
Transporter plug-ins to be created. In order to create Transporter plug-ins that conform to our
proposed HAL design, all that is required are the I_IEEE1394Device and I_IEEE1394Bus in-
terface definitions, and the custom type definitions such as OSError. We use virtual functions
for our interface definitions, since all C++ compilers on a given platform implement the virtual
function call mechanism equivalently [Box, 1998].

Up to this point, we have shown how our proposed HAL design eliminates the need for an in-
termediary function call that resolves each Transporter HAL API function call. In particular, we
have accomplished this by creating a COM interface which defines methods that access the node
controller capabilities of Transporters and another optional COM interface to access the node
application capabilities of Transporters. Methods defined by these COM interfaces are directly
implemented by a VendorTransporter COM component. We have shown how Transporter HAL
API versioning is achieved through the use of the QueryInterface capability which is inherent
within COM. Interfaces have also been used to attempt to reduce the level of binary dependence
between the Enabler and Transporter plug-ins.

The next section focuses on how Transporter plug-ins that comply with our proposed HAL design
are loaded by our proposed version of the Redesigned Enabler. The section also describes how
our design has been implemented on three popular operating systems, namely Windows, Linux,
and Macintosh.

5.3 Proposed Plug-In Loading Mechanism

Section 4.3 on page 59 has described the current plug-in loading mechanism. Our proposed plug-
in loading mechanism is similar to the current mechanism up to the point of creation of a new
MLANDeviceTransporter or MLANPCTransporter instance, as shown in Figure 4.4 on page 59.
In particular, new mLAN devices are identified on the IEEE 1394 bus and an object of type
MLANDeviceTransporter is created for each mLAN device found. We modified the process that
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leads to the creation of an instance of the MLANDeviceTransporter class (shown in Figure 4.5
on page 60) to follow our proposed HAL design.

Figure 5.4 shows a sequence diagram that describes our proposed MLANDeviceTransporter in-
stance creation process. The first difference to note is the absence of the DeviceTransporter class

Figure 5.4: Proposed CreateMLANDeviceTransporter Sequence Diagram

which has been shown in Figure 4.5 on page 60. In the constructor of MLANDeviceTransporter,
we now begin by retrieving the HAL ID of the mLAN device from its config ROM information.
A search is then done through all the loaded Transporter plug-ins to check if a plug-in with a
matching HAL ID has already been loaded. If the plug-in is not already loaded, an attempt is
made to load the plug-in in a platform-specific manner by creating a new instance of the Device-

TransporterPlugin class, as shown by the “< <create(HALID> >” sequence in Figure 5.4. We
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propose a new mechanism for plug-in loading on Windows, Linux, and Macintosh platforms.
Sections 5.3.1, 5.3.2, and 5.3.3 describe the specifics of these three platforms in detail.

Once the plug-in is loaded, a pointer to the DeviceTransporterPlugin object is stored in an array
of pointers to similar objects, where each object represents a loaded plug-in. Assuming that a
plug-in is loaded, an uninitialised instance of the VendorTransporter COM component (shown in
Figure 5.2) is created by calling the CreateNCPlugin function of the DeviceTransporterPlugin

class, as shown by the “CreateNCPlugin(pINC_PLUGIN)” sequence in Figure 5.4. The Crea-

teNCPlugin function is implemented in a platform-specific manner and returns a pointer to the
VendorTransporter COM component. We have indicated that the INC_PLUGIN COM interface
is mandatory for all Transporter plug-ins, hence the pointer returned by CreateNCPlugin is of
type INC_PLUGIN. The existence of optional COM interfaces that may be implemented by the
VendorTransporter COM component is queried via the INC_PLUGIN COM interface pointer by
calling the QueryInterface function.

After the uninitialised VendorTransporter COM component is created, the Enabler address2 is
set via the MLANDeviceTransporter object, as shown by the “SetEnablerAddress()” sequence
in Figure 5.4. This results in the unique node ID of the workstation (on which the Enabler is
running) being written to a register of the Transporter. Note that there may be more than one
Enabler on an IEEE 1394 bus. However, each Transporter is controlled by one Enabler. If setting
the Enabler address succeeds, it implies that the specified Transporter is now under the control of
the Enabler. Upon successfully setting the Enabler address, the newly created VendorTransporter

COM component is initialised by calling the InitializeTransporter function of the INC_PLUGIN

COM interface. It is during this initialisation that a pointer to the I_IEEE1394Device interface
(mentioned in section 5.2) is forwarded to the VendorTransporter COM component for its sub-
sequent use.

After initialisation, a new instance of the NodeController class (shown in Figure 5.1) is cre-
ated, as shown by the “< <create> >” sequence that is labelled 12 in Figure 5.4. This Node-

Controller object is responsible for fulfilling connection management requests, and hence it is
dependent on the INC_PLUGIN COM interface as shown in Figure 5.1. We defined methods of
the INC_PLUGIN COM interface in a manner that resolves shortcomings identified in section
4.4.2. The INC_PLUGIN COM interface now forms the foundation of the Transporter HAL API
and its important functions are described in Chapter 6. If the VendorTransporter COM compo-
nent implements the INA_PLUGIN COM interface, a new instance of the NodeApplication class

2The Enabler is aware of Enabler address offset for each type of Transporter.



CHAPTER 5. PROPOSED TRANSPORTER PLUG-IN MECHANISM 100

(shown in Figure 5.1) is created, as shown by the “[NodeApplicationExists] < <create> >” se-
quence in 5.4. However, further examination of the NodeApplication class is beyond the scope
of this thesis.

In the context of the above, we now describe the platform-specific implementations of our pro-
posed plug-in loading mechanism. The first implementation was done on the Windows platform
since it inherently supports the development and use of COM components. We also describe how
we enabled portability of the implementation to Linux and Macintosh platforms.

5.3.1 Proposed Windows Transporter Plug-In Loading Mechanism

Section 4.3.1 has described how plug-in loading is currently done on Windows. In particular,
it is done in the constructor of the DeviceTransporterPlugin class (shown in Figure 5.1). A
conceptual summary of this mechanism has been shown in Figure 4.10 on page 66. We propose
a refined plug-in loading mechanism that complies with our proposed HAL design. Figure 5.5
shows a sequence diagram for our proposed Transporter plug-in loading mechanism and creation
of a VendorTransporter COM component under Windows. These two aspects have platform-
specific implementations and have not been shown in detail in Figure 5.4.

As described in section 4.3.1, and also shown by the “CoInitialize” sequence in Figure 5.5, the
starting point of the DeviceTransporterPlugin constructor is the loading of the COM libraries by
calling the CoInitialize function. This is followed by an iterative search of the registry for the
plug-in with a matching HAL ID, as described in section 4.3.1. Up to this point, everything is
done in exactly the same manner as before. We now highlight and provide supporting motivations
for the changes we propose for plug-in loading.

For each HAL plug-in that exists within the registry, we are no longer creating a single instance
of the COM component using the CoCreateInstance function. We acknowledge the possibility
of having more than one mLAN device using the same plug-in. The CoCreateInstance function
creates a single uninitialised object of the class that is associated with a specified class identifier
(CLSID). On the contrary, we aim to create multiple objects based on a single CLSID. The
Microsoft Developer Network documentation provides guidelines on how this can be achieved
[Microsoft Developer Network, 2007b]. In particular, the guidelines recommend the use of the
CoGetClassObject function, which we are now making use of. The CoGetClassObject function
provides a pointer to an interface on a class object associated with a specified CLSID. An excerpt
of the guidelines is quoted below to indicate our motivation for following this route. Note that
some text has been omitted and this is indicated by the ellipsis.
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Figure 5.5: Proposed Plug-In Loading Mechanism on Windows

“Call CoGetClassObject directly when you want to create multiple objects throu-
gh a class object for which there is a CLSID in the system registry. ... Most
class objects implement the IClassFactory interface. You would then call IClassFac-
tory::CreateInstance to create an uninitialised object. It is not always necessary to go
through this process. To create a single object, call instead the CoCreateInstanceEx
function, which allows you to create an instance on a remote machine. This replaces
the CoCreateInstance function, which can still be used to create an instance on a
local machine. Both functions encapsulate connecting to the class object, creating
the instance, and releasing the class object.” [Microsoft Developer Network, 2007b]
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As shown by the “CoGetClassObject(...)” sequence in Figure 5.5, a handle to the class object
is retrieved in each iteration of the search by calling the CoGetClassObject function with the
CLSID of the each HAL plug-in within the registry. This class object implements the IClass-

Factory interface. The CreateInstance function is the most important function of the IClassFac-

tory interface that we make use of. The CreateInstance function is called in order to create an
uninitialised instance of the VendorTransporter COM component, as shown by the “CreateIn-

stance(IID_NCPlugin, pINC_Plugin)” sequence that is labelled 7 in Figure 5.5. This instance
is referenced via a pointer to the mandatory INC_PLUGIN COM interface. The HAL Vendor
ID and HAL Model ID are then queried via the GetHALVendorID and GetHALModelID func-
tions of the INC_PLUGIN COM interface, respectively. Note that a combination of the HAL
Vendor ID and HAL Model ID represents a HAL ID. If the HAL ID of the plug-in matches the
one intended to be loaded, one can be certain that the plug-in has been successfully loaded. For
a successfully loaded plug-in, the pointer to the class object that would have been retrieved by
calling the CoGetClassObject function is kept in memory, otherwise the pointer to the class ob-
ject is released before the next iteration of the search, as shown by the “[No match for HAL ID]

Release()” sequence that is labelled 12 in Figure 5.5.

After a plug-in has been loaded, creation of VendorTransporter COM component instances for
devices that use the plug-in is done by calling the CreateInstance function of IClassFactory

interface via the pointer to the class object. This process is shown by the sequences labelled 13
through to 16 in Figure 5.5. Only when the plug-in is unloaded will the pointer to the class object
be released. A plug-in is unloaded when the last device that makes use of the plug-in is removed
from the IEEE 1394 bus. In the current plug-in loading mechanism, a COM interface function
such as DisposeTransporter has been defined to explicitly free up memory being used by an
instance of a Transporter. We have removed this explicit memory management and replaced it
with COM reference counting (AddRef and Release functions of a COM interface), as described
in section 5.2.

The CoCreateInstance function is suited to creating a single object, while the nature of connec-
tion management environments requires that multiple objects be created for the same plug-in.
The CoCreateInstance function encapsulates functions that initially retrieve a class object, then
create an instance of a COM component via the class object, and then finally release the class
object. Using CoCreateInstance for each device on a network brings with it the unnecessary
overhead of getting a class object and releasing it each time an instance for a device is created.
Our proposed approach removes this overhead for each instance of a COM component created.
In particular, we get the class object when the first device that uses a plug-in is added to the
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network, and only release the class object when the last device that uses the same plug-in is re-
moved from the network. The reduction in overhead may be insignificant. However, it results in
an implementation that truly models COM as a plug-in mechanism.

The next two sections describe how the COM implementation we have just described was ported
to Linux and Macintosh platforms. Bear in mind that these two platforms do not allow software
developers to write COM components in the manner in which Microsoft have provided for the
Windows platform. We show how we use the capabilities of each of these platforms, Linux and
Macintosh, to port our Windows COM implementation.

5.3.2 Proposed Linux Transporter Plug-In Loading Mechanism

We continue to use a shared library approach for plug-in loading on Linux, as described for the
current implementation of the plug-in loading mechanism in section 4.3.2, although with some
design modifications. A conceptual summary of the current plug-in mechanism on Linux has
been shown in Figure 4.12 on page 69. We propose that shared libraries representing Transporter
plug-ins expose three global functions that are declared as follows:

extern “C” INC_PLUGIN* CreateInstance()

extern “C” void GetHALVendorID(LONG* pHALVendorID)

extern “C” void GetHALModelID(LONG* pHALModelID)

Figure 5.6 shows a sequence diagram illustrating our proposed “COM” implementation of the
plug-in loading mechanism on Linux. Plug-in loading occurs in the constructor of the Device-

TransporterPlugin class (shown in Figure 5.1). The starting point of this constructor is locating
the shared libraries of all Transporter plug-ins that interact with the Enabler by calling the system

function, as shown by the “system(...)” sequence in Figure 5.6, and also described in detail in
section 4.3.2. This is followed by an iterative search for a plug-in with a matching HAL ID, as
shown by the sequences labelled 5 through to 11 in Figure 5.6. In particular, each of the shared
libraries is loaded by calling the dlopen function, while the dlsym function is used to get the
addresses of the GetHALVendorID and GetHALModelID functions of the loaded shared library.
If either of the addresses cannot be retrieved, the shared library is unloaded by calling the dl-

close function. Upon retrieval of the addresses for the GetHALVendorID and GetHALModelID

functions, the HAL Vendor ID and HAL Model ID of the plug-in are obtained by calling the
corresponding functions. If the HAL ID of the plug-in matches the one that is required, the
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Figure 5.6: Proposed Plug-In Loading Mechanism on Linux

shared library is further queried for the address of the CreateInstance function. Upon retrieval of
the address of the CreateInstance function, one can be certain that the plug-in has been success-
fully loaded and a handle to the shared library is kept in memory together with a pointer to the
CreateInstance function. After a plug-in has been loaded, instances of the VendorTransporter

“COM” components that correspond to the plug-in are created via the CreateNCPlugin function
of the DeviceTransporterPlugin class. The CreateNCPlugin function is fulfilled in terms of the
CreateInstance function of the shared library.

Unlike Windows, there is no conventional COM implementation for Linux. Guidelines described
by Box [1998] were followed to provide a COM-like implementation for plug-ins created on
Linux. In particular, a custom IUnknown "COM" interface was defined as shown below:
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class IUnknown {

public:

virtual void AddRef() = 0;

virtual UInt32 Release() = 0;

virtual void* QueryInterface(const char*

interfaceTypeName) = 0;

};

Section 5.2 has already described the role of the IUnknown COM interface in reference counting
and querying the existence of interfaces that may be implemented by a COM component. Our
INC_PLUGIN "COM" interface derives from our custom IUnknown “COM” interface. To illus-
trate the concept, an INC_PLUGIN “COM” interface definition with only one member function
is shown is shown below:

class INC_PLUGIN : public IUnknown {

public:

virtual OSError Initialize(...) = 0;

:

:

//More member functions omitted for brevity.

};

A common aspect to highlight in the above "COM" interface definitions is that they are abstract
classes with pure virtual member functions. The onus is on the plug-in writer to provide imple-
mentations for each of the interface functions. Third party plug-in writers are typically presented
with these "COM" interfaces. We show an example class definition for a VendorTransporter

“COM” component (named GenericVendorTransporter) below:

class GenericVendorTransporter : public INC_PLUGIN,

public INA_PLUGIN {

public:

//IUnknown Functions

void AddRef();
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UInt32 Release();

void* QueryInterface(const char* interfaceTypeName);

//INC_PLUGIN Functions

...

//INA_PLUGIN Functions

...

};

Implementations for the methods of our custom IUnknown “COM” interface have to be provided
in the GenericVendorTransporter “COM” component’s implementation. The AddRef and Re-

lease functions manage the GenericVendorTransporter “COM” component’s lifetime in a man-
ner that is recommended for all COM components. The QueryInterface function checks if the
GenericVendorTransporter “COM” component implements a particular optional interface. In
the GenericVendorTransporter example shown above, the QueryInterface function queries the
existence of an implementation for the INA_PLUGIN “COM” interface and, if present, it returns
a pointer to the interface. For completeness, we describe the implementations of the Create-

Instance, AddRef, Release, and QueryInterface functions in the context of the GenericVendor-

Transporter example shown above.

The CreateInstance function is a global function of a shared library that represents a Transporter
plug-in. It is the entry point to any interaction between the Enabler and Transporters. The
definition of an example of the CreateInstance function’s implementation is shown below:

extern "C" INC_PLUGIN *CreateInstance() {

INC_PLUGIN* pNCPluginPtr = new GenericVendorTransporter();

if(pNCPluginPtr)

pNCPluginPtr->AddRef()

return pNCPluginPtr;

}

As shown above, the CreateInstance function creates an instance of the GenericVendorTrans-

porter "COM" component. Each newly created instance is referred to via its INC_PLUGIN

“COM” interface. The INC_PLUGIN “COM” interface is a mandatory interface that all Trans-
porter plug-ins should implement. It is important to note that each GenericVendorTransporter
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object has a variable, m_cPtrs, that keeps track of the number of pointers to the object. There-
fore, the constructor of the GenericVendorTransporter class ensures that m_cPtrs is initialised to
a value of zero, in addition to any other required initialisation. After a GenericVendorTransporter

instance has been successfully created, the AddRef function, defined by our custom IUnknown

interface, is called. The AddRef function simply increments the count that is kept by the m_cPtrs

variable as shown below:

void GenericVendorTransporter::AddRef() {

++m_cPtrs;

}

Conversely, the Release function, also defined by our custom IUnknown interface, decrements the
m_cPtrs variable. However, a special condition is taken into account. This condition is that when
the value of m_cPtrs reaches the initial value of zero, it implies that GenericVendorTransporter

object is no longer referenced by the Enabler, and hence the object may be deleted from memory.
An implementation of the Release function is shown below.

UInt32 GenericVendorTransporter::Release() {

if(--m_cPtrs == 0)

delete this;

return m_cPtrs;

}

In order to allow the Enabler to query whether a Transporter plug-in implements certain optional
"COM" interfaces, the QueryInterface function of our IUnknown "COM" interface is used. An
example of a QueryInterface implementation for our proposed plug-in loading mechanism is
shown below:

void* GenericVendorTransporter::QueryInterface(

const char* interfaceTypeName){

void * pvResult = 0;

if(strcmp(interfaceTypeName, “INA_PLUGIN”) == 0)
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pvResult = static_cast<INA_PLUGIN*>(this);

else

return 0; //Request for unsupported interface

((INC_PLUGIN*)pvResult->AddRef();

return pvResult;

}

As shown above, the textual name of the "COM" interface that is queried is passed as an ar-
gument, namely “const char* interfaceTypeName”. If the interface is supported, the AddRef

function is called and a “void*” pointer to the queried interface is returned.

Section 5.2 has already mentioned that a set of rules exist to govern the calling of AddRef and
Release functions of the IUnknown COM interface. Our AddRef and Release functions are im-
plemented in a manner that is recommended for COM reference counting. Note that our imple-
mentations of AddRef, Release and QueryInterface shown above were adapted from Box [1998]
without any semantic modification.

Some of the common scenarios of when AddRef is called include [Box, 1998]:

1. When the Enabler writes a non-null interface pointer to a local variable.

2. When a Transporter plug-in function writes a non-null interface pointer to one of its pa-
rameters, where this parameter has been passed by reference.

3. When a Transporter plug-in returns a non-null interface pointer as a physical result of a
function. An example of this is clearly illustrated by the CreateInstance and QueryInter-

face functions described above.

4. When the Enabler writes a non-null interface pointer to a data member of an object.

Similarly, some of the common scenarios of when Release is called include [Box, 1998]:

1. Prior to overwriting a non-null local variable or data member that contains an interface
pointer within the Enabler.

2. Prior to leaving the scope of a non-null local variable that contains an interface pointer
within the Enabler.
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3. Prior to overwriting a non-null data member of an object that contains an interface pointer
within the Enabler.

4. Prior to leaving the destructor of an object that has a non-null interface pointer as a data
member within the Enabler.

The functions shown above are all that are required for the C++ "COM" implementation of our
proposed plug-in loading mechanism on Linux. While this implementation is language depen-
dent, C++ in our case, we benefit from the advantages of proper COM versioning and binary
independence between the Enabler and Transporter plug-in implementations. The next section
describes how our proposed plug-in mechanism was implemented on the Macintosh platform.

5.3.3 Proposed Macintosh Transporter Plug-In Loading Mechanism

Section 4.3.3 mentioned that while there is no Macintosh implementation for the current version
of the Redesigned Enabler, Okai-Tettey [2005] suggests that a shared library approach, similar to
the one used on Linux, could be used for plug-in loading on the Macintosh platform. The previ-
ous section, section 5.3.2, has described how the shared library approach on Linux was modified
to operate in terms of our proposed plug-in loading mechanism, which is more representative of
COM fundamentals. Our modified version of the Redesigned Enabler implementation was ported
to the Macintosh platform. In this section, we describe an alternative that facilitates porting of
Windows COM components directly to Mac OS X. We also give motivations for discarding this
alternative despite its potential. A shared library approach, similar to that on Linux, was used for
plug-loading on the Macintosh platform.

5.3.3.1 An Alternative to the Shared Library Approach: COM on Mac OS X

Before adopting a shared library approach for plug-in loading on the Macintosh platform, an
alternative implementation, documented in “Component Object model (COM) Development on
Mac OS X” [Hunt, 2004], was considered. In this implementation, Hunt [2004] suggests that it
is possible to write COM components that have the potential to run on both Windows and Mac
OS X with no code changes.

Hunt [2004] indicates that Mac OS X has a COM architecture. However, this COM architec-
ture exists only to support Apple Corporation’s Core Foundation Plugins architecture. The Core
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Foundation is a framework that provides fundamental software services useful to application ser-
vices, application environments, and to applications themselves [Apple Computer, Inc., 2006a].
The Core Foundations Plugins architecture is a part of the Core Foundation framework that
provides plug-in support for applications. In spite of this, Hunt [2004] has created a software de-
velopment kit that allows development of COM components, using Apple Corporation’s COM
architecture, as is done on Windows. With this development kit, COM components written on
Windows can potentially run under Mac OS X with no code changes, provided that certain con-
straints are adhered to.

Since COM under Mac OS X mainly exists to support the Core Foundation Plugins architecture,
it can only be implemented using dynamic link libraries (DLL). In the context of the Windows
Enabler/Transporter implementation, COM is implemented in terms of DLLs hence this con-
straint does not affect its implementation on Mac OS X. One significant difference between
COM under Mac OS X and COM under Windows is the absence of a registry of COM com-
ponents on Macintosh. On Macintosh, DLLs are manually loaded into memory. Recall from
sections 4.3.1 and 5.3.1 that our Windows plug-in loading mechanism relies on the presence of
a registry. Hunt [2004] suggests that the absence of a registry of COM components can be dealt
with in one of two ways: either by fabricating a registry, or manually loading DLLs on both
Windows and Macintosh, in order to allow for portability of code without any code changes.

5.3.3.2 Motivations for Remaining with the Shared Library Approach

The COM implementation for Mac OS X that has been described in section 5.3.3.1 above shows
great potential with regards to easing the portability of code from Windows to Mac OS X. How-
ever, a decision was made to discard this alternative and rather implement plug-in loading on
the Macintosh platform using shared libraries in a manner similar to the Linux plug-in load-
ing mechanism described in section 5.3.2. A number of considerations influenced our decision,
namely:

• Should anything go wrong with plug-in implementations, there is no liability. The imple-
mentation for COM on Mac OS X described above is based on a single individual’s (Hunt
[2004]) code, hence Apple Corporation is not obliged offer developer support.

• Any third party Transporter plug-in writers have to first understand Hunt’s implementation.
This may potentially complicate and/or lengthen the task of writing Transporter plug-ins.
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• Fabricating a registry for COM components or manually loading DLLs might result in
error prone implementations.

• Hunt [2004] describes the mechanism in the context of “Mac OS X”. There is no documen-
tation to show that the implementation works for other versions of the Macintosh operating
system.

• The shared library approach described in section 5.3.2 is simple to implement and is based
on standard shared library mechanisms.

5.3.3.3 The Shared Library Approach on Macintosh

Our proposed Redesigned Enabler implementation on Macintosh uses exactly the same “COM”
mechanism as on Linux, as described in section 5.3.2. However, the mechanism for IEEE 1394
messaging on Macintosh workstations differs from that on Windows or Linux workstations.
Therefore, platform-specific code regarding the Enabler’s interaction with IEEE 1394 devices
had to be written. In writing the platform-specific code, we followed guidelines that are docu-
mented in the “FireWire Device Interface Guide” [Apple Computer, Inc., 2006c], since, at the
time of implementation, the Redesigned Enabler had not been implemented for the Macintosh
platform, as mentioned in section 4.3.3 on page 70. We now give an indication of the modifica-
tions that were made to our proposed design of the Enabler in order to make it compatible with
the IEEE 1394 messaging mechanism on Macintosh.

The object model shown in Figure 5.1 on page 92 accurately models our proposed design for an
Enabler that runs on a Windows or Linux workstation. Of interest to us, the object model shows
a class, named IEEE1394Enabler, which models the Enabler. The IEEE1394Enabler class con-
tains an aggregation of objects of the IEEE1394Interface class. The IEEE1394Interface class
models each IEEE 1394 interface card on the PC that runs the Enabler and is associated with the
OS1394Interface class. The OS1394Interface class abstracts the platform-specific implementa-
tion that is used to interact with IEEE 1394 interface cards on the PC. The Linux1394Interface

and Windows1394Interface classes represent platform-specific implementations for the OS1394Interface

class on Linux and Windows, respectively. The Linux1394Interface class functionality is fulfilled
through the Linux kernel’s raw1394 module which allows for read, write, and lock transactions
[Linux 1394, 2006], while the Windows1394Interface class functionality is fulfilled through an
IEEE 1394 bus driver which also enables read, write, and lock transactions [Okai-Tettey, 2005].
Note the absence of a platform-specific implementation for Macintosh in this model. This is
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because IEEE 1394 messaging on Macintosh is done in a manner that is not compatible with the
design that is shown in Figure 5.1.

Our proposed shared library mechanism was implemented on the Mac OS X version of the
Macintosh operating system. In this version, IEEE 1394 messaging is done via in-kernel objects
that belong to the IOFireWire family [Apple Computer, Inc., 2006c]. Figure 5.7 shows a stack of
these objects. For each IEEE 1394 interface on the Macintosh, the IOFireWire family publishes

Figure 5.7: IEEE 1394 Device Stack for Mac OS [Apple Computer, Inc., 2006c]

an IOFireWireController object in the I/O Registry. The IOFireWireController object provides
bus management services. For each device with a valid bus information block within its config
ROM, the IOFireWire family publishes an IOFireWireDevice object in the I/O Registry. The
IOFireWireDevice object keeps track of the device’s node ID and certain information of its config
ROM. For each unit directory found in the device’s config ROM, the IOFireWire family publishes
an IOFireWireUnit object in the I/O Registry. The IOFireWireUnit object contains information
stored within the corresponding unit directory.

The IOFireWire family provides an IOFireWireLib device interface, which is used by the Enabler
to access the I/O registry and to perform standard FireWire transactions. Based on the capabilities
of this device interface, the Enabler object model was modified to the one shown in Figure 5.8.
The important difference to note in this version of the Enabler’s object model is that there is
an IEEE1394Enabler class that is directly associated with an IEEE1394Network class. The
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Figure 5.8: Proposed Redesigned Enabler Object Model for the Macintosh Platform

IEEE1394Network class contains an aggregation of objects of the IEEE1394Device class. In this
model, we have removed the classes that model the FireWire interfaces on the Macintosh, since
the IEEE1394Network class has direct access to the I/O Registry via the IOFireWireLib device
interface. The IOFireWireLib device interface contains functionality that includes identifying
new devices as they are added to the network, identifying devices as they are removed from the
network, and functionality to carry out read, write, and lock transaction on a given IEEE 1394
device. As a result of direct access to the I/O Registry which only returns available devices, and
our focus on a single bus environment, we have also removed the IEEE1394Bus class from the
model. However, the rest of the model remains the same.

5.4 Chapter Summary

In this chapter, we have given a description of our proposal for a Transporter plug-in mechanism
that attempts to fully utilise the capabilities of COM as a plug-in mechanism. These capabilities
enable robust Transporter HAL API versioning which eliminates the need for an intermediary
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function call that resolves each Transporter HAL API function call. In addition, we have also de-
scribed how our proposed mechanism attempts to reduce the level of binary dependence between
the Enabler and Transporter plug-ins. The chapter ended with a description of platform-specific
implementations of our proposed Transporter plug-in mechanism, namely on Windows, Linux,
and Macintosh operating systems. We have also shown the important changes to the Enabler
model that were influenced by our Macintosh implementation.

Chapter 4 has described the shortcomings within two main research components of our investiga-
tion, namely the Transporter plug-in mechanism and the Transporter HAL API. We have shown
how the shortcomings within the current Transporter plug-in mechanism were resolved. The next
chapter, Chapter 6, focuses on how the shortcomings within the current Transporter HAL API
were resolved. In particular, the chapter describes important aspects of our proposal for a new
Transporter HAL API.



Chapter 6

Proposed Transporter HAL API

The previous chapter has described our proposed Transporter plug-in mechanism. In this chapter,
we describe how the shortcomings raised in Chapter 4 with regards to the Transporter HAL API
were resolved. The Transporter HAL API, the second main component of our investigation, de-
fines an interface that governs the interaction between the Enabler and Transporters from various
vendors, in a hardware independent manner.

We describe our proposal for a new Transporter HAL API that fully utilises all capabilities of
the Open Generic Transporter (OGT). We acknowledge that the OGT provides a high level ab-
straction of the functions of the A/M Data Transmission Protocol. Consequently, our proposed
Transporter HAL API is biased towards the OGT. In support of our proposed Transporter HAL
API we describe the important concepts of three HAL implementations that demonstrate inter-
operability between OGT-based and non-OGT-based Transporters. We also give an overview of
a test application that was created to manually test each of the Transporter HAL API functions.

6.1 Proposed Transporter HAL API Implementations

Our proposed Transporter HAL API defines methods that are necessary to access the node con-
troller capabilities of Transporters, including the additional node controller capabilities that have
been revealed by the OGT guideline document. These methods are defined in the INC_PLUGIN

COM interface that has been mentioned in section 5.2 on page 93. At the time of this writing,
the OGT document did not provide guidelines for node application capabilities. Hence, our pro-
posed Transporter HAL API does not currently provide methods to access the node application
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capabilities of Transporters, although section 5.2 on page 93 has mentioned that such capabili-
ties may be accessed via methods defined in an INA_PLUGIN COM interface of the Transporter
HAL API.

We acknowledge that the OGT concept provides a high level abstraction that completely en-
capsulates the underlying workings of the A/M Data Transmission Protocol. Consequently, our
proposed Transporter HAL API is biased towards the OGT guidelines. In order to resolve the
shortcomings raised in section 4.4.2 on page 78, our proposed Transporter HAL API design is
based on the ISP-NCP concept, provides explicit Plug Layout switching capabilities to handle
device-specific quirks, supports multiple word clock outputs, and allows for word clock source
selection for each word clock output [Chigwamba and Foss, 2007].

Three proof-of-concept Transporter HAL implementations were created based on our proposed
Transporter HAL API, namely:

1. An OGT plug-in implementation for Transporters that comply with the guidelines laid out
in the OGT document. This plug-in was intended to demonstrate full utilisation of the
OGT capabilities that are not reflected by the current Transporter HAL API.

2. A plug-in implementation for the MAP4 Evaluation board (described in section 4.4.1 on
page 72). This plug-in implementation demonstrated backwards compatibility of our pro-
posed Transporter HAL API when implemented in terms of an existing hardware architec-
ture that is fully compatible with the current Transporter HAL API.

3. A PC Transporter implementation that demonstrated how backwards compatibility can
be achieved by fulfilling our proposed Transporter HAL API function calls in terms of
the current Transporter HAL API function calls. The need for such an implementation
resulted from the tight coupling of the mLAN Streaming Driver to the current Transporter
HAL API. Therefore, a mechanism was implemented to map our proposed Transporter
HAL API functionality to the current Transporter HAL API functionality.

In this section we describe important concepts of our proposed INC_PLUGIN COM interface in
the context of the three proof-of-concept HAL implementations mentioned above. This COM
interface defines the mandatory node controller functions that are required to control any Trans-
porter in a vendor independent manner. A comprehensive description of the INC_PLUGIN COM
interface can be found in Appendix B on page 217.
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6.1.1 Open Generic Transporter Plug-In Design and Implementation

Figure 6.1 shows an object model that accurately models the node architecture of the node con-
troller block of the generic Transporter as described in the OGT guideline document [Audio En-
gineering Society - Standards Committee, 2005]. Recall from section 3.3.3.1 on page 49 that the

Figure 6.1: Open Generic Transporter HAL Plug-In Object Model

node controller represents the IEEE 1394 node that is hosted by a device. As shown in the model,
the INC_PLUGIN, GenericTransporter, I_IEEE1394Device, and I_IEEE1394Bus components
represent our proposed HAL design, as described in section 5.2 on page 93. The node controller
block of the generic Transporter is mapped into four main regions, namely the Configuration
Parameter Space, Core Space, Node Controller Space, and Node Application Space. Figure 6.1
shows these regions as the classes ConfigurationSpace, CoreSpace, NodeControllerSpace, and
NodeApplicationSpace, respectively. The PrivateSpace class models a Transporter Control Inter-
face register map that specifies address offsets for the control registers of the four main regions.
We now describe the functions of three of the four regions mentioned above and how these are
accessed via our proposed Transporter HAL API. Recall from section 4.4.2 on page 78 that at the
time of this writing the OGT document did not specify any guidelines for the node application
block of a generic Transporter, and thus we do not describe the functions of the Node Application
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Space.

6.1.1.1 Configuration Parameter Space

The Configuration Parameter Space is a storage area for the non-volatile parameters of a Trans-
porter [Audio Engineering Society - Standards Committee, 2005]. The space comprises a Con-
figuration Bank area to store device configurations, which are restored when a device is turned
on. The Configuration Bank area is represented by an aggregation of BankDataEntry class ob-
jects in Figure 6.1. Our proposed Transporter HAL API does not expose any components of
the Configuration Parameter Space. However, there are certain registers that store A/M Data
Transmission Protocol parameters for a Transporter. These registers are accessed via the Tran-
porter HAL API and are also associated with registers within the Configuration Parameter Space.
Consequently, modification of such A/M protocol parameter registers results in updates of the
associated Configuration Parameter Space registers.

6.1.1.2 Node Controller Space

Registers that relate to the overall operation of a Transporter are contained within the Node
Controller Space [Audio Engineering Society - Standards Committee, 2005]. These registers
include the Enabler address, Transporter mode1, an identifier for the Plug Layout that is currently
in use, and name entries such as the Transporter nickname and firmware version name. We
highlight a new concept that we introduced to the Transporter HAL API, namely the Plug Layout
concept. Plug Layouts are mutually exclusive Transporter configurations that indicate different
Transporter capabilities. As mentioned in section 4.4.2.5 on page 88, we identified bandwidth,
in addition to audio sampling frequencies, as another aspect that could be modelled by Plug
Layouts. This presented a further motivation for the need to change Plug Layouts explicitly via
the Transporter HAL API. The current Transporter HAL API does not take Plug Layouts into
account and therefore, it is impossible for the Enabler to explicitly switch Plug Layouts. In order
to allow the Enabler to have control over Plug Layout switching, our proposed Transporter HAL
API contains the following functions in the INC_PLUGIN COM interface definition:

GetCurrentP lugLayout(∗plugLayoutID) (6.1)

SetCurrentP lugLayout(plugLayoutID) (6.2)

1Specifies the operation mode of the Transporter Restoration block described in section 3.3.3.1 on page 49



CHAPTER 6. PROPOSED TRANSPORTER HAL API 119

In the context of the generic Transporter, the GetCurrentPlugLayout function (function (6.1))
returns the identifier of the Plug Layout that is currently in use, while the SetCurrentPlugLayout

function (function (6.2)) specifies the identifier of the Plug Layout to be used.

6.1.1.3 Core Space

Transporter control registers for the A/M Transport Block of the generic Transporter are imple-
mented by the Core Space [Audio Engineering Society - Standards Committee, 2005]. These
registers are further grouped into five sub-spaces, namely the Plug Layout Table, Isochronous
Stream Plug Space (ISP Space), Node Controller Plug Space (NCP Space), Sync Space, and
Common Space. Figure 6.1 models these sub-spaces as PlugLayoutTable, ISPSpace, NCPSpace,
SyncSpace, and CommonSpace classes, respectively.

PLUG LAYOUT TABLE

As mentioned in section 6.1.1.2 above, our proposed Transporter HAL API now allows for ex-
plicit Plug Layout switching. The OGT guideline document defines a Plug Layout Table as a
read only area which provides the Enabler with information about the types of plugs and word
clocks that a device implements, and the number of plugs of each type that are supported by the
device [Audio Engineering Society - Standards Committee, 2005]. The object model in Figure
6.1 shows the Plug Layout Table design clearly. In particular, the Plug Layout Table comprises
a number of Plug Layouts. Each Plug Layout contains an entry for the Plug Layout name, ISP
Layout, NCP Layout, Sync Source Layout, Sync Group Source Layout, and a Sync Output Mod-
ule Layout. In the object model these components, except for the Plug Layout name which is an
attribute of the PlugLayout class, are shown as ISPLayout, NCPLayout, SyncSrcLayout, Sync-

GrpSrcLayout, and SyncOutModLayout classes, respectively. A brief description of each of these
follows.

Recall from section 3.3.3.2 on page 50 that the generic Transporter introduces the concept of
Isochronous Stream Plugs (ISPs) and Node Controller Plugs (NCPs), where an ISP can be stati-
cally or dynamically associated with number of NCPs. An ISP represents an input or output for
a single isochronous stream to or from the IEEE 1394 bus. An NCP represents an input or output
for a single monaural channel of audio or a single cable of MIDI to or from the node applica-
tion block, and corresponds to a terminator of a sequence (sequence end-point). The ISP Layout
declares all ISP types (shown as the ISPTypeEntry class in Figure 6.1) available in a given Plug
Layout. Plugs with different capabilities or restrictions are declared as different plug types. The
NCP Layout declares all NCP types (shown as the NCPTypeEntry class in Figure 6.1) available



CHAPTER 6. PROPOSED TRANSPORTER HAL API 120

in a given Plug Layout. The Sync Source Layout, Sync Group Source Layout, and Sync Output
Module Layout represent the Sync Block of the A/M Transport Block of the generic Transporter.
The Sync Block supplies word clocks “necessary for driving ISPs and NCPs” [Audio Engineer-
ing Society - Standards Committee, 2005].

ISP AND NCP SPACES

The ISP Space of the generic Transporter implements the control registers for ISPs, while NCP
Space implements registers for NCPs. As mentioned in section 4.4.2.1 on page 78 the current
Transporter HAL API does not take into account the possibility of dynamic associations between
ISPs and NCPs, hence virtual isochronous streams were introduced as shown in Figure 4.15 on
page 83. In order to resolve this, our proposed Transporter HAL API was defined in terms of
ISPs and NCPs. While this design decision was influenced by the OGT document, it is acknowl-
edged that the document provides a hardware independent high level abstraction of the A/M
Data Transmission Protocol. Sections 6.1.2 and 6.1.3 describes two proof-of-concept implemen-
tations that were created to demonstrate backwards compatibility of our proposed Transporter
HAL API. Functions have been defined in the INC_PLUGIN COM interface to query the num-
ber of ISPs/NCPs and to retrieve lists of identifiers2 of ISPs/NCPs as shown below:

GetNumISPs(plugLayoutID, isInput, ∗pNumISPs) (6.3)

GetISPs(plugLayoutID, isInput, listSize, ∗numISPsFound, ∗ispIDList) (6.4)

GetNumNCPs(plugLayoutID, isInput, ncpType, ∗pNumNCPs) (6.5)

GetNCPs(plugLayoutID, isInput, ncpType, listSize, ∗numNCPs, ∗ncpIDList) (6.6)

With regards to ISPs, the Enabler calls the GetNumISPs function (function (6.3)) to retrieve the
total number of ISPs, *pNumISPs, of a direction specified by isInput in a Plug Layout that is
identified by the plugLayoutID identifier. Under normal circumstances, plugLayoutID refers to
the ID of the Plug Layout configuration that a device is using at a given time. Armed with the
knowledge of the number of ISPs (*pNumISPs) to expect in a given Plug Layout, the Enabler
calls the GetISPs function (function (6.4)) to retrieve a list of unique ISP identifiers (ISP IDs),
*ispIDList, for all ISPs of a direction specified by isInput in a Plug Layout that is identified
by plugLayoutID. Each of the ISP IDs retrieved is then used by the Enabler to build its object
model of the Transporter. In particular, each ISP ID results in the creation of an instance of the
IsochronousStreamPlug class, as shown in the object model in Figure 5.1 on page 92.

2Unique indexes relative to the OGT register set
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The retrieval of NCP IDs is similar to that for ISP IDs. However, in addition to direction, NCPs
are further distinguished by the type of sequences they terminate, namely audio or MIDI. In par-
ticular, the Enabler calls the GetNumNCPs function (function (6.5)) to retrieve the total number
of NCPs, *pNumNCPs, of a given type and direction. Based on the number of NCPs (*pNum-

NCPs) retrieved, the Enabler calls the GetNCPs function (function (6.6)) to retrieve a list of
unique NCP identifiers (NCP IDs), *ncpIDList. These NCP IDs are used to build the Enabler’s
object model. In particular, for each retrieved NCP ID, the Enabler creates an instance of the
NodeControllerPlug class, as shown in the object model in Figure 5.1 on page 92. For NCP IDs
that correspond to MIDI NCPs, the instance created is of the NodeControllerMIDIPlug class,
while for NCP IDs that correspond to audio NCPs, the instance created is of the NodeCon-

trollerAudioPlug class. The NodeControllerAudioPlug and NodeControllerMIDIPlug classes
both derive from the NodeControllerPlug class as shown in Figure 5.1 on page 92.

Making Dynamic ISP-to-NCP Associations

The ISP-NCP model was incorporated in the Transporter HAL API in order remove the software

mapping structure that led to the concept of virtual isochronous streams, as shown in Figure 4.15
on page 83. The GetNumISPs, GetISPs, GetNumNCPs, and GetNCPs functions (functions (6.3),
(6.4), (6.5), and (6.6) on page 120) were introduced to query the number of ISPs/NCPs and their
corresponding unique identifiers.

With reference to Figure 3.17 on page 50, ISPs interface directly with the IEEE 1394 bus and
receive or transmit isochronous streams that comprise audio or MIDI sequences. Recall the
distinction between input and output in the context of isochronous streams, as described in sec-
tion 4.4.2.1 on page 78. Input isochronous streams are received by the Transporter from the
IEEE 1394 bus via input ISPs. On the other hand, output isochronous streams are transmitted
onto the IEEE 1394 bus from the Transporter via output ISPs. Input ISPs may be statically or
dynamically associated with one or more input NCPs. Each input NCP is configured to receive
an audio sequence or MIDI subsequence of a received isochronous stream, which can be played
out via the Transporter’s hardware plugs. Conversely, output NCPs receive audio samples and
MIDI messages from a host Transporter’s hardware plugs. One or more output NCPs may be dy-
namically or statically associated with an output ISP for transmission of the data onto the IEEE
1394 bus. Each of the associated NCPs is configured to pack audio samples or MIDI messages
at a particular position within each isochronous packet that gets sent onto the bus. This position
corresponds to the sequence or subsequence number.

We focused on alleviating the problems resulting from the possibility of dynamic associations
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between ISPs and NCPs. In doing so, our proposed Transporter HAL API defines the following
functions in the INC_PLUGIN COM interface:

GetAttachedISP (ncpID, ∗ispID, ...) (6.7)

SetAttachedISP (ncpID, ispID) (6.8)

Attach(ncpID) (6.9)

Detach(ncpID) (6.10)

The GetAttachedISP function (function (6.7)) retrieves the ID, *ispID, of the ISP that an NCP,
identified by ncpID, is associated with. Some function arguments have been omitted for con-
ceptual clarity and these are indicated by the ellipsis. Conversely, the SetAttachedISP function
(function (6.8)) is used to dynamically associate an NCP, identified by ncpID, with an ISP that
is identified by ispID. The Attach function (function (6.9)) is used to commence data transfer
between an NCP and its associated ISP, while the Detach function (function (6.10)) stops the
data transfer between an NCP and its associated ISP.

A consequence of incorporating the ISP-NCP model into the Transporter HAL API is the elim-
ination of the additional complexity introduced by the concept of virtual isochronous streams

shown in Figure 4.15 on page 83. Figure 6.2 shows how our proposed Transporter HAL API has
removed this additional complexity in the OGT HAL plug-in implementation.

Figure 6.2: Proposed OGT Plug-In Implementation Without Mapping Structure for Inputs

This diagram shows input ISPs and input NCPs, where the input ISPs receive unique isochronous
streams from the IEEE 1394 bus. These input ISPs are associated with input NCPs, where
each NCP extracts audio/MIDI data at a particular position (sequence/subsequence) within each



CHAPTER 6. PROPOSED TRANSPORTER HAL API 123

isochronous packet cluster of a received isochronous stream. The audio/MIDI extracted by the
NCPs is played out on the Transporter’s host device plugs, although not shown in the diagram.

Figure 6.2 above shows the case for input ISP and input NCP association. The case for output

ISP and output NCP associations is shown in Figure 6.3. The output NCPs shown in the diagram

Figure 6.3: Proposed OGT Plug-In Implementation without Mapping Structure for Outputs

typically receive audio channels or MIDI messages from the Transporter’s host device plugs.
These audio channels or MIDI messages are packed at particular positions within the isochronous
packet clusters of the isochronous streams that are transmitted by the output ISPs onto the IEEE
1394 bus. It is common for Transporters to have fewer output ISPs than input ISPs as shown by
contrasting Figures 6.2 and 6.3. This due to the fact that input ISPs receive isochronous streams
that are simultaneously transmitted by more than one other transmitter, while output ISPs only
transmit isochronous streams from the host Transporter. Each ISP may only receive or transmit
one isochronous stream. Therefore, in order to concurrently receive sequences from multiple
isochronous streams, a Transporter requires more input ISPs.

Starting and Stopping of Transmission or Reception

In addition to eliminating complexities due to the software mapping structure and virtual isochronous

streams, as described above, our proposed Transporter HAL API allows for individual control
over ISPs. This individual control has resulted in, for example, functions previously defined to
collectively start and stop transmission or reception being modified to allow for individual con-
trol over ISPs, where possible. The Start and Stop functions (functions (4.6) and (4.7) on page
85) described in section 4.4.2.2 have been modified to allow for individual control over ISPs, as
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shown below:

Start(ispID) (6.11)

Stop(ispID) (6.12)

In particular, our Start function (function (6.11)) commences transmission or reception of isochr-
onous streams with a given channel number for an ISP that is identified by ispID. On the other
hand, our Stop function (function (6.12)) stops transmission or reception of isochronous streams
with a given channel number for an ISP that is identified by ispID. Section 4.4.2.2 on page 85
described how collective control over output ISPs may result in bandwidth wastage. We have
eliminated this, where possible, by allowing individual control over independent ISPs. This
means that it is possible to start a single output ISP from a group of output ISPs, and hence only
the required isochronous resources are allocated. Although there are no bandwidth problems
resulting from collective control over input ISPs, our proposed Transporter HAL API model also
means that input ISPs can now be controlled individually, where possible.

SYNC SPACE

The object model in Figure 6.1 on page 117 shows the Sync Space modelled as the SyncSpace

class. This SyncSpace class is associated with other classes that model the components of the
Sync Block of a generic Transporter, namely the SyncSrc, SyncGrpSrc, and SyncOutMod classes.
The Sync Space of the generic Transporter contains control registers for the Sync Block. In
particular, the Sync Block comprises a pool of Sync Sources, Sync Group Sources and Sync

Output Modules, as shown in Figure 6.4 [Audio Engineering Society - Standards Committee,
2005]. These supply word clocks to the Plug Block. Recall from Figure 3.17 on page 50 that
the Plug Block mainly consists of ISPs and NCPs. The word clocks supplied to the Plug Block
control the rate of analog-to-digital and digital-to-analog conversion.

A Sync Source represents any functional unit that is capable of producing or supplying word
clocks to the Plug Block. The complete collection of all Sync Sources makes up a device’s pool
of word clock sources. Three main types of word clock sources are:

• SYT regeneration circuits. This type word clock source receives SYT timing information
from the IEEE 1394 bus and regenerates the word clocks using techniques such as the
Phase Locked Loop (PLL).

• External word clock inputs. This type of word clock source originates from a source, other
than the IEEE 1394 bus, that is external to a device, such as the word clock information



CHAPTER 6. PROPOSED TRANSPORTER HAL API 125

Figure 6.4: Open Generic Transporter Sync Block [Audio Engineering Society - Standards Com-
mittee, 2005]

from an ADAT digital audio signal. Recall from section 4.4.2.3 on page 86 that the current
Transporter HAL API does not allow for selection of these external word clock sources.

• Internal clock generation circuits such as a device’s built-in clock.

Sync Group Sources represent a device’s concurrently usable word clocks, as shown in Figure
6.4. In particular, they model a group of Sync Sources where only one source may be active at
a time. Sync Output Modules represent the word clock inputs to the Plug Block. In the context
of the Sync Block, the Sync Output Modules generate word clock outputs. In the context of the
Plug Block, they are word clock inputs. The number of Sync Output Modules is equal to the
maximum number of concurrent word clock domains of the Plug Block, which is typically equal
to the number of word clock inputs of the packet handling hardware. Recall from section 4.4.2.4
that at the time of this writing there were no firmware implementations for the Open Generic
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Transporter that implemented more than one concurrently usable work clock. Notwithstanding,
we designed the Transporter HAL API in a manner that takes into account the future need for
more than one concurrently usable word clock.

Incorporating Multiple Word Clock Outputs and External Word Clock Source Selection into
the Transporter HAL API

As mentioned above, our proposed Transporter HAL API is designed in a manner that takes into
account the future need for more than one word clock output (concurrently usable word clock).
In particular, the INC_PLUGIN COM interface defines the following function:

GetNumWordclockOutputs(pluglayoutID, ∗numWCLKOutputs) (6.13)

The GetNumWordclockOutputs function (function (6.13)) returns the number of word clock out-
puts, *numWCLKOutputs, present in a given Plug Layout (identified by plugLayoutID). Each
of the work clock outputs present can be referenced via a unique identifier, which we refer to
as wclkID. Note that the wclkID is unique within the context of a specified Plug Layout and
the valid values are represented by the relation 0 ≤ wclkID ≤ ∗numWCLKOutputs, where
*numWCLKOutputs is the value returned by the GetNumWordclockOutputs function.

Each of the word clock outputs mentioned above ultimately receives its word clock from a word
clock source within a device’s pool of word clock sources. The current Transporter HAL API
only takes into account the capability of selecting internal and SYT word clock sources via
the GetSYTSyncChannel and SetSYTSyncChannel functions (function (4.8) and (4.9) on page
86) described in section 4.4.2.3. We have shown how the OGT guideline document defines
external word clock inputs as selectable word clock sources. This capability is lacking in the
current Transporter HAL API. We resolved this by introducing the following functions to the
INC_PLUGIN COM interface:

GetNumClockSources(pluglayoutID, ∗numClockSources) (6.14)

GetCurrentClockSource(pluglayoutID, wclkID, ∗clockID) (6.15)

SetCurrentClockSource(pluglayoutID, wclkID, clockID) (6.16)

The GetNumClockSources function (function (6.14)) retrieves the number of word clock sources,
*numClockSources, present in a Plug Layout identified by plugLayoutID. Each of the word clock
sources is referenced via a unique identifier, which we refer to as clockID. Similar to the wclkID,
the clockID is unique within the context of a given Plug Layout. The range of valid values for
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the clockID is defined by the relation 0 ≤ clockID ≤ ∗numClockSources, where *numClock-

Sources is the value returned by the GetNumClockSources function. The manner in which we
identify word clock sources, as shown above, does not restrict the Enabler to any particular types
of word clock sources, hence external word clock sources are also incorporated.

For a Plug Layout identified by pluglayoutID, the GetCurrentClockSource function (function
(6.15)) is used to query the ID, *clockID, of word clock source that is supplying word clocks to
a given word clock output that is identified by wclkID. Conversely, the SetCurrentClockSource

function (function (6.16)) is used to specify the ID of the word clock source that should supply
word clock to a word clock output that is identified by wclkID.

Figure 6.4 shows how word clock outputs feed into the Plug Block. For completeness, we men-
tion that the following functions have been defined in the INC_PLUGIN COM interface in order
to bridge between the Sync Block and Plug Block:

GetISPWCLKID(ispID, ∗wclkID, ...) (6.17)

SetISPWCLKID(ispID, wclkID) (6.18)

Within the Plug Block of the Open Generic Transporter, each ISP has a wclkID attribute that
identifies the word clock output from which it is receiving word clocks. The GetISPWCLKID

function (function (6.17)) is used to query the wclkID of the word clock output that supplies
word clocks to an ISP that is identified by ispID. This function has additional attributes that have
been omitted here for conceptual simplicity. Conversely, the SetISPWCLKID function (function
(6.18)) specifies the wclkID of the word clock output that an ISP, identified by ispID, should
receive word clocks from.

COMMON SPACE

The Common Space of the Open Generic Transporter implements control registers that apply
globally to the A/M Transport Block. Such registers include those to query and specify the
transmission modes, blocking and non-blocking as described in section 3.2.1 on page 37, that a
Transporter can operate in. Such functionality is catered for in the current Transporter HAL API.
Our proposed Transporter HAL API continues to implement such functionality, and hence we do
not explore this functionality further.
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6.1.2 MAP4 Transporter Plug-In Design and Implementation

The previous section focused on the various aspects of the Open Generic Transporter and how
they influenced the design of our proposed Transporter HAL API. In acknowledgement of the
hardware independent high level abstraction offered by the OGT guidelines, it became appar-
ent that our proposed Transporter HAL API was biased towards the OGT. In this section, we
show how this bias towards the OGT does not preclude us from writing Transporter plug-ins for
Transporters that are based on other hardware architectures.

We describe the Transporter plug-in design and implementation for Yamaha Corporation’s MAP4
Evaluation board. This plug-in was created against our proposed Transporter HAL API in order
to demonstrate backwards compatibility with existing hardware architectures [Chigwamba and
Foss, 2007]. Our implementation is based on an understanding of the hardware capabilities of the
MAP4 Evaluation board. It should be borne in mind that the implementation we describe here
is merely one way of achieving backwards compatibility. Section 6.1.3 describes another way of
achieving backwards compatibility by mapping methods of our proposed Transporter HAL API
to methods of the current Transporter HAL API. As mentioned by Chigwamba and Foss [2007]
in “Enhancing End-User Capabilities in High Speed Audio Networks” any Tranporter previously
controllable by the Enabler requires modifications to its HAL plug-in before it can successfully
use our proposed Transporter HAL API.

Figure 6.5 shows the object model for our proposed plug-in implementation for the MAP4
Transporter. This object model resulted from the redesign the object model for the current
MAP4 Transporter plug-in which is based on the current Transporter HAL API. Similar to the
OGT plug-in implementation, described in section 6.1.1, the INC_PLUGIN, MAP4Transporter,
I_IEEE1394Device and I_IEEE1394Bus components shown in the object model represent our
proposed HAL design, which all our HAL plug-ins comply with. This HAL design was de-
scribed in section 5.2 on page 93. In the object model, the classes PrivateSpace, CoreSpace,

MLANSpace, and BootParameterSpace represent the node architecture for the MAP4 Trans-
porter. The roles of these spaces were described in section 4.4.1 on page 72. The same section
highlights that the MAP4 Evaluation board houses one mLAN-NC1 chip and one mLAN-PH2
chip. These chips are modelled by the NC1 and PH2 classes in the object model. There are some
classes with names containing the “Dump” substring, namely NC1DumpNC1, NC1DumpPH2,
NC1DumpMaster, NC1DumpEnd, and NC1DumpMLAN. These classes are responsible for stor-
ing device configurations to the non-volatile memory of the Transporter, and are restored when
the device is turned on. An important addition to this model is the introduction of the NCP, ISP,
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Figure 6.5: MAP4 Transporter HAL Plug-In Object Model

PlugLayoutTable, PlugLayout, PlugTypeEntry, NCPTypeEntries, and ISPTypeEntries classes.
These were introduced in order to handle functions of our proposed Transporter HAL API.

We now focus on the most important aspects of our MAP4 Transporter plug-in implementation in
the context of our proposed Transporter HAL API. In particular, we focus on how Plug Layouts
were defined, how ISPs and NCPs were modelled, and synchronisation with regards to word
clock outputs and word clock source selection [Chigwamba and Foss, 2007].

6.1.2.1 Defining Plug Layouts

The Open Generic Transporter introduced the concept of Plug Layouts. Recall from section 4.4.2.5
on page 88 that Plug Layouts represent mutually exclusive Transporter configurations that a de-
vice may have. Each of these configurations defines a number of plugs (NCPs and ISPs) and
word clocks that are usable concurrently [Audio Engineering Society - Standards Committee,
2005]. The number of usable plugs in a given Plug Layout is fixed. The OGT guideline docu-
ment stipulates that, should the number of usable plugs differ depending on sampling frequency
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or data format, a device would have to implement separate “modes”, where each mode has a
separate Plug Layout.

The number of audio channels that can be transmitted or received by the MAP4 Transporter at
sampling frequencies greater than 48 kHz is half the number that can be transmitted at 48 kHz
and lower sampling frequencies [Yamaha Corporation, 2002b]. This is due to the fact that at high
sampling frequencies (above 48 kHz), more data that is transmitted or received, while there are
restrictions in the data processing capabilities of the MAP4 Transporter’s chips at high sample
rates. This presented the need to expose two Plug Layouts, one to represent audio channels
that are usable at 48 kHz and lower sampling frequencies, and another for sampling frequencies
greater than 48 kHz. It should be borne in mind that, at any point, the word clocks available
and the number of MIDI channels that can be transmitted is constant regardless of the sampling
frequency. For this reason, our model of the Plug Layout Table in Figure 6.5 only defines Plug
Layouts that contain plug type entries for ISPs and NCPs. We do not include word clock related
components in the model of the Plug Layout. This is due to the fact that, in terms of the MAP4
Transporter hardware capabilities, the number of word clock sources and word clock outputs
remains the same across all Plug Layouts. Therefore, there was no need to model word clock
components in each Plug Layout. Sections 6.1.2.2 and 6.1.2.3 will describe how the ISP-NCP
model was incorporated into the MAP4 Transporter plug-in, and how word clock outputs and
word clock source selection were handled, respectively.

The MAP4 Transporter was not originally designed with the concept of Plug Layouts. However,
our proposed Transporter HAL API takes into account the existence of Plug Layouts and we
have defined Plug Layouts for our plug-in implementation. One of the important implications
of our decision to implement Plug Layouts led to a need to keep track of the Plug Layout that
a device is using. In fulfilling this need, we resorted to using sampling frequency information
to determine the Plug Layout that is in use. For example, we use the Plug Layout ID of zero
to refer to the Plug Layout representing sampling frequencies of 48 kHz and below, while the
Plug Layout with an ID of one represents the Plug Layout with sampling frequencies greater than
48 kHz. Bearing this in mind, our Plug Layout Table structure is initialised accordingly upon
creation of the MAP4Transporter COM component.

In order to determine which Plug Layout configuration a Transporter is operating in, the GetCur-

rentPlugLayout function (function (6.1)) shown on page 118 is called. The sampling frequency is
queried within the Transporter plug-in and a corresponding Plug Layout ID is returned. Similarly,
to change the Plug Layout that a device is using, the SetCurrentPlugLayout function (function
(6.2)) shown on page 118 is called. This results in a change in a sampling frequency register. For
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instance, if a Transporter is using Plug Layout number zero, changing to Plug Layout number
one results in setting the sampling frequency to 88.2 kHz. The choice of which sampling fre-
quency to set is arbitrary, since users will configure this after the Plug Layout has been switched.
This handling of Plug Layout selection on the MAP4 Transporter differs from the OGT-based
Transporter, where a designated Plug Layout register is queried or set. However, Plug Layouts
make the configuration more obvious to users, and eliminate the element of “surprise” when
the number of plugs are reduced. This is due to the fact that the number of plugs in each Plug
Layout is fixed. The number of plugs only changes when an explicit request is made, via the
INC_PLUGIN COM interface, to change the Plug Layout.

6.1.2.2 Model and Operation of ISPs and NCPs

Transmitting NCPs and ISPs

Recall from section 4.4.1 on page 72 that the MAP4 Evaluation board houses the mLAN-NC1
and mLAN-PH2 chips. Figure 6.6 shows that each of these chips has one transmission FIFO
buffer that receives audio samples and/or MIDI messages from its pins, packages these into
sequences of isochronous packets and, assuming isochronous resources have been previously
allocated, sends these packets onto the IEEE 1394 bus. For example, the diagram shows a chip

Figure 6.6: Transmission FIFO Buffer on MAP4 Transporter Chips (ASICs)

that is configured to transmit six audio sequences, where various inputs from the chip’s pins cor-
respond to various sequence positions within the isochronous packets that get sent onto the IEEE
1394 bus. Note that the number of sequences that are transmitted onto the bus is proportional to
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the amount of bandwidth used, and is controllable via a register. The current Transporter HAL
API provides functions to query and modify this register, namely the GetNumSequences and Set-

NumSequences functions, respectively. For example, reducing the number of sequences shown
in Figure 6.6 to three results in a representation shown in Figure 6.7. In particular the number of

Figure 6.7: Transmission FIFO Buffer on MAP4 Transporter Chips (ASICs) - Reduced Se-
quences

sequence positions that are packaged in the isochronous packets is also reduced accordingly and
the last three highest numbered sequence positions in Figure 6.6 will no longer be transmitted. It
should be borne in mind that the ordering of sequence positions is fixed and increasing or reduc-
ing the number sequences transmitted activates or deactivates some sequence positions for data
transmission onto the IEEE 1394 bus.

In the context of the above, a mechanism had to be provided to ensure that transmission from
the MAP4 Transporter was handled in terms of NCPs and ISPs, and in a manner that allows for
manipulation of the “number of sequences” register. We created a model where each transmis-
sion FIFO buffer on a chip represents a uniquely identifiable transmission ISP that is statically
associated with a number of transmission NCPs, as shown in Figure 6.8. The number of NCPs
corresponds to the maximum number of sequences that may be transmitted by a given chip. At-
tributes of the transmission ISP are directly implemented in the form of registers of the FIFO
buffer. However, there are no registers that control the NCPs that we introduced to the design.
Therefore, we implemented transmitting NCPs as virtual in-memory objects within the plug-in.
However, the importance of transmission NCPs is that they collectively determine the number of
sequences that are being transmitted by a chip’s FIFO buffer.
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Figure 6.8: Transmission FIFO Buffer ISP-NCP model

The purpose of our Attach function (function (6.9)) has been described on page 122. In particu-
lar, it commences data transfer between a specified NCP and its associated ISP. Conversely, the
Detach function (function (6.10)) stops the data transfer. In the context of the MAP4 Transporter
transmission, we used the Attach and Detach functions to control the number of sequences trans-
mitted. Figure 6.9 shows an example of how this was handled. In this example, NCPs that are
shaded represent NCPs for which the Attach function has been called. Assume the following
sequence of events takes place in the following order:

1. All NCPs start off in their Attached state hence all six sequences are transmitted onto the
bus.

2. Detaching NCPs for sequences 3 and 4 has no effect on the overall number of sequences
being transmitted, since the sequence at position 5 is still actively transmitting and the
sequence positions are fixed.

3. The NCP for sequence 5 is detached.

4. The number of sequences transmitted is reduced to three since the other NCPs for se-
quences 3 and 4 were previously detached. Only when the NCP for sequence 2 is detached

will the number of sequences reduce further. Attaching additional NCPs will also result in
an increase in the number of sequences that are transmitted.
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The manner in which the number of sequences is modified upon calling the Attach and Detach

functions led to dynamic bandwidth allocation and de-allocation respectively.
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Figure 6.9: Controlling the Number of Sequences Transmitted by the MAP4 Transporter
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Receiving NCPs and ISPs

As mentioned in section 4.4.1 on page 72 reception FIFO buffers exist on the chips of the MAP4
Transporter. These FIFO buffers have channel and sequence selection registers as shown in
Figure 3.15 on page 48. In implementing the ISP-NCP model for reception on the MAP4 Trans-
porter, we modelled receiving ISPs as virtual in-memory objects, where the number of ISPs is
equivalent to the maximum number of unique isochronous streams that the Transporter can re-
ceive [Chigwamba and Foss, 2007]. In the case of the MAP4 Transporter, this is equivalent to the
number of reception FIFO buffers. It should be borne in mind that receiving ISPs do not map to
any registers although they keep track of the number of unique isochronous streams that a Trans-
porter can receive. Each of the FIFO buffers shown in Figure 3.15 on page 48 now represents an
NCP as shown in Figure 6.10.

Figure 6.10: Modified mLAN Sequence Selection with NCPs and ISPs [Chigwamba and Foss,
2007]

By definition, an isochronous stream is composed of isochronous packets with the same isochronous
channel number. This implies that the isochronous channel number is an attribute of an ISP. To
that effect, our proposed Transporter HAL API allows channel numbers to be modified for ISPs
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using the function:

SetIsochChannel(ispID, isochChannelNum) (6.19)

In the context of the SetIsochChannel function, it is important to note that the channel number
for the MAP4 Transporter is only modifiable via a FIFO buffer register. However, as mentioned
above, we modelled reception FIFO buffers as NCPs. A mechanism had to be provided to ensure
that our proposed Transporter HAL API was implementable in terms of the hardware of the
MAP4 Transporter. In order to enable this, we ensured that the channel register of a reception
FIFO buffer is only modified, if necessary, when an ISP is associated with an NCP by calling the
SetAttachedISP function (function (6.8)) of our proposed Transporter HAL API, as described on
page 122. When initialising an instance of the MAP4 Transporter, all the reception FIFO buffer
channel registers are queried, and for each unique channel number found, a uniquely identifiable
ISP is initialised with the given channel number. Any FIFO buffers that make use of a channel
number that has an ISP that is already initialised will have their matching NCPs associated with
the ISP in question.

Upon further investigation of the reception FIFO buffer operation for the MAP4 Transporter, we
discovered that each of the reception FIFO buffers can be individually enabled or disabled to
receive data from a given isochronous stream on the IEEE 1394 bus. This capability allowed us
to provide an implementation for the Attach and Detach functions (functions (6.9) and (6.10))
which have been described on page 122. When the Attach function is called for a given NCP,
its associated FIFO buffer commences reception of sequences with a particular sequence num-
ber from its associated isochronous stream. Conversely, when the Detach function is called,
reception is stopped.

6.1.2.3 Word Clock Outputs and Word Clock Source Selection

Section 6.1.2.1 has already mentioned that there was no need to model the word clock component
of the MAP4 Transporter in each of the two Plug Layouts that are available. This is because the
number of word clocks is fixed across all the Plug Layouts that we have defined. In particular,
we modelled the MAP4 Transporter as having one word clock output. Consequently, the Get-

NumWordclockOutputs function (function (6.13)) described on page 126 always returns a result
of one. Given that there is only one word clock output, all the ISPs have a fixed association with
this word clock output and hence, the SetISPWCLKID function (function (6.18)) that has been
described on page 127 for the Open Generic Transporter is never called for the MAP4 Trans-
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porter. Section 6.1.2.4 below describes how we handled constraints such as these, where certain
attributes of a Transporter cannot be modified.

Within the single word clock output, we defined two possible word clock sources that may be
selected via our proposed Transporter HAL API functions. These two types of word clock
sources are an SYT word clock source and an internal word clock source as was described
in section 4.4.2.3 on page 86, and are also selectable using the current Transporter HAL API.
For the MAP4 Transporter, our GetNumClockSources function (function (6.14)) described on
page 126 always returns a value of two, indicating the two selectable word clock sources on the
MAP4 Transporter. Querying and specifying the word clock source that is in use may be done
by calling the GetCurrentClockSource and SetCurrentClockSource functions of our proposed
Transporter HAL API, respectively. The GetCurrentClockSource and SetCurrentClockSource

functions (functions (6.15) and (6.16)) have been described on page 126 for the Open Generic
Transporter. However, for the MAP4 Transporter, these functions are implemented via the cur-
rent Transporter HAL API functions, namely the GetSYTSynchChannel and SetSYTSynchChan-

nel functions (functions (4.8) and (4.9)) that have been described on page 86. For example,
selecting an internal word clock source by calling our SetCurrentClockSource function results
in a call to the current Transporter HAL API SetSYTSynchChannel function while passing an
invalid SYT sync channel number, as is done for the current Transporter HAL API.

6.1.2.4 Specifying Constraints for Calling Some Proposed Transporter HAL API Func-
tions

Throughout the implementation of the plug-in for the MAP4 Transporter, a number of special
cases were identified. Examples of two such special cases are:

1. Linked ISPs
Recall from section 4.4.1 on page 72 that the MAP4 Transporter uses the mLAN-NC1 and
mLAN-PH2 chips. In addition, it has also been mentioned in section 4.4.2.2 on page 85
that there are some firmware restrictions within this hardware architecture that require
transmission on all chips to be started or stopped simultaneously. In section 6.1.2.2, we
have shown how each transmission FIFO buffer on each chip was modelled as an ISP. This
implied that we needed a mechanism to ensure that all transmission ISPs on the MAP4
were started at the same time.
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2. Fixed ISP Attributes
In section 6.1.2.3, we mentioned that some attributes of the MAP4 Transporter are re-
quired to be fixed. This means that certain functions such as SetISPWCLKID should never
be called in the context of the MAP4 Transporter. This indicated a need to convey informa-
tion about fixed attributes to the Enabler in order to prevent any attempts to modify fixed
attributes.

In the context of constraints such as the above, the Open Generic Transporter guidelines were fur-
ther investigated in order ascertain how a hardware independent, high-level, abstract description
such as the OGT guideline document caters for such situations. Fortunately, the OGT guideline
caters for this by introducing the concepts of fixed attributes, unique attributes and linked plugs

[Audio Engineering Society - Standards Committee, 2005]. Ideally, all attributes of a Transporter
should be modifiable by an Enabler but certain constraints in devices do not allow this. Further
analysis of these concepts led to a design decision being made to incorporate these concepts
within some of our proposed Transporter HAL API methods. The remainder of this section de-
scribes how we have incorporated these concepts in the context of one of several of our proposed
Transporter HAL API methods that require such constraints.

ATTRIBUTE CONSTRAINTS

The GetISPWCLKID function (function (6.17)) described for an OGT-based Transporter plug-
in on page 127 had an ellipsis, indicating that certain arguments were omitted for conceptual
simplicity. The purpose of the function is to query the identifier for a word clock output that
feeds word clocks into a given ISP. The full declaration of the function is:

GetISPWCLKID(ispID, ∗wclkID, ∗pF ixed, ∗pLinked, ∗pUnique, ∗pDependency, ∗pGroup)

(6.20)

In the context of the GetISPWCLKID function above, we focus on the numeric values that are
returned by the *fixed, *pLinked, *pUnique, *pDependency, and *pGroup arguments. This col-
lection of arguments conveys information about fixed attributes, unique attributes, and linked

plugs to the Enabler. We describe each of these concepts in the context of the abovementioned
arguments as adapted from "Draft AES Standard for Audio over IEEE 1394 - Specification of

Open Generic Transporter" [Audio Engineering Society - Standards Committee, 2005].
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Fixed Attributes

These are parameters/attributes that a device cannot modify. The plug-in reads this information
from the Transporter itself, in the case of an OGT-based Transporter, or the plug-in implements
this information in its software, as in the case of our MAP4 Transporter plug-in. In particular,
our proposed Transporter HAL API conveys this information to the Enabler via the the *pFixed

argument. At present there are two possible values that are returned by the *pFixed argument,
namely zero and one, where

• A value of zero implies that the attribute is modifiable.

• A value of one implies that the attribute is not modifiable, hence fixed.

Linked Plugs

These are plugs whose attribute values are dictated by attributes of other plugs. For example, in
the context of starting all transmission ISPs of a MAP4 Transporter, starting of one transmission
ISP results in starting all other transmission ISPs. We convey this information to the Enabler via
the *pLinked argument of some of our proposed Transporter HAL API methods. Again, there
are two possible values for the *pLinked argument, namely zero and one, where

• A value of zero implies that the given attribute is not linked with attributes of other plugs.

• A value of one implies that the attribute is part of a linked group of attributes. In this
case, further information is conveyed by the *pFixed argument. In particular, if the linked
attribute is modifiable (*pFixed has a value of zero, while *pLinked is also one), it is called
the “key” attribute of the group. When the value of a key attribute is modified, all other
attributes in the group are modified. On the contrary, if the linked attribute is fixed (*pFixed

has a value of one, while *pLinked is one) the attribute is known as a dependent attribute,
and it can only be modified by modifying the key attribute.

Linked attributes have other additional information that is conveyed to the Enabler via the *pDe-

pendency and *pGroup arguments. The *pDependency argument specifies whether the values of
dependent attributes are identical to the key attribute, or the dependent attributes take on consec-
utive values starting at the value of the key attribute. The *pGroup argument assists the Enabler
to identify the number of plugs in a linked group or the position of a certain plug within the
linked group.
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Unique Attributes

These are attributes where no two plugs of the same group may take the same value [Audio
Engineering Society - Standards Committee, 2005]. In the context of our proposed Transporter
HAL API, this information is conveyed to the Enabler via the *pUnique argument of certain
methods. Similar to the *pLinked and *pFixed arguments, there are two possible values for the
*pUnique argument, namely zero and one, where

• A value of zero indicates that an attribute may take the same value as other attributes in the
group.

• A value of one indicates that an attribute value must be different from any other in the same
group.

6.1.3 PC Transporter HAL Design and Implementation

We have shown how backwards compatibility for our proposed Transporter HAL API is achieved
by implementing our API functions calls in terms of the underlying hardware architecture capa-
bilities in a similar manner to how the ISP-NCP model was implemented for the MAP4 Trans-
porter plug-in. The current PC Transporter implementation is fulfilled by an mLAN Streaming
driver that is tightly coupled to the current Transporter HAL API. Consequently, a need arose to
provide a way to implement our proposed Transporter HAL API methods in terms of the current
Transporter HAL API methods. In this section, we describe how this was done, and focus on
how the ISP-NCP model was mapped to the current Transporter HAL API.

Figure 6.11 shows an object model for our proposed PC Transporter HAL implementation. It
should be noted that much of the implementation and model remained unchanged from the cur-
rent Transporter HAL API implementation. As shown in the object model, there is a Trans-

porter class which declares methods of the current Tranporter HAL API. The INC_PLUGIN

COM interface defines methods of our proposed Transporter HAL API. The WinPCTransporter

class implements methods defined in the Transporter class that enable IEC 61883-6 transmis-
sion. In the context of the PC Transporter, IEC 61883-6 transmission and reception is done by
a platform-specific mLAN streaming driver. Our investigation only focused on the Windows
mLAN streaming driver. The WinPCTransporter class communicates with the mLAN streaming
driver’s mLANSoftPH process via an instance of the WindowsMLANVDeviceInterface class. In
addition, the WinPCTransporter class implements methods defined by our INC_PLUGIN COM
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Figure 6.11: Proposed PC Transporter Implementation

interface. These methods are fulfilled in terms of the methods specified by the Transporter

class. It was necessary to maintain this dependence since the mLANSoftPH process of the mLAN
streaming driver operates in a manner that is tightly coupled to the current Transporter HAL API.
The WinPCDescriptor and MemoryMAP classes model the state of the various components of
the mLAN streaming driver. In order to map the methods of our proposed Transporter HAL API
to those of the current Transporter HAL API, a mechanism to keep these mappings in memory
was required. Consequently, the NCPMappingStruct and ISPMappingStruct object aggregations
were introduced for this mapping. These are described in section 6.1.3.1.

We have given a motivation for the need to keep a dependence between our proposed Transporter
HAL API and the current Transporter HAL API. The main component of the implementation that
was affected by this was the ISP-NCP model. Before we describe this in more detail, it is im-
portant to mention a few aspects of the PC Transporter that make it different from a standalone
device Transporter. As shown by the object model in Figure 6.11, we do not model a Plug Layout
Table for the PC Transporter. This is due to the fact that, at the time of implementation, the cur-
rent PC Transporter implementation did not change the number of plugs available for streaming
upon sample rate changes. However, the number of plugs available for streaming is changed ex-
plicitly by calling the SetNumSequences function (function (4.4)) which was described on page
82. Another difference to note about the PC Transporter is that its implementation is part of the
Enabler’s implementation. Therefore, it is not implemented in a standalone plug-in (DLL) like
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the OGT and MAP4 Transporter plug-ins.

6.1.3.1 Mapping the ISP-NCP Model of the Proposed Transporter HAL API to the Cur-
rent PC Transporter HAL API

Recall from section 4.4.2.1 on page 78 that the PC Transporter implementation assumes that
there is a fixed number of isochronous streams for either transmission or reception. Each of
these isochronous streams, identified by an isochID, has a fixed number of audio and/or MIDI
sequences. Each sequence, identified by seqID, is terminated by a fixed number of subsequences.
Each of the subsequences, identified by subID, represents a sequence end-point, which is viewed
as an abstract plug by the Enabler.

Figure 6.12 shows an example of the static/fixed nature of sequences and subsequences of an
isochronous stream. While we only show two input isochronous streams in the diagram, it should
be borne in mind that output isochronous streams are modelled in a similar manner. In practise,
there are usually more than two input isochronous streams and therefore this diagram only de-
scribes the concept.
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Figure 6.12: Static Representation of Input Isochronous Streams for PC Transporter

In the context of the above, we derived a mechanism that maps ISPs to the isochronous streams
shown in Figure 6.12. From each ISP it then becomes possible to identify the isochID and
direction of streams. The isochID and direction are required by some methods of the current
Transporter HAL API. In addition, our mechanism also maps NCPs to each of the subsequences.
From each NCP it then becomes possible to identify the subID, seqID, type of sequence, and
the isochID of the subsequence associated an NCP. Effectively, this means that NCP-to-ISP as-
sociations have to be fixed, and again the constraints described in section 6.1.2.4 were proven
to be useful. Figure 6.13 shows this mapping relationship more clearly. We have greyed out
the intermediaries between NCPs and ISPs since these are described in Figure 6.12. Instead, we
emphasise the static NCP to ISP mappings in the context of the required model.
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Figure 6.13: Static Representation of Input Isochronous Streams for PC Transporter with NCPs
and ISPs
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6.1.4 Insights Gained from HAL Implementations

We have described how our proposed Transporter HAL API, although biased towards the OGT,
can be used to create HAL plug-ins for devices that are based on any hardware architecture.
Section 6.1.2 described how this can be achieved by implementing our proposed Transporter
HAL API function calls in terms of the underlying MAP4 Transporter hardware architecture. In
addition, section 6.1.3 described another way of achieving backward compatibility by making
use of the current Transporter HAL API methods. We have effectively explored two routes to
achieve backwards compatibility.

Certain insights were gained from these two implementations. In particular, it was clearer that
the approach described in section 6.1.3 resulted in a shorter development time, as a result of
significant reuse of existing code. In addition to the reduced development time, we can also safely
assume a reduced level of implementation errors as a result of reuse of tried and tested code.
However, the approach described in section 6.1.2 allows for greater implementation flexibility
and presumably enhances the HAL plug-in’s runtime speed, since function calls of our proposed
Transporter HAL API are implemented directly in terms of the underlying hardware capabilities
as opposed to via an intermediary function, namely a function of the current Transporter HAL
API.

6.2 Transporter Plug-In Test Application

As the plug-in implementations for the Open Generic Transporter and the MAP4 Transporter
evolved, a graphical test application was created to test the plug-in mechanism and each function
of our proposed Transporter HAL API. For testing purposes, DICE II EVM evaluation boards
and MAP4 Evaluation boards were used. The DICE II EVM board hosts the “DICE II chip” [TC
Applied Technologies] which has a firmware implementation that is based on the OGT guideline
document. The MAP4 Evaluation board hosts Yamaha Corporation’s mLAN-NC1 and mLAN-
PH2 chips (ASICs) as mentioned in section 4.4.1 on page 72. These evaluation boards made it
possible to test the feasibility of our proposed Transporter HAL API in achieving interoperability
between OGT-based and non-OGT-based Transporters.

Our test application makes use of a stripped down version of the Enabler, which we refer to
as the test Enabler. This test Enabler is responsible for loading plug-ins using our proposed
plug-in mechanism, which was described in Chapter 5. The test Enabler does not handle any
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high level connection management, but merely allows for low level modification of Transporter
parameters by directly accessing methods of the INC_PLUGIN COM interface of our proposed
Transporter HAL API. However, connection management is still possible using the test Enabler,
although at a low level, by manually modifying each of the Transporter parameters required to
accomplish a desired outcome, such as making a connection between two plugs. A complete
listing of the INC_PLUGIN COM interface can be found in Appendix B. In this section we give
an overview of our test application. This test application was used for connection management
until a decision was made to handle high level connection management and plug-in loading using
our final, complete version of the Enabler.

6.2.1 Transporter Enumeration

Our test application has capabilities to query the test Enabler for a list of Transporters that have
been successfully enumerated. This is a way to test the functionality of our plug-in loading
mechanism. All successfully loaded Transporters are displayed in a list showing their globally
unique identifiers (GUIDs) and “nicknames” as shown in Figure 6.14. In particular, the diagram
shows three Transporters that have been successfully enumerated, namely “MAP4”, “OGT -
IOne Dest”, and “OGT - IOne Src”. Our MAP4 Transporter plug-in is loaded for the “MAP4”
Transporter, while our OGT plug-in is loaded for both the “OGT - IOne Dest” and “OGT - IOne
Src” Transporters.
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Figure 6.14: Test Application: Device Transporter List

6.2.2 Accessing Transporter Attributes

Selecting a Transporter from the list shown in Figure 6.14 results in display of the common
Transporter attributes as shown in Figure 6.15. Briefly, these attributes include:

• An indication of the ID for the Plug Layout that is currently in use.

• A list of all the Plug Layouts that are implemented by the Transporter.

• Lists of IDs for ISPs, NCPs, and concurrently usable Word Clock Outputs (shown as Word
Clock Domains) in the current Plug Layout.

• General attributes of the Transporter such as nickname and firmware version name.

• Buttons such as “Identify”, “Clear Identify”, and “Reboot”, which are associated with
methods of the INC_PLUGIN COM interface of our proposed Transporter HAL API. The
“Identify” button is used to make the light emitting diodes (LEDs) on a Transporter blink
for user identification purposes, while the “Clear Identify” button stops the blinking. The
“Reboot” button causes a software reset on a Transporter.
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Figure 6.15: Test Application: Main Transporter Window

In the context of our proposed Transporter HAL API, we now focus on how the test applica-
tion allows for viewing and modification of the attributes of three important components of a
Transporter. These components relate to isochronous stream plugs (ISPs), node controller plugs
(NCPs), and word clocks.

6.2.2.1 Isochronous Stream Plug (ISP) Attributes

For each of the ISP IDs shown in Figure 6.15 it is possible to view and modify attributes of the
associated ISP as shown by the window in Figure 6.16. We now describe the important attributes
of an ISP that are accessible via this window. Each of the attributes shown in the diagram has a
corresponding Transporter HAL API method that accesses or modifies an associated Transporter
parameter. The need for parameters that convey constraint information to the Enabler has been
discussed in section 6.1.2.4. These constraints are labelled Fixed, Dep, Linked, Unique, and
Group in the diagram.

Recall from section 3.3.3.2 on page 50 that an ISP represents an input or output for a single
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Figure 6.16: Test Application: ISP Attributes Window

isochronous stream to or from the IEEE 1394 bus, where an isochronous stream is composed of
isochronous packets bearing the same channel number in their packet headers. For each ISP, there
is a read-only “Direction” attribute (shown in Figure 6.16) that specifies the stream direction
of the ISP. The stream direction of an ISP is either input or output, where input ISPs receive
isochronous streams from the IEEE 1394 bus, while output ISPs send isochronous streams to the
IEEE 1394 bus. This input/output concept has also been described in section 4.4.2.1 on page 78.
The “ID” attribute specifies a unique identifier for a given ISP.

Figure 3.4 on page 30 shows the structure of the isochronous packet header. The “Isoch Channel”
attribute shown in Figure 6.16 specifies the channel number of the isochronous packets that an
ISP sends to or receives from the IEEE 1394 bus. This channel number corresponds to the chan-
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nel field of the isochronous packet header. The sy field is the only other field of the isochronous
packet header that is accessed via an attribute of an ISP. Recall from section 3.1.1.3 on page 28
that the sy field represents an application-specific synchronisation code. This sy field is accessed
via the “Output SY” attribute shown in Figure 6.16.

Figure 3.7 on page 37 shows the fields within the common isochronous packet (CIP) header. The
FDF field is the only field of the CIP header that is accessible via the window shown in Figure
6.16, through the read-only “Input FDF” attribute. This attribute is read-only since information
such as the event type and sampling frequency is derived from the FDF field as described in
section 3.2.1 on page 38. Of these two, only the event type is modifiable via the “Current Event
Type” attribute shown in Figure 6.16. The diagram also displays a “Supported Event Type List”
and a “Supported SFC List” which show all event types and sampling frequencies supported by
an ISP respectively. The sampling frequency is not modified per ISP. However, there exists a
“Word Clock ID” attribute that specifiers the identifier of the word clock output that drives an
ISP. An ISP’s sampling frequency is modifiable via its associated word clock output. This is
described in section 6.2.2.3.

“Rx Target Phase”, “Max Rx Offset”, “Max Tx Offset”, and “SYT Delay” are read-only attributes
that are required by the Enabler when performing SYT phase adjustment. SYT phase adjustment
is performed for devices that cannot receive A/M streams of any arbitrary SYT phase [Audio
Engineering Society - Standards Committee, 2005]. It ensures that the phase of incoming A/M
streams is adjusted in a manner that guarantees proper reception. The Enabler makes use of
algorithms to determine extent of phase adjustment. For simplicity, our test Enabler does not
handle SYT phase adjustment. However, the final, complete version of the Enabler handles SYT
phase adjustment using algorithms that are used in the current implementation of the Enabler.

Recall from section 3.3.3.2 on page 50 that one or more NCPs may be dynamically or statically
attached to ISPs, resulting in the clustering of multiple sequence end-points to an isochronous
stream. The “Max Attachable NCPs” attribute shows the maximum number of NCPs of a partic-
ular type that can be associated with the given ISP. Our investigation focused on audio and MIDI
NCP types only.

After the modifiable parameters of an ISP have been configured, transmission or reception of
isochronous packets with a specified channel number in their header is commenced by clicking
on the “Start ISP” button shown in Figure 6.16. This button is associated with the Start function
(function (6.11) on page 124) of the INC_PLUGIN COM interface of our proposed Transporter
HAL API. Conversely, transmission or reception of the isochronous packets is stopped by click-
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ing on the “Stop ISP” button. This button is associated with the Stop function (function (6.12)
on page 124) of the INC_PLUGIN COM interface of our proposed Transporter HAL API.

Various errors that may prevent an ISP from successfully transmitting or receiving isochronous
packets may occur . These errors are indicated by the flags of the “ISP Errors” attribute. All the
errors shown except for the “No Isoch Resources” error relate to input ISPs. Input ISP errors
mainly occur when there are no isochronous packets with the expected channel number on the
IEEE 1394 bus, when there is a mismatch between the ISP’s expected sampling frequency and
the sampling frequency that was used to create the isochronous packets, or when the isochronous
packets are corrupt. The “No Isoch Resources” error is flagged when an output ISP fails to
transmit isochronous packets as a result of failure to allocate isochronous resources, namely
when the channel that is specified by the “Isoch Channel” attribute is already in use or when
there is insufficient bandwidth available for isochronous packets to be transmitted.

6.2.2.2 Node Controller Plug (NCP) Attributes

Attributes of each NCP that is associated with each NCP ID shown in Figure 6.15 can be viewed
or modified using the window shown in Figure 6.17. We now describe the important attributes of

Figure 6.17: Test Application: NCP Attributes Window

an NCP that are accessible via this window. Again, each of the attributes shown in the window
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has a corresponding method within the INC_PLUGIN COM interface of our proposed Trans-
porter HAL API that accesses and/or modifies an associated Transporter parameter. Also note
the presence of constraint information shown by the labels Fixed, Dep, Linked, Unique, and
Group, as was described for ISPs in section 6.2.2.1 above.

Recall from section 3.3.3.2 on page 50 that an NCP represents an input or output for a single
monaural channel of audio or a single cable of MIDI to or from the node application. In this
regard, NCPs are equivalent to sequence end-points for the sequences that are packed in the
isochronous packets. The “Direction” attribute for an NCP (shown Figure 6.17) has the same
meaning as the “Direction” attribute for ISP attributes (described in section 6.2.2.1 above), where
input represents data being received from the IEEE 1394 bus, while output represents data being
sent to the IEEE 1394 bus. In particular, each input NCP unpacks audio/MIDI data from an
associated input ISP and sends it out to the node application, while each output NCP receives data
from the node application and packs the data to an isochronous stream before it is transmitted
onto the IEEE 1394 bus via an output ISP. The “NCP ID”, “NCP Name”, and “NCP Type”
attributes specify the unique identifier, the user-friendly textual name, and the data type (audio
or MIDI) for a given NCP, respectively.

As mentioned in section 3.3.3.2 on page 50, each NCP is associated with an ISP, either dynami-
cally or statically. The “Attached ISP” attribute (shown in Figure 6.17) specifies the ID of the ISP
that is associated with the NCP. The ISP sends or receives isochronous packets with a particular
channel number. Recall from section 3.2.1 on page 37 that each isochronous packet contains a
number of packet clusters known as data blocks. Each data block in the isochronous packet has
a number of quadlets (32-bit elements). These quadlets are the AM824 formatted audio samples
and/or MIDI messages, where the position of a quadlet corresponds to the sequence that it be-
longs to. This sequence position is known as the sequence number. The “Sequence Number”
attribute (shown in Figure 6.17) is responsible for determining this sequence number, indicating
the position where audio/MIDI data should be packed to (for output NCPs) or unpacked from
(for input NCPs) within each isochronous packet that is transmitted or received. Section 3.2.1 on
page 37 also described how data such as MIDI can be multiplexed onto a single sequence. The
multiplex index is known as the subsequence number. This subsequence number is determined
by the “Subsequence Number” attribute (shown in Figure 6.17).

Table 3.5 on page 40 shows the subformats the exist for the AM824 formatted data. The “Sup-
ported Sub-format List” shows all the subformats that are supported by an NCP. Since NCPs are
equivalent to sequence end-points, the subformat type for the sequence that each NCP terminates
is determined by the “Current Subformat” attribute (shown in Figure 6.17). In the case of out-
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put NCPs, this attribute specifies the “actual” subformat of the transmitted sequence. However,
for input NCPs, the attribute specifies the “expected” subformat for the received sequence. In
situations, where the subformat of the sequence received by an input NCP is different from the
expected subformat, the “Wrong Format” error is flagged by the “NCP Error” attribute. This
is the only possible error that can be flagged for NCPs, since output NCPs do not flag any er-
rors. Although the sampling frequency is not modifiable per NCP, a list of supported sampling
frequencies is shown in the “Supported SFC List”.

When all relevant attributes of an NCP have been configured, transmission or reception of au-
dio/MIDI data to or from the associated ISP is commenced by clicking on the “Attach” button
shown in Figure 6.17. This button is associated with the Attach function (function (6.9) on page
122) of the INC_PLUGIN COM interface of our proposed Transporter HAL API. Conversely,
transmission or reception of audio/MIDI data is stopped by clicking on the “Detach” button,
which is associated with the Detach function (function (6.10) on page 122) of the INC_PLUGIN

COM interface of our proposed Transporter HAL API.

6.2.2.3 Word Clock Attributes

The last main component of our proposed Transporter HAL API that was tested is word clock
outputs and word clock source selection functionality. For each of the word clock IDs shown
in Figure 6.15, word clock source selection is done via the window shown in Figure 6.18. The
window is split into two main sections, namely a “Current Wordclock Domain” section and an
“Available Clock Sources” section. Once again, each of the attributes shown in the diagram has
a corresponding method within the INC_PLUGIN COM interface of our proposed Transporter
HAL API that accesses and/or modifies an associated Transporter parameter.

The “Current Wordclock Domain” section shows attributes of a word clock output, which is
identified by the “Wordclock ID” attribute on the top of the window. These attributes include
the identifier (“Current Clock” attribute) for the word clock source that is used to generate word
clocks, the sample period (“Sample Period” attribute) of the generated word clocks, and an indi-
cation of any error conditions (error flags of the “Wordclock Errors” attribute) that are present.
Word clock source selection for the word clock output is possible by changing the value of the
“Current Clock” attribute, via a drop-down list. The drop-down list contains the identifiers of
all the available word clock sources that can be selected. Possible word clock output errors are
“Wordclock Loss” and “Sample Rate Mismatch”. A “Wordclock Loss” error occurs when the
generated word clock output is unstable, while a “Sample Rate Mismatch” error occurs when
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Figure 6.18: Test Application: Word Clock Attributes Window

there is a mismatch between the word clock source’s sampling frequency attribute and the ac-
tual sampling frequency of receive isochronous streams [Audio Engineering Society - Standards
Committee, 2005].

The “Available Clock Sources” section is further divided into two subsections, namely the “Clock
Sources” subsection and the “Selected Clock Source Attributes” subsection, as shown in Figure
6.18. The “Clock Sources” subsection shows a list of unique identifiers (“Clock IDs” list) for
available word clock sources. When an identifier for an available word clock source is selected in
the “Clock IDs” list, the attributes of the selected word clock source are shown in the “Selected
Clock Source Attributes” subsection. The “Type” attribute indicates the mode of the word clock
source, namely local or SYT. Figure 4.17 on page 87 clearly illustrates the distinction between
local and SYT word clock modes relative to the IEEE 1394 bus. A word clock source that is in
local mode receives its timing information from either the device’s internal clock or an external
word clock generator that is attached to the device, while a word clock source in SYT mode
receives timing information from the IEEE 1394 bus. For word clock sources in SYT mode, it
is possible to specify the ID (“SYT ISP ID” attribute) of the input ISP that receives isochronous
packets from which the SYT timing information is read. Figure 3.7 on page 37 shows that the
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SYT field is part of the CIP header of isochronous packets that are received by the ISP. Sampling
frequencies supported by a word clock source are shown in the “Supported SFCs” list, while the
sampling frequency that is used by the word clock source is shown, and can also be modified, via
the “SFC” attribute. A user-friendly textual name of a word clock source is shown by the “Clock
Name” attribute.

6.3 Chapter Summary

In this chapter we have described important concepts of our proposed Transporter HAL API at
a low level. The description of our proposed Transporter HAL API focused on three compatible
proof-of-concept HAL implementations, namely an Open Generic Transporter (OGT) plug-in
implementation, a MAP4 Transporter plug-in implementation, and a PC Transporter HAL im-
plementation. The OGT plug-in implementation demonstrates how our API completely utilises
the OGT capabilities. The MAP4 Transporter plug-in and PC Transporter HAL implementations
show two different approaches to achieve backwards compatibility using our proposed Trans-
porter HAL API. Transporters that are controllable using the current Transporter HAL API re-
quire changes to their HAL implementations in order to be compatible with our proposed Trans-
porter HAL API. We have recommended an approach to make these changes, while minimising
the risk of implementation errors and reducing development time. This is done by fulfilling our
proposed Transporter HAL API methods in terms of the current Transporter HAL API methods,
where possible.

The chapter has also given an overview of a test application that was developed to test each
of our proposed Transporter HAL API member functions for the MAP4 Transporter and OGT
plug-in implementations. This test application made it possible to verify correct operation of
our proposed Transporter HAL API before any changes were integrated with the final, complete
version of the Enabler, in order to fulfil high level connection management tasks.

We used the test application that has been described in this chapter to verify correct functionality
of our proposed API with OGT-based and non-OGT-based Transporters. The Enabler was en-
hanced to fully utilise our proposed Transporter HAL API. The next chapter, Chapter 7, focuses
on the innovations that were realised as a result of enhancing the Enabler to fully utilise our
proposed Transporter HAL API.



Chapter 7

Innovations From Proposed Transporter
HAL API

The previous chapter has described the important concepts of our proposed Transporter HAL
API. This Transporter HAL API completely utilises the capabilities of existing Transporters and
also the additional capabilities of the Open Generic Transporter that are lacking in the current
Transporter HAL API. The Enabler implementation was modified to fully utilise our proposed
Transporter HAL API. Consequently, connection management applications that make use of the
Enabler were enhanced in order to make use of the enhanced capabilities that are inherent within
our proposed Transporter HAL API.

In this chapter we begin by revisiting the main investigation areas of our research. We introduce
an additional investigation area that has not been discussed thus far. This investigation area re-
lates to a connection management server application which utilises the Enabler, and the client
applications that interact with the connection management server. We then provide a more de-
tailed overview of the connection management client and server applications. The server serves
up capabilities of our modified Enabler to client applications. We discuss the extent to which
client applications have benefited from our proposed Transporter HAL API. Some of the more
subtle optimisations that were realised at the Enabler level will be discussed. We conclude the
chapter by recommending areas that require future investigation.

157
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7.1 Overview of Investigation Areas

Figure 7.1 shows an overview of the investigation areas that are relevant to this thesis.

Figure 7.1: Overview of Investigation Areas

Our discussions thus far have been focusing on the areas labelled 1 and 2. Investigation area num-
ber 1 resulted in our proposed Transporter HAL API and its associated HAL implementations for
both OGT-based and non-OGT-based Transporters, as described in Chapter 6. Investigation area
number 2 resulted in our proposed plug-in mechanism and modifications made to the Enabler in
order to fully utilise our proposed Transporter HAL API. Our proposed plug-in mechanism has
been described in Chapter 5. The enhanced capabilities within our proposed Transporter HAL
API have also resulted in enhanced Enabler capabilities.

Up to this point, our discussions have been limited to the Enabler and its interaction with Trans-
porters. We now introduce a third area of investigation which is labelled 3 in Figure 7.1. Recall
from section 3.3.2.1 on page 44 that the Enabler has an “mLAN Plug Abstraction Layer”. This
layer exposes an API which is used by connection management applications to fulfil connection
management requests. Our third investigation area focuses on an example of a connection man-
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agement application that uses the Enabler. This connection management application is based
on a client-server architecture, where the server fulfils connection management requests from
graphical client applications by calling on the Enabler.

As mentioned in the first paragraph of this section, our proposed Transporter HAL API has
resulted in enhanced Enabler capabilities. Consequently, these enhancements to Enabler capa-
bilities have resulted in an enhanced API between the connection management server and the
Enabler. We now discuss the connection management client-server architecture in more detail.
We focus more on the enhanced end-user graphical client application capabilities that have been
made possible by our proposed Transporter HAL API. Some capabilities of our proposed Trans-
porter HAL API have resulted in non-graphical enhancements within the Enabler. These subtle
innovations are discussed separately.

7.2 mLAN Connection Management Server

The mLAN Connection Management Server (mCMS) is a server application that runs on the
same workstation as the Enabler [Fujimori, Foss, Klinkradt, and Bangay, 2003]. It accepts
mLAN device word clock synchronisation, and audio or MIDI routing requests from client appli-
cations. These requests are fulfilled via the Enabler. Client applications are the various graphical
user applications used by end-users to effect connection management in networked audio en-
vironments such as broadcast and recording studios, stadiums, houses of worship, “hotels, and
convention centres” [Foss, Fujimori, Chigwamba, Klinkradt, and Okai-Tettey, 2006]. Client ap-
plications run on a variety of devices ranging from PDAs and Laptops, to PC workstations. The
server also reports to client applications when the status of devices on the IEEE 1394 network
changes. Communication between each client and the server is in the form of a documented XML
protocol across a TCP/IP connection [Networked Audio Solutions, 2006]. Figure 7.2 shows an
example of an mLAN client-server configuration as we have described it here.

An investigation into the Transporter HAL API and resolving issues identified in section 4.4.2
on page 78 inevitably leads to an enhanced Enabler interface to connection management appli-
cations such as the mCMS. As a secondary objective, our investigation aimed to demonstrate
the impact that a change in Transporter HAL API has on the capabilities of end-user graphical
client applications. The mLAN connection management server implementation was modified
accordingly in order to completely serve all the capabilities of the enhanced Enabler to client
applications. Consequently, the XML protocol which is used for client-server communication
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Figure 7.2: mLAN Client-Server Configuration [Fujimori et al., 2003]

was modified. We now focus on an example of a client application that was modified to demon-
strate enhanced graphical client application capabilities as documented in “Enhancing End-User
Capabilities in High Speed Audio Networks” [Chigwamba and Foss, 2007]. Reference is also
made to important sections of the XML protocol that were modified or introduced.

7.2.1 Enhanced Graphical Client Application Capabilities

7.2.1.1 Making and Breaking Connections

Figure 7.3 shows a screenshot of the main connection management window for the list based
client application that was modified to demonstrate the benefits of our proposed Transporter
HAL API. The diagram shows two tree lists, one for source plugs and another for destination
plugs. Each of these lists has a node that represents a bus with a given ID. In our case, the bus
with an ID of 3FF represents the local bus. Recall from section 3.1.1.2 on page 27 that there
may be 1024 buses on an IEEE1394 network. Each bus can have up to 64 nodes. Also recall
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Figure 7.3: Main Connection Management Patch Bay Window [Chigwamba and Foss, 2007]

from section 4.3 on page 59 that bridge portals are used in multi-bus environments. However, we
have mentioned that our investigation was carried out in the context of a single-bus environment.
Hence, only the local bus is shown in Figure 7.3.

For each of the bus nodes within Figure 7.3, there is a list of “nicknames” for Transporters that are
present on the bus. These Transporters include “mLAN Windows PC”, “DICE 3”, “Mix Master
MAP4”, “OGT - IOne Destination”, and “OGT - IOne Source”. For each of these Transporters,
a list of the corresponding source or destination audio/MIDI plugs is shown. At a low level, these
plugs correspond to the NCPs which have been incorporated in our proposed Transporter HAL
API. Each of these NCPs is uniquely identified by an NCP ID. At a high level we simply refer to
this NCP ID as the plug ID, since we are guaranteed that it is unique for a given Transporter.

In order to make a connection and ensure that audio/MIDI is routed from a source plug to a
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given destination plug, the client application sends an XML document which is similar to the
one shown in Figure 7.4 to the server. For both the source and destination plugs, the globally

Figure 7.4: Connect Request XML Document

unique ID (GUID) of the Transporter on which the plug resides and the plug type (audio or
MIDI) are sent to the server as is done in the current implementation. Unlike in the current
implementation, where plug names are sent in addition to this information, we are now sending
the plug ID for each of the plugs. Our model makes it possible for plug names such as “Analog
In 1” to be changed if the Transporter’s firmware implementation permits. In such cases, the use
of a plug name as part of a unique identifier for a plug is flawed, since it will be possible for
more than one plug to share the same plug name. Our plug ID approach guards against such an
undesirable outcome.

To break any audio/MIDI stream connections between a source and destination plug, the client
application sends an XML document which is similar to the one shown in Figure 7.5 to the server.
Only the destination plug information is required in this XML document, since a destination plug
can only be connected to one source plug. Using the destination plug’s ID, the server is able to
identify the connected source plug via the Enabler. The information required for the destination
plug includes the Transporter’s GUID, plug type (audio or MIDI), and the plug ID. Once again,
note our use of the plug ID as opposed to the plug name.

Figure 7.3 shows a context menu that is superimposed above the destination plug list. We focus
on the “More Info...” and “Change Plug Layout” menu items, since they demonstrate some
aspects that derived from our proposed Transporter HAL API. The “More Info...” menu item
leads to the display of a node’s information, as described in section 7.2.1.2. The “Change Plug
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Figure 7.5: Disconnect Request XML Document

Layout” menu item allows a user to change the current Plug Layout for a device, as described in
section 7.2.1.3.

7.2.1.2 Conveying More Information to Users

Selecting the “More Info...” context menu item of the context menu shown in Figure 7.3 results
in the display of the node information for the Transporter which corresponds to the node that
is selected in either the source or destination plugs list of Figure 7.3. Figure 7.6 shows the
node information for the “OGT - IOne Source” Transporter, which is selected in the destination
plugs list. The information shown for this Transporter includes the nickname, GUID, number of

Figure 7.6: Client Application: Node Information Window

possible connections, number of Plug Layouts implemented, ID of the current Plug Layout, name
of the vendor, model name, and firmware version name. Three of these elements are a result of
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our proposed Transporter HAL API, namely the number of possible connections, number of Plug
Layouts implemented, and current Plug Layout ID.

Possible Connections

The “Possible Connections” entry in Figure 7.6 gives information about the number of MIDI/audio
stream connections that can be made from other additional unique isochronous streams. We de-
scribe this concept using a simplified example, as shown in Figure 7.7. In the diagram, there are

Figure 7.7: Possible Connections Concept
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five Transporters labelled A, B, C, D and E. These Transporters are daisy-chained using IEEE
1394 cables. With the exception of Transporter A, which is receiving data from the IEEE 1394
bus, all other Transporters are transmitting data onto the IEEE 1394 bus.

Recall from section 3.1.1.4 on page 31 that each transmitter uses a unique isochronous channel
number that is allocated from the isochronous resource manager node. It follows that isochronous
packets that are transmitted by each Transporter shown in Figure 7.7 make use of unique isochronous
channel numbers. By definition, isochronous stream plugs (ISPs) receive or transmit isochronous
packets with a specific channel number. In order to stream audio/MIDI successfully, each source
(transmitting) audio/MIDI plug is associated with a source ISP, while each destination (receiv-
ing) audio/MIDI plug is associated with a destination ISP. When a connection is made between
a source audio/MIDI plug and a destination audio/MIDI plug, the associated destination ISP re-
ceives the isochronous packets that are transmitted by the source ISP. It should be borne in mind
that each destination ISP can only receive packets from one source ISP. However, isochronous
packets that are transmitted by a single source ISP can be received by more than one destina-
tion ISP. Therefore, the stream connection between B and A makes use of one destination ISP
of Transporter A. The stream connection from C to A makes use of another destination ISP of
Transporter A. The two stream connections from D to A make use of the remaining destination
ISP of Transporter A. Now, all the destination ISPs are in use, which implies that no more con-
nections except from Transporters B, C and D are possible. For this reason, the connection from
E to A is not possible, since there are no more available destination ISPs. Assuming that no
connections were made to Transporter A, the value of “Possible Connections” would be 3. For
each connection made to Transporter A, this value is decremented by 1. Note that the value is
not decremented if there is destination ISP on Transporter A that is already receiving from the
relevant source ISP, as shown for the two connections from D to A in Figure 7.7. In particular, the
when the first of the two connections from D to A is made the value of “Possible Connections” is
decremented by 1. However, when the second connection is made, the value of “Possible Con-
nections” is not decremented since the connection shares the same destination and source ISPs
as the first connection.

At a low level, the “Possible Connections” element shown in Figure 7.6 shows the number of
available input ISPs on a given Transporter, and hence the number of connections that are pos-
sible from other unique isochronous streams that are transmitted by other Transporters. Such
proactive notification has been made possible by our proposed Transporter HAL API, since it
is defined in terms of node controller plugs (NCPs) and isochronous stream plugs (ISPs). It
should be borne in mind that only OGT-based Transporters are affected by such a constraint in
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cases where the number of NCPs is greater than the number of ISPs. Our approach to proactive
user notification results in fewer surprises when connection requests between plugs of different
Transporters fail. However, some level of prior user education about this constraint is necessary.

Plug Layout Information

Recall from section 6.1 on page 115 that our proposed Transporter HAL API explicitly takes into
account the concept of Plug Layouts and Plug Layout switching. Consequently, it is possible to
query the number of Plug Layouts on a Transporter and also to retrieve the ID of the Plug Layout
that a Transporter is using. This information is shown by the “Number of Plug Layouts” and
“Current Plug Layout ID” entries in Figure 7.6. We focus on how Plug Layouts are actually
switched in section 7.2.1.3.

7.2.1.3 Changing Plug Layouts

(a) Plug Layout switching based on bandwidth optimisation.
(b) Plug Layout switching based on sample rate capabilities.

Figure 7.8: Client Application: Plug Layout Switching Windows

We have mentioned that our proposed Transporter HAL API takes into account the concept of
Plug Layouts and Plug Layout switching. Figure 7.8 shows two examples of how Plug Layouts
can be changed from a client application. Figure 7.8 (a) demonstrates how Plug Layouts can
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be used for bandwidth optimisation as mentioned in section 4.4.2.5 on page 88. In particular,
diagram (a) shows that there are three possible configurations for a device. The first configuration
makes use of two transmitters, where one transmitter is capable of transmitting eight ADAT
and eight AES digital audio channels, while the other transmitter is capable of transmitting 16
analog audio channels. The second configuration also makes use of two transmitters, where one
transmitter is capable of transmitting eight analog audio channels, while the other transmitter
is capable of transmitting eight ADAT digital audio channels. The third configuration makes
use of one transmitter that is capable of transmitting two analog audio channels and one MIDI
stream. Such Plug Layout switching is desirable in environments where audio/MIDI routing
requirements are known in advance.

Figure 7.8 (b) shows how Plug Layouts can be used to display the number of audio plugs that
are available based on the sample rate that is used for either analog-to-digital or digital-to-analog
conversion for the audio channels, namely low (48 kHz and lower), medium (88.2 kHz and 96
kHz), and high (176.4 kHz and higher) sample rates. In some hardware architectures, fewer audio
channels can be routed at higher sample rates than at lower sample rates. To mention in passing,
Plug Layouts for the current NCP05-based Transporters are based on sample rate capabilities.
In particular, the number of audio channels are that can be transmitted/received at sample rates
above 48 kHz is half the number that can be transmitted/received at 48 kHz and lower [Yamaha
Corporation, 2002b].

When a Plug Layout is changed, the client application sends an XML document similar to the one
shown in Figure 7.9 to the server. This XML document indicates the GUID of the Transporter

Figure 7.9: Change Plug Layout Request XML Document

on which the Plug Layout is to be switched. In addition, the ID of the Plug Layout to switch
to is also provided. Note that the Plug Layout functionality is not implemented in the current
Transporter HAL API, hence, this XML document is new to the client-server XML protocol.
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While we have discussed Plug Layouts based on bandwidth optimisation and sample rate capa-
bilities, it should be borne in mind that the nature of the Plug Layout concept makes it adaptable
to any other device quirks. Plug Layout names can be made more meaningful and thus describe
the capabilities of a Plug Layout to users.

7.2.1.4 Multiple Word Clock Outputs

Recall from section 4.4.2.4 on page 87 that the OGT guideline document defines the capability
of having more than one concurrently usable word clock output, although current OGT-based
Transporter firmware implementations only make use of one word clock output. Notwithstand-
ing, our proposed Transporter HAL API attempts to take this feature into account. As a result,
the GetNumWordClockOutputs function (function (6.13) on page 126), and the GetISPWCLKID

and SetISPWCLKID functions (functions (6.17) and (6.18) on page 127) have been defined in
our proposed Transporter HAL API in order to incorporate the capability of multiple word clock
outputs.

The client application was modified to reflect this capability to end-users. Figure 7.10 shows
a word clock setup window that incorporates the capability to concurrently use multiple word
clock outputs.

Figure 7.10: Word Clock Setup Window [Chigwamba and Foss, 2007]
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Work clock slaves can be synchronised to a word clock master via this window. The window
shows two tree lists, one for available word clock masters and another for available word clock
slaves. The first level of nodes on both lists represent the Transporters that are present on the
IEEE 1394 bus. The second level of nodes on both lists represent the word clock outputs that
are available on each Transporter. The sampling frequency of the word clock output’s word
clock source is also shown at this level. It is at this level that more than one word clock outputs
for a Transporter are shown. On the “Available Wordclock Masters” list, there is an additional
third level of nodes that shows word clock outputs that are slaves of a particular master word
clock output on the Transporter. We explore the levels of this hierarchy for the “OGT - IOne
Destination” Transporter node of the “Available Wordclock Masters” list in Figure 7.10, as shown
below:

• OGT - IOne Destination.................................................................(first level node)

◦ Word Clock Output 0 - 48 kHz...............................................(second level node)

– mLAN Windows PC (Word Clock Output 0) - 48 kHz...(third level node)
– DICE 3 (Word Clock Output 0) - 48 kHz........................(third level node)
– Mix Master - MAP4 (Word Clock Output 0) - 48 kHz....(third level node)

◦ Word Clock Output 1..............................................................(second level node)

◦ Word Clock Output 2..............................................................(second level node)

We have added second level nodes above to show how multiple word clock output could be
incorporated in future, namely “Word Clock Output 1” and “Word Clock Output 2”. We reiterate
that at the time of this writing, there were no OGT-based Transporter firmware implementations
implemented multiple word clock outputs, hence this functionality could not be tested. In this
regard, section 7.4 highlights some areas that can be further investigated.

7.2.1.5 Word Clock Source Selection

For each word clock output in the “Available Wordclock Masters” list of Figure 7.10, it is pos-
sible to select the word clock source that generates word clocks for the word clock output. Sec-
tion 4.4.2.3 on page 86 has already described the inadequacy of the current Transporter HAL
API capabilities with regards to the lack of external word clock source selection. As a result of
our proposed Transporter HAL API, word clock source selection now includes the capability to
select external word clock sources in addition to the device’s internal word clock source (built-in
clock).
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Our proposed word clock source selection mechanism is done via a window such as the one
shown in Figure 7.11. The window shows the currently selected word clock source. This selected

Figure 7.11: Word Clock Source Selection Window [Chigwamba and Foss, 2007]

word clock source can be changed to any “local” word clock sources in the list of available
word clock sources. In the diagram, the local word clock sources that may be selected include
“Internal”, “AES RX”, “ADAT RX” and “Wordclock”. The “slave” word clock source may not
be selected since it is selected by default whenever a slave word clock output is synchronised to
a master word clock output. In addition to selecting a word clock source, it is also possible to
specify the sampling frequency for the selected word clock source from its range of supported
sampling frequencies. Note that the word clock source selection capability, as described here,
is not available in existing client applications as a result of an inadequacies within the current
Transporter HAL API. Our proposed Transporter HAL API has made this word clock source
selection possible.

After master-to-slave synchronisation relationships have been setup as described in section 7.2.1.4,
and word clock source selection has been done in the manner described above, a synchronisation
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setup request XML document similar to the one shown in Figure 7.12 is sent to the server. This

Figure 7.12: Synchronisation Setup Request XML Document

XML document specifies the GUID of the Transporter that hosts the master word clock output,
the ID of the master word clock output, the selected word clock source, the sampling frequency
(in hex format), and a list of one or more slave word clock outputs. For each slave word clock
output, the GUID of the Transporter on which the slave word clock output resides, and the ID of
the word clock output are required, as shown in Figure 7.12.

7.2.1.6 Updating the FireWire Network Configuration

We have shown how a client applications graphically display the additional capabilities that have
been derived from our proposed Transporter HAL API. We now show how the mLAN connection
management server conveys information to client applications. In particular, we use an example
of a configuration XML document that the server sends to connected client applications when
any configurations on the IEEE 1394 network change, such as when devices are added to or
removed from the network, when connections between plugs are made or broken, and when
synchronisation is set up. This allows all client applications to update their displays in order to
truly represent the IEEE 1394 network upon configuration changes.

Figure 7.13 shows an example of a configuration XML document. The document models the
IEEE 1394 network. As shown in the diagram, there is an IEEE1394Network element that com-
prises a number of IEEE1394Bus elements. As mentioned in section 7.2.1.1, we focus on a single
bus environment. Hence, the XML document only shows the local bus. The IEEE1394Bus ele-
ment comprises up to 63 IEEE1394Device elements, since 63 is the maximum number of devices
that can be present on an IEEE 1394 bus. Each IEEE1394Device element that corresponds to a
device with a Transporter node implementation is composed of an mLANDevice element.
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Figure 7.13: FireWire Network Configuration XML Document

The mLANDevice element comprises the four main elements that model a Transporter, namely
the mLANDevicePlugs, mLANDevicePlugLayouts, mLANDeviceSyncSources, and mLANDevice-
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WordClockOutputs elements. We now describe the various elements of the configuration docu-
ment shown in Figure 7.13 in more detail. We only highlight the important modifications that
were made to the configuration document.

With reference to Figure 7.13, the IEEE1394Device element shows that we have added informa-
tion to show the number of possible connections, as described in section 7.2.1.2. The numPossi-

bleDeviceConnections attribute of the IEEE1394Device element shows this number of possible
connections.

The mLANDevicePlugs element is composed of a number of plug elements. These plug ele-
ments represent the high level plug abstractions that are exposed by the Enabler to connection
management applications such as the server. The direction of the plugs is provided via the direc-

tion attribute, namely “in” for destination plugs and “out” for source plugs. For each plug, the
ID, plug type, plug name, and an indication of whether the name is modifiable are provided via
suitably named attributes. The isDangling attribute is a yes/no attribute that was introduced to
shows whether a previously connected source or destination plug has lost its connection. Con-
nections are lost when two plugs of two different Transporters are connected and one of the two
Transporters is subsequently removed from the IEEE 1394 network. The plug on the Transporter
that remains on the network will still be configured to send or receive data to/from a plug that
no longer exists, hence the name dangling plug. We also introduced the id and nameIsWrite-

able attributes. Section 7.2.1.1 has already alluded to the importance of the plug ID attribute
in cases where the plug name is modifiable. A plug name is modifiable when the value of
the nameIsWriteable attribute is “yes”. At the time of this writing, there were no Transporter
firmware implementations that allowed plug names to be modified, but when the need arises, our
proposed Transporter HAL API will already be compatible.

Section 7.2.1.2 introduced the concept of Plug Layouts within the client application. The manner
in which Plug Layouts of a Transporter are switched has been described in section 7.2.1.3. The
mLANDevicePlugLayouts element of Figure 7.13 shows information about the Plug Layouts that
are implemented by a Transporter. This element has two attributes, namely curentPlugLayoutID

and numPlugLayouts. The numPlugLayouts attribute shows the total number of Plug Layouts
on a Transporter, while the currentPlugLayoutID attribute shows the ID of the Plug Layout that
is currently active on a Transporter. The Plug Layout ID is a number between zero and the
total number of Plug Layouts on a Transporter. For each Plug Layout on the corresponding
Transporter, there is a plugLayout element within the mLANDevicePlugLayouts element. Each
plugLayout element has attributes that show the Plug Layout’s ID, its name, and an indication of
whether the name is modifiable. The capability to access Plug Layouts from client applications is
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an innovation that has been derived from our proposed Transporter HAL API, hence this section
of the XML document is new to the XML protocol.

The process of word clock source selection has been described in section 7.2.1.5. The mLAN-

DeviceSyncSources element shown in Figure 7.13 gives information about all the word clock
sources that are implemented by a Transporter. The element has a numSyncSources attribute
which shows the total number word clock sources that are implemented by the Transporter.
For each word clock source that is implemented by the Transporter, there is a syncSource ele-
ment within the mLANDeviceSyncSources element. Each syncSource element shows information
about the associated word clock source such as its ID, the sample rate that is in use, a list of sup-
ported sample rates, the mode1, the name of the word clock source, and an indication of whether
the name is modifiable or not. Although word clock synchronisation is currently using client
applications that utilise the capabilities of the current Transporter HAL API, it does not take into
account the selection of external word clock sources. Our XML design in this regard has been
influenced by our proposed Transporter HAL API, and hence takes into account the capability of
external word clock source selection from client applications.

Section 7.2.1.4 has described how multiple word clock outputs are modelled by our modified
client application. The mLANDeviceWordClockOutputs element of Figure 7.13 shows how mul-
tiple word clock outputs are modelled in the configuration XML document that is sent to client
applications from the server. The element has a numWordClockOutputs attribute that shows the
total number of word clock outputs available on the associated Transporter. For each word clock
output, a wordClockOutput element exists within the mLANDeviceWordClockOutputs element.
Each wordClockOutput element contains attributes that show information about the associated
word clock output, namely its ID, and the word clock source that it is currently associated with.
In cases where the word clock output is a slave of another word clock output as described in
section 7.2.1.4, the ID of the master word clock output and GUID of the Transporter hosting the
master word clock output are given as attributes, otherwise the “none” keyword is used in both
cases.

1A value of 012 represents slave mode, while a value 112 represents local mode
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7.3 More Subtle Non-Visual Innovations

7.3.1 Resource Optimisation

Up to this point we have been discussing the visual client application enhancements that re-
sulted from our proposed Transporter HAL API. We now focus on some non-visual innovations
that have been derived from our proposed Transporter HAL API. These innovations relate to
isochronous resource optimisation. We use Figure 7.14 to demonstrate this resource optimisa-
tion. As shown in the diagram, assume there are two Transporters on an IEEE 1394 bus, labelled
A and B. Transporter A is transmitting data while Transporter B is acting as receiver. For Trans-
porter A, we have only shown the source (output) ISPs and NCPs, although the Transporter can
have destination (input) ISPs and NCPs as well. Conversely, for Transporter B, we have only
shown destination ISPs and NCPs, although source ISPs and NCPs may be present. Also shown
in the diagram are the word clock sources associated with the various ISPs, namely a local word
clock source for Transporter A and a slave word clock source for Transporter B. While the choice
of word clock source can be done in any order, we use this arrangement to demonstrate a case
for which we identified the possibility for resource optimisation.

Typically, word clock synchronisation is one of the first things that is done before audio data
connections are made between plugs of Transporters. In the case of Figure 7.14, assume that
Transporter A is the word clock master of Transporter B. Recall from section 3.2.3 that timing
information is transmitted via the SYT field of an isochronous packet. As shown in the top half
of Figure 7.14, timing information from Transporter A is sent to Transporter B via Transporter
A’s ISP number 0. This timing information is received by Transporter B’s ISP number 0. At this
point, there is a flow of isochronous streams from Transporter A to Transporter B via the corre-
sponding ISPs. In order for this to occur, bandwidth is allocated for any NCPs of Transporter A
that are associated with its ISP number 0.

After synchronisation has been setup, audio/MIDI connections are typically made. In cases
where a transmitter is also a word clock master, we identified the need for resource optimisation.
Such resource optimisation is necessary for Transporters with more than one source ISP, as in
the case of Transporter A. We give an example of a connection between NCP number 3 of
Transporter A and NCP number 0 of Transporter B. Note that NCP number 3 of Transporter A
has a fixed association with ISP number 1, and thus ISP number 1 has to transmit to the receiver.
However, SYT timing information is transmitted via ISP number 0 of Transporter A. This implies
that both ISPs on the transmitter are streaming to the same receiver. On the receiver side, two
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Figure 7.14: Making Connections without Resource Optimisation
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ISPs are used, one to receive SYT timing information and another to receive audio/MIDI data.
On the transmitter side, isochronous resources are allocated for two ISPs and their associated
NCPs. This situation is shown in the bottom half of Figure 7.14.

We have derived an algorithm that optimises resource utilisation by ensuring that, where possi-
ble, SYT timing information and audio/MIDI data are transmitted via the same ISP, as shown
in Figure 7.15. Our algorithm makes it possible to avoid a situation such as the one shown in

Figure 7.15: Making Connections with Resource Optimisation

the bottom half of Figure 7.14, where two separate isochronous streams are routed to the same
receiver. A disadvantage resulting from this situation is that if the receiver has limited receiving
capabilities as a result of few destination ISPs, the number of other devices that can potentially
stream to the receiver concurrently is reduced. In the context of our example, if we include
our optimisation as shown in Figure 7.15, it is possible for two other Transporters to make au-
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dio/MIDI data connections to Transporter B, since input ISP numbers 1 and 2 are both available.
In contrast, if we do not apply our optimisation techniques, as shown in the bottom half of Figure
7.14, only one other Transporter can make audio/MIDI data connections to Transporter B, since
only input ISP number 2 is available. We attribute our resource optimisation mechanism to the
capabilities introduced by defining our proposed Transporter HAL API in terms of node con-
troller plugs (NCPs) and isochronous stream plugs (ISPs), where either may be independently
controllable, unless stated otherwise.

7.4 Future Work

Section 6.1 on page 115 has mentioned that at the time of this writing, the OGT document did
not provide guidelines for node application capabilities. Consequently, our proposed Transporter
HAL API currently provides functionality to access the mandatory node controller capabilities
of Transporters via the INC_PLUGIN COM interface, as described in section 5.2 on page 93.
This implies that connection management applications that use our proposed Transporter HAL
API, such as the client-server example described in this chapter, can only access the node con-
troller capabilities of Transporters. While it is possible to implement functionality to access the
node application capabilities of existing Transporter, such a process is best done after guidelines
relating to the design of the node application component of the Open Generic Transporter have
been produced. Three further research areas have been identified in this regard, namely:

1. The OGT guidelines that are documented in "Draft AES Standard for Audio over IEEE
1394 - Specification of Open Generic Transporter" [Audio Engineering Society - Standards
Committee, 2005] need to be augmented in order to include guidelines relating to the node
application component of the Open Generic Transporter.

2. After the OGT guideline document has been augmented, the node application capabilities
for both non-OGT-based and OGT-based Transporters need to be evaluated. The evaluation
should be aimed at identifying methods that are required to access all node application
capabilities for both non-OGT-based and OGT-based Transporters. The methods identified
would then become part of the INA_PLUGIN COM interface our proposed Transporter
HAL API. This INA_PLUGIN COM interface accesses the node application capabilities
of Transporters, as described in section 5.2 on page 93.

3. After the INA_PLUGIN COM interface has been defined, the Enabler should be modified
to utilise the node application capabilities of Transporters. Consequently, connection man-
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agement applications would require modifications in order to access any additional node
application capabilities of Transporters.

Recall from section 7.2.1.4 that while the OGT document defines the capability to use multi-
ple word clock outputs concurrently, there are currently no OGT-based Transporter firmware
implementations that implement more than one word clock output. While our proposed Trans-
porter HAL API has been designed with this capability in mind, it would have been better to
have an OGT-based Transporter firmware implementation to test this functionality. Three further
research areas have been identified in this regard, namely:

1. An OGT-based Transporter firmware implementation that implements more than one word
clock output is required.

2. Significant effort is required with regards to eliciting user requirements for the multiple
word clock output functionality. Such requirements elicitation will help in gathering of
information about how users would expect to interact with an application that has this
capability.

3. Once the two problem areas above have been rectified, the implications of the multi-
ple word clock output capability ought to be further investigated. As mentioned in sec-
tion 4.4.2.4 on page 87, multiple word clock outputs allow Transporters to concurrently
transmit or receive audio channels that are sampled at different sampling frequencies. On
the other hand, section 7.2.1.3 has mentioned that Plug Layouts may be classified based
on the audio plug capabilities at different sampling frequencies, such as low (48 kHz and
lower), medium (88.2 kHz and 96 kHz), and high (176.4 kHz and higher) sampling fre-
quencies. With the introduction of multiple word clock outputs, a Transporter is able to
use any combination of low, medium, and high sampling frequencies, concurrently. For
example, assume that at 48 kHz, a Transporter has 32 usable audio plugs, while the number
of usable audio plugs is reduced to 16 at 96 kHz. Also assume that the same Transporter
allows for concurrent use of multiple sampling frequencies. Typically there would be a
Plug Layout that shows plugs that are usable at 48 kHz, and another that shows plugs that
are usable at 96 kHz. However, such classification of Plug Layouts implies that the capa-
bility to use multiple sampling frequencies concurrently is never used, since the number
of usable audio plugs is subject to the sampling frequency in use. Evidently, the extent to
which the use of multiple word clock outputs affects the classification of Plug Layouts by
sampling frequency needs to be investigated.
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7.5 Chapter Summary

In this chapter we have shown how the capabilities of our proposed Transporter HAL API have
resulted in enhancements from Transporter control all the way up to graphical user application
capabilities. To demonstrate this, an example of a client-server connection management applica-
tion that was modified to fully utilise our enhanced Enabler has been described. The enhanced
Enabler fully utilises our proposed Transporter HAL API. Important changes that have been
made to the client-server XML communication protocol were also discussed. A description of a
resource-optimisation algorithm that has been derived from our proposed Transporter HAL API
has also been given. The chapter concluded by highlighting further research areas.

The next chapter concludes this thesis. It aims to revisit the context of our investigation, our
motivations for the investigation, and reiterate the important findings of our investigation.



Chapter 8

Conclusion

8.1 Current State of Digital Audio Networking

This thesis has indicated that there is readiness for audio networking in audio related environ-
ments. In particular, there is a move towards digital audio routing. A number of Ethernet based
digital audio network technologies have been identified. Four Ethernet based technologies were
discussed in detail, namely CobraNetTM by Cirrus Logic [Cirrus Logic, 2007], EtherSound by
Digigram [Digigram, 2006], LivewireTM by Telos Systems (Axia Audio) [Telos Systems/Axia
Audio, 2007], and SuperMAC (an implementation of AES50-2005 [Audio Engineering Society,
2005a]) by Sony, Oxford [Oxford Technologies, 2007a]. In addition, an IEEE 1394 (FireWire)
based digital audio network technology, mLAN by Yamaha Corporation [Yamaha Corporation,
2007], was described in detail.

Ethernet infrastructure is used widely for data communications, and hence its main advantage
relates to the re-use of existing infrastructure at no additional cost. Since Ethernet was originally
developed for best effort packet delivery which is suitable for data communications, various
vendors have introduced a number of proprietary additions to the technology in order to guarantee
the real-time data transmission QoS required in digital audio networks. Despite the cost savings
from infrastructure re-use, the majority of Ethernet based digital audio network technologies that
exist are proprietary, and hence not interoperable across vendors.

In contrast, IEEE 1394 is based on an open standard which was originally developed for real-time
multimedia data transfer, including audio and video [IEEE Std. 1394, 1995; IEEE Std. 1394a,
2000; IEEE Std. 1394b, 2002]. In addition, mLAN makes use of IEEE 1394 as its underlying
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network technology and is also based on open standards, namely the Plural Node Architecture
[1394 Trade Association, 2004], and the Audio and Music Data Transmission Protocol [1394
Trade Association, 2002; IEC, 2005]. IEEE 1394 requires a specialised network infrastructure
that is not as widely used as Ethernet, hence its initial setup costs may be higher. However, re-
sults from a survey conducted by the AES TC-NAS show that there is no preference for existing
data communications infrastructure over the use of specialised infrastructure for digital audio
networking [Gross, 2006]. This thesis has described an investigation of the hardware abstrac-
tion layer of second generation mLAN devices. Motivations for further investigation of mLAN
that were discussed include its dependence on open standards and the guaranteed real-time data
transmission QoS derived from the use of IEEE 1394 in its standard form. Open standards foster
interoperability across vendors.

8.2 Second Generation mLAN

The Plural Node Architecture, also known as the Enabler/Transporter Architecture, forms the
foundation of second generation mLAN. Audio/MIDI connection management is split between
two nodes, namely an Enabler and a Transporter. The Transporter typically resides in an mLAN
device and its sole responsibility is the transmission and reception of audio or MIDI over IEEE
1394. The Enabler typically resides in a workstation and exposes high level plugs abstractions
to connection management applications. The Enabler configures audio/MIDI routing between
Transporters in response to requests from high level connection management applications. Plug-
ins are written for the Enabler in order for it to communicate with Transporters in a vendor-
specific manner via the Transporters’ Transporter Control Interfaces. The plug-ins are written
against an mLAN Transporter hardware abstraction layer (HAL) application programming inter-
face (API).

A move towards defining an open, standards-based implementation for the mLAN Transporter
has resulted in the introduction of the Open Generic Transporter (OGT) concept. An OGT guide-
line document has been created by the Audio Engineering Society’s SC-02-12-G Task Group
[Audio Engineering Society - Standards Committee, 2005]. The document describes an open de-
sign for the Transporter Control Interface of a generic Transporter. Therefore, if manufacturers
define the Transporter Control Interface of their Transporters in accordance with the OGT guide-
line document, there will be no need for the manufacturers to create their own vendor-specific
HAL plug-ins. Instead, the Enabler will make use of a common, open, generic Transporter HAL
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plug-in to communicate with their Transporters.

The mLAN Transporter HAL API mentioned above allows for complete access to the capabilities
of Transporters. The investigation documented in this thesis was primarily triggered by the intro-
duction of the OGT guideline document. The OGT guideline document defines all capabilities
that may be provided by any Transporter, although in a hardware architecture independent man-
ner. Some capabilities defined by the OGT guideline document are currently not implemented by
existing Transporters. This results in inadequacies within the current mLAN Transporter HAL
API which has been designed to fully utilise the capabilities of existing Transporters.

Initially, the existing HAL for mLAN Transporters was evaluated. This evaluation identified
shortcomings within the current Transporter plug-in mechanism that is used by the Enabler. It
also identified shortcomings within the current mLAN Transporter HAL API that is used to create
HAL plug-ins which are loaded by the Enabler. To resolve these shortcomings, a new plug-in
mechanism and a new Transporter HAL API were proposed. The innovations resulting from
our proposed Transporter HAL API were described with the aid of an example of a client-server
connection management application and the Enabler. The connection management application
fulfils high level connection management requests by calling on the Enabler. A brief overview
of important findings that have been documented in this thesis is given below.

8.3 mLAN Transporter Plug-In Mechanism

8.3.1 Current Plug-In Mechanism

The current Transporter plug-in mechanism has been described in the context of its implemen-
tation within the Enabler. Two such implementations for different operating systems were de-
scribed in detail, one for Microsoft Windows and the other for Linux. On Microsoft Windows,
the component object model (COM) is used as the plug-in mechanism, while shared libraries are
used on Linux. Although not described in detail, Okai-Tettey [2005] suggests that the Macintosh
operating system could make use of a shared library approach that is similar to that on Linux,
since it is a UNIX-based operating system. Three main shortcomings were identified within
the current plug-in mechanism. These shortcomings relate to binary dependence, Transporter
HAL API versioning, and the use of forwarding routines to implement Transporter HAL API
versioning, as described below.
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8.3.1.1 Binary Dependence

When a Transporter is enumerated by the Enabler, its corresponding plug-in is loaded and the
plug-in creates a Transporter object which the Enabler uses for subsequent interaction with the
Transporter. The Enabler is required to keep a pointer to this object in its memory in order to
access the parameters of the Transporter. This implies that the definition of the Transporter class
and its associated classes ought to be shared between the Enabler and the plug-in implemen-
tation. Furthermore, important Enabler classes that are associated with the Transporter class
expose functionality to handle asynchronous transactions and isochronous resource allocation.
The above description implies that a certain level of binary dependence exists between the En-
abler and HAL plug-in implementations. Thus one has to ensure that the Transporter class
definition and also those of its associated classes, within both the Enabler and the HAL plug-in,
are identical. Such binary dependence is unnecessarily restrictive and can be avoided.

8.3.1.2 Transporter HAL API Versioning

Coupled with the binary dependence shortcoming described above, another shortcoming that was
identified was that of Transporter HAL API versioning. In particular, with the current plug-in
mechanism, problems may potentially occur upon updates of the Transporter HAL API. The
Transporter HAL API defines methods that are required to access parameters of Transporters.
For example, methods defined by the Transporter class mentioned above are part of the Trans-
porter HAL API. Assuming that there are new function definitions added to the Transporter class,
backwards compatibility with previous Transporter HAL plug-ins may be problematic. Trans-
porter HAL plug-ins based on earlier versions of the Transporter class will most likely produce
runtime errors when attempts to access the newly defined member functions are made, since they
will be absent. It became apparent that there was a need to query the version of the Transporter
HAL API implemented by a HAL plug-in.

The Enabler implementation that formed the basis of our investigation demonstrated this Trans-
porter HAL API versioning shortcoming. Further investigation resulted in a deeper understand-
ing of a mechanism that was originally implemented by Yamaha Corporation in their original
Enabler. This mechanism aimed to implement Transporter HAL API versioning through the use
of forwarding routines for each Transporter HAL API method, as described in section 8.3.1.3
below. However, the mechanism has its inherent shortcomings.
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8.3.1.3 Use of Forwarding Routines to Implement Transporter HAL API Versioning

In an attempt to implement Transporter HAL API versioning, Yamaha Corporation originally
designed their Transporter HAL API to have one CallTransporter function to access all parame-
ters of a Transporter via its HAL plug-in [Yamaha Corporation, 2004b]. When parameters of a
Transporter are accessed via its plug-in, the CallTransporter function is called with arguments
representing a unique identifier (selector ID) for the function to be called and a handle to the
Transporter object on which the function is to be called. Each function of the Transporter HAL
API has a unique selector ID that is used to identify it. The CallTransporter function imple-
mentation resides in the HAL plug-in. In this implementation, the selector ID for the function to
be called is resolved and, based on the interpretation of the selector ID, an additional call to the
actual function is made via the handle to the Transporter’s object. Therefore, the CallTransporter

function serves as a forwarding routine that only forwards function calls to the Transporter object
when the selector ID is resolved. Any functions that are not implemented by the HAL plug-in
would be known when the selector ID of the function is resolved, and hence there is no possibility
for any runtime errors.

While the above mechanism is functional, it was discovered that for Transporter HAL APIs with
hundreds of methods, writing forwarding routines for each API method potentially becomes te-
dious and error prone [Box, 1998]. In particular, for each function that is added to the Transporter
HAL API, a new selector ID is also introduced. Care should be taken to ensure that the new se-
lector ID is unique, relative to existing selector IDs. Within a Transporter plug-in, the process of
interpreting a selector ID and mapping it to the correct function also requires great care, since the
definitions of selector IDs within the Enabler and Transporter plug-ins are required to be exactly
the same.

8.3.2 Proposed Plug-In Mechanism

A new plug-in mechanism was proposed to resolved the shortcomings that are summarised in
section 8.3.1. The new plug-in design makes use of fundamental concepts of COM. A number
of features inherent in COM were found to resolve the shortcomings of the the current plug-in
mechanism. Of the three popular operating systems, Microsoft Windows, Linux, and Macintosh,
only Microsoft Windows has support for COM in its standard form. Nevertheless, the fundamen-
tal concepts of COM made it possible for “COM-like” implementations to be created for Linux
and Mac OS X.
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On Linux, shared libraries continue to be used for the implementation of our proposed plug-
in mechanism. However, the shared library implementation has been tailored to behave like
COM. In order to achieve this, guidelines described by Box [1998] were used. As suggested by
Okai-Tettey [2005], a shared library implementation for our proposed plug-in mechanism on the
Macintosh operating system has been created. However, an alternative implementation for the
plug-in mechanism on Macintosh was first considered before the shared library implementation
was created. The important concepts of this alternative implementation are highlighted below,
together with considerations that make it less favourable.

A mechanism for implementing COM on Mac OS X that has been created by Hunt [2004] was
first explored before a decision was made to use a shared library approach for Macintosh. The
mechanism for implementing COM on Mac OS X has the potential benefit of making it possible
for Microsoft COM plug-in implementations to run on Mac OS X without changing the source
code. Despite such a benefit, a number of counter considerations make this alternative less
favourable. Some of the considerations include the lack of documentation to show how the
mechanism is used on versions of Macintosh other than Mac OS X, the level of complexity
introduced for third party plug-in development, and reliance on a single individual (Hunt [2004])
for debugging purposes.

A brief summary of the important aspects of our proposed plug-in mechanism that resolve short-
comings of the current HAL plug-in mechanism is given below.

8.3.2.1 Reducing Binary Dependence

In order to reduce binary dependence between the Enabler and HAL plugs-ins, our proposed
HAL plug-in mechanism makes use of pointers to interfaces, as opposed to objects. The ad-
vantage of making use of interfaces is that the underlying implementation details are abstracted
from plug-in implementations at the time of development. Interfaces were defined for Enabler
functionality that are required by HAL plug-ins, such as handling asynchronous transactions and
isochronous resource allocation for a Transporter.

8.3.2.2 COM Interface Versioning Capabilities

A COM interface that defines all the mandatory capabilities of the Transporter HAL API was
defined. Implementing the Transporter HAL API directly as a COM interface eliminates the need
for forwarding routines, hence the COM interface function calls directly access the parameters
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of a Transporter. A guiding principle that was complied with was that COM interfaces ought
to be treated as immutable binary and semantic contracts that must never change [Box, 1998].
Assuming that new capabilities are required in the Transporter HAL API, other suitably named
COM interfaces with the required function definitions may be created. This implies that it is
possible for the Transporter HAL API to be composed of more than one COM interface.

A feature of COM that facilitates Transporter HAL API versioning through the use of multiple
COM interfaces is the ability to query the existence of one or more COM interfaces via another
COM interface. In particular, we have defined a mandatory COM interface called INC_PLUGIN

which all HAL plug-ins should implement. The INC_PLUGIN COM interface defines methods
that access the node controller capabilities of a Transporter. Any additional or optional COM
interfaces are queried via the INC_PLUGIN COM interface. In order to query the existence of
COM interfaces, the QueryInterface function of the IUnknown COM interface is called. The
IUnknown COM interface is the parent of all legal COM interfaces. Any COM interface directly
or indirectly provides an implementation for the IUnknown COM interface functionality such
as the QueryInterface function. Other functions defined by the IUnknown COM interface assist
with managing the lifetime of an instance of a COM component.

The QueryInterface function is called with a unique identifier or name of the COM interface
being queried. If the COM interface, INC_PLUGIN for example, does not provide an implemen-
tation for the COM interface being queried, an error is reported, otherwise a pointer to the queried
COM interface is returned to the caller. This query interface mechanism allows for greater con-
trol over Transporter HAL API versioning. COM interfaces are first queried to ascertain their
existence within a given plug-in before functions are called. This prevents the occurrence of
runtime errors that are due to the absence of expected functions. Consequently, this mechanism
reinforced the suitability of COM, in its standard form, as a plug-in mechanism that resolved the
shortcomings described in section 8.3.1.

8.4 mLAN Transporter HAL API

As already mentioned, the introduction of the Open Generic Transporter concept was the primary
element that triggered this investigation. In order for the OGT guideline document to be hardware
architecture independent, the components of a stream of isochronous packets on the IEEE 1394
bus are defined using high level abstractions. These abstractions relate to isochronous stream
plugs (ISPs) and node controller plugs (NCPs). An ISP represents an input or output for a single
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isochronous stream to or from the IEEE 1394 bus, while an NCP represents an input or output for
a single monaural channel of audio or a single cable of MIDI to or from the host device [Audio
Engineering Society - Standards Committee, 2005]. An ISP can be dynamically or statically
associated with one or more NCPs.

The manner in which word clock synchronisation is defined by the OGT guideline document
abstracts underlying hardware-architecture-specific features, although sufficiently scalable to in-
corporate a future need, such as the ability for a Transporter to make use of multiple sampling
frequencies simultaneously. In addition, the synchronisation model defines a mechanism that
does not impose restrictions on the number and types of word clock sources that a Transporter
can use to generate word clock outputs.

The OGT guideline document also provides a structured mechanism to deal with any device-
specific quirks. This mechanism involves the use Plug Layouts to model the different modes that
a Transporter can operate in. This implies that Plug Layouts are mutually exclusive configura-
tions of a Transporter, where each Plug Layout has a fixed number of NCPs, ISPs, and word
clock sources that are concurrently usable.

8.4.1 Current Transporter HAL API

The current Transporter HAL API was defined before the OGT concept was introduced. Conse-
quently, this version of the Transporter HAL API completely utilises the capabilities of Trans-
porters that were created before the OGT. When the OGT guideline document was produced, a
HAL plug-in for OGT-based Transporters was created against the current Transporter HAL API.
This implementation of the OGT HAL plug-in was evaluated to determine the extent to which
capabilities of the OGT were utilised. An overview of the shortcomings that were identified is
given below.

8.4.1.1 Implementation Complexities

As a result of the static nature of the current Transporter HAL API, complexities have been
introduced to the OGT plug-in implementation in order to accommodate dynamic ISP to NCP
associations. This is due to the fact that the current Transporter HAL API assumes a static
relationship between the components that model a stream of isochronous packets, while the OGT
guidelines allows for the possibility of a dynamic relationship between ISPs and NCPs. It was
also noted that the current Transporter HAL API is not defined in terms of ISPs and NCPs.
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8.4.1.2 Restrictions In Transporter Operation

The current Transporter HAL API was designed with a bias towards fully utilising the capabilities
of Yamaha Corporation’s hardware, although HAL plug-ins enable cross vendor interoperability.
Certain assumptions within the current Transporter HAL API impose restrictions on the opera-
tion of OGT-based Transporters. An example of one such restriction is the manner in which ISPs
of the OGT cannot be individually controlled. In the context of transmitting ISPs, such collective
control leads to wastage of isochronous resources on a network. Isochronous resources available
on a network determine the number of Transporters that can transmit data simultaneously, hence
such wastage has negative consequences on the overall performance of an mLAN network.

8.4.1.3 Inadequate Word Clock Source Selection Capabilities

In terms of the current Transporter HAL API, only two types of word clock sources may be
selected, namely a built-in word clock source and a word clock source that receives synchroni-
sation information from the IEEE 1394 bus. On the contrary, the OGT guideline document does
not impose any restriction on the number and types or word clock sources that may be selected
for Transporters. For example, OGT-based Transporters may have external word clock sources
attached to them such as by reading the sample rate information of incoming ADAT or AES/EBU
digital audio streams. The current Transporter HAL API does will not allow such external word
clock sources to be selected for any Transporter. This leads to the underutilisation of word clock
source selection capabilities of OGT-based Transporters.

8.4.1.4 Lack of Support for the Use Multiple Sampling Frequencies Concurrently

The current Transporter HAL API assumes that all audio plugs of a Transporter are only allowed
to operate at one common sampling frequency. However, the OGT guideline document caters for
a future need where plugs of a Transporter may operate at different sampling frequencies. For
example, one source plug on a Transporter can operate at 48 kHz while another at 96 kHz. Such
a future need cannot be realised using the current Transporter HAL API since it assumes that all
plugs on a device can only operate at one common sample rate. It should be borne in mind that
while plugs on a Transporter may operate at different sampling frequencies, connections between
source and destination plugs are only permitted if both plugs share the same sampling frequency.
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8.4.1.5 Inadequate Control over Device-Specific Quirks

The is currently no mechanism that explicitly handles device-specific quirks. For example, a
common quirk is the reduction in the number of audio channels that can be transmitted at high
sampling frequencies as opposed to lower sampling frequencies. In an example of a current plug-
in implementation, the number of audio channels that are transmitted by a Transporter is halved
for sampling frequencies greater than 48 kHz. For users of connection management applications
who do not have prior knowledge regarding this, it results in undesirable “surprises”.

It became apparent that sampling frequency changes are the only quirk that can be handled by
the current Transporter HAL API. However, a manufacturer may opt to create an OGT-based
Transporter that has different configurations (Plug Layouts) based on a variety of bandwidth
requirements. With the current Transporter HAL API, it would be impossible for the Enabler
to have optimal control over such quirks, since the API has no knowledge of Plug Layouts in
an OGT-based Transporter. Consequently, a need for a more structured way of dealing with any
device-specific quirks was identified.

8.4.2 Proposed Transporter HAL API

A new Transporter HAL API was proposed to resolve the shortcomings mentioned above. To
demonstrate the feasibility of our proposed Transporter HAL API in resolving these shortcom-
ings whilst remaining backwards compatible, three proof-of-concept HAL implementations were
created. These HAL implementations comprised two standalone device Transporter plug-ins and
an implementation for a Windows PC Transporter. Of the two standalone device Transporter
plug-ins, one is for an example of a type of non-OGT-based Transporter, while the other is for
OGT-based Transporters. Important concepts of these implementations have been highlighted in
this thesis.

This thesis has also described a test application that was created to manually test each of the
Transporter HAL API functions implemented for both non-OGT-based Transporters and OGT-
based Transporters. The impact that our proposed Transporter HAL API has on a client-server
connection management application has also been discussed. In this connection management
application, the server makes use of our modified version of the Enabler to fulfil connection
management requests from client applications. The client applications allow for graphical user
interaction. Some functionality introduced by the proposed Transporter HAL API resulted in vis-
ible enhancements to end-user capabilities of client applications [Chigwamba and Foss, 2007],



CHAPTER 8. CONCLUSION 191

while others resulted in more subtle enhancements, such as the possibility for resource optimi-
sation techniques. A brief overview of the key aspects of our proposed Transporter HAL API is
given below.

8.4.2.1 ISPs and NCPs as a Basis for Transporter HAL API

Implementation complexities and operational restrictions mentioned in sections 8.4.1.1 and 8.4.1.2
respectively, result from the fact that the current Transporter HAL API is not defined in terms of
ISPs and NCPs. Consequently, in order to resolve these shortcomings, our proposed Transporter
HAL API was defined in terms of ISPs and NCPs.

The concept of ISPs and NCPs was introduced by the OGT guideline document. However,
this concept was found to be abstract enough to encapsulate the underlying components of
isochronous streams in the context of the Enabler/Transporter architecture. The proof-of-concept
implementations that were created, show how this concept can be used to model the functional
blocks within non-OGT-based Transporters without compromising Transporter capabilities.

8.4.2.2 Specifying Constraints to Allow Dependencies Between Transporter Parameters

In order to accommodate both static and dynamic behaviours of components of various Trans-
porters such as associations between ISPs and NCPs, various parameters of a Transporter are
associated with dependency information. This dependency information specifies whether values
of parameters are fixed, meaning that they cannot be changed, or the parameters belong to a
group of parameters whose values may be dependent on each other. This information is con-
veyed via some of the functions defined within our proposed Transporter HAL API. The use of
dependency information contributes to the design of a Transporter HAL API that is flexible and
is not biased towards a particular hardware architecture’s capabilities.

8.4.2.3 Enhanced Word Clock Source Selection

An enhanced word clock source selection mechanism was introduced by the proposed Trans-
porter HAL API. This mechanism was adopted from the OGT guideline document, since it does
not impose restrictions in either the number or types of word clock sources that may be accessed
by an Enabler. As a result, external word clock sources that are implemented by some OGT-
based Transporters can now be selected. The word clock source selection mechanism allows
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the number of word clock sources on a Transporter to be queried and each word clock source is
accessible using a unique identifier for the word clock source.

While this mechanism was adopted from the the OGT guideline document, our proof-of-concept
implementations showed it that can be implemented for existing Transporters.

8.4.2.4 Support for the Use of Multiple Sampling Frequencies Concurrently

In recognition of the future need for a Transporter to operate at multiple sampling frequencies
as suggested by the OGT guideline document, our proposed Transporter HAL API attempts to
incorporate this capability. However, there are currently no OGT-based Transporter firmware
implementations that make use of this capability. Hence, this functionality cannot be tested
completely at present. However, absence of such firmware implementations creates potential
research areas where future work may be carried out.

8.4.2.5 Use of Plug Layouts to Handle Device-Specific Quirks

The Plug Layout concept that is defined by the OGT guidelines has been incorporated into the
proposed Transporter HAL API. Existing sampling frequency device-specific quirks are now
implemented in terms of the Plug Layout concept. It has also been shown that the Plug Layout
concept provides a structured approach to handling any device-specific quirks.

8.5 Future Work

Throughout this thesis, it has been constantly mentioned that at the time of this writing, the OGT
document did not provide any guidelines relating to the node application capabilities of the Open
Generic Transporter. Consequently, our proposed Transporter HAL API only provides function-
ality to access the mandatory node controller capabilities of Transporters. In this regard, further
work is required in order to incorporate node application capabilities within our proposed Trans-
porter HAL API. In particular, the OGT document first needs to be augmented with guidelines for
the design of the node application component of the Open Generic Transporter. Secondly, some
investigation will be required in order to determine the methods that are required to access the
node application capabilities of Transporters using our proposed Transporter HAL API. Lastly,
the Enabler and its associated connection management applications will require modifications in
order to fully utilise any additional node application capabilities.
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The absence of an OGT-based Transporter firmware implementation that supports concurrent
use of multiple sampling frequencies implies that this functionality cannot be tested at present.
Consequently, this creates an investigation area where further research needs to be done. In
particular, this functionality is first required at a firmware level. Should the firmware imple-
mentation be provided, more investigation is required in order to elicit user requirements. User
requirements will mainly guide the graphical user interface design.

We have already mentioned that should the number of usable plugs differ depending on sampling
frequency, a Transporter would have to implement separate “modes”, where each mode has a
separate Plug Layout which only exposes plugs that are visible within a particular sampling fre-
quency range. In addition, one of the capabilities introduced by the OGT concept, which we
have also incorporated in the Transporter HAL API, is the ability for a Transporter to use mul-
tiple sampling frequencies concurrently. This leads to a need for further investigation in order
to find out how to handle situations where two or more sampling frequencies that have different
plug capabilities are used concurrently. For example, assume that at 48 kHz, a Transporter has
32 usable plugs, while the number of usable plugs is reduced to 16 at 96 kHz. Also assume
that the same Transporter allows for concurrent use of multiple sampling frequencies. If Plug
Layouts are classified based on the various plug capabilities that are available at different sam-
pling frequencies, the capability to use multiple sampling frequencies concurrently is never used.
Therefore, a question that needs to be answered is: “To what extent is the classification of Plug
Layouts, based on plug capabilities at different sampling frequencies, affected by the capability
to use multiple sampling frequencies concurrently?”

8.6 Overall Conclusion

One of the favourable motivations for further investigating the Plural Node Architecture was the
need to promote an open, standards-based digital audio network technology. The introduction of
the Open Generic Transporter reaffirms the desire for an open, standards-based audio network.

Our investigation has shown how the fundamental concepts of COM can be used to create a
plug-in mechanism that allows for robust Transporter HAL API versioning. In addition, we
have shown that a new Transporter HAL API is required in order to fully utilise capabilities of
the Open Generic Transporter. We acknowledge that the OGT guideline document is hardware
architecture independent and completely describes audio and music data encapsulation and ex-
traction in accordance with the A/M Data Transmission Protocol. Consequently, our proposed
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Transporter HAL API has been largely influenced by the high level abstractions that are defined
in the OGT guideline document.

Enhancements to end-user capabilities have also been realised as a result of our proposed Trans-
porter HAL API. However, inadequacies in the capabilities of current firmware implementations
for OGT-based Transporters warrant further investigation in some areas.



Glossary

“B Mode” Transporter: A Transporter that always requires an Enabler for A/M data transmis-
sion.

“B-Pro Mode” Transporter: A Transporter that is capable of CIT (see CIT).

A/M: Audio and Music.

AES TC-NAS: The Audio Engineering Society’s Technical Committee on Networked Audio
Systems.

AM824: A data format that comprises an 8-bit label and 24-bits of Audio/Music data.

API: Application Programming Interface.

ASIC: Application Specific Integrated Circuit.

ASIO: Audio Stream Input/Output.

Asynchronous packet: See ansynchronous transfers.

Asynchronous transfers: The class of IEEE 1394 data transfers that require guaranteed data
delivery. Such data include device control requests and is packaged in asynchronous
packets.

Basic Enabler: Yamaha Corporation’s original Enabler implementation (see Enabler).

Bus reset: Occurs whenever the state of any IEEE 1394 node changes (including addition and
removal of nodes).

CIP: Common Isochronous Packet. The general packet format for audiovisual data over IEEE
1394.
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CIT: Connectionless Isochronous Transmission. In CIT, a Transporter broadcasts or receives
A/M data on isochronous channels that are restored from the device’s non-volatile mem-
ory.

CLSID (CLasS ID): A number that uniquely identifies a COM component. Applications that
support Microsoft’s COM architecture register their components’ CLSIDs in the Win-
dows registry. Windows uses these CLSIDs to identify software components without
having to know their name.

COM: Component Object Model.

config ROM: Sets of read-only memory entries are defined to provide configuration information
during node initialisation.

CSR: Control and Status Register.

Data block: A cluster within an isochronous packet. See isochronous packet.

DLL: Dynamic Link Library. A DLL is a code module for Microsoft Windows that can be
loaded on demand and linked at run time, and then unloaded when the code is no longer
needed.

Enabler: A node in the Plural Node Architecture that provides high level abstractions of the
audio channel end points on each of the Plural Node audio devices. This node is respon-
sible for making and breaking connections between these end-points.

FireWire: See IEEE 1394.

Function prototype: A declaration of a function, in C or C++, that omits the function body but
specifies the function’s name, argument types, and return type. A function prototype
can be thought of as specifying a function’s interface.

GUID: Globally Unique IDentifier. A unique 128-bit number assigned to each IEEE 1394
device.

HAL: Hardware Abstraction Layer.

HAL ID: A unique identifier for a Transporter’s HAL plug-in. This identifier is composed of
the Transporter’s HAL Vendor ID and HAL Model ID. These two IDs are found in the
host device’s config ROM.
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IEC: International Electrotechnical Commission. An organisation that sets international elec-
trical and electronics standards.

IEC 61883-6: The Audio and Music Data Transmission Protocol.

IEEE 1394: A digital network interface technology that allows professional audio and video
equipment, PCs, and electronic devices to be interconnected using a single cable. Com-
monly known as FireWire.

IID: Interface IDentifier. A globally unique identifier (GUID) that is associated with an in-
terface. There are functions that take IIDs as parameters in order to allow the caller to
specify the interface pointer to be returned.

Isochronous packet: See isochronous transfers.

Isochronous stream: A collection of isochronous packets with the same channel number.

Isochronous transfers: The class of IEEE 1394 data transfers that require a constant rate of data
transmission. Such data include audio and video content, and is packaged in isochronous
packets.

ISP: Isochronous Stream Plug. Represents an input or output for a single isochronous stream
to or from the IEEE 1394 bus.

mLAN: music Local Area Network.

NCP: Node Controller Plug. Represents an input or output for a single monaural channel of
audio or a single cable of MIDI to or from the node application (see node application).

NCP05: Node Controller Package 5. A Transporter design makes use of one mLAN-NC1 chip
and two mLAN-PH2 chips.

Node application: The hosting IEEE 1394 device and its range of legacy audio and MIDI plugs.

Node controller: The IEEE 1394 node that is hosted by a device.

OGT: Open Generic Transporter.

OSI: Open Systems Interconnection. An ISO standard for worldwide communications that
defines a framework for implementing data networking protocols in seven layers.
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Patch bay: A central routing device or software application which facilitates the connection of
outputs of audio devices to inputs of other audio devices.

PC Transporter: An implementation of a Transporter (see Transporter) on workstation that is
equiped with an IEC 61883-6 capable driver.

PCM: Pulse-code modulation.

Plug Layout: A mutually exclusive Transporter configuration that contains a number of plugs
(NCPs and ISPs) and word clock sources that are concurrently usable.

Power cycle: To power off a device and then power it on again.

QoS: Quality of service.

Quadlet: A 32-bit data element.

Redesigned Enabler: A modified version of Yamaha Corporation’s original Enabler implemen-
tation.

Sequence: A position within an isochronous packet cluster.

SFC: Sampling frequency.

Structured cabling: Cabling infrastructure that consists of a number of standardised smaller
elements.

Structured data cable: See structured cabling.

SYT: A field of a CIP packet whose value indicates the time at which a particular data block
(event) within the isochronous packet should be presented at the receiver.

SYT phase: Refers to the phase difference between the SYTs of the stream received by an ISP
and the ISP’s word clock (see SYT).

Transporter: A node in the Plural Node Architecture that is solely responsible for the encapsu-
lation and extraction of audio and MIDI data in a manner that complies with the A/M
Data Transmission Protocol.

VCXO: Voltage controlled crystal oscillator.

WDM: Windows Driver Model.
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Word clock: A clock signal used to synchronise other devices.
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Appendix A

Current Transporter HAL API

Figure A.1 shows the object model for the current Hardware Abstraction Layer (HAL) of the
Redesigned Enabler. The Redesigned Enabler is a version of an Enabler that has been created

Figure A.1: Current Redesigned Enabler Hardware Abstraction Layer Object Model

by Okai-Tettey [2005]. This Enabler is based on Yamaha Corporation’s original implementation
which is known as the Basic Enabler. The design of the Basic Enabler is documented in the
“mLAN Enabler Software Specification” [Yamaha Corporation, 2004a]. In this appendix, we
describe the capabilities of the important classes that compose the current Transporter HAL API
of the Redesigned Enabler. With reference to Figure A.1, these classes are the Transporter,
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DeviceTransporter, and PCTransporter class.

A.1 Transporter Class Definition

The Transporter class is an abstract class which represents IEEE 1394 audio devices (Trans-
porters) that support transmission and reception of isochronous streams in terms of the “A/M
Data Transmission Protocol” [1394 Trade Association, 2002; IEC, 2005]. This class defines
methods that are required to access capabilities that are common to all Transporters, hence the
class name Transporter. These methods, together with short descriptions of their purposes, are
listed below:

1. GetNameString(UInt32 strType, UInt8 *strName)

2. SetNameString(UInt32 strType, const UInt8 *strName)

Different components of a Transporter are associated with textual names. These names in-
clude: module vendor name, module model name, node vendor name, node model name,
Transporter nickname, and firmware version name. All of these names, with the exception
of the Transporter nickname, are read only. The GetNameString method is used to retrieve
a textual name, depending on the value of strType, while the SetNameString method mod-
ifies the textual name, if possible.

3. GetMaxSpeed(UInt32 *pSpeed)

This method is used to query the maximum transmission speed that a Transporter can
transmit at. These speeds range from 100 Mb/s through to 3.2 Gb/s.

4. GetMaxIsochChannels(bool isInput, UInt32 *pNumIsochChannels)

This method returns the maximum number of isochronous channels/streams that can be
received or transmitted by the corresponding device, depending on the value of the isInput

argument. isInput is true for input (reception), and false for output (transmission).

5. IsRunning(bool isInput, bool *pRunning)

6. Start(bool isInput)
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7. Stop(bool isInput)

The isRunning method returns the status of isochronous transmission or reception. The
Start method commences all isochronous transmission or reception, while the Stop method
stops all isochronous transmission or reception for the corresponding device.

8. GetSYTSynchChannel(UInt32 *pIsochChannel)

9. SetSYTSynchChannel(UInt32 isochChannel)

10. GetSYTSynchStatus(bool *pSynch)

The GetSYTSyncChannel method returns the isochronous channel number of the isochrono-
us packets from which the corresponding device receives SYT timing information for word
clock regeneration, while the SetSYTSyncChannel method specifies this isochronous chan-
nel number. The GetSYTSyncStatus method indicates whether the device is working as a
word clock slave and receiving correct SYT timing information.

11. GetOutputSpeed(UInt32 isochID, UInt32 *pSpeed)

12. SetOutputSpeed(UInt32 isochID, UInt32 speed)

The GetOutputSpeed method returns the current isochronous transmission speed for an
output isochronous stream, while the SetOutputSpeed method sets the isochronous trans-
mission speed. The value of the isochronous transmission speed should not exceed the
value returned by the GetMaxSpeed method in item 3 above.

13. GetOutputMaxDataBlocks(UInt32 isochID, UInt32 *pBlocks)

14. SetOutputMaxDataBlocks(UInt32 isochID, UInt32 blocks)

The GetOutputMaxDataBlocks method returns the maximum number of output data blocks
per packet for the stream identified by isochID. This value is used when getting isochronous
resources and does not necessarily control the actual number of data blocks per packet.
Conversely, the SetOutputMaxDataBlocks method sets the maximum number of output
data blocks per packet for the stream which is identified by isochID. The maximum value
for the argument "blocks" is the value of SYT_INTERVAL for the current sampling fre-
quency, namely 8 for 32 kHz, 44.1 kHz, and 48 kHz, and, 16 for 88.2 kHz and 96 kHz.

15. GetOutputOverhead(UInt32 isochID, UInt32 *pOverhead)
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16. SetOutputOverhead(UInt32 isochID, UInt32 overhead)

The overhead value is used when getting isochronous resources. The GetOutputOverhead

method returns the overhead value, in bandwidth units (BWUs), for an isochronous stream
that is identified by isochID. Conversely, the SetOutputOverhead method sets the overhead
value, in BWUs, for an isochronous stream that is identified by isochID.

17. GetOutputTransferDelay(UInt32 isochID, UInt32 *pDelay)

18. SetOutputTransferDelay(UInt32 isochID, UInt32 delay)

The "Audio and Music Data Transmission Protocol" [1394 Trade Association, 2002; IEC,
2005] gives a description of the Transfer Delay value. The GetOutputTransferDelay method
returns the transfer delay value, in terms of cycle offsets, for an isochronous stream that is
identified by isochID, while the SetOutputTransferDelay method sets this value.

19. GetOutputSamplePeriod(UInt32 isochID, UInt32 *pPeriod)

The GetOutputSamplePeriod method returns the actual sampling period value (in terms of
cycle offsets) for an isochronous stream identified by isochID. For example, for a sampling
frequency of 48000 Hz, the value returned is 512 (= 8000 * 3072 / 48000).

20. GetSYTDelay(UInt32 isochID, UInt32 *pDelay)

For output isochronous streams using SYT sync, SYT Delay refers to the delay between
the SYTs of the stream used to regenerate the isochronous stream’s word clock and the
SYTs of the stream output by the isochronous stream [Audio Engineering Society - Stan-
dards Committee, 2005]. The GetSYTDelay method gets the SYT Delay value for the
isochronous stream that is identified by isochID.

21. AdjustInputPhase(UInt32 isochID, const TransporterPhaseInfo *pInfo)

This method does the phase adjustment processing for an input isochronous stream that is
identified by isochID. The method is assumed to be called when a pair of audio plugs are
logically connected for transfer. The actual processing depends on the input device.

22. GetIsochChannel(bool isInput, UInt32 isochID, UInt32 *pIsochChannel)

23. SetIsochChannel(bool isInput, UInt32 isochID, UInt32 isochChannel)

The GetIsochChannel method returns the current isochronous channel number for an isoch-
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ronous stream that is identified by isochID, while the SetIsochChannel method sets the
isochronous channel number.

24. SetTxIsochChannelAuto(UInt32 isochID, UInt32 *pIsochChannel)

This method automatically allocates an available isochronous channel number to a stream
that is identified by isochID, and returns the number of isochronous channel that has been
allocated.

25. GetEventTypeList(bool isInput, UInt32 isochID, UInt32 listSize, UInt32 *aEventType,

UInt32 *pNumEventTypes)

26. GetEventType(bool isInput, UInt32 isochID, UInt32 *pEventType)

27. SetEventType(bool isInput, UInt32 isochID, UInt32 eventType)

The GetEventTypeList method returns a list of event types of the A/M Data Transmission
Protocol that are supported by the corresponding isochronous stream. The "Audio and
Music Data Transmission Protocol" [1394 Trade Association, 2002; IEC, 2005] describes
these event types in detail. The GetEventType method returns the current event type of an
isochronous stream that is identified by isochID, while the SetEventType method sets the
current event type of the isochronous stream.

28. GetSFCList(bool isInput, UInt32 isochID, UInt32 listSize, UInt32 *aSFC, UInt32 *pNumS-

FCs)

29. GetSFC(bool isInput, UInt32 isochID, UInt32 *pSFC)

30. SetSFC(bool isInput, UInt32 isochID, UInt32 sfc)

The GetSFCList method returns a list of SFCs that are supported by an isochronous stream
that is identified by isochID. The GetSFC method returns the current SFC for an isochronous
stream that is identified by isochID, while the SetSFC method sets the current SFC.

31. GetSequenceTypeList(bool isInput, UInt32 isochID, UInt32 listSize, UInt32 *aSeqType,

UInt32 *pNumSeqTypes)

This method retrieves a list of sequence types that are supported by an isochronous stream
that is identified by isochID.
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32. GetMaxSequences(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 *pMaxSequences)

33. GetMaxSequences(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 sfc,

UInt32 *pMaxSequences)

34. GetNumSequences(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 *pNumSequences)

35. SetNumSequences(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 numSequences)

36. GetMaxSequenceNumber(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 *pMaxSe-

qNumber)

The two GetMaxSequences methods (items 32 and 33 above) return the maximum num-
ber of sequences of a given sequence type that are available for an isochronous stream
which is identified by isochID. The GetMaxSequences method shown in item 33 has an
additional sfc argument, hence it only returns the maximum number of sequences that are
supported at a sampling frequency that is specified by the sfc argument. The GetNumSe-

quences method returns the current number of sequences of the specified sequence type
within an isochronous stream that is identified by isochID, while the SetNumSequences

method sets the number of sequences. The GetMaxSequenceNumber method returns the
maximum value of the sequence number for a given sequence type within an isochronous
stream that is identified by isochID.

37. GetSequenceDataTypeList(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID,

UInt32 listSize, UInt32 *aSeqDataType, UInt32 *pNumSeqDataTypes)

38. GetSequenceDataType(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID,

UInt32 *pDataType)

39. SetSequenceDataType(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID,

UInt32 dataType)

The GetSequenceDataTypeList method returns a list of sequence data types that are sup-
ported for a specified sequence. The GetSequenceDataType method returns the current
data type of the specified sequence, while the SetSequenceDataType method sets the cur-
rent data type for the sequence.

40. GetSequenceNumber(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32

*pSeqNumber)

41. SetSequenceNumber(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32
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seqNumber)

The GetSequenceNumber method returns the current sequence number for the specified se-
quence, while the SetSequenceNumber sets the current sequence number for the sequence.

42. GetMaxSubsequences(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32

*pNumSubs)

43. GetNumSubsequences(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32

*pNumSubs)

44. SetNumSubsequences(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32

numSubs)

The GetMaxSubsequences method returns the maximum number of subsequences that are
available in a specified sequence. The GetNumSubsequences method returns the current
number of subsequences in a specified sequence, while the SetNumSubsequences method
sets the number of subsequences in the specified sequence.

45. GetSubsequenceNumber(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID,

UInt32 subID, UInt32 *pSubNumber)

46. SetSubsequenceNumber(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32

subID, UInt32 subNumber)

Up to eight MIDI messages may be multiplexed in a single sequence. For multiplexed
MIDI, the value of MOD(DBC, 8) is returned via the subsequence number. The GetSub-

sequenceNumber method returns the current subsequence number of a specified subse-
quence, while the SetSubsequenceNumber method sets the subsequence number for the
specified subsequence.

47. GetSequenceInfo(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32

subID, UInt32 infoType, void *pInfo, UInt32 infoSize)

48. SetSequenceInfo(bool isInput, UInt32 isochID, UInt32 seqType, UInt32 seqID, UInt32

subID, UInt32 infoType, const void *pInfo, UInt32 infoSize)

The GetSequenceInfo method returns information on a specified sequence, while the Set-

SequenceInfo method sets the information on a particular sequence. The value that is
returned or set depends on the corresponding device.
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A.2 DeviceTransporter Class Definition

The DeviceTransporter class is a type of Transporter class that represents a standalone device
Transporter. The class abstracts the functionality that is common to all standalone device Trans-
porters, and defines a common API that abstracts the hardware-dependent portions. As shown
in Figure A.1, the DeviceTransporter class inherits from the Transporter class and hence, it im-
plements all the methods that are defined in the abstract Transporter class. The methods that
are defined exclusively within the DeviceTransporter class, together with descriptions of their
purposes,are shown below:

1. GetPlugIn(void)

This method returns a pointer to the plug-in module object that the DeviceTransporter ob-
ject uses. The specification of plug-in module objects is defined for each platform.

2. SetEnablerAddress(void)

3. ClearEnablerAddress(void)

4. IsUnderControl(void)

There may be more than one Enabler on an mLAN network. However, each Transporter
may only be controlled by one Enabler. The SetEnablerAddress method sets the address
of Enabler that is controlling the Transporter to the ENABLER_ADDRESS register of the
Transporter, while the ClearEnablerAddress method clears the ENABLER_ADDRESS
register of the Transporter. The IsUnderControl method checks whether the Transporter is
under the computer’s control.

5. InterruptSetNotify(void (*callback)(UInt32 code, void *pParam), void *pParam)

6. InterruptClearNotify(void (*callback)(UInt32 code, void *pParam), void *pParam)

The InterruptSetNotify method sets the callback function that will be called when an inter-
rupt occurs from the corresponding Transporter device. This callback function is cleared
by the InterruptClearNotify method.

7. InputPortSetNotify(UInt32 portID, void (*callback)(UInt32 count, const UInt8 *aData,

void *pParam), void *pParam)
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8. InputPortClearNotify(UInt32 portID, void (*callback)(UInt32 count, const UInt8 *aData,

void *pParam), void *pParam)

The InputPortSetNotify method sets the callback function that will be called when data is
received by an input port of the corresponding Transporter device. This callback is cleared
by the InputPortClearNotify method.

9. OutputPortSend(UInt32 portID, UInt32 *pCount, const UInt8 *aData)

This method sends data via an output port of the corresponding Transporter device.

10. GetTransporterMode(UInt32 *pMode)

11. SetTransporterMode(UInt32 mode)

The GetTransporterMode method returns operating mode of the Transporter device, while
the SetTransporterMode method specifies the operating mode. The value of operating
mode depends on the device.

12. Identify(UInt16 data)

13. GetIdentificationStatus(UInt16 *pData)

The Identify method controls "Identify" operation of the Transporter device. For example,
such control may start/stop the blinking operation of the device’s LEDs for device recogni-
tion purposes. The value to specify operation depends on the device, but the device should
stop the identification process when zero is specified in data. The GetIdentificationStatus

method returns the status of "Identify" operation of the corresponding device.

14. CallPlugInControlPanel(PlugInCPParamPtr pParam)

This method starts the user interface program (Control Panel) which is used to change at-
tributes of the DeviceTransporter object.

15. CallPlugInSpecificFunction(UInt32 funcID, void *pParam, UInt32 paramSize)

This method calls a plug-in module specific function.

16. CaptureWholeParameters(void *pParam, UInt32 *pParamSize)

17. RestoreWholeParameters(const void *pParam, UInt32 paramSize)



APPENDIX A. CURRENT TRANSPORTER HAL API 215

The CaptureWholeParameters method returns all the parameters of the DeviceTransporter

object. These parameters may be restored at a later stage by calling the RestoreWholePa-

rameters method.

A.3 PCTransporter Class

The PCTransporter class is a type of Transporter class that represents Transporter implementa-
tions on workstations that have IEC 61883-6 capable drivers. The PCTransporter class abstracts
all platform-dependent components of PC Transporter implementations. The OSPCTransporter

class that is shown in Figure A.1 represents platform-specific PC Transporter implementations.
For example, a Windows based PC Transporter implementation is shown in Figure A.2, as de-
scribed by Okai-Tettey [2007]. The WinPCTransporter component that is shown in the diagram

Figure A.2: PC Transporter Communication Model

represents an implementation that is equivalent to the OSPCTransporter class in Figure A.1.
The Window PC Transporter implementation utilises Yamaha Corporation’s streaming driver
software, as shown in Figure A.2. Important components of this implementation are labelled 1,
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2, 3, 4, and 5. A description of these five components is given below:

1. The WinPCTransporter class implements the methods that are defined in the Transporter

class. These methods enable IEC 61883-6 transmissions. The WinPCTransporter class
communicates with Yamaha Corporation’s mLANSoftPH process via a WindowsMLAN-

VDeviceInterface object.

2. The WindowsMLANVDeviceInterface object is a global object that is created when the
Enabler is initialised. It implements an interface to Yamaha Corporation’s mLANVDevice

process, as well as to the mLANSoftPH process.

3. The Windows1394Interface class implements an interface to Yamaha Corporation’s 1394B-

usDriver which enables 1394 read, write, and lock transactions, in addition to other capa-
bilities.

4. The Window1394Interface class mainly communicates with the WindowsMLANVDevi-

ceInterface object to set up bus reset, FCP, and Bridge messaging notifications.

5. The mLANTFamily process is not used by the Redesigned Enabler, although it is used by
the Basic Enabler.
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Proposed Transporter HAL API

Figure B.1 shows an object model of the Hardware Abstraction Layer (HAL) design that has
been proposed in this thesis for the Redesigned Enabler. The design is based on the fundamental

Figure B.1: Proposed Redesigned Enabler Hardware Abstraction Layer Object Model

concepts of the Component Object Model (COM). As shown in the diagram there are two main
COM interfaces that comprise the Transporter HAL API, namely the INC_PLUGIN interface
and the INA_PLUGIN interface. The VendorTransporter class represents the COM component
which implements the methods that are defined by the COM interfaces. For each device that
uses a particular plug-in, a corresponding instance of the VendorTransporter COM component is
created.

217
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The node application component of a Transporter represents the hosting IEEE 1394 device and
its range of legacy audio and MIDI plugs, while the node controller component of the Trans-
porter represents the IEEE 1394 node that is hosted by a device. The INC_PLUGIN COM
interface is a mandatory interface that defines methods to access the node controller capabilities
of Transporters. All Transporter plug-ins that comply with our proposed design should provide
an implementation of the INC_PLUGIN COM interface. The INA_PLUGIN COM interface is
an optional interface that accesses the node application capabilities of Transporters. This thesis
has indicated that there is currently no implementation for the INA_PLUGIN COM interface,
hence, only the INC_PLUGIN COM interface definition is provided in this appendix.

B.1 INC_PLUGIN COM Interface Definition

1. GetHALVendorID(LONG* pHALVendorID)

2. GetHALModelID(LONG* pHALModelID)

The GetHALVendorID and GetHALModelID methods return the HAL Vendor ID and the
HAL Model ID, respectively, that match those of the devices that the plug-in can control.

3. Initialize(LPSTR p1394DevInterfacePtr, LPSTR pConfigROM)

This method should be called immediately after an instance of the VendorTransporter

COM component has been created. The method forwards pointers to the important in-
terfaces of the Enabler (I_IEEE1394Device and I_IEEE1394Bus) that enable the COM
instance to perform asynchronous transactions and isochronous resource allocation.

GENERAL TRANSPORTER METHODS

4. GetSupportedTransmissionModes(LONG listSize, LONG* pNumModes, LONG *pTrans-

missionModesList)

5. GetTransmissionMode(LONG* transmissionMode)

6. SetTransmissionMode(LONG transmissionMode)

The “Audio and Music Data Transmission Protocol” [1394 Trade Association, 2002; IEC,
2005] specifies two transmission modes that a Transporter can operate in, namely blocking
and non-blocking modes. The GetSupportedTransmissionModes method returns a list of
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the transmission modes that are supported by a Transporter. The GetTransmissionMode

method returns the current transmission mode that the Transporter is using, while the Set-

TransmissionMode method sets the current transmission mode.

7. GetMaxRxOffset(LONG* rxOffset)

8. GetMaxTxOffset(LONG* txOffset)

The GetMaxRxOffset method returns the maximum value of the offset that may be added
to the Presentation Time of incoming isochronous streams. The GetMaxTxOffset method
returns the maximum value of Transfer Delay that is used for the formation of SYTs of
outgoing isochronous streams.

9. GetRxTargetPhase(LONG* rxTargetPhase)

This method returns the target phase for devices that are not capable of receiving incoming
isochronous streams of arbitrary phase.

10. Identify(LONG identify)

11. GetIdentificationStatus(LONG* identificationStatus)

The Identify method controls "Identify" operation of the Transporter device. For example,
such control may start/stop the blinking operation of the device’s LEDs for device recog-
nition purposes. The value to specify the operation depends on the device, but the device
should stop the identification process when zero is specified in data. The GetIdentifica-

tionStatus method returns the status of "Identify" operation of the corresponding device.

12. GetNickname(LPSTR* pNickname, VARIANT_BOOL* writeable)

13. SetNickname(LPSTR pNickname)

The GetNickname method returns the nickname that is assigned to a device, while the Set-

Nickname method assigns a nickname to the device.

14. GetFirmwareVersionName(LPSTR* pFirmwareVersionName)

This method returns a textual name that indicates the firmware version of the Transporter.

15. Reboot()
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This method initiates a software reset on a device.

16. GetTransporterMode(LONG* pMode)

17. SetTransporterMode(LONG mode)

The GetTransporterMode method returns operating mode of the Transporter device, while
the SetTransporterMode method specifies the operating mode. The value of operating
mode depends on the device.

PLUG LAYOUT METHODS

18. GetNumPlugLayouts(LONG* numPluglayouts)

This method returns the total number of Plug Layouts that are implemented by the Trans-
porter. The Plug Layouts shall be referred to by using an ID that runs from 0 to (numPluglay-
outs - 1).

19. GetCurrentPlugLayout(LONG* plugLayoutID)

20. SetCurrentPlugLayout(LONG plugLayoutID)

The GetCurrentPlugLayout method returns the ID of the Plug Layout that is currently in
use, while the SetCurrentPlugLayout method sets the Plug Layout to be used.

21. GetPlugLayoutName(LONG plugLayoutID, LPSTR* pluglayoutName, VARIANT_BOOL*

writeable)

22. SetPlugLayoutName(LONG plugLayoutID, LPSTR pluglayoutName)

The GetPlugLayoutName method returns the name that is assigned to the specified Plug
Layout, while the SetPlugLayoutName method assigns a name to the specified Plug Lay-
out.

ISOCHRONOUS STREAM PLUG (ISP) METHODS

23. GetNumISPs(LONG pluglayoutID,VARIANT_BOOL isInput, LONG* numISPs)

24. GetISPs(LONG pluglayoutID, VARIANT_BOOL isInput,LONG listSize, LONG* numISPs-

Found, LONG* ispIndexes)
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The GetNumISPs method returns the number of ISPs of a particular direction, in a specified
Plug Layout. The GetISPs method returns an aggregation of the IDs of ISPs of a particular
direction within the specified Plug Layout. The IDs returned in this case correspond to
unique identifiers of each ISP regardless of the underlying hardware architecture.

25. Start(LONG ispID)

26. Stop(LONG ispID)

The Start method starts isochronous streaming for the specified ISP, while the Stop method
stops isochronous streaming for the specified ISP.

27. GetIntendedStreamingStatus(LONG ispID, VARIANT_BOOL *isStartSet, LONG* fixed,

LONG* linked, LONG* unique, LONG* dependency, LONG* group)

28. IsRunning(LONG ispID, VARIANT_BOOL* isRunning)

The GetIntendedStreamingStatus method checks if the specified ISP has been started. This
indicates the intended streaming state of the ISP. Note that errors may occur during stream-
ing so the GetIntendedStreamingStatus method does not tell the Enabler of the actual
streaming state of the ISP. The IsRunning method reports the actual streaming state of
an ISP.

29. GetIsochChannel(LONG ispID, LONG* isochChannelNum, LONG* pFixed,

LONG* pLinked, LONG* pUnique, LONG* pDependency, LONG* pGroup)

30. SetIsochChannel(LONG ispID, LONG isochChannelNum)

The GetIsochChannel method returns the isochronous channel number for the isochronous
stream transmitted or received by a specified ISP, while the SetIsochChannel method spec-
ifies the isochronous channel number for the isochronous stream to be transmitted or re-
ceived by the specified ISP.

31. GetISPSupportedEvtTypeList(LONG ispID,LONG listSize, LONG* pNumEvtTypes, LONG*

evtTypeList)

32. GetISPCurrentEvtType(LONG ispID, LONG* evtType)

33. SetISPCurrentEvtType(LONG ispID, LONG evtType)

The GetISPSupportedEvtTypeList method returns a list of event types of A/M Data Trans-
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mission Protocol that are supported by the specified ISP. The "Audio and Music Data
Transmission Protocol" [1394 Trade Association, 2002; IEC, 2005] describes event types
in detail. The GetISPCurrentEvtType method returns the current event type for a specified
ISP, while the SetISPCurrentEvtType method sets the current event type for the specified
ISP.

34. GetISPSupportedSFCList(LONG ispID, LONG listSize, LONG* pNumSFCs, LONG* sf-

cList)

This method returns a list of the sampling frequencies that are supported by the specified
ISP.

35. GetMaxAttachableNCPs(LONG ispID, LONG ncpType, LONG* pNumNCPs)

This method returns the maximum number of NCPs of the given NCP type that are attach-
able to the specified ISP. NCP type is either MIDI or audio.

36. IsSYTOutputCapable(LONG ispID, VARIANT_BOOL* isSYTOutputCapable)

This method reports whether the specified ISP is capable of receiving SYT timing infor-
mation that is required by the device for word clock regeneration.

37. GetISPWCLKID(LONG ispID, LONG* wclkID, LONG* pFixed, LONG* pLinked, LONG*

pUnique, LONG* pDependency, LONG* pGroup)

38. SetISPWCLKID(LONG ispID, LONG wclkID)

The GetISPWCLKID method returns the ID of the word clock output supplying word
clocks to a particular ISP, while the SetISPWCLKID method sets the ID of the word clock
output that should supply word clocks to a particular ISP.

39. GetSYTDelay(LONG ispID, LONG *sytDelay)

For output ISPs using SYT sync, SYT Delay refers to the delay between the SYTs of the
stream used to regenerate the isochronous stream’s word clock and the SYTs of the stream
output by the ISP [Audio Engineering Society - Standards Committee, 2005]. The Get-

SYTDelay method gets the SYT Delay value for the specified ISP.
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40. GetTransferDelayOffset(LONG ispID, LONG *delay, LONG* pFixed, LONG* pLinked,

LONG* pUnique, LONG* pDependency, LONG* pGroup)

41. SetTransferDelayOffset(LONG ispID, LONG delay)

Transfer delay is an Enabler specified fixed offset that may be added to the arrival times of
the isochronous packet clusters to be time-stamped. The GetTransferDelayOffset method
returns the transfer delay that is currently set for the specified ISP, while the SetTransfer-

DelayOffset method sets the current transfer delay for the specified ISP. Units are in cycle
time offsets. Note that the value specified should be within the range specified by the Get-

MaxTxOffset method, shown in item 8.

42. GetMaxOutputSpeed(LONG *maxSpeed)

43. GetOutputSpeed(LONG ispID, LONG *speed, LONG* pFixed, LONG* pLinked, LONG*

pUnique, LONG* pDependency, LONG* pGroup)

44. SetOutputSpeed(LONG ispID, LONG speed)

The GetMaxOutputSpeed method returns the maximum speed at which the device (Trans-
porter) can transmit at. At the time of this writing possible values include S100, S200,
S400, S800, S1600, and S3200. The GetOutputSpeed method returns the speed that the
specified output ISP is transmitting at, while the SetOutputSpeed method specifies the
speed at which the output ISP should transmit at. The speed specified should not be greater
than the maximum speed at which the device is capable of transmitting at.

45. GetOutputSY(LONG ispID, LONG *outputSY, LONG* pFixed, LONG* pLinked, LONG*

pUnique, LONG* pDependency, LONG* pGroup)

46. SetOutputSY(LONG ispID, LONG outputSY)

The GetOutputSY method returns the value that is written to the SY field of the isochronous
packets being transmitted by the specified ISP, while the SetOutputSY method specifies the
value to be written to the SY field of all the isochronous packets transmitted by the ISP. By
default, all transmitters set the SY field value to 016.

47. GetISPFDF(LONG ispID, LONG *inputFDF)

This method returns the value of the FDF field of incoming isochronous streams for the
specified ISP.
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48. AdjustTargetPhase(LONG ispID, LPSTR phaseInformation)

This method does the phase adjustment processing for a specified input ISP. The method is
assumed to be called when a pair of audio plugs are logically connected for transfer. The
actual processing depends on the input device.

49. GetMaxNumSequences(LONG ispID, LONG* pMaxNumSeqs)

50. GetOutputNumSequences(LONG ispID, LONG* numSeqs)

51. GetOutputMaxDataBlocks(LONG ispID, LONG* maxDataBlocks)

52. GetOutputOverhead(LONG ispID, LONG* outputOverhead)

These four methods are mainly used in a multi-bus environment for bandwidth allocation
when isochronous streams are forwarded from one bus to another. However, this the-
sis has only focused on a single bus environment. The GetMaxNumSequences method
gets the maximum number of sequences that may be transmitted by a specified ISP. The
GetOutputNumSequences method returns the actual number of sequences that a specified
ISP is transmitting. The GetOutputMaxDataBlocks method returns the maximum number
of output data blocks per packet for the stream transmitted by the specified ISPs. The
GetOutputOverhead method returns the overhead value, in bandwidth units (BWUs), for
an isochronous stream that is transmitted by the specified ISP.

53. ReadISPError(LONG ispID, LONG *ispError)

This method reads any errors that are reported by the specified ISP. Such errors include
sample rate mismatch between the expected and actual sampling frequency of the isochron-
ous packets received, errors in the DBC field of received packets, and insufficient isochron-
ous resources on the IEEE 1394 bus.

NODE CONTROLLER PLUG (NCP) METHODS

54. GetNumNCPs(LONG pluglayoutID, VARIANT_BOOL isInput, LONG ncpType, LONG*

pNumNCPs)

55. GetNCPs(LONG pluglayoutID, VARIANT_BOOL isInput,LONG ncpType, LONG listSize,

LONG* numNCPs ,LONG* ncpList)

The GetNumNCPs method returns the number of NCPs of a particular direction and type
(audio or MIDI) within a specified Plug Layout. The GetNCPs method returns a list of
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NCP IDs for NCPs of a particular direction and type within the specified Plug Layout.

56. IsLiveAttachmentSupported(LONG ncpID, VARIANT_BOOL* isLiveAttachmentSupported)

This method returns true if the specified NCP supports live attachments, and false other-
wise. Live attachment refers to the ability to modify an NCP’s attachment point while
streaming is in progress.

57. GetAttachedISP(LONG ncpID, LONG* ispID, LONG* pFixed, LONG* pLinked, LONG*

pUnique, LONG* pDependency, LONG* pGroup)

58. SetAttachedISP(LONG ncpID, LONG ispID)

The GetAttachedISP method returns the ID of the ISP to which the specified NCP is at-
tached, while the SetAttachedISP method specifies the ID of the ISP which the specified
NCP should attach to.

59. Attach(LONG ncpID)

60. Detach(LONG ncpID)

61. IsAttached(LONG ncpID, VARIANT_BOOL* isAttached, LONG* pFixed, LONG* pLinked,

LONG* pUnique, LONG* pDependency, LONG* pGroup )

The Attach method activates transfer of data to/from an NCP’s attached ISP. If live attach-
ment is supported, this method also makes effective and any pending modifications to the
ISP ID, SEQUENCE and SUBSEQUENCE attributes of the specified NCP. The Detach

method stops the transfer of data between the specified NCP and its attached ISP. The IsAt-

tached method returns a status value that indicates whether or not there is active transfer
of data between an NCP and its attached ISP.

62. GetSequenceNumber(LONG ncpID, LONG* sequenceNum, LONG* pFixed,

LONG* pLinked, LONG* pUnique, LONG* pDependency, LONG* pGroup)

63. SetSequenceNumber(LONG ncpID, LONG sequenceNum)

The GetSequenceNumber method returns the sequence position at which the NCP sends
or extracts audio/MIDI data to/from the isochronous stream transmitted or received by the
NCP’s attached ISP, while the SetSequenceNumber method specifies this sequence posi-
tion.
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64. GetSubsequenceNumber(LONG ncpID, LONG* subsequenceNum, LONG* pFixed, LONG*

pLinked, LONG* pUnique, LONG* pDependency, LONG* pGroup)

65. SetSubsequenceNumber(LONG ncpID, LONG subsequenceNum)

Up to 8 MIDI sequences may be multiplexed in a single sequence position. The GetSubse-

quenceNumber method returns the subsequence position at which the specified MIDI NCP
sends/extracts MIDI data to/from the isochronous stream that is transmitted or received by
the NCP’s attached ISP. The SetSubsequenceNumber method specifies this subsequence
position for the specified NCP.

66. GetNCPSupportedSFCList(LONG ncpID, LONG listSize, LONG* pNumSuppSFCs, LONG*

pSuppSFCList)

This method returns a list of sampling frequencies that are supported by the specified NCP

67. GetNCPSupportedSubFormatList(LONG ncpID, LONG listSize, LONG* pNumSuppSubFmts,

LONG* pSuppSubfmtList)

68. GetNCPCurrentSubformat(LONG ncpID, LONG* currentSubFmt, LONG* pFixed, LONG*

pLinked, LONG* pUnique, LONG* pDependency, LONG* pGroup)

69. SetNCPCurrentSubformat(LONG ncpID, LONG currentSubFmt)

The GetNCPSupportedSubFormatList method returns a list of subformats supported by the
specified NCP. Possible value include 60958, MBLA, One bit audio (plain), One bit audio
(encoded), High precision MBLA, MIDI, SMPTE Time Code, Sample Count, Ancillary
Data, 32-bit floating point and 24*4 Audio Pack. The GetNCPCurrentSubformat method
reports current subformat that is used by the specified NCP, while the SetNCPCurrentSub-

format method sets the current subformat to be used by the specified NCP.

70. GetNCPName(LONG ncpID, LPSTR* pNCPname, VARIANT_BOOL* writeable)

71. SetNCPName(LONG ncpID, LPSTR ncpName)

The GetNCPName method returns the textual name of the specified NCP, while the Set-

NCPName method specifies the textual name of the specified NCP. This textual name is
displayed on connection management applications such as patch bays.

72. ReadNCPError(LONG ncpID, LONG* ncpError)

This method read any errors that are reported by the specified NCP. Currently the only
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error that is possible is a mismatch between the expected subformat and actual subformat
of the sequence or subsequence that is received by the specified NCP.

WORD CLOCK SOURCES METHODS

73. GetNumClockSources(LONG pluglayoutID, LONG* numClockSources)

This method returns the number of word clock sources that are available on the Trans-
porter, in a specified Plug Layout.

74. IsSYTClock(LONG pluglayoutID, LONG clockID, VARIANT_BOOL* isSYTClock)

There are currently two types of word clock sources, namely SYT and local. An SYT
word clock source uses SYT timing information from incoming isochronous streams to
regenerate word clocks, while a local word clock source receives its word clocks from a
built-in device clock or from an external source such as the timing information within an
ADAT digital audio stream. The IsSYTClock method returns whether the specified word
clock source (identified by clockID) is an SYT word clock source or a local word clock
source.

75. GetSYTISPID(LONG pluglayoutID, LONG clockID, LONG* ispID)

76. SetSYTISPID(LONG pluglayoutID, LONG clockID, LONG ispID)

The GetSYTISPID method returns the ISP ID for the ISP that is receiving isochronous
streams from which SYT timing information is read by an SYT type of word clock source.
The SetSYTISPID method sets the ISP ID for the SYT word clock source with the given ID.

77. GetSupportedClockSFCList(LONG pluglayoutID, LONG clockID, LONG listSize, LONG*

numSFCsSupported, LONG* supportedSFCList)

78. GetClockSFC(LONG pluglayoutID, LONG clockID, LONG* sfc)

79. SetClockSFC(LONG pluglayoutID, LONG clockID, LONG sfc)

The GetSupportedClockSFCList method returns a list of the sampling frequencies that are
supported by the word clock source that is identified by clockID, within a particular Plug
Layout. At the time of this writing possible values were 32 kHz, 44.1 kHz, 48 kHz, 88.2
kHz, 96 kHz, 176.4 kHz, and 192 kHz. The GetClockSFC method returns the expected
sampling frequency that is currently in use by the specified word clock source, while the
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SetClockSFC method specifies the sampling frequency that is to be used by the specified
word clock source.

80. GetClockName(LONG pluglayoutID, LONG clockID, LPSTR* clockName,

VARIANT_BOOL* writeable)

81. SetClockName(LONG pluglayoutID, LONG clockID, LPSTR clockName)

The GetClockName method returns the textual name of the specified word clock source in
the given Plug Layout, while the SetClockName method modifies this textual name.

WORD CLOCK OUTPUTS METHODS

82. GetNumWordclockOutputs(LONG pluglayoutID, LONG* numWCLKOutputs)

This method queries a device for the number of concurrently usable word clock outputs in
a particular Plug Layout of a Transporter. Each of these word clock output is identified a
WCLK ID that ranges from 0 to (numWCLKOutputs - 1).

83. GetCurrentClockSource(LONG pluglayoutID, LONG wclkID, LONG* clockID)

84. SetCurrentClockSource(LONG pluglayoutID, LONG wclkID, LONG clockID)

The GetCurrentClockSource method returns the ID of the word clock source that is gen-
erating word clocks for the given word clock output, while the SetCurrentClockSource

method specifies the ID of the word clock source that should be used to generate word
clocks for the given word clock output.

85. GetWCLKOutputSamplePeriod(LONG pluglayoutID, LONG wclkID, LONG* outputSam-

plePeriod)

This method returns the actual sample period of the word clocks that are generated by the
specified word clock output.

86. ReadWCLKError(LONG pluglayoutID, LONG wclkID, LONG* wordclockError)

This method reads errors that are reported by a specified word clock output. Such er-
rors include mismatches between the expected and actual sampling frequencies, and any
instabilities within the generated word clocks.
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