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A B S T R ACT 

As both computer languages and architectures continue to 

proliferate, there is a continuing need for new 

compilers. Researchers have attempted to ease the work 

of producing compilers by developing methods to automate 

compiler writing. While much work has been done (and 

considerable success achieved) in writing parsers which 

can handle a variety of source languages (using mainly 

table-driven analysis methods), less progress has been 

made in formalizing the code generation end of the 

compiler. Ne vertheless, some of the more recent 

publications in code generation stress portability or 

retargetability of the resulting compiler. A number of 

code generator synthesisers have been developed, some 

of which produce code that can be compared in quality 

with that produced by a conventional code generator. 

However, because of the complexity of generalizing the 

mapping from source language to target machine, and the 

need for efficiency of various kinds, code generator 

synthesisers 

Consequently, 

are large, complicated programs . 

the person who develops a code generator 

using one of these tools invariably needs to be a code 

generation specialist himself. 

Many compilers follow a pattern of having a front end 

which generates intermediate code, 

converts intermediate code to 

and a back end which 

machine code. The 
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intermediate code is effectively machine independent, or 

can be designed that way. 

With these points in mind, we have set out to write a 

system of programs which 

1. will allow the generation of such a back end in a 

reasonably short time, for a general intermediate 

code, and for a general machine code, and 

2. can be used by anyone who has a sound knowledge of 

the target machine's architecture and associated 

assembler language, but is not necessarily a 

specialist compiler writer. 

The system consists of a series of friendly, interactive 

programs by means of which the user sets up tables 

defining the architecture and assembly level 

instructions for the target machine, and the code 

templates onto which intermediate codes produced by a 

parser have been mapped. A general notation has been 

deve l oped to represent machine instructions using the 

same format as the target assembler. Thus the code 

generator writer is able to write code sequences to 

perform the effects of the intermediate codes, using 

assembly mnemonics familiar to him. The resultant 

table-driven code generator simply replaces a sequence 

of intermediate codes by their respective code-
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templates, relocating them in memory and filling in 

addresses known only at code-generation time. 

This thesis describes the use and implementation details 

of this generalized code generation system. As an 

example, the implementation of a code generator for a 

CLANG [23J parser on an 8080 processor is described. 

The discussion also includes guide-lines on how to 

implement a loader and associated run-time routines for 

use in executing the object code. 

The results of a number of bench-marks have shown, as 

expected, that code produced by a code genera t or 

developed in this manner is larger and slower than that 

from a special purpose optimizing code generator, but is 

still several times faster than interpreting the 

intermediate code. The major benefit to be gained from 

using this system lies in the shorter development time 

by a less skilled person. 
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1 . INTRODUCTION 

... let 's see if you c an read my code: 

V D D L 
N T 

R B T 
P S D 

A T F 0 

C L J K S 
K L H S M 

If you can read it, make it rain tomorrow 

so I will know. 

from CHILDREN'S LETTERS TO GOD[1] 

In the early days of computers, the esoteric nature of 

internal machine code did much to inhibit the computer 

re volut ion. While most humans find it difficult to 

understand the "language" of the central processing unit, 

most computer processors are completely devoid of 

conventional linguistic skills. The non-specialist was able 

to enjoy the use of a computer only once high-level 

languages had been developed. 

In the last decade, many new general-purpose programming 

languages have emerged, along with a large number of more 

specia lis ed languages. Since no major breakthrough has been 

achieved in "humanizing" the computer processor's 

communicative ability, the design and implementation of 

compilers for programming languages has become an essential 

part of systems software development. Although the 

construction of new compilers is being made eas ie r by the 

use of various language development tools, the 

implementation of a compiler for a major high - level language 

remains a non-trivial task. 
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1.1 COMPILERS IN BRIEF 

A compiler is a computer program which trans lates programs, 

written in a particular source programming language, into 

executable code for a target computer of a particular 

design. 

The compilation process is usually subdivided into a 

sequence of simpler phases. It is convenient to think of 

each phase as an operation which takes, as input, one 

representation of the source program and produces, as 

output, another representation. Most compilers consist of 

at least the following phases: 

Often loosely termed the PARSER 

SOURCE 
PROGRAM 

, SOURCE 
HANDLER 

I 

I 
I 

SOURCE 
LISTING 

r 

" LEXICAL , 
ANALYSER 

", , 

OBJECT 
CODE 

, 
~ SYNTAX .. SEMANTIC 

ANALYSER ANALYSER 
I / 

/ 
I / ... 

~ ERrOR Ie " 
LISTING 

,~ 

I CODE l- I CODE RI 
IGENERATOR I~ LOPTIMIZER 

The bounqries between phases are blurred. Two or more of 

the phases above may of ten be combined into one phase. The 

modern trend towards " i ntelligent" editors, has seen some of 

the initial stages of the compiler incorporated into 
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complementary editors. In some interpretive systems, the 

compilation process may be completely transparent to the 

user . 

A brief description of the operation of each phase appears 

below. More information on the historical development of 

compilers can be found in articles by Knuth [4J , Feldman and 

Gries [5J (which also includes a comprehensive bibliography 

up to that time) and Aho [6J and in many modern textbooks on 

compilers [7J-[11J 

1.1.1 Lexical Analysis (or scanning) 

The name is derived from LEXICON [GreekJ meaning 

DICTIONARY. This initial parsing phase sees the 

source program as a sequence of characters. These 

characters are grouped into tokens, which are 

substrings of the input stream which logically belong 

together, such as identifiers and constants. The 

lexical analyser is usually also responsible for 

recognising comments, blanks and separators in the 

source program. The output of the lexical analysis 

phase is a stream of tokens. 
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1.1.2 Syntax Analysis (or true parsing phase) 

This phase groups tokens emitted by the lexical 

analyser into syntactic structures such as expressions 

and statements . It is the syntax analyser that 

determines whether the source program satisfies the 

formation rules of the programming language. If the 

source program is not syntactically correct, this phase 

must be able to produce appropriate error diagnostics, 

and recover from each error, so as to catch any 

subsequent errors that might be present. 

The syntax analyser usually invokes some semantic 

action as each syntactic construct is recognised . The 

semantic action may be to enter some information into a 

table, emit some error diagnostics, or generate some 

output. The output of the syntax analyser is some 

intermediate language representation of the source 

program such as postfix Polish notation, a tree 

structure. quadruples or codes for a hypothetical stack 

machine. 

1.1.3 Semantic Analysis 

This phase has to do with the actual meaning of words 

and constructs . Type checking, determining that 

functions are called with the appropriate number of 

arguments, and verifying that identifiers have been 
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declared are typical of what takes place during 

semantic analysis. 

1.1.4 Code Optimization 

An optimizing compiler attempts to transform an 

intermediate language representation of the source 

program into one from which a faster or smaller object 

program can be generated . The term "optimization" is 

something of a misnomer, as it is theoretically 

impossible for a compiler to produce the best possible 

ob j ect program for every source program. A more 

accurate term might be "code improvement" as suggested 

by Aho & Ullman [7J . Tradition , however, has given us 

the term "code optimization". 

A number of op t imizations can be safely performed only 

by knowing information gathered from the entire 

program. One needs to make use of a technique known as 

Global Data - flow Analysis [2J C3J Other forms of 

optimization are static, for example the well known 

p e e phole optimization technique [7J This attempts to 

improve the generated code, by viewing a small range of 

instructions (peephole) and trying to improve upon 

them. It is a characteristic of peephole optimization 

that each improvement may spawn opportunities for 

additional improvements . Thus, repeated passes over 
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the code are necessary to get the maximum benefit. 

Peephole optimization can be applied at both the 

intermediate and final code stages. 

1.1.5 Code Generation 

The code generator is the final stage of the compiler 

and usually incorporates the optimization algorithms. 

This phase produces machine code directly, and is 

therefore the non-portable component of a compiler. 

To promote portability and decrease the complexity of 

the translation algorithms, the code generation phase 

in a modern compiler is usually written as a completely 

separate module. Communication with the more easily 

transportable parts of the compiler is by means of a 

clearly defined set of intermediate codes. 

p~gg~~~ ______ ~>~ITRANSLATOR~I------~>~INTE~~~~IATE 

The compiler writer then has the option of either 

interpreting the intermediate codes, or of converting 

them to machine code. 

1 
INTERMEDIATE I I EFFECT OF 

CODE ------~~~INTERPRETER~----~'~EXECUTION 

INTERMEDIATE~ CODE ~MACHINE~LOADER ~EXECUTION 
CODE GENERATOR CODE 
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1.2 AUTOMATED CODE GENERATOR WRITING 

Recently. much interest has been shown in tools that reduce 

the effort needed to construct a good compiler. These go by 

names such as compiler-compilers, translator writing systems 

or compiler generators. 

To date, more work has been done on automating the front end 

of the compiler (possibly since this can be done without 

regard to target machine architecture) than the code 

generation end (which is target machine dependent) . 

Considerable success has been achieved , using mainly table-

driven analysis methods 
[7J 

towards making this aspect of 

compiler writing not only easier, but more reliable. It is 

easier to check that a grammar is an accurate syntax 

description than it is to check the implicit description 

embodied in the logic of a syntax analysis program. 

While less progress has been made in formalizing the code 

generation end of the compiler, a number of successful code 

generator synthesisers have been developed [14J - [21J 

The emphasis here lies in the portability or retargetability 

of the resulting compiler. 

In attempting to provide tools for automating code 

generation, most researchers have again turned to table 

driven methods. By using a table-driven syntax analyser, we 

can handle the analysis of a new language by giving a new 
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grammar to the table building program and then providing the 

new table to the analyser. Similarly, by presenting a 

description of a new target machine to the code generator's 

table-building program, we can retarget the code generator 

to produce code for the new machine. 

A portable C compiler has been developed at Bell 

Laboratories, M Hl.°ll [14] urray This compiler incorporates 

programs such as LEX, a lexical analyser generator, and YACC 

(Yet Another Compiler-Compiler), which generates parsers 

from an input specification language that describes the 

desired syntax, both well known to users of the UNIX [37] 

system. The code generator uses a table consisting of a 

collection of templates. Each template contains a pattern 

to search for in a previously generated intermediate program 

form. This demands a lot of work from the implementor, who 

must specify each template. The portable C compiler 

provides code of reasonable quality, and has been retargeted 

successfully on over a dozen machine types. 

Another table-driven code generator is under development at 

the University of California, Berkeley [15] [21] in which 

the templates are generated automatically, instead of being 

written by the implementor. The added generality is both a 

strength and a weakness. There is less work involved in 

developing a code generator using this tool, but it is 

claimed [15] that both the quality of the code generated and 

1 
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the speed of the code generator are significantly reduced 

when compared with the C compiler. 

An ambitious compiler-compiler project has been undertaken 

by a large 

University [16J 

group 

[19J 

of researchers at Carnegie-Mellon 

The goal of this project is to develop 

a compiler-compiler that is capable of producing high-

quali ty optimizing compilers from formal machine and 

language descriptions. Known as the PQCC (Production-

Quality Compiler-Compiler), this enormous project boasts 

good code that can be compared with that of a conventional 

code generator. 

A number of other fruitful investigations into compiler-

building methods are being conducted at various research 

institutes around the world. A recently revised 

bibliography of the subject has been published by Ganapathi 

and Fisher [20J 

Because of the complexity of generalizing the mapping from 

source language to target machine, and the need for 

efficiency of various kinds, code generator synthesisers are 

large, complicated programs. Consequently, the person who 

develops a code generator using one of these tools 

invariably needs to be a code generation specialist himself. 
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1.3 WHY ANOTHER MACHINE-INDEPENDENT CODE GENERATOR? 

All the code generator generators studied in the l ite rature 

satisfy, to varying degrees, the aims of the ir authors. 

Without exception, they reduce the amount of work required 

in developing new compilers or transporting existing 

compilers to a new system . However, they a r e also, without 

exception, large programs. Very few code generator 

synthesis e r s can be run on any machine smaller than a 

mainframe. In addition, all the systems studied require of 

the implementor some knowledge of code generation and 

optimization techniques. 

At Rhodes University, microcomputers of various manufacture 

are widely used. The most popular operating system is the 

UCSD p-System, which interprets its object programs. Since 

most undergraduate students spend far more time compiling 

their programs than running them, the slow interpreter does 

not prove to be a handicap. However, interpretation becomes 

an impeding factor if new systems programs are developed on 

the UCSD p-System. An example of such a systems program is 

the CLANG compiler [23J developed at Rhodes University on 

the UCSD p-System. The en tire compiler is interpreted and, 

since the CLANG system also interprets the codes it 

produces, the effect of executing object programs is 

accomplished by two levels of interpretation. An obvious 

gain in speed would be achieved if at least one (but 

preferably both) of the levels of interpretation was 
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replaced by direct execution. 

Since new machine architectures are acquired from time to 

time, a transportable compiler would also reduce the amount 

of effort needed by supervisors and teachers before students 

could write programs in familiar languages on new sys tems . 

A project was undertaken at Rhodes University to write a 

system 

both 

of programs which would generate code generators for 

large and small computers. The resultant code 

generators would take their input from parsers which produce 

some suitable form of intermediate code. At the same time, 

an attempt was made to satisfy the following criteria: 

1. the code generator should be up and going in a 

reasonably short time, and 

2. the person developing the code generator would not have 

to be a specialist compiler writer. In fact, a sound 

knowledge of the target machine's architecture and 

associated assembler language should be sufficient. 
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1.4 OUTLINE OF THE REMAINDER OF THE THESIS 

Much of the work described in this thesis is of a highly 

technical nature, and it becomes difficult, if not tedious, 

to discern the intent from the details. Accordingly, the 

remainder of this report is divided into three sections. 

The first describes the system in fairly broad detail, gives 

an example of an actual system produced, and discusses 

briefly refinements which have been made to the system in 

the closing stages of the project. The second describes how 

the system might be used to construct further code 

generators, both like that described in the first section, 

and for other architectures. The third and most technical 

section has, due to its bulk, been confined to a set of 

appendices. This section discusses implementation details 

of the system, which will be of interest only to those 

wishing to extend its basic philosophy . Code for all 

programs appear with the implementation details in the 

appendices. 



PART % 

INTENT 
AND 

ACCOMPLI SHMENT 
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2. OVERVIEW OF THE THE GENERALIZED CODE GENERATOR 

Faced with the major problem of trying to des i gn a truly 

general machine representation, it was decided that code 

optimization would have to be sacrificed in the interests of 

ease of use. The most successful retargetable compilers have 

been those with minimal processing at the code generation 

stage, while the most successful optimizing compilers have 

been designed around a particular target machine. A 

general compiler can achieve both goals only if it relies on 

the compiler writer to provide the optimization information. 

The system to be described consists of two definition 

programs, and a general table-driven code generation 

program. 

MACHINE 
DEFINITION 
PROGRAM 

Table of 
word and 

instruction 
formats 

CODE-SKELETON 
DEFINITION 

PROGRAM 

CODE 
GENERATION 

PROGRAM 

Object 
program 
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This system has been written for use with any parser which 

produces intermediate codes which are effectively machine 

instructions for a hypothetical stack machine [11] [12J 

[23J Two parsers of this type have been used to test the 

code generator . One for a relatively simple system [23 J, 

a system similar to the Pascal p4 the other for 

compiler C39J. Other forms of intermediate codes, such as 

three-address codes 
[7] 

require slightly different 

assumptions, but the notation described below should prove 

effective for these codes as well without major alteration. 

2.1 THE MACHINE DEFINITION PROGRAM 

This table construction program takes as input a description 

of the target machine. The nature of the description 

differs considerably from the corresponding table 

construction programs of other well known compiler-

compilers. All table-driven code generators demand certain 

details of the target machine, notably the bit - patterns of 

instruction opcodes. Several well known products, for 

example the Berkeley project [15J [21J, require details of 

the way in which registers are designated and the selection 

strategy to be used in allocating registers and in choosing 

which ones to save and re-use if there are not enough . 

Since these projects attempt to reorder computations to 

produce a smaller object code, other parts of the machine 

description indicate which operators are commutative and 
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whether frequently - used constants are given permanent 

register or memory storage . The code generator described 

in this thesis is d r iven by a template matching algorithm 

and, since the compiler - writer is required to define the 

templates, the criteria for using registers, constants and 

operands are decided by him , not by a program. In place of 

this information , the table construction program of this 

thesis collects details of assembly mnemonics which are used 

to write the templates . 

2.1.1 Overview of Machine Instruction Formats 

Although computer processors vary greatly in arch i tecture, 

t hey do not disag r ee in their underlyi ng principles so 

widely as to detrac t from a concept of code retargetability. 

I n particular, all processors are capable of recognising a 

binary pattern as representing a particular operation, and 

of producing the effect o f that operation. 

To realise a retargetable code generator, one must be able 

to produce a set of instructions (the bit patterns) which 

the processor will recognise . This involves knowing such 

information as the length of each bit pattern and its value . 

In addition, if one is to allow non-sequential flow of 

control, one needs to know how many bits there are in the 

machine's smallest addressable unit . This enables an 

accurate Pr ogram Counter to be maintained, and consequently, 
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jumping and looping instructions to be produced correctly. 

All machine level instructions must contain an operation 

code, or opcode for short, which indicates what action is to 

be performed. In addition, many instructions contain, or 

specify the location of, data used by the instruction. The 

fields used to specify data are known as operand or argument 

fields. These operand fields may be immediate data, the 

address of the data, a register name or the addressing mode 

which the instruction is to use . 

OPCODE IOPCODE 

(a 1 ) (a
2 

) 

\OPCODEI OPERAND IOPCODE I OPERAND 1 I 
(b 1 ) (b 2 ) 

IOPCODEloPERAND 110PERAND 2 lop CODE IOPERAND 1 IOPERAND 21 
( c 1 ) (c 2 ) 

On some machines, all instructions have the same length; on 

others, there may be several lengths. Moreover, 

instructions may be shorter, the same length as , or longer 

than the word (i . e. smallest addressable unit) length. 

Within a particular instruction length, various instruction 

formats may exist . Opcodes and operand fields may vary both 

in number and length. 

In attempting to design a truly general definition for an 
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instruction, taking the enormous variety of possible 

instruction formats into account, a bit-by-bit definition 

appears to be the only solution. 

2.1.2 A Notation for describing Instruction Formats 

A notation has been developed for describing an instruction 

in terms of its length and the number and width of its 

fields. Each field is described by an alphabetic letter, 

which is repeated as many times as there are bits in the 

field. For example, an instruction format 

16-bits 

I 

OPCODE OPERAND OPERAND 

'~ _______ .~ ____ -J'~' ___ .~~I~' ___ .~~ 

8-bits 4-bits 4-bits 

might be defined as 

FFFF FFFF AAAA BBBB 

F represents a field which is eight bits wide. 

represent fields which are each four bits wide. 

A and B 

Spaces may 

be inserted for clarity and are ignored. The choice of 

alphabetic letter is completely arbitrary, but must be 

unique for the instruction in question. 

Most processors have a small number of unique instruction 

formats, typically between 3 and 15. Several individual 
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instructions may share the same format. All the fields will 

agree in number and width, but the operand field will 

contain a different binary pattern for each instruction, 

representing a different operation. The size of the 

instruction set differs from computer to computer, typically 

within the range 60 to 300 . 

2.1.3 Input for the Machine Definition Program 

The machine definition program allows a user to define all 

formats for a particular architecture (termed word formats 

for the purpose of this program) in the notation already 

descr i bed. Individual instructions may then be defined 

which conform to one of the word formats. This prevents 

unnecessary typing and reduces errors. 

The aim of the machine definition program is to produce a 

set of instruction mnemonics which agree as closely as 

possible with those with which an assembler programmer of 

the target machine will be familiar. 

Each instruction's definition must include the name, or 

mnemonic, by which the instruction will be known. The 

mnemonic is really representative of the binary patterns of 

the opcode fields (there may be more than one opcode field). 

Therefore the implementor is also required to furnish the 

name (this will be a character which marks the position of 
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the field in the word format description, for example F, A 

or B) and value of the field (or fields) which will be 

representative of the instruction mnemonic. 

Any remaining fields are regarded as argument (operand) 

fields. These fields will also eventually contain a binary 

pattern, but their values are only f illed in when the 

instruction is used during the code-skeleton definition 

phase. In 

information 

the meantime however, the program collects 

about valid actual values for each argument 

field. The user is required to specify the valid binary 

range (positive binary, 2 's complement or restricted range) 

for the field, so that errors may be trapped when the 

instruction is used. Alternatively, the user may choose an 

"unrestr i cte d " range to indicate that no validation is to be 

performed on a particular field. 

In the interests of making the instructions r esemble an 

assembler format as closely as possible, the user is able to 

define a set of non-numeric symbols which will be used to 

represent numeric values in an argument field . Thus one is 

ab l e to refer to a register by its name, rather than by its 

numeric value. Memory addresses, too, may be replaced by 

alphabetic names representing an address. 

readability i s improved for code segments 

calls to run-time subroutines. 

In this way, the 

which perform 

To emulate the assembly format even further, the user is 
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asked to specify valid separating characters which will 

precede each argument. 

Finally, the user must specify the order in which the 

arguments are to appear in the assembly-like version of the 

instruction. This is important for ensuring correct 

validation. 

2.1.4 An Example 

The best explanation of this notation might be by means of 

an example. Let us define the 8080 assembler instruction 

MVI reg, immed iate value 

This is a two-byte instruction of the form: 

Byte 1 : 

Byte 2 : 

00RRR110 where RRR is a three-bit 
value representing one 
registers 

B -> 000 
C - > 001 
D -> 010 
E -> 011 
H -> 100 
L -> 101 
M - > 110 
A -> 111 

integer 
of the 

an immediate value in the positive integer 
range 0 .. 255. 
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The definitions required to record this instruction are: 

(a) Define the word form: 

Word format number: 

Description: Immediate instruction 

Format: FF RRR GGG 1111 1111 

The fields are specified by distinct alphabetic 

letters, one for each bit. 

(b) Define an instruction which uses the format description 

of (a) above: 

Instruction uses word form number: 

Mnemonic which will represent instruction: MVI 

Field to associate with mnemonic: F 

Value of mnemonic field: 00 

Another field to associate with mnemonic: G 

Value of this field: 110 

Legal values for argument field R: 0 .. 7 

where 0 is represented by the symbol B 

1 is represented by the symbol C 

7 is represented by the symbol A 

Separator to precede argument field R: space 

1 
Argument position for field R: 

Legal values for argument field I: o .. 255 

Separator to precede argument field I: space 
or comma 

Argument position for field I: 2 
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(Both definitions are required unless definition (a) has 

already been entered to describe a previous instruction of 

the same format, in which case only (b) is necessary). 

In this way, target machine instructions are defined for use 

in later stages of the system . When an instruction such as 

MVI A,25 is used, 

1. 'MVI' fills in the f i elds associated with the mnemonic 

F F R R R G G G I I I I I I I I 

2. 'A' fills in the field associated with the first 

argument (symbol A represents the value 7) 

F F R R R G G G I I I I I I I I 

3 . '25' fills in the field associated with the second 

argument 

F F R R R G G G I I I I I I I I 

Thus it can be seen that the machine definition program 

essentially provides the information for a table-driven 

assembler for a particular target machine. 
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2.1.5 Defining Specific Machines 

The Machine Definition Program has been thoroughly tested on 

the Z-80 based North Star Advantage computer. The example 

in chapter 3 shows a machine definition for this computer 

using 8080 assembly mnemonics and bears witness to the fact 

that al l aspects of the 8080 assembly language can be 

implemented using the current machine definition program. 

Implementing a compi ler on the 8080 processor has the 

advantage of showing up a "worst case" condition. The 8080 

is probably one of the simplest processors available which 

can still be classed as a computer and its deficiencies at 

the conventional machine level place extra effort on th e 

assembly level programmer. As one moves up the scale 

towards more powerful computers, the effort required to 

implement an assembly level system decreases . Time 

efficient routines become less important as processors get 

faster, increased memory size relieves the problem of 

overlaying, and other additional features, such as special 

types of registers and float ing -point hardware, take the 

place of soft routines. In this particular case, however, 

the 8080 example does have a disadvantage in that, since the 

8080 langu age mnemonics are very simple (e . g. each opcode 

has only one true addressing mode), it does not show up some 

of the deficiencies of the notation described in this 

thesis. The examples below are intended to illus tra te the 

application of the notation to other assembler languages. 
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In contrast to the 8080 assembly language, the PDP-11 series 

of computers has a highly sophisticated assembly language, 

called MACRO-11 [31J. Instructions are 16, 32 and 48 bits 

long. Although the smallest addressable unit is the byte, 

the word (two bytes) is addressed at all times, so that only 

even addresses are allowed . The PDP-11 uses an expanding 

opcode scheme. What appear to be 32- and 48-bit 

instructions are actually 16-bit instructions followed by 

one or two data words. What makes this assembly language so 

powerful are its advanced instruction formats and addressing 

techniques. Source and destination fields generally contain 

two sub-fields, one specifying the addressing mode and the 

other specifying the address (e.g. a reg ister name ). By way 

of an example, consider the MOV instruction: 

16 bits 
. 

I 

source source destination destination 
MOV mode register mode register 

M R N D 

4 3 3 3 3 

The 3-bit register fields take on one o f the values 0 to 7 

to represent one of the 16-bit gene r al registers R0, R1, R2, 

R3, ... , R7. The 3-bit mode field also takes on a value in 

the range 0 to 7 to represent one of t he following 

addressing modes: 



MODE ADDRESS 

o Register Addressing 
Operand i s in R 

2 

3 

4 

5 

6 

7 

Register Indirect 
R points to the operand 

Autoincrement 
R is used to point to the 
operand and is then 
incremented 

Autoincrement indirect 
R is used to point to the 
operand address and is 
then incremented 

Autodecrement 
R is decremented, then used 
t o point to the operand 

Autodecrement indirect 
R is decremented, then used 
to point to operand address 

Indexing 
operand address = contents 
of R + 16-bit offset 
in next word 

Indexing & indirect 
pointer to operand address 
= contents of R + 16-bit 
offset in next word 
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EXAMPLE 

Move R3 to R4 
MOV R3,R4 

-33-

Move memory word pointed 
to by R3 to R4 
MOV @R3,R4 

Move memory word pOinted 
to by R3 to R4 and add 2 
to R3 
MOV (R3)+,R4 

Move to R4 the memory 
word addressed by the 
word R3 points to; add 
2 to R3 
MOV @(R3l+,R4 

Decrement R3 by 2, then 
load R4 from the address 
R3 points to 
MOV -(R3) ,R4 

Decrement R3 by 2, then 
load R4 indirectly from 
the address R3 points to 
MOV @-(R3),R4 

Load R4 with the memory 
word at (R3) + 24 
HOV 24(R3) ,R4 

Load R4 with the memory 
word pointed to by word 
(R3) + 24 
MOV @24(R3),R4 

The word format description for this instruction is straight-

forward: 

FFFF MMM RRR NNN DDD 

Field F will be associated with the mnemonic and will have 

the value 0001. The register fields, Rand D, can both be 

defined as taking on the symbolic names of t he registers. 



"R0" represents the value 000 
"R1" represents the value 001 
"R2" represents the value 010 

"R7" represents the value 111 
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However, specifying the mode fields presents a problem. Let 

us ignore modes 6 and 7 for the mean time, and assume we can 

define the mode fields using the symbolic names: 

" " represents the value 000 
II @" represents the value 001 
"+1f represents the value 010 
"@+" represents the value 011 

" - " represents the value 100 
H@_" represents the value 101 

Using our defined instruction, the examples for modes 0 to 5 

will be written: 

0 MOV R3, R4 
1 MOV @ R3, R4 
2 MOV + R3, R4 
3 MOV @+ R3, R4 
4 MOV - R3, R4 
5 MOV @- R3, R4 

We can make these instructions look more like the MACRO-11 

originals by defining the characters "(,, and "),, as the 

appropriate separators, so that they may also be included in 

our instructions. However, the problem of splitting a 

symbol (as mode 3 requires), @(R3) + instead of @+(R3), 
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cannot be solved using the current notation. In addition, 

the argument position must be the same for all versions of 

the instruction, forcing mode 2 to position the mode before 

the register, +(R3), instead of the more realistic (R3)+. 

Both these problems can be overcome by defining these non-

conforming addressing modes as separate instructions. 

However, this would still require some unique identifying 

feature, e.g. using a different instruction mnemonic might 

allow mode 3 to read: 

MOVAI @(R3l+, R4 

The above mentioned problems are easily solved (at the 

expense of a tedious definition) by grouping the mode and 

register fields together as a single 6-bit field. 

MOV ssssss DDDDDD 

4 6 6 

6 where each argument field may take on one of 2 symbols: 

tlR0" 
"R 1 H 

"R7" 
"@R0" 

"@R7" 
"(R0)+" 

represents the value 
represents the value 

represents the value 
represents the value 

represents the value 
represents the value 

000 000 
000 001 

000 111 
001 000 

001 111 
010 000 



"@(R0)+" 

"-(R0)" 

"@-(R0 ) " 
"@-(R1)" 

represents the value 

represents the value 

represents the value 
represents the value 

011 000 

100 000 

101 000 
101 001 
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This definition allows our defined instruction to imitate 

the original PDP -11 assembly language exactly. 

Modes 6 and 7 call for expanding opcodes. Since the current 

notation is not designed to handle this feature, a solution 

to this problem cannot be found which matches the original 

assembly language instruction. Thus a separate MOV-INDEX 

instruction will have t o be defined. 

The COMPASS assembly language of the CDC CYBER 

processors [32J also presents an interesting 

series 

case . 

of 

The 

smallest addressable unit on these machines is the 60 - bit 

word and address fields are up to 17 bits in length. The 

Cyber has three instruction lengths: 15, 30 and 60 bits. 

Thus it is possible to squeeze several instructions into a 

single word. This presents no problem as far as the 

transportable code generator is concerned , since the CDC's 

decoding microcodes will unpack t he instructions in the 
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appropriate way. However, instructions may not be split 

across word boundries . This restriction demands that that 

the no-operation instruction (this 15-bit NO instruction has 

the octa l code 46000) be used within code skeletons to pad 

unused bits at the end of a word. Alternatively , the code 

generation program could be tailored to emit padding bits 

where necessary. 

The CDC assembly leve l instructions also include some unique 

addressing features. For example, when a memory address is 

put into the 18-bit register Al, the contents of that 

address are automatically loaded into the 60-bit register 

Xl. However, the assembly language mnemonics for these 

instructions are very basic and are easily implemented using 

the machine definition program. Fo r example 

SA 1 25 

will set register Al to 25, thereby loading the contents of 

word 25 into register Xl. 

Finally, the ICL 1900 assembly language, PLAN [33J, shows up 

the system's behaviour for instruction mnemonics which use 

fixed formats. A normal 24-bit ICL 1900 instruction has the 

format: 

XXX FFFFFFF MM NNNNNNNNNNNN 

3 7 2 12 



CHAPTER 2 - 38-

The assembly language allocates specific fields to fixed 

columns in the source language input line. 

Columns 1 to 6 
Columns 7 to 12 
Columns 13 to 15 
Columns 16 to 72 

= Label field 
= Opcode field 
= Accumulator field 
= Operand field 

The name of a register used for indexing (termed "modifier" 

in ICL jargon) may optionally follow the operand address 

enclosed i n parentheses. For example, add to accumulator 7 

the word at address [3027 + contents of index register 2J: 

7 

ADX 

13 

7 

16 

3027(2) 

The order of operands as mapped onto the machine instruction 

is: 

7 

F 

13 

x 

16 

N(M) 

The machine definition program imposes a free format on the 

assembly language, forcing the user to declare his 

separation characters or use the space character as a 

separator. However , the basic structure of the ICL PLAN 

language is maintained as long as at least one space is 

typed between the mnemonic, accumulator and operand fields, 

and as long as the user declares the parentheses about the 

modifier field as separators . Since blanks are ignored, 

the user is still able to type the instructions in fixed 

format if he so wishes. 
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2.2 THE CODE-SKELETON DEFINITION PROGRAM 

The table driven code generator of this thesis uses the 

template-matching idea of Bell Laboratories' portable C 

compiler [14J The nature of the templates are somewhat 

different from those of the C compiler. The front end of 

the portable C compiler produces an intermediate form which 

is a tree structure (termed the Abstract Syntax Tree [7J). 

The tree structure makes it easy to distinguish operands 

(leaf nodes) and operators (internal nodes), and to vary the 

order in which the computation is performed. Temporary 

values (at the internal nodes) are stored in registers and 

register allocation algorithms are needed. The code 

generator uses a table containing a collection of templates. 

Each template contains a pattern to search for in the tree. 

The templates for the code generator described in this 

theses are far simpler. They are written in the assembler 

notation of section 2.1 and, since the intermediate code 

used in this case is very similar to machine code, simply 

take the place of the intermediate code. The program 

described in this section is a table driven assembler/editor 

which constructs the table of templates. 

A number of compilers exist which produce 

as their output, notably some well known 

assembler language 

C compilers [41J 

[42J • While certain features of the code generauon system 

are similar in concept to this type of compiler, the 

1 
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output of a synthesised code generator is final machine 

code, and its advantage over such compilers lies in its 

retargetability and the absence of an assembly stage in the 

final compilation sequence. 

2.2. 1 Intermediate Codes 

"Intermediate codes for a hypothetical stack machine" are 

machine - like function codes for a make-believe computer 

whose primary data structure is a stack. This is not to say 

that a machine could not be built to directly execute such 

codes. Certain models of Burroughs computers and the 

Western Digital Micro Engine (which is microcoded to execute 

UCSD p-Code, 

microcoded to 

level 3) are examples of machines which are 

do this. However, in real machine terms, 

intermediate codes of this type tend to be rather powerful. 

Most conventional machine level instructions specify the 

movement of one item of data, or a single operation on one 

or two items of data. Since many intermediate codes for a 

hypothetical machine originated for the express purpose of 

being in terpreted (i.e. simulating the action of the machine 

by means of a piece of software), they incorporate fewer 

design constraints than their microprogram controlled or 

sequential logic hardware controlled counterparts. It is 

not difficult to write an interpreter which can perform 

several move and arithmetic/logic operations as a single 
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pseudo-operation. 

In addition, intermediate codes tend to be designed around 

the language of the source program. Thus the set of 

intermediate codes for a Pascal compiler might include a 

CALL code, which sets up a procedure stack frame entry on 

the stack so that recursion might be implemented before 

jumping to the code for that procedure; on the other hand, 

a set of intermediate codes for a Forth system might include 

a DEF code to create a dictionary entry for a new defined 

word. At a lower level, however, a piece of processing 

hardware must be designed to execute programs written in a 

wide range of source languages; so in the interests of 

generality, its machine leve l instructions need to be kept 

simple. 

Although most intermediate codes take their operands from 

the stack, it is sometimes more convenient for an argument 

to be included, in much the same way as some opcodes in a 

conventional processor require operands. As an example, an 

intermediate code to perform a conditional jump 

JMPF Y 

might be interpreted as 

if TOS = FALSE then PC ._ Y 

pop (TOS) 
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Each intermediate code may take zero or more arguments (the 

current implementation allows a maximum of 2), whose values 

are known at code generation time. 

2.2.2 Conversion of Intermediate Code to Machine Code 

For the reasons above, a one-to-many mapping is usual when 

writing conventional machine code segments to produce the 

same effect as a single intermediate code. 

SEVERAL 
INTERMEDIATE CODE---'''~I TRANSLA TION 1-1 -----' •• MACHINE 

INSTRUCTIONS 

For example, suppose an intermediate code STO stores the 

value at the top of the stack (TOS ) in the memory location 

whose address is at TOS-1 (next from top). 

STACK 

TOS-1 address 

TOS value • - - - ..... .... 

" MEMORY \ 
LOCATIONS t STO 

J 
+ I I ... 

-- - -
address - I 
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A code segment written in 8080 assembler code to produce the 

effect of STO might be: 

POP D get value 
POP H get address 
MOV M,E store low order byte 
INX H increment address 
MOV M,D store high order byte 

The body of machine instructions, which produces the same 

effect as the intermediate code, is called a code-skeleton. 

The code - skeleton definition program is the combination of 

an editor and an assembler . It allows the user to define a 

code - skeleton for each of the intermediate codes using 

conventional assembler mnemonics . 

As each code skeleton is entered, it is checked against the 

table of word and instruction formats for validity. Help 

messages and meaningful error diagnostics are constantly 

available, making this an easy program to drive. 

The user is able to perform the usual types of editing 

operations on his code skeletons. The editor is essentially 

a line-at-a-time editor, which performs operations on the 

"current" instruction. Control keys are available for 

listing the entire code skeleton, printing the current code 

skeleton, stepping through the code-skeleton either forwards 
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or backwards, jumping to the top of the code skeleton, and 

deleting and inserting instructions. 

2.2 . 3 Enhancements 

If several code skeletons use a similar instruction 

sequence, then the implementor can make use of a facility 

which exists for writing run - time subroutines. These are 

really just code- skeletons which have a name associated with 

them. They will be included only once in the object 

program, and can be called from any code-skeleton, simply by 

including a referencing ins~ruction with the name of the 

run-time subroutine as its address argument. 

In addition, 

be written, 

a number of standard run-time subroutines must 

usually as part of the loader (s ee chapter 4), 

and included in every program. These are subroutines for 

performing very common operations such as input/output, 

arithmetic and logic operations, and standard function 

calls. A number of reserved names represent these run-time 

subroutines, and are recognised when used in the address 

field of a referencing instruction. 

Finally, it is necessary to be able to define memory 

addresses relative to some other address values known at 

compile-time. For example, the reserved name PC represents 

the code-generation time address of the current instruction. 
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Reserved names also exist to represent the values of the two 

arguments which an intermediate code might have. Table 

8.2.1 and its associated text provide more information on 

this aspect. 

These reserved and user-declared subroutine names are the 

only valid non-numeric values which may appear in an address 

field. They may optionally be followed by a "+" or "-" sign 

and a numeric value, to represent an address (or value) 

relative to .the value represented by the given name. The 

numeric offset is in "smallest addressable units". 

For example, the following code skeleton reads a positive 

integer: 

CALL IREAD Call run-time subroutine 
POP D Get result of read 
PUSH D but leave a copy on the stack 
MOV A,D Test result < QJ 

ANI 128 Set zero flag if sign-bit off 
JZ PC+6 Cond jump to current PC + 6 bytes 
CALL ERR Report an error 

Here IREAD is a reserved run - time subroutine name (see table 

8.2.1) and ERR a user defined run-time subroutine skeleton, 

whose actual addresses will be filled in at code generation 

time. PC will be the current instruction address, not known 

at code-skeleton definition time, but only at code 

generation time. 

Code-skeletons are represented in such a way that they can 
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be relocated to any address in memory, and are stored on a 

disc file for use by the code generator. 

It can be seen that the user defining the code generator 

merely has to be able to write an assembly language code 

sequence to produce the desired effect of each in termediate 

code. 

2.1.4 Code-Skeletons on Specific Machines 

Since both the PDP-11 and the 8080 computers have built-in 

stack facilities, they are ideal target machines onto which 

to map intermed iate codes for a hypothetical stack machine. 

However, non stack - oriented machines, such as the ICL 1900, 

show up some inhibiting features. This does not mean t ha t 

it is impossible to write code-skeletons to produce the 

effects of the intermediate language codes on this machin e , 

the implementation will just be a little more clumsy than it 

is on stack-oriented machines. 

On the ICL 1900, words are 24 bits long. To implement a 

stack for pushing and popping single length words, one might 

designate one of the registers to point to the top of the 

stack. The most convenient method might be to set aside one 

of the index registers. Let us use register 3 (denoted X3), 

and make use of indexed addressing to refer to the stack. 

Assume that the stack begins at the address stored in STKBOT 
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(used to test for underflow) and moves upwards in memory 

towards higher addresses. At the start of execution, X3 

should be set by the instruction LDX 3 STKBOT. 

i 
STACK 

0(3) X3 

4--STKBOT 

The push instruction would have to be implemented as: 

7 

STO 
ADN 

13 

6 
3 

16 

0(3) 
1 

[ push x6 
[ increment SP 

and the pop ins truction would be: 

1 

The ICL 

deserves 

7 

LDX 
SBN 

13 

6 
3 

16 

0(3) 
1 

[ pop x6 
[ decrement SP 

1900 shows up another addressing feature which 

special mention. The normal instruction form 

described in section 2.1.5 has a 12-bit address field. 

I XXX F'FFFFFF MM NNNNNNNNNNNN 

3 7 2 12 

1 
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This restricts the direct addressing to memory locations 

below address 4096 only (the first 45 of which are reserved 

by the ICL 1900 operating system for use as registers and 

work space). Higher memory locations must be addressed 

using index registers. 

TOP OF 
MEMORY 

4096 
4095 

45 
44 

I CL 1900 
reserved 

words 

. 

address using 
index registers 

} 
directly 
addressable 

Indexed addressing turns out to be useful for implementing 

procedure stack frames. One s i mply sets an index register 

to the address of the bottom of the stack frame and uses an 

absolute offset to reference each word. For example 

3 ( 1) parameter 3 

2 ( 1 ) parameter 2 

1 ( 1 ) parameter 1 

0(1) return address .. X1 
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However, having to use some indirect addressing method to 

access ordinary variables can become costly. 

The ICL 1900 places another restraint on the size of 

executable code, by the format of its branch instructions . 

I XXX I FFFFFF NNNNNNNNNNNNNNN 

3 6 15 

Since the address field of the branch instruction contains 

an absolute address, a 15-bit field means that the 

executable code should not extend beyond address 32767 (An 

extended branch mode is, however, available). 

Wher eas the generalized code generator described in this 

document favours a processor which can address all memory 

locations with equal ease, a more efficient run-time system 

could be produced for the ICL 1900 series if data were 

stored below address 4096, code below address 32768, and 

procedure stack frames in high memory. It should be 

stressed that a viable code generator could be developed for 

an ICL 1900 computer using the code generator synthesiser, 

but it would not be able to match the efficiency of a 

tailor-made compiler. Fortunately, most modern computers 

are able to address all their memory (wi th in reasonable 

limits) with equal ease. 
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2.3 THE CODE GENERATION PROGRAM 

This program s i mply replaces a sequence of intermediate 

codes by their respective code skeletons, relocating the 

skeletons in memory, and filling in addresses known only at 

code generation time . Because this is a relatively simple 

process, the code generation time is short. 

A few simple optimizations are included at present, but for 

the reasons already mentioned, these are not extensive. 

2.4 WHEN TO USE THE PROGRAMS 

To implement any compiler using the machine -independent code 

generator , one has to run the machine definition program 

first. It should only be necessary to run this program once 

for a new computer. Subsequent runs might be necessary to 

debug the instruction definition table or to add new 

definitions to the table. Since some machine instructions 

have more obscure uses than others, one might init i ally use 

only a subset of the target machine's instruction set to 

implement a new compiler. 



CHAPTER 2 -51-

Once the machine definition table has been established, the 

implementor will run the code - ske l eton definition table once 

for each compiler he wishes to implement on the target 

computer. Again, subsequent runs might be n ecessary to 

debug the code - skeleton t able or add new code - skeletons to 

the table . 

Whe r eas the previous t wo programs are run only once for a 

particular compiler implementation, t he general table - driven 

code generator (and its associated parser) is run every time 

a program is compiled . The output is a machine 

representation of the particular source program. 
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3. A SAMPLE IMPLEMENTATION 

This chapter describes the implementation of a code 

generator for the CLANG parser on an 8080 processor using 

the automated code generation system. Some knowledge of 

the CLANG intermediate language codes [23J and the assembly 

language and architecture of the 8080 processor [24J - [28J 

is assumed. Readers not familiar with these topics are 

advised to consult the references listed. 

3.1 THE CLANG LANGUAGE 

The CLANG language is a Pascal-like one used at Rhodes 

University as the basis of a course in compiler writing, and 

for testing the principles of concurren t programming. It 

exists as a set of subsets, of increasing complexity. The 

subset used here allows simple control structures (if-then-

else, while) nested procedure declarations, recursion, 

simple parameter passing by reference and by value, but 

supports integers, and arrays of integers, as its only data 

type. The higher facilities for data abstraction [23J have 

not been included at this stage. A sample program is given 

below in section 3.5. 

A CLANG Parser/Interpreter system has been written in Pascal 

and implemen ted on various machines, notably using UCSD 

Pascal, by P.D. Terry. The system was adapted to run under 

Pascal MT+ by the au thor, and a l i sting of the parser and 
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interpreter sections of this appears in full in Appendix E. 

3.2 THE MACHINE DEFINITION 

The following subset of the 8080 assembly instructions is 

required to produce the effect of the CLANG intermediate 

codes. 

Arithmetic: ADC r ADD r SBB r SUB r 
DCR r INR r 
DCX rp INX rp DAD rp 

Branching: CALL addr RET PCHL 
JMP addr JZ addr JNZ addr 

Log ica l: ANA r ANI i ORA r 

Data movement: MOV r,r MVI r,i LXI rp,i 
LHLD addr SHLD addr XCHG 

Stack: PUSH rp POP rp SPHL 

Miscellaneous: NOP 

where "r" is a register (A,B,C,D,E,H,L,M), "rp" is a 

regis ter pair (B, D ,H, PSW), "i" is an immediate value and 

"addr" a 2-byte address. 

The word and instruction definitions for these instructions 

are shown below (and more fully in the example of Appendix 

AS). Since the assembler mode of the skeleton definition 

program has no directive for setting aside a word of store 
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for use as data, the instruction, ASCII, has been defined as 

an 8-bit word which has the first bit always zero and 

subsequent bits variable. This enables the implementor to 

set aside a byte of memory and initialise it to the value of 

an ASCII character code. 

e.g. ASCII 65 for the character "A". 

ASCII is not used in the example below, but proved to be 

useful when implementing a code generator on the 8080 

processor for the enhanced Pascal-s [39J compiler (see 

chapter 6). Setting aside other areas of data within a 

code skeleton can be achieved using similar clumsy 

definitions. Assembler directives would be an obvious 

future enhancement to the system . 

Word Definitions 

1 . 8-bit register form FFFF F RRR 

2. 

3 . 

4 . 

5 . 

6 . 

7 . 

8. 

9 . 

8 - bi t move form 

Immediate move 

8-bit i mmediate 

3-BYTE form 

Double-reg form 

Inr-dcr form 

No - operand form 

3-BYTE double-reg 

10. ASCII byte fiddle 

FF RRR SSS 

FF RRR GGG 1111 1111 

FFFF FFFF 1111 1111 

FFFF FFFF AAAA AAAA AAAA AAAA 

FF DD GGGG 

FF RRR GGG 

FFFF FFFF 

FF DD GGGG AAAA AAAA AAAA AAAA 

o CCCC CCC 
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Instruction Definitions 

1. ADC Machine format: 10001 RRR 
Assembler format: ADC R 
Arg 1. field R: B ( 0 000 ) 

C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 100 ) 
L ( 5 101 ) 
M ( 6 110 ) 
A ( 7 , 1 1 1 ) 

2. ADD Machine format: 10000 RRR 
Assembler format: ADD R 
Arg 1 . field R: B ( 0 000 ) 

C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 100 ) 
L ( 5 101 ) 
M ( 6 110 ) 
A ( 7 , 1 1 1 ) 

3. ANA Machine format: 10100 RRR 
Assembler format: ANA R 
Arg 1. field R: B ( 0 000 ) 

C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 100 ) 
L ( 5 101 ) 
M ( 6 110 ) 
A ( 7 , 1 1 1 ) 

4 . MOV Machine format: 01 RRR SSS 
Assembler format: MOV R,S 
Arg 1 . field R: B ( 0 000 ) 

C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 100 ) 
L ( 5 101 ) 
M ( 6 110 ) 
A ( 7 , 1 1 1 ) 

Arg 2. field S: B ( 0 000 ) 
C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 100 ) 
L ( 5 101 ) 
M ( 6 110 ) 
A ( 7 , 11 1 ) 



5. ANI Machine format: 
Assembler format: 
Arg 1. field I: 

6 . CALL Machine format: 
Assembler format: 
Arg 1. field A: 

7. JMP Machine format: 
Assembler format: 
Arg 1. field A: 

8. JZ Machine format: 
Assembler format: 
Arg 1. field A: 

9 . JNZ Machine format: 
Assembler format: 
Arg 1. field A: 

10. DAD Machine format: 
Assembler format: 
Arg 1. field D: 

11. INX Machine format: 
Assembler format: 
Arg 1 . field D: 

12. DCX Machine format: 
Assembler format: 
Arg 1. field D: 

13. LHLD Machine format: 
Assembler format: 
Arg 1. field A: 

14. SHLD Machine format: 
Assembler format: 
Arg 1. field A: 
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11100110 11111111 
ANI I 
0 . . 255 (00000000 .. 11111111) 

11001101 AAAAAAAAAAAAAAAA 
CALL A 
NO ARGUMENT CHECKS (width=16) 

11000011 AAAAAAAAAAAAAAAA 
JMP A 
NO ARGUMENT CHECKS (width= 16) 

11001010 AAAAAAAAAAAAAAAA 
JZ A 
NO ARGUMENT CHECKS (width= 16) 

11000010 AAAAAAAAAAAAAAAA 
JNZ A 
NO ARGUMENT CHECKS (width =16) 

00 DD 
DAD D 
B 
D 
H 
SP 

00 DD 
INX D 
B 
D 
H 
SP 

00 DD 
DCX D 
B 
D 
H 
SP 

1001 

( 0 
( 1 
( 2 
( 3 , 

0011 

( 0 
( 1 
( 2 
( 3 , 

1011 

( 0 
( 1 
( 2 
( 3 , 

000 ) 
001 ) 
010 ) 
011 ) 

000 ) 
001 ) 
010 ) 
011 ) 

000 ) 
001 ) 
010 ) 
011 ) 

00101010 AAAAAAAAAAAAAAAA 
LHLD A 
NO ARGUMENT CHECKS (width =1 6) 

00100010 AAAAAAAAAAAAAAAA 
SHLD A 
NO ARGUMENT CHECKS (width=16) 
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15 . DCR Machine format: (/)(/) RRR 1 (/) 1 
Assembler format: DCR R 
Arg 1 . field R: B ( (/) (/)(/)(/) ) 

C ( 1 (/)(/)1 ) 
D ( 2 (/)1(/) ) 
E ( 3 , (/) 1 1 ) 
H ( 4 1(/)(/) ) 
L ( 5 1 (/) 1 ) 
M ( 6 1 1 (/) ) 
A ( 7 , 111 ) 

1 6 . INR Machine format: (/)(/) RRR 1(/)(/) 
Assembler format: INR R 
Arg 1 . field R: B ( (/) (/)(/)(/) ) 

C ( 1 (/)(/)1 ) 
D ( 2 (/)1(/) ) 
E ( 3 , (/) 1 1 ) 
H ( 4 1(/)(/) ) 
L ( 5 1 (/) 1 ) 
M ( 6 11(/) ) 
A ( 7 , 111 ) 

17. ORA Machine format: 1 (/) 1 1 (/) RRR 
Assembler format: ORA R 
Arg 1 . field R: B ( (/) (/)(/)(/) ) 

C ( 1 (/)(/)1 ) 
D ( 2 (/) 1(/) ) 
E ( 3 , (/) 1 1 ) 
H ( 4 1(/)(/) ) 
L ( 5 , 1 (/) 1 ) 
M ( 6 1 1 (/) ) 
A ( 7 , 1 1 1 ) 

1 8 . NOP Machine format: (/)(/)(/)(/)(/)(/)(/)(/) 

Assembler format: NOP 

19 . PCHL Machine format: 111(/)1(/)(/)1 
Assembler format: PCHL 

2(/). POP Machine format: 1 1 DD (/)(/)(/)1 
Assembler format: POP 0 
Arg 1 . field 0: B ( (/) (/)(/)(/) ) 

D ( 1 (/)(/)1 ) 
H ( 2 (/)1(/) ) 
PSW ( 3 , (/) 1 1 ) 

21 . PUSH Machine format: 1 1 DO (/)1(/)1 
Assembler format: PUSH 0 
Arg 1 . field D: B ( (/) (/)(/)(/) ) 

0 ( 1 (/)(/)1 ) 
H ( 2 (/)1(/) ) 
PSW ( 3 , (/) 1 1 ) 

22. RET Machine format: 11(/)(/)1(/)(/)1 
Assembler format: RET 
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23. SPHL Machine format: 11 11100 1 
Assembler format: SPHL 

24. XCHG Machine format: 11101011 
AsSembler format: XCHG 

25. SBB Machine format: 10011 RRR 
Assembler format: SBB R 
Arg 1. f ie ld R: B ( 0 000 ) 

C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 , 100 ) 
L ( 5 101 ) 
M ( 6 110 ) 
A ( 7 , 11 1 ) 

26. SUB Machine fomat: 10010 RRR 
Assembler format: SUB R 
Arg 1. field R: B ( 0 000 ) 

C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 100 ) 
L ( 5 101 ) 
M ( 6 11 0 ) 
A ( 7 , 1 1 1 ) 

27. MVI Machine format: 00 RRR 110 II II II II 
Assembler format: MVI R,I 
Arg 1. field R: B ( 0 000 ) 

C ( 1 001 ) 
D ( 2 010 ) 
E ( 3 , 011 ) 
H ( 4 100 ) 
L ( 5 101 ) 
M ( 6 110 ) 
A ( 7 , 1 1 1 ) 

Arg 2. field I: 0 .. 255 (00000000 .. 11111111 ) 

28. LXI Machine format: 00 DD 0001 AAAAAAAAAAAAAAAA 
Assembler format: LXI D,A 
Arg 1 . field D: B ( 0 , 000 ) 

D ( 1 , 001 ) 
H ( 2 , 010 ) 
SP ( 3 , 011 ) 

Arg 2. field A: NO ARGUMEN T CHECKS (width=16) 

29. ASCII Machine format: o CCCCCCC 
Assembler format: ASCII C 
Arg 1 field C: 0 .. 127 (0000000 .. 1111111 ) 
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3.3 CODE-SKELETON DEFINITIONS 

The level 2 CLANG parser generates 27 intermediate language 

codes, one of which is not used by the code generator (STK 

is used only in aiding students to understand the stack 

frame concept). Codes take zero, one or two arguments. 

The current Code-Skeleton definition program allows a 

maximum of two arguments per code, called X and Y. CLANG 

generally uses the first argument to indicate the level at 

which a declaration was made, and the second to indicate an 

address or offset. 

The CLANG pseudo-machine has a set of "display" registers, 

used to point to the most deeply nested procedure stack 

frame for a particular declaration level (useful in handling 

variable addressing) and a "base register", pointing to the 

base of the top stack frame on the stack. The most 

convenient method of implementing these pointers in the 

target program would undoubtedly be to use the processor's 

own registers. Unfortunately, the 8080 does not have 

enough register pairs for the implementor to dedicate some 

of them permanently to a particular task, so memory 

locations have to be used instead . In order to be able to 

refer to these memory locations by name, they are "defined" 

as run-time subroutines (simply a block of memory which has 

a name). 
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Run-time subroutine BASERE is a 2-byte pointer. 

BASERE: NOP 
NOP 

Run-time subroutine DISPLA allows a maximum declaration 

nesting of 5 (i.e. five 2- byte pointers) . 

DISPLA: NOP 
NOP 

DISPLA+2: NOP 
NOP 

DISPLA+4: NOP 
NOP 

DISPLA+6: NOP 
NOP 

DISPLA+8: NOP 
NOP 

Four more run-t ime subroutines are defined to be called f rom 

code - skeletons. 

GETDIS is called with a value X in the H-L register pair to 

return the value of the Xth display register in the D-E 

pair. 

GETDIS: DAD H X * 2 for 16-bit addressing 
LXI B,DISPLA 
DAD B + DISPLA 
MOV E,M get value from 
INX H DISPLA + (2*X) 
MOV D,M 
RET 
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ADDRCD is called after a call to GETDIS to use the display 

value in D-E and a displacement in H-L to calculate the 

address of a local variable. 

ADDRCD: DAD H 
DAD D 
RET 

* 2 for 16-bit addressing 
+ base address 
address in H-L 

STORE is a subroutine to store TOS (top of stack) value at 

TOS - 1 address. 

POP 
POP 
POP 
MOV 
INX 
MOV 
PUSH 
RET 

B 
D 
H 
M,E 
H 
M,D 
B 

return address 
get value 
get address 
store low order byte 
increment address 
store high order byte 
restore return address 

The last run-time subroutine, START, has a special 

initialization status. It stores the stack's first word in 

DISPLA[l] and BASERE. 

LX I D, - 2 D, E = -2 
LXI H,0 
DAD SP H,L = SP 
DAD D subtract 2 
SHLD DISPLA 
SHLD BASERE 

The CLANG Intermediate Language Codes (ILC's) are defined as 

follows: 

ILC 0: LIT Y push integer literal. 

LXI D,Y 
PUSH D 

; li teral Y 



ILC 1: 

ILC 2: 

LDA X Y 

LXI 
CALL 
LXI 
CALL 
PUSH 

CAL X Y 
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Push address of variable with level X, 
offsetY . 

H,X-1 
GETDIS 
H, YN 
ADDRCD 
H 

display value 
negative offset 
address of variable 

Call a procedure - set up a procedure 
stack frame and jump to the procedure 
code. X is the level and Y the 
address . 

H,X 
GETDIS 
BASERE 

LXI 
CALL 
LHLD 
XCHG 
PUSH H 

get old display 
in D- E 

get ' base reg ' 
store in D,E 
store old display 

LXI 
DAD 
SHLD 
PUSH 
XCHG 
LXI 
DAD 
LXI 
DAD 
MOV 
INX 
MOV 
LXI 
PUSH 
POP 
POP 
POP 

JMP 

H,0 
SP 
BASERE 
D 

H,X 
H 
B,DISPLA 
B 
M,E 
H 
M,D 
B,PC + 10 
B 
H 
H 
H 

YA 

SP now points to 1st entry on 
new stack frame . 
H, L = SP 

new base r eg 
o ld base reg 
SP value in D-E 
store SP value i n 

DISPLA + (2 * X) 

ge t return address 
onto stack 

reduce SP so that INT will 
increase i t by the 
correct amount in the 
called procedure . 

goto new procedure 



ILC 3: RT X Y 

LHLD 
LXI 
DAD 
SPHL 
POP 
POP 
SHLD 
LXI 
DAD 
LXI 
DAD 
POP 
MOV 
INX 
MOV 

LXI 
DAD 
SPHL 
XCHG 
PCHL 

ILC 4 : STK - not 

ILC 5 : INT Y 
LXI 
DAD 
DAD 
SPHL 

ILC 6: IND Y 

LXI 
PUSH 
LXI 
PUSH 
CALL 

POP 
DAD 
PUSH 
CALL 
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Return from a procedure 
frame. X is the level, 
number of words 
information ( = Y-1). 

- discard stack 
Y indicates the 
of parameter 

BASERE get 'base reg' 
D,-4 
D reduce base by 2 entries 

new value for SP 
D ret addr 
H back link 
BAS ERE reset current base 
H,X - 1 display address 
H 
B,DISPLA 
B (in H- L) 
B display copy 
M,C 
H 
M,B 

remove Y-1 parameters 
H,Y -1 
SP 

Return to the calling 
procedure 

implemented. 

Increment stack pointer by Y. 
H,YN 
H 
SP 

Evaluate 
variable. 
entries on 

D,0 
D 
D,Y 
D 

TOP 
TOP-1 : 

CHKSUB 

H 
H 
H 
ISUB 

16-bit words 
H-L = SP 
new value for SP 

address 
At this 

the stack 

of a subscripted 
point, the top two 
will be: 

subscript value 
address of 0th element. 

low bound is always zero 

Y- value gives upper bound 

Run time subroutine to check 
the range of the subscript 
Get subscript value 

and double it to allow for 
16 bit addressing 

Subtract subscript value from 
address of element zero - the 
array is stored on the stack 



ILC 7: BRN Y 

ILC 8: BZE Y 

ILC 9: NEG 

ILC 10: ADD 

ILC 11: SUB 

ILC 12: MUL 

ILC 13: DIV 

ILC 14: OD 
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Unconditional branch to Y. 

JMP YA 

Branch to Y if top of stack is ze ro. 

POP 
MOV 
ORA 
JZ 

D 
A,D 
E 
YA 

se t z -flag if both 0 
Issue branch order 

Negate top of stack. 

POP 
LXI 
PUSH 
PUSH 
CALL 

D 
H,0 
H 
D 
ISUB 

get integer 
H-L = 0 
o - IN TEGER 

in teger subtract 

Add top two integers on stack. 

CALL IADD ; call to monitor routine . 

Subtract top two integers on stack . 

CALL ISUB , call to monitor routine. 

Multiply top two integers on stack. 

CALL IMUL ; call to monitor routine . 

Divide top two integers on stack. 

CALL IDIV call to monitor routine. 

Replace TOS by 1 if it is odd , by 0 
otherwise. 

POP D get integer 
MOV A,E get low order byte 
ANI 1 retain only bit 0 
MOV E,A low order byte = 1 if 
MVI D,0 high order byte = 0 
PUSH D 

odd 



ILC 15 : EQL 

ILC 16 : NEQ 

ILC 17: LSS 

ILC 18 : GEQ 

Test top 
Return 1 

CALL ISUB 
POP D 
MOV A,D 
ORA E 
LXI D,0 
JNZ pc+4 
INR E 
PUSH D 

Test top 
Return 1 

CALL ISUB 
POP D 
MOV A,D 
ORA E 
LXI D,0 
JZ PC+4 
INR E 
PUSH D 

Test top 
Return 1 

CALL ISUB 
POP D 
MOV A,D 
ANI 128 
LXI D,0 
JZ PC+4 
INR E 
PUSH D 

Test top 
Return 

CALL ISUB 
POP D 
MOV A,D 
ANI 128 
LXI D,0 
JNZ PC+4 
INR E 
PUSH D 

1 
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two stack elements for equality. 
or Q) to indicate true o r false. 

subtract 
get result 

set z -flag 
does not alter z-flag 

set result to 1 

two elements for inequality. 
or 0 to indicate true or false. 

subtract 
get result 

set z-flag 
does not al ter z-flag 

set result to 1 

two elements for TOS-1 < TOS. 
or 

two 
or 

0. 

subtract 
get result 
test result < 0 
set z if sign-bit off 
does not alter z-flag 

set result 

elements 
o . 

subtract 
get result 

to 1 

for TOS-1 

test result < 0 

>= 

set z if sign-bit off 
does not alter z-flag 

set result to 1 

TOS. 



ILC 19: GTR 

ILC 20: LEO 

ILC 21: STO 

CHAPTER 3 

Test top two elements for TOS-1 > TOS. 
Return 1,0 

CALL 
POP 
PUSH 
MOV 
ORA 
LXI 
JZ 

POP 
MOV 
ANI 
LXI 
JNZ 
INR 
PUSH 

ISUB 
D 
D 
A,D 
E 
D,0 
PC+14 

D 
A,D 
128 
D,0 
PC+4 
E 
D 

subtract 
get result 
but don't destroy it 
first test for zero 
set z-flag 
does not alter z-flag 
return a 0 if equal 
now test the sign 

test result> 0 
set z if sign-bit off 
does not alter z-flag 

set result to 1 
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Test top two elements for TOS-1 <= TOS . 
Return 1,0 

CALL 
POP 
PUSH 
MOV 
ORA 
LXI 
POP 
JZ 

MOV 
ANI 
JZ 
LXI 
PUSH 

ISUB 
D 
D 
A,D 
E 
D,0 
H 
PC+9 

A,H 
128 
PC +6 
D, 1 
D 

subtract 
get result 
but don ' t destroy it 
first test for zero 
set z - flag 
does not alter z-flag 
does not alter z-flag 
return a 1 if equal 
now test the sign 
test result < 0 
set z if s i gn-bit off 

set result to 1 

Store TOS value at TOS-1 address. 

CALL STORE 

ILC 22: HLT Stop execution, return to operating 
system. For a CP/M based implementation 
this is just a "warm boot". 

JMP 0 



ILC 23: INN 

ILC 24: PRN 

ILC 25: NL 

ILC 26: PRS 

ILC 27: LDX 
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Read an integer value. TOS = address of 
variable for value to be read into . 

LXI 
PUSH 
CALL 
CALL 

D,0 
D 
IREAD 
STORE 

channe l 
value returned on stack 

Write out integer on TOS. 

POP 
LXI 
PUSH 
PUSH 
PUSH 
CALL 

H 
D,0 
D 
H 
D 
I WRTE 

get value 

channel 
push value 
field width =0 

New line on output. 

LXI 
PUSH 
CALL 

D,0 
D 
WRTLN 

Print a 
already 
followed 

LXI 
PUSH 
CALL 

D,0 
D 
STRWRT 

channel 

string. The characters 
have been pushed onto the 
by the string length. 

channel 

will 
stack 

Substitute Address on TOS with its value. 

POP 
MOV 
INX 
MOV 
PUSH 

H 
E,M 
H 
D,M 
D 

get address 
load low order byte 
increment address 
load high order byte 
resul t ant value 

3.4 THE CODE -G ENERATION DRIV ING TAB LE 

Once the definitions of sections 3.2 and 3.3 have been 

entered into the appropriate tables and stored on disc files 

and the loader and monitor routines (described in chapter 4) 
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have been written, the penultimate task of the implementor 

(the final task is to test the system thorough,ly) is to set 

up the table which drives the general code generator . The 

format of this table is detailed in section 9.3. The table 

may be set up using an editor or by running the program 

written for this purpose. 

For the CLANG system on the 8080 processor, using the 

monitor routines listed in Appendix D, the table would 

appear as: 

8080.MAC 
CLANG.SKL 
8 
4 
2 
4352 
259 
262 
265 
268 
271 
274 
277 
280 
283 
286 
289 
292 
295 
298 
301 
304 
307 
310 

(name of machine definition file) 
(name of code skeleton file) 
(bits in smallest addressable unit) 
(bits per digit in output file) 
(number of words in an address field) 
(initial PC = 1100 hex) 
(address of RTS WRTLN) 
(address of RTS IWRTE) 
(address of RTS FPWRTE) 
(address of RTS STRWRT) 
(address of RTS I READ) 
(address of RTS FPREAD) 
(address of RTS FLOAT) 
(address of RTS FIX) 
(address of RTS IADD) 
(address of RTS ISUB) 
(address of RTS IMUL) 
(address of RTS IDIV) 
(address of RTS FPADD) 
(address of RTS FPSUB) 
(address of RTS FPMUL) 
(address of RTS FPDIV) 
(address of RTS ERROR) 
(address of RTS CHKSUB) 
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3.5 A SAMPLE PROGRAM 

The program listed in table 3 . 5 . 1 might not appeal to the 

Pascal precisian, but it serves well in demonstrating some 

features of CLANG and its implementation. 

TABLE 3.5.1 

A SAMPLE CLANG PROGRAM 

{$O+ Compiler directive requesting object code li sting} 
program REVERSE; { Write a list of numbers in reverse} 
var TERMINATOR; 

procedure GO; 
var LOCAL; 

procedure REORDER; 
var D; 
beg i n 

READ(D) ; 
if TERMINATOR <> D then REORDER; 
WRITE(D) 

end; { REORDER } 

begin { GO } 
REORDER 

end; {GO} 

begin { REVERSE } 
TERMINATOR := 0; 
GO 

end . {REVERSE} 

The intermediate language code version of this program (as 

generated by the CLANG parser listed in Appendix E, which 

produces a file in the format required by the general code 

generator), is displayed in table 3.5.2 and the the object 

program generated by the code generator defined in this 
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chapter is shown in table 3 . 5 . 3. The loader of Appendix D 

is ab l e to load and execute the f inal target code . 

Although they are not used by the CLANG system, Appendix D 

includes a full comp l emen t of f loati ng- point , type 

con version a nd f ile handling rout i nes. This enables i t to 

be used with the enhanc ed Pascal - s compiler [39 J 

TABLE 3 . 5 . 2 

CLANG INTERMEDIATE LANGUAGE CODES 

ADDRESS MNEMONIC FUNCTION LEVEL ADDRESS 

0 BRN 7 0 21 ---------+ 
+--------> 1 BRN 7 0 18------+ 
I +-- +--> 2 BRN 7 0 3 ---+ I 
I (sta r t of procedur e REORDER) I 
I 3 INT 5 0 4 <-+ I 
I 4 LDA 1 3 3 I 
I 5 INN 23 I 
I 6 LDA 1 3 I 
I 7 LDX 27 I 
I 8 LDA 1 3 3 I 
I 9 LDX 27 I 
I 10 NEQ 16 I 
I 1 1 BZE 8 0 13 ---+ I 
I +-- 12 CAL 2 2 2 I I 
I 13 LDA 1 3 3 <-+ I 
I 14 LDX 27 I 
I 15 PRN 24 I 
I 16 NL 26 I 
I 17 RET 3 3 1 I 
I (star t of procedure GO) I 
I 18 INT 5 0 4 <----+ 
I +----- 19 CA L 2 2 2 
I 20 RET 3 2 1 
I (start of program REVERSE) 
I 21 INT 5 0 4 <-------+ 
I 22 LDA 1 1 3 
I 23 LIT 0 0 0 
I 24 STO 21 
+---- - --- 25 CAL 2 1 

26 HLT 22 
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TABLE 3.5.3 

8080 ABSOLUTE TARGET CODE 

tI\'j~ I'I~~ (BASERE) 
11 e 1 NQP 
1102 NOP (01 SPLA) 
1183 NOP 
1104 NOP 
11 BS NOP LOX 1173 POP H 
1186 NOP 1174 MQV E,M 
1107 NOP 1175 INX H 
1108 NOP 11 76 MOV 0,1'1 
1109 NOP 1177 PUSH Q 
11 SA NOP NEQ 1 178 CALL ell E 
11 Be NOP 117B POP 0 
IIBe DAD H (GEToI S) 117e MOV A,o 
11 aD LXI B 11 102 1170 ORA E 
11 Ie DAD B 1 t 7E LXI D,seee 
1111 MQV E,M 11 Bl JZ r:=J 1112 INX H 1184 lNR 
1113 MOV o,M 1185 PUSH 
1114 RET BZE 13 1186 PDP o . 
i 115 DAD H (ADoRCD) 1187 MOV A,D 
1116 DAD 0 11 BB ORA E 
1117 RET llB9 JZ 1185 
111B POP B (STORE) CAL 2 2 118C LXI H,0eS2 
1119 POP 0 t 18F CALL llBC 
IliA POP H 1192 LHLD 11013 
1118 MOV M,E 1195 XCHG 
111 C' I NX H 1196 PUSH H 
1110 MOV M,D 1197 LXI Hisses 
II IE PUSH B 119A DAD SP 
111 F RET 1198 SHLD 11IHI 
1120 LXI - D,FFFE (START) 119E PUSH 0 
1123 LXI H,sses 119F XCHG 
1126 DAD SP llAB LXI H,BeS2 
1127 DAD 0 11 A3 DAD H 
1128 SHLO 11 B2 t1A4 LX I 8,1182 
1128 SHLD 11 ae llA7 DAD B 

BRN 21 1 i 2E JMP 1247 ~(REVERS9 liAS MOV M,E 

ffi::BRN 
18 1131 JMP liFe GO R llA9 INX H 

R BRN 3 1134 JMP 11 37 F:;::J l1 AA MOV H,D 
INT 4 1137 LXI H, FFFC (REORDE!3> llAB LXI 8,1185 

113A DAD H 11AE PUSH B 
113B DAD SP llAF PDP H 
113e SPHL 11 B~ POP H 

LllA 3 3 i i ~b LXI H,Baa2 1181 POP H 
1140 CALL JIB e 1182 JMP 1134 
1143 LXI H,FFFD LllA 3 3 11 65 [ XI H,BOB2 
1146 CALL 1115 I1 B8 CA LL llBC 
1149 PUSH H 1188 LXI H,FFFO 

INN il4A [XI D,00 00 11 BE CALL IllS 
1140 PUSH 0 I1Cl PUSH ~ 
114E CALL aleF LDX l1C 2 POP H 
1151 CALL 111 8 11 C3 MOV E,M 

LllA 1 3 i 154 [xI H,0000 ltC4 INX H 
1157 CALL llBC IIC5 MDV D,H 
liSA LXI H,FFFO ll C6 PUSH 0 
1150 CALL IllS PRN 11 C7 POP H 
1160 PUSH H 11 CB LXI O,OB00 

LOX 1161 POP H II CB PUSH 0 
1162 HDV E,H IICC PUSH H 
11 ·63 INX H. 11 CO PUSH D 
1164 HOV D,H 11 CE CALL 0106 
1165 PUSH 0 NL 1101 LXI O,Baaa 

LDA 3 3 i 166 LXI H,0BB2 1104 PUSH 0 
1169 CALL 11 BC JI Q:::/ ~eL.1 fU a:3 
116C LXI H,FFFO 
116F CALL 1115 
UZ~ EUSl:I ~ 
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(TABLE 3.5.3 continued . .. ) 

RET 3 1 1108 LHLD 11 Be INT 4 1247 LXI H,FFFC4--(REVERSE) 
11108 LXI O,FFFC 124A DAD H 
llDE DAD D 124B DAD SP 
110F SPHL 124C SPHL 
11 E0 PDP D LDA I 3 1240 LXI H,B000 
11 E 1 POP H 1259 CALL 11Be 
l1E2 SHLD 1109 1253 LXI H,FFFD 
l1E5 LXI H,eoe2 t 256 CALL 1115 
l1E8 DAD H 1259 PUSH H 
l1E9 LXI B,1182 LIT a 125A LXI D,BeeB 
11 EC DAD 8 1250 PUSH D 
liED POP 8 STO 125E CALL 1118 
II EE MOV M,C CAL 1261 LXI H , BBS1 
liEF INX H 1264 CALL 119C 
tlFe MOV M,B . 1267 LHLD 1199 
11 Fl LXI H,eaee 126A XCHG 
11F4 DAD SP 1268 PUSH H 
11 FS SPHL 126C LXI H,BIH3B 
llF6 XCHG 126F DAD SP 
J 1 EZ ECI:lI 

HIFFFC~ 1279 SHLD 11 ee 
INT 4 11Fe LXI 1273 PUSH D 

IIFB DAD H 1274 XCHG 
lIFe DAD SP 1275 LXI H,eael 
11 FQ ~EI:U 1278 DAD H 

CAL 2 1 liFE LXI H,eee2 1279 LXI 8,11132 
1213 1 CALL 11Be 127C DAD 8 
1284 LHLD lleB 127D MOV M,E 
1287 XCHG 

t:~;; 
INX H 

1298 PUSH H MOV H,D· 
12139 LXI H,eeee 12813 LXI B,12SA 
12BC DAD SP .1283 PUSH 8 
1280 SHLD 110e 1284 POP H 
121 a PUSH D 1285 POP H 
1211 XCHG 1286 POP H 
1212 LXI H , 8002 1287 lltle 1131 
1215 DAD H HLT 128A JMP 9a99 
1216 LXI B, 119 2 
1219 DAD 8 
121A MOV M,E 

t:::~ 
INX H 
MOV M,D 

1210 LXI B,1227 
1228 PUSH 8 
1221 POP H 
1222 POP H 
1223 POP H 
1224 JMP 1134 

RET 2 1 1227 LHLD 111313 
122A LXI D,FFFC 
122D DAD D 
122E SPHL 
122F POP D 
1230 POP H 
1231 SHLD 11139 
1234 LXI H,aeel 
1237 DAD H 
1238 LXI 8,IUl2 
1238 DAD 8 
123C POP 8 
I23D MOV H,C 
123E INX H 
123F MOV M,8 
1249 LXI H,eoee 
1243 DAD SP 
1244 SPHL 
1245 XCHG 
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4. WR ITING A LOADER AND STANDARD RUN-TIME SUBROUTINES 

It would be misleading to leave the reader with the 

impression that the development of a code generator using 

the tool described in this document is as simple as the 

preceding 

certainly 

can be 

description might lead one to believe. It is 

true that the steps in the preceding description 

used to develop a code generator capable of 

translating intermediate codes to mach ine codes. However, 

such object code is useless without a loader to load it into 

memory for execution. In addition, run - time subroutines are 

required, which can be called from the object program to 

perform input/output and arithmetic operations. Development 

time for this essential part of the compilation tool varies 

from days to weeks depending on the architecture of the 

target machine and the complexity of the loader/run-time 

subroutines. 

It is always worth the effort of finding out what linkers , 

loaders and standard routines are already available on the 

target machine. The implementor will save himself 

considerable effort if he writes some code to get his target 

program into the correct format for an existing linking 

loader. Similarly, a search of existing system libraries 

might save one the task of writing standard subroutines, 

such as those for input/output and floating point 

operations. 
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4.1 IMPLICATIONS OF THE LOADING PROCESS 

A simple a b s olu t e l oade r is easier to implement than one 

which l i n k s modules, re l ocates code , or handles ove r lays. 

An absolute loader need only be furnished with the address 

at which to start loading binary code , and the binary code 

itself . Absolute loaders are useful on single user 

machines, and on larger machines whose user areas are 

addressed via an operating system controlled base register. 

For examp l e , ICL 1900 systems use a base-limit protection 

mechanism , with the effect that the code (which a n 

individual user sees as absol u te ) is r eal l y -relative to a 

base register . Howeve r , absolute loaders are of limited use 

on machines capable of supporting a r elocatable user slot 

type ope r ating system. Wha t is needed in this case is a 

loader which can load a program into an area of memory 

which is dictated by the operating system rat h er than by the 

program being loaded . This i s a reloca table loader . 

Relocatabl e code contains address r efe r ences which depend 

upon a pa r ticular " relativize r" . In choosing a par t icula r 

type of l oader, the code generator i mplementor wi ll need to 

be familiar with the requirements o f his t arget machine. 

The provision of inter - module communication faci l ities 

causes additional work f or the l oader. If a modu l e is to 

have more than one entry point, it is usual to preced e i t 

with a j u mp table . It might i n fac t prove more con ven i e n t 

I 
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for the implementor to write a separate linking program 

which combines several modules into a suitable form for a 

simpler loader, rather than to use a linking loader to 

perform the entire task at once. 

4.2 RUN-TIME SUPPORT PACKAGES 

Implementing run-time subroutines on a processor as simple 

as the 8080, whose greatest arithmetic boasts are its 8-bit 

integer add, subtract and shift instructions, is a 

considerable task. However, the same routines on a CDC 

mainframe, with its hard-wired floating-point routines and 

built-in multiply and divide instructions, become trivial by 

comparison. On systems which allow access to library 

facilities from an assembler level, it is desirable to store 

standard run-time procedures in a library, which is 

selectively searched so that only those which are referenced 

by the application program are included in the final task. 

The implementor is responsible for writing both the run-time 

subroutines and their calling sequences from within code

skeletons, so details of data representation and parameter 

passing are left up to his personal design preference. 

Since the entire system is based on a hypothetical stack 

machine, however, data storage and parameter passing is most 

easily 

that 

achieved using a stack mechanism. It is 

not all standard run-time subroutines will 

possible 

be needed 

for some implementations (e.g. a simple compiler might not 
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include real arithmetic ) . Nevertheless, dummy addresses 

should be provided for these unused standard routines in the 

code generator parameter file to keep the sequence of run 

time addresses correct . 

4.3 A SAMPLE IMPLEMENTATION 

Figure 4.3.1 shows the basic load time organization of a 

loader and its assoc i ated run-time subroutines for a target 

implementation of a hypothetical stack machine. This 

diagram shows up two points worth noting. Firstly , once the 

loader has loaded and passed control to the user program, it 

is of no further use and can be overwritten during the 

running of the program. Secondly, the standard run-time 

subroutines are always referenced by means of a jump table. 

This allows a run-time subroutine to be moved about in 

memory without having to alter its referencing address in 

the use r program. 
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Appendix D lists the loader and monitor routines necessary 

for running a program on the 8080 processor with Pascal 

features, such as might have been produced by the CLANG 
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system of chapter 3 or the enhanced Pascal - s [39J system. 

The loader is based on the design of Figure 4 . 3.1 and 

includes backpatching so that the target code file can be 

read using the format of table 9.3.2. The run-time 

subroutines include all those standard functions listed in 

table 8.2 .1 . Implementation details of these routines will 

not be discussed as the source listing of Appendix D has 

been perspicuously commented. 

In addition to the 8080 implementation of Appendix D, the 

author has written similar run-time packages for the ICL 

1900 and PDP-11 series computers. These routines are not 

based on any particular algorithms, and no doubt better 

have been wr i tten. However, they have been wel l tested and 

have shown themselves to be reliable. A glance through 

Appendix D should convince the reader that the writing of a 

run-time package for a meaningful l anguage is not a trivial 

task. The 8080 loader and run-time package is the result of 

several weeks of programming and testing. The ICL 1900 

and PDP-11 implementations required less effort because of 

the additional programming features available on those 

computers. In particular, the ICL 1900 GEORGE system allows 

access to a useful library of trigonometric and type 

conversion routines. 
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5. THE MARK 3 SYSTEM 

During the implementation of the mark 2 system (the programs 

l i sted in the Appendices), several improvements made 

themselves apparent. The mark 2 system with these added 

improvements constitutes the mark 3 system. The simpler 

system has been retained for the purposes of this document 

since, as a working system, it demonstrates all the 

necessary principles without excess frills. The paragraphs 

be l ow outline some of the advantages of the mark 3 

enhancements, and how they were implemented. All the 

facilities discussed have been realized, unless otherwise 

stated, but space does not al l ow for a detailed discussion. 

Interested readers can obtain listings of mark 3 from the 

author. 

5. 1 MEMORY ALLOCATION AT CODE GENERATION TIME 

In the earliest version of the code generator (mark 1), a l l 

i ntermed i ate codes, a l l generated target codes and all code-

skeleton definitions were held in memory. 

was very conven i ent for three reasons: 

This arrangement 

1. 

2. 

With no disc transfers, the code generator was 

extremely fast, 

with all intermediate codes in memory, address 

assoc i at i on (intermediate address to target equivalent) 

was trivial, and 

3 . with a l l the target code in memory, all forward 
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references could be resolved in a single pass at code

generation time. 

However, this arrangement was most unsatisfactory, because 

each table was limited in its memory size. It was only 

possible to compile toy programs which generated a small 

number and variety of intermediate codes. 

The mark 2 system overcomes the program size and 

intermediate code range restriction by storing the code

skeletons on external disc (at the expense of a slower code

generator due to file searches) and by writing out target 

codes as they are generated (at the expense of having to 

perform backpatching at load time). The advantage of point 

2 above is retained and with the intermediate code array 

extended to 5 III III III entr ies, Pascal programs in excess of 11l11l11l1 

source lines are able to be processed. The slower code 

generation time is not regarded as a major disadvantage as 

the system was never intended for use in compilation 

intensive environments (e.g . student practicals). 

The mark 3 system attempts to improve on the memory 

allocation of the current system in two ways . So as to 

decrease the number of disc accesses, up to ten code-

skeletons may be held in memory at a time. A usage count 

associated with each indicates which one is used least 

often. The most seldom used skeleton is overwritten when a 
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new skeleton needs to be read into memory. Naturally, this 

strategy only succeeds if not all intermediate codes are 

produced with equal frequency. A facility exists which 

enables the implementor to override this strategy by 

selecting certain code-skeletons to be permanently 

memory-resident . 

The second improvement involves the output of target codes. 

Instead of writing target codes to di sc as soon as they are 

generated, they are stored in a circular list which is able 

to hold 101 target instructions . An instruction is only 

written out once 100 subsequent instructions have been 

generated, or at the end of the program segment. 

-+--~(current-100) instruction out . 
~--.current instruction in. 

This feature enables forward references to be resolved as 

long as they do not span more than 100 instructions . More 

importantly, however, some measure of peephole optimization 

may be implemented (see section 5 . 3). If instruction 

sequences are found which can be deleted or replaced by 

cheaper sequences, t he surrounding code can be relocated. 
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5.2 IMPROVED CODE-SKELETON DEFINITIONS 

An obvious improvement to the assembly format of 

instructions would be the inclusion of a commen t field. 

This enhancement was effected, but soon rejected, since the 

size of the data structure was more than doub led for each 

code-skeleton if one allowed for a fair sized comment on 

each instruction. 

A second code -ske leton definition improvement did prove to 

be beneficial, however . This enhancement allows argument 

fields to be specified using expressions involving compile 

time constants. The mark 2 system allows very limited 

expression savings by allowing an argument field to be 

expressed in several ways, e.g . X, XN a nd XA de not e the 

value of argument X, the negative of the argument X value, 

and the target address corresponding to argument X (more 

details can be found in section 8.2). The mark 3 system 

allows both constants and compile time names to be combined, 

using the simple arithmetic operators +, and * The 

benefit to be gained from this enhancement is best 

demonstrated by means of the following example . Consider 

the run-time subroutine GETDIS from section 3.2: 

GETDIS: DAD H X * 2 for 16-bit addressing 
LXI B,DISPLA 
DAD B + DISPLA 
MOV E,M get value from 
INX H DISPLA + (2*X) 
MOV D,M 
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In this example, constant values known at compile-time are 

used to calculate the address only at run-time. On the mark 

3 system using expression evaluation, the whole of GETDIS 

can be replaced by a single instruction: 

LHLD 2*X+DISPLA value into H-L 

5.3 OPTIMIZATION 

If the reader has studied the target code of table 3.5.3, he 

will probably have noticed that due to the mechanical nature 

of the code generator, some rather clumsy code has crept 

into the object program. In particular, a lot of redundant 

storing and reloading of variables occurs across the 

boundaries of 8080 code bodies for consecutive intermediate 

codes. 

e.g. PUSH H 
POP H 

last instruction for intermediate code n 
first instruction for intermediate code n+l 

As long as the code body for intermediate code n+l is not 

the destination of a branch instruction, such code can be 

deleted (as in the above example) or improved: 

PUSH D 
POP H 

or PUSH H 
POP D 

replace with XCHG 
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Note that such improvements will normally only be made 

across the boundaries of 8080 code bodies, as a construct 

such as 

POP D 
PUSH D still need the value of D on the stack 

within a code body is usually intentional . This is an 

obvious application of peephole optimization. 

Another obvious peephole optimization is the removal of 

multiple jump statements . This will become obvious if one 

studies the intermediate code program of table 3.5.2. All 

JMP PC +1 type instructions can be removed (e . g. t he BRN at 

intermediate code address 2) as these serve no useful 

purpose (but simply makes the CLANG intermediate code 

generator far simpler). Jumps to other jump statements can 

be altered to jump to the fi nal destination (e.g. the call 

at intermediate code address 25 can be altered to branch 

directly to the code body at address 18) . 

A gene r al specification for optimization techniques is not 

easy to formulate. These optimizations obviously become 

machine dependent. In addition, it is debatable whether 

such facilities should be included in a system intended for 

use by a non compiler specialis t. The mark 3 system reaches 

a compromise by allowing the compiler writer to specify 

simple optimizations of the type mentioned above, or to 

switch this option off. 
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The mark 3 notation for specifying peephole optimization is 

very poor, and this enhancement, if it is to be retained, 

requires much refinement. Since it has been said that this 

feature's strongest point is its ability to be switched off 

and ignored, its scope will be described only briefly . 

If the implementor supplies the function number and address 

argument of each intermediate code type which performs a 

b r anch, the mark 3 code generator makes a pass over the 

intermediate code program building up a table of addresses 

which are the destinat ions of branches. Since t h e entire 

intermediate code program is held in memory, the program is 

able to alter the addresses of branch instructions which are 

redirected by ano ther branch instruction. At the same time, 

JMP PC+' intermediate codes can be replaced by a dummy 

in termediate code which produces a null code - skeleton, 

effectively eliminating it without having to relocate the 

rest of the intermediate code program. 

In addition, the user can specify three groups of target 

code seq uences c " c 2 and c 3 meaning: " if t he current code 

skeleton begins with the sequence c" and if the previous 

code-skeleton ended with c 2 , then replace both c, and c 2 

with in the final target code" . This replacement is 

suppressed if the current code-skeleton is the destination 

of a branch instruction . 
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Table 5.3.1 compares the code generated by the mark 3 code 

generator, with and without the simple optimization feature, 

using the following simple CLANG program: 

program TEST; 
{$O+} 

var I; 

begin 
I : = 1; 
WRITE(I ) ; 

end. 

whose intermediate code program is: 

ADDRESS MNEMONIC FUNCTION LEVEL 
0 BRN 7 0 
1 INT 5 0 
2 LDA 1 1 
3 LIT 0 0 
4 STO 21 
5 LDA 1 
6 LDX 27 
7 PRN 24 
8 NL 26 
9 HLT 22 

ADDRESS 
1 
4 
3 
1 

3 

The code skeletons for this example differ slightly from 

those of chapter 3 because the expression evaluation 

enhancement of th e mark 3 system enables one to detail some 

of the code-skeletons more concisely. 
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TABLE 5.3. 1 

Code generated by the mark 3 code gene r ator 

without op timization with optimization 

13A1D Jt1P 0A213 13A1D LXI D,FFF8 
13A213 LXI 0A213 LXI H,13131313 
0A23 LXI 13A23 DAD SP 
BA26 DAD 13A24 DAD D 
0A27 DAD 0A25 SPHL 
0A28 SPHL --- 0A26 LHLD 13A05 

LDA 1 3 0A29 LHLD 0A05 0A29 LXI D,FFFA 
0A2C LXI D,FFFA 0A2C DAD D 
13A2F DAD D 0A2D PUSH H 
!:!t::l:.20 PUSH H ---- 13A2E LXI D,1313131 

LIT 0 1 13A31 LXI D ,1'11'11'1 1 0A31 POP H 
13A34 PUSH D 13A32 t10V M,E 

ST 0A35 POP D 0A33 INX H 
0A36 POP H 0A34 I'IOV M D 
0A37 t10V M,E 0A35 LHLD 0A05 
I'IA38 INX H 0A38 LXI D,FFFA 
0A39 NOV 1'1 D 0A38 DAD D 

LDA 1 3 0A3A LHLD 0A135 0A3C t10V E,M 
0A3D LXI D,FFFA 13A3D INX H 
13A413 DAD D 0A3E MOV D M 
13A41 PUSH H 0A3F XCHG 

LD 13A42 POP H 0A41'1 LXI D,I'I13013 
0A43 MOV E ,11 BA43 PUSH D 
0A44 INX H 0A44 PUSH H 
0A45 MOV D ,t1 0A45 PUSH D 
0A46 PUSH D 0A46 CALL 01136 

PRN eA47 POP H 13A49 LXI D,013130 
0A48 LXI D,01'113e 0A4C PUSH 0 
0A48 PUSH D 0A4D CALL 0103 
0A4C PUSH H 0A5e JMP 01300 
0A4D PUSH D 
0A4E CALL 01136 

NL 13A51 LXI D,001313 
13A54 PUSH D 
0A55 CALL 131133 

HLT 13A58 JMP 130130 
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5.4 COMPILING SEPARATE MODULES 

Although the mark 2 code generator is able to handle a 

reasonably large source program, it is always useful not to 

have to recompile an entire program when only a small 

section has been altered. A simple system for compiling 

separate modules has been experimented with. This 

presently puts the onus on the end-user to supply the run-

time base address of the module. The code generator will 

supply the end address of the module for use in estimating 

the start address of the next module. Transfer of control 

between modules is via names whose final addresses are 

specified at code-generation time. An improvement on this 

approach is for the implementor to allow the end user to 

compile his modules as normal. It is possible, by carefully 

selecting the range of target instructions used, as well as 

the approach to addressing (e.g. all addresses relative to a 

base value), to generate code which can be relocated to any 

address in memory [29J. The implementor must then write a 

linking loader (chapter 4) to combine several relocatable 

modules. Once again, this feature is within the realm of 

the code-generation specialist, and should probably be 

avoided in systems to be implemented by a novice. 

An obvious extension to generating separate modules is to 

overlay the modules which are generated. Again, a crude 

implementation simply generates two modules of absolute code 

beginning at the same address. However, the writer of the 

) 
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run-time routines must now write an extra code sequence 

which can be called upon to load an overlay as required. 

This system is not too difficult to implement as long as the 

overla~ code does not alter itself in any way 

(necessitating the writing out of overlays as well) . The 

transfer of data via variables does not constitute a 

problem, since a hypothetical stack machine stores all its 

data in stack frames, separate from the overlaid code. 

The current mark 3 system is able to handle a crude form of 

separate module compilation, but overlays have not yet been 

successfully implemented. 
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6 . HISTORICAL REMARKS AND CONCLUSIONS 

The original efforts of implementing a generalized code 

generator grew out of a project to implement a code 

generator for an experimental Pascal/Basic teaching 

language, BPL [40J , in 1979 on the ICL 1904 . The author 

has subsequently implemented a Pascal code generator for the 

PDP - 1 1 series of computers. Both projects have supplied 

valuable contibutions towards this thesis, part i cularly in 

the form of reliab l e run-time packages, leading eventually 

to the current generalized code generator . An 

implementation of the system on the North Star Advantage 

Microcomputer was outl ined in a paper given at the RU 

Symposium on Computer Science, Theory and Practice, in 

November 1983, and subsequently described more fully in this 

document. 

Imp l ementations on an 8080 processor using the CLANG parser 

of appendix E and a bigger, more realistic Pascal - s+ parser 

have been well tested. Pasca l-s+ [39J is an enhancement by 

P.D. Terry of Wirth's original Pascal - s [38J system. It 

has been adapted by the author for use with a synthesised 

code generator to provide a compiler which falls short of 

standard Pascal only in its lack of the "with" statement . 

Both implementations show the system to be fairly successful 

within the limitations imposed by its original objectives . 

A number of bench-marks were carried out to compare the 
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execution of code produced by the generalized CLANG 

implementation with code produced by a special purpose 

optimizing code generator (Pascal MT+ [35J was used), and 

with intermediat e codes in terpreted by the CLANG 

interpreter. Only execu t ion time was considered (the MT + 

compiler produces huge code files, making the compar/ison of 

target code size rather meaningless) . As expected, code 

prod uced by the synthesised code generator is slower than 

tha t produced by a spec i a l purpose optimizing code 

generator , but still executes several times faster than an 

interpreter written to produce the same effect . The 

greatest difference in execution time is noticed in programs 

which perform many calculations and l ittle input/output. 

Compilation times for the synthesised and special purpose 

systems are comparable, but are much shorter on the 

in terpreted system . 

There can be little doubt that the time taken to develop a 

code genera tor using this tool is less than the time 

required to wri~e a special purpose code generator. 

However, the resultant code generator is more useful for 

programs which wi ll be run more times than they will be 

compiled than vice versa . The expedience of the system 

lies chiefly in its ability t o replace multi-level 

interpretation with direct execution, and in its use as a 

step in bootstrapping a compi le r onto a new computer . 
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7. USING THE MACHINE DEFINITION PROGRAM 

, 
The current program has been implemented in Pascal MT+ on a 

CP/M based system (North Star Advantage), but could be 

easily altered to run on other Pascal systems, with only 

minor modifications needed to the machine definition program 

and to the fo llowing description of how to use it. 

7.1 CURRENT IMPLEMENTATION REQUIREMENTS 

The following seven files are required to run the machine 

definition program on a CP/M system. 

MACDEF.COM 
MACDEF . 001 
MACDEF.002 
MACDEF.003 
MACDEF.004 
MACDEF .005 
MACDEF.006 

} 
} 
} 
} 
} 
} 

Executable Root Program 

Overlays for the program 

Also useful, but not mandatory, are the following two 

message files, 

program. 

MACDEF.HLP 
MACDEF.MES 

which improve t he friendliness of the 

Help message file 
Error message file 

To run the program, type 

MACDEF <RET> 

and answer the questions or make selections from menus which 
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follow. 

The machine definition table will be saved on a user named 

file whose default extension is ".MAC". 

The disc space required to store the root program and 

overlays is 48k, with an additional 14k required if the 

message files are included. The ".MAC" file typically 

requires 4k to 6k of disc storage. 

7.2 DRIVING THE PROGRAM 

Provided the help message file (MACDEF.HLP) is present, the 

user may request help at any time by responding to an 

invitation for input by typing 

? <RET> 

Help relevant to the current operation will be supplied. In 

some cases, additional help or an example will be offered. 

If the character "?" is a valid part of a mnemonic, 

separator or argument field in the assembly language for the 

machine being defined, then the user should choose another 

character as his help request character. This can be done 

when invited to do so at the start of the program. 

The sequence <ESC> <RET> can be used to abandon any 

operation. Execution returns to the main menu or to the 

appropriate sUb-menu. Once an operation has been abandoned, 

J 
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the machine definition table is returned to its state prior 

to commencement of the operation. 

The main menu is displayed automatically. The user selects 

one of seven options by typing a representative character. 

W - Word Definition Mode 
I - Instruction Definition Mode 
D - Edit Word Definitions 
E - Edit Instruction Definitions 
R - Read Definitions from a File 
L - List Definitions 
X - Exit 

7.2.1 Word Definition Mode (Option W on main menu) 

Word formats are used to group together a set of 

instructions which have the same length and field 

format. To describe a new word format, three items of 

information are required. 

The first item of information is a textual description 

of the word format for easy identification by the user 

at a later time. This description may be up to 20 

characters in length, or may be left blank by just 

pressing the <RET> key when the description is 

requested. 

The second value which the program requests is the 

length of the word in bits. This value, used for 
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validation during field definition, should include all 

fields, including expanded operands. 

Finally, the user is requested to type the field 

definitions in the notation described in Section 2.1. 

Each field in the word form is represented by a unique 

alphabetic letter, which is repeated as many times as 

there are bits in the field. It should be noted that 

only upper case alphabetic letters may be used. 

Seperating spaces may appear bo th between and within 

fields, and are ignored . 

For example, the three items o f i nformation required to 

define an IBM 370 Series " RX" word form would be: 

Format of the RX word form 

I Opcode I R 1 I X21 B21 D2 

• • I ~'---' '-.,-J' .. 
8 4 4 4 12 

where R1 is a register, 
X2 is a register used as an index, 
B2 is a base register, 
D2 is a positive displacement (0 .. 4095) 

DESCRIPTION: Register-Index Form 

LENGTH: 32 bits 

FIELD DEF: 0000 0000 RRRR XXXX BBBB DDDDDD DDDDDD 

The word definition routines are called in a loop. To 
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define severa l word definitions, answer "Y" (yes) to 

the question "Another word definition ?" . 

Since instruction definitions refer to defined word 

forms, word definition mode is usually entered before 

instructions are defined. 

7.2.2 Instruction Definition Mode (Option I on main menu) 

All instructions conform to a word format which has 

already been defined. 

instruction 

LDA Rl,address 

conforms to the word format 

For example, 

FFFFFF RR AAAAAAAA AAAAAAAA 

suppose the 

This instruction will be used as a continuing example. 

To define an instruction, one has to specify the 

function and va l ue of all the fields of the word 

format. 

The program will prompt the user to type the index 

number of the word format description to which the 

instruction conforms. (As each word format is defined, 

in word definition mode, it is recorded in the 

definition table. For convenience, a list of all 

defined word formats and the ir index values may be 
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viewed by responding with the character "."). 

Mnemonic Fields 

A textual mnemonic for the instruction must be supplied 

next. A mnemonic is a short word, representative of 

what the instruction does, e.g. LDC for an 

instruction which loads a constant into an accumulator. 

Later, one is able to refer to the instruction by its 

mnemonic. The mnemonic may be made up of any printable 

characters (no control characters are allowed), but may 

not begin with the help request character. The 

current implementation allows a maximum of six 

significant characters. In addition, each instruction 

mnemonic must be unique. It will be advisable to 

follow the mnemonics of one's target machine's assembly 

language as closely as possible. 

For example, an obv i ous mnemonic for the instruction 

LDA R1,address 

i s "LDA". 

The program now displays the word format for the 

instruction, and requests that the user specify which 

field will represent a binary pattern unique to this 

particular instruction. This is essentially the field 

which will be recognised as representing the mnemonic. 
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A field is selected by typing the character marking the 

field in the word format description. Naturally, only 

defined field names may be selected. 

The binary bit pattern for the chosen field may now be 

entered. If the user prefers, the field value may be 

prefixed: 

(1) with the character "D", and entered as a 

decimal number (e.g. D35), 

(2) with the character "H", and entered as an 

hexadecimal number (e.g. H23) 

or (3) with the character "0", and entered as an 

octal number (e.g. 043). 

A check is made to ensure that the value will fit into 

the chosen field. Negative values are converted 

according to 2's complement rules, and must be input 

using a minus sign. 

To continue with the example 

LDA Rl,address 

FFFFFF RR AAAAAAAAAAAAAAAA 

FIELD TO BE ASSOCIATED WITH MNEMONIC: F 

BIT PATTERN FOR FIELD F: 10011 
or 023 
or D19 
or H13 
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one field may be associated 

by stipulating further fields in 

with 

the 

- 100-

the 

same 

manner as the first (reply "Y" to the question "Should 

ano t her field be associated with the mnemonic ?"). As 

a further prompt , after defining each mnemonic field 

the program displays the word format for the 

instruction, with 

mnemoni c fields. 

binary patterns filled in 

The definition for field F in 

above example wou l d yield : 

010011 RR AAAAAAAAAAAAAAAA 

Argument Fields 

for 

the 

Any field not designated as being associated with the 

instruction mnemonic is assumed to be an argument 

( variable) field. Argument fields accompany the 

mnemonic in the assembly language format and are 

assigned a value at a later time (e.g. fields R and A 

in our example) . The program steps through each 

argument field in turn, prompting the user to supply 

validation information for this field. 

Argument Ranges 

Firstly, 

range of 

the user is required to define the legitimate 

arguments which the named field may hold. 

These will be checked against the actual arguments used 
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at the code generator definition stage. A field 

generally takes an integer value as an argument, but 

can also be specified by a symbol rep resenting an 

integer. To choose a valid range of arguments for the 

field, a menu is displayed, from which the user should 

select one of five options. Selections 1 to 4 (type the 

appropriate digit to make the selection) define various 

integer ranges: 

1. A positive integer in the range 0 .. biggest 

integer which can fill the field. If the 

field is bigger than the maximum integer 

length for the implementation, selection 4 is 

chosen instead. 

2. A negative or positive integer in the 2's 

complement range for the field. Again, if the 

field is bigger than the maximum integer 

length for the implementation, selection 4 is 

chosen instead. 

3. This selection requires the user to specify 

the lower and upper bounds for the field. 

The numbers should be typed in decimal (the 

default number base for this input, e.g. 26) , 

octal (preceded by 0, e.g. 032) , binary 

(preceded by B, e.g. B11010), or hexadecimal 

(preceded by H, e.g. H1A). A check is made 

to ensure that the values will fit into the 
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field. Negat ive values are converted 

according to 2's complement rules, and must 

be typed using a minus sign. 

For example, if a 5-bit field were to take an 

integer in the range 0 to 8, the definition 

might be 

LOWER BOUND: 0 
UPPER BOUND: 8 

whereas if it were to take on the range -8 to 

+7, the definition might be 

LOWER BOUND: B-1000 
UPPER BOUND: Blll 

(Note that lower = Bl1000 upper = B01000 will 

not be acceptable). 

Selection 4 is preferred if the field exceeds 

the maximum integer length for the 

implementation. 

4. This option is used if no validation is to be 

performed at the code generator specification 

stage. This selection must be made if the 

field is larger than the maximum i nteger 

length for the computer upon which the 

machine definition program is implemen ted. 

Option 5 is selected if the user wishes to represent 

integer value s by symbolic names. 
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We continue with our sample definition for instruction 

LDA R1,address 

010011 RR AAAAAAAAAAAAAAAA 

VALID ARGUMENTS FOR FIELD R: 5 (I want to use 
symbolic names) 

VALID ARGUMENTS FOR FIELD A: 1 (integer range 
o to 65535) 

Symbolic Names for Arguments 

If option 5 is chosen, as it was for field R in our 

example, the user is required to define a set of 

symbolic names and their corresponding values for the 

field. However, before the user is allowed to do 

this, the program asks him whether an identical field 

already exists in a previously defined instruction. 

Since the same symbolically named field often appears 

in several instructions (for example an argument which 

takes on register names), both time and memory/disc 

space can be saved if all such instructions refer to 

the same set of symbolic names instead of each having 

its own identical set. 

If the user chooses to refer to a symbolic name list 

set up during a previous definition, the program will 

prompt him to supply the index number of an instruction 

which has an identical field to the one being defined, 
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i.e. same identifying lette r and same length. As was 

the case for word format specifications, each 

instruction is recorded in a definition table as it is 

determined. For convenience, a list of all instructions 

defined so far and their index values may be viewed by 

responding with the character "*,, 

On selecting a previous instruction, the user will be 

shown the instruction and its matching field (if one 

exists) so that he can verify that it in fact has the 

argument range which he desires. 

When specifying a new set of symbolic names for an 

argument field, one is required to supply the number, 

N, of valid symbols which the argument is to allow. 

The program will then p rompt the user N times for a 

symbolic ' name. 

for arguments 

mnemonics. One 

The rules for making up symbolic names 

are the same as those for instruction 

may use the same names as for the 

existing mnemonics, but all symbols for a particular 

argument field must be unique. Each symbolic name is 

given a corresponding in teger which it represents. The 

defau l t base in which these values are typed is decimal 

but, as usual, the value may be typed in binary, octal 

or hexadecimal by preceding the number with one of the 

characters "B", "0" or "H". 
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To define symbols for our 2 - bit argument RR, one might 

type: 

NO . OF VALID SYMBOLS: 4 

SYMBOL: ACC 
SYMBOL: R0 
SYMBOL: R1 
SYMBOL: PC 

4 SYMBOLS DEFINED. 

CORRESPONDING INTEGER: 0 
CORRESPONDING I NTEGER: 1 
CORRESPONDING INTEGER: 2 
CORRESPONDING INTEGER: 3 

When one uses the instruction, one can now specify 

argument R, using its symbols in place of integer 

codes . 

Separators 

Two more items of information are required before al l 

necessary information has been gathered for an argument 

field . Firstly, the user must ind icate which 

character will precede the argument as a separator in 

the assembly language format of the instruction. Whe n 

the instruction is used, the mnemonic will define the 

fields which have fixed values. The variable fields 

are described by arguments separa t ed from the mnemonic 

and from each other by spaces or other specified 

separators. Spaces may be used as separators without 

an explicit declaration. 
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Argument Order 

Secondly, the user must indicate what the numeric order 

of the argument will be in the assembly l anguage 

format. The arguments after the instruction mnemonic 

must appear in a specific order so that correct 

validation is possible. Although the argument fields 

are defined in the order in which they appea r in the 

word format definition, this is not necessarily their 

assembly language order . They must eventually occupy 

consecutive positions, however, (e.~ three arguments 

mus t occupy positions 1, 2 and 3 not positions 1, 3, 

and 5). In response to the p r ompt for an argument 

position, t he user may type ".,' to list the instruction 

definition as it stands (probably incomplete). 

The assembly format of our sample instruction 

LDA R,A 

demands the following positional and preceding 

separator defini ti ons: 

ARGUMENT POSITION FOR FIELD R: 1 
ARGUMENT POSITION FOR FIELD A: 2 

SEPERATOR TO PRECEDE FIELD R: " " 
SEPERATOR TO PRECEDE FIELD A: " " , 
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Related Formats 

To save the user having to select a word format for 

each instruction, he is able to define several 

instructions having the same format by replying "Y" 

(yes) to the question " Ano ther instruction definition 

with the same word format ?". In fact, an affirmative 

reply to the subsequent question " Any other instruction 

definition ?" will allow the user to remain in the 

instruction definition mode and define another 

instruction with a different format. 

7.2.3 Editing Word Definitions (Option D on main menu) 

It should be borne in mind that each instruction 

definition includes a reference to the word format 

description to which it conforms. For this reason, any 

alteration of a word format descriptor implies that the 

definitions of instructions which refer to the word 

format will also be altered . A word format description 

may be deleted (in which case all instructions which 

refer to it are also deleted), or altered. Alterations 

only allow changing the textual description of the word 

or the width of a field. The names of fields and the 

number of fields in the word cannot be altered since 

this would have too wide an effect on the referencing 

instructions. To perform such operations, delete the 
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word format and redefine it and all instructions 

referring to it. 

The machine definition program only allows the user to 

enter word edit mode if at least one word definition 

already exists. Having selected this mode from the 

main menu, the user is required to provide the index 

number of the word format description which he would 

like to edit. The index numbers of all defined word 

formats can be listed by responding with the character 

,,*,' 

The program will display the chosen word format for the 

user, to verify that it is in fact the information he 

wishes to alter. 

To choose the type of modification he wishes to make, 

the user must select an option from the sub-menu which 

is displayed. One of the following four responses is 

required: 

D. - Delete the word definition. 

If any instructions refer to the word format 

to be deleted, these will be displayed on the 

screen with a warning that they too will be 

deleted. The user is given th e opportunity 

to abort the deletion operation. Any word 
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formats and ins tructions which are deleted 

will be removed from the definition tables, 

and any other entries with higher inde x 

numbers than the deleted entries will be 

moved down so that no gaps are left in the 

tables. Once word format and instruction 

definitions have been deleted, they CANNOT be 

retrieved. 

A. - Alter the word description. 

This selection requires to user to type a 

new word format description which will 

overwrite the current description. 

F . - Alter the width (number o f bits) of a field. 

To effect this modification, the user is 

required to supply the name (alphabetic 

character) of the field. The program will 

respond with the current width (in bits) of 

the field and will request the new width to 

be typed. To leave the field unchanged, the 

current width may be typed, or the edit may 

be abandoned. The field width must be in the 

range 1 .. LARGEFIELD (LARGEFIELD = 32 on this 

implementation). Before the new field width 

is recorded, all instructions which refer to 
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the word format being altered as well as the 

new word format itself are listed on the 

screen in their modified sta te. The user 

may decide to revert to the original 

field width if he wishes, or confirm that the 

alteration should be permanently recorded . 

During the modification process, the ranges 

of integer arguments in the instruction 

definitions which refer to the modified word 

format, will automatically be altered so as 

best to fit the new field width. If the new 

field width exceeds the maximum integer 

length for the implementation, the field will 

become an unrestricted argument. Conversely, 

if a currently unrestricted argument field is 

narrowed in width to the extent that it no 

longer exceeds the maximum integer length, it 

will be set up as a positive integer range. 

If the modified field is associated with the 

mnemonic in an instruction, then if it is 

reduced in width, the most significant bits 

will be pruned. Alternatively, if its width 

is increased, lead ing zeros are added . 

x. - Exit word edit mode 

This selection exits word edit mode and 

returns to the main menu. The word format 
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being modified will retain the definition it 

had just prior to leaving the edit mode. 

After each edit operation, the current state of the 

word format undergoing modification will be displayed. 

7.2.4 Editing Instruction Definitions (Option E on main menu) 

An instruction description may be deleted, or may have 

its mnemonic or the values of its mnemonic fields 

altered, or the legal range for its variable fields 

altered. 

It is not possible to alter 

(a) a variable field to a mnemonic field or 

vice versa, 

(b) the size o f a field (this involves 

altering the word format), 

(c) the order in which variable arguments 

are used, or 

(d) symbolic names for a field (this might 

affect other instructions whose fields 

refer to the same list of symbolic 

names). 
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To make any of the above changes, one has to delete the 

instruction and redefine it. 

The machine definition program only allows the user to 

enter instruction edit mode if at least one instruction 

has already been defined. Having selected this mode in 

the main menu, the user is required to provide the 

index number of the instruction definition which he 

would like to edit. The index numbers of all 

instructions can be listed by responding with the 

character "*,, 

The program will display the chosen instruction for the 

user, to verify that it is in fact the information he 

wishes to alter. 

To choose the type of modification he wishes to make, 

the user must select an option from the sub-menu which 

is displayed. One of the following five responses is 

required: 

D. - Delete the instruction definition. 

After making sure that the deletion request 

wa s intentional, the program removes the 

instruction from the instruction definition 

table. Any entries with higher index numbers 

than the deleted ins truct i on will be moved 
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down so that no gaps are left in the table . 

Once a n ins t r uc tion defin i t i o n has been 

delet ed, it CAN NOT be re tr iev ed. 

A. - Alter the mnemonic . 

This selection requires to user to type a 

new mnemonic for the instruction. All the 

rules for mnemonics in section 7 . 2 . 2 apply to 

the editor as well. 

M. - Alter the value of a mnemonic field . 

If this option is selected, the program will 

step through all the fields which are 

associated with the instruction mnemonic, 

giving the user an opportunity to alter the 

bit pattern if he wishes to . The bit pattern 

is expected to be typed in binary, but, as 

usual, may be typed in one of the other 

common bases preceded by the appropriate base 

cha r acter. 

v. - Alter the legal range of an argument field. 

This selection steps through all the argument 

fields for the instruction , allowing the 

user to alter the argument range. Only two 

range options are available. If the width of 
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the field exceeds the maximum integer width 

for the imp l ementation , an unrestricted field 

is forced upon the user. Otherwise, the user 

is required to enter the lower and upper 

bounds for an integer range. The default 

base for these values is decimal but other 

bases may be used if the values are preceded 

by the appropriate base character. 

x. - Exit instruction edit mode 

This selection exits instruction edit mode 

and returns to the main menu. The 

instruction being modified will retain the 

definition it had just prior to leaving the 

edi t mode . 

After each edit operation, the current state of the 

instruction description undergoing modification will be 

displayed. 

7.2.5 Reading Definitions From a File (Option R on main menu) 

The machine definition tables are usually written to a 

disc file at the end of the machine definition program . 

During a subsequent run, the user might want to read 

back these definitions to modify them in some way. 

When doing so, it must be borne in mind that any 
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definitions currently in the tables will be overwritten 

by those read in from the disc file. 

When this option is selected in the main menu, the user 

is required to confirm his selection (in case the 

request was accidentally evoked) and to supply the name 

of the file from which the tables are to be read (On 

the current implementation, such files are given the 

default extension ".MAC"). 

7.2.6 Listing Definitions To the Screen (Option L on menu) 

If the user requests a definition listing from the main 

menu, a sub-menu is displayed, from which he must 

select one of the following three options: 

1. List all word format definitions on the 

screen. 

2. List instruction definitions in full detail 

on the screen. This selection requires the 

user to type the index number of a word 

format definition. All instructions which 

conform to the named word format will be 

listed. If a zero (0) is typed in response 

to this request, all instructions will be 

listed. 
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All word format definitions and all 

instruction descriptions will be listed if 

option 3 is selec ted. 

7 . 2.7 Exiting the Program (Option X on main menu) 

On exiting the program from the main menu, th e user is 

prompted to save the definition tables if he has made 

any new definitions. Th e program is rather persistent 

with this particular prompt should the user decide not 

to save his definitions, since this could be a 

regrettable decision. 

A user wishing to save his definitions, must p r ovide 

the name of the file which will be created for this 

purpose. (On the current implementation, such files 

are given the default extension ".MAC" if no extension 

is supplied by the user. The file name may optionally 

be preceded by a device code, e.g. A: or B:). If the 

file already exists, the program will request the 

user's permission to overwrite it. 

The message "C annot create file (filename)" 

generally indicates that there is insufficient free 

space on the disc. 



CHAPTER 7 -117 -

7.3 ERROR CONDITIONS 

Below is listed the set of error messages which a user of 

the Machine Definition program is likely to encounter . 

"ACTION" describes the steps the user should take to 

overcome the error condition. 

1 FIELD DESCRIPTORS MUST BE ALPHABETIC "A" - > "Z" 
Action: Retype the field description using only 

alphabetic capital letters and separating 
spaces. 

2 REPETITION OF A FIELD DESCRIPTOR 
Action: The character representing the current field 

has been used to represent a previous field. 
Retype the field description using unique 
characters . 

3 WORD DEFINITION TABLE FULL 
Action: There is no more space in the word definition 

table. Save your current definitions and 
exit the program. You will have to recompile 
the program (see Appendix A1 .6 ) , increasing 
the maximum number of word definitions 
(WORDMAX in the const declaration of all 
modules) . 

4 L1 # L2 FIELD DEFINITION DOES NOT MATCH WORD LENGTH 
Action: L1 is sum of the number of bits in all fields. 

L2 is the defined length of the word form. 
Re-define the word length and field 
information making them agree in length. 

5 INTEGER VALUE REQUIRED 
Action: A non-numeric character has been typed in an 

integer input field . Re-type the correct 
integer value. 

6 INSTRUCTION DEFINITION TABLE FULL 
Action: There is no more space in the instruction 

definition table. Save your current 
definitions and exit the program. You will 
have to recompile the program (see Appendix 
A1.6), increasing the maximum number of 
instruction definitions (INSETMAX in the 
const declaration of all modules). 

7 value> length BITS - VALUE TOO LARGE FOR FIELD 
Action: "va lue " is too large to be stored in a field 

of "length" bits. Retype the value. 
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8 NUMERIC VALUE REQUIRED 
Act ion: Type a numeric value in response to the 

request for input. 

9 c FIELD DOES NOT EXIST 
Action: c is the character typed. No field exists 

with this name . Retype the field name. 

10 MNEMONIC ALREADY DEFINES ANOTHER INSTRUCTION 
Action: Select a different mnemonic name and retype . 

11 INVALID NON - PRINTABLE CHARACTER IN MNEMONIC 
Action: Retype the mnemonic name using only printable 

characters. 

12 TOO MAN Y FIELDS ASSOCIATED WITH MNEMONIC 
Ac tion: Combine adjacent fields into one field if 

possible, or save your current de finitions 
and exit the program. You will have to 
recompile the program (see Appendix A1 . 6), 
increasing the maximum number of f i elds which 
can be associated with the mnemon i c (MNEMFMAX 
in the const declaration of all modules). 

13 c FIELD ALREADY DEFINED 
Action: c is the character typed . This field can 

only have its value altered by the 
instruction edit mode . Select ano ther field 
name or abandon the definition. 

14 BASE n ILLEGAL DIGIT FOR GIVEN BASE 
Ac tion: Retype the numeric input using digits for 

base n . 

15 n NO WORD DEFIN ITION WITH THIS INDEX 
Action: n is an invalid word forma t index. Retype 

the word format index, or type * to list all 
defined word formats. 

16 BAD SELECTION 
Action: Select a valid option - retype your se lection . 

17 FIELD EXCEEDS MAXINT - UNRESTRICTED FIELD ASSUM ED 
Action: This is a warning 

required. The 
correction. 

message. 
program 

No user action is 
effects its own 

18 FIELD SMALL ENOUGH TO ASSUME SELECTION 1 
Action: This is a warning 

required. The 
correction. 

message . 
program 

No user action is 
effects its own 



CHAPTER 7 -119-

19 n INVALID INSTRUCTION INDEX 
Action: n is an invalid instruction index. Retype 

the instruction index, or type * to list all 
instructions. 

20 lower >= upper UPPER BOUND DOES NOT EXCEED LOWER BOUND 
Action: Retype the bounds, making sure that the upper 

bound exceeds the lower bound. 

21 otherwidth <> thiswidth WIDTH DOES NOT MATCH WIDTH OF 
CURRENT FIELD 

22 

Act i on: Specify an alternative instruction index or 
define the current argument field explicitly. 

c NO SUCH FIELD IN CHOSEN INSTRUCTION 
Action: c is the character name typed . 

another field name or abandon. 
Select 

23 symbol SYMBOLIC NAME ALREADY USED 
Action: Make up an alternative symbolic name. 

24 position NOT A VALID ARGUMENT POSITION 
Action: Retype the numeric argument position. 

25 position ARGUMENT POSITIONS ARE NOT CONSECUTIVE 
Action: Respecify the argument fields, ensuring that 

they are consecutive. 

26 position POSITION ALREADY USED 
Action: An argument field has already been defined 

which uses this position. Choose an 
alternative position or abandon and redefine 
the instruction. 

27 NO WORDS DEFINED YET 
Action: The desired operation will only be allowed 

once word formats have been defined. 

28 NO INSTRUCTIONS DEFINED YET 
Action: The desired operation will only be allowed 

once instructions have been defined. 

29 SYMBOL DEFINITION TABLE FULL 
Action: There is no more space in the symbol 

defin i tion table. Save your current 
definitions and exit the program. You will 
have to recompile the program (see Appendix 
A1 .6), increasing the maximum number of 
unique argument fields referenced using 
associated mnemonics (VARSMAX in the const 
declaration of all modules). 

33 newwidth ILLEGAL FIELD WIDTH 
Action: Retype the new field width. 
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8 . USING THE CODE-SKELETON DEFINITION PROGRAM 

The current program has been implemented in Pascal MT + on a 

CP/M based system (North Star Advantage), but could be 

easily altered to run on other Pascal systems, with only 

minor modifications needed to the code-skeleton definition 

program and to the following description of how to use it. 

8.1 CURRENT IMPLEMENTATION REQUIREMENTS 

Before the Code - Skeleton definition program can be used, the 

Machine Definition program described in chapter 3 must be 

used to set up a file (a ".MAC" file on this implementation) 

of inst ruct ion formats. 

The following six files are required to run the current CP/M 

based (North Star Advantage) version of the code - skeleton 

definition program. 

CODDEF.COM 
CODDEF.001 
CODDEF.002 
CODDEF.003 
CODDEF.004 
CODDEF.005 

} 
} 
} 
} 
} 

Executable Root Program 

Overlays for the program 

Also useful , but not mandatory, are the following two 

message files which improve the friendliness of the program. 

CODDEF .H LP 
CODDEF .MES 

Help message file 
Error message file 
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To run the program, type 

CODDEF <RET> 

and answer the questions or make selections from menus which 

follow. The relocatable code ske letons will be saved on a 

user named file. 

During the course of the program, two temporary work files 

are created. They are named CODDEF.TMP and CODDEF1.TMP. 

These names should not be used for any other files. 

The disc space required to store the root program and 

overlays is 40k, with an additional 8k required if the 

message files are included. The machine definition and 

resultant skeleton file require typically 10k of storage 

while at least 6k of free space should be left on the disc 

for use by the temporary file s. 

8.2 DRIVING THE PROGRAM 

Provided the help message file (CODDEF.HLP) is present, the 

user may request help at any time by re sponding to an 

invitation for input with 

? <RET>. 

Help relevant to the current operation will be supplied . In 

some cases , additional help or an example will be offered. 
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If the character "?" is a valid part of a mnemonic, 

separator or argument field in the assembly language for the 

target machine, then the user should choose another 

character as his help request character. This can be done 

when invited to do so at the start of the program. 

The sequence <ESC> <RET> can be used t o abandon any 

operation. Execution returns to the main menu or to the 

appropriate sub-menu. Once an operation has been abandoned, 

the memory-resident code-skeleton is returned to its state 

prior to commencement of the operation . 

At the s tart of a session, the user is requested to supp ly 

the names of two disc files. The first is the machine 

definition file, set up by the process outlined in chapter 

7. If this file cannot be found, the program terminates. 

The second file is the one on wh~ch code-skeletons are 

stored. If this file does not exist, it will be created. 

If it does exist, it will be modified. 

The main menu is displayed automatically. The user selects 

one of eight options by typing a representative character . 

E - Edit/Define a Code-Skeleton 
D - Delete a Code-Skeleton 
L - List a Code-Skeleton 
S - Edit/Define a Run-time Subroutine 
R - Delete a Run-time Subroutine 
P - Print a Run -time Subroutine 
B - Alter the Output Base 
X - Exit 
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After each major operation, the program returns to the main 

menu. 

For the options discussed in paragraphs 8 . 2.1, 8 . 2 . 3 and 

8.2 . 5 below, the user is required to supply the index number 

of the intermediate code whose code - skeleton is to be 

operated on. This number is used by the p r ogram to 

associate a particular code - skeleton with an intermediate 

code. The allocation of numbers is at the discre~'ion of 

the user (within an implementation dependent range, 

currently set at 0 . . 77) and is made by the user. It is 

usually convenient to use the function value of an 

intermediate code as its index number. 

8 . 2.1 Editing or Defining a Code - Skeleton (Option E on menu) 

All code skeletons are initially empty. However, if a 

previous run has already established a code - skeleton 

file, and this file was opened at the start of the 

session, some of the code skeletons might already be 

defined . 

On entering the definition/edit mode, if a code 

skeleton exists for the requested intermediate-code, it 

will be recalled for editing. This will be indicated by 

the message "EDITING SKELETON". Otherwise, the 

message "DEFINING NEW SKELETON" invites the user to 
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begin inserting a new code skeleton. The rules for 

editing are the same i n both cases (remember that a 

code skeleton may be empty). 

The edit mode may be described as the combination of an 

assembler and a line-by-line editor. In describing the 

body of target code which produces the effect of an 

intermediate l anguage code, it is convenient to borrow 

some terminology from the medical world. Hence we 

speak of the code sequence as a "code-skeleton". We 

shall take the analogy further and refer to an 

individual instruction within the code-ske l eton as a 

"rib". The "current" rib/instruction is that 

instruct i on within the code - skeleton upon wh i ch an edit 

command will operate. 

When edit mode is entered, the current rib is an 

imaginary one at the top of the skeleton. For example, 

a three rib skeleton for an 8080 target machine might 

be: 

top: 
rib 1: 
rib 2: 
rib 3: 

LXI 
PUSH 
CALL 

D,0 
D 
IWRTE 

<-- CURRENT 

Thus a request to print the current i nstruction will 

produc e the message " top of skeleton". To print out 

rib 1, one must first establish this rib as the 
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current one. 

top: 
rib 1: 
rib 2: 
rib 3: 

LXI 
PUSH 
CALL 

D, 0 <-- CURRENT 
D 
IWRTE 

Of course, if the skeleton is empty, then it consists 

only of the imaginary top rib. In this case, any 

attempt to move down the skeleton will produce the 

message "bottom of skeleton". 

Since this part of the program operates interactively, 

there is no prompti ng from the compute r. However, the 

help request character will be recognised and serviced. 

All edit commands are control sequences (the <CTRL> key 

is pressed along with another key), and the program 

will attempt to interpret any normal character sequence 

as an instruction . 

<CTRL> X will exit from the definition/edit mode to the 

main menu, saving the current state of the code 

skeleton. This is perhaps the most important sequence 

to remember as it is the only means of returning to the 

main menu . 

If one wishes to define a new code skeleton, one simply 

begins t yping the legal machine mnemonics, one on a 

line. The program will validate them and report any 
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errors . The most recent r ib typed becomes the 

current. 

To edit a code skeleton, one makes use of the following 

control sequences: (Most of these operat ions end by 

displaying the new current rib . Thus the cur r ent 

ins tructi o n is the one most recently displayed on the 

screen). 

<CTRL> T 

<CTRL> N 

<CTRL> B 

<CTRL> P 

<CTRL> L 

<CTRL> R 

move to Top of code skeleton . 

Next ins truction becomes the current , 
i.e. advance one inst r uct i on. 

Back up one instruction, i.e. the 
previous instruction becomes t h e current . 

Print the current instruction . 

List the ent ire code skeleto n. (T h is does 
not alter the poin te r t o current rib). 

Remove the current instruction from the 
code s keleton . (The next instruction 
becomes the current , unless the l ast 
instruction is being deleted, in which 
case the previous becomes the c u rrent) . 
Once an instruction has been removed, it 
CANNOT be retrieved. 

To insert a new instruction simply position the 

current rib pointer at the instruction before the 

position to be occupied by the new instruction . Then 

type the new instruction . INSTRUCTIONS ARE INSERTED 

AFTER THE CURREN T INSTRUCTION. The newly inserted 

instruction wil l become the current one . 
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To insert an instruction at the top of the code 

skeleton, move «CTRL> T) to the top of the skeleton 

and type the new instruction. 

To alter a rib, it must be deleted, and the replacement 

line inserted. 

An editing session might take the following course: 

<CTRL> T top: <-- CURRENT 
rib 1 : LXI D,1il 
rib 2 : PUSH D 
rib 3: CALL IWRTE 

<CTRL> N top: 
rib 1 : LXI D,1il <-- CURRENT 
rib 2: PUSH D 
rib 3 : CALL IWRTE 

<CTRL> N top: 
rib 1 : LXI D,1il 
rib 2 : PUSH D <-- CURRENT 
rib 3 : CALL IWRTE 

XCHG top: 
rib 1 : LXI D,1il 
rib 2 : PUSH D 
rib 3 : XCHG <-- CURRENT 
rib 4 : CALL IWRTE 

<CTRL> B top: 
rib 1 : LXI D,1il 
rib 2: PUSH D <-- CURRENT 
rib 3 : XCHG 
rib 4 : CALL IWRTE 

<CTRL> R top: 
rib 1 : LXI D,1il 
rib 2 : XCHG <-- CURRENT 
rib 3 : CALL IWRTE 

<CTRL> X (Return to the main menu, retaining the 
most recent version of the code-skeleton) 
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If, while inserting a new rib, the user types the 

abandon sequence « ESC><RET», th e skeleton returns to 

its condition before the insertion. As a new 

ins truction is entered, it is checked field by field. 

As soon as an error is detected, evasive action is 

taken before the user is allowed to continue. For 

example, if the instruction mnemonic is not recognised, 

the instruction is immediately abandoned. Once the 

instruction mnemonic has been identified, t he program 

is able to offer assistance when further errors are 

detected. The user is offered information about the 

correct format for the instruction (order of arguments, 

valid separators, etcJ and legal values for argument 

fields. Thus as long as the machine definition program 

has been run correctly , it is impossible for the code

skeletons to contain assembly/compilation errors . 

Normally, numeric argument fields are entered using 

decimal values. If the user prefers, the field value 

may be prefixed: 

(1) with a "B", and entered as a binary number 

(e.g . B100011), 

(2) with a n "H", and entered as an hexadecimal 

number (e.g. H23) 

or (3) with an "0", and entered as an octal number 

(e . g. 043). 
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A check is made to ensure that the value will fit into 

the defined legal range for the field. Negative values 

are converted according to 2's complement rules, and 

must be input using a minus sign. 

All integer fields will be listed in the most recently 

defined default output base (see section 8 . 2 . 7) . 

Argument fields which require a symbolic name (for 

example register fields) must be typed using one of the 

defined symbols. An illegal symbol will prompt the 

program to offer a list of legal symbolic names for the 

particular argument. 

Address fields should be substituted with a compile 

time address name, optionally followed by an offset in 

the range - 128 . . +127. For example, 

JMP PC +8 

will jump to the address of the current instruction 

(its code generation time address) plus 8 words (i.e. 

minimum addressable memory units). As for numeric 

fields, an address offset is usually entered using a 

decimal value. However, prefixing the number with 

"B", "0" or "H" enables binary, octal or hexadecimal to 

be used. 
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Table 8 .2.1 gives a list of reserved compile-time names 

which may be used in a numeric field. In addition to 

these names, the user may also use the names of his own 

run-t ime subroutines (see section 8.2.2) in an address 

field . 

Note the difference between th e names X, XN and XA in 

table 8 .2.1. As an example , suppose the intermediate 

code LOAD X has the code - skeleton LDI X. Then LOAD 10 

would be translated as LD I 10. However, if the 

skeleton was LDI XN, then LOAD 10 wou l d be translated 

as LDI -10. For the names X and XN, the argument value 

itself is used. However, suppose the intermediate code 

BRANCH X has the code - skeleton JMP XA. BRANCH 10 is 

translated into a jump to the code - skeleton in the 

target program which represents the intermediate code 

whose address in the intermediate program is 10. So a 

branch to code - skeleton 10 might be translated as 

JMP 276 . 



Name 

PC 

x 

Y 

XN 

YN 

XA 

YA 

WRTLN 

IWRTE 

FPWRTE 

STRWRT 

IREAD 

FPREAD 

FLOAT 

FIX 

IADD 

ISUB 

IMUL 

IDIV 

FPADD 

FPSUB 
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TABLE 8.2.1 

RESERVED COMPILE-TIME VALUES 

Compile-Time Value 

address of current instruction. 

va l ue of argument 1 of the current ILC 
(intermediate language code) . 

value of argument 2 of the current ILC. 

negative of arg 1 value of the current ILC 

negative of arg 2 value of the current ILC. 

arg 1 of the current ILC used as an address. 
The equivalent target code address will be 
substituted. 

arg 2 as an address as for XA. 

address of RTS (run-t ime subroutine) to write 
out the current output buffer. 

address of RTS for integer output. 

address of RTS for floating-point output. 

address of RTS for string output . 

address of RTS for integer input . 

address of RTS for floating-point input . 

address of RTS for integer to floating
point conversion. 

address of RTS for floating-point to 
integer conversion. 

address of RTS for integer addition. 

address of RTS for integer subtraction. 

address of RTS for integer multiplication . 

address of RTS for integer division. 

address of RTS for floating-point addition. 

address of RTS for floating-point subtraction 
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(table 8.2.1 continued ... ) 

FPMUL address of RTS for floating -point 
multiplication. 

FPDIV address of RTS for floating-point division . 

ERROR address of RTS for run-time error reporting. 

CHKSUB address of RTS for run-time r ange checking . 

8 . 2.2 Editing or Defining a Run -Time Su broutine (Option S) 

A run-time subroutine is a small piece of code wh ich is 

common to severa l code - skeletons . It can be referenced 

often by using its name in the add r ess field of a 

referencing instruction . The actual address will be 

filled in at code-generation time. 

All run-time subroutines are included only once in the 

run-time object program. Thus run-t ime subroutines can 

contribute towards more economical use of memory. 

The user is able to define and edit run-time 

subroutines in exactly the same way as code-skeletons. 

Edit commands a r e identical to those described in 

section 8.2 .1. From a definition point of view , the 

run-t ime subroutine differs from t he normal code-

skeleton only in the way i t i s referenced. 



CHAPTER 8 -133 -

Whereas normal code - skeletons are referred to by their 

index numbers , a run - time subroutine is given a name. 

On entering run-time subrou t ine edit mode, the user 

must supply the name of the run-time subroutin e he 

wants to define or modify. This can be any name of his 

choice, except those already used as compile - time 

address names (Le . the names of Table 8.2.1). 

However, names beginning with "D", fiB", "0", lI H" or a 

numeric digit should be avoided as they mi ght be 

confused by the program with numeric input. If the 

run - time subroutine does not yet exist, it will be 

cre ated. A response of * <RET> to the prompt for the 

name of the ru n- time subroutine, will produce a list of 

names of all user-declared subroutines. 

For example , run - time subroutine SAVE might be useful 

in an 8080 implementation for saving all regis t ers on 

the stack before some operation which overwrites them . 

SAVE: XTHL 
PUSH 
PUSH 
PUSH 
PCHL 

D 
B 
PSW 

save H,L 
save D,E 
save B,C 
save A,PSW 
return 

The run - time subroutine is called from a code - skeleton 

i n the norma l way for the assembly language: 



CALL 
MVI 

SAVE 
A,5 

CHAPTER 8 

save all registe r s 
instructions which 
overwrite registers 
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If the user gives one of his run - time subroutines the 

name "START", its code wi l l be given special status as 

the initialisation code for the program . A routine 

with this name ( i f one exists) is always placed at the 

start of the executable code. This feature can be used 

by t he code ge nerato r implemen t o r to make i n itial 

assignments, or to r estart t he program by branching to 

address "START" . 

No high level mech anism exists for passing parameters 

t o and from user def i ned run - time subroutines . Data 

communica t ion is via the registers or the stack at th e 

implementor's discretion . 

8 . 2 . 3 Del e ting a Code - Skel e to n (Op t ion D on main menu) 

After maki ng sure that t h e deletion req u est is 

intentional , the program removes the code - skeleton. 

This means t hat the s keleton will r evert to a n 

"undefined " state. Onc e a code-ske l e ton has been 

de lete d, it CANNOT be retr ieved. 
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8.2.4 Deleting a Run-Time Subroutine (Option R on main menu) 

The user is required to supply the name of the run - time 

subroutine in the manner described in section 8.2.2. 

Remember that * <RET> can be used to list the names of 

all user-defined subroutines. After making sure that 

the deletion request is intentional, the program 

deletes the subroutine's code-skeleton a nd removes its 

name from t he list of use r defined subroutines. Once a 

run-time s ubrou tine has been deleted, i t CANNOT be 

retrieved. 

8.2.5 Listing a Code - Skeleton t o the Sc r een (Option L ) 

The user merely supplies the index number of the code

skeleton to be l is ted, in assembly fo r mat, on the 

screen . If the skeleton has not yet been defined , or 

has been del eted, the message "empty skeleton " is 

displayed . 

8 . 2.6 Listing a Run-Time Subroutin e to the Screen (Option P) 

Once aga in, the use r i s required to supply the name o f 

the run - time subroutine i n the manner described in 

section 8.2.2 . The subroutine is listed as for a code

skeleton . 
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8.2.7 Altering the Default Integer Output Base (Option B) 

By selecting option B in the main menu, the user is 

allowed to set the numeric base (binary, octal, 

decimal, hexadecimal or other) in which all integer 

values will be listed. The base remains valid for the 

duration of the program unless it is reset . At the 

start of the program, the default base is set to 10, 

i.e. decimal. 

Before prompting the user to supply the new output 

base, the program lists the current output base value. 

This might be useful if the user is not sure what base 

he is currently using. The CPIM implementation allows 

integer fields to be printed out in any numeric base 

in the range 2 to 16; e.g. binary, octal, decimal, 

hexadecimal, or a nything in between. To alter the 

base, type the decimal numeric value of the desired 

base, e.g. 2 for binary. Negative numbers are output 

preceded by a minus sign in all number systems except 

binary, in which case negative numbers are output as a 

2's complement number. For positional systems with a 

base greater than 10, the alphabetic characters A, B, 

C, ... are used t o represent the digits 10, 11, 12, 

For example, An ICL 1900 code sequence to report run

time error 24, is listed in various bases as: 
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base 1 0 : LDN 3 24 
BRN ERROR 

base 2: LDN 3 000000011000 
BRN ERROR 

base 8: LDN 3 30 
BRN ERROR 

base 13 : LDN 3 1B 
BRN ERROR 

base 16 : LDN 3 18 
BRN ERROR 

(The ~egiste~ field in this example has been defined as 

the symbolic name "3" ~ep~esenting the intege~ 3). 

8.2.8 Exiting the P~og~am (Option X on main menu) 

On leaving the p~og~am f~om the main menu, all code-

skeletons and use~-defined ~un-time sub~outines are 

consolidated on the code-skeleton file named by the 

user at the start of the program . During this process, 

the program makes use of a number of temporary work 

files. Since this disc file reorganization usually 

takes a few minutes, the program writes out the 

character 11 " periodically to reassure the user that it 

has not crashed. 
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8.2.9 A General Note on the Current Implementation 

For rather esoteric programming reasons (outlined in 

Appendix B1.2.2 for the more dil igent reader), the 

current CP/M imp lementation o f the Code-Skeleton 

Definition Program saves new versions of code-skeletons 

on an inaccessible tempora ry file as soon as a 

subsequent skeleton is called up. So as to alleviate 

this inconvenience, the user is advised to make all 

necessary modifications and listings of a skeleton 

before calling up another. Should one need to revive 

an altered skeleton later, it is necessary to exit (to 

allow disc reorganization to take place) and begin a 

new session. 

An earlier version of the Code-Skeleton Definition 

Program is available which does not have this 

disadvantage, but which is restricted in other ways. 
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8.3 ERROR CONDITIONS 

Below is listed the set of error messages which a user of 

the Code-Skeleton Definition program is likely to encounter. 

" Action " descr ibes the steps the user should take to 

overcome the error condition. 

opcode -
Action: 

NOT A VALID INSTRUCTION MNEMONIC 
Retype the instruction if a 
caused the problem, or return 
definition program and add 
instruction t o the system. 

typing error 
to the machine 
the desired 

2 ILLEGAL OPERAND VALUE 
Action: Retype the instruction, or request help on 

valid operand values. 

3 UNRESTRICTED FIELD MAY ONLY BE A COMPILE-TIME ADDRESS 
Action: A field of this size may only be an address. 

Retype the instruction using the name of a 
compile - time address. 

4 symbol - NO T A LEGAL COMPI LE-TI ME ADDRESS NAME 
Action : Retype the instruction using a valid reserved 

or user - defined address name. 

5 INTEGER VALUE REQUIRED 

6 

7 

8 

Action : A non-numeric character has been typed in an 
integer input field. Re-type the correct 
integer value. 

INVALID INTERMEDIATE CODE NUMBER 
Action: Retype your se lection within the legal range 

(0 .. 77 on the current implementation). 

value > length BITS - VALUE TOO LARGE FOR FIELD 
Action: "value" is too large to be stored in a field 

of "length" bits. Retype the value. 

NUMER I C VALUE REQUIRED 
Action: Type a numeric value in response to the 

request for input . 

9 NAME ALREAD Y USED FOR A RESERVED COMPILE-TIME ADDRESS 
Action : Select a unique run-time subrou t ine name. 
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10 RUN - TIME SUBRO UTINE TABLE FULL 
Action : There is no more space in the user - defined 

run - time subroutine table. Save your current 
definitions and exit the program. You will 
have to recomp i le the prog r am (see Appendix 
B1.4), increasing the maximum number of 
defined run - time subroutines and t he maximum 
number of skeletons (RTSMAX and MAXNOSKEL in 
the const decla r ation of all modules) . 

11 INVALID NON - PRINTABLE CHARACTER IN MNEMONIC 
Action : Retype the mnemonic name using only printable 

characters . 

12 INVALID NUMERIC BASE (RANGE = 2 .. 16) 
Action : The program reverts to t he original 

base . The user may retype the numeric base 
within the valid r ange i f he wishes . 

14 BASE n ILLEGAL DIGIT FOR GIVEN BASE 
Action : Retype the numeric input using digits for 

base n. 

In late r versions of t he Code - Skeleton Definition Program, 

the followi ng messages may also be encoun t er ed and are self-

explanatory. 

CODE - SKELETON n HAS ALREADY BEEN ALTERED IN THIS 
SESSION AND WRITTEN OUT TO THE TEMPORARY FILE. YOU 
WILL NOT BE AB LE TO ACCESS IT AGAIN IN THE CURRENT 
SESSION . EXIT THE PROGRAM AND START A NEW SESSION . 

RUN - TIME SUBROUTINE name HAS ALREADY BEEN ALTERED IN 
THIS SESSION AND WRITTEN OUT TO THE TEMPORARY FILE. 
YOU WILL NOT BE ABLE TO REFERENCE IT AGAIN UNTIL THE 
NEXT SESSION . 



9. USING THE CODE GENERATION PROGRAM 

9 . 1 CURRENT IMPLEMENTATION REQUIREMENTS 
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Before the Code Generation program can be used, the 

following programs must have been run: (a) The Machi ne 

Definition 

fi l e of 

definition 

skeleton 

program described in chapter 7 which sets up a 

instruction f ormats, (b) the Code - Skeleton 

program of chapter 8 which se ts up the code -

file and (c) a suitable parser which o u tputs the 

intermediate language code version of the source program. 

The following two files, which can be stored in 32k o f disc 

space, are required to run the current CPIM bas ed (Nor th 

Star Advantage) version of the general code generation 

program. 

CODGEN.COM 

CODGEN . DRV 

To run the program, type 

CODGEN <ret> 

9 . 2 THE USER'S POINT OF VIEW 

Executable Root Program . 

Parameter table. 

The end user of the code generator wil l be p r ompted to 

supply the names of two files: (1) the intermediate language 

code input file and (2) the target machine code output fil e. 

During code generation, the program writes out the character 

II I' periodically . 
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9.3 IMPLEMENTOR'S NOTE 

A general code generator obviously requires more information 

than the names of the source and target files. However, it 

would be most inconvenient for the user to have to supply 

this information at each compilation. The code generator 

therefore uses a parameter file, called CODDEF.DRV, which 

must be set up by the implementor to furnish details about 

the run-time environment. The format of this file is shown 

in table 9.3 .1. Since the format is straightforward, the 

file may be set up using an editor . However, should the 

implementor feel unsure about setting up the file, a program 

does exist (called DRVTAB) which prompts the implementor for 

each parameter and performs appropriate validation. An 

example of a parameter file is given in section 3.4. 

Apart from setting up this file, the compiler writer merely 

has to ensure that the parser outputs the intermediate codes 

in the desired format (all are integer codes followed by two 

arguments, which have zero values if not used), and that the 

loader (see chapter 4) is able to accept the format of the 

target code output file (Table 9 .3. 2) . 

The code generator uses the function values 

intermediate codes to index the code-skeleton file. 

of the 

If this 

is not the relationship which the implementor used when 
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defining his code skeletons, he is r esponsible for writing 

an intermediate stage to convert the intermediate codes to 

i ndex values. 

Since the Code Ge nerato r is th e most likely program in the 

system to need modification during implemen t ation of a new 

compiler ( for example, if the implementor wants to use a 

different type of intermediate code), the reader is referred 

to Appendix C1 for implementation details of the program . 

TABLE 9.3.1 

FORMAT OF THE CODE GENERATOR PARAMETER FILE 

NAME 

NAME 

BITS 

BASE 

SIZE 

PC 

RUN-TIME 
ADDRESSES 

name of the Machi n e Definition File 

name of the Code - Skeleton File 

size in bit of smallest addressable 
unit of memory 

Ou tput base for object code file - this 
is expressed in " number of bits per 
digit " to allow bases which are powers 
of 2; e.g. 1 for binary, 3 for octal, 4 
for hexadecimal. 

The size of the address field 
i .e. the number of words 
required t o address the whole 

in words, 
of memory 
o f memory. 

Start address of application programs in 
the run - t i me environment . 

Now follow the addresses of all 
s tandard run-t ime subroutines which are 
included in the load - time package. The 
addresses must be given in the order 
indica t ed below, followed by any further 
subroutines wh ich the compile r writer 
might have implemented . 

WRTLN, IWRTE, FPWRTE, STRWRT, IREAD, 
FPREAD, FLOAT, FIX, IADD, ISUB , IMUL, 
IDIV, FPADD, FPSUB, FPMUL, FPDIV, ERROR, 
CHKSUB .. . 
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TABLE 9.3 . 2 

FORMAT OF THE TARGET CODE OUTPUT FILE 

string of program code ..... # 

backpatch table . .... # 

s tart address II 
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All output to the target code file is in the form of strings 

of digits in the base implied by BASE in the parameter file. 

For bases greater than 10, the letters "A", "B", " C", 

are used to represent the digits 10 , 11, 12 , as for 

hexadecimal. At the end of each section of information, a 

terminating "#" character is output. For example, i f BASE=4 

then the hex4 decimal output for the 8 - bit codes 27, 254 will 

be 1BFE#. The program code is abso l ute (i.e . generated 

for loading into a particular memory address), and forward 

references are filled in by the loader after consulting the 

backpatch table. The backpatch table consists of the s t ring 

of the following sequences: address of word, value to be 

logically "OR-ed" with the word. This is repeated for as 

many words as need to be patched. The address is expressed 

using the number of bits given by SIZE * BITS in the 

parameter file . 

to which the 

Finally, the start address is the address 

loader must jump , on completion of the 

backpatching process, to begin execution of the application 

program. 
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A P PEN D ICE S 

Due to their bulk, the appendices are not included in this 

document. A summary of their contents appears below. 

Should the reader wish to obtain a copy of the appendices or 

copies of the programs which are li sted in the appe ndices, 

they may do so by contacting the Computer Science 

Department, Rhodes University . In addition to the standard 

routines of appendix 4 for the 8080 processor, equivalent 

run-time subroutines have been written for code gene r a t ors 

implemented on the ICL 1900 GEORGE system and the PDP -11 

RSX - 11M operating system. 

APPENDIX A The Machine Definition Program 

This appendix contains: 

A1. Implementation deta il s of the Machine 

Program. 

Definition 

A2. A Pascal source listing of the Machine Definition 

Program . 

A3 . A listing of the Help Message File. 

A4. A listing of the Error Message File . 

A5. An Example Run. 
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APPENDIX B The Code -Skeleton Definition Program 

This appendix contains: 

B1 . Implementation details of the Code-Skeleton Definition 

Program. 

B2. A Pascal source listing of the Code - Skeleton 

Definition Program. 

B3 . A listing of the Help Message File. 

B4 . A listing of th e Error Message File. 

B5. An Example Run . 

APPENDIX C The General Code Generation Program 

This appendix contains: 

C1. Imp lementa tion details of the General Code Generation 

Program. 

C2. A Pascal source listing of the General Code 

Generation Program . 

APPENDIX D 8080 Monitor Routines and Absolute Loader 

This appendix contains an 8080 Assembler source listing of 

the standard run - time s ubrou t ines and an absolute loader 

suitable for use with the general code generator . 

APPENDIX E The Clang Compiler 

This appendix contains a Pascal source listing of the 

simple CLANG Parser and In terpreter [23J 


