
DES I G N AUT 0 MAT ION

o F A

MAC H I N E - I N D E PEN DEN T

COD E G ENE RAT 0 R

Thesis submitted by

PETER GRAHAM CLAYTON

in fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

RHODES UNIVERSITY

DECEMBER 1983

A C K NOW LED GEM E N T S

My thanks are due to Professor Pat Terry, for help and

encouragement which has extended way beyond the limits of

this thesis, and for permission to make use of much of his

software, and to Louisa for her support and help in

preparing this report.

ABSTRACT -2-

A B S T R ACT

As both computer languages and architectures continue to

proliferate, there is a continuing need for new

compilers. Researchers have attempted to ease the work

of producing compilers by developing methods to automate

compiler writing. While much work has been done (and

considerable success achieved) in writing parsers which

can handle a variety of source languages (using mainly

table-driven analysis methods), less progress has been

made in formalizing the code generation end of the

compiler. Ne vertheless, some of the more recent

publications in code generation stress portability or

retargetability of the resulting compiler. A number of

code generator synthesisers have been developed, some

of which produce code that can be compared in quality

with that produced by a conventional code generator.

However, because of the complexity of generalizing the

mapping from source language to target machine, and the

need for efficiency of various kinds, code generator

synthesisers

Consequently,

are large, complicated programs .

the person who develops a code generator

using one of these tools invariably needs to be a code

generation specialist himself.

Many compilers follow a pattern of having a front end

which generates intermediate code,

converts intermediate code to

and a back end which

machine code. The

ABSTRACT -3-

intermediate code is effectively machine independent, or

can be designed that way.

With these points in mind, we have set out to write a

system of programs which

1. will allow the generation of such a back end in a

reasonably short time, for a general intermediate

code, and for a general machine code, and

2. can be used by anyone who has a sound knowledge of

the target machine's architecture and associated

assembler language, but is not necessarily a

specialist compiler writer.

The system consists of a series of friendly, interactive

programs by means of which the user sets up tables

defining the architecture and assembly level

instructions for the target machine, and the code

templates onto which intermediate codes produced by a

parser have been mapped. A general notation has been

deve l oped to represent machine instructions using the

same format as the target assembler. Thus the code

generator writer is able to write code sequences to

perform the effects of the intermediate codes, using

assembly mnemonics familiar to him. The resultant

table-driven code generator simply replaces a sequence

of intermediate codes by their respective code-

ABSTRACT -4-

templates, relocating them in memory and filling in

addresses known only at code-generation time.

This thesis describes the use and implementation details

of this generalized code generation system. As an

example, the implementation of a code generator for a

CLANG [23J parser on an 8080 processor is described.

The discussion also includes guide-lines on how to

implement a loader and associated run-time routines for

use in executing the object code.

The results of a number of bench-marks have shown, as

expected, that code produced by a code genera t or

developed in this manner is larger and slower than that

from a special purpose optimizing code generator, but is

still several times faster than interpreting the

intermediate code. The major benefit to be gained from

using this system lies in the shorter development time

by a less skilled person.

1.

2.

3.

CON TEN T S

Introduction

1.1 Compilers in Brief

1. 1. 1 Lexical Analysis

1 . 1 .2 Syntax Analysis

1 . 1 . 3 Semantic Analysis

1 . 1 . 4 Code Optimization

1 . 1 . 5 Code Generation

1.2 Automated Code Generator Writing

1. 3 Why another Machine - Independent
Generator ?

Code

1. 4 Ou tl ine of the Remainder of the Thes i s

PART 1 - Intent and Accomplishment

Overview Of The Generalized Code Generator

2.1 The Machine Definition Program

2.2 The Code-Skeleton Definition Program

2.3 The Code Ge neration Program

2.4 When To Use The Programs

A Sample Implementation

3.1 The CLANG Compiler

3.2 The Machine Definition

3.3 Code-Skeleton Definitions

3.4 The Code-Generation Driving Table

3 . 5 A Sample Program

-5-

PAGE

8

9

1 0

1 1

1 1

12

13

14

17

19

21

22

39

50

50

52

52

53

59

67

69

4.

5.

6.

CONTENTS - 6-

Wr iting a Loader and Standard Run-time Routines

4.1 Implications of the Loading Process

4.2 Run-Time Support Packages

4 . 3 A Sample Implementation

The Mark 3 System

5 .1 Memory Allocation at Code Generation

73

74

75

76

79

Time 79

5 . 2 Improved Code-Skeleton Definitions

5 . 3 Optimization

5.4 Compiling Separate Modules

Historical Remarks and Conclusions

82

83

88

90

PART 2 - A User Manual

7.

8.

Using The Machine Definition Program

7 .1 Current Implementation Requirement s

7 . 2 Driving The Program

7.2. 1

7 . 2.2

7 . 2 .3

7.2.4

7.2.5

7 .2.6

7.2.7

Word Definition Mode

Instruction Definition Mode

Editi ng Word Definitions

Editing Instruction Definitions

Re a ding Defin itions From a Fil e

Listing Definitions To the Screen

Exiting the Program

7.3 Error Conditions

Using The Code-Skeleton Definition Program

8 .1 Current I mplementation Requiremen t s

93

93

94

95

97

107

1 1 1

114

115

116

117

120

120

CONTENTS -7 -

8 . 2 Driving The Prog r am

8 .2 . 1

8.2 . 2

8 . 2 . 3

8 . 2.4

8 . 2.5

8 . 2 . 6

8.2 . 7

8.2 . 8

8 . 2 . 9

Editing or Defining a Code
Skeleton

Editing or Defining a Run - Time
Subroutine

De l eting a Code-Skeleton

Deleting a Run-Time Sub r out i ne

Listing a Code - Skeleton to the
Sc r een

Listing a Run - Time Subroutine
t o the Screen

Alteri ng t he Defa ult Integer
Outpu t Base

Exiting the Program

A General Note on the Current
Implementation

8 . 3 Er ror Condit i ons

9 . Us i ng the Code Generat i on Progra m

9 . 1 Current Implementation Requiremen t s

9 . 2 The User ' s Point of View

9 . 3 Imp l ementor ' s Note

RE FERENCES

APPEND I X A

APPENDIX B

APPENDIX C

AP PENDIX D

AP PENDI X E

The Machine Defini t ion Program

The Code - Skeleton Definition
Program

The General Code Gene r ation
Program

8080 Moni t or Rou t ines
Absolute Loader

The Cl ang Compi l er

and

121

123

132

134

135

135

135

136

137

138

139

14 1

14 1

14 1

142

145

148

149

149

149

149

CHAPTER 1 - 8-

1 . INTRODUCTION

... let 's see if you c an read my code:

V D D L
N T

R B T
P S D

A T F 0

C L J K S
K L H S M

If you can read it, make it rain tomorrow

so I will know.

from CHILDREN'S LETTERS TO GOD[1]

In the early days of computers, the esoteric nature of

internal machine code did much to inhibit the computer

re volut ion. While most humans find it difficult to

understand the "language" of the central processing unit,

most computer processors are completely devoid of

conventional linguistic skills. The non-specialist was able

to enjoy the use of a computer only once high-level

languages had been developed.

In the last decade, many new general-purpose programming

languages have emerged, along with a large number of more

specia lis ed languages. Since no major breakthrough has been

achieved in "humanizing" the computer processor's

communicative ability, the design and implementation of

compilers for programming languages has become an essential

part of systems software development. Although the

construction of new compilers is being made eas ie r by the

use of various language development tools, the

implementation of a compiler for a major high - level language

remains a non-trivial task.

CHAPTER 1 -9-

1.1 COMPILERS IN BRIEF

A compiler is a computer program which trans lates programs,

written in a particular source programming language, into

executable code for a target computer of a particular

design.

The compilation process is usually subdivided into a

sequence of simpler phases. It is convenient to think of

each phase as an operation which takes, as input, one

representation of the source program and produces, as

output, another representation. Most compilers consist of

at least the following phases:

Often loosely termed the PARSER

SOURCE
PROGRAM

, SOURCE
HANDLER

I

I
I

SOURCE
LISTING

r

" LEXICAL ,
ANALYSER

", ,

OBJECT
CODE

,
~ SYNTAX .. SEMANTIC

ANALYSER ANALYSER
I /

/
I / ...

~ ERrOR Ie "
LISTING

,~

I CODE l- I CODE RI
IGENERATOR I~ LOPTIMIZER

The bounqries between phases are blurred. Two or more of

the phases above may of ten be combined into one phase. The

modern trend towards " i ntelligent" editors, has seen some of

the initial stages of the compiler incorporated into

CHAPTER 1 -10-

complementary editors. In some interpretive systems, the

compilation process may be completely transparent to the

user .

A brief description of the operation of each phase appears

below. More information on the historical development of

compilers can be found in articles by Knuth [4J , Feldman and

Gries [5J (which also includes a comprehensive bibliography

up to that time) and Aho [6J and in many modern textbooks on

compilers [7J-[11J

1.1.1 Lexical Analysis (or scanning)

The name is derived from LEXICON [GreekJ meaning

DICTIONARY. This initial parsing phase sees the

source program as a sequence of characters. These

characters are grouped into tokens, which are

substrings of the input stream which logically belong

together, such as identifiers and constants. The

lexical analyser is usually also responsible for

recognising comments, blanks and separators in the

source program. The output of the lexical analysis

phase is a stream of tokens.

CHAPTER 1 -11-

1.1.2 Syntax Analysis (or true parsing phase)

This phase groups tokens emitted by the lexical

analyser into syntactic structures such as expressions

and statements . It is the syntax analyser that

determines whether the source program satisfies the

formation rules of the programming language. If the

source program is not syntactically correct, this phase

must be able to produce appropriate error diagnostics,

and recover from each error, so as to catch any

subsequent errors that might be present.

The syntax analyser usually invokes some semantic

action as each syntactic construct is recognised . The

semantic action may be to enter some information into a

table, emit some error diagnostics, or generate some

output. The output of the syntax analyser is some

intermediate language representation of the source

program such as postfix Polish notation, a tree

structure. quadruples or codes for a hypothetical stack

machine.

1.1.3 Semantic Analysis

This phase has to do with the actual meaning of words

and constructs . Type checking, determining that

functions are called with the appropriate number of

arguments, and verifying that identifiers have been

CHAPTER 1 -12 -

declared are typical of what takes place during

semantic analysis.

1.1.4 Code Optimization

An optimizing compiler attempts to transform an

intermediate language representation of the source

program into one from which a faster or smaller object

program can be generated . The term "optimization" is

something of a misnomer, as it is theoretically

impossible for a compiler to produce the best possible

ob j ect program for every source program. A more

accurate term might be "code improvement" as suggested

by Aho & Ullman [7J . Tradition , however, has given us

the term "code optimization".

A number of op t imizations can be safely performed only

by knowing information gathered from the entire

program. One needs to make use of a technique known as

Global Data - flow Analysis [2J C3J Other forms of

optimization are static, for example the well known

p e e phole optimization technique [7J This attempts to

improve the generated code, by viewing a small range of

instructions (peephole) and trying to improve upon

them. It is a characteristic of peephole optimization

that each improvement may spawn opportunities for

additional improvements . Thus, repeated passes over

CHAPTER 1 -13-

the code are necessary to get the maximum benefit.

Peephole optimization can be applied at both the

intermediate and final code stages.

1.1.5 Code Generation

The code generator is the final stage of the compiler

and usually incorporates the optimization algorithms.

This phase produces machine code directly, and is

therefore the non-portable component of a compiler.

To promote portability and decrease the complexity of

the translation algorithms, the code generation phase

in a modern compiler is usually written as a completely

separate module. Communication with the more easily

transportable parts of the compiler is by means of a

clearly defined set of intermediate codes.

p~gg~~~ ______ ~>~ITRANSLATOR~I------~>~INTE~~~~IATE

The compiler writer then has the option of either

interpreting the intermediate codes, or of converting

them to machine code.

1
INTERMEDIATE I I EFFECT OF

CODE ------~~~INTERPRETER~----~'~EXECUTION

INTERMEDIATE~ CODE ~MACHINE~LOADER ~EXECUTION
CODE GENERATOR CODE

CHAPTER 1 -14-

1.2 AUTOMATED CODE GENERATOR WRITING

Recently. much interest has been shown in tools that reduce

the effort needed to construct a good compiler. These go by

names such as compiler-compilers, translator writing systems

or compiler generators.

To date, more work has been done on automating the front end

of the compiler (possibly since this can be done without

regard to target machine architecture) than the code

generation end (which is target machine dependent) .

Considerable success has been achieved , using mainly table-

driven analysis methods
[7J

towards making this aspect of

compiler writing not only easier, but more reliable. It is

easier to check that a grammar is an accurate syntax

description than it is to check the implicit description

embodied in the logic of a syntax analysis program.

While less progress has been made in formalizing the code

generation end of the compiler, a number of successful code

generator synthesisers have been developed [14J - [21J

The emphasis here lies in the portability or retargetability

of the resulting compiler.

In attempting to provide tools for automating code

generation, most researchers have again turned to table

driven methods. By using a table-driven syntax analyser, we

can handle the analysis of a new language by giving a new

CHAPTER 1 - 15-

grammar to the table building program and then providing the

new table to the analyser. Similarly, by presenting a

description of a new target machine to the code generator's

table-building program, we can retarget the code generator

to produce code for the new machine.

A portable C compiler has been developed at Bell

Laboratories, M Hl.°ll [14] urray This compiler incorporates

programs such as LEX, a lexical analyser generator, and YACC

(Yet Another Compiler-Compiler), which generates parsers

from an input specification language that describes the

desired syntax, both well known to users of the UNIX [37]

system. The code generator uses a table consisting of a

collection of templates. Each template contains a pattern

to search for in a previously generated intermediate program

form. This demands a lot of work from the implementor, who

must specify each template. The portable C compiler

provides code of reasonable quality, and has been retargeted

successfully on over a dozen machine types.

Another table-driven code generator is under development at

the University of California, Berkeley [15] [21] in which

the templates are generated automatically, instead of being

written by the implementor. The added generality is both a

strength and a weakness. There is less work involved in

developing a code generator using this tool, but it is

claimed [15] that both the quality of the code generated and

1

CHAPTER 1 -16-

the speed of the code generator are significantly reduced

when compared with the C compiler.

An ambitious compiler-compiler project has been undertaken

by a large

University [16J

group

[19J

of researchers at Carnegie-Mellon

The goal of this project is to develop

a compiler-compiler that is capable of producing high-

quali ty optimizing compilers from formal machine and

language descriptions. Known as the PQCC (Production-

Quality Compiler-Compiler), this enormous project boasts

good code that can be compared with that of a conventional

code generator.

A number of other fruitful investigations into compiler-

building methods are being conducted at various research

institutes around the world. A recently revised

bibliography of the subject has been published by Ganapathi

and Fisher [20J

Because of the complexity of generalizing the mapping from

source language to target machine, and the need for

efficiency of various kinds, code generator synthesisers are

large, complicated programs. Consequently, the person who

develops a code generator using one of these tools

invariably needs to be a code generation specialist himself.

CHAPTER 1 -17-

1.3 WHY ANOTHER MACHINE-INDEPENDENT CODE GENERATOR?

All the code generator generators studied in the l ite rature

satisfy, to varying degrees, the aims of the ir authors.

Without exception, they reduce the amount of work required

in developing new compilers or transporting existing

compilers to a new system . However, they a r e also, without

exception, large programs. Very few code generator

synthesis e r s can be run on any machine smaller than a

mainframe. In addition, all the systems studied require of

the implementor some knowledge of code generation and

optimization techniques.

At Rhodes University, microcomputers of various manufacture

are widely used. The most popular operating system is the

UCSD p-System, which interprets its object programs. Since

most undergraduate students spend far more time compiling

their programs than running them, the slow interpreter does

not prove to be a handicap. However, interpretation becomes

an impeding factor if new systems programs are developed on

the UCSD p-System. An example of such a systems program is

the CLANG compiler [23J developed at Rhodes University on

the UCSD p-System. The en tire compiler is interpreted and,

since the CLANG system also interprets the codes it

produces, the effect of executing object programs is

accomplished by two levels of interpretation. An obvious

gain in speed would be achieved if at least one (but

preferably both) of the levels of interpretation was

CHAPTER 1 -1 8 -

replaced by direct execution.

Since new machine architectures are acquired from time to

time, a transportable compiler would also reduce the amount

of effort needed by supervisors and teachers before students

could write programs in familiar languages on new sys tems .

A project was undertaken at Rhodes University to write a

system

both

of programs which would generate code generators for

large and small computers. The resultant code

generators would take their input from parsers which produce

some suitable form of intermediate code. At the same time,

an attempt was made to satisfy the following criteria:

1. the code generator should be up and going in a

reasonably short time, and

2. the person developing the code generator would not have

to be a specialist compiler writer. In fact, a sound

knowledge of the target machine's architecture and

associated assembler language should be sufficient.

CHAPTER 1 -19-

1.4 OUTLINE OF THE REMAINDER OF THE THESIS

Much of the work described in this thesis is of a highly

technical nature, and it becomes difficult, if not tedious,

to discern the intent from the details. Accordingly, the

remainder of this report is divided into three sections.

The first describes the system in fairly broad detail, gives

an example of an actual system produced, and discusses

briefly refinements which have been made to the system in

the closing stages of the project. The second describes how

the system might be used to construct further code

generators, both like that described in the first section,

and for other architectures. The third and most technical

section has, due to its bulk, been confined to a set of

appendices. This section discusses implementation details

of the system, which will be of interest only to those

wishing to extend its basic philosophy . Code for all

programs appear with the implementation details in the

appendices.

PART %

INTENT
AND

ACCOMPLI SHMENT

CHAPTER 2 -21-

2. OVERVIEW OF THE THE GENERALIZED CODE GENERATOR

Faced with the major problem of trying to des i gn a truly

general machine representation, it was decided that code

optimization would have to be sacrificed in the interests of

ease of use. The most successful retargetable compilers have

been those with minimal processing at the code generation

stage, while the most successful optimizing compilers have

been designed around a particular target machine. A

general compiler can achieve both goals only if it relies on

the compiler writer to provide the optimization information.

The system to be described consists of two definition

programs, and a general table-driven code generation

program.

MACHINE
DEFINITION
PROGRAM

Table of
word and

instruction
formats

CODE-SKELETON
DEFINITION

PROGRAM

CODE
GENERATION

PROGRAM

Object
program

CHAPTER 2 -22-

This system has been written for use with any parser which

produces intermediate codes which are effectively machine

instructions for a hypothetical stack machine [11] [12J

[23J Two parsers of this type have been used to test the

code generator . One for a relatively simple system [23 J,

a system similar to the Pascal p4 the other for

compiler C39J. Other forms of intermediate codes, such as

three-address codes
[7]

require slightly different

assumptions, but the notation described below should prove

effective for these codes as well without major alteration.

2.1 THE MACHINE DEFINITION PROGRAM

This table construction program takes as input a description

of the target machine. The nature of the description

differs considerably from the corresponding table

construction programs of other well known compiler-

compilers. All table-driven code generators demand certain

details of the target machine, notably the bit - patterns of

instruction opcodes. Several well known products, for

example the Berkeley project [15J [21J, require details of

the way in which registers are designated and the selection

strategy to be used in allocating registers and in choosing

which ones to save and re-use if there are not enough .

Since these projects attempt to reorder computations to

produce a smaller object code, other parts of the machine

description indicate which operators are commutative and

CHAPTER 2 -23-

whether frequently - used constants are given permanent

register or memory storage . The code generator described

in this thesis is d r iven by a template matching algorithm

and, since the compiler - writer is required to define the

templates, the criteria for using registers, constants and

operands are decided by him , not by a program. In place of

this information , the table construction program of this

thesis collects details of assembly mnemonics which are used

to write the templates .

2.1.1 Overview of Machine Instruction Formats

Although computer processors vary greatly in arch i tecture,

t hey do not disag r ee in their underlyi ng principles so

widely as to detrac t from a concept of code retargetability.

I n particular, all processors are capable of recognising a

binary pattern as representing a particular operation, and

of producing the effect o f that operation.

To realise a retargetable code generator, one must be able

to produce a set of instructions (the bit patterns) which

the processor will recognise . This involves knowing such

information as the length of each bit pattern and its value .

In addition, if one is to allow non-sequential flow of

control, one needs to know how many bits there are in the

machine's smallest addressable unit . This enables an

accurate Pr ogram Counter to be maintained, and consequently,

CHAPTER 2 -24-

jumping and looping instructions to be produced correctly.

All machine level instructions must contain an operation

code, or opcode for short, which indicates what action is to

be performed. In addition, many instructions contain, or

specify the location of, data used by the instruction. The

fields used to specify data are known as operand or argument

fields. These operand fields may be immediate data, the

address of the data, a register name or the addressing mode

which the instruction is to use .

OPCODE IOPCODE

(a 1) (a
2

)

\OPCODEI OPERAND IOPCODE I OPERAND 1 I
(b 1) (b 2)

IOPCODEloPERAND 110PERAND 2 lop CODE IOPERAND 1 IOPERAND 21
(c 1) (c 2)

On some machines, all instructions have the same length; on

others, there may be several lengths. Moreover,

instructions may be shorter, the same length as , or longer

than the word (i . e. smallest addressable unit) length.

Within a particular instruction length, various instruction

formats may exist . Opcodes and operand fields may vary both

in number and length.

In attempting to design a truly general definition for an

CHAPTER 2 -25-

instruction, taking the enormous variety of possible

instruction formats into account, a bit-by-bit definition

appears to be the only solution.

2.1.2 A Notation for describing Instruction Formats

A notation has been developed for describing an instruction

in terms of its length and the number and width of its

fields. Each field is described by an alphabetic letter,

which is repeated as many times as there are bits in the

field. For example, an instruction format

16-bits

I

OPCODE OPERAND OPERAND

'~ _______ .~ ____ -J'~' ___ .~~I~' ___ .~~

8-bits 4-bits 4-bits

might be defined as

FFFF FFFF AAAA BBBB

F represents a field which is eight bits wide.

represent fields which are each four bits wide.

A and B

Spaces may

be inserted for clarity and are ignored. The choice of

alphabetic letter is completely arbitrary, but must be

unique for the instruction in question.

Most processors have a small number of unique instruction

formats, typically between 3 and 15. Several individual

CHAPTER 2 -26-

instructions may share the same format. All the fields will

agree in number and width, but the operand field will

contain a different binary pattern for each instruction,

representing a different operation. The size of the

instruction set differs from computer to computer, typically

within the range 60 to 300 .

2.1.3 Input for the Machine Definition Program

The machine definition program allows a user to define all

formats for a particular architecture (termed word formats

for the purpose of this program) in the notation already

descr i bed. Individual instructions may then be defined

which conform to one of the word formats. This prevents

unnecessary typing and reduces errors.

The aim of the machine definition program is to produce a

set of instruction mnemonics which agree as closely as

possible with those with which an assembler programmer of

the target machine will be familiar.

Each instruction's definition must include the name, or

mnemonic, by which the instruction will be known. The

mnemonic is really representative of the binary patterns of

the opcode fields (there may be more than one opcode field).

Therefore the implementor is also required to furnish the

name (this will be a character which marks the position of

CHAPTER 2 -27-

the field in the word format description, for example F, A

or B) and value of the field (or fields) which will be

representative of the instruction mnemonic.

Any remaining fields are regarded as argument (operand)

fields. These fields will also eventually contain a binary

pattern, but their values are only f illed in when the

instruction is used during the code-skeleton definition

phase. In

information

the meantime however, the program collects

about valid actual values for each argument

field. The user is required to specify the valid binary

range (positive binary, 2 's complement or restricted range)

for the field, so that errors may be trapped when the

instruction is used. Alternatively, the user may choose an

"unrestr i cte d " range to indicate that no validation is to be

performed on a particular field.

In the interests of making the instructions r esemble an

assembler format as closely as possible, the user is able to

define a set of non-numeric symbols which will be used to

represent numeric values in an argument field . Thus one is

ab l e to refer to a register by its name, rather than by its

numeric value. Memory addresses, too, may be replaced by

alphabetic names representing an address.

readability i s improved for code segments

calls to run-time subroutines.

In this way, the

which perform

To emulate the assembly format even further, the user is

CHAPTER 2 -28-

asked to specify valid separating characters which will

precede each argument.

Finally, the user must specify the order in which the

arguments are to appear in the assembly-like version of the

instruction. This is important for ensuring correct

validation.

2.1.4 An Example

The best explanation of this notation might be by means of

an example. Let us define the 8080 assembler instruction

MVI reg, immed iate value

This is a two-byte instruction of the form:

Byte 1 :

Byte 2 :

00RRR110 where RRR is a three-bit
value representing one
registers

B -> 000
C - > 001
D -> 010
E -> 011
H -> 100
L -> 101
M - > 110
A -> 111

integer
of the

an immediate value in the positive integer
range 0 .. 255.

CHAPTER 2 -29-

The definitions required to record this instruction are:

(a) Define the word form:

Word format number:

Description: Immediate instruction

Format: FF RRR GGG 1111 1111

The fields are specified by distinct alphabetic

letters, one for each bit.

(b) Define an instruction which uses the format description

of (a) above:

Instruction uses word form number:

Mnemonic which will represent instruction: MVI

Field to associate with mnemonic: F

Value of mnemonic field: 00

Another field to associate with mnemonic: G

Value of this field: 110

Legal values for argument field R: 0 .. 7

where 0 is represented by the symbol B

1 is represented by the symbol C

7 is represented by the symbol A

Separator to precede argument field R: space

1
Argument position for field R:

Legal values for argument field I: o .. 255

Separator to precede argument field I: space
or comma

Argument position for field I: 2

CHAPTER 2 - 30-

(Both definitions are required unless definition (a) has

already been entered to describe a previous instruction of

the same format, in which case only (b) is necessary).

In this way, target machine instructions are defined for use

in later stages of the system . When an instruction such as

MVI A,25 is used,

1. 'MVI' fills in the f i elds associated with the mnemonic

F F R R R G G G I I I I I I I I

2. 'A' fills in the field associated with the first

argument (symbol A represents the value 7)

F F R R R G G G I I I I I I I I

3 . '25' fills in the field associated with the second

argument

F F R R R G G G I I I I I I I I

Thus it can be seen that the machine definition program

essentially provides the information for a table-driven

assembler for a particular target machine.

CHAPTER 2 -31-

2.1.5 Defining Specific Machines

The Machine Definition Program has been thoroughly tested on

the Z-80 based North Star Advantage computer. The example

in chapter 3 shows a machine definition for this computer

using 8080 assembly mnemonics and bears witness to the fact

that al l aspects of the 8080 assembly language can be

implemented using the current machine definition program.

Implementing a compi ler on the 8080 processor has the

advantage of showing up a "worst case" condition. The 8080

is probably one of the simplest processors available which

can still be classed as a computer and its deficiencies at

the conventional machine level place extra effort on th e

assembly level programmer. As one moves up the scale

towards more powerful computers, the effort required to

implement an assembly level system decreases . Time

efficient routines become less important as processors get

faster, increased memory size relieves the problem of

overlaying, and other additional features, such as special

types of registers and float ing -point hardware, take the

place of soft routines. In this particular case, however,

the 8080 example does have a disadvantage in that, since the

8080 langu age mnemonics are very simple (e . g. each opcode

has only one true addressing mode), it does not show up some

of the deficiencies of the notation described in this

thesis. The examples below are intended to illus tra te the

application of the notation to other assembler languages.

CHAPTER 2 -32-

In contrast to the 8080 assembly language, the PDP-11 series

of computers has a highly sophisticated assembly language,

called MACRO-11 [31J. Instructions are 16, 32 and 48 bits

long. Although the smallest addressable unit is the byte,

the word (two bytes) is addressed at all times, so that only

even addresses are allowed . The PDP-11 uses an expanding

opcode scheme. What appear to be 32- and 48-bit

instructions are actually 16-bit instructions followed by

one or two data words. What makes this assembly language so

powerful are its advanced instruction formats and addressing

techniques. Source and destination fields generally contain

two sub-fields, one specifying the addressing mode and the

other specifying the address (e.g. a reg ister name). By way

of an example, consider the MOV instruction:

16 bits
.

I

source source destination destination
MOV mode register mode register

M R N D

4 3 3 3 3

The 3-bit register fields take on one o f the values 0 to 7

to represent one of the 16-bit gene r al registers R0, R1, R2,

R3, ... , R7. The 3-bit mode field also takes on a value in

the range 0 to 7 to represent one of t he following

addressing modes:

MODE ADDRESS

o Register Addressing
Operand i s in R

2

3

4

5

6

7

Register Indirect
R points to the operand

Autoincrement
R is used to point to the
operand and is then
incremented

Autoincrement indirect
R is used to point to the
operand address and is
then incremented

Autodecrement
R is decremented, then used
t o point to the operand

Autodecrement indirect
R is decremented, then used
to point to operand address

Indexing
operand address = contents
of R + 16-bit offset
in next word

Indexing & indirect
pointer to operand address
= contents of R + 16-bit
offset in next word

CHAPTER 2

EXAMPLE

Move R3 to R4
MOV R3,R4

-33-

Move memory word pointed
to by R3 to R4
MOV @R3,R4

Move memory word pOinted
to by R3 to R4 and add 2
to R3
MOV (R3)+,R4

Move to R4 the memory
word addressed by the
word R3 points to; add
2 to R3
MOV @(R3l+,R4

Decrement R3 by 2, then
load R4 from the address
R3 points to
MOV -(R3) ,R4

Decrement R3 by 2, then
load R4 indirectly from
the address R3 points to
MOV @-(R3),R4

Load R4 with the memory
word at (R3) + 24
HOV 24(R3) ,R4

Load R4 with the memory
word pointed to by word
(R3) + 24
MOV @24(R3),R4

The word format description for this instruction is straight-

forward:

FFFF MMM RRR NNN DDD

Field F will be associated with the mnemonic and will have

the value 0001. The register fields, Rand D, can both be

defined as taking on the symbolic names of t he registers.

"R0" represents the value 000
"R1" represents the value 001
"R2" represents the value 010

"R7" represents the value 111

CHAPTER 2 -34-

However, specifying the mode fields presents a problem. Let

us ignore modes 6 and 7 for the mean time, and assume we can

define the mode fields using the symbolic names:

" " represents the value 000
II @" represents the value 001
"+1f represents the value 010
"@+" represents the value 011

" - " represents the value 100
H@_" represents the value 101

Using our defined instruction, the examples for modes 0 to 5

will be written:

0 MOV R3, R4
1 MOV @ R3, R4
2 MOV + R3, R4
3 MOV @+ R3, R4
4 MOV - R3, R4
5 MOV @- R3, R4

We can make these instructions look more like the MACRO-11

originals by defining the characters "(,, and "),, as the

appropriate separators, so that they may also be included in

our instructions. However, the problem of splitting a

symbol (as mode 3 requires), @(R3) + instead of @+(R3),

CHAPTER 2 -35-

cannot be solved using the current notation. In addition,

the argument position must be the same for all versions of

the instruction, forcing mode 2 to position the mode before

the register, +(R3), instead of the more realistic (R3)+.

Both these problems can be overcome by defining these non-

conforming addressing modes as separate instructions.

However, this would still require some unique identifying

feature, e.g. using a different instruction mnemonic might

allow mode 3 to read:

MOVAI @(R3l+, R4

The above mentioned problems are easily solved (at the

expense of a tedious definition) by grouping the mode and

register fields together as a single 6-bit field.

MOV ssssss DDDDDD

4 6 6

6 where each argument field may take on one of 2 symbols:

tlR0"
"R 1 H

"R7"
"@R0"

"@R7"
"(R0)+"

represents the value
represents the value

represents the value
represents the value

represents the value
represents the value

000 000
000 001

000 111
001 000

001 111
010 000

"@(R0)+"

"-(R0)"

"@-(R0) "
"@-(R1)"

represents the value

represents the value

represents the value
represents the value

011 000

100 000

101 000
101 001

CHAPTER 2 -36-

This definition allows our defined instruction to imitate

the original PDP -11 assembly language exactly.

Modes 6 and 7 call for expanding opcodes. Since the current

notation is not designed to handle this feature, a solution

to this problem cannot be found which matches the original

assembly language instruction. Thus a separate MOV-INDEX

instruction will have t o be defined.

The COMPASS assembly language of the CDC CYBER

processors [32J also presents an interesting

series

case .

of

The

smallest addressable unit on these machines is the 60 - bit

word and address fields are up to 17 bits in length. The

Cyber has three instruction lengths: 15, 30 and 60 bits.

Thus it is possible to squeeze several instructions into a

single word. This presents no problem as far as the

transportable code generator is concerned , since the CDC's

decoding microcodes will unpack t he instructions in the

CHAPTER 2 -37-

appropriate way. However, instructions may not be split

across word boundries . This restriction demands that that

the no-operation instruction (this 15-bit NO instruction has

the octa l code 46000) be used within code skeletons to pad

unused bits at the end of a word. Alternatively , the code

generation program could be tailored to emit padding bits

where necessary.

The CDC assembly leve l instructions also include some unique

addressing features. For example, when a memory address is

put into the 18-bit register Al, the contents of that

address are automatically loaded into the 60-bit register

Xl. However, the assembly language mnemonics for these

instructions are very basic and are easily implemented using

the machine definition program. Fo r example

SA 1 25

will set register Al to 25, thereby loading the contents of

word 25 into register Xl.

Finally, the ICL 1900 assembly language, PLAN [33J, shows up

the system's behaviour for instruction mnemonics which use

fixed formats. A normal 24-bit ICL 1900 instruction has the

format:

XXX FFFFFFF MM NNNNNNNNNNNN

3 7 2 12

CHAPTER 2 - 38-

The assembly language allocates specific fields to fixed

columns in the source language input line.

Columns 1 to 6
Columns 7 to 12
Columns 13 to 15
Columns 16 to 72

= Label field
= Opcode field
= Accumulator field
= Operand field

The name of a register used for indexing (termed "modifier"

in ICL jargon) may optionally follow the operand address

enclosed i n parentheses. For example, add to accumulator 7

the word at address [3027 + contents of index register 2J:

7

ADX

13

7

16

3027(2)

The order of operands as mapped onto the machine instruction

is:

7

F

13

x

16

N(M)

The machine definition program imposes a free format on the

assembly language, forcing the user to declare his

separation characters or use the space character as a

separator. However , the basic structure of the ICL PLAN

language is maintained as long as at least one space is

typed between the mnemonic, accumulator and operand fields,

and as long as the user declares the parentheses about the

modifier field as separators . Since blanks are ignored,

the user is still able to type the instructions in fixed

format if he so wishes.

CHAPTER 2 -39-

2.2 THE CODE-SKELETON DEFINITION PROGRAM

The table driven code generator of this thesis uses the

template-matching idea of Bell Laboratories' portable C

compiler [14J The nature of the templates are somewhat

different from those of the C compiler. The front end of

the portable C compiler produces an intermediate form which

is a tree structure (termed the Abstract Syntax Tree [7J).

The tree structure makes it easy to distinguish operands

(leaf nodes) and operators (internal nodes), and to vary the

order in which the computation is performed. Temporary

values (at the internal nodes) are stored in registers and

register allocation algorithms are needed. The code

generator uses a table containing a collection of templates.

Each template contains a pattern to search for in the tree.

The templates for the code generator described in this

theses are far simpler. They are written in the assembler

notation of section 2.1 and, since the intermediate code

used in this case is very similar to machine code, simply

take the place of the intermediate code. The program

described in this section is a table driven assembler/editor

which constructs the table of templates.

A number of compilers exist which produce

as their output, notably some well known

assembler language

C compilers [41J

[42J • While certain features of the code generauon system

are similar in concept to this type of compiler, the

1

CHAPTER 2 -40-

output of a synthesised code generator is final machine

code, and its advantage over such compilers lies in its

retargetability and the absence of an assembly stage in the

final compilation sequence.

2.2. 1 Intermediate Codes

"Intermediate codes for a hypothetical stack machine" are

machine - like function codes for a make-believe computer

whose primary data structure is a stack. This is not to say

that a machine could not be built to directly execute such

codes. Certain models of Burroughs computers and the

Western Digital Micro Engine (which is microcoded to execute

UCSD p-Code,

microcoded to

level 3) are examples of machines which are

do this. However, in real machine terms,

intermediate codes of this type tend to be rather powerful.

Most conventional machine level instructions specify the

movement of one item of data, or a single operation on one

or two items of data. Since many intermediate codes for a

hypothetical machine originated for the express purpose of

being in terpreted (i.e. simulating the action of the machine

by means of a piece of software), they incorporate fewer

design constraints than their microprogram controlled or

sequential logic hardware controlled counterparts. It is

not difficult to write an interpreter which can perform

several move and arithmetic/logic operations as a single

CHAPTER 2 -41-

pseudo-operation.

In addition, intermediate codes tend to be designed around

the language of the source program. Thus the set of

intermediate codes for a Pascal compiler might include a

CALL code, which sets up a procedure stack frame entry on

the stack so that recursion might be implemented before

jumping to the code for that procedure; on the other hand,

a set of intermediate codes for a Forth system might include

a DEF code to create a dictionary entry for a new defined

word. At a lower level, however, a piece of processing

hardware must be designed to execute programs written in a

wide range of source languages; so in the interests of

generality, its machine leve l instructions need to be kept

simple.

Although most intermediate codes take their operands from

the stack, it is sometimes more convenient for an argument

to be included, in much the same way as some opcodes in a

conventional processor require operands. As an example, an

intermediate code to perform a conditional jump

JMPF Y

might be interpreted as

if TOS = FALSE then PC ._ Y

pop (TOS)

CHAPTER 2 -42-

Each intermediate code may take zero or more arguments (the

current implementation allows a maximum of 2), whose values

are known at code generation time.

2.2.2 Conversion of Intermediate Code to Machine Code

For the reasons above, a one-to-many mapping is usual when

writing conventional machine code segments to produce the

same effect as a single intermediate code.

SEVERAL
INTERMEDIATE CODE---'''~I TRANSLA TION 1-1 -----' •• MACHINE

INSTRUCTIONS

For example, suppose an intermediate code STO stores the

value at the top of the stack (TOS) in the memory location

whose address is at TOS-1 (next from top).

STACK

TOS-1 address

TOS value • - - -

" MEMORY \
LOCATIONS t STO

J
+ I I ...

-- - -
address - I

CHAPTER 2 -43-

A code segment written in 8080 assembler code to produce the

effect of STO might be:

POP D get value
POP H get address
MOV M,E store low order byte
INX H increment address
MOV M,D store high order byte

The body of machine instructions, which produces the same

effect as the intermediate code, is called a code-skeleton.

The code - skeleton definition program is the combination of

an editor and an assembler . It allows the user to define a

code - skeleton for each of the intermediate codes using

conventional assembler mnemonics .

As each code skeleton is entered, it is checked against the

table of word and instruction formats for validity. Help

messages and meaningful error diagnostics are constantly

available, making this an easy program to drive.

The user is able to perform the usual types of editing

operations on his code skeletons. The editor is essentially

a line-at-a-time editor, which performs operations on the

"current" instruction. Control keys are available for

listing the entire code skeleton, printing the current code

skeleton, stepping through the code-skeleton either forwards

CHAPTER 2 -44 -

or backwards, jumping to the top of the code skeleton, and

deleting and inserting instructions.

2.2 . 3 Enhancements

If several code skeletons use a similar instruction

sequence, then the implementor can make use of a facility

which exists for writing run - time subroutines. These are

really just code- skeletons which have a name associated with

them. They will be included only once in the object

program, and can be called from any code-skeleton, simply by

including a referencing ins~ruction with the name of the

run-time subroutine as its address argument.

In addition,

be written,

a number of standard run-time subroutines must

usually as part of the loader (s ee chapter 4),

and included in every program. These are subroutines for

performing very common operations such as input/output,

arithmetic and logic operations, and standard function

calls. A number of reserved names represent these run-time

subroutines, and are recognised when used in the address

field of a referencing instruction.

Finally, it is necessary to be able to define memory

addresses relative to some other address values known at

compile-time. For example, the reserved name PC represents

the code-generation time address of the current instruction.

CHAPTER 2 -45-

Reserved names also exist to represent the values of the two

arguments which an intermediate code might have. Table

8.2.1 and its associated text provide more information on

this aspect.

These reserved and user-declared subroutine names are the

only valid non-numeric values which may appear in an address

field. They may optionally be followed by a "+" or "-" sign

and a numeric value, to represent an address (or value)

relative to .the value represented by the given name. The

numeric offset is in "smallest addressable units".

For example, the following code skeleton reads a positive

integer:

CALL IREAD Call run-time subroutine
POP D Get result of read
PUSH D but leave a copy on the stack
MOV A,D Test result < QJ

ANI 128 Set zero flag if sign-bit off
JZ PC+6 Cond jump to current PC + 6 bytes
CALL ERR Report an error

Here IREAD is a reserved run - time subroutine name (see table

8.2.1) and ERR a user defined run-time subroutine skeleton,

whose actual addresses will be filled in at code generation

time. PC will be the current instruction address, not known

at code-skeleton definition time, but only at code

generation time.

Code-skeletons are represented in such a way that they can

CHAPTER 2 - 46 -

be relocated to any address in memory, and are stored on a

disc file for use by the code generator.

It can be seen that the user defining the code generator

merely has to be able to write an assembly language code

sequence to produce the desired effect of each in termediate

code.

2.1.4 Code-Skeletons on Specific Machines

Since both the PDP-11 and the 8080 computers have built-in

stack facilities, they are ideal target machines onto which

to map intermed iate codes for a hypothetical stack machine.

However, non stack - oriented machines, such as the ICL 1900,

show up some inhibiting features. This does not mean t ha t

it is impossible to write code-skeletons to produce the

effects of the intermediate language codes on this machin e ,

the implementation will just be a little more clumsy than it

is on stack-oriented machines.

On the ICL 1900, words are 24 bits long. To implement a

stack for pushing and popping single length words, one might

designate one of the registers to point to the top of the

stack. The most convenient method might be to set aside one

of the index registers. Let us use register 3 (denoted X3),

and make use of indexed addressing to refer to the stack.

Assume that the stack begins at the address stored in STKBOT

CHAPTER 2 -47-

(used to test for underflow) and moves upwards in memory

towards higher addresses. At the start of execution, X3

should be set by the instruction LDX 3 STKBOT.

i
STACK

0(3) X3

4--STKBOT

The push instruction would have to be implemented as:

7

STO
ADN

13

6
3

16

0(3)
1

[push x6
[increment SP

and the pop ins truction would be:

1

The ICL

deserves

7

LDX
SBN

13

6
3

16

0(3)
1

[pop x6
[decrement SP

1900 shows up another addressing feature which

special mention. The normal instruction form

described in section 2.1.5 has a 12-bit address field.

I XXX F'FFFFFF MM NNNNNNNNNNNN

3 7 2 12

1

CHAPTER 2 -48-

This restricts the direct addressing to memory locations

below address 4096 only (the first 45 of which are reserved

by the ICL 1900 operating system for use as registers and

work space). Higher memory locations must be addressed

using index registers.

TOP OF
MEMORY

4096
4095

45
44

I CL 1900
reserved

words

.

address using
index registers

}
directly
addressable

Indexed addressing turns out to be useful for implementing

procedure stack frames. One s i mply sets an index register

to the address of the bottom of the stack frame and uses an

absolute offset to reference each word. For example

3 (1) parameter 3

2 (1) parameter 2

1 (1) parameter 1

0(1) return address .. X1

CHAPTER 2 -49-

However, having to use some indirect addressing method to

access ordinary variables can become costly.

The ICL 1900 places another restraint on the size of

executable code, by the format of its branch instructions .

I XXX I FFFFFF NNNNNNNNNNNNNNN

3 6 15

Since the address field of the branch instruction contains

an absolute address, a 15-bit field means that the

executable code should not extend beyond address 32767 (An

extended branch mode is, however, available).

Wher eas the generalized code generator described in this

document favours a processor which can address all memory

locations with equal ease, a more efficient run-time system

could be produced for the ICL 1900 series if data were

stored below address 4096, code below address 32768, and

procedure stack frames in high memory. It should be

stressed that a viable code generator could be developed for

an ICL 1900 computer using the code generator synthesiser,

but it would not be able to match the efficiency of a

tailor-made compiler. Fortunately, most modern computers

are able to address all their memory (wi th in reasonable

limits) with equal ease.

CHAPTER 2 -50-

2.3 THE CODE GENERATION PROGRAM

This program s i mply replaces a sequence of intermediate

codes by their respective code skeletons, relocating the

skeletons in memory, and filling in addresses known only at

code generation time . Because this is a relatively simple

process, the code generation time is short.

A few simple optimizations are included at present, but for

the reasons already mentioned, these are not extensive.

2.4 WHEN TO USE THE PROGRAMS

To implement any compiler using the machine -independent code

generator , one has to run the machine definition program

first. It should only be necessary to run this program once

for a new computer. Subsequent runs might be necessary to

debug the instruction definition table or to add new

definitions to the table. Since some machine instructions

have more obscure uses than others, one might init i ally use

only a subset of the target machine's instruction set to

implement a new compiler.

CHAPTER 2 -51-

Once the machine definition table has been established, the

implementor will run the code - ske l eton definition table once

for each compiler he wishes to implement on the target

computer. Again, subsequent runs might be n ecessary to

debug the code - skeleton t able or add new code - skeletons to

the table .

Whe r eas the previous t wo programs are run only once for a

particular compiler implementation, t he general table - driven

code generator (and its associated parser) is run every time

a program is compiled . The output is a machine

representation of the particular source program.

CHAPTER 3 -52-

3. A SAMPLE IMPLEMENTATION

This chapter describes the implementation of a code

generator for the CLANG parser on an 8080 processor using

the automated code generation system. Some knowledge of

the CLANG intermediate language codes [23J and the assembly

language and architecture of the 8080 processor [24J - [28J

is assumed. Readers not familiar with these topics are

advised to consult the references listed.

3.1 THE CLANG LANGUAGE

The CLANG language is a Pascal-like one used at Rhodes

University as the basis of a course in compiler writing, and

for testing the principles of concurren t programming. It

exists as a set of subsets, of increasing complexity. The

subset used here allows simple control structures (if-then-

else, while) nested procedure declarations, recursion,

simple parameter passing by reference and by value, but

supports integers, and arrays of integers, as its only data

type. The higher facilities for data abstraction [23J have

not been included at this stage. A sample program is given

below in section 3.5.

A CLANG Parser/Interpreter system has been written in Pascal

and implemen ted on various machines, notably using UCSD

Pascal, by P.D. Terry. The system was adapted to run under

Pascal MT+ by the au thor, and a l i sting of the parser and

CHAPTER 3 -53-

interpreter sections of this appears in full in Appendix E.

3.2 THE MACHINE DEFINITION

The following subset of the 8080 assembly instructions is

required to produce the effect of the CLANG intermediate

codes.

Arithmetic: ADC r ADD r SBB r SUB r
DCR r INR r
DCX rp INX rp DAD rp

Branching: CALL addr RET PCHL
JMP addr JZ addr JNZ addr

Log ica l: ANA r ANI i ORA r

Data movement: MOV r,r MVI r,i LXI rp,i
LHLD addr SHLD addr XCHG

Stack: PUSH rp POP rp SPHL

Miscellaneous: NOP

where "r" is a register (A,B,C,D,E,H,L,M), "rp" is a

regis ter pair (B, D ,H, PSW), "i" is an immediate value and

"addr" a 2-byte address.

The word and instruction definitions for these instructions

are shown below (and more fully in the example of Appendix

AS). Since the assembler mode of the skeleton definition

program has no directive for setting aside a word of store

CHAPTER 3 -54-

for use as data, the instruction, ASCII, has been defined as

an 8-bit word which has the first bit always zero and

subsequent bits variable. This enables the implementor to

set aside a byte of memory and initialise it to the value of

an ASCII character code.

e.g. ASCII 65 for the character "A".

ASCII is not used in the example below, but proved to be

useful when implementing a code generator on the 8080

processor for the enhanced Pascal-s [39J compiler (see

chapter 6). Setting aside other areas of data within a

code skeleton can be achieved using similar clumsy

definitions. Assembler directives would be an obvious

future enhancement to the system .

Word Definitions

1 . 8-bit register form FFFF F RRR

2.

3 .

4 .

5 .

6 .

7 .

8.

9 .

8 - bi t move form

Immediate move

8-bit i mmediate

3-BYTE form

Double-reg form

Inr-dcr form

No - operand form

3-BYTE double-reg

10. ASCII byte fiddle

FF RRR SSS

FF RRR GGG 1111 1111

FFFF FFFF 1111 1111

FFFF FFFF AAAA AAAA AAAA AAAA

FF DD GGGG

FF RRR GGG

FFFF FFFF

FF DD GGGG AAAA AAAA AAAA AAAA

o CCCC CCC

CHAPTER 3 -55-

Instruction Definitions

1. ADC Machine format: 10001 RRR
Assembler format: ADC R
Arg 1. field R: B (0 000)

C (1 001)
D (2 010)
E (3 , 011)
H (4 100)
L (5 101)
M (6 110)
A (7 , 1 1 1)

2. ADD Machine format: 10000 RRR
Assembler format: ADD R
Arg 1 . field R: B (0 000)

C (1 001)
D (2 010)
E (3 , 011)
H (4 100)
L (5 101)
M (6 110)
A (7 , 1 1 1)

3. ANA Machine format: 10100 RRR
Assembler format: ANA R
Arg 1. field R: B (0 000)

C (1 001)
D (2 010)
E (3 , 011)
H (4 100)
L (5 101)
M (6 110)
A (7 , 1 1 1)

4 . MOV Machine format: 01 RRR SSS
Assembler format: MOV R,S
Arg 1 . field R: B (0 000)

C (1 001)
D (2 010)
E (3 , 011)
H (4 100)
L (5 101)
M (6 110)
A (7 , 1 1 1)

Arg 2. field S: B (0 000)
C (1 001)
D (2 010)
E (3 , 011)
H (4 100)
L (5 101)
M (6 110)
A (7 , 11 1)

5. ANI Machine format:
Assembler format:
Arg 1. field I:

6 . CALL Machine format:
Assembler format:
Arg 1. field A:

7. JMP Machine format:
Assembler format:
Arg 1. field A:

8. JZ Machine format:
Assembler format:
Arg 1. field A:

9 . JNZ Machine format:
Assembler format:
Arg 1. field A:

10. DAD Machine format:
Assembler format:
Arg 1. field D:

11. INX Machine format:
Assembler format:
Arg 1 . field D:

12. DCX Machine format:
Assembler format:
Arg 1. field D:

13. LHLD Machine format:
Assembler format:
Arg 1. field A:

14. SHLD Machine format:
Assembler format:
Arg 1. field A:

CHAPTER 3 - 56 -

11100110 11111111
ANI I
0 . . 255 (00000000 .. 11111111)

11001101 AAAAAAAAAAAAAAAA
CALL A
NO ARGUMENT CHECKS (width=16)

11000011 AAAAAAAAAAAAAAAA
JMP A
NO ARGUMENT CHECKS (width= 16)

11001010 AAAAAAAAAAAAAAAA
JZ A
NO ARGUMENT CHECKS (width= 16)

11000010 AAAAAAAAAAAAAAAA
JNZ A
NO ARGUMENT CHECKS (width =16)

00 DD
DAD D
B
D
H
SP

00 DD
INX D
B
D
H
SP

00 DD
DCX D
B
D
H
SP

1001

(0
(1
(2
(3 ,

0011

(0
(1
(2
(3 ,

1011

(0
(1
(2
(3 ,

000)
001)
010)
011)

000)
001)
010)
011)

000)
001)
010)
011)

00101010 AAAAAAAAAAAAAAAA
LHLD A
NO ARGUMENT CHECKS (width =1 6)

00100010 AAAAAAAAAAAAAAAA
SHLD A
NO ARGUMENT CHECKS (width=16)

CHAPTER 3 -57-

15 . DCR Machine format: (/)(/) RRR 1 (/) 1
Assembler format: DCR R
Arg 1 . field R: B ((/) (/)(/)(/))

C (1 (/)(/)1)
D (2 (/)1(/))
E (3 , (/) 1 1)
H (4 1(/)(/))
L (5 1 (/) 1)
M (6 1 1 (/))
A (7 , 111)

1 6 . INR Machine format: (/)(/) RRR 1(/)(/)
Assembler format: INR R
Arg 1 . field R: B ((/) (/)(/)(/))

C (1 (/)(/)1)
D (2 (/)1(/))
E (3 , (/) 1 1)
H (4 1(/)(/))
L (5 1 (/) 1)
M (6 11(/))
A (7 , 111)

17. ORA Machine format: 1 (/) 1 1 (/) RRR
Assembler format: ORA R
Arg 1 . field R: B ((/) (/)(/)(/))

C (1 (/)(/)1)
D (2 (/) 1(/))
E (3 , (/) 1 1)
H (4 1(/)(/))
L (5 , 1 (/) 1)
M (6 1 1 (/))
A (7 , 1 1 1)

1 8 . NOP Machine format: (/)(/)(/)(/)(/)(/)(/)(/)

Assembler format: NOP

19 . PCHL Machine format: 111(/)1(/)(/)1
Assembler format: PCHL

2(/). POP Machine format: 1 1 DD (/)(/)(/)1
Assembler format: POP 0
Arg 1 . field 0: B ((/) (/)(/)(/))

D (1 (/)(/)1)
H (2 (/)1(/))
PSW (3 , (/) 1 1)

21 . PUSH Machine format: 1 1 DO (/)1(/)1
Assembler format: PUSH 0
Arg 1 . field D: B ((/) (/)(/)(/))

0 (1 (/)(/)1)
H (2 (/)1(/))
PSW (3 , (/) 1 1)

22. RET Machine format: 11(/)(/)1(/)(/)1
Assembler format: RET

CHAPTER 3 -58-

23. SPHL Machine format: 11 11100 1
Assembler format: SPHL

24. XCHG Machine format: 11101011
AsSembler format: XCHG

25. SBB Machine format: 10011 RRR
Assembler format: SBB R
Arg 1. f ie ld R: B (0 000)

C (1 001)
D (2 010)
E (3 , 011)
H (4 , 100)
L (5 101)
M (6 110)
A (7 , 11 1)

26. SUB Machine fomat: 10010 RRR
Assembler format: SUB R
Arg 1. field R: B (0 000)

C (1 001)
D (2 010)
E (3 , 011)
H (4 100)
L (5 101)
M (6 11 0)
A (7 , 1 1 1)

27. MVI Machine format: 00 RRR 110 II II II II
Assembler format: MVI R,I
Arg 1. field R: B (0 000)

C (1 001)
D (2 010)
E (3 , 011)
H (4 100)
L (5 101)
M (6 110)
A (7 , 1 1 1)

Arg 2. field I: 0 .. 255 (00000000 .. 11111111)

28. LXI Machine format: 00 DD 0001 AAAAAAAAAAAAAAAA
Assembler format: LXI D,A
Arg 1 . field D: B (0 , 000)

D (1 , 001)
H (2 , 010)
SP (3 , 011)

Arg 2. field A: NO ARGUMEN T CHECKS (width=16)

29. ASCII Machine format: o CCCCCCC
Assembler format: ASCII C
Arg 1 field C: 0 .. 127 (0000000 .. 1111111)

CHAPTER 3 -59-

3.3 CODE-SKELETON DEFINITIONS

The level 2 CLANG parser generates 27 intermediate language

codes, one of which is not used by the code generator (STK

is used only in aiding students to understand the stack

frame concept). Codes take zero, one or two arguments.

The current Code-Skeleton definition program allows a

maximum of two arguments per code, called X and Y. CLANG

generally uses the first argument to indicate the level at

which a declaration was made, and the second to indicate an

address or offset.

The CLANG pseudo-machine has a set of "display" registers,

used to point to the most deeply nested procedure stack

frame for a particular declaration level (useful in handling

variable addressing) and a "base register", pointing to the

base of the top stack frame on the stack. The most

convenient method of implementing these pointers in the

target program would undoubtedly be to use the processor's

own registers. Unfortunately, the 8080 does not have

enough register pairs for the implementor to dedicate some

of them permanently to a particular task, so memory

locations have to be used instead . In order to be able to

refer to these memory locations by name, they are "defined"

as run-time subroutines (simply a block of memory which has

a name).

CHAPTER 3 - 60 -

Run-time subroutine BASERE is a 2-byte pointer.

BASERE: NOP
NOP

Run-time subroutine DISPLA allows a maximum declaration

nesting of 5 (i.e. five 2- byte pointers) .

DISPLA: NOP
NOP

DISPLA+2: NOP
NOP

DISPLA+4: NOP
NOP

DISPLA+6: NOP
NOP

DISPLA+8: NOP
NOP

Four more run-t ime subroutines are defined to be called f rom

code - skeletons.

GETDIS is called with a value X in the H-L register pair to

return the value of the Xth display register in the D-E

pair.

GETDIS: DAD H X * 2 for 16-bit addressing
LXI B,DISPLA
DAD B + DISPLA
MOV E,M get value from
INX H DISPLA + (2*X)
MOV D,M
RET

CHAPTER 3 -61-

ADDRCD is called after a call to GETDIS to use the display

value in D-E and a displacement in H-L to calculate the

address of a local variable.

ADDRCD: DAD H
DAD D
RET

* 2 for 16-bit addressing
+ base address
address in H-L

STORE is a subroutine to store TOS (top of stack) value at

TOS - 1 address.

POP
POP
POP
MOV
INX
MOV
PUSH
RET

B
D
H
M,E
H
M,D
B

return address
get value
get address
store low order byte
increment address
store high order byte
restore return address

The last run-time subroutine, START, has a special

initialization status. It stores the stack's first word in

DISPLA[l] and BASERE.

LX I D, - 2 D, E = -2
LXI H,0
DAD SP H,L = SP
DAD D subtract 2
SHLD DISPLA
SHLD BASERE

The CLANG Intermediate Language Codes (ILC's) are defined as

follows:

ILC 0: LIT Y push integer literal.

LXI D,Y
PUSH D

; li teral Y

ILC 1:

ILC 2:

LDA X Y

LXI
CALL
LXI
CALL
PUSH

CAL X Y

CHAPTER 3 -62-

Push address of variable with level X,
offsetY .

H,X-1
GETDIS
H, YN
ADDRCD
H

display value
negative offset
address of variable

Call a procedure - set up a procedure
stack frame and jump to the procedure
code. X is the level and Y the
address .

H,X
GETDIS
BASERE

LXI
CALL
LHLD
XCHG
PUSH H

get old display
in D- E

get ' base reg '
store in D,E
store old display

LXI
DAD
SHLD
PUSH
XCHG
LXI
DAD
LXI
DAD
MOV
INX
MOV
LXI
PUSH
POP
POP
POP

JMP

H,0
SP
BASERE
D

H,X
H
B,DISPLA
B
M,E
H
M,D
B,PC + 10
B
H
H
H

YA

SP now points to 1st entry on
new stack frame .
H, L = SP

new base r eg
o ld base reg
SP value in D-E
store SP value i n

DISPLA + (2 * X)

ge t return address
onto stack

reduce SP so that INT will
increase i t by the
correct amount in the
called procedure .

goto new procedure

ILC 3: RT X Y

LHLD
LXI
DAD
SPHL
POP
POP
SHLD
LXI
DAD
LXI
DAD
POP
MOV
INX
MOV

LXI
DAD
SPHL
XCHG
PCHL

ILC 4 : STK - not

ILC 5 : INT Y
LXI
DAD
DAD
SPHL

ILC 6: IND Y

LXI
PUSH
LXI
PUSH
CALL

POP
DAD
PUSH
CALL

CHAPTER 3 -63-

Return from a procedure
frame. X is the level,
number of words
information (= Y-1).

- discard stack
Y indicates the
of parameter

BASERE get 'base reg'
D,-4
D reduce base by 2 entries

new value for SP
D ret addr
H back link
BAS ERE reset current base
H,X - 1 display address
H
B,DISPLA
B (in H- L)
B display copy
M,C
H
M,B

remove Y-1 parameters
H,Y -1
SP

Return to the calling
procedure

implemented.

Increment stack pointer by Y.
H,YN
H
SP

Evaluate
variable.
entries on

D,0
D
D,Y
D

TOP
TOP-1 :

CHKSUB

H
H
H
ISUB

16-bit words
H-L = SP
new value for SP

address
At this

the stack

of a subscripted
point, the top two
will be:

subscript value
address of 0th element.

low bound is always zero

Y- value gives upper bound

Run time subroutine to check
the range of the subscript
Get subscript value

and double it to allow for
16 bit addressing

Subtract subscript value from
address of element zero - the
array is stored on the stack

ILC 7: BRN Y

ILC 8: BZE Y

ILC 9: NEG

ILC 10: ADD

ILC 11: SUB

ILC 12: MUL

ILC 13: DIV

ILC 14: OD

CHAPTER 3 - 64 -

Unconditional branch to Y.

JMP YA

Branch to Y if top of stack is ze ro.

POP
MOV
ORA
JZ

D
A,D
E
YA

se t z -flag if both 0
Issue branch order

Negate top of stack.

POP
LXI
PUSH
PUSH
CALL

D
H,0
H
D
ISUB

get integer
H-L = 0
o - IN TEGER

in teger subtract

Add top two integers on stack.

CALL IADD ; call to monitor routine .

Subtract top two integers on stack .

CALL ISUB , call to monitor routine.

Multiply top two integers on stack.

CALL IMUL ; call to monitor routine .

Divide top two integers on stack.

CALL IDIV call to monitor routine.

Replace TOS by 1 if it is odd , by 0
otherwise.

POP D get integer
MOV A,E get low order byte
ANI 1 retain only bit 0
MOV E,A low order byte = 1 if
MVI D,0 high order byte = 0
PUSH D

odd

ILC 15 : EQL

ILC 16 : NEQ

ILC 17: LSS

ILC 18 : GEQ

Test top
Return 1

CALL ISUB
POP D
MOV A,D
ORA E
LXI D,0
JNZ pc+4
INR E
PUSH D

Test top
Return 1

CALL ISUB
POP D
MOV A,D
ORA E
LXI D,0
JZ PC+4
INR E
PUSH D

Test top
Return 1

CALL ISUB
POP D
MOV A,D
ANI 128
LXI D,0
JZ PC+4
INR E
PUSH D

Test top
Return

CALL ISUB
POP D
MOV A,D
ANI 128
LXI D,0
JNZ PC+4
INR E
PUSH D

1

CHAPTER 3 -65-

two stack elements for equality.
or Q) to indicate true o r false.

subtract
get result

set z -flag
does not alter z-flag

set result to 1

two elements for inequality.
or 0 to indicate true or false.

subtract
get result

set z-flag
does not al ter z-flag

set result to 1

two elements for TOS-1 < TOS.
or

two
or

0.

subtract
get result
test result < 0
set z if sign-bit off
does not alter z-flag

set result

elements
o .

subtract
get result

to 1

for TOS-1

test result < 0

>=

set z if sign-bit off
does not alter z-flag

set result to 1

TOS.

ILC 19: GTR

ILC 20: LEO

ILC 21: STO

CHAPTER 3

Test top two elements for TOS-1 > TOS.
Return 1,0

CALL
POP
PUSH
MOV
ORA
LXI
JZ

POP
MOV
ANI
LXI
JNZ
INR
PUSH

ISUB
D
D
A,D
E
D,0
PC+14

D
A,D
128
D,0
PC+4
E
D

subtract
get result
but don't destroy it
first test for zero
set z-flag
does not alter z-flag
return a 0 if equal
now test the sign

test result> 0
set z if sign-bit off
does not alter z-flag

set result to 1

- 66-

Test top two elements for TOS-1 <= TOS .
Return 1,0

CALL
POP
PUSH
MOV
ORA
LXI
POP
JZ

MOV
ANI
JZ
LXI
PUSH

ISUB
D
D
A,D
E
D,0
H
PC+9

A,H
128
PC +6
D, 1
D

subtract
get result
but don ' t destroy it
first test for zero
set z - flag
does not alter z-flag
does not alter z-flag
return a 1 if equal
now test the sign
test result < 0
set z if s i gn-bit off

set result to 1

Store TOS value at TOS-1 address.

CALL STORE

ILC 22: HLT Stop execution, return to operating
system. For a CP/M based implementation
this is just a "warm boot".

JMP 0

ILC 23: INN

ILC 24: PRN

ILC 25: NL

ILC 26: PRS

ILC 27: LDX

CHA PTER 3 -67-

Read an integer value. TOS = address of
variable for value to be read into .

LXI
PUSH
CALL
CALL

D,0
D
IREAD
STORE

channe l
value returned on stack

Write out integer on TOS.

POP
LXI
PUSH
PUSH
PUSH
CALL

H
D,0
D
H
D
I WRTE

get value

channel
push value
field width =0

New line on output.

LXI
PUSH
CALL

D,0
D
WRTLN

Print a
already
followed

LXI
PUSH
CALL

D,0
D
STRWRT

channel

string. The characters
have been pushed onto the
by the string length.

channel

will
stack

Substitute Address on TOS with its value.

POP
MOV
INX
MOV
PUSH

H
E,M
H
D,M
D

get address
load low order byte
increment address
load high order byte
resul t ant value

3.4 THE CODE -G ENERATION DRIV ING TAB LE

Once the definitions of sections 3.2 and 3.3 have been

entered into the appropriate tables and stored on disc files

and the loader and monitor routines (described in chapter 4)

CHAPTER 3 -68-

have been written, the penultimate task of the implementor

(the final task is to test the system thorough,ly) is to set

up the table which drives the general code generator . The

format of this table is detailed in section 9.3. The table

may be set up using an editor or by running the program

written for this purpose.

For the CLANG system on the 8080 processor, using the

monitor routines listed in Appendix D, the table would

appear as:

8080.MAC
CLANG.SKL
8
4
2
4352
259
262
265
268
271
274
277
280
283
286
289
292
295
298
301
304
307
310

(name of machine definition file)
(name of code skeleton file)
(bits in smallest addressable unit)
(bits per digit in output file)
(number of words in an address field)
(initial PC = 1100 hex)
(address of RTS WRTLN)
(address of RTS IWRTE)
(address of RTS FPWRTE)
(address of RTS STRWRT)
(address of RTS I READ)
(address of RTS FPREAD)
(address of RTS FLOAT)
(address of RTS FIX)
(address of RTS IADD)
(address of RTS ISUB)
(address of RTS IMUL)
(address of RTS IDIV)
(address of RTS FPADD)
(address of RTS FPSUB)
(address of RTS FPMUL)
(address of RTS FPDIV)
(address of RTS ERROR)
(address of RTS CHKSUB)

CHAPTER 3 -69-

3.5 A SAMPLE PROGRAM

The program listed in table 3 . 5 . 1 might not appeal to the

Pascal precisian, but it serves well in demonstrating some

features of CLANG and its implementation.

TABLE 3.5.1

A SAMPLE CLANG PROGRAM

{$O+ Compiler directive requesting object code li sting}
program REVERSE; { Write a list of numbers in reverse}
var TERMINATOR;

procedure GO;
var LOCAL;

procedure REORDER;
var D;
beg i n

READ(D) ;
if TERMINATOR <> D then REORDER;
WRITE(D)

end; { REORDER }

begin { GO }
REORDER

end; {GO}

begin { REVERSE }
TERMINATOR := 0;
GO

end . {REVERSE}

The intermediate language code version of this program (as

generated by the CLANG parser listed in Appendix E, which

produces a file in the format required by the general code

generator), is displayed in table 3.5.2 and the the object

program generated by the code generator defined in this

CHAPTER 3 -70 -

chapter is shown in table 3 . 5 . 3. The loader of Appendix D

is ab l e to load and execute the f inal target code .

Although they are not used by the CLANG system, Appendix D

includes a full comp l emen t of f loati ng- point , type

con version a nd f ile handling rout i nes. This enables i t to

be used with the enhanc ed Pascal - s compiler [39 J

TABLE 3 . 5 . 2

CLANG INTERMEDIATE LANGUAGE CODES

ADDRESS MNEMONIC FUNCTION LEVEL ADDRESS

0 BRN 7 0 21 ---------+
+--------> 1 BRN 7 0 18------+
I +-- +--> 2 BRN 7 0 3 ---+ I
I (sta r t of procedur e REORDER) I
I 3 INT 5 0 4 <-+ I
I 4 LDA 1 3 3 I
I 5 INN 23 I
I 6 LDA 1 3 I
I 7 LDX 27 I
I 8 LDA 1 3 3 I
I 9 LDX 27 I
I 10 NEQ 16 I
I 1 1 BZE 8 0 13 ---+ I
I +-- 12 CAL 2 2 2 I I
I 13 LDA 1 3 3 <-+ I
I 14 LDX 27 I
I 15 PRN 24 I
I 16 NL 26 I
I 17 RET 3 3 1 I
I (star t of procedure GO) I
I 18 INT 5 0 4 <----+
I +----- 19 CA L 2 2 2
I 20 RET 3 2 1
I (start of program REVERSE)
I 21 INT 5 0 4 <-------+
I 22 LDA 1 1 3
I 23 LIT 0 0 0
I 24 STO 21
+---- - --- 25 CAL 2 1

26 HLT 22

CHAPTER 3 -71-

TABLE 3.5.3

8080 ABSOLUTE TARGET CODE

tI\'j~ I'I~~ (BASERE)
11 e 1 NQP
1102 NOP (01 SPLA)
1183 NOP
1104 NOP
11 BS NOP LOX 1173 POP H
1186 NOP 1174 MQV E,M
1107 NOP 1175 INX H
1108 NOP 11 76 MOV 0,1'1
1109 NOP 1177 PUSH Q
11 SA NOP NEQ 1 178 CALL ell E
11 Be NOP 117B POP 0
IIBe DAD H (GEToI S) 117e MOV A,o
11 aD LXI B 11 102 1170 ORA E
11 Ie DAD B 1 t 7E LXI D,seee
1111 MQV E,M 11 Bl JZ r:=J 1112 INX H 1184 lNR
1113 MOV o,M 1185 PUSH
1114 RET BZE 13 1186 PDP o .
i 115 DAD H (ADoRCD) 1187 MOV A,D
1116 DAD 0 11 BB ORA E
1117 RET llB9 JZ 1185
111B POP B (STORE) CAL 2 2 118C LXI H,0eS2
1119 POP 0 t 18F CALL llBC
IliA POP H 1192 LHLD 11013
1118 MOV M,E 1195 XCHG
111 C' I NX H 1196 PUSH H
1110 MOV M,D 1197 LXI Hisses
II IE PUSH B 119A DAD SP
111 F RET 1198 SHLD 11IHI
1120 LXI - D,FFFE (START) 119E PUSH 0
1123 LXI H,sses 119F XCHG
1126 DAD SP llAB LXI H,BeS2
1127 DAD 0 11 A3 DAD H
1128 SHLO 11 B2 t1A4 LX I 8,1182
1128 SHLD 11 ae llA7 DAD B

BRN 21 1 i 2E JMP 1247 ~(REVERS9 liAS MOV M,E

ffi::BRN
18 1131 JMP liFe GO R llA9 INX H

R BRN 3 1134 JMP 11 37 F:;::J l1 AA MOV H,D
INT 4 1137 LXI H, FFFC (REORDE!3> llAB LXI 8,1185

113A DAD H 11AE PUSH B
113B DAD SP llAF PDP H
113e SPHL 11 B~ POP H

LllA 3 3 i i ~b LXI H,Baa2 1181 POP H
1140 CALL JIB e 1182 JMP 1134
1143 LXI H,FFFD LllA 3 3 11 65 [XI H,BOB2
1146 CALL 1115 I1 B8 CA LL llBC
1149 PUSH H 1188 LXI H,FFFO

INN il4A [XI D,00 00 11 BE CALL IllS
1140 PUSH 0 I1Cl PUSH ~
114E CALL aleF LDX l1C 2 POP H
1151 CALL 111 8 11 C3 MOV E,M

LllA 1 3 i 154 [xI H,0000 ltC4 INX H
1157 CALL llBC IIC5 MDV D,H
liSA LXI H,FFFO ll C6 PUSH 0
1150 CALL IllS PRN 11 C7 POP H
1160 PUSH H 11 CB LXI O,OB00

LOX 1161 POP H II CB PUSH 0
1162 HDV E,H IICC PUSH H
11 ·63 INX H. 11 CO PUSH D
1164 HOV D,H 11 CE CALL 0106
1165 PUSH 0 NL 1101 LXI O,Baaa

LDA 3 3 i 166 LXI H,0BB2 1104 PUSH 0
1169 CALL 11 BC JI Q:::/ ~eL.1 fU a:3
116C LXI H,FFFO
116F CALL 1115
UZ~ EUSl:I ~

CHAPTER 3 -72-

(TABLE 3.5.3 continued . ..)

RET 3 1 1108 LHLD 11 Be INT 4 1247 LXI H,FFFC4--(REVERSE)
11108 LXI O,FFFC 124A DAD H
llDE DAD D 124B DAD SP
110F SPHL 124C SPHL
11 E0 PDP D LDA I 3 1240 LXI H,B000
11 E 1 POP H 1259 CALL 11Be
l1E2 SHLD 1109 1253 LXI H,FFFD
l1E5 LXI H,eoe2 t 256 CALL 1115
l1E8 DAD H 1259 PUSH H
l1E9 LXI B,1182 LIT a 125A LXI D,BeeB
11 EC DAD 8 1250 PUSH D
liED POP 8 STO 125E CALL 1118
II EE MOV M,C CAL 1261 LXI H , BBS1
liEF INX H 1264 CALL 119C
tlFe MOV M,B . 1267 LHLD 1199
11 Fl LXI H,eaee 126A XCHG
11F4 DAD SP 1268 PUSH H
11 FS SPHL 126C LXI H,BIH3B
llF6 XCHG 126F DAD SP
J 1 EZ ECI:lI

HIFFFC~ 1279 SHLD 11 ee
INT 4 11Fe LXI 1273 PUSH D

IIFB DAD H 1274 XCHG
lIFe DAD SP 1275 LXI H,eael
11 FQ ~EI:U 1278 DAD H

CAL 2 1 liFE LXI H,eee2 1279 LXI 8,11132
1213 1 CALL 11Be 127C DAD 8
1284 LHLD lleB 127D MOV M,E
1287 XCHG

t:~;;
INX H

1298 PUSH H MOV H,D·
12139 LXI H,eeee 12813 LXI B,12SA
12BC DAD SP .1283 PUSH 8
1280 SHLD 110e 1284 POP H
121 a PUSH D 1285 POP H
1211 XCHG 1286 POP H
1212 LXI H , 8002 1287 lltle 1131
1215 DAD H HLT 128A JMP 9a99
1216 LXI B, 119 2
1219 DAD 8
121A MOV M,E

t:::~
INX H
MOV M,D

1210 LXI B,1227
1228 PUSH 8
1221 POP H
1222 POP H
1223 POP H
1224 JMP 1134

RET 2 1 1227 LHLD 111313
122A LXI D,FFFC
122D DAD D
122E SPHL
122F POP D
1230 POP H
1231 SHLD 11139
1234 LXI H,aeel
1237 DAD H
1238 LXI 8,IUl2
1238 DAD 8
123C POP 8
I23D MOV H,C
123E INX H
123F MOV M,8
1249 LXI H,eoee
1243 DAD SP
1244 SPHL
1245 XCHG

CHAPTER 4 -73-

4. WR ITING A LOADER AND STANDARD RUN-TIME SUBROUTINES

It would be misleading to leave the reader with the

impression that the development of a code generator using

the tool described in this document is as simple as the

preceding

certainly

can be

description might lead one to believe. It is

true that the steps in the preceding description

used to develop a code generator capable of

translating intermediate codes to mach ine codes. However,

such object code is useless without a loader to load it into

memory for execution. In addition, run - time subroutines are

required, which can be called from the object program to

perform input/output and arithmetic operations. Development

time for this essential part of the compilation tool varies

from days to weeks depending on the architecture of the

target machine and the complexity of the loader/run-time

subroutines.

It is always worth the effort of finding out what linkers ,

loaders and standard routines are already available on the

target machine. The implementor will save himself

considerable effort if he writes some code to get his target

program into the correct format for an existing linking

loader. Similarly, a search of existing system libraries

might save one the task of writing standard subroutines,

such as those for input/output and floating point

operations.

CHAPTER 4 - 74 -

4.1 IMPLICATIONS OF THE LOADING PROCESS

A simple a b s olu t e l oade r is easier to implement than one

which l i n k s modules, re l ocates code , or handles ove r lays.

An absolute loader need only be furnished with the address

at which to start loading binary code , and the binary code

itself . Absolute loaders are useful on single user

machines, and on larger machines whose user areas are

addressed via an operating system controlled base register.

For examp l e , ICL 1900 systems use a base-limit protection

mechanism , with the effect that the code (which a n

individual user sees as absol u te) is r eal l y -relative to a

base register . Howeve r , absolute loaders are of limited use

on machines capable of supporting a r elocatable user slot

type ope r ating system. Wha t is needed in this case is a

loader which can load a program into an area of memory

which is dictated by the operating system rat h er than by the

program being loaded . This i s a reloca table loader .

Relocatabl e code contains address r efe r ences which depend

upon a pa r ticular " relativize r" . In choosing a par t icula r

type of l oader, the code generator i mplementor wi ll need to

be familiar with the requirements o f his t arget machine.

The provision of inter - module communication faci l ities

causes additional work f or the l oader. If a modu l e is to

have more than one entry point, it is usual to preced e i t

with a j u mp table . It might i n fac t prove more con ven i e n t

I

CHAPTER 4 -75-

for the implementor to write a separate linking program

which combines several modules into a suitable form for a

simpler loader, rather than to use a linking loader to

perform the entire task at once.

4.2 RUN-TIME SUPPORT PACKAGES

Implementing run-time subroutines on a processor as simple

as the 8080, whose greatest arithmetic boasts are its 8-bit

integer add, subtract and shift instructions, is a

considerable task. However, the same routines on a CDC

mainframe, with its hard-wired floating-point routines and

built-in multiply and divide instructions, become trivial by

comparison. On systems which allow access to library

facilities from an assembler level, it is desirable to store

standard run-time procedures in a library, which is

selectively searched so that only those which are referenced

by the application program are included in the final task.

The implementor is responsible for writing both the run-time

subroutines and their calling sequences from within code

skeletons, so details of data representation and parameter

passing are left up to his personal design preference.

Since the entire system is based on a hypothetical stack

machine, however, data storage and parameter passing is most

easily

that

achieved using a stack mechanism. It is

not all standard run-time subroutines will

possible

be needed

for some implementations (e.g. a simple compiler might not

CHAPTER 4 -76-

include real arithmetic) . Nevertheless, dummy addresses

should be provided for these unused standard routines in the

code generator parameter file to keep the sequence of run

time addresses correct .

4.3 A SAMPLE IMPLEMENTATION

Figure 4.3.1 shows the basic load time organization of a

loader and its assoc i ated run-time subroutines for a target

implementation of a hypothetical stack machine. This

diagram shows up two points worth noting. Firstly , once the

loader has loaded and passed control to the user program, it

is of no further use and can be overwritten during the

running of the program. Secondly, the standard run-time

subroutines are always referenced by means of a jump table.

This allows a run-time subroutine to be moved about in

memory without having to alter its referencing address in

the use r program.

Top of
user slot

Bottom of
user slot

CHAPTER 4

FIGURE 4.3.1

Load time memory organization

STACK AN D
.().

RUN-TI ME
WO RKING AREA

f--

} 2. Jump to execute
user program.

1. Load user program.

.... \.7
MAIN BODY OF USER PROGRAM

+-.,
call", ,

I '
I '

USER ret ... ' J
DEFINED

, .. -'- - ,
FUNCTIONS call-I" I > AND I I '
PROCEDURES proc~ I I

ret .. -,-J
I
I
I
I
I

proc+ -001
I ~ - STANDARD

RUN-TIME

r- SUBROUTINES

r-+
po - jump table

• jump to start of loader

-77-

LOADER
(over
written

by
stack)

USER
PROGRAM

Appendix D lists the loader and monitor routines necessary

for running a program on the 8080 processor with Pascal

features, such as might have been produced by the CLANG

CHAPTER 4 - 78-

system of chapter 3 or the enhanced Pascal - s [39J system.

The loader is based on the design of Figure 4 . 3.1 and

includes backpatching so that the target code file can be

read using the format of table 9.3.2. The run-time

subroutines include all those standard functions listed in

table 8.2 .1 . Implementation details of these routines will

not be discussed as the source listing of Appendix D has

been perspicuously commented.

In addition to the 8080 implementation of Appendix D, the

author has written similar run-time packages for the ICL

1900 and PDP-11 series computers. These routines are not

based on any particular algorithms, and no doubt better

have been wr i tten. However, they have been wel l tested and

have shown themselves to be reliable. A glance through

Appendix D should convince the reader that the writing of a

run-time package for a meaningful l anguage is not a trivial

task. The 8080 loader and run-time package is the result of

several weeks of programming and testing. The ICL 1900

and PDP-11 implementations required less effort because of

the additional programming features available on those

computers. In particular, the ICL 1900 GEORGE system allows

access to a useful library of trigonometric and type

conversion routines.

CHAPTER 5 -79-

5. THE MARK 3 SYSTEM

During the implementation of the mark 2 system (the programs

l i sted in the Appendices), several improvements made

themselves apparent. The mark 2 system with these added

improvements constitutes the mark 3 system. The simpler

system has been retained for the purposes of this document

since, as a working system, it demonstrates all the

necessary principles without excess frills. The paragraphs

be l ow outline some of the advantages of the mark 3

enhancements, and how they were implemented. All the

facilities discussed have been realized, unless otherwise

stated, but space does not al l ow for a detailed discussion.

Interested readers can obtain listings of mark 3 from the

author.

5. 1 MEMORY ALLOCATION AT CODE GENERATION TIME

In the earliest version of the code generator (mark 1), a l l

i ntermed i ate codes, a l l generated target codes and all code-

skeleton definitions were held in memory.

was very conven i ent for three reasons:

This arrangement

1.

2.

With no disc transfers, the code generator was

extremely fast,

with all intermediate codes in memory, address

assoc i at i on (intermediate address to target equivalent)

was trivial, and

3 . with a l l the target code in memory, all forward

CHAPTER 5 -81l1-

references could be resolved in a single pass at code

generation time.

However, this arrangement was most unsatisfactory, because

each table was limited in its memory size. It was only

possible to compile toy programs which generated a small

number and variety of intermediate codes.

The mark 2 system overcomes the program size and

intermediate code range restriction by storing the code

skeletons on external disc (at the expense of a slower code

generator due to file searches) and by writing out target

codes as they are generated (at the expense of having to

perform backpatching at load time). The advantage of point

2 above is retained and with the intermediate code array

extended to 5 III III III entr ies, Pascal programs in excess of 11l11l11l1

source lines are able to be processed. The slower code

generation time is not regarded as a major disadvantage as

the system was never intended for use in compilation

intensive environments (e.g . student practicals).

The mark 3 system attempts to improve on the memory

allocation of the current system in two ways . So as to

decrease the number of disc accesses, up to ten code-

skeletons may be held in memory at a time. A usage count

associated with each indicates which one is used least

often. The most seldom used skeleton is overwritten when a

CHAPTER 5 - 81-

new skeleton needs to be read into memory. Naturally, this

strategy only succeeds if not all intermediate codes are

produced with equal frequency. A facility exists which

enables the implementor to override this strategy by

selecting certain code-skeletons to be permanently

memory-resident .

The second improvement involves the output of target codes.

Instead of writing target codes to di sc as soon as they are

generated, they are stored in a circular list which is able

to hold 101 target instructions . An instruction is only

written out once 100 subsequent instructions have been

generated, or at the end of the program segment.

-+--~(current-100) instruction out .
~--.current instruction in.

This feature enables forward references to be resolved as

long as they do not span more than 100 instructions . More

importantly, however, some measure of peephole optimization

may be implemented (see section 5 . 3). If instruction

sequences are found which can be deleted or replaced by

cheaper sequences, t he surrounding code can be relocated.

CHAPTER 5 -82-

5.2 IMPROVED CODE-SKELETON DEFINITIONS

An obvious improvement to the assembly format of

instructions would be the inclusion of a commen t field.

This enhancement was effected, but soon rejected, since the

size of the data structure was more than doub led for each

code-skeleton if one allowed for a fair sized comment on

each instruction.

A second code -ske leton definition improvement did prove to

be beneficial, however . This enhancement allows argument

fields to be specified using expressions involving compile

time constants. The mark 2 system allows very limited

expression savings by allowing an argument field to be

expressed in several ways, e.g . X, XN a nd XA de not e the

value of argument X, the negative of the argument X value,

and the target address corresponding to argument X (more

details can be found in section 8.2). The mark 3 system

allows both constants and compile time names to be combined,

using the simple arithmetic operators +, and * The

benefit to be gained from this enhancement is best

demonstrated by means of the following example . Consider

the run-time subroutine GETDIS from section 3.2:

GETDIS: DAD H X * 2 for 16-bit addressing
LXI B,DISPLA
DAD B + DISPLA
MOV E,M get value from
INX H DISPLA + (2*X)
MOV D,M

CHAPTER 5 -83-

In this example, constant values known at compile-time are

used to calculate the address only at run-time. On the mark

3 system using expression evaluation, the whole of GETDIS

can be replaced by a single instruction:

LHLD 2*X+DISPLA value into H-L

5.3 OPTIMIZATION

If the reader has studied the target code of table 3.5.3, he

will probably have noticed that due to the mechanical nature

of the code generator, some rather clumsy code has crept

into the object program. In particular, a lot of redundant

storing and reloading of variables occurs across the

boundaries of 8080 code bodies for consecutive intermediate

codes.

e.g. PUSH H
POP H

last instruction for intermediate code n
first instruction for intermediate code n+l

As long as the code body for intermediate code n+l is not

the destination of a branch instruction, such code can be

deleted (as in the above example) or improved:

PUSH D
POP H

or PUSH H
POP D

replace with XCHG

CHAPTER 5 -84-

Note that such improvements will normally only be made

across the boundaries of 8080 code bodies, as a construct

such as

POP D
PUSH D still need the value of D on the stack

within a code body is usually intentional . This is an

obvious application of peephole optimization.

Another obvious peephole optimization is the removal of

multiple jump statements . This will become obvious if one

studies the intermediate code program of table 3.5.2. All

JMP PC +1 type instructions can be removed (e . g. t he BRN at

intermediate code address 2) as these serve no useful

purpose (but simply makes the CLANG intermediate code

generator far simpler). Jumps to other jump statements can

be altered to jump to the fi nal destination (e.g. the call

at intermediate code address 25 can be altered to branch

directly to the code body at address 18) .

A gene r al specification for optimization techniques is not

easy to formulate. These optimizations obviously become

machine dependent. In addition, it is debatable whether

such facilities should be included in a system intended for

use by a non compiler specialis t. The mark 3 system reaches

a compromise by allowing the compiler writer to specify

simple optimizations of the type mentioned above, or to

switch this option off.

CHAPTER 5 -85-

The mark 3 notation for specifying peephole optimization is

very poor, and this enhancement, if it is to be retained,

requires much refinement. Since it has been said that this

feature's strongest point is its ability to be switched off

and ignored, its scope will be described only briefly .

If the implementor supplies the function number and address

argument of each intermediate code type which performs a

b r anch, the mark 3 code generator makes a pass over the

intermediate code program building up a table of addresses

which are the destinat ions of branches. Since t h e entire

intermediate code program is held in memory, the program is

able to alter the addresses of branch instructions which are

redirected by ano ther branch instruction. At the same time,

JMP PC+' intermediate codes can be replaced by a dummy

in termediate code which produces a null code - skeleton,

effectively eliminating it without having to relocate the

rest of the intermediate code program.

In addition, the user can specify three groups of target

code seq uences c " c 2 and c 3 meaning: " if t he current code

skeleton begins with the sequence c" and if the previous

code-skeleton ended with c 2 , then replace both c, and c 2

with in the final target code" . This replacement is

suppressed if the current code-skeleton is the destination

of a branch instruction .

CHAPTER 5 - 86 -

Table 5.3.1 compares the code generated by the mark 3 code

generator, with and without the simple optimization feature,

using the following simple CLANG program:

program TEST;
{$O+}

var I;

begin
I : = 1;
WRITE(I) ;

end.

whose intermediate code program is:

ADDRESS MNEMONIC FUNCTION LEVEL
0 BRN 7 0
1 INT 5 0
2 LDA 1 1
3 LIT 0 0
4 STO 21
5 LDA 1
6 LDX 27
7 PRN 24
8 NL 26
9 HLT 22

ADDRESS
1
4
3
1

3

The code skeletons for this example differ slightly from

those of chapter 3 because the expression evaluation

enhancement of th e mark 3 system enables one to detail some

of the code-skeletons more concisely.

CHAPTER 5 -87-

TABLE 5.3. 1

Code generated by the mark 3 code gene r ator

without op timization with optimization

13A1D Jt1P 0A213 13A1D LXI D,FFF8
13A213 LXI 0A213 LXI H,13131313
0A23 LXI 13A23 DAD SP
BA26 DAD 13A24 DAD D
0A27 DAD 0A25 SPHL
0A28 SPHL --- 0A26 LHLD 13A05

LDA 1 3 0A29 LHLD 0A05 0A29 LXI D,FFFA
0A2C LXI D,FFFA 0A2C DAD D
13A2F DAD D 0A2D PUSH H
!:!t::l:.20 PUSH H ---- 13A2E LXI D,1313131

LIT 0 1 13A31 LXI D ,1'11'11'1 1 0A31 POP H
13A34 PUSH D 13A32 t10V M,E

ST 0A35 POP D 0A33 INX H
0A36 POP H 0A34 I'IOV M D
0A37 t10V M,E 0A35 LHLD 0A05
I'IA38 INX H 0A38 LXI D,FFFA
0A39 NOV 1'1 D 0A38 DAD D

LDA 1 3 0A3A LHLD 0A135 0A3C t10V E,M
0A3D LXI D,FFFA 13A3D INX H
13A413 DAD D 0A3E MOV D M
13A41 PUSH H 0A3F XCHG

LD 13A42 POP H 0A41'1 LXI D,I'I13013
0A43 MOV E ,11 BA43 PUSH D
0A44 INX H 0A44 PUSH H
0A45 MOV D ,t1 0A45 PUSH D
0A46 PUSH D 0A46 CALL 01136

PRN eA47 POP H 13A49 LXI D,013130
0A48 LXI D,01'113e 0A4C PUSH 0
0A48 PUSH D 0A4D CALL 0103
0A4C PUSH H 0A5e JMP 01300
0A4D PUSH D
0A4E CALL 01136

NL 13A51 LXI D,001313
13A54 PUSH D
0A55 CALL 131133

HLT 13A58 JMP 130130

CHAPTER 5 -88-

5.4 COMPILING SEPARATE MODULES

Although the mark 2 code generator is able to handle a

reasonably large source program, it is always useful not to

have to recompile an entire program when only a small

section has been altered. A simple system for compiling

separate modules has been experimented with. This

presently puts the onus on the end-user to supply the run-

time base address of the module. The code generator will

supply the end address of the module for use in estimating

the start address of the next module. Transfer of control

between modules is via names whose final addresses are

specified at code-generation time. An improvement on this

approach is for the implementor to allow the end user to

compile his modules as normal. It is possible, by carefully

selecting the range of target instructions used, as well as

the approach to addressing (e.g. all addresses relative to a

base value), to generate code which can be relocated to any

address in memory [29J. The implementor must then write a

linking loader (chapter 4) to combine several relocatable

modules. Once again, this feature is within the realm of

the code-generation specialist, and should probably be

avoided in systems to be implemented by a novice.

An obvious extension to generating separate modules is to

overlay the modules which are generated. Again, a crude

implementation simply generates two modules of absolute code

beginning at the same address. However, the writer of the

)

CHAPTER 5 - 89 -

run-time routines must now write an extra code sequence

which can be called upon to load an overlay as required.

This system is not too difficult to implement as long as the

overla~ code does not alter itself in any way

(necessitating the writing out of overlays as well) . The

transfer of data via variables does not constitute a

problem, since a hypothetical stack machine stores all its

data in stack frames, separate from the overlaid code.

The current mark 3 system is able to handle a crude form of

separate module compilation, but overlays have not yet been

successfully implemented.

CHAPTER 6 - 90 -

6 . HISTORICAL REMARKS AND CONCLUSIONS

The original efforts of implementing a generalized code

generator grew out of a project to implement a code

generator for an experimental Pascal/Basic teaching

language, BPL [40J , in 1979 on the ICL 1904 . The author

has subsequently implemented a Pascal code generator for the

PDP - 1 1 series of computers. Both projects have supplied

valuable contibutions towards this thesis, part i cularly in

the form of reliab l e run-time packages, leading eventually

to the current generalized code generator . An

implementation of the system on the North Star Advantage

Microcomputer was outl ined in a paper given at the RU

Symposium on Computer Science, Theory and Practice, in

November 1983, and subsequently described more fully in this

document.

Imp l ementations on an 8080 processor using the CLANG parser

of appendix E and a bigger, more realistic Pascal - s+ parser

have been well tested. Pasca l-s+ [39J is an enhancement by

P.D. Terry of Wirth's original Pascal - s [38J system. It

has been adapted by the author for use with a synthesised

code generator to provide a compiler which falls short of

standard Pascal only in its lack of the "with" statement .

Both implementations show the system to be fairly successful

within the limitations imposed by its original objectives .

A number of bench-marks were carried out to compare the

CHAPTER 6 -91-

execution of code produced by the generalized CLANG

implementation with code produced by a special purpose

optimizing code generator (Pascal MT+ [35J was used), and

with intermediat e codes in terpreted by the CLANG

interpreter. Only execu t ion time was considered (the MT +

compiler produces huge code files, making the compar/ison of

target code size rather meaningless) . As expected, code

prod uced by the synthesised code generator is slower than

tha t produced by a spec i a l purpose optimizing code

generator , but still executes several times faster than an

interpreter written to produce the same effect . The

greatest difference in execution time is noticed in programs

which perform many calculations and l ittle input/output.

Compilation times for the synthesised and special purpose

systems are comparable, but are much shorter on the

in terpreted system .

There can be little doubt that the time taken to develop a

code genera tor using this tool is less than the time

required to wri~e a special purpose code generator.

However, the resultant code generator is more useful for

programs which wi ll be run more times than they will be

compiled than vice versa . The expedience of the system

lies chiefly in its ability t o replace multi-level

interpretation with direct execution, and in its use as a

step in bootstrapping a compi le r onto a new computer .

PART Z

A
USER

MANUAL

CHAPTER 7 -93-

7. USING THE MACHINE DEFINITION PROGRAM

,
The current program has been implemented in Pascal MT+ on a

CP/M based system (North Star Advantage), but could be

easily altered to run on other Pascal systems, with only

minor modifications needed to the machine definition program

and to the fo llowing description of how to use it.

7.1 CURRENT IMPLEMENTATION REQUIREMENTS

The following seven files are required to run the machine

definition program on a CP/M system.

MACDEF.COM
MACDEF . 001
MACDEF.002
MACDEF.003
MACDEF.004
MACDEF .005
MACDEF.006

}
}
}
}
}
}

Executable Root Program

Overlays for the program

Also useful, but not mandatory, are the following two

message files,

program.

MACDEF.HLP
MACDEF.MES

which improve t he friendliness of the

Help message file
Error message file

To run the program, type

MACDEF <RET>

and answer the questions or make selections from menus which

CHAPTER 7 -94-

follow.

The machine definition table will be saved on a user named

file whose default extension is ".MAC".

The disc space required to store the root program and

overlays is 48k, with an additional 14k required if the

message files are included. The ".MAC" file typically

requires 4k to 6k of disc storage.

7.2 DRIVING THE PROGRAM

Provided the help message file (MACDEF.HLP) is present, the

user may request help at any time by responding to an

invitation for input by typing

? <RET>

Help relevant to the current operation will be supplied. In

some cases, additional help or an example will be offered.

If the character "?" is a valid part of a mnemonic,

separator or argument field in the assembly language for the

machine being defined, then the user should choose another

character as his help request character. This can be done

when invited to do so at the start of the program.

The sequence <ESC> <RET> can be used to abandon any

operation. Execution returns to the main menu or to the

appropriate sUb-menu. Once an operation has been abandoned,

J

CHAPTER 7 -95-

the machine definition table is returned to its state prior

to commencement of the operation.

The main menu is displayed automatically. The user selects

one of seven options by typing a representative character.

W - Word Definition Mode
I - Instruction Definition Mode
D - Edit Word Definitions
E - Edit Instruction Definitions
R - Read Definitions from a File
L - List Definitions
X - Exit

7.2.1 Word Definition Mode (Option W on main menu)

Word formats are used to group together a set of

instructions which have the same length and field

format. To describe a new word format, three items of

information are required.

The first item of information is a textual description

of the word format for easy identification by the user

at a later time. This description may be up to 20

characters in length, or may be left blank by just

pressing the <RET> key when the description is

requested.

The second value which the program requests is the

length of the word in bits. This value, used for

CHAPTER 7 -96-

validation during field definition, should include all

fields, including expanded operands.

Finally, the user is requested to type the field

definitions in the notation described in Section 2.1.

Each field in the word form is represented by a unique

alphabetic letter, which is repeated as many times as

there are bits in the field. It should be noted that

only upper case alphabetic letters may be used.

Seperating spaces may appear bo th between and within

fields, and are ignored .

For example, the three items o f i nformation required to

define an IBM 370 Series " RX" word form would be:

Format of the RX word form

I Opcode I R 1 I X21 B21 D2

• • I ~'---' '-.,-J' ..
8 4 4 4 12

where R1 is a register,
X2 is a register used as an index,
B2 is a base register,
D2 is a positive displacement (0 .. 4095)

DESCRIPTION: Register-Index Form

LENGTH: 32 bits

FIELD DEF: 0000 0000 RRRR XXXX BBBB DDDDDD DDDDDD

The word definition routines are called in a loop. To

CHAPTER 7 - 97 -

define severa l word definitions, answer "Y" (yes) to

the question "Another word definition ?" .

Since instruction definitions refer to defined word

forms, word definition mode is usually entered before

instructions are defined.

7.2.2 Instruction Definition Mode (Option I on main menu)

All instructions conform to a word format which has

already been defined.

instruction

LDA Rl,address

conforms to the word format

For example,

FFFFFF RR AAAAAAAA AAAAAAAA

suppose the

This instruction will be used as a continuing example.

To define an instruction, one has to specify the

function and va l ue of all the fields of the word

format.

The program will prompt the user to type the index

number of the word format description to which the

instruction conforms. (As each word format is defined,

in word definition mode, it is recorded in the

definition table. For convenience, a list of all

defined word formats and the ir index values may be

CHAPTER 7 -98-

viewed by responding with the character ".").

Mnemonic Fields

A textual mnemonic for the instruction must be supplied

next. A mnemonic is a short word, representative of

what the instruction does, e.g. LDC for an

instruction which loads a constant into an accumulator.

Later, one is able to refer to the instruction by its

mnemonic. The mnemonic may be made up of any printable

characters (no control characters are allowed), but may

not begin with the help request character. The

current implementation allows a maximum of six

significant characters. In addition, each instruction

mnemonic must be unique. It will be advisable to

follow the mnemonics of one's target machine's assembly

language as closely as possible.

For example, an obv i ous mnemonic for the instruction

LDA R1,address

i s "LDA".

The program now displays the word format for the

instruction, and requests that the user specify which

field will represent a binary pattern unique to this

particular instruction. This is essentially the field

which will be recognised as representing the mnemonic.

CHAPTER 7 -99-

A field is selected by typing the character marking the

field in the word format description. Naturally, only

defined field names may be selected.

The binary bit pattern for the chosen field may now be

entered. If the user prefers, the field value may be

prefixed:

(1) with the character "D", and entered as a

decimal number (e.g. D35),

(2) with the character "H", and entered as an

hexadecimal number (e.g. H23)

or (3) with the character "0", and entered as an

octal number (e.g. 043).

A check is made to ensure that the value will fit into

the chosen field. Negative values are converted

according to 2's complement rules, and must be input

using a minus sign.

To continue with the example

LDA Rl,address

FFFFFF RR AAAAAAAAAAAAAAAA

FIELD TO BE ASSOCIATED WITH MNEMONIC: F

BIT PATTERN FOR FIELD F: 10011
or 023
or D19
or H13

More than

mnemonic,

CHAPTER 7

one field may be associated

by stipulating further fields in

with

the

- 100-

the

same

manner as the first (reply "Y" to the question "Should

ano t her field be associated with the mnemonic ?"). As

a further prompt , after defining each mnemonic field

the program displays the word format for the

instruction, with

mnemoni c fields.

binary patterns filled in

The definition for field F in

above example wou l d yield :

010011 RR AAAAAAAAAAAAAAAA

Argument Fields

for

the

Any field not designated as being associated with the

instruction mnemonic is assumed to be an argument

(variable) field. Argument fields accompany the

mnemonic in the assembly language format and are

assigned a value at a later time (e.g. fields R and A

in our example) . The program steps through each

argument field in turn, prompting the user to supply

validation information for this field.

Argument Ranges

Firstly,

range of

the user is required to define the legitimate

arguments which the named field may hold.

These will be checked against the actual arguments used

CHAPTER 7 -1Ql1-

at the code generator definition stage. A field

generally takes an integer value as an argument, but

can also be specified by a symbol rep resenting an

integer. To choose a valid range of arguments for the

field, a menu is displayed, from which the user should

select one of five options. Selections 1 to 4 (type the

appropriate digit to make the selection) define various

integer ranges:

1. A positive integer in the range 0 .. biggest

integer which can fill the field. If the

field is bigger than the maximum integer

length for the implementation, selection 4 is

chosen instead.

2. A negative or positive integer in the 2's

complement range for the field. Again, if the

field is bigger than the maximum integer

length for the implementation, selection 4 is

chosen instead.

3. This selection requires the user to specify

the lower and upper bounds for the field.

The numbers should be typed in decimal (the

default number base for this input, e.g. 26) ,

octal (preceded by 0, e.g. 032) , binary

(preceded by B, e.g. B11010), or hexadecimal

(preceded by H, e.g. H1A). A check is made

to ensure that the values will fit into the

CHAPTER 7 -102-

field. Negat ive values are converted

according to 2's complement rules, and must

be typed using a minus sign.

For example, if a 5-bit field were to take an

integer in the range 0 to 8, the definition

might be

LOWER BOUND: 0
UPPER BOUND: 8

whereas if it were to take on the range -8 to

+7, the definition might be

LOWER BOUND: B-1000
UPPER BOUND: Blll

(Note that lower = Bl1000 upper = B01000 will

not be acceptable).

Selection 4 is preferred if the field exceeds

the maximum integer length for the

implementation.

4. This option is used if no validation is to be

performed at the code generator specification

stage. This selection must be made if the

field is larger than the maximum i nteger

length for the computer upon which the

machine definition program is implemen ted.

Option 5 is selected if the user wishes to represent

integer value s by symbolic names.

,
CHAPTER 7 -103-

We continue with our sample definition for instruction

LDA R1,address

010011 RR AAAAAAAAAAAAAAAA

VALID ARGUMENTS FOR FIELD R: 5 (I want to use
symbolic names)

VALID ARGUMENTS FOR FIELD A: 1 (integer range
o to 65535)

Symbolic Names for Arguments

If option 5 is chosen, as it was for field R in our

example, the user is required to define a set of

symbolic names and their corresponding values for the

field. However, before the user is allowed to do

this, the program asks him whether an identical field

already exists in a previously defined instruction.

Since the same symbolically named field often appears

in several instructions (for example an argument which

takes on register names), both time and memory/disc

space can be saved if all such instructions refer to

the same set of symbolic names instead of each having

its own identical set.

If the user chooses to refer to a symbolic name list

set up during a previous definition, the program will

prompt him to supply the index number of an instruction

which has an identical field to the one being defined,

CHAPTER 7 -104-

i.e. same identifying lette r and same length. As was

the case for word format specifications, each

instruction is recorded in a definition table as it is

determined. For convenience, a list of all instructions

defined so far and their index values may be viewed by

responding with the character "*,,

On selecting a previous instruction, the user will be

shown the instruction and its matching field (if one

exists) so that he can verify that it in fact has the

argument range which he desires.

When specifying a new set of symbolic names for an

argument field, one is required to supply the number,

N, of valid symbols which the argument is to allow.

The program will then p rompt the user N times for a

symbolic ' name.

for arguments

mnemonics. One

The rules for making up symbolic names

are the same as those for instruction

may use the same names as for the

existing mnemonics, but all symbols for a particular

argument field must be unique. Each symbolic name is

given a corresponding in teger which it represents. The

defau l t base in which these values are typed is decimal

but, as usual, the value may be typed in binary, octal

or hexadecimal by preceding the number with one of the

characters "B", "0" or "H".

CHAPTER 7 -1 05 -

To define symbols for our 2 - bit argument RR, one might

type:

NO . OF VALID SYMBOLS: 4

SYMBOL: ACC
SYMBOL: R0
SYMBOL: R1
SYMBOL: PC

4 SYMBOLS DEFINED.

CORRESPONDING INTEGER: 0
CORRESPONDING I NTEGER: 1
CORRESPONDING INTEGER: 2
CORRESPONDING INTEGER: 3

When one uses the instruction, one can now specify

argument R, using its symbols in place of integer

codes .

Separators

Two more items of information are required before al l

necessary information has been gathered for an argument

field . Firstly, the user must ind icate which

character will precede the argument as a separator in

the assembly language format of the instruction. Whe n

the instruction is used, the mnemonic will define the

fields which have fixed values. The variable fields

are described by arguments separa t ed from the mnemonic

and from each other by spaces or other specified

separators. Spaces may be used as separators without

an explicit declaration.

CHAPTER 7 -10 6-

Argument Order

Secondly, the user must indicate what the numeric order

of the argument will be in the assembly l anguage

format. The arguments after the instruction mnemonic

must appear in a specific order so that correct

validation is possible. Although the argument fields

are defined in the order in which they appea r in the

word format definition, this is not necessarily their

assembly language order . They must eventually occupy

consecutive positions, however, (e.~ three arguments

mus t occupy positions 1, 2 and 3 not positions 1, 3,

and 5). In response to the p r ompt for an argument

position, t he user may type ".,' to list the instruction

definition as it stands (probably incomplete).

The assembly format of our sample instruction

LDA R,A

demands the following positional and preceding

separator defini ti ons:

ARGUMENT POSITION FOR FIELD R: 1
ARGUMENT POSITION FOR FIELD A: 2

SEPERATOR TO PRECEDE FIELD R: " "
SEPERATOR TO PRECEDE FIELD A: " " ,

CHAPTER 7 -107-

Related Formats

To save the user having to select a word format for

each instruction, he is able to define several

instructions having the same format by replying "Y"

(yes) to the question " Ano ther instruction definition

with the same word format ?". In fact, an affirmative

reply to the subsequent question " Any other instruction

definition ?" will allow the user to remain in the

instruction definition mode and define another

instruction with a different format.

7.2.3 Editing Word Definitions (Option D on main menu)

It should be borne in mind that each instruction

definition includes a reference to the word format

description to which it conforms. For this reason, any

alteration of a word format descriptor implies that the

definitions of instructions which refer to the word

format will also be altered . A word format description

may be deleted (in which case all instructions which

refer to it are also deleted), or altered. Alterations

only allow changing the textual description of the word

or the width of a field. The names of fields and the

number of fields in the word cannot be altered since

this would have too wide an effect on the referencing

instructions. To perform such operations, delete the

CHAPTER 7 -108-

word format and redefine it and all instructions

referring to it.

The machine definition program only allows the user to

enter word edit mode if at least one word definition

already exists. Having selected this mode from the

main menu, the user is required to provide the index

number of the word format description which he would

like to edit. The index numbers of all defined word

formats can be listed by responding with the character

,,*,'

The program will display the chosen word format for the

user, to verify that it is in fact the information he

wishes to alter.

To choose the type of modification he wishes to make,

the user must select an option from the sub-menu which

is displayed. One of the following four responses is

required:

D. - Delete the word definition.

If any instructions refer to the word format

to be deleted, these will be displayed on the

screen with a warning that they too will be

deleted. The user is given th e opportunity

to abort the deletion operation. Any word

CHAPTER 7 -109-

formats and ins tructions which are deleted

will be removed from the definition tables,

and any other entries with higher inde x

numbers than the deleted entries will be

moved down so that no gaps are left in the

tables. Once word format and instruction

definitions have been deleted, they CANNOT be

retrieved.

A. - Alter the word description.

This selection requires to user to type a

new word format description which will

overwrite the current description.

F . - Alter the width (number o f bits) of a field.

To effect this modification, the user is

required to supply the name (alphabetic

character) of the field. The program will

respond with the current width (in bits) of

the field and will request the new width to

be typed. To leave the field unchanged, the

current width may be typed, or the edit may

be abandoned. The field width must be in the

range 1 .. LARGEFIELD (LARGEFIELD = 32 on this

implementation). Before the new field width

is recorded, all instructions which refer to

CHAPTER 7 -110-

the word format being altered as well as the

new word format itself are listed on the

screen in their modified sta te. The user

may decide to revert to the original

field width if he wishes, or confirm that the

alteration should be permanently recorded .

During the modification process, the ranges

of integer arguments in the instruction

definitions which refer to the modified word

format, will automatically be altered so as

best to fit the new field width. If the new

field width exceeds the maximum integer

length for the implementation, the field will

become an unrestricted argument. Conversely,

if a currently unrestricted argument field is

narrowed in width to the extent that it no

longer exceeds the maximum integer length, it

will be set up as a positive integer range.

If the modified field is associated with the

mnemonic in an instruction, then if it is

reduced in width, the most significant bits

will be pruned. Alternatively, if its width

is increased, lead ing zeros are added .

x. - Exit word edit mode

This selection exits word edit mode and

returns to the main menu. The word format

CHAPTER 7 -111-

being modified will retain the definition it

had just prior to leaving the edit mode.

After each edit operation, the current state of the

word format undergoing modification will be displayed.

7.2.4 Editing Instruction Definitions (Option E on main menu)

An instruction description may be deleted, or may have

its mnemonic or the values of its mnemonic fields

altered, or the legal range for its variable fields

altered.

It is not possible to alter

(a) a variable field to a mnemonic field or

vice versa,

(b) the size o f a field (this involves

altering the word format),

(c) the order in which variable arguments

are used, or

(d) symbolic names for a field (this might

affect other instructions whose fields

refer to the same list of symbolic

names).

CHAPTER 7 -112-

To make any of the above changes, one has to delete the

instruction and redefine it.

The machine definition program only allows the user to

enter instruction edit mode if at least one instruction

has already been defined. Having selected this mode in

the main menu, the user is required to provide the

index number of the instruction definition which he

would like to edit. The index numbers of all

instructions can be listed by responding with the

character "*,,

The program will display the chosen instruction for the

user, to verify that it is in fact the information he

wishes to alter.

To choose the type of modification he wishes to make,

the user must select an option from the sub-menu which

is displayed. One of the following five responses is

required:

D. - Delete the instruction definition.

After making sure that the deletion request

wa s intentional, the program removes the

instruction from the instruction definition

table. Any entries with higher index numbers

than the deleted ins truct i on will be moved

CHAPTER 7 -113 -

down so that no gaps are left in the table .

Once a n ins t r uc tion defin i t i o n has been

delet ed, it CAN NOT be re tr iev ed.

A. - Alter the mnemonic .

This selection requires to user to type a

new mnemonic for the instruction. All the

rules for mnemonics in section 7 . 2 . 2 apply to

the editor as well.

M. - Alter the value of a mnemonic field .

If this option is selected, the program will

step through all the fields which are

associated with the instruction mnemonic,

giving the user an opportunity to alter the

bit pattern if he wishes to . The bit pattern

is expected to be typed in binary, but, as

usual, may be typed in one of the other

common bases preceded by the appropriate base

cha r acter.

v. - Alter the legal range of an argument field.

This selection steps through all the argument

fields for the instruction , allowing the

user to alter the argument range. Only two

range options are available. If the width of

CHAPTER 7 - 11 4 -

the field exceeds the maximum integer width

for the imp l ementation , an unrestricted field

is forced upon the user. Otherwise, the user

is required to enter the lower and upper

bounds for an integer range. The default

base for these values is decimal but other

bases may be used if the values are preceded

by the appropriate base character.

x. - Exit instruction edit mode

This selection exits instruction edit mode

and returns to the main menu. The

instruction being modified will retain the

definition it had just prior to leaving the

edi t mode .

After each edit operation, the current state of the

instruction description undergoing modification will be

displayed.

7.2.5 Reading Definitions From a File (Option R on main menu)

The machine definition tables are usually written to a

disc file at the end of the machine definition program .

During a subsequent run, the user might want to read

back these definitions to modify them in some way.

When doing so, it must be borne in mind that any

CHAPTER 7 -115-

definitions currently in the tables will be overwritten

by those read in from the disc file.

When this option is selected in the main menu, the user

is required to confirm his selection (in case the

request was accidentally evoked) and to supply the name

of the file from which the tables are to be read (On

the current implementation, such files are given the

default extension ".MAC").

7.2.6 Listing Definitions To the Screen (Option L on menu)

If the user requests a definition listing from the main

menu, a sub-menu is displayed, from which he must

select one of the following three options:

1. List all word format definitions on the

screen.

2. List instruction definitions in full detail

on the screen. This selection requires the

user to type the index number of a word

format definition. All instructions which

conform to the named word format will be

listed. If a zero (0) is typed in response

to this request, all instructions will be

listed.

3.

CHAPTER 7 - 11 6-

All word format definitions and all

instruction descriptions will be listed if

option 3 is selec ted.

7 . 2.7 Exiting the Program (Option X on main menu)

On exiting the program from the main menu, th e user is

prompted to save the definition tables if he has made

any new definitions. Th e program is rather persistent

with this particular prompt should the user decide not

to save his definitions, since this could be a

regrettable decision.

A user wishing to save his definitions, must p r ovide

the name of the file which will be created for this

purpose. (On the current implementation, such files

are given the default extension ".MAC" if no extension

is supplied by the user. The file name may optionally

be preceded by a device code, e.g. A: or B:). If the

file already exists, the program will request the

user's permission to overwrite it.

The message "C annot create file (filename)"

generally indicates that there is insufficient free

space on the disc.

CHAPTER 7 -117 -

7.3 ERROR CONDITIONS

Below is listed the set of error messages which a user of

the Machine Definition program is likely to encounter .

"ACTION" describes the steps the user should take to

overcome the error condition.

1 FIELD DESCRIPTORS MUST BE ALPHABETIC "A" - > "Z"
Action: Retype the field description using only

alphabetic capital letters and separating
spaces.

2 REPETITION OF A FIELD DESCRIPTOR
Action: The character representing the current field

has been used to represent a previous field.
Retype the field description using unique
characters .

3 WORD DEFINITION TABLE FULL
Action: There is no more space in the word definition

table. Save your current definitions and
exit the program. You will have to recompile
the program (see Appendix A1 .6) , increasing
the maximum number of word definitions
(WORDMAX in the const declaration of all
modules) .

4 L1 # L2 FIELD DEFINITION DOES NOT MATCH WORD LENGTH
Action: L1 is sum of the number of bits in all fields.

L2 is the defined length of the word form.
Re-define the word length and field
information making them agree in length.

5 INTEGER VALUE REQUIRED
Action: A non-numeric character has been typed in an

integer input field . Re-type the correct
integer value.

6 INSTRUCTION DEFINITION TABLE FULL
Action: There is no more space in the instruction

definition table. Save your current
definitions and exit the program. You will
have to recompile the program (see Appendix
A1.6), increasing the maximum number of
instruction definitions (INSETMAX in the
const declaration of all modules).

7 value> length BITS - VALUE TOO LARGE FOR FIELD
Action: "va lue " is too large to be stored in a field

of "length" bits. Retype the value.

CHAPTER 7 -11 8 -

8 NUMERIC VALUE REQUIRED
Act ion: Type a numeric value in response to the

request for input.

9 c FIELD DOES NOT EXIST
Action: c is the character typed. No field exists

with this name . Retype the field name.

10 MNEMONIC ALREADY DEFINES ANOTHER INSTRUCTION
Action: Select a different mnemonic name and retype .

11 INVALID NON - PRINTABLE CHARACTER IN MNEMONIC
Action: Retype the mnemonic name using only printable

characters.

12 TOO MAN Y FIELDS ASSOCIATED WITH MNEMONIC
Ac tion: Combine adjacent fields into one field if

possible, or save your current de finitions
and exit the program. You will have to
recompile the program (see Appendix A1 . 6),
increasing the maximum number of f i elds which
can be associated with the mnemon i c (MNEMFMAX
in the const declaration of all modules).

13 c FIELD ALREADY DEFINED
Action: c is the character typed . This field can

only have its value altered by the
instruction edit mode . Select ano ther field
name or abandon the definition.

14 BASE n ILLEGAL DIGIT FOR GIVEN BASE
Ac tion: Retype the numeric input using digits for

base n .

15 n NO WORD DEFIN ITION WITH THIS INDEX
Action: n is an invalid word forma t index. Retype

the word format index, or type * to list all
defined word formats.

16 BAD SELECTION
Action: Select a valid option - retype your se lection .

17 FIELD EXCEEDS MAXINT - UNRESTRICTED FIELD ASSUM ED
Action: This is a warning

required. The
correction.

message.
program

No user action is
effects its own

18 FIELD SMALL ENOUGH TO ASSUME SELECTION 1
Action: This is a warning

required. The
correction.

message .
program

No user action is
effects its own

CHAPTER 7 -119-

19 n INVALID INSTRUCTION INDEX
Action: n is an invalid instruction index. Retype

the instruction index, or type * to list all
instructions.

20 lower >= upper UPPER BOUND DOES NOT EXCEED LOWER BOUND
Action: Retype the bounds, making sure that the upper

bound exceeds the lower bound.

21 otherwidth <> thiswidth WIDTH DOES NOT MATCH WIDTH OF
CURRENT FIELD

22

Act i on: Specify an alternative instruction index or
define the current argument field explicitly.

c NO SUCH FIELD IN CHOSEN INSTRUCTION
Action: c is the character name typed .

another field name or abandon.
Select

23 symbol SYMBOLIC NAME ALREADY USED
Action: Make up an alternative symbolic name.

24 position NOT A VALID ARGUMENT POSITION
Action: Retype the numeric argument position.

25 position ARGUMENT POSITIONS ARE NOT CONSECUTIVE
Action: Respecify the argument fields, ensuring that

they are consecutive.

26 position POSITION ALREADY USED
Action: An argument field has already been defined

which uses this position. Choose an
alternative position or abandon and redefine
the instruction.

27 NO WORDS DEFINED YET
Action: The desired operation will only be allowed

once word formats have been defined.

28 NO INSTRUCTIONS DEFINED YET
Action: The desired operation will only be allowed

once instructions have been defined.

29 SYMBOL DEFINITION TABLE FULL
Action: There is no more space in the symbol

defin i tion table. Save your current
definitions and exit the program. You will
have to recompile the program (see Appendix
A1 .6), increasing the maximum number of
unique argument fields referenced using
associated mnemonics (VARSMAX in the const
declaration of all modules).

33 newwidth ILLEGAL FIELD WIDTH
Action: Retype the new field width.

CHAPTER 8 -120-

8 . USING THE CODE-SKELETON DEFINITION PROGRAM

The current program has been implemented in Pascal MT + on a

CP/M based system (North Star Advantage), but could be

easily altered to run on other Pascal systems, with only

minor modifications needed to the code-skeleton definition

program and to the following description of how to use it.

8.1 CURRENT IMPLEMENTATION REQUIREMENTS

Before the Code - Skeleton definition program can be used, the

Machine Definition program described in chapter 3 must be

used to set up a file (a ".MAC" file on this implementation)

of inst ruct ion formats.

The following six files are required to run the current CP/M

based (North Star Advantage) version of the code - skeleton

definition program.

CODDEF.COM
CODDEF.001
CODDEF.002
CODDEF.003
CODDEF.004
CODDEF.005

}
}
}
}
}

Executable Root Program

Overlays for the program

Also useful , but not mandatory, are the following two

message files which improve the friendliness of the program.

CODDEF .H LP
CODDEF .MES

Help message file
Error message file

CHAPTER 8 - 121 -

To run the program, type

CODDEF <RET>

and answer the questions or make selections from menus which

follow. The relocatable code ske letons will be saved on a

user named file.

During the course of the program, two temporary work files

are created. They are named CODDEF.TMP and CODDEF1.TMP.

These names should not be used for any other files.

The disc space required to store the root program and

overlays is 40k, with an additional 8k required if the

message files are included. The machine definition and

resultant skeleton file require typically 10k of storage

while at least 6k of free space should be left on the disc

for use by the temporary file s.

8.2 DRIVING THE PROGRAM

Provided the help message file (CODDEF.HLP) is present, the

user may request help at any time by re sponding to an

invitation for input with

? <RET>.

Help relevant to the current operation will be supplied . In

some cases , additional help or an example will be offered.

CHAPTER 8 -122-

If the character "?" is a valid part of a mnemonic,

separator or argument field in the assembly language for the

target machine, then the user should choose another

character as his help request character. This can be done

when invited to do so at the start of the program.

The sequence <ESC> <RET> can be used t o abandon any

operation. Execution returns to the main menu or to the

appropriate sub-menu. Once an operation has been abandoned,

the memory-resident code-skeleton is returned to its state

prior to commencement of the operation .

At the s tart of a session, the user is requested to supp ly

the names of two disc files. The first is the machine

definition file, set up by the process outlined in chapter

7. If this file cannot be found, the program terminates.

The second file is the one on wh~ch code-skeletons are

stored. If this file does not exist, it will be created.

If it does exist, it will be modified.

The main menu is displayed automatically. The user selects

one of eight options by typing a representative character .

E - Edit/Define a Code-Skeleton
D - Delete a Code-Skeleton
L - List a Code-Skeleton
S - Edit/Define a Run-time Subroutine
R - Delete a Run-time Subroutine
P - Print a Run -time Subroutine
B - Alter the Output Base
X - Exit

CHAPTER 8 - 123 -

After each major operation, the program returns to the main

menu.

For the options discussed in paragraphs 8 . 2.1, 8 . 2 . 3 and

8.2 . 5 below, the user is required to supply the index number

of the intermediate code whose code - skeleton is to be

operated on. This number is used by the p r ogram to

associate a particular code - skeleton with an intermediate

code. The allocation of numbers is at the discre~'ion of

the user (within an implementation dependent range,

currently set at 0 . . 77) and is made by the user. It is

usually convenient to use the function value of an

intermediate code as its index number.

8 . 2.1 Editing or Defining a Code - Skeleton (Option E on menu)

All code skeletons are initially empty. However, if a

previous run has already established a code - skeleton

file, and this file was opened at the start of the

session, some of the code skeletons might already be

defined .

On entering the definition/edit mode, if a code

skeleton exists for the requested intermediate-code, it

will be recalled for editing. This will be indicated by

the message "EDITING SKELETON". Otherwise, the

message "DEFINING NEW SKELETON" invites the user to

CHAPTER 8 -1 24-

begin inserting a new code skeleton. The rules for

editing are the same i n both cases (remember that a

code skeleton may be empty).

The edit mode may be described as the combination of an

assembler and a line-by-line editor. In describing the

body of target code which produces the effect of an

intermediate l anguage code, it is convenient to borrow

some terminology from the medical world. Hence we

speak of the code sequence as a "code-skeleton". We

shall take the analogy further and refer to an

individual instruction within the code-ske l eton as a

"rib". The "current" rib/instruction is that

instruct i on within the code - skeleton upon wh i ch an edit

command will operate.

When edit mode is entered, the current rib is an

imaginary one at the top of the skeleton. For example,

a three rib skeleton for an 8080 target machine might

be:

top:
rib 1:
rib 2:
rib 3:

LXI
PUSH
CALL

D,0
D
IWRTE

<-- CURRENT

Thus a request to print the current i nstruction will

produc e the message " top of skeleton". To print out

rib 1, one must first establish this rib as the

CHAPTER 8 -1 25-

current one.

top:
rib 1:
rib 2:
rib 3:

LXI
PUSH
CALL

D, 0 <-- CURRENT
D
IWRTE

Of course, if the skeleton is empty, then it consists

only of the imaginary top rib. In this case, any

attempt to move down the skeleton will produce the

message "bottom of skeleton".

Since this part of the program operates interactively,

there is no prompti ng from the compute r. However, the

help request character will be recognised and serviced.

All edit commands are control sequences (the <CTRL> key

is pressed along with another key), and the program

will attempt to interpret any normal character sequence

as an instruction .

<CTRL> X will exit from the definition/edit mode to the

main menu, saving the current state of the code

skeleton. This is perhaps the most important sequence

to remember as it is the only means of returning to the

main menu .

If one wishes to define a new code skeleton, one simply

begins t yping the legal machine mnemonics, one on a

line. The program will validate them and report any

CHAPTER 8 - 126 -

errors . The most recent r ib typed becomes the

current.

To edit a code skeleton, one makes use of the following

control sequences: (Most of these operat ions end by

displaying the new current rib . Thus the cur r ent

ins tructi o n is the one most recently displayed on the

screen).

<CTRL> T

<CTRL> N

<CTRL> B

<CTRL> P

<CTRL> L

<CTRL> R

move to Top of code skeleton .

Next ins truction becomes the current ,
i.e. advance one inst r uct i on.

Back up one instruction, i.e. the
previous instruction becomes t h e current .

Print the current instruction .

List the ent ire code skeleto n. (T h is does
not alter the poin te r t o current rib).

Remove the current instruction from the
code s keleton . (The next instruction
becomes the current , unless the l ast
instruction is being deleted, in which
case the previous becomes the c u rrent) .
Once an instruction has been removed, it
CANNOT be retrieved.

To insert a new instruction simply position the

current rib pointer at the instruction before the

position to be occupied by the new instruction . Then

type the new instruction . INSTRUCTIONS ARE INSERTED

AFTER THE CURREN T INSTRUCTION. The newly inserted

instruction wil l become the current one .

CHAPTER 8 -127-

To insert an instruction at the top of the code

skeleton, move «CTRL> T) to the top of the skeleton

and type the new instruction.

To alter a rib, it must be deleted, and the replacement

line inserted.

An editing session might take the following course:

<CTRL> T top: <-- CURRENT
rib 1 : LXI D,1il
rib 2 : PUSH D
rib 3: CALL IWRTE

<CTRL> N top:
rib 1 : LXI D,1il <-- CURRENT
rib 2: PUSH D
rib 3 : CALL IWRTE

<CTRL> N top:
rib 1 : LXI D,1il
rib 2 : PUSH D <-- CURRENT
rib 3 : CALL IWRTE

XCHG top:
rib 1 : LXI D,1il
rib 2 : PUSH D
rib 3 : XCHG <-- CURRENT
rib 4 : CALL IWRTE

<CTRL> B top:
rib 1 : LXI D,1il
rib 2: PUSH D <-- CURRENT
rib 3 : XCHG
rib 4 : CALL IWRTE

<CTRL> R top:
rib 1 : LXI D,1il
rib 2 : XCHG <-- CURRENT
rib 3 : CALL IWRTE

<CTRL> X (Return to the main menu, retaining the
most recent version of the code-skeleton)

CHAPTER 8 -128-

If, while inserting a new rib, the user types the

abandon sequence « ESC><RET», th e skeleton returns to

its condition before the insertion. As a new

ins truction is entered, it is checked field by field.

As soon as an error is detected, evasive action is

taken before the user is allowed to continue. For

example, if the instruction mnemonic is not recognised,

the instruction is immediately abandoned. Once the

instruction mnemonic has been identified, t he program

is able to offer assistance when further errors are

detected. The user is offered information about the

correct format for the instruction (order of arguments,

valid separators, etcJ and legal values for argument

fields. Thus as long as the machine definition program

has been run correctly , it is impossible for the code

skeletons to contain assembly/compilation errors .

Normally, numeric argument fields are entered using

decimal values. If the user prefers, the field value

may be prefixed:

(1) with a "B", and entered as a binary number

(e.g . B100011),

(2) with a n "H", and entered as an hexadecimal

number (e.g. H23)

or (3) with an "0", and entered as an octal number

(e . g. 043).

CHAPTER 8 - 129 -

A check is made to ensure that the value will fit into

the defined legal range for the field. Negative values

are converted according to 2's complement rules, and

must be input using a minus sign.

All integer fields will be listed in the most recently

defined default output base (see section 8 . 2 . 7) .

Argument fields which require a symbolic name (for

example register fields) must be typed using one of the

defined symbols. An illegal symbol will prompt the

program to offer a list of legal symbolic names for the

particular argument.

Address fields should be substituted with a compile

time address name, optionally followed by an offset in

the range - 128 . . +127. For example,

JMP PC +8

will jump to the address of the current instruction

(its code generation time address) plus 8 words (i.e.

minimum addressable memory units). As for numeric

fields, an address offset is usually entered using a

decimal value. However, prefixing the number with

"B", "0" or "H" enables binary, octal or hexadecimal to

be used.

CHAPTER 8 -130-

Table 8 .2.1 gives a list of reserved compile-time names

which may be used in a numeric field. In addition to

these names, the user may also use the names of his own

run-t ime subroutines (see section 8.2.2) in an address

field .

Note the difference between th e names X, XN and XA in

table 8 .2.1. As an example , suppose the intermediate

code LOAD X has the code - skeleton LDI X. Then LOAD 10

would be translated as LD I 10. However, if the

skeleton was LDI XN, then LOAD 10 wou l d be translated

as LDI -10. For the names X and XN, the argument value

itself is used. However, suppose the intermediate code

BRANCH X has the code - skeleton JMP XA. BRANCH 10 is

translated into a jump to the code - skeleton in the

target program which represents the intermediate code

whose address in the intermediate program is 10. So a

branch to code - skeleton 10 might be translated as

JMP 276 .

Name

PC

x

Y

XN

YN

XA

YA

WRTLN

IWRTE

FPWRTE

STRWRT

IREAD

FPREAD

FLOAT

FIX

IADD

ISUB

IMUL

IDIV

FPADD

FPSUB

CHAPTER 8 -1 31-

TABLE 8.2.1

RESERVED COMPILE-TIME VALUES

Compile-Time Value

address of current instruction.

va l ue of argument 1 of the current ILC
(intermediate language code) .

value of argument 2 of the current ILC.

negative of arg 1 value of the current ILC

negative of arg 2 value of the current ILC.

arg 1 of the current ILC used as an address.
The equivalent target code address will be
substituted.

arg 2 as an address as for XA.

address of RTS (run-t ime subroutine) to write
out the current output buffer.

address of RTS for integer output.

address of RTS for floating-point output.

address of RTS for string output .

address of RTS for integer input .

address of RTS for floating-point input .

address of RTS for integer to floating
point conversion.

address of RTS for floating-point to
integer conversion.

address of RTS for integer addition.

address of RTS for integer subtraction.

address of RTS for integer multiplication .

address of RTS for integer division.

address of RTS for floating-point addition.

address of RTS for floating-point subtraction

CHAPTER 8 -132-

(table 8.2.1 continued ...)

FPMUL address of RTS for floating -point
multiplication.

FPDIV address of RTS for floating-point division .

ERROR address of RTS for run-time error reporting.

CHKSUB address of RTS for run-time r ange checking .

8 . 2.2 Editing or Defining a Run -Time Su broutine (Option S)

A run-time subroutine is a small piece of code wh ich is

common to severa l code - skeletons . It can be referenced

often by using its name in the add r ess field of a

referencing instruction . The actual address will be

filled in at code-generation time.

All run-time subroutines are included only once in the

run-time object program. Thus run-t ime subroutines can

contribute towards more economical use of memory.

The user is able to define and edit run-time

subroutines in exactly the same way as code-skeletons.

Edit commands a r e identical to those described in

section 8.2 .1. From a definition point of view , the

run-t ime subroutine differs from t he normal code-

skeleton only in the way i t i s referenced.

CHAPTER 8 -133 -

Whereas normal code - skeletons are referred to by their

index numbers , a run - time subroutine is given a name.

On entering run-time subrou t ine edit mode, the user

must supply the name of the run-time subroutin e he

wants to define or modify. This can be any name of his

choice, except those already used as compile - time

address names (Le . the names of Table 8.2.1).

However, names beginning with "D", fiB", "0", lI H" or a

numeric digit should be avoided as they mi ght be

confused by the program with numeric input. If the

run - time subroutine does not yet exist, it will be

cre ated. A response of * <RET> to the prompt for the

name of the ru n- time subroutine, will produce a list of

names of all user-declared subroutines.

For example , run - time subroutine SAVE might be useful

in an 8080 implementation for saving all regis t ers on

the stack before some operation which overwrites them .

SAVE: XTHL
PUSH
PUSH
PUSH
PCHL

D
B
PSW

save H,L
save D,E
save B,C
save A,PSW
return

The run - time subroutine is called from a code - skeleton

i n the norma l way for the assembly language:

CALL
MVI

SAVE
A,5

CHAPTER 8

save all registe r s
instructions which
overwrite registers

-134-

If the user gives one of his run - time subroutines the

name "START", its code wi l l be given special status as

the initialisation code for the program . A routine

with this name (i f one exists) is always placed at the

start of the executable code. This feature can be used

by t he code ge nerato r implemen t o r to make i n itial

assignments, or to r estart t he program by branching to

address "START" .

No high level mech anism exists for passing parameters

t o and from user def i ned run - time subroutines . Data

communica t ion is via the registers or the stack at th e

implementor's discretion .

8 . 2 . 3 Del e ting a Code - Skel e to n (Op t ion D on main menu)

After maki ng sure that t h e deletion req u est is

intentional , the program removes the code - skeleton.

This means t hat the s keleton will r evert to a n

"undefined " state. Onc e a code-ske l e ton has been

de lete d, it CANNOT be retr ieved.

CHAPTER 8 -1 35 -

8.2.4 Deleting a Run-Time Subroutine (Option R on main menu)

The user is required to supply the name of the run - time

subroutine in the manner described in section 8.2.2.

Remember that * <RET> can be used to list the names of

all user-defined subroutines. After making sure that

the deletion request is intentional, the program

deletes the subroutine's code-skeleton a nd removes its

name from t he list of use r defined subroutines. Once a

run-time s ubrou tine has been deleted, i t CANNOT be

retrieved.

8.2.5 Listing a Code - Skeleton t o the Sc r een (Option L)

The user merely supplies the index number of the code

skeleton to be l is ted, in assembly fo r mat, on the

screen . If the skeleton has not yet been defined , or

has been del eted, the message "empty skeleton " is

displayed .

8 . 2.6 Listing a Run-Time Subroutin e to the Screen (Option P)

Once aga in, the use r i s required to supply the name o f

the run - time subroutine i n the manner described in

section 8.2.2 . The subroutine is listed as for a code

skeleton .

CHAPTER 8 -136-

8.2.7 Altering the Default Integer Output Base (Option B)

By selecting option B in the main menu, the user is

allowed to set the numeric base (binary, octal,

decimal, hexadecimal or other) in which all integer

values will be listed. The base remains valid for the

duration of the program unless it is reset . At the

start of the program, the default base is set to 10,

i.e. decimal.

Before prompting the user to supply the new output

base, the program lists the current output base value.

This might be useful if the user is not sure what base

he is currently using. The CPIM implementation allows

integer fields to be printed out in any numeric base

in the range 2 to 16; e.g. binary, octal, decimal,

hexadecimal, or a nything in between. To alter the

base, type the decimal numeric value of the desired

base, e.g. 2 for binary. Negative numbers are output

preceded by a minus sign in all number systems except

binary, in which case negative numbers are output as a

2's complement number. For positional systems with a

base greater than 10, the alphabetic characters A, B,

C, ... are used t o represent the digits 10, 11, 12,

For example, An ICL 1900 code sequence to report run

time error 24, is listed in various bases as:

CHAPTER 8 -137-

base 1 0 : LDN 3 24
BRN ERROR

base 2: LDN 3 000000011000
BRN ERROR

base 8: LDN 3 30
BRN ERROR

base 13 : LDN 3 1B
BRN ERROR

base 16 : LDN 3 18
BRN ERROR

(The ~egiste~ field in this example has been defined as

the symbolic name "3" ~ep~esenting the intege~ 3).

8.2.8 Exiting the P~og~am (Option X on main menu)

On leaving the p~og~am f~om the main menu, all code-

skeletons and use~-defined ~un-time sub~outines are

consolidated on the code-skeleton file named by the

user at the start of the program . During this process,

the program makes use of a number of temporary work

files. Since this disc file reorganization usually

takes a few minutes, the program writes out the

character 11 " periodically to reassure the user that it

has not crashed.

CHAPTER 8 -138-

8.2.9 A General Note on the Current Implementation

For rather esoteric programming reasons (outlined in

Appendix B1.2.2 for the more dil igent reader), the

current CP/M imp lementation o f the Code-Skeleton

Definition Program saves new versions of code-skeletons

on an inaccessible tempora ry file as soon as a

subsequent skeleton is called up. So as to alleviate

this inconvenience, the user is advised to make all

necessary modifications and listings of a skeleton

before calling up another. Should one need to revive

an altered skeleton later, it is necessary to exit (to

allow disc reorganization to take place) and begin a

new session.

An earlier version of the Code-Skeleton Definition

Program is available which does not have this

disadvantage, but which is restricted in other ways.

CHAPTER 8 -139-

8.3 ERROR CONDITIONS

Below is listed the set of error messages which a user of

the Code-Skeleton Definition program is likely to encounter.

" Action " descr ibes the steps the user should take to

overcome the error condition.

opcode -
Action:

NOT A VALID INSTRUCTION MNEMONIC
Retype the instruction if a
caused the problem, or return
definition program and add
instruction t o the system.

typing error
to the machine
the desired

2 ILLEGAL OPERAND VALUE
Action: Retype the instruction, or request help on

valid operand values.

3 UNRESTRICTED FIELD MAY ONLY BE A COMPILE-TIME ADDRESS
Action: A field of this size may only be an address.

Retype the instruction using the name of a
compile - time address.

4 symbol - NO T A LEGAL COMPI LE-TI ME ADDRESS NAME
Action : Retype the instruction using a valid reserved

or user - defined address name.

5 INTEGER VALUE REQUIRED

6

7

8

Action : A non-numeric character has been typed in an
integer input field. Re-type the correct
integer value.

INVALID INTERMEDIATE CODE NUMBER
Action: Retype your se lection within the legal range

(0 .. 77 on the current implementation).

value > length BITS - VALUE TOO LARGE FOR FIELD
Action: "value" is too large to be stored in a field

of "length" bits. Retype the value.

NUMER I C VALUE REQUIRED
Action: Type a numeric value in response to the

request for input .

9 NAME ALREAD Y USED FOR A RESERVED COMPILE-TIME ADDRESS
Action : Select a unique run-time subrou t ine name.

CHAP TER 8 -1 40-

10 RUN - TIME SUBRO UTINE TABLE FULL
Action : There is no more space in the user - defined

run - time subroutine table. Save your current
definitions and exit the program. You will
have to recomp i le the prog r am (see Appendix
B1.4), increasing the maximum number of
defined run - time subroutines and t he maximum
number of skeletons (RTSMAX and MAXNOSKEL in
the const decla r ation of all modules) .

11 INVALID NON - PRINTABLE CHARACTER IN MNEMONIC
Action : Retype the mnemonic name using only printable

characters .

12 INVALID NUMERIC BASE (RANGE = 2 .. 16)
Action : The program reverts to t he original

base . The user may retype the numeric base
within the valid r ange i f he wishes .

14 BASE n ILLEGAL DIGIT FOR GIVEN BASE
Action : Retype the numeric input using digits for

base n.

In late r versions of t he Code - Skeleton Definition Program,

the followi ng messages may also be encoun t er ed and are self-

explanatory.

CODE - SKELETON n HAS ALREADY BEEN ALTERED IN THIS
SESSION AND WRITTEN OUT TO THE TEMPORARY FILE. YOU
WILL NOT BE AB LE TO ACCESS IT AGAIN IN THE CURRENT
SESSION . EXIT THE PROGRAM AND START A NEW SESSION .

RUN - TIME SUBROUTINE name HAS ALREADY BEEN ALTERED IN
THIS SESSION AND WRITTEN OUT TO THE TEMPORARY FILE.
YOU WILL NOT BE ABLE TO REFERENCE IT AGAIN UNTIL THE
NEXT SESSION .

9. USING THE CODE GENERATION PROGRAM

9 . 1 CURRENT IMPLEMENTATION REQUIREMENTS

CHAPTER 9 -141-

Before the Code Generation program can be used, the

following programs must have been run: (a) The Machi ne

Definition

fi l e of

definition

skeleton

program described in chapter 7 which sets up a

instruction f ormats, (b) the Code - Skeleton

program of chapter 8 which se ts up the code -

file and (c) a suitable parser which o u tputs the

intermediate language code version of the source program.

The following two files, which can be stored in 32k o f disc

space, are required to run the current CPIM bas ed (Nor th

Star Advantage) version of the general code generation

program.

CODGEN.COM

CODGEN . DRV

To run the program, type

CODGEN <ret>

9 . 2 THE USER'S POINT OF VIEW

Executable Root Program .

Parameter table.

The end user of the code generator wil l be p r ompted to

supply the names of two files: (1) the intermediate language

code input file and (2) the target machine code output fil e.

During code generation, the program writes out the character

II I' periodically .

CHAPTER 9 -142-

9.3 IMPLEMENTOR'S NOTE

A general code generator obviously requires more information

than the names of the source and target files. However, it

would be most inconvenient for the user to have to supply

this information at each compilation. The code generator

therefore uses a parameter file, called CODDEF.DRV, which

must be set up by the implementor to furnish details about

the run-time environment. The format of this file is shown

in table 9.3 .1. Since the format is straightforward, the

file may be set up using an editor . However, should the

implementor feel unsure about setting up the file, a program

does exist (called DRVTAB) which prompts the implementor for

each parameter and performs appropriate validation. An

example of a parameter file is given in section 3.4.

Apart from setting up this file, the compiler writer merely

has to ensure that the parser outputs the intermediate codes

in the desired format (all are integer codes followed by two

arguments, which have zero values if not used), and that the

loader (see chapter 4) is able to accept the format of the

target code output file (Table 9 .3. 2) .

The code generator uses the function values

intermediate codes to index the code-skeleton file.

of the

If this

is not the relationship which the implementor used when

CHAPTER 9 -143-

defining his code skeletons, he is r esponsible for writing

an intermediate stage to convert the intermediate codes to

i ndex values.

Since the Code Ge nerato r is th e most likely program in the

system to need modification during implemen t ation of a new

compiler (for example, if the implementor wants to use a

different type of intermediate code), the reader is referred

to Appendix C1 for implementation details of the program .

TABLE 9.3.1

FORMAT OF THE CODE GENERATOR PARAMETER FILE

NAME

NAME

BITS

BASE

SIZE

PC

RUN-TIME
ADDRESSES

name of the Machi n e Definition File

name of the Code - Skeleton File

size in bit of smallest addressable
unit of memory

Ou tput base for object code file - this
is expressed in " number of bits per
digit " to allow bases which are powers
of 2; e.g. 1 for binary, 3 for octal, 4
for hexadecimal.

The size of the address field
i .e. the number of words
required t o address the whole

in words,
of memory
o f memory.

Start address of application programs in
the run - t i me environment .

Now follow the addresses of all
s tandard run-t ime subroutines which are
included in the load - time package. The
addresses must be given in the order
indica t ed below, followed by any further
subroutines wh ich the compile r writer
might have implemented .

WRTLN, IWRTE, FPWRTE, STRWRT, IREAD,
FPREAD, FLOAT, FIX, IADD, ISUB , IMUL,
IDIV, FPADD, FPSUB, FPMUL, FPDIV, ERROR,
CHKSUB .. .

CHAPTER 9

TABLE 9.3 . 2

FORMAT OF THE TARGET CODE OUTPUT FILE

string of program code #

backpatch table #

s tart address II

-144-

All output to the target code file is in the form of strings

of digits in the base implied by BASE in the parameter file.

For bases greater than 10, the letters "A", "B", " C",

are used to represent the digits 10 , 11, 12 , as for

hexadecimal. At the end of each section of information, a

terminating "#" character is output. For example, i f BASE=4

then the hex4 decimal output for the 8 - bit codes 27, 254 will

be 1BFE#. The program code is abso l ute (i.e . generated

for loading into a particular memory address), and forward

references are filled in by the loader after consulting the

backpatch table. The backpatch table consists of the s t ring

of the following sequences: address of word, value to be

logically "OR-ed" with the word. This is repeated for as

many words as need to be patched. The address is expressed

using the number of bits given by SIZE * BITS in the

parameter file .

to which the

Finally, the start address is the address

loader must jump , on completion of the

backpatching process, to begin execution of the application

program.

REFERENCES -145-

REF ERE N C E S

[1] E. MARSHALL and S. HAMPLE, "Children's Letters to God",
COLLINS/FOUNTAIN , 1977.

[2J M. V. ZELKOWITZ and W.G. BAIL, "Optimization of Structured
Programs" , SOFTWARE - PRACTICE AND EXPERIENCE, Vol. 4,
No.1, 1974.

[3J G.A. KILDALL, "A Unified Approach to Global Program
Optimization" , PROC. ACM SYMP: Principles of
Programming Languages, 1973.

[4J D.E. KNUTH, "A History of Writing Compilers", COMPUTERS AND
AUTOMATION, Vol . 11, No. 12, Dec. 1962.

[5J J.A. FELDMAN and D. GRIES, "Translator Writing Systems", COMM.
ACM, Vol. 11, No.2, Feb . 1968.

[6J A.V . AHO, "Translator Writing Systems: Where Do They Now Stand",
COMPUTER , Vol . 13, No.8, Aug. 1980.

[7J A. V . AHO and J.D. ULLMAN, "Principles of Compiler Design",
ADDISON-WESLEY, 1977.

[8J D. GRIES, "Compiler Construction for Digital Computers", WILEY,
1971 .

[9J E.L. BAUER and J. EICKEL, "Compiler Construction - An Advanced
Course", SPRINGER-VERLAG, 1974.

[10J R. BORNAT, "Understanding and Writing Compilers", MACMILLAN,

[11 J R.E .

[12J D.W.

[13J D.E.

[14J S .C.

[15J S .L .

[16J B.W.

1979 .

BERRY, "Programming Language Translation", WILEY, 1981.

BARRON , "Pascal - The Language and its Implementation",
WILEY, 1981.

KNUTH, "The Art of Computer Programming, Vol 1", ADDISON
WESLEY, 1968.

JOHNSON, "A Portable Compiler: Theory & Practice", PROC. ACM
SYMP: Principles of Programming Languages, 1978.

GRAHAM, "Table-Driven Code Generation", COMPUTER, Vol. 13 ,
No.8, Aug . 1980 .

LEVERETT, G.G. CATTELL, O. HOBBS, M.NEWCOMER, H. REINER,
R. SCHATZ and A. WOLF, "An Overview of the Production
Quality Compiler- Compiler Project", COMPUTER , Vol. 13,
No . 8, Aug. 1980.

REFERENCES -146-

[17J P. KORNERUP, B.B . KRISTENSEN and O.L. MADSEN, "Interpretation and
Code Generation Based on Intermediate Languages",
SOFTWARE - PRACTICE AND EXPERIENCE, Vol. 10, No.8,
Aug. 1980.

[18J o. LECARME and M.C. PEYROLLE-THOMAS, "Self-Compiling Compilers:
An Appraisal ot their Implementation and Portability",
SOFTWARE - PRACTICE AND EXPERIENCE, Vol.8, No.2, March
1978.

[19J R.G.G. CATTELL, J.M . NEWCOMER and B.W . LEVERETT, "Code Generation
i n a Machine-Independent Compiler", PROC. SIGPLAN SYMP:
Compiler Construction, Aug . 1979.

[20J M. GANAPATHI and C.N. FISHER, "Automated Compiler Code Generation
and Reusable Machine-Dependent Optimization - A Revised
Bibliography" , SIGPLAN NOTICES, Vol. 18, No . 4 , April
1983.

[21 J S.L. GRAHAM, R.R . HENRY and R.A. SCHULMAN, "An Experiment in
Table Driven Code Generation", SIGPLAN NOTICES, Vol.
17, No.6, June 1982 .

[22J W.A. BARRETT and J .D. COUCH, "Compiler Construction: Theory and
Practice", SRA, 1979.

[23J P.D. TERRY, "Notes on CLANG, A Compiler for Teaching Concurrent
Programming", RHODES UNIVERSITY Internal Publication,
1983.

[24 J W. J. WELLER, A. V. SHATZEL and H. Y. NICE, "Practical Microcomputer
Progra1lIlling - The Intel 8080", 1979.

[25J R. ASHLEY and J .N. FERNANDEZ, "Introduction to 8080/8085
Assembly Language Programming", WILEY, 1981.

[26J A.R . MILLER, "8080/z80 Assembly Language: Techniques for Improved
Prograrmning" , WILEY, 1981.

[27J J.W. COFFRON, "Practical Hardware Details for 8080, 8085, Z80 &
6800 Microprocessor Systems", PRENTICE-HALL, 1981.

[28J W. CHRISTENSEN, "8080 Programming Tutorial Articles", LIFELINES,
Sep. 1981 to Nov 1982.

[29J J.G . LIPHAM, "Relocating 8080 System Software", BYTE, Jan 1980.

[30J K. BARBIER, "CP/M Assembly Language Programming" , PRENTICE-HALL,
1983.

[31J RMS-11 MACRO-11 Reference Manual, Digital Equipment Corporation ,
1979.

[32J COMPASS Version 3 Reference Manual, Control Data Corporation,
1982.

REFERENCES -147-

[33J PLAN Reference Manuals (30 A,B,C), ICL Publications, 1972.

[34J A.S . TANENBAUM, "Structured Computer Organizati on", PRENTICE-
HALL, 1976.

[35J PASCAL /MT+ User's Guide, Release 5, LIFEBOAT ASSOCIATES , 1981.

C36J T .S. FRANK, "Introduction to the PDP-11 and its Assembly
Language", PRENTICE-HALL, 1983.

C37J S.C. JOHNSON, "Language Development Tools on the UNIX System",
COMPUTER, Vol . 13, No.8, Aug 1980.

C38J N. WIRTH, "Pascal-S: A Subset and its Implementation",
D.W. BARRON [12J .

C39J P .D. TERRY, "Pascal- S+, A System for Beginners" ,
UNIVERSITY Internal Publi cation, 1981.

Edited

RHODES

[40J M.H. WILLIAMS, "The Programming Language BPL" , COMPUTER JOURNAL,
Vol. 25, No.3, Aug 1982.

[41] D.A. GEWIRTZ, "Two More C Compilers", MICROSYSTEMS , Nov/Dec 1982.

[42J R.A. PHRANER, "Nine C Compilers for the IBM PC " , BYTE, Aug 1983.

APPENDICES - 148 -

A P PEN D ICE S

Due to their bulk, the appendices are not included in this

document. A summary of their contents appears below.

Should the reader wish to obtain a copy of the appendices or

copies of the programs which are li sted in the appe ndices,

they may do so by contacting the Computer Science

Department, Rhodes University . In addition to the standard

routines of appendix 4 for the 8080 processor, equivalent

run-time subroutines have been written for code gene r a t ors

implemented on the ICL 1900 GEORGE system and the PDP -11

RSX - 11M operating system.

APPENDIX A The Machine Definition Program

This appendix contains:

A1. Implementation deta il s of the Machine

Program.

Definition

A2. A Pascal source listing of the Machine Definition

Program .

A3 . A listing of the Help Message File.

A4. A listing of the Error Message File .

A5. An Example Run.

APPENDICES -149-

APPENDIX B The Code -Skeleton Definition Program

This appendix contains:

B1 . Implementation details of the Code-Skeleton Definition

Program.

B2. A Pascal source listing of the Code - Skeleton

Definition Program.

B3 . A listing of the Help Message File.

B4 . A listing of th e Error Message File.

B5. An Example Run .

APPENDIX C The General Code Generation Program

This appendix contains:

C1. Imp lementa tion details of the General Code Generation

Program.

C2. A Pascal source listing of the General Code

Generation Program .

APPENDIX D 8080 Monitor Routines and Absolute Loader

This appendix contains an 8080 Assembler source listing of

the standard run - time s ubrou t ines and an absolute loader

suitable for use with the general code generator .

APPENDIX E The Clang Compiler

This appendix contains a Pascal source listing of the

simple CLANG Parser and In terpreter [23J

