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ABSTRACT 
 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a profound 

loss of dopaminergic neurons from the substantia nigra (SN). Among the many 

pathogenic mechanisms thought to be responsible for the demise of these cells, dopamine 

(DA)-dependent oxidative stress and oxidative damage has taken center stage due to 

extensive experimental evidence showing that DA-derived reactive oxygen species 

(ROS) and oxidized DA metabolites are toxic to SN neurons. Despite its being the most 

efficacious drug for symptom reversal in PD, there is concern that levodopa (LD) may 

contribute to the neuronal degeneration and progression of PD by enhancing DA 

concentrations and turnover in surviving dopaminergic neurons. The present study 

investigates the potential neurotoxic and neuroprotective effects of DA in vitro. These 

effects are compared to the toxicity and neuroprotective effects observed in the rat 

striatum after the administration of LD and selegiline (SEL), both of which increase 

striatal DA levels. The effects of exogenous LD and/or SEL administration on both the 

oxidative stress caused by increased striatal iron (II) levels and its consequences have 

also been investigated. 

 

6-Hydroxydopamine (6-OHDA) is a potent neurotoxin used to mimic dopaminergic 

degeneration in animal models of PD. The formation of 6-OHDA in vivo could destroy 

central dopaminergic nerve terminals and enhance the progression of PD. Inorganic 

studies using high performance liquid chromatography with electrochemical detection 

(HPLC-ECD) show that hydroxyl radicals can react with DA to form 6-OHDA in vitro. 

SEL results in a significant decrease in the formation of 6-OHDA in vitro, probably as a 

result of its antioxidant properties. However, the exogenous administration of LD, with or 

without SEL, either does not lead to the formation of striatal 6-OHDA in vivo or produces 

concentrations below the detection limit of the assay. This is despite the fact that striatal 

DA levels in these rats are significantly elevated (two-fold) compared to the control 

group.  
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The auto-oxidation and monoamine oxidase (MAO)-mediated metabolism of DA causes 

an increase in the production of superoxide anions in whole rat brain homogenate in 

vitro. In addition to this, DA is able to enhance the production of hydroxyl radicals by 

Fenton chemistry (Fe(III)-EDTA/H2O2) in a cell free environment. Treatment with 

systemic LD elevates the production of striatal superoxide anions, but does not lead to a 

detectable increase in striatal hydroxyl radical production in vivo. The co-adminstration 

of SEL with LD is able to prevent the LD induced rise in striatal superoxide levels.  

 

It has been found that the presence of DA or 6-OHDA is able to reduce lipid peroxidation 

in whole rat brain homogenate induced by Fe(II)-EDTA/H2O2 and ascorbate (Fenton 

system). However, DA and 6-OHDA increase protein oxidation in rat brain homogenate, 

which is further increased in the presence of the Fenton system. In addition to this, the 

incubation of rat brain homogenate with DA or 6-OHDA is also accompanied by a 

significant reduction in the total GSH content of the homogenate. The exogenous 

administration of LD and/or SEL was found to have no detrimental effects on striatal 

lipids, proteins or total GSH levels. Systemic LD administration actually had a 

neuroprotective effect in the striatum by inhibiting iron (II) induced lipid peroxidation.  

 

Inorganic studies, including electrochemistry and the ferrozine assay show that DA and 

6-OHDA are able to release iron from ferritin, as iron (II), and that DA can bind                 

iron (III), a fact that may easily impede the availability of this metal ion for participation 

in the Fenton reaction. The binding of iron (III) by DA appears to discard the 

involvement of the Fenton reaction in the increased production of hydroxyl radicals 

induced by the addition of DA to mixtures containing Fe(II)-EDTA and hydrogen 

peroxide. 6-OHDA did not form a metal-ligand complex with iron (II) or iron (III). In 

addition to the antioxidant activity and MAO-B inhibitory activity of SEL, the iron 

binding studies show that SEL has weak iron (II) chelating activity and that it can also 

form complexes with iron (III). This may therefore be another mechanism involved in the 

neuroprotective action of SEL. 
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The results of the pineal indole metabolism study show that the systemic administration 

of SEL increases the production of N-acetylserotonin (NAS) by the pineal gland. NAS 

has been demonstrated to be a potent antioxidant in the brain and protects against            

6-OHDA induced toxicity. 

 

The results of this study show that DA displays antioxidant properties in relation to lipid 

peroxidation and exhibits pro-oxidant properties by causing an increase in the production 

of hydroxyl radicals and superoxide anions, as well as protein oxidation and a loss of 

total GSH content. Despite the toxic effects of DA in vitro, the treatment of rats with 

exogenous LD does not cause oxidative stress or oxidative damage. The results also show 

that LD and SEL have some neuroprotective properties which make these agents useful 

in the treatment of PD.  
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CHAPTER ONE 
 

LITERATURE REVIEW  
 

1.1 NEUROANATOMY  

 
1.1.1 The Basal Ganglia 

 
The basal ganglia represent one of the most important subcortical structures in the motor 

circuit. It comprises the caudate nucleus and putamen, which are together known as the 

corpus striatum, together with the external and internal segments of the globus pallidus 

(GPe and GPi, respectively), the subthalamic nucleus and the two divisions of the 

substantia nigra, the pars reticulate (SNpr) and the pars compacta (SNpc) (figure 1.1) 

(Connor, 1998; Alexander and Crutcher, 1990; Stein and Stoodley, 2006).   

 

 

Figure 1.1: The structural components of the basal ganglia. 

(http://www.benbest.com/science/anatmind/anatmd2.html) 
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These brain regions represent processing centers intimately involved in the regulation of 

movement. Striatal γ-aminobutyric acid (GABA) neurons form a majority (90 %) of the 

final output of the striatum and comprise two opposite and opposing GABA efferent 

pathways, namely the “direct pathway” which promotes movement by disinhibiting the 

motor thalamus and the “indirect pathway” which inhibits movement (figure 1.2). 

 

 

Figure 1.2: Schematic representation of the pathways through the basal ganglia. 

(http://medinfo.ufl.edu/year2/neuro/review/gang.html) 

 

In the direct pathway, the neocortex glutaminergically excites the putamen. This in turn 

GABA inhibits (with substance P as the co-transmitter) the GPi and the SNpr. As a result 

of this the normal GPi GABA inhibition of the thalamus and reticular formation (RF) is 

turned off. Any ongoing activity in the thalamus and RF is therefore facilitated, 

promoting movement. In the indirect pathway, the neocortex glutaminergically excites 

the caudate and this then GABA inhibits (with enkephalin as co-transmitter) the GPe. 
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This inhibition prevents the GPe from GABA inhibiting the subthalamic nucleus. This 

excites (glutaminergically) the GPi and SNpr. Hence, these nuclei increase their 

inhibition of thalamocortical and brainstem movements (Stein and Stoodley, 2006).  

 
Both the direct and indirect pathways receive dopaminergic afferents from the SNpc 

(William, 1998). This is the nigrostriatal dopaminergic pathway which degenerates in 

patients with Parkinson’s disease (PD), one of the most common neurodegenerative 

diseases. Dopamine (DA) acts as a neuromodulator in the striatum, where it is released 

from axonal terminals and in the SNpr where it is released from pars compacta dendrites. 

In the putamen it enhances glutamate signals from the cerebral cortex if these reach a 

certain depolarizing threshold, but suppresses background signals that do not reach this 

threshold. DA therefore acts as a sort of neural “filter” by enhancing the recruitment of 

appropriate movement programmes, while inhibiting irrelevant background noise. The 

mechanism by which DA acts as a neural “filter” is, at least in part, attributed to 

excitatory D1 receptors that increase cAMP on the direct, facilitatory pathway through the 

striatum, but inhibitory D2 receptors that decrease cAMP on the inhibitory pathway via 

the GPe. In PD, therefore, the lack of DA in the striatum means that the direct route is 

depressed and the in-direct route is facilitated. The main effect is therefore over-

inhibition of thalamic and reticular motor programmes by the GPi, resulting in akinesia 

(figure 1.3)(Stein and Stoodley, 2006). 
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A 

 

 

B 

 

Figure 1.3: (A) Normal functional anatomy of the basal ganglia and (B) Pathological 

functional anatomy of the basal ganglia.  The arrows point to the direction of the different 

nerve tracts and the colors indicate the neurotransmitters involved at each level. The 

widths of the tracts are proportional to the strength of the signal. Positive signs at the end 

of a nerve tract indicate excitatory impulses and negative signs indicate inhibitory 

impulses. (http://www.mdvu.org/library/disease/pd/par_path.html) 
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1.2. OXIDATIVE STRESS 
 
1.2.1 Introduction 
 

Although aerobic organisms need oxygen for survival, in many cases the use of oxygen 

by these organisms leads to their slow demise. This is known as the oxygen paradox 

(Halliwell and Gutteridge, 1984). Oxidative stress is the cytotoxic consequence of 

oxyradical and oxidant formation and reaction with cellular components. The oxygen 

species that are typically linked to oxidative stress are the superoxide anion radical (O2
•-), 

hydroxyl radical (•OH), hydrogen peroxide (H2O2), nitric oxide (NO•) and peroxynitrite 

(ONOO-). The collective term used for these chemicals is “reactive oxygen species” 

(ROS), however, some of these species are not very reactive in biological solutions 

(Dawson and Dawson, 1996).  

 

Levels of ROS in excess of the normal needs of the cell may indiscriminately damage the 

structural and functional integrity of the cell. This they do by directly modifying cellular 

DNA, proteins and lipids, or by initiating radical chain reactions that can cause extensive 

oxidative damage to these critical biomolecules. Although cells possess a variety of 

antioxidant defense mechanisms against ROS, this can sometimes be inadequate leading 

to oxidative stress in which the production of ROS overwhelms the antioxidant defenses 

of the organism (Cui et al., 2004). Oxidative stress can therefore be regarded as an 

imbalance between oxidative events and opposing antioxidant defenses (Fahn and Cohen, 

1992).    
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1.2.2 Reactive oxygen species 

 

The toxicity of oxygen has been attributed to the formation of toxic species generated by 

the partial reduction of oxygen. These toxic species are often referred to as reactive 

oxygen species (ROS). The term ROS encompasses all reactive oxygen species, both the 

radical and nonradical species involved in the initiation and/or propagation of free radical 

chain reactions (Dawson and Dawson, 1996). ROS include the superoxide radical (O2
•-), 

hydrogen peroxide (H2O2) and hydroxyl radicals (•OH). Some of these species contain 

unpaired electrons and are therefore referred to as free radicals (Halliwell, 1992).  

 

1.2.2.1 Superoxide radical 
 

The acceptance of a single electron by O2 results in the formation of the superoxide 

radical (O2
•-). A major source of O2

•- is the mitochondrial electron transport chain  

(Reiter, 1998). The generation of superoxide radicals at the level of cytochrome c oxidase 

is virtually nonexistent (Kowaltowski and Vercesi, 1998). However, electron leakage to 

molecular oxygen by intermediate electron carriers in the electron transport chain can 

result in the monoelectronic reduction of O2 to O2
•- (Halliwell, 1992). This may occur at 

the level of NADH dehydrogenase or at the level of coenzyme Q (Kowaltowski and 

Vercesi, 1998). Once O2
•- has been produced it is readily dismutated to hydrogen 

peroxide by a group of enzymes that scavenge O2
•- called the superoxide dismutates 

(SOD) (Fridovich, 1989). SOD is considered an important antioxidative enzyme, since it 

removes O2
•- from cells (Reiter, 1998). 

 

Superoxide radicals are also formed by the auto-oxidation of DA, epinephrine and 

norepinephrine catalysed by transition metal ions, and by the action of enzymes such as 

indoleamine dioxygenase, tryptophan hydroxylase and xanthine oxidase (Cui et al., 

2004). 

 

Superoxide itself has limited reactivity towards biological substrates and the number of 

molecular targets that are known to be sensitive to O2
•- are small. In some circumstances 
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the controlled generation of O2
•- can be beneficial. Activated phagocytes produce O2

•- 

which plays an important role in the way bacteria are engulfed and destroyed by these 

cells (Colton and Gilbert, 1987). Monocytes, neutrophils, eosinophils and various 

macrophages including microglial cells in the brain are all capable of generating O2
•- 

(Colton et al., 1994). Small amounts of O2
•- are also produced and released by other cell 

types such as fibroblasts, lymphocytes and endothelial cells during normal physiological 

reactions. The O2
•- generated by these cells may play a role in the regulation of growth as 

well as intercellular signaling (Halliwell, 1992).  

 

Superoxide is capable of inactivating certain enzymes such as creatine kinase in 

mammals and some iron-sulphur proteins in bacteria. Superoxide can also inactivate the 

NADH dehydrogenase complex of the mitochondrial electron transport chain in vitro 

(Zhang et al., 1990). However, this has not yet been demonstrated in vivo (Halliwell, 

1992). The inappropriate mobilization of iron from ferritin is another mechanism by 

which O2
•- can cause damage to living systems (Williams et al., 1974; Biemond et al., 

1984). 

 

In solution, O2
•- exists in equilibrium with the hydroperoxyl radical (HOO•). HOO• is a 

much stronger oxidant than O2
•- and will directly attack polyunsaturated fatty acids 

(Bielski et al., 1983).  HOO• is also more readily dismutated to H2O2 than is O2
•- (Reiter, 

1998).  

 

1.2.2.2 Hydrogen peroxide 
 

As already mentioned O2
•- is readily removed from cells by its conversion into H2O2 by 

SOD. Other enzymes capable of generating H2O2 include L-amino acid oxidase, 

glycolate oxidase and monoamine oxidase (Sies, 1991). All these enzymes like the SODs 

are also found in human tissues.  

 

The main catabolic pathway for DA in dopaminergic nerve terminals is its deamination 

by MAO, leading to H2O2 generation (Halliwell, 1992; Ogawa and Mori, 1995). It has 
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been proposed that an accelerated turnover of DA within dopaminergic nerve terminals of 

Parkinson’s patients may lead to an increase in H2O2 production. This in turn could 

accelerate the destruction of these dopaminergic neurons by giving rise to an increase in 

reactive oxygen species beyond the ability of the brains antioxidant defenses to cope with 

them. Similarly, the side effects of long term L-Dopa (LD) treatment could be caused by 

excessive formation of H2O2 and its conversion into more toxic species (Olanow, 1990).  

 

H2O2 is known to be toxic to many systems, including the nervous system. However, its 

toxicity is usually not attributed to H2O2 itself (except in high concentrations), but rather 

to the conversion of H2O2 into highly oxidizing cell damaging radicals. H2O2 does not 

qualify as a radical because it does not have any unpaired electrons (Halliwell, 1992).   

 

Unlike O2
•-

 which is a charged molecule, H2O2 is electrically neutral. As a result of this 

H2O2 can diffuse through cell membranes more easily than O2
•-. Thus H2O2 can distribute 

to sites that are distant from the site of its formation. Another hazardous aspect of the 

H2O2 molecule is that it is able to generate highly reactive hydroxyl radicals (•OH) in the 

presence of transition metal ions, most often Fe2+. The univalent reduction of H2O2 to 

•OH by metal ions occurs via either the Fenton reaction (equation 1.1) or the Haber-

Weiss reaction (equation 1.2) (Imlay et al., 1988; Halliwell and Gutteridge, 1990; 

Yamasaki and Piette, 1991). 

 

Fe2+ + H2O2 → Fe3+ + •OH + OH- (Fenton reaction)           (Equation 1.1)   

              Fe catalyst 
O2

•- + H2O2 → •OH + OH- + O2     (Haber-Weiss reaction)    (Equation 1.2) 
 
 

H2O2 can be removed from cells by the action of two types of enzyme, namely catalases 

and selenium-dependent glutathione peroxidase (GPx). The latter enzyme type is 

probably more important in the brain due to the low activity of catalase in most parts of 

the central nervous system (CNS) (Jain et al., 1991). 
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1.2.2.3 Hydroxyl radical 

The •OH is probably not the only highly oxidizing tissue-damaging species formed 

during the Fenton reaction (Bielski, 1991). However, its formation is well established as 

is its ability to react at great speed with almost every molecule found in living cells 

(Halliwell and Gutteridge, 1989). The initial product of the reaction of H2O2 with Fe2+ 

may be an iron-oxygen complex referred to as ferryl which itself is highly oxidizing and 

decomposes to yield •OH (Halliwell, 1992). 

 

It is well known that as a result of its high reactivity the •OH reacts with any molecule 

within a few Angstroms of where it is produced, including DNA, membrane lipids and 

carbohydrates. Its estimated half life at 37 ºC is in the order of 1x10-9 seconds (Reiter, 

1998). As a result of this very short half-life, the direct action of the •OH is restricted to 

molecules in the immediate vicinity of where it is generated.  The cytotoxic action of 

•OH generated in mammalian cells almost always involves DNA damage (Cochrane, 

1991). This DNA damage can occur in at least two ways. Firstly, the DNA damage may 

be mediated by the reaction of H2O2 with Fe2+ and/or Cu+ bound to molecules at or close 

to the DNA, so that when •OH is formed it reacts with the neighboring nucleic acids 

(Halliwell and Aruoma, 1989). Alternatively, DNA damage can be caused by an increase 

in intracellular free calcium concentration brought about by oxidative stress. This in turn 

leads to the activation of nuclease enzymes in the nucleus which results in the generation 

of •OH and subsequent DNA damage (Orrenius et al., 1989).  

 

Another destructive effect of •OH is its effects on membrane lipids. The •OH radical is 

capable of initiating the process of lipid peroxidation by abstracting an allelic hydrogen 

atom from a polyunsaturated fatty acid (PUFA). This in turn can set off a free radical 

chain reaction wherein lipid peroxidation is self-propagating. 
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1.2.2.4 Peroxyl radical 
 
Peroxyl radicals (LOO•) are formed during the process of lipid peroxidation. (Asano et 

al.,1991). Peroxyl radicals can attack membrane proteins and in so doing can damage 

receptors and enzymes. In addition to this they can also abstract hydrogen atoms from 

PUFA and re-initiate the process of lipid peroxidation (Halliwell, 1992). Vitamin E is the 

premier scavenger of LOO• and is therefore referred to as a chain breaking antioxidant 

(Packer, 1994). 

 

1.2.3 Molecular targets of oxidative stress 

 

Oxidative stress can result in deleterious oxidation of numerous biomolecules e.g. lipids, 

proteins and DNA. Hence, failure of some researchers to find lipid peroxides in injured 

nervous tissue does not exclude the possibility of oxidative damage to other biomolecules 

such as proteins and DNA (Orrenius et al., 1989; Cochrane, 1991).  

 

1.2.3.1 Lipid peroxidation 
 

The peroxidation of PUFAs is one of the major outcomes of free radical-mediated injury 

to tissue (Montine et al., 2002). PUFAs (those with two or more carbon-carbon double 

bonds), such as arachidonic acid, are much more sensitive to free radical attack than 

saturated or monounsaturared fatty acids. Lipid peroxidation of membrane PUFAs may 

adversely affect membrane fluidity (usually decreasing), peameability (allowing ions 

such as Ca2+ to leak across the membrane), electrical potential, and controlled transport 

of metabolites across the membrane ( Cui et al., 2004). Peroxidation of PUFAs, mostly in 

membrane phospholipids, generally has three well-described phases: initiation, 

propagation and termination (Montine et al., 2002). 

Various reactive species, such as •OH are capable of initiating the process of lipid 

peroxidation by abstracting a hydrogen atom from a methylene group in a PUFA. The 

abstraction of the hydrogen atom leaves behind a carbon centered radical (L•) in the 
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membrane which then stabilizes by molecular rearrangement of the double bonds to the 

conjugated diene form (equation 1.3).  

lipid-H + radical → L• + radical-H (initiation)   (Equation 1.3) 

The most likely fate of the carbon centered radicals is reaction with molecular oxygen to 

form peroxyl radicals (equation 1.4). 

L• + O2 → LOO•                                                  (Equation 1.4) 

Peroxyl radicals can then attack membrane proteins and in so doing damage receptors 

and enzymes. In addition to the damage produced by peroxyl radical attack on membrane 

proteins, the peroxyl radicals can also re-initiate the process of lipid peroxidation by 

abstracting hydrogen atoms from adjacent PUFAs (equation 1.5).    

LOO• + lipid-H → LOOH + L• (propagation)    (Equation 1.5) 

Lipid peroxidation is therefore extremely damaging because once initiated it is self-

propagating since the peroxyl radical can re-initiate the process (Reiter, 1998). This 

means the abstraction of a single hydrogen atom from a PUFA could set off a free radical 

chain reaction in which most of the membrane lipids are converted to hydroperoxides       

(LOOH) and cyclic peroxides.  

Transition metals, especially copper and iron ions promote lipid peroxidation in two 

ways. First, they catalyse the formation of reactive oxygen species capable of initiating 

lipid peroxidation. Second, they catalyse the decomposition of lipid hydroperoxides to 

peroxyl radicals and alkoxyl radicals which can propagate lipid peroxidation by 

abstracting hydrogen atoms (Rikans and Hornbrook, 1997; Halliwell, 1992). Other 

products of these decomposition reactions include hydrocarbons, alcohols, ethers, 

epoxides and aldehydes (Cui et al., 2004). Of these aldehydes, malondialdehyde and        

4-hydroxynonenal have the ability to damage enzymes, proteins, receptors and DNA by 

resulting in covalent modification (cross-linking) of these molecules (Halliwell, 1992).   
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Termination of the free radical chain reaction of lipid peroxidation is brought about by 

reaction between the radicals themselves (equation 1.6), or reaction between the radicals 

and antioxidants (equation 1.7), giving rise to nonradical products or unreactive radicals. 

 

Lipid• + lipid• → lipid-lipid      (termination)    (Equation 1.6) 

 

Lipid• + Vit E → lipid + Vit E• (scavenging)     (Equation 1.7) 

 

Figure 1.4 depicts the suggested mechanism for the initiation and propagation of lipid 

peroxidation. 

 

 

Figure 1.4: An outline mechanism of lipid peroxidation (Gutteridge and Halliwell, 

1990). 
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1.2.3.2 Protein oxidation 

 

The mechanism suggested for free radical induced protein oxidation is shown in figure 

1.5. Various reactive species, such as the hydroperoxyl radical (HOO•) or the •OH are 

capable of intiating the process of protein oxidation by abstracting a hydrogen atom from 

a β-carbon. Abstraction of a hydrogen atom leaves behind a carbon-centered radical in 

the protein. The most likely fate of a carbon-centered radical in vivo is reaction with 

oxygen to form a peroxyl radical. This free radical may react with another peroxyl radical 

to form a tetraoxide (Dean et al., 1997) which then breaks down to give an alkoxyl 

radical and the corresponding side chain radical (Butterfield and Stadtman, 1997). 

Cleavage of the peptide bond then results in the formation of carbonyl groups that are 

often used as indicators of protein oxidation (Butterfield and Stadtman, 1997).  

 

Figure 1.5: Formation of carbonyl groups in proteins following free radical attack 

(Hermida-Ameijeiras et al., 2004). 
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The iron-mediated oxidation of proteins may be a site-specific process, due to the fact 

that proline, histidine, arginine, lysine and cysteine residues in proteins are highly 

sensitive to iron-mediated oxidation (Stadtman, 1990). It is believed that Fe2+ binds to 

metal binding sites on the proteins, and that the Fe(II)-protein complex reacts with H2O2 

to yield an active oxygen species e.g. •OH, at the site. Protein oxidation can lead to the 

conversion of some amino acids to carbonyl derivatives, loss of catalytic activity, and 

increased susceptibility of the protein to proteolytic degradation. It is important to note 

that protein oxidation can also lead to protein cross-linking in addition to peptide bond 

cleavage via diamide or α-amidation pathways. 

 

1.2.3.3 DNA oxidation 

 

DNA can be modified by free radicals resulting in single and double-strand breaks, 

depurination/depyrimidation, or chemical modification of the bases or the sugars 

(Chevion, 1988). The species responsible for oxidizing DNA is believed to be •OH. 

Similar to proteins, some researchers postulate that the iron-mediated oxidation of DNA 

may be a site specific process (Chevion, 1988; Li et al., 2001). Iron may bind to the 

DNA, either to the phosphate backbone or to the purine or pyrimidine bases where the 

iron can serve as a center for repetitive formation of •OH resulting in modification of the 

DNA (Giloni et al., 1981; Grollman et al., 1985).  

 

1.2.4 Antioxidant defense mechanisms 

 

In order to survive in an oxidizing environment, aerobic organisms must be equipped 

with the necessary molecular tools to combat at least some of the damaging effects 

caused by excess ROS generation (Reiter, 1998). Excess ROS are usually inactivated by 

endogenous or exogenous antioxidant molecules (Cui et al., 2004). An antioxidant is a 

substance that even in low concentrations significantly delays or reduces oxidation of a 

substrate (Gutteridge, 1995). Antioxidants protect other chemicals of the body from 

oxidation by lowering the local oxygen concentration, removing or reducing the 
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concentration of species that initiate the oxidative process, such as ROS, chelating 

transition metals that catalyse the oxidation reactions, interfering with the propagation 

step of the oxidative process that spreads oxidation to neighboring molecules or by 

enhancing the endogenous antioxidant defenses of the cell (Cui et al., 2004) 

 

Enzyme antioxidants such as superoxide dismutase (SOD), catalase and glutathione 

peroxidase (GPx) detoxify specific ROS after they are formed by degrading them to less 

harmful substances (equation 1.8, 1.9 and 1.10 respectively) (Cui et al., 2004).  

                  SOD 
2O2

•- + 2H+ 
→ H2O2 + O2

                           (Equation 1.8)   
 
       Catalase  
2H2O2 → O2 + 2H2O                                  (Equation 1.9)       
 
                      GPx 

H2O2 + 2GSH → 2H2O + GSSG                (Equation 1.10) 

SOD provides a first line of defense against oxidative stress by catalyzing the dismutation 

of superoxide radicals (O2
•-) to hydrogen peroxide (H2O2) and oxygen (O2) (equation 1.8) 

(den Hartog et al., 2003). Hydrogen peroxide is not a radical by itself, but is a precursor 

of the highly reactive hydroxyl radical. Detoxification of H2O2 is carried out by both 

catalase and GPx.  Catalase converts H2O2 to oxygen and water (equation 1.9) and GPx 

reduces H2O2 to water in the prescence of glutathione (GSH) (equation 1.10)                     

(Cui et al., 2004). GPx is more important for the detoxification of H2O2  in the brain since 

the brain has reduced catalase activity (Bharath et al., 2002).  

 

The preventative antioxidants act by chelating and sequestering transition metal ions, 

such as iron and copper, which are needed for catalyzing the generation of reactive 

radical species. Examples of preventative antioxidants are transferrin, lactoferrin and 

ceruloplasmin (Cui et al., 2004). Transferrin and lactoferrin bind iron ions. Iron bound to 

these proteins is incapable of catalyzing free radical reactions (Halliwell, 1992). 

Ceruloplasmin has antioxidant properties because most or all of plasma copper is 

attached to this protein. These copper ions are therefore also unavailable for participating 

in the generation of reactive radical species (Gutteridge and Stocks, 1981). Isolated 
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hemoglobin is degraded in the prescence of H2O2 resulting in the release of catalytic iron 

ions from the heme ring. Haptoglobins and hemopexin can therefore also be regarded as 

preventative antioxidants since they bind hemoglobin and heme respectively (Cui et al., 

2004). 

 

The chain breaking or scavenging antioxidants interrupt the chain reaction of oxidation 

induced by reactive radical intermediates by reacting with these intermediates directly 

and giving rise to products that are unable to propagate the chain further (Cui et al., 

2004). The main lipid soluble scavengers are vitamin E (α-tocopherol) and β-carotene 

(Cui et al., 2004).Vitamin E (VE) is the principle scavenger of peroxyl radicals (LOO•) 

involved in the propagation of lipid peroxidation (Packer, 1994). Studies have shown that 

pretreatment of rats with vitamin E attenuates 6-hydroxydopamine toxicity in these 

animal models of Parkinson’s disease (PD) (Gilgun-Sherki et al., 2001). The main water 

soluble scavengers are ascorbic acid, uric acid, various thiols as well as bilirubin (Frei et 

al., 1988). Ascorbic acid has a variety of roles besides the regeneration of vitamin E 

(Chan, 1993). It also acts as a scavenger of free radicals and inhibits the peroxidation of 

phospholipids in membranes (Path, 1990).  

 

Enzymatic and nonenzymatic antioxidant defense systems do not function independently 

of each other but rather function co-operatively in the form of a cascade (figure 1.6).  
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Figure 1.6: Cascade showing co-operation between enzyme and nonenzymatic 

antioxidants for scavenging ROS (Crichton, 2002). 
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1.2.5 Oxidative stress and the brain 
 
1.2.5.1 Vulnerability of the brain to oxidative stress 
 
The brain and the nervous system may be particularly vulnerable to free radical attack for 

a number of reasons (Halliwell and Gutteridge, 1985; LeBel and Bondy, 1991). Some of 

the most important reasons are summarized below. 

 

1. Although the brain only makes up a small percentage of the total body weight, it 

consumes a relatively large amount of the O2 inspired and carries out the turnover 

of large quantities of ATP at a high rate. Given that oxygen-derived radicals are 

toxic, it is not surprising that neural tissue may be destroyed at a more rapid rate 

than other organs (Reiter, 1998). 

2. Neurons are non-replicating cells (Reiter 1998). Any damage to neurons by 

reactive oxygen species therefore tends to be cumulative over time                   

(Cui et al., 2004). 

3. The membrane lipids in the brain are rich in polyunsaturated fatty acid (PUFA) 

side chains, which are particularly susceptible to free radical attack. Free radical 

attack on PUFA side chains can initiate the process of lipid peroxidation and once 

underway the process is self-propagating (Sevanian and McLeod, 1997). 

4. Despite the high oxygen utilization by the brain, it is not well equipped to combat 

oxidative attack. The brain has relatively low levels of important antioxidative 

enzymes (Savolainen, 1978; Bondy, 1997). The brain is poor in catalase activity 

and has only moderate amounts of superoxide dismutase (SOD) and glutathione 

peroxidase (Halliwell, 1992). 

5. Several areas of the brain (e.g. the globus pallidus and substantia nigra) are rich 

in iron. Unbound iron can serve as a catalyst and can generate free radicals via 

either the Fenton reaction or the Haber-Weiss reaction (Sabrzadeh et al., 1987).   

6. The cerebrospinal fluid (CSF) has no significant iron-binding capacity because it 

has low levels of the iron binding protein, transferrin (Halliwell, 1992).  Iron 

plays an important role in the brain (Youdim, 1988; Halliwell, 1992), especially 
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with regard to learning and memory. It has also been suggested that iron ions are 

necessary for the correct binding of certain neurotransmitters to their receptors 

(Youdim, 1988). A high content of brain iron may therefore be essential, 

especially during development, however a consequence of this is that damage to 

brain cells may release catalytic iron ions that can stimulate free radical 

generation. 

7. There is a high concentration of ascorbic acid in the grey and white matter of the 

brain. There are transport systems in the choroidal plexus and neural tissue, which 

serve to concentrate ascorbic acid into brain cells and the CSF (Cui et al,. 2004). 

In the absence of transition metal ions ascorbic acid has well documented 

antioxidant properties. However, mixtures of ascorbate with iron or copper 

generate free radicals. If catalytic iron were released as a result of injury to brain 

cells, endogenous ascorbate in the brain might then stimulate •OH formation in 

the brain and the CSF (Halliwell 1992).   

8. The release of excitatory neurotransmitters, such as glutamate, induces a series of 

events in the postsynaptic neuron, leading to the generation of reactive oxygen 

species such as NO• (Reiter, 1998). 

9. Nitric oxide synthase (NOS) is widespread in brain tissue (Hope et al., 1991).  

NOS is activated by calmodulin (Cui et al., 2004). The interaction between NO• 

and O2
•- to generate the peroxynitrite anion (ONOO-) has been suggested to be 

involved in not only the normal metabolism of the neuron but also in its 

degeneration (Cui et al., 2004). 

10. Melatonin is an important endogenous antioxidant produced by the pineal gland. 

Melatonin is a good scavenger of ROS. However, the concentration of this 

protective neurohormone decreases with increasing age (Cui et al., 2004). 

11. Dopaminergic neurons in the substantia nigra pars compacta (SNpc) are 

particularly vulnerable to oxidative stress as a result of the ROS generated during 

DA metabolism. 

12. The blood brain barrier (BBB), although it prevents many toxins from gaining 

access to the CNS, it also restricts the entry of a number of antioxidants into the 

CNS (Reiter, 1998).  
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1.3 PARKINSON’S DISEASE 

 

1.3.1 Introduction and clinical features 

 

Parkinson’s disease (PD), first described by James Parkinson in 1817 (Parkinson, 1817), 

is the second most common neurodegenerative disease after Alzeimer’s disease, affecting 

approximately 2 % of the population after 65 years. The mean onset of the disease is 

around 60 years, with a mean duration of 13 years (Hughes et al., 1993). Less frequently, 

PD may have an onset below 40 years (Golbe, 1991). The cardinal clinical features of PD 

are resting tremor, rigidity, bradykinesia and a later loss of postural reflexes.  

 

Pathologically, PD is characterized by a progressive loss of neuromelanin-containing DA 

neurons in the pars compacta of the substantia nigra, with intracellular proteinaceous 

inclusions named Lewy bodies (Blum et al., 2001) and a reduction in striatal DA content 

(Ehringer and Hornykiewicz, 1960). Other lesions, such as degeneration of the 

noradrenergic locus coeruleus (Greenfield and Bosanquet, 1953), the dopaminergic 

ventral tegmental area (Agid et al., 1990) and the ascending cholinergic from the 

Meynert basalis nucleus (Candy et al., 1983), were also observed.  

 

A subclinical phase exists prior to the appearance of PD symptoms. During this phase, 

striatal compensatory mechanisms (Agid et al., 1990; Anglade et al., 1995), such as 

sensitization of dopaminergic receptors (Agid et al., 1990) and enhanced neuronal 

activity occur. PD is therefore not clinically obvious before at least 50 – 70 % of the 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) are lost, leading to a 

greater than 80 % reduction in DA levels in the striatum (Deumens et al., 2002). For this 

reason the etiology of PD remains difficult to establish. 
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1.3.2 Causative factors in PD 

 

Despite numerous attempts at elucidation, the etiology of PD remains unclear. It is 

hypothesized that the cause of neurodegeneration in PD is multi-factorial in terms of both 

etiology and pathogenesis.  

 

One theory states that nigral neurons are sensitive to environmental contaminants that 

inhibit mitochondrial complex I and lead to impaired energy metabolism (Orth and 

Schapira, 2002). This theory arose from the discovery of a mitochondrial toxin, 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Langston et al., 1983), which produces 

selective nigral neuronal death in human and animal models (Gerlach and Riederer, 

1996) and induces the motor symptoms associated with PD (Langston et al., 1983). 

Figure 1.7 depicts a hypothetical mechanism by which MPTP exerts its neurotoxicity.  

 

Figure 1.7: Hypothetical mechanism of MPTP toxicity. MPTP crosses the BBB and is 

transformed by glial monoamine oxidase (MAO) into MPP+. MPP+ leads to a major 

inhibition of the respiratory chain but also to oxidative stress, both triggering cell death 

(Blum et al., 2001). 
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However, although MPTP and analogues, such as tetrahydroisoquinolines (Niwa et al., 

1987; Naoi et al., 1993) or other exogenous/endogenous compounds (Gerlach and 

Riederer, 1996), such as carbon monoxide (Ringel and Klawans, 1972; Choi and Cheon, 

1999), β-carbolines (Collins and Neafsey, 1985) or rotenone (Betarbet et al., 2000), can 

produce dopaminergic lesions, none have been shown to be responsible for the majority 

of PD cases.  

 

The proteolytic stress hypothesis ascribes the loss of nigral neurons in PD to the toxic 

accumulation of misfolded and aggregated proteins. Of particular relevance to PD is       

α-synuclein, a protein encoded by a gene mutated in a rare early onset, familial form of 

PD. Mutations in α-sunuclein and ubiquitin C-terminal hydrolase L1 (UCH-L1) have 

been linked to autosomal-dominant PD and mutations in parkin to autosomal-recessive 

PD. Parkin and UCH-L1 are key enzymes participating in the ubiquitin-proteasome 

system (UPS), which is responsible for the degradation of ubiquinated proteins (Lim et 

al., 2003).  In addition to a defect in the UPS, postmortem nigral tissue from sporadic PD 

patients show a significant defect in the 20 S proteasome, the primary cellular machinery 

responsible for degrading non-ubiquinated proteins (Dunlop et al., 2002). Blocking or 

overwhelming the degradation of these proteins can lead to cell death (Chung et al., 

2001). Contribution of genetic mutations cannot explain sporadic and late-onset cases of 

PD (Tanner et al., 1999). 

 

Although the etiology of the degeneration in PD is still ill-defined, there is growing 

interest in the phenomena underlying the degeneration process. In particular, oxidative 

stress as a result of the highly oxidative intracellular environment within dopaminergic 

neurons has been put forward as one of the major causes of the nigral degeneration 

(Lotharius and Brundin, 2002). The normal enzymatic degradation of DA induces the 

formation of H2O2 via MAO activity. The nonenzymatic auto-oxidation of DA also 

produces H2O2 and the formation of neuromelanin that potentiates hydroxyl radical 

formation when it combines with iron (Fahn and Cohen, 1992; Jellinger et al., 1992; 

Jenner et al., 1992). Finally, there is a decrease in cells synthesizing glutathione 

peroxidase (Damier et al., 1993) in the vulnerable part of the substantia nigra (SN). 
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1.3.3 Evidence of oxidative stress in PD 

 

Evidence of oxidative stress in PD is inferred by the following findings: 

 

1. Carbonyl modifications, which are indicative of protein oxidation, are increased 

2-fold in the SN of PD patients compared to the basal ganglia and prefrontal 

cortex of normal subjects (Floor and Wetzel, 1998).  

2. The SN of Parkinsonian brains has a higher content of malondialdehyde (MDA)    

(Ilic et al., 1999) and 4-hydroxy-2-nonenal (HNE) (Yoritaka et al., 1996), 

adehydes generated during lipid peroxidation, compared to control brains. 

3. Decreased levels of GSH localized to surviving neurons has been detected in the 

SN of PD patients compared to age-matched controls (Pearce et al., 1997; Sofic et 

al., 1992) Furthermore, there is a significant increase in the levels of GSSG (the 

oxidation product of GSH) in PD brains. 

4. Mitochondria are damaged and oxidative phosphorylation is impaired (Ebadi et 

al., 2001; Shoffner et al., 1992). 

5. Iron metabolism is impaired (Jellinger et al., 1990; Riederer et al., 1989; Youdim 

et al., 1993). 

6. The levels of cysteinyl-catechols is increased in the SN during aging (Fornstedt et 

al., 1989, 1990a) and even more so in PD (Fornstedt et al., 1989). Protein 

crosslinking is also increased (Berlett and Stadman, 1997), signified by the 

presence of Lewy bodies (Leroy et al., 1998). 

7. Levels of 8-hydroxyguanosine, a nucleoside oxidation product, is increased       

16-fold in the SN of PD brains compared to controls (Sanchez-Ramos., 1994; 

Zhang et al., 1999). 

8. Antibodies for catechol-modified proteins were found in the serum of PD patients 

(Rowe et al., 1998). 

9. A reduction in the CSF levels of superoxide dismutase and glutathione reductase 

was found in de novo Parkinsonians (Ilic et al., 1999). 
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1.3.4 Dopamine and PD 

 

1.3.4.1 DA synthesis, storage, release, reuptake and metabolism 

 

Tyrosine is usually the starting point in the biosynthesis of DA (figure 1.8). Tyrosine is 

obtained from the diet and can also be synthesized from dietary phenylalanine by 

phenylalanine hydroxylase in the liver or by tyrosine hydroxylase in the DA neuron. 

Tyrosine in the circulation is taken up into the brain via a low-affinity amino acid 

transport system and then enters the dopaminergic neurons by high- and low-affinity 

amino acid transporters. The conversion of tyrosine to L-Dopa (LD), by tyrosine 

hydroxylase is the rate limiting step in the biosynthesis of DA. Aromatic amino acid 

decarboxylase (AADC) is then responsible for the conversion of LD to DA (Elsworth and 

Roth, 1997) 

 

 

Figure 1.8: Biosynthesis of DA. Enzymes involved are tyrosine hydroxylase and 

aromatic amino acid decarboxylase (AADC). Cofactors for these enzymes are given in 

parenthesis (Elsworth and Roth, 1997). 
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In dopaminergic neurons, intracellular DA (0.1 – 1 mM) (Jonsson, 1971) is efficiently 

incorporated into vesicles for neuronal transmission. The arrival of an action potential in 

the dopaminergic neuron results in a change in membrane protein conformation and the 

subsequent influx of calcium ions. This is a key part of the stimulus responsible for the 

fusion of vesicles with the neuronal membrane. By the process of exocytosis, DA 

vesicles discharge their soluble contents into the synapse (Kelly, 1993). The extent of DA 

release is dependent on the rate and pattern of neuronal firing (Grace and Bunney, 1995).  

 

In the synaptic cleft DA interacts with autoreceptors and postsynaptic receptors. 

Autoreceptors are present on most parts of the dopaminergic neurons and are responsive 

to both dendritic and terminal DA release. Stimulation of autoreceptors in the 

somatodendritic region decreases the firing rate of the dopamine neurons and stimulation 

of autoreceptors located on the DA nerve terminals inhibits the synthesis and/or release 

of DA. DA also interacts with postsynaptic D1 and D2 receptors. When stimulated, the D1 

receptors generally enhance adenylate cyclase activity and the D2 receptors inhibit 

adenylate cyclase activity (Elsworth and Roth, 1997). 

 

DA action at the synapse is terminated predominantly by re-uptake into the presynaptic 

terminal through the DA transporter, DAT.  It has been estimated that DA can be 

concentrated 100- to 1000-fold by the transporter. Once back in the DA terminals, the 

neurotransmitter can be repackaged into vesicles (Elsworth and Roth, 1997). 
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The main enzymes responsible for the metabolism of DA are shown in figure 1.9. The 

principle locations of these enzymes are shown in table 1.1. 

 

 

 Figure 1.9: Main pathways of DA metabolism. Enzymes involved are monoamine 

oxidase (MAO), catechol-O-methyltransferase (COMT), phenolsulfotransferase (PST), 

dopamine β-hydoxylase (DBH), N-acetyltransferase (NAT) and phenylethanolamine        

N-methyltrasferase (PNMT) (Nappi and Vass, 1998). 

 

The relative abundance and activity of the enzymes vary according to cell type, brain 

region, and species being examined. These factors determine the concentration of a 

particular metabolite present under a given set of conditions. MAO and COMT represent 

the two main catabolic enzymes affecting dopaminergic neurotransmission. The major 

end product of DA metabolism in primate brain is unconjugated homovanillic acid 

(HVA), whereas in rat brain it is 3,4-dihydroxyphenylacetic acid (DOPAC), and a 
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significant amount of the DOPAC in the rat brain is sulfate conjugated (Elsworth and 

Roth, 1997). Rat and human phenolsulfotransferases (PST) have different specificities, 

with DOPAC having a higher affinity for rat brain PST than human brain PST (Roth et 

al., 1996). The major non-enzymatic route of DA metabolism involves its auto-oxidation 

to toxic quinone and semiquinone species with the concomitant generation of ROS. 

 

Table 1.1: Principle locations of DA metabolizing enzymes in the striatum (Elsworth and 

Roth, 1997) 

Enzyme                  Subtype                      Cellular location                  Subcellular location    

MAO                          A                            Dopaminergic and                     Mitochondria 

                                                                   norepinephrine neurons 

 

MAO                          B                             Glia and serotonin neurons       Mitochondria 

 

COMT                     high Km                    Glia                                             Soluble 

 

COMT                     low Km                     Postsynaptic to                        Membrane-bound 

                                                                   dopamine neuron 

 

PST                             M                           Postsynaptic to                          Cytosolic 

                                                                  dopamine neuron 
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1.3.4.2 Neurotoxicity of DA 

 

DA has been implicated as an important vulnerability factor in PD because it has the 

potential to induce oxidative stress, proteolytic dysfunction and mitochondrial defects in 

nigral neurons (figure 1.10). 

 

Figure 1.10: Hypothetical mechanism of DA toxicity. DA could induce dopaminergic 

neuronal death by increased ROS production, direct inhibition of the mitochondrial 

respiratory chain, and protein oxidation which may lead to proteolytic dysfunction and 

protein aggregation (Blum et al., 2001). 

 

1.3.4.2.1 DA-dependent oxidative stress 

 

One possible endogenous source of free radicals in the degenerative processes underlying 

PD may involve the MAO-mediated metabolism of DA and the auto-oxidation of DA. 

MAO activity could contribute to the neurotoxicity of DA by producing H2O2 and        

3,4-dihydroxyphenylacetaldehyde (DOPALD) (figure 1.11), which are toxic to 
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catecholaminergic neurons (Mattammal et al., 1995). The intracellular auto-oxidation of 

DA generates H2O2 and DA quinone (DA-Q) (figure 1.11) (Graham et al., 1978; Sulzer 

and Zecca, 2000). H2O2, produced during the metabolism and auto-oxidation of DA can 

be converted to •OH by the Fenton reaction in the presence of ferrous iron (Fe2+). 

Hydroxyl radicals are highly reactive and are capable of reacting with virtually every 

cellular macromolecule including proteins, lipids and DNA.  

 

 

Figure 1.11: Oxidation of DA by MAO or by auto-oxidation leads to the production of 

H2O2, which can be converted to •OH and lead to the oxidation of proteins, lipids and 

nucleosides. Auto-oxidation of DA also results in the formation of DA-Q, which may 

covalently modify proteins or be converted to neuromelanin (Hald and Lotharius, 2005). 

 

The electronegative nature of the ortho-oxygens on the catechol ring of DA-Q, and the 

electron-deficient and unstable aromatic ring confer a positive charge to positions 2 and 5 

of the ring. This facilitates nucleophilic attack by sulfhydryls (Kato et al., 1986; Monks et 

al., 1992), which are present largely in GSH, cysteine or in proteins. DA-Q binding to 

cysteinyl groups in proteins leads to a loss of protein function (Hastings and Zigmond, 

1994; Stadtman, 1992), while binding to GSH leads to the cellular depletion of GSH, 

resulting in an inadequate cytoplasmic antioxidant load. DA-Q has been shown to inhibit 
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glutamate and DA transporter function in synaptosomes (Berman and Hastings, 1997), 

inhibit tyrosine hydroxylase (TH) in cell free systems (Kuhn et al., 1999), and promote 

H+ leakage from mitochondria resulting in uncoupling of respiration to ATP synthesis 

(Berman and Hastings, 1999; Khan et al., 2001).  

 

DA-Q can further undergo internal rearrangement in which the aminoalkyl chain 

cyclizes, forming aminochrome. This reaction can be catalysed by oxygen (Graham, 

1978; Senoh et al., 1959a), Fe2+, cytochrome P450 (Segura-Aguilar, 1996), prostaglandin 

H synthase (COX-1 and -2) (Hastings, 1995), lactoperoxidase (Segura-Aguilar et al., 

1998), xanthine oxidase (Foppoli et al., 1997), tyrosinase (Korytowski et al., 1987), 

ONOO-, NO• (LaVoie and Hastings, 1997, 1999) and perhaps even O2
•- and •OH (Ito and 

Fujita, 1982; Nappi et al., 1995; Spencer et al., 1995). The one-electron reduction of 

aminochrome has been proposed to be one of the major sources of endogenous 

generation of ROS involved in the degenerative process leading to PD (figure 1.12) (Baez 

et al., 1995; Paris et al., 2001; Segura-Aguilar et al., 1998, 2001).  

 

The one-electron reduction of aminochrome induces neurotoxicity by generating 

leukoaminochrome o-semiquinone, an endogenous neurotoxin (equation 1.11).  

 

Aminochrome + NADPH → Leukoaminochrome-o-SQ•          (Equation 1.11) 

 

The toxicity of leukoaminochrome-o-SQ• depends on its high reactivity with oxygen 

(equation 1.12), which generates a redox cycling with concomitant formation of 

intracellular ROS and the depletion of NADPH (figure 1.12, reactions 3 and 4)  

 

Leukoaminochrome-o-SQ• + O2 → Aminochrome + O2
•-         (Equation 1.12) 

 

The preceding two reactions tend to continue until NADPH is fully consumed, or until O2 

is depleted (Segura-Aguilar et al., 1998). The O2
•- formed during this redox cycling is 

converted to H2O2 by SOD. H2O2 can then generate the extremely toxic •OH via the 

Fenton reaction of Haber-Weiss reaction. 
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Figure 1.12: Possible mechanism of toxicity involved in the one-electron reduction of 

aminochrome (Arriagada et al., 2004).  

 

 

1.3.4.2.2 Linking DA to mitochondrial dysfunction 

 

The reduced complex I function associated with PD (Schapira, 1994; Sherer et al., 2002) 

may be dependent on DA. As mitochondrial proteins are rich in sulfhydryl moieties, it is 

not surprising that oxidized catechols, such as DA inhibit mitochondrial complex I (Ben-

Shachar et al., 1995; Morikawa et al., 1996; Przedborski et al., 1993), promote opening 
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of the mitochondrial permeability pore, uncouple oxidative phosphorylation and result in 

mitochondrial swelling (Berman and Hastings, 1999). DA has been shown to inhibit 

complex I when injected into the brain ventricles of rats (Ben-Shachar et al., 1995). This 

toxic effect may be due to H2O2 formed during DA metabolism or by 7-(2-aminoethyl)-

3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1), an oxidation 

byproduct of 5-S-cysteinyl-dopamine, which has been shown to inhibit mitochondrial 

complex I in isolated mitochondria (Li and Dryhurst, 1997). In addition to this, rotenone 

only exerts its toxicity in dopaminergic neurons although it inhibits complex I throughout 

the brain. This suggests that dopaminergic neurons have an intrinsic sensitivity to 

complex I defects (Sherer et al., 2002). 

 

1.3.4.2.3 Linking DA to defective proteolysis 

 

Sulfhydryls tend to bind covalently to the catechol ring of DA at positions 2 and 5 

(equation 1.13) (Ito et al., 1988; Kato et al., 1986). 

 

DA-Q + cysteine → 2-cysteinyl-DA [1 part] + 5-cysteinyl-DA [6 parts] +                     

2,5-dicysteinyl-DA [minor]                (Equation 1.13) 

 

Cysteinyl-DA is more-readily oxidized to the o-quinoidal form than the parent catechol 

(Monks et al., 1992; Shen et al., 1996). This process accounts for crosslinking in protein, 

with additional loss of function and eventual appearance of protein aggregates such as 

Lewy bodies in Parkinson’s disease (Tran and Miller, 1999).  

 

DA has been shown to form covalent adducts with α-synuclein. This synaptic vesicle 

protein of unknown function has a greater tendency to aggregate when oxidized (Giasson 

et al., 2000). The formation of covalent, oxidative adducts between DA and α-synuclein 

promotes the retention of α-synuclein as a protofibrillar species (Conway et al., 2001). 

Protofibrillar α-synuclein is, in turn, capable of permeabilizing synthetic vesicles (Volles 

et al., 2001) potentially leading to a leakage of DA from synaptic storage sites. Mutation 

in α-synuclein, which also increases protofibril formation (Conway et al., 2000), could 
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therefore result in increased cytoplasmic levels of DA and DA-dependent oxidative stress 

in some familial forms of PD. Studies using cultured human dopaminergic neurons 

suggest that mutant α-synuclein triggers an elevation of cytoplasmic DA, oxidative stress 

and DA-dependent toxicity (Lotharius et al., 2002; Xu et al., 2002). DA-dependent 

oxidation of intracellular targets like α-synuclein, which could be important for 

neurotransmitter storage, may explain the selective vulnerability of dopaminergic neurons 

in PD (Lotharius and Brundin, 2002). 

 

1.3.5 Iron and PD 

 

A major role for iron in the pathogenesis of PD is supported by several findings: 

 

1. Levels of iron are increased in PD brains compared to age-matched control brains. 

2. The region of iron accumulation co-localizes with the region of degeneration, i.e. 

the SN. Iron levels in the SN are increased by approximately 35 % in PD brains 

compared to age-matched control brains (Dexter et al., 1989a; Sofic et al., 1988). 

3. Iron has the ability to enhance the production of •OH and other ROS resulting in 

oxidative stress, the most likely cause of dopaminergic cell death in PD. 

4. Iron has been demonstrated to interact with α-synuclein, resulting in its 

aggregation and suggesting a role for iron in Lewy body formation, a major 

pathological hallmark of PD (Kaur and Andersen, 2002). 

 

Addtionally, what gives further credence to the role of iron in the pathogenesis of PD is 

the protection afforded by iron chelators in various paradigms of the disease. 

 

1.3.5.1 The iron paradox 

 

The unique physicochemical properties of iron make it an essential component in an 

enormous array of biological processes. Depending on the environment, it is capable of 

not only varying its oxidation state but also its electron spin and redox potential (Kaur 
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and Andersen, 2002). Iron therefore has an enormous capacity to serve multiple roles in 

vital biochemical reactions. However, if not appropriately shielded, ferrous iron can 

participate in one-electron transfer reactions leading to the production of extremely toxic 

free radicals, particularly via the Haber-Weiss and Fenton reactions (Comporti, 2002). 

Intracellualr iron levels are therefore stringently regulated as a labile iron pool (LIP) 

which provides enough iron for vital iron-dependent biochemical reactions but limits the 

availability of iron to participate in free-radical generating chemistry. 

 

An example of this “iron paradox” exists within the dopaminergic neurons of the SN. The 

enzyme tyrosine hydroxylase, which synthesizes L-Dopa (LD) from tyrosine requires 

Fe2+ as an essential co-factor. The conversion of tyrosine to LD is normally the rate 

limiting step in the biosynthesis of DA (Elsworth and Roth, 1997).  However, iron also 

promotes the auto-oxidation of DA in SN neurons, releasing H2O2 in the process (Ben-

Shachar et al., 1995), the precursor to the highly reactive and toxic •OH. Iron also 

catalyses the conversion of excess DA to neuromelanin, an insoluble black-brown 

pigment that accumulates in all dopaminergic neurons with age in humans (Sulzer et al., 

2000). Neuromelanin is usually neuroprotective and sequesters redox active metals in the 

cell with a high affinity for Fe3+. However, when bound to excess Fe3+, neuromelanin 

tends to become a pro-oxidant reducing Fe3+ back to Fe2+, which is then released due to 

weak affinity (Ben-Shachar et al., 1991). This increases the LIP and the fraction of iron 

available for reacting with H2O2 to produce •OH. Dopaminergic neurons must therefore 

regulate iron levels very stringently to keep the generation of •OH under check without 

compromising DA synthesis.  

 

1.3.5.2 Sources of iron for free-radical generating chemistry 

 

In mammals, iron is absorbed from the gut and originates from food and beverages we 

consume that are fortified with iron (figure 1.13).  
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Figure 1.13: Schematic representation of iron absorption in normal subjects (Crichton et 

al., 2002). 

 

Iron is taken up from the gastrointestinal tract (GIT) as either heme iron or nonheme iron. 

The uptake of heme iron across the apical membrane of the intestinal mucosal cell 

involves a specific heme receptor on the apical membrane of the cell (Grasbeck et al., 

1982). Its iron is then released by the action of heme oxygenase as Fe2+, with 

concomitant production of porphobilinogen and CO (Beale and Yeh, 1999). Nonheme 

dietary iron seems to cross the brush border membrane, after reduction by duodenal ferric 

reductase, Dcytb (McKie et al., 2001). The Fe2+ is then transported into the intestinal cell 

by the divalent metal transporter 1 (DMT-1). Within the intestinal cell, Fe2+ derived from 

both heme and nonheme iron enters a low molecular weight iron pool. This iron can 

either be stored in ferritin within the mucosal cell or be transported to the basolateral 

membrane. The diffusion of Fe2+ across the basolateral membrane is facilitated by 

IREG1, a transmembrane iron transporter protein (McKie et al., 2000). Hephaestin, a 

membrane bound protein facilitates the oxidation of Fe2+ to Fe3+ in order to allow rapid 

binding of iron to tranferrin in the plasma (Vulpe et al., 1999). 

 

Transferrin delivers iron to cells expressing transferrin receptors (figure 1.14.). The 

bilobal transferrin molecule binds 2 moles of Fe3+ per mole of protein with very high 

affinity at pH 7.4. Diferric transferrin binds to its receptor at the cell surface and the 



Literature Review 
 

36 

transferrin-transferrin-receptor complex is then internalized in clathrin-coated vesicles. 

The vesicles then lose their coat and fuse with endosomes. The interior of the endosomal 

compartment is maintained at pH 5.5 which facilitates the release of iron, as Fe3+ from 

the transferrin-transferrin-receptor complex. The Fe3+ is then reduced to Fe2+ prior to its 

transport out of the endosome by DMT-1. The unloaded transferrin is ejected from the 

cell and the Fe2+ released from it can be used for the synthesis of intracellular iron 

proteins. Excess iron is stored in the protein ferritin (Crichton et al., 2002). 

 

 

Figure 1.14: The transferrin cycle. Delivery of iron to cells by transferrin (Zecca and 

Youdim, 2004). 

 

Transferrin is resistant to damage by O2
•-, H2O2 and other oxidants, and the iron bound to 

this protein will not catalyze free radical reactions (Aruoma and Halliwell, 1987). By 

contrast, some iron can be reductively mobilized from ferritin by O2
•- and by radicals 

generation during lipid peroxidation (Biemond et al., 1986; Bolann and Ulvik, 1990). 

Iron catalytic for Fenton chemistry appears to be available within cells, both as a labile 

iron pool and as iron releasable from ferritin. 
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1.3.5.3 Iron and protein aggregation 

 

One of the primary neuropathological criteria for a confirmed postmortem diagnosis of 

PD is the presence of intracytoplasmic filamentous inclusions known as Lewy bodies and 

Lewy neurites in some surviving dopaminergic nigral neurons (Kaur and Andersen, 

2002). The major fibrillar material of these inclusions is α-synuclein.  Mutations in the 

gene for α-synuclein cause a form of familial PD, suggesting that alterations in                

α-synuclein may be involved in the pathogenesis of the disease. Hashimoto et al (1999) 

demonstrated that iron-induced oxidative stress can result in aggregation of α-synuclein 

in vitro. Further studies by Osterova-Golts et al. (2000) carried out in neuroblastoma cells 

over-expressing either wild type or mutant α-synuclein demonstrated that iron in 

combination with other free radical generators stimulates the formation of intracellular 

aggregates containing both α-synuclein and ubiquitin. A study by Münch et al. (2000), 

demonstrated that advanced glycation end-products, markers of iron-induced oxidative 

stress, were found to promote crosslinking of α-synuclein in the brains of patients with 

incidental Lewy body disease, generally viewed as being pre-Parkinsonian patients. Golts 

et al. (2002) demonstrated the presence of iron-induced alterations in the fluorescence of 

the four-tyrosine residues of α-synuclein, suggestive of iron-related conformational 

changes which could eventually lead to protein aggregation. These studies link iron to a 

major pathological hallmark in PD and gives further credence to the role of iron in the 

pathogenesis of PD.  

 

1.3.5.4 Iron and endogenous neurotoxin formation 

 

Researchers have hypothesized that under conditions of chronic oxidative stress, a 

diversion of DA metabolism towards aberrant oxidative routes may be induced. A new 

mechanism of DA toxicity has been proposed based on this concept. Pezzella et al. 

(1997) reported that products of lipid peroxidation, that are increased in PD brain, can 

convert DA to 6-hydroxydopamine (6-OHDA), a potent neurotoxin. 6-OHDA is able to 

elicit selective destruction of peripheral and central catecholinergic neurons via 
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spontaneous oxidative conversion to potentially toxic dopaminergic quinone species. 

Oxidation of DA in the presence of ferrous iron demonstrated that this neurotransmitter 

can also be converted to 6-OHDA by •OH in vitro. It has been postulated that DA may 

also be converted to 6-OHDA in vivo, perhaps amplifying the neurodegenerative events 

that eventually lead to dopaminergic cell death (Napolitano et al., 1999). 

 

1.3.6 Neurotoxicity of 6-OHDA 

 

6-Hydroxydopamine is a common neurotoxin used to experimentally model nigral 

degeneration in vitro as well as in vivo. It was originally isolated by Senoh in 1959 

(Senoh and Witkop, 1959a,b; Senoh et al., 1959a,b). Its biological effects were first 

reported by Porter et al. (1963, 1965) and Stone et al. (1963), who demonstrated that      

6-OHDA induces norepinephrine (NE) depletion in the autonomic nervous system of the 

heart. Shortly thereafter, several studies demonstrated the ability of 6-OHDA to destroy 

sympathetic nerve terminals (Thoenen et al., 1967; Tranzer and Thoenen, 1967, 1968; 

Thoenen and Tranzer, 1968).  

 

6-OHDA is unable to cross the BBB and destruction of central catecholamine neurons by 

this neurotoxin can only be achieved by direct intracerebral administration. In 

experimental models of PD, 6-OHDA is preferentially injected into the striatum, SN or 

the ascending medial forebrain bundle, destroying nigral dopaminergic neurons and 

depleting striatal DA, thus reproducing the physiopathological features responsible for 

motor impairments in PD (Blum et al., 2001) 

 

Some evidence exists that 6-OHDA may be a physiological endogenous neurotoxin. 

Several studies demonstrated the presence of 6-OHDA in both rat (Senoh and Witkop, 

1959a,b; Senoh et al., 1959a,b) and human brain (Curtius et al., 1974) as well as in the 

urine of patients with PD (Andrew et al., 1993). Nigral dopaminergic neurons contain 

significant amounts of DA, iron and H2O2. A non-enzymatic reaction between these 

elements may generate 6-OHDA in vivo (Slivka and Cohen, 1985; Jellinger et al., 1995; 

Linert et al., 1996).  
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The ability of 6-OHDA to mimic PD is reinforced by the fact that ROS generation and 

mitochondrial defects are induced by this neurotoxin (figure 1.15). 

 

 

Figure 1.15: Hypothetical mechanism of 6-OHDA toxicity (Blum et al., 1991). 

 

Similiarly to DA, 6-OHDA could induce catecholaminergic cell death by the generation 

of ROS during intra- and extracellular auto-oxidation, H2O2 formation induced by MAO 

activity or via direct inhibition of the mitochondrial respiratory chain. 

 

Studies by Glinka and Youdim (1995) and Glinka et al. (1996, 1998) suggest that           

6-OHDA directly targets the mitochondrial respiratory chain and inhibits complex I in 

isolated brain mitochondria. This could result in a depletion of ATP production by the 

mitochondria and subsequent cell death.  

 

6-OHDA, like DA is a substrate for MAO (Breese and Traylor, 1971; Karoum et al., 

1993). The enzymatic degradation of 6-OHDA by MAO therefore gives rise to H2O2. In 
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addition to this, under physiological conditions, 6-OHDA undergoes a very rapid and 

nonenzymatic auto-oxidation (Heikkila and Cohen, 1972; Seitz et al., 2000; Soto-Otero et 

al., 2000) which generates several toxic species including quinones (Saner and Thoenen, 

1971), O2
•-, H2O2 and •OH (Cohen and Heikkila, 1974). The greater cytotoxicity of         

6-OHDA compared to other catecholamines, including DA, is directly related to its 

higher rate of auto-oxidation compared to these compounds.  

 

The formation of ROS by 6-OHDA may also be amplified by iron. Indeed, iron levels are 

increased in the striatum and SNpc following 6-OHDA injection (Hall et al., 1992; He et 

al., 1996; Oestreicher et al., 1994). The contribution of iron to the neurotoxicity of          

6-OHDA is also suggested by studies showing that iron chelators are able to prevent 

some of the deleterious effects of 6-OHDA (Borisenko et al., 2000). Studies have shown 

that 6-OHDA is able to reduce and release iron, as Fe2+ from the main intracellular iron 

transport protein, ferritin (Jameson, 2004).  This increases the size of the LIP and also the 

quantity of iron available for the generation of ROS via Fenton chemistry.  

 

The 6-OHDA-induced oxidative stress reduces cellular antioxidant capabilities (Kumar et 

al., 1995), impairs intracellular redox potential regulation (Shiraga et al., 1993), causes 

lipid peroxidation as demonstrated by an increase in MDA (Kumar et al., 1995) and 

results in oxidative damage to DNA (Bruchelt et al., 1991; Gee et al., 1992).   
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1.3.7 Treatment of PD 

 

1.3.7.1 Levodopa (LD)  

 

1.3.7.1.1 Introduction 

 

In 1960, Ehringer and Hornykiewicz analysed 31 fresh brains from neurologically normal 

adults, Huntington’s disease, postencephalitic parkinsonism, extrapyramidal symptoms of 

unknown etiology, and idiopathic PD, and concluded that a significant striatal DA 

deficiency (approximate 90 % loss of striatal DA) was specific for Parkinson syndrome 

Ehringer and Hornykiewicz, 1960). Based on this observation, one year later Birkmayer 

and Hornykiewicz confirmed their earlier prediction, reporting that intravenous LD, the 

immediate precursor of DA, resulted in dramatic improvement of PD symptoms in 20 PD 

patients (Birkmayer and Hornykiewicz, 1961). LD thus became the first scientifically 

designed drug for the symptomatic treatment of a chronic, progressive, neurodegenerative 

disease (Rajput, 2001).   

 

1.3.7.1.2 Pharmacology 

 

1.3.7.1.2.1 Indications 

 

LD is indicated for the treatment of PD, but not for drug-induced parkinson-like 

symptoms (Gibbon, 2003).  
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1.3.7.1.2.2 Mechanism of action 

 

LD is converted by neuronal aromatic L-amino acid decarboxylase (AADC) into DA, 

hence restoring DA levels in the striatum and improving the symptoms of PD (Cannazza 

et al., 2005). However, the effectiveness of LD declines with time (Rajput, 2001). LD is 

usually administered with a peripheral decarboxylase inhibitor, e.g. benserazide or 

carbidopa to prevent the peripheral conversion of LD to DA. 

 

1.3.7.1.2.3 Adult dosing 

 

Oral treatment with Madopa® is 25 mg(benserazide)/100 mg(LD) eight hourly, increased 

by 25/100 mg weekly until the desired response is obtained. Usual effective range is 

100/400 or 200/800 mg/day (Gibbon, 2003). 

 

Alternatively the oral treatment with Sinemet® is 25 mg(carbidopa)/100 mg(LD) eight 

hourly, increased by 25/100 mg every day or alternate day until the desired response is 

obtained or a daily maximum of 200/800 mg/day is reached. Alternatively, the patient 

may take 12.5 mg(carbidopa)/100 mg(LD) once or twice daily, increased gradually by 

12.5/125 mg every day or alternate day until the desired response is obtained or a 

maximum of 200/2000 mg/day is reached (Gibbon, 2003).  

 

1.3.7.1.2.4 Drug interactions 

 

Pharmacologic doses of pyridoxine enhance the extracerebral metabolism of LD and may 

therefore affect its therapeutic effect. LD should not be given to patients taking 

monoamine oxidase inhibitors (excluding selegiline) or within 2 weeks of their 

discontinuance, because such a combination can lead to a hypertensive crisis (Aminoff, 

2004). Antipsychotic drugs such as phenothiazines and other antidopaminergic 

antipsychotic agents should be avoided. The likelihood of orthostatic hypotension is 
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increased when LD is administered with antihypertensive agents, such as methyldopa, 

particularly in the elderly (Gibbon, 2003). 

 

1.3.7.1.2.5 Adverse effects 

 

Response fluctuations become frequent with long-term LD treatment (Rajput, 1984; 

Cedarbaum, 1991; Chase et al., 1993). The most common motor response fluctuations are 

characterized by a predictable worsening at the end of a LD dose, known as wearing off, 

and an unpredictable short-duration worsening unrelated to the LD dose, known as “on-

off” phenomenon (Chase et al., 1993; Rajput, 2001). The most common late motor 

adverse effect associated with long-term LD treatment is dyskinesia (Cedarbaum, 1991; 

Rajput, 2001). The pathophysiology of these motor complications has not as yet been 

elucidated. Other common adverse effects are gastrointestinal (GIT) symptoms, such as 

nausea and vomiting (in about 80 % of patients), anorexia, peptic ulceration and GIT 

bleeding and psychiatric disturbances, such as nervousness and anxiety (Gibbon, 2003). 

 

1.3.7.1.2.6 Pharmacokinetics 

 

Levodopa is rapidly absorbed from the small intestine, but its absorption depends on the 

rate of gastric emptying and the pH of the gastric contents. Food, especially protein will 

delay the appearance of LD in the plasma. Plasma concentrations usually peak 1-2 hours 

following an oral dose and the plasma half-life is usually 1-3 hours. Unfortunately, only 

about 1-3 % of the LD actually enters the brain unaltered, the rest being metabolized 

extracerebrally. LD is metabolized both centrally and peripherally (in the liver, kidneys, 

plasma and intestinal wall) to DA.  The bioavailability of LD is enhanced by a peripheral 

decarboxylase inhibitor, such as benserazide and carbidopa, which inhibits the peripheral 

metabolism of LD to DA. LD is excreted in the urine mainly as DOPAC and HVA 

(Gibbon, 2003; Aminoff, 2004). 
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1.3.7.1.3 Neuroprotective potential of LD 

 

The ease at which catechol containing compounds, such as LD and DA are oxidized, 

immediately brings to mind the potential for these compounds to act as antioxidants. By 

becoming oxidized, in place of some other important biomolecule, catechols can be 

viewed as cell protectors. Several studies have shown that LD and DA have an inhibitory 

effect on lipid peroxidation induced under various experimental conditions in brain 

homogenates (Zaleska and Floyd, 1985; Dostert et al., 1991; Yen and Hsieh, 1997), 

liposomes (Spencer et al., 1996), and linoleic acid (Liu and Mori, 1993). In rats with a 

unilateral 6-OHDA lesion, LD did not increase •OH content of the nigrostriatal 

dopaminergic system (Camp et al., 2000). Catechols are excellent free radical 

scavengers, however it should be noted that during this scavenging activity, the catechol 

compound is converted to oxidized products, i.e. semiquinone radicals and quinones. 

These products may also be toxic to other biomolecules, such as proteins (Ito et al., 1988; 

Boots et al., 2002). LD and DA therefore have both neuroprotective potential and toxic 

potential.   

 

1.3.7.1.4 Neurotoxic potential of LD 

 

Exogenous LD, although primarily metabolized to DA also undergoes auto-oxidation 

(Basma et al., 1995). There is increased DA turnover in the surviving dopaminergic 

neurons and, hence, an accumulation of LD and DA metabolites in the brains of PD 

patients (Bernheimer and Hornykiewicz, 1966; Rajput et al., 1997). Quinones, 

semiquinones, H2O2, and other oxyradicals released during the metabolism and auto-

oxidation of LD and DA are believed to be toxic to the SNpc neurons. Exogenous LD, 

which provides symptomatic benefit for PD patients, might also accelerate SN neuronal 

death.  

 

Several in vitro studies have demonstrated the cytotoxicity of LD and DA to a variety of 

neuronal and non-neuronal cells. DA and LD were first found to be toxic to melanoma 
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cells, which have a high level of melanin and tyrosinase (Wick, 1979; Wick, 1980). The 

toxicity of LD and DA has also been found in dopaminergic neurons (Michel and Hefti, 

1990), sympathetic neurons (Ziv et al., 1994), PC 12 cells (Offen et al., 1997; 

Walkinshaw and Waters, 1995), striatal neurons (Luo, 1998; McLaughlin et al., 1998), 

neuroblastoma cells (Graham, 1978), SN neuroblastoma hybrid cells (Zhang et al., 1998), 

cortical cells (Hoyt et al., 1997), and thymocytes (Offen et al., 1995). The metabolites of 

DA and LD may account for this cytotoxicity. The auto-oxidation of these compounds 

may also be responsible for the observed cytotoxicity.  

 

Despite these in vitro studies, very few studies have investigated the ability of LD to 

cause oxidative stress and oxidative damage in vivo. Smith et al. (1994) demonstrated 

that when LD was added to the microdialysate, the •OH content of the effluent from the 

rat SN increased in a concentration dependent manner, and this was increased further by 

inhibition of mitochondrial complex I activity. The mechanism of LD induced •OH 

formation appears to relate to the conversion of LD to DA, since carbidopa prevented LD 

(0.1mM; 1µM min-1)-induced •OH formation in the striatum (Obata and Yamanaka, 

1996). When DA is injected into the striatum, cysteinyl-DA complexes were found 

(Hastings et al., 1996) and cell death was prominent (Filloux and Townsend, 1993). 

 

1.3.7.2 Selegiline (SEL) 

 

1.3.7.2.1 Introduction 

 

Monoamine oxidase B (MAO-B) is a predominantly glial enzyme in the brain. The age-

related loss of neurons, substituted by glial cells, leads to a significant increase in    

MAO-B activity. This, in turn significantly contributes to the decline of brain 

dopaminergic activity with the passing of time (Knoll, 1995). SEL was the first selective 

inhibitor of MAO-B to be described (Knoll et al., 1965; Knoll and Magyar, 1972). It is 

the internationally used reference substance against which new MAO-B inhibitors are 

measured. The inhibition of MAO-B by SEL retards the breakdown of DA and enhances 
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and prolongs the antiparkinsonism effect of levodopa (allowing lower doses of LD to be 

used). In addition to this, SEL may also help to reduce mild on-off and wearing-off 

phenomena associated with LD therapy (Aminoff, 2004). 

 

1.3.7.2.2 Pharmacology 

 

1.3.7.2.2.1 Indications 

 

SEL is used as adjunctive therapy for PD patients with a declining or fluctuating response 

to LD. 

 

1.3.7.2.2.2 Mechanism of action 

 

SEL is an irreversible or “suicide” inhibitor of MAO-B. Irreversible inhibitors initially 

bind MAO in a reversible, competitive manner, but are then converted by the enzyme to 

the active inhibitor, which covalently binds the enzyme active site via the FAD cofactor, 

thus rendering it permanently unavailable for amine metabolism (Foley et al., 2000). Its 

effects can therefore only be overcome by de novo synthesis of MAO-B (Abeles and 

Maycock, 1976). 

 

1.3.7.2.2.3 Adult dosing 

 

Oral treatment with SEL is initially 5 mg in the morning, increasing if necessary to 10 mg 

in the morning or 5 mg at breakfast and 5 mg at lunch. SEL may cause insomnia when 

taken later in the day (Gibbon, 2003).  
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1.3.7.2.2.4 Drug interactions 

 

Within 2-3 days after intiation of SEL therapy, concurrent LD dosage may need to be 

reduced by 20-50 %. Potentially life-threatening interactions of SEL both with pethidine 

and with antidepressants (particularly fluoxetine and other SSRIs) have been described. 

Phenothiazines and butyrophenones, which block striatal DA receptors, should be 

avoided. Reserpine also interferes with the action of LD and SEL and should be avoided 

(Gibbons, 2003).  

 

1.3.7.2.2.5 Adverse effects 

 

SEL has a good safety margin and its lack of a “cheese effect” attracted attention even 

before MAO subtypes had been distinguished (Foley et al., 2000). The clinical advantage 

of the safety of SEL in connection with the treatment of PD is that it can safely be 

combined with LD therapy. Other MAO inhibitors are contraindicated in LD-treated 

patients because of the danger of hypertensive crisis (Knoll, 1995). SEL is generally well 

tolerated. However, hypotension, nausea and vomiting, confusion and agitation may 

occur (Gibbon, 2003). 

 

1.3.7.2.2.6 Pharmacokinetics 

 

The GIT absorption and tissue distribution of SEL is rapid (Heinonen et al., 1989; 

Waitzinger et al., 1996). After the administration of a therapeutic dose of SEL (5-10 mg), 

peak plasma concentration is reached within 30-120 minutes and 90 % of the dose is 

bound to plasma proteins (Magyar and Tothfalusi, 1984; Heinonen et al., 1989; 

Mahmood, 1997). It crosses the BBB rapidly (Magyar and Tothfalusi, 1984) and 

maximal concentrations in the striatum of healthy volunteers are achieved within 5 

minutes of intravenous administration (Fowler et al., 1987).  SEL is metabolized 

primarily in the liver via the cytochrome P450 system. The major metabolites are          

N-desmethylselegiline, L-methamphetamine and L-amphetamine (figure 1.16) (Foley et 
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al., 2000). Treatment with SEL is unlikely to result in amphetamine-related effects on 

neurotransmitter release since the efficacy of L-amphetamine in this respect is only one 

tenth of that of D-amphetamine (Chiueh and Moore, 1974). The plasma half life of SEL 

is approximately 30 hours and about 75 % is excreted in the urine and 15 % in the faeces 

(Gibbon, 2003).   

 

 

Figure 1.16: The metabolism of SEL to methamphetamine and amphetamine (Foley et 

al., 2000). 

 

1.3.7.2.3 Neuroprotective actions of SEL in PD 

 

SEL, mainly through MAO-B inhibition protects the striatum of monkeys from the 

neurotoxic effect of MPTP (Cohen et al., 1994) but has a neuroprotective effect against 

intrastriatally injected MPP+ as well (Wu et al., 1995, 1996). SEL also protects the 

striatum from 6-OHDA-induced toxicity (Knoll, 1978).   
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Animal studies suggest that chronic SEL treatment results in an increased life expectancy 

(Milgram et al., 1990; Kitani et al., 1992; Knoll et al., 1995). Birkmayer et al. (1975, 

1985) indicated that the complementation of LD therapy with SEL increased the life 

expectancy of PD patients.   

 

The apparent slowing of neurodegenerative processes in PD by SEL may result from a 

number of different mechanisms but is most often proposed to be due to either an 

increase in dopaminergic neurotransmission or to neuroprotection against ROS, both of 

which are mediated by inhibition of MAO-B (Ebadi et al., 1996). The MAO-catalyzed 

oxidation of DA leads to the formation of H2O2. Inhibitors of MAO-B would therefore be 

expected to reduce oxidative stress in dopaminergic neurons by reducing H2O2 

production. SEL has also been shown to enhance the activity of radical-metabolizing 

systems in the striatum. For example, the administration of SEL has been shown to result 

in a significant increase in striatal SOD activity. Two other neuroprotective mechanisms 

of SEL, independent from MAO-B inhibition, is that the drug has shown to have a 

neurotrophic factor-like rescuing effect on damaged neurons and also increases reactive 

astrogliosis (Prochiantz et al., 1979). An increase in neuronal survival and an increased 

reactive astrogliosis may be related since reactive astrocytes are believed to play a role in 

the survival of damaged neurons, possibly through the provision of astroglially-derived 

neurotrophic factors.  

 

1.4 RESEARCH OBJECTIVES 

 

The debate about the toxicity of LD to dopaminergic neurons has not yet been resolved. It 

was discovered through the use of LD by PD patients that, although its initial results were 

dramatically effective, a growing tolerance to the drug developed. This resulted in a need 

to increase LD dosages over time. However, treatment with LD, especially at high 

dosages results in the patients experiencing a number of LD induced motor 

complications. The metabolic byproducts of LD and DA are believed to be toxic to the 

nigrostriatal dopaminergic neurons. If this hypothesis is correct, the exogenous 

administration of LD could alleviate the symptoms of PD in the short term, but accelerate 
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the disease process in the long term. This in turn could explain the emergence of wearing 

off effects associated with LD therapy, since this phenomenon is attributed to a reduced 

interdose presynaptic DA storage capacity (Chase et al., 1993; Nutt and Holford, 1996).  

 

Even though the enzymatic and nonenzymatic metabolism of LD and DA can produce 

ROS and neuronal damage in vitro, there has been controversy as to whether these agents 

can generate oxidative stress and oxidative damage in vivo.  The main aim of this study is 

to gain insight into the neuroprotective and neurotoxic roles of DA and LD in the 

neurodegeneration associated with PD. The study seeks to establish some of the 

molecular mechanisms by which these catechol compounds exert their neuroprotective or 

neurotoxic effects, through the employment of various biological and inorganic studies. 

In addition to this, the study also investigates whether SEL is able to prevent or mitigate 

the toxic effects of LD and DA and to establish some of the mechanisms by which SEL 

affords neuroprotection.  

 

The study includes an investigation into the capacity of DA to react with iron, ascorbate 

and hydrogen peroxide (Fenton reagents) to form 6-OHDA (a potent neurotoxin) in vitro. 

The study also investigates the capacity of DA to generate oxidative stress in vitro, 

characterized by an increase in O2
•- and •OH and a decrease in total GSH. In addition to 

this, the capacity of DA to cause oxidative damage to lipids (increase in MDA levels) and 

proteins (increase in carbonyl content) in whole rat brain homogenate will also be 

investigated. In all these cases, the effects provoked by the presence of Fenton reagents 

on both the oxidative stress and oxidative damage caused by DA will be investigated. In 

each study, SEL will be used to determine whether it can quench any free radical effects 

that may occur. 

 

Furthermore, the study also investigates whether acute LD treatment results in the 

formation of 6-OHDA in the striatum of male Wistar rats. The striatum is rich in DA, 

H2O2, iron and ascorbate. The generation of •OH via Fenton chemistry is known to 

convert DA to 6-OHDA in vitro. The present study therefore investigates whether 

exogenous LD administration can accelerate the generation of this neurotoxin in the rat 
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striatum in vivo. In addition to this, the study also investigates the effect of increased 

striatal iron levels on the ability of LD to generate 6-OHDA in the striatum, and to cause 

an increase in striatal oxidative stress and oxidative damage. Once again, the co-

administration of LD with SEL will be used to investigate whether SEL is able to prevent 

or reduce any oxidative damage induced by LD. The neuroprotective and neurotoxic 

effects of LD in vivo will be compared to those observed with DA in vitro. 

 

It is hoped that the findings of this study will provide additional insight into the nature of 

the molecular mechanisms involved in the neurotoxicity of LD and DA and contribute 

towards explaining the progression of PD, associated with an increase in DA turnover in 

surviving dopaminergic neurons. It is also hoped that the study will contribute to explain 

the adverse effects associated with LD therapy and provide a foundation for future 

research on how it may be possible to prevent or mitigate LD’s unwanted adverse 

impacts.  
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CHAPTER TWO  

 
STABILITY OF 6-HYDROXYDOPAMINE AND ITS 

FORMATION FROM DOPAMINE  
 

2.1 INTRODUCTION  

 

6-Hydroxydopamine (6-OHDA) is one of the most common neurotoxins used to 

experimentally model nigral degeneration in vitro and in vivo. It is selectively taken up 

into catecholaminergic nerve terminals and destroys them by a mechanism that is 

generally believed to involve free radical production as well as covalent binding of its 

semiquinone to macromolecules such as nucleic acids and proteins (Graham et al., 1978). 

Some evidence exists that 6-OHDA is a physiological endogenous neurotoxin. Several 

studies have reported the presence of 6-OHDA in both rat (Senoh and Witkop, 1959a,b; 

Senoh et al., 1959a,b; Severson et al., 1982 ) and human brain (Curtius et al., 1974) as 

well as in the urine of patients receiving levodopa (LD) treatment (Andrew et al., 1993).  
 

The possible pathways of 6-OHDA formation in vivo are unclear. Due to the high content 

of dopamine (DA), hydrogen peroxide (H2O2) and free iron in dopaminergic neurons, a 

non-enzymatic reaction between these elements may possibly lead to endogenous           

6-OHDA formation (Slivka and Cohen, 1985; Jellinger et al., 1995; Linert et al., 1996). 

Hydroxyl radicals formed by the reaction of H2O2 with iron can oxidize the 

neurotransmitter DA to the neurotoxin 6-OHDA (Jellinger et al., 1995). This DA 

oxidation has been shown to occur at concentrations as low as 50 µM and induces the 

formation of both 6-OHDA and related quinones (Napolitano et al., 1999). Moreover, 

Liao et al. (2003) reported the presence of 6-OHDA in mouse striatum due to the 

inhibition of monoamine oxidase (MAO) and catechol-0-methyltransferase (COMT) 

activities.   These authors also reported the emergence of a 6-OHDA-like substance in the 

striatum of methamphetamine-treated rats. 6-OHDA has been detected in rat brain after 

the administration of 6-hydroxydopa (Karoum et al., 1993; Evans and Cohen, 1989), 
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which differs from LD only in the addition of a hydroxyl group in the 6 carbon position. 

Evans and Cohen, (1989) and Karoum et al. (1993) also reported increased levels of           

6-OHDA in the brain following inhibition of MAO with pargyline.  

 

In view of the studies mentioned above, this study sought to investigate the chemical 

ability of DA to react with iron, ascorbate and H2O2 to form 6-OHDA by using a 

validated high performance liquid chromatography (HPLC) method coupled with an 

electrochemical detector. In addition to this, due to the high concentration of DA, H2O2 

and free iron in the striatum and previous studies demonstrating the endogenous 

formation of 6-OHDA, we decided to investigate whether LD treatment results in the 

endogenous formation of 6-OHDA in the rat striatum.  

 

In each study selegiline (SEL), a monoamine oxidase B (MAO-B) inhibitor with known 

antioxidant properties was used to see whether it could reduce yields of 6-OHDA formed. 

Scavenging of hydroxyl radicals by SEL could suppress yields of 6-OHDA formed. 

However, SEL blocks the primary metabolic pathway of DA and in addition to this is 

metabolized to amphetamine and methamphetamine (Meeker and Reynolds, 1990). When 

taking this into account together with the fact that previous studies have shown an 

increase in 6-OHDA after MAO inhibition, it suggests that SEL could theoretically result 

in an increase in 6-OHDA levels. This could cast doubts on its chronic use in Parkinson’s 

disease.   
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2.2 STABILITY OF 6-HYDROXYDOPAMINE  
 

2.2.1 INTRODUCTION  
 

A potent neurotoxin, 6-OHDA can be produced by hydroxyl radical attack on DA in vitro 

(Slivka and Cohen, 1985; Jellinger et al., 1995; Linert et al., 1996). It has been 

hypothesized that the formation of this neurotoxin, in vivo, could be implicated in the 

cause of Parkinson’s disease and neurodegeneration produced by some psychostimulants, 

such as methamphetamine (Seiden and Ricaurte, 1987). Clear evidence for, or against the 

generation of 6-OHDA in vivo after the administration of psychostimulants and other 

drugs that elevate synaptic concentrations of DA is lacking because the results obtained 

with these studies are often conflicting (Rollema et al., 1986, Marek et al., 1990, J. Tong 

and A.D. Baines, 1993, Liao et al., 2003). 

 

Problems with the known rapid auto-oxidation of 6-OHDA at physiological pH (Cohen 

and Heikkila, 1974; Graham et al., 1978) and its stability during sample storage, 

homogenization and analysis may be responsible for the conflicting results obtained with 

biological samples. This study therefore examined the stability of 6-OHDA under acidic 

(0.1 M HClO4), physiological (0.1 M phosphate buffered saline (PBS) at pH 7.4), and 

alkaline (0.1 M NaOH) pH at room temperature. The study also investigated the stability 

of 6-OHDA when biological samples and standards were stored at -70 ºC. In addition to 

this, the study also investigated the effect of added ascorbate on 6-OHDA stability. 

 

2.2.2 MATERIALS AND METHODS  

 

2.2.2.1 Chemicals and reagents 

 

6-Hydroxydopamine hydrobromide was purchased from the Sigma Chemical 

Corporation, St. Louis, MO, USA. All other chemicals were of the highest quality 

available and purchased from commercial distributors. 
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2.2.2.2 Sample preparation  

 

The significance of pH on the stability of 6-OHDA was investigated by examining its 

stability under basic (0.1 M NaOH), physiological (0.1 M PBS, pH 7.4) and acidic (0.1 M 

HClO4) pH conditions. Ten micrograms of 6-OHDA was added to 10 ml of each solution 

(1 µg/ml final concentration) and the solutions were then processed for 6-OHDA at 

different time periods by injecting 20 µl aliquots into the HPLC system. The effect of 

ascorbate was evaluated by adding a final concentration of 1 mM of ascorbate to each 

solution before the addition of the 6-OHDA. 

 

In order to investigate the stability of 6-OHDA during sample homogenization, rats were 

sacrificed by cervical dislocation and the brains were rapidly excised and homogenized 

(10 % m/v) in either 0.1 M PBS, pH 7.4 or 0.1 M HClO4. Ten micrograms of 6-OHDA 

was added to 10 ml of each homogenate. At various time periods, aliquots (0.1 ml) of 

each homogenate was removed, centrifuged at 12 000 x g for 5 minutes and the 

supernatant (20 µl) was injected into the HPLC system. Once again the effect of 

ascorbate was evaluated by adding a final concentration of 1 mM of ascorbate to each 

homogenate before the addition of the 6-OHDA. The stability of 6-OHDA was also 

studied in frozen supernatants stored at -70 ºC over a period of two days.  

 

2.2.2.3 Instrumentation 

 

The samples were analyzed on a modular isocratic high performance liquid 

chromatographic system (Waters Millipore Model 510/Milford; MA, USA). The 

chromatographic system consisted of a Waters Millipore model 460-electrochemical 

detector and a Rikadenki model R01 chart recorder (Tokyo, Japan). Samples were 

introduced into the system using a Rheodyne fixed loop 7725i injector, fitted with a 20 µl 

loop. 
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2.2.2.4 Chromatographic conditions 

 

Separation was achieved using an Ultrasphere C18 IP 80A analytical column                     

(5 µm, 250 x 4.6 mm). The mobile phase consisted of an aqueous solution of citric acid 

(125 mM), sodium phosphate (125 mM), EDTA (100 mg/L), and sodium octylsulfate  

(30 mg/L). The pH was adjusted to 2.5 with 85 % orthophosphoric acid and was degassed 

twice using a 0.45 µm membrane filter prior to use. The flow rate was 1 ml/min, and the 

electrodetection was performed at 0.2 V (Cohen and Slivka, 1985). Only the 6-OHDA 

was detected at 0.2 V. 

 

2.2.2.5 HPLC method validation 

 

Stock solutions of 6-OHDA were freshly prepared for each test in 0.4 M HClO4 

containing 1 mM of ascorbic acid. The analytical procedure was validated by assessment 

of linearity of calibration (0.1 µg/ml to 1 µg/ml), repeatability, sensitivity, precision and 

limits of quantification (LOQ) and detection (LOD). To ensure specificity, other 

hydroxylated dopamine derivatives namely 2-hydroxydopamine and 5-hydroxydopamine 

were prepared in the same way as the 6-OHDA and injected into the HPLC system. Only 

the 6-OHDA was detected at 0.2 V. In addition, two concentrations within the calibration 

range were prepared independently for use as accuracy standards. 

 

2.2.3 RESULTS 

 

2.2.3.1 HPLC method validation 
 
Chromatograms obtained for 6-OHDA show symmetrical, well resolved peaks with a 

retention time of 9.6 minutes. Figure 2.1 shows a typical chromatogram of 6-OHDA. 
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Figure 2.1: A typical chromatogram obtained for 6-OHDA (1 µg/ml) 

 

Regression analysis shows that the concentration and peak height ratio are linear over the 

concentration range studied, with an excellent correlation coefficient of r2 = 0.9998. Each 

point on the calibration curve is based on triplicate determinations repeated five times. 

Figure 2.2 represents a typical calibration curve obtained after plotting the mean currents 

of the peaks versus concentration.  
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Figure 2.2:  A typical calibration curve obtained for 6-OHDA. 
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Sensitivity of the method was evaluated by determining the lowest reproducible 

concentration of 6-OHDA detectable. The LOQ and LOD were determined as          

0.0125 µg/ml and 0.00625 µg/ml respectively. The precision is reported as percentage 

relative standard deviation (% RSD). The interday precision ranges from 0.19 % to 2.2 % 

(table 2.1) while the intraday precision ranges from 0.86 % to 3.55 % (table 2.1) for the 

concentration range studied. 

 

Table 2.1: 6-OHDA validation data 

________________________________________________________________________ 

Concentration                                            Relative Standard Deviation (%) 

(µg/ml)                                       Interday (n=5)                               Intraday (n=5) 

0.1                                                     0.19                                                  0.86                  

0.2                                                     0.74                                                  0.86           

0.4                                                     0.81                                                  1.81 

0.6                                                     1.98                                                  1.59 

0.8                                                     2.20                                                  0.63 

1                                                        2.20                                                  3.55 

 

2.2.3.2 Stability of 6-OHDA 

 

Under alkaline conditions (0.1 M NaOH), 6-OHDA was extremely unstable and no peaks 

were detectable electrochemically. Figure 2.3 is a series of chromatograms showing how 

the 9.6 minute peak of 6-OHDA decreased over a 48 hour period when a freshly prepared 

solution of 6-OHDA in 0.1 M HClO4 was used.  
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   0 hours               12 hours             24 hours          48 hours 

Figure 2.3: A series of chromatograms showing the disappearance of 6-OHDA over a 48 hour 

period when 6-OHDA was added to a solution of 0.1 M HClO4. 

 
 
The percentage of 6-OHDA remaining at different times is shown in figure 2.4. The graph shows 

that only about 20 % of the 6-OHDA remained after 48 hours. 
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Figure 2.4: Graph showing the percentage of 6-OHDA remaining at different time 

periods when 6-OHDA was added to a solution of 0.1 M HClO4. 

 

At physiological pH (0.1 M PBS, pH 7.4) the 9.6 minute peak of 6-OHDA decreased 

more rapidly and no peaks were detected electrochemically after 2 hours. Figure 2.5 is a 

series of chromatograms showing the disappearance of the 9.6 minute peak over a 1.5 

hour period. 
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Figure 2.6 shows that 6-OHDA is very unstable at physiological pH and that only about  

2 % of the 6-OHDA remained after 2 hours.  

Figure 2.5: A series of chromatograms showing the disappearance of 6-OHDA over a 

1.5 hour period when 6-OHDA was added to a 0.1 M solution of PBS, pH 7.4. 
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Figure 2.6: Graph showing the percentage of 6-OHDA remaining at different time 

periods when 6-OHDA was added to a solution of 0.1 M PBS, pH 7.4. 

 

The addition of 1 mmol/L of ascorbic acid to a solution of 6-OHDA in 0.1 M HClO4 

slowed the disappearance of the 6-OHDA peak so that 60 % remained after 48 hours                         

(figure 2.7). The addition of 1 mmol/L of ascorbic acid to the PBS also prolonged the life 

of the 6-OHDA peak so that 18 % of 6-OHDA remained after 6 hours and 3 % of the      

6-OHDA remained after 48 hours (figure 2.8).  
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Figure 2.7: Graph showing the percentage of 6-OHDA remaining at different time 

periods when ascorbate (1 mM) was added to a solution of 6-OHDA in 0.1 M HClO4. 
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Figure 2.8: Graph showing the percentage of 6-OHDA remaining at different time 

periods when ascorbate (1 mM) was added to a solution of 6-OHDA in 0.1 M PBS. 
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As shown in figure 2.9, 6-OHDA was less stable in the samples containing rat brain 

tissue homogenized in HClO4 than samples containing no tissue homogenate. In the 

samples containing tissue homogenate no peak for 6-OHDA was detected after 36 hours. 

However, the addition of 1 mM of ascorbate to the tissue homogenate increased the 

stability of 6-OHDA so that the amounts of 6-OHDA measured in the samples containing 

both tissue homogenate and exogenous 6-OHDA were not significantly different from 

those obtained in the samples containing no tissue extract. 
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Figure 2.9: Graph showing the percentage of 6-OHDA remaining at different time 

periods when 6-OHDA was added to rat brain homogenized in 0.1 M HClO4. 

 

The amounts of 6-OHDA measured in samples containing both rat brain tissue 

homogenized in PBS and exogenous 6-OHDA are significantly higher than those 

obtained in the samples containing no homogenate. Figure 2.10 shows that approximately 

5 % of the 6-OHDA remained after 30 hours.    
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Figure 2.10: Graph showing the percentage of 6-OHDA remaining at different time 

periods when 6-OHDA was added to rat brain homogenized in 0.1 M PBS. 

 

No change in peak heights was observed in samples prepared from brain supernatants 

(PBS and HClO4) stored at -70 ºC for a period of 2 days.  

 

2.2.4 DISCUSSION  

 

This study confirms the previously published observation that 6-OHDA undergoes rapid 

auto-oxidation at physiological pH (0.1 M PBS, pH 7.4) in vitro. The 6-OHDA generated 

in the rat brain may therefore also be very short lived and difficult to detect. Increasing 

the ascorbate concentration in the PBS to 1 mM increased the stability of 6-OHDA. 

Relatively high concentrations of ascorbate are therefore needed to maintain 6-OHDA in 

the reduced state. Ascorbate may increase the stability of 6-OHDA by promoting the 

redox cycling of the quinone oxidation products of 6-OHDA back to the parent 

compound. The stability of 6-OHDA generated in vivo may therefore be affected by local 

tissue levels of ascorbate and other anti-oxidant molecules such as tocopherol. Ascorbic 
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acid is present in relatively large concentration in neural tissue; with mean levels in the 

range of 1-2 mM in rat brain (Milby et al., 1982). Higher mean levels of 8.8 ± 1.1 mM 

are reported for nerve terminals from rat brain (Kuo et al., 1978). The presence of 

endogenous ascorbate and other anti-oxidant molecules in the rat brain homogenate may 

account for the increased stability of 6-OHDA observed in samples that contained both 

rat brain tissue homogenate and exogenous 6-OHDA when compared to samples that 

contained no tissue homogenate.  A number of other factors can also affect the observed 

stability of 6-OHDA in vivo, such as storage in synaptic vesicles and the continued 

synthesis of 6-OHDA from endogenous DA.  

 

The results of this study also show that the stability of 6-OHDA under acidic pH (0.1 M 

HClO4) is much greater than that observed under physiological pH. 6-OHDA is more 

stable in samples that contained no tissue homogenate than samples that contained tissue 

homogenized in HClO4. This was therefore opposite to what was observed under 

physiological pH. A possible explanation for this reduced stability is that oxidized           

6-OHDA is highly reactive with nucleophiles. Oxidized 6-OHDA could therefore have 

bound covalently to nucleophilic groups in albumin and other proteins (Saner and 

Thoenen, 1971) present in the homogenate.  When the ascorbate concentration was 

increased to 1 mM in the tissue homogenate, the stability of 6-OHDA in samples 

containing ascorbate (1 mM), tissue homogenate and exogenous 6-OHDA was not 

significantly different from the stability of 6-OHDA observed in samples containing no 

tissue homogenate. 

 

In subsequent experiments striatal samples that were to be processed for 6-OHDA were 

homogenized in 0.4 M HClO4 containing 1 mM of ascorbate in order to maintain any      

6-OHDA formed in the reduced state as long as possible. 

 

Storage of brain supernatants at -70 ºC for 2 days had no observable effect on the peak 

height of 6-OHDA. In future experiments striatal samples to be processed for 6-OHDA 

were rapidly excised, frozen in liquid nitrogen and stored at -70 ºC for a period not 

exceeding 2 days.  
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It is clear that the detection of any 6-OHDA formed after LD treatment depends on a 

large number of factors, including local tissue levels of ascorbate, iron, DA, as well as 

levels of glutathione and tocopherol and other anti-oxidant enzymes. However, the main 

aim of this study was to help prevent the loss of 6-OHDA during sample storage, 

homogenization and analysis in future experiments.    
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2.3 EFFECT OF SELEGILINE ON THE IN VITRO 
FORMATION OF 6-HYDROXYDOPAMINE   

 
2.3.1 INTRODUCTION 

 

Hydroxyl radicals (•OH) are highly oxidizing species that have been implicated as 

mediators of tissue damage in a number of in vitro and in vivo studies. A classical source 

of •OH is from the univalent reduction of H2O2 by metal ions, first reported by Fenton 

(Slivka and Cohen, 1985). The Fenton reaction between a ferrous salt or ferrous chelate 

and H2O2 can be represented by the overall equation: 

 

Fe2+ + H2O2 → Fe3+ + OH- + •OH (Equation 2.1) 

 

In cellular systems, the ferric ions (Fe3+) that are generated in the Fenton reaction 

(equation 2.1) are recycled by suitable reducing agents, for example ascorbic acid 

(equation 2.2). Ferric ions also oxidize catechols or superoxide anions, resulting in the 

formation of reduced ferrous ions (equation 2.3). The recycling of iron between its ferric 

and ferrous states permits the generation of •OH to continue until the source of reducing 

equivalents (or H2O2) is expended.  

 

2Fe3+ + AH2 → 2Fe2+ + A             (Equation 2.2) 

Fe3+ + O2
•- →  Fe2+ + O2                       (Equation 2.3) 

 

Evidence for the existence of •OH in biochemical systems is based on the identification 

of products formed when •OH reacts with an exogenous compound that has been added 

to the system in relatively high concentrations. Previous studies have shown that •OH 

will engage in the ring hydroxylation of a variety of aromatic compounds including 

phenol and substituted phenols (Richmond et al., 1981). For example, •OH reacts with 

salicylate to generate 2,3 and 2,5-dihydroxybenzoic acid which can be measured 

electrochemically using high performance liquid chromatography (Obata and 
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Yamamaka,1996). DA is an endogenous catecholamine that is found in high 

concentration in the striatum. Senoh et al. (1959) reported that in the presence of      

Fe(II)-EDTA and ascorbate, DA could be ring-hydroxylated to form a product that 

appeared to be 6-OHDA. The rate constant for the reaction of •OH with DA is              

5.9 X 109 M-1s-1 at a pH of 4.7 (Slivka and Cohen, 1985). 

 

In the present study, hydroxyl radicals were generated in the presence of DA at a pH of 

7.4 by using the Fe(II)-EDTA/H2O2 and ascorbate system (Fenton system) as the •OH 

generating system and a validated high performance liquid chromatography with 

electrochemical detection (HPLC-ECD) method was used to investigate whether            

6-OHDA was formed. In addition, the study also investigated whether SEL was able to 

suppress yields of 6-OHDA formed.  

 

2.3.2 MATERIALS AND METHODS  

 

2.3.2.1 Chemicals and reagents 

 

DA hydrochloride, 6-OHDA hydrobromide, SEL hydrochloride, sodium octylsulfate, 

sodium phosphate and citric acid were purchased from the Sigma Chemical Corporation, 

St. Louis, MO, USA. EDTA and ferrous (II) sulfate were purchased from Merck, 

Darmstadt, Germany. All other bench reagents were purchased from Saarchem(Pty). Ltd, 

Krugersdorp, South Africa. 
 

2.3.2.2 Hydroxyl radical generating system 

 

To determine the hydroxylation of DA, Fe(II)-EDTA/H2O2 and ascorbate (Fenton 

system) was used as the hydroxyl radical generating system. This reaction system is 

based on a coupled reaction in which ferrous chelates react with H2O2 to give rise to 

hydroxyl radicals according to the following equations. 
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FeCl2 + EDTA → Fe2+ -EDTA                                                                      (Equation 2.4) 

Fe2+ -EDTA + H2O2 → Fe3+ -EDTA + •OH + OH-                                        (Equation 2.5) 

Fe3+ -EDTA + ascorbic acid → Fe2+ -EDTA + oxidized ascorbic acid          (Equation 2.6) 

 

The first reaction (equation 2.4) results in the formation of a ferrous chelate. The ferrous 

chelate then produces hydroxyl radicals by reacting with H2O2 in the second reaction 

(equation 2.5). The chelated Fe(III)–EDTA is then reduced to the ferrous state by the 

third reaction (equation 2.6). In this process, the ferrous irons are constantly regenerated 

in a coupled reaction in which the ferric ions are reduced by ascorbic acid. This results in 

a reliable and continuous production of hydroxyl radicals throughout the experiment. The 

sequence of additions and final concentrations of reagents for the Fenton system were as 

follows: water, phosphate buffer (final concentration 50 mM, pH 7.2), H2O2 (100 µM), 

DA (1 mM), ascorbate (1 mM), EDTA (240 µM) and ferrous sulfate (200 µM). The 

effect of SEL was evaluated by adding various concentrations (0.1, 1 and 10 mM) before 

the addition of DA. The reaction mixture was incubated at room temperature with 

intermittent stirring. At various time periods (10, 30, 60, 120 minutes), aliquots (0.1 ml) 

of reaction mixture were removed and quenched in ice cold 0.4 M HClO4 containing       

1 mM ascorbate. The ascorbate was necessary to maintain the 6-OHDA in the reduced 

state. The reaction time was 120 minutes. The samples were analysed for 6-OHDA using 

high performance liquid chromatography with electrochemical detection. Final results are 

expressed as µg of 6-OHDA/10 ml. 

 

2.3.2.3 Instrumentation 

 

As described in section 2.2.2.3 

 

2.3.2.4 Chromatographic conditions 

 

As described in section 2.2.2.4 
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2.3.2.5 Statistical analysis 

 

The differences in the means were analysed using a one way analysis of variance 

(ANOVA) followed by the Student Newman-Keuls Multiple Range Test. The level of 

significance was set at p < 0.05.  

 

2.3.3 RESULTS 

 

Figure 2.11 is a series of chromatograms showing that when the reaction mixture was 

quenched by dilution into 0.4 M HClO4 containing 1 mM ascorbate, and analysed at  

+0.2 V, a peak with chromatographic and electrochemical properties identical to 6-

OHDA was formed.  

 

Fenton system 

 

           10 min                          30 min                           60min                         120min____ 

                                           

Figure 2.11: A series of chromatograms showing 6-OHDA formation over time when 

DA is incubated with the Fenton system (0.1 ml aliquots of the reaction mixture were 

quenched in 0.9 ml of 0.4 M HClO4.) 
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The yield of 6-OHDA formed after a reaction time of 120 minutes using the                

Fenton system is shown in table 2.2. As evident in table 2.2 and figure 2.12 SEL 

suppressed the yield of 6-OHDA formed in a concentration dependant manner with the 

10 mM SEL concentration reducing the yield of 6-OHDA to 15.4 % when compared to 

the control.  

 

Table 2.2: Suppression of the yield of 6-OHDA formed in the Fenton system by SEL. 

DA was present at 1 mM. The reaction time was 120 minutes. Values are mean ± SD for 

n=3. Values in parenthesis are percent control. *(p < 0.001) versus control (ANOVA 

followed by Student-Newman-Keuls Multiple range test). 

________________________________________________________________________ 

Scavenger (mM)                                                                                   6-OHDA (µg/10 ml) 
None (control)                                                                                      12.11 ± 0.39 (100 %) 

    SEL 

     0.1                                                                                                   9.34 ± 0.13 (77.1 %)* 

     1.0                                                                                                   3.89 ± 0.79 (32.1 %)*  

     10                                                                                                    1.89 ± 0.26 (15.6 %)* 

 

 

Figure 2.12 shows 6-OHDA formation with time in the Fenton system. Product formation 

was continuous in the Fenton system, but was greatly reduced when SEL was added to 

the reaction mixture.  
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Figure 2.12: Showing the effect of SEL on 6-OHDA formation with time in the Fenton 

system. 

 

2.3.4 DISCUSSION  

 

Important observations made during this study include (i) the chemical ability of DA to 

react with iron, ascorbate and H2O2 to form 6-OHDA in a cell free environment, 

indicating a non-enzymatic reaction and (ii) the ability of SEL to suppress yields of        

6-OHDA formed.  

 

The fact that 6-OHDA can be formed in the presence of iron, H2O2 and ascorbate in vitro 

suggests that 6-OHDA may be formed from DA in the central nervous system in vivo. 

Striatal dopaminergic neurons contain significant levels of DA, H2O2 and free iron. This 

may create a chemical environment which would allow for the conversion of DA to       



Stability and Formation of 6-Hydroxydopamine 
 

74 

6-OHDA. The formation of this neurotoxin may then result in cellular damage to DA 

neurons (Slivka and Cohen, 1985; Jellinger et al., 1995; Linert et al., 1996).  

 

The hydroxylation of various aromatic compounds has been used as a indicator of •OH 

generation by a number of different investigators (Halliwell, 1978; Raghavan and 

Steenken, 1980;  Sloot and Gramsbergen, 1995). The ring hydroxylation of DA by •OH 

results in the formation of 6-OHDA. The ability of SEL to inhibit the formation of         

6-OHDA may be due to its known hydroxyl radical scavenging properties (Tan et al., 

1993; Thomas et al., 1997).  The ability of SEL to bind to iron will be investigated in a 

later chapter.  

 

One of the remarkable pharmacological effects of SEL is that it protects the striatum from 

6-OHDA induced toxicity. The inhibition of the uptake of 6-OHDA into nigrostriatal 

dopaminergic neurons plays an important role in the neuroprotective role of SEL against 

the toxicity of this specific neurotoxin. This study also shows that in addition to this, SEL 

may also protect against 6-OHDA toxicity by inhibiting the formation of this toxin. On 

the other hand, the fact that SEL inhibits 6-OHDA formation in vitro does not necessarily 

mean that this will be the case in vivo. For example, SEL is a selective MAO-B inhibitor 

and the inhibition of this enzyme may actually favour the formation of 6-OHDA (Liao et 

al., 2003). SEL is also metabolized to amphetamine and methamphetamine (Meeker and 

Reynolds, 1990). Liao et al. (2003) reported that high doses of methamphetamine         

(50 mg/kg) results in 6-OHDA formation in the striatum of mice.   

 

The effect of SEL on 6-OHDA formation in vivo was investigated in the following 

experiment.  

 

.  
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2.4 EFFECT OF A SINGLE LARGE DOSE OF              
L-DOPA AND SELEGILINE ON STRIATAL               

6-HYDROXYDOPAMINE FORMATION IN VIVO 
 
2.4.1 INTRODUCTION 

 

Parkinson’s disease (PD), first described by James Parkinson in 1817 (Parkinson, 1817) 

is characterized by a marked loss of pigmented dopaminergic neurons from the substantia 

nigra pars compacta (SNpc), a midbrain structure. In 1960, Hornykiewicz and coworkers 

discovered a significant loss of DA in the striatum of PD patients (Ehringer and 

Hornykiewicz, 1960). Since DA itself could not cross the blood brain barrier, 

Hornykiewicz and colleagues predicted that levodopa (LD), the precursor of DA would 

improve parkinsonian symptoms.  One year later, Birkmayer and Hornykiewicz, (1961) 

reported marked therapeutic success in the treatment of PD after intravenous 

administration of LD. By 1967, Cotzias and coworkers (Cotzias et al., 1967) were able to 

announce that large oral doses of LD resulted in marked improvement of PD. Although 

LD was initially very effective in treating the symptoms of the disease, a growing 

tolerance to the drug developed and it failed to halt the underlying progression of the 

disease. Eventually, side effects such as dyskinesias (abnormal movements), 

gastrointestinal symptoms, insomnia, hallucinations and psychosis became worse than the 

benefits of the drug (Lees, 1995; Katzenschlager and Lees, 2002).  

 

A possible mechanism by which LD may accelerate the disease process and result in a 

variety of side effects is that exogenous LD administration may significantly increase the 

formation of 6-OHDA. There is a substantial amount of evidence implicating the 

involvement of free radicals as one of the major causes of nigral degeneration in 

Parkinson’s disease. The previous experiment demonstrated that free hydroxyl radicals 

can react with DA to form 6-OHDA. The main aim of this study was to use a validated 

HPLC-ECD method to search for the presence and to assess the formation of 6-OHDA 

after the administration of a single large dose of LD (together with a dopa decarboxylase 

inhibitor, benserazide) in the absence and presence of the MAO-B inhibitor, SEL. 
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2.4.2 MATERIALS AND METHODS  

 

2.4.2.1 Chemicals and reagents 

 

L-3,4-dihydroxyphenylalanine (LD), benserazide hydrochloride, SEL hydrochloride, 

sodium octylsulfate, sodium phosphate and citric acid were purchased from the Sigma 

Chemical Corporation, St. Louis, MO, USA. EDTA and ferrous (II) sulfate were 

purchased from Merck, Darmstadt, Germany. All other bench reagents were purchased 

from Saarchem(Pty). Ltd, Krugersdorp, South Africa. LD was dissolved in saline 

containing 0.2 mg/ml of ascorbic acid and 0.1 M HCl, the solution was mixed until clear 

and the pH was adjusted to 6.2 with 0.1 M disodium hydrogen phosphate. SEL and 

benserazide hydrochloride were made up in physiological saline.   

 

2.4.2.2 Animals 

 

Adult male Wistar rats were used in this study and were housed and maintained as 

described in appendix one  

 

2.4.2.3 Drug treatment 

 

Rats were divided into four groups (I – IV), with fifteen rats in each group. Rats were 

then treated as described in table 2.3. Group I served as the control and received saline, 

Group II received LD (50 mg/kg) and Group III received 10 mg/kg of SEL. Group IV 

received a combination of LD (50 mg/kg) and SEL (10 mg/kg). Each animal received a 

dose volume of 1 µl/g of body weight of LD and/or SEL i.p. as a single large dose. LD 

treatment groups also received 12.5 mg/kg of benserazide prepared in saline to prevent 

the peripheral decarboxylation of LD.  Five rats from each group were sacrificed by 

decapitation at 60, 120 and 180 minutes after initial treatment. The striatum of each rat 
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was removed, frozen in liquid nitrogen and stored at -70 °C, for a period not exceeding 2 

days.  

 

Table 2.3: Treatment schedules used to test the ability of LD and SEL to induce the 

endogenous formation of 6-OHDA in the rat striatum. 

________________________________________________________________________ 

Treatment group            Dose (i.p.)          Time (min) of decapitation after initial treatment  

Control (n = 15)               Saline                                               60 (n = 5)         

                                                                                                120 (n = 5) 

                                                                                                180 (n = 5) 

LD (n = 15)                      50mg/kg                                           60 (n = 5)         

                                                                                                120 (n = 5) 

                                                                                                180 (n = 5) 

SEL (n = 15)                    10mg/kg                                           60 (n = 5)         

                                                                                                120 (n = 5) 

                                                                                                180 (n = 5) 

LD                                   50mg/kg                                            60 (n = 5)         

and SEL (n=15)               10mg/kg                                         120 (n = 5) 

                                                                                                180 (n = 5) 
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2.4.2.4 Preparation of tissue for HPLC analysis 

 

On the day of the experiment, the striatal samples were thawed on ice, weighed and 

sonicated (50 Hz for 60 s) in ice cold 0.4 M HClO4 containing 1 mM of ascorbate using 

an ultrasonic cell disruptor (1 mg of tissue in 10 µl). The sonicated samples were kept on 

ice for 30 minutes and centrifuged at 10 000 x g for 10 minutes using a bench top 

centrifuge. The supernatant (20 µl) was injected directly into the HPLC-ECD system for 

analysis.   

 

2.4.2.5   Instrumentation 

 

As described in section 2.2.2.3 

 

 

2.4.2.6 Chromatographic conditions 

 

As described in section 2.2.2.4 

 

  

2.4.2.7 Statistical analysis 

 

As described in section 2.3.2.5 
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2.4.3 RESULTS 

 

Experimental designs and treatment schedules used for the search for 6-OHDA after the 

administration of a single large dose of LD and/or SEL are summarized in table 2.3. No 

detectable amount of 6-OHDA was found in the striatum after any of these treatments.  

  

2.4.4 DISCUSSION 
 

The axon terminals of dopaminergic neurons in the striatum are highly enriched in the 

neurotransmitter, DA, with concentrations estimated at 8 mg/g (or 47 mM) (Anden et al., 

1966). H2O2 is formed within these neurons during the catabolism of DA by 

mitochondrial MAO. The rate of H2O2 production should follow neuronal activity and the 

rate of turnover of DA. In addition to this, ascorbic acid is also present at high 

concentrations in the complex environment of brain tissue. Mean levels are in the range 

of 1-2 mM in rat brain (Milby et al., 1982) and 0.4-1.3 mM in major divisions of the 

human brain (Mefford et al., 1981). Higher mean levels of 8.8 ± 1.1 mM are reported for 

nerve terminals in rat brain (Kuo et al., 1979). Iron is also found in high concentrations in 

several regions of the basal ganglia including the substantia nigra, the globus pallidus 

and the putamen (Dexter et al, 1989a,b). As discussed in the previous experiment, the 

endogenous presence of the above reactants in the rat brain could have created a chemical 

environment that allowed DA to be converted to 6-OHDA. 

 

The previous experiment confirmed the observation by Slivka and Cohen, (1985) that 

hydroxyl radicals can convert DA to 6-OHDA in vitro. However, the products of this 

reaction were not detected in vivo. Our negative finding suggests, therefore, that              

6-OHDA is not produced in vivo under the present conditions. Although 6-OHDA is 

known to auto-oxidize to stable quinone products in vitro, the results of the stability study 

conducted in section 2.2 suggest that the preparation procedures used during this 

experiment did not result in a significant loss of 6-OHDA. 
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A possible reason for the failure to detect 6-OHDA in the striatum may be that the           

6-OHDA formed in the striatum is very short lived. 6-OHDA undergoes rapid auto-

oxidation to quinone products at physiological pH. The quinone oxidation products of     

6-OHDA are highly reactive with nucleophiles, such as sulfhydryl groups in glutathione 

(GSH) and other proteins (Tong and Baines, 1993). Nucleophilic attack by sulfhydryl 

groups in GSH and other proteins could scavenge the oxidized products of 6-OHDA as 

rapidly as they were produced (Tong and Baines, 1993). This in turn would prevent the 

redox cycling of these quinone products back to 6-OHDA by endogenous ascorbate. 

Rapid scavenging of oxidized 6-OHDA may therefore account for the absence of 

detectable levels of 6-OHDA in the striatal samples of rats. Another explanation is that 

LD and SEL treatment may produce concentrations of 6-OHDA that are below the limit 

of detection of the assay.  

 

The duration of treatment, i.e. giving a single dose of LD and/or SEL could also have 

affected the outcome of the investigation. The following experiment investigates whether 

treatment with LD and/or SEL over a longer period of time results in 6-OHDA formation. 

6-OHDA is also more likely to occur under pro-oxidant conditions. The following 

experiment therefore also investigates the effect of elevated iron levels in the striatum on 

6-OHDA formation. PD is associated with increased iron levels and reduced antioxidant 

defense levels in the striatum.  
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2.5  EFFECT OF ACUTE L-DOPA AND 
SELEGILINE  TREATMENT IN IRON INFUSED 
RATS ON STRIATAL 6-HYDROXYDOPAMINE 

FORMATION IN VIVO 
 

2.5.1 INTRODUCTION 

 

The previous experiment demonstrated that 6-OHDA is not produced in vivo after the 

administration of a single large dose of LD and/or SEL. The inability to detect 6-OHDA 

after the administration of a single dose of these drugs is consistent with that of a 

previous study using HPLC-ECD analysis (Karoum et al., 1993) 

 

The main objective of this study is to investigate whether increasing the duration of 

treatment with LD and/or SEL would favour striatal 6-OHDA formation. In addition to 

this, the study also focuses on the effect of increased free iron levels on 6-OHDA 

formation. Iron levels in the striatum are not only higher than in other regions of the brain 

(Gerlach et al., 1994), but are increased approximately 35 % in PD patients compared to 

age-matched controls (Dexter., 1989a). Rats were therefore given an intrastriatal infusion 

of ferrous sulfate prior to treatment with LD and/or SEL. An increase in free iron would 

result in increased free radical production via the Fenton reaction, thus amplifying the 

chemical reaction between hydroxyl radicals and DA resulting in 6-OHDA formation.  

  

 

2.5.2 MATERIALS AND METHODS  

 

2.5.2.1 Chemicals and reagents 

 

As described in section 2.4.2.1 
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2.5.2.2 Animals 

 

Adult male Wistar rats were used in this study and were housed and maintained as 

described in appendix one. 

 

2.5.2.3 Drug treatment 

 

Animals were divided into two treatment regimes. Animals in treatment regime 2 

received an intrastriatal infusion of iron (II) sulfate before the i.p. administration of         

LD and/or SEL, while rats in treatment regime 1 only received LD and/or SEL treatment 

without an intrastriatal infusion of iron (II) sulfate. 

 

2.5.2.3.1 Treatment regime 1 

 

Rats were divided into four groups (I – IV), with five rats in each group. Group I served 

as the control and received saline, Group II received LD, 10 mg/kg/bd and Group III 

received 2.5 mg/kg/bd of SEL. Group IV received a combination of LD (10 mg/kg/bd) 

and SEL (2.5 mg/kg/bd). Each animal received a dose volume of 1 µl/g of body weight of 

LD and/or SEL i.p. twice daily for 7 days. LD treatment groups also received                

2.5 mg/kg/bd of benserazide prepared in saline to prevent the peripheral decarboxylation 

of LD. The animals were sacrificed by cervical dislocation on the 8th day. The striatum of 

each rat was removed, frozen in liquid nitrogen and stored at -70 °C. 

 

2.5.2.3.2 Treatment regime 2 

 

Male Wistar rats were anaesthetized using diethyl ether. Two microliters (2 µl) of ferrous 

sulfate dissolved in saline (5 mM) was then infused bilaterally into the striatum of these 

rats using a rat brain stereotaxic apparatus (Stoelting, IL, USA). The stereotaxic 

coordinates were; 0.8 mm caudal to the bregma, 2.7 mm lateral to the sagital suture and 5 

mm ventral to the dura (Paxinos and Watson., 1998). Two microliters of normal saline 



Stability and Formation of 6-Hydroxydopamine 
 

83 

was infused into the striatal region, bilaterally, in the sham control animals. The rats were 

then divided into five groups and treated as described in table 2.4. LD treatment groups 

also received 2.5 mg/kg of benserazide prepared in saline to prevent the peripheral 

decarboxylation of LD. Each group contained five rats. The rats were sacrificed on the 8th 

day by cervical dislocation, followed by decapitation. The striatum of each rat was frozen 

in liquid nitrogen and stored at -70 °C.     

 

Table 2.4: Treatment protocol for iron-infused rats 

Treatment Group                     Intrastriatal Injection (2 µl)                Twice daily drug     
                                                                                                             treatment after         
                                                                                                             intrastriatal infusion      
                                                                                                               
I (control)                                 Saline                                                   Saline 

II                                              10 nmol of Fe2+                                    Saline 

III                                             10 nmol of Fe2+                                   10 mg/kg of LD 

IV                                             10 nmol of Fe2+                                   2.5 mg/kg of SEL     

V                                              10 nmol of Fe2+                                    10 mg/kg of LD and  

                                                                                                               2.5 mg/kg of SEL 
 

 

2.5.2.4 Preparation of tissue for HPLC analysis 

 

As described in section 2.4.2.4 

 

 

2.5.2.5   Instrumentation 

 

As described in section 2.2.2.3 

 

 

2.5.2.6 Chromatographic conditions 
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As described in section 2.2.2.4 

 

  

2.5.2.7 Statistical Analysis 

 

As described in section 2.3.2.5 

 

 

2.5.3 RESULTS 

 

Striatal samples of rats receiving twice daily i.p. injections of LD (10 mg/kg), SEL       

(2.5 mg/kg) or a combination of these drugs were processed for 6-OHDA. Despite the 

large quantities of DA in the striatum, as well as the elevation of DA levels in the 

striatum induced by the administration of LD and SEL, 6-OHDA was not detected in 

these samples.  

 

In order to increase the chances of hydroxyl radical attack on DA, rats were given an 

intrastriatal infusion of Fe2+ to increase hydroxyl radical formation. This was then 

followed by twice daily i.p. injections of LD (10 mg/kg), SEL (2.5 mg/kg) or a 

combination of these drugs. However, despite the large quantities of DA and the 

likelihood of hydroxyl radical generation, 6-OHDA was still undetectable in these 

samples. In two striatal samples from rats receiving LD there were small peaks with the 

same retention time as 6-OHDA. These peaks were however below the limit of 

quantification.   
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2.5.4 DISCUSSION 
 
 
The results of this HPLC-ECD search for 6-OHDA after the acute administration of        

LD and/or SEL twice daily for seven days revealed no detectable amounts of 6-OHDA in 

the striatum. An increase in free iron levels in the striatum prior to the administration of 

LD and/or SEL did not result in detectable levels of 6-OHDA in the striatum. The 

subsequent oxidative stress and ROS production following the intrastriatal infusion of 

iron was therefore not sufficient to produce detectable levels of 6-OHDA in the striatum. 

  

Apparently, the formation of 6-OHDA is not responsible for neurodegeneration of DA 

neurons following LD treatment. These results therefore question the hypothesis that 

formation of 6-OHDA is responsible for the side effects associated with long term LD 

treatment. The failure to detect 6-OHDA does not, however exclude the possibility that 

the concentration of 6-OHDA formed may be below the detection limits of the assay. In 

addition to this, nucleophilic attack by endogenous compounds with sulfhydryl groups 

could scavenge oxidized 6-OHDA as fast as it was formed. To test the plausibility of this 

explanation, a following chapter will investigate the effect of LD and SEL administration 

on GSH levels, both in vitro and in vivo. 
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CHAPTER THREE  

 
PINEAL INDOLE METABOLISM  

 
3.1 INTRODUCTION  

 

Melatonin (MEL) is an endogenous neurohormone synthesized from serotonin (5-HT) in 

the pineal gland. This is accelerated by the release of norepinepherine (NE) in the pineal 

gland at night from the sympathetic nerve terminals innervating the gland (Olivieri et al., 

1990). The NE, via the activation of β-adrenergic receptors causes an increase in the gene 

expression and enzymatic activity of the pineal enzyme, N-acetyltransferase (NAT) 

resulting in enhanced conversion of serotonin to N-acetylserotonin (NAS) (Olivieri et al., 

1990; Reiter, 1991). The amount of NAS synthesized depends on the levels of serotonin 

accumulated during the day. The conversion of 5-hydroxytryptophan to 5-HT by            

5-hydroxytryptophan decarboxylase is highest during the day (light phase). The NAS 

formed is subsequently converted to melatonin by the enzyme hydroxyindole-O-methyl 

transferase (HIOMT) (Reiter, 1991). This explains the inverse relationship between the 

rat pineal concentrations of serotonin and melatonin. 

 

The small size and accessibility of the rat pineal gland allows for easy culturing of the 

gland in an intact state, without having to use tissue slices. It is well established that the 

rat pineal gland in organ culture is able to convert radiolabelled [14C] serotonin to [14C] 

melatonin (Daya et al., 1989; Olivieri et al., 1990). The [14C] serotonin is also acted upon 

by the enzyme monoamine oxidase (MAO) to produce a number of [14C] indole 

metabolites. The indole products derived from 5-HT in the pineal gland are shown in 

figure 3.1 and include 5-methoxytryptamine (5-MT), melatonin (MEL),                         

N-acetylserotonin (NAS), 5-methoxyindole acetic acid (5-MIAA), 5-hydroxyindole 

acetic acid (5-HIAA), 5-methoxytryptophol (5-MTOH) and 5-hydroxytryptophol           

(5-HTOH).  
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Figure 3.1:  A simplified diagram showing the biochemical pathways through which 

melatonin and the other pineal metabolic products are formed (Yanez and Meissl., 1996).  

 

As much as 95 % of the various [14C] indoles synthesized are secreted into the culture 

medium. The relative amounts of each indole are similar in the pineal gland and the 

culture medium (Klein and Rowe, 1970). Thus the metabolites in the culture medium are 

considered a good reflection of pineal indole metabolism (Klein and Notides, 1969). The 

[14C] indole products in the culture medium can be separated, identified and quantified by 

using a bi-dimensional thin layer chromatography (TLC) system, first used by Klein and 

Notides in 1969. The [14C] indoles are separated using two solvent systems; the first 

consists of chloroform, methanol and glacial acetic acid (93: 7: 1) and the second solvent 

system utilizes ethyl acetate only.  
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3.2 EFFECT OF SELEGILINE ON PINEAL INDOLE 

METABOLISM  

 
3.2.1 INTRODUCTION  

 

The previous chapter demonstrated that SEL suppresses the formation of 6-OHDA in 

vitro and that it may possibly reduce the endogenous biosynthesis of 6-OHDA. Another 

possible mechanism by which SEL may protect against the neurotoxicity induced by      

6-OHDA is that it may increase the production of MEL and NAS, both of which are 

powerful anti-oxidants (Wolfler et al., 1999; Aguiar et al., 2004). The main objective of 

the present study is to investigate whether SEL, a MAO-B inhibitor alters rat pineal 

indole biosynthesis. Of particular interest is whether this antiparkinsonian drug affects 

MEL and NAS synthesis by the rat pineal gland.  

 

 

3.2.2 MATERIALS AND METHODS  

 

3.2.2.1 Chemicals and reagents 

 

The radiochemical 5-hydroxy-(sidechain-2-14C) tryptamine creatinine sulfate (specific 

activity 58 mCi/mmol) was purchased from Amersham International, United Kingdom. 

The compound had a radioactive concentration of 50 µCi/ml. The synthetic indoles 5-HT, 

5-MT, 5-HIAA, 5-MIAA, 5-HTOH, 5-MTOH, NAS and MEL were purchased from 

Sigma Chemical Co., St Louis, USA. BGJb culture medium (Fitton Jackson 

modification) was purchased from Gibco, Europe and aseptically fortified with 

antibiotics such as penicillin and streptomycin. The aluminum TLC plates pre-coated 

with silica gel 60 F254 (0.2 mm thickness) were purchased from Merck, Germany. The 

liquid scintillation cocktail, Packard® Scinillator 299TM, was purchased from Packard 

Instrument Company, Inc., Netherlands. Ethanol, methanol, glacial acetic acid, ethyl 
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acetate and chloroform were obtained from Saarchem Limited, Krugersdorp, South 

Africa. 

 

3.2.2.2 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

3.2.2.3 Experimental procedure 

 

3.2.2.3.1 Pineal organ culture 

 

The BGJb culture medium was fortified with µg quantities of sodium benzylpenicillin 

and streptomycin sulfate prior to the experiment. 

 

In Vitro Study 

  

The intact pineal glands were rapidly excised and placed individually in sterile Kimble 

glass tubes (borosilicate 10 x 75 mm). Each test tube contained 52 µl of BGJb culture 

medium. A volume of 10 µl of SEL hydrochloride was then added to the incubation 

medium to give the required final concentration in a total volume of 70 µl. In the control 

culture tubes, SEL was replaced with 10 µl of milli-Q water (the vehicle in which the 

SEL was dissolved). The reaction was then initiated by adding 8 µl of [14C] 5-HT 

(specific activity 58 mCi/mmol). The atmosphere within the culture tubes was then 

saturated with carbogen (95 % oxygen: 5 % carbon dioxide), immediately sealed and 

incubated for a period of 24 hours at 37 ºC in the dark. The incubation was then 

terminated after 24 hours by removing the pineal glands from the culture medium. The 

culture medium was then stored at -20 ºC until further analysis by TLC. 
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Ex Vivo Study 

 

The acute administration of SEL was performed at a dose of 2.5 mg/kg/bd. The vehicle 

for the delivery of the drug was physiological saline and rats received i.p. injections of 

SEL (2.5 mg/kg) twice daily for 7 days. On the 8th day the rats were sacrificed by cervical 

dislocation and the pineals were rapidly transferred to the corresponding pre-labeled 

Kimble tubes.  The final total volume of the culture medium was 60 µl for the ex vivo 

study.  

 

3.2.2.3.2 TLC analysis of indoles 

 

A standard solution of non-radiolabeled indoles was freshly prepared by dissolving 1mg 

of each of the following indoles: 5-HT, 5-MT, 5-HIAA, 5-HTOH, NAS, MEL, 5-MIAA 

and 5-MTOH in 1 ml of absolute ethanol containing 1 % m/v of ascorbic acid to keep the 

oxidation of the indoles to a minimum. This solution was stored at 4 ºC in the dark until 

use.   

 

A 10 µl aliquot of the sample culture medium was loaded onto a 10 x 10 cm TLC plate, 

to form a spot no larger than 4-5 mm at a demarcated origin. The spot was then dried 

under a gentle stream of nitrogen to aid in the drying of the spotted medium and to 

minimize auto-oxidation of the pineal indoles. Thereafter, a 10 µl aliquot of the standard 

solution containing all the indoles was also spotted onto the origin, on top of the already 

spotted culture medium and again dried with nitrogen. The plates were then developed in 

saturated TLC tanks. The plates were first run twice in the same direction in a mobile 

phase of chloroform, methanol and glacial acetic acid (93: 7: 1). The solvent front was 

allowed to move about 9 cm. The TLC plates were then removed from the tank and dried 

under a stream of nitrogen. The plates were then placed in ethyl acetate at right angles to 

the first direction and were allowed to develop until the solvent front had moved about    

6 cm. The plate was then removed from the TLC tank and dried thoroughly with 

nitrogen. 
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The location of each indole was visualized by placing the plate under a UV-Visible light. 

Each spot was then cut out and placed individually in scintillation vials containing 3 ml 

of scintillation liquid. The vials were then sealed and shaken vigorously for a period of 20 

minutes to facilitate extraction of the indoles into the scintillation liquid. The 

radioactivity of each [14C] indole was then quantified using a Beckman LS 2800 

scintillation counter. The results are expressed as disintegrations per minute (DPM) in   

10 µl of the culture medium. 

 

3.2.2.4 Statistical analysis 

 

The data of each [14C] indole in a particular group (n = 5) was pooled to produce a single 

mean value expressed as DPM/10 µl. Group means (control versus SEL) were then 

statistically compared by using the Student t-test. The level of significance was accepted 

at p < 0.05. 

 

3.2.3 RESULTS 

 

A typical bi-dimensional chromatogram of the pineal indole metabolites is shown in 

figure 3.2. The figure shows that excellent separation was achieved for NAS, 5-HIAA,   

5-HTOH, MEL, 5-MIAA and 5-MTOH. A disadvantage is that 5-HT and 5-MT both 

remain at the origin and do not separate from each other. An additional TLC system 

would have been necessary to achieve separation between these two indoles.  
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Figure 3.2: A typical bi-dimensional thin layer chromatogram illustrating the direction in 

which the plate was run and the positions of the pineal indole metabolites (Klein and 

Notides, 1969). 

 

In Vitro Study 

 

The radioactivity corresponding to each of the metabolites isolated from the culture 

medium, expressed as disintegrations per minute/10 µl of culture medium is represented 

in figure 3.3.   
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Figure 3.3: The in vitro effect of SEL (10 µM) on pineal indole metabolism. Each bar 

represents the mean ± SD (n = 5). @ (p < 0.05) and ns (p > 0.05) versus the control. 

 

Figure 3.3 shows that at a concentration of 10 µM, SEL significantly increases the 

metabolism of serotonin to both NAS and MEL by the rat pineal gland when compared to 

control values. In addition to an increase in NAS and MEL, SEL also significantly 

decreases the monoamine oxidase products (5-HIAA, 5-HTOH and 5-MTOH) formed 

from serotonin. Levels of 5-MIAA formed by the pineal gland are not significantly 

altered by SEL when compared to control values.     

 

Ex Vivo Study 

 

Figure 3.4 shows that the acute administration of SEL (2.5 mg/kg/bd), results in a 

significant increase in NAS levels but has no significant effect on MEL or the 

monoamine oxidase products of 5-HT. 
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Figure 3.4: The effect of acute administration of SEL (2.5 mg/kg/bd) on pineal indole 

metabolism. Each bar represents the mean ± SD (n = 5). @ (p < 0.05) and ns (p > 0.05) 

versus the control. 

 

 3.2.4 DISCUSSION 

 

The results of the in vitro experiment indicate that at a concentration of 10 µM, SEL 

significantly increases melatonin and N-acetylserotonin production by the rat pineal 

gland and results in a significant decrease in the monoamine oxidase products formed 

from serotonin. It is tempting to suggest that the SEL induced increase in melatonin 

production is brought about by elevated concentrations of 5-HT as a result of MAO 

inhibition. By weakening the MAO-mediated catabolism of 5-HT, the alternative 

pathway converting serotonin to NAS and MEL is strengthened. However, an increase in 

the biosynthesis of melatonin in the pineal body following treatment with SEL can not 

simply be explained by inhibition of MAO-B, because the affinity of MAO-B for 5-HT is 

low (Nishi et al., 2006). Since 5-HT is inactivated primarily by MAO-A (Nishi et al., 

2006), it is unlikely that SEL, a selective MAO-B inhibitor would result in an elevation 
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of 5-HT levels in the pineal body. The most likely explanation for the decrease in the 

monoamine oxidase products of serotonin is that the concentration of SEL used (10 µM) 

was high enough to cause inhibition of both MAO-B and MAO-A, this would explain the 

decrease in 5-HTOH, 5-HIAA and 5-MTOH observed. The increase in NAS and MEL 

production induced by SEL could on the other hand be due to an inhibition of NE 

degradation or an increase in pineal N-acetyltransferase (NAT) activity. An increase in 

the activity of NAT would result in an increase in the N-acetylation of 5-HT to NAS, the 

precursor of melatonin.  

 

The results of the acute administration of SEL (2.5 mg/kg twice daily) on pineal indole 

metabolism showed a significant increase in NAS levels, however, levels of MEL,         

5-HTOH, 5-HIAA, 5-MTOH and 5-MIAA were not significantly altered. The results of 

this study suggest that the dose of SEL used was not sufficiently high for the drug to lose 

selectivity for MAO-B and therefore the metabolism of serotonin by MAO-A was 

unaffected. The rise in NAS levels is most likely due to an increase in pineal NAT 

activity. NAS has properties similar to that of melatonin, and both indoleamines have 

protective effects against 6-OHDA induced toxicity (Martin et al., 2000; Calvo et al., 

2001). Recent studies indicate that the antioxidant activity of MEL is actually lower than 

that of NAS (Oxenkrug, 1999; Wolfler et al., 1999; Requintina and Oxenkrug, 2003). An 

increase in the activity of NAT is brought about by β-adrenergic receptor stimulation 

(Reiter, 1991). β-adrenergic receptor stimulation induced by SEL administration may be 

mediated by DA and NE.  

 

The rise in NAS induced by SEL in rats may be another mechanism by which this drug 

can protect against 6-OHDA formation and toxicity.  

 

In order to gain more insight into the way in which SEL results in increased NAS 

production in the pineal gland, the following chapter will investigate whether the 

administration of SEL (2.5 mg/kg/bd) can alter 5-HT, DA and NE levels in the rat 

striatum and hippocampus.  
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CHAPTER FOUR 
 

NEUROTRANSMITTER LEVELS  
 
4.1 INTRODUCTION  

 

The homeostasis of DA, 5-HT and NE is maintained in part by the metabolism of these 

monoamines by MAO, both intracellularly and extracellularly and by COMT, 

extracellularly (Westerink, 1984). Removal of these amines from the synaptic cleft is also 

achieved via a reuptake mechanism (Blackburn et al., 1967).  

 

DA is a catechol neurotransmitter widely distributed throughout the brain but with most 

of it found in the striatum (Palkovits and Brownstein, 1983). The two main DA pathways 

in the brain are the nigrostriatal and mesolimbic pathways. The nigrostriatal system 

consists of a number of dopaminergic neurons whose cell bodies are located in the 

substantia nigra (SN) and whose axons are projected towards the striatum. The main 

function of this neuronal system is assumed to be the modulation of voluntary 

movements. DA is synthesized by the decarboxylation of LD by neuronal L-amino acid 

decarboxylase (AADC), which in turn is synthesized from tyrosine by the action of 

tyrosine hydroxylase (Nishi et al., 2006). DA is metabolised via two main pathways in 

the brain by the enzymatic reactions of MAO (both species) and COMT. Approximately 

70 – 90 % of DA turnover occurs via the MAO mediated pathway to                              

3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), while 10 – 30% 

of DA turnover occurs through the COMT mediated pathway extracellularly giving rise 

to 3-methoxytyramine (3-MT) in the rat striatum (Westerink, 1984; Wood et al., 1987). A 

balance between DA synthesis, catabolism and reuptake maintains DA homeostasis in the 

brain.  

 

5-HT is an indolealkylamine neurotransmitter synthesized from tryptophan, an essential 

amino acid. Alterations in brain 5-HT levels have been implicated in a number of 

neuroendocrine, psychiatric, and neurologic disorders, particularly depression, anxiety, 
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schizophrenia, obsessive-compulsive disorder and migraines. The mechanism by which 

5-HT acts in the brain and interacts with other neurotransmitter systems is not yet clearly 

understood. There is little data available regarding the influence of SEL and LD on 5-HT 

synthesis in the rat brain (Nishi et al., 2006).  
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4.2 EFFECT OF L-DOPA AND SELEGILINE ON 

BRAIN NEUROTRANSMITTER LEVELS IN VIVO 

 

4.2.1 INTRODUCTION  

 

In chapter 2, it was demonstrated that the exogenous administration of LD (10 mg/kg/bd) 

and SEL (2.5 mg/kg/bd) for 7 days does not result in 6-OHDA formation in the rat 

striatum, despite the expected increase in striatal DA levels produced by the 

administration of these drugs. This chapter investigates the extent to which these drugs 

cause an increase in striatal DA levels. The chapter also investigates whether SEL, at a 

dose of 2.5 mg/kg/bd for 7 days can affect 5-HT metabolism in the striatum and 

hippocampus. This will provide further insight into the mechanism by which SEL 

enhances NAS production by the pineal gland (chapter 3).  

 

In this study, the effect of SEL and LD on brain biogenic amines was determined using 

an HPLC-ECD method to detect simultaneously DA, HVA, DOPAC, NE, 5-HT and        

5-HIAA in the rat striatum and hippocampus following i.p. administration of LD and/or 

SEL. 

 

4.2.2 MATERIALS AND METHODS  

 

4.2.2.1 Chemicals and reagents 

 

L-3,4-dihydroxyphenylalanine (LD), benserazide hydrochloride,  SEL hydrochloride, 

heptane sulphonic acid (HSA), Ethylenediaminetetraacetic acid (EDTA), triethylamine 

(TEA), phosphoric acid (PA), perchloric acid (HClO4), dopamine (DA), serotonin              

(5-HT), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA),                           

5-hydroxyindoleacetic acid (5-HIAA) and noradrenaline (NE)  were purchased from the 
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Sigma Chemical Corporation, St. Louis, MO, USA. HPLC grade acetonitrile (ACN) was 

purchased from Saarchem, Johannessburg, South Africa. All other reagents were of the 

highest quality available. 

 

4.2.2.2 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

4.2.2.3 Drug treatment 

 

Rats were divided into four groups (I – IV), with five rats in each group. Group I served 

as the control and received saline, Group II received LD, 10 mg/kg/bd and Group III 

received 2.5 mg/kg/bd of SEL. Group IV received a combination of LD (10 mg/kg/bd) 

and SEL (2.5 mg/kg/bd). Each animal received a dose volume of 1 µl/g of body weight of 

LD and/or SEL i.p. twice daily for 7 days. LD treatment groups also received                     

2.5 mg/kg/bd of benserazide prepared in saline to prevent the peripheral decarboxylation 

of LD. The animals were sacrificed by cervical dislocation on the 8th day. The striatum 

and hippocampus of each rat was removed, frozen in liquid nitrogen and stored at -70°C. 

 

4.2.2.4 Preparation of tissue for HPLC analysis 

 

On the day of the experiment, the striatal and hippocampal samples were thawed on ice, 

weighed and sonicated (50 Hz for 60 s) in ice cold 0.1 M HClO4 containing 0.01 % 

EDTA using an ultrasonic cell disruptor (1 mg of tissue in 10 µl). The sonicated samples 

were kept on ice for 30 minutes and centrifuged at 10 000 x g for 10 minutes using a 

bench top centrifuge. The supernatant was injected directly into the HPLC-ECD system 

for analysis.   
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4.2.2.5 Instrumentation 

 

As described in section 2.2.2.3  

 

4.2.2.6 Chromatographic conditions 

 

Separation was achieved using an Ultrasphere C18 IP 80A analytical column                       

(5 µm, 250 x 4.6 mm). The mobile phase consisted of 8.65 mM HSA, 0.27 mM EDTA, 

13 % ACN, 0.43 % TEA, 0.32 % PA and made up to 1000 ml with Milli-Q water. The 

mobile phase was degassed twice using a 0.45 µm membrane filter prior to use. The flow 

rate was 1 ml/min, and the electrodetection was performed at 0.74 V. Results are 

expressed as pmol/mg tissue. 

 

4.2.3 RESULTS 

 

Figure 4.1 shows that the acute administration of SEL (2.5 mg/kg/bd) significantly 

decreases levels of DOPAC and HVA and elevates striatal DA levels, when compared to 

the control values. The acute administration of LD (10 mg/kg/bd) significantly increases 

levels of DA, as well as its major acidic metabolite DOPAC, however levels of HVA 

were not significantly altered in the striatum. In addition to DA, LD administration also 

resulted in a significant increase in NE levels. Neither SEL nor LD altered striatal levels 

of 5-HT or its metabolite 5-HIAA. However, when both drugs are administered together, 

a significant decrease in DOPAC and HVA levels were observed, but striatal DA levels 

were not significantly altered compared to when LD was administered alone. The 

administration of both drugs in combination had no effect on striatal levels of 5-HT and 

5-HIAA. 
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Figure 4.1: The effect of SEL and LD on striatal biogenic amine levels. Each bar 

represents the mean ± SD (n = 5). ns (p > 0.05), * (p < 0.05), ** (p < 0.01) and             

*** (p < 0.001) compared to the control; nsl (p > 0.05), # (p < 0.05) and ## (p < 0.001) 

compared to LD treatment groups.  

 

The acute administration of SEL did not alter levels of DA and 5-HT, their metabolites 

DOPAC and 5-HIAA, or NE levels in the hippocampus when compared to control values 

(figure 4.2). No values for HVA are reported because no peak was detected for this 

metabolite in the hippocampus. Figure 4.2 also shows that LD treatment induced a 

statistically significant increase in NE, DA and DOPAC levels, while levels of 5-HT 

were unaltered in the hippocampus when compared to the control values. When both 

drugs were used in combination, no significant differences were observed in the 

hippocampal samples compared to when LD was administered alone. 
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Effect of L-Dopa and Selegiline on hippocampal 
neurotransmitter levels
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Figure 4.2: The effect of SEL and LD on hippocampal biogenic amine levels. Each bar 

represents the mean ± SD (n = 5). ns (p > 0.05), * (p < 0.05), ** (p < 0.01) and               

*** (p < 0.001) compared to control; nsl (p > 0.05) and # (p < 0.05) compared to LD 

treatment groups.  

 

4.2.4 DISCUSSION 
 
PD is characterized by the degeneration of dopaminergic neurons of the substantia nigra 

and a reduction of DA and its major metabolites DOPAC and HVA in the striatum 

(Cannazza et al., 2005). In the present study, much attention was focused on how LD and 

SEL affect DA, 5-HT and NE levels in the striatum. The effect of these drugs on DA,         

5-HT and NE levels in the hippocampus was also investigated. 

 

The results of the experiment show that the administration of LD elevates striatal and 

hippocampal DA, DOPAC and NE levels. LD is converted by neuronal aromatic L-amino 

acid decarboxylase (AADC) into DA (Riobó et al., 2002), and therefore the increase in 

DA levels following LD treatment was to be expected. LD resulted in an approximate 
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two-fold increase in striatal DA levels. Despite this increase in DA levels, there was still 

an absence of detectable levels of 6-OHDA in the striatum (chapter 2). Since the 

catabolism of DA is not inhibited by LD, it follows that increased levels of DA would be 

accompanied by an increase in the metabolites of DA, such as DOPAC. The increase in 

NE levels induced by LD could also be due to the increase in DA, since DA can be 

converted to NE by dopamine-β-hydroxylase (Riobó et al., 2002). Both striatal and 

hippocampal levels of 5-HIAA and 5-HT were unchanged following LD administration.  

 

The elevation of striatal DA levels and the reduction of DOPAC and HVA levels induced 

by SEL (a selective MAO-B inhibitor) could be explained by inhibition of DA 

catabolism, resulting in elevated levels of DA and a reduction in DOPAC and HVA. The 

results of this experiment also show that SEL has no effect on 5-HT or 5-HIAA levels 

after intraperitoneal administration. This can be explained by the fact that DA is a 

substrate for both forms of MAO, whereas 5-HT is a selective substrate for MAO-A 

(Youdim and Tipton, 2002). The concentration of SEL used in this study may not be fully 

specific for MAO-B and could have produced a small inhibition of MAO-A, however 

according to the findings of Green and Youdim, (1975) and Green et al. (1977), it is 

necessary to inhibit at least 80 % of the enzyme in order to achieve any significant 

increase in 5-HT levels. When used on its own, SEL had no effect on DA, 5-HT, their 

metabolites DOPAC, HVA and 5-HIAA or NE levels in the hippocampus. This may be 

due to the fact that the hippocampus is a region of the brain with a high concentration of 

MAO-A. The inhibition of MOA-B may not have affected DA levels in this region of the 

brain because of the more or less equal affinity of MAO-A and MAO-B for DA and the 

presence of high concentrations of MAO-A in these dopaminergic neurons (Kondoh et 

al., 1994). On the other hand, concentrations of MAO-A in the striatum are relatively low 

(Kondoh et al., 1994). 

 

When both SEL and LD are administered together, a significant reduction in striatal 

DOPAC and HVA were detected compared to when LD was used alone. However, 

despite the decrease in DOPAC and HVA, it is interesting to note that the 

complementation of LD treatment with SEL did not result in a statistically significant 



Neurotransmitter Levels 
 

104 

increase in striatal DA levels. In the case of the hippocampus, combined treatment did not 

alter levels of any of the neurotransmitters measured compared to when LD was 

administered alone.  

 

Since SEL treatment did not affect 5-HT levels in the striatum and hippocampus, it is 

unlikely that it would have any effect on the metabolism of 5-HT in the rat pineal gland. 

The elevation of NAS in the pineal gland following the administration of SEL                

(2.5 mg/kg/bd) observed in the previous chapter is therefore more likely due to an 

increase in NAT activity than inhibition of 5-HT metabolism.  
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CHAPTER FIVE  
 

SUPEROXIDE ANION FORMATION  
 
5.1 INTRODUCTION  

 

The brain is particularly susceptible to free radical damage as a result of its high 

consumption of total body oxygen and its relatively low concentrations of antioxidant 

enzymes (Coyle and Puttfarcken, 1993). The physicochemical properties of oxygen 

require that it gain electrons one at a time. If one electron is added to the outer orbital of 

oxygen, the superoxide radical anion (O2
•-) is formed (Nohl et al., 2005).  

 

 

 

Figure 5.1: A summary of the multiple by-products formed by the partial reduction of 

oxygen (Reiter, 1998) 
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The generation of O2
•- is often the start of the oxidative stress cascade and is the precursor 

to H2O2 as well as the more reactive and damaging •OH (figure 5.1). Once formed, O2
•- is 

inactivated by a family of enzymes, the superoxide dismutates (SOD) to H2O2 and further 

by catalase and glutathione peroxidase to water (Fridovich, 1989).  The H2O2
 can be 

converted to •OH via the Fenton or Haber-Weiss reaction.  

 

O2
•- is formed in vivo in a number of ways (figure 5.1). The non-enzymatic auto-

oxidation of 6-OHDA, DA and other catecholamine molecules results in the generation 

of O2
•- (Graham et al., 1978; Klegeris et al., 1994). Superoxide can also be produced 

from lipoxygenases, cyclooxygenases, xanthine oxidase and various flavin oxidases 

(Cross and Jones 1991; Coyle and Puttfarcken, 1993). Even though there are numerous 

sources of O2
•-, the mitochondrion is considered to be the main site of O2

•- production in 

mammalian cells through electron leakage from the electron transport chain onto oxygen. 

In a normally functioning mammalian electron transport chain, electrons are transferred 

from NADH to the oxidized form of coenzyme Q (UQ), to yield the reduced form of 

coenzyme Q (UQH2). UQH2 then transfers electrons to cytochrome c and is converted to 

UQ, passing first through the semiquinone anion species (UQ•-). Finally reduced 

cytochrome c is re-oxidized by cytochrome c oxidase (Kowaltowski and Vercesi, 1998). 

One oxygen molecule is reduced to two molecules of water for every four electrons taken 

in by the complex (figure 5.2).  



Superoxide Anion Formation 
 

107 

 

Figure 5.2: The formation of O2
•- from the mitochondrial electron transport chain          

(Nohl et al., 2005). 

 

The main sites of electron leakage seem to be the NADH-coenzyme Q reductase complex 

(Turrens and Boveris, 1980), and the reduced forms of coenzyme Q itself (Cadenas et al, 

1977).   

 

The auto-oxidation of DA and 6-OHDA could enhance the generation of O2
•-. In addition 

to this both DA and 6-OHDA are able to interact with and inhibit mitochondrial complex 

I, II and IV (Glinka and Youdim, 1995; Khan et al., 2005; Mazzio et al., 2004). This 

could obstruct the flow of electrons through the electron transport chain and enhance O2
•- 

production by electron leakage to oxygen. Cytochromes are heme proteins which accept 

one electron at a time per molecule by allowing Fe3+ at the centre of the heme ring to be 

reduced to Fe2+. Studies have shown that 6-OHDA and to a lesser extent, DA is able to 

reduce and release iron as Fe2+, from the iron storage protein ferritin (Montinero and 

Winterbourne, 1989; Linert et al., 1996; Babincová and Babinec, 2005). If 6-OHDA and 

DA reduce Fe3+ to Fe2+ in the heme core of CYT-C (maintaining it in its reduced form), 
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this could possibly obstruct electron flow through complexes II and III and increase O2
•- 

formation. 

 

The previous chapter shows that intraperitoneal administration of LD results in a 

significant elevation of striatal DA levels. The main aim of this study is to investigate the 

effect of DA and 6-OHDA on O2
•- formation in rat brain homogenate in vitro and 

compare this to the effect that LD administration has on O2
•- production in vivo. In each 

study SEL was used to examine its ability to trap O2
•- and inhibit any rise in O2

•- 

produced by DA, 6-OHDA or intraperitoneal LD treatment.  
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5.2    EFFECT OF DOPAMINE AND                                

6-HYDROXYDOPAMINE ON SUPEROXIDE ANION 

FORMATION IN RAT BRAIN HOMOGENATE             

IN VITRO 

 

5.2.1 INTRODUCTION  

 

Several lines of evidence suggest that mitochondrial dysfunction is involved in the 

dopaminergic neuronal death associated with PD (Jenner, 1993; Greenamyre et al, 1999). 

Analysis of post mortem brain tissue has indicated a decrease in the activity of 

mitochondrial NADH dehydrogenase (complex I) in the substantia nigra of PD patients 

(Schapira et al., 1990). It is generally accepted that oxidative damage mediated by DA 

oxidation products contributes to the mitochondrial defects in PD (Cohen et al., 1997; 

Berman and Hastings, 1999; Gluck et al., 2002). Another contributing factor could be the 

endogenous formation of 6-OHDA, a toxic product of •OH attack on DA.  

 

The auto-oxidation of DA and 6-OHDA generate substantial amounts of O2
•-, H2O2 and 

•OH.  A number of studies have also shown that DA and 6-OHDA have the ability to 

obstruct electron flow along the electron transport chain by inhibiting mitochondrial 

complex I, II and IV (Glinka and Youdim, 1995; Khan et al., 2005; Mazzio et al., 2004). 

This study therefore investigates the potential of DA and 6-OHDA to cause O2
•- 

production in rat brain homogenate by using the nitroblue tetrazolium (NBT) assay. This 

method is generally accepted as a reliable method of assaying for O2
•- and possibly other 

free radicals (Das et al., 1990; Sagar et al., 1992). The assay involves the reduction of the 

yellow NBT dye by O2
•- to the blue insoluble NBD, which can be extracted with glacial 

acetic acid. The formation of NBD can then be measured at 560 nm using a UV 

spectrophotometer.  
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5.2.2 MATERIALS AND METHODS  

 

5.2.2.1 Chemicals and reagents 

 

DA hydrochloride, 6-OHDA hydrobromide, nitroblue diformazan (NBD) and nitroblue 

tetrazolium (NBT) were purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A. Glacial acetic acid and ethanol were purchased from Saarchem, Johannesburg, 

South Africa. All other reagents were of the highest quality available from commercial 

sources.   

 

A 0.1 % solution of NBT was prepared by dissolving the NBT in a few drops of absolute 

ethanol before making it up to the required volume with Milli-Q water. 

 

5.2.2.2 Preparation of the standard curve 

 

NBD was used to prepare the standard curve. A series of reaction tubes, each containing 

appropriate concentrations of NBD (at 50 µM intervals) dissolved in glacial acetic acid 

was prepared. A calibration curve (appendix three) was then generated by measuring the 

absorbance at 560 nm using a Shimadzu UV-160A UV-visible recording 

spectrophotometer. 

 

5.2.2.3 Animals 

 

Animals were housed and maintained as described in appendix one. 
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5.2.2.4 Brain removal 

 

Rats were sacrificed by cervical dislocation, followed by decapitation, and the brains 

were rapidly removed for use in experiments as described in appendix two. The brains 

were either used immediately or stored at -70 ºC until needed. 

 

5.2.2.5 Homogenate preparation 

 

Each brain was weighed and homogenized (10 % m/v) in ice cold 0.1 M PBS, pH 7.4 in a 

glass teflon homogenizer. This is necessary to prevent lysosomal damage to the tissue. 

The homogenate was then used immediately for the assay.  

 

5.2.2.6 Nitroblue tetrazolium assay  

 

A modified method by Das et al. (1990) was used for this assay. 

 

Rat brain homogenate (1 ml) containing various concentrations of either DA or 6-OHDA 

(0. 0.05, 0.1, 0.15, 0.2, 0.25 mM) were incubated with 0.4 ml of 0.1 % NBT in an 

oscillating water bath for 1 hour at 37 ºC. Termination of the assay and extraction of the 

reduced NBT was carried out by centrifuging the samples at 2000 x g for 10 minutes and 

then re-suspending the pellet with 2 ml of glacial acetic acid. The absorbance of the 

glacial acetic acid fraction was then measured at 560 nm and converted to nmol of 

diformazan using the standard curve generated from NBD. Final results are expressed as 

nmol of NBD/mg of tissue. 

 

5.2.2.7 Statistical analysis 

 

As described in section 2.3.2.5 
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5.2.3 RESULTS 

 

Figure 5.3 shows that exposure of whole rat brain homogenate to DA and 6-OHDA 

results in a concentration dependent increase in O2
•- formation. Results in figure 5.3 

represent the mean ± SD of five determinations. The 0.25 mM concentration of DA 

resulted in a ± 50 % increase in O2
•- production and the 0.25 mM concentration of           

6-OHDA resulted in a ± 66 % increase in O2
•- production compared to the control values.  
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Figure 5.3: Concentration dependent effect of DA and 6-OHDA on O2
•- formation in 

whole rat brain homogenates. Each bar represents the mean ± SD (n = 5). ns (p > 0.05) 

and *** (p < 0.001) compared to the control group. 
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5.2.4 DISCUSSION 

 

The results of this study demonstrate that DA and 6-OHDA result in a rapid and 

concentration dependent increase in O2
•- production in whole rat brain homogenate.  

 

The auto-oxidation of DA and 6-OHDA is known to contribute to the production of O2
•-, 

and other reactive oxygen species (ROS) that are capable of destroying the structural and 

functional apparatus of neurons in the SN (Blum et al., 2001). 6-OHDA has a faster rate 

of auto-oxidation than DA and therefore has the ability to generate greater amounts of 

O2
•- in a given time (Riobó et al., 2002), this is in agreement with the results obtained in 

this study. However, the auto-oxidation of these compounds is unlikely to account for all 

the O2
•- produced because when the experiment was repeated in the absence of rat brain 

homogenate, DA and 6-OHDA were not able to convert the yellow NBT dye to produce a 

blue NBD precipitate during the 1 hour incubation. In contrast to this, when DA and      

6-OHDA were incubated at 37 ºC for 1 hour in the presence of rat brain homogenate, a 

dark bluish purple precipitate (NBD) was obtained.  

 

Another mechanism by which DA and 6-OHDA may contribute to the production of O2
•-

is that these agents may interfere with the mitochondrial electron transport chain. Studies 

have shown that DA and 6-OHDA are capable of inhibiting mitochondrial complexes I, II 

and IV (Glinka and Youdim, 1995; Khan et al., 2005; Mazzio et al., 2004). This could 

obstruct the flow of electrons through the electron transport chain and enhance O2
•- 

production by increased electron leakage onto oxygen.  

 

Previous studies have shown that 6-OHDA can reduce Fe3+ to Fe2+, initiating the release 

of free iron from its binding site in ferritin, the main iron transport protein (Montinerio 

and Winterbourne, 1989; Linert et al., 1996; Babincova and Babinec, 2005). A later 

chapter will also try to confirm the results of these studies. It has also been demonstrated 

that the release of iron from ferritin can alter mitochondrial calcium homeostasis (Frei 

and Richter, 1968). An increase in intracellular calcium can initiate a cascade of events 

that also lead to ROS generation (Southgate and Daya, 1999). The reductive properties of 
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6-OHDA on cytochrome c (CYT-C) may also be contributing to impaired mitochondrial 

function and enhanced O2
•- generation. The reduction of Fe3+ to Fe2+ in the heme core of 

CYT-C could lead to the stabilization of the reduced form of cytochrome c (CYT-C-

RED). The loss of available CYT-C-OX would prevent electrons received from complex 

II from being transferred to complex IV (Mazzio et al., 2004). This obstruction of the 

flow of electrons along the electron transport chain could also result in increased O2
•- 

production. DA may affect the oxidation state of cytochromes in a similar manner to      

6-OHDA, however, it is a much weaker reducing agent than is 6-OHDA.  
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5.3    EFFECT OF SELEGILINE ON DOPAMINE  

AND 6-HYDROXYDOPAMINE INDUCED 

SUPEROXIDE ANION FORMATION IN RAT BRAIN 

HOMOGENATE IN VITRO 

 

5.3.1 INTRODUCTION  

 

The auto-oxidation and MAO mediated metabolism of DA and 6-OHDA leads to the 

production of several deleterious products such as H2O2, oxygen radicals and reactive 

quinones, which are capable of causing mitochondrial dysfunction (Khan et al., 2005). 

The generation of H2O2 and other oxygen radicals may play a role in the DA and             

6-OHDA mediated inactivation of mitochondrial complex I, II and IV. As mentioned 

previously, the inhibition of these complexes in the electron transport chain may enhance 

the generation of O2
•-.  Since mitochondrial MAO catalyses the oxidative deamination of 

DA and 6-OHDA (Cohen and Werner, 1994), with concomitant generation of free 

radicals (figure 5.4) this study sought to investigate the effect of SEL on the production 

of O2
•- induced by DA and 6-OHDA.  

 

Besides inhibiting MAO-B, evidence has also been presented that SEL may protect the 

CNS by direct free radical scavenging activity. Thomas et al. (1997) reported that SEL 

had the ability to trap both hydroxyl and peroxyl radicals. The direct scavenging of O2
•- 

by SEL may also reduce O2
•- production induced by DA and 6-OHDA. 
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Figure 5.4: Metabolism of 6-OHDA by MAO-B, generating H2O2 and •OH and its 

blockade by SEL (Ebadi et al., 1996).  

 

The main aim of this study is to investigate the effect of SEL on the production of O2
•- 

induced by DA and 6-OHDA observed in the previous study.  

 

   

5.3.2 MATERIALS AND METHODS  

 

5.3.2.1 Chemicals and reagents 

 

SEL hydrochloride was purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A.  All other chemicals and reagents were purchased as described in section 5.2.2.1. 
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5.3.2.2 Preparation of the standard curve 

 

As described in section 5.2.2.2 

 

5.3.2.3 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

5.3.2.4 Brain removal 

 

As described in section 5.2.2.4 

 

5.3.2.5 Homogenate preparation 

 

As described in section 5.2.2.5 

 

5.3.2.6 Nitroblue tetrazolium assay  

 

A modified method by Das et al. (1990) was used for this assay. 

 

The experiment was conducted as described in section 5.2.2.6. The rat brain homogenate 

(1 ml) was incubated at 37 ºC for one hour, with the highest concentration of either DA 

or 6-OHDA used in the previous experiment (0.25 mM) alone or in combination with 

increasing concentrations of SEL. Following this, the NBT assay was performed. 
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5.3.2.7 Statistical analysis 

 

As described in section 2.3.2.5 

 

5.3.3 RESULTS 

 

As shown in figure 5.5, the treatment of rat brain homogenate with 0.25 mM of DA 

results in a significant increase in O2
•- production. Figure 5.5 also shows that the 

treatment of the rat brain homogenate with SEL (0.25, 0.5, 0.75 and 1 mM) reduces the 

DA induced rise in O2
•- back to control levels. All concentrations of SEL abolished the 

DA induced rise in O2
•- formation.  
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Figure 5.5: Effect of SEL on DA induced O2
•- formation in whole rat brain homogenate. 

Each bar represents the mean ± SD (n=5). # (p < 0.001) and nsc (p > 0.05) compared to 

control values; *** (p < 0.001) compared to 0.25 mM of DA. 
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From figure 5.6, it is evident that exposure of whole rat brain homogenate to 0.25 mM of 

6-OHDA results in a significant increase in O2
•- production compared to the control 

group. Figure 5.6 also shows that treatment of the homogenate with increasing 

concentrations of SEL (0.25, 0.5, 0.75 and 1 mM) has no effect on the 6-OHDA induced 

increase in O2
•- production. SEL alone (1 mM) has no effect on O2

•- production when 

compared to control values.  
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Figure 5.6: Effect of SEL on 6-OHDA induced O2
•- formation in whole rat brain 

homogenate. Each bar represents the mean ± SD (n=5). # (p < 0.001) and nsc (p > 0.05) 

compared to control values; ns (p > 0.05) compared to 0.25 mM of 6-OHDA. 

 

5.3.4 DISCUSSION 

 

The results of this study demonstrate that SEL abolishes the rise in O2
•- production in rat 

brain homogenate induced by DA, but has no effect on the increased O2
•- production 

induced by 6-OHDA.  
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The main catabolic pathway for DA in the brain is metabolism by MAO to DOPAC and 

HVA. This study shows that SEL is able to inhibit the formation of O2
•- by DA. This may 

be partly because DOPAC auto-oxidizes at a faster rate than DA (Ito et al., 1988). The 

auto-oxidation of DOPAC would therefore be expected to produce larger amounts of O2
•- 

in a given time than DA. In addition to this DOPAC quinone (DOPAC-Q) may have a 

higher thiol (-SH) reactivity than DA-quinone (DA-Q) (Khan et al., 2005). The total 

protein content for the mitochondrial membrane, both the inner and outer membrane, 

varies between 60 % and 65 %. The inner membrane protein content is as high as 75 % 

(Kowaltowski and Vercesi, 1998). Hydroxyl radicals, as well as the quinone oxidation 

products of DA and DOPAC are capable of promoting the oxidation of protein cysteine 

(contains thiol groups) (Rotman et al., 1976; Ito et al., 1988; Basma et al., 1995). Thiol 

cross-linkage is associated with mitochondrial dysfunction (Fagian et al., 1990) and may 

also be a contributing factor in the inhibition of mitochondrial complex I and IV by DA. 

It is, therefore, entirely possible that the protection offered by SEL against the DA 

induced rise in O2
•- formation is at least in part related to the fact that it could prevent the 

formation of DOPAC quinones and other oxygen radicals formed during the auto-

oxidation of DOPAC by inhibiting the metabolism of DA by MAO-B. SEL would not 

have however prevented the auto-oxidation of DA and the formation of DA-Q. It is 

possible that SEL prevents the increase in O2
•- production from the auto-oxidation of DA 

by direct scavenging of the O2
•- radical.   

 

SEL was unable to attenuate the rise in O2
•- induced by 6-OHDA. This may be partly due 

to the fact that the rate of auto-oxidation of 6-OHDA is greater than that of DA and 

DOPAC (Cohen and Heikkila, 1974) and 6-OHDA could therefore generate substantial 

amounts of O2
•-. 6-OHDA is also more readily converted to 6-OHDA quinone                   

(6-OHDA-Q) than DA is to DA-Q (Li and Christensen, 1994). A later study will 

investigate the thiol reactivity of 6-OHDA-Q compared to that of DA-Q by examining 

the effect of these molecules on GSH levels. In addition to this 6-OHDA is a powerful 

reducing agent and may have blocked the flow of electrons along the mitochondrial 

electron transport chain by maintaining components of the chain in their reduced state 

(figure 5.7) , thereby preventing normal oxidation-reduction events (Glinka and Youdim, 
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1995; Mazzio et al., 2004). As mentioned previously this may have enhanced the 

production of O2
•- by increasing the leakage of electrons out of the electron transport 

chain onto oxygen.  

 

 

Figure 5.7: Theoretical diagram describing impairment of mitochondrial function by      

6-OHDA through alteration of the oxidation state of CYT-C (Mazzio et al., 2004). 

 

The following experiment will investigate the effect of intraperitoneal LD and/or SEL 

administration (which elevate DA levels) on the formation of O2
•- in the rat striatum. 
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5.4    EFFECT OF L-DOPA AND SELEGILINE 

TREATMENT ON STRIATAL SUPEROXIDE ANION 

FORMATION IN VIVO  

 

5.4.1 INTRODUCTION  

 

The previous experiments demonstrate that DA and 6-OHDA can significantly increase 

O2
•- production in whole rat brain homogenate in vitro. The systemic administration of 

LD increases the concentration and turnover of DA in the striatum and it is therefore 

possible that the administration of LD results in an increase in endogenous O2
•- formation 

in the striatum. The formation of O2
•- might contribute to neural degeneration and the 

progression of PD by leading to the formation of the highly reactive and tissue damaging 

hydroxyl radical. Experimental studies have also shown that LD alters cellular energy 

metabolism, probably by inducing oxidative damage to the mitochondrial respiratory 

chain (Przedborski et al., 1993; Pardo et al., 1995b).  

The purpose of this study is to determine whether the acute administration of LD to male 

Wistar rats results in an increased O2
•- production in the striatum. In addition, the study 

also investigates the effect of SEL administration on O2
•- production in vivo.  
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5.4.2 MATERIALS AND METHODS  

 

5.4.2.1 Chemicals and reagents 

 

L-3,4-dihydroxyphenylalanine (LD) was purchased from Sigma Chemical Corporation, 

St Louis, MO, U.S.A.  All other chemicals and reagents were purchased as described in 

section 5.2.2.1. 

 

5.4.2.2 Preparation of the standard curve 

 

As described in section 5.2.2.2 

 

5.4.2.3 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

5.4.2.4 Drug treatment 

 

This was performed as described in section 4.2.2.3 

 

5.4.2.5 Homogenate preparation 

 

On the day of the experiment, striatal samples were thawed on ice, weighed and 

homogenized (5 % m/v) in ice cold 0.1 M PBS, pH 7.4 in a glass teflon homogenizer. 

The homogenate was then used immediately for the assay.  
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5.4.2.6 Nitroblue tetrazolium assay  

 

A modified method by Das et al. (1990) was used for this assay. 

 

The assay was conducted as described in section 5.2.2.6. The only difference was that 

due to the small size and mass of the striatum a smaller volume of striatal homogenate 

(0.50 ml) was used for the assay. In addition to this no exogenous DA or SEL was added 

to the homogenate.  

  

5.4.2.7 Statistical analysis 

 

As described in section 2.3.2.5. 

 

5.4.3 RESULTS 

 

Figure 5.8 shows that the acute administration of LD results in a significant rise in striatal 

O2
•- formation (p < 0.01) compared to the control values. However, the co-treatment of 

rats with SEL in combination with LD was able to reduce the LD enhanced generation of 

O2
•-. Furthermore, the administration of SEL alone was able to decrease the generation of 

O2
•- below control values (p < 0.001).   
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Figure 5.8: The effect of acute LD and SEL treatment on endogenous O2
•- formation. 

Each bar represents the mean ± SD (n = 5). ns (p > 0.05), ** (p < 0.01) and                   

*** (p < 0.001) compared to the control values; @ (p < 0.01) compared to the LD 

treatment group.  

 

5.4.4 DISCUSSION 

 

The results of this study show that the systemic administration of LD results in a 

significant increase in O2
•-. Whether this increase is caused by LD itself or because it is 

metabolized to DA, which may in turn lead to the formation of 6-OHDA is unclear. All 

three of these compounds (LD, DA and 6-OHDA) are known to generate a number of 

different free radicals, including O2
•- during their auto-oxidation. In addition to this these 

agents have all been shown to inhibit specific components of the mitochondrial 

respiratory chain, the main source of O2
•- production in vivo.  
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Superoxide dismutase (SOD) provides the first line of defense against oxidative stress by 

catalyzing the dismutation of O2
•- into H2O2 and O2. H2O2 is also formed during the 

MAO catalyzed metabolism of DA (figure 5.9). H2O2 is normally a harmless cellular 

metabolite that is converted to water by catalase and/or selenium-dependent glutathione 

peroxidase (Jain et al., 1991). In the brain glutathione peroxidase is considerably more 

important than catalase because of the low activity of the latter enzyme in most parts of 

the CNS (Jain et al., 1991). In the presence of Fe2+, however, H2O2 can be converted via 

the Fenton reaction to •OH, a much more reactive and tissue damaging species than O2
•-. 

Since the systemic administration of LD increases O2
•- formation in the striatum it could 

theoretically also result in an increase in striatal hydroxyl radical formation. This will be 

investigated in the following chapter. 

 

 

Figure 5.9: The generation of H2O2 and •OH after the administration of LD (Ebadi et al., 

1995) 

 

The results of the present study show that SEL treatment is able to suppress striatal O2
•- 

production below that of control values. In addition to this, the combined treatment of 

rats with LD and SEL results in significantly lower O2
•- production compared to that 

observed in rats receiving only LD. Some of the possible reasons for this reduced O2
•- 

production by SEL have been enumerated in the previous experiment, however another 

possible reason is that SEL may be involved in the up-regulation of O2
•- metabolizing 

systems. For example, Knoll (1988) reported that the subchronic administration of SEL 
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(2 mg/kg) i.p. for three weeks resulted in a ten-fold increase in soluble SOD activity, 

exclusively in the striatum. Other researchers have reported smaller increases in soluble 

SOD activity induced by SEL (Carrillo et al., 1991; Clow et al., 1991). However, an 

increase in the activity of SOD would result in an increase in the conversion of O2
•- to 

H2O2. The produced H2O2 could then result in an increase in •OH production by 

participation in the Fenton reaction. An increase in SOD could therefore indirectly result 

in an increase in •OH formation. Increased SOD activity would therefore not be expected 

to offer neuroprotection unless the activities of catalase or glutathione peroxidase, which 

convert hydrogen peroxide to water, were also increased. Studies have shown that SEL 

has no effect on the activity of glutathione peroxidase but elevates catalase activity 

(Carrillo et al., 1991; Pattichis et al., 1995). However, the elevation of catalase activity 

was shown to occur at doses somewhat higher than those needed for MAO-B inhibition. 

The following chapter will therefore investigate whether the doses of SEL used in the 

present study elevate or reduce the striatal production of •OH.  
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CHAPTER SIX  
 

HYDROXYL RADICAL FORMATION  
 

6.1 INTRODUCTION  

 

Cytotoxic polyphenols and  reactive oxygen species, such as superoxide anion radicals 

(O2
•-) and hydroxyl radicals (•OH), formed within catecholamine neurons during the 

auto-oxidation of DA and other brain catecholamines  has been implicated as causal or 

contributing factors in Parkinson’s disease (Obata, 2002). A major concept concerning 

(per)oxidations of lipids, proteins, nucleic acids and other important biomolecules 

mediated by ROS, centers on the activity of the •OH radical, the most reactive oxygen 

species generated via the iron-catalyzed Fenton reaction (Floyd and Lewis, 1983, Aust et 

al., 1993) or alternatively via nitric oxide related mechanisms (Hammer et al., 1993). 

Neuroprotective mechanisms against catecholamine-derived ROS include the enzymatic 

degradation of H2O2 by catalase and glutathione peroxidase, scavenging of ROS by 

antioxidant molecules such as ascorbate and reduced glutathione, alternative metabolic 

pathways that reduce or prevent the ability of catecholamines to undergo auto-oxidation 

and redox cycling and the synthesis of neuromelanin which may sequester reactive metal 

ions, trap ROS and act as a redox buffer against both reducing and oxidizing molecules 

(Nappi and Vass, 1998) 

 

Electron spin resonance (ESR) trapping (Pou et al., 1989) and aromatic hydroxylation 

assays (Halliwell et al., 1989) provide the most specific and direct measurements of 

reactive oxygen species (ROS). Using biologically relevant in vitro •OH generating 

systems it was demonstrated (Richmond et al., 1981) that salicylate could trap •OH to 

form 2,3-dihydroxybenzoic acid (2,3-DHBA, ± 49 %), 2,5-dihydroxybenzoic acid       

(2,5-DHBA, ± 40 %) as well as catechol ( ± 11 %) (Grootveld and Halliwell, 1986). 

Since these studies, •OH formation has also been investigated in vivo by using either 

intracerebral or systemic administration of salicylic acid as a •OH trapping agent. 
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The scavenging of •OH by DA results in the formation of 6-OHDA, 5-OHDA and          

2-OHDA. The scavenging of •OH by DA may protect biomolecules from the damaging 

effects of this radical. However, both DA and 6-OHDA have the potential to enhance 

•OH formation during their auto-oxidation and metabolism. This chapter investigates the 

net effect of DA on •OH generation by the Fenton system using a rapid and sensitive 

HPLC-ECD method for the simultaneous detection of 2,3-DHBA, 2,5-DHBA and 

catechol (CAT). Chapter 4 showed that intraperitoneal administration of LD results in a 

significant elevation of striatal DA levels. The effect of DA on •OH generation by the 

Fenton system in vitro was therefore compared to the effect that LD administration had 

on •OH production in vivo. In each study SEL was used to examine its ability to trap 

•OH. SEL contains a phenyl ring and studies indicate that it should be able to trap •OH 

but that its ability to provide protection depends upon the biological target (Thomas et al., 

1997).  
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6.2    EFFECT OF DOPAMINE ON HYDROXYL 

RADICAL GENERATION VIA IRON MEDIATED 

FENTON CHEMISTRY IN VITRO 

 

6.2.1 INTRODUCTION  

 

Chapter 2 demonstrates that DA is able to scavenge •OH produced via the Fenton 

reaction to form 6-OHDA. Scavenging of •OH by DA also results in the formation of     

2-OHDA and 5-OHDA which are not cytotoxic (Slivka and Cohen, 1985). However, DA 

and 6-OHDA also have the capacity to generate this free radical during their auto-

oxidation and metabolism. Therefore, in an attempt to assess the potential of DA to cause 

oxidative stress, this study investigates whether DA inhibits or enhances hydroxyl radical 

generation under Fenton conditions. This study also investigates the effect of ascorbic 

acid on the capacity of DA to generate •OH under Fenton conditions.  

 

6.2.2 MATERIALS AND METHODS  

 

6.2.2.1 Chemicals and reagents 

 

DA hydrochloride, sodium salicylate, 2,3-dihydroxybenzoic acid (2,3-DHBA),             

2,5-dihydroxybenzoic acid (2,5-DHBA) and catechol (CAT) were purchased from the 

Sigma Chemical Corporation, St. Louis, MO, USA. EDTA and ferrous sulfate were 

purchased from Merck, Darmstadt, Germany. All other chemicals were of the highest 

quality available from commercial sources. 
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6.2.2.2 Hydroxyl radical generating system 

 

The Fe(II)-EDTA/H2O2 system was used as the •OH generating system. The •OH 

generating components were prepared by using the following sequence of additions and 

final concentrations of reagents: water, phosphate buffer (final concentration 50 mM, pH 

7.4), hydrogen peroxide (100 µM), EDTA (240 µM) and ferrous sulfate (200 µM). 

Incubations with varying concentrations of DA were performed at 22 ºC for a period of 

two hours. At various time periods (20, 40, 60, 90 and 120 minutes), aliquots (0.1 ml) of 

reaction mixture were removed and quenched in 0.9 ml of ice cold 0.1 M HClO4. The 

effect of ascorbic acid concentration on •OH formation by DA was evaluated by adding 

various concentrations (0.01, 0.1, 1 mM) of ascorbate before the addition of DA. In 

reaction mixtures containing 0.1 mM and 1 mM of ascorbate aliquots of 0.01 ml rather 

than 0.1 ml were removed from the reaction mixture and quenched in 0.99 ml of ice cold 

0.1 M HClO4. The samples were analysed for the three formed salicylate hydroxylation 

products 2,3-DHBA, 2,5-DHBA and CAT using high performance liquid 

chromatography with electrochemical detection. Final results are expressed as nmol/ml. 

 

 

6.2.2.3 Instrumentation 

 

As described in section 2.2.2.3 

 

6.2.2.4 Chromatographic conditions 

 

Separation was achieved using an Ultrasphere C18 IP 80A analytical column                       

(5 µm, 250 x 4.6 mm). Each liter of mobile phase contained 1.5 g heptane sulfonic acid, 

0.1 g of EDTA, 3 ml of triethylamine and 125 ml of acetonitrile dissolved in Milli-Q 

water. The pH of the solution was adjusted to 2.8 with 3 ml of phosphoric acid before the 

addition of the acetonitrile (Obata and Yamanaka, 1996). The mobile phase was degassed 
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twice using a 0.45 µm membrane filter prior to use. The flow rate was 0.8 ml/min, and 

the electrodetection was performed at 0.65 V. Results are expressed as nmol/ml 

 

6.2.2.5 Statistical analysis 

 

The differences in the means were analysed using a one way analysis of variance 

(ANOVA) followed by the Student Newman-Keuls Multiple Range Test. The level of 

significance was set at p < 0.05.  

 

6.2.3 RESULTS 

 

Hydroxyl radical generation by the Fe(II)-EDTA/H2O2 system (Fenton reaction) 

employed throughout this investigation was linear with time for at least 2 hours.  Figure 

6.1 is a series of chromatograms showing that in the presence of DA, •OH generation was 

found to be enhanced in a concentration-dependent manner. In incubations containing as 

little as 20 nmol (0.002 mM final concentration) of DA, •OH production was 

approximately double that observed in control reactions lacking DA. In incubations 

containing 50 nmol (0.005 mM final concentration) of DA, •OH formation was nearly 

three times higher than the control values. 
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Figure 6.1: Representative chromatograms showing the concentration dependent 

enhancing effect of DA on the production of •OH by Fenton chemistry (0.1 ml aliquots of 

the reaction mixture where quenched in 0.9 ml of 0.1 M HClO4.) The products of 

salicylate hydroxylation (2,3-DHBA, 2,5-DHBA and CAT) are indicators of •OH 

production. 

 

Figure 6.2 shows the formation of the hydroxylation products of salicylate (2,3-DHBA, 

2,5-DHBA and CAT) with time in the Fe(II)-EDTA/H2O2 system.  
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Figure 6.2: The formation of 2,3-DHBA, 2,5-DHBA and CAT with time in the       

Fe(II)-EDTA/H2O2 system in the absence and presence of DA (20 nmol and 50 nmol).  
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The addition of ascorbic acid to the reaction mixture resulted in a pronounced increase in 

hydroxyl radical formation, however the ascorbic acid reduced the rise in •OH production 

induced by DA and at a concentration of 1 mM, the ascorbic acid prevented the DA 

induced rise in  •OH production completely (figure 6.3, 6.4, 6.5 and 6.6).  

 

 

Figure 6.3: Representative chromatograms showing the effect of ascorbate on the DA 

enhanced production of •OH by Fenton chemistry (0.01 ml aliquots of the reaction 

mixture where quenched in 0.99 ml of 0.1 M HClO4.) 



Hydroxyl Radical Formation 
 

136 

0

2

4

6

8

10

12

14

0 50 100 150

Time (minutes)

C
at

ec
h

o
l (

n
m

o
l/m

l)

Fe(II)-EDTA/H2O2
+Ascorbate(0.01mM)

Fe(II)-EDTA/H2O2
+Ascorbate(0.01mM)
+50nmol DA

 

0

5

10

15

20

25

30

0 50 100 150

Time (minutes)

C
at

ec
h

o
l (

n
m

o
l/m

l)

Fe(II)-EDTA/H2O2
+Ascorbate(0.1mM)

Fe(II)-EDTA/H2O2
+Ascorbate(0.1mM)
+50nmol DA

 

0

5

10

15

20

25

30

35

0 50 100 150

Time (minutes)

C
at

ec
h

o
l (

n
m

o
l/m

l)

Fe(II)-EDTA/H2O2
+Ascorbate(1mM)

Fe(II)-EDTA/H2O2
+Ascorbate(1mM)
+50nmol DA

 

Figure 6.4: The formation of CAT with time in the Fe(II)-EDTA/H2O2 system after the 

addition of ascorbate (0.01 mM, 0.1 mM and  1 mM). 
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Figure 6.5: The formation of 2,5-DHBA with time in the Fe(II)-EDTA/H2O2 system after 

the addition of ascorbate (0.01 mM, 0.1 mM and 1 mM). 
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Figure 6.6: The formation of 2,3-DHBA with time in the Fe(II)-EDTA/H2O2 system after 

the addition of ascorbate (0.01 mM, 0.1 mM and 1 mM). 
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6.2.4 DISCUSSION 

 

The results of this investigation establish that DA significantly enhances the production 

of •OH by the Fenton system in vitro. It is interesting to note that similar results were 

previously obtained with 6-OHDA (Méndez-Álverez et al., 2001). Although chapter 2 

demonstrates that DA has the potential to trap •OH, the present report of the ability of 

DA to generate this free radical under the same conditions suggests that the scavenging of 

•OH by DA to form 2-OHDA, 5-OHDA and 6-OHDA is unlikely to have any 

neuroprotective effects under Fenton conditions.  

 

The enhanced •OH production may be a consequence of the auto-oxidation of DA, as 

well as any 6-OHDA formed during the course of the experiment. The generally accepted 

mechanism for the production of •OH during the auto-oxidation of DA is the following 

(Li et al., 1995): 

 

Catechol + O2 → SQ• + O2
•-                               (Equation 6.1) 

SQ• + O2 → quinone + O2
•-                                 (Equation 6.2) 

Catechol + O2
•- + H+ → SQ• + H2O2                  (Equation 6.3) 

 

Catechol containing compounds, such as DA and 6-OHDA are oxidized by oxygen 

(equation 6.1) to yield an intermediary semiquinone (SQ•) and eventually the 

corresponding ortho-quinone (equation 6.2). Superoxide radical anions (O2
•-) are formed 

during both these reactions. These O2
•- also oxidize DA and 6-OHDA, in which event 

H2O2 is formed (equation 6.3). H2O2 participates in the Fenton reaction (equation 6.4) to 

finally give •OH.  

 

The substantial increase in •OH generation after the addition of DA to the Fenton 

reaction is also probably a consequence of the ability of iron to catalyze the above 

mentioned auto-oxidation of DA according to the following mechanism (Linert and 

Jameson, 2000): 
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Fe2+ + H2O2 → Fe3+ + OH- + •OH                      (Equation 6.4) 

Fe3+ + Catechol → Fe2+ + SQ•                           (Equation 6.5) 

 

 

 

 

Figure 6.7: Reaction mechanism by which Fe3+ catalyses the auto-oxidation of DA 

(Hermida-Ameijeiras et al., 2004). 

 

The Fe2+ formed in this way could then also be free to participate in the Fenton reaction. 

Iron binding studies will be done in a later chapter to investigate whether this Fe2+ is free 

to participate in the Fenton reaction or whether it is bound by DA. Any 6-OHDA formed 

during the course of the experiment would also undergo iron-catalyzed auto-oxidation in 

the same way, however the rate of auto-oxidation of 6-OHDA is likely to be even faster 

than that for DA.  

 

The above hypothesis is supported by the fact that the DA induced rise in •OH production 

by the Fenton system is inhibited in a concentration dependent manner by the addition of 

ascorbic acid to the system. The addition of ascorbic acid results in a profound increase in 

the overall production of •OH by the Fenton system, this is best understood by the ability 

of ascorbate to promote the recycling of iron from its ferric to ferrous states, however the 

ascorbic acid prevents the  rise in •OH caused by DA. This effect is probably due to the 

fact that ascorbic acid inhibits the auto-oxidation of DA and 6-OHDA and therefore 

prevents the rise in •OH formation associated with the auto-oxidation of these 

compounds, when present at high enough concentrations.  
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Chapter 4 showed that LD administration results in a significant rise in striatal DA 

content, this together with relatively high levels of iron and H2O2 in the striatum may 

result in a significant rise in •OH production. This investigation also shows that any 

detectable rise in •OH levels induced by exogenous LD administration is highly 

dependent on local tissue ascorbate levels. The effect of LD administration on striatal 

•OH production in vivo will be investigated in a following experiment.  
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6.3 EFFECT OF SELEGILINE ON HYDROXYL 

RADICAL FORMATION VIA IRON MEDIATED 

FENTON CHEMISTRY IN VITRO 

 

6.3.1 INTRODUCTION  

 

PD is typified by a significant loss of DA in the nigrostriatal pathway. In an effort to 

maintain brain DA levels, prevention of the catabolism of DA by MAO-B led to the 

development of SEL, a selective irreversible inhibitor of the enzyme (Thomas et al., 

1997). However, evidence has also been presented that SEL may protect the brain from 

oxidative insult by virtue of its antioxidant activity (Chiueh et al., 1994 and Thomas et 

al., 1997). Chapter 2 showed that SEL was able to suppress the formation of 6-OHDA in 

vitro. This effect may be a consequence of its •OH scavenging properties. This study 

investigates the •OH trapping ability of SEL by investigating the effect of SEL on •OH 

formation by Fenton chemistry as well as examining the effect of SEL on the DA 

enhanced generation of •OH by this system observed in the previous study. 

 

6.3.2 MATERIALS AND METHODS  

 

6.3.2.1 Chemicals and reagents 

 

SEL hydrochloride, DA hydrochloride, sodium salicylate, 2,3-dihydroxybenzoic acid 

(2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA) and CAT were purchased from the 

Sigma Chemical Corporation, St. Louis, MO, USA. EDTA and ferrous sulfate were 

purchased from Merck, Darmstadt, Germany. All other chemicals were of the highest 

quality available from commercial sources. 
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6.3.2.2 Hydroxyl radical generating system 

 

The same Fe(II)-EDTA/H2O2 system used in the previous experiment was used as the  

•OH generating system. The •OH generating components were prepared as described in 

section 5.2.2.2. Incubations with varying concentrations of SEL were performed at 22ºC 

for a period of two hours. At various time periods (20, 40, 60, 90 and 120 minutes), 

aliquots (0.1 ml) of reaction mixture were removed and quenched in 0.9 ml of ice cold 

0.1 M HClO4.  The effect of SEL on enhanced •OH formation induced by DA was 

evaluated by adding various concentrations (0.1 mM or 1 mM) of SEL before the 

addition of DA. The samples were analysed for the three formed salicylate hydroxylation 

products 2,3-DHBA, 2,5-DHBA and CAT using high performance liquid 

chromatography with electrochemical detection. Final results are expressed as nmol/ml. 

 

 

6.3.2.3 Instrumentation 

 

As described in section 2.2.2.3 

 

 

6.3.2.4 Chromatographic conditions 

 

As described in section 6.2.2.4 

 

 

6.3.2.5 Statistical analysis 

 

As described in section 6.2.2.5  
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6.3.3 RESULTS 

 

Figure 6.8 is a series of chromatograms showing that when 10 µmol of SEL was added to 

the reaction mixtures containing Fe(II)-EDTA/H2O2, •OH production is diminished 

significantly relative to control incubations without SEL (p < 0.001).  

Figure 6.8: Representative chromatograms showing the effect of SEL on the production 

of •OH by Fenton chemistry (0.1 ml aliquots of the reaction mixture where quenched in 

0.9 ml of 0.1 M HClO4.)  
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By taking into account the formation of 2,3-DHBA, 2,5-DHBA and CAT, results show 

•OH production by Fe(II)-EDTA/H2O2  to be reduced by approximately 22 %  in 

mixtures containing 10 µmol of SEL (final concentration: 1 mM). Reaction mixtures 

containing 1 µmol of SEL (final concentration: 0.1 mM) showed no significant reduction 

in •OH production relative to control incubations. Figure 6.9 shows the formation of the 

hydroxylation products of salicylate (2,3-DHBA, 2,5-DHBA and CAT) with time in the 

Fe(II)-EDTA/H2O2 system in the presence and absence of different concentrations of 

SEL.  
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Figure 6.9: The formation of 2,3-DHBA, 2,5-DHBA and CAT with time in the         

Fe(II)-EDTA/H2O2 system in the absence and presence of SEL (1 µmol and 10 µmol) 
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Figure 6.10 is a series of chromatograms showing that the addition of 10 µmol of SEL to 

reactions mixtures containing 50 nmol of DA together with the Fe(II)-EDTA/H2O2 

complex results in a significant decrease in •OH production relative to incubations 

without SEL (p < 0.001).  

Figure 6.10: Representative chromatograms showing the effect of SEL on enhanced 

production of •OH induced by DA (0.1 ml aliquots of the reaction mixture where 

quenched in 0.9 ml of 0.1 M HClO4.) 
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Analysis of 2,3-DHBA, 2,5-DHBA and CAT formation over time showed that the 

enhanced production of •OH induced by the addition of 50 nmol of DA to the           

Fe(II)-EDTA/H2O2 reaction system is reduced by approximately 40 % in incubation 

mixtures containing 10 µmol of SEL (figure 6.11). The addition of 1 µmol of SEL (final 

concentration: 0.1 mM) to the same system resulted in no significant change in •OH 

production.  
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Figure 6.11: The effect of SEL on the increased formation of 2,3-DHBA, 2,5-DHBA and 

CAT induced by the addition of DA to Fe(II)-EDTA/H2O2. 
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6.3.4 DISCUSSION 

 

The results of this investigation demonstrate that SEL can trap •OH. The results also 

show a greater inhibition of •OH formation (approximately 40 %) by SEL in Fenton 

reaction mixtures containing DA than those lacking DA (approximately 20 % inhibition). 

This observation suggests that SEL may interfere with the iron catalyzed auto-oxidation 

of DA. The iron binding properties of SEL will be investigated in a later chapter. 

 

The trapping of •OH may account for the decrease in 6-OHDA formation observed after 

the addition of SEL to reaction mixtures in chapter 2. However, it should be mentioned 

that relatively high concentrations of SEL (1 mM or more) are needed to inhibit •OH 

formation by Fenton chemistry and that it therefore appears that SEL is only moderately 

reactive with •OH. Given the extreme reactivity of •OH it is not surprising that SEL can 

trap this radical. Whether or not the antioxidant activity of SEL has biological 

significance will be addressed by evaluating the effect of SEL on •OH induced damage to 

lipids, proteins and antioxidant enzymes in chapters seven, eight and nine.   

 

In addition to its direct free radical scavenging activity, SEL exerts a number of other 

neuroprotective actions in vivo. Inhibition of MAO-B diminishes the formation of H2O2 

formed during the metabolism of DA. In addition to this, SEL has the ability to up-

regulate antioxidant enzymes, such as catalase and superoxide dismutase (Carrillo et al., 

1991, 1992; Thomas et al., 1997). The effect of SEL on •OH formation in the striatum of 

male Wistar rats, both on its own and in combination with LD treatment will be 

investigated in the following experiment. 
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6.4   EFFECT OF L-DOPA AND SELEGILINE 

TREATMENT ON STRIATAL HYDROXYL 

RADICAL FORMATION IN VIVO 

 

6.4.1 INTRODUCTION  

 

LD is the primary, most effective and most widely used drug in the treatment of PD 

(LeWitt, 1989). However, the debate about the toxicity of LD to dopaminergic neurons 

has not yet been resolved and has led some clinicians to delay the commencement of LD 

therapy (Fahn, 1996; Jenner and Brin, 1998). Several in vitro studies have shown that     

LD is toxic to dopaminergic neurons in culture (Mena et al., 1992, 1993; Mytilineou et 

al., 1993; Pardo et al., 1995a). This toxicity has been attributed to the production of 

hydrogen peroxide and oxygen free radicals generated through the metabolism and auto-

oxidation of LD and DA (Graham et al., 1978, Han et al., 1996). Even though numerous 

in vitro studies have reported LD induced oxidative stress and toxicity to dopaminergic 

neurons, few studies have investigated the generation of oxygen free radicals following 

LD administration in vivo (Fahn, 1996). This study investigates whether acute LD 

administration results in enhanced hydroxyl radical generation in the striatum of male 

Wistar rats. The study also investigates the effect of SEL on striatal •OH formation. We 

used the technique of in vivo salicylate trapping for detecting •OH formation. The 

reaction of •OH with salicylate results in the formation of 2,3-DHBA and 2,5-DHBA. 

2,5-DHBA can also be generated by the cytochrome P450 system (Halliwell et al., 1991) 

and 2,3-DHBA is therefore considered to be a more specific marker of •OH generation in 

vivo than 2,5-DHBA. 
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6.4.2 MATERIALS AND METHODS  

 

6.4.2.1 Chemicals and reagents 

 

L-3,4-dihydroxyphenylalanine (LD), benserazide hydrochloride, SEL hydrochloride, 

sodium salicylate, 2,3-DHBA, 2,5-DHBA, CAT, norepinepherine (NE) homovanillic acid 

(HVA), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine creatinine 

sulfate (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were purchased from the 

Sigma Chemical Corporation, St. Louis, MO, USA. All other chemicals used were of the 

highest available purity.   

 

6.4.2.2 Animals 

 

Adult male Wistar rats were used in this study and were housed and maintained as 

described in appendix one  

 

6.4.2.3 Drug treatment 

 

Rats were treated as described in section 4.1.2.3. However, on the 8th day, two hours prior 

to killing, all animals received an intraperitoneal injection of 300 mg/kg of sodium 

salicylate. At 120 minutes following the salicylic acid injection rats were sacrificed by 

cervical dislocation, followed by decapitation. The striatum of each rat was dissected out 

from each hemisphere of the whole brain, frozen in liquid nitrogen and stored at -70 °C. 
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6.4.2.4 Preparation of tissue for HPLC analysis 

 

On the day of the experiment, the striatal samples were thawed on ice, weighed and 

sonicated (50 Hz for 60 s) in ice cold 0.1 M HClO4 (1 mg of tissue in 10 µl). The 

sonicated samples were then centrifuged at 10 000 x g for 15 minutes using a bench top 

centrifuge. The supernatant (20 µl) was injected directly into the HPLC-ECD system for 

analysis.   

 

6.4.2.5   Instrumentation 

 

As described in section 2.2.2.3 

 

 

6.4.2.6 Chromatographic conditions 

 

Separation was achieved using an Ultrasphere C18 IP 80A analytical column                       

(5 µm, 250 x 4.6 mm). The mobile phase consisted of an aqueous solution of 0.1 M 

sodium acetate trihydrate, 6 % methanol, 19.5 mg/L n-octyl sodium sulfate and 15 mg/L 

of EDTA (Sloot and Gramsbergen, 1995) and was degassed twice using a 0.45 µm 

membrane filter prior to use. The flow rate was 0.8 ml/min, and the electrodetection was 

performed at 0.65 V (Sloot and Gramsbergen, 1995).The amounts of methanol and               

n-octyl sodium sulfate were critical for achieving good separation and needed at least 8 

hours (or overnight) equilibration with the columns by recycling the mobile phase.  

 

  

6.4.2.7 Statistical analysis 

 

As described in section 2.3.2.5.  
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6.4.3 RESULTS 

 

Figure 6.12 shows the separation of 2,5-DHBA, 2,3-DHBA and CAT from the 

neurotransmitters NE, DA and 5-HT and their metabolites DOPAC, HVA and 5-HIAA.  

 

 

Figure 6.12: Chromatogram showing the separation of 2 pmol of external standards, 

including NE, 2,5-DHBA, 2,3-DHBA, DA, DOPAC, CAT, 5-HT, 5-HIAA and HVA 

using electrochemical detection at 0.65 V. Salicylic acid was not oxidized at this 

potential. 

 

Table 6.1 shows the concentrations of 2,5-DHBA and 2,3-DHBA in striatal samples after 

the control and drug treated rats were injected i.p. with sodium salicylate (300 mg/kg) 

and killed 120 minutes later.  CAT was not detected in the striatal tissues.  
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Table 6.1: Striatal concentrations of 2,3-DHBA and 2,5-DHBA following intraperitoneal 

administration of salicylic acid in saline, LD, SEL and (LD + SEL) pretreated rats.  

________________________________________________________________________ 

   Treatment                                                2,5-DHBA                                         2,3-DHBA 

 (Twice daily)                                               (pmol/g)                                             (pmol/g) 

 

Saline (control)                                          128.8 ± 24.5                                      36.5 ± 11.1       

 

LD (10 mg/kg)                                            107.7 ± 26.7                                      26.3 ± 6.1   

 

SEL (2.5 mg/kg)                                         103.9 ± 28.2                                      28.7 ± 8.9 

 

LD (10 mg/kg)                                             98.5 ± 26.4                                      25.4 ± 10.4 

+ SEL(2.5 mg/kg)               

 

Concentrations of 2,3-DHBA and 2,5-DHBA did not differ significantly among the four 

treatment groups studied. 

 

6.4.4 DISCUSSION 

 

Striatal concentrations of 2,5-DHBA were higher than those of 2,3-DHBA, as expected 

(Althaus et al., 1995; Camp et al., 2000). The reason for this difference can most 

probably be attributed to the formation of 2,5-DHBA in the periphery by hydroxylation 

of salicylic acid by the cytochrome P450 system. The 2,5-DHBA formed in this way can 

then be transported to the brain via the circulatory system (Halliwell et al., 1991).   

 

The results of the study indicate that the acute administration of LD does not result in a 

detectable increase in striatal •OH production in vivo. The results of the study contrast 

with those of a previous study (Smith et al., 1994), which found that the production of 

•OH in the substantia nigra was enhanced by the acute administration of high doses of 
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LD (200 mg/kg). It must be mentioned however that the doses of LD used in this study 

were extremely large compared to the average dose of LD administered to PD patients 

(approximately 10 mg/kg/day). A microdialysis study by Obata and Yamanaka (1996) 

also reported an elevation of both 2,3-DHBA and 2,5-DHBA when LD (0.1 mM) was 

infused in the rat brain through a microdialysis probe. However, a subsequent 

microdialysis study could not confirm these results (Camp et al., 2000). Except for the 

two studies mentioned above there are no other published reports indicating that the 

systemic administration of LD results in increased •OH formation in the striatum of 

nonlesioned animals; there are however numerous studies to the contrary (Loeffler et al., 

1994; Ogawa et al., 1994; Camp et al., 2000). 

 

LD is capable of producing H2O2 and reactive oxygen species by decarboxylation by          

L-amino acid decarboxylase to DA and subsequent oxidative deamination of DA to 

DOPAC and HVA by MAO or by the auto-oxidation of DA (Graham et al., 1978). SEL, 

would inhibit the formation of H2O2 by inhibiting the breakdown of DA and also has 

direct free radical scavenging activity (as demonstrated in the previous experiment). 

However, the present study shows that SEL is unable to suppress •OH formation below 

control levels. The reason for this may be that the endogenous antioxidant systems 

already present in the striatum may have masked the antioxidant effect of SEL.  

 

As observed in chapter 4, the dose of LD used in this study would be expected to increase 

DA content in the striatum. If an increase in DA concentration and turnover produce an 

oxidative stress, as suggested by some studies (Cohen and Spina, 1989), then an increase 

in 2,3-DHBA in the present study could have been expected. A possible explanation as to 

why LD treatment did not result in increased striatal 2,3-DHBA and 2,5-DHBA is that 

normal striatal tissue may possess sufficient antioxidant defense mechanisms to prevent a 

rise in •OH levels. However, a study by Camp et al. (2000) reported that levels of            

2,5-DHBA and 2,3-DHBA did not increase after acute or repeated LD administration     

(50 mg/kg) in rats with a 6-OHDA denervated striatum, indicating that even after severe 

damage, the striatum retains sufficient defense capacity to prevent an increase in •OH 

formation. A variety of other factors must also be taken into account in the treatment of 
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PD with LD. It is possible that other defects associated with PD, such as reduced 

mitochondrial enzyme complex I activity, GSH deficiency and increased concentrations 

of iron in the substantia nigra and the striatum (Fahn and Cohen, 1992; Jenner and 

Olanow, 1998) may increase the likelihood that an increase in DA levels induced by 

chronic LD therapy would result in oxidative stress. Another important consideration is 

that there are higher concentrations of iron in the nigrostriatal DA neurons in humans, as 

opposed to rats (Connor and Benkovic, 1992).   

 

Although the results of this study suggest that LD does not increase formation of •OH in 

rat striatal tissue, LD may be toxic owing to other mechanisms. For example, the toxicity 

of LD and DA in vitro is thought to be due, in part to the production of toxic quinones 

and semiquinones formed during the auto-oxidation of these molecules. LD may also 

cause oxidative damage by depleting GSH (Spencer et al., 1995), potentiating 

excitotoxicity (Olney et al., 1990), or by inhibiting mitochondrial respiration (Cooper et 

al., 1995).  

 

Other mechanisms by which LD may exert a neurotoxic effect, besides •OH production 

will be investigated in future chapters. 
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CHAPTER SEVEN 
 

LIPID PEROXIDATION STUDIES  
 

7.1 INTRODUCTION  

 

Biological membranes are vital to the life of cells, including neurons. The plasma 

membrane surrounds the cell and maintains the essential differences between the cytosol 

and the extracellular environment. Inside the cell the membranes of the endoplasmic 

reticulum, mitochondria and other membrane bounded organelles maintain the 

characteristic differences between the contents of these organelles and the cytosol. 

Membranes are dynamic, fluid structures that have a variety of different functions. 

Membranes function as permeable barriers for the selective transport of molecules into 

and out of the cell, are responsible for the production of ATP and also contain receptors 

for the binding of regulatory molecules such as hormones, growth factors and in the case 

of neurons, neurotransmitters to produce and transmit electrical signals. The mechanical 

properties of membranes are equally remarkable. When the cell grows or changes shape, 

the cell membrane can deform without tearing and addition of new membrane can occur 

without membrane ever losing its continuity. If the membrane is pierced, it does not 

collapse or remain torn but quickly reseals itself (Alberts et al., 1994). 

 

An important target of free radicals is the polyunsaturated fatty acids (PUFA) in 

biological membranes. The peroxidation of these polyunsaturated lipids is known as lipid 

peroxidation and an important aspect of the process of lipid peroxidation is that it is self-

perpetuating and will proceed until all the substrate is consumed or until termination 

occurs (Montine et al., 2002). Lipid peroxidation may impair membrane functions, 

increase ion permeability, reduce the membrane fluidity, inhibit the signal transduction 

over the membrane and inactivate membrane-bound enzymes and receptors (Bast et al., 

1991).  Electrophilic lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) has 

also been shown to covalently modify proteins (Camandola et al., 2000), block 



Lipid Peroxidation Studies 
 

159 

mitochondrial respiration (Picklo et al., 1999) and induce caspase dependent apoptosis 

(Liu et al., 2000).   

 

In the previous two chapters, DA and 6-OHDA were shown to increase the formation of 

O2
•- and •OH in vitro. In addition to this the systemic administration of LD was shown to 

increase O2
•- production in vivo. The generation of these free radicals, especially •OH 

may initiate the process of lipid peroxidation. Thus, this series of experiments 

investigates the effect of DA and 6-OHDA on iron (II) induced lipid peroxidation in vitro 

and the effect of systemic administration of LD on iron (II) induced lipid peroxidation in 

vivo. The previous experiments have also shown that SEL is able to reduce O2
•- and •OH 

formation. This chapter will therefore also investigate the ability of SEL to protect lipids 

against oxidative damage induced by ROS.  

 

The thiobarbituric acid (TBA) assay was used to investigate the capacity of DA and        

6-OHDA to enhance iron (II) induced lipid peroxidation. The assay involves the reaction 

of malondialdehyde (MDA), an end product of lipid peroxidation with two molecules of 

TBA to yield a pink MDA-TBA chromagen (figure 7.1) that absorbs light at 532 nm and 

is readily extractable into organic solvents such as butanol (Halliwell and Gutteridge, 

1989) 

 

 

 

MDA-TBA complex 

 

Figure 7.1: The structure of the pink MDA-TBA complex. 

(http://www.genprice.com/tbars.htm) 
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7.2   EFFECT OF DOPAMINE AND                               

6-HYDROXYDOPAMINE ON IRON (II)-INDUCED 

LIPID PEROXIDATION IN RAT BRAIN 

HOMOGENATE IN VITRO 

 

7.2.1 INTRODUCTION  

 

The auto-oxidation and MAO mediated metabolism of DA and 6-OHDA both involve the 

generation of H2O2, a compound that can easily be reduced to form •OH in the presence 

of Fe2+. This radical is considered to be the most damaging free radical for living cells 

and results in the deleterious oxidation of important biomolecules. A potentially 

devastating effect of •OH on membrane lipids is its ability to initiate the process of lipid 

peroxidation by abstracting a hydrogen atom from a PUFA of a membrane lipid 

(Halliwell, 1992). The previous chapter showed that DA can enhance the production of 

•OH by the Fenton system (Fe(II)-EDTA/H2O2). Chapter 2 also demonstrated that •OH 

can convert DA to 6-OHDA. Studies have shown that 6-OHDA also enhances •OH 

production by the Fenton system (Méndez-Álvarez et al., 2001). 

 

The catalytic effect of iron to induce the auto-oxidation of DA and 6-OHDA and to form 

ROS has been related to the pathogenesis of PD (Kienzl et al., 1995; Linert et al., 1996). 

This hypothesis is strengthened by the increased risk of developing PD in patients who 

are exposed to transition metals during their occupation (Wang et al., 1989; Seidler et al., 

1996) and the increased levels of iron in the SN of parkinsonian patients (Hirsch et al., 

1991).  

 

Postmortem investigations have consistently shown an increase in lipid peroxide levels in 

the brains of parkinsonian patients (Dexter et al., 1989a; Jenner et al., 1992).  In addition 

to this, levels of HNE, an aldehyde formed during the lipid peroxidation process is 

increased approximately 6-fold in the SN of PD brains compared to age matched control 
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brains (Zhang et al., 1999). The present study therefore sought to investigate the effect of 

DA and 6-OHDA on lipid peroxidation induced by •OH formed during the Fenton 

reaction.  

 

7.2.2 MATERIALS AND METHOD  

 

7.2.2.1 Chemicals and reagents 

 
DA hydrochloride, 6-OHDA hydrobromide, 2-thiobarbituric acid (TBA),                     

1,1,3,3-tetramethoxypropane and butylated hydroxytoluene (BHT) were purchased from 

Sigma Chemical Corporation, St Louis, MO, U.S.A. Trichloracetic acid (TCA) was 

purchased from Saarchem, Johannesburg, South Africa. EDTA and ferrous sulfate were 

purchased from Merck, Darmstadt, Germany. All other chemicals were of the highest 

quality available and were purchased from commercial distributors. 

 

Stock solutions of DA and 6-OHDA were prepared in 1 mM KCl (pH 2.0) to prevent 

their immediate auto-oxidation. Fresh stock solutions of Fe2+ were prepared in deaerated 

water immediately before each experiment to prevent oxidation of the Fe2+ to Fe3+. BHT 

(0.5 mg/ml) was dissolved in methanol. TBA (0.33 % m/v) was dissolved in Milli-Q 

water and protected from light by covering the solution with foil. TCA (15 % m/v) was 

dissolved in Milli-Q water.   

 

7.2.2.2 Preparation of the standard curve 

 

The construction of a calibration curve for this assay is complicated by the fact that MDA  

is very unstable and must therefore be prepared immediately before used by hydrolyzing 

its derivatives 1,1,3,3-tetramethoxypropane or 1,1,3,3-tetraethoxypropane (Halliwell and 

Gutteridge, 1989). In this case, 1,1,3,3-tetramethoxypropane was used to prepare the 

standard curve.  A series of reaction tubes, each containing appropriate concentrations of 

1,1,3,3-tetramethoxypropane ( 5 – 50 nmol/ml at 5 nmol/ml intervals) dissolved in PBS 
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was prepared. The procedure described in section 7.2.2.6 was then followed. The 

absorbance of the pink butanol fraction was then measured at 532 nm using a Shimadzu 

UV-160A UV-visible recording spectrophotometer. A calibration curve of absorbance 

versus concentration was then plotted (appendix 4). 

 

7.2.2.3 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

7.2.2.4 Brain removal 

 

Rats were sacrificed by cervical dislocation, followed by decapitation, and the brains 

were rapidly removed for use in experiments as described in appendix two. The brains 

were either used immediately or stored at -70 ºC until needed. 

 

7.2.2.5 Homogenate preparation 

 

Each brain was weighed and homogenized (10 % m/v) in ice cold 0.1 M PBS, pH 7.4 in a 

glass teflon homogenizer. This is necessary to prevent lysosomal damage to the tissue. 

The homogenate was then used immediately for the assay. 

 

7.2.2.6 Lipid peroxidation assay 

 

A modification of the method of Placer et al. (1966) was used in this experiment. 

 

Rat brain homogenate (0.4 ml) was incubated at 37 ºC for 5 minutes to reach the working 

temperature. Then, hydrogen peroxide (100 µM), ascorbate (100 µM), EDTA (240 µM) 

and ferrous sulfate (200 µM) were incorporated into the incubation (final volume 1 ml) 

and the mixture incubated for 1 hour in an oscillating water bath at 37 ºC. To investigate 
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the effect of DA and 6-OHDA on lipid peroxidation various concentrations of DA or      

6-OHDA (0.05, 0.1, 0.15, 0.20 and 0.25 mM) were added to the incubation before the 

addition of the ferrous sulfate. At the end of the incubation period 0.5 ml of BHT        

(0.5 mg/ml) and 1 ml of TCA (15 % m/v) was added to prevent the further amplification 

of lipid peroxidation during the assay. The tubes were sealed and heated for 15 minutes in 

a boiling water bath to release protein-bound malondialdehyde (MDA). To avoid 

adsorption of MDA onto insoluble protein, the samples were cooled and centrifuged at 

2000 x g for 15 minutes. Following centrifugation, 2 ml of the protein free supernatant 

was removed from each tube and 0.5 ml of TBA (0.33 % m/v) was added to this fraction. 

The resulting mixture was then incubated at 95 ºC in an acidic pH for 1 hour. After 

cooling to room temperature, 2 ml of butanol was added and the resulting mixture was 

shaken vigorously. After centrifugation at 2000 x g for 5 minutes the supernatant (butanol 

layer) was measured at 532 nm using a Shimadzu UV-160A UV-visible recording 

spectrophotometer. For calibration, a calibration curve (as described in section 7.2.2.2) 

was generated using the MDA derived from the acid hydrolysis of                               

1,1,3,3-tetramethoxypropane and the results are expressed as nmol MDA/mg of tissue.    

 

7.2.2.7 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 

 

7.2.3 RESULTS 

 

As shown in figure 7.2 the analysis of MDA levels revealed that the incubation of whole 

rat brain homogenate at 37 ºC for 1 hour in the presence of the Fenton system        

(Fe(II)-EDTA/H2O2 and ascorbate) provokes a marked increase in MDA levels compared 

to levels observed in control incubations (approximately a 16-fold increase in MDA 

levels). The presence of either DA or 6-OHDA in the incubation with the Fenton system 

caused a significant and concentration dependent decrease in the MDA content of the rat 

brain homogenate. Both the 0.25 mM concentration of DA and 6-OHDA resulted in an 
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approximate 8-fold decrease in MDA levels. When DA and 6-OHDA (0.25 mM) were 

added to the incubation in the absence of the Fenton system, no significant increase in 

MDA was detected compared to the control values.  
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Figure 7.2: Effect of DA and 6-OHDA on lipid peroxidation in the presence and absence 

of the Fenton system. Each bar represents the mean ± SD (n = 5). nsc (p > 0.05) and        

# (p < 0.001) compared to control values; *** (p < 0.001) compared to the Fenton system 

group. 
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7.2.4 DISCUSSION 

 

The results of the present study show that the addition of Fe(II)-EDTA/H2O2 and 

ascorbate (Fenton system) to whole rat brain homogenate provokes a marked increase in 

MDA levels. This is most likely due to the formation of the highly reactive •OH radical 

via the Fenton reaction. Iron can also participate in the formation of the hydroperoxyl 

radical (HOO•) as follows: 

 

Fe2+ + O2 → Fe3+ + O2
•-                                                                       (Equation 7.1) 

O2
•- + H+ ↔ HOO•                                                             (Equation 7.2) 

 

In solution, O2
•- exists in equilibrium with the hydroperoxyl radical (HOO•), a far more 

reactive and lipid soluble radical than O2
•- (Reiter, 1998). In addition to this HOO• has a 

higher rate of dismutation to H2O2 than O2
•-. The increased formation of H2O2 may 

therefore also contribute to the generation of •OH via the Fenton reaction. Both •OH and 

HOO• are believed capable of initiating the process of lipid peroxidation by abstracting a 

hydrogen atom from an unsaturated lipid (LH) giving rise to a lipid radical                      

(L•, Equation 7.3) (Aikens and Dix, 1991; Gebicki and Gebicki, 1993). The lipid radical 

(L•) reacts with oxygen to form a peroxyl radical (LOO•, Equation 7.4). The chain of 

lipid peroxidation is sustained by the abstraction of hydrogen atoms from adjacent lipids 

by LOO•, leaving behind a carbon centered radical and a lipid hydroperoxide (LOOH) 

(Equation 7.5).  

 

Lipid peroxidation reactions 

 

LH + •OH → L• + H2O OR LH + HOO• → L• + H2O    (Equation 7.3) 

L• + O2 → LOO•                                                               (Equation 7.4) 

LOO• + LH → LOOH + L•                                               (Equation 7.5) 

 

The present study shows that DA and 6-OHDA result in a significant and concentration 

dependent decrease in lipid peroxidation stimulated by the Fenton system. The results of 
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this study corroborate previous studies showing that catecholamines such as DA, NE and 

5-HT inhibit iron as well as iron-plus-ascorbate mediated lipid peroxidation in rat brain 

homogenate ( Zaleska and Floyd, 1985; Dostert et al., 1991), liposomes (Spencer et al., 

1996), linoleic acid (Liu and Mori, 1993)  and mitochondria (Liu and Mori, 1993). Some 

of these investigators postulate that the inhibition of lipid peroxidation by these 

catecholamines is due to both their ability to scavenge free radicals (particularly the 

scavenging of O2
•- and •OH) and to chelate iron, thereby slowing or preventing iron 

participation in the Fenton reaction. However, the previous two chapters contradict this 

hypothesis since they demonstrate that both DA and 6-OHDA have the ability to generate 

O2
•- and •OH during their metabolism and auto-oxidation. The generation of O2

•- could 

also result in an increase in the generation of HOO• and •OH (O2
•- providing the H2O2 

necessary for Fenton chemistry and by reducing Fe3+ to Fe2+). It is therefore likely that 

DA and 6-OHDA inhibit lipid peroxidation via a different mechanism which does not 

involve the direct scavenging of the above mentioned free radicals.  

 

The most probable explanation is that the semiquinone radicals (SQ•) produced during 

the auto-oxidation of DA (figure 7.3) and 6-OHDA may act as chain breaking 

antioxidants by reacting with lipid radicals and preventing the propagation of lipid 

peroxidation as follows: 

 

L• + •SQ → LH + Quinone                                              (Equation 7.6)             

LO• + •SQ → LOH + Quinone                                         (Equation 7.7) 

LOO• + •SQ → LOOH + Quinone                                   (Equation 7.8) 
 

Termination of the free radical chain reaction of lipid peroxidation occurs when two free 

radicals destroy each other.  
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Figure 7.3: Mechansim of DA auto-oxidation showing the formation of a semiquinone 

radical in the rate limiting step (Linert et al., 1996). 

 

The hypothesis that the inhibition of lipid peroxidation by DA may be a consequence of 

the capacity of SQ• to prevent the propagation of lipid peroxidation has also been 

proposed by Hermida-Ameijeiras et al. (2004).  
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7.3   EFFECT OF SELEGILINE ON IRON (II)-

INDUCED LIPID PEROXIDATION IN RAT BRAIN 

HOMOGENATE IN VITRO 

 

7.3.1 INTRODUCTION  

 

The previous two chapters show that SEL has the ability to reduce the formation of both 

O2
•- and •OH. It is well established that •OH produced in free solution can initiate the 

lipid peroxidation process by hydrogen abstraction. There is also no reason why O2
•- 

dependent Fenton chemistry should not initiate the process of lipid peroxidation in the 

same way (O2
•- providing the H2O2 necessary for Fenton chemistry and by reducing Fe3+ 

to Fe2+). In addition to this, O2
•- can be protonated to form HOO• which has also been 

shown to initiate lipid peroxidation in purified fatty acid (Wills, 1966). By reducing the 

formation of O2
•- and •OH, SEL should therefore be able to inhibit lipid peroxidation 

stimulated by Fenton chemistry.  

 

The main aim of this investigation is to determine whether SEL can inhibit Fenton 

stimulated lipid peroxidation in rat brain homogenate on its own and whether it can 

enhance the inhibition of lipid peroxidation by DA (observed in the previous study).  

 

7.3.2 MATERIALS AND METHOD  

 

7.3.2.1 Chemicals and reagents 

 

SEL hydrochloride was purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A. All other reagents were purchased as described in section 7.2.2.1 
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7.3.2.2 Preparation of the standard curve 

 

As described in section 7.2.2.2 

 

7.3.2.3 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

7.3.2.4 Brain removal 

 

As described in section 7.2.2.4 

 

7.3.2.5 Homogenate preparation 

 

As described in section 7.2.2.5 

 

7.3.2.6 Lipid peroxidation assay 

 

A modification of the method of Placer et al. (1966) was used in this experiment. 

 

The lipid peroxidation assay was carried out as described in section 7.2.2.6, except that 

various concentrations of SEL (0.25, 0.5, 0.75 and 1 mM) instead of DA or 6-OHDA 

were added to the incubation prior to the addition of the ferrous sulfate.  

 

In some cases, various concentrations of DA (0.05, 0.1, 0.15, 0.2 and 0.25 mM) were 

incubated with either the lowest concentration (0.25 mM) or the highest concentration  of 

SEL (1 mM) to investigate whether SEL could enhance the decrease in lipid peroxidation 

induced by DA.  
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7.3.2.7 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 

 

7.3.3 RESULTS 

 

Figure 7.4 shows that the incubation of rat brain homogenate with various concentrations 

(0.25, 0.5, 0.75 and 1 mM) of SEL led to a decrease in MDA levels in relation to the 

amount  of MDA found in rat brain homogenate exposed to the Fenton system alone. The 

1 mM concentration of SEL resulted in a ± 45 % decrease in MDA levels compared to 

the Fenton system group. However, it is also clear that higher concentrations of SEL are 

needed to inhibit Fenton stimulated lipid peroxidation compared to DA and 6-OHDA.  
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Figure 7.4: Effect of SEL on lipid peroxidation in the presence and absence of the 

Fenton system. Each bar represents the mean ± SD (n = 5). nsc (p > 0.05) and                   

# (p < 0.001) compared to control values; *** (p < 0.001) compared to the Fenton system 

group. 
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Figure 7.5 shows that the incubation of rat brain homogenate with SEL (0.25 mM) 

enhances the ability of DA to inhibit lipid peroxidation induced by the Fenton system 

when DA is used at relatively low concentrations of 0.05 and 0.1 mM. However, when 

higher concentrations of DA (0.15, 0.2 and 0.25 mM) were used in combination with 

SEL (0.25 mM), the addition of SEL did not alter the MDA values obtained with the use 

of DA alone. 
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Figure 7.5: Combined effect of DA and SEL (0.25 mM) on lipid peroxidation in the 

presence of the Fenton system. Each bar represents the mean ± SD (n = 5). # (p < 0.001) 

compared to control values; @ (p < 0.001) compared to the Fenton system group;          

*** (p < 0.001) and nsd (p > 0.05) compared to the corresponding DA group.  

 

Figure 7.6 shows that the combined action of relatively low concentrations of DA (0.05 

and 0.1 mM) and SEL (1 mM) results in a greater inhibition of Fenton stimulated lipid 

peroxidation than the use of DA (0.05 and 0.1 mM) or SEL (1 mM) alone. The results 
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were therefore similar to those obtained with the lower concentration of SEL (0.25 mM) 

shown in figure 7.5. Curiously, the ability of SEL to amplify the inhibition of Fenton 

stimulated lipid peroxidation by DA is lost when using higher concentrations of DA 

(0.15, 0.2 and 0.25 mM). In this case, the combined action of DA (0.15, 0.2 or 0.25 mM) 

and SEL (1 mM) results in significantly (p < 0.001) higher levels of MDA than those 

obtained with the use of DA alone. 
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Figure 7.6: Combined effect of DA and SEL (1 mM) on lipid peroxidation in the 

presence of the Fenton system. Each bar represents the mean ± SD (n = 5). # (p < 0.001) 

compared to control values; @ (p < 0.001) compared to the Fenton system group;          

*** (p < 0.001) and * (p < 0.05) compared to the corresponding DA group.  
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7.3.4 DISCUSSION 

 

As described in the previous experiment, the incubation of rat brain homogenate with the 

Fenton system under physiological conditions of temperature and pH provokes a 

significant increase in MDA levels. The present study shows that the addition of 

increasing concentrations of SEL to incubations containing the Fenton system results in a 

significant decrease in lipid peroxidation. This decrease in lipid peroxidation is dependent 

on the concentration of SEL used. However, lower concentrations of DA and 6-OHDA 

inhibit lipid peroxidation more so than the relatively high concentrations of SEL used in 

this study. This therefore demonstrates that SEL is less effective than DA or 6-OHDA at 

inhibiting lipid peroxidation. The inhibition of lipid peroxidation by SEL is probably a 

consequence of the ability of SEL to inhibit the formation of toxic oxygen species such as 

O2
•- and •OH that initiate the process of lipid peroxidation.  SEL could also decrease the 

formation of H2O2 available to participate in the Fenton reaction by inhibiting the      

MAO-B catalyzed metabolism of endogenous monoamines (particularly DA) present in 

the rat brain homogenate.  

 

The present study also shows that the addition of SEL to incubations containing the 

Fenton system and concentrations of DA below 0.1 mM enhances the ability of DA to 

inhibit lipid peroxidation. This is to be expected because SEL inhibits the formation of 

ROS formed during the auto-oxidation and MAO-B mediated metabolism of DA. 

However, a peculiar effect of SEL observed in this study is that when higher 

concentrations of DA were used (0.15 – 0.25 mM) the combined action of SEL and DA 

resulted in higher levels of MDA than those observed in the presence of DA alone. 

Higher concentrations of DA therefore appear to unmask a pro-oxidant effect of SEL. 

This phenomenon may be a consequence of the suggested capacity of •OH to abstract a 

hydrogen atom from the acetylenic MAO inhibitor SEL (Pryor, 1976) resulting in the 

formation of a carbon centered radical in the SEL molecule (SEL•). Therefore, during the 

scavenging of •OH SEL may be converted to SEL• (Equation 7.9), which in turn may 

eventually initiate the process of LP by abstracting a hydrogen atom from a membrane 

PUFA (Equation 7.10): 
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SEL-H + •OH → SEL•                                               (Equation 7.9) 

 

SEL• + LH → SEL-H + L•                                         (Equation 7.10) 

 

In this way the acetylenic group of SEL remains intact and SEL retains its MAO-B 

inhibiting activity (Kalir et al., 1981; Fowler et al., 1982; Hermida-Ameijeiras et al., 

2004). At higher concentrations of DA, an increase in •OH formation by the Fenton 

system is expected to occur (as observed in the previous chapter). The scavenging of 

these •OH by SEL may then result in the accumulation of toxic levels of SEL• which may 

in turn initiate the lipid peroxidation process.  

 

The next experiment will investigate the effect of systemic administration of LD and 

SEL, both separately and in combination with each other on striatal MDA levels.  
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7.4 EFFECT OF L-DOPA AND SELEGILINE  

TREATMENT ON IRON (II)-INDUCED LIPID 

PEROXIDATION IN THE RAT STRIATUM IN VIVO 

 

7.4.1 INTRODUCTION  

 

LD is the primary treatment for PD (LeWitt, 1989). Although the exact etiology of PD 

has not yet been unraveled there is increasing evidence linking it to elevated levels of 

ROS (Fahn and Cohen, 1992). Among the findings are reports of increased lipid peroxide 

levels in autopsy specimens of brains from parkinsonian patients (Dexter et al., 1989a; 

Jenner et al., 1992) as well as an increased amount of iron in the SN of PD patients 

(Dexter et al., 1991; Sofic et al., 1991). The intranigral infusion of ferrous citrate          

(1.3 - 8.4 nmol) results in an increase in lipid peroxidation in the SN, increases DA 

turnover in the caudate nucleus (Sziraki et al., 1998) and results in an elevation of tissue 

iron levels (Sengstock et al., 1993).   

 

There has been concern that the use of LD in PD might contribute to the progression of 

PD by enhancing oxidative stress. However, Ogawa et al. (1994) reported that chronic 

LD treatment does not increase lipid peroxidation in the striatum of normal (intact) 

animals. Similarly, Dostert et al. (1991) failed to detect enhanced lipid peroxidation in 

rats treated with LD. In contrast, chronic administration of LD to animals with a lesioned 

nigrostriatal DA system was found to increase lipid peroxides in the rat striatum in some 

studies (Ogawa et al., 1994) but not others (Murer et al., 1998).  

 

The previous studies in this chapter have shown that DA and even 6-OHDA inhibit Fe2+ 

induced lipid peroxidation. The main aim of this study is to investigate whether the i.p. 

administration of LD results in an increase or a decrease in the striatal lipid peroxidation 

induced by the infusion of ferrous sulfate (10 nmol) into the striatum of male Wistar rats. 

The study also investigates the effect of i.p. SEL administration, on its own and in 
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combination with LD on the lipid peroxidation induced by the intrastriatal infusion of 

Fe2+. 

 

7.4.2 MATERIALS AND METHODS  

 

7.4.2.1 Chemicals and reagents 
 
L-3,4-dihydroxyphenylalanine (LD), benserazide hydrochloride and SEL hydrochloride 

were purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. All other 

chemicals and reagents were purchased as described in section 7.2.2.1.  

 

7.4.2.2 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

7.4.2.3 Drug treatment 

 

Animals were injected intrastriatally with 2 µl of ferrous sulfate (5 mM) and dosed with 

LD and SEL for 7 days as described in section 2.5.2.3.2. Control rats received an 

intrastriatal injection of physiological saline. On the morning after the last dose, rats were 

sacrificed by cervical dislocation, followed by decapitation. Brains were rapidly removed 

and the iron infused striata of each rat were dissected free and analysed for MDA.  

 

7.4.2.4 Homogenate preparation 

 

Each striatum was weighed and homogenized (5 % m/v) in ice cold 0.1 M PBS, pH 7.4. 

This is necessary to prevent lysosomal damage to the tissue. The homogenate was then 

used immediately for the assay.  
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7.4.2.5 Lipid peroxidation assay 

 

A modification of the method of Placer et al. (1966) was used in this experiment. A 

calibration curve was constructed as described in section 7.2.2.2.  

 

The procedure in section 7.2.2.6 was followed except that the incubation step at 37 ºC for 

1 hour was excluded. In addition to this, due to the small size and weight of the striatum a 

smaller volume of homogenate was used for the assay (0.5 ml). Briefly, the homogenate 

(0.5 ml) for each treated group was heated for 15 minutes with 0.25 ml of BHT (0.05 %) 

and 0.5 ml of TCA (15 %) to release protein bound MDA. The procedure described in 

section 7.2.2.6 was then followed and results are expressed as MDA (nmol/mg of tissue). 

 

7.4.2.6 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 

 

7.4.3 RESULTS 

 

Figure 7.7 shows that the injection of ferrous sulfate (10 nmol) into the rat striatum 

results in a significant increase in striatal MDA content (p < 0.001). However, levels of 

MDA in the Fe2+ + LD treated rats were significantly lower (p < 0.05) than in those rats 

that only received the intrastriatal injection of Fe2+. The i.p. administration of LD caused 

a ± 27 % decrease in striatal MDA content relative to MDA levels measured in Fe2+ only 

treated rats. In the Fe2+ + SEL treated rats there was a ± 39 % decrease in MDA levels 

relative to the levels of MDA detected in the Fe2+ only treated rats (p < 0.01).   
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Figure 7.7: Effect of intrastriatal injections of ferrous sulfate (10 nmol) followed by LD 

and SEL treatment on rat striatal MDA content. Each bar represents the mean ± SD        

(n = 5). # (p < 0.001) compared to the control; * (p < 0.05), ** (p < 0.01) and                 

*** (p < 0.001) compared to rats that received Fe only; nsl (p > 0.05) compared to the Fe 

+ LD treatment group.  

 

Thus, the i.p. injection of LD or SEL significantly inhibits lipid damage induced by an 

increase in striatal iron levels. It is also evident from figure 7.7 that the co-administration 

of LD and SEL results in an even more significant decrease in lipid peroxidation             

(p < 0.001) induced by elevated Fe2+ levels in the striatum than that observed when either 

DA (p < 0.05) or SEL (p < 0.01) is used alone. Despite this fact, no statistically 

significant difference in MDA levels was detected between the Fe + LD, Fe + SEL and 

the Fe + LD +SEL treatment groups.  
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7.4.4 DISCUSSION 

 

Several areas of the brain are known to be rich in iron, a known catalyst of lipid 

peroxidation in vitro and in vivo. The iron content of the brain is highest in the substantia 

nigra and the striatum (globus pallidus, caudate nucleus and putamen) (Sengstock et al., 

1993; Wesemann et al., 1994). Despite the fact that 90 % of the brains nonheme iron is 

stored in an inactive form bound to ferritin (Koeppen and Dentinger, 1988; Kaneko et al., 

1989; Connor et al., 1990), the concentration of free intracellular Fe2+ in the brain is 

approximately 1 µM (Williams, 1982).  Furthermore, biochemical studies and magnetic 

resonance imaging of parkinsonian brains have shown a significant elevation of iron in 

PD brains compared to age matched control brains (Dexter et al., 1989a; Drayer et al., 

1986). The results of this study show that the intrastriatal injection of Fe2+ (10 nmol) 

results in a significant increase in lipid peroxidation in the rat striatum, a finding which is 

consistent with the results of Sengstock et al., (1993) and Sziraki et al., (1998) 

demonstrating an increase in lipid peroxidation and extensive damage to nigrostriatal 

neurons following intracerebral injections of ferrous iron.  

 

The results of the present study also show that the i.p. administration of LD results in a 

significant decrease in Fe2+ stimulated lipid peroxidation. Once again, the inhibition of 

lipid peroxidation by LD appears to be a consequence of the suggested capacity of SQ• to 

block the propagation of lipid peroxidation and not due to the scavenging of •OH since 

LD has the ability to generate this free radical by decarboxylation to DA and subsequent 

auto-oxidation or MAO catalysed metabolism of DA. The i.p. administration of SEL 

caused a reduction in the striatal MDA content relative to the Fe2+ only group. This 

finding agrees with the ability of SEL to inhibit the formation of O2
• (and consequently 

HOO•), H2O2 (by inhibiting the breakdown of DA) and •OH. Another interesting 

observation of the present study is that the co-administration of LD and SEL results in a 

more significant decrease (p < 0.001) in Fe2+ induced lipid peroxidation than                  

LD (p < 0.05) or SEL (p < 0.01) alone. This result suggests that the co-administration of 

LD and SEL in the treatment of PD may offer better protection against lipid peroxidation 

and subsequent neuronal damage than the use of LD alone.  
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It has been suggested that catechol containing compounds can shift oxidative damage 

from lipid peroxidation to protein oxidation (Boots et al., 2002). The next chapter will 

therefore investigate the effect of DA, 6-OHDA and LD on protein oxidation. 
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CHAPTER EIGHT  

 
PROTEIN OXIDATION STUDIES  

 
8.1 INTRODUCTION  
 
The introduction of carbonyl groups into the amino acid residues of proteins is a hallmark 

feature of protein oxidation. Carbonyl derivatives are formed by ROS mediated oxidation 

of side chains of some amino acid residues (Aksenov et al., 2001). Carbonyl groups can 

also be introduced into proteins by glycation and reactions with products of lipid 

peroxidation and glycosidation reactions (Aksenov et al., 2001). Reaction of these 

carbonyl groups with 2,4-dinitrophenyl hydrazine provides a method for detecting and 

quantifying the extent of protein oxidation.  

 

A number of studies have shown that enzymes and proteins are damaged by exposure to 

DA. Two different mechanisms have been suggested to explain the oxidative damage to 

proteins induced by DA. In one proposed mechanism, toxic oxygen species such as H2O2, 

O2
•- and •OH generated from the oxidation of DA are implicated in the protein damage 

(Halliwell, 1992; Basma et al., 1995; Dunnett and Bjorklund, 1999). In the second 

suggested mechanism, the catechol ring of DA undergoes oxidation to form various 

quinone products. DA quinone (DA-Q) can undergo intermolecular Michael addition 

reactions with protein bound nucleophiles, particularly cysteinyl residues (figure 8.1) and 

low molecular weight species e.g. GSH (Rotman et al., 1976; Ito et al., 1988; Basma et 

al., 1995). The latter reaction can result in the depletion of cellular GSH (Nappi and 

Vass, 1994) whereas the former reaction results in the covalent binding of the quinone to 

the protein (Ito et al., 1984). Since cysteinyl residues are often found in the active site of 

proteins, covalent addition of DA-Q to cysteine (Cys) may inhibit protein function and 

could possibly lead to cell damage or cell death. 
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Figure 8.1: Reaction of DA-Q with thiol groups. 

 

DA-Q can also undergo Schiff-base reactions with amine functions, particularly lysine 

(Lys) side-chains on proteins (figure 8.2), however the formation of these linkages 

appears to occur more slowly than with Cys (Ito et al., 1984).  

 

O
O

NH2

H2N R

N
O

NH2

R

 

Figure 8.2: Reaction of DA-Q with amino groups.  

 

Chapter 2 describes that in the presence of Fe(II)-EDTA/H2O2 and ascorbate (Fenton 

system), DA can be hydroxylated to form 6-OHDA. The conversion of DA to 6-OHDA 

may result in a significant increase in protein carbonyl content by enhancing the 

formation of both quinone products and reactive oxygen species.  

 

This study sought to investigate the potential of DA to cause oxidative modification of 

proteins (increase in carbonyl content). The effects provoked by the presence of the              

Fenton system on protein oxidation caused by DA were also investigated in an attempt to 

assess whether the conversion of DA to 6-OHDA results in a significant increase in 

protein carbonyl content. Furthermore, SEL was used as a free radical scavenger in our 

system to establish whether the toxic oxygen species or the quinone products are 

responsible for the protein damage. 
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8.2                EFFECT OF DOPAMINE AND 

6-HYDROXYDOPAMINE ON IRON (II)-INDUCED 

PROTEIN OXIDATION IN RAT BRAIN 

HOMOGENATE  IN VITRO 

 
8.2.1 INTRODUCTION  

 
The oxidative modification of proteins attracts a great deal of interest in aging and age-

related neurodegenerative diseases. Under conditions of oxidative stress, chemical 

transformations of amino acid residues can lead to a loss of protein function (Stadtman, 

1990; Dean et al., 1997). Oxidized proteins are often converted to a form that is more 

susceptible to proteinases and oxidative modification can therefore “mark” proteins for 

degradation by proteolysis (Stadtman, 1990; Aksenov et al., 2001). Conversely, protein 

oxidation can also promote the formation of cross-linked protein aggregates that are 

resistant to degradation by proteinases (Butterfield and Stadtman, 1997). 

 

The previous chapter showed that DA and 6-OHDA were able to inhibit hydroxyl free 

radical-induced lipid peroxidation. This was despite the fact that both DA and 6-OHDA 

enhance the generation of •OH by the Fenton system under similar conditions (chapter 6). 

It has been postulated that catechol containing compounds may shift oxidative damage 

from lipid peroxidation to protein oxidation (Boots et al., 2002). This may be a 

consequence of the reactive quinones formed during the auto-oxidation of these 

compounds. 

 

This study therefore investigates the capacity of DA and 6-OHDA to cause protein 

oxidation (an increase in protein bound carbonyl groups). In addition, the study also 

investigates the effects provoked by the presence of the Fenton system on the extent of 

protein oxidation caused by DA and 6-OHDA. 
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8.2.2 MATERIALS AND METHODS  

 

8.2.2.1 Chemicals and reagents 
 
DA hydrochloride, 6-OHDA hydrobromide, 2,4-dinitrophenylhydrazine (2,4-DNPH) and 

guanidine hydrochloride were purchased from Sigma Chemical Corporation, St Louis, 

MO, U.S.A. TCA, ethanol and ethyl acetate were purchased from Saarchem, 

Johannesburg, South Africa. Streptomycin sulfate was purchased from Wallace’s 

Pharmacy, Grahamstown. EDTA and ferrous sulfate were purchased from Merck, 

Darmstadt, Germany. All other chemicals were of the highest quality available and were 

purchased from commercial distributors. 

 

Stock solutions of DA and 6-OHDA were prepared in 1 mM KCl (pH 2.0) to prevent 

their immediate auto-oxidation. Fresh stock solutions of Fe2+ were prepared in deaerated 

water immediately before each experiment to prevent oxidation of the Fe2+ to Fe3+. 

 

8.2.2.2 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

8.2.2.3 Brain removal 

 

Rats were sacrificed by cervical dislocation, followed by decapitation, and the brains 

were rapidly removed for use in experiments as described in appendix two. The brains 

were either used immediately or stored at -70 ºC until needed. 
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8.2.2.4 Homogenate preparation 

 

Each brain was weighed and homogenized (10 % m/v) in ice cold 0.1 M PBS, pH 7.4 in a 

glass teflon homogenizer. The homogenate was then used immediately for the assay.  

 

8.2.2.5 Protein carbonyl measurement 

 

The protein carbonyl content was assessed spectrophotometrically according to a 

modified method of Levine et al. (1990). 

 

Rat brain homogenates (10 % m/v in PBS) were diluted with PBS to 5 mg/ml of protein. 

Streptomycin sulfate (1 % final concentration) was then added to this and the 

homogenate was stirred gently for 15 minutes. The homogenate was then centrifuged at 

11 000 x g for 10 minutes and the pellet was discarded. The supernatant was collected 

and diluted to 2.5 mg of protein/ml. Supernatant (2.5 mg of protein/ml) was incubated at 

37 ºC for 5 minutes to reach the working temperature. Then, hydrogen peroxide          

(100 µM), ascorbate (100 µM), EDTA (240 µM) and ferrous sulfate (200 µM) were 

incorporated into the incubation and the mixture incubated for 60 minutes. To investigate 

the effect of DA and 6-OHDA on protein oxidation various concentrations of DA or       

6-OHDA (0.25, 0.5, 0.75 and 1 mM) were added to the incubation before the addition of 

the ferrous sulfate. The final concentration of protein in the incubation after the addition 

of the above mentioned reagents was 1 mg/ml. Immediately after the incubation, protein 

precipitation was achieved with the addition of TCA (10 % final concentration) followed 

by centrifugation at 11 000 x g for 5 minutes. The resulting pellet was reconstituted in 

NaOH (0.5 M) with vigorous vortexing. Then, 0.5 ml of 2,4-dinitrophenylhydrazine            

(2 mM final concentration) was added and the mixture incubated at room temperature for 

1 hour, in darkness and with vortexing every 10 – 15 minutes. Proteins were then 

precipitated by the addition of TCA and recovered after centrifuging at 11 000 x g for 10 

minutes. The resulting pellet was washed twice with ethyl acetate: ethanol (1:1, v/v). The 

washed pellet was then reconstituted with 6 M guanidine and the absorbance of the 
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resulting solution measured at 370 nm. The carbonyl content was calculated using a 

molar absorption coefficient of 22 000 M-1cm-1. Results are expressed as nmol carbonyls/ 

mg of protein. Protein estimation was obtained from a protein standard curve (appendix 

five) using the method described by Lowry et al., (1951). Bovine serum albumin (BSA) 

was used for the construction of the calibration curve.  

 

8.2.2.6 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 

 

8.2.3 RESULTS 

 

As illustrated in figure 8.3, the incubation of rat brain proteins with DA at 37 ºC for 1 

hour causes an increase in the carbonyl content of the proteins. The addition of the                  

Fenton system to the incubation in the absence of DA also results in a significant increase 

in carbonyl content of the proteins. However, the combined action of the Fenton system 

and DA significantly augmented the carbonyl content that was obtained in the presence 

of the Fenton system or DA alone. The addition of 6-OHDA to the protein incubations 

results in a significant increase in protein oxidation when compared to control values. As 

expected, the augmentation of carbonyl content observed with 6-OHDA was greater than 

that obtained with DA. Curiously, the combined action of the Fenton system and            

6-OHDA did not increase the carbonyl content that was obtained in the presence of        

6-OHDA alone.  
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Figure 8.3: Effect of DA and 6-OHDA on protein oxidation in the presence and absence 

of the Fenton system. Each bar represents the mean ± SD (n = 5). @ (p < 0.05) and          

# (p < 0.001) compared to control values; ns (p > 0.05), * (p < 0.05), ** (p < 0.01) and 

*** (p < 0.001) compared to the Fenton system group. 

 
8.2.4 DISCUSSION 
 
 
To gain additional insight into the molecular mechanisms involved in the neurotoxicity of 

DA, the present study investigated the capacity of DA to cause protein oxidation in rat 

brain homogenate. Furthermore, in order to investigate the consequences of the 

conversion of DA to 6-OHDA on protein oxidation, DA was incubated with the Fenton 

system. As seen in chapter 2, this would have allowed some of the DA to be converted to 

6-OHDA.  

 

With regard to the effect of DA on the oxidant status of proteins, it has been shown that 

the incubation of DA with proteins results in an increase in protein carbonyl content. The 

protein oxidation caused by DA could be related to free radical production during its 
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auto-oxidation or covalent binding of DA-Q to the protein and subsequent oxidation. DA 

auto-oxidation might facilitate the generation of HOO• by promoting O2
•- production 

(Hermida-Ameijeiras et al., 2004). O2
•- exists in equilibrium with the HOO• radical 

(Reiter, 1998). As mentioned previously, HOO• can initiate the protein oxidation process 

because it is much more lipid soluble and is a much more powerful oxidizing agent than 

is O2
•- (Reiter, 1998). The addition of the Fenton system to the incubation in the absence 

of DA also results in a significant increase in carbonyl content. This is most likely caused 

by •OH formation via the Fenton reaction. In the absence of DA, Fe2+ is also the ion 

directly involved in HOO• production. The increase in the carbonyl content exhibited by 

the combined action of DA and Fe(II)-EDTA/H2O2 may be a consequence of 

hydroxylation of DA by •OH to yield 6-OHDA. As described in chapter 5, the addition of 

DA to the Fenton system results in a significant increase in •OH production. This could 

also be an explanation for the increase in protein oxidation observed in incubations 

containing DA and the Fenton system.    

 

The results in figure 8.3 show that 6-OHDA is more effective than DA at causing protein 

oxidation. The reason for this could be related to the fact that 6-OHDA is, as expected on 

the basis of the additional electron density afforded by the extra hydroxyl substituent, 

more readily oxidized to 6-hydroxydopamine quinone (6-OHDA-Q) than DA is to DA-Q 

(Li and Christensen, 1994). Since 6-OHDA oxidizes at a rate much greater than that of 

DA, it can also generate a substantial amount of H2O2, O2
•- and •OH. 6-OHDA mediated 

ROS formation may also be enhanced in the presence of iron as a result of the reduction 

of Fe3+ by 6-OHDA and 6-OHDA-SQ•- to the Fe2+ valence state required for the Fenton 

reaction. In this way iron also catalyses the oxidation of 6-OHDA (Méndez-Álvarez., 

2001). DA mediated ROS generation could also be increased in the presence of iron in 

the same way, however the reduction of Fe3+ to Fe2+ will probably occur at a slower rate 

since DA is a less powerful reducing agent than is 6-OHDA.  

 

The effect of the combined action of 6-OHDA and the Fenton system on protein 

oxidation does not differ from that found with 6-OHDA alone. A possible reason for this 

could be a limit to the number of cysteinyl residues and other nucleophilic groups 
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available to form covalent adducts with 6-OHDA-Q. This hypothesis is based on the 

assumption that protein oxidation is mediated by the quinone oxidation products of               

6-OHDA rather than oxygen free radicals. This hypothesis will be tested further in the 

next experiment.   
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8.3        EFFECT OF SELEGILINE ON DOPAMINE  

AND 6-HYDROXYDOPAMINE INDUCED PROTEIN  

OXIDATION IN RAT BRAIN HOMOGENATE               

IN VITRO 
 

8.3.1 INTRODUCTION 
 

The previous experiment showed that both DA and 6-OHDA can enhance protein 

oxidation provoked by the Fenton system. This protein damage could be caused by 

enhanced production of •OH induced by the addition of DA and 6-OHDA to the Fenton 

system or could be due to quinone oxidation products of DA and 6-OHDA that bind 

covalently to nucleophilic groups, such as thiol groups of proteins (Graham et al., 1978).  

 

In this experiment SEL was used in the in vitro incubation system to inhibit the 

production of ROS formed during the auto-oxidation and monoamine oxidase 

metabolism of DA and 6-OHDA. The use of SEL as a radical scavenger should help to 

establish whether the toxic oxygen species or the quinone oxidation products are 

responsible for the protein oxidation. 

 

8.3.2 MATERIALS AND METHODS  

 

8.3.2.1 Chemicals and reagents 
 
SEL hydrochloride was purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A. All other chemicals and reagents were purchased as described in section 8.2.2.1.  

 

8.3.2.2 Animals 

 

Animals were housed and maintained as described in appendix one. 
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8.3.2.3 Brain removal 

 

As described in section 8.2.2.3 

 

8.3.2.4 Homogenate preparation 

 

As described in section 8.2.2.4 

 

8.3.2.5 Protein carbonyl measurement 

 

The assay was carried out as described in section 8.2.2.5 except that in some cases 

various concentrations of SEL (0.25, 0.5, 0.75 and 1 mM) were added to the incubation 

before the addition of the DA or 6-OHDA.  

 

8.3.2.6 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5.  
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8.3.3 RESULTS 

 

As seen in figure 8.4, SEL (1 mM) was ineffective in preventing the protein oxidation 

induced by either DA alone or the combined action of DA and the Fenton system.      

SEL (1 mM) on its own had no effect on protein oxidation.   
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Figure 8.4: Effect of SEL on protein oxidation induced by DA in the presence and 

absence of the Fenton system. Each bar represents the mean ± SD (n = 5). nsc (p > 0.05), 

@ (p < 0.05) and *** (p < 0.001) compared to control values; ns (p > 0.05) compared to 

DA + Fenton system values; nsd (p > 0.05) compared to DA alone.  
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Similarly, figure 8.5 shows that SEL has no effect on the protein oxidation induced by 

either 6-OHDA alone or by the combined action of 6-OHDA and the Fenton system. 
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Figure 8.5: Effect of SEL on protein oxidation induced by 6-OHDA in the presence and 

absence of the Fenton system. Each bar represents the mean ± SD (n = 5). nsc (p > 0.05) 

and *** (p < 0.001) compared to control values; ns (p > 0.05) compared to 6-OHDA + 

Fenton system values, nshd (p > 0.05) compared to 6-OHDA alone.  
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8.3.4 DISCUSSION 
 
 
The results of this study show that the addition of SEL to the incubations was ineffective 

at inhibiting the increase in protein carbonyl content induced by DA and 6-OHDA alone 

or in combination with the Fenton system. 

 

Carbonyl groups can be introduced into proteins by reaction with products of lipid 

peroxidation. Aldehydes such as HNE are formed as by-products of lipid peroxidation. 

HNE can form adducts with important proteins rendering them inactive (Bharath et al., 

2002) However, the previous chapter shows that iron stimulated lipid peroxidation is 

strongly inhibited by DA and 6-OHDA under similar experimental conditions and it is 

therefore highly unlikely that DA and 6-OHDA stimulate protein oxidation via this 

mechanism. Chapter 5 showed that DA significantly increases •OH formation by the 

Fenton system in vitro and similar results were also reported for 6-OHDA. Oxidative 

reactions of proteins are mediated mainly, but not only by •OH. Chapter 2 and chapter 5 

show that SEL can scavenge •OH effectively at the high concentrations used in this study 

and SEL should therefore reduce protein oxidation induced by •OH. The fact that SEL 

was unable to inhibit the protein oxidation, strongly suggests that •OH produced by the 

metabolism and auto-oxidation of DA and 6-OHDA are not involved in causing the 

protein oxidation observed under the present experimental conditions. The most likely 

explanation for the increased carbonyl content induced by DA and 6-OHDA is covalent 

addition of DA-Q and 6-OHDA-Q to nucleophilic groups present in the rat brain proteins 

rather than as the result of oxygen free radicals or any associated lipid peroxidation. 

Another possibility is that the semiquinone radicals (SQ•) formed during the oxidation of 

DA and 6-OHDA, rather than •OH may initiate the process of protein oxidation by direct 

hydrogen abstraction from protein sites.  

 

A possible consequence of the protein oxidation by DA and 6-OHDA is the inhibition of 

thiol-dependent enzymes such as GSH. The following chapter will investigate whether 

DA and 6-OHDA can deplete GSH levels in vitro. This effect will then be compared to 

the effect of intraperitoneal LD administration on GSH levels.  
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8.4 EFFECT OF L-DOPA AND SELEGILINE 

TREATMENT ON IRON (II)-INDUCED PROTEIN 

OXIDATION IN THE RAT STRIATUM IN VIVO 

 

 

8.4.1 INTRODUCTION 
 

Oxidative modifications of proteins attract a great deal of attention in age-related 

neurodegenerative disorders (Aksenov et al., 2001). Evidence for enhanced oxidative 

stress in PD includes findings of oxidative damage to proteins (Alam et al., 1997) in PD 

SNpc along with an increase in iron levels (Dexter et al., 1991) and a decrease in GSH 

levels (Riederer et al., 1989; Sofic et al., 1992; Sian et al., 1994).  The previous chapter 

demonstrates that both DA and 6-OHDA enhance protein oxidation. Since LD treatment 

increases striatal DA levels, there has been concern that continued use of LD might 

contribute to neuronal degeneration in PD.  

 

The main aim of this study is to investigate whether acute LD treatment produces an 

increase in protein oxidation, characterized by an increase in the carbonyl content of 

protein, in the striatum of male Wistar rats. Striatal iron levels were elevated prior to the 

commencement of LD treatment by giving the rats an intrastriatal injection of ferrous 

sulfate (10 nmol).  
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8.4.2 MATERIALS AND METHODS  

 

8.4.2.1 Chemicals and reagents 
 
L-3,4-dihydroxyphenylalanine (LD), benserazide hydrochloride and SEL hydrochloride 

were purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. All other 

chemicals and reagents were purchased as described in section 8.2.2.1.  

 

8.4.2.2 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

8.4.2.3 Drug treatment 

 

Animals were injected intrastriatally with 2 µl of ferrous sulfate (5 mM) and dosed with 

LD and SEL for 7 days as described in section 2.5.2.3.2. Control rats received an 

intrastriatal injection of physiological saline. On the morning after the last dose, rats were 

sacrificed by cervical dislocation followed by decapitation. Brains were rapidly removed 

and the iron infused striata of each rat were dissected free and analysed for protein 

carbonyl content.  

 

8.4.2.4 Homogenate preparation 

 

Each striatum was weighed and homogenized (5 % m/v) in ice cold 0.1 M PBS, pH 7.4. 

This is necessary to prevent lysosomal damage to the tissue. The homogenate was then 

used immediately for the assay.  
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8.4.2.5 Protein carbonyl measurement 

 

The protein carbonyl content was assessed spectrophotometrically according to a 

modified method of Levine et al. (1990). The procedure in section 8.2.2.5 was followed 

except that the supernatant collected after the addition of the streptomycin sulfate was 

diluted to 1 mg of protein/ml instead of 2.5 mg of protein/ml. The incubation step at       

37 ºC for 1 hour was then excluded and TCA was added to the supernatant (1 mg of 

protein/ml) to precipitate proteins. The procedure described in section 8.2.2.5 was then 

followed and results are expressed as protein carbonyl content (nmol/mg of protein). 
 

8.4.2.6 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 
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8.4.3 RESULTS 

 

Figure 8.6 shows that the intrastriatal injection of ferrous sulfate (10 nmol) results in a 

significant increase in protein oxidation (p < 0.001) in rat striatum. Treatment of the rats 

with LD and SEL alone or in combination has no significant effect on the iron-induced 

protein oxidation.  
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Figure 8.6: Effect of intrastriatal injections of ferrous sulfate followed by LD and SEL 

treatment on rat striatal protein carbonyl content. Each bar represents the mean ± SD      

(n = 5). ***  (p < 0.001) compared to the control; ns (p > 0.05) compared to rats that 

received Fe only. 
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8.4.4 DISCUSSION 
 

The results of this study demonstrate that an increase in the concentration of free ferrous 

iron in the striatum can result in a significant increase in protein carbonyl content. This 

increase in protein carbonyl content was not inhibited by treatment with LD, SEL or a 

combination of these drugs.  

 

The dose of LD used in this study was expected to result in a significant increase in DA 

levels in the striatum. However, the results of this study do not support the hypothesis 

that this increase in DA concentration produces oxidative damage to proteins in iron 

infused striatal rat tissue since there was no significant increase in protein carbonyl 

content after LD or SEL treatment. A number of factors need to be considered in order to 

bring together the DA induced oxidative damage to rat brain proteins in vitro with LD’s 

apparent lack of neurotoxicity in vivo. One important consideration is that the magnitude 

and duration of the increase in DA levels may not have been sufficient to produce a 

significant increase in protein carbonyl content. For example, the dose of LD                

(10 mg/kg/bd) used in this study was expected to produce a two-fold increase in striatal 

DA content, as seen in chapter 4, however the administration of  10 – 15 mg/kg of 

methamphetamine increases extracellular DA content 20- to 80-fold (Stephans and 

Yamamoto, 1994).  

 

It is also possible that the reported ability of LD to increase GSH levels in dopaminergic 

neurons (Mytilineou et al., 1993; Han et al., 1996) may protect striatal proteins from 

damage. However, this reported increase in GSH induced by LD also contradicts the fact 

that the quinone oxidation products of LD, DA and 6-OHDA bind covalently to thiol 

groups (SH groups) which should theoretically deplete GSH levels. The following 

chapter will investigate the effect of DA and 6-OHDA on GSH levels in vitro and the 

effect of LD administration on striatal GSH levels in vivo.  
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CHAPTER NINE  
 

TOTAL GLUTATHIONE CONTENT  
 
 

9.1 INTRODUCTION  

 

The tripeptide glutathione (GSH) is the most abundant nonprotein intracellular thiol          

(-SH) compound in mammalian cells, (Bharath et al., 2002) and is present in 

concentrations up to 12 mM (Dringen, 2000). GSH is synthesized from its constituent 

amino acids (glutamate, cysteine and glycine) in two consecutive steps catalyzed by        

γ-glutamyl cysteine synthase (GCS) and glutathione synthase. GCS uses glutamate and 

cysteine as substrates forming γ-glutamylcysteine which is then combined with glycine in 

a reaction catalyzed by glutathione synthase to form GSH (see figure 9.1). 

 

 

Figure 9.1: A schematic representation of the synthesis and metabolism of GSH (Bharath 

et al., 2002) 
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Glutathione plays a crucial role in the primary cellular defense against oxidative stress by 

reacting both nonenzymatically with ROS (O2
•-, •OH and NO•) (Saez et al., 1990; 

Winterbourne and Metodiewa, 1994; Singh et al., 1996) and also acting as an electron 

donor in the reduction of H2O2 catalyzed by glutathione peroxidase (GPx) (Chance et al., 

1979). GSH may also protect neurons from the accumulation of protein aggregates which 

form Lewy bodies within the cell (Shimura et al., 2001).   HNE is an aldehyde formed as 

a by-product during lipid peroxidation. It has been proposed that HNE can integrate into 

membranes affecting in vivo membrane fluidity (Chen and Yu, 1994) and can also form 

adducts with important biological proteins. It has been found that GSH conjugates with 

HNE and therefore prevents it from incorporating into membranes (Chen and Yu, 1994; 

Chen and Yu, 1996) and from forming conjugates with proteins (Subramanian et al., 

1997). Another important function of GSH is that it protects proteins from oxidation by 

conjugating with thiol groups to form protein-SS-G mixed disulfides which can be        

re-reduced to protein and GSH by glutathione reductase (GR), thioredoxin or protein 

disulfide isomerase (Ravindranath and Reed, 1990). Figure 9.2 summarizes some of the 

oxidation reactions inhibited by GSH.  

 

 

Figure 9.2: GSH has the ability to inhibit oxidative damage to a number of important 

biomolecules (Bharath et al., 2002). 



Total Glutathione Content 
 

202 

In dopaminergic neurons in vivo, GSH can bind to quinones formed during the oxidation 

of DA and 6-OHDA and prevent these quinones from reacting with protein thiol groups 

(Fornstedt et al., 1990a; Hastings et al., 1996). However, the binding of these quinones to 

GSH may deplete GSH stocks and therefore impair GSH dependent detoxification. 

Several studies have shown that the relative variations in GSH levels in different brain 

regions are cortex > cerebellum > hippocampus > striatum > SN (Abbott et al, 1990; 

Chen et al., 1989; Kang et al., 1999) There is therefore an inverse relationship between 

levels of DA and levels of GSH in the brain. 

 

In PD, there is a further reduction in GSH levels within the SN. The depletion of GSH 

levels in Parkinsonian brains cannot be explained by increased oxidation of GSH to 

GSSG as levels of both are found to be decreased. The activity of GCS in the SN of PD 

patients is normal and the decrease in GSH can therefore also not be explained by a 

decrease in GSH synthesis (Sian et al., 1994). The decrease in GSH observed in PD may 

be caused by the increased synthesis and turnover of DA in surviving dopaminerigic 

neurons in the SN and the striatum. This chapter therefore investigates the effect of DA, 

6-OHDA and SEL on GSH levels in vitro and the effect of LD and SEL administration 

on striatal GSH levels in vivo.   

 

The spectrophotometric procedures used to assay for GSH in this chapter are based on the 

method of Ellman (Ellman, 1958; Ellman, 1959), who reported that                              

5,5-dithiobis-(2-nitrobenzoic acid) is reduced by thiol groups (SH) to form 1 mole of            

2-nitro-5-mercaptobenzoic acid per mole of SH. The nitromercaptobenzoic acid anion 

has an intense yellow color that can be used to measure SH groups.  
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9.2 EFFECT OF DOPAMINE AND  

6-HYDROXYDOPAMINE ON THE IRON (II)-

INDUCED LOSS OF TOTAL GLUTATHIONE IN 

RAT BRAIN HOMOGENATE  IN VITRO 

 

9.2.1 INTRODUCTION 

 

The degeneration of dopaminergic neurons in PD is attributed in large measure to strong 

oxidative stress within the degenerating substantia nigra (SNpc). The two main 

biochemical phenomena leading to increased ROS in the parkinsonian SNpc are an 

increase in iron levels (Dexter et al., 1989a) and a reduced antioxidant defense level 

(Riederer et al., 1989; Sofic et al., 1992; Sian et al., 1994).  

 

PD is associated with a decrease in GSH levels (Sofic et al., 1992). This decrease in GSH 

observed in PD may affect the ability of dopaminergic neurons to protect themselves 

against lipid peroxidation, protein oxidation and mitochondrial dysfunction (figure 9.2).  

The decrease in GSH may, in part, be due to the covalent binding of quinones formed 

during the auto-oxidation of DA and 6-OHDA to the GSH molecule resulting in the 

impairment of GSH-dependent detoxification and enhancing the formation of ROS such 

as H2O2 and •OH. The enhanced production of ROS during the metabolism and auto-

oxidation of DA and 6-OHDA may also contribute to a loss of GSH stocks.  

 

This study investigates the effect of the metabolism and auto-oxidation of DA and           

6-OHDA on total glutathione content in rat brain homogenate. In addition, the study also 

investigates the effects provoked by the presence of the Fenton system on the depletion of 

GSH caused by DA and 6-OHDA. 
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9.2.2 MATERIALS AND METHODS  

 

9.2.2.1 Chemicals and reagents 
 
DA hydrochloride, 6-OHDA hydrobromide and 5,5-dithiobis-(2-nitrobenzoic acid) 

(DTNB) were purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. All 

other reagents used were of the highest quality available. 

 

Stock solutions of DA and 6-OHDA were prepared in 1 mM KCl (pH 2.0) to prevent 

their immediate auto-oxidation. Fresh stock solutions of Fe2+ were prepared in deaerated 

water immediately before each experiment to prevent oxidation of the Fe2+ to Fe3+. 

 

9.2.2.2 Preparation of the standard curve 

 

Reduced glutathione was used to prepare the standard curve. An aliquot of 0.5 ml of 

varying concentrations of GSH (2-10 µM dissolved in PBS, pH 7.4) was added to test 

tubes and mixed with 1.5 ml of 0.2 M Tris buffer, pH 8.2 and 0.1 ml  of 0.01 M DTNB. 

The mixture was then brought to 10 ml with 7.9 ml of absolute methanol. The absorbance 

was read at 412 nm using a Shimadzu UV-160A UV-visible recording spectrophotometer 

and a calibration curve was constructed (appendix six).  

 

9.2.2.3 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

9.2.2.4 Brain removal 

 

Rats were sacrificed by cervical dislocation, followed by decapitation, and the brains 

were rapidly removed for use in experiments as described in appendix two. The brains 

were either used immediately or stored at -70 ºC until needed. 
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9.2.2.5 Homogenate preparation 

 

Each brain was weighed and homogenized (20 % m/v) in ice cold 0.1 M PBS, pH 7.4 in a 

glass teflon homogenizer. The homogenate was then used immediately for the assay.  

 

9.2.2.6 Measurement of total glutathione content 

 

The total GSH content was assessed spectrophotometrically according to a modified 

method of Sedlak and Lindsay (1968). 

 

Briefly, 0.5 ml of rat brain homogenate (20 % m/v) was incubated at 37 ºC for 5 minutes 

to reach the working temperature. Hydrogen peroxide (100 µM), ascorbate (100 µM), 

EDTA (240 µM) and ferrous sulfate (200 µM) were incorporated into the incubation and 

the mixture incubated for 60 minutes. To investigate the effect of DA and 6-OHDA on 

GSH content, various concentrations of DA or 6-OHDA (0.25, 0.5, 0.75 and 1 mM) were 

added to the incubation before the addition of the ferrous sulfate (the final volume of the 

incubation mixture was 1 ml). Immediately after the incubation, 0.5 ml of the incubation 

mixture was added to test tubes containing 1.5 ml of Tris buffer (pH 8.2), 0.1 ml of        

0.01 M DTNB and 7.9 ml of absolute methanol. The resultant mixture was then allowed 

to stand at room temperature, with occasional shaking, for 30 minutes. Thereafter, the 

mixture was centrifuged at 3000 x g for 15 minutes and the absorbance of the supernatant 

was read at 412 nm. The GSH levels were determined from a standard curve generated 

from GSH and are expressed as total GSH (nmol/mg of tissue).  

 

9.2.2.7 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 
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9.2.3 RESULTS 

 

Figure 9.3 shows how the incubation of rat brain homogenate with DA or 6-OHDA at    

37 ºC for 60 minutes causes a significant (p < 0.001) decrease in GSH content ( ± 19% 

reduction in total GSH for incubations containing DA (1 mM) and a ± 58% reduction in 

total GSH for incubations containing 6-OHDA (1 mM) compared to the control values). 

The addition of Fenton reagents to the incubation of rat brain homogenate also causes a 

significant decrease in the GSH content of rat brain homogenate (± 12% reduction in 

GSH levels compared to the control). However, the combined action of DA or 6-OHDA 

with the Fenton system significantly augments the decrease in GSH obtained with the use 

of DA or 6-OHDA alone. In addition to this, the decrease in GSH levels observed in 

incubations containing both the Fenton system and either DA or 6-OHDA is dependent 

on the concentration of DA or 6-OHDA used. Interestingly, the augmentation observed 

with the combined action of DA + Fenton system which caused a further ± 60% decrease 

in GSH content compared to DA alone  was greater than that observed with the combined 

action of 6-OHDA + Fenton system which caused a further ± 28% decrease in GSH 

compared to 6-OHDA alone.  
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Figure 9.3: Effect of DA and 6-OHDA on total GSH content in the presence and absence 

of the Fenton system. Each bar represents the mean ± SD (n = 5). @ (p < 0.01) and          

# (p < 0.001) compared to control values; *** (p < 0.001) compared to the Fenton system 

group. 

 

9.2.4 DISCUSSION 

 

The present study shows that the incubation of rat brain homogenate with DA or            

6-OHDA results in a marked decrease in total GSH. The reduction in GSH content was 

greater for 6-OHDA (± 58 % reduction) than for DA (± 19 % reduction) which can be 

attributed to the higher rate of autoxidation of 6-OHDA. In addition, the presence of the 

Fenton system also causes a significant fall in total GSH content of rat brain homogenate.  

The effect observed with the combined action of Fenton system + DA caused a greater 

reduction in GSH than DA alone and this can be attributed to the capacity of iron to 

catalyze the auto-oxidation of DA as well as the ability of •OH, formed during the Fenton 
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reaction, to convert DA to 6-OHDA.  The combined effect of Fenton system + 6-OHDA 

also resulted in a greater loss of total GSH than 6-OHDA alone. 

 

The effects of 6-OHDA and DA both in the presence and absence of the Fenton system 

on total GSH reported above could be related to the generation of H2O2 and •OH formed 

during the auto-oxidation and MAO mediated metabolism of these compounds. However, 

the inability of catalase (Chakrabarti et al., 1990) and •OH scavengers (Chakraborty et 

al., 2001) to inhibit the reduction of protein thiol (SH) content induced by DA under 

different experimental conditions weakens this hypothesis. Another possible explanation 

for the decrease in GSH caused by DA and 6-OHDA is the oxidation of these compounds 

to DA-Q and 6-OHDA-Q and the subsequent reaction of these quinones with the thiol 

groups on the GSH molecule. Evidence that these quinones can react with SH groups in 

the brain is the finding that cysteinyl adducts, such as 5-cysteinyl-dopamine and quinone 

adducts, have been encountered in rat, guinea pig and human brain (Carlsson and 

Fornstedt, 1991; Fornstedt et al., 1990b).  

 

Chapter 7 shows that DA and 6-OHDA are able to inhibit hydroxyl radical induced lipid 

peroxidation. However, one of the possible consequences of GSH depletion is that it may 

eventually stimulate lipid peroxidation, indirectly, by weakening the endogenous 

antioxidant defenses against lipid peroxidation i.e. the GSH-dependent detoxification of 

H2O2 and ROS (Boots et al., 2002).  A decrease in GSH levels could also cause an 

increase in the protein oxidation (chapter 8) and mitochondrial dysfunction (chapter 5) 

induced by DA and 6-OHDA since GSH prevents the quinone oxidation products of 

these compounds from conjugating with protein SH groups (Hastings et al., 1996).  

 

The following experiment investigates whether SEL, a selective MAO-B inhibitor and a 

scavenger of •OH, can protect against the loss of total GSH induced by DA and              

6-OHDA. 
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 9.3 EFFECT OF SELEGILINE ON DOPAMINE AND  

6-HYDROXYDOPAMINE INDUCED LOSS OF 

TOTAL GLUTATHIONE IN RAT BRAIN 

HOMOGENATE  IN VITRO 

 

9.3.1 INTRODUCTION 

 

The previous experiment shows that the incubation of rat brain homogenate with DA or 

6-OHDA, both in the absence and in the presence of the Fenton system results in a 

significant reduction in total GSH. This decrease in GSH content could be attributed to an 

increased production of H2O2 and •OH generated by the addition of DA and 6-OHDA to 

the Fenton system. It could also be brought about by the covalent binding of DA-Q and 

6-OHDA-Q to the GSH molecule.  

 

There are two important mechanisms that prevent DA oxidation. The first mechanism is 

the incorporation of DA into monoamine transporter vesicles (VAMT). The low pH 

inside these vesicles prevents the oxidation of DA (Arriagada et al., 2004). However, this 

is not relevant when working with homogenate since the integrity of the cells has been 

damaged. The second mechanism inhibiting the oxidation of DA is the breakdown of DA 

by MAO (Weingarten and Zhou, 2001; Arriagada et al., 2004). SEL, a MAO-B inhibitor 

should therefore favour DA oxidation and the formation of quinone oxidation products. 

On the other hand, SEL inhibits the formation of H2O2 formed from the breakdown of 

DA and also scavenges •OH (chapter 6). The use of SEL in the incubations should 

therefore help to establish whether the ROS or the quinone oxidation products are 

responsible for the loss of GSH induced by 6-OHDA and DA.  
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9.3.2 MATERIALS AND METHODS  

 
 

9.3.2.1 Chemicals and reagents 
 
SEL hydrochloride was purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A. All other chemicals and reagents were purchased as described in section 9.2.2.1.  

 

9.3.2.2 Preparation of the standard curve 

 

As described in section 9.2.2.2 

 

9.3.2.3 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

9.3.2.4 Brain removal 

 

As described in section 9.2.2.4 

 

9.3.2.5 Homogenate preparation 

 

As described in section 9.2.2.5 
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9.3.2.6 Measurement of total glutathione content 

 

The total GSH content was assessed spectrophotometrically according to a modified 

method of Sedlak and Lindsay (1968). 

 

The assay was carried out as described in section 9.2.2.6 except that in some cases 

various concentrations of SEL (0.25, 0.5, 0.75 and 1 mM) were added to the incubation 

before the addition of the DA or 6-OHDA. 

 

9.3.2.7 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 
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9.3.3 RESULTS 

 

As illustrated in figure 9.4, the addition of SEL (0.25, 0.5, 0.75 and 1 mM) to incubations 

is ineffective at inhibiting the loss of GSH induced by the combined action of DA and the 

Fenton system. However, SEL did cause an increase in GSH content in incubations 

containing DA and SEL when compared with the value obtained in incubations 

containing only DA (± 8 % increase in total GSH).  
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Figure 9.4: Effect of SEL on the loss of total GSH induced by DA in the presence and 

absence of the Fenton system. Each bar represents the mean ± SD (n = 5). nsc (p > 0.05) 

and # (p < 0.001) compared to control values; ns (p > 0.05) compared to DA + Fenton 

system values; @ (p < 0.01) compared to DA alone.  
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Figure 9.5 shows that SEL has no effect on the loss of GSH induced by either 6-OHDA 

alone or the combined action of 6-OHDA with the Fenton system.   
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Figure 9.5: Effect of SEL on the loss of total GSH induced by 6-OHDA in the presence 

and absence of the Fenton system. Each bar represents the mean ± SD (n = 5).              

Nsc (p > 0.05) and # (p < 0.001) compared to control values; ns (p > 0.05) compared to     

6-OHDA + Fenton system values, nshd (p > 0.05) compared to 6-OHDA alone.  
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9.3.4 DISCUSSION 

 

The results of this study show that SEL is unable to inhibit the reduction of total GSH 

induced by the combined action of (DA + Fenton system) or (6-OHDA + Fenton system). 

The results also show that SEL is unable to inhibit the reduction in GSH induced by       

6-OHDA in the absence of the Fenton system.  

 

SEL has the capacity to reduce the production of H2O2 as well as the oxygen radicals 

most likely to be involved in the oxidation of thiol groups (•OH and HOO•). Chapters 5 

and 6 show that SEL, at the concentrations used in this study, reduces the production of 

•OH, O2
•- and consequently HOO•. The most likely explanation for the inability of SEL 

to inhibit the loss of GSH induced by 6-OHDA, (DA + Fenton system) and (6-OHDA + 

Fenton system) is that under these circumstances, the loss of GSH is caused 

predominantly by the quinone oxidation products of DA and 6-OHDA rather than ROS.  

 

The results of the present study also show that SEL is able to inhibit the loss of GSH 

induced by the incubation of rat brain homogenate with DA alone. However, the amount 

of inhibition produced is small considering the large concentration of SEL used (1 mM). 

This suggests that the generation of ROS during the auto-oxidation and MAO mediated 

metabolism of DA only plays a minor role in the loss of total GSH induced by this 

neurotransmitter.  
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9.4 EFFECT OF L-DOPA AND SELEGILINE 

TREATMENT ON TOTAL GLUTATHIONE 

CONTENT IN THE RAT STRIATUM IN VIVO 

 

9.4.1 INTRODUCTION  

 

GSH depletion may represent one of the earliest biochemical defects in PD (Blum et al., 

2001). Although GSH is not the only antioxidant depleted during PD, the magnitude of 

GSH depletion appears to parallel the severity of the disease and occurs prior to other 

hallmarks of the disease (Perry and Yong, 1986; Jenner, 1993).  

 

The previous experiments in this chapter have shown that DA and 6-OHDA are capable 

of reducing total GSH levels in rat brain homogenate. LD administration may also induce 

oxidative damage by depleting GSH levels (Spencer et al., 1995). However, Mytilineou 

et al. (1993) and Han et al. (1996) reported that LD had the ability to increase GSH levels 

in astroglial cultures.  

 

The main aim of this study is to investigate the effect of acute LD and SEL 

administration on striatal GSH levels.  

 

9.4.2 MATERIALS AND METHODS  

 

9.4.2.1 Chemicals and reagents 
 
L-3,4-dihydroxyphenylalanine (LD), benserazide hydrochloride and SEL hydrochloride 

were purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. All other 

chemicals and reagents were purchased as described in section 9.2.2.1.  
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9.4.2.2 Animals 

 

Animals were housed and maintained as described in appendix one. 

 

9.4.2.3 Drug treatment 

 

Animals were injected intrastriatally with 2 µl of ferrous sulfate (5 mM) and dosed with 

LD and SEL for 7 days as described in section 2.5.2.3.2. Control rats received an 

intrastriatal injection of physiological saline. On the morning after the last dose, rats were 

sacrificed by cervical dislocation followed by decapitation. Brains were rapidly removed 

and the iron infused striata of each rat were dissected free and analysed for total GSH 

content.  

 

9.4.2.4 Homogenate preparation 

 

Each striatum was weighed and homogenized (5 % m/v) in ice cold 0.1 M PBS, pH 7.4. 

The homogenate was then used immediately for the assay.  

 

9.4.2.5 Measurement of total glutathione content 

 

The total GSH content was assessed spectrophotometrically according to a modified 

method of Sedlak and Lindsay (1968). 

 

Briefly, to 0.5 ml of homogenate (5 % m/v), 1.5 ml of 0.2 M Tris buffer (pH 8.2), 0.1 ml 

of 0.01 M DTNB and 7.9 ml of methanol was added and incubated for 30 minutes at 

room temperature. The incubation mixture was then centrifuged at 3000 x g for 15 

minutes and the absorbance of the supernatant read at 412 nm.  The GSH levels were 

determined from a standard curve generated from GSH and are expressed as total GSH 

(nmol/mg of tissue). 
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9.4.2.6 Statistical analysis 

 

Results were analysed as described in section 2.3.2.5. 

    

9.4.3 RESULTS 

 

Figure 9.6 shows that the intrastriatal injection of ferrous sulfate (10 nmol) reduced the 

total GSH content in rat striatum (p < 0.05). Treatment of the rats with LD and SEL alone 

or in combination had no significant effect on the decrease in total GSH induced by the 

intrastriatal injection of iron.   
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Figure 9.6: Effect of intrastriatal injection of ferrous sulfate followed by LD and SEL 

treatment on rat striatal GSH content. Each bar represents the mean ± SD (n = 5).             
* (p < 0.05) compared to the control; ns (p > 0.05) compared to rats that received Fe only. 
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9.4.4 DISCUSSION 

 

This study demonstrates that an increase in the concentration of free ferrous ions in the 

striatum reduces total GSH levels. This decrease in GSH is not attenuated or enhanced by 

treatment with LD, SEL or a combination of these drugs.  

 

Under normal circumstances, GSH constantly clears H2O2, thus preventing the formation 

of •OH. GSH also conjugates with quinones formed during the oxidation of DA and        

6-OHDA and prevents these from forming deleterious adducts with proteins (Bharath et 

al., 2002) and from facilitating the release of iron from ferritin (Andersen, 2001). Under 

conditions of GSH depletion, as observed in PD this protection is attenuated resulting in 

oxidative stress.  It has been proposed that the release of iron from ferritin alters the 

homeostasis of mitochondrial calcium leading to the formation of ROS and the depletion 

of tissue GSH levels (Youdim and Riederer, 1993). The ability of DA and 6-OHDA to 

release iron (II) from ferritin will be investigated in the following chapter.      

 

Despite the decrease in total GSH levels induced by DA and 6-OHDA observed in the 

previous experiments, the dosage of LD used in this experiment (10 mg/kg/bd) did not 

enhance the loss of GSH induced by the intrastriatal injection of iron. Once again the 

toxicity of DA in vitro does not match the lack of toxicity observed with the 

administration of LD in vivo. In addition to this, SEL treatment, either alone or in 

combination with LD does not result in any significant changes in GSH levels.   
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CHAPTER TEN 
 

 IRON INTERACTION STUDIES  
 
 

10.1 INTRODUCTION 
 
As an essential component of heme groups and iron sulfur clusters, iron is important for 

the transport (hemoglobin), storage (myoglobin) and use of oxygen (cytochromes, 

cytochrome oxidase and iron sulfur proteins) for respiration (Halliwell, 1992; Riemer et 

al., 2004). Iron is also an essential component in the active sites of many enzymes, 

including catalase (Halliwell, 1992).When iron is present in excess, it has the potential to 

harm biological systems since in redox active form it catalyses the generation of ROS, 

including •OH via the Fenton reaction (Crichton et al., 2002). An example of this “iron 

paradox” operates in the dopaminergic neurons of the SN, the same group of cells that are 

lost in PD. On the one hand, iron is required as an essential cofactor by the enzyme 

tyrosine hydroxylase for the synthesis of dopamine. On the other hand, iron promotes the 

oxidation of DA, releasing H2O2 in the process. H2O2 can then give rise to the highly 

toxic •OH (Kaur and Andersen, 2002).    

 

Sofic et al. (1992) demonstrated that total iron levels in the SN are elevated in PD 

patients. Intracellular iron levels are stringently regulated as a labile iron pool, which 

provides optimum iron levels for a multitude of biochemical processes and limits the 

availability of free iron for the generation of ROS (Bharath et al., 2002). Ferritin (figure 

10.1) is the major iron storage protein in the brain and maintains iron in a nonreactive 

form in the cell (Babincová et al., 2005). Ferritin is composed of 24 sub-units arranged in 

432 symmetry to form a hollow protein shell enclosing a cavity 80 Angstroms in 

diameter (Jameson et al., 2004). Iron incorporation into ferritin involves oxidation of Fe2+ 

to Fe3+ and deposition of the Fe3+ within the hollow protein shell essentially as 

ferrihydrite (Crichton et al., 2002). Ferritin can store up to 4500 iron atoms per molecule 

(Crichton et al., 2002). It is uncertain whether the excess iron in the brains of PD patients 
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is in a free form or whether it is bound to ferritin (Riederer et al., 1989; Dexter et al., 

1990; Jellinger et al., 1990; Mann et al., 1994). Griffiths et al. (1999) demonstrated that 

in PD patients, ferritin is heavily loaded with iron and that even if there is an increase in 

ferritin to counter excess iron levels, the ferritin molecules are saturated with iron.  

 

 

Figure 10.1: A three-dimensional representation showing ferritin, the iron-storage 

protein in the body. Ferritin has a spherical shape, and iron (brown) is stored as a mineral 

inside the sphere.  

(http://www.chemistry.wustl.edu/~courses/genchem/Tutorials/Ferritin/iron_06.htm). 

 

The superoxide (Yoshida et al., 1995) or catechol (Linert et al., 1996; Babincová and 

Babinec, 2005) mediated release of iron from ferritin increases the labile iron pool and 

also the fraction of iron capable of reacting with H2O2 (Double et al., 1998). Furthermore, 

iron promotes the auto-oxidation of DA in dopaminergic neurons, releasing additional 

H2O2 (Ben-Shachar et al., 1995). The increased generation of •OH via Fenton chemistry 

could also increase the conversion of DA to 6-OHDA in the presence of an abnormal 

accumulation of iron. The neurotoxicity of 6-OHDA has been linked to the release of iron 
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from ferritin (Montinero and Winterbourne, 1989). Desferrioxamine, an iron chelator, 

reduces 6-OHDA lesioning of the the nigrostriatal DA system (Ben-Shachar et al., 1991). 

The removal of iron from ferritin is achieved by reducing iron from the Fe3+ oxidation 

state to the Fe2+ oxidation state. In the Fe2+ state, iron breaks away from the lattice as the 

Fe2+ ion. The positive charge on the Fe2+ ion attracts the electronegative oxygen atoms of 

water and a water “cage” forms around the ion. Thus, iron becomes soluble as a hydrated 

Fe2+ ion and can be released from the ferritin protein via the channels in the protein shell. 

(http://www.chemistry.wustl.edu/~courses/genchem/Tutorials/Ferritin/iron_06.htm). 

 

Linert et al. (1996) proposed a plausible mechanism for the production of cytotoxins in 

PD (figure 10.2). Fe2+ interacts with H2O2 via Fenton’s reaction producing •OH or ferryl 

species. These can convert the neurotransmitter DA to the neurotoxin 6-OHDA, which is 

a powerful reducing agent. The production of 6-OHDA is then followed by the reduction 

and release of iron, as Fe2+ from ferritin. In other words, an autocatalytic cycle is formed 

which continuously produces cytotoxic species.  

 

Figure 10.2: The production of 6-OHDA followed by the release of Fe2+ from ferritin 

which may enable sustained production of cytotoxic species (Linert et al., 1996). 



Iron Interaction Studies 
 

222 

This chapter aims to determine whether an interaction exists between DA, 6-OHDA, SEL 

and iron (both in the ferrous and ferric oxidation state). The binding of Fe2+ or Fe3+ by 

these agents could prevent iron from catalyzing the formation of ROS by the Fenton 

reaction. Secondly, the chapter will also investigate the ability of DA and 6-OHDA to 

release iron as Fe2+ from the iron storage protein ferritin. The results of these studies will 

help to explain the peculiar ability of 6-OHDA and DA to increase iron-induced •OH 

production (chapter 6) and protein oxidation (chapter 8) on the one hand, but reduce lipid 

peroxidation (chapter 7) under the same conditions on the other hand. 
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10.2 EFFECT OF DOPAMINE AND                                   

6-HYDROXYDOPAMINE ON THE RELEASE OF 

IRON (II) FROM FERRITIN AND THE 

FORMATION OF A FERROZINE-IRON (II) 

COMPLEX  

 

10.2.1 INTRODUCTION 

 

The quantitation of iron in biological samples can be achieved using a variety of methods 

including atomic absorption spectroscopy (Hoepken et al., 2004), paramagnetic 

resonance spectroscopy (Woodmansee and Imlay, 2002), densitometric analysis (LeVine 

et al., 1998), and colorimetric quantitation (Fish, 1988; Gay et al., 1999). Ferrozine 

(figure 10.3) is an effective chelator of ferrous iron (Fe2+) and has been used for the 

colorimetric determination of iron in biological samples (Ceriotti and Ceriotti, 1980, 

Riemer et al., 2004). Ferrozine binds Fe2+ (figure 10.4), but not Fe3+, into a purple 

complex that absorbs strongly at 562 nm (Babincová and Babinec, 2005). As shown in 

figure 10.2, ferrozine binds Fe2+ with a metal to ligand ratio of 1:3.  

 

After uptake into cells, Fe2+ may encounter a ferritin molecule, which incorporates iron 

as Fe2+, oxidizing it to Fe3+, and traps the Fe3+ within the protein shell, alternatively the 

iron may also be incorporated into other protein complexes (Crichton et al., 2002). Such 

complexed iron is not available for quantitation using colorimetric assays. To quantify 

the total iron content of a cell (free iron and protein-bound iron) iron must first be 

released from the proteins (Riemer et al., 2004). Therefore, the spectrophotometric 

measurement of the formation of Fe(II)-ferrozine complexes is an ideal way to measure 

the release of iron, as Fe2+ from ferritin mediated by DA and 6-OHDA.  
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Figure 10.3: Chemical structure of the indicator ligand ferrozine. The left figure is a stick 

representation and the right figure is a ChemDraw® representation of ferrozine. The 

carbon atoms are green, the hydrogens are white, the nitrogen atoms are blue, the oxygen 

atoms are red, and the sulfur atoms are yellow.  

(http://www.chemistry.wustl.edu/~edudev/LabTutorials/Ferritin/ferrozine.html)  

 

Figure 10.4: The Fe(II)-ferrozine complex where Fe2+ is complexed with three ferrozine 

ligands. The carbon atoms are green, the hydrogens are white, the nitrogen atoms are 

blue, the oxygen atoms are red, the sulfur atoms are yellow and the Fe2+ is purple.  

(http://www.chemistry.wustl.edu/~edudev/LabTutorials/Ferritin/feferr.html) 
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In the presence of compounds that also have the ability to chelate Fe2+, the formation of 

the Fe(II)-ferrozine complex is inhibited leading to a decrease in color formation and a 

lower absorbance at 562 nm. The greater the Fe2+ chelating activity of a compound, the 

greater the inhibition of Fe(II)-ferrozine complex formation. Therefore, measuring the 

inhibition of Fe(II)-ferrozine complex formation may help to elucidate whether DA or    

6-OHDA is able to bind Fe2+ and which ligand has the strongest affinity for Fe2+.  

 

10.2.2 MATERIALS AND METHODS  

 

10.2.2.1 Chemicals and reagents 

 

DA hydrochloride, 6-OHDA hydrobromide, ferrozine and horse spleen ferritin were 

purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. EDTA and ferrous 

sulfate were purchased from Merck, Darmstadt, Germany. 

 

10.2.2.2 Chelating activity of DA and 6-OHDA 

 

The Fe2+ chelating activity of DA and 6-OHDA was assessed by measuring the 

percentage (%) inhibition of the Fe(II)-ferrozine complex using the method of Decker 

and Welch (1990). Reaction mixture (final volume 5 ml) containing increasing 

concentrations (0.025, 0.05, 0.1, 0.2, 0.4 and 1 mM) of the test compound (DA or            

6-OHDA), ferrous sulphate ( 0.04 mM) and ferrozine (0.2 mM) was incubated at room 

temperature for 20 minutes. The absorbance of the reaction mixture was then measured at 

562 nm using a GBC 916 UV/VIS spectrophotometer. Lower absorbance of the reaction 

mixture indicated a higher chelating activity of the test compound being studied. The 

percentage inhibition of the Fe(II)-ferrozine complex formation was calculated using the 

following formula: % inhibition of the Fe(II)-ferrozine complex = [ (A0 – A1) / A0] x 100, 

where A0 is the absorbance of the control (reaction mixture without the test compound) 
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and A1 is the absorbance in the presence of different concentrations of the test compound. 

EDTA, at the same concentrations as the test compounds was used as the positive control. 

 

10.2.2.3 Iron release from ferritin assay 

 

Iron reduction and release from ferritin was determined by the spectrophotometric 

measurement of the Fe(II)-ferrozine complexes (Babincová and Babinec, 2005). Reaction 

mixture containing ferritin (200 µg/ml), ferrozine (0.2 mM) and 6-OHDA (0.025, 0.05, 

0.1, 0.2 and 0.4 mM) or DA (0.025, 0.05, 0.1, 0.2 and 0.4 mM) was incubated at 37 ºC in 

phosphate buffered saline (pH 7.4) for 20 minutes. The absorbance of the reaction 

mixture was then measured at 562 nm using a GBC 916 UV/VIS spectrophotometer. 

Higher absorbance of the reaction mixture at 562 nm indicated an increased release of 

iron, as Fe2+ from ferritin. Control incubations contained the same reaction mixture 

except that 6-OHDA (or DA) was not added to these incubations. The amount of iron 

released from ferritin by 6-OHDA and DA is expressed as a percentage of the control 

values.  

 

10.2.3 RESULTS 

 

Figure 10.5 shows that both DA and 6-OHDA are not capable of chelating Fe2+. Even at a 

high concentration of 1 mM these drugs have no effect on the formation of the Fe(II)-

ferrozine complex. EDTA was used as the positive control since it has a high affinity for 

iron (both ferrous and ferric iron) (Wong and Kitts, 2001). The high affinity of EDTA for 

Fe2+ makes it very difficult for any other chelator, including ferrozine to compete for iron 

binding. As a result of this EDTA is 100 % effective at inhibiting the formation of the 

purple Fe(II)-ferrozine complex at concentrations greater than 0.1 mM. Figure 10.6 

shows that both DA and 6-OHDA lead to a concentration dependent release of iron, as 

Fe2+ from horse spleen ferritin. The 0.4 mM concentration of DA results in a 30 % 

increase in iron release from ferritin compared to the control values. The addition of            



Iron Interaction Studies 
 

227 

6-OHDA (0.4 mM) to control incubations increased the release of iron from ferritin by 

183 %. 

-20

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2

Drug concentration (mM)

%
 in

h
ib

it
io

n
 o

f 
th

e 
F

e(
II)

-f
er

ro
zi

n
e 

co
m

p
le

x

6-OHDA

EDTA

DA

 

 

Figure 10.5: Percentage inhibition of the Fe(II)-ferrozine complex by DA, 6-OHDA and 

EDTA. Each point represents the mean ± SD (n = 5).  

 

90

140

190

240

290

0 0.1 0.2 0.3 0.4 0.5

Concentration (mM)

Ir
o

n
 r

el
ea

se
 f

ro
m

 f
er

ri
ti

n
 (

%
 c

o
n

tr
o

l)

Dopamine

6-Hydroxydopamine

 

 

Figure 10.6: Release of iron from ferritin by DA and 6-OHDA expressed as a percentage 

of the control values. Each point represents the mean ± SD (n=5). 
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10.2.4 DISCUSSION 

 

As brain iron is primarily bound to ferritin in the ferric form, its involvement in the 

Fenton reaction requires that it be reduced to its ferrous form on release from its binding 

site (Double et al., 1998). The results of the present study and in previous studies 

(Montinero and Winterbourne, 1989; Jellinger et al., 1995) show that both DA and           

6-OHDA, or a species formed during the oxidation of these molecules is capable of 

releasing iron, as Fe2+ from horse spleen ferritin. These agents can therefore provide 

sufficient Fe2+ for Fenton chemistry to make •OH from H2O2 in the presence of ferritin. 

Hydroxyl radicals, in turn, can damage proteins, nucleic acids and membrane 

phospholipids, eventually leading to cellular degeneration. The mobilization of iron from 

ferritin has also been linked to changes in mitochondrial calcium homeostasis and 

subsequent GSH depletion and oxidative stress (Youdim and Riederer, 1993).  

 

6-OHDA was found to be more effective at releasing Fe2+ from ferritin than was DA. 

This is probably related to the redox potential (the ability to donate and receive electrons) 

of these compounds. 6-OHDA is more readily oxidized than DA and is therefore more 

likely to donate an electron to Fe3+ to form Fe2+. The manner in which these compounds 

interact with the Fe3+ in the protein shell of ferritin may also be an important factor with 

regard to the efficiency with which these agents release iron from ferritin. Linert et al., 

(1996) reported that 6-OHDA reacts with Fe3+ almost exclusively via an outer-sphere 

mechanism at physiological pH, i.e. electron exchange takes place without the prior 

formation of a metal-ligand complex. This is in contrast to DA which forms relatively 

stable bis- and tris- complexes with Fe3+ at physiological pH (Jameson et al., 2004). 

However, the findings of Linert et al. (1996) are in contrast to that of another study by 

Double et al. (1998), which shows that the ortho-dihydroxyphenyl group (catechol group) 

of 6-OHDA is necessary for iron release from ferritin because the first stage of the 

release process involves forming a Fe(III)-catechol complex. A following experiment 

will use adsorptive stripping voltammetry and cyclic voltammetry in order to investigate 

whether or not 6-OHDA forms a metal-ligand complex with Fe3+. The following 

experiment will also determine the oxidation potentials of DA and 6-OHDA under the 
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same pH conditions (pH 7.4) in order to investigate the correlation between the redox 

potential of the compound and its ability to reduce ferritin iron.  

 

The release of iron from ferritin by DA and 6-OHDA may be due to the reduction of Fe3+ 

to Fe2+ by the parent compound (Equation 10.1) or by O2
•- (Equation 10.2) formed during 

the auto-oxidation of these compounds (Yoshida et al., 1995; Linert et al., 1996; 

Babincová and Babinec, 2005). Lode et al. (1990) found that 6-OHDA-induced Fe2+ 

release from ferritin is enhanced under anaerobic conditions. This suggests that it is the 

reduced form of 6-OHDA, and not O2
•-, that is responsible for 6-OHDA-induced iron 

release. On the other hand DA-induced Fe2+ release from ferritin is increased under high 

oxygen conditions and is reduced under low oxygen conditions (Double et al., 1998). 

This therefore suggests that the release of iron from ferritin by DA may be due to O2
•-

- rather than DA itself. Claims that the reduction of the iron within ferritin can be carried 

out by DA itself is suspect because, at physiological pHs, the bis and tris-complexes of 

DA and Fe3+ predominate, and are remarkably stable to internal electron transfer 

(Jameson et al., 2004). Another possible mechanism for the release of iron from ferritin is 

protein damage induced by •OH. In the Fe2+ state, iron breaks away from the lattice and 

is released from the ferritin protein as soluble Fe2+ via the channels in the protein shell. 

  

Catechol + Fe3+ → SQ• + Fe2+            (Equation 10.1) 

O2
•- + Fe3+ → O2 + Fe2+                       (Equation 10.2) 

 

This study also shows that DA and 6-OHDA, even when used in relatively high 

concentrations (1 mM) are unable to chelate Fe2+ and inhibit the formation of the purple 

Fe(II)-ferrozine complex. The Fe2+ released from ferritin by 6-OHDA and DA would 

therefore be free to elicit free radical formation. The inhibition of lipid peroxidation 

induced by Fe2+ by DA and 6-OHDA can therefore not be explained by the chelation of 

Fe2+ by these compounds.  
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A following experiment will investigate the ability of DA and 6-OHDA to bind to Fe3+ 

and prevent its recycling to Fe2+, the oxidation state necessary for its participation in the 

Fenton reaction. 
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10.3 EFFECT OF SELEGILINE ON THE 

FORMATION OF A FERROZINE-IRON (II)  

COMPLEX  

 

10.3.1 INTRODUCTION 

 

Although the etiology of PD is not yet well established, accumulating evidences have 

shown that iron-dependent oxidative stress, increased levels of iron and MAO-B activity 

and the depletion of antioxidants in  the brain may be major pathogenic factors in PD 

(Zheng et al., 2005). A number of iron chelators (e.g. desferrioxamine) (Ben-Shachar et 

al., 1991), antioxidants (e.g. vitamin E) (Cadet et al., 1989) and MAO-B inhibitors (e.g. 

SEL) (Ebadi et al., 1996, Knoll, 1995) have been shown to possess neuroprotective 

activity and protect against the dopaminergic neurodegeneration induced by 6-OHDA 

(Zheng et al, 2005).  

 

A single neuroprotective effect (iron chelation, free radical scavenging or MAO-B 

inhibition) may not be powerful enough to prevent neuronal death in PD. 

Neuroprotection in PD may therefore require a drug combining iron chelating with 

antioxidant and MAO-B inhibitory properties. SEL was the first highly selective inhibitor 

of MAO-B (Knoll and Magyar, 1972), and is the only selective MAO-B inhibitor in 

world wide clinical use (Knoll, 1995). Chapter 5 and 6 have shown that SEL also 

possesses antioxidant properties, both in vitro and in vivo by reducing the formation of 

•OH and O2
•-. The main aim of this study is to investigate whether SEL possesses any 

iron chelating properties. 
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10.3.2 MATERIALS AND METHODS  

 

10.3.2.1 Chemicals and reagents 

 

SEL hydrochloride was purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A. All other reagents were purchased as described in section 10.2.2.1. 

 

10.3.2.2 Chelating activity of SEL 

 

The Fe2+ chelating activity of SEL was assessed by using the method of Decker and 

Welch (1990) described in section 10.2.2.2. Reaction mixture (final volume 5 ml) 

containing increasing concentrations (0.025, 0.05, 0.1, 0.2, 0.4 and 1 mM) of SEL, 

ferrous sulphate ( 0.04 mM) and ferrozine (0.2 mM) was treated as described in section 

10.2.2.2.  

 

10.3.3 RESULTS 

 

Figure 10.7 shows that SEL results in a 20 % inhibition of the Fe(II)-ferrozine complex. 

However, the inhibition of Fe(II)-ferrozine complex formation by SEL does not appear to 

be concentration dependent. SEL is also less potent at chelating Fe2+ than is EDTA. At 

concentrations between 0.1 and 1 mM, EDTA results in complete inhibition of Fe(II)-

ferrozine formation while SEL still only causes approximately 20 % inhibition between 

these concentrations.  
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Figure 10.7: Percentage inhibition of the Fe(II)-ferrozine complex by SEL and EDTA. 

Each point represents the mean ± SD (n = 5).  
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10.3.4 DISCUSSION 

 

Chelating agents are usually flexible molecules with two or more electronegative 

functional groups (e.g. –OH, -SH and –NH) that form a covalent bond with cationic 

metal atoms. The structure of SEL (figure 10.8) does not therefore fit the mold of a 

typical iron chelator since it only has one electronegative atom (nitrogen) in its structure.  

 

 

Figure 10.8: Structure of SEL. 

(http://commons.wikimedia.org/wiki/Image:Selegiline-structure.png) 

 

The results of this study suggest that SEL has the capacity to bind Fe2+ ions. The results 

also demonstrate that SEL is a relatively weak iron binder compared to EDTA, which 

was used as the positive control. The acetylenic group (alkyne group) of the propargyl 

moiety of SEL is the functional group most likely to be involved in iron binding. Alkynes 

are electropositive and tend to bind transition metals more strongly than alkenes. Alkynes 

have two sets of mutually orthogonal pi bonds and can bind to transition metals in a 

sigma-type fashion and in a pi-type fashion (Garnovskii et al., 2003). 

 

The propargyl moiety is believed to be responsible for the potent MAO-B inhibitory 

activity of SEL (Zheng et al., 2005). N-propargyl-containing compounds such as 

rasagiline, pargyline and clorgyline display high MAO inhibitory activity. However, 

removal of the propargyl moiety abolishes the inhibitory activity of these compounds 

(Youdim, 1978; Youdim and Weinstock, 2002). The binding of iron by the acetylenic 

group of SEL may therefore affect the MAO-B inhibitory activity of this compound. The 
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effect of iron binding on the MAO-B inhibitory activity of SEL therefore requires further 

investigation.  
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10.4 INTERACTION BETWEEN DOPAMINE,                 

6-HYDROXYDOPAMINE AND FERRIC IRON: AN 

ELECTROCHEMICAL STUDY  

 

10.4.1 INTRODUCTION 

 

A chemical reaction in which electrons are transferred from one species to another (redox 

reactions) is the basis for electrochemical analysis (Pecsok et al., 1968). Most 

electrochemical cells used for electroanalytical measurements utilize three electrodes, 

namely, a working, a reference and an auxiliary (or counter) electrode (Bard and 

Faulkner, 1980), as depicted in figure 10.9.  

 

 

 

Figure 10.9: Most electrochemical cells utilize a three electrode system as shown here. 

(http://www-

biol.paisley.ac.uk/marco/Enzyme_Electrode/Chapter1/Ferrocene_animated_CV1.htm) 
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The working electrode is the electrode at which the analyte is oxidized or reduced i.e. 

electron transfer reactions occur at the surface of this electrode.  The reference electrode 

maintains a constant potential and serves as a reference standard against which the 

potential of the working electrode can be measured. The auxiliary electrode serves as a 

source or sink of electrons so that current can be passed from the external circuit through 

the cell (Bard and Faulkner, 1980). 

 

In the following experiments two electroanalytical techniques, adsorptive stripping 

voltammetry (AdSV) and cyclic voltammetry (CV) were employed to study the ability of 

DA and 6-OHDA to bind Fe3+ under de-aerated conditions. The study was conducted in 

aqueous media and under biological pH conditions. 

 

10.4.1.1 Adsorptive stripping voltammetry 

 

Adsorptive stripping voltammetry (AdSV) exploits the natural tendency of analytes to 

pre-concentrate at an electrode and is a useful electrochemical technique for studying 

metal-ligand interactions (Limson, 1998).  

 

The first step in AdSV is the reaction of the metal ion to be studied with a suitable ligand 

leading to the formation of a metal-ligand complex (equation 10.3) (Limson et al., 1998). 

This is followed by the controlled interfacial accumulation (adsorption) of the metal-

ligand complex onto the electrode at a fixed deposition potential (equation 10.4) (Limson 

et al., 1998). The third step is the electrochemically active stripping step (Limson et al., 

1998). It involves the reduction of the adsorbed metal-ligand complex by application of a 

potential in the negative direction, releasing the metal and ligand back into solution 

(equation 10.5) (Limson et al., 1998). The flow of electrons during the last step produces 

a cathodic current which peaks at the reduction potential of the complex. The current 

produced is a direct measure of the rate at which reduction occurs (Limson et al., 1998). 

The resulting plot of current versus potential is called a voltammogram. 
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Mn+ + x(Ligand)aq → M(Ligand)x,aq + xnH+                 (Equation 10.3)  

 

M(Ligand)x,aq → M(Ligand)x,ads                                    (Equation 10.4) 

 

M(Ligand)x,ads + xnH+ + ne- → Mn+ + x(Ligand)aq        (Equation 10.5) 

 

A metal species at an electrode will produce a characteristic voltammogram at a specific 

potential, with current being proportional to the amount of analyte at the electrode 

(Limson, 1998). When a suitable ligand is added to a metal solution, the ligand facilitates 

movement of the metal to the electrode (Limson, 1998). Theoretically then, the binding 

of a metal to a ligand should bring about an increase in the current response observed. 

The extent of the increase in current response of the metal on addition of the ligand is an 

indication of the affinity of the ligand for the metal (Limson et al, 1998). A lowering in 

the current response at relatively high analyte concentrations indicates possible 

competition between the free ligand and the metal-ligand complex for binding sites at the 

surface of the electrode (Limson, 1998). A decrease in current response at low ligand 

concentrations is more likely due to the formation of a strong metal-ligand complex that 

is not easily reduced to produce a cathodic current (Limson, 1998).    

 

The formation of a metal-ligand complex may also cause a shift in potential resulting 

from the reduction of a new species at the electrode. The extent of the shift in the 

reduction potential of the metal after the formation of a metal-ligand complex is an 

indication of the stability of the metal-ligand complex (Limson et al., 1998). A negative 

potential shift indicates the formation of strong metal-ligand complex (which has a lower 

tendency to become reduced) while a large positive shift is associated with the formation 

of a weaker metal-ligand complex (Limson, 1998).  
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10.4.1.2 Cyclic voltammetry  

 

Cyclic voltammetry (CV) measurements have been used for many years to evaluate 

electron transfer reactions between molecules or species in solution (Kohen et al., 2000). 

In these techniques, an electrical potential gradient is applied (relative to the reference 

electrode) across the electrode-solution interface (working electrode) to oxidize or reduce 

species present in solution (a linear potential gradient is applied in the case of CV) 

(Kohen et al., 2000; Ligumsky et al., 2005). The operation of the voltammeter results in a 

recording of the potential versus current curve, cyclic voltammogram (figure 10.10). The 

voltammogram provides information concerning the thermodynamics, kinetics, and 

analytical features of the electrochemical species under investigation (Kohen et al., 2000; 

Ligumsky et al., 2005). Although many factors determine the shape and value of the 

current wave (form of applied potential, electrode size and geometry, size of the energy 

barrier for electron transfer, interaction between the electrode surface, and the 

electroactive molecules), voltammetric waves are usually obtained in a peak shape or 

sigmoidal mode (Kohen et al., 2000). The position of the current wave on the voltage 

axis (the x-axis of the voltammogram) can be determined and is referred to as the 

potential where the peak current (peak potential – Ep(a)) or inflection point (half-wave 

potential, E1/2) occurs ((Kohen et al., 2000; Ligumsky et al., 2005). The oxidation 

potential of a compound is defined as the potential where Ep(a) is observed for a given 

set of conditions (Kohen et al., 2000). The peak potential location on the x-axis (specific 

ability of the compound to donate electrons) reflects the nature or type of the compounds 

present in the sample (Ligumsky et al., 2005). The size of the anodic current (AC, Ia), 

calculated from the y-axis of the voltamogram, is proportional to the concentration of the 

substrate in the bulk solution (Bard and Faulkner, 1980). These two parameters (peak 

potential and AC) are characterized as the reducing power parameter and can supply 

information regarding the type of reducing antioxidants (their ability to donate electrons) 

and their total concentration (Kohen et al., 2000). 
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Figure 10.10: A typical cyclic voltammogram (Limson, 1998). 

 

Electroactive species produce characteristic redox patterns in solution. Changes in the 

current intensity and the redox behaviour of the redox waves provide insight into the 

interaction of species in solution. Redox couples are typically located by potential scans 

encompassing the entire accessible window period of the electrode (Limson, 1998). The 

forward scan generates the oxidized species and the reverse scan the reduced species 

(Limson, 1998). Changes in the potential and current response are good indicators of 

alterations in the chemistry of the electroactive species in solution, such as that which 

occurs during an exchange of electrons in a metal-ligand bond. 
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10.4.2 MATERIALS AND METHODS  

 

10.4.2.1 Chemicals and reagents 

 

DA hydrochloride, 6-OHDA hydrobromide and Tris-HCl were purchased from Sigma 

Chemical Corporation, St Louis, MO, U.S.A. Anhydrous ferric chloride (FeCl3) was 

purchased from Merck, Darmstadt, Germany.  

 

10.4.2.2 Instrumentation 

 

Adsorptive stripping voltammograms and cyclic voltammograms were recorded on an 

Autolab PGSTAT 30 voltammeter equipped with a Metrohm VGA cell stand. A 3 mm 

glassy carbon electrode (GCE) was employed as the working electrode for the 

voltammetric experiments. A silver/silver chloride (Ag/AgCl) [(KCl = 3 M)] and a 

platinum wire were used as the reference and auxiliary electrodes, respectively, in all the 

voltammetric experiments. Prior to use and between scans, the GCE was cleaned and 

polished with alumina on a Buehler pad, followed by immersion in dilute nitric acid 

solution and rinsing in Milli-Q water.  

 

10.4.2.3 Adsorptive stripping voltammetry 

 

An appropriate concentration of FeCl3 was introduced into the electrochemical cell 

containing the electrolyte, 0.2 M Tris-HCl, pH 7.4. The electrolyte was then deaerated 

with nitrogen for 5 minutes with simultaneous solution stirring. The reason for deaerating 

the solution is to minimize the interference of oxygen with the electrochemical 

measurements. Thereafter, an optimum deposition potential for the Fe3+ was identified 

and applied for 60 seconds to affect the adsorption of the metal ion onto the surface of the 

GCE. A potential scan in the negative direction from the deposition potential to at least 

0.5 V beyond the reduction potential of the metal was applied, at a scan rate of 0.1 V.s-1, 
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to strip the adsorbed species from the GCE. During the stripping step, current responses 

due to the reduction of the metal species were measured as a function of potential. The 

GCE was then cleaned and polished as described in section 10.4.2.2. The procedure was 

repeated between successive additions of appropriate concentrations of either DA or        

6-OHDA (0 – 0.06 mM) to the electrolyte containing the Fe3+ in the electrochemical cell.  

 

Current versus concentration and potential versus concentration plots were constructed to 

measure the extent of shifts in current response and reduction potential of metal with 

increasing concentrations of the ligand (either DA or 6-OHDA).  

 

10.4.2.4 Cyclic voltammetry 

 

For the cyclic voltammetric experiments, appropriate concentrations of 6-OHDA or DA 

were added to the electrochemical cell containing 0.2 M Tris-HCl, pH 7.4 as the 

electrolyte. The electrolyte was then degassed for 5 minutes with nitrogen to prevent 

interference by any oxygen effects. A potential window was then scanned to characterize 

and provide a fingerprint of the species in solution. The GCE was then cleaned and 

polished as described in section 10.4.2.2. The procedure was repeated between successive 

additions of appropriate concentrations of Fe3+ to the electrolyte containing either DA or 

6-OHDA in the electrochemical cell.  

 

Changes in current response and potential were observed in order to investigate whether 

6-OHDA and DA were binding the Fe3+ ions to form a new species (metal-ligand 

complex) in the solution.   
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10.4.3 RESULTS 

 

10.4.3.1 Adsorptive stripping voltammetry 

 

Figure 10.11 shows the adsorptive stripping voltammogram for Fe3+ in solution, with a 

peak current response of 2.10 x 10-6 A and a reduction potential of -0.39 V. The addition 

of increasing concentrations of DA (0.01 – 0.06 mM) to the electrochemical cell causes a 

concentration dependent-shift in the reduction potential of Fe3+ towards more negative 

potentials (figure 10.12) and a decrease in the current response (figure 10.13). 
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Figure 10.11: Adsorptive stripping voltammogram for Fe3+ (0.01 mM) alone and in the 

presence of increasing concentrations of DA (0.01 – 0.06 mM).  
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Figure 10.12: Effect of increasing concentrations of DA on the reduction potential of 

0.01 mM Fe3+. 
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Figure 10.13: Effect of increasing concentrations of DA on the peak current response of 

0.01 mM Fe3+. 
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The adsorptive stripping voltammogram of Fe3+ in the presence of increasing 

concentrations of 6-OHDA is depicted in figure 10.14. The peak formed at -0.29 V is 

attributed to 6-OHDA. A scan of 6-OHDA alone shows its reduction potential in the 

same region. Initially there is a decrease in current response and a small shift to more 

negative potentials at a metal to ligand ratio of 1:1 and 1:2. However, at higher 

concentrations of 6-OHDA the peak attributed to 6-OHDA interferes strongly with the 

Fe3+ peak. The results of this voltammetric experiment are therefore not conclusive (due 

to the interference of the 6-OHDA peak). For this reason cyclic voltammetry was used to 

confirm whether or not 6-OHDA has the ability to bind Fe3+.     
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Figure 10.14: Adsorptive stripping voltammogram for Fe3+ (0.01 mM) alone and in the 

presence of increasing concentrations of 6-OHDA (0.01 – 0.08 mM). 
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10.4.3.2 Cyclic voltammetry 

 

Figure 10.15 presents a series of cyclic voltammograms of dopamine in the presence of 

increasing concentrations of Fe3+. In figure 10.15, peak 1 (0.17 V) and 2 (0.11 V) are 

assigned to the DA redox peaks. Peak 3 is most likely the redox peak of one of the 

oxidation products of DA. Peak 3 has a reduction potential of -0.28 V, similar to that 

observed for dopaminochrome (Wang et al., 2006). Compared to the cyclic 

voltammogram obtained with DA alone, an increase in the concentration of Fe3+ caused a 

rapid and concentration-dependent decrease in peak 1 on the forward scan and a rapid 

decrease in peaks 3 and 4 on the reverse scan. The DA peak (peak 1) also shifts to a more 

positive potential with increasing Fe3+ concentration. The cyclic voltammogram of DA 

strongly suggests that DA has the ability to bind Fe3+ to form a metal-ligand complex and 

confirms the results of the AdSV study.  
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Figure 10.15: Cyclic voltammogram of DA alone and in the presence of increasing 

concentrations of Fe3+. 
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Figure 10.16 presents a series of cyclic voltammograms of 6-OHDA alone and in the 

presence of increasing concentrations of Fe3+ (0 - 0.06 mM). 6-OHDA is 

electrochemically active at the GCE, meaning that redox waves are observed for this 

compound. In figure 10.16, peak 1 (-0.15 V), the anodic wave and peak 2 (-0.20 V), the 

cathodic wave are assigned to the 6-OHDA redox peaks. An increase in the concentration 

of Fe3+ had no effect on peak 1 during the forward scan (no significant change in current 

response or potential) and caused a small increase in the current response of peak 2 

during the reverse scan without any observable potential shift. The peak formed at            

-0.40 V (peak 3) is attributed to Fe3+. A scan of Fe3+ alone shows its reduction potential 

in the same region. The cyclic voltammogram in figure 10.16 therefore provides no 

evidence for the formation of a metal-ligand complex between 6-OHDA and Fe3+ in 

solution. 
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Figure 10.16: Cyclic voltammogram of 6-OHDA alone and in the presence of increasing 

concentrations of Fe3+. 
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10.4.4 DISCUSSION 

 

The reactivity of iron varies greatly depending on the environment that the chelator 

provides (Welch et al., 2002). In general, iron is liganded by electronegative atoms, 

particularly by oxygen, nitrogen and sulphur atoms. Chelators affect the reduction 

potential of iron, i.e. the ease with which iron is reduced. Oxygen ligands prefer Fe3+, 

thus the reduction potential of the ligand is usually decreased (Miller et al., 1990). 

Conversely, nitrogen and sulphur ligands prefer Fe2+, thus the reduction potential of the 

iron is usually increased (Miller et al., 1990).  

 

Therefore, chelators with oxygen atoms, such as DA tend to inhibit the reduction of Fe3+ 

to Fe2+. This is consistent with the results of the present electrochemical study. The 

AdSV of Fe3+ in the presence of increasing concentrations of DA (figure 10.11) shows 

that DA has the ability to form a complex with Fe3+ which has a more negative reduction 

potential than Fe3+ alone. Therefore, DA forms a complex with Fe3+ that is more difficult 

to reduce to Fe2+ than Fe3+ alone and is therefore likely to curtail the reduction of Fe3+ to 

Fe2+, the form of iron required for the Fenton reaction. The shift in the reduction potential 

of the metal after the formation of a metal-ligand complex is an indication of the stability 

of the metal-ligand complex (Limson et al., 1998). Figure 10.12 shows that there is a 

relatively large shift in the reduction potential of Fe3+ as the concentration of DA 

increases, this indicates that a relatively stable complex has been formed. Since low 

ligand concentrations were used during the present study, the decrease in the current 

response of Fe3+ after the formation of a Fe(III)-DA complex (figures 10.11 and 10.13) 

indicates that a greater potential is required for the reduction of the complex, than that of 

the free metal species. This implies that the Fe(III)-DA complex is strong enough to 

inhibit the cathodic current flow. This is expected for the Fe(III)-DA complex since it has 

a more negative reduction potential than Fe3+ alone and is more difficult to reduce than 

the free metal ion.   

 

Ferric-stabilizing chelators are protective if these prevent Fe3+ from being recycled to 

Fe2+. The chelation of Fe3+ by dopamine suggests that the increase in •OH production on 
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addition of DA to the Fenton system (chapter 6) is probably not due to the involvement of 

Fe2+ in the production of •OH by the Fenton reaction. Thus, the observed effect is 

probably a consequence of the reported capacity of Fe3+ to catalyze the auto-oxidation of 

DA, leading to increased •OH production (Linert and Jameson, 2000). The ability of DA 

to bind Fe3+ does not therefore reduce •OH production by the Fenton system (chapter 6), 

however the binding of this metal ion may help to inhibit iron-induced lipid peroxidation 

via another mechanism. A possible mechanism in which iron could be involved in the 

intiation of lipid peroxidation involves the formation of a Fe(III)-Fe(II) complex. This 

mechanism has been proposed by many researchers (Bucher et al., 1983; Tang and Shen, 

1997; Djuric et al., 2001). The inhibition of iron-induced lipid peroxidation by DA 

(chapter 7) may, at least in part, be due to the ability of DA to alter the ratio of Fe2+ to 

Fe3+ and not by scavenging or inhibiting •OH formation. Despite the inhibition of iron-

induced lipid peroxidation, DA actually accelerates damage to proteins in the presence of 

iron. This finding only makes sense if the oxidation of these biomolecules occurs via 

different mechanisms (see chapter 8 for the possible mechanisms by which DA increases 

protein oxidation). If the oxidation of proteins and lipids occurs via the same mechanism, 

their oxidation would be inhibited or stimulated by the same chemicals (Welch et al., 

2002).    

 

The AdSV of Fe3+ in the presence of increasing concentrations of 6-OHDA did not give 

reliable information regarding whether or not 6-OHDA forms a metal-ligand complex 

with Fe3+ since the 6-OHDA peak interfered strongly with the Fe3+ peak. For this reason, 

cyclic voltammetry was used in order to investigate whether any binding took place 

between these two species in solution. Figure 10.16 shows that there was very little 

change in the cyclic voltammogram of 6-OHDA in the presence of increasing 

concentrations of Fe3+. This is indicative of no complex formation between 6-OHDA and 

Fe3+. This finding is therefore in agreement with the study of Linert et al. (1996) that 

proposed that 6-OHDA interacts with Fe3+ via an outer sphere electron transfer reaction 

without the prior formation of a 6-OHDA-Fe(III) complex. The inhibition of iron-induced 

lipid peroxidation by 6-OHDA can therefore not be explained by the chelation of Fe2+ or 

Fe3+, or the scavenging of •OH and must occur via some other mechanism (chapter 7). 
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The cyclic voltammogram of DA showed significant shifts in both current response and 

potential for the DA redox peaks. This strongly implies complex formation between DA 

and Fe3+ and confirms the result of the AdSV experiment. 

 

The cyclic voltammogram of 6-OHDA and DA show that the oxidation potential (Ep(a)) 

of 6-OHDA is around -160 mV and that of DA is approximately 176 mV at pH 7.4. The 

lower oxidation potential of 6-OHDA may account for its enhanced ability to release iron 

from ferritin when compared to DA.  
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10.5 INTERACTION BETWEEN SELEGILINE AND 

FERRIC IRON: AN ELECTROCHEMICAL STUDY  

 

10.5.1 INTRODUCTION 

 

The results of the ferrozine assay in section 10.3 demonstrate that SEL has weak Fe2+ 

chelating activity. SEL was able to inhibit Fe(II)-ferrozine complexation more effectively 

than DA or 6-OHDA, this finding is surprising considering that SEL has only one 

electronegative N atom in its structure. It was postulated that the alkyne group in the SEL 

molecule was responsible for the chelation of Fe2+. In addition to MAO-B and 

antioxidant activity, SEL may possess some metal chelating activity. The present 

investigation was performed in order to investigate whether an interaction exists between 

SEL and Fe3+ in solution using adsorptive stripping voltammetry.  

 

 

10.5.2 MATERIALS AND METHODS  

 

10.5.2.1 Chemicals and reagents 

 

SEL hydrochloride was purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A. All other chemicals were purchased as described in section 10.4.2.1.  

 

10.5.2.2 Instrumentation 

 

As described in section 10.4.2.2.  
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10.5.2.3 Adsorptive stripping voltammetry 

 

The procedure outlined in section 10.4.2.3 was followed, except that increasing 

concentrations of SEL, instead of DA or 6-OHDA, were added to the Fe3+ solution in the 

electrochemical cell between scans. 

 

10.5.3 RESULTS 
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Figure 10.17: Adsorptive stripping voltammogram of Fe3+ alone and in the presence of 

increasing concentrations of SEL (0.01 – 0.06 mM). 
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In figure 10.17, the AdSV for 0.01 mM Fe3+ alone in 0.2 M Tris HCl, pH 7.4 buffer 

shows a peak current response of 2.20 x 10-6 A at a reduction potential of -0.38 V. The 

addition of increasing concentrations of SEL causes a significant and concentration-

dependent shift in the reduction potential, to more negative potentials, and a decrease in 

current response. Figures 10.18 and 10.19 illustrate the concentration dependent decrease 

in the reduction potential and peak current response of 0.01 mM Fe3+ in the presence of 

increasing concentrations of SEL.   
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Figure 10.18: Effect of increasing concentrations of SEL on the reduction potential of 

the 0.01 mM Fe3+. 
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Figure 10.19: Effect of increasing concentrations of SEL on the peak current response of 

0.01 mM Fe3+. 

 

10.5.4 DISCUSSION 

 

The results of the present electrochemical study show that SEL has the ability to form a 

complex with Fe3+ which is more difficult to reduce , but easier to oxidize than Fe3+ alone 

and is therefore likely to inhibit the reduction of Fe3+ to Fe2+. Figure 10.18 demonstrates 

that SEL has a concentration dependent effect on the decrease in reduction potential of 

Fe3+. The binding of Fe3+ by SEL , may inhibit the reduction of Fe3+ to Fe2+ and provide 

another mechanism by which SEL can inhibit iron-induced lipid peroxidation (chapter 7), 

besides its direct scavenging properties (chapter 6).  

 

Figure 10.19 illustrates that SEL causes a concentration dependent decrease in the current 

response of Fe3+. This is expected since the Fe(III)-SEL complex has a more negative 

reduction potential and is consequently more difficult to reduce than the free metal ion, 

this in turn would hinder the cathodic current flow. 
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As mentioned previously, the acetylenic group (alkyne group) of the SEL molecule is the 

functional group most likely to be involved in iron binding. This group is important for 

the MAO-B inhibitory potency of SEL and further research should be done to investigate 

the effect of iron binding on the MAO-B inhibitory activity of SEL.     
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CHAPTER ELEVEN  

 

11.1 SUMMARY OF RESULTS, CONCLUSIONS 

AND RECOMMENDATIONS FOR FUTURE 

STUDIES 

 

11.1.1 SUMMARY OF RESULTS 

 

CHAPTER 2: Stability of 6-Hydroxydopamine and its formation from dopamine 

 

The stability of 6-OHDA under acidic, physiological and basic pH conditions was 

investigated in this chapter. 6-OHDA was most stable at an acidic pH (0.1 M HClO4) and 

was very unstable under physiological (0.1 M PBS, pH 7.4) and basic pH (0.1 M NaOH) 

conditions. The stability of 6-OHDA was also dependent on ascorbic acid concentration. 

Ascorbic acid increased the stability of 6-OHDA. 6-OHDA was found to be most stable 

in 0.1 M HClO4 containing 1 mM of ascorbic acid. The results of the stability study were 

used to minimize the loss of 6-OHDA during sample storage, homogenization and 

analysis in the experiments that followed. The results of this chapter also confirm the 

previously published observation that DA reacts with free •OH in vitro to produce the 

neurotoxin 6-OHDA. This conversion of DA to 6-OHDA in vitro is inhibited by SEL in a 

concentration dependent manner.  

 

Production of 6-OHDA has been postulated to occur in vivo. The results of chapter 2 

demonstrate that no detectable amount of 6-OHDA was found in the striatum after a 

single large dose of LD (50 mg/kg) or after acute LD administration (10 mg/kg/bd for 

seven days). The co-administration of LD (10 mg/kg/bd) with SEL (2.5 mg/kg/bd) for 

seven days also did not result in any detectable amount of 6-OHDA in the striatum in 
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vivo. In addition to this, an increase in striatal iron content prior to the administration of 

LD and SEL also did not result in the formation of detectable amounts of 6-OHDA in the 

striatum. 

 

Chapter 3: Pineal indole metabolism 

 

The aim of chapter 3 was to assess the effect of SEL on in vitro and ex vivo pineal indole 

metabolism. The results of the in vitro experiment demonstrate that SEL, at a 

concentration of 10 µM, increases the production of MEL and NAS by the rat pineal 

gland and results in a significant decrease in the monoamine oxidase products formed 

from 5-HT. The results of the ex vivo experiment demonstrate that the acute 

administration of SEL (2.5 mg/kg/bd) for seven days results in a significant increase in 

NAS levels, however, levels of MEL, 5-HTOH, 5-HIAA, 5-MTOH and 5-MIAA were 

not significantly altered. The resultant increase in pineal NAS levels following SEL 

administration could have implications in neuroprotection as NAS has been demonstrated 

to be a potent antioxidant in the brain. The rise in NAS induced by SEL in rats may be 

another mechanism by which this drug can protect against 6-OHDA formation and 

toxicity. 

 

Chapter 4: Neurotransmitter levels  

 

The aim of chapter 4 was to investigate the effect of LD and SEL on neurotransmitter 

levels in the striatum and hippocampus. LD treatment (10 mg/kg/bd for seven days) 

results in a significant increase in striatal and hippocampal DA, DOPAC and NE levels. 

Despite a two-fold increase in striatal DA levels, there was an absence of detectable 

levels of 6-OHDA in the striatum (chapter 2). Striatal and hippocampal levels of 5-HIAA 

and 5-HT were unchanged following LD administration. When used on its own, SEL       

(2.5 mg/kg/bd for seven days) results in an increase in striatal DA levels and a decrease 

in levels of DOPAC and HVA. This effect is attributed to the MAO-B inhibitory action 

of SEL. The effect of SEL on DA, DOPAC and HVA levels was limited to the striatum 

since the administration of SEL had no effect on DA, DOPAC and HVA levels in the 
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hippocampus. SEL treatment has no significant effect on striatal or hippocampal levels of 

NE, 5-HT or 5-HIAA. The elevation of NAS production by the pineal gland following 

SEL administration (chapter 3) can therefore not be attributed to inhibition of the           

MAO-mediated metabolism of NE or 5-HT. The increase in NAS after SEL 

administration is therefore most likely due to increased NAT activity. The                         

co-administration of LD with SEL did not result in any significant change in striatal or 

hippocampal levels of DA or 5-HT compared to the levels of these neurotransmitters 

obtained with the use of LD alone. However, the co-administration of these drugs causes 

a decrease in striatal NE levels compared to the levels obtained with the use of LD alone.  

 

Chapter 5: Superoxide anion formation 

 

This chapter demonstrates that DA and 6-OHDA increase superoxide anion generation in 

whole rat brain homogenate in vitro. The increased generation of O2
•- can be attributed to 

the formation of O2
•- during the auto-oxidation of these compounds as well as the ability 

of DA and 6-OHDA to obstruct the flow of electrons along the mitochondrial electron 

transport chain and enhance the production of O2
•- by increased electron leakage onto 

oxygen. The co-incubation of rat brain homogenate with DA and SEL demonstrates that 

SEL is able to abolish the rise in O2
•- induced by DA. However, SEL has no effect on the 

increased production of O2
•- induced by 6-OHDA.  This may be due to the higher rate of 

auto-oxidation of 6-OHDA compared to DA. 6-OHDA should therefore be able to 

generate larger amounts of O2
•- in a given time than DA. 6-OHDA is also a more 

powerful reducing agent than is DA and may obstruct electron flow along the 

mitochondrial electron transport chain by maintaining components of the chain in the 

reduced state. In addition to this, 6-OHDA is more easily converted to quinone oxidation 

products than is DA. DA-Q and 6-OHDA-Q can bind to thiol groups in mitochondrial 

proteins. Thiol cross-linkage of mitochondrial proteins is associated with mitochondrial 

dysfunction and increased ROS formation.  

 

This chapter also demonstrates that LD treatment (10 mg/kg/bd for seven days) results in 

a significant increase in striatal O2
•- production in vivo. The co-administration of SEL 
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(2.5 mg/kg/bd for seven days) with LD results in significantly lower striatal O2
•- 

production compared to that observed in rats receiving only LD. The inhibition of O2
•- 

production by SEL may be due to direct scavenging of O2
•- by SEL or due to the ability 

of SEL to up-regulate O2
•- metabolizing systems, particularly SOD.  

 

Chapter 6: Hydroxyl radical formation 

 

This chapter demonstrates that DA enhances •OH production by Fenton chemistry in 

vitro. Similar results were also previously obtained with 6-OHDA (Méndez-Álverez et 

al., 2001). In the presence of a mixture of Fe(II)-EDTA and H2O2, hydroxyl radicals are 

formed that react with salicylate to form 2,3-DHBA, 2,5-DHBA and CAT. These 

hydroxylated products of salicylic acid can be quantified using HPLC-ECD. The addition 

of DA to the Fenton system results in a concentration dependent increase in the formation 

of 2,3-DHBA, 2,5-DHBA and CAT. Therefore, despite the fact that DA can scavenge 

•OH to form 6-OHDA (neurotoxin), 5-OHDA and 2-OHDA, it also has the potential to 

enhance •OH generation under the same conditions. This effect is probably a 

consequence of the reported capacity of iron to catalyze the auto-oxidation of DA. In 

addition to this, the results of chapter 2 show that •OH can convert DA to 6-OHDA, a 

compound which has a higher rate of auto-oxidation than DA. The increased •OH 

production by DA is also dependent on the ascorbic acid concentration. Ascorbic acid 

causes an increase in the overall production of •OH by the Fenton system, which is most 

likely due to its ability to reduce Fe3+ to Fe2+, however, when ascorbic acid is present at 

high enough concentrations it prevents the rise in •OH induced by DA. This is most 

probably due to the ability of ascorbic acid to prevent the auto-oxidation of DA and the 

resultant generation of •OH. SEL was able to inhibit the DA induced rise in •OH 

production by the Fenton system in a concentration dependent manner.  

 

The aim of this chapter was also to investigate whether acute LD treatment (10 mg/kg/bd 

for seven days) results in an increased •OH production in the striatum. The results of the 

in vivo study found no evidence that LD treatment increases striatal •OH in the brain. 
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SEL treatment (2.5 mg/kg/bd for seven days) also has no effect on striatal •OH 

production in vivo.  

 

Chapter 7: Lipid peroxidation studies 

 

The results of this chapter show that the addition of Fenton reagents (Fe(II)-EDTA/H2O2 

and ascorbate) to rat brain homogenate results in a marked increase in lipid peroxidation. 

DA and 6-OHDA cause a significant and concentration dependent decrease in the lipid 

peroxidation stimulated by the Fenton system in vitro. Some investigators postulate that 

the inhibition of lipid peroxidation by catecholamines is due to their ability to scavenge 

•OH and to chelate iron, thereby slowing or preventing •OH formation by the Fenton 

reaction. However, chapter 6 contradicts this hypothesis since it demonstrates that DA 

and 6-OHDA have the ability to enhance •OH production under similar conditions. The 

inhibition of lipid peroxidation by these compounds must therefore occur via a different 

mechanism. It is thought that the semiquinone radical formed during the auto-oxidation 

of these compounds may be preventing the propagation of lipid peroxidation by acting as 

a chain breaking antioxidant. SEL was also shown to inhibit lipid peroxidation induced 

by the Fenton system in vitro. However, much higher concentrations of SEL are needed 

to inhibit lipid peroxidation than DA or 6-OHDA. The combined action of DA and SEL 

enhances the reduction of lipid peroxidation by DA at low DA concentrations. However, 

when higher concentrations of DA were used, the combined action of DA and SEL 

actually resulted in higher levels of lipid peroxidation than the use of DA alone.  

 

The in vivo study demonstrates that the intrastriatal injection of ferrous iron (10 nmol) 

results in a significant increase in striatal lipid peroxidation. The treatment of the Fe2+ 

infused rats with LD, SEL or a combination of these drugs results in a significant 

decrease in the Fe(II) induced lipid peroxidation.  However, there was no significant 

difference in lipid peroxidation levels between the LD treatment group and the group that 

received LD and SEL.  
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Chapter 8: Protein oxidation studies 

 

The results of this chapter demonstrate that the incubation of rat brain proteins with 

Fenton reagents causes a significant increase in protein carbonyl content. The addition of 

DA or 6-OHDA to incubations also causes a significant increase in the carbonyl content 

of rat brain proteins. The increase in carbonyl content is greater for 6-OHDA than DA. 

The combined action of (DA + Fenton system) and (6-OHDA + Fenton system) 

significantly augments the carbonyl content obtained with the Fenton system alone. This 

increase in carbonyl content is dependent on the concentration of DA or 6-OHDA used. 

The protein oxidation induced by DA and 6-OHDA could be related to free radical 

production during the auto-oxidation of these molecules or covalent binding of DA-Q and 

6-OHDA-Q to the protein. SEL is unable to inhibit the protein oxidation induced by        

6-OHDA and DA. This finding suggests that the quinone oxidation products of DA and 

6-OHDA rather than ROS are involved in the protein oxidation induced by these 

compounds. SEL has been shown to inhibit the production of ROS by DA and 6-OHDA 

(chapter 5 and 6).   

 

The in vivo study demonstrates that the intrastriatal injection of ferrous sulfate (10 nmol) 

results in a significant increase in striatal protein oxidation. However, the results of the 

study do not support the hypothesis that an increase in striatal DA concentration produces 

oxidative damage to proteins because the i.p. administration of LD (10 mg/kg/bd for 

seven days), SEL (2.5 mg/kg/bd for seven days) or a combination of these drugs has no 

significant effect on iron-induced protein oxidation. 

 

Chapter 9: Total glutathione content 

 

Chapter 9 demonstrates how the incubation of rat brain homogenate with Fenton reagents 

causes a significant reduction in the total GSH content of the homogenate. Incubation of 

rat brain homogenate with DA or 6-OHDA also causes a significant decrease in total 

GSH content. The combined action of (DA + Fenton system) and (6-OHDA + Fenton 

system) causes a greater reduction in total GSH content when compared with the values 
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obtained for the Fenton system alone. The decrease in the thiol content is most likely due 

to the ability of DA-Q and 6-OHDA-Q to bind to the thiol groups of the GSH molecules. 

SEL is unable to inhibit the reduction of total GSH induced by the combined action of 

(DA + Fenton system) or (6-OHDA + Fenton system). 

 

The in vivo study shows that the intrastriatal injection of Fe2+ causes a significant 

decrease in the total GSH content of the striatum. This decrease in GSH is not attenuated 

or enhanced by treatment with LD (10 mg/kg/bd for seven days), SEL (2.5 mg/kg/bd for 

seven days) or a combination of these drugs. 

 

Chapter 10: Iron interaction studies 

 

The results of the ferrozine assay demonstrate that DA and 6-OHDA, even when used at 

relatively high concentrations are unable to chelate Fe2+ and inhibit the formation of the 

purple Fe(II)-ferrozine complex. This chapter also demonstrates that SEL has weak Fe2+ 

chelating activity and produces a 20 % inhibition of Fe(II)-ferrozine complex formation 

when used at concentrations ranging from 0.025 – 1 mM. The results of this chapter also 

confirm the previously published observation that DA and 6-OHDA are capable of 

releasing iron, as Fe2+ from ferritin. This iron is therefore in the low valence state 

necessary for participation in the Fenton reaction. 6-OHDA is more effective at releasing 

iron from ferritin than DA. This is thought to be a consequence of the redox potential of 

6-OHDA. The AdSVs from electrochemical analysis demonstrate that both DA and SEL 

have the ability to bind Fe3+ to form a metal-ligand complex that is more difficult to 

reduce than Fe3+ itself. DA and SEL are therefore likely to curtail the conversion of Fe3+ 

to Fe2+, the form of iron required for the Fenton reaction. The chelation of Fe3+ by DA 

suggests that the increase in •OH production on addition of DA to the Fenton system 

(chapter 6) is probably not due to the involvement of Fe2+ in the production of •OH by 

the Fenton reaction. Thus, the observed effect is probably a consequence of the reported 

capacity of Fe3+ to catalyze the auto-oxidation of DA, leading to increased •OH 

production. The results of the AdSV of 6-OHDA were inconclusive since the 6-OHDA 

peak interfered strongly with the peak for Fe3+. For this reason cyclic voltammetry was 
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used to investigate whether there is any interaction between Fe3+ and 6-OHDA. The CV 

results provide no evidence for the formation of a 6-OHDA-Fe(III) complex and support 

the hypothesis that 6-OHDA interacts with Fe3+ via an outer sphere electron transfer 

reaction (Linert et al., 1996).   

 

11.1.2 CONCLUSIONS 

 

Several hypotheses exist which attempt to explain the loss of nigrostriatal dopaminergic 

neurons in PD. One theory proposes that nigral neurons are selectively vulnerable to 

environmental and/or endogenous neurotoxins that cause mitochondrial dysfunction. This 

in turn leads to impaired energy metabolism and neuronal death (Orth and Schapira, 

2002). Secondly, the proteolytic stress hypothesis ascribes the loss of nigral neurons in 

PD to the toxic accumulation of misfolded and aggregated proteins (McNaught and 

Olanow, 2003). Lastly, the preferential loss of nigrostriatal neurons in PD has been 

attributed to the highly oxidative intracellular environment in dopaminergic neurons 

(Lotharius and Brundin, 2002).  

 

This research project provides some evidence that DA acts as an important vulnerability 

factor in PD. The results of the in vitro studies suggest that DA is a double-edged sword 

which, on the one hand protects against the propagation of lipid peroxidation (chapter 7), 

but on the other hand enhances the generation of toxic oxyradicals, such as the 

superoxide radical anion (chapter 5) and the extremely cytotoxic hydroxyl radical 

(chapter 6). DA can also be converted to the potent neurotoxin, 6-OHDA (chapter 2), 

promote the oxidation of rat brain proteins (chapter 8) and reduce the total GSH content 

of rat brain homogenate (chapter 9). Furthermore, these properties are enhanced in 

different manners by the presence of Fenton reagents. Chapter 10 also demonstrates that 

DA is capable of releasing iron, as Fe2+ from ferritin. This most likely occurs via a 

superoxide dependent mechanism and increases the fraction of iron available for 

interacting with H2O2 and producing •OH. 
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The increase in superoxide production by DA may be due to the ability of DA to cause 

mitochondrial dysfunction by inhibiting important mitochondrial complexes in the 

mitochondrial electron transport chain (Glinka and Youdim, 1995). DA has also been 

shown to form covalent, oxidative adducts with proteins. This may be the underlying 

mechanism involved in the protein oxidation induced by DA.  It has also been suggested 

that DA can cross-link proteins by reaction with two cysteinyl residues (Graham et al., 

1978). This would promote protein aggregation and the formation of Lewy bodies in the 

cell. One of the consequences of the decrease in GSH induced by DA is that it may 

indirectly stimulate lipid peroxidation by weakening the endogenous GSH-dependent 

detoxification of H2O2 and other ROS (Boots et al., 2002). These findings contribute to 

explain the progression of PD due to the reported increase in DA turnover in surviving 

dopaminergic neurons. The in vitro experiments with 6-OHDA demonstrate that this 

neurotoxin behaves very similarly to DA. 6-OHDA is however more effective at causing 

oxidative stress (an increase in ROS production), iron release from ferritin, protein 

oxidation and a decrease in total GSH levels than is DA.  

 

The pro-oxidant properties of DA may be well-controlled by the endogenous antioxidant 

defense systems against oxidative stress in dopaminergic neurons. However, problems 

arise with high concentrations of DA, because of the possibility that the resulting 

oxidative stress cannot be controlled by the corresponding defense systems, a fact that 

may be exacerbated by exogenous LD administration. If this hypothesis is correct, 

administration of exogenous LD might lead to accelerated dopaminergic neuronal decline 

in PD patients. This in turn would hasten the emergence of wearing off effects associated 

with LD therapy. Wearing off effects are attributed to reduced interdose presynaptic DA 

storage capacity (Chase et al., 1993; Nutt and Holford, 1996).  The results of the in vivo 

studies conducted in this research project demonstrate that the exogenous administration 

of LD (10 mg/kg/bd for seven days) to normal (unlesioned) male Wistar rats results in an 

increase in striatal superoxide anion production, however studies found no evidence that 

LD administration increased striatal concentrations of hydroxyl radicals. It has been 

postulated that although LD is not toxic to normal dopaminergic neurons in rats, LD may 

be toxic to neurons in partially damaged striatum. In an attempt to address this issue rats 
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received an intrastriatal injection of ferrous iron before they were treated with LD for one 

week (seven days). Striatal samples were then analysed for lipid peroxidation, protein 

oxidation and GSH content. Despite the increase in striatal iron levels, LD treatment was 

not toxic and had no detrimental effect on lipids, proteins or GSH. LD administration 

inhibited iron-induced lipid peroxidation. The in vitro toxicity of DA therefore does not 

correlate well with the apparent lack of toxicity of LD in vivo.  

 

This research project also demonstrates that SEL, a selective MAO-B inhibitor is able to 

protect against some of the pro-oxidant effects of DA and 6-OHDA in vitro and LD 

treatment in vivo. In addition to its MAO-B inhibitory activity this study has also shown 

that SEL possesses antioxidant and metal binding properties. SEL inhibits the formation 

of superoxide radicals induced by DA in vitro and by exogenous LD administration in 

vivo. The results of the research also demonstrate that SEL has the ability to inhibit 

hydroxyl radical formation via Fenton chemisty and DA auto-oxidation in a cell free 

environment. The decrease in hydroxyl radical generation can therefore not be attributed 

to its MAO-B inhibitory activity. SEL inhibited iron-induced lipid peroxidation in vitro 

and in vivo and combined treatment of rats with LD and SEL resulted in a more 

significant decrease in iron-induced lipid peroxidation than those rats treated with LD 

alone. SEL did not however have any effect on protein oxidation or the loss of GSH 

induced by DA, 6-OHDA or the Fenton system in vitro.  

 

Another conclusion drawn from the research is that the oxidation of biomolecules, 

particularly lipids and proteins must proceed via different mechanisms. If the oxidation of 

lipids and proteins occurred via the same mechanism then their oxidation would be 

stimulated or inhibited by the same chemicals. This is not the case since DA and             

6-OHDA inhibit lipid peroxidation, but stimulate protein oxidation.  

 

Treatments aimed at preventing the death of dopaminergic neurons in PD depend on a 

better understanding of the mechanisms that control neuronal cell death in PD. 
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11.1.3 RECOMMENDATIONS FOR FUTURE STUDIES 

 

The short duration of LD therapy (one week) to rats in the present study does not provide 

sufficient evidence to draw reliable conclusions concerning the loss of efficacy and the 

long term side effects derived from the treatment of Parkinson’s disease with LD. Future 

research needs to be conducted on the effects of chronic LD treatment (for at least 6 

months) on the ability of LD to produce oxidative stress (an increase in the production of 

ROS) and oxidative damage to important biological molecules such as lipids and 

proteins.  

 

Although the results of the current research do not support the hypothesis that LD is toxic 

to dopaminergic neurons, additional factors need to be considered in the treatment of PD 

with LD. The current study focuses mainly on increased striatal iron concentrations. 

However, other factors associated with PD such as reduced mitochondrial enzyme 

complex I activity and GSH deficiency may also increase the likelihood of oxidative 

stress and oxidative damage after LD therapy. These factors require further investigation. 

 

Chapter 2 demonstrated that no detectable amount of 6-OHDA was found in the striatum 

of rats despite an increase in striatal DA and iron levels. It was postulated that rapid 

scavenging of oxidized 6-OHDA by the sulfhydryl groups in GSH, albumin and other 

proteins may account for the absence of striatal 6-OHDA. To confirm this explanation 

further research needs to be conducted to demonstrate the presence of 6-OHDA 

conjugated to protein in the striatum of rats receiving LD treatment. 

 

Chapter 3 demonstrates that the administration of SEL to rats results in a significant 

increase in the production of NAS by the pineal gland. The results of chapter 4 show that 

this effect cannot be attributed to an inhibition of 5-HT metabolism or due to an 

inhibition of NE degradation. It was postulated that SEL may enhance the activity of      

N-acetyltransferase (NAT), the enzyme responsible for the conversion of serotonin to 

NAS. Further research needs to be conducted in order to investigate the effect of SEL on 

the activity of NAT.  
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The results of chapter 7 demonstrate that both DA and 6-OHDA inhibit lipid peroxidation 

induced by the Fenton system in vitro. Some researchers have attributed this to the ability 

of these compounds to either scavenge free radicals or bind iron. However, the ability of 

DA and 6-OHDA to enhance •OH production under similar experimental conditions 

contradicts this hypothesis. Another area for future research would therefore be an 

investigation into the mechanism by which these agents inhibit lipid peroxidation. LD 

administration also reduces iron-induced lipid peroxidation in vivo. The mechanism 

through which this inhibition is achieved should be investigated further.  

 

Further research should be conducted to confirm whether the quinone oxidation products 

of DA and 6-OHDA or the oxygen free radicals formed during their auto-oxidation are 

involved in the protein oxidation and loss of total GSH induced by these compounds. The 

effect of DA and 6-OHDA on specific proteins, e.g. α-synuclein requires further 

investigation.  

 

Chapter 10 shows that SEL possesses iron binding properties. The effect of iron binding 

by SEL on the MAO-B inhibitory activity of this compound is another avenue for future 

research.  
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APPENDIX ONE 

 

Housing of Animals 

 

All the work involving the use of animals was approved by the Rhodes University animal 

ethics committee. Adult male rats of the Wistar strain, weighing between 250-300g were 

used throughout the study. The animals were purchased from the South African Institute 

for Medical Research (Johannesburg, South Africa). Rats were housed in a controlled 

environment with a 12 hour light:dark cycle, and were given access to standard 

laboratory food and water ad libitum. The animal room was windowless with automatic 

temperature and lighting controls. The temperature of the animal room was maintained 

between 20 ºC and 25 ºC while an extractor fan ensured the constant removal of stale air. 

The cages were cleaned daily.  
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APPENDIX TWO 

 

Sacrificing and dissection of the animals 

 

Rats were sacrificed swifly by cervical dislocation and rapidly decapitated. To remove 

the brain, the top of the skull was removed and the brain was exposed by making an 

incision through the bone on either side of the pariental suture, from the foramen 

magnum to near the orbit. The calvarium was removed, exposing the brain, which was 

easily removed for use in experiments. The brains were either used immediately or stored 

at -70 ºC until used.  

 

When necessary, the striatum was dissected out from each hemisphere of the whole brain, 

rapidly frozen in liquid nitrogen and stored at -70 ºC until used.  
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APPENDIX THREE 
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APPENDIX FOUR 
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APPENDIX FIVE 
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APPENDIX SIX 
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