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Abstract

Most Virtual Reality systems employ some form of parallel processing, making
use of multiple processors which are often distributed over large areas geographically,
and which communicate via various forms of message passing. The approaches to
parallel decomposition differ for each system, as do the performance implications of
each approach. Previous comparisons have only identified and categorized the di)fferent
approaches. None have examined the performance issues involved in the different
parallel decompositions. Performance measurement for a Virtual Reality system differs
from that of other parallel systems in that some measure of the delays involved with
the interaction of the separate components is required, in addition to the measure of
the throughput of the system. Existing performance analysis approaches are typically
not well suited to providing both these measures.

This thesis describes the development of a performance analysis technique that is
able to provide measures of both interaction latency and cycle time for a model of a

_Virtual Reality system. This technique allows performance measures to be generated
as symbolic expressions describing the relationships between the delays in the model.
It automatically generates constraint regions, specifying the values of the system pa-
rameters for which performance characteristics changé.

The performance analysis technique shows strong agreement with values measured
from implementation of three common decomposition strategies on two message passing™
architectures.

The technique is successfully applied to a range of parallel decomposition strate-
gies found in Parallel and Distributed Virtual Reality systems. For each system, the
primary decomposition techniques are isolated and analysed to determine their perfor-
mance characteristics. This analysis allows a comparison of the various decomposition
techniques, and in many cases reveals trends in their behaviour that would have gone N
unnoticed with alternative analysis techniques.

The work described in this thesis supports the Performance Analysis and Com-
parison of Parallel and Distributed Virtual Reality systems. In addition it acts as a
reference, describing the performance characteristics of decomposition strategies used
in Virtual Reality systems.
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Chapter 1

Introduction

Many virtual reality systems are implemented on a variety of specialized and non-specialized hard-
ware. Most make use of dedicated equipment to improve the efficiency of particular components
of the system. Graphical output is produced on machines with hardware rendering capabilities,
for example. Others are built on advanced architectures intended for parallel processing. The
goal of this thesis is to identify the components of virtual reality systems and assess the suit-
ability of various parallel decomposition strategies for implémentation on a range of distributed
architectures. Thus the design of a distributed virtual reality system can be done, knowing the
performance characteristics of potential decomposition strategies. A new performance ,agaljiéis
approach is developed to attain this goal. The results of analysis of the decomposition strategies
found in many parallel and distributed virtual reality systems are presented to provide a reference
to system designers. The analysis approach allows the performance of new techniques, and of
modifications of existing ones, to be incorporated into the results presented in this document.
There are two components to this document. The first describes the performance analysis
technique; its origins, enhancements and applications, for those interested in applying it to néw -
problems. The second component concentrates on the application of the technique, showing both
the results of analysis of the decomposiﬁon strategies found in virtual reality systems, and an
illustration of the ways in which the analysis technique can be applied. The two components
together provide a guide to the designer of virtual reality systems, allowing the choice of a system

design that offers the best performance on the target architecture.

1.1 Background

1.1.1  Virtual Reality

Virtual Reality (VR) can be viewed for the purposes of the discussion in this document as the
process of creating a computer generated environment into which one or more users can be im-
mersed. Immersion is normally achieved by generating a three dimensional view of the modelled
environment, and displaying this to the users via a stereoscopic viewing device such as a Head -

Mounted Display (HMD). Interaction with the system is achieved by measurement of head and

11



CHAPTER 1. INTRODUCTION 12

hand movements via transducers attached to an HMD and to a glove. Many other variations in
the equipment are possible; the devices described are those most commonly in use at present.

Virtual Reality has its roots back in the early 1960s, when Ivan Sutherland was creating
Sk;tchpad and inspifin;g the field of Computer Graﬁh'fcs. At about the same time (1965-1968), he
was also developing the first Head Mounted Display [Kal93]. It was a number of years before the
computing power was available to provide the rendering performance needed for virtual reality
systems, and it was in the early 1990s that the concept became widely popular. Thg latter may
have been partly due to the books of science fiction writers such as William Gibson [Gib&4], to
whom the coining of the term cyberspace has been attributed.

“The tendency to standardize on glove and HMD as common virtual reality equipment may
have been the influence of the company VPL, who marketed what was, at one stage, a very
popular glove and HMD combination. Amongst their software offerings was RB2 (Reality built
for two), a multi-user virtual reality systemm which was also multi-platform. Different machines
were used to implement different aspects of the system such as graphical rendering and world
design. This tendency is noticeable amongst the other virtual reality systems of that vintage,
where researchers commandeered all available equipment in an attempt to meet the enormous
coniputational requirements of creating reality. .

Thus virtual reality systems have been implemented on parallel and distributed architectures
right from their fairly recent infancy. This thesis is intended to categorize the approaches used to
date, to provide a mechanism for comparing them and to provide a foundation for the development

and evaluation of new approaches.

1.1.2 Performance analysis and comparison in virtual reality systems

The distinction between parallel and distributed systems is determined by the degree of coupling
between processors. Distributed systems consist of autonomous computers, connected by a com-
munication network [Sin91]. Communication is solely by message passing. While many virtual -
reality systems fall into the category of distributed systems, some also make use of tightly coupled
processors. The latter parallel systems are more commonly used for the purpose of improving
system performance. Distributed virtual reality systems often occur because of the need to create
multi-user virtual reality systems, where separate components must be combined into a single
virtual world.

Performance issues have been considered for these parallel and distributed virtual reality sys-
tems, but usually only at a qualitative level and always in isolation (see section 2.2). Many different
techniques have been developed - almost every system has its own unique variations on the parallel
decomposition strategies used to distribute the components of the system. With systems 1'unhing
on a range of different architectures, numerical performance results do not provide a meaningful
comparison mechanism.

A suitable comparison format is required. Once this exists, the different decomposition strate-
gies in virtual reality systems must each be analysed to produce results in this format. The results
of this analysis can then be used to identify the best decomposition strategy for a particular

architecture and application.



CHAPTER 1. INTRODUCTION 13

1.2 Document Layout

The order in which topics are covered in this document are as indicated by the outline below.

~The selection of a performance predictiod techaique involves identifying the required area of
applicability, finding a technique matching that area and evaluating its effectiveness. Parallel
and distributed virtual reality systems are examined and the parallel decomposition strategies
employed in each are identified. The features of importance during this examination are those
that are responsible for the interaction between the distributed components, particularly those
features which differ between the various systems. The different performance analysis techniques
are then evaluated, based on their suitability for performing the required analysis on the constructs
present in these systems. None of the analysis techniques meet the requirements that fulfil the goals
of this work. A new performance prediction technique is developed based on existing approaches,
and this development process is described in detail.

An example of a common component of a virtual reality system, a collision detection algo-
rithm, is selected and used to verify the analysis technique. The collision detection algorithm is
decomposed using common strategies identified during the analysis of vir.tual reality systems. Im-
plementations of each of these are modelled, and the results compared against their performance
measured in practice.

The analysis of virtual reality systems is then performed on a component basis. The input,
output and world modelling components are examined first, before the performance issues in
complete systems are addressed. The results of this analysis provide a reference to the perforp}aﬁbe
characteristics of the decomposition strategies found in parallel and distributed virtual reality
systems.

1.3 Overview

e Chapter 2 describes parallel and distributed virtual reality systems, and identifies the kéy -
components of these systems. ’

o Chapter 3 describes a number of possible candidate techniques for performance analysis and
discusses their merits with respect to the analysis and comparison of virtual reality systems.
An introduction to constructs (Petri Nets and Data Flow Graphs) used in some of these

techniques is given in Appendix A.

¢ Chapter 4 introduces the Analytical Simulation approach used for the performance analysis
and comparison of virtual reality systems, and discusses some implementation considerations
for this approach. A description of the tool that implements this approach is described in

Appendix B, while the semantics of the modelling language are specified in Appendix C.

o Chapter 5 devises a distributed collision detection algorithm and demonstrates the ways in
which it can be implemented using common decomposition techniques found in distributed
virtual reality systems.
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e Chapter 6 provides a detailed analysis of the client-server decomposition of the collision

detection algorithm, using Analytical Simulation.

e Chapter 7 describes enhancements to the Analytical Simulation technique that overcome
limitations which complicate the analysis in Chapter 6.

¢ Chapter 8 completes the analysis of the collision detection algorithms and tests the predic-
tions against the performance of actual implementations.

- =

e Chapter 9 decides on the strategy to employ in the analysis of virtual reality systems and
~  their components.

o Chapter 10 examines the performance implications of parallel processing within the input
components of virtual reality systems.

e Chapter 11 investigates graphical output, in particular the pipeline construct used for parallel
rendering.

o Chapter 12 examines parallel decomposition strategies used for world simulation.

¢ Chapter 13 considers the performance of complete systems, combined from the components
described in Chapters 10, 11 and 12. :

¢ Chapter 14 summarizes the results obtained throughout the thesis and lists the contributions
that it makes. ] L

o Appendix A provides an introduction to Petri Nets and Data Flow Graphs.

¢ Appendix B describes the statements used to specify models for Analytical Simulation, and

presents an example of the use of the Analytical Simulation tool.

o Appendix C describes the process of translating the models used for Analytical Simulatién -
into CCS. This translation both specifies the semantics of the modelling constructs, and
allows the formal proof techniques of CCS to be applied to these models.



Chapter 2

Decomposition strategies in

virtual reality systems

Building efficient parallel virtual reality systems requires the ability to identify the different strate-
gies for decomposing a system into components and to compare the various ways in which these
components can be connected. The purpose of this work is to identify the best components and
connection strategies for a particular application and architécture. Achieving this result requires
a method of comparing components and strategies. Selection of a comparison tool requires that
the nature of the candidates for comparison be understood. “

The criteria for judging and the possible candidates for consideration are described in this
chapter. Once the possible configurations have been identified, a suitable paradigm must be se-
lected for finding the required performance values for a particular parallel decomposition strategy.
The choice of comparison tool is the subject of Chapter 3.

2.1 Performance issues in virtual reality systems

The performance issues considered in this chapter are those that can be affected by increased
computational power and greater communication bandwidth. Issues relating to more accurate
physical simulation or human-computer interface issues are not relevant to this discussion, unless
they are influenced by these performance factors.

It is well agreed that performance of virtual reality systems can be characterized by two metrics:
throughput and lag [Hub93b] [Gos94] [Sty96] [W1095] [Ams95]). Throughput gives a measure of
the rate at which the system performs an action. It is often measured for graphical output and
is otherwise referred to as the frame rate, or using the reciprocal, as the cycle time. The lag,
also often called the latency, is a measure of the time taken for the effect of an event to be
noticed. Applied to a complete virtual reality system, the interaction latency is the difference in
time between input being supplied {user performing an action) and the corresponding output (the
effect of the action being rendered).

15
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Several different effects have been described as contributing to lag in a virtual reality system
[W1095]:

—e User input device lag - time taken by the inpyt 'cievice to report a reading.
o Application-dependent processing lag - time taken for computation using the input value.
o Rendering lag - time taken for rendering and display on the screen.
e Synchronization lag - time spent blocking by processors waiting for others to accept data.

~e Frame-rate-induced lag - lag while the current frame remains on the screen, until the next

frame replaces it.

The overall latency in the system is comprised of combinations of these. While variations in the
throughput may affect the lag (frame rate affects frame-rate-induced lag), and vice versa, neither
value can be derived from the other.

The term latency is used in the remainder of this document to indicate lag values. The measure
cycle time is also used as the indicator of throughput, since it is conveniently based in the time
domain as are all the performance measurement approaches. In both cases a decrease in value

represents an improvement in performance.

2.2 Taxonomies of parallel and distributed virtual reality

systems

Recently some attempts have been made to provide a systematic way to categorize the alternative
decompositions of different parallel virtual reality systems. Previous work by the author includes a
survey of many parallel and distributed virtual reality systems [Ban93]. Many authors have begun
to acknowledge the existence of alternative approaches when describing their systems [Wan85] -
[Sha93] [Sin95]. -

A taxonomy of networked virtual environments is proposed in [Mac95b]. The areas used to
categorize virtual reality systems are communication issues, synchronization of the view of the
virtual world for different users, and data and process issues. The communication issues cover
topics such as bandwidth, distribution schemes, latency and reliability. The comparisons tend to
be dominated by issues of widely dispersed high speed networks, support for large numbers of users
and considerations of broadcasting and multicasting. Coincidentally these are characteristics of
NPSNET over DIS (see section 2.3.4), a system on which the author of the taxonomy has worked
extensively. The data issues consider the nature of the database representing the virtual world

and the manner in which the data is made available to all participants in the virtual world. This
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is an area that receives a great deal of attention throughout this thesis. The different approaches
identified are:

e Replicated datubase: Copied to all processors with updates broadcast periodically.

e Centralized database: Kept on a central machine, to which updates and requests for infor-
mation must be sent.

e Distributed database: Replicated database but guaranteed to be synchronized at all times.

o Distributed databases: Database partitioned across a number of servers.

Processes in most of the systems are categorized as homogeneous, in that the same type of
process runs everywhere. The emphasis is on scripting languages which allow different behaviours
for these processes, and which allow process migration.

While describing the development of a distributed virtual reality system, [Ams95] identifies
two communication infrastructures, a star connecting every component to every other, and a
centralized model where clusters of components communicate through a central process. Access
to information is obtained either by collecting it from a predetermined point, actively requesting
it, or by registering to have regular updates sent.

In a tutorial dealing with the creation of virtual environments [Gos94], the communication mod-
els identified are those of the centralized database and replicated database. Mention is also made
of the use of broadcasting, multicasting and unicasting as alternative approaches to implementing
an update mechanism for replicated databases. Other issues which need to be implemented in a
virtual reality system include collision detection, physical modelling and a way in which objects
in the world are controlled.

A discussion of distributed virtual reality [Sty96] interleaves the issues required to produce
realism with those related to structure and communication. Again the influence of DIS means
that the aspects considered are tailored for widely distributed systems with large numbers of users.
Under these circumstances, communication strategies requiring absolute synchronization compare
poorly against broadcast and multicast-approaches. The latter use less frequent communication
and a system of dead-reckoning to provide the intermediate values. Communication issues are of
great significance for these systems as emphasized in [Roe95] where multicast zones are discussed

to limit portions of the communication traffic to only those objects that can make use of it.

2.3 Components of parallel and distributed virtual reality

systems

The remainder of this chapter provides a survey of parallel and distributed virtual reality systems
and investigates the components and distribution strategies which affect performance. The de-
scriptions cover the evolution of these systems from their humble beginnings to the most recent
versions avallable. )

Diversity decreases as successful approaches are identified and favoured. A record of the

techniques discarded in the process remains valuable, to prevent mistakes recurring, and to provide
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alternatives should the architectural constraints evolve. The different stages in the development
of these systems are described to allow the trends in their evolution to be seen.

_The issues of relevance in the following sections are the parallel decomposition and communi-
cation strategies emblo&ed in virtual reality systems.” These are related to the structural deéompo—
sition of the system (the way in which the simulation of the virtual world is broken down) and the
architectural and network constraints. The different structural decompositions are summarized
in Table 2.1. The taxonomies in section 2.2 identify some possible areas in which the systems
differ, in particular the ways in which data is distributed and in which the contrsl of the various
components of the system is synchronized. The way in which some of the primary functions of the
virtual reality system are decomposed across separate processors must also be considered. These
functions include tasks such as physical modelling, collision detection and inter-object control and
interaction.

The parallel decomposition strategies already mentioned in section 2.2 include a centralized
database (using a client-server model for access), distributed databases and replicated databases
(using either strict synchronization or periodic updates through broadcast or multicast mecha-
nisms). Processes have been running independently, without much consideration for interaction
except through the database. Different strategies for the parallel decomposition of this control
exist, such as the presence of a master process that distributes the work. A summary of the par-
allel decomposition strategies present in parallel and distributed virtual reality systems is given
in Table 2.2. The different data distribution approaches are represented diagrammatically in
Figure 2.2.

2.3.1 The VROS and RhoVeR

The Virtual Reality Operating System (VROS) resulted from a project investigating the devel-
opment of a virtual reality system specifically for a parallel architecture. The implementation
environment is a cluster of Transputers, communicating via message passing. The design deci-
sions are documented in detail in [Ban94a]. The following brief description summarizes the parallel
decomposition strategies.

The virtual universe is divided into worlds, each representing a particular scenario. Each
world contains a number of objects, which have various attributes including their position and
orientation in space. Some of the objects represent the humans interacting with the system and
are referred to as users. A virtual reality application normally consists of one or more worlds
containing objects interacting toward a particular goal. An example of an application would be a
walkthrough consisting of a world containing a building object and a number of furniture objects.

The VROS contains various device drivers for supplying data to the users (output device
drivers) and reading data from them (input device drivers). The section of most interest for this
discussion is the virtual world simulator, usually called the kernel.

The kernel is capable of supporting multiple worlds simultaneously, and allowing multiple users
to enter each world.

To utilize the parallel architecture effectively, each world is represented as a data structure

consisting of the attributes of the objects in that world. The objects, which can be located on
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Figure 2.1: Components of the VROS

separate processors, must query the world for all data relating to them and the other objects-in
the world. This approach is implemented as a number of processes which can run on ariy"bf the
processors in the Transputer cluster. The world processes simply act as servers, supplying data
to each object and updating their databases on request. In this way these processes can keep
all the data consistent. The object processes control the actions of the objects in the world and
implement the laws of that world. In addition, the object processes belonging to users may invoke
the device drivers for additional control information. A communication layer exists for routing .
messages between processes, masking the details of the physical architecture. This decomposition
is represented visually in Figure 2.1.

Application programmers supply the control routines for each object. They are provided with
a set of routines for manipulating aspects of the virtual worlds. The underlying architecture
is invisible at this level. Routines exist for reading and updating the attributes of the current
object. Similar routines exist for reading and updating attributes of the other objects, although
more restrictions exist in this case. Objects can only control others if they are classed as owners
of these objects. No direct communication between objects is currently supported by the kernel.
Object processes may signal to each other by changing their attributes, or through communication
routines which must be provided by the application programmer. Various other functions exist to
provide useful facilities such as transferring objects from one world to another.

Development on VROS has ceased. Instead the experience acquired from this system and
the ideas used in other systems have been used to design and create a new system intended to
facilitate research into a number of areas in virtual reality. This includes the performance analysis -

and comparison described in this document. This system, named RhoVeR, was implemented as
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a group effort to facilitate the work of the virtual reality research group at Rhodes University.
Since RhoVeR is intended to allow various approaches to implementing distributed virtual reality
systems to be tested, it is not limited to any.single distribution approach. A description of the
RhoVeR system may be found in [Ban96]. o

A limited selection of the various parallel decomposition approaches are implemented as a
standard part of the RhoVeR system, to allow its use for other virtual reality related work.
Processes are allocated to each object, to each device and to a number of control modules.

Control information is distributed by events which trigger responses from each process. Control
events originate from timer processes, and other processes which implement functions such as
coilision detection and physical simulation.

Data distribution is accomplished through three mechanisms offering different tradeoffs in
generality versus ease of use. The standard world representation is stored in a Virtual Shared
Memory (VSM) block, a replicated database. On a single processor, the VSM is implemented as
actual shared memory. VSM Manager processes are responsible for transmitting and receiving
updates to synchronize the database. The values in the database represent the most recent values
received. There is no guarantee that evefy copy of the database will be identical at every point in
time. )

For larger, less frequently changed values, a ShapeData structure exists which caches copies of
data belonging to other processes. An update flag in the VSM causes the data to be reloaded if .
it is changed at the source. '

For general communication that does not fit into either of the other categories, a ,m,ess;),ge
passing service is available for direct point-to-point communication.

Collision detection and physical simulation are performed by additional processes which mon-
itor the state of the world through the VSM. Control events are then sent to the objects to
enforce the correct behaviour. Control of objects and resolution of contention issues are controlled

through a hierarchy of ownership. Ultimately, the process currently owning a particular object is

responsible for any change in this state.

2.3.2 AVIARY

The Advanced Interfaces Group at the University of Manchester is working on the development
of a general framework for advanced interfaces, which they have named AVIARY [Wes92] [Sno93].
This system is intended to support a broad range of Virtual Reality environments.

The AVIARY system runs on Transputers and SUN workstations. The communications system
is the module most affected by different architectures. Versions are implemented for Transputer
networks and SUNs connected by Ethernet. Graphics are produced by a hardware renderer.

AVIARY uses a structural decomposition of the virtual reality system into worlds and objects.
These are represented by data structures, in contrast to other systems which implement them
as processes in their own right. Worlds are collections of attributes {e.g. mass) and laws (e.g.
gravitation), objects are known as entities and may be controlled by processes called demons.
Control of objects can be placed into the hands of abstract applications which are distinct processes .

that manipulate the objects in the world. Many applications can exist in a single world, controlling
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the various objects. Other systems, such as the VROS, create this sort of coherent behaviour by
combining the efforts of the processes associated with each object and world.

_ While objects are permitted to be bound to processes which control their behaviour, an extra
form of control is present from users or applicatioﬁs:. ‘A user under AVIARY combines character-
istics of objects (in that it has a visible manifestation), and of applications (in that it is subject to
control beyond that of the physical laws of the world). The user is modelled in the same way as
an application. Other virtual reality systems which do not support the application concept must
either make a special case for the user, or use the object representation with Iinkgm;de to input
- and output devices, as is done in RhoVeR.

AVTARY is segmented into processes that can run in parallel. A communication system similar
to that used in the VROS is present to allow communication between processes. The processes in

the system consist of:

o Input processes.

*

Output processes.

.
o,

A Virtual Environment Manager.

Environment Database that provides spatial management such as collision detection.

Object Servers.

Applications to control users or manipulate the virtual environment.

Objects and applications run separately as independent processes. Control is essentially dis-
tributed, although collision detection is treated as a special case [Sno94b]. The environment
manager receives position updates from each object, and sends out messages to those that have
collided. AVIARY implements an extension to this: once an environment manager is significantly
loaded, it splits into separate processes which continue the collision detection computation in’
parallel. _ .

Another special feature of AVIARY is the presence of object servers which allow one pro-
cess to support more than one object. This decreases resource usage for processes with small
computational requirements, and allows for the possibility of dynamic load balancing.

With AVIARY, the various processes communicate extensively. Data is kept in a series of
distributed databases. Each object keeps the data relevant to it, and updates are transmitted
when changes occur. Updates are limited to those processes which have expressed interest in the
data belonging to a particular object. ,

The problem of supporting the range of features necessary to implement any reality is addressed
in depth. The solution implemented is to provide a basic world that may be customized to
the purpose required. This results in a conflict between the need to provide assistance to the
application writer and to allow sufficient generality. To overcome this, the set of all possible
worlds is structured as a hierarchy. The top of the hierarchy contains all possible worlds. Further
down these laws are refined. For example, some worlds may have gravity, while others do not.

This information may also be used to restrict the types of objects that may be moved from one
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world to another. Consistency is maintained by making sure that the object is capable of obeying
the laws of the new world. A system of portals is used to link different worlds.

—A strength of the AVIARY design lies in the abil}ty‘to implement physical laws without, exces-
sive involvement on the part of the application writ:er: The object oriented nature of the system,
with the use of inheritance to control attributes for different worlds, is well suited to the design
of a support environment for implementing virtual worlds.

2.3.3 Cyberterm

This system is intended to implement a single virtual world, a cyberspace that allows multiple
users to share a common virtual area [Sno92]. The single world is distributed over a number
of workstations with each machine acting as a server for a sector of the world. The system
was initially implemented for PCs and SUNs connected by modem. Graphics are produced by
rendering libraries such as VOGLE and REND386. Later versions have concentrated on the PC
architecture, and on using Internet protocols, although still at modem speeds.

The positions of objects are kept by the server database. When an ob ject enters a sector the
object makes a local copy of this data. Velocity information is used to update the position of
other objects, and updates are periodically issued when another object changes direction. This is
appropriate where communication is over long distances and-over limited bandwidth connections.

Each processor runs a server and possibly a client. Movement from one sector of the world to
another requires the local client to connect to a different server. ) .

The initial approach used in Cyberterm [Sno92] was to create a single space in whic};‘ each
processor acted as a server for a smaller portion. The latest releases of the product are fitting
in more with the approach used in other virtual reality systems, where each server runs its own
world connected to others via portal objects. This is effectively a cosmetic change; the underlying
distribution techniques need not be affected by this.

Cyberterm is designed for use over modem lines, the slowest of communication media (amongst -
the distributed virtual reality systems at least). As such it concentrates extensively on minimal
communication. '

Data distribution uses the client-server model, with multiple servers, one for each area of
cyberspace (or world). Clients connecting to remote servers route the information through their
local server.

Control of objects is both via the server and the client. The server is the authoritative source
of an object’s action, while the client runs a dead-reckoning routine in an attempt to provide an
accurate representation of an object’s behaviour. Updates are sent from server to client when the
behaviour of an object changes. The protocol also specifies periodic updates that can be sent from
server to clients. ’

Access to the resources of an area of cyberspace (or a world) is controlled by the server process.
The servers must issue permission for various actions, such as movement. Private areas of space
can be created where rules decided on by the owner are enforced. Clients must explicitly request
permission to create objects, or to relocate to specific areas. Such requests may be relayed to -

other clients who have control over the resource under contention.
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An interesting notion in Cyberterm is that of an agent [Sno94a]. This is an object that can
be launched by a client together with a controlling script which is executed by the server. Thus
complex transactions can be limited to the server containing the data, and only final results need
be communicated between server and client. N

Collision detection is a recent addition. Two alternative approaches are suggested. The first
uses a specialized agent which watches for collisions, the other requires that collision detection
code be included in the server.

2.3.4 SIMNET, DIS and NPSNET

Distributed Interactive Simulation (DIS) and its predecessor SIMNET are standards for distributed
interactive simulations {Loc93] [You95]. They are specifically intended for battlefield simulations,
but are starting to be reworked for other applications, such as air traffic control simulation. The
simulations may involve thousands of objects and take place over a wide area network.

Communication occurs over a relatively low bandwidth (in relation to the size of the simulation)
medium, such as Ethernet. Each host machine controls its own vehicle and keeps track of others
by dead-reckoning. Each host keeps track of its own dead-reckoned position and when this differs
significantly from its actual position, it transmits an update to all other hosts.

A number of applications implement the DIS protocols, such as VR-Link [Mor95], Close Com-
bat Tactical Trainer (CCTT) [Mas95], PARADISE [Sin96] and the popular NPS Networked Vehicle
Simulator (NPSNET) [Mac95c]. When dealing with large simulations, NPSNET attempts to par-
tition the space according to the relationships between the various participants [Ma>c95a'].hSome
of the disadvantages of the DIS protocol are the large number of other objects requiring updates
and the need for all participants to maintain complete terrain databases. This leads to the need to
limit the area of interest, and so communication between entities in the virtual world is limited to
those entities which have some relationship with each other. In practice this is implemented with
a multicast group, which allows a message to be transmitted by one process and received by mul- .
tiple entities. Logically entities are related by their spatial, functional (e.g. involved in common
simulated radio traffic) or temporal (update requirements) properties. A static decomposition into
multicast groups is recommended in [Sri95] to overcome problems in identifying multicast groups
for sending and listening.

The constraints given above strongly influence the manner in which distributed virtual worlds
can be implemented. The use of low bandwidth communication, powerful processors and tech-
niques such as dead-reckoning and broadcasting facilitate the use of replicated world databases.
Each object controls its own behaviour, and the local processor animates all objects according to
the latest motion update. The spatial partitioning of the world for multicast groups facilitates
collision detection and physical modelling, which each processor performs independently on its
area of interest. Object interaction, for example one object shooting another, involves sending a
detonation message to a group. Members of the group are responsible for reporting any effect of

the explosion.
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2.3.5 DIVE

DIVE (Distributed Interactive Virtual Environment) is a loosely coupled heterogeneous distributed
virtual reality system based on UNIX and running over local and wide-area networks using Internet
protocols [And93a][And93b]. It provides shared memory over a network and controls the sending
of signals to processes.

A world consists of a set of objects and various parameters. Objects are capable of moving
from one world to another. The transfer is triggered when they intersect special ob jects designated
as gateways. Under DIVE the world is maintained as a distributed database. Fach process has
its- own copy of the structure, managed by the ISIS toolkit [Birgb]. Functions are provided to
allow the updating of entries in each copy for all the processes in the world. The update requires
locking all copies of the database before sending changes through. If all processes leave a world,
the database is discarded.

An event handling system is present in DIVE allowing processes to register for certain types
of event. The process can be notified when objects are created, removed, changed, or when
interaction between a user and an object occurs. A timer event allows certain tasks, such as object
movement, to be called periodically. Objects may be given primitive behaviour by specifying a
state machine which performs certain actions on various events. A limited number of actions are
possible, including moving, sending signals, and changing appearance.

The DIVE system consists of a set of processes, each capable of manipulating the world and its
objects. These processes include visualizer processes that allow users to interact with the world,
and application processes that operate on objects or introduce applications in the virtual world.

A number of high level tools are available for creating applications in DIVE. These functions
support selection and grasping of objects. A vehicles module exists which uses the user’s actions
to control the virtual environment.

Recent developments on DIVE have been directed at extending the system to handle more
users, over a widely distributed network. L

Interaction between objects is controlled by aura, focus and nimbus [Ben94]. Aura defines a
sub-space around an object within which it can interact with others. The other concepts define
boundaries that govern the degree of mutual awareness of other objects. These concepts are
implemented in DIVE using sub-objects to set the boundary limits, and collision detection is used
to determine an object’s awareness of others.

Collision checking is enabled by setting a flag for each object. If enabled, collision checking
occurs when the object moves. The computation is performed by the process moving the object.
When a collision occurs, a signal is distributed to all processes in the world.

The ISIS toolkit provides facilities for fault-tolerant distributed databases, amongst other
things. As used in DIVE it uses a multicast protocol to distribute changes and set locks. All
nodes in the system are guaranteed to have seen the same sequence of events, which, while good
for system integrity, provides some limits on scalability. A limit of about ten peers is given as an
upper bound for a DIVE system.

The most recent version of DIVE uses SID [Hag95], an alternative reliable multicast package.

This package should make it possible to supply a distribution layer to hundreds of participants.
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Requests for data are sent asynchronously, and a callback mechanism is used to notify processes of
the arrival of data. Replies are generated by the nearest host, identified by packet timing. A token
bucket mechanism is used to limit the back-to-back transmission rate. A simple dead-reckoning

module is also present.

2.3.6 Division

The ProVision system is one of the early virtual reality systems produced by -a- Bristol based
company, Division. It is a virtual reality server that connects to a number of host machines
[Pou91]. The system was based on T425 and T805 Transputers, but has since been ported to
a range of platforms. Various support software is available, including the Distributed Virtual
Environment System (dVS).

This system provides real time control and distributed event handling. All activities and envi-
ronment handling under dVS are performed by processes called actors. Sharing of data between
the actors is controlled by dVS. The functionality of dVS is closer to that of an operating system
than a system for the modelling of virtual worlds. '

Parcels of data can be shared between various actors. Each actor makes a local copy of the
data. In order for one actor to update the data, it must send an update request to a special actor,
the director, which then propagates the update to other actors holding that data. Updating can
be done in exclusive mode, which ensures that all actor processes have consistent copies at one
time. The alternative is general mode which is faster, but actors separated by low bandwidth
connections may experience delay in receiving the update. ST

In order to cope with real time constraints, each actor can maintain its own local time. When
communicating, the director compares the different times of each actor and adjusts them so that
they are in step. This is useful in synchronizing different hardware devices that operate at different
speeds.

A renderer process called Paz converts a high level scene description to the polygon equivalent. .
Calls to Paz can be made to alter the position, motion and illumination of the objects.

The offerings from Division have evolved substantially from their initial ProVision system. The
current system consists of two levels: dVS, the VR operating system which supports distributed
virtual worlds, and dVISE , a high level package for the construction of virtual worlds. Being
a commercial company there is a limit to the detail with which the description of their imple-
mentations is given. The description given in this section is pieced together from a number of
publications describing various components of the system [Pou91] [Ghe95] [Div96].

The dVS VR operating system has been ported to a number of platforms. Interoperability is
possible between any of the machines running the system. The complexity of the system has grown
over its lifetime and it uses many techniques found in other systems. It supports a hybridization
of different distribution approaches.

The basic system required on each machine is the runtime, which consist of a number of runtime
actors controlling various aspects of the virtual reality system. These actors act as servers for
application actors. The latter are external to the runtime, and are clients for the services provided -

by the runtime actors. The standard runtime actors provide graphical and audio output, control
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input devices, perform collision detection and physical simulation, and create a representation of
the virtual body of a user. All actors run as independent processes which can be located on one
machine, or distributed across networked machines.

Communication actors known as agents control ‘communication between machines. Théy are
responsible for the byte ordering issues involved when different architectures communicate. Com-
munication uses TCP/IP, allowing the system to be distributed over the Internet.

Distribution of updates and notification of changes occurs through the passing of events. Actors
must register interest in the events which concern them. The event driven approach removes the
need to work in a sequential manner. Processing is triggered by the arrival of events.

NDead—reckoning and position prediction are used in dVS to reduce latency.

Collision detection employs one of the runtime actors to watch for collisions between objects.
Collision detection can be performed at various levels of accuracy, from simple bounding box
checks to comparisons at a polygon level, depending on available processing power. Events are
sent out to the objects involved when a collision occurs.

Data and control distribution can be implemented using event passing. Facilities remain for
handling the parcels of data, the shared data elements which are visible to both application and
runtime actors. Implemented as either a distributed database or a replicated database, updating

is controlled by the master process (director) which ensures the consistency of the database.

2.3.7 Minimal Reality (MR) Toolkit

The MR toolkit is a library of functions for supporting the development of virtual reality interfaces
[Gre92]. It provides support for a number of peripheral devices used for virtual reality. It also
provides facilities for distributing the virtual reality over multiple workstations. The MR Toolkit
assumes that different hardware is used to satisfy the different requirements of each process, and
8o concentrates on parallelism. Data sharing is via simulated shared memory on a message passing
architecture.

The toolkit consists of three levels of functions. The first level contains the device support
functions. These are implemented as a client-server pair, with the server continuously polling the
device so that the client can have access to the most recent value without delay. The server also
performs low-level processing of the data such as filtering.

The second level converts the data from the devices into a convenient form for the application
programmer.

The third level of functions provides services for the application programmer. These include
functions for the maintenance of distributed data structures.

The processes in an MR application can have three roles. One must be a master to control the
application and start the other processes. There can be a number of slave processes that are used
to produce graphical output. There may also be a number of computational processes that receive
input from the master and return results to it. Data sharing is done by keeping local copies of the
data with each process. The data structures must be periodically synchronized to ensure that all
processes have the correct values. The application programmer is responsible for specifying when .
this update occurs. This differs from other virtual reality systems that use distributed shared
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memory constructs. Other systems remove the need for the application programmer to attend to
such details. )

~Communication is possible between separate MR -applications. The master processes of each
application can send device and application-specific data to other master processes. Slave processes
must communicate via the master.

The MR toolkit can thus be operated in two ways. Firstly, a system with a single master process
and some slave and computation processes can run as a distributed virtual reality-application
[Gre95]. Separate processes are usually not employed to represent individual objects in the system.
Rather a compute process or the master provides the simulation, and the master (with a slave for
stereoscopic views) does the rendering.

The other mode of operation uses the peers package [Sha95] in which master processes com-
municate. An example application using the peers package is provided with the system, and
implements a simple virtual handball demonstration. Control of the simulation is passed between
master processes, according to the user that holds the ball. The collision detection facilities are
also provided by the application program. Collisions can occur between the ball, the static walls
and bricks and the hand of the owner. These are all local to one process so no distributed compu-
tation occurs. Physical sirr;ula,tion is limited to ball movement and collision detection which, as
mentioned previously, is performed by the master process that owns the ball.

The Environment Manager (EM) [Wan95] is a high level tool for constructing MR Toolkit
applications. It provides two approaches to resolving contention for shared data structures. In the
first approach, only one process owns the simulation at a time. Only that one process is aﬂbwed
to change shared variables. The other case allows sharing of access to shared variables, either read
only, or writable. Writeable variables could cause inconsistencies if there are delays in distributing
changes. A token passing mechanism is used to prevent this. Global updates of the variable are
only made when a token is held. In this way, the variable is subjected to the same sequence of

updates on every processor.

The facilities offered by the MR toolkit are-sufficiently general to allow variations on commu-
nication strategies. The applications for a single system tend to limit parallelism in the world
modelling components, performing all the computation in the master process. The slave process is
used to assist in rendering, while devices are also separate and sending data. The shared memory
services are useful but tend to be prescriptive when designing an application. The peer package is
better suited to parallel world modelling and more control is available in determining the manner

in which the distribution is implemented.

2.3.8 Multiverse

Multiverse is a multi-user X-Windows based Virtual Reality system [Gra93]. The system runs
on a UNIX platform and is based on a client-server model. It consists of servers that model the
virtual world, and clients that are used for user interfaces. Each client and each server is a separate
process, and each may run on a different machine.

Multiverse models each object as a data structure with an associated control process. A

Multiverse server provides a single world containing all the objects.



CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 28

The clients consist of a single program that performs roughly equivalent functions to the input
and output device drivers in other virtual reality systems. The clients are generic, and independent
of the world being modelled by the server. They consist of a loop which renders the view of the
world and then sends any input from the user back‘té the server.

A server process manages the world and its objects. The main functions of managing a virtual
world are taken care of transparently; the application writer is required to supply only a few
functions. These are mostly trivial, the one of interest being the animate World function that
defines the nature of the world. It is called from the main server loop and is usually tsed to move
the objects in the world. Since all processes run on a single machine, there is no need for data
sharing.

The objects may have special code to control their movement. Objects interact with each other
and with the world using an event handling mechanism. These events include MOVE_EVENT that
should cause the object to move, COLLISION NOTIFY_EVENT for when objects have collided
and TERM NOTIFY_EVENT for when an object ceases to exist. The control routine of the object
is executed as part of the thread of the server process. The object control routine is generally
invoked when an event occurs which affects that object.

-Simulation of the world in Multiverse uses a single thréad of execution, as opposed to the
multiple processes under the other parallel and distributed virtual reality systems that have been
discussed. However, the machines that would support Multiverse typically contain a single pro-
cessor, and so creating more processes would be redundant.

2.3.9 VR-386

VR-386 [Sta94] is a virtual reality system for the PC which is descended from Rend386, a polygon
rendering library for 386 and 486 based systems with VGA displays [Sta92]. The design and
implementation strongly reflect the need for efficiency when rendering views of worlds. Unlike the

other systems, it runs as a single process.

VR-386 represents a world as a structure containing all the visible objects in that world. It is
intended to be capable of supporting multiple worlds and to allow switching between these worlds.

The objects in Rend386 could have several representations corresponding to different levels of
detail. Figures constructed of a hierarchy of objects can also be defined. Objects are then stored
relative to the parent object in the hierarchy. For example, in a human figure the arms and legs
may be made children of the torso object. VR-386 goes further by adding a degree of animation
and automatic updating for parts of a figure. Objects move when the parent object moves, with
additional effects from the joints linking them.

VR-386 provides for extensive control of input and output, and also includes many functions

for manipulating virtual worlds.

2.3.10 The Virtual Environment Operating Shell (Veos)

Veos is an environment for creating distributed applications for Unix [Coc92] [Coc93]. It is designed
for prototyping distributed virtual reality applications.
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The processes required to implement a virtual environment are known as entities and can be
distributed across a number of Unix workstations. A data type known as the grouple is used as the
standard data structure. The grouple is an extension to the tuple used in the Linda programming
pa;adigm [Car89]. Grouples consist of nested tuplgs.- An interpreted Lisp system is used as the
programming interface to Veos.

Each Veos entity consists of a distinct Unix process that controls interpretation of the task
written in Lisp. Each entity has associated grouplespaces, for which pattern matching facilities
are provided. Asynchronous message passing of grouples between entities is supported.

The initial system was intended for prototyping and performance issues were not considered
important. The use of interpreted Lisp makes the system flexible and easy to use. It also allows
evaluation of program stubs passed as messages.

Even though the grouplespaces may suggest use of shared memory, inter-process communica-
tion still involves message passing.

Over its lifetime, the VEOS system has undergone significant development. While still based
around the variant of the Linda tuple space, the grouplespace, recent work [Bri93] has focussed on
performance improvement. ) .

‘Fach entity is capable of direct communication with othsrs. Communication between nodes
makes use of direct, asynchronous message passing. Communication between entities can use this
direct message passing, or it can make use of the pattern directed databases, the grouplespace.

Entities are provided with functions that specify each aspect of their interaction with their
environment. Percetve functions determine what portion of the environment is accgssiblgz_ réact
functions specify reactions to changes and persist functions specify behaviour. Entities méy en-
capsulate others, as such providing a global environment for communication and data sharing
amongst the enclosed entities.

Fach entity maintains several standard local databases with specific access control. A boundary
partition contains data for sharing with other entities, and an ezternal partition keeps information
about the other entities that are within perception range. The VEOS system is responsible for -
distributing changes from each entity’s boundary partition to its sibling’s ezternal partitions at the
end of each entity cycle. When changes occur faster than the system can make updates, only the
most recent values are sent. Intermediate values are lost. An internal partition contains data from
the boundary partitions of encapsulated entities. An Interact process within the entity gathers
changes from the boundary partitions of encapsulated entities, and propagates them to the internal
partition and to the external partition of each enclosed entity.

The entities contain React processes for collision detection and other environmental changes.
These are triggered by updates to the boundary and external partitions. Persist processes within
the entity implement the non-environmentally dependent functionality of the entity. .

The use of a replicated database occurs in other systems. In DIVE, the database is locked before
updates are made, making it possible to keep all copies identical. In VEOS, with the ability to
drop updates, it becomes possible to update the database rapidly, but at a cost of keeping accurate
copies. Much of the use of the database in virtual reality systems relies on it reflecting the most
recent state of the system, rather than having it in agreement with other processors in the system, -
as reflected in the implementation of the Virtual Shared Memory in RhoVeR.



CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 30

2.3.11 Decomposition strategies used in other systems

There are a number of other virtual reality systems available using distributed processing to greater
or-lesser degrees. With these systems there is relatively little documentation available as to the
ways in which they are decomposed. This section gives such details as are available relating to

the parallel decomposition strategies employed in these systems.

¢ Networked Virtual Reality (NVR) [Ber94] consists of a toolkit of functions for providing
multi-user virtual reality applications networked using TCP/IP. Data distribution uses a
replicated database, but with a client-server variation. All communication is routed through
the server, which also maintains a copy of the database. The server copy is used to initialize
the database for any new entrants into the virtual world. No access control is enforced,
although a system of locks on objects is provided. This is controlled by the server.

o Project Isaac [Van93] is a distributed physical modelling system. Separate processes are used
for the simulation of each object. Each process maintains a copy of the complete database,
but is only able to modify the portion relating to its object.

o CALVIN is a virtual reality system intended for collaborative design for architectural ap-
plications [Lei96]. It runs in the CAVE virtual environment, a room with translucent walls
onto which stereoscopic images are rear-projected. The database of objects is implemented

as a centralized server, with each participant in the virtual world corresponding to a client.

¢ BrickNet [Sin95] is another system that makes use of the client-server approach. Each‘élient
runs its own virtual world, which can contain private and shared objects. Shared objects can
occur in more than one world, and updates to the status of these are propagated through
the server. Object behaviours and state information can be transferred via the servers. The
servers also manage access control. Updates are sent asynchronously, although facilities are

available to synchronize all clients that share an object. R

e A distributed virtual environment develroped at the Vienna University of Technology [Sch96]
makes extensive use of a client-server decomposition for distribution of data and control of
actors in the virtual world. A number of servers are involved in the system, each responsible
for a portion of the virtual world. A range of specialized protocols for client-server interaction
is used to implement the facilities required in a virtual environment such as simulation,

interaction, data transfer and connection management.

o The Virtual Environment Vehicle Interface (VEVT) is intended for teleoperation of remote
robot vehicles [Pig95] [Pig96]. It allows a number of geographically dispersed participaﬁts to
monitor and operate the robot. Data is transferred using message passing between processes,
in a stateless manner that does not leave the system vulnerable to failure of one component.

¢ Some communication strategies for distributed virtual reality systems are proposed in
[Dem96]. Objects are classed as static, inactive or active, according to the time at which they
last moved. One strategy requires that the renderer provide a time interval when requesting

data from objects. Objects only reply if they have moved during this interval. An alternative
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approach requires that objects update the database of the renderer after changing position.
These strategies assume that only a single viewing process requires the position data of the
other objects.” i

¢ The spatial model for interaction is implemented in a distributed virtual reality system
[Gre94]. This model provides the notion of auras which describe which objects can be
perceived at any time (see section 2.3.5). A collision manager monitors objects in the
world, and notifies each object when its aura overlaps with that of another. "'Peer-’co—peer
communication between processes then allows further transfer of information. In this way

each ob ject only has to consider others within its perceptual range.

e The VETTNet system [Nyg94] provides for data sharing by using a blackboard. This is
a centralized database server that clients can write data to and read data from. Current
applications use only one blackboard, although a number may be used if the data is amenable
to partitioning.

e A Shared Virtual Environment (SHAVE) based on the Linda tuple space paradigm (see
" section 2.3.10) is described in [Ams95]. As was initially. done with VEOS, protestations are
made as to how performance issues are not important when prototyping a system. Informa-
tion can be obtained in two ways. If the required data is in the tuple space then it can be
simply fetched. Otherwise a request is placed in tuple space for another process to respond
to, also through tuple space. Tuple space communication is found to limit perfermance, and
facilities for direct peer-to-peer communication are included. Extensions to the system are

proposed in the form of extra processes to provide physical simulation and object behaviours.

o The GreenSpace project [Man95] has developed GSnet as the network communication layer.
Citing issues of scalability as reasons to avoid client-server decompositions, GSnet uses mul-
ticasting to maintain a replicated database. Only the portions of the database relevant to.
the local objects are cached.

e A distributed virtual reality system is described in [Cod92] applied to a two-user physical
simulation. The virtual world consists of a set of cooperating clients and servers communi-
cating asynchronously. A Dialog Manager acts as a client, receiving data from the device
servers and sending it to application and output devices. Events can be passed between
multiple Dialog Managers to create a multi-user virtual world. The physical simulation (a
flexible modelling simulator including gravity, friction and collision detection producing Rub-
ber Rocks) is implemented as an extra server in the system, communicating with the Dialog

Managers.

o ExploreNet [Hug95] implements a distributed system using the DIS approach of replicating
the simulation on each node, and using updates to keep them synchronized. Communica-
tion in practice is directed through an ExploreNet server, which rebroadcasts messages to
the other nodes in the world (using peer-to-peer connections). The server also orders the -

messages, ensuring a consistent world view amongst all participating nodes.
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¢ The VLNET system [Pan95] uses a completely connected communication topology to dis-
tribute data amongst the users in the world. Updated information about each user is trans-

— mitted asynchronously to all other users. The environment is initially determined by one
user, but is replicated at each node in the sytst'em. The concepts of aura and nimbus (see

section 2.3.5) are used to limit the transmission of updates to nearby users only.

e The Waterloo Virtual Environment System (WAVES) [Kaz93] addresses the problems of
creating large distributed systems without having to broadcast updates to every'node. Com-
munication between processes is managed by a number of Message Managers. These can
be provided with filters to identify a class of messages that a particular process wants to
receive. Data is normally transmitted via the Message Managers, but direct peer-to-peer
connections can be set up where the managers deem appropriate, such as for high traffic
communication.

¢ The Virtual Objects Interacting Dynamically (VOID) shell [0C095] is being developed as
part of the MOONLIGHT project on interactive virtual worlds. Three distribution techniques
_are supported in VOID. A client-server model provides for simple communication. A repli-
cated architecture duplicates the simulation on each processor, and input data from each
user is repeated to every machine. This requires that the sequence of input actions be iden-
tical on every machine. A zoned approach supports large scale applications, where entities

are limited to a small set of zones, and only receive events relating to these zones.

¢ A number of proposals have been made regarding the Virtual Reality Markup Language
(VRML) specification. These are oriented toward providing a virtual reality interface to
the World Wide Web (WWW) and allowing multi-user participation in worlds distributed
across the world.
A proposal for an addressing system for these worlds [Pes94] extends the client-server ap-
proach used in the WWW still further. Each client contributes toward the population of the -
virtual world. Each client needs to know which other clients inhabit the neighbouring space.
Cyberspace servers are able to provide this information, using an unspecified mechanism.
A multi-user extension, made to the initial VRML specification, to allow the creation of
a Virtual Society is described in [Hon96]. Virtual Society servers are separated from the
conventional WWW servers, and are capable of running applications in the virtual world.
Clients receive updates of object states from the server. Scripts can also be downloaded from
server to client to decrease server computation.
Two incremental changes to the current distribution mechanisms are proposed in [Bro95].
The initial change uses the current client-server system, but allows the server to relay up-
dates of information about the other users to each client. Dead-reckoning is suggested to
limit traffic. Further enhancements require the use of multicasting, to eliminate the server
as a bottleneck. Access control methods suggested are either centralized, through the server,
or decentralized, with control for an object residing with the object.
The VRML 2.0 specification [VRM96] does not provide for any multi-user interaction or dis- -

tributed computation. It improves on the capabilities of previous specifications, which only
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allow a static scene description, by allowing scripts to be associated with objects. These
scripts are triggered by events in the virtual world, such as movement of the user or the

—. passing of time, and can be used to animate objgéts. While many users can access the initial
description of the world on the server, all p?oéessing is performed on the client machine
independently of every other client.

2.4 Summary -

Table 2.1 summarizes the structural decomposition of each system. The criteria used to judge the

systems are:

Architecture: Hardware used by the system

Level of Support: Support for virtual reality applications in terms of basic struc-
tures included in the system. This may also apply to higher

level support libraries that are included in the system.

Complexity: Support for interaction between more than one user and the
ability to represent more than one virtual world in a single

instance of the program.

Structural Decomposition: A description of the components used to implement the virtual
reality. 7
Communication strategy: Manner in which communication between the components in

the system is implemented.

The parallel decomposition strategies employed in virtual reality systems are summarized in

Table 2.2. The different areas in which alternate decomposition strategies are employed are: - ~ - -

Database distribution: The manner in which data is shared between the processes in

the system.
Control distribution: The manner in which tasks are coordinated amongst the differ-

ent processes.

Collision detection: The decomposition strategy used to implement collision detec-

tion between the objects in the virtual world.

Physical simulation: The manner in which the simulation of the “reality” is coordi-
nated.
Access control: The mechanism used to resolve contention for objects in the

virtual world.

An overview of the different database distribution approaches is shown in Figure 2.2, together '

with an indication of the direction in which the systems are evolving.
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Architecture Level of Complexity Structural Communication
Support ) Decomposition strategy
AVIARY Transputer Object "Multiple Parallel processes Message passing
Clusters and User worlds for objects, input, (point to point)
SUN networks World Multiple output, management
Application users and applications
Cyberterm |} PCs and SUNs Object Multiple Processes for clients | Message passing
connected by User worlds and world servers (point to point)
~ modem World Multiple .
Application users
NPSNET Workstations Object One Multiple user Message passing
DIS connected by User world processes (multicasting)
SIMNET Ethernet World Multiple interacting
users
DIVE Networked Object - Multiple Application and Message passing
workstations User worlds visualizer processes (poiﬁt to point)
World Multiple (multicast)
Application users
Division Networked Object Multipte Actors which act as | Message passing
workstations User worlds applications and (point to point)
and Transputer World Multiple which control » o
clusters Application users system components
MR Networked Object Multiple Master, slave Message passing
Toolkit workstations User worlds and computational (point to point)
World Multiple processes
Application users C. -
Multiverse Networked Object " One Server process Message passing
workstations User world simulating the (point to point)
World Multiple world and user
_ Application users (client) processes
RhoVeR Networked Object Multiple Processes for Message passing
workstations User worlds objects, worlds (point to point)
World Multiple and for system
users control
VEOS Networked —_ — Entity processes Message passing
workstations and grouple space (point to point)
VR-386 Single PC Object Multiple Single —_
User worlds component
World One
Application user
VROS Transputer Object Multiple Processes for Message passing
clusters User worlds objects, worlds, (point to point)
World Multiple input and output
users devices

Table 2.1: Structural decomposition strategies in virtual reality systems
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CHAPTER 2.
Database Control Collision Physical Access
Distribution Distribution Detection Simulation Control
—AVIARY Distributed Control ) Single World attributes —
databases from applications process and application
control
Cyberterm Centralized Control by On — By
databases server, with dead- server .- } server
(Client-Server) reckoning
-NPSNET Replicated Control by Distributed Distributed Resolved
DIS databases object amongst amongst by the
SIMNET objects objects object
DIVE Distributed Control by Distributed Distributed —
database applications amongst amongst
(synchronized) applications applications
Division Replicated Control by Single Distributed —
databases application actors process - amongst
applications
MR Replicated Control by Round Round Token
Toolkit databases, master, robin robin passing
Distributed token passing sharing sharing
databases
(Message Passing)
Multiverse Data in Single Single Single —
single process process process process
RhoVeR Replicated Control by Single — By object
database, object processes process via - . 4.
Distributed virtual
databases shared
(ShapeData, memory
Message Passing)
VEOS (Centralized) — Distributed — —
Grouplespace, amongst
Distributed objects
databases
(Message Passing)
VR-386 Single process Single process Single Single Single
process process process
VROS Centralized Control by Distributed Distributed By
databases object processes amongst amongst object
(Client-Server) objects objects

Table 2.2: Parallel decomposition strategies in virtual reality systems
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Centralized Dead-reckonod Replicated
cad-reckone
Database Broadcast/ Database
- (client-server) - Multicast -

Dead-reckoned

Unicast

Multiverse

§ 2 Single
Process
VR-386

MR
Toolkit

Non-lossy

AVIARY
(Single) ) (M.ultip%e)
Distributed — Distributed
Database » Databases

Figure 2.2: Overview of the database distribution approaches

2.5 Conclusion

Examination of a variety of parallel and distributed virtual reality systems reveals a number of
features common to all systems. These are implemented in different ways.

The systems identify the concept of an object, with objects grouped into worlds. The objects
are generally controlled in some way so as to respond in a realistic manner to the other objects
and to the nature of the world. Some of the systems described have the means to enforce this
control on objects. Control of the objects uses two approaches; either each object has its own
controlling process, or the system supports application processes which can manipulate groups of
objects.

It is especially noticeable that almost all systems make use of some degree of parallel processing.
The extent of this varies with the implementation architecture. As a result some form of data
sharing is necessary. The ways in which this is done are very much dependent on the bandwidth
available for communication. Systems with slow links may use prediction to estimate the position
of other objects, while faster communication allows data to be shared whenever necessary.

The problems of the distributed architecture are not limited to data distribution alone. Syn-
chronization and coordination of the components of the system must also be performed. Apart
from the interactions manifested visibly in the virtual world, such as contention for objects, par-
allel processing is also used in underlying levels such as collision detection and simulation of the
physical mechanics of the virtual world.

Various techniques recur in these systems. The client-server system used in the VROS is used
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in Multiverse, Cyberterm and in the device support layer of the MR Toolkit. A replicated memory
strategy is used in the MR Toolkit, the dVS system and in DIVE. The master-slave system used
in the MR Toolkit has a similar construct in the V i_rtuhl Environment Manager of AVIARY. The
dead-reckoning approach crucial to the use of DIS occurs in other systems as well.
These virtual reality systems distribute their data and control in a number of different ways.
The most common approaches to distributing data are:

¢ Keeping data local to a process with that process and distributing it to othef processes when
needed (Distributed databases).

¢ Keeping data in a central server process which distributes it to clients when necessary (Cen-
tralized database).

o Keeping all data with all processes and keeping it consistent by broadcasting updates (Repli-
cated database).

The most common approaches to distributing control are:

s Each object is associated with a process which controls only that object.

¢ Objects are controlled by events from a number of processes, where each process implements

a particular application. Each application procéss can send events to a number of objects.

The two most popular approaches are the client-server approach (due to its ease of implerienta-
tion), and the replicated database (because of its ability to scale to large networks by introducing
broadcasting and dead-reckoning).

These are examples of the techniques which are categorized, benchmarked and extended in the
following chapters.



Chapter 3

Performance analysis of parallel

systems

Performance analysis of parallel systems is a well established field with a number of well docu-
mented approaches. Analysis of parallel and distributed virtual reality systems requires specific
functionality from a performance analysis technique. Related work in performance analysis is de-
scribed in this chapter. The most likely candidates for use with virtual reality systems are applied
to a simple client-server system to assess their suitability.

The goal of this chapter is to find a method that allows a comparison of the decompdsition
strategies used in the virtual reality systems presented in Chapter 2. This comparison must make
use of the measures associated with virtual reality systems, namely latency and cycle time. These
metrics are defined in section 2.1. The methods that satisfy most, or all of these criteria are
described here in detail. Other related work in performance analysis is described more briefly

toward the end of this chapter.

3.1 Requirements of a performance analysis technique

The ideal analysis technique for comparing decomposition strategies should possess a number of
characteristics, making it feasible for use during the design stage of a distributed virtual reality
system. It should be simple to use. There should be a close correlation between the approach
being tested and the model of the approach used for analysis, and the relationship must be easy
to see. The analysis should be sufficiently mechanical that no great expertise be required. Instead
the effort should go into interpreting the results and modifying the design. The analysis should be
quick, so as not to discourage testing of alternative models. It must be possible to use the results

of the analysis to provide a clear comparison of the different approaches being modelled.

38
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In summary, the desired technique must:

¢ Provide measures of latency and cycle time.

¢ Provide an analysis of the decomposition strate;gies used for virtual reality systems.
¢ Produce results suitable for comparison purposes.
¢ Perform analysis rapidly.

o Use models that are easy to create.

e Produce results that are easy to interpret.

The different methods examined in detail in this chapter are used for the analysis of a simple
client-server system with two clients. The client-server approach is used as a decomposition
strategy in many virtual reality systems, such as Cyberterm (see section 2.3.3) and the VROS
(see section 2.3.1).

3.2 Naive Analytic Modelling methods

In the case of simple parallel programs, various performance figures can be derived from analysis
of the program code itself, as illustrated in [Li95], or from a simple model of the system [Dem96]
[And91]. An example of an instance of this sort of analysis is shown below for a simple client-server
system.

The following code fragment shows the form of a simple client-server system.

PROCESS client(i)

WwHILE (running ())
SEND (server, REQUEST) e
RECEIVE (server, REPLY)

Perform some computation on the results

PROCESS server

WwHILE (running ())
RECEIVE (client(i), REQUEST) for some i
Process this request

seND (client[i], REPLY)

A specific instance of this system is selected for trial solution by the different analysis techniques
examined in this chapter. The case with two clients and a single server is chosen. The time to
perform sequential computation in the client is modelled by the variable X, and the time required
for the server to generate the response to a request is modelled by the variable Y. Communication
is assumed to be blocking (both send and receiving process must wait until the other is able to .
take part in the communication), and takes a period C' to complete. Thus the complete system

can be described by the following outline:
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process client(1)

repeat

send request to server S
receive reply from server

process for period X

forever

process client(2)

repeat
send request to server
receive reply from server
process for period X

forever

process server

receive request from client(i)
process for period Y

send reply to client(i)

40

The symmetry of the system suggests that all clients must perform equally in the stable §j;,a'?ce.
The performance factor of interest is the time taken between the start of a client cycle and the

end. Assuming that input and output occurs at these points respectively, this gives both cycle

time (time taken for a single cycle) and latency (time between input and output) for the client

process. The analysis of this system looks at two situations:

1. The server is saturated:

In this case the server never blocks waiting for a client process to send a request as there is

always an incoming request waiting. The cycle time of the server (SCT) can easily be seen
to be C+ Y + C. The cycle time of the client (CCT) s 6+ C+Y + C + X, where § is the
period the client blocks waiting for the server. In one iteration of a client, the server must
have serviced every client. Thus CCT=nxSCT, where n is the number of clients. Thus, for

this case:
2C0+Y+C) = 6+C+Y+C+X
> C+Y+C+X
20+Y > X
To derive the value of CCT:
20C+Y+C) = §+4C+Y+C+ X

d = 20+Y~-X
CCT = 204+Y -X+C+Y +C+ X
= 4C+2Y
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2. The server is not saturated:
In this case, it is the client that does not block, and which determines the cycle time. The
cycle time for the client is C +Y + C + X and that for the serveris 6 + C +Y + C where
é represents that time spent blocking by the sérver. This situation occurs when:

20+C+Y+C) = C+Y+C+ X
2C+Y+C) < C+Y+C+X
2C0+Y < X R

“This analysis can be extended to the case of n clients fairly easily, by using the relationship
CCT =n x SCT to calculate the inequalities as above.

The limitations of this approach are the difficulty in deriving a solution for an arbitrary ap-
proach, and the number of simplifying assumptions required to enable a solution to be found. The
derivation given above is suitable only to simple client-server systems. Introduction of a variation,
such as an additional server, would require that all analysis be repeated. In addition, as the model
gets more complicated, the amount of effort required to identify the behaviour increases substan-
tially. In effect, naive analytic modelling requires that a new performance analysis technique be
created for every problem. This tends to prohibit casual use.

The advantage is that the symbolic form of the results is not limited to one specific set of
variable values, and can often be used to understand the relationship between the variables involved
in the model. The symbolic nature of the output allows the exact dependency of the perforg}_aﬁce
on a particular variable to be seen. In addition it supports performance comparison in that trends
in the results, rather than just sampled numerical values, can be compared. This is particularly
relevant for comparison across platforms, where the values of system parameters may vary.

Analytic solutions are suitable for use with virtual reality systems if a systematic analysis

procedure can be developed that produces the required metrics.

3.3 Simulation methods

Performance estimates can obviously be obtained by implementing a chosen model. Alternatively,
a subset of the model can be implemented in a simulation environment.

An interesting approach using a simulation technique is the orbit model [W1095] used to eval-
uate latencies resulting from synchronization lag (see section 2.1). A process must block when
passing data on if the next stage is busy with computation. The length of time spent blocking
affects processes further on. Simulating this process produces strings of possible lags at each stage.
Cycles of these values occur after a number of items have passed through the system, producing
orbits whose values represent statistically relevant latencies. The number of times the value orbits
is a measure of its significance.

A model of the client-server system used in a simple simulator is presented below. The model
is specified in a C-like language. Included in the description are details of the variable values for
which simulation is performed {C from 1 to 25 in steps of 5, X and Y from 1 to 25 in steps of |

1). The simulation is run for 10000 time units for each case. The time values for this simulation
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are discrete and constant, although it is easy to perform simulation using random variables with
a specific distribution. A point is designated for the measurement of latency and cycle time.

void client -(int pid)
{

Message message;
while (running ())
( -
send (server, 1, 1, NULL, 0);
message = receive (0);
process (x);
if (pid == 1)
{
addlatency (syslat, message);

addrate (sysrat, message);

}

dropmessage (message);

}

void server (int pid)
{

Message message;
int sourcepid;
while (running ())

( | -

message = receive (0);
sourcepid = message->sourceid;
process (y);

resend (message, client, sourcepid, 1, NULL, 0);

}

void startsim ()

{

syslat = latency ("System Latency");

sysrat = rate ("Frame rate");

num = 2;



CHAPTER 3. PERFORMANCE ANALYSIS OF PARALLEL SYSTEMS 43

SIS
OSSO,
OCTE RS

% 25

15
3 10 Cicatdelay (X)

Figure 3.1: Results of the simulation for C=1

runsim ("C", &c, 1, 25, 5);
runsim ("X", &x, 1, 25, 1);
runsim ("Y', &y, 1, 25, 1);

}
void init ()
{
int i;
for (i = 1; i <= num; i++)

{

startup (client, 1i);
}
startup (server, 1);
setdefaultchannel (1, 0, c);
stopat (100001);

}

The values for cycle time and latency are almost equivalent. A small difference between the
two arises from a one cycle transient at startup. The effect of this is diminished by running the
simulation for a number of cycles and using the average result. The results are shown in Figures 3.1
and 3.2, giving the results for all simulated values of X and Y, for two values of C. The results
agree with the analytic values obtained in section 3.2, but are limited to the values explicitly
simulated.

Simulation is sufficiently general to be applied to all the parallel decomposition strategies used
in virtual reality systems. In addition it can be used to generate values of the metrics which
characterize virtual reality systems.

This approach can allow experimentation with different parameters for the system components. 7

The output of the simulation applies only to the particular parameters used to drive the simula-
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Figure 3.2: Results of the simulation for C=6

tion. It does not, however, provide an indication that the chosen values cover areas of “interesting”
behaviour. The results are applicable only to variable values used in the simulation and extrap-
olation to other situations is limited. The suitability of simulation to performance comparison is
thus limited.

Simulations are normally run only for a limited period, simulating a finite number of instruc-
tions. All of the possible interactions between the components of the model being simulated may
not occur before the simulation ends. Behaviour of the model that does not manifest during this
period does not affect the results. On the other hand, the effect of startup transients and other
spurious behaviour is incorporated into the results. This influences the accuracy of the results
produced by simulation.

3.4 Abstract Modelling

Another alternative to the approaches already described is to transform the model into an abstract
form which has a well-established analysis method. The approaches examined are Petri Nets and

Data Flow Diagrams.

3.4.1 Petri Nets

An introduction to Petri Nets and their workings is given in Appendix A.

By extending the basic model of the Petri Net to include timed transitions, it becomes possible
to analyse the performance of systems. The analysis of Stochastic Petri Nets is based on queueing
theory and so depends heavily on statistical distributions and firing probabilities. These are often
not easily derived from the description of the system being modelled. The solution of a Stochastic
Petri Net model gives the probabilities of being found in various states. These can be used to
determine values such as utilization and throughput. These measures are not easily translated into

the particular values that are required in virtual reality systems, namely cycle times and latency. -
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The results produced by analysis of Petri Nets usually relate to certain properties of a system,
for example, absence of dead lock and boundedness.

_The difficulty of solving a Petri Net increases dramatically as the complexity of the model
increases. This tends to make analytical solutions impractical for all but the simplest cases [Bal91].

An alternative method of solution for Petri Nets is simulation, which does provide the type of
output required. In this case there is a trade off between the overhead of creating the Petri Net
model versus the use of simulation on a more conventional model. In this case it may be simpler
to choose the model representation that most closely resembles the system to be irﬁplemented.
The difficulty of translating to the Petri Net formalism must be weighed against the large formal
ba;kground of the field, and the well established methods for solving Petri Nets.

An example of the solution of a simple client-server system with two clients and a single server
using Petri Nets is given below. This example provides an analysis of the same system previously
examined in section 3.2. Communication delays are ignored.

A Petri Net implementing this algorithm is shown in Figure 3.3, where the places and transi-

tions correspond to the following states and actions:

P1(P3) Clientl (2) about to ask for data

P2 Server free

P4 (P6) Clientl (2) waiting for response to request
P5 Server busy

P7 (P8) Clientl (2) has data and can perform some computation

T1 (T2) Clientl (2) sends a request
T3 (T4) Clientl (2) receives a reply T
T5 (T6) Clientl (2) performs sequential computation

To obtain useful results from this model, it is assumed that the server takes period Y to respond
to a request, and each client spends a period X performing some sequential computation. This
corresponds to transitions T3 and T4 having a firing time of ¥ and T5 and T6 having a firing time
of X. For the purposes of this example, it is assumed that the firing times are random variables
with an exponential distribution. It is possible to assume other distributions, but this leads to
considerable increase in the complexity of the analysis. _

The first step in the analysis of the net is to draw up the reachability graph. This shows the
relationships between the markings that can be reached from the given initial marking, diagram-
ming the state space of the model. These markings are shown in Table 3.1. The markings are
written as the number of tokens in each of places 1 to 8.

Each state can be classified as either vanishing or tangible. The tangible markings are those
having only timed transitions (T3, T4, T5, T6) enabled, whereas the vanishing transitions are
capable of firing instantaneously. The reachability graph is shown on the left of Figure 3.4.
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Client1 Client 2

Figure 3.3: Petri Net for the client-server system

r State Marking | TEnabled Transitions ‘ Type J

1 [1.1.1.0.0.0.0.0 T1(4) T2(5) Vanishing
2 | 0.1.1.0.0.0.1.0 T2(4) T5(1) Vanishing
3 1.1.0.0.0.0.0.1 T1(8) T6(1) Vanishing
4 1001.1.1.000 T3(2) Tangible
5 | 1.0.0.0.1.1.0.0 T4(3) Tangible
6 0.0.0.0.1.1.1.0 T4(7) T5(5) Tangible
7 ] 01.0.000.11 T5(3) T6(2) Tangible
8 0.0.0.1.1.0.0.1 T3(7) T6(4) Tangible

Table 3.1: Possible states of the Petri Net



CHAPTER 3. PERFORMANCE ANALYSIS OF PARALLEL SYSTEMS 47

(&) (B)

+Y)

Y/(X+Y)

Figure 3.4: Reachability graphs of the client-server system

The solution technique requires solving the continuous time Markov chain for the model. This
requires first solving the discrete parameter Markov chain embedded at the transition points of the
continuous time version. Simply put, a Markov chain consists of a series of states aﬁd transition
probabilities, where the probabilities at any state are independent of history. This memoryless
property requires the exponential distribution mentioned earlier in this section. Discrete Markov
chains can be specified by the matrix of transition probabilities.

The transition probability matrix for the embedded discrete parameter Markov chain is given
in Table 3.2. The transition probabilities are easily derived. In the case where there is only ene.
path from one state to the next, or only one immediate transition, the probability of that path
being taken is one. Where there are two timed transitions with equal delay, the probability is %
for each path. In the case where there is a transition Tx takes period X to fire and a Ty takes
period Y to fire, the probability of T'x firing first is calculated by:

Tx fires at frequency 4
Ty fires at frequency {

Since the exponential distribution corresponds to memoryless transition probabilities, the prob-
ability of T'x firing first is:

L Y
P(Tx) = +X+ =
=T T =%7v
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Table 3.2: Transition probability matrix

L[4 [ 5 Js] 7 [8]
41 0 0 |1} 0 o
501 0 0 (o0} 0 |1
6 0 |xx |0+ |0
7h 0 0o (] 0 3%
8l | 0 |05 |0

Table 3.3: Compacted transition probability matrix

To simplify calculations it is possible to compact the embedded Markov chain to remove van-
ishing states. This process is described in [Kan92] on pages 440 - 442. The required chain is given
by: )

A= Qpr+Qpv [I - lev] Qur

where lev is the portion of the original transition matrix translating vanishing states to vanishing
states, Q'VT is the portion translating vanishing states to tangible states, QlTv is the portion of the -
matrix translating tangible states to vanishing states and QlTT is the portion translating tangible
states to tangible states. ‘

Performing this compaction results in the transition probability matrix in Table 3.3 which can
be represented by the reachability graph on the right of Figure 3.4.

The states of the compacted chain may be interpreted as described in Table 3.4.

The stationary distribution of the embedded chain can be found by solving the balance equation

LState L Interpretation J
4 Client 2 waiting for server, Client 1 using server
5 Client 1 waiting for server, Client 2 using server
6 Client 2 using server, Client 1 performing computation
7 Client 1 and Client 2 performing computation
8 Client 1 using server, Client 2 performing computation

Table 3.4: Interpretation of the states in the compacted Markov chain
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D'=D-Q. Here D' = (dy, d5,dg, d%,dg] is the required stationary distribution and Q is the
transition probability matrix given above.

_The solution, subject to the constraint that dj + df + dg + d} + di = 1, yields the following:
bJe R s+ dg + a7 + dg !

The solution to the original Markov chain may be found by [Kan92]:

dy

N

4{X+Y

Y
+
J

Lo Lol

Let T be the set of tangible states, let i denote some tangible state, let H; be the set of timed

transitions enabled in this state and let »;(7) be the mean firing rate of transition ¢; in state 4.

Thus:
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The tuple D = [d4, d5, dg, d7, dg] represents the state probabilities for the original Markov chain.
This is used to produce performance figures by using the probabilities to calculate a weighted sum
of the resource usage in each state. ' )

Some examples of this solution used to calculaté:o'ccupancy of client and server follow (see the
interpretation of each state given in Table 3.4):

e X =0,D = [4,,0,0,0] With no time required to perform computation, the clients have

equal share of the server, and spend as much time waiting for the server as-usidg it.

.e X =Y,D = [5-, 505 B 5] Clients spend %— of their time using the server, % performing
sequential computation and % waiting for the server.

e Y =0,D=10,0,0,1,0] Since the server never blocks, clients spend all their time in sequential
computation.

Analytical solutions for Petri Nets are possible, although the complexity grows rapidly with the
size of the model; most large models tend to be solved numerically [Ibe93] [Has93]. This requires
substitution of values for the operating constraints, limiting the generality of the solution.

Analytical solution of Petri Nets is not well suited to deriving latency values for virtual reality
systems. By their nature, the places represent states of system components. This paradigm does
not translate easily into the need to time data flow through a portion of the system. Tracing
messages is better suited to some form of simulation. Queueing theory based approaches. are
better able to produce measures based on resource utilization such as throughput, and te"épbnse
time.

The translation from a system specification to a Petri Net model involves a paradigm shift
from considering event sequences to considering state transitions. Creating the models involves
a degree of expertise in the formalism. Verification of the behaviour of the model against the
specification is non-trivial. Case studies using Petri Nets tend to concentrate on models of a single
system or approach for analysis purposes, rather than performing comparative studies.

Petri Nets have the advantage that they are easily applied to modelling parallel and distributed
systems and that a large formal background has been built up with many case studies illustrating
their use. The field is highly fragmented, with numerous variations on the basic Petri Net model,

each created for use in a specific application area.

3.4.2 Data Flow Diagrams

This section describes the work of [Som93] which reports on a system to calculate execution time
and iteration period of programs on a data flow architecture. An introductory description of
data flow concepts is given in Appendix A. This approach deals with real-time systems where
performance measurement concentrates on the time taken for a single iteration, since programs
usually do not terminate.

The measures used are iteration execution time (the time between arrival of input and the
corresponding output, which is equivalent to latency) and iteration period (the time between
successive outputs which is equivalent to cycle time).
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Figure 3.5: NMG model

The Algorithm to Architecture Mapping Model (ATAMM) developed in [Som93] describes a
strategy to map algorithms onto multiprocessor architectures in such a way that it is possible to
predict system time performance as well as processor requirements. Starting with a standard Data,
Flow Graph (DFG) representation, the model develops an Algorithm Marked Graph (AMG), with
nodes representing algorithm tasks and arcs for communication paths, and with source and sink
nodes for data differentiated.

A Node Marked Graph (NMG) is a data flow graph representing the execution process in a
processor. This graph displays flow of control and data for the three processes of input, computa-
tion and output. The notable difference from the firing rules of a normal DFG is the.requiremént
that a processor be free before any input can occur. An example NMG is shown in Figure 3.5.
The initial marking of m tokens on the Process Ready arc allows for instantiation on up to m
processors. For static architectures m is set to one. The n tokens in the Output Buffer Empty
allows limited repetition of the execution of the NMG before the output is consumed.

These two graphs are combined into the Computational Marked Graph {CMG) by a process
of: T

¢ Copying source and sink nodes in the AMG to become source and sink in the CMG.
¢ Replacing nodes in the AMG that correspond to algorithm tasks with NMGs.

o Replacing arcs with arc pairs, one forward for data flow, the other backward for control flow.

To execute this enhanced data flow graph, which now explicitly contains all necessary control
and data flow, the ATAMM model includes a queue of processors and a graph manager. When a
read node in the CMG is enabled, the graph manager assigns the algorithm task to the processor
at the head of the queue. After the task is complete, the processor is returned to the tail of
the queue. The graph manager also controls parallel access to shared resources. This processor
assignment strategy allows processors to be easily added and removed from the processor queue.

Given a CMG with a specific initial marking, there are greatest lower bounds imposed by the
graph on the execution time and iteration period. With sufficient processors, performance at those

bounds may be achieved, while performance below these bounds is not possible.
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~ ’ Figure 3.6: DFG for the client-server system

The greatest lower bound on execution time is determined by the longest directed path from
input source to output sink. The greatest lower bound on iteration period is the largest time per
token of all directed loops. A directed path is a connected, alternating sequence of nodes and arcs
directed from source to sink, and with each node occurring at most once. A directed loop is a
directed path with the same initial and terminal node. If the critical loop occurs within an NMG,
then the lowest iteration period can be reduced by adding mare tokens, equivalent to allowing the
number of instantiations of that node to increase.

It is also possible to calculate the processor requirements to achieve a given performance level.
This uses Single Graph Play (SGP) and Total Graph Play (TGP) diagrams. These concepts
inspired the development of the Analytical Simulation technique described in Chapter 4.

The SGP diagram displays execution as a function of time, assuming infinite processors. Node
activity is indicated by a solid line for the intervals during which it occurs. Activity of different
processes is separated vertically on the same horizontal time axis. This diagram easily shows the
maximum number of processors required, by taking the maximum number active at any one time.
This value is the minimum required to achieve the minimum execution time.

The TGP diagrams resembles the SGP, but displays execution when the graph is executed
with a period P. This is created from the SGP, by dividing it into time intervals of width P,
and stacking each of the intervals. Algorithm iterations are numbered. The maximum number of
processors required to execute the graph repetitively with period P can be found from the largest
number of executing nodes in any time interval.

Applying this method to a simple client-server model with two clients produced a number of
problems. The Data Flow Graph representation might not correspond exactly with the models
produced in previous sections. Each task, corresponding to a node of the graph, does not have to
be executed on the same processor during each cycle. This could have implications for the inter-
pretation of the server process as residing on the processor containing its database. A Data Flow
Graph of the model is given in Figure 3.6. In this case, the two server processes are constrained
to execute sequentially, and so can be limited to a single processor without affecting the results of
the analysis. :

The result of interest is the performance of a single client. Its operation is affected by the other
client. The graph cannot be decomposed into a history independent system since performance

changes with history. Cycles are thus introduced which complicate analysis.



CHAPTER 3. PERFORMANCE ANALYSIS OF PARALLEL SYSTEMS 53

Client1(a) Client2(a)

Source

Figure 3.7: CMG for the client-server system

Creating the CMG as required produces the graph shown in Figure 3.7. The greatest lower
bound on execution time is given by the longest directed path from source to sink. Since no node
may appear twice on a directed path, this is the path from source through ClientI(a), Server(a)
and Client1(b) which has a path length of X + Y. Iteration period is given by the largest time
per token of all directed loops. The two largest directed loops are

e Server(a), Server(b), with length 2Y" and one token.

o Server(a), Client1(b), Clientl(a) with length X + Y and one token {or its image using
Client?).

This gives iteration period as 2Y, if ¥ > X, and X + Y otherwise. The execution time is
correct for the first iteration but for further iterations the blocking created by the second client
must be taken into account. The mechanism used for calculating execution time applies only to
acyclic graphs [Koh75]. The initial value is just a transient when Y > X, and so extra work must
be done to determine the steady state value.

The steady state value for latency can be determined using some results for scheduling of Data
Flow Graphs [Mur94]. An Acyclic Precedence Graph (APG) is constructed from the Data Flow
Graph by removing all arcs containing tokens. The APG gives the intra-iteration precedences
between the nodes. A J-unfolded precedence graph is then constructed, by replicating the APG
J times and adding arcs from node u in the i** to node v in the j* copy (i < j) if there is an arc
from u to v in the original Data Flow Graph containing j —1 tokens. The APG for the client-server
example is shown in Figure 3.8, a 3-unfolded precedence graph is given in Figure 3.9.

The critical path is given by the path with the largest weight in the J-unfolded graph. It can
easily be seen in this example that critical path in the J-unfolded graph from the initial source
node to the final sink node is:

X>Y: X+Y+J(X+Y)

Y > X: X +Y + J(2Y)
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Figure 3.8: APG for the client-server system
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The required steady state latencies can easily be derived from this result, as the coefficients
of J.

. This approach provides a clear indication of the optimal execution points and makes it possible
to predict changes in performance given changes in £he number of processors. It also finds the
optimal operation point for a set number of processors. The approach is also well suited to
automation. At present systems are being solved numerically, although it appears that there is
scope for analytic solutions. o

The chief drawback is that it is limited to data flow architectures. However, rr;any'of the ideas
are used as a basis for the Analytical Simulation approach introduced in Chapter 4. -

3.5 System Specific Performance Prediction

The performance analysis techniques presented so far in this chapter are suitable for the analysis of
any parallel system. This section describes other work related to performance analysis of parallel
systems which is more limited in its area of application. This includes techniques that are confined

to a particular architecture, or limited in the form of the results that are generated.

¢ An approach to performance prediction for a specific class of parallel systems is described in
[Mak90]. The parallel computation must be expressed as a series-parallel acyclic precedence
graph. Resources are modelled as service centres in a, queueing network model. The predicted
system completion time is found by iteratively calculating the residence time for each. tégk,
and using these to reduce the precedence graph until the values converge within a set limit.
This approach is limited to programs that can be written as the required graph. Results are
numerical, and do not provide the values required in virtual reality systems.

¢ In a study of performance improvements in Fortran-D [Men95] an attempt is made to predict
application execution time as a function of the problem size (V) and the number of processors
(P). The Fortran-D compiler generates Single-Program-Multiple-Data (SPMD) code from
high level directives in the Fortran-code. The approach in this study involves expressing the
execution time for all possible SPMD events as symbolic expressions of N and P. Constants
in the expression are evaluated by measuring the performance of the system for given values
of N and P. On the two example programs tested, the error in prediction varied from about
2% to 20% depending on the level of detail with which the message passing is modelled. This
approach requires the assistance of the compiler producing the code, both for generating the
expressions for each parallel event generated and for adding the instrumentation necessary
for measuring the values of the constants. While producing analytic output, the variables

that may be used are limited.

o Another paper [Adv94] also investigates improvements in the performance of programs com-
piled by the Fortran-D compiler. A model is developed to predict the time required for
pipelined computations as a function of pipeline granularity. Using additional values de-
pendent on the machine architecture, the model is able to predict the granularity value to

minimize execution time. The model is reasonably complex, has to be created by hand, relies
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on a number of simplifying assumptions and is only valid for pipelined computation. It is
suggested that the compiler be responsible for implementing the model, instantiating the
variables and finding the optimal granularity. In addition it is expected that the compiler
should detect the violations in the assumptions and either use a corrected model or inform
the user of the problem. Performance monitoring code would be automatically added by the

compiler. The performance of pipelined systems is examined in Chapter 11 of this document.

o The research by [Fah93] investigates ways to measure performance of a number of program
transformations and data distributions of a parallelizing compiler, and automatically select
~  the best one. Only a single profile run is used to détermine branching probabilities and other
variables in data and control flow. The parameters derived from the profiling information
are adapted when calculating the effects of the cbmpiler’s program transformations. This
investigation also concentrates on providing useful performance information. Parameters re-
lating to three performance aspects are examined: work load, communication overhead and
data locality. These values provide greater insight into the performance of the program than
a single runtime value. Based on the program parameters, the compiler can apply program
. transformations to program segments based on each different performance drawback. The
prediction tool can be trained to order the priority of each transformation based on the
target architecture. The accuracy of the predictions is. usually within 5%, and in some rare
cases is off by 10 to 20%.
This work [Fah93] also contains a comprehensive classification of related work in the per-
formance prediction field. That section also describes work done in using bénchm}ii‘king
for performance prediction. The performance of a set of code-fragments is measured on a
given architecture. A parallel brogram is then analysed to detect the presence of these code-
fragments, and runtime is estimated by combining the results of the previous measurements.

The practical problems with implementing this approach are found to be considerable.

o The effects of porting programs to different architectures are examined by analysis of program -
stability in [Men93] and [Men94]. This dpproach uses traces of program events, the events
being used are computation, message sending and message receiving. Stability is measured by
determining the degree of change in the events in the trace when a disturbance is introduced.
These disturbances are produced by adding time delays to portions of the program. The
degree of change is found by converting each program trace into a graph and measuring
the degree of overlap, found by the size of the largest isomorphic subgraph. The problems
introduced by a non-deterministic receive are discussed. Analysis is restricted to “stable”
programs which do not contain this construct. Non-deterministic constructs are common in
virtual reality systems (and are found in the client-server model examined in this chapter),
and need to be modelled.

Prediction of performance on a new architecture is done by scaling the times taken for
computation and message passing, according to the relative performance values of the two
machines. An extra constraint is added to ensure that messages do not arrive before they
are sent. The prediction error for the example given in [Men93] is 16%. For the examples in '
[Men94], the errors are under 19%, and usually range from 5% to 15%.
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s Trace files can be used to generate performance indices which can provide insights into the
nature of the parallel processing that is taking place [Sar94]. The indices are computed from
instrumented programs run directly on the target architecture. Here performance indices
are also associated with the various data struttures. This makes it possible to iden‘tify the
structures which most affect the performance of the system. A range of performance indices

are used, with the intention being to isolate the areas in which bottlenecks are occurring.

¢ Another example of the use of the compiler for generating performance information is found
in [Mal94]. A data-parallel compiler pC++, which generates parallel code from high level

-~ additions to C+;F code, is constructed with performance analysis issues as an integral part.
Profiling code is included when programs are compiled. Event tracing is also possible with

this system. Shared memory and distributed memory architectures are supported.

¢ An alternative approach to performance measurement that concentrates on the improve-
ments not being obtained is the lost cycle analysis as described in [Cro93]. A metric, the
lost cycles, is defined to represent the overhead in the execution of a parallel program. A
set of categories into which lost cycles can fall is chosen which is complete, orthogonal and

" meaningful for analysis purposes. One such set is described, although it is mentioned that
it may need to be extended for more varied situations. Monitoring code is inserted into
a program to determine the lost cycles for each category. For a given program, analyti-
cal models are constructed to predict the overhead for each category as a function of data
size and number of processors. Constants are found by measuring the performance_of ‘the
program in a few configurations. This model is then used to predict performance for other
configurations of processors and data size. The models are constructed by hand, and vary
for different architectures. Average error for a prediction of the performance of a 2D FFT
is 12.5%.

The goals of the research presented here differ in a number of ways from those required for.
virtual reality systems. The values measured in the above studies concentrate on finding values
for run-time and performance improvement through the use of parallelism. On the other hand,
virtual reality systems require values for latency and cycle time, as mentioned previously. Virtual
reality systems generally consist of cyclic processes, which do not terminate; this makes values
such as run-time redundant.

Many of the studies mentioned concentrate on finding certain magic numbers which define the
system and a model which uses these numbers. The models are usually developed by hand, and
tailored to each system. This requires considerable ingenuity and effort. A consistent approach
is required for different architectures if performance comparison is to be performed. Often the
emphasis is on finding the best algorithm for a specific architecture, or on predicting performance
when the configuration of the components of the architecture is changed. In this thesis there is
greater emphasis on examining the effects of different architectures on a given algorithm.

Many approaches require that the system be implemented and provide performance metrics to

optimize it once it is running. Usually these metrics require data from the running system.
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Many studies refer to shared memory or SIMD architectures whereas this thesis concentrates

on message passing, MIMD architectures as used by the virtual reality systems in Chapter 2.

3.6 Conclusion
This chapter reviews a number of approaches to performance prediction and analysis in parallel
message passing systems. These approaches are evaluated with respect to their suitability for use
with virtual reality systems.

Virtual reality systems have two important measures associated with them; latency and cycle

time. The approaches have to be able to generate values for these measures. The evaluation also

takes into account a number of other desirable characteristics:

¢ Ease of translation from system specification to model.

e Suitability of output to performance comparison.

¢ Ability to handle constructs found in virtual reality systems.
. Ability to scale to larger problems. ”

Some approaches are considered in detail:

¢ Analytic modelling approaches give the correct metrics, and provide results suitable. for
performance comparison. There is no general analytic approach that can be applied to an
arbitrary architecture.

¢ Simulation produces the correct metrics and is suitable for arbitrary architectures. The
results are limited to the values used for the simulation, and so are not suitable for comparison

across architectures, or for general performance analysis.

¢ Petri Nets have the advantage of a substantial theoretical base, and of having been used for
a number of years on a wide range of performance analysis problems. They are also able to
model stochastic events. The construction of the Petri Net model is, however, not trivial.
Analysis for all but the simplest models requires the use of simulation. The form of the
results does not correspond well with that required for performance comparison in virtual
reality systems.

o It is possible to produce the required values from a model using Data Flow Graphs. The
models require some effort to produce, and certain constraints such as scheduling of processes

to processors can introduce extra complications.

A number of other approaches to performance prediction in parallel systems are briefly sur-
veyed. None of the performance analysis approaches examined in this chapter are suitable for use

with parallel and distributed virtual reality systems.



Chapter 4

Performance analysis using

Analytical Simulation

The performance analysis techniques examined in the previous chapter are not suitable for use
with virtual reality systems. This chapter presents an approach that satisfies all the criteria for
the analysis and comparison of the performance of parallel and distributed virtual reality systems.
In addition, the approach presented is suitable for the anaiysis of a number of other classes of
system.

4.1 Analytical Simulation

A technique combining aspects of existing methodologies has been devised by the author. It
overcomes the limitations of the other methodologies for modelling parallel virtual reality systems.
The limitation of simulation is that it is not general enough to cover results that are not explicitly
simulated. Analytic performance modelling on the other hand is either ad hoc, does not provide ’
the desired performance measures, or does not support the required architectural features.

This approach is introduced by way of the simple example used in Chapter 3 (see section 3.2).
Consider the client-server system with two clients which each send a request to the server, get
a reply, and process it for period X. The server, on the other hand, picks up a request, takes
period Y to service it, and returns a reply. When using this example to illustrate the performance
analysis techniques in the previous chapter the result depended on the relative sizes of X and Y.

Tracing the execution of the program produces the process activity versus time diagram shown
in Figure 4.1. The times at which processing occurs are shown as solid blocks. During the
remainder of the time the processes are blocked, waiting for communication with other processes.

In this case the clients are identical, so the one which is first serviced by the server is labelled
C1 and the second C2. The diagram shows that the second synchronization between C1 and the

server occurs when both are ready to communicate, which occurs at:
From C1’s point of view: Y+ X

From the server’s point of view: Y +Y

59



CHAPTER 4. PERFORMANCE ANALYSIS USING ANALYTICAL SIMULATION 60

X>Y

C1

Cc2

Server

Time

c2

Server

<

2Y 3Y Time

Figure 4.1: Process activity versus time diagram for the client-server system

Clearly this time depends on the relative sizes of X and Y. If X is larger then the client delays,
otherwise the server is the delaying factor.

A trace of the times at which C1 finishes its processing is given below:
For X >V : X+Y 2X +2Y 3X+3Y 4X +4Y n(X +7)
ForY > X : X+Y X +3Y X +5Y X+7Y 2nY + X -Y
The latency and cycle times for C1 can now be easily calculated. In this case, it is assumed
that input to the client process arrives immediately before the client issues a request to the server,
and output occurs straight after client processing (X) is complete. Since latency is the period

from input to corresponding output, latency and cycle time are the same in this example, and are

given by the time between two successive cycles:
For X >Y: Latency = Cycle time = X + VY
ForY > X: Latency = Cycle time = 2V
This technique is illustrated for a more complex model, in which latency and cycle time are
different, before the general algorithm is presented.

Consider a common parallel processing topology, the pipeline. The one modelled has three

nodes, and consists of the following processes:

process 1

do forever

measurement point: Latency 1
consume input
process for a period of duration A

send data to 2
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0 Time

--

Figure 4.2: Process activity versus time diagram for the pipeline system

process 2

do forever

receive data from 1
process for a period of duration B

send data to 3

. -process 3

do forever

receive data from 2
process for a period of duration C
produce result

measurement point: Latency 2 / Output

It is assumed that inpuﬁ data is always immediately available and that results can be delivered
without any delay. The latency in this system is the time taken for any specific datum to be
transformed from input data to a result. The cycle time is the time taken per result.

As with the previous example, a process activity versus time diagram shows several decisib;ls. ’
that need to be made regarding the relative sizes of A, B and C in order to draw the diagram. The
possible diagrams that may be drawn are slightly more numerous in this example, in fact there
are infinitely many of them. The relationships between the variables, which define situations in
which different behaviour occurs, are given below:

e A>B A>C
e A>B,C>Aand B+ kC<(k+ DA< (k+2) A< B+ (k+1)C k=0...00
e B>A, B>C

e B>A C>B

An example of the second case is illustrated with A = 2B, C' = 3B in Figure 4.2. An interesting
feature of this diagram in particular is the manner in which latency becomes constant after the
second iteration. The complex inequality arises from a transient which works its way out of the
system after a certain number of iterations, dependent on the values of 4, B and C.
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By marking certain points in the program (Latency I and Latency 2 / Qutput) and by calcu-
lating the time at which they occur, it is possible to find values for latency and cycle time. The

values are given below for cycle n: -

A>BA>C:
Latency 1 : (n—-1)4
Latency 2/Output: nA+B+C -

A>B,C>AandB+kC < (k+ DA< (k+2A<B+(k+1)C0, k=0...00:

(n-1)A ifn<k+2
A+ B+ (n—3)C otherwise
Latency 2/Output: A+ B +nC

Latency 1 :‘ ' {

B>AB>C:

0 ifn=1
Latency 1:
A+ (n—2)B otherwise

Latency 2/0Qutput: A+nB+C
B>AC>B:

0 ifn=1
Latency 1 - A ifn=2

A+ B+ (n—3)C otherwise
Latency 2/Qutput: A+ B +nC

Latency is the difference between corresponding execution times at the two measurement
points. Cycle time is given by the coefficient, of n at the output point. Thus in the steady
state :

A>B,A>C:

Latency: A+B+C

Cycle Time: A
A>B,C>AandB+EC < (k+ DA< (k+2)A<B+*k+1)C, k=0...00:

{<B+nC—(n~mA ifn<k+2
Latency:

3C otherwise
Cycle Time: C
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B>AB>C:

Latency:

A+B+C ifn=1
2B +C otherwise .

Cycle Time: B

B>AC>B:
A+B+C ifn=1 T
Latency: B+2C ifn=2
N 3C otherwise

Cycle Time: C

An algorithm for deriving the sets of inequalities associated with the Analytical Simulation
technique, as well as the sequence of time values at various points, is presented below. This
algorithm performs essentially the same process as illustrated in the previous examples. A process
activity versus time diagram is constructed by simulating the prograin. The synchronization
points are analysed to determine the time of synchronization. This analysis may result in various
constraints being placed on the variables, to guide further simulation.

REPEAT

Simulate processes keeping track of the running time of each
process

When two processes need to synchronize, compare their running
times

IF the relation between times cannot be determined

THEN
FOR all possible relationships between the times o

Assume that relati_onshi}; holds and simulate with

that assumption

ELSE
Synchronization occurs at the later of the two times

UNTIL sufficient data has been accumulated

Several requirements of the algorithm limit the variety of systems upon which analysis can be
performed. The last line assumes the system is going to settle into a stable state after some point.
In the present form this requires a human controlled cutoff, to prevent it degenerating into solving
the halting problem. Some systems may never reach a point at which all possible relationships
have been enumerated. Such a system is illustrated in the pipeline example earlier. In this case,

however, the complete set of constraints can easily be extrapolated from a smaller sample.
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4.2 Implementation of Analytical Simulation

The implementation of the Analytical Simulation algorithm used for the analyses in this docu-
ment allows for the sithulation of parallel processes<communicating using message passing. Other
architectures may also use the algorithm. This is superfluous in this case, since all the systems

modelled fall into the message passing category. The simulation language consists of a few simple

commands:

send :- send a message to another process. ’
receive :- receive a message from another process.

think :- perform sequential processing for a specified time.

These commands determine the architecture dependence. Other suitable constructs would be
needed for modelling other architectures such as shared memory machines. The system is assumed
to consist of a number of processes each consisting of an infinite loop with these commands in
the body of the loop. A complete deséription of the simulation language and the use of the
Analytical Simulation process in practice is given in Appendix B. The language shares constructs
found in various process algebras such as CCS and CSP. These algebras are used for describing
communicating, concurrently executing systems [Lee94]. The process of translation into one of
these formal specification languages is shown in Appendix C. This allows easy access to the formal
proof techniques available under such calculi. -

Synchronization occurs when two processes attempt to communicate. The run times of each of
the processes is a linear expression consisting of the sum of a number of think times and possibly
communication times. Deciding which time is the later involves comparing the two expressions
and deciding which is greater. These comparisons are often made in the presence of assumptions
about the interrelationships of other expressions involving the same variables.

Making the comparisons turns out to be a reasonably complex problem. The previously men-"
tioned problem of finding a suitable point toustop the simulation can be solved comparatively
easily. In practice it is usually possible to identify the tendencies of the system by eye after each
process has run for a limited number of cycles.

4.2.1 Comparison of run times
The method for comparing linear expressions is presented below:

Let A = i e X;

i=1

Let B = i X

i=1

The problem is to determine if A < B, A > B or no known relationship exists, given assumptions -
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of the form:
n n
doguXi2 Y hXi . j=l..m
n i=1 =1 .
X; >0 i=1...n

By assigning a; = e; — f; and b;; = gi; — hy; this problem can be restated more simply as:
Determine if Z?:x a; X; > 0,< 0 or if no known relationship exists, given: '

n
> X >0 j=1...m
i=1

X;>0 t=1...n

The inequality >, a;X; > 0 holds if "7, a;X; is greater than a linear combination of the
assumptions combined using only positive coefficients. The case E?:l aiXi < 0 can be reduced to
the previous case if rewritten as Y ;-; —a;X; > 0. Thus it is necessary only to attempt to solve
the first case.

A simple transformation reduces the problem to one with a known solution. Attempting to
find the desired linear combination produces an expression of the form shown in equation 4.1,
where w; > 0 and v; > 0. The w; are the required coefficients and the v; are slack variables™to
enforce the inequality. )

0 U1 bir b1z .. bim wy a1
1 . ; b b .. b )
(X1, X0] 0 Vo N 21 bas 2m Wo (X, X0 az
0 0 .. 1 Un bnl an . bnm Wn Qan
(4.1)

Solving for the v;, and using the requiremént that each v; > 0, produces equation 4.2. This
is the standard form of the constraints in a linear programming problem [Str76]. The complete
solution to the linear programming problem is not required however, it suffices to find a single point
in the feasible region. The existence of such a point is equivalent to having a positive coefficient

linear combination of the assumptions which satisfies the desired inequality.

by bz .. bim wy ay
b b .

21 bao bam we < az (4.2)
bpi bn2 .. bam Wm Qn

Finding this single point uses the Two-Phase Method described in [Kol80]. This method
consists of introducing two sets of slack variables and applying the simplex method to remove one
set. The success of the simplex method is equivalent to the existence of a solution.

If a relationship between 4 and B can be found then the next step in the simulation of the model

is well defined. If no relationship exists, then an additional constraint is introduced, specifying
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the relationship between A and B. Since two possibilities exist (A > B, or B > A), each must be
introduced in turn and both branches simulated. Resolving non-determinism can cause a number

of ¢onstraints to be introduced at one point, splitting the simulation path in more than twe ways.

4.2.2 Non-determinism

The presence of non-determinism in a system when using the Analytical Simulation algorithm
can lead to cases where one set of restrictions on the variables can produce differént performance
values when calculating cycle times and latencies. Non-determinism can arise, for example, when
a ;)rocess receives messages from a number of other processes at the same time, all of which are
valid under the current receive command. In that case the receiving process is usually expected
to choose one in a non-deterministic manner. Non-determinism can séverely affect the usefulness
of Analytical Simulation, and ways are required to deal with it.

To speed up the analysis, the simulation can be instructed to ignore the non-determinism, and
make the choice in some consistent manner. This limits the analysis to only one of the possible
execution paths, and gives an approxiniation to the true behaviour. This and other problems
are discussed in greater detail later when exploring this method with various example problems
(see sections 6.1.2 and 6.1.4). Modification of the Analytical Simulation technique to enhance its
ability to deal with non-deterministic constructs is described in Chapter 7.

4.3 Conclusion

This chapter introduces the Analytical Simulation approach to performance analysis. This ap-
proach satisfies the three main requirements of a performance analysis and comparison tool for

parallel and distributed virtual reality systems in that:

e It provides for the measurement of latency and cycle time. S

e It can be applied to arbitrary decomposition strategies, including those used for virtual
reality systems.

¢ It provides symbolic results suitable for comparison purposes.

In addition, the implementation of the algorithm allows rapid analysis of models, which can
easily be created, and which closely resemble the structure of the system being modelled. Results
include constraint regions which specify the variable values for which each result holds, simplifying
interpretation of the results. The Analytical Simulation approach is the most successful in fulfilling
the requirements for modelling parallel and distributed virtual reality systems.

The next few chapters (Chapters 5 to 8) describe improvements to the Analytical Simulation
approach which enhance its ability to deal with virtual reality systems. These chapters also verify
the results of analysis by comparing them against values measured from implementations of the
systems being modelled.



Chapter 5
Collision detection

A test case is required to verify the suitability of the Analytical Simulation approach to perfor-
mance analysis of virtual reality systems. This chapter selects a common component of virtual
reality systems, and develops parallel algorithms for this component using the different decompo-
sition strategies associated with such systems. )

The problem selected for analysis is one that occurs in a number of virtual reality systems and
which is solved in a variety of ways (see Chapter 2). It involves the detection of collisions between -
objects in a virtual world. The example used in this chapter is that of point particles colliding
within a closed container. .

Tt is particularly instructive to examine this problem, since it requires that each particle is aware
of every other particle. Thus it requires that particle data is distributed to every other particle.
Implementation in a distributed system requires use of the database distribution approaches used
in virtual reality systems. Coordination of the computation requires use of a control distribution
approach, as discussed in Chapter 2.

The chapter starts with an examination of the algorithms used in existing systems before
describing the development of an appropriate test case.

5.1 Previous implementations of collision detection

The level at which collision detection is examined is limited to the selection of the objects to be
checked for collision, and the acquisition of the positions and other relevant information regarding
the affected particles which is required to do this. The problem of computing points of intersection,
given a boundary representation of the object, is beyond the scope of this document. Solutions to
the latter problem are well documented elsewhere, for example [Coh94] [Gar94] [Van93]. A more
detailed survey of collision detection techniques can be found in [Hub95a]. This section is intended
only as background for the algorithms developed in this chapter.

Approximate solutions to collision detection, such as are used in [Ban93], involve sampling the
object positions at discrete intervals and checking for collisions during the snapshot. Provided
that the sampling interval is sufficiently small, most collisions are successfully detected. Morer

detailed discussion of the problems involved in implementing reliable collision detection is given
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in [Hub93].

Performing pairwise comparisons between all pairs of objects results in an O(N?) algorithm.
Spatial subdivision approaches divide the virtual egvifonment into smaller volumes, and collision
detection need only be performed between objects s}iaring these volumes [Zyd93]. Collision de-
tection algorithms often use a number of successive levels of refinement. The topmost levels are
fast but may imagine collisions where none in fact exist; the lower levels are more accurate, but
slower. The upper levels typically use bounding box comparisons, checking for collisions between
simple shapes such as spheres or cubes surrounding the object. i

- Some restrictions are imposed on the creation of parallel versions of collision detection algo-
rithms for use within a virtual reality environment. The algorithm must fit into a larger system
without imposing constraints on the distribution of the other components. Other operations
overlap with collision detection and the system may be implemented more efficiently if these are
combined with the collision detection. This limits the use of sophisticated distribution mechanisms
using special properties of the problem. Such considerations apply to the use of approaches such
as [Yas92], whose distributed N-Body algorithm uses a tree decomposition. Branch nodes in the
tree contain centre of mass information for simplifying calcylation of forces. Integration with a
collision detection algorithm would require that additional information be added and may neces-
sitate changes to the distribution mechanism. Approaches such as that used in [Par92], where a
SIMD machine is used for calculating the N-body simulation, are also not feasible. Use of this
architecture requires that all objects be functionally identical, and so no specialized processing
can be included with some of the object processes. The parallel decompositions considered here
are limited to coordinating control of the system, and to distributing data about every object, to
every other object.

Discussions amongst the developers of the VRML specifications! suggested three approaches
to implementing distributed collision detection [War93]. A single process could perform all the
collision detection for the entire system, or every process could perform this collision detection,
each duplicating the work of the others. The first approach would simplify data distributibn,'
the second would simplify distribution of the results. The third approach suggested would be to
distribute the computation across all the processors in the system.

The third approach offers the most comprehensive test of an analysis technique, and so the
approaches to distribution of collision detection that are described assume that the problem is

decomposed across multiple processors.

5.2 A sequential algorithm for collision detection

The goal of this section is to develop a collision detection algorithm that can be used as a fair test
case for a performance analysis technique. The required solution must function correctly and be
amenable to implementation in a distributed environment. It must also use constructs found in

distributed virtual reality systems, thus making the results of the evaluation of the performance

LWVRML: Virtual Reality Modelling Language, a project to combine Virtual Reality with the World Wide Web -
(see section 2.3.11)
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analysis tool applicable to these virtual reality systems. 'Generality, rather than efficiency, is
emphasized, although some optimization strategies are described where appropriate.

~A simple form of the collision detection problem is examined, which satisfies the above re-
quirements. The problem addressed is that of a sin'gle virtual world containing N virtual gas
molecules enclosed in a virtual box. The particles do nothing other than move about within the
box, colliding occasionally with the walls and with each other.

The calculation of trajectories, points of collision, and changes in motion after collision is not
considered. The only matter of interest is to ensure that the simulation proceeds Wrealistically,
assuming that functions to perform these calculations are supplied.

It might be expected that a routine along the lines of:

while (simulation_running)

for i =1to N
move_particle(i)
for i =1 to N
for j=1i+ 1 toN
if colliding(i, j) then

change direction(i)

change direction(j)

would perform the required task. However, it turns out on closer examination of this algorithm
that there are a number of flaws [Hub93].

The problems result from the discrete time nature of the simulation. As the simulation ad-
vances, the molecules move from one point to another without truly touching all intervening points.
Thus a situation where molecule! moves from A to B and molecule2 moves from B to A during
the same time interval results in the two molecules passing through each other without a collision
being detected. This problem may be a.ddresséd by extending the colliding predicate to check for
collisions at all intervening points between two successive positions.

However, there is yet another problem that this additional check does not solve. This is the
case where a molecule would collide with more than one other molecule during a simulation step.
The colliding predicate cannot be expected to realize that a molecule, as a result of a collision,
might change direction and strike another.

A possible solution to this problem is to reinvoke the pair of nested loops until no more collisions
occur during the current simulation step. This should catch all secondary collisions.

At this point, a brief digression is necessary to provide a view of the overall intention of this
section. The algorithm developed should be capable of being successfully used in a parallel virtual
reality system. The simulation required in a virtual reality system need not always be accurate; in
many cases, speed is a far more important consideration. There are a number of cases of faster but
less correct algorithms being used in virtual reality systems, for example, the Painter’s algorithm
used in hidden surface removal. Hence the approximate solution derived above should not be

discarded immediately. The other consideration is that the algorithm should parallelize easily,
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Molecule 1
Molecule 2

Molecule 3

~ Figure 5.1: Example of a trace

and hence the last adjustment above, which requires repeated access to a shared resource, may
not, be feasible.

The other alternative is to drop the requirement of simulation steps which are independent
of the collision detection process. Instead let the steps be governed by the requirements of the
problem. '

.Let the trace of a run of the simulation be a graph, where a node represents a point at which a
collision occurred between particles and the arcs represent movement of the particles. The nodes
can all be ordered on the time at which the collision occurred, as illustrated in Figure 5.1. The
next node on the trace can be determined while at the previous node, irrespective of the time

difference between them. Thus the collision detection algorithm can be rewritten as:
while (simulation_running)

for i =1 to N
for j =i+ 1 toN
let t be the minimum time until a collision
between i and j
for i = 1 to N
move_particle(i) to its position at time t
if particle[i] is involved in a collision at time t
then

change direction of particle(i)

This algorithm for collision detection can be used in virtual reality systems, and is used as
the basis for developing distributed collision detection routines for testing performance prediction
techniques. Additional enhancements are still possible, such as the volume subdivision step men-
tioned in the previous section. Another optimization is to cache collision points, since they do not
need to be recalculated until at least one of the molecules involved changes trajectory.

5.3 Collision detection on parallel processors

Virtual reality implementations are often constructed from whatever components are available. In

some cases, specialized components are added to enhance the performance of some aspect. Rarely
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are these systems integrated to a state where shared memory is available. In general, as may
be seen in the systems reviewed in Chapter 2, parallel virtual reality systems communicate using
message passing, often over relatively low bandwidth links. Thus all the parallel decomposition
attempted here assumes a message passing archité;ctﬁre, with consideration paid to minimizing
communication.

The approach when parallelizing the collision detection algorithm is to assume that each object
resides on a different processor. The alternative of a single application process performing collision
detection in parallel with the rest of the system does not look much different from the sequential
algorithm.

5.3.1 Collision detection using direct Message Passing

Generally a virtual reality system provides some operating system level facilities, which attempt
to enforce a particular communication paradigm. These limit the possible communication op-
tions to make parallel programming easier and less susceptible to errors. These functions are
usually implemented with constructs which perform message passing directly between processes.
This section describes a distributed collision detection algorithm where all processes are identical,
communicating via the direct message passing calls.

The outline of the algorithm for the direct message passing approach is as follows:

PROCESS molecule(k]
{ process corresponding to a single molecule }
wHILE (running ())
FOR (i = 1; i <= N; i++)
SEND (molecule[i], DATA)

{ send own position to all others }
FOR (i = 1; i <= N; i++)

otherpositions = RECEIVE (DATA)

{ get position of other molecules }
find first collision between this molecule and all
other molecules and the walls
FOR (i = 1; i <= N; i++)

SEND (molecule[i], time_first_collision)

{ send best guess at first collision }
FOR (1 = 1; i <= N; i++)

temp = RECEIVE ()
1F (temp < smallest.received) THEN
smallest received <- temp

{ combine guesses to get earliest

collision }
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move molecule along trajectory by an amount
corresponding to the smallest time received
— IF the molecule is involved in a collision at this

point THEN

alter_trajectory

To simplify the algorithm, it is assumed that messages do not block when they are sent, but
queue at the destination point. This implementation has the disadvantage that alfrﬁ&lecules must
resynchronize after each collision, even those that are not involved and which are not affected by
the outcome of the collision. Other approaches such as that described in section 5.3.3 do not have

this limitation, and so the amount of computation required can be reduced for that case.

5.3.2 Collision detection using a Client-Server approach

The message passing approach associates the data for each object with the corresponding object
process, a distributed databases approach. For all simulation cycles, each molecule must be
polled by every other molecule in order to obtain up to date position information, i.e. O(N?)
communication. This may be reduced by creating a central repository for the position data, a
centralized database, at the cost of requiring each molecule to transmit updates whenever changes
are made.

A server process is created which acts as the central repository for the position data for every
molecule in the system. With this particular problem it is also used to coordinate finding the time
of the next collision, as well as for synchronizing the various processes.

The outline of the algorithm for the client-server approach is as follows:

PROCESS client[k]
{ process corresponding to a molecule } C. -
wHILE (running ())
SEND (server, GETOTHER)
{ send a request for the position database }
allposition = RECEIVE (OTHERDATA)
{ get the database }

find first collision between this molecule and all
other molecules and the walls

SEND (server, BESTTIME)
{ send details of first collision }
besttime = RECEIVE (BESTDATA)

{ get overall value for first collision }
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move molecule along trajectory by an amount
corresponding to the smallest time received
IF the molecule is involved in_a‘collision at this
point o
THEN alter_trajectory
SEND (server, UPDATEPOS)
{ update the database } -

ack = RECEIVE (UPDATEQK)

PROCESS server

{ eoordinates the world database }
WHILE (running ())
req = RECEIVE (ANYTHING) from client([i]
SWITCH on request type
cAseE GETOTHER:
SEND (client{i], OTHERDATA):;
{ send position database }
CASE BEST:
IF collision time from client[i] is earliest
to date THEN
update earliest to data value
IF all clients have sent their best values
THEN
FOR (1 = 1; i <= N; i++)
SEND (client[i], besttodate)
{ send time of first collision }
case UPDATEPQS:
update entry for client[i]
IF all clients have updated THEN
ForR (i = 1; i <= N; i++)
seEND (client[i], UPDATEOK)
{ synchronize clients at this step }

Since all the collision data gets combined in the end, and due to the fact that the collision
predicate is transitive, this algorithm can easily be enhanced to halve the number of comparisons
required. Thus the time that A collides with B is the same as the time that B collides with A.

5.3.3 Collision detection using a Master-Slave approach

Many virtual reality systems use an event handling approach to control object processes, with

a master process issuing events to a number of slaves. This simplifies control of the objects by
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other processes. In some cases, a separate process is used for collision detection. This process
then sends events to the object processes to indicate when a collision will occur. The routine
betow shows the adaptation of the collision detection algorithm to an event driven system. The
object processes are also used for some of the collision detection calculations, thereby increasing
the extent to which parallelism can be used.

The outline of the algorithm for the event handling approach is shown below:

- =

PROCESS slavelk]
~ { process corresponding to a molecule }
WHILE (running ())

req = RECEIVE (ANYTHING);

SWITCH on request type
cAasE REQDATA :
sEND (master, HEREDATA)
{ send position of this molecule }
case FINDYOURBEST :

find first collision between this molecule
and all other molecules and the walls
sEND (master, MYBEST)

CASE RUNUNTIL :

move molecule along trajectory by an amount
corresponding to the value just received
IF the molecule is involved in a collision at

this point THEN

alter_trajectory

PROCESS master
{ process in charge of collision detection }
WHILE (running ())
FOR (i = 1; i <= N; i++)

SEND (slave([i], REQDATA);

FOrR (i = 1; i <= N; i++)

req = RECEIVE (HEREDATA);

add data to a local database
FOrR (i = 1; i <= N; i+4)

seND (slave[i], FINDYOURBEST);

{ get each slave to do some of the work }
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1}

FOR (i = 1; i <= N; i++)

req = RECEIVE (MYBEST);

" { get each molecule’s first collision }
Calculate time of first collision
FOR (i = 1; 1 <= N; i++)

SEND (slave[i], RUNUNTIL);

{ let molecules run until first collision }

" This approach is easily modified to accumulate the times of the various collisions and to only
update those that change. It is easy to see that only those particles involved in a collision can
affect subsequent collisions. This modification is not as natural in the other systems where control
is distributed, as opposed to the centralized control present in this variation.

5.4 Conclusion

Collision detection is chosen as a problem suitable for testiﬁg the capabilities of the Analytical
Simulation approach to performance analysis. A sequential algorithm for the detection of collisions
between point particles is described. This is parallelized in three different ways, using approaches
found in distributed virtual reality systems.

The approaches used are:

e A client-server approach for data distribution, control remaining with the objects.

o A message passing approach maintaining data and control locally with each object process,

and specialized communication for interaction.

¢ A master-slave approach keeping data for each particle with the corresponding particle pro- -

cess, but using central control from a master process.

Analysis of the client-server model is described in Chapter 6. Some enhancements to Analytical
Simulation resulting from this are given in Chapter 7. The remainder of the analysis for the models
described in this chapter, followed by a comparison with the results measured from implementation,
is given in Chapter 8.



Chapter 6

Analysis of client-server collision

detection

Chapter 5 provided a solution to the collision detection problem and examined the parallelization
of this solution. Some of the methods of parallel decomposition used in virtual reality systems
were used to select strategies for the parallel decomposition of the collision detection algorithm.
Amongst the strategies used was the client-server approach for distribution of data and control
information.

Evaluation of the performance analysis techniques in Chapter 3 used a simple'cliehtl’éérver
system as a test case. This chapter extends the analysis to a realistic model. The limitations
uncovered during this analysis are used to improve the Analytical Simulation approach (Chapter 7)
before analysis of the other collision detection algorithms is performed (Chapter 8).

This chapter investigates the use of Analytical Simulation on successive refinements of a client-
server system until the complete client-server decomposition of the collision detection algorithm
is reached.

6.1 Analysis of client-server models

Analysis of the client-server decomposition strategy starts with the analysis of a simplified version.
Additional complexity is added incrementally, and the effect of these increments can then be seen
in relative isolation. The enhancements are incorporated into the collision detection algorithm in

section 6.2.

6.1.1 Deterministic, simple communication

A simplified client-server model is used as an example when introducing Analytical Simulation.
This consists of two clients, each requesting data from the server and then processing that data
for an interval of X. The server accepts requests from each client in turn and returns a response
after an interval of Y. '
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This model can be extended to N clients using the following algorithm:

— process client[i] (where i =1 ...N)

repeat forever

send request for data to the server
receive the reply from the server

process the reply for period X -

end repeat

process server

repeat forever
for i =1toN

receive request from client[i]
prepare the reply, taking period Y
send the reply to client[i]

end for

end repeat
This corresponds to the following model for the Analytical Simulation tool:

generate markerendi -
define N b5

replicate N

process client#

send server request
receive server reply
think X

report markerend#

endreplicate

process server

replicate N

receive client# request
think Y
send client# reply

endreplicate

The generate statement causes the tool to generate the cycle time of client!. The variable IV -

defines the number of clients in the model. The tool, run for 100 iterations of the server process,
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produces the following results, for the model with five clients:

Trace 1: Program with assumptions:
Example: X = 1000 Y = 200 <
1 X > 4y

Change in markerendl 1Y+ 1X (100)

Trace 2: Program with assumptions:
Example: Y = 1000 X = 1000

-~ 4y > 1X
Change in markerendl 5 Y (100)

The constraint fegions are indicated, as well as the values for each region. The values in
parentheses indicate the length of the sequence containing that particular result. Repeating the
analysis with different values of N produces the following results:

X >N -1DHY: Latency = Cycle Time = X +Y
(N-1)Y > X: Latency = Cycle Time = NY

Further options for increasing the complexity of the model are to have a differing processing
time for each of the clients, to introduce non-deterministic selection by the server, and to increase
the complexity of the communication to approximate that of the desired algorithm more closely.

The latter two options are more relevant to the problem that is being solved, so these are
examined first.

6.1.2 Non-deterministic, simple communication

Non-determinism can easily be introduced by changing the action of the server. At present it
communicates with each client in turn, waiting for each client, regardless of whether others are’
already available for communication. This can be modified so that the server accepts requests
from the first client capable of communication. Should more than one client satisfy this condition,
then one must be selected in a non-deterministic fashion.

The modified server code in the model for the Analytical Simulation tool is as follows:

process server

receive ANYONE request
think Y
send ANYONE reply

The receive statement contains a variable name as the name of the source process. This will
be instantiated to the name of the first process to communicate, or each of the names in turn if
there is more than one. The value of the same variable is used as the name of the destination
process to which the reply must be returned.

As might be expected from the symmetry of the program, the expected results are not altered

by introducing this change. However, it does have a significant effect on the complexity of the
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Analytical Simulation. For a situation with N clients, the server must select one of these in a
non-deterministic fashion. After the first cycle, there are still N — 1 requests at the head of the
request queue. The-total number of permutations is q‘uickly seen to be related to the factorial of
N. The difference between the permutations only a‘ffe'cts the relative order in which the processes
run. No change occurs in the latency values or in the cycle times.

The analysis tool faithfully explores all N! paths, producing much the same results as before.
The lengths of the sequences of results are shorter, the new server process cycles once for every
client request now, rather than every set of N requests as before. .

- As mentioned in section 4.2.2, the number of cases can be reduced in this case by instructing
the simulation to solve the non-deterministic choice in a predefined and consistent manner. This

does not cause loss of information in this simple case.

6.1.3 Deterministic, complex communication

Increasing the complexity of the communication involves increasing the number of queries to the
server in each cycle of the client. As may be seen from the algorithm presented in section 5.3.2,
the ¢lient requests two items of data from the server, before pérforming some calculation and then

sending an update to the server. The client processes are thus modelled as:

process client

repeat forever

send server request_for_data

receive server some_data

send server request._for data

receive server some.data

process for a period of duration X
send server request.for data (update)

receive server some._data (acknowledgement)

The server, as before, accepts a single request from each client in turn, processes for period Y
and returns a reply.

The results have the same form as those given in section 6.1.1:
X>(N-1Y: Latency = Cycle Time = X + (2N +1)Y
(N-1)Y > X: Latency = Cycle Time = 3NY

The actual algorithm being modelled has some extra complexity in the server in that in some

cases it waits for data from all clients before responding to each of the requests. The server code
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modified to support this approach has the following outline:

process server

repeat fofever
receive clientl request_for_data
process for a period of duration Y
send clientl some_data
receive client2 request.for.data
process for a period of duration Y
send client2 some_data

...for all N clients

receive clientl request for_summary

receive client2 request_for_summary
...for all N clients

process for a period of duration N * Y

send clientl some_data

send client2 some_data

...for all N clients

receive clienti request._for_summary o
receive client2 request_for_summary
...for all N clients
process for a period of duration N * Y
send clientl some_data
send client2 some_data

...for all N clients e

The second and third requests from each client to the server, for each cycle of the client, request
summaries rather than position data.

The model for the Analytical Simulation tool is shown below:
replicate N

process client#
send server requestfordata
receive server reply
send server requestforsummary
receive server reply
think X
send server requestforsummary
receive server reply

report markerend#

endreplicate
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process server

replicate N

- receive client# requestfordata, -
think Y
send client# reply
endreplicate

replicate 2
replicate N
receive client## requestforsummary
endreplicate
replicate N
think Y
endreplicate
replicate N
send client## reply
endreplicate

endreplicate

The effect of the synchronization is to restrict the order in which events may oceur, so:-t};at
only one path of execution is possible, regardless of the relative values of X and Y. The processing
in each of the clients is forced to occur in parallel, and is unable to overlap with any processing
in the server. Applying the Analytical Simulation technique to this system yields a single report,

giving the value of 3NY + X as the cycle time and latency.

6.1.4 Non-deterministic, complex communication

The next logical step to complete the sequence of analyses is to combine the complex communica-
tion sequence in the client with a non-deterministic server process. As illustrated in section 6.1.2,
this server process accepts a request in a non-deterministic fashion, processes it for a period of
duration Y and returns a response.

The model for analysis using Analytical Simulation is shown below:

replicate N

process client#

send server request

receive server reply
send server request

receive server reply
think X
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send server request
receive server reply

_ report markerend#

endreplicate

process server

receive ANYONE request
think Y
-~ send ANYONE reply

The version of the system with only two clients produces four cases. The case where X <Y
is well behaved and the performance settles down rapidly to a value of 6Y. When ¥ < X < 2Y,
latency also stabilizes on 6Y, but an unstable initial value of 5Y + X may prevail for as long
as chance dictates. Chance, in this case, determines the way in which the non-determinism is
resolved. The other two cases depend on whether X is greater or less than 3Y. In both cases they
settle down to steady state latencies of 6Y for 2V <X <3Y and 3Y + X for X > 3Y. However
there is again a transient phase where the latency may be 5Y + X or 4Y + X for both cases.
These transients are unstable and once a decision is made that eliminates a particular transient,
then the system moves into a state in which that transient never recurs. The analysis explores
548 paths within the 100 cycles of the server processﬂ

This initial unstable state would be missed, or would deceive a simulator. .

The complexity is greatly increased when adding a third client. For some values of X and
Y, the latency does not settle down to a steady, stable value. Instead it assumes a number of
values, corresponding to different orders in which each of the clients interact with the server. In
addition the number of permutations is sufficiently large as to prove daunting when it comes to
analysis. At this point it becomes worthwhile to examine the requirements of the analysis and
find some appropriate method of summarizing the results without adversely affecting the analy$is.
A number of alternatives present themselves. ‘

Firstly, the range of values can be expressed in some condensed form. An average value and
a standard deviation, or possibly the minimum and maximum values encountered would suffice.
An alternative is to remove the non-determinism by preselecting the order in which decisions are
made, as discussed in section 4.2.2. This is more applicable in this situation where the clients are
identical and symmetry exists.

The second approach has the advantage of reducing the simulation search space, but can pose
certain problems. Firstly, it does not reveal all details of the behaviour of the system. It can also
result in certain relationships between the variables in the system being ignored.

The range of latency values assumed for the different variable values is listed below, with the
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result obtained by removing the non-determinism given in parenthesis:

X >nY, forn>8 (=) AY 4+ X,4Y + X, 5Y + X,6Y + X
T X>8Yy - (3Y + X) LY H X AY + X, BY + X, 6Y + X
8Y > X > 7Y (3Y + X) Y 4+ X,4Y + X, 5Y + X, 6Y + X
7Y > X >6Y (4Y + X) Y+ X,4Y + X, 5Y + X, 6Y + X
6Y > X > 5Y (4Y + X) 9Y,4Y + X, 5Y + X, 6Y + X
5 > X > 4Y (10Y, 9Y, 8Y (incycles)) 8Y, 9Y, 5Y + X, 10Y, 6Y + X =
4Y > X > 3Y (9Y) 9Y, 6Y + X
T3 >X>2 (9Y) 9y
Y > X>Y (9Y) )
Y >X (9Y) 9y

The values given above are taken after the initial transient has died away, which is usually
after three cycles. The analysis does not add any further constraints on the relative values of
the variables for the deterministic case once X > 8Y. These restrictions are found for the non-
deterministic case but do not yield any additional values for the cycle time of the system. Transient
valités are not given above. The simulation for the results above wa.é performed for 100 cycles
of the server process. The deterministic version is analysed rapidly, and the values given above
are easily extracted. The non-deterministic case takes the better part of a week for the analysis,
on a dual processor Sparc Server-10, and produces 60 Mbytes of data (approximately 100000
paths) that require further analysis by hand. Transient values have to be removed and the resdits
summarized. Examples of the results are shown below. The constraints marked with the “###"

are those that do not form boundaries of the constraint region, and which can be ignored.

Trace 51277: Program with assumptions:
Example: X = 1000 Y = 181.818

1X > 2y H#it# .
1X > 3Y Hit

1X > 4y #H## -

1 X > 5Y

6Y > 1X

Change in markerendl 6 Y+ 1X (2
Change in markerendi 7Y+ 1X (D)
Change in markerendl 5Y+1X (1)
Change in markerendl 4Y+1X (2
Change in markerendl 5Y+1X (1)
Change in markerendil 4Y+1X (D
Change in markerendil 9Y (1

Trace 51305: Program with assumptions:
Example: X = 1000 Y = 222,222

1X > 2Y ###

1X > 3Y ###
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1X > 47
5Y > 1 X )
— Change in markerendl 6 Y+ 1X(2 |
Change in markerendl 7Y+ 1X (D
Change in markerendi 5Y+1X (D
Change in markerendl 9Y (1)
Change in markerendl 10 Y (1)
Change in markerendi 9Y (1)
-~ Change in markerendl 8Y (1)
Change in markerendi 9Y (L

It is interesting to compare the results obtained by using a conventional simulation tool on the
same model. The simulation has X ranging from 1 to 50 and ¥ ranging from 1 to 25. For the two

molecule case, the results are found to conform to:
X<Y: 6Y
X>Y: 5Y + X

In the three molecule case, the latency/cycle time is:
X < 5Y: 9y

X >5Y: 4V + X

Ironically, the results are far more complex for the simple server than in the case with a more
complex one that imposes more restrictions on order of execution. However, it is useful to explore
the limitations of the Analytical Simulation technique that are emphasized by this situation.

A significant problem with Analytical Simulation is that it traverses the tree of possible program -
states to a particular depth. This can cause a number of complications. The state space may be
very large, particularly if non-determinism is present. The results calculated for a given set of
constraints may differ according to the order in which events occur in a particular program trace.
Also the depth to which the tree is explored may not be sufficient to define the behaviour of the
system adequately.

Another disadvantage is that the effects of simple variations on the program structure cannot
be easily compared, since these variations create a new and different system. In the examples
given here this means that the effects of adding more clients must be extrapolated from trends
visible in the results of analyses of systems with smaller numbers of clients. v

No further analysis of this particular system is carried out using this version of Analytical
Simulation due to the complexity of the analysis. This issue is addressed in Chapter 7, when the
state space extensions to the Analytical Simulation algorithm are discussed. The next case to be

considered is the complete model of the client-server collision detection algorithm.
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6.2 Collision detection using a client-server decomposition

This section combines the refinements of the client-server model presented in this chapter, and
apI)lies them to the client-server decomposition of the collision detection algorithm, given in sec-
tion 5.3.2.

The complexity of the analysis in the previous section is reduced in this model because the
additional complexity in the model imposes more constraints on the order in which the various
processes may interact. This fact suggests a useful by-product of the complexity-explosion of the
previous section: after a minimum latency/cycle time value is found, impose restrictions on the
system so that this order of events is the only one that may occur.

The model used to implement the collision detection algorithm is shown below and may be
compared with that presented in section 5.3.2.

process client

send server request for._data

receive server some data -

send server request_for_summary
receive server some.data

process for a period of duration X

send server request for_summary (update)

receive server some.data (acknowledgement)

process server

receive any_client[A] any.request
case any_request of
request _for data :
process for a period of duration Y
send any_client(A] some;data
request_for_summary :
receive any._client([B] request_for_summary
...until had a request from all N clients
process for a period of duration N % Y
send any.client{A] some_ data
send any_client[B] some_data

...for all N clients in the order in which

requests were received

In this model the array any_client represents the processes from which messages are received.
Its members are instantiated during the receive operation. This is the source of the non-deter-
minism in this model. The variable any_request is set to the type of message at the same time.

Comparing this model to the original algorithm, the variable X represents the time taken to

move a molecule and perform any other necessary processing. The time taken to calculate the
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point of collision is ignored, although this could easily be included by addition of another process
statement. It is excluded to provide consistency with the previous discussion. Moving the position
of-the existing processing section of the client does r}ot'alter the final result. The variable Y could
represent the time taken for the server to access ité‘détabase.

The form of this model for use with the Analytical Simulation tool is as follows:

replicate N

process client#

- send server requestfordata
receive server reply
send server requestforsummary
receive server reply
think X
send server requestforsummary
receive server reply -

report markerend#

endreplicate

process server
init
assign COUNT O
endinit
receive ANYONE REQUEST
if REQUEST == requestfordata

think Y
send ANYONE reply

endif

if REQUEST == requestforsummary
if COUNT != N
assign COUNT [COUNT+1]

endif
if COUNT ==

replicate N
think Y

endreplicate
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replicate N
send client# reply
endreplicate
assign COUNT O
endif

endif

The results from this model are interesting in that there are no constraints on the relative
sizes of X and Y. The results are numerous, due to the non-determinacy, but are all identical.
The tool shows a desire to generate about 17 x 10° solutions for the two client case, limited
to 100 cycles of the server. These result from the possible alternate execution pa.ths‘that exist
because of the different non-deterministic choices that can be made. The identical results can be
explained by examining a trace of events. The restrictions imposed by synchronization through
requestforsummary prevent client and server from running concurrently. The only processes that
run at the same time are the various clients. Non-deterministic message passing occurs between
client and server, but this must be completed for every client before any client can enter its
processing stage.

The value of latency/cycle time for the N client system may be easily guessed and is: 3NY + X.
This is consistent with results obtained using standard simulation techniques.

6.3 Conclusion

The client-server approach to parallel collision detection is successfully analysed using the Analyti-
cal Simulation technique. Different aspects of the model are examined to determine their influence
on the overall performance of the model, and to test the analysis tool.

The tool performs well and delivers the required results. Problems are caused by the number -
of paths resulting from non-deterministic chioices. Substantial human intervention is required to
simplify the vast quantities of results that are produced. These problems are addressed in an
extension to the original technique described in Chapter 7.



Chapter 7

State space extensions to

Analytical Simulation

This chapter describes the state space extensions to Analytieal Simulation that are applicable to
periodic systems. It begins by describing the advantages of state space analysis, before explaining
the method in more detail. Once the description of Analytical Simulation is complete, its areas of
application, limitations and advantages are discussed in section 7.3.

The Analytical Simulation approach as described previously suffers from two significant limi-

tations:

¢ Non-determinism causes the possible simulation paths to increase, often exponentially. This
makes thorough analysis of the results time-consuming, and increases the computing re-

sources required to perform the analysis.

e The simulation is only performed for a limited number of steps. Any characteristics of the.

model that are not present in this portion of the execution trace are ignored.

The systems being modelled in this thesis, virtual reality systems as well as real-time systems in
general, share a common characteristic. They are all intended to run indefinitely, and thus repeat
the same sequence of events periodically. Results are produced for every cycle of the program,
but at no point does the system reach a state at which all computation is complete. The values of
input data, and those of the output results are ignored for the purposes of performance analysis.
In such systems all data undergoes the same sequence of transformations, regardless of its value.
This periodic nature means that the states of the program recur and the state space graph of the
program is cyclic. Conventional simulation as used in Analytical Simulation often explores states
that have been examined before. It is much more efficient to keep track of the state space graph
of the program and to use this to prevent duplication.

Non-determinism creates states with multiple outgoing arcs to each of the states resulting from
resolving the non-determinism in all of the possible manners. If these nodes do not occur in cycles
then this behaviour is only transient, and can be identified as such. If the node occurs in a cycle,
then it can be identified as a recurring state. Finding all paths in a cycle may be expensive but

88
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only has to be done once for the cycle, not an arbitrary number of times as is being done with
standard Analytical Simulation. )

“Since the complete state space can be explored, 3]l aspects of the model are examined. Travers-
ing state space allows automatic detection of recurring states so there is no need for guessing at a
limit to the interesting activity as before.

Before examining the methods for analysis of state space graphs, a working definition of the

state of a parallel program is given.

-- =

7.1 The state of a parallel program

The state of a conventional sequential program consisting of a sequence of instructions can be
specified by providing values for the program counter and all variables defined in the program.
These variables include the registers and stack used for executing the program.

The requirement of any definition of a program state is that given any particular state it must
be possible to determine the successor state uniquely. The successor state is found by executing
a single program statement. This requirement must be satisfied when selecting a specification for
the state of a parallel program. ,

If one considers a number of sequential programs running simultaneously, a parallel program
in which no interaction occurs between processes, then the state of the parallel program can be
given as a tuple, containing the states of the individual processes. As long as a successor state is
chosen using some consistent rule (e.g. advance every process by one statement) then it is ufﬁduely
determined by its predecessor. Once synchronization constructs are introduced, however, this is
no longer sufficient. Consider a message passing situation where two processes are both executing
a statement which sends a message to a third process. To suitably imitate reality, it would be best
if the message sent first arrives first (assuming equal transmission times). At present there is no
information included in the state definition to allow this. Adding a field giving the local time of
each process would provide this.

In the case when non-deterministic communication can occur, the successor state must be
chosen non-deterministically and is not uniquely determined. This is acceptable (since it occurs
in real programs) and must be modelled.

As explained previously, the periodic nature of the programs produces cyclic graphs of the
program execution. Adding in a field giving the absolute time for each process would prevent this,
since time is monotonically increasing. Instead relative values are used. One process is used as a
reference and is set as the origin of the time axis in each state. The times of the other processes are
given relative to the reference. More than one level of referencing can be used if all the processes
do not have equal cycle times. This could reduce the number of unnecessary duplicate states.

A simple successor function executes one statement of one of the processes. Where processes
must synchronize, each involved process must wait until all are ready to communicate. Other
successor functions are possible, some of which may allow uninteresting states to be ignored. For
example, three successive states in which the same variable is incremented can be replaced by one
state incrementing the variable by three times the amount. Such a modification does not affect

the subsequent analysis of the state space graph.
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The analysis of the state space graph examines paths in the graph. Interesting points occur
where state markers (start and end points of paths) and non-deterministic communication (points
where paths split) are-found. The state markers are statements to identify useful states, such
as when a process is in the first statement of its cycle. One relatively useful successor function
eliminates unneeded states by executing statements in other processes until it is impossible to

avoid executing the marker or performing non-deterministic communication.

7.2 The exploration of state space

The model is simulated, generating a description of each successive state. When a state is repeated,
then that branch of the simulation can terminate, knowing that the sequence of states that follows
has already been examined. Branching in the sequence of states occurs when non-deterministic
communication occurs and there is more than one valid successor state. The subset of the state
space traversed while simulating the model can be represented as a directed, cyclic graph.

The process is illustrated with the model given below. '

process clientl

report markerl
send server req
receive server rep
think X1

report marker?2

process client2

send server req

receive server rep

think X2

process server

declare ANY
receive ANY req
think Y

send [ANY] rep
assign ANY undef

This model examines the first client-server variation suggested in section 6.1.1, where the clients
spend different amounts of time processing. The declare statement in the server process causes an
extra dimension to be added to the state space to represent the values of the variable ANY. The
assign statement at the end of the server process sets the value of the variable back to a default

value, to reduce the number of states that will be explored. For purposes of illustration, and to



CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 91

Figure 7.1: State space graph for the client-server model

limit the size of the state space, the range of the variables is constrained to the region:
e X12>YV + X2
¢ 2V + X22> X1
¢ 2X2> X1

e Y 4+ X1>2X2

“The state space graph for this model, under the given constraints is shown in Figure 7.1.
State 2 corresponds to the second client getting the first message to the server, state 18 occurs
when the first client gets the initial message to the server. Marker 1 occurs in states 0, 6, 12 and
20, while states 5, 11 and 19 contain marker 2.

The values that must be extracted from the graph are cycle times and latencies. Large amoutts
of data are available in the graph, relating to these values. It is possible to generate all p;;ssible
sequences of the values that the model may produce. In order to provide a manageable amount
of information, only steady state values are extracted. Often only extreme steady state values are
given.

Cycle times can be found from the time it takes for a state corresponding to the execution of
a marker function to recur. Given that a particular marker is executed in states 4 and B, cycle
times corresponding to the time taken to go from states A to A, A to B, B to A, and B to B may
be found. ‘

Latency is slightly more complicated to calculate. Latency can be found by calculating the
time taken to go from a state where a first marker occurs, to a corresponding state where a
second marker occurs. Latency measures the time taken for information to move from one state
to another. Thus the notion of corresponding markers requires that there be a message sent from
the process with the first marker, after the marker is executed, and before it is executed again.
This message must arrive at the process with the second marker. Time measurement ceases with
the first execution of the second marker after the message arrives. '

This description of latency does not cover the situation where there is more than one message
that qualifies. In the case where the times for all messages are equal then this approach is sufficient.
When the times differ, for example when the frequency of the first marker differs from that of the
second, then further decisions need to be made. Choosing the messages on which the information
is transmitted would require further effort on the part of the user. At present, all messages are-

traced, unless explicit constructs are used in the model to limit search paths.
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2Y+1X1

Figure 7.2: Graph extracted for cycle time analysis

The analysis of the state space graph to determine cycle time and latency can be simplified
and unified once the relevant information is extracted. Only those states in which the required
markers occur are extracted, together with the time interval between these states. This can be
represented as a graph with the edges labelled by the time values. Cycles in this graph contain
recurring states, these states can occur infinitely often in the execution of f,he model. Minimum and
maximum latency/cycle time can be extracted by locating minimal/maximal cycles respectively.

The simplified graph can be easily extracted for cycle time analysis by searching for paths
between marked states in the original state space graph. The corresponding time value is that
which elapses in the process containing the marker along each path. The graph extracted for the
client-server example is shown in Figure 7.2. T

Generating this graph for latency is slightly more complex. Start states are those conéé,ining
the initial marker while stop states contain the final marker. The times for messages to move from
start states to stop states are required. This is done by tracing messages from start to stop states.
A pointer to the current location of the message is kept while searching for paths between start
and stop states. This is initialized to point to the process containing the marker in a start state,
and is set to the destination process whenever a message is traced. The path is only complete -
when a stop state is reached with the pointér set at the process containing the final marker.

Calculating the values to assign to the edges in the latency graph is complicated by the pos-
sibility of messages changing processes. The time fields in the state definition are used to offset
the time interval between two states by the difference in time values of the source and destination
processes. When no change in process occurs, this reduces to the value used to calculate edge
values for cycle time analysis.

The simplified graph does not contain the stop states, but joins the start states. Successive
latency values occur according to the sequence of states containing the start marker. The states
that may follow another are influenced by the value linking them. To obtain this value a méssage
is traced through the reachability graph of the program. The path followed by this message may
pass several branches in the graph. Each time it selects one route it is making a choice as to the
programs behaviour at that point. Successor states that are linked by the value produced from
this message are required to subscribe to the same behaviour. Thus these states must occur on,
or follow an extension of, the path of the message.

In some cases no message arrives at the destination process. In this case the nodes are joined



CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 93

1X1+2Y

'\\ ' 3V +1X2
<N

-
1X1+4Y 412 6 |

Figure 7.3: Graph extracted for latency analysis

by a NULL edge. This edge contains no value for latency.

The graph extracted to find the latency for the client-server example is shown in Figure 7.3..
The effect of tracing every message can be clearly seen, when compared to the graph used to find
cycle times. An example of one of the additional paths would be that from client! to the server,
then from the server to client2 (assuming the reply from the server is not traced, but instead
execution is followed around the server loop until a request from client2 arrives), around the loop
in client?, back to the server and then back to clientl. Obviously, in this example, this is not
the path that should be used to calculate latency; in other cases such a message path might well
be valid. The shortest path gives the fastest way to transmit messages between the two markers
and almost always gives the minimum latency. The exception is when modelling control flow with
message passing. In these cases special care must be taken to disable tracing of paths repres'enting
flow of control.
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7.3 Use of Analytical Simulation

7.3.1 Relationship to other work

The initial version of the Analytical Simulation appr‘oa:ch was inspired by work on data flow graphs.
This approach, discussed in section 3.4.2, introduces the process activity versus time diagram upon
which Analytical Simulation is based. In addition, analysis of data flow graphs provides the basis
of a system capable of measuring both cycle times and latencies.

-

Analytical Simulation is obviously based on analytic modelling (section 3.2) and simulation
(section 3.3) and combines the flexibility of simulation with the advantages of the analytic solution.

Analytical Simulation is extended to include state space analysis in Chapter 7, which improves
its ability to handle non-determinism in finite time. State space analysis is an integral part of the
analysis of Petri Nets (see section 3.4.1).

The areas in which Analytical Simulation stands out is in the generation of analytical solutions
to the models, and in the automatic generation of constraints, defining the regions in which a
solution holds. Analytical solutions using other approaches are limited to very simple models.
Numerical simulation is usually used for larger models. ,

Analytical solution techniques are also used for performance prediction in compilers for super-
scalar architectures (Wan94]. Cost of code fragments is estimated and represented symbolically,
as functions of the unknowns in the control structures. This allows estimation of the values of -
these unknowns to be delayed as long as possible. Comparison of the performance measures sym-
bolically is discussed. For expressions given as polynomials of a single variable, the differénce is
taken, and the roots identified. The intervals between these roots identifies the range of variable
values for which one expression is greater than the other. The sign of the difference in a particular
interval indicates which expression is greater. This can be compared to the approach described in
section 4.2.1 for linear expressions with multiple variables.

The use of analysis of traces bears a resemblance to work on CHITRA94 [Abr94] which performs
analysis on collections of traces resulting from program execution. Analysis produces a stocha;tic’
model which fits these traces to a specified level of accuracy. The characteristics of the random
variables contained in the model can be derived. In this way an analytic solution can be produced.
Traces can be produced by simulation, rather than from system implementation. Filtering is
performed on the traces to reduce the state space of the model that is produced.

The nature of the timing constructs with the Analytical Simulation approach bears some
resemblance to work done on Time Petri Nets. Stochastic timing is considered inappropriate for
modelling large, real-time systems by van der Aalst [Aal94], especially when real-time deadlines
need to be considered. Instead he proposes the Interval Timed Coloured Petri Net model which
assigns minimum and maximum deterministic firing times to the tokens in the Petri Net. A similar
approach [Ber91] uses Time Petri Nets which have minimum and maximum times assigned to the
firing of the transitions. Analysis in both cases involves generating a reachability graph of state
classes, where a state class consists of a marking of the Petri Net, together with a range of firing
times. The state class extension is necessary to produce a finite reachability graph. This bears

some relation to the constraint generation of Analytical Simulation, since manipulation of the
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ranges of firing times also involves manipulating sets of inequalities. The minimum and maximum
values for the Petri Nets are pre-specified and not automatically generated. Analysis is also
simplified by the use of numerical values for the limits, as opposed to the symbolic manipulation
of Analytical Simulation.

7.3.2 Area of application

The development of the Analytical Simulation approach has produced a number of enhancements
to_the analysis process, which tend to limit the area of applicability of the approach. Ultimately,
the approach is intended for use on message passing virtual reality systems, and is capable of that
in all its manifestations. In its least sophisticated versions, Analytical Simulation is applicable to
many other areas.

The original algorithm, described in section 4.1, is applicable to any architecture and model.
At this stage, the only requirement is the ability to simulate the program, and to determine the
length of the execution path for each process when synchronization occurs. With this very general
appgoach there is no indication of when the analysis should terminate.

‘The next refinement, discussed when considering the imblementation details, is to limit the
simulation to models of message passing architectures. This relies on the fact that all virtual
reality systems surveyed use message passing as their communication method. Having made this
decision, the modelling language can be specified and the simulation engine can be implemented.

Analytical Simulation is then refined to allow for automatic termination of the -analysis and
to permit finite analysis in the presence of non-deterministic constructs. This state space analysis
requires that the region of state space that can be reached by the model (reachability graph) is
finite. For real-time systems which do not terminate, this requirement means that the model must

be periodic. This is true for all models of virtual reality systems considered in this document.

7.3.3 Limitations
7.3.3.1 Discontinuities in the results

On occasion results quoted from Analytical Simulation analysis for different constraint regions may
show discontinuities in the region of overlap. These may often be associated with the presence of
transients in the boundary region, which are not, explicitly mentioned.

The presence of transients usually requires the existence of specific relationships between the
variables in the system being modelled. The length of the transient is also affected by the relative
values of these variables. Transients can arise, for example, when a process blocks waiting for
a second process. The length of time the first process blocks may decrease during each cycle
of the system. At some point the first process does not block any longer, possibly forcing the
second process to block instead, and a sudden change in the performance parameters results. As
the transient behaviour stops a change is seen in system performance. When viewing only the
steady state values of the performance values, this is seen as a discontinuity as one moves from
one constraint region to another. '
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7.3.3.2 Constraints on the variables

The Analytical Simulation technique differs from many other performance modelling approaches
in that it is not stochastic. The presence of randdm variables would make the simulation step
impossible. This technique requires that two expressions be compared; this is not possible should
the expressions contain random variables.

The automatic generation of constraint regions allows a degree of freedom in the variable values,
since the same expression for the performance value applies throughout a particulaf region. Rather
than having to specify the range or distribution of variables values beforehand, the Analytical
Si;nulation approach allows the nature of the model to define these. Variations in the values of

the variables within a constraint region do not affect the nature of the program behaviour.

7.3.3.3 Limitations on the systems being modelled

Analysis, especially that using state space constructs, requires the presence of repeated values.
Thus the system being modelled should be periodic. This is usually the case in systems that run
continuously, especially virtual reality systems. - ,

The complexity of the analysis, and the time required to perform it, grow rapidly with the size
of the model, especially if there are many points at which a non-deterministic choice is possible.
Analysis may have to be limited to relatively small numbers of processes; however these are usually
enough to exhibit the characteristic behaviour of the system.

7.3.3.4 Interpretation of the results

The interpretation of the results can be complicated, though possibly less so than for many other
techniques. Since there is no explicit dependence in the model on the number of processes, this
dependency needs to be extracted by repeating the analysis for different numbers of simulated
processes, and then deducing the dependency. The complexity of the output often benefits from
human intervention. The order in which constraints are introduced is not always the most eco-

nomical, especially since that step is independent of the nature of the values being derived.

7.3.4 Advantages

Given that the Analytical Simulation approach has some limitations, it also has several features
that are not found in other performance analysis and prediction tools.

7.3.4.1 Best at the analysis of virtual reality systems

It is intended for use on virtual reality systems and so provides the two measures critical to
determining the abilities of such a system. The cycle time value is found in a number of other
analysis techniques. Very few techniques produce a value for latency, and these are not suitable for
use with virtual reality systems. This approach has the advantage that much of the work required
to produce the one value is also useful for producing the other.
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7.3.4.2 Performance comparison

Producing output as a symbolic expression, given as -a function of the delays in the system, is
another feature speéiﬁé to this approach. While soine other approaches can give similar output,
the number of variables which can be used are usually limited, and predefined by the paradigm.
With Analytical Simulation, any processing or communication delay can be represented by a
variable, and the effect of that variable can be clearly seen in the result of any analysis.

The symbolic nature of the output means that Analytical Simulation is particuldrly suitable
for performance comparison. Rather than performing comparisons based on the performance on
a f)articular architecture, the relative complexities of the different approaches can be compared.

The automatic generation of constraints is found only in Analytical Simulation. In this way,
the manner in which variations in the system parameters affect the performance parameters can
easily be examined.

7.3.4.3 Automatic generation of constraints

The inability to use random variables is not necessarily a significant limitation. A number of other
performance analysis measures have the same limitations (for‘ example those based on Data Flow
Graphs). For systems where there is not much dependence on random events such as real-time
DSP applications, and to a certain extent virtual reality abplications, processing load is almost
constant, often within fine tolerances. Other performance prediction approaches, Petri Nets in
particular, are not well suited to the use of deterministic firing times. Markovian analysis of Petri
Net models with deterministic firing times is very difficult [Kan92].

The automatic generation of constraints allows a degree of freedom for the variable values.
Variables can take on any value within the limits given by a set of constraints without changing
the behaviour of the system. The only effect on performance is the result of reevaluating the

performance expression corresponding to that constraint region.

7.3.4.4 Support for non-determinism

An advantage to this approach is the ability to handle non-deterministic constructs and still
produce useful results. Other approaches [Men93], examining program traces, have difficulty with
non-deterministic receives.

An advantage of non-determinism is that it allows choices concerning the behaviour of the
system to be delayed until run-time. This simplifies the programmers task in that ordering of
events does not become crucial, but can lead to the system taking a less than optimal execution
path. In some cases the optimal path is not stable; once the system leaves that path it will never
return. Analysis of systems containing non-determinism can detect these cases, and the model
can be adjusted to eliminate the poor choices.

The origin of the Analytical Simulation approach means that it is easy to produce a trace
of process activity and communication, allowing the sequence of events corresponding to optimal
execution paths to be easily extracted. The close correspondence between Analytical Simulation .

models and the system from which they are derived makes it relatively simple to translate between
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the two. Alterations in the model to improve performance can readily be carried across to the
original system.

7.3.4.5 Automatic transient analysis

Transient analysis is straightforward using Analytical Simulation. The most common transient
arising is that from system startup, and the effect of this is clearly visible once latency and cycle
times are extracted from the state space graph. R

A given model can easily be modified to introduce perturbations in variable values. Extracting
the performance values immediately after such an event can be done with ease, and both the
value and length of the transient can be seen. The automatic generation of the constraints in the
variables associated with a model, implicit in the Analytical Simulation approach, also provides
some revealing information about transients in the system that may occur only for certain variable
values (see section 6.1.4).

7.3.4.6 Proof of program properties

Another useful side effect of Analytical Simulation with automatic constraint generation is the
ability to determine certain properties of the model, such as the absence of deadlock. During
simulation, all possible states of the program are visited; checks for deadlock and other properties of
the program can easily be included. Checking for deadlock is in fact obligatory, since that condition
interferes with the periodic nature of the system. This ability is shared by other performance

analysis approaches which enumerate the state space of their models, such as Petri Nets.

7.4 Conclusion

The state space extensions to the Analytical Simulation approach overcome the two major dif-
ficulties in the practical application of the technique. The performance implications of nc;n—
deterministic constructs can be completely assessed. Complete analysis of the model is possible,
without the need to choose cut-off points. This results in improved performance as duplication of
effort is eliminated.

Section 7.3 describes the relationship of Analytical Simulation to other performance analysis
approaches. It gives details of the nature of the systems to which Analytical Simulation is best
suited. The strengths and weaknesses of Analytical Simulation are discussed. Its limitations do
not affect its applicability to the desired category of systems, while its advantages make it well
suited to the desired form of analysis. Analytical Simulation is ideal for the performance analysis

and comparison of parallel and distributed virtual reality systems.



Chapter 8

Verification of Analytical

Simulation

An approach suitable for the analysis of parallel virtual reality systems was developed and refined in
Chapters 4 to 7. This chapter describes its application to the decompositidn techniques used in the
collision detection algorithms, which were introduced in Chapter 5. This starts with the analysis
of the message passing and master-slave variations of the distributed collision detection algorithm.
The client-server approach to collision detection has been examined in detail in Chapter 67 A
comparative evaluation is also made of each technique in this chapter. -

The results obtained from this analysis are compared with values measured from implemen-
tations of each algorithm. The implementation is carried out on two architectures: a Transputer
cluster using synchronous communication with a well-connected network, and a group of worksta-
tions connected by Ethernet, a shared asynchronous medium.

The decomposition strategies used in implementing the collision detection algorithm are com-.
monly used in virtual reality systems. Successful analysis and validation thus holds implications
for the use of the analysis technique with virtual reality systems. In addition, some confidence
in the validity of the Analytical Simulation approach can be gained, before applying it in more

varied situations.

8.1 Message Passing paradigm

This approach is more common with hand written applications. Each process communicates using
direct, explicit message passing calls.

A simplified outline of the algorithm given earlier in section 5.3.1 is presented below:

while (running ()

Send message to every other process (own position)
Receive message from every other process (their position)

Calculate time of first collision for this molecule

99
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Send message to every other process (local best time)
Receive message from every other process (their best time)

Move molecule

This model assumes non-blocking communication, allowing processes to send and receive si-
multaneously. To stay in line with the blocking calls of the other approaches, the model is altered
slightly. A second process is added to buffer the incoming communication. Each processor is
assumed to contain two processes, a molecule process and its accompanying buffer I;rocess. The
updated molecule appears as follows:

Buffer process:

‘while running ()

Receive start message from local molecule
Receive data from all other molecules

Send receive_complete to local molecule

Molecule process:

while (running Q)
Send start message to local buffer
Send message to every other process
Receive receive_complete from local buffer
Calculate time of first collision for this molecule
Send start message to local buffer
Send message to every other process
Receive receive._complete from local buffer

Move molecule R

Having developed the model, we now need to identify the areas where sequential computation
occurs. As in the example in the previous section, the time taken to move the molecule, and
perform any other manipulations to it, is denoted by the variable X. In that example the variable
Y was used to denote the time it takes for the server to obtain the required data, and to package
it for transmission. In this approach it can reasonably be modelled by a processing interval before
firing off the batch of sends to each of the other molecules.

The model used for the Analytical Simulation tool is as follows:

replicate N

process molecule#buffer
receive molecule# start
replicate [N-1]
receive ANY data

endreplicate

send molecule# finished
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process molecule#
replicate 2
think Y .
send molecule#buffer start
replicate [N-1]
send molecule[###+((###+1) >#)]buffer data
endreplicate -t
receive molecule#buffer finished

endreplicate
think X

report moleculeend#

endreplicate

Analysis of this model gives a latency/cycle time value of 2Y + X, irrespective of the number
of molecules involved. This result assumes that each molecule occupies a separate processor and
that -communication takes no time at all. This latter assumption affects the implementation of
the model significantly. Sending off messages to the other molecule processes can be done naively
by assigning a number to every process and simply sending in numeric order. When the program
starts, almost all of the processes attempt to send -a message to the buffer process of the first
molecule. The zero communication costs allow this load imbalance to pass unnoticed.

Before examining the effects of communication costs, it is beneficial to decide on the manner
in which communication is modelled. In [Men95] the times taken for the send and receive messagé
passing operations are modelled as linear functions of the length of the message. However the
time for the receive operation in this case includes the time spent waiting for the message to
arrive. This factor is automatically included when using Analytical Simulation due to the nature
of the implementation of the simulation. In [Adv94], communication time, as well as the time
for the processor to send and receive data, is modelled as a linear function of the message size.
In the model at present, two types of message are being transferred. For each of these messages,
the length is fixed and so the costs are constant. For simplicity, the two types of message are
assumed to have equal length and so total overhead for a single message is modelled by the single
variable C'. The sending process blocks from the time it executes the send until a period C after
the receiving process has executed the corresponding receive command. The receiving process is
occupied with receiving the message for period C after synchronization with the sending process.
The extra level of detail involved in modelling time taken for the processor to execute the send
and receive commands can be implemented, if necessary, by including appropriate delays before
send commands and after receive commands.

Repeating the analysis of the model with the naive message passing order now that com-
munication costs are considered yields the following results: In the three processor case, the
latency/cycle time is 2V + X + 6C. Occasional values of 2Y + X + 7C are seen, immediately
followed by 2Y + X + 5C, keeping the average value unchanged. The four processor case is even -
more complex, due to the greater potential for non-determinism. Steady state values in this case
can range between 2Y + X 4+ 8C and 2Y + X + %C.
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The minimal values occur when the amount of time spent waiting for communication to occur
is minimized. The destination of the messages sent is fixed, but the receiving processors may
select the source im such a way that blocking in future communication is reduced. For the first
send, N — 1 processors are attempting to communicate with the first node and N — 2 must end
up waiting. This wastes at least N — 2 communication periods which can be used to improve
performance.

Optimal performance values are 2C' +2Y + X, when N = 2, and 2NC + 2Y + X for values of
N >2.

~ A more reasonable approach is to have each molecule start off by sending a message to its
(numeric) successor, and send to successive successors thereafter. This involves replacing the line

in the molecule process that is used to transmit data to the other processes with:
send molecule [ ((#+###)YN)+1]buffer data C

This approach yields immediate improvement. Latency/cycle time is now reduced to 2(N —
1NC + 2Y + X, where only the communication causes dependency on thé number of processors.

-The advantages of non-determinism are few. It simplifies the implementation of the code,
leaving difficult performance considerations to be resolved by the system at runtime. It allows
programs to respond to changes in the requirements of the various processes without explicitly
planning for these in advance. The disadvantages on the other hand are serious. Non-determinism
complicates the analysis of programs by exploding the possible execution paths. In a nurr}b,e'f* of
the examples examined already it is possible to get trapped into a less efficient mode of execﬁtion.
In future discussions, only the optimal solutions are presented.

8.2 Client-Server paradigm

The client-server model is analysed extensively in the preceding sections. The algorithm i$ -
troduced in section 5.3.2 and analysed in section 6.2. The final result given is 3NY + X as the
latency/cycle time. This result assumes‘ instantaneous communication.

Adding in an extra value C, for the communication overhead yields the following result for
latency/cycle time:

(N -1)C > X: 6NC + 3NY
X > (N - 1)C: (5N +1)C +3NY + X

Analysis of the analytical version of the performance of the system can be valuable in its own
right. The dependence on the variable Y (time spent in the server) in all the results indicates that
the system is always dependent on this variable. Thus any decrease in Y improves performance.
The variable X on the other hand, can be made sufficiently small such that the performance of
the system does not depend on it. There is a limit beyond which performance improvements must
result from increased bandwidth or faster server access.
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8.3 Master-Slave paradigm

The algorithm for the master-slave implementation of the collision detection algorithm (see sec-
tion 5.3.3) can also be modelled easily. The slave process is the more interesting and is outlined

below. The model of the master process is almost identical to the algorithm.

Slave Process:
receive message from master
case message of
reqdata :

process for a period of duration Y (look up data)-

send heredata to master
findyourbest :

(assume this is very fast)

send mybest to master
rununtil :

process for a period of duration X (move

molecule)

The communication time is represented by the variable C.

The model used for the Analytical Simulation of this system is shown below:

replicate N

process slave#

report start_slave#
receive master COMMAND
if COMMAND == reqdata

think Y

send master heredata C

endif

if COMMAND == findyourbest
send master mybest C

endif
if COMMAND == rununtil

think X

endif

endreplicate
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process master

report startmaster

replicate N
send slave# reqdata C

endreplicate

replicate N
receive slave# heredata

endreplicate

replicate N
send slave# findyourbest C

endreplicate

replicate N
receive slave# mybest.

endreplicate

replicate N
send slave# rununtil C

endreplicate
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Finding a point to attach markers for the measurement of latency and cycle time is less obvious

in this case. The slave cycles three times to carry out the equivalent of a full collision detection

cycle in one of the other two approaches. The alternatives involve either measuring a slave and

adding the results of three cycles, or measuring the cycle time of the master process. The former

option is chosen in this case, since it provides more information, allowing greater insight into the

system.

The results are shown below:

Y > (N-1)C> X:

(N+1)C+Y —X  Regdata

2NC Findyourbest
NC+X Rununtil
AN +1)C+Y Total

Y > (N =1)C, X > (N - 1)C:

204+Y Reqdata
2NC Findyourbest
NC+X Rununtil

BN+2)C+Y +X Total



CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 105

(N-1)C>Y,(N-1)C>X:

_ . 2NC-X _Reqdata’
2NC Findyo;;rbest
NC+ X Rununtil
5NC Total

X>IN-1)C>Y:

(N+1)C Regdata
2NC Findyourbest
NC+X Rununtil
AN+ 1DHC+ X Total

8.4 Modelling on a MIMD machine .

The preceding analyses have all dealt with a model of the various approaches to implementing
distributed collision detection. To confirm that the model is a fair reflection of reality it should -
be compared with the performance of an actual implementation. .

This section discusses some of the results obtained by implementing the three collision detecgion
algorithms on a cluster of Transputers. Each Transputer is an independent processor which can
exchange data via a communication link with one of its four neighbours. Communication is
synchronous, with both processes blocking while transfer of data occurs.

For the purposes of this experiment the processors are arranged in a completely connected
network. Given four links, it could be expected that five Transputers could be connected this way.
One link from one of the processors is required ‘for communication with the outside world, limifing

maximum processors to four when complete connectivity is required.

8.4.1 Message Passing on Transputers

The message passing model initially tested is the unoptimized one described in section 8.1. The
processing overhead modelled by the variable Y is extremely small compared to the other values
and is left out of the model. The cycle time predicted is thus 2NC+ X, for N > 2, 2(N-1)C+ X
otherwise.

The implementation of the algorithm also includes an artificially produced delay to increase
the value of X, otherwise that to would be too small to produce a noticeable effect. The value of X
was measured as part of the experiment and came out at about 5ms. An attempt was made to find
a value for C, using a variety of small test programs. A message size of 1000 bytes is used for all
communication. This value fluctuated so wildly according to the nature of the communication that
it was decided to calculate it from one of the measured cycle times using the predicted formula. -

The different values for C during the tests result from the nature of the communication protocol

on the Transputer links. Each byte sent is acknowledged by a few bits sent in the opposite direction.
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N | X/[ms] | C/[ms] | Cycle time/[ms] | Cycle time/[ms] | % Theory/Practice
Practice - Theory
1| 506 | 1.02 5.13 - 5.06 98.6
2 5.06 1.02 7.09 7.09 100 (Fixed)
3 5.06 1.02 11.08 11.15 100.6
4 5.06 1.02 13.11 13.18 100.5
Table 8.1: Performance of the MIMD message passing system

N | X/[ms] | C/[ms] | Cycle time/[ms] | Cycle time/[ms] | % Theory/Practice
Practice Theory

1 5.16 0.92 5.12 5.16 100.8

2 5.16 0.92 7.14 7.01 98.1

3 5.16 0.92 8.71 8.88 101.6

4 5.16 0.92 10.74 10.69 99.5
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Table 8.2: Performance of the optimized MIMD essage passing system

Consequently programs which use extensive bidirectional communication such as this one find a
different link speed to those which use one way traffic (such as the other two algorithms).

In general, it may be expected that the predicted results are always less than those aqhie'i;ed
in practice since other delays are left out of the model. This is less noticeable when calculating
the variables from the model’s predictions since these extra delays get added to the variable value,
increasing its value beyond what it may really be in practice. The value of C calculated in this
case is about 1ms.

Table 8.1 shows the values for different numbers of processors and provides a comparison of
real and predicted values. R

If the communication is optimized as discussed previously, then the model predicts cycle times
of 2(N - 1)C + X, for all values of N. Results from an implementation of this model are shown
in Table 8.2. Since the relationship between cycle time and N is a linear one, a linear regression
analysis is used to find the values of X and C in this case.

The predicted values from the model agree well with the values measured from the implemen-
tation.

8.4.2 Client-Server on Transputers

The cycle time for the client-server model is found to be (5N +1)C+3NY + X for X > (N -1)C,
and since X > 5C in the implementation, this value applies in all situations described here. The
value of C is calculated from the measured cycle time in the single client case which has a predicted
time of 6C +3Y + X, where Y is insignificant compared to the other variables. This value is lower
than those calculated for the message passing case, since the links are only being used in one
direction at any time. The results are shown in Table 8.3.

Once again the results are in agreement.
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N | X/[ms] | C/[ms] | Cycle time/[ms] | Cycle time/[ms] | % Theory / Practice
Practice . Theory
[ 1] 508 | 088 10.35 <. 10.35 100 (Fixed)
2 5.07 0.88 14.67 14.75 100.5
3 5.08 0.88 19.53 19.15 98.1
4 5.03 0.88 23.84 23.50 98.6

-

Table 8.3: Performance of the MIMD client-server system

N | X/[ms] | C/[ms] | Cycle time/[ms] | Cycle time/[ms] | % Theory / Practice

Practice Theory
1 5.00 0.88 9.37 9.37 100 (Fixed)
2 5.01 0.88 12.76 12.88 101.0
3 5.01 0.88 16.20 16.39 101.2
4 5.01 0.88 20.08 19.89 : 99.1

Table 8.4: Performance of the MIMD master-slave system

8.4.3 Master-Slave on Transputers

The master-slave model in section 8.3 yields a cycle time of (4N + 1)C + X for the situation in
which the implementation is tested, namely X > 5C > Y = 0. Results are given in Table 8:4.

Once again the results agree.

To justify the above statement and the others like it given in the previous few sections, it may
be worth describing some of the sources of error and their approximate magnitude. The system is
relatively homogeneous, all processors are identical and should all communicate at the same speed.
Measurements made on a random sample reveal differences of up to 15% in a few cases. This may
justify attempting to find an average value for C as is done above. Other overheads, such as’
extra processing not accounted for in the measurement of X, may become more noticeable as the
number of processors increases. Measurement of the largest of these, the intersection calculations

for the collision detection, showed this overhead to be about 1% of the measured value of X.

8.5 Modelling with Ethernet

Modelling the collision detection algorithms on a network of PC’s connected using Ethernet in-
volves several changes to the model. Ethernet is a shared medium, and only one process is
permitted to communicate at a time. All processors are connected using the same cable. This is
modelled by introducing an extra process to represent the medium. Other processes must first re-
quest permission from the medium before performing interprocessor communication. The medium
ensures that only one process communicates at a time.

The models below assume that only the processes in the system being modelled have access
to the network cable. The effect of other systems sharing the cable is ignored. The models do
not implement other Ethernet protocols such as packet collision detection and random backoff.
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Monitoring of cable transmission shows that these effects occur extremely infrequently when the
medium is used for single, synchronized systems such as those modelled.

~The other difference over the MIMD model is that communication is non-blocking. -Buffer
processes are included to simulate this aspect. The nature of the models, in that every message

requires an acknowledgement, means that the size of the buffers can be easily predicted in advance.

8.5.1 Client-Server on Ethernet .

This section examines the client-server model on Ethernet, examining successive refinements to
the model until a reasonable degree of accuracy is achieved. The first step is to model Ethernet
simply as having non-simultaneous communication which is non blocking.

The client-server model is such that each message requires an answer, so each client needs
to be able to buffer only one message, and the server needs to buffer at most N. The buffering
process includes receiving messages and transferring them to the destination process in the correct
order. The simple mode! outlined below also uses the buffer processes to model the transfer of the

message on the Ethernet cable, handling contention for the medium and modelling communication
overheads. B

process clisen[i] (N processes)

receive client[i] MESSAGE
send medium wantmedium
think C

send medium givemedium

send server MESSAGE

process serreql[i] (N processes)

receive server MESSAGE
send medium wantmedium
think C

send medium givemedium

send client[MESSAGE] somedata

process client[i] (N processes)

send clisen[i] reqdata
receive SERVER somedata
send clisen[i] reqsummary
receive SERVER somedata
think X

send clisen[i] reqsummary

receive SERVER somedata
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process server
receive CLIENT MESSAGE )
if MESSAGE == reqdata o
think Y
send serreq[COUNT] CLIENT
if MESSAGE == reqsummary

assign COUNT [COUNT+1]
- if COUNT == [N+1]

think NxY
send serreqli] i (N times)
process medium

receive SOMEONE wantmedium

receive [SOMEONE] givemedium

109

Comparing the predictions for this model with the results from an actual implementation yields
poor results. The parameters for the implementation are measured at 5ms for X, 0.02ms for ¥ and
2.9ms for C' (A packet size of 1000 bytes is used). For between 1 and 5 molecules practice differs
from theory by up to 50%. Examining the real system shows substantial overheads in sending
and receiving data, as opposed to simply transmitting the information across the physicralucrable.
At the specified bandwidth of 10Mbits/s, transmission should take only about 1ms. The extra

1.9ms measured by measuring the round time for a message to pass from one machine to another

and then back again includes extra time required to get the message through the hardware and a

rather extensive array of network drivers.

A portion of the model, modified to take these overheads into account is shown below:

process clisen[i]

receive client[i] MESSAGE
think S1

send medium wantmedium
think C

send medium givemedium
think S2

send server MESSAGE

process serreq[i]

receive server MESSAGE
think S1

send medium wantmedium
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think C
send medium givemedium

- think S2 - .
send client[MESSAGE] somedata

The values S1 and S2 represent the overheads of sending and receiving messages from. the
network respectively. This model only requires the sum of S1 and S2; the relative sizes of these

-

two variables are not needed at this point.
_ Even this model is not much more accurate. Examination of packet transmission for a variety
of different communication patterns reveal further interesting behaviour introduced by some un-
derlying network software. This software contains some interesting buffering mechanisms, which
complicate the interpaci(et transmission times. Since these network drivers are documented only in
expensive places, a number of experiments were performed to increase the accuracy of the model.
Firstly, the relative sizes of S1 and §2 are needed. These were measured using an oscilloscope
connected directly to the Ethernet. Two machines were programmed to bounce a packet between
them, as described above. The sending and receiving machines produce a pulse to mark the limits
of the S1 and S2 periods. These pulses were monitored on a second channel of the oscilloscope.
This gave the values of S1 and S2 as 0.9ms and 1.0ms respectively.
A second experiment examined a simple client-server system in which the server would receive
a request from each client until every client had sent one, and then would send replies to each
as quickly as possible. The results from examining the traffic patterns give rise to-a number of
interesting refinements to the model. The behaviour of the send operation depends on the time
of the last communication. If the network driver is still occupied in sending the last message, the
new message is placed straight into a buffer and the sending process can continue immediately. If
the driver is idle, the sending process is required to block for a period S1 before the message is
placed on the wire and the sender allowed to continue. A buffered message cannot be sent, as soon
as the wire is idle again, instead it has to wait an additional period S1. T
This asymmetric communication complica;ces the model. Fortunately this is limited to the
server process, since the client processes never send two messages in quick succession. The en-

hanced model is shown below.

replicate N

process serrec#
receive clisen# MESSAGE
think 82
send server MESSAGE

process clisen#
receive client# MESSAGE
send medium wantmedium
send medium givemedium

send serrec# MESSAGE
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process cliserrec#

receive comm somedata .
think §2 s

send client# somedata

endreplicate
process buffersend

send bufferlist get
receive bufferlist DEST
send numsending bufinc
receive numsending ok
think S1

send comm DEST

process bufferlist
receive CLIENT MESSAGE
if MESSAGE == get
if LENGTH ==
assign READY [READY+1]

endif
if LENGTH != 0

send buffersend BUF [HEAD]
assign HEAD [((HEAD+1))%(N-1)]
assign LENGTH {[LENGTH-1]

endif

endif
if MESSAGE != get

if READY ==
assign BUF[TAIL] MESSAGE

assign TAIL [((TAIL+1))%(N-1)]
assign LENGTH [LENGTH+1]

endif

if READY !=0

assign READY [READY-1]
send buffersend MESSAGE

endif

endif
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process numsending
receive CLIENT MESSAGE
if MESSAGE == get
send [CLIENT] [COUNT]
endif
if MESSAGE == inc
assign COUNT [COUNT+1]

endif
if MESSAGE == bufinc

if COUNT != 0
assign ISWAIT 1
endif
if COUNT == 0
assign COUNT 1
send buffersend ok
endif

endif
if MESSAGE == dec

if TISWAIT ==
assign COUNT [COUNT-1]
endif
if [ISWAIT] !'= 0
send buffersend ok
assign ISWAIT O
endif

endif

process comm

receive SOMEONE DEST
send medium wantmedium
send medium givemedium
send [DEST] somedata

send numsending dec

process odi

receive server DEST
send numsending get

receive numsending SENDING
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if [SENDING] ==
send numsending inc
think Si
send comm DEST
send server sent
endif
if [SENDING] != O
send bufferlist DEST

send server sent

endif

replicate [N]

process client#
report start._client#
send clisen# reqdata Si
receive cliserrec# somedata
send clisen# reqsummary S1
receive cliserrec# somedata
think X
send clisen# reqsummary S1

receive cliserrec# somedata

endreplicate

process server

receive CLIENT MESSAGE
if MESSAGE == reqdata
think Y
send odi cli[CLIENT]
receive odi sent
endif
if MESSAGE == reqsummary
assign COUNT [COUNT+1]
if COUNT == [N+1]
replicate N
think Y

send odi cliserrec#
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receive odi sent

endreplicate
- assign COUNT 1

endif

endif

process medium -

receive SOMEONE wantmedium
think C
receive [SOMEONE] givemedium

The model works as follows: Messages sent from the clients are directed to the corresponding
clisen processes which model the network drivers. The communication between these is modelled
as blocking for period S1, the expected delay for an idle network driver. This driver process
negotiates with the medium (Ethernet cable) for a free gap in which to send its packet, after
which it passes the packet to one of the buffers for incoming packets on the server.

Communication in the other direction is slightly more complicated. Messages sent from the
server process go to the odi process which models the network driver. This checks to see if a global
variable indicating the communication state is set. This is modelled by the process numsending.
If the driver is not idle it buffers the message and allows the server to continue immediately.. If it
is idle, it delays for period S1 before allowing the server to continue. At the same time it passes
the message to the process that models sending the packet over the cable.

This process, comm, also waits for a gap in the traffic on the wire before taking control, sending
the packet and releasing control. After the packet is sent, process comm sends a message to the
numsending process to indicate that the system is no longer engaged in the transmission of a
packet. This action triggers the process buffersend which feeds packets out of the buffer, if the -
buffer is not empty. T

This process, which extracts messagés one at a time from the buffer, is activated when the first
message arrives in the buffer. It sets up a callback with the numsending process which allows it
to continue as soon as the previous packet is transmitted.

The bufferlist process maintains the queue of messages in the buffer.

A comparison between the measured and predicted results from this model is shown in Ta-
ble 8.5. The values of the variables are shown in Table 8.6.

The theoretical values are less than those measured as may be expected, since the model
ignores various small overheads. The accuracy is less than for the Transputer model. This may be
attributed to lower precision in the measurement of the variables; the accuracy of measurement is
estimated at about 5%. There is also greater inhomogeneity in the machines involved. Variations
in the values measured by the machines (X and Y) are about 10%.

Having shown that the Analytical Simulation technique can successfully model this environ-
ment (albeit at the cost of an extremely complex model) for future modelling the network stack is -

replaced with one that is simpler to model. This network driver does no buffering and so simplifies
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N | Cycle time/[ms] Theoretical value Cycle time/[ms] | % Theory /
Practice Theory Practice
-1 2.7 . 651 +6C + 652+ 3Y, + X 22.1 97.7
2 26.6 851+8C +6S2+3Y + X 25.8 97.0
3 31.9 9S1+10C+752+4Y + X 29.6 92.6
4 38.1 1251+ 12C + 852 +4Y + X 35.2 92.5
5 4.7 14S1+15C + 952 +4Y + X 408 912

Table 8.5: Performance of the buffered Ethernet client-server system

X | 5.00 ms
Y |]0.02 ms
51 10.92 ms
C 1092 ms
52 1 1.00 ms

Table 8.6: Variable values for the buffered Ethernet client-server model

the model, at the expense of limiting the number of processes that can be used before dropped
packets become a problem. -

The model for this simple network stack is very similar to the one initially proposed to cater
for the sending and receiving overheads. The major difference is an addition to the receive-stage
of the server to prevent the S2 stages running in parallel. This is not needed on the client side

because only one packet is received at a time. The model is shown below.

process getrec

receive SOURCE want
receive [SOURCE] give

replicate N

process serrec#

receive clisen# MESSAGE
send getrec want

think S2

send getrec give

send server MESSAGE

process clisen#

receive client# MESSAGE
think S1

send medium wantmedium
send medium givemedium
send serrec# MESSAGE
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process cliserrec#
receive sersen somedata
think S2 2

send client# somedata

endreplicate

process sersen

receive server MESSAGE
think S1

send medium wantmedium
send medium givemedium

send [MESSAGE] somedata

replicate [N]

process client#
report start.client#
send clisen# reqdata
receive cliserrec# somedata
send clisen# regqsummary
receive cliserrec# somedata
think X
send clisen# reqsummary

receive cliserrec# somedata

endreplicate

process server
init
assign COUNT 1
endinit
receive CLIENT MESSAGE
if MESSAGE == reqdata

think Y
send sersen cli[CLIENT]
endif
if MESSAGE == reqsummary
assign COUNT [COUNT+1]
if COUNT == [N+1]
replicate N
think Y
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N | Cycle time/[ms] Theoretical value Cycle time/[ms] | % Theory /
Practice ) Theory Practice
! 20.7 - 6514 6C +652+3Y + X 20.4 100.1 -
2 241 851+8C +652+3Y +X 23.6 97.8
3 28.7 9S1+10C + 752 +4Y + X 27.1 94.4
4 33.9 10514+ 15C +75242Y + X 32.3 95.1
5 40.2 12514+ 18C +8S2+2Y + X 37.3 --92.8

Table 8.7: Performance of the standard Ethernet client-server system

X | 510 ms
Y 10.02 ms
S1 1070 ms
C |0.91 ms
52 | 0.93 ms

Table 8.8: Variable values for the standard Ethernet client-server model

send sersen cliserrec#

endreplicate
assign COUNT 1

endif

endif

process medium

receive SOMEONE wantmedium
think C )
receive [SOMEONE] givemedium

The results for this model are shown in Table 8.7, with variable values given in Table 8.8.

8.5.2 Message Passing on Ethernet

The message passing model is also based on the simple Ethernet communication principles intro-
duced in section 8.5.1. The major difference is that every process receives a number of messages
in a short space of time. Thus the protection system used in the client-server model to prevent
parallel receives is extended to each of the processes in this model. The relevant portions are

shown below.

replicate N

process clientr#

receive client# start

replicate [N-1]
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receive mol#recfrom[##+((##+1)>#)] somedata
endreplicate

_ send client# allhere

process client#
replicate 2
send clientr# start
replicate [N-1]
send mol#sen mol [###+ ((###+1)>#)Irecfrom#t
endreplicate
receive clientr# allhere

endreplicate
think X

process mol#sen

receive client# MESSAGE
think S1

send medium getmedium
send medium givemedium
send [MESSAGE] data

process get#rec

receive FROM wait

receive [FROM] give

replicate N
process mol#recfrom##

receive mol##sen data
send get#rec wait
think S2

send get#rec give

send clientr# somedata

endreplicate

endreplicate
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Since the value for Y in this case is insignificant compared to the other variables, it is dropped
from the model. The results for this approach are shown in Table 8.9. The variable values are the

same as those given for the client-server approach in Table 8.8.

8.5.3 Master-Slave on Ethernet

The master-slave model resembles the client-server version quite closely. Protection against parallel '

receiving is implemented only for the master. Since sending for the master is implemented (for
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N | Cycle time/[ms] Theoretical value Cycle time/[ms] | % Theory /
Practice Theory Practice
- 1 5.3 X- 5.1 95.6
2 10.9 2514+2C+252+4+ X 10.2 93.3
3 16.3 S1+10C+ 52+ X 15.8 97.4
4 26.6 S1+18C +252+ X 24.0 90.5

Table 8.9: Performance of the standard Ethernet message passing systent
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co}lvenience) as a number of parallel processes in this model, protection against parallel sending
is also included. Portions of the model are shown below.

process getrec

receive SQURCE want
receive [SOURCE] give

. - process getsen

receive SOURCE want
receive [SOURCE] give

replicate N

process masrec#

receive slasen# MESSAGE

send getrec want

think S2

send getrec give
send master MESSAGE

process massen#

receive master MESSAGE

send getsen want

think S1

send medium wantmedium

send medium givemedium

send slarec# [MESSAGE]

send getsen give

process slave#

receive slarec# COMMAND
if COMMAND == reqdata

send slasen# heredata

endif
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N | Cycle time/[ms] Theoretical value | Cycle time/[ms] | % Theory /
Practice Theory Practice
~ 1 16.1 451+ 4C + 452+ X 15.9 98.7
2 19.2 651+ 6C + 452+ X 19.1 99.6
3 23.0 - 651+8C +652+ X 22.8 99.1
4 27.1 1051 + 16C + 652 27.1 100.2
Table 8.10: Performance of the standard Ethernet master-slave system «
- if COMMAND == findyourbest
send slasen# mybest
endif
if COMMAND == rununtil
think X
endif
. endreplicate

process master

replicate N
send massen# reqdata

endreplicate

replicate N

receive masrec# heredata
endreplicate
replicate N

send massen# findyourbest

endreplicate

replicate N
receive masrec# mybest

endreplicate

replicate N
send massen# rununtil

endreplicate

The results for this model are shown in Table 8.10. The value of X in this case is 5.7 ms, the
other values are as given in Table 8.8.

8.6 Comparison of models and architectures

The symbolic values for the performance of the different models on the two architectures are

summarized in Table 8.11. The expressions shown are those that apply to the operating conditions
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Architecture | Decomposition Predicted Cycle Time
strategy
_ Transputer | Client-Server- BN+ 1)C+ X
Transputer | Message Passing | =~ 2(N-1)C+ X
Transputer | Master-Slave @UN+1D)C+ X
Ethernet Client-Server 6514+ 6C +652+3Y +X
851+8C +6S2+3Y + X )
951+ 10C +7S2+4Y + X |
- ' 10S1+15C +752+2Y + X
1251+ 18C +852+2Y + X
Ethernet Message Passing X
251+2C +2S2+ X
S1+10C+ 82+ X
S1+18C+282+ X
Ethernet Master-Slave 451 +4C +452+ X
651+ 6C + 452 + X
651 +8C +652+ X
1051 + 16C + 652

Table 8.11: Summary of the predictions for all architectures and paradigms

under which the implementations run.

Examining the different strategies on a particular architecture shows that the message passing
approach is best suited to the Transputer architecture, with its well connected network. The
dependence on a central service by the other two approaches limits the extent to which they
can take advantage of the communication facilities. The opposite situation occurs on the shared
medium where the client-server and message passing approaches scale better with number of-
processors than the message passing approach.

In all but one case, thereis a constant dependence on processing time. The exception is the last
sample of the master-slave paradigm implemented under Ethernet. At this point communication
bottlenecks result in the critical path being determined by communication time alone.

Comparison of the results for a particular strategy on both architectures yields additional
insight into its communication requirements. The client-server and master-slave approaches have
lower per-process communication costs on the shared medium. These approaches are better suited
to cooperating in a shared environment, and interleaving their processing and communication
without performance cost to the other processes. Message passing, on the other hand, makes
efficient use of the Transputer network. It passes more messages than the other two approaches,

which affects performance noticeably when it has to use a shared medium.
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8.7 Conclusion

This chapter describes the analysis of all three parallel collision detection approaches. This includes
a comparison between-the results of the modelling and results measured from implementation of
the algorithms on two parallel architectures.

The performance of the implementation on Transputer hardware compares extremely well
with that predicted from the modelling tool. The accuracy is slightly less when working on a
distributed system of PC’s connected with Ethernet. In both cases the results are within the
bounds of experimental error resulting from inaccuracies in measurements.

~ The symbolic form of the results of the Analytical Simulation allows comparison across ar-
chitectures and between different decomposition strategies. It also permits identification of the
variables on the critical path.

In its current form Analytical Simulation is capable of accurate analysis of the constructs
found in parallel and distributed virtual reality systems. In addition, the results allow comparison
between:

¢ The performance of different approaches on the same architecture.

e The effects of a variety of architectures on one approach.

8.8 Future work

The chapters leading up to this point have dealt extensively with the development of the Analytical
Simulation approach to performance prediction. A number of enhancements are described, of
which the state space extensions are the most significant.

There are still a number of areas in which enhancements can be made to improve the speed of
the analysis and to increase the immediate value of the results.

At present the system tends to produce more constraints than are strictly necessary given-
the results required. A number of constraint regions can correspond to the same values for the
metrics. Often these result from the order in which the constraints are created, and the combined
region can be defined by a smaller set of inequalities. It should be possible to remove or collapse
constraints, certainly in a postprocessing stage, but possibly while performing the analysis. This
latter option would also prevent duplication of effort during the analysis.

The number of states used in the state space analysis is at present an upper bound on the
number strictly required. It may be possible to remove some components of the state space vector
without affecting the final result. This would result in improvements in both the time and the
space complexity of the analysis tool.



Chapter 9

Performance analysis of virtual

reality systems

Parallel decomposition strategies used in parallel and distributed virtual reality systems were
examined in Chapter 2. Performance analysis techniques were surveyed in Chapter 3 and an
approach that is capable of generating the metrics required for the characterization of virtual
reality systems was developed in Chapter 4. The Analytical Simulation approach was refined,
and tested in Chapters 5 to 8. It is suitable for use with the constructs found in the various
decomposition strategies. ] o

. The remainder of this document is concerned with the application of Analytical Simulation to
virtual reality systems. The purpose of the following chapters is twofold:

o To provide a reference which describes the performance characteristics of the parallel de-~

composition strategies used in virtual reality systems.

o To explore the use of Analytical Simulation, and to identify the ways in which it can enhance

the understanding of the model urider analysis.

This chapter describes the strategy employed for the analysis, and provides a summary of the
ways in which Analytical Simulation can be employed.

9.1 Components of virtual reality systems

Chapter 2 identified parallel decomposition strategies used in virtual reality systems. The software
structure of any virtual reality system can be decomposed into three subsystems which perform the
functions of receiving input, modelling the world and producing the output respectively [Pra93]
[Ban93] [Pin96].

As seen previously in Chapter 6, understanding the complexities of the performance charac-
teristics of a system is made easier by simplifying the object under analysis. Each subsystem is

examined in isolation, after which the components are combined into complete systems.
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In multi-user virtual reality systems there are likely to be a number of input and output devices.
These can usually operate independently, since they operate on data specific to a particular user
and device. Thus no communication occurs between the various input/output devices. Sharing of
data and coordination of effort between nodes of the virtual reality system is the domain of the
world modelling subsystem. The effects of the various parallel decomposition strategies described
in Chapter 2 are examined with respect to the world modelling components.

The use of parallelism within the input and output subsystem is not unknown, but in light of the
discussion above it is limited to parallelism within a single instance of the corresponainé subsystem.
Thus the following strategy is applied when examining the subsystems of virtual reality systems:
Analysis of input and output concentrates on the parallelism within the subsystem; analysis of the
world modelling component examines the effects of the parallel decomposition strategies described
in Chapter 2.

9.2 Techniques used in Analytical Simulation

As may be expected for any complex system, a complete analysis of the performance characteristics
can produce a substantial amount of information. This is time-consuming to generate and may
produce a lot more information than is required to judge the behaviour of the model. There are
ways to decrease both the time and effort required to extract only the salient features. Many of
these are used in the following sections, and are pointed out as they occur. A brief summary of

these principles is given below:

o Simulate completely for small numbers of processes, and sample at higher numbers to confirm
trends.

¢ Identify optimal deterministic paths, and limit further analysis to the new, deterministic
model (see section 12.3.7).

¢ Random variables can be simulated using multi-state processes (see section 11.2), or by using
variables to represent the probabilities of different paths (see section 11.4).

e Limit the use of variables to the most significant delays, or where detail is required in the
analysis (see section 11.5).

o Simulate each decomposition strategy independently first, before considering their combined
behaviour (see section 12.3.2).

¢ Model only the visible characteristics of complex systems (as in section 12.3.4).
¢ Simplify non-critical portions of the model (see section 12.3.5).

e Tabulate (section 12.3.5) and graph (section 12.3.8) performance results to identify patterns
and to evaluate behavioural trends.

¢ Variables can be removed from the model, simplifying analysis without reducing the com- '

plexity of the model, by expressing one variable in terms of others (see section 13.4).
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9.3 Conclusion

The input, output and world modelling components of .virtual reality systems are to be examined
segarately at first, after which analysis of syétems%@nstructed from these components is to be
performed. The input and output subsystem are to be examined with respect to parallelism
within a single unit. The effect of multiple nodes interacting is to be examined with respect to
the world modelling component.

The Analytical Simulation approach can be deployed in a number of different ways. Some
strategies which speed up analysis by extracting only the required results are described.



Chapter 10

Analysis of the input subsystem

Input in current virtual reality systems is usually limited to devices such as some form of glove for
measuring hand configuration, and trackers for locating the gloves and the head mounted displays.
These and other more esoteric input devices can usually be viewed as sources of discrete events.
Each event provides an update on the status of the device at the next instant in time. The actual
data input is not relevant to the performance analysis. The factors of importance are the sampling
frequency and the latency of the input data. )

Many input devices used in virtual reality systems have a measure of sophistication in that they
are capable of converting physical measurements into digital form on their own. Some ,alsoha,y,e'{he
facility to perform some initial processing on the data, providing readings at regular intervals and
in the most appropriate format. This justifies modelling an input device as a separate processor,
and examining the performance effects resulting from this component of the virtual reality system.

Performance enhancements for the input components of virtual reality systems concentrate on
look-ahead algorithms, where the values associated with future events can be predicted. In this
way the latency, being the time between the actual event and the corresponding response, can’be-
cut down. ‘ »

This chapter explores the performance implications of the input subsystem, examining different

ways to read the data from the device, and considering the analysis of look-ahead.

10.1 Polled and interrupt-driven input

Many input devices can be read in two ways [Pol93] [Pra93]. The simplest is by using polling in
which the device is read when a data value is required. Alternatively, the device can be set up
to generate values continuously, so that the most recent value is always available. The computer
is usually interrupted to receive each data value, hence this technique is referred to as interrupt-

driven.
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A model of the polled approach to data input is shown below:

LVariableT Interpretation . J
- C | Communication time betweens input device and system processor
K Communication time between system processors
X Time between data produced by the input device

process device -

receive input req
report create
think X

send input rep C

process input

receive useinput request .
send device req C
receive device rep

send useinput data K

process useinput

report startask
send input request K
receive input data

report endask

The model contains three processes. The first reproduces the actions occurring on the input
device. Upon receiving a request for a value from the transducer, this process proceeds to in- ’
terrogate the device, taking period X to do so. This is then passed to the input process of the
virtual reality system itself. Some other component of the system needs to use the value obtained,
and this is modelled by the third process. Communication time from the input processor to the
attached device is modelled by the variable C', communication time between processors in the
virtual reality system is represented by variable K.

Two intervals are of interest in this model, the total time taken to fetch a value (the interval
from startask to endask), and the “freshness” of the value (from create to endask). The latter
indicates how well the value corresponds with the current situation in the real world.

For this model, the time taken to fetch the input value is 2K 4+ 2C + X, while the freshness of
the value is given by K + C + X.
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The alternative approach which continuously reads the device corresponds to the model below:

B [ Variable | Interpretation ) ‘
C Communication time between‘iriput device and system processor
K Communication time between system processors
X Time between data produced by the input device

process device

~ report create
think X

send input message C

process input

receive ANY message

if ANY == useinput
send useinput data K

endif

assign ANY undef

process useinput

report startask
send input message K
receive input data

report endask

The input device produces new readings at intervals of X. These are passed onto the input
process which supplies the latest value upon request. The total time to obtain a value with this

model, and the “freshness” are as given below:
MK >X>2n-1K: (n=0...00)

Fetch time = 2K + %C
Freshness = 2n+ 1)K+ C

The overall time taken to obtain a value has decreased over that for the polled approach, while
the freshness of the value has increased. This latter effect can be attributed to the need for the
input process to attend to the communication from the rest of the system, delaying its response to
the input device. The “freshness” value is an average one, particularly where X is large compared
to K. In this case re-reading the input is still returning the same value which is ageing steadily.
Another interesting point is the sudden discontinuity at points where X = 2nK, caused by using
the old value for an additional 2K cycles. If the input device is capable of supplying values
sufficiently rapidly (X < K), then these effects are not present.
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The interrupt-driven approach provides faster turn-around times for including an input value
into the virtual reality system. For a device capable of producing values rapidly (X < K), the
“freshness” of the value is larger for the interrupt—driveh approach due to the inability of the input
driver to service the interrupt while communicating{with the rest of the system. Should the archi-
tecture not be suited to performing communication and servicing external devices simultaneously
then the polled approach yields values with lower latency.

10.2 Look-ahead during input

Look-ahead using a predictive filter is studied in a number of cases related to virtual reality
systems. A number of different predictors, in particular Kalman filtérs and pfedictors based on
Grey system theory, are examined in [Wu95]. Predictors based on polynomial extrapolation and
Kalman filters are analysed in the frequency domain in {Azu95].

Analytical simulation is not well suited to examining the effects of prediction. Predictive filters
give an advance estimate of the values expected from the input devices.- While this has the effect
of reducing latency, the value predicted may be inaccurate. The effects of these errors in the
prediction influences the quality of the virtual reality experience. This quality of experience can

only be judged subjectively, and so a quantitative analysis is not given.

10.3 Conclusion

Relatively little analysis is performed relating to the input subsystem. The performance impli-
cations of polled versus interrupt driven input are described. Both approaches have their merits,
the choice depends on the target architecture. Look-ahead affects the quality of the system and
is not amenable to quantitative analysis. Further effects, involving the combination of the input

subsystem with the other components of virtual reality systems, are examined in Chapter 13.



Chapter 11

Analysis of the output subsystem

The graphical output of most virtual reality systems is produced using graphics workstations
which contain hardware implementations of the rendering functions. However these functions are
still combined using a variation of the standard graphics pipeline [Seg94]. Thus this chapter con-
centrates on modelling the graphics pipeline. Effects of parallelism on portions of the pipeline are
examined. Finally models of some pipelines occurring in virtual reality systems are investigated.

Output to other devices, such as force feedback joysticks, is also found in some virtual reality
systems. The use of parallelism in these componeﬁts is limited, and so these devices are not

covered in this chapter.

11.1 A model of the graphical pipeline

A model of a simple graphical pipeline is shown below. The pipeline used is composed of three
stages, representing transformation, hidden surface removal and rendering. Each stage is assumed
to take a certain length of time to complete, represented by T', H and R respectively, before paésﬁxé ’
its results to the next stage. Processes to model both the supply of data to the pipeline and receipt
of data after rendering are included. These are included to enable the effects of the processes
outside the pipeline to be modelled, and to facilitate some of the parallel modifications described
later. It is assumed that all processes run on separate processors and that all communication is
blocking.

LVariable [ Interpretation ]

Communication time between the stages of the pipeline
Time for the slowest stage (maz(H, R, T))

Time spent on hidden-surface removal for each item

Time spent on rendering each item

Nl =Y Q

Time spent on transforming each item
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process source

report markerl

process transform

receive source input

think T
send hiddsurf m1 C

process hiddsurf

receive transform mi

think H
send render m2 C
process render

receive hiddsurf m2
think R

send sink output C

process sink

receive render output

report marker?2

send transform input C

Latency is measured from marker! to marker2. The cycle time is determined from the period

between recurrences of marker2, which is related to the frequency at which data is output.

Analysis of this system yields the following results:

T>H,T>R:
Cycle time
Latency =
T>H,R>T
Cycle time

Latency =

20 +T
5C+2T+H+R

2C+R

5C + 4R!

1The system with these constraints is subject to an initial transient value whose duration depends on the relative -

values of T, H and R. This eventually reaches the stable state shown. See the previous example on pipelines in

section 4.1 for more detail.
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H>T,H>R:
Cycle time = 2C+H.
B Latency = 5C +3H + R
H>T,R>H
Cycle time = 2C+R
Latency = 5C +4R i

. The results for this model differ only slightly from the previous pipeline model given in the
initial example of Analytical Simulation (see section 4.1). These differences can be attributed to
the source and sink stages, and to the communication delay.

The results agree with intuitive expectations. The cycle time is dominated by the slowest
stage. The value for the cycle time is the time for this stage plus the time to get the data in and
to send it out. Latency may be slightly less obvious: before the slowest stage, messages block at
each stage for a time equal to the time of the slowest stage. After this stage there is no further
bottleneck and data passes through as fast as possible, limited only by the processing time of each
staé;e.

It is interesting to note that the source process contributes to the latency, even though it
produces messages as fast as possible, and has no explicit delay. The next message is ready as
soon as the transmission of the previous one is complete. The source process then blocks for a
period equal to the delay of the slowest process while trying to send. By adding an extra delay in
the source routine, latency can actually be reduced without affecting cycle time.

Since latency in this model is measured from the time that data is generated (usually immedi-
ately before it is sent) until it arrives at its destination, delaying the time of generation decreases
latency. Changing the model to implement this is done by sending a message back to the source
from the next stage, once that stage has finished processing and is ready to receive the next mes-
sage. The source can then produce the next message and send it, knowing that the destination is
ready and that it will not block on the send operation. Latency in the model is reduced by C'+ D,
where D is the time taken on the slowest stage.

Comparing this to other work on lag in virtual reality systems [Wlo95], the effect being noted
is synchronization lag, resulting from processes blocking while waiting to pass data on to others.
The solution proposed by Wloka involves delaying processes so that one finishes just as the next
starts. This requires the ability to determine the exact time taken, so that computation can be
started at the correct point. Given that communication delays are not being modelled by Wloka,
it is simpler to adopt the feedback approach suggested in this section.

This result has significant implications for virtual reality systems. If the system is sending
redraw requests to the graphics pipeline at a rate faster than the rate at which the pipeline
can render, then better performance can be achieved by either dropping certain frames, or by
performing extra work before the state of the world for the next frame is sent to the renderer.

Adding the feedback to the end of the pipeline sets the latency to a constant value of 4C' 4-
T 4+ H + R for all values of the variables, but has the side effect of increasing the cycle time to
5C+T+ H+R.
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11.2 The use of buffering in the pipeline

When processes take variable amounts of time to process data, the steady flow of data is interrupted
and processes must block while waiting to send and receive data. This wastes processor time and
lowers the efficiency of the parallel system.

One approach to maintaining a continuous flow of data through a pipeline is to add buffers
between the output and input of two adjacent stages. This allows the rest of the pipeliné to
continue to perform useful work, while the blocking affects only the buffer. It increases the chance
that there is data waiting whenever a process finishes its current cycle and needs to fetch more.

" There some difficulty in modelling this with Analytical Simulation, since the analysis tool
does not provide for random processing times in the model. Stochastic modelling tools such as
Petri Nets might allow this but such tools do not easily provide analytical values for latency, the
important variable with this modification.

The system is modelled using a tristate process to introduce an extra occasional delay in one of
the stages of the pipeline. This process cycles through three delay values, two small and one large.
The effect of placing the slow stage and the buffer in different sections of the pipeline is explored
this way. The use of a multi-state process is not too dissimilar from reality. Virtual reality scenes
often contain a mixture of complex and simple objects whose relative processing times in different
portions of the pipeline differ.

Rendering is typically slower than the other stages and more sensitive to the complexity of the
object. The effect of placing a buffer before this last stage of the pipeline is examined below..

The model that is used in this case is a simple variation of the pipeline seen in sectioﬁ 11.1.
For simplicity, each process cycles with a period D. The final stage delays for 3D once every three
cycles. The modified final stage is shown below:

Variable ] Interpretation ]
C Communication time between the stages of the pipeline .
D Delay in each stage of the pipeline (except for the tristate stage)

process render

receive hiddsurf m2
think D
send sink output C
receive hiddsurf m2
think D
think D
think D
send sink output C
receive hiddsurf m2
think D

send sink output C

Analysis of this system gives a cycle time of 2C + %D and a latency of 5C' + 23—OD.
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A buffer process can now be added between the hidden surface removal and rendering stages.
This process is shown below. A communication cost B is associated with extracting information
from the buffer. = _ -

[ Variable | Interpretation J
B Time required for communication with the buffer
C Communication time between the stages of the pipeline
D Delay in each stage of the pipeline (except for the tristate stagé)

process hiddsurf

receive transform mi
think D
send bufferli m2 C

process bufferl

receive hiddsurf m2

send render m2 B

process render

receive bufferl m2

The performance of this model is given below:

B> C:
Cycle Time = C + $D + B (>) e
Latency = 2C + %sD +4B (>)
C > B:
C >2D+ B:
Cycle Time = 2C' + D (<)
Latency = 5C + 3D + B (><)
C > B:
2D+ B > C:
2C > 2D + 2B:
Cycle Time = 2C + D (<)

Latency = 2C + 2D+ 3B ><)
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C > B:
2D + 2B > 2C-
3(;2 2D + 3B:

Cycle Time = 2C + D (<)

Latency = 4C + 6D + 2B (><) )
C > B: |
215 + 3B >3C:

Cycle Time =C + 3D+ B (<)

Latency = C'+ 2D + 5B (><)

The symbols in parentheses after the values indicate whether the value is less (<) or greater
(>) than the value for the system without buffering. It can be seen immediately that the case
B >-C gives worse performance in the buffered situation. Thus buffering is not effective unless
communication with the buffer is faster than communication with other processors. This has im-
plications for the practical implementation. Since the buffer does not have a substantial processing
overhead, it can be added to a processor containing a process that communicates with the buffer.
Communication can then occur using a faster mechanism, such as shared memory. N

The cases where B < C show improvement in the cycle time. The effect on the la,fency Eén be
less beneficial, as may be expected since the length of the pipeline is being increased. Depending
on the relative values of the variables, latency may either increase or decrease. Examples of each
possibility are shown below:

For the case:
C > B:
2D+ 3B > 3C:

Unbuffered latency is given by 5C + 2D, and buffered latency is given by C'+ 2D +5B. For
the variable values:

LB LD TUnbuf‘fered latency | Buffered latencyw
0|ic 15C Zc
cl| 0 5C 6C

For this case, a decrease in latency when buffering is added occurs when 4C > $D + 5B.

Adding a second buffer routine also causes increases in cycle time and latency for the case
when B > (. For the other case, C' > B, cycle time is reduced over the unbuffered case. No
improvement in the cycle time occurs relative to the version with a single buffer. For some of
the latency values corresponding to a set of constraints on the variables it is no longer possible to
achieve a latency value smaller than the unbuffered version, by varying the values of the variables

within the constraints.
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The buffering effects are intended to smooth out delays around the slow stage. The next results
describe the effects of placing the slow stage earlier in the pipeline, and placing the buffer before,
and/or after it. The hidden surface removal stage is replaced with the tristate process. The
transformation and rendering stages are the simple versions with only a single processing delay of
duration D. The results are as follows, where it is now assumed that C > B:

rConstraint region1 Cycle Time ] Latency

No buflering
— | 2c+3p | sC+6D

Buffer before slow stage

2D+B>C. |3C+3iD+iB | YC+2D+1LiB
C>2D+B 2C + D 5C +6D + B
Buffer after slow stage
— | 20+%iD 5C +6D + B
Buffer both before and after slow stage
C>2D+B 2C+D 5C + YD+ 2B
2D+ B >C 2C+D BC+¥D+1IB
2C > 2D + 2B
2D + 2B > 2C 2C + D - 4C +6D + 3B
3C >2D+ 3B
2D+3B>3C | C+5D+B | 2C+%2D+5B

Adding buffers before the hidden surface removal stage results in improvement in cycle time.
Latency is increased. The greatest improvement in cycle time with least cost in latency occurs for
relatively large values of C, where communication is slowing the system and the buffer smoothes
the flow of information.

It is thus possible to improve the performance of the graphics pipeline with an uneven load By" ’
adding buffering. Cycle time in particular can be decreased. In some cases latency can be improved
as well, in others there is a tradeoff between improvements in the cycle time against increases in
the latency. Care has to be taken with the implementation to ensure that the operating conditions

do not cause a reduction in performance instead.

11.3 Parallelism and the pipeline

There are additional ways to exploit parallelism in a pipeline, other than by just adding additional
stages [Ban94b]. A section of the pipeline can be rewritten to run in parallel, with the intention
to lower the time taken by that particular section. Another option is to replicate the pipelines
and to have a number of pipelines running in parallel.

The first model divides the final stage of the pipeline into N smaller sections which run in
parallel. The time taken for each of these sections should be about —;—,— of the time taken for the
original stage. In practice it is probably slightly greater than this, but should not exceed the time

required for the original if any gain is to be expected. The relevant portions of this model are
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shown below:

l&wiable l Interpretation ‘ }

‘Communication time between the stages of the pipeline

Time spent on hidden-surface removal for each item

Number of rendering stages in use

Time spent on rendering each item in each of the parallel renderers

Nl == Q

Time spent on transforming each item -

process hiddsurf

receive transform mi
think H

replicate N
send render# m2 C

endreplicate

replicate N

process render#

report rend#
receive hiddsurf m2
think P

send sink output C

endreplicate
process sink

replicate N
receive RENDER# output

endreplicate

report marker?2
The latency and cycle time measured from this model are given below:
(N-O)C+H>T,P>(N-1)C+H:

Cycle Time = 2C+P
Latency = 5C + 4P

(N-1)C+H>T,(N-1)C+H > P:

Cycle Time = (N+1)C+H
Latency = BN +2)C+3H+P
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T>(N-1)C+H,T>P:

Cycle Time = 2C+T
L:au’tencyr=~ (N+4)C+2T¥H+ P
T>(N-1)C+H,P>T:

Cycle Time = 2C+ P

Latency = 5C + 4P (Transient present in this case)

" The behaviour of this approach agrees with what could be extrapolated from the previous
results for parallel pipelines. Cycle time is dominated by the slowest stage in all but one case.
Latency follows the same lines as before, except for a large communication component. Ignoring
this for the moment, the latency has the same relative dependency on the other three variables,
with P taking the place of R. Since P = %, this gives an improvement in both the cycle time and
the latency. .

The substantial dependency on the communication is a result of the manner in which this aspect
of the model is designed. The model assumes that each process is only able to send one message
at a time. This would apply to situations where not all processors are directly interconnected, or
where hardware limitations require that one message be completed before the next can be sent.
The large communication component in the second case above is due to the substantial bottleneck
produced by the combination of a slow second stage and the extra communication. The ﬁrswtr_st'é:ge
is ready to send again almost immediately and has to wait almost a whole cycle before being able
to pass data on to the next stage. This accounts for one third of the communication factor in the
latency, the sequential communication into and out of the final stages is responsible for the rest.
This is also a case where a delay in the source process would actually decrease latency.

A model of a system with sufficient connectivity to allow parallel communication is shown
below: e

LVariable l Interpretation

Communication time between the stages of the pipeline

Time spent on hidden-surface removal for each item

Communication time between intra-processor processes

Number of rendering stages in use

Time spent on rendering each item in each of the parallel renderers

Nim| =2l a

Time spent on transforming each item

process hiddsurf

receive transform ml
think H

replicate N
send renders# m2 L

endreplicate
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replicate N

process renders#

- receive hiddsurf m2 -

send render# m2 C

process render#

receive renders# m2
think P

send renderr# output C

process renderr#
receive render# output

send sink output L

-endreplicate

process sink

replicate N
receive RENDER# output

endreplicate

report marker?2

The variable L is introduced to model the time required to send a message to 01: from one of
the extra processes. These processes are likely to be on the same processor as the process using
them for concurrent communication. Thus, this value can be expected to be small, certainly less
than C. Analysis of this model gives the following:

NL+H>C+T,C+P>NL+H:

Cycle Time = 20+ P
Latency = 7C + 5P

NL+H>C+T,NL+H>C +P:

Cycle Time = C+NL+H

Latency = 3C+3H+(BN+1)L+P
C+T>NL+H, T>P:

Cycle Time = 2C+T

Latency = 5C+2T+H+(N+1)L+P

C+T>NL+H,P>T:

Cycle Time =

Latency =

2C+P
7C + 5P
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This approach does not automatically yield the improvement that could be expected from using
a better connected network. The cycle times are either unchanged, or improve. Latency on the
other hand, improves in two cases (assuming L < C), but increases in the other two cases, where
the parallel rendering time P dominates. In this latter case, an increase of 2C + P is found. The
additional factor P can be expected, since an extra stage is added before the bottleneck process.
The extra 2C results from earlier stages in the pipeline having to block while holding data, thereby
increasing latency. Once again, feedback can reduce this latency without cost to the cycle time.
A feedback message from the first stage to the source is capable of reducing latency to the values
achieved with the previous model. Using feedback from the second stage results in a improvement
in latency for large values of P. The latency in this case is 4C + 3P.

Parallelizing additional stages of the pipeline yields similar results. The variable representing
the time for the stage is replaced by the variable representing the time for one of the parallel
components. Cycle times improve when this change occurs to the slowest stage. Latency can be
improved when the affected stage occurs at or after the slowest stage.

Two points are again reinforced by these results. The length of the pipeline before the slowest
process should be kept as short as possible, since the latency in these stages is equal to the
proééssing time of the slowest process. This may make it feasible to combine some of the stages,
provided the total time for the combined stage does not exceed that of the slowest stage. The
results also indicate that having each stage accept data as soon as possible is not always best
when considering performance issues. Having processes sitting idle can yield better performance
than having a process waiting to send data on to the next stage. Both these issues affect latency
independently of cycle time.

The manner in which the relative performance of different models differs according to the
constraints on the variables suggests that modelling could also be useful after implementation of
a system. Some enhancements, for example the feedback used above, are more relevant to certain
variable values, and could be applied once these values are measured for a particular system. .

The preceding discussion has examined the use of further parallelism within the pipeline. The
effect of combining a number of pipelines in parallel is examined with the next model.

The following specification defines the model of parallel pipelines. The source process feeds
data into each of the IV pipelines in turn. The results are removed at the other end of the pipeline
in the same order.

{ Variable [Interpreta,tion : J
C Communication time between the stages of the pipeline
H Time spent on hidden-surface removal for each item
N Number of pipelines in use
R Time spent on rendering each item
T Time spent on transforming each item
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process source

replicate N
report -markers .
send transform# input C

endreplicate

replicate N e

process transform#

receive source input
think T
send hiddsurf# mi C

process hiddsurf#
receive transform# mil
think H

send render# m2 C

process render#
receive hiddsurf# m2

think R
send sink output C

endreplicate

process sink

replicate N
receive render# output C .
report markerf

endreplicate

The results of using Analytical Simulation on this model differ, as may be expected, according

to which stage of the pipeline takes the longest. The results are shown below:

Dominant Variable | Cycle Time [ Latency
T 2C4+T (BN+2)C+(N+2)T+NH+NR
N N
H 2C+H BN+2)CH2N+1)H+NR
N N
R 2C+R (BN+2)C+(BN+DR
N N
(N-2)C,for N >2 C 4C+T+H+R

The most obvious benefit from this approach is the perfectly linear decrease in cycle time
with the number of processors, provided communication is fast enough. At some point, however
(N — 2)C outstrips each of T, H and R and performance reaches a constant level, independent
of number of processors. The equally obvious limitation is the near constant value of the latency

which decreases by marginal amounts as N is increased (and while (N — 2)C does not dominate).
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11.4 Pipelines in practice : Zero latency rendering

The problem of latency in rendering stages of virtual reality systems is addressed by some clever
modifications to the hardware of the display contreller [Reg92] [Reg93]. When the scené is ren-
dered, it is drawn in a manner independent of orientation. In effect the scene is drawn on a
sphere surrounding the viewer rather than just on a rectangular viewport. Extracting the portion
containing the area that the viewer is looking at and displaying this on the screen is the respon-
sibility of the display controller. This requires extensive modification to the address recalculation
hardware to allow this transformation to occur quickly enough for screen display directly from the
spherically rendered image.

Thus changes in orientation can be made to take effect immediately (or on the next refresh
cycle if a stable image is required). Changes in orientation (rotation) can be introduced directly
at the end of the graphics pipeline. As mentioned in [Reg93):

“ ..it becomes possible to bind rotational latency to the refresh cycle period which
tends to be short, fixed in length and independent of scene complexity.”

“This modification is of use only for changes in orientation. Translation of the scene still requires
re-rendering. Since a greater area needs to be rendered, it can be expected that latency on trans-
lation is increased. An effort is made to reduce this by providing image overlaying functionality
with the modified address recalculation hardware. Objects at different depths may be rendered
on different display memories. These are automatically combined during the refresh cycle, . The
images corresponding to ob jects further away could be re-rendered less frequently.

The model of a pipeline with zero latency abilities is shown below. Since the zero latency
enhancement is limited to rotation, the normal pipeline is maintained for cases when translation is
required as well. As done previously, random selection of rotation/translation has to be emulated
by preselecting some periodic mixture of the two. This model produces a sequence of N simulated

rotations followed by M translations. o

[Variable Interpretation-

Communication time between the stages of the pipeline

Time spent on hidden-surface removal for each item

Length of each sequence of translations

Length of each sequence of rotations

Time spent on rendering each item

Nimlz[Z(h|a

Time spent on transforming each item

process Ssource

replicate N

report markerl

send transform nolat C

endreplicate
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replicate M

report markeril

- send. transform input C

endreplicate

process transform
receive source X
if X == nolat
send hiddsurf nolat

endif
if X != nolat

think T
send hiddsurf mi C

endif

process hiddsurf
receive transform Y
if Y == nolat
send render nolat

endif

if Y != nolat

think H

send render m2 C

endif

process render
receive hiddsurf Z
if Z == nolat
send sink output

endif

if Z '= nolat

think R

send sink output C

endif

process sink

receive render output

report marker?2

143
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The simulated rotations in the above model are sent through the pipeline in the same way as
the translations, but with fewer delays. The zero latency stage is modelled this way, rather than
having source send dlrectly to sink so as to preserve the order of events. It would not be reahstxc
to have a rotation that is performed after a translation show up on the display before the effect
of that translation. The overall delay is still the same, a rotation message is still delayed for a
period C before reaching the final stage.

Analysis of this model produces the following predictions for cycle time and latency:

-

T>R,T>H:

i (N+2M)C+MT+H N =1
Cycle Time = { M '

+
(N+2M)CHMTHHER 1o nr o g

N A
(N+5M+1)CH2MTH(M+2)H+(M+1)R N =1
Latency = (N+5M+1)c+2A?'rrtﬂ(dM+2)H+(M+3)R o
N iftN>1
H>R, H>T: |
(CARMICHMHEAR iR > Tand N =1
Cycle Time = KN—”’“%%M ifT>Rand N =1
§N+2M)21%H+T+R otherwise
(N+5M+1)C1'\}F.3]AJH+(AI+3)R> ifR Z TandAf — 1
Latency = (VASM+1)C+3] KHHMH)RHT ifT>Rand N =1
(N+oM+1)(‘+31'\5H+(M+3)R+2T otherwise
R>H,R>T:
(N+2MYC+H+MR lf}\r =1
Cycle Time = Nt M , N
(N+2M)]€if\/{1+T+MR NS 1
Latency = I
¢
(N+5M+1)C+3H+4MR ifH>T
NyM and N =1
(N+5M+1)C3H+4MR 12T tH>T
M and N > 1
(N+5M+1)C+(4+K) H(4M 4 KKy g BHD(K+2) 1 if A(K) >T > B(K)
) N+M and N =1
(N4 M+1)CH{a+K) HH(AM+ XK ppo - Gty if A(K) > T > B(K)
M and N > 1
(N+5M+1)C+(M42) H4 MM 2 g M2 oM p if 7 > HEAEAR
N+M and NV =1
(N45M+1)CH(M2) H MotgM2 g _ MM ifT > Eﬁ—[_}g‘)ﬂ
N+M and N > 1

where: A(K) = ZHIHUR p(jo) = HEKR 0. M -3
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To extract useful information from these results, the values for various extremes of the param-
eters NV and M are considered.

_ The case where both N and M are small corresponds to a case where both translations and

rotations occur, but r{either occurs alone in signiﬁéaht quantity. Taking ¥ =1, M =1 as an

example, the corresponding performance values are:

{ T ¥T>R
3C+H+

. R fR>T -
Cycle time = 5

T T >R

2R ifR>T
2

7C+3H42R+ {
Latency =

This is a slight improvement on the results achieved with a standard pipeline, as should be
expected. The improvement is limited by the need for the pipeline to complete processing on
the translation calculations before the zero latency rotation message can get to the sink process.
Having this message waiting builds up the latency for the message.

Increasing the number of successive rotations should eliminate most of this waiting and produce

improvements in latency. The results for V3> M are approximately as follows:

e DM
Cycle Time = C+ SV )
Latency 2 C+ ﬂNA—Q

where D(M) is independent of N. Improvements in both cycle time and latency are expected as NV
increases and effect of the zero latency modifications dominates. The lower limit of C in this case
corresponds to the cost of the rotation message to get from source to sink while bypassing most
of the pipeline. Thus if use of the virtual reality system consists mostly of looking around while
stationary then the zero latency modifications result in substantial performance improvements. - -

Examining the alternative case, where M >> N, the performance measurements approximate:
Cycle time = 2C+D

Latency 22 5C +4D

where D depends only on the pipeline delays; 7', H and R; and is independent of both A and V.
Thus where the zero latency enhancement is used infrequently, performance approximates that of a
normal pipeline, as should be expected. Given that the hardware modifications to implement zero
latency rendering are relatively expensive, they are not viable unless required for an application

where extensive use will be made of them.

11.5 Pipelines in practice : PixelFlow

PixelFlow is the latest of the PixelPlanes series of graphics supercomputers developed at the -
University of North Carolina. The architecture of the PixelFlow system is described in [Mol92],
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together with the use of image composition to achieve linear performance improvement as the
number of renderers increases.

_Image composition in a parallel rendering system involves dividing the primitives amongst each
of the rendering proceésors. Each renderer then prédices a rasterized version of its primitives in
a local frame buffer. All of the frame buffers are then combined, or composed, at a central frame
buffer which is then used to drive the display. Transferring the frame buffers to the composition
stage involves moving large amounts of data, which in turn requires a high speed network. The
required bandwidth is independent of the graphical primitives, and depends only on screen reso-
lution and frame rate. This permits performance to scale linearly with the number of rendering
processors.

The graphics pipeline in the PixelFlow machine is implemented as follows: The host computer
passes each renderer a specific set of primitives to render. Each renderer then performs some
standard geometric transformations on its primitives and sorts them into 128x128 pixel regions
on the screen. Each renderer contains a rasterizer which contains an array of 128x128 pixel
processors which computes the pixel values for the region. When all renderers have completed
rasterization, the region is passed to the compositor. The composed image is then passed to
one of the shader processors where the pixel colours are Corﬁputed. This process is represented
graphically in Figure 11.1.

Deferred shading is used which involves storing surface normal information with each pixel
until it reaches the shading stage. In this way each pixel has to be shaded exactly once. Since the
amount of information associated with each pixel is greater, a greater bandwidth for the;im'aige
composition network is required. On the other hand, shading becomes independent of image
complexity, and depends only on the shading model.

The PixelFlow system needs to transfer about 30Gbits/second when using deferred shading
and calculating 5 samples for anti-aliasing purposes to achieve a frame rate of 30 frames/second.
This is achieved with a network bus of 256 wires, each operating at 132MHz.

The estimated performance quoted for this system is:

Nr:gioﬂs
T _ T T Tshade 1
frame = max( rend;» 4 comps "?_"“—‘) (1 ~1)
i1 shaders

where Trame is the time for one frame, Tr.nq; is the time for rendering the ith region, Teomp is
the compositing time for a region and Tspeqe is the time to shade a region.

The remainder of this section describes the use of Analytical Simulation to obtain performance
values for this model. This provides both a validation of the Analytical Simulation approach,
when comparing the results to those shown in equation 11.1, and demonstrates the abilities of the

approach to extend the analysis to include latency measurements.
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Renderer Partial

Primitives ]
Regions

_ - / Renderer \ . Shader
oSt i Shader| |—m Displa
Computer || Renderer —— Compositor l play

\ / Composed/ |Shader S}ilad.ed
i egions
Renderer Regions gions
Shader
) Renderer

Figure 11.1: PixelFlow layout

The version intended for use with the Analytical Simulation tool appears as follows:

[ Variable | Interpretation -

C Communication time between renderers and compositor

Nregion | Number of 128x128 regions per image

Nyenger | Number of rendering processes

Nghaders | Number of shading processes

R, Tyeng, | Time spent on rendering for one region

T, Teomp | Time to compose the images

S, Tshade | Time to shade one region

process source

report markeril
replicate NREGION

replicate NRENDER
send render## input
endreplicate

endreplicate

replicate NRENDER

process render#

receive source input
think R

send composit ml C

endreplicate
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process composit

replicate NSHADE
replicate NRENDER z o
receive render## ml

endreplicate
think T
send shading# m2

endreplicate

replicate NSHADE

process shading#

receive composit m2
think S

send sink output

-endreplicate

process sink

replicate NSHADE
replicate NREGION

receive
shading [((((#-1) *NREGION)+ (##-1))/INSHADE)+1]
output

endreplicate

report marker2 Ce

endreplicate

This pipeline is similar to models used previously when examining parallelization of portions of
the graphics pipeline. The variables R, T and S represent rendering time for one region (Treng, ),
time to compose the images (Tcomp), and shading time for one region (Tsreqe). The principle
difference is the allocation of the shaders. This is modelled so as to assign the first available
shader to an incoming region in need of shading. Since shading time is constant, this is the shader
that has been shading the longest. Thus allocating shaders on a round robin basis simulates this
requirement adequately.

The variable Nrenger represents the number of rendering processes, Nyegion represents the

number of 128x128 regions per image, and Ngpaders 18 the number of shading processes.
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The results from the analysis of this model are as follows:

(]vrender - I)C + Tcomp Z Trend;s Tshade Z 1Vshaders(NrenderC + Tcomp)

3 Nre ion
Cycle Time = g==222Topade
Latency =
N, a era+2+1vre ion .
: dN.qhad", 22 Tehade = NrenderC lfHCF(Nregion’ Nshaders) <2 2
Nsnaders+Nregion . .
. j‘v‘,had"’ < Tshade + NrenderC + 2Tcomp otherwise -

(]\Irender - 1)0 + Tcomp 2 Trendia Tshade S Nshaders(NrenderC + Tcomp)

Cycle Time = ]Vregion (Nrenderc + Tcomp)

Latency = -Zv'render(1 + Nrsgion)C + (2 + Nregion)Tcomp + Tshade

(Nrender - 1)0 + Tcamp S Trendiy Tshade _>. Arshaders(c + Trend;)

14 — Nrcgioﬂ
Cycle Time = S proI Tshade
.- Latency =
Nishaders+2+Nregi .
=8 ;f'-:had"a regon Tshade - renderC if HCF(Nregion, ]Vshaclers) S 2
Nina Noyegi L .
-L’N%—:—g—i’l vhade + 2Trend; — (Nrender ~ 2)C ~ otherwise

(]vrender - 1)C + Tcomp S Trendu Tshade < Nshaders (C + Trend.-)

Cycle Time = ]Vregion(c + TT‘eTld:‘)
Latency = (1+ Nregion)(c + Trend;) + Teomp + Tshade

The results from this analysis agree with the predictions made by the PixelFlow researchers
in equation 11.1. When rendering time is larger than composition and shading times, then cycle
time is proportional to this value. Similarly for the compositing time and the shading time, thée -
latter in inverse proportion to the number of shaders. In all these cases, the cycle time is also
proportional to the number of regions being rendered. This replaces the summation in equation
11.1.

This approach also provides insight into the effect of the network used for the image composition
and into the latency of the system.

The model above assumes that only one message can be received at the composition stage at
a time. Communication time is only modelled for this section of the network, since the amount of
data transferred in this section is likely to be considerably higher than at any other point.

An interesting point is the dependence of the latency on the highest common factor of Ny gion
and Ngpagers when Tshege dominates. Data flow is smoother when the number of regions in the
screen shares a common factor with the number of shaders, producing a lower latency. When
this is not the case, often the final few regions have to block at the composition stage waiting

for access to a shader. The requirement for a common factor greater than two is related to the

2HCF = highest common factor
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effective length of the pipeline, which determines how much blocking can occur before backing
traffic up all the way back to the source.
) For: (]Vrender -1)C + Tcomp > Trend; Ts}rlade > Arshaders(]\'rrenderc + Tcomp) :

Nshaders +2+ J\‘,regi;)‘n

Latency (without = = Tshade = NrengerC
N shaders
Nspaders + Nregi Tshad
common fa,CtOI') = Shagers region Tshade -+ 2"_3“'0—2'_ - Nrenderc
Nshaders Nshaders
vahaders + Nre i
gion -
= N Tshade + 2NrenderC + 2Tcomp - 7Vrenolerc
shaders .
Nshaders + Nre i
- gion ,
Z N Tshade + Arsnderc + 2Teomp
shaders

> Latency (with common factor)

For: (Nrender - I)C + Tcomp < Trend;a Tshage > vahaders(c + Trend;) :

]Vshaders +2+ ANregian T

La.tency (without = N hod shade = Nrenderc
snaders
Nihaders + Nregi '
common factor) > Sh“ﬁ,”h - T Tonade + 2C + 2Trend; — NrendgerC
shaders - )
N, + Nyegi
Z Shaii;: P region Tshade + 2Trend; - (Nrender - 2)C
snaaers
> Latency (with common factor)

11.6 Conclusion

This chapter examines the effects of different pipeline variations on cycle time and latency. Latency
is a value that is not used frequently for performance analysis and a number of interesting effects
are uncovered during the analysis process.

Synchronization delay results in ageing of values, increasing their latency while not accom-
plishing any significant work. Delaying production of values, using the delay time to improve the
result or adding feedback to the pipeline, impfoves the latency without adversely affecting cycle
times.

The slowest stage in a pipeline has a significant effect in the overall performance and is an ideal
candidate for further parallel decomposition. Synchronization delay causes all processes before the
slowest process in the pipeline to inherit its delay as their contribution to the latency. Ideally the
slowest process should be placed at the front of the pipeline where possible, or the number of
stages before the slowest process should be minimized.

Buffering can be introduced into the pipeline to smooth flow where processing times at the
nodes are irregular. Buffering produces improved cycle times, but can increase latency due to the
extra stage. In some cases, operating conditions do exist where an improvement in latency can be
attained.

The use of additional parallelism within the pipeline can result in improvements in both cycle
time and latency. The effects of the communication network need to be carefully considered in this

case. Replication of the pipeline produces substantial improvement in the cycle time as the number '
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of pipelines increase. Very little change occurs in the latency value. Performance improvement is
only obtained until the communication time dominates the other variables.

_Use of Analytical Simulation on pipelines found in virtual reality systems provides results that
agree with values quoted for those systems. Analytic;ﬂ simulation is able to improve on the results,
examining the effects of factors such as communication times, and producing values for metrics
such as latency. The values obtained indicate the change in performance that can be expected for
an additional investment in hardware.



Chapter 12

Analysis of the world modelling

components

The manner in which a world is modelled on a virtual reality system is very much dependent on
the nature of the world, and on the requirements on the model. Nevertheless an examination of
distributed virtual reality systems (see Chapter 2) reveals a number of common constructs which
are implemented in a number of standard ways.

The decomposition into parallel components usually results in a process for every object, in
the system. Other aspects of the system, for example collision detection, may be impleménted
using additional processes. These may also be implemented in parallel within the object processes.
Some systems make use of application processes where process decomposition is according to the
tasks in the system, rather than the structural components. To encompass these variations, the
models in this chapter assume the presence of object processes which each control the behaviour

of a set of one or more objects.

The data representing the world is distributed to the object processes in a variety of manners.
Each object can be responsible for the data pertaining to itself and must store it locally to the
object process, data can be stored externally possibly at some central point allowing easy access
to the complete database, or the database may be replicated across all participating processors.

In practice the divisions are not so clear cut in existing systems. Variations of these approaches
may be implemented and this blurs the distinctions. In addition, some systems combine a number
of approaches in an attempt to benefit from the positive features of each approach, or because of
the constraints of implementation environment. Other aspects of the virtual reality system such
as access control or physical simulation may be implemented using a different approach to that
used for data distribution.

In an attempt to isolate the effects of the different approaches to providing distributed control
and to distributing data, this chapter begins by presenting simple models of the most common
decomposition approaches. Analysis of these models provides some insight into the merits of the
corresponding approach. These models are examined on a range of network topologies. Since

these models are very general, models of specialized decomposition strategies in virtual reality

152
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systems are then presented. These models examine enhancements or alternative approaches which

are limited to a specific application or architecture.

12.1 Control distribution methods

This section presents a number of methods for controlling objects in a parallel virtual reality
system. This control may be required to dictate the behaviour of the object in the virtual world,
or it may coordinate a distributed version of an algorithm necessary for the simulation of the
virtual world, such as collision detection or Newtonian mechanics.

A number of simplifying assumptions are made. Each object in the system is assumed to
participate in a common task which can be subdivided without overhead into any number of
identical components which are run in parallel. The variable X represents the processing time
for this task in one of the components, and the variable Y corresponds to time taken to do some
housekeeping (for example calculating changes of position) by each object. The only interprocess
communication required is that needed to share the results of the common task. The input data

is assumed to be up to date and freely available to every process.

12.1.1 Decentralized control

This approach distributes control amongst, all of the object processes taking part in solving the
problem. FEach object process performs a predefined sequence of events, uninfluenced by-ghe
remainder of the system. This decomposition could be implemented equally well on a SIMD
architecture.

The basic model is as follows:

replicate N

process objectri
replicate [N-1]
receive SOMEWHERE data

endreplicate

send object# ok

process object#
think X
replicate [N-1]
send objectr[(((N-1)+#+##)YN)+1] data C
endreplicate
receive objectr# ok
think Y

report marker#

endreplicate
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The model is similar to those used previously for the message passing decomposition of the
collision detection algorithm (see section 5.3.1). Each object performs part of the shared compu-
tation for period X, sends the result to all other procésses and then performs local computation
for a further period Y: In this model, messages are sent sequentially, but ordered such that no
two messages arrive at the destination simultaneously. The model assumes there are sufficient
communication channels to allow this. This model would fit a network with a star topology, where
a central switched hub can connect pairs of processors together for the duration of their commu-
nication. Thus only one message can be sent and only one received per process at any point in
time.

) Since there is no interaction in this model, latency is ignored. Only cycle time is measured for
the object processes. The cycle time for this model is X + (N — 1)C +Y as may be expected,
since the X and Y stages are separated by the step in which N — 1 messages are sent sequentially
by each process.

The decentralized decomposition approach is best suited to systems that are able to send
messages in parallel across a well connected network. A model which implements this enhancement
is shown below: '

replicate N

replicate N
process objectr#x##

receive objects##x# data

send object# ok

process objects#x##

receive object# data

send objectr##x# data C

endreplicate

process object#
think X
replicate [N-1]
send objects#x [ (((N-1)+#+##)YN)+1] data
endreplicate
replicate [N-1]
receive objectr#x [##+((##+1)>#)] ok

endreplicate
think Y

report marker#

endreplicate

Extra send and receive processes are added to model the parallel communication. This model '

assumes that there is no contention for communication channels between any two processors.
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Analysis of this model gives the value X + C +Y as the cycle time. This is independent of the
number of object processes involved.

_Taking the approach to the opposite extreme, a model using a shared communication medium
such as Ethernet is shown below. G

process medium

receive ANY get

receive [ANY] give

replicate N

process objectr#
replicate [N-1]
receive SOMEWHERE data

endreplicate

send object# ok

process object#

think X

replicate [N-1]
send medium get
send objectr [(((N-1)+#+##)%N)+1] data C
send medium give

endreplicate

receive objectr# ok

think Y

report marker#

endreplicate

This model is non-deterministic and performance varies according to the manner in which this
non-determinism is resolved. The results quoted below are for an optimal deterministic variation
of the model. In this model the order in which processes may access the communication medium
is predetermined and fixed. An optimal ordering for this model corresponds to that given by
creating a grid of the numbers from 1 to N, repeated for N — 1 rows. Traversing this array from
left to right along the upward diagonal gives the order in which process communication should

occur. For example, with four processes, the grid is:

121220137147
1212/ 137047
1 A2 327147

and the communication sequence is 112123234344.
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The cycle time for this model is given by:

PC>X+Y:  N(N-1)C
X +Y > PC: X+QC+Y
(ﬁ)i’ if Niseven
here P = .
whe { (53—_1)2 + _1\% —1 otherwise

Q= §%i—N-Fl if Niseven
M + w otherwise

12.1.2 Central control

This approach uses an additional process to gather the results of the distributed computation and
redistribute the combined value, as illustrated in the master-slave version of collision detection
described in section 5.3.3. Centralized control makes it easier to vary the number of computational

processes, since they are not aware of each other. The model for a star network is given below:

process masterr

replicate N
receive ANOBJECT data

endreplicate

send master ok

process master

receive masterr ok
replicate N -
send object# combineddata C

endreplicate

replicate N

process object#

think X

send masterr data C

receive master combineddata
think Y

report marker#

endreplicate

The cycle time for this system is X + (N + 1)C' + Y.

The corresponding model, with additional processes to emulate a totally connected network,
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is as follows:

replicate N

process masterr#

receive object# data

send master ok

process masters#
~ 7 receive master data

send object# combineddata C

endreplicate

process master

replicate N
receive ANY ok

endreplicate

replicate N
send masters# data

endreplicate

replicate N

process object#
think X
send masterr# data C
receive masters# combineddata
think Y ‘

report marker#

endreplicate

The cycle time is X + 2C + Y, independent of the number of processors. Communication
overhead with this technique is higher than that for the less centralized approach given previously.
The central controller acts as a bottleneck in the system.

The model for this approach implemented on a shared medium is shown below.

process medium

receive ANY get

receive [ANY] give
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process masterr

replicate N
receivé ANOBJECT data .

endreplicate

send master ok

process master -

receive masterr ok

replicate N

send medium get
send object# combineddata C

send medium give

endreplicate

. replicate N

process object#

think X

send medium get

send masterr data C

send medium give

receive master combineddata
think Y

report marker#

endreplicate
The cycle time for this model is of the fornﬁ:
X+Y>(N-1C: X+ (N+1)C+Y

(N-1)C>X+Y: 2NC

with an interesting variation for lower relative values of X +Y versus C. Let M =1...(N —4),
then for (M +1)C' > X +Y > MC, the cycle time is given by X + (2N — M)C' + Y.

Another interesting fact about this approach when modelled on Ethernet is that there is not
the N? dependence on communication that occurs with the decentralized approach. While per-
formance using central control is worse than that using distributed control for the networks with
better connectivity, central control actually performs better when using a shared communication
medium. The overall amount of communication has decreased with this approach.

The totally connected network used previously is not actually required with this approach.
It would suffice to have only the processor containing the controller connected to every other
processor.
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12.1.3 Central service provider

A single process is used to perform the calculation previously distributed over all the object
processes. This approach appears to remove any-advantage given by the presence of parallel
processes. However this may be appropriate when a task requiring access to combined resources
must be performed, especially if it cannot be easily distributed.

The model showing control flow using a star network topology is:

process master

replicate N
think X

endreplicate

replicate N
send object# combineddata C

endreplicate

replicate N

process object#

receive master combineddata
think Y

report marker#

endreplicate

A delay of NX is incorporated into the central service provider, since X is used to represent
the duration of a portion of the task on each of the IV object processors used previously. Each
object spends time Y on local housekeeping tasks after receiving word that the central task is
complete. V

The cycle time of this model is:
Y>(N-1)C+NX: C+Y
(N-1)C+NX>Y: NC+NX

Expanding this model to a totally connected system has the expected benefit of producing a

constant communication time. The cycle time is:
NX>C+Y: NX

C+Y > NX: C+Y
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Totally connected | Star topology ﬁus (Ethernet) J

Decentralized 1 N N2
- Central control 1 i .- N N
Central server 1 N, 1 N, 1

Table 12.1: Control distribution dependency on N by C

and this corresponds to the model given below:

replicate N

process masters#
receive master go

send object# combineddata C

endreplicate

. process master

replicate N
think X

endreplicate

replicate N
send masters# go

endreplicate

replicate N

process object# e

receive masters# combineddéta
think Y

report marker#

endreplicate

Since only one process is communicating, the results for the system running on Ethernet are

the same as for the star topology.

12.1.4 Summary

Table 12.1 shows the relationship between the number of object processes (V) and the commu-
nication time (C). The relationship between N and component processing time (X)) is shown in
Table 12.2. The value shown is the highest power of N in a term involving each variable (C' and
X) in the expression for cycle time.

The decentralized approach is well suited to networks of processors that are capable of carrying

the relatively large numbers of messages that are involved. As network limitations start to become
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Totally connected | Star topology l Bus (Ethernet) ]

Decentralized 1 1 1
_ Central control 1 . 1 1
Central server N c N N

Table 12.2: Control distribution dependency on N by X

significant, solutions which may have been less attractive start to perform significantly better,
particularly if transmitting a combined result has a similar cost to transmitting each of the original
values. In cases where communication is expensive and time required for the combined task is
small, it becomes worthwhile to abandon any attempt at parallelism, and to use a central service
provider.

12.2 Data distribution methods

The approaches to data distribution are examined in a similar manner to those for control distri-
bution. The assumptions in this case are that each process needs no externally supplied control
and that the variable Y represents the time required for housekeeping during each cycle of the
object process. Only the time to fetch data is of interest, so the processing delay in the object,
previously represented by X, is ignored. '

There are a number of enhancements to the data distribution approaches which are not par-
ticularly amenable to modelling. These involve the use of techniques such as dead—réckohiﬁg and
updating only selected areas of databases. These often produce only approximations of the results
achieved by more rigorous methods, although they may be sufficient for the purposes required.
These variations are analysed in section 12.3, together with more complex combinations of these

skeletons.

12.2.1 Distributed databases

In this scenario each object contains the data relating to itself. All objects in the system must
explicitly request data from all of the others to build up a complete picture of the world.
The model for this approach is almost identical to the model of decentralized control (see

section 12.1.1), once the delay for X is removed. The results for that analysis apply with X = 0.

12.2.2 Centralized database

The client-server approach represents a move toward a centralized database. In section 12.1.2 this
was successful in improving the performance of the control skeletons under conditions of limited
connectivity. The objects are now required to both fetch data from the central server and to

update the server when changing the information. The model for a completely connected network
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is shown below.

process server

receive REQ SOURCE c
think Y
if SQURCE != update

send SOURCE snd

endif

replicate N

process serverr#

receive client# MESSAGE
if MESSAGE == request

send server servers#

endif

if MESSAGE != request
send server update

endif

process servers#

receive server snd

send client# data C

process client#

send serverr# request C
receive servers# data
send serverr# update C

report marker#

endreplicate

Analysis gives the performance of this model (for N clients) as :

Y > x5 2NY

s 2 Y > i @N-1)Y +C
=2V > (N +1)Y +2C
£>Yy 3C+Y

This solution holds for values of N > 2. Similar results hold for smaller values of N, as shown
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below:
For N =1:
"> 2C +2Y
> 3C+Y
For N =2: .
Y>C: 4Y
C>Y>%: 2C +3Y
%-E'Y: 3C+Y

Thus, when server access times dominate, the performance depends on the number of clients.

For slow network communication, the performance is constant and independent of the number of
clients.

The model for the star network folloﬁ's:

process serverrec
receive ANY MESSAGE
if MESSAGE == update
send server update

endif
if MESSAGE != update

send server ANY

endif

process sendrepl

receive server REPL
send [REPL] data C

process server

receive serverrec MESSAGE
think Y
if MESSAGE != update

send sendrepl MESSAGE

endif
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replicate N

process client#

send serverrec request C
receive sendrepl data
send serverrec update C

report marker#

endreplicate

" As might be expected, the cycle time for this model shows a linear dependence on N when
communication dominates. The cycle time is given by (for N > 1):

Y >C: INY
C>Y: INC

The results for N = 1 are the same as for the completely connected network, as might be
expected.
Finally the Ethernet version:

process medium

receive ANY get

receive [ANY] give

replicate N

process forclient#

receive client# MESSAGE
send server MESSAGE

process serversendforclient#

receive server go
send medium get
send client# data C

send medium give

endreplicate

process server

receive SOURCE MESSAGE
think Y
if MESSAGE == request

send serversend [SOURCE] go

endif
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Totally connected

Star topology

Bus (Ethernet)

Distributed databases

1

AT

N2

~ Client-server

1 -

N

]V

Table 12.3: Data distribution dependency on N by C, for large C

replicate N

process client#

N send medium get

send forclient# request C

send medium give

receive serversendforclient# data

send medium get

send forclient# update C

send medium give

report marker#

endreplicate

The cycle time is (for N > 2):

v > 2L 2NY
2>y 3NC

165

The results for N =1 are as for the other two models in this section, while for N = 2 they are:

Y > ¥ 4y
L >y > 50 +Y
¢ >y 6C

The dependence on N is linear, with respect to both communication and server access times.

12.2.3 Summary

The relationships between the two decomposition strategies examined in this section are summa-
rized in Tables 12.3 and 12.4. They show the dependency on N by each variable in the system

when that variable dominates. The two variables concerned are the communication time (C) and

the server response time (17).

As with the control distribution strategies (section 12.1), the totally distributed approach

performs best with a well connected network. Simpler networks benefit from the trade-offs offered

by the client-server approach. Communication costs may be higher in some cases for the client-

server approach which transmits large amounts of data in single messages. Lower communication
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L Totally connected | Star topologﬂBus (Ethernet) ]
Distributed databases 1 1 1
- Client-server N - . »‘ N N

Table 12.4: Data distribution dependency on N by Y, for large ¥

overheads, and the possibility of selective data transmission for some applications, may make this
approach an attractive alternative. -

The next section examines specialized decomposition techniques used fn virtual reality systems,
relating to the manner in which objects are controlled and data is distributed. These techniques
also influence the manner in which collision detection, physical modelling and access control is
implemented. The performance of each approach is analysed in order to identify the merits of

- that approach.

12.3 Techniques employed in virtual reality systems

Thé previous sections examine performance aspects of some common tecllniques for distributing
control and data. The remainder of this chapter investigates the performance of decomposition
techniques which are specializations of these approaches, or that are specific to particular archi-
tectures. .

Results of the performance analyses are summarized at the end of this section to fa(;,il,irt'%;te
comparison.

12.3.1 Dead-reckoning

Dead-reckoning is extremely useful in distributed virtual reality systems, being used for data
distribution in systems such as DIS (NPSNET), DIVE and applications of the MR Toolkit. = _

In dead-reckoning, low communication bandwidths are compensated for with increased pro-
cessing by each entity in the system. Instead of just transmitting position information, additional
information, such as the direction of movement and speed, is included. This information is used by
each entity to continuously update its estimate of the position of the others. Fewer updates can be
sent, since intermediate values can be “dead-reckoned”. Objects calculate their own dead-reckoned
position and issue updates when this diverges substantially from their actual position.

The model below implements a simple form of dead-reckoning. Assuming N objects, each
which takes time X to recalculate the position of one object, the model issues an update every K
cycles. The only restriction on communication is a delay of C on the part of the sending object.
Each object has a receiving process which, one can imagine, caches the latest position of the
various objects for use with the dead-reckoning calculation.
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Variable

Interpretation

C

Time required for communication

- K .

Number of cycles between updates

N

Number of objects in the system

X

Time for sequential processing in each object process

replicate N

. process receiver#

receive FROM THING

if FRO

== object#

send object# latest

endif

process object#

init

assign COUNT O

endinit

report mark#

send receiver# whatsup

receive receiver# latest

replicate N

think X

endreplicate
assign COUNT [COUNT+1]
if COUNT ==

replicate [N-1]

send receiver [##+((##+1)>#)] update
think C

endreplicate
assign COUNT O

endif

endreplicate

Measuring latency is difficult in this case because it is not well defined. The time between

changes in the position of the objects is the same as the cycle time in this case, but these positions

are not completely accurate, due to the guesswork inherent in the dead-reckoning. The average

cycle time is NX 4+ YZ1C, the communication overhead benefits from the less frequent updates,
K

but a price is paid in a higher computational overhead. This approach would be suited to situations -

in which communication bandwidth is more expensive than processor time.
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The model above assumes a star topology. Dead-reckoning is well known for its use in NPSNET,
which uses large networks with relatively limited bandwidth. The model below examines dead-

reckoning in a more restricted environment, using a shared communication medium.

[Variable l Interpretation

C Time required for communication

K Number of cycles between updates

N Number of object processes in the system -
X Time for sequential processing in each object process

process medium

receive ANY get

receive [ANY] give

replicate N

process receiver#

receive FROM THING
if FROM == object#

send object# latest

endif

process object#
init
assign COUNT O
endinit
report mark#
send receiver# whatsup
receive receiver# latest

replicate N
think X

endreplicate
assign COUNT [COUNT+1]
if COUNT ==
replicate [N-1]
send medium get
think C
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send receiver [##+((##+1)>#)] update
send medium give

endreplicate
assign COUNT 0O

endif

endreplicate

o

The cycle time for this model shows a higher order dependence on the communication time.

The values are given below:
NXx > &0 e NX +2zLC

WD 0> NX: LIOEY)

As long as N is relatively small and the update interval is sufficiently large, the cycle time
scales linearly with the number of processors. As N increases, the factor Q-V—]_{—lXC will dominate
at some point, causing an N2 dependence in the cycle time. The only way to counteract this is to
increase the interval between updates, which may affect the quality of the simulation.

Dead-reckoning improves the cycle time. It allows a linear dependence on the number of
processes in the system for shared media, provided the number of processors does not grow beyond
a certain threshold.

12.3.2 Token passing

This approach addresses the problems of distributed control and contention for shared resources
within virtual reality systems. Control of shared databases and the resolution of disputes becomes
the responsibility of the process holding the token.

The use of token passing is illustrated in an application written for the MR Toolkit. This
application allows people at different physical locations to play a game of handball. A number of
bricks, which disappear on contact with the bali, are placed at the front of the virtual court. The
colour of the ball corresponds to the player whose turn it is to hit the ball. Each player takes it
in turn to hit the ball and have it reflect off the front and side walls and strike the bricks. Each
MR master process corresponds to a user, complete with HMD, dataglove and trackers. The ball
is used as a token to transfer responsibility for movement and collision detection between master
processes.

The user whose turn it is to hit the ball is the owner of the ball. The corresponding master
process simulates the ball motion and performs the collision detection to cause reflection off walls
and hand. After deflection off the hand, ownership is passed on to the next player.

The access control in this application is very simple and is a function of the application, in
that no specialized functions provided by the system for this purpose are used. The round robin
passing of control of the object in this situation is only suitable in the case of a single shared
resource being shared equally amongst all the contending processes.

A simple model implementing the round robin approach to control of the system is shown

below. Each master process needs to perform a certain amount of work, modelled by the delay of
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Y. Each master process also takes it in turn to control other objects for IV cycles which takes an
additional time X. The time taken to pass the token on to the next process is represented by C'.
Otie process is charged with creating and inserting the token into the system. The model assumes

M master processes in the system.

Variable [ Interpretation ]
C Time required to communicate the token
M The number of processes being modelled o
. N The number of sequential cycles for which the token is held
X Time taken for additional work while holding the token
Y Time taken for standard processing during each cycle
Z Potential extra work that can be done while not holding the token

replicate M

process master#
init
if # ==
send masterl token
endif
endinit
report marker#
receive master [((((#+M)-2)%M)+1)] token
replicate N
think X
think Y -
endreplicate
send master[(#%M)+1]‘token C
replicate [N*(M-1)]
think Y
// think Z

endreplicate

endreplicate

As can be expected, the system is dominated by the process carrying the extra load and this
limits the average performance of each process. The average cycle time is ]LVC + X +Y. The
processes that are not carrying any extra load can run ahead but must block eventually when
they receive the token. This blocking period could be usefully used, either by splitting the task
modelled by X into smaller ones which could be run in parallel, or by performing additional work
on the free processors. The amount of extra work that can be included when not holding the

token can be found by including the variable Z into the above model, to soak up the extra cycles.
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As long as X220 + (M - 1)X > (M — 1) Z, the average performance of the system is unaffected.

When Z dominates, the average cycle time becomes (ITI'—I_IWC + Z +Y. This could be viewed as
a situation in which-the process holding the token performs less work than the others. This has
application where interactive performance is required of only one of the processes at a time.

The model above makes use of synchronous communication, where processes block once their
work is complete and they are waiting for the token. This would apply where all processes have to
run the same number of cycles. This is applicable to distributed access control using token passing
where the extra work for the process is probably quite small and the major overhead arises from the
communication costs in transferring the token. For control distribution, an asynchronous model
is required that will allow processes to run ahead of the one holding the token and performing the

extra work. Such a model is presented below:

fVariable TInterpreta,tion

C Time required to communicate the token by sending process
M The number of processes being modelled

N The number of sequential cycles for which the token is held
Y Time taken for standard processing dﬁring each cycle

replicate M

process token#
init
if # ==
assign TOK 1
endif
if # 1= 1
assign TOK O
endif
endinit
receive SOMEONE COMMAND
if COMMAND == token

assign TOK 1

endif
if COMMAND == passon

send token[(#/M)+1] token
assign TOK O

endif
if COMMAND == read

send SOMEONE TOK

endif
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process master#
init
assign COUNT 0
endinit
report markerstart#
sendnotrace token# read
receive token# TOK
if TOK ==
think Y
think Y
assign COUNT [(COUNT+1)%N]
if COUNT ==
sendnotrace token# passon
think C
assign COUNT O

endif
endif
if TOK ==
think Y
endif

report markerend#

endreplicate

To simplify the analysis, the extra work when holding the token is represented as an extra

delay of period Y. Communication time is modelled by a delay of period C in the source process.
The cycle time of this model is given by:

. SMNEM—1-K)Y4+C
(K+1)Y >2C > KY: ( SMNFTM—N-1i-K

(where K =0...2MN + M — 2N - 2)
C>@MN+M-2N-1)Y: 2V+§

Unless communication is extremely slow, the average performance indicates that the load is
successfully being balanced, particularly as the number of processors increases. Transient analysis
shows instantaneous values of the higher load occurring when the process is holding the token.

The major reason for the token passing mechanism in the MR Toolkit’s handball application is
to provide interactive performance to the owner of the ball, even if equivalent performance cannot
be guaranteed elsewhere. This effect is not obvious from the results presented so far. The models
look at average performance which hides any localized performance enhancements.

The reason for using token passing to distribute collision detection and physical simulation is

that the time required to communicate these results from other processes has an impact on the
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interactive performance. For a token passing mechanism to be considered, the communication
time would have to be much larger than the time required to compute the results locally. The
model below represents the handball application fopn& in the MR Toolkit. It uses asynchronous
communication with dead reckoning - some informati'on is updated every five cycles, while other
information is only updated every ten cycles. Information is updated only by the process holding
the token.

[ Variable TInterpretation -- f
C Time required to communicate the token
) M The number of processes being modelled
N The number of sequential cycles for which the token is held
Y Time taken for standard processing during each cycle

generate zerol -
replicate M

process recmaster#
init
assign GOTUPDATE no
endinit
receive ANYWHERE ANYTHING
if ANYTHING == update

assign GOTUPDATE yes

endif
if ANYTHING == latest

if GOTUPDATE == yes
send ANYWHERE update

endif
if GOTUPDATE == no

send ANYWHERE noval

endif

assign GOTUPDATE no

endif

process havetoken#
init
assign TOK O
assign TIME 0
endinit
receive SOMEONE COMMAND
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if COMMAND == update
assign TOK [1-TOK]
assign TIME O s
endif
if COMMAND == read
send SOMEONE TOK
if TOK == -
- assign TIME [TIME+1]

endif
send SOMEONE TIME

endif

process mastermedium#
receive master# DESTIN
think C
send DESTIN update

process master#
init
assign COUNT 0O
if # ==
send havetokenl update
endif
endinit
report marker#
send havetoken# read .
receive havetoken# TOK

receive havetoken# TIME
if TOK ==

think Y

think Y

assign COUNT [(COUNT+1)%10]
if [COUNTY%5] == 1

replicate [M-1]
send mastermedium#
recmaster [##+((##+1)>#)]
endreplicate

endif
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if [COUNT/10] == 1
replicate [M-1]

“send mastermedium#
recmaster [##+ ((##+1)>#)]

endreplicate

endif
if TIME ==

- send havetoken# update

send mastermedium# havetoken[(#YM)+1]

endif

report zero#
endif
if TOK == 0
send recmaster# latest
receive recmaster# VALUE
if VALUE == update
report zero#

endif

think Y

endif

endreplicate

This model allows processes transmitting messages across process boundaries (tokens and up-
dates) to do so asynchronously by passing the message to a buffer process. This simulates the
delay in transmitting across the medium after allowing the original process to continue. The
buffer can only hold one message at a time, after which the transmitting process blocks. This is
considered sufficient for the analysis. More detail would require additional assumptions about the
communication medium which the system is using.

This model also assumes that the time taken to simulate ball motion is approximately equiv-
alent to the time required to animate the user. The processing time with the token is 2Y, or ¥
without the token. The performance measure of interest is the time between the updates of the
ball position that occur at points marked by report markers in the model.

The number of periodic actions within the system (of period 5, 10, N x M) makes solving the
model a complex process and the resulting solution excessively convoluted. For the purposes of the
performance analysis, samples of the solution under various conditions are sufficient to illustrate
the various behavioural characteristics.

A typical cycle for two processes (M = 2) and NV = 10 with ¥ = 5C is as follows:

2Y (9times)  13Y  6Y  10Y  10Y +C
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The delay between updates is well controlled when the token is held, shown by the sequence
of 2Y's. Performance drops off by a far greater amount when the token is passed on, resulting in
an average of about 11Y" between updates. The length of the cycle without the token lasts for a
period of 39Y + C which seems to imply an asymmiétry in the system (since this is well over half
of the total token cycle). It turns out that the difference is made up of a period in which nobody
holds the token but in which it is still being transferred. The slower the communication, the more
noticeable this phenomena becomes. Since the processes are cycling at a constant rate, the time
between updates increases if the token is passed frequently. The factor of C id the cycle time
above occurs because of the double update every 10 cycles which overflows the communication
buffer. With a large enough buffer, time between updates would be dependent only on Y.

Removing the dead-reckoning operations and transmitting updates every cycle produces the

following 'cycle of values for the operating conditions used previously:
5Y (9 times) 8Y C (8 times) 2C 13Y

The cycle time while holding the token has risen due to the blocking resulting from attempting
to communicate. The average time between updates has risen, from about 4.8Y when using dead
reckoning, to 5.8Y using only the token passing mechanism. The inter-update time when not
holding the token has dropped to about 6.5Y.

The value of token passing for ensuring interactive performance levels on the process holding
the token in the presence of slow networks is demonstrated with these models. A measure of

dead-reckoning is beneficial, since off-processor traffic must not saturate the communication lirtks.

12.3.3 Broadcasting

Combined with dead-reckoning is the notion of broadcasting. Updates are transmitted in a single
message, which is received by all other entities in the system.

Broadcasting tends to require a dedicated network, since it is considered to be an undesirable
communication technique when sharing a communication medium with other applications-.* it’
impacts on the performance of other machines attached to the same network, by forcing them
to process packets that are not intended for them. It also sends messages to every node on the
network that may only be applicable to a smaller subset.

The model below implements broadcasting on Ethernet. Each process has some sequential
processing time, X, before sending an update to all other processes. A message from every other
process is then required before the cycle is repeated.

Variable | Interpretation

C Time required for communication
N Number of object processes in the system
X Time for sequential processing in each object process

process medium

receive ANY get

receive [ANY] give
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replicate N

replicate [N-1]
process object [##+((##+1)>#)Ifrom#

receive broadcast# update
send object [##+((##+1)>#)] update

endreplicate

process broadcast#

receive object# update
send medium get
think C
send medium give
replicate [N-1]
send object[##+((##+1) >#)]from# update

endreplicate

process object#

report mark#
think X
send broadcast# update

replicate [N-1]
receive INCOMING update

endreplicate

endreplicate

The results show an improvement on the similar system presented under the generic control
distribution models.

C>X: Cycle time = NC
X>cC: Cycle time = X + (N - 1)C

The dependence on C is now linear in NV, rather than the N2 relationship for the non broadcast
version.

The model below combines dead-reckoning with broadcasting over Ethernet.

Variable | Interpretation

C Time required for communication

K Number of cycles between updates

N Number of object processes in the system

X Time for sequential processing in each object process
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process medium

receive ANY get

_ receive [ANY] give -

replicate N

process receiver#
receive FROM THING
if FROM == object#
~ send object# latest

endif

process object#
init
assign COUNT 0O
endinit
report mark#
send receiver# whatsup
receive receiver# latest
replicate N
think X
endreplicate
assign COUNT [COUNT+1]
if COUNT ==
send medium get
replicate [N-1]
send receiver [##+((##+1)>#)] update o
endreplicate -
think C
send medium give
assign COUNT O

endif
endreplicate
The cycle times achieved with this model are:
NX > IAe: NX + %C
MlC > NX: xC

The use of broadcasting with dead-reckoning removes the upper limit for the linear dependence
on N. The local processing time has increased against the values found for the broadcast model
without dead-reckoning, while the communication time is reduced further by using less frequent

updates.
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12.3.4 Multicasting

Multicasting is a variant on broadcasting without, some of its disadvantages. Multicast messages
can be addressed to a group of machines. In this way a single message can be used to distribute
an update to a set of processes. Multicasting is be(;orﬁing increasingly popular, particularly with
large systems where the many participants are distributed over large areas. Multicasting is used
in such systems as NPSNET, and DIVE.

A simple model of multicasting is to treat each multicast group as a broadcast system that
does not affect the other groups. This assumes that there is no overlap in any of ghe groups; each
process communicates with only one group. In that case the results for broadcast apply, with a
smaller value for the number of processes.

The effectiveness of multicasting depends on the coherence of the objects in a particular sim-
ulation, an analysis better suited to a more statistical approach. Simulations are quoted to have
shown a reduction of 90% in traffic [Mac95a]. It is still beneficial to examine the use of multicas-
ting in simple models, to gain some insight into the relationship between performance gains and
resources required. ,

'NPSNET is used over the wide area network of the Internet. As such, message propagation is
not completely equivalent to any used in the models given previously in this section. The physical
size of this network means that it is not feasible to attempt to use synchronous communication.
The complexity of the network prevents testing for contention on the network. A more accurate
model may be to treat the network as a black box into which a message disappears and reappears
at some other point some time K later. To model bandwidth limits, we assume the ability to'carry
L messages at any time. Each process takes a time interval represented by C' to send a message.
This runs concurrently with K, and so we also assume C < K.

Given that a link is established between broadcasting and multicasting, this network model

considers only the broadcasting issues and does not investigate the use of grouping.

Variable | Interpretation ! Ce e

Communication overhead in transmitting a message

Propagation delay for a message through the network

Bandwidth of the network (number of messages that can be carried)

Number of object processes in the system

MiZI=RQ

Time for sequential processing in each object process

generate mark2 - markl
assume K > C

replicate L

process message#

receive broadcast ready

receive broadcast FROM
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think K
send broadcast[FROM] update

endreplicate

process broadcast

replicate L

send message# ready -z
receive SOMEONE NUMBER
- send message# NUMBER

endreplicate

replicate N

replicate [N-1]
process object [##+((##+1)>#)]from#

receive broadcast# update

send objectreceiver [##+((##+1)>#)] update

endreplicate

process broadcast#
receive MESPROC update
replicate [N-1]
send object [##+((##+1)>#)]from# update

endreplicate

process objectreceiver#
receive ANY ANYTHING
if ANY == object#
send object# latest

endif

process object#
report mark#
send objectreceiver# wotyagot
receive objectreceiver# latest
think X
send broadcast #
think C

endreplicate

Trends in the latency between two markers in different processes are summarized in the fol-
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lowing table:

i L=1 1 L>1 |
B Ne=o 2K >X+C: 5K .| K>L(X+C): 2K -
B X+C>2K: 2C+2X+K | X+C>K: 3(X+0C)
K> X : TK
N NK>X+C: 71 B
X+C>NK: 20+2X+K

More detailed examination of the latency values gives the following information: ;
~ e For constant numbers of object processes:

— Latency is largest for small values of L at constant N.

— Drop off in latency is initially extremely rapid as L increases and slows once the band-
width is no longer a major influence.

— With relatively large values of X + C' latency initially increases as L increases due to
the additional buffering offered by the greater bandwidth. Processes can place more
values on the network before congestion occurs and they have to block. Latency drops

rapidly when bandwidth increases and no further congestion occurs.
¢ For constant bandwidth:

— Where K is the dominant variable, the latency is dependent only on K, and inereases
with the number of object processes.

— Where X + C' is dominant, the value is dependent on X +C, and becomes independent
of N.

Thus for large networks (K >» X + (), the major factor influencing latency is the propagation
delay. Tt is important to have sufficient bandwidth to carry the total load of the system. Very
significant performance loss can result when this is not the case. Severe increase in latency occurs
when several messages are queued in the network when congestion occurs. ‘Where computation
time is greater than the propagation delay, latency is unaffected by network performance issues.

While these trends may not be unexpected to anyone with an understanding of network be-
haviour, this analysis does provide increased detail on the dependence of latency on the variables
in the system. The effects of message queueing on the latency is significant, and is not particularly

easy to observe in large networks.

12.3.5 Object servers

The use of separate processes for each object in the system can require substantial resources if
each process is to be housed on a separate processor. Usually a number of processes are run
concurrently on a single processor. This can be inefficient since it leads to replicated code and
the need to maintain separate contexts for each process. In some systems such as AVIARY and
RhoVeR, there is support for a single process to run the code corresponding to a group of object
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processes. This reduces system resources required, decreases the quantity of context switching
and allows migration of object processes from one object server to another for load balancing.

A model used to investigate the communications implications of these object servers is shown
below. It assumes the presence of M processoré eack with NV processes. Communication time is K
for off-processor communication, and C for communication between processes local to a processor.
The medium model is that of Ethernet with a token passing mechanism included as an additional
enhancement to reduce the model’s complexity. This enforces a round robin approach to access
to the medium. Local (intra-processor) communication time is assumed to be small eompared to
the other variables.

lVaria.ble Interpretation

Time required for communication between processes on the same processor

Time required for communication between processors

Number of object processes on each processor

Number of processors in the system

Number of processes in the system (N.M)

<O R = RIQ

Time for sequential processing in each object, process .

process medium

replicate [M*N]

receive object# get

receive object# give

endreplicate

replicate N

replicate M
process objectr [ ((#-1)*M)+##]
replicate [(N*M)-1]
receive SOMEWHERE data

endreplicate
send object [((#-1)*M)+##] ok

process object [((#-1)*M)+#i#]
think X
replicate [(M#N)]
if [OCONRM) -+ -##)YM] 1= 0

send medium get
send objectr{###] data K

send medium give

endif
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M 2 3 4 5] 6
N xM
- 2 2K ’
3 5K
4 6K +2C 10K
) 17K
6 14K +2C | 20K +C 26K~
7
) 8 26K + 2C 42K +C
9 47K +4C
10 42K +2C T”K+C
11
12 62K +2C | 86K +9C | 98K +4C 110K+ C
Table 12.5: Cycle times for X dominant
if [CCON*M)+###) —#8)YM] == O
if [CGH-DD =M +##] 1= ###
send objectr[###] data C
endif
endif

endreplicate

receive objectr[((#-1)*«M)+##] ok

report marker [ ((#-1)*M)+##]

endreplicate
endreplicate

When X dominates over the inter-processor communication time (K), the results are as shown
in Table 12.5 (A common term of X in each value is not shown).

When K dominates the situation is as shown in Table 12.6.

The system depends quite heavily on the inter-processor communication time, even when local
computation is substantial. Examining the coefficient of K, for equal numbers of processes, it
can be seen that halving the number of processors in the system does not quarter (or even halve)
the communication factor, as might be naively expected given the normal square relationship
between number of processors and communication time on a shared communication medium. The
difference, of course, arises from the presence of more than one communicating process on each
processor. The coefficient (for K dominating the other variables) is given by (NM)2? — N2M, or
P2 — NP when phrased in terms of the number of processes (P = NM). The dominant term is
still dependent only on P, and so the advantages of sharing processors are limited, for N < P.
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A 2 3 4 5 6
NxM _
- 2 7 | X+2K P
3 6K
4 8K 12K
5 20K
6 18K | 24K +C 30K *
7
i 8 32K 48K +C
9 54K + 4C
10 50K 80K + C
11
12 72K | 96K +9C | 108K + 4C 120K + C

Table 12.6: Cycle times for K dominant

12.3.6 Synchronous databases

The problem of keeping the distributed world representation consistent across all machines was
addressed in an early version of DIVE. '

Initially database locking was used to ensure consistency. The database was managed by
the ISIS toolkit [Bir90]. Changes to objects in the database required changes to be distributed
to all processes. Access control for the database was managed by distributed locks. The ISIS
toolkit provides facilities for fault tolerant distributed databases, amongst other things. As used
in DIVE it uses a multicast protocol to distribute changes and set locks. All nodes in the system
are guaranteed to have seen the same sequence of events, which while good for system integrity,
provides some limits on scalability. A limit of about ten peers is given as an upper bound fof a-
DIVE system. V

The mechanism involved in maintaiﬁing the database is modelled below. Each process spends
a period X calculating updates, before distributing the change to other members of the database.
It is assumed that one multicast message is enough to allow processes to choose the one that gains
control of the database and sets the lock. Once a process has locked the database, it can send
an update and then an unlock message. The locking is controlled in the model by the process
representing the medium. Each process is allowed to have a turn. Since the system is symmetrical

the actual order is not important.

Variable { Interpretation ]
C Time required for communication between processors
N Number of object processes in the system
X Time for sequential processing in each object process
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process medium

replicate N
- receive application# get -
receive application# give
replicate N
if # != ##
receive localdbmanager## get oo
receive localdbmanager## give

endif

endreplicate

receive application# get
receive application# give
receive application# get

receive application# give

endreplicate

replicate N

process localdbmanager#
replicate N
if # != ##

receive application## DATA

think C

if DATA == lockreq
send medium get
send application## lockrep C
send medium give
receive application## update
receive application## lockrel

endif

endif

endreplicate

process application#

report reports#

think X

// will block until lock established
// send all others lock request

send medium get
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replicate N

if # 1= ##

- .send localdbmanager## lockréq

endif

endreplicate
think C

send medium give

// receive reply from all others

- replicate N

if # != ##

receive localdbmanager## lockrep

endif
endreplicate
// send all others update
send medium get
replicate N

if # = ##

send localdbmanager## update

endif

endreplicate
think C

send medium give

// send all others lock release

send medium get

replicate N
if # = ##

send localdbmanager## lockrel

endif

endreplicate
think C

send medium give

endreplicate
Cycle times for this system are:
(N24N-2)C>X: (N+D?2-1)C

(N2+N-2C<X: X+(N+2)C

186

The N? dependence in the coefficient of C for large values of C' can be traced to the messages

sent by each process acknowledging the setting of the lock. These cannot be multicast. Removing



CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 187

this stage from the model produces the cycle time shown below:
3I(N-1)C > X: 3NC
X>3N-1)C: X +3C <.

Communication in DIVE with SID uses an enhancement to multicast protocols. By taking
advantage of the multicast environment, processes can watch for specific information for a short
period before actually requesting it. In situations where frequent access to the same item is
required, this could conceivably reduce traffic due to requests and repeated replies.

12.3.7 Computation on the server

The client-server approach for data and control distribution is employed in a number of virtual
reality systems. It is usually used to store data to which each client process requires equal access.
A concept introduced in Cyberterm is the ability to run programs (agents) on the server. This is
an advantage when communication bandwidth is limited. Instead of transferring the data to the
process, the process is relocated to the source of the data. 7

The idea of a client-server system where the server is capable of performing computational
tasks, as well as just providing access to a shared database, is explored in the model below. The
network model is that of the star topology, which may be a fair representation of a Cyberterm
system interconnected via modem. The model assumes the presence of N clients requesting data
only, which requires a processing time of ¥ on the server, and M clients running an agent on the

server, which requires an additional time W on the server.

Variable | Interpretation

C Time required for communication between processes on the same processor

N Number of data-only clients in the system

M Number of clients requiring processing on the server -
X Time for sequential processing in each object process

Y Time required to fetch data on the server

w Time required to perform requested processing on the server

process server
receive CLI RER
if REQ == work
think W

endif
think Y
send [CLI] rep C
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replicate N

process reqclient#
- report rep# -
think X
send server req C

receive server rep

endreplicate

replicate M

process workclient#
think X
send server work C

receive server rep
endreplicate
The performance of this system is gi\}en by:
UM + N —=1)C + (M =1)W + (M + N —1)Y > X:
Cycle Time = M+ N)C+MW + (M +N)Y
X22M+N-1)C+(M-1)W+(M+N - 1)Y:b
Cycle Time = X+20+W+Y

The dependency on both W and Y when the server is not completely loaded (for large X) is an
interesting case which benefits from further investigation. One might expect the factor of W not
to affect the performance of the data-only clients, particularly if the server is not busy. However
the cycle time for both clients in the steady state is in fact the value given above. Investigation
of the system for N = 1, M = 1, shows that a smaller cycle time can in fact be experienced*b.y'
the data only clients, but only during a particularly unstable transient. As long as the data-only
client can get its request in ahead of a client running the agent, it can benefit from an improved
performance without cost to the one running the agent. The transient is manifested only if the
initial non-deterministic choice of the server is for the data-only client, and lasts only for a short
period determined by the value of X.

The approach can be modified to take advantage of this transient, and to bias the system
toward maintaining it. The model below shows how this can be done:

Variable | Interpretation v J
C Time required for communication between processes on the same processor
N Number of data-only clients in the system
M Number of clients requiring processing on the server
X Time for sequential processing in each object process
Y Time required to fetch data on the server
w Time required to perform requested processing on the server
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process serverreceiver

receive ANY THING
if ANY != server
if HAVE != waiting
receive server REQ
send server [ANY]
send server [THING]
endif
if HAVE == waiting
send server [ANY]
send server [THING]
assign HAVE undef

endif

endif
if THING == waittill

assign HAVE waiting

endif
if THING == gotany
send server none

send server none

endif

process server

send serverreceiver waittill
receive serverreceiver CLI1
receive serverreceiver REQ1
if REQ1 == work
think W
send serverreceiver gotany
receive serverreceiver CLI2
receive serverreceiver REQ2
if REQ2 == req
think Y
send [CLI2] rep C
endif

think Y
send [CLI1] rep C
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Start State

Client

Client REQUEST

REQUEST}

Figure 12.1: State transition diagram of the serverreceiver process

if REQ2 == work
think W
think Y
send [CLI2] rep C

endif

endif
if REQ1l != work

think Y
send [CLI1] rep C

endif

The clients are as before, except that messages are directed to serverreceiver instead of server.
The server now tries to service data-only clients before those requiring processing for agents. The
serverreceiver routine can notify the server process of a data-only request that has arrived while
an agent is being processed, and this is serviced before the response to the agent is returned. The
serverrecewer process embodies the simple state transition diagram shown in Figure 12.1.

Performance of the data-only clients turns out to be independent of W in many cases, partic-
ularly when W is greater than Y. Performance of both clients benefits in many cases, as often
the dependency on W only manifests once in a number of cycles. Thus a simple priority scheme
as illustrated here can produce performance enhancements in portions of the system, without
adversely affecting others. '

12.3.8 Multiple servers

Previously, client-server systems have been treated as if there is only a single system-wide server.
In light of the advantages of grouping used in multicasting, the use of multiple servers which each
provide a specific set of data is suggested. Multiple servers occur in systems such as Division’s
dVS, and Cyberterm.
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An area that has not been examined previously is the use of multiple client-server systems
utilizing a shared medium. Provided clients do not interact with more than one server, a completely
connected network can run multiple client-server systems at the same performance level as a single

client-server system.

The basic model for this client-server system running over Ethernet is shown below, for N
servers each with M clients:

Variable | Interpretation . J
C Time required for communication between processes on the same processor
- N Number of servers in the System
M Number of clients accessing one server
X Time for sequential processing in each object process
Y Time required to fetch data by the server

replicate N

process server#

receive ANY SOURCE

think Y

send mediums get

send medium get R
send [SOURCE] rep C S

send medium give

replicate M
process serversender#for##

receive server# rep

send client##forserver# rep

process serverreceiver#from##

receive client##forserver# req

send server# serversender#for##

process client##forserver#
think X
send medium get
send serverreceiver#from## req C
send medium give
receive serversender#for## rep

report c##x#

endreplicate

endreplicate



CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 192

Y/C
N 8 - e e .
- . ’ .
oz . , .
P ’ ’
. , .
l, II I,
. . ,
..... , , ’ ,
7 /’ II I, ”
, , . ,
. . , ,
L’ ,° L’ .
,
Py P i it e
6 2X42Y . ’ ’, , 4
£ s
. 5
4
3 .
2 Pl
L -7 6C+2Y- -
Pt
SX45C°
. o
.
1 -

Figure 12.2: Performance of the 2 server/2 client system

process medium

receive ANY get

receive [ANY] give

This model explores a variation to the client-server approach described in 12.2.2. Apart from
the multi-server aspect, this model also assumes that the server cannot send replies and pro-
cess requests simultaneously. The update step is also ignored with this model. Difficulties arise
when trying to apply an analysis tool to this model. These result from the frequent use of non-
determinism to choose between processés accessing the servers and the communication medium.
This creates a large state space which is time-consuming to generate and explore. The result of
that analysis produces the possible range of cycle time for clients within the model.

Given that the value of interest is the minimum cycle time, it is beneficial to use the results of
the analysis for relatively small systems to determine the manner in which the non-determinism
should be resolved in order to produce a minimum cycle time. This can then be used to simplify
analysis of larger models. The performance of the model for two servers each with two clients is
shown in Figure 12.2. The values in the relative constraint regions can be seen in this graph of %
versus % The areas in which non-determinism affects the results are marked with the range of -

performance values that can be expected in the steady state.
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Figure 12.3: Performance of the 2 server/2 client system optimized for large Y’

Two areas are selected for examination in the attempt to eliminate non-determinism and
select an optimal execution path. A sample where Y and C are relatively large compared to X,
and another where X is the dominant variable are shown as the shaded areas in Figure 12.2.
Both require that server and client access to the communication medium be alternated to achieve
optimal performance. The situation where server delay (Y') is large requires that some jobs from
the clients be queued at the server, so as to keep it continually busy. The case where client delay
(X)) dominates requires the opposite, that jobs be serviced immediately so as to keep round trip
time at a minimum. Since these requirements are mutually exclusive, the optimized algorithms
need to be selected once the operating constraints are known, or alternatively, some dynarmiic
switching needs to be performed as discussed in section 13.2.

The effect of the two different appfoaches on the other constraint regions is shown in Fig-
ures 12.3 and 12.4. As can be seen, they achieve optimal performance only in some regions.

These models are used for examining the performance of the multiple server system with
regard to the three constraint regions where each variable is dominant, and optimal performance
is achieved (the area with large values of C occurs at the origin of the diagrams).

Where C dominates: Cycle time = 2MNC
Where Y dominates:
(¥ > 2N - 1)0)

Cycle time = M(C+7Y)
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Figure 12.4: Performance of the 2 server/2 client system optimized for large X

Where X dominates:
(X>(M-1)(Y +2C), MN-N+1)Y > (N -1)(2C+ X))
Cycle time = X +2C +Y

These values hold for M > 1, N > 1. The absence of a dependence of M and N (numbers of
clients and servers) is some cases above can be slightly misleading. While it does imply that these
can be increased arbitrarily without impairing the performance, the region in which C dominates
expands with increased M and N, eventually resulting in a different expression for cycle time

being applicable.

12.3.9 Asynchronous lossy databases

The use of a synchronous database was discussed in section 12.3.6, where identical copies are
maintained for all processes. The locking mechanism causes performance loss. Many virtual
reality applications would be content if provided with the most recent version of data regarding
the state of the world; consistency between processes is not required. The VEQOS system uses
this principle when performing updates from boundary to external partitions. Values that are not
transferred before new values are generated are dropped. ’

The performance considerations with this approach are examined with the following model:

[Variable ! Interpretation

Time required for communication between processes on the same processor

Number of object processes in the system
Ratio between N and C (§)

Time for sequential processing in each object process

~IR|=2|Q
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replicate N

process entity#

report  report# .
think X

send environ# endcycle

process statussendentity#
init
assign STAT ready
endinit
receive SOURCE how
if SOURCE == environ#

send environ# STAT
if STAT == ready

assign STAT busy
endif

endif

if SOURCE != environ#
assign STAT ready

endif

process sendentity#

send statussendentity# how
receive environ# message

replicate N
if # 1= #3#
send entityexternal## update C
endif

endreplicate

process entityexternal#

receive ANY update

report arrive#

endreplicate

process sync

replicate N
receive environ# sync

endreplicate
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replicate N

process environ#

send sync-sync

receive entity# endcycle
send statussendentity# how
receive statussendentity# STAT
if STAT == ready

send sendentity# message

endif
endreplicate

This model simulates N entities and transfers data from each entity to the external partitions
of the others. The support environment is modelled by a number of processes which pick up
messages and pass them on for transmission to the other processes, provided the transmitting
process is free. If the environment is unable to pass the message, it is dropped. A construct
of iﬁterest is the mechanism (in process statussendentity) to identify a process that is unable to
communicate. This problem is addressed in other models with the sendifready command.

Each entity process has a delay of X in its cycle, and since it does not block at any point,
the cycle time in all cases is exactly X. A value of greater interest is the latency of the update
messages. There are variations on the latency value possible with this model, due to-the dropped
packets. A message may reach its destination and the latency measured for that message, or it
may be dropped and the latency measured from the start of the first attempt until a message does
actually reach the destination. Alternatively, an average time for a message to be passed from the
source entity to the external partition of the destination may be found.

The time taken for a message that successfully passes through the system is X + C, as may
be expected. This value is independent of the number of processes in the model. To measure. t’hi’s ’
value, blocks must be placed in the model to prevent exploration of the control paths to the sync
and statusentity processes. In addition, blocks must be added to prevent searching of paths that
might traverse more that one cycle of any particular process.

Cyecles of the environ processes can be traversed while calculating latency. This produces the
time between messages being sent and their eventual arrival at the destination process. These
results give the range of latencies that may be experienced for a system of this nature. The case
where X > C yields a constant value of X 4 C as the maximum latency, irrespective of the number
of processes. The case where C' dominates, where network communication is slow compared to
the delay in the cycle of each process, increases the likelihood of messages being dropped. The
maximum latency found in this case is C'+ ((N — 1)M + 1) X, where N is the number of processes
in the model and ¢ = M X, for the cases where M is an integer. The average latency usually
has half the dependency on X, having been averaged out over a number of cycles. The maximum
latency for fractional values of M can be found by rounding up. The system does not reach this
value for every message successfully transmitted, so the coefficient of X for the average latency is

lower. The variation in this coefficient between integral values of M is illustrated in Figure 12.5
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Figure 12.5: Coefficient of X for non-integral values of M

for the three processor model for values of M between 3 and 4. The stepped nature of this graph
illustrates the sudden changes in performance values as the relative values of X and C cha:hge.
The peak and average latencies are thus dependent on the number of processes in the system

when communication is slow.

12.3.10 Summary

The results obtained from the analyses in section 12.3 are summarized below. The performé,ﬁc'e '
values referred to are cycle time and latency within a single node. Usually these values are the
same (see section 4.1), but the exceptions are explicitly noted.

Dead reckoning: Section 12.3.1.
Dead-reckoning uses infrequent updates and causes a decrease in the cycle time. It
produces a linear dependence on the number of processors when using a shared com-
munication medium, provided the number of processors is below a threshold level,
determined by the communication time, and the interval between updates. Processing

overhead in each node is increased due to the extra computation required.

Token passing: Section 12.3.2.
The effect of relocating the larger portion of the processing to the process carrying
the token produces an improvement in the average cycle time, provided processors do
not need to remain synchronized. Synchronous token passing can be used as an access
control mechanism. Asynchronous token passing can be used as a distributed control

mechanism for load balancing, and to improve interactive performance on a single
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processor. The latter application benefits from the use of dead-reckoning to prevent
saturation of the communication links. Movement of the token results in substantial

performance degradation. Frequent movement of the token eliminates all benefits.

Broadcasting: Section 12.3.3.
Broadcasting using a distributed data model reduces communication time for a shared
medium from an N? relationship to a linear one. Combined with dead-reckoning,
communication costs are reduced still further, but introduce a dependence on N to
the computation time in each node.

Multicasting: Section 12.3.4.

Multicasting uses the same principles as broadcasting, but allows selective communi-
cation between groups of processes. The effect of grouping strategies is better suited to
statistical analysis. The effects of multicasting and broadcasting are examined when
applied to a wide area network such as the Internet. This section introduces a fourth
network model, in which bandwidth and propagation delays are independent. Using
the measurement of message latency between two nodes in the network it is found
that the effect of broadcasting/multicasting in a wide area network is dependent on
the propagation delay, provided sufficient bandwidth is present. As bandwidth de-
creases, the latency increases substantially, parﬁcularly when messages are forced to
queue throughout the network. If the computation time is large compared to network
performance then the latency depends only on computation time.

Object servers: Section 12.3.5.
The cost of inter-processor communication does not decrease in proportion to the
decrease in processors. The advantage of localized processes is offset by increased
inter-processor communication.

Synchronous databases: Section 12.3.6. V
Use of locks causes an N? dependence on the communication time (for a shared
medium), even when combined with multicasting. This is due to the need for each
process to acknowledge the lock.

Server computation: Section 12.3.7.
The results of the analysis indicate the presence of unstable transient behaviour with
this model. The transient behaviour produces improved performance for the data-
only clients without affecting that of the computation clients. The transient can be
introduced into the steady state of the system through a simple alteration to the server.

The change affects the priority with which service is given to each category of client.

Multiple servers: Section 12.3.8.
The coeflicient of the communication component of the cycle time for a multiple server
system over Ethernet is proportional to both the number of servers and the number
of clients per server for large communication times. For large server times, the cycle '

time is dominated by the server time scaled by the number per server. For large client
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computation times, there is no dependence on the numbers of clients and servers. For
constant client, server and communication times, the effect of communication eventu-
_ ally dominates as numbers of clients and servers increase. In all cases the dependence

on numbers of clients and servers is at most linear.

Asynchronous databases: Section 12.3.9.

The latency associated with messages between processes experiences some variation
when the communication time dominates over the processing time in-4 node. Discon-
tinuities occur in the value of the latency, suggesting the possibility of sudden changes
in the performance of a system using this approach.

12.4 Conclusion

Analysis of the data and control distribution techniques identifies the dependencies on system
characteristics for a range of architectures. These architectures represent the type of platforms
upon which virtual reality systems are most likely to be constructed; é, well connected parallel
machine, a switched hub based network (star) and a shared medium such as Ethernet. Other
decomposition techniques intended for specific networks are examined separately.

The two popular strategies mentioned in Chapter 2 are the centralized approaches for their
simplicity of implementation, and the replicated approaches for their scalability. The results given
in this section show that centralized client-server approaches scale well on all network architegpufés,
exhibiting linear increase in cycle time/latency as the number of processes increases. The totally
distributed architectures perform better with a well connected network, but have an N? dependency
on communication on shared media. The use of broadcasting/multicasting reduces this to a linear
dependency. Dead-reckoning reduces this further, but with an increase in local processor time.
Dropping messages when communication load is too high can produce a constant dependency on
communication time. Ce

The factors that cannot be evaluated are the reliability of a client-server system which has
a single point of failure in the server, and the quality of a large distributed simulation in which
positions are estimated.

This chapter contains details of the analysis of the most common parallel decomposition strate-
gies found in virtual reality systems, and the most frequently used variations on these. While a
substantial number of strategies are described, they form only an overview of the possible config-
urations that are possible. An additional significant contribution of this chapter is the description
of the analysis strategies used in each case, which provides an insight into the application of
Analytical Simulation. This will assist the designer of a distributed virtual reality system when
performing analysis of refinements of the models presented in this chapter.



Chapter 13

Analysis of complete virtual

reality systems

This chapter examines the combination of the components of virtual reality systems that were
modelled in Chapters 10 to 12. Different arrangements of the components and various inter-
connection strategies are examined. Latencies and cycle times in this chapter are representative of
a complete system and provide an indication of the performance as seen by an external observer, -

or a person using the system.

13.1 Asymmetric rendering

This section explores two problems. Firstly, it investigates the use of the sendifready construct
to model the constant availability of up-to-date data. Previous use of a create-and-send sequence
produces synchronization delay when the send has to block (see Chapter 11). In some cases, it
is desirable to model a system where the data is created immediately before the send succeeds.
This can be implemented using extra communication or additional processes which complicates
the model (see section 12.3.9).

The second effect that is examined is the use of the asymmetric rendering construct, as found
in the MR Toolkit. Many applications in this system consist of a master process performing the
computation and the rendering for one of the two views required for stereoscopic viewing. A slave
process is used to produce the other view. A number of device servers provide data from the input
devices. This section compares the effect of this extra effort in the master process to that resulting
from the use of an additional slave process.

The device servers in the MR Toolkit continuously sample the device [Gre95] and make only
the most recent values available. This is needed to minimize latency. This trick is common to
many buffered and pipelined systems where it is possible to discard values should the rate of the
incoming data exceed that of the outgoing information.
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A model of this system, with instant input and asymmetric rendering, is shown below:

lVariable Interpretation

L

Maximum number of successive failures of the sendifready statement

R

Time spent on rendering per cycle

X

Time between data produced by the input device

Y

Time spent running the application per cycle

generate end -

generate end - start

process device

report start

sendifready master devicedata

//send master devicedata

think X

process master

receive device devicedata

think Y

send slave picture

think R

receive slave display

report end

process slave

receive master picture

think R

send master display

201

The most interesting aspect of this model is in the device process where use is made of the

sendifready statement. This command is intended to send a message only if the receiving process is

waiting for it. This requires a non deterministic decision in that the state of the receiving process

must be known to the sending process before the decision of whether to allow any communication

between them can be made. Simulation of these semantics also raises issues of some complexity.

Instead, it is implemented as a choice, being able to both fail and succeed. The analysis tool

models both paths. The number of consecutive failures is limited to make analysis possible. The

variable L represents the limit on consecutive failures. A variable X is included to prevent the

device from cycling instantaneously.
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Analysis of this model gives the following results:

X>Y+R: _
Minimum cycle time: X
Minimum latency: Y+R
(L+1DX>Y+R>X: -

- . Minimum cycle time: Y + R

Minimum latency: Y+R
Y+R>(L+1)X:

Minimum cycle time: Y + R
Minimum latency: 2Y +2R - (L+1)X

“The case where L = 0, or the normal send is used (shown commented out in the model above),
gives a latency of 2Y + 2R — X for Y + R > X. The case with data being dropped in the
manner explained above would be where the sendifready statement is working as required, i.e.
when L — oo and X — 0. If the second of the three constraints above holds, this gives a latency h
of Y + R for the case Y + R > X. Otherwise the third constraint applies, and the minimim
latency occurs if (L +1)X — Y + R, again giving a latency of Y + R. o

The model above can be compared to that given below, which uses three processes for the
computation. A single master still processes for period Y, before passing the results to two slave
processes for rendering. In this case there is no need to synchronize with the master at the
completion of rendering.

[ Variable | Interpretation ) ] T
L Maximum number of successive failures of the sendifready statement
R Time spent on rendering per cycle
X Time between data produced by the input device
Y Time spent running the application per cycle

process device

report start

sendifready master devicedata
//send master devicedata
think X
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process master
receive device devicedata
think Y S
replicate 2
send slave# picture

endreplicate

replicate 2

process slave#

receive master picture
think R

report end#

endreplicate

“The results for this model are given below, where it is assimed that both R and Y are greater
than (L +1)X.

R>Y:
Cycle time: R
Latency: 2R+(R—-(L+1)X)
Y >R
Cycle time: Y
Latency: R+Y + (Y - (L+1)X) T

Minimum latencies occur in each case if (L + 1)X — maz(R,Y). The minimum latency
achieved is:

R>Y: 2R
Y > R: R+Y

The addition of the extra rendering process decreases cycle time, but only increases latency if
the rendering time is greater than the time for running the application in each cycle. The effects
of concurrent world modelling and rendering are examined in greater detail in section 13.2.

The usefulness of the sendifready statement is limited. While it does provide the desired
functionality, it is difficult to use. It requires the addition of two extra variables into the system
(L and X) which then have to be eliminated from the results. Any simplicity gained in the form
of the model is lost in the added complexity of analysis.
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13.2 Slave renderers

A system used to drive a pair of slave renderers is described in [Wat94], where two slave machines
are used for rendering. These are controlled by a third master machine which also runs a solid
modelling application. Input hardware is attached to the master machine. The two slave machines
are running VR-386 and each renders the view for one of the eyepoints to create the stereoscopic
view for a Head Mounted Display.

The virtual reality system running on this configuration must receive input'f:ro"in the input
device (a glove), use this to make changes to the objects in the world, and transmit the updates
to the two renderers. Once both renderers have completed their task, they can display the images
on receipt of a synchronizing message from the master. Some latency and cycle time analyses
have been performed for this system. Two variations on the sequence of events which introduce
different tradeoffs in the two performance measures are described. The analysis is repeated here,

using the automated approach developed in this thesis and some extensions are examined.

Variable | Interpretation - ' ]
C Time required to communicate a message between processors
N Number of slave renderers in the system
X Time spent running the application per cycle
Y Time spent on rendering per cycle

process glove

report source

send master data

process master

receive glove data
think X
replicate N

send slave# draw C
endreplicate
replicate N

receive slave# done
endreplicate

sendnotrace broadcast update C

report cyclepoint
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process broadcast

receive master update

replicate N
send slave# show

endreplicate

replicate N

process slave#

receive master draw
think Y

send master done
receive broadcast show

report show#

_ endreplicate

The above model, described as the linear approach, assumes the presence of NV slave processes,
and implements the sequence of events described previously. The model assumes that the master
process can only communicate with one other proceés at a time, making the model applicable to
both a shared communication medium such as Ethernet, or a switched hub topology. The g,}l,rfént
model assumes that each slave receives its own specific update of the state of the world, otherwise
this could be implemented with the broadcast mechanism that is used to synchronize the output
of the slaves.

This approach requires that processing on the master be completed before rendering on the
slave can begin. An alternative approach is to run both in paralle], with the disadvantage that
the view being rendered is out of date as soon as the master process finishes its calculations, bit-
can only be changed on the next cycle. Thus a longer latency can be expected for this model. The
change to the master process for the pipeline approach is shown below:

Variable | Interpretation

C Time required to communicate a message between processors
N Number of slave renderers in the system

X Time spent running the application per cycle

Y Time spent on rendering per cycle

process master

replicate N
send slave# draw C

endreplicate
receive glove data
think X
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replicate N

receive slave# done
endreplicéte
sendnotrace broadcast update C

report cyclepoint
The results for these approaches are: -

Linear approach:

Cycle time = (N+1)C+X+Y
Latency = 2N +1)C + X + Y]
Pipeline approach:
X>Y:
Cycle time = (N+1)C+X
Latency = (2N +3)C +3X
Y > X
Cycle time = (N+1)C+Y
Latency = (2N +3)C+3Y

As expected, the latency is higher for the second approach, but the cycle time has decreased.
The latency is approximately twice the cycle time for both approaches, an effect that can be
explained by viewing the glove and master processes as a short pipeline. If the glove process is
allowed to collect data at its own pace and is only polled for the latest value when needed, the
results show a substantial improvement: The relevant parts of the affected processes in the model
are shown below:

Variable | Interpretation

C Time required to communicate a message between processors
K Time required to poll the glove device

N Number of slave renderers in the system

X Time spent running the application per cycle

Y Time spent on rendering per cycle

-

process glove

receive master givedata
report source

send master data



CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS 207

process master

send glove; givedata K

receive glove data

The time required to poll the glove process is represented by the variable K. .The revised

results are now:

Linear approach:

Cycle time'= (N+1)C+X+Y+ K
Latency = (N+1)C+X+Y

Pipeline approach:

X>Y:
Cycle time = (N+1)C+X+K
Latency = (N +2)C +2X
Y>X
Cycle time = (N+1)C+Y
Latency = (N+2)C+2Y - K

The presence of a negative coefficient is a welcome sight in the last case. It indicates a situation
in which a delay can be increased to improve performance. The increase only improves matters
for the pipeline approach with Y the dominant variable; in the other cases it causes an increase
in the cycle time.

The final system implemented in [Wat94] was a mixture of the two approaches. The tradeoff
between the two approaches depends on the loads on the master and slaves; these could vary
depending on the nature of the solid modelling being performed. The system would monitor its
performance variables and switch from one strategy to the other when doing so would result in
performance improvement.

The performance values derived for this model agree with those quoted in [Wat94], once the
effect of using broadcasts for updating the world is taken into account. The dependence on
the number of slave processes derived above shows that additional displays can be added to the
system without loss of performance, provided communication costs are low. With a communication

medium capable of supporting broadcast, the communication cost becomes constant as well.
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Figure 13.1: Data flow in an NPSNET node
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13.3 Feedback between componenté

This section describes the Analytical Simulation of a model of a single node of a virtual reality gys—
tem. It illustrates the power of the approach for providing simulation results which are applicable
to all values of the variables in the system. This section examines the effects of feedback commu-
nication strategies between the components of the virtual reality system. The use of feedback is
explored in pipelines in section 11.1.

The model examined is that of the software running on a single machine in the well known
NPSNET virtual reality system [Pra93]. The relationships between the components of the system’
are illustrated in Figure 13.1. The interactive performance of the single node is of interest; inter-
processor communication is modelled very coarsely.

The model of this system is given below:

F/aria.ble l Interpretation

C Time between updates from all other nodes in the system
D Time spent simulating dynamics per cycle

S Time spent on scene management per cycle

R Time spent on rendering per cycle

process input

report input
send dynamics data

receive scene next
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process network

think C
send dyna.niics data

receive dynamics update

process dynamics

receive input data

- receive network data
think D
send network update

send scene state

process scene

receive dynamics state
think S

receive render ready
send render display

send input next

process render

send scene ready
receive scene display
think R

report output

The variables D, S and R represent the time spent simulating the dynamics, managing the
scene, and rendering each frame of graphical output, respectively. The variable C is the time
between updates from the other nodes in the network. The two values of interest in a virtual
reality system are the latency and the cycle time. The cycle time for this node is the interval
between recurrences of the output report marker, the latency is the time taken for data created at
the point indicated by the input report marker to reach the output.

The results for the Analytical Simulation of this model are as follows:

$>D,D+S>R:

Cycle time = D+ S

Latency = R+S+D
S>C,R>D+S:

Cycle time = R

Latency = 2R
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C>S,D+C>R:

~ _ Cycle time = D+C
Latency = R+C + D
C>S,R>D+C:
Cycle time = R - -
Latency = 2R

The results are closely related to those expected for a pipeline construction. It is worth noting
the use of feedback messages within this model to enable output from the input stage, and to
permit transfer of data from the scene management process to the renderer. This construction is

used with the pipelines in section 11.1 to reduce latency. The performance without this feedback

is given by:

S>D+C,S>R:

Cycle time = S

Latency = R+3S
S>D+C,R>S:

Cycle time = R

Latency = 4R
D+C>S,D+C >R:

Cycle time = D+C Cee

Latency = R+5+2C +2D
D+C>S,R>D+C:

Cycle time = R

Latency = 4R

The latency with this version is substantially greater than that for the original.

The original model uses feedback between successive stages. The use of only a single feedback

message, from the end of the output stage, all the way back to the input stage produces the

following result:
S+ R>C:

Cycle time =

Latency =

D+S+R
D+S+R
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C>S+R:

Cycle time = C+D -
Latency = C+ D ’

While the latency is smaller than that for the version without feedback, the cycle time has
increased. This system is not making effective use of the parallel processors, and could probably
be implemented on a single processor with similar results (provided network rmanagement and
dynamics could overlap). )

" The use of feedback within pipelined structures is again demonstrated in this section when
it is applied to pipelines formed from the components of virtual reality systems. Latency is
substantially reduced when using the feedback mechanisﬁ, without affecting the cycle time.

13.4 Fast interaction

The traditional model of a virtual reality system requires that input be processed through the
world simulation component, before its effect can be realized in the output. Much of the input to
a virtual reality system is comprised of changes to the users position and orientation. This affects
only the camera position, and the attitude of the user’s avatar (a term often used to refer to the
user’s representation in the virtual world). This information would only affect the view of the
scene that is rendered. Thus the input data could be fed directly into the output /renderer,rffor
rapid incorporation into the view, and only then into the simulation engine.

This approach is used in virtual reality systems developed at the University of Virginia [Gos93]
[Pau95]. The separation of the rendering rate from the simulation speed is examined in the model
below:

{ Variable l Interpretation J .
M Relative amount of time spent rendering
N Relative amount of time spent in the application
Y Smallest quantum time interval in the model

process input
report input
send output data
process application

send apppoll getlatest

receive apppoll latest
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report inapp

replicate N
- think Y

endreplicate

send apppoll latest

process apppoll .

receive ANY ’TYPE
if TYPE == getlatest

send [ANY] latest

endif

process output

receive input data
send apppoll getlatest
receive apppoll latest

replicate M
think Y

endreplicate

report picture

Input data is generated and passed directly to the output process. The output process polls a
third process for data shared by the application which would also be required for rendering. The
application, performing the simulation, also polls this process for the latest input values. This
model makes no assumptions about the location of the data. It could be located with the simulation-
engine, as is modelled previously (in Chapter 12), or it could reside with the output process to
improve access for the rendering engine. It could also be located on its own processor. The change
required to the model to implement one of these strategies would be to assign a communication
value to messages to and from the apppoll process when off-processor communication occurs.

The value of interest at present is the performance of the system with the direct connection
between input and output. The model assumes that rendering takes period MY, and simulation
takes period NY. The reason for this choice is explained below. As may be expected, the cycle
time of the output process is MY, and the latency from input to output is 2MY. The factor
of two in the latency results from the input process blocking waiting for the output, a pipeline
phenomenon described in detail in Chapter 11.

A more interesting value is the time taken for the effect of input to be incorporated in the
simulation and show up on the output. A latency value is required for messages from input to
output that pass through the application process. This is measured by adding an extra report
marker to the application process, and measuring lengths of the two intervals from input to-

application and from application to output.
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Figure 13.2: Simulation latency for large simulation times

This model has the interesting characteristic that it is not periodic if there is any variation
possible in the computation times for the simulation and rendering processes. Thus state space
analysis using two independent variables to model these times would fail because the constr;,int
generation always allows some variation in the relative values of the variables. Constraint gener-
ation also produces an infinite number of constraints in an attempt to lock variables down into
exact values. This behaviour results from the polling action of the application and output processes
which do not have to synchronize with each other at any time.

This model can be converted into a form suitable for analysis by reducing the number of
independent variables, as shown in the model above. This allows solution for any rational Ta-
tio of the two processing times. The sequéntial processing time in both is written as integral
multiples of a common variable Y. Thus, given a simulation time of NY and a rendering
time of MY, the time taken for input to pass through the simulator and affect the output is
[25M + 15N — HCF(M,N)]Y. This function is shown graphically for a range of simulation
times in Figures 13.2 and 13.3, assuming unit rendering time. This result is interesting in its
seemingly chaotic behaviour. Small changes in the ratio of simulation and rendering times can
produce large changes in the latency. This effect is averaged out in reality since these values are
unlikely to be perfectly constant.

13.5 Combinations of components

The analysis of virtual reality systems examines the various parallel decompositions in a bottom-
up manner. Initially, the performance characteristics of the three sub-components of a virtual
reality system are examined, followed by an investigation into some of the effects resulting from

complete systems. The advantage of doing things this way is that complexity is reduced, and the
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Figure 13.3: Simulation latency for large rendering times

effect of one approach is not shadowed by another.

A disadvantage is that the performance of a complete system with all its complexity cannot
be examined without repeating the work that has already been performed on each subcomponent.
It is desirable to have the ability to create components with known performance characteristics
which can then be combined to represent a complete system. Analysis of the combined model
then uses the values calculated for the constituent modules to compute the overall performance of
the system.

This “black box” can be created relatively easily should latency and cycle time be equal. The
following process has a latency (= cycle time) of X. o

process blackbox

receive input message
think X

send output message

If latency and cycle time differ then this model is not able to produce both metrics simultane-
ously. A more complicated piece of code can be created to overcome this limitation. Consider a
system with latency L producing output after every period CT in its stable state. The following
model has the same performance characteristics:

Variable Interpretation _'
cT Required cycle time of the model
L Required latency of the model
MAXOVERLAP | Maximum number of messages that may be buffered




CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS 215

process blackbox
init
assign~DUMP 0
endinit
send input ready
receive input data
send bblatency[DUMP] data
assign DUMP [(DUMP+1)%MAXOVERLAP]
think CT

report notrace

replicate MAXOVERLAP

process bblatency[#-1]

receive blackbox data-
think L
send bboutput data

report notrace

endreplicate

process bboutput

receive SOMETHING data
send output data

report notrace

An item of interest with this model is the use of the MAXOVERLAP variable which represents |
the number of messages that can be buffered by the system, and must be greater than the ratio
C%T for the model to behave as required. The blackboz process actively requests data, to eliminate
synchronization delays on the input.

There are some problems using a model such as this to represent a more complex system. Any
transient behaviour is unlikely to be duplicated using a simplified model. Reproducing a system
that accepts more than one input and produces more than one output requires modifications to
the “black box” model. It has also not been proven that the two metrics (latency and cycle
time) are sufficient to characterize a component of a system sufficiently to allow component-wise
replacement as proposed, without affecting performance measurements in the remainder of the
system.

Characterization of the cases where component substitution is possible, and identification of
the metrics required to specify these components completely for performance analysis purposes,
is the subject of future work.



CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS 216

13.6 Conclusion

The behaviour of complete virtual reality systems is described in this chapter.

The use of asymmétric rendering (section 13.1) produces lower latency when renderin;g‘ times
are high, than a model in which separate processors are used for the application and for rendering.
Higlier cycle times are associated with the asymmetric model. The sendifready statement used in
the models in this section complicates the analysis.

The use of slave renderers (section 13.2) extends the analysis of separate application and
rendering processes. This approach can be implemented in two different ways, which offer a trade-
off between cycle time and latency. This example again illustrates the advantage of automatic
analytical analysis over that which is performed manually and which is limited to particular
models. |

The effect of synchronization delay is again demonstrated in section 13.3 in pipelines formed
by combining the components of the virtual reality systems. Feedback between successive stages
is found to reduce latency without affecting the cycle times. _

Immediate reduction in latency is obtained by routing input through the output stage, before
processing it through the world modelling component (section 13.4). The latency for input data
that is first processed by the application shows an almost chaotic dependence on the system
parameters, although this effect is averaged out over time.

It is possible to construct a model with any desired cycle time and latency as shown in sec-
tion 13.5. Additional formalism must be developed before a system can be completely chara,ct,,eridz‘ed
by a simplified model, for performance analysis purposes.

Parallel and distributed virtual reality systems are examined at two levels. The use of paral-
lelism within the components of virtual reality systems is described in Chapters 10 to 12. Issues

regarding the systems that can be built up from these components are discussed in this chapter.



Chapter 14

Conclusions

The original goal of this work was to provide a comparative study of the performance of components
of parallel and distributed virtual reality systems, so as to allow appropriate decisions to be made
when designing for a particular architecture. This has been successfully achieved. To accomplish
this goal, this work has created a performance analysis techﬁique that is ideal for application to
virtual reality systems. It has also provided a reference as to the performance characteristics of

the decomposition strategies found in virtual reality systems.

14.1 Analytical Simulation: Development

14.1.1 Summary of the results

Virtual Reality systems have particular requirements when considering the selection of performance
metrics (see section 2.1). Existing performance analysis tools are inappropriate for determining
the cycle time and latency of a range of system models in such a way that a comparison of the-
characteristics of each can be made (see Chapter 3). For comparison purposes, the availability of
more than a single sample of these metrics is required.

The Analytical Simulation approach uses concepts derived from other tools to provide a pow-
erful analysis technique, and includes several additional enhancements which make it suitable for
performance comparison purposes. By producing output as an expression specifying the effects of
each delay in the model, the results are representative of a range of the system parameters. In this
form the contribution from each delay can be identified and compared to that for other models.
Delays which affect the critical path are also identified in this way.

In addition, the Analytical Simulation approach automatically generates constraint fegions
which define the relative values of the system variables for which a given result holds. Distributions
need not be specified in advance for each variable. Performance for all variable values within a
region can be found by evaluating a single expression.

The performance measures produced using Analytical Simulation are cycle time and latency,
the two measures essential for proper characterization of virtual reality systems.

The Analytical Simulation approach can be extended in a variety of ways, from conventional

217
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simulation to state space analysis. The latter version is limited to periodic systems, but can provide
a complete analysis of the model’s performance, including any non-deterministic behaviour. All
models of virtual reality systems examined are periodic, so the restriction is not a problem.

The accuracy of the approach is confirmed by ;:o'mparing predicted performance with actual
implementation for three parallel decomposition strategies on two parallel architectures. In all
cases there is excellent correspondence between theory and practice. The form of the results
allows the different strategies to be compared. In addition the effects of the different architectures

- =

on each strategy can be seen.
_ Analytical Simulation is well suited to the analysis of the performance of parallel and dis-
tributed virtual reality systems. It is also ideal for the comparison of different parallel decompo-

sition strategies within these systems.

14.1.2 Contributions of the work

The following contributions are made in this portion of the thesis (Chapters 2 to 8):

o A taxonomy of the decomposition strategies used in parallel and distributed virtual reality
systems is developed.

¢ The suitability of existing performance analysis techniques is assessed with regard to their
use with virtual reality systems. ’

o A performance prediction approach, Analytical Simulation, is developed which is ideal for

the performance analysis and comparison of parallel and distributed virtual reality systems.

¢ A method is devised for comparing the run times of processes, expressed as a symbolic
expression, in the presence of constraints on the variables.

¢ Methods are described for extracting values for Cycle Time and Latency from simulation

results, and from reachability graphs in the state space of a model.

¢ Analytical Simulation is a,pplicablé to a range of classes of systems in its different forms, and
is capable of:

Measurement of latency and cycle time

Producing symbolic output, suitable for comparison purposes

Complete analysis for all values of the variables in the model

Analysis of non-deterministic constructs

— Analysis of the transient behaviour of a model

o A number of distributed collision detection algorithms are developed. Analysis of the per-
formance of these systems is described, and verified against implementations of each on two
different architectures. Models for communication in Transputer clusters and the shared

network medium, Ethernet, are created.
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14.2 Analytical Simulation: Practice

14.2.1 Summary of the results
A natural decomposition of virtual reality systems is %ound to consist of three components: input,
output and world modelling.

The effects of performing input using polled and interrupt-driven approaches are examined,
and the performance implications of each approach are summarized. The use of input prediction
is discussed, but this is not suited to quantitative analysis.

- The output subsystems are based around the pipeline topology. Latency issues in pipelines
are examined in detail, including the use of additional delays and feedback to reduce the effect of
synchronization delays on the latency. The effect of buffering on the performance of the pipeline
is investigated, and conditions are identified under which improvements in both latency and cycle
time occur. Use of additional parallelism, both within the pipeline, and using replicated pipelines,
is explored. The latter can substantially improve cycle time without detriment to latency, provided
sufficient communication bandwidth is present. Case studies of output sitbsystems used in virtual
reality systems provide details of the performance characteristics of these systems. Compared with
a previous analysis of the PixelFlow system, the use of Analytical Simulation confirms the results
and provides additional and more complete information about the cycle time and latency that can
be expected for various operating conditions.

Analysis of different control and data distribution approaches shows that peer-to-peer com-
munication performs best where well-connected communication networks are available. The 'per—
formance of approaches that make use of central services scales better where communication is
limited. Performance characteristics of a number of variations on these approaches are examined.
The results show how these variations can improve the scalability of some approaches, and identify
anomalies in the behaviour of others. The analysis also demonstrates methods of application of
Analytical Simulation so as to produce the desired results rapidiy. L

Performance in a node of a complete virtual reality system is examined by creating models
consisting of the components identified-in Chapter 9, and modelled in Chapters 10, 11 and 12.
These models demonstrate different interconnection strategies suggested by various virtual reality

systems, and provide details of the tradeoffs in performance offered by each strategy.

14.2.2 Contributions of the work

The following contributions are made in this portion of the thesis (Chapters 9 to 13):

o The section provides a reference to the performance characteristics of parallel decomposition

strategies in use in parallel and distributed virtual reality systems.

e It demonstrates that Analytical Simulation of message passing models is ideal for the analysis
and comparison of parallel and distributed virtual reality systems.

¢ Techniques to make effective use of Analytical Simulation to extract the desired information -
from a model are described.
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s Methods to reduce synchronization delays in pipeline constructs, such as feedback and de-
layed output are introduced and analysed.

o Analysis of the effects of buffering in pipelines. prdves that an improvement in both cycle
time and latency can be obtained under the correct operating conditions.

¢ Performance trends for different decomposition strategies on a range of network topologies
are compared.

¢ Models of four different network architectures: a well connected network, a star (switched ,
hub) topology, a shared communication medium (Ethernet) and a wide-area network (such

as the Internet) are developed and used in the analyses.

¢ Performance characteristics of specialized decomposition techniques on specific architectures
are identified. Behaviour as number of processes increases is described, and optimal perfor-
mance paths are identified.

o Tradeoffs between the two performance metrics, latency and cycle time, are described when
- considering different interconnection strategies that are possible using the components of

virtual reality systems.

¢ The advantages of an automated analytical analysis technique are demonstrated with the -
greater range of metrics and improved detail that is achieved over previous analyses. Im-
proved performance values are produced for a number of existing systems for which -perfor-

mance analysis has previously been attempted.

14.3 Assessment of this work

This section contains a few comments by the author on some of the aspects of the work which are
not quantitative, and which cannot be isolated to any single preceding chapter. They reflect on
the overall goal and attitude toward the analyses performed.

It is surprising to discover the complexity unveiled by the analysis of even small models of
familiar systems. The behaviour of a few processes containing only a few communication constructs
generates unexpected effects ranging from transients that can last indefinitely if the conditions
are right, to tendencies to settle into stable states {often non-optimal) that are unintended in the
design. It is disturbing to notice this behaviour occurring in a rigidly controlled simulation and
to imagine its extrapolation to larger, more complex systems where only the overall effect can be
observed. The possibility that these effects are occurring and being ascribed to other characteristics
of a real system is a danger. Many of the cases examined use non-determinism, which often allows
non-optimal performance. In some cases, such as that in section 12.3.7, optimal behaviour is an
unstable transient which is only discovered after performance analysis using Analytical Simulation.

The analysis methodology is valuable for playing “what-if” games on the various models. It
is easy to modify a model quickly to perform actions in a different order, or to impose additional
restrictions to judge the change in behaviour. The analytical form of the output makes it simple to

identify the variable determining the critical path, and to judge whether a particular path seems
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reasonable for the expected behaviour of the model. Generating a trace of program behaviour
provides a visual overview of the behaviour. This can reveal many things from its periodic nature
alone. The processes that spend much of their time ‘idle are identified, as are those which are
continuously operating, and a probable bottlenecﬁ. " Communication orderings that produce a
shorter cycle can be identified at once, allowing the model to be modified to check if such an
ordering represents a stable state.

The ability to try these alternatives rapidly makes it profitable to spend time at the design
stage of a virtual reality system testing alternative decomposition strategies, so as not to experience
unfortunate effects once a commitment is made to a particular approach.

Many of the models presented are simple and in no way approach the code complexity of a real
virtual reality system (and nor should they). Much of the code of the systems examined during
the course of this work is effectively irrelevant for performance analysis, consisting of conventional
sequential code for performing specific computations. Replacing the most significant blocks by
the think statement used in the models reduces these systems to much the same complexity as
the models. The effective message passing calls are the same as those depicted in the models.
More detail is only required when advanced flow control and buffering calls must be modelled.
Successful analysis of such an instance is also feasible, as is illustrated in section 8.5.1.

The analysis technique developed in this document provides a valuable and practical tool for
use during the design of parallel and distributed virtual reaiity systems. The analyses performed
provide a comprehensive reference to the techniques commonly used in current systems. Design
of future virtual reality systems will benefit from consideration of the issues uncovered by-these

analyses, and from analysis of additional variations and enhancements of these algorithms.

14.4 Future work

The long term goal of this work is to provide a solid foundation for the development of distributed
virtual reality systems. Previous development of virtual reality systems has either been from A
scratch, or as in the case of some recent systems, based on a previous system developed at the
same site. A limited amount of cross-pollination has occurred, influenced mainly by the profile of
some of the projects. This can be seen by the increasing tendency of newer systems to overlap
in their distribution techniques. While these techniques are sound, and can provide significant
performance enhancement, they often overshadow approaches which may be more useful in other
situations.

This work starts off by developing and testing a performance prediction approach that is
capable of providing useful measures for virtual reality systems. The approach is simple enough to
be quickly and easily used by a system developer, while sufficiently powerful to uncover significant
behaviour patterns. It is able to provide predictions for an approach, based on the environment in
which the system is expected to run. This document covers the analysis of parallel and distributed
virtual reality systems, categorizing the different approaches and providing a performance analysis
where appropriate. In this way, the attributes of the different approaches can be compared in a
common and unbiased environment.

The next logical progression is the creation, testing and analysis of new approaches. This is
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a major task in its own right, but one which requires a solid foundation. This foundation must
provide both a mechanism for performing a comparative analysis, as well as an evaluation of
-existing approaches to prevent duplication of effort. Tt is this foundation that the work of this
thesis is intended to p;ovide. b

This future task is part of the goal of the group developing the distributed virtual reality system
RhoVeR [Ban96] (see also section 2.3.1). Part of the requirement when creating this system was
to leave the distribution methods sufficiently modular so as to allow different approaches to be
implemented, tested, compared and enhanced. The system provides a set of basic communication
facilities and acts as a standard platform for benchmarking purposes.

The possible future directions for parallel and distributed virtual reality systems are numerous.
The trends in system development are to expand the use of virtual reality across global networks.
Already a number of multi-user virtual worlds have been created on the Internet, supporting
thousands of users in vast and complex worlds. These are based around client-server systems
which have evolved from the hypertext servers on the World Wide Web. A number of variations
on the client-server paradigm are modelled in this thesis. These models can be refined as the nature
of the communication in these systems becomes better understood. Increased use of peer-to-peer
communication can be expected to reduce the load, and depéndency, on a centralized server.

The changing nature of networking can also be expected to influence the nature of distributed
virtual reality systems. The tradeoffs between higher speed networks and the requirements of -
realistic simulations can alter the performance issues of concern to designers of such systems. The
algorithms underlying these systems can be expected to evolve to meet these changing reqdire—
ments.

With the work described in this thesis as the foundation, it is now feasible to tackle this next
set of exciting challenges. -
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Appendix A

Petri Nets and Data Flow Graphs

This chapter contains a brief introduction to Petri Nets and Data Flow Graphs. These constructs
are used in performance analysis techniques considered in Chapter 3.

A.1 Petri Nets

This description is drawn from a description of Petri Net based performance modelling given in
[Kan92].
A Petri Net consists of a 5-tuple (P, T, 1,0, M), where:

P is a set of places

T is a set of transitions

I is a set of input functions, mapping places to transitions

0 is a set of output functions, mappipg transitions to places o
M is a set of markings, associating a non-negative integer with each place

Petri Nets are usually represented graphically using circles for places and bars for transitions.
Input functions are given by arcs from circles to bars, output functions by arcs from bars to circles.
Markings are represented by placing small filled circles (tokens) in the places.

The behaviour of Petri Nets is described in terms of firing. When a transition fires, it removes
a token from each place connected to it via an input arc and adds a token to each place connected
to it via an output arc. The transition can only fire if each input place contains at least one token.

Petri Net performance is often given relative the time spent in particular states. The state of
a Petri Net is given by its marking (the number of tokens in each place).

Times can be associated with the transitions to produce a Timed Petri Net. If the firing
times are random variables, then a Stochastic Petri Net (SPN) is produced. In this case, some
simplifying assumptions are often made regarding the distribution of the firing times. Often a
memoryless distribution is chosen, allowing the marking alone to provide an adequate description
of the state of the system.
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The analysis given in Chapter 3 assumes the use of Generalized Stochastic Petri Nets (GSPN).
These allow both timed and untimed transitions. The firing times are exponentially distributed.
Firing occurs by first delaying for the firing time and, if still enabled, removing tokens from the
input places and adding them to the output placé;s in a single instantaneous operation. Firing
rate is allowed to depend on the marking.

States of a GSPN can be tangible (only timed transitions enabled), or vanishing. Vanishing
states occur only momentarily since untimed transitions always fire before timed ones.

Markov processes (and Markov chains) are used in the solution of GSPNs. "The Markovian
property states that the probability of being in a particular state at any time is independent of
the states occupied previously. A random process is a random variable that is a function of time.
Thus a Markov process is a continuous time random process for which the Markovian property
holds. The discrete time equivalent is called a Markov chain. The state residence time of a Markov
process has an exponential distribution, that for a Markov chain has a geometric distribution.

Solution of a GSPN gives the state probabilities for the tangible states of the Markov process for
the model. The solution process involves the removal of the vanishing states (to reduce complexity),
followed by the solution of the Markov chain embedded at the transition points of the Markov
précéss. )

A.2 Data Flow Graphs

This description of Data Flow Graphs is based on that given in [Kav86] and [Tre82]:
A Data Flow Graph is a bipartite directed graph whose two types of nodes are called links and
actors.

G=(A|JL,E)
where
A is a set of actors ’
is a set of links
E is a set of edges (E C (4 x LY J(L x 4))

Semantically, the actors can be regarded as processors of information while the links act as
storage points for data items. The arcs joining them can be regarded as channels for the transfer
of data. The Data Flow Graphs in this document do not explicitly show the links, only the tokens
that are stored in them. »

The actual interpretation of the data tokens is not relevant for the Data Flow Graphs considered
in this document. Movement of the tokens occurs when actors fire. Firing occurs when the actor
has tokens on all its input links. Firing occurs by removing a token from each input link, delaying

for the firing time of the actor, and then placing a token in each output link.



Appendix B

The use of the Analytical

Simulation tool

This section is intended to provide a description of the use of the Analytical Simulation tool that
was implemented to perform the analyses shown throughout this document. The emphasis is on
describing the capabilities of the prototype system: to show. the degree to which the analysis can
be automated, as well as to provide a description of the syntax used in the models presented in
this thesis.

The tool implements both the original Analytical Simulation algorithm, referred to as finite-

cycle analysis, as well as the state space extensions to this approach.

B.1 Creation of a Model

The various statements that may be used in the description of a system are described in the.
sections following. Each statement is found on a separate line. A pre-processing step occurs
during which some statements are expanded.

Variables can be used as arguments where applicable.

B.1.1 Comments

Comments in the file occur on lines starting with //. Blank lines may also be present.

B.1.2 Variables

Variable names in a model definition are strings containing upper case characters. Surrounding
a variable name with square brackets means that the value of the variable is substituted. This
is used to distinguish cases where both a variable name, or its value would be valid arguments.
Substitution and evaluation can take place during both pre-processing and model simulation,
depending on the availability of the variable values.
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B.1.3 Expressions

Expressions are built of constants, variables and binary operators. Precedence is defined through
‘the liberal use of parentheses. The operators available are:

== equal (returns 1 if the arguments are identical, 0 otherwise)

1= not equal (returns 0 if the arguments are identical, 1 otherwise)

> greater than {returns 1 if the left argument is greater than the right,?(j oiherwise)
< less than (returns 1 if the left argﬁrhent is less than the right, 0 otherwise)

+,-,%/,% addition, subtraction, multiplication, division and modulus (standard mathematical
operations)

Constants and variables values must be limited to integers for evaluation by most of these
operators to succeed. Only the first two (== and !==) may be successfully applied to strings.

B.1.4 Analysis control statements

This category of statement usually occurs at the beginning of the model description file and is
used to describe the environment in which the model is analysed, as well as the format of the -
output produced after analysis.

B.1.4.1 Generate statement

This statement specifies the type of result required. The statement has the form:
generate argl [~ [arg2 [arg3]]

The arguments are labels defined in REPORT statements elsewhere in the model. With only dne’
argument it produces a list of times at which that report, is executed. This is only meaningful when
doing finite-cycle analysis. With the minus symbol included, differences between two sequential
executions of the report are generated. This is useful for producing cycle times (the difference
between the time that a process reaches a certain point, and the time at which it next reaches
that point).

With three parameters, the difference between corresponding occurrences of two different re-
ports is given. The meaning of corresponding occurrences is discussed in the main text in sec-
tion 7.2. This is used for latency calculations. v

The variation used for calculating latency also allows an additional argument. This corresponds
to a cut marker, a report marker that prevents any further exploration of the execution paths on
which it occurs. This can be used to limit the exploration of the reachability graph in state space,
-simplifying the analysis process, and eliminating paths that do not represent actual flow of data.

Any number of generate statements may be used.
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B.1.4.2 Assume statement

The ASSUME statement allows certain assumptions to be preset for the model. This allows the
state space search to be limited, predefined restrictions to be specified, or different forms of the
assumptions to be tested. The format is:

assume expl > exp2

where each of the expressions consists of a sequence in the following format: o

CiVi + CoVa ... ChV;, where the C; are numeric constants and the V; are variable names.

B.1.4.3 Declare statement

This statement is used to identify the variables in a particular process that are to be included in
the state definition. As a rule of thumb, all variables should be declared in this way for the state
space analysis to yield valid results. The format is given below:

declare varl, var2, var3,

B.1.4.4 Define statement

The DEFINE statement sets variable values during the pre—;ﬁrocessing stage. This is the only way .
to define global variables. These values are only available during the pre-processing stage. The

format is:

define variablename value

B.1.5 Executable statements

B.1.5.1 Process statement

The PROCESS statement is used to start the definition of a process in the model. It also defines the
process name, required for message passing purposes. The code following a PROCESS statement
until the next PROCESS statement or the end of the file, and excluding everything contained within
an INIT-ENDINIT pair, is modelled as running within an infinite loop. The format is:

process processname

B.1.5.2 Send statement

The send statement is used to transfer data from one process to another. The format is:
send destinationprocess argument [time]

If time is not specified then it defaults to zero. The sending process blocks until the receiving
process executes a RECEIVE statement whose source process field matches the name of the sending
process, and whose argument matches the argument of the SEND statement. Both processes then’
synchronize for the amount of modelled time given by the time field.
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A variation on the SEND statement, named SENDNOTRACE, has the same syntax and semantics

but indicates that the message sent is a control message and not a data path to be considered

when calculating latencies.

B.1.5.3 Receive statement

This statement takes the form:
receive sourceprocess argument

~ The argument can be a variable name which is instantiated with the value in the argument field
of the SEND statement when synchronization occurs. If it is not a variable, then the argument
of the sending process must match that of the receiving process. The source process can also
be given as a variable. In this case the sender is chosen as the first process (in modelled time)
to attempt communication (provided arguments can match). If more than one source process
matches, then one is chosen non-deterministically. If the source process is given as a variable then
it is instantiated with the name of the sending process when communication occurs. If no process
is currently sending (in modelled time) the receiving process blocks. - -

B.1.5.4 SendIfReady statement

This is a variation on the SEND statement which either fails or succeeds non-deterministically. Tt
uses the same format as the send statement, and the same semantics when it succeeds. When it

fails, no action occurs and execution continues at the statement following the SENDIFREADY.
B.1.5.5 Think statement
This statement delays the process for a period in modelled time. The format is:

think time T

B.1.5.6 Report statement

This marks points in the program which are starting or ending points for the calculation of cycle
times and latencies. The format is:

report reportname

B.1.5.7 Assign statement

This is used to assign values to variables. All variables are initially given the value undef The
format is:

assign variable expression
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B.1.5.8 If statement

This is a simple form of the IF statement found in most conventional programming languages and
is used for simple flow control. The format is:

if expression
body

endif - o=

_ The body consists of a sequence of executable statements, excluding the PROCESS statement.
The body is executed if the expression evaluates to a non-zero value.
B.1.5.9 Init statement

The INIT-ENDINIT pair are used to surround portions of code to be executed only once in the life
time of a process. The code is run at the beginning of the first cycle. The format is:

init
body
endinit

The body consists of a sequence of executable statements, excluding the PROCESS statement.

B.1.5.10 Replicate statement

This statement is only available during the pre-processing stage. It duplicates all code between it
and the matching ENDREPLICATE statement. The number of times this duplication occurs is set
by the value of its argument. For each iteration a hash variable is set to the iteration count, which
ranges from 1 to value. The name of the hash variable is a string of # with a length equal to the-
nesting level. The format is: )

replicate value
body

endreplicate

The REPLICATE statement acts as a pre-processor version of a FOR loop. It is worth noting
that the body can contain processes.

B.2 Analysis of a model

This section provides a detailed description of the process of analysis of a model. Complete details
are given, as opposed to the examples given in the main body of this text which have had irrelevant
details removed. The various issues involved in constructing a model for efficient analysis are also

mentioned.
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B.2.1 Construction of the model

A simple token ring system is chosen as the example of the system to be modelled. This system
consists of a number of processes passing a message from one to another in a circular fashion. As
an extra constraint, the communication medium allows each process an equal chance of placing
messages on the medium, allocated on a round robin basis. The communication slot is allocated
for at least a period K, independent of whether it is used or not.

The description of the model of this system is shown below: -

// simulate a token being passed sequentially from one token process
// to the next via a token controller which allocates slots to each
// process in turn

// let N be the number of token processes

generate havetoken3 -

generate havetoken3 - tokenmark
define N 6

replicate [N]

process token#
declare HAVETOKEN
declare SOMEWHERE
declare SOMETHING
init
if # ==
assign HAVETOKEN got
endif
endinit )
receive SOMEWHERE SOMETHING
if SOMEWHERE == tokencontrol
if HAVETOKEN == got
report tokenmark#
send token[ (#/N)+1)] token C
assign HAVETOKEN undef
endif
send tokencontrol finished
endif
if SOMETHING == token
assign HAVETOKEN got
report havetoken#

endif

endreplicate



APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL 242

process tokencontrol

replicate [N]

send token# yourturn
think K

receive token# finished

endreplicate

The number of processes in the system is set by the variable IV, defined in the DEFINE statement.
I this case it is set to the value 6, but can be easily changed without having to alter any other
parts of the model. ,

The token processes are inside a REPLICATE statement whose argument is the variable N. The
# suffix is instantiated when the REPLICATE is expanded, generating processes: tokenl, token2,
..., tokenN. Each of the token processes declare three variables, two to hold information about a
communicating process, and the third to determine which process holds the token at any point.
The INIT statement gives the token initially to process tokenl. Based on whether the incoming
message is the tokencontroller allocating a communication slot, or just the token arriving from
another token process, the process either sends the token onward if it holds it, or accepts the
token. When the token is passed on it takes time C before-the completion message is sent back
to the tokencontroller, which allows it to allocate the next communication slot.

The tokencontroller process sends a message to each token process in turn, offering it a commu-
nication slot. It then waits a period K before accepting a completion message and éllocétiﬁg the
next slot. These communications are instantaneous (in modelled time) since they are constructs
used to enforce the nature of the model, and not necessarily present in the actual implementation
of such a system.

The technique of assigning the value undef to variables simplifies the state space analysis since
duplicates of an earlier state occur much sooner. Using a third value to represent the absence of-a.
token would increase the number of possible states that the system could assume. The variables
SOMEWHERE and SOMETHING could also be given the value undef at the end of the token
process to reduce the reachability graph. This optimization does not affect the nature of the model
but can simplify the state space search by a substantial factor.

The placement of REPORT markers needs to be performed with a view to the required results.
The first GENERATE statement is used to calculate cycle times for one of the token processes.
Since the system is (almost) symmetrical, any token process can be chosen. The value required is
the inter-token arrival time, hence the placing of the havetoken markers. The actual body of the
process repeats more often, each time a communication slot is allocated, or a token arrives.

The second GENERATE statement calculates the latency for a message from process token! to
token8. This gives the time taken for a token to pass from the one process to the other.
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B.2.2 Analysis of the model

Process tokeni

{3]
(4]
[5]
(6]
(71
[8]
[9]
{10]
[11]
[12]
[13]

- [14]

{15]
[16]
(173
(18]
[19]
[20]

The model after it has gone through the pre-processing stage is shown below, for N = 3:

**x* Initialization section

If 1 ==
Assign HAVETOKEN
Endif

*%x*% End of Initialization

1
got

Receive SOMEWHERE SOMETHING

If . SOMEWHERE ==
If HAVETOKEN
Report tokenmarkl
Send token?
Assign HAVETOKEN
Endif
Send tokencontrol
Endif
If SOMETHING
Assign HAVETOKEN
Report havetokeni
Endif

Process token?2

{31
[4]
(5]
6]
(7]
£8]
[9]
[10]
(11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
(20]

tokencontrol

== got

token (1 C)

undef
finished

== .token

**x*% Jnitialization section

If 2 ==
Assign HAVETOKEN
Endif

*x**x End of Initialization

1
got

Receive SOMEWHERE SOMETHING

If SOMEWHERE ==
If HAVETOKEN
Report tokenmark?2
Send token3
Assign HAVETOKEN
Endif
Send tokencontrol
Endif
If SOMETHING
Assign HAVETOKEN
Report havetoken2
Endif

tokencontrol

== got

token (1 C)

undef

finished

== token

243
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Process token3

3]
_ 4]
(5]
[6]
(7]
(81
(9]
{10]
f11]
[12]
[13]
f14]
[15]
[16]
[17]
' [18]
[19]
[20]

*x+*% Initialization section
If 3 == 1
Assign HAVETOKEN got
Endif
*%% End of Initialization

Receive SOMEWHERE SOMETHING

If SOMEWHERE == tokencontrol
If HAVETOKEN == got
Report tokenmark3
Send tokenl token (1 C)
Assign HAVETOKEN undef
Endif
Send tokencontrol finished
Endif 7
If SOMETHING == token
Assign HAVETOKEN got
Report havetoken3
Endif

Process tokencontrol

fo]
[1]
2]
Y
[4]
[5]
[8]
(7]
(8]

Send tokenti yourturn
Think K

Receive tokeni finished
Send token2 yourturn
Think K

Receive token2 finished
Send token3 yourturn
Think K '
Receive token3 finished

Dimension of state space: 13

244

The last line shows the dimension of state space: three token processes, three variables in three

token processes and the tokencontroller process. For finite cycle analysis, limited to at most ten
cycles of any process, the output produced is shown below:

Trace 1: Program with assumptions:
Example: C = 1000 K = 500

1C

> 1K

Change in havetoken3 3¢
havetoken3 - tokenmarkl 2 C (5
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1

Trace number _1: C =1000.00 K = 500.00

b Trace number 2: K = 1000.00 C = 500.00
token3

o
W .0 @ s} o s)

[len*oﬂh-o T\!'T‘VT‘VT‘VT"VT"T‘VT"T‘VT"T‘VTVT"T‘"T‘V

Figure B.1: Trace of process activity for the three process token passing system

Trace 2: Program with assumptions:

Example: K = 1000 C = 500

1K > 1C

Change in havetoken3 3K (&

havetoken3 - tokenmarkl 1C+ 1K
havetoken3 - tokenmarkl 1K+1C @&

The two cases resulting from the single assumption are shown, with an example of the values
of K and C which would satisfy each constraint region. The output specified by the generate.
statements is also given, the values in parentheses after each result is the number of times that
the particular result occurs. Thus four token cycles occurred, and five tokens could be traced from
tokenl to token3.

The program also generates a graphical trace of the system for this interval, see Figure B.1,
for verifying the model. This view is also useful for understanding unexpected performance char-
acteristics.

A state space analysis is performed to guarantee that all performance characteristics of a
particular model are shown. The same input data is used for this analysis. A number of output
files are produced from this analysis, depicting the state space at various points of the analysis.
The most useful is indubitably the final result which in this case consists of the file shown below:

0: --1K>1¢C
~—--Cycle havetoken3 [3 K(1) -> 3 K(1)] |
Delay tokenmarkl:havetoken3 [1 K + 1 C(1) -> 4 K + 1 C(1)]
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1: -1 C> 1K
----Cycle havetoken3 [3 C(1) -> 3 C(1)] |
o Delay tokenmarkl:havetoken3 [2 C(1) -> 5 C(1)]

The results given are the minimum and maximum values. The format is the cost for a sequence
of values followed by the sequence length in parentheses. The value per cycle can be obtained
by taking the total sequence cost and dividing by the sequence length. The large upper limit
on latency is due to the presence of a second message path in the system: A-message can go
from tokenl to token3 via the token passing SEND, or through the messages passed between token
processes and the tokencontrol process. The path of interest is the former, corresponding to the
lower bound on the results.

To determine the dependency on N, the results for different values of N are combined:

IF I Cycle havetokenl rDela.y tokenmark1:havetokenl ]

, | 2K ifK>C K+C #K>C
20 ifC>K 20 fC>K
.| 8K HK>C 2K+C ifK>C
3¢ ifC>K 3C O > K
| 4K iK>C 3K+C fK>C
i O >K 4c O > K
.| 5K ifK>C AK+C K >C
5C ifC>K 5C ifC > K
.| 8K iK>C 5K+C ifK>C
6C ifC>K 6C ifC>K
.| K iK>2C 6K +C ifK>C
7C ifC> K 7C O > K

The latency measured above is that for a complete traversal of the ring, since the process

tokend used previously is not present for all values of N. Thus the results for an arbitrary value

of N are:
K>C:

Cycle Time : NK

Latency : (N-1K+C
C>K

Cycle Time : NC

Latency : NC

Other variations can be explored easily. For example the token might not be propagating in

the same direction as the communication slots. Changing tokencontrol to reverse the order as-
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follows:

process tokencontrol
replicate [N]
send token[(N+1)-#] yourturn

think K
receive token[(N+1)-#] finished

endreplicate

gives the following result for the N = 3 case:

0: —-1K>1C¢C
---~Cycle havetokenl [6 K(1) -> 6 K(1)] |

Delay tokenmarkl:havetokenl [4 K + 1 C(1) -> 10 K + 1 C(1)]

1: --1C> 1K :
----Cycle havetokenl [3 K + 3 C(1) -> 3 K + 3 C(1)] |

Delay tokenmarkl:havetokenl [3 C + 2 K(1) -> 6 C + 5 K(1)]

247

This shows the change in performance for a token ring trying to pass information the “wrong”

way.
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Translation of Modelling
Language into CCS

This appendix describes the translation of models specified for use with the Analyticél Simulation
tool into CCS, Milner’s Calculus of Communicating Systems [Mil89]. This transformation has a
number of benefits. It allows the models used for performance analysis to be translated easily to a
system which allows additional properties to be proven. CCS also has a well defined semantics, and
the translation process defines the semantics of the constructs used in the Analytical Simulation
models (Given with rather less precision in Appendix B). R
This section starts by giving a brief description of CCS and the extensions involved in dealing
with time and variables. The translation process is then described, followed by a simple example in
which a semaphore construct used in many previous models is transformed into a CCS specification

used to provide exclusive access to critical regions.

C.1 CCS

The following simple introduction to CCS is based on that given in [Wal87] and [Fen96).

Processes contain ports for communicating, these ports occur in complementary pairs consisting
of an input port and an output port. The same label is used for both the input and output ports
of a pair, the latter being distinguished by being marked with an overbar. The agent expressions,
E, in the language are defined by the following BNF:
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The Nil agent, 0, describes a process that performs no actions. The other agent constants,
represented by A above, require definitions of the form: A “ g Prefixing an expression with a
port label indicates that communication must occur on that port before any actions in the rest of
the expression can occur. Restricting an agent E to a set of labels K removes the ability of the
agent to communicate on a port contained in K. Summation of two expressions, E + F', allows
the combined agent to undertake actions from either of the two expressions. Composition of two
agents, F | F" allows the two to run in parallel.

A rigorous definition of the operational semantics of CCS is given below. The format of the
rules given specifies the hypotheses above the bar, and the conclusion below. Additional conditions
are given in brackets to the right.
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The syntax E 5 E may be read as E performs action a and becomes E'. A state transition
occurring on a communication between two agents is written as a 7 action. The rules above define
the semantics of the prefix, summation, composition, restriction, constant definition, conditional
and brackets respectively.

To effectively translate the timing information, an extension to CCS is required. The introduc-
tion of a delay construct produces a calculus known as the Temporal Calculus of Communicating
Systems (TCCS) [Mol89]. This includes the delay operation and an extra choice (summation)
construct. The construction (¢).E represents a process that behaves as E after ¢ units of time.
The summation as used above, E + F, can behave as E or F', the choice being made at the time
of the first action and is referred to as strong choice. The weak choice operator, as used in EG® F,

can behave as E or F, the choice being made at the time of the first action or at a point where
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only one process may continue to delay. The semantics for the two summation operators are as

for the summation operator in CCS.

~_The time delay semantics, given below, are dependent on the function |-[. which gives the

maximum time delay before a computation must occur and is defined as follows:
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The time delay semantics are then:
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Extensions to CCS to incorporate value passing using variables are described in [Fen96]. The
value-passing calculus involves only the relabelling of processes to convert it back to CCS, and so

the semantics above still hold.

C.2 Translation of Analytical Simulation Modelling Lan-
guage into CCS

The transformations given apply only to the constructs present after the preprocessing stage of the
Analytical Simulation process, thus limiting the range of statements that need to be translated.
The problem of defining suitable restriction sets is not addressed in detail; it is assumed that all
labels are unique within the system, and restricted so as not to be visible outside the translated

model.
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C.2.1 Process

Each model consists of a number of processes running concurrently, each containing a sequence of
“statements that is repeated in an infinite loop. Thys in CCS:

Model = (Process; | Processs | ... | Processy)
and
Process; = €¢;.Process;

where €; is a sequence constructed by translating the sequence of statements in the ith process as
specified below.
Each variable in a process is defined by the following definition:

Variable = wvaricble(undef)

variable(z) = wvariable ¢ assign(y).var(y) + variable ¢ read(x).var(z)
where it is assumed that Variable and variable are replaced by suitably unique descriptors.
C.2.2 Assign
The ASSIGN statement of the form
assign variable value

translates into the following sequence:

variable o assign(value)

C.2.3 Think

The think statement translates directly into a delay. Thus
think t

translates to:

C.2.4 Send and Receive

The RECEIVE statement provides different functionality depending on its syntax. It can either
receive a message from a specific process, or select one non-deterministically from a number of
processes. Variables can be involved in the operation, by both the sending and receiving process.
These can be found in the field specifying the second process, or as the datum to be transferred
during the communication.
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The SEND statement can be translated for the different cases as shown below. The statements:

send processname constant commtime
send processname variable commtime
send procvariable constant commtime

send procvariable variable commtime

translate to

Processname( sourceprocess, constant).(commtime).sourceprocesss
~ variable e read(x).processnanie(sourceprocess, z).(commtime).sourceprocess

procvariable e read(v).U(sourceprocess, constant).(commtime).sourceprocess

procvariable  read(v).variable o read(z).T(sourceprocess, x).(commtime).sourceprocess

respectively. The variables z and v must be replaced by suitably unique local variable identifiers.
The name of the process containing the SEND replaces the identifier sourceprocess.
The receive operation translates similarly.

receive processname constant
receive processname variable
receive [procvariable] constant
receive [procvariable] variable
receive procvariable constant

receive procvariable variable

translate to

destinprocess(processname, constant). processname
destinprocess(processname, x).variable o assign(z).processname
procvariable o read(v).destinprocess(v, constant).v

procvariable o read(v).destinprocess(v, x).variable ¢ assign(z).v
destinprocess(v, constant).procvariable ¢ assign(v).7

destinprocess(v, z).procvariable o assign(v).variable ¢ assign(z).7

respectively. The last two cases correspond to the situation where the source process is a variable
and where the RECEIVE is performed non-deterministically.

The use of two messages ensures that both processes must block for the required length of
time. A simpler form leaving out the final step can be used should the communication time be

Zero.

C.2.5 SendIfReady

This construct either performs a send or it does not. If ¢ is the translation of the corresponding
form of the send statement, and € is the translation of the remainder of the statements in the

process, then the required TCCS for this construct is:

(c.€)®e
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c.2.6 If

This statement translates using the equivalent construct under CCS. Given the statement:

if b -
body

endif

let B be the translation of the body, and € be the translation of the remainder of the statements
in the process. The translation of the IF statement is:

- - if bthen B.c elsee

If evaluation of the condition, b, requires values of variables then read actions may need to be

issued before the translation of the IF statement to retrieve the values.

C.3 Restrictions on concurrent access

This section shows the effect of the translation procedure applied to a simple sample system,

demonstrating mutual exclusion. The model for Analytical Simulation is given below:

process pl

think A
send mutex start
think B

send mutex stop

process p2

think C
send mutex start C e
think D

send mutex stop

process mutex

receive ANY start

receive [ANY] stop

The translation using the rules above is:

Program def (P, | P2 | Mutez)
p (a).mutez(p, start).(0).p1.(b).mutex(p;, stop).(0).p; . Pa
P Y (o) mutez(ps, start).(0).po.(d). Mtz (ps, stop).(0).po. Ps
Muter mutex(z, start).any ¢ assign{z).F.any ¢ read(y) . mutex(y, stop).j.Mutex
ANY ¥ Any(undef)

Any(z) = anyeassign(w).Any(w) + any ¢ read(2).Any(2)
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Simplifying, by removing the extra synchronizations which are unnecessary due to the zero

communication time gives:

Program

Py

P,

Mutex

- ANY
Any(z)

de f
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(P, | P2 | Mutex)
(a).mulex(py, start).(b).mulez(p;, stop).P,
(¢).mutez(pq, start).(d).mulex(ps, stop).Ps —_—

mutez(z, start).any ¢ assign(z).any e read(y).mutez(y, stop). Mutex
Any(undef)
any e assign{w).Any(w) + any e read(z).Any(z)

By examining the specification above, one can see that the variable is assigned a value which

is then immediately read from it. The variable is not used anywhere else, and can be removed,

leading to a specification closely resembling that given as an example of a mutual exclusion system

in [Fen96} and which is reproduced below:

Mz E (P|Py|Sem)\{get, put}
P, =  gef.c;put.P,
P, = gef.coput.By
Sem = get.put.Sem
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