
Modelling Parallel and Distributed Virtual

Reality Systems for Performance Analysis and

Comparison

Thesis

Submitted in fulfilment of the

requirements for the Degree of

DOCTOR OF PHILOSOPHY

of Rhodes University

by

Shaun Douglas Bangay

November 1996

Abstract

Most Virtual Reality systems emplQy some' form of parallel processing, making

use of multiple processors which are often distrIbuted over large areas geographically,

and which communicate via various forms of message passing. The approaches to

parallel decomposition differ for each system, as do the performance implications of

each approach. Previous comparisons have only identified and categorized the different
~. ~

approaches. None have examined the performance issues involved in the different

parallel decompositions. Performance measurement for a Virtual Reality system differs

from that of other parallel systems in that some measure of the delays involved with

the interaction of the separate c~mponents is required, in addition to the measure of

the throughput of the system. Existing performance analysis approaches are typically

not well suited to providing both these measures.

This thesis describes the development of a performance analysis technique that is

able to provide measures of both interaction latency and cycle time for a model of a

. Virtual Reality system. This technique allows performcLllce measures to be generated

as symbolic expressions describing the relationships between the delays in the model.

It automatically generates constraint regions, specifying the values of the system pa­

rameters for which performance characteristics change.

The performance analysis technique shows strong agreement with values measured

from implementation of three common decomposition strategies on two message passing'

architectures.

The technique is successfully applied to a range of parallel decomposition strate­

gies found in Parallel and Distributed Virtual Reality systems. For each system, the

primary decomposition techniques are isolated and analysed to determine their perfor­

mance characteristics. This analysis allows a comparison of the various decomposition

techniques, and in many cases reveals trends in their behaviour that would have gone

unnoticed with alternative analysis techniques.

The work described in this thesis supports the Performance Analysis and Com­

parison of Parallel and Distributed Virtual Reality systems. In addition it acts as a

reference, describing the performance characteristics of decomposition strategies used

in Virtual Reality systems.

2

3

Acknowledgements

This work would not ~ave been possible without the resources of the Internet, and the assistance

of members of the Internet community. Many pe~ple have provided software, information and

advice which has contributed greatly toward the content of this thesis. Discussions with members

of the virtual reality community across the world, both via e-mail, and through public forums

have been an important source of information. Thanks go to Professor Miguel Menasche who not

only provided software, but also went to the extra effort of providing translations fntb English.

I received a great deal of valuable advice on the preparation of this cJ.ocument from Professor

Patrick Terry, whose meticulous attention to detail and many suggestions have improved the

content tremendously.

My thanks go to the members of the RhoVeR development team of the VRSIG: Greg Watkins,

James Gain, Kevan Watkins and Luis Casanueva. Their enthusiastic attitude toward the subject,

and willingness to engage in discussion provided an enjoyable working environment.

My supervisors, Professors Peter Clayton and David Sewry, have provided valuable insight and

constructive criticism.

Finally, to Lindsey, who survived through this.

Contents

1 Introduction

1.1 Background......

1.1.1 Virtual Reality

1.1.2 Performance analysis and comparison in virtual reality systems

1.2 Document Layout.

-1.3 Overview

2 Decomposition strategies in virtual reality systems

2.1 Performance issues in virtual reality systems

2.2 Taxonomies of parallel and distributed virtual reality systems

2.3 Components of parallel and distributed virtual reality systems.

2.3.1 The VROS and RhoVeR .

2.3.2 AVIARY

2.3.3 Cyberterm

2.3.4 SIMNET, DIS and NPSNET

2.3.5 DIVE .

2.3.6 Division

2.3.7 Minimal Reality (MR) Toolkit

2.3.8 Multiverse.

2.3.9 VR-386 ..

2.3.10 The Virtual Environment Operating Shell (Veos)

2.3.11 Decomposition strategies used in other systems

2.4 Summary .

2.5 Conclusion

3 Performance analysis of parallel systems

3.1 Requirements of a performance analysis technique

3.2 Naive Analytic Modelling methods

3.3 Simulation methods

3.4 Abstract Modelling.

3.4.1 Petri Nets ..

3.4.2 Data Flow Diagrams

4

11

11

11

12

13

13

15

15

.. 16

17

18

20

22

23

24

25

26

27

28

28

30

33

36

38

38

39

41

44

44

50

CONTENTS

3.5 System Specific Performance Prediction

3.6 Conclusion

4 Performance analysis using Analytical Si~UJ.ation
4.1 Analytical Simulation

4.2 Implementation of Analytical Simulation.

4.2.1 Comparison of run times.

4.2.2 Non-determinism

4.3 Conclusion ...

5 Collision detection

5.1 Previous implementations of collision detection

5.2 A sequential algorithm for collision detection .

5.3 Collision detection on parallel processors

5.3.1 Collision detection using direct Message Passing

5.3.2 Collision detection using a Client-Server approach

5.3.3 Collision detection using a Master-Slave appi'oach

5.4 Conclusion

6 Analysis of client-server collision detection

6.1 Analysis of client-server models

6.1.1

6.1.2

6.1.3

6.1.4

Deterministic, simple communication.

Non-deterministic, simple communication

Deterministic, complex communication. .

Non-deterministic, complex communication

6.2 Collision detection using a client-server decomposition

6.3 Conclusion

1 State space extensions to Analytical Simulation

7.1 The state of a parallel program

7.2 The exploration of state space.

7.3 Use of Analytical Simulation .

7.3.1 Relationship to other work

7.3.2 Area of application

7.3.3 Limitations

7.3.3.1 Discontinuities in the results

7.3.3.2 Constraints on the variables

7.3.3.3 Limitations on the systems being modelled

7.3.3.4 Interpretation of the results

7.3.4 Advantages

7.3.4.1 Best at the analysis of virtual reality systems.

7.3.4.2 Performance comparison

7.3.4.3 Automatic generation of constraints

5

55

58

59

59

64

64

66

66

61

67

68

10
71

72

73

75

16

,·76

76

78

79

81

85

_81

88

89

90
94

94

95

95

95

96

96

96

96

96

97

97

CONTENTS

7.3.4.4 Support for non-determinism .

7.3.4.5 Automatic transient analysis .

7.3.4.6 Proof of program properties
"<

7.4 Conclusion ..

8 Verification of Analytical Simulation

8.1 Message Passing paradigm.

8.2 Client-Server paradigm. . .

8.3 Master-Slave paradigm . . .

8.4 Modelling on a MIMD machine

8.4.1 Message Passing on Transputers

8.4.2 Client-Server on Transputers

8.4.3 Master-Slave on Transputers

8.5 Modelling with Ethernet

8.5.1 Client-Server on Ethernet . .

8.5.2 Message Passing on Ethernet

8.5.3 Master-Slave on Ethernet . .

8.6

8.7

8.8

Comparison of models and architectures

Conclusion .

Future work .

9 Performance analysis of virtual reality systems

9.1 Components of virtual reality systems ..

9.2 Techniques used in Analytical Simulation

9.3 Conclusion

10 Analysis of the input subsystem

10.1 Polled and interrupt-driven input

10.2 Look-ahead during input.

10.3 Conclusion

11 Analysis of the output subsystem

11.1 A model of the graphical pipeline

11.2 The use of buffering in the pipeline

11.3 Parallelism and the pipeline

11.4 Pipelines in practice: Zero latency rendering

11.5 Pipelines in practice: PixelFlow

11.6 Conclusion

12 Analysis of the world modelling components

12.1 Control distribution methods

12.1.1 Decentralized control.

12.1.2 Central control

6

97

98

98

98

99

99

102

103

105

105

106

107

107

108

117

118

120

122

122

123

123

124

125

126

126

129

129

130

130

133

136

142

145

150

152

153

153

156

CONTENTS

12.1.3 Central service provider

12.1.4 Summary

-12.2 Data distribution methods ..

12.2.1 Distributed databases

12.2.2 Centralized database.

12.2.3 Summary

12.3 Techniques employed in virtual reality systems

12.3.1 Dead-reckoning.

12.3.2 Token passing.

12.3.3 Broadcasting .

12.3.4 Multicasting .

12.3.5 Object servers

12.3.6 Synchronous databases.

12.3.7 Computation on the server

12.3.8 Multiple servers

12.3.9 Asynchronous lossy databases.

12.3.10 Summary

12.4 Conclusion ...

13 Analysis of complete virtual reality systems

13.1 Asymmetric rendering

13.2 Slave renderers

13.3 Feedback between components

13.4 Fast interaction

13.5 Combinations of components

13.6 Conclusion

14 Conclusions

14.1 Analytical Simulation: Development

14.1.1 Summary of the results .

14.1.2 Contributions of the work

14.2 Analytical Simulation: Practice .

14.2.1 Summary of the results .

14.2.2 Contributions of the work

14.3 Assessment of this work

14.4 Future work.

Bibliography

A Petri Nets and Data Flow Graphs

A.l Petri Nets

A.2 Data Flow Graphs

7

159

160

161

161

161

165

'r~ ._"". 166

166

169

176

179

181

184

187

190

194

197

199

200
~ ..
200

204

208

211

213

216

217

217

217

218

219

219

219

220

221

223

234

234

235

CONTENTS 8

B The use of the Analytical Simulation tool 236

B.l Creation of a Model 236

B.1.1 Comments. 236
"<

B.1.2 Variables 236

B.1.3 Expressions 237

B.1.4 Analysis control statements 237

B.l.4.1 GENERATE statement .~ . .,.' 237

B.1.4.2 ASSUME statement. . 238

B.1.4.3 DECLARE statement. 238

B.1.4.4 DEFINE statement 238

B.1.5 Executable statements . . . 238

B.1.5.l PROCESS statement 238

B.1.5.2 SEND statement .. 238

B.1.5.3 RECEIVE statement 239

B.1.5.4 SENDIFREADY statement 239

B.1.5.5 THINK statement 239

B.1.5.6 REPORT statement 239

B.1.5.7 ASSIGN statement 239

B.1.5.8 IF statement ... 240

B.1.5.9 INIT statement . . 240

B.1.5.10 REPLICATE statement . 240

B.2 Analysis of a model. 240

B.2.1 Construction of the model . 241

B.2.2 Analysis of the model ... 243

C Translation of Modelling Language into CCS 248

C.l CCS 248

C.2 Ttanslation of Analytical Simulation Modelling Language into CCS . 250

C.2.1 PROCESS 251

C.2.2 ASSIGN 251

C.2.3 THINK .. 251

C.2.4 SEND and RECEIVE 251

C.2.5 SENDIFREADY 252

C.2.6 IF 253

C.3 Restrictions on concurrent access 253

List of Figures

2.1 Components of the VROS

2.2 Overview of the database distribution approaches .

3.1 Results of the simulation for C=l .

3.2 Results of the simulation for C=6 .

3.3 Petri Net for the client-server system.

3.4 Reachability graphs of the client-server system

3.5 NMG model

3.6 DFG for the client-server system

3.7 CMG for the client-server system

3.8 APG for the client-server system

3.9 3-unfolded precedence graph for the client-server system

4.1 Process activity versus time diagram for the client-server system

4.2 Process activity versus time diagram for the pipeline system .

5.1 Example of a trace

7.1 State space graph for the client-server model

7.2 Graph extracted for cycle time analysis

7.3 Graph extracted for latency analysis

11.1 Pixel Flow layout

12.1 State transition diagram of the serverrece'iver process.

12.2 Petformance of the 2 server /2 client system

12.3 Petformance of the 2 server /2 client system optimized for large Y .

12.4 Petformance of the 2 server /2 client system optimized for large X

12.5 Coefficient of X for non-integral values of M

13.1 Data flow in an NPSNET node

13.2 Simulation latency for large simulation times

13.3 Simulation latency for large rendering times .

B.1 Trace of process activity for the three process token passing system.

9

..

19

36

43

44

46

47

51

52

53

))4

54

60

61

70

91

92

93

147

190

192

193

194

197

208

213

214

245

List of Tables

2.1 Structural decomposition strategies in virtual reality systems

2.2 Parallel decomposition strategies in virtual reality systems.

3.1 Possible states of the Petri Net

3.2 Transition probability matrix .

3.3 Compacted transition probability matri.'(.

3.4 Interpretation of the states in the compacted Markov chain

8.1 Performance of the MIMD message passing system

8.2 Performance of the optimized MIMD message passing system

8.3 Performance of the MIl'vID client-server system

8.4 Performance of the MIMD master-slave system

8.5 Performance of the buffered Ethernet client-server system

8.6 Variable values for the buffered Ethernet client-server model.

8.7 Performance of the standard Ethernet client-server system . .

8.8 Variable values for the standard Ethernet client-server model

8.9 Performance of the standard Ethernet message passing system

8.10 Performance of the standard Ethernet master-slave system ...

8.11 Summary of the predictions for all architectures and paradigms

12.1 Control distribution dependency on N by C

12.2 Control distribution dependency on N by X

12.3 Data distribution dependency on N by C, for large C

12.4 Data distribution dependency on N by Y, for large Y

12.5 Cycle times for X dominant

12.6 Cycle times for K dominant .

10

34

35

46

48

48

48

106

106

107

.1'07 -..

115

115

117

117

119

120

121

160

161

165

166

183

184

Chapter 1

I-ntroduction

Many virtual reality systems are implemented on a variety of specialized and non-specialized hard­

ware. Most make use of dedicated equipment to improve the efficiency of particular components

of the system. Graphical output is produced on machines with hardware rendering capabilities,

for example. Others are built on advanced architectures intended for parallel processing. The

goal of this thesis is to identify the components of virtual reality systems and assess the suit­

ability of various parallel decomposition strategies for implementation on a range of distributed

architectures. Thus the design of a distributed virtual reality system can be done, knowing the

performance characteristics of potential decomposition strategies. A new performanceal.lalj:~is
approach is developed to attain this goal. The results of analysis of the decomposition strategies

found in many parallel and distributed virtual reality systems are presented to provide a reference

to system designers. The analysis approach allows the performance of new techniques, and of

modifications of existing ones, to be incorporated into the results presented in this document.

There are two components to this document. The first describes the performance analysis

technique; its origins, enhancements and applications, for those interested in applying it to new
problems. The second component concentrates on the application of the technique, showing both

the results of analysis of the decomposition strategies found in virtual reality systems, and an

illustration of the ways in which the analysis technique can be applied. The two components

together provide a guide to the designer of virtual reality systems, allowing the choice of a system

design that offers the best performance on the target architecture.

1.1 Background

1.1.1 Virtual Reality

Virtual Reality (VR) can be viewed for the purposes of the discussion in this document as the

process of creating a computer generated em"ironment into which one or more users can be im­

mersed. Immersion is normally achieved by generating a three dimensional view of the modelled

environment, and displaying this to the users via a stereoscopic viewing device such as a Head

Mounted Display (HMD). Interaction with the system is achieved by measurement of head and

11

CHAPTER 1. INTRODUCTION 12

hand movements via transducers attached to an HMD and to a glove. Many other variations in

the equipment are possible; the devices described are those most commonly in use at present.

Virtual Reality has its roots back in the_ early 1960s, when Ivan Sutherland was creating

Sketchpad and inspiring the field of Computer Grapbi·cs. At about the same time (1965-1968), he

was also developing the first Head Mounted Display [KaI93]. It was a number of years before the

computing power was available to provide the rendering performance needed for virtual reality

systems, and it was in the early 1990s that the concept became widely popular. The latter may -- ~

have been partly due to the books of science fiction writers such as William Gibson [Gib84], to

whom the coining of the term cyberspace has been attributed.

The tendency to standardize on glove and HMD as common virtual reality equipment may

have been the influence of the company VPL, who marketed what was, at one stage, a very

popular glove and HMD combination. Amongst their software offerings was RB2 (Reality built

for two), a multi-user virtual reality system which was also multi-platform. Different machines

were used to implement different aspects of the system such as graphical rendering and world

design. This tendency is noticeable amongst the other virtual reality systems of that vintage,

where researchers commandeered all available equipment in an attempt to meet the enormous

computational requirements of creating reality.

Thus virtual reality systems have been implemented on parallel and distributed architectures

right from their fairly recent infancy. This thesis is intended to categorize the approaches used to

date, to provide a mechanism for comparing them and to provide a foundation for the developme.!lt

and evaluation of new approaches.

1.1.2 Performance analysis and comparison in virtual reality systems

The distinction between parallel and distributed systems is determined by the degree of coupling

between processors. Distributed systems consist of autonomous computers, connected by a com­

munication network [Sin91]. Communication is solely by message passing. While many virtual­

reality systems fall into the category of distributed systems, some also make use of tightly coupled

processors. The latter parallel systems are more commonly used for the purpose of improving

system performance. Distributed virtual reality systems often occur because of the need to create

multi-user virtual reality systems, where separate components must be combined into a single

virtual world.

Performance issues have been considered for these parallel and distributed virtual reality sys­

tems, but usually only at a qualitative level and always in isolation (see section 2.2). Many different

techniques have been developed - almost every system has its own unique variations on the parallel

decomposition strategies used to distribute the components of the system. With systems running

on a range of different architectures, numerical performance results do not provide a meaningful

comparison mechanism.

A suitable comparison format is required. Once this exists, the different decomposition strate­

gies in virtual reality systems must each be analysed to produce results in this format. The results

of this analysis can then be used to identify the best decomposition strategy for a particular

architecture and application.

CHAPTER 1. INTRODUCTION 13

1.2 Document Layout

The order in which topics are covered in this document are as indicated by the outline below.

- The selection of a performance prediction tech.ique involves identifying the required 'area of

applicability, finding a technique matching that area and evaluating its effectiveness. Parallel

and distributed virtual reality systems are examined and the parallel decomposition strategies

employed in each are identified. The features of importance during this examination are those

that are responsible for the interaction between the distributed components, pmic11larly those

features which differ between the various systems. The different performance analysis techniques

are then evaluated, based on their suitability for performing the required analysis on the constructs

present in these systems. None of the analysis techniques meet the requirements that fulfil th~ goals

of this work. A new performance prediction technique is developed based on existing approaches,

and this development process is described in detail.

An example of a common component of a virtual reality system, a collision detection algo­

rithm, is selected and used to verify the analysis technique. The collision detection algorithm is

decomposed using common strategies identified during the analysis of virtual reality systems. Im­

plementations of each of these are modelled, and the results compared against their performance

measured in practice.

The analysis of virtual reality systems is then performed on a component basis. The input,

output and world modelling components are examined first, before the performance issues in

complete systems are addressed. The results of this analysis provide a reference to the perforI?1ance

characteristics of the decomposition strategies found in parallel and distributed virtual reality

systems.

1.3 Overview

• Chapter 2 describes parallel and distributed virtual reality systems, and identifies the key

components of these systems.

• Chapter 3 describes a number of possible candidate techniques for performance analysis and

discusses their merits with respect to the analysis and comparison of virtual reality systems.

An introduction to constructs (Petri Nets and Data Flow Graphs) used in some of these

techniques is given in Appendix A.

• Chapter 4 introduces the Analytical Simulation approach used for the performance analysis

and comparison of virtual reality systems, and discusses some implementation considerations

for this approach. A description of the tool that implements this approach is described in

Appendix B, while the semantics of the modelling language are specified in Appendix C.

• Chapter 5 devises a distributed collision detection algorithm and demonstrates the ways in

which it can be implemented using common decomposition techniques found in distributed

virtual reality systems.

CHAPTER 1. INTRODUCTION 14

• Chapter 6 provides a detailed analysis of the client-server decomposition of the collision

detection algorithm, using Analytical Simulation.

• Chapter 7 describes enhancements to t.he Analyt.ical Simulation technique that overcome

limitations which complicate the analysis in Chapter 6.

• Chapter 8 completes the analysis of the collision detection algorithms and tests the predic­

tions against the performance of actual implementations.

• Chapter 9 decides on the strategy to employ in the analysis of virtual reality systems and

their components.

• Chapter 10 examines the performance implications 'of parallel processing within the input

components of virtual reality systems.

• Chapter 11 investigates graphical output, in particular the pipeline construct used for parallel

rendering.

• Chapter 12 examines parallel decomposition strategies used for world simulation.

• Chapter 13 considers the performance of complete systems, combined from the components

described in Chapters 10, 11 and 12.

• Chapter 14 summarizes the results obtained throughout the thesis and lists the contributions

that it makes.

• Appendix A provides an introduction to Petri Nets and Data Flow Graphs.

• Appendix B describes the statements used to specify models for Analytical Simulation, and

presents an example of the use of the Analytical Simulation tool.

• Appendix C describes the process of translating the models used for Analytical Simulation

into CCS. This translation both specifies the semantics of the modelling constructs, and

allows the formal proof techniques of CCS to be applied to these models.

Chapter 2

Decomposition strategies • In

virtual reality systems

Building efficient parallel virtual reality systems requires the a?ility to identify the different strate­

gies- for decomposing a system into components and to compare the various ways in which these

components can be connected. The purpose of this work is to identify the best components and

connection strategies for a particular application and architecture. Achieving this result requires

a method of comparing components and strategies. Selection of a comparison tool requires that

the nature of the candidates for comparison be understood.

The criteria for judging and the possible candidates for consideration are described in this

chapter. Once the possible configurations have been identified, a suitable paradigm must be se­

lected for finding the required performance values for a particular parallel decomposition strategy.

The choice of comparison tool is the subject of Chapter 3.

2.1 Performance issues in virtual reality systems

The performance issues considered in this chapter are those that can be affected by increased

computational power and greater communication bandwidth. Issues relating to more accurate

physical simulation or human-computer interface issues are not relevant to this discussion, unless

they are influenced by these performance factors.

It is well agreed that performance of virtual reality systems can be characterized by two metrics:

throughput and lag [Hub93b] [Gos94] [Sty96] [Wl095] [Ams95]. Throughput gives a measure of

the rate at which the system performs an action. It is often measured for graphical output and

is otherwise referred to as the frame rate, or using the reciprocal, as the cycle time. The lag,

also often called the latency, is a measure of the time taken for the effect of an event to be

noticed. Applied to a complete virtual reality system, the interaction latency is the difference in

time between input being supplied (user performing an action) and the corresponding output (the

effect of the action being rendered).

15

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 16

Several different effects have been described as contributing to lag in a virtual reality system

[Wlo95]:

-. User input device lag - time taken by tne inpltt ,device to report a reading.

• Application-dependent processing lag - time taken for computation using the input value.

• Rendering lag - time taken for rendering and display on the screen.

• Synchronization lag - time spent blocking by processors waiting for others (o~ atcept data.

-. F'rame-rate-induced lag - lag while the current frame remains on the screen, until the next

frame replaces it.

The overall latency in the system is comprised of combinations of these. While variations in the

throughput may affect the lag (frame rate affects frame-rate-induced lag), and vice versa, neither

value can be derived from the other.

The term latency is used in the remainder of this document to indicate lag values. The measure

cycle time is also used as the indicator of throughput, since ,it is conveniently based in the time

domain as are all the performance measurement approaches. In both cases a decrease in value

represents an improvement in performance.

2.2 Taxonomies of parallel and distributed virtual reality

systenls

Recently some attempts have been made to provide a systematic way to categorize the alternative

decompositions of different parallel virtual reality systems. Previous work by the author includes a

survey of many parallel and distributed virtual reality systems [Ban93]. Many authors have begun

to acknowledge the existence of alternative approaches when describing their systems [Wan95j

[Sha93] [Sin95].

A taxonomy of networked virtual environments is proposed in [Mac95b]. The areas used to

categorize virtual reality systems are communication issues, synchronization of the view of the

virtual world for different users, and data and process issues. The communication issues cover

topics such as bandwidth, distribution schemes, latency and reliability. The comparisons tend to

be dominated by issues of widely dispersed high speed networks, support for large numbers of users

and considerations of broadcasting and multicasting. Coincidentally these are characteristics of

NPSNET over DIS (see section 2.3.4), a system on which the author of the taxonomy has worked

extensively. The data issues consider the nature of the database representing the virtual world

and the manner in which the data is made available to all participants in the virtual world. This

CHAPTER 2. DECOiVIPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEi\;IS 17

is an area that receives a great deal of attention throughout this thesis. The different approaches

identified are:

• Replicated database: Copied to all processorsFi~h updates broadcast periodically.

• Centralized database: Kept on a central machine, to which updates and requests for infor­

mation must be sent.

• Distributed database: Replicated database but guaranteed to be synchroniz~d at all times.

• Distributed databases: Database partitioned across a number of servers.

Processes in most of the systems are categorized as homogeneous, in that the same type of

process runs everywhere. The emphasis is on scripting languages which allow different behaviours

for these processes, and which allow process migration.

While describing the development of a distributed virtual reality system, [Ams95] identifies

two communication infrastructures, a star connecting every component to every other, and a

centralized model where clusters of components communicate through a central process. Access

to information is obtained either by collecting it from a predetermined point, actively requesting

it, or by registering to have regular updates sent.

In a tutorial dealing with the creation of virtual environments [Gos94], the communication mod­

els identified are those of the centralized database and replicated database. Mention is also made

of the use of broadcasting, multicasting and unicasting as alternative approaches to implementing

an update mechanism for replicated databases. Other issues which need to be implemented in a

virtual reality system include collision detection, physical modelling and a way in which objects

in the world are controlled.

A discussion of distributed virtual reality [Sty96] interleaves the issues required to produce

realism with those related to structure and communication. Again the influence of DIS means

that the aspects considered are tailored for widely distributed systems with large numbers of use_r~.

Under these circumstances, communication strategies requiring absolute synchronization compare

poorly against broadcast and multicast approaches. The latter use less frequent communication

and a system of dead-reckoning to provide the intermediate values. Communication issues are of

great significance for these systems as emphasized in [Roe95] where multicast zones are discussed

to limit portions of the communication traffic to only those objects that can make use of it.

2.3 Components of parallel and distributed virtual reality

systems

The remainder of this chapter provides a survey of parallel and distributed virtual reality systems

and investigates the components and distribution strategies which affect performance. The de­

scriptions cover the evolution of these systems from their humble beginnings to the most recent

versions available.

Diversity decreases as successful approaches are identified and favoured. A record of the

techniques discarded in the process remains valuable, to prevent mistakes recurring, and to provide

CHAPTER 2. DECOi\-IPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 18

alternatives should the architectural constraints evolve. The different stages in the development

of these systems are described to allow the trends in their evolution to be seen.

The issues of relevance in the following sec~ions are' the parallel decomposition and communi­

cation strategies employed in virtual reality systems:' 1'hese are related to the structural de~ompo­
sition of the system (the way in which the simulation of the virtual world is broken down) and the

architectural and network constraints. The different structural decompositions are summarized

in Table 2.1. The taxonomies in section 2.2 identify some possible areas in which the systems

differ, in particular the ways in which data is distributed and in which the control-ofthe various

components of the system is synchronized. The way in which some of the primary functions of the

vi;tual reality system are decomposed across separate processors must also be considered. These

functions include tasks such as physical modelling, collision detection and inter-object control and

interaction.

The parallel decomposition strategies already mentioned in section 2.2 include a centralized

database (using a client-server model for access), distributed databases and replicated databases

(using either strict synchronization or periodic updates through broadcast or multicast mecha­

nisms). Processes have been running independently, without much consideration for interaction

except through the database. Different strategies for the parallel decomposition of this control

exist, such as the presence of a master process that distributes the work. A summary of the par­

allel decomposition strategies present in parallel and distributed virtual reality systems is given

in Table 2.2. The different data distribution approaches are represented diagrammatically in

Figure 2.2.

2.3.1 The VROS and Rho VeR

The Virtual Reality Operating System (VROS) resulted from a project investigating the devel­

opment of a virtual reality system specifically for a parallel architecture. The implementation

environment is a cluster of Transputers, communicating via message passing. The design de~i:

sions are documented in detail in [Ban94a). Thefollowing brief description summarizes the parallel

decomposition strategies.

The virtual universe is divided into worlds, each representing a particular scenario. Each

world contains a number of objects, which have various attributes including their position and

orientation in space. Some of the objects represent the humans interacting with the system and

are referred to as users. A virtual reality application normally consists of one or more worlds

containing objects interacting toward a particular goal. An example of an application would be a

walkthrough consisting of a world containing a building object and a number of furniture objects.

The VROS contains various device drivers for supplying data to the users (output device

drivers) and reading data from them (input device drivers). The section of most interest for this

discussion is the virtual world simulator, usually called the kernel.

The kernel is capable of supporting multiple worlds simultaneously, and allowing multiple users

to enter each world.

To utilize the parallel architecture effectively, each world is represented as a data structure

consisting of the attributes of the objects in that world. The objects, which can be located on

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 19

Object
Processes

Kernel
Function Calls

•

Communication
Layer

Worlds

Figure 2.1: Components of the VROS

Device
Drivers

separate processors, must query the world for all data relating to them and the other objects"in

the world. This approach is implemented as a number of processes which can run on any 'of the

processors in the Transputer cluster. The world processes simply act as servers, supplying data

to each object and updating their databases on request. In this way these processes can keep

all the data consistent. The object processes control the actions of the objects in the world and

implement the laws of that world. In addition, the object processes belonging to users may invoke

the device drivers for additional control information. A communication layer exists for routing

messages between processes, masking the details of the physical architecture. This decomposition

is represented visually in Figure 2.l.

Application programmers supply the control routines for each object. They are provided with

a set of routines for manipulating aspects of the virtual worlds. The underlying architecture

is invisible at this level. Routines exist for reading and updating the attributes of the current

object. Similar routines exist for reading and updating attributes of the other objects, although

more restrictions exist in this case. Objects can only control others if they are classed as owners

of these objects. No direct communication between objects is currently supported by the kernel.

Object processes may signal to each other by changing their attributes, or through communication

routines which must be provided by the application programmer. Various other functions exist to

provide useful facilities such as transferring objects from one world to another.

Development on VROS has ceased. Instead the experience acquired from this system and

the ideas used in other systems have been used to design and create a new system intended to

facilitate research into a number of areas in virtual reality. This includes the performance analysis

and comparison described in this document. This system, named RhoVeR, was implemented as

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTE1VIS 20

a group effort to facilitate the work of the virtual reality research group at Rhodes University.

Since RhoVeR is intended to allow various approaches to implementing distributed virtual reality

systems to be tested, it is not limited to any_ single distribution approach. A description of the - .
Rho VeR system may be found in [Ban96].

A limited selection of the various parallel decomposition approaches are implemented as a

standard part of the RhoVeR system, to allow its use for other virtual reality related work.

Processes are allocated to each object, to each device and to a number of control modules.

Control information is distributed by events which trigger responses from each proCess. Control

ev~nts originate from timer processes, and other processes which implement functions such as

collision detection and physical simulation.

Data distribution is accomplished through three mechanisms offering different tradeoffs in

generality versus ease of use. The standard world representation is stored in a Virtual Shared

Memory (VSM) block, a replicated database. On a single processor, the VSM is implemented as

actual shared memory. VSM Manager processes are responsible for transmitting and receiving

updates to synchronize the database. The values in the database represent the most recent values

received. There is no guarantee that every copy of the database will be identical at every point in

time.

For larger, less frequently changed values, a ShapeData structure exists which caches copies of

data belonging to other processes. An update flag in the V8M causes the data to be reloaded if

it is changed at the source.
-,"

For general communication that does not fit into either of the other categories, a message

passing service is available for direct point-to-point communication.

Collision detection and physical simulation are performed by additional processes which mon­

itor the state of the world through the VSM. Control events are then sent to the objects to

enforce the correct behaviour. Control of objects and resolution of contention issues are controlled

through a hierarchy of ownership. Ultimately, the process currently owning a particular object is

responsible for any change in this state.

2.3.2 Jl"IJlIt~

The Advanced Interfaces Group at the University of Manchester is working on the development

of a general framework for advanced interfaces, which they have named AVIARY [Wes92] [Sn093].

This system is intended to support a broad range of Virtual Reality environments.

The AVIARY system runs on Transputers and SUN workstations. The communications system

is the module most affected by different architectures. Versions are implemented for Transputer

networks and SUNs connected by Ethernet. Graphics are produced by a hardware renderei".

AVIARY uses a structural decomposition of the virtual reality system into worlds and objects.

These are represented by data structures, in contrast to other systems which implement them

as processes in their own right. Worlds are collections of attributes (e.g. mass) and laws (e.g.

gravitation), objects are known as entities and may be controlled by processes called demons.

Control of objects can be placed into the hands of abstract applications which are distinct processes

that manipulate the objects in the world. Many applications can exist in a single world, controlling

CHAPTER 2. DECOlvIPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 21

the various objects. Other systems, such as the VROS, create this sort of coherent behaviour by

combining the efforts of the processes associated with each object and world.

_ While objects are permitted to be bound to processes which control their behaviour, an extra

form of control is present from users or application~. A user under AVIARY combines character­

istics of objects (in that it has a visible manifestation), and of applications (in that it is subject to

control beyond that of the physical laws of the world). The user is modelled in the same way as

an application. Other virtual reality systems which do not support the application concept must

either make a special case for the user, or use the object representation with links made to input

a~d output devices, as is done in RhoVeR.

AVIARY is segmented into processes that can run in parallel. A communication system similar

to that used in the VROS is present to allow communication between processes. The processes in

the system consist of:

• Input processes.

• Output processes.

-. A Virtual Environment Manager.

• Environment Database that provides spatial management such as collision detection.

• Object Servers.

• Applications to control users or manipulate the virtual environment.

Objects and applications run separately as independent processes. Control is essentially dis­

tributed, although collision detection is treated as a special case [Sn094b]. The environment

manager receives position updates from each object, and sends out messages to those that have

collided. AVIARY implements an extension to this: once an environment manager is significantly

loaded, it splits into separate processes which continue the collision detection computation:- In·

parallel.

Another special feature of AVIARY is the presence of object servers which allow one pro­

cess to support more than one object. This decreases resource usage for processes with small

computational requirements, and allows for the possibility of dynamic load balancing.

With AVIARY, the various processes communicate extensively. Data is kept in a series of

distributed databases. Each object keeps the data relevant to it, and updates are transmitted

when changes occur. Updates are limited to those processes which have expressed interest in the

data belonging to a particular object.

The problem of supporting the range of features necessary to implement any reality is addressed

in depth. The solution implemented is to provide a basic world that may be customized to

the purpose required. This results in a conflict between the need to provide assistance to the

application writer and to allow sufficient generality. To overcome this, the set of all possible

worlds is structured as a hierarchy. The top of the hierarchy contains all possible worlds. Further

down these laws are refined. For example, some worlds may have gravity, while others do not.

This information may also be used to restrict the types of objects that may be moved from one

CHAPTER 2. DECOA!fPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 22

world to another. Consistency is maintained by making sure that the object is capable of obeying

the laws of the new world. A system of portals is used to link different worlds.

-A strength of the AVIARY design lies in the ability to implement physical laws without exces-
": .

sive involvement on the part of the application writer. The object oriented nature of the system,

with the use of inheritance to control attributes for different worlds, is well suited to the design

of a support environment for implementing virtual worlds.

2.3.3 Cyberterm

ThIs system is intended to implement a single virtual world, a cyberspace that allows multiple

users to share a common virtual area [Sn092]. The single world is distributed over a number

of workstations with each machine acting as a server for a sector of the world. The system

was initially implemented for PCs and SUNs connected by modem. Graphics are produced by

rendering libraries such as VOGLE and REND386. Later versions have concentrated on the PC

architecture, and on using Internet protocols, although still at modem speeds.

The positions of objects are kept by the server database. When an object enters a sector the

object makes a local copy of this data. Velocity information is used to update the position of

other objects, and updates are periodically issued when another object changes direction. This is

appropriate where communication is over long distances and-over limited bandwidth connections.

Each processor runs a server and possibly a client. Movement from one sector of the world to

another requires the local client to connect to a different server.
._-

The initial approach used in Cyberterm [Sn092] was to create a single space in which each

processor acted as a server for a smaller portion. The latest releases of the product are fitting

in more with the approach used in other virtual reality systems, where each server runs its own

world connected to others via portal objects. This is effectively a cosmetic change; the underlying

distribution techniques need not be affected by this.

Cyberterm is designed for use over modem lines, the slowest of communication media (amongst

the distributed virtual reality systems at least). As such it concentrates extensively on minimal

communication.

Data distribution uses the client-server model, with multiple servers, one for each area of

cyberspace (or world). Clients connecting to remote servers route the information through their

local server.

Control of objects is both via the server and the client. The server is the authoritative source

of an object's action, while the client runs a dead-reckoning routine in an attempt to provide an

accurate representation of an object's behaviour. Updates are sent from server to client when the

behaviour of an object changes. The protocol also specifies periodic updates that can be sent from

server to clients.

Access to the resources of an area of cyberspace (or a world) is controlled by the server process.

The servers must issue permission for various actions, such as movement. Private areas of space

can be created where rules decided on by the owner are enforced. Clients must explicitly request

permission to create objects, or to relocate to specific areas. Such requests may be relayed to

other clients who have control over the resource under contention.

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 23

An interesting notion in Cyberterm is that of an agent [Sn094a). This is an object that can

be launched by a client together with a controlling script which is executed by the server. Thus

complex transactions ~an be limited to the server containing the data, and only final results need

be communicated between server and client.

Collision detection is a recent addition. Two alternative approaches are suggested. The first

uses a specialized agent which watches for collisions, the other requires that collision detection

code be included in the server.

2!.,3.4 SIMNET, DIS and NPSNET

Distributed Interactive Simulation (DIS) and its predecessor SIMNET are standards for distributed

interactive simulations [Loc93) [You95). They are specifically intended for battlefield simulations,

but are starting to be reworked for other applications, such as air traffic control simulation. The

simulations may involve thousands of objects and take place over a wide area network.

Communication occurs over a relatively low bandwidth (in relation to the size of the simulation)

medium, such as Ethernet. Each host machine controls its own vehicle and keeps track of others

by dead-reckoning. Each host keeps track of its own dead-reckoned position and when this differs

significantly from its actual position, it transmits an update to all other hosts.

A number of applications implement the DIS protocols, such as VR-Link [Mor95), Close Com­

bat Tactical Trainer (CCTT) [M';lS95], PARADISE [Sin96) and the popular NPS Networked Vehicle

Simulator (NPSNET) [Mac95c). When dealing with large simulations, NPSNET attempts toyar­

tition the space according to the relationships between the various participants (Ma:c95a). 'Some

of the disadvantages of the DIS protocol are the large number of other objects requiring updates

and the need for all participants to maintain complete terrain databases. This leads to the need to

limit the area of interest, and so communication between entities in the virtual world is limited to

those entities which have some relationship with each other. In practice this is implemented with

a multicast group, which allows a message to be transmitted by one process and received by mul- .

tiple entities. Logically entities are related by their spatial, functional (e.g. involved in common

simulated radio traffic) or temporal (update requirements) properties. A static decomposition into

multicast groups is recommended in [Sri95) to overcome problems in identifying multicast groups

for sending and listening.

The constraints given above strongly influence the manner in which distributed virtual worlds

can be implemented. The use of low bandwidth communication, powerful processors and tech­

niques such as dead-reckoning and broadcasting facilitate the use of replicated world databases.

Each object controls its own behaviour, and the local processor animates all objects according to

the latest motion update. The spatial partitioning of the world for multicast groups facilitates

collision detection and physical modelling, which each processor performs independently on its

area of interest. Object interaction, for example one object shooting another, involves sending a

detonation message to a group. Members of the group are responsible for reporting any effect of

the explosion.

CHAPTER 2. DECOl'vIPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 24

2.3.5 DIVE

DIVE (Distributed Interactive Virtual Environment) is ~ loosely coupled heterogeneous distributed

virtual reality system based on UNIX and running ov~er.local and wide-area networks using Internet

protocols [And93a][And93b]. It provides shared memory over a network and controls the sending

of signals to processes.

A world consists of a set of objects and various parameters. Objects are capable of moving

from one world to another. The transfer is triggered when they intersect special obj~cts designated

as gateways. Under DIVE the world is maintained as a distributed database. Each process has

its. own copy of the structure, managed by the ISIS toolkit [Bir9Q]. Functions are provided to

allow the updating of entries in each copy for all the processes in the world. The update requires

locking all copies of the database before sending changes through. If all processes leave a world,

the database is discarded.

An event handling system is present in DIVE allowing processes to register for certain types

of event. The process can be notified when objects are created, removed, changed, or when

interaction between a user and an object occurs. A timer event allows certain tasks, such as object

movement, to be called periodically. Objects may be given primitive· behaviour by specifying a

state machine which performs certain actions on various events. A limited number of actions are

possible, including moving, sending signals, and changing appearance.

The DIVE system consists of a set of processes, each capable of manipulating the world and its

objects. These processes include visualizer processes that allow users to interact with the world,

and application processes that operate on objects or introduce applications in the virtual ,vorld.

A number of high level tools are available for creating applications in DIVE. These functions

support selection and grasping of objects. A vehicles module exists which uses the user's actions

to control the virtual environment.

Recent developments on DIVE have been directed at extending the system to handle more

users, over a widely distributed network.

Interaction between objects is controlled by aura, focus and nimbus [Ben94]. Aura defines a

sub-space around an object within which it can interact with others. The other concepts define

boundaries that govern the degree of mutual awareness of other objects. These concepts are

implemented in DIVE using sub-objects to set the boundary limits, and collision detection is used

to determine an object's awareness of others.

Collision checking is enabled by setting a flag for each object. If enabled, collision checking

occurs when the object moves. The computation is performed by the process moving the object.

When a collision occurs, a signal is distributed to all processes in the world.

The ISIS toolkit provides facilities for fault-tolerant distributed databases, amongst other

things. As used in DIVE it uses a multicast protocol to distribute changes and set locks. All

nodes in the system are guaranteed to have seen the same sequence of events, which, while good

for system integrity, provides some limits on scalability. A limit of about ten peers is given as an

upper bound for a DIVE system.

The most recent version of DIVE uses SID [Hag95], an alternative reliable multicast package.

This package should make it possible to supply a distribution layer to hundreds of participants.

CHAPTER 2. DECOlviPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 25

Requests for data are sent asynchronously, and a callback mechanism is used to notify processes of

the arrival of data. Replies are generated by the nearest host, identified by packet timing. A token

bu~ket mechanism is used to limit the back-to-back transmission rate. A simple dead-reckoning

module is also present.

2.3.6 Division

The ProVision system is one of the early virtual reality systems produced by,a~ &istol based

company, Division. It is a virtual reality server that connects to a number of host machines

[Ptm91]. The system was based on T425 and T805 Transputers, but has since been ported to

a range of platforms. Various support software is available, including the Distributed Virtual

Environment System (dVS).

This system provides real time control and distributed event handling. All activities and envi­

ronment handling under dVS are petformed by processes called actors. Sharing of data between

the actors is controlled by dVS. The functionality of dVS is closer to that of an operating system

than a system for the modelling of virtual worlds.

Parcels of data can be shared between various actors. Each actor makes a local copy of the

data. In order for one actor to update the data, it must send an update request to a special actor,

the director, which then propagates the update to other actors holding that data. Updating can

be done in exclusive mode, which ensures that all actor processes have consistent copies at one

time. The alternative is general mode which is faster, but actors separated by low bandwidth

connections may experience delay in receiving the update.

In order to cope with real time constraints, each actor can maintain its own local time. When

communicating, the director compares the different times of each actor and adjusts them so that

they are in step. This is useful in synchronizing different hardware devices that operate at different

speeds.

A renderer process called Paz converts a high level scene description to the polygon equivalent-.

Calls to Paz can be made to alter the position,motion and illumination of the objects.

The offerings from Division have evolved substantially from their initial ProVision system. The

current system consists of two levels: dVS, the VR operating system which supports distributed

virtual worlds, and dVISE , a high level package for the construction of virtual worlds. Being

a commercial company there is a limit to the detail with which the description of their imple­

mentations is given. The description given in this section is pieced together from a number of

publications describing various components of the system [Pou91] [Ghe95] [Div96].

The dVS VR operating system has been ported to a number of platforms. Interoperability is

possible between any of the machines running the system. The complexity of the system has grown

over its lifetime and it uses many techniques found in other systems. It supports a hybridization

of different distribution approaches.

The basic system required on each machine is the runtime, which consist of a number of runtime

actors controlling various aspects of the virtual reality system. These actors act as servers for

application actors. The latter are external to the runtime, and are clients for the services provided

by the runtime actors. The standard runtime actors provide graphical and audio output, control

CHAPTER 2. DECOjV1POSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 26

input devices, perform collision detection and physical simulation, and create a representation of

the virtual body of a user. All actors run as independent processes which can be located on one

m~hine, or distributed across networked machines.

Communication actors known as agents contror'communication between machines. They are

responsible for the byte ordering issues involved when different architectures communicate. Com­

munication uses TCP lIP, allowing the system to be distributed over the Internet.

Distribution of updates and notification of changes occurs through the passing of events. Actors

must register interest in the events which concern them. The event driven approacnremoves the

need to work in a sequential manner. Processing is triggered by the arrival of events.

Dead-reckoning and position prediction are used in dVS to reduce latency.

Collision detection employs one of the runtime actors to watch for collisions between objects.

Collision detection can be performed at various levels of accuracy, from simple bounding box

checks to comparisons at a polygon level, depending on available processing power. Events are

sent out to the objects involved when a collision occurs.

Data and control distribution can be implemented using event passing. Facilities remain for

handling the parcels of data, the shared data elements which are visible to both application and

runtirne actors. Implemented as either a distributed database or a replicated database, updating

is controlled by the master process (director) which ensures the consistency of the database.

2.3.7 Minimal Reality (MR) Toolkit

The MR toolkit is a library of functions for supporting the development of virtual reality iriterfaces

[Gre92]' It provides support for a number of peripheral devices used for virtual reality. It also

provides facilities for distributing the virtual reality over multiple workstations. The MR Toolkit

assumes that different hardware is used to satisfy the different requirements of each process, and

so concentrates on parallelism. Data sharing is via simulated shared memory on a message passing

architecture.

The toolkit consists of three levels of functions. The first level contains the device support

functions. These are implemented as a client-server pair, with the server continuously polling the

device so that t.he client can have access to t.he most recent value without delay. The server also

performs low-level processing of the data such as filtering.

The second level convert.s the data from t.he devices into a convenient form for the application

programmer.

The third level of functions provides services for the application programmer. These include

functions for the maintenance of distributed data structures.

The processes in an MR application can have three roles. One must be a master to control the

application and start the other processes. There can be a number of slave processes that are used

to produce graphical output. There may also be a number of computational processes that receive

input from the master and return results to it. Data sharing is done by keeping local copies of the

data with each process. The data structures must be periodically synchronized to ensure that all

processes have the correct. values. The application programmer is responsible for specifying when

this update occurs. This differs from other virtual reality systems that use distributed shared

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 27

memory constructs. Other systems remove the need for the application programmer to attend to

such details.

-Communication is possible between separate tvIRf1Pplications. The master processes of each

application can send device and application-specific data to other master processes. Slave processes

must communicate via the master.

The MR toolkit can thus be operated in two ways. Firstly, a system with a single master process

and some slave and computation processes can run as a distributed virtual reality-application

[Gre95]. Separate processes are usually not employed to represent individual objects in the system.

Rather a compute process or the master provides the simulation, and the master (with a slave for

stereoscopic views) does the rendering.

The other mode of operation uses the peers package [Sha95] in which master processes com­

municate. An example application using the peers package is provided with the system, and

implements a simple virtual handball demonstration. Control of the simulation is passed between

master processes, according to the user that holds the ball. The collision detection facilities are

also provided by the application program. Collisions can occur between· the ball, the static walls

and bricks and the hand of the owner. These are all local to one process so no distributed compu­

tation occurs. Physical simulation is limited to ball movement and collision detection which, as

mentioned previously, is performed by the master process that owns the ball.

The Environment Manager (EM) [Wan95] is a high level tool for constructing MR Toolkit

applications. It provides two approaches to resolving contention for shared data structures. In the

first approach, only one process owns the simulation at a time. Only that one process is allowed

to change shared variables. The other case allows sharing of access to shared variables, either read

only, or writable. \Vriteable variables could cause inconsistencies if there are delays in distributing

changes. A token passing mechanism is used to prevent this. Global updates of the variable are

only made when a token is held. In this way, the variable is subjected to the same sequence of

updates on every processor.

The facilities offered by the MR toolkit are sufficiently general to allow variations on commu­

nication strategies. The applications for a single system tend to limit parallelism in the world

modelling components, performing all the computation in the master process. The slaye process is

used to assist in rendering, while devices are also separate and sending data. The shared memory

services are useful but tend to be prescriptive when designing an application. The peer package is

better suited to parallel world modelling and more control is available in determining the manner

in which the distribution is implemented.

2.3.8 Multiverse

Multiverse is a multi-user X-Windows based Virtual Reality system [Gra93). The system runs

on a UNIX platform and is based on a client-server model. It consists of servers that model the

virtual world, and clients that are used for user interfaces. Each client and each server is a separate

process, and each may run on a different machine.

Multiverse models each object as a data structure with an associated control process. A

Multiverse server provides a single world containing all the objects.

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 28

The clients consist of a single program that performs roughly equivalent functions to the input

and output device drivers in other virtual reality systems. The clients are generic, and independent

of the world being modelled by the server. T~ey consist of a loop which renders the view of the

world and then sends any input from the user back<t<:> the server.

A server process manages the world and its objects. The main functions of managing a virtual

world are taken care of transparently; the application writer is required to supply only a few

functions. These are mostly trivial, the one of interest being the animate World function that

defines the nature of the world. It is called from the main server loop and is usuatly used to move

the objects in the world. Since all processes run on a single machine, there is no need for data

Sharing.

The objects may ha\'e special code to control their movement. Objects interact with each other

and with the world using an event handling mechanism. These events include MOVE-.EVENT that

should cause the object to move, COLLISION .NOTIFY -.EVENT for when objects have collided

and TERM.NOTIFY -.EVENT for when an object ceases to exist. The control routine of the object

is executed as part of the thread of the server process. The object control routine is generally

invoked when an event occurs which affects that object.

-Simulation of the world in Multiverse uses a single thread of execution, as opposed to the

multiple processes under the other parallel and distributed virtual reality systems that have been

discussed. However, the machines that would support Multiverse typically contain a single pro­

cessor, and so creating more processes would be redundant.

2.3.9 VR-386

VR-386 [Sta94] is a virtual reality system for the PC which is descended from Rend386, a polygon

rendering library for 386 and 486 based systems with VGA displays [Sta92]. The design and

implementation strongly reflect the need for efficiency when rendering views of worlds. Unlike the

other systems, it runs as a single process.

VR-386 represents a world as a structure cQntaining all the visible objects in that world. It is

intended to be capable of supporting multiple worlds and to allow switching between these worlds.

The objects in Rend386 could have several representations corresponding to different levels of

detail. Figures constructed of a hierarchy of objects can also be defined. Objects are then stored

relative to the parent object in the hierarchy. For example, in a human figure the arms and legs

may be made children of the torso object. VR-386 goes further by adding a degree of animation

and automatic updating for parts of a figure. Objects move when the parent object moves, with

additional effects from the joints linking them.

VR-386 provides for extensive control of input and output, and also includes many functions

for manipulating virtual worlds.

2.3.10 The Virtual Environment Operating Shell (Veos)

Veos is an environment for creating distributed applications for Unix [Coc92] [Coc93]. It is designed

for prototyping distributed virtual reality applications.

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 29

The processes required to implement a virtual environment are known as entities and can be

distributed across a number of Unix workstations. A data type known as the grouple is used as the

standard data structure. The groupIe is an extension to the tuple used in the Linda programming

pa~adigm [Car89]. GroupIes consist of nested tupl~s.· An interpreted Lisp system is used as the

programming interface to Veos.

Each Veos entity consists of a distinct Unix process that controls interpretation of the task

written in Lisp. Each entity has associated groupIes paces, for which pattern matching facilities

are provided. Asynchronous message passing of groupIes between entities is suppDrted.

The initial system was intended for prototyping and performance issues were not considered

important. The use of interpreted Lisp makes the system flexible and easy to use. It also allows

evaluation of program stubs passed as messages.

Even though the groupIes paces may suggest use of shared memory, inter-process communica­

tion still involves message passing.

Over its lifetime, the VEOS system has undergone significant development. While still based

around the variant of the Linda tuple space, the grouplespace, recent work [Bri93] has focussed on

performance improvement.

-Each entity is capable of direct communication with others. Communication between nodes

makes use of direct, asynchronous message passing. Communication between entities can use this

direct message passing, or it can make use of the pattern directed databases, the grouplespace.

Entities are provided with functions that specify each aspect of their interaction with their

environment. Perceive functions determine what portion of the environment is accessible,react

functions specify reactions to changes and persist functions specify behaviour. Entities may en­

capsulate others, as such providing a global environment for communication and data sharing

amongst the enclosed entities.

Each entity maintains several standard local databases with specific access control. A bMmdary

partition contains data for sharing with other entities, and an external partition keeps information

about the other entities that are within perception range. The VEOS system is responsible far

distributing changes from each entity's boundary partition to its sibling's external partitions at the

end of each entity cycle. 'When changes occur faster than the system can make updates, only the

most recent values are sent. Intermediate values are lost. An internal partition contains data from

the boundary partitions of encapsulated entities. An Interact process within the entity gathers

changes from the boundary partitions of encapsulated entities, and propagates them to the internal

partition and to the external partition of each enclosed entity.

The entities contain React processes for collision detection and other environmental changes.

These are triggered by updates to the boundary and external partitions. Persist processes within

the entity implement the non-environmentally dependent functionality of the entity.

The use of a replicated database occurs in other systems. In DIVE, the database is locked before

updates are made, making it possible to keep all copies identical. In VEOS, with the ability to

drop updates, it becomes possible to update the database rapidly, but at a cost of keeping accurate

copies. Much of the use of the database in virtual reality systems relies on it reflecting the most

recent state of the system, rather than having it in agreement with other processors in the system,

as reflected in the implementation of the Virtual Shared Memory in Rho VeR.

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 30

2.3.11 Decomposition strategies used in other systems

There are a number of other virtual reality systems available using distributed processing to greater

odesser degrees. ·With these systems there is relatJv50ly little documentation available as to the

ways in which they are decomposed. This section gives such details as are available relating to

the parallel decomposition strategies employed in these systems.

• Networked Virtual Reality (NVR) [Ber94] consists of a toolkit of functions for providing - ~ ~

multi-user virtual reality applications networked using TCP lIP. Data distribution uses a

replicated database, but with a client-server variation. All communication is routed through

the server, which also maintains a copy of the database. The server copy is used to initialize

the database for any new entrants into the virtual world. No access control is enforced,

although a system of locks on objects is provided. This is controlled by the server.

• Project Isaac [Van93] is a distributed physical modelling system. Separate processes are used

for the simulation of each object. Each process maintains a copy of the complete database,

but is only able to modify the porti:on relating to its object.

• . CALVIN is a virtual reality system intended for collaborative design for architectural ap­

plications [Lei96]. It runs in the CAVE virtual environment, a room with translucent walls

onto which stereoscopic images are rear-projected. The database of objects is implemented

as a centralized server, with each participant in the virtual world corresponding to a clie!J.t.

• BrickNet [Sin95] is another system that makes use of the client-server approach. Each client

runs its own virtual world, which can contain private and shared objects. Shared objects can

occur in more than one world, and updates to the status of these are propagated through

the server. Object behaviours and state information can be transferred via the servers. The

servers also manage access control. Updates are sent asynchronously, although facilities are

available to synchronize all clients that share an object.

• A distributed virtual environment developed at the Vienna University of Technology [Sch96]

makes extensive use of a client-server decomposition for distribution of data and control of

actors in the virtual world. A number of servers are involved in the system, each responsible

for a portion of the virtual world. A range of specialized protocols for client-server interaction

is used to implement the facilities required in a virtual environment such as simulation,

interaction, data transfer and connection management.

• The Virtual Environment Vehicle Interface (VEVI) is intended for teleoperation of remote

robot vehicles [Pig95] [Pig96]. It allows a number of geographically dispersed participants to

monitor and operate the robot. Data is transferred using message passing between processes,

in a stateless manner that does not leave the system vulnerable to failure of one component.

• Some communication strategies for distributed virtual reality systems are proposed in

[Dem96J. Objects are classed as static, inactive or active, according to the time at which they

last moved. One strategy requires that the renderer provide a time interval when requesting

data from objects. Objects only reply if they have moved during this interval. An alternative

CHAPTER 2. DECQi'v[POSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 31

approach requires that objects update the database of the renderer after changing position.

These strategies assume that only a single viewiI).g process requires the position data of the

other objects ..

• The spatial model for interaction is implemented in a distributed virtual reality system

[Gre94]. This model provides the notion of auras which describe which objects can be

perceived at any time (see section 2.3.5). A collision manager monitors objects in the

world, and notifies each object when its aura overlaps with that of another.Peer-to-peer

communication between processes then allows further transfer of information. In this way

each object only has to consider others within its perceptual range.

• The VETTNet system [Nyg94] provides for data sharing by using a blackboard. This is

a centralized database server that clients can write data to and read data from. Current

applications use only one blackboard, although a number may be used if the data is amenable

to partitioning.

• A Shared Virtual Environment (SHAVE) based on the Linda tuple space paradigm (see

section 2.3.10) is described in [Ams95]. As was initially done with VEOS, protestations are

made as to how performance issues are not important when prototyping a system. Informa­

tion can be obtained in two ways. If the required data is in the tuple space then it can be

simply fetched. Otherwise a request is placed in tuple space for another process to resP9nd

to, also through tuple space. Tuple space communication is found to limit performance, and

facilities for direct peer-to-peer communication are included. Extensions to the system are

proposed in the form of extra processes to provide physical simulation and object behaviours.

• The GreenSpace project [Man95] has developed GSnet as the network communication layer.

Citing issues of scalability as reasons to avoid client-server decompositions, GSnet uses mul­

ticasting to maintain a replicated database. Only the portions of the database relevant. to

the local objects are cached.

• A distributed virtual reality system is described in [Cod92] applied to a two-user physical

simulation. The virtual world consists of a set of cooperating clients and servers communi­

cating asynchronously. A Dialog Manager acts as a client, receiving data from the device

servers and sending it to application and output devices. Events can be passed between

multiple Dialog Managers to create a multi-user virtual world. The physical simulation (a

flexible modelling simulator including gravity, friction and collision detection producing Rub­

ber Rocks) is implemented as an extra server in the system, communicating with the Dialog

Managers.

• ExploreNet [Hug95] implements a distributed system using the DIS approach of replicating

the simulation on each node, and using updates to keep them synchronized. Communica­

tion in practice is directed through an ExploreNet server, which rebroadcasts messages to

the other nodes in the world (using peer-to-peer connections). The server also orders the

messages, ensuring a consistent world view amongst all participating nodes.

CHAPTER 2. DECOAJPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEiVIS 32

• The VLNET system [Pan95] uses a completely connected communication topology to dis­

tribute data amongst the users in the world. Updated information about each user is trans­

mitted asynchroI).ously to all other users. The environment is initially determined ,by one
"~ r

user, but is replicated at each node in the system. The concepts of aura and nimbus (see

section 2.3.5) are used to limit the transmission of updates to nearby users only.

• The Waterloo Virtual Environment System (WAVES) [Kaz93] addresses the problems of

creating large distributed systems without having to broadcast updates to every"node. Com­

munication between processes is managed by a number of Message Managers. These can

be provided with filters to identify a class of messages that a particular process wants to

receive. Data is normally transmitted via the Message Managers, but direct peer-to-peer

connections can be set up where the managers deem appropriate, such as for high traffic

communication.

• The Virtual Objects Interacting Dynamically (VOID) shell [OC095] is being developed as

part of the MOONLIGHT project on interactive virtual worlds. Three distribution techniques

_ . are supported in VOID. A client-server model provides for simple communication. A repli­

cated architecture duplicates the simulation on each processor, and input data from each

user is repeated to every machine. This requires that the sequence of input actions be iden­

tical on every machine. A zoned approach supports large scale applications, where entities

are limited to a small set of zones, and only receive events relating to these zones.

• A number of proposals have been made regarding the Virtual Reality Markup Language

(VRML) specification. These are oriented toward providing a virtual reality interface to

the World Wide Web (WWW) and allowing multi-user participation in worlds distributed

across the world.

A proposal for an addressing system for these worlds [Pes94] extends the client-server ap­

proach used in the WWW still further. Each client contributes toward the population of tire

virtual world. Each client needs to know which other clients inhabit the neighbouring space.

Cyberspace servers are able to provide this information, using an unspecified mechanism.

A multi-user extension, made to the initial VRML specification, to allow the creation of

a Virtual Society is described in [Hon96]. Virtual Society servers are separated from the

conventional W\V\V servers, and are capable of running applications in the virtual world.

Clients receive updates of object states from the server. Scripts can also be downloaded from

server to client to decrease server computation.

Two incremental changes to the current distribution mechanisms are proposed in [Br095].

The initial change uses the current client-server system, but allows the server to relay up­

dates of information about the other users to each client. Dead-reckoning is suggested to

limit traffic. Further enhancements require the use of multicasting, to eliminate the server

as a bottleneck. Access control methods suggested are either centralized, through the server,

or decentralized, with control for an object residing with the object.

The VRML 2.0 specification [VRM96] does not provide for any multi-user interaction or dis­

tributed computation. It improves on the capabilities of previous specifications, which only

CHAPTER 2. DECOMPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 33

allow a static scene description, by allowing scripts to be associated with objects. These

scripts are triggered by events in the virtual world, such as movement of the user or the

passing of time, a:nd can be used to animate objects. While many users can access the initial

description of the world on the server, all p;ocessing is performed on the client machine

independently of every other client.

2.4 Summary

Ta..ble 2.1 summarizes the structural decomposition of each system. The criteria used to judge the

systems are:

Architecture:

Level of Support:

Complexity:

Structural Decomposition:

Communication strategy:

Hardware used by the system

Support for virtual reality applications in terms of basic struc­

tures included in the system. This may also apply to higher

level support libraries that are included in the system.

Support for interaction between more than one user and the

ability to represent more than one virtual world in a single

instance of the program.

A description of the components used to implement the virtHal

reality.

Manner in which communication between the components 1Il

the system is implemented.

The parallel decomposition strategies employed in virtual reality systems are summarized in

Table 2.2. The different areas in which alternate decomposition strategies are employed are:

Database distribution:

Control distribution:

Collision detection:

Physical simulation:

Access control:

The manner in which data is shared between the processes in

the system.

The manner in which tasks are coordinated amongst the differ­

ent processes.

The decomposition strategy used to implement collision detec­

tion between the objects in the virtual world.

The manner in \vhich the simulation of the "reality" is coordi­

nated.

The mechanism used to resolve contention for objects in the

virtual world.

An overview of the different database distribution approaches is shown in Figure 2.2, together

with an indication of the direction in which the systems are evolving.

CHAPTER 2. DECOA1POSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 34

Architecture Level of Complexity Structural Communication

Support Decomposition strategy

iWIARY Transputer Object Multipl~ Parallel processes Message p-assing

Clusters and User worlds for objects, input, (point to point)

SUN networks World rvIultiple output, management

Application users and applications

Cyberterm PCs and SUNs Object Multiple Processes for clients Messe.ge passing

connected by User worlds and world servers (point to point)

- modem World Multiple

Application users

NPSNET 'Workstations Object One Multiple user MesSage passing

DIS connected by User world processes (multicasting)

SIMNET Ethernet World Multiple interacting

users

DIVE Networked Object Multiple Application and Message passing

workstations User worlds visualizer processes (point to point)

World Multiple (mUlticast)

Application users

Division Networked Object Multiple Actors which act as Message passing

workstations User worlds applications and (point to point)
,.-

and Transputer World Multiple which control

clusters Application users system components

MR Networked Object Multiple Master, slave Message passing

Toolkit workstations User worlds and computational (point to point)

World Multiple processes

Application users .- -
Multiverse Networked Object One Server process Message passing

workstations User world simulating the (point to point)

World Multiple world and user

Application users (client) processes

RhoVeR Networked Object Multiple Processes for Message passing

workstations User worlds objects, worlds (point to point)

World Multiple and for system

users control

VEOS Networked - - Entity processes Message passing

workstations and groupie space (point to point)

VR-386 Single PC Object MUltiple Single -

User worlds component

World One

Application user

VROS Tl'ansputer Object Multiple Processes for Message passing

clusters User worlds objects, worlds, (point to point)

World Multiple input and output

users devices

Table 2.1: Structural decomposition strategies in virtual reality systems

CHAPTER 2. DECOMPOSITION STRATEGIES IN. VIRTUAL REALITY SYSTEMS 35

Database Control ColLision Physical Access

Distribution Distri bu tion Detection Simulation Control

-Av1ARY Distributed Control Single World attributes -.<

databases from applications process and application

control

Cyberterm Centralized Control by On - By

databases server, ·with dead- server
~

. server

(Client-Server) reckoning

-NPSNET Replicated Control by Distributed Distributed Resolved

DIS databases object amongst amongst by the

SIMNET objects objects object

DIVE Distributed Control by Distributed Distributed -

database applications amongst amongst

(synchronized) applications applications

Division Replicated Control by Single Distributed -

databases application actors process amongst

applications

MR Replicated Control by Round Round Token

Toolkit databases, master, robin robin passing

Distributed token passing sharing sharing .'.

databases

(Message Passing)

Multiverse Data in Single Single Single -

single process process process process

RhoVeR Replicated Control by Single - By object

database, object processes process via -
Distributed virtual

databases shared

(ShapeData, memory

Message Passing)

VEOS (Centralized) - Distributed - -

Grou plespace, amongst

Distributed objects

databases

(Message Passing)

VR-386 Single process Single process Single Single Single

process process process

VROS Centralized Control by Distributed Distributed By

databases object processes amongst amongst object

(Client-Server) objects objects

Table 2.2: Parallel decomposition strategies in virtual reality systems

CHAPTER 2. DECOi'yfPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 36

Centralized
Database
(client-server)

(VROS)

(Single)

Distributed
Database

Dead-reckoned
Broadcast!

- Multicast

[NPSNET),

Replicated
Database

Dead-reckoned
Unicast

(Division)"", '
Non-lossy

(AVIARY J

(Multiple)

Distributed
Databases

Figure 2.2: Overview of the database distribution approaches

2.5 Conclusion

Examination of a variety of parallel and distributed virtual reality systems reveals a number of

features common to all systems. These are implemented in different ways.

The systems identify the concept of an object, with objects grouped into worlds. The obje~ts

are generally controlled in some way so as to respond in a realistic manner to the other objects

and to the nature of the world. Some of the systems described have the means to enforce this

control on objects. Control of the objects uses two approaches; either each object has its own

controlling process, or the system supports application processes which can manipulate groups of

objects.

It is especially noticeable that almost all systems make use of some degree of parallel processing.

The extent of this varies with the implementation architecture. As a result some form of data

sharing is necessary. The \vays in which this is done are very much dependent on the bandwidth

available for communication. Systems with slow links may use prediction to estimate the position

of other objects, while faster communication allows data to be shared whenever necessary.

The problems of the distributed architecture are not limited to data distribution alone. Syn­

chronization and coordination of the components of the system must also be performed. Apart

from the interactions manifested visibly in the virtual world, such as contention for objects, par­

allel processing is also used in underlying levels such as collision detection and simulation of the

physical mechanics of the virtual world.

Various techniques recur in these systems. The client-server system used in the VROS is used

CHAPTER 2. DECOiHPOSITION STRATEGIES IN VIRTUAL REALITY SYSTEMS 37

in Multiverse, Cyberterm and in the device support layer of the MR Toolkit. A replicated memory

strategy is used in the MR Toolkit, the dVS system and in DIVE. The master-slave system used

iILthe MR Toolkit has.a similar construct in the Virtual Environment Manager of AVIARY. The
"~ r

dead-reckoning approach crucial to the use of DIS occurs in other systems as well.

These virtual reality systems distribute their data and control in a number of different ways.

The most common approaches to distributing data are:

• Keeping data local to a process with that process and distributing it to other processes when

needed (Distributed databases).

• Keeping data in a central server process which distributes it to clients when necessary (Cen­

tralized database).

• Keeping all data with all processes and keeping it consistent by broadcasting updates (Repli­

cated database).

The most common approaches to distributing control are:

• Each object is associated with a process which controls only that object.

• Objects are controlled by events from a number of processes, where each process implements

a particular application. Each application process can send events to a number of objects.

The two most popular approaches are the client-server approach (due to its ease ofimplerhEmta­

tion), and the replicated database (because of its ability to scale to large networks by introducing

broadcasting and dead-reckoning).

These are examples of the techniques which are categorized, benchmarked and extended in the

following chapters.

Chapter 3

Performance analysis of parallel

systems

Performance analysis of parallel systems is a well establisheci field with a number of well docu­

mented approaches. Analysis of parallel and distributed virtual reality systems requires specific

functionality from a performance analysis technique. Related work in performance analysis is de­

scribed in this chapter. The most likely candidates for use with virtual reality systems are applied

to a simple client-server system to assess their suitability.

The goal of this chapter is to find a method that allows a comparison of the decomp6s1tion

strategies used in the virtual reality systems presented in Chapter 2. This comparison must make

use of the measures associated with virtual reality systems, namely latency and cycle time. These

metrics are defined in section 2.1. The methods that satisfy most, or all of these criteria are

described here in detail. Other related work in performance analysis is described more briefly

toward the end of this chapter.

3.1 Requirements of a performance analysis technique

The ideal analysis technique for comparing decomposition strategies should possess a number of

characteristics, making it feasible for use during the design stage of a distributed virtual reality

system. It should be simple to use. There should be a close correlation between the approach

being tested and the model of the approach used for analysis, and the relationship must be easy

to see. The analysis should be sufficiently mechanical that no great expertise be required. Instead

the effort should go into interpreting the results and modifying the design. The analysis should be

quick, so as not to discourage testing of alternative models. It must be possible to use the results

of the analysis to provide a clear comparison of the different approaches being modelled.

38

CHAPTER 3. PERFORMANCE ANALYSIS OF PARALLEL SYSTEMS 39

In summary, the desired technique must:

• Provide measures of latency and cycle t!me.
~<

• Provide an analysis of the decomposition strategies used for virtual reality systems.

• Produce results suitable for comparison purposes.

• Perform analysis rapidly.

• Use models that are easy to create.

• Produce results that are easy to interpret.

The different methods examined in detail in this chapter are used for the analysis of a simple

client-server system with two clients. The client-server approach is used as a decomposition

strategy in many virtual reality systems, such as Cyberterm (see section 2.3.3) and the VROS

(see section 2.3.1).

3.2· NaIve Analytic l\1odelling methods

In the case of simple parallel programs, various performance figures can be derived from analysis

of the program code itself, as illustrated in [Li95], or from a simple model of the system [Dem96]

[And91]. An example of an instance of this sort of analysis is shown below for a simple client:server

system.

The following code fragment shows the form of a simple client-server system.

PROCESS client(i)

WHILE (running ())

SEND (server, REQUEST)

RECEIVE (server, REPLY)

Perform some computafion on the results

PROCESS server

WHILE (running ())

RECEIVE (client(i), REQUEST) for some i

Process this request

SEND (client[iJ, REPLY)

A specific instance of this system is selected for trial solution by the different analysis techniques

examined in this chapter. The case with two clients and a single server is chosen. The time to

perform sequential computation in the client is modelled by the variable X, and the time required

for the server to generate the response to a request is modelled by the variable Y. Communication

is assumed to be blocking (both send and receiving process must wait until the other is able to

take part in the communication), and takes a period C to complete. Thus the complete system

can be described by the following outline:

CHAPTER 3. PERFORlvIANCE ANALYSIS OF PARALLEL SYSTEMS

process client(l)

repeat

send request to server

receive reply from server

process for period X

forever

process client(2)

repeat

send request to server

receive reply from server

process for period X

forever

process server

receive request from client(i)

process for period Y

send reply to client(i)

40

The symmetry of the system suggests that all clients must perform equally in the stable, stale.

The performance factor of interest is the time taken between the start of a client cycle and the

end. Assuming that input and output occurs at these points respectively, this gives both cycle

time (time taken for a single cycle) and latency (time between input and output) for the client

process. The analysis of this system looks at two situations:

1. The server is saturated:

In this case the server never blocks waiting for a client process to send a request as there is

always an incoming request waiting. The cycle time of the server (SCT) can easily be seen

to be C + Y + C. The cycle time of the client (CCT) is 15 + C + Y + C + X, where 15 is the

period the client blocks waiting for the server. In one iteration of a client, the server must

have serviced every client. Thus CCT= nxSCT, where n is the number of clients. Thus, for

this case:

2(C + Y + C) t5+C+Y+C+X

> C+Y+C+X

2C+Y > X

To derive the value of CCT:

2(C+ Y + C)

15

CCT

t5+C+Y+C+X

2C+Y -X

2C + Y - X + C + Y + C + X

4C+2Y

CHAPTER 3. PERFOfuWANCE ANALYSIS OF PARALLEL SYSTEMS 41

2. The server is not saturated:

In this case, it is the client that does not block, and which determines the cycle time. The

cycle time for the client is C + Y + C + ;< and that for the server is 6" + C + Y + C, where

6" represents that time spent blocking by the server. This situation occurs when:

2(6" + C + y + C) C + y + C + X

2(C + Y + C) < C + Y + C + X

2C+Y < X

-This analysis can be extended to the case of n clients fairly easily, by using the relationship

CCT = n x SCT to calculate the inequalities as above.

The limitations of this approach are the difficulty in deriving a solution for an arbitrary ap­

proach, and the number of simplifying assumptions required to enable a solution to be found. The

derivation given above is suitable only to simple client-server systems. Introduction of a variation,

such as an additional server, would require that all analysis be repeated. In addition, as the model

gets more complicated, the amount of effort required to identify the behaviour increases substan­

tianj~ In effect, na·ive analytic modelling requires that a new performance analysis technique be

created for every problem. This tends to prohibit casual use.

The advantage is that the symbolic form of the results -is not limited to one specific set of

variable values, and can often be used to understand the relationship between the variables involved

in the model. The symbolic nature of the output allows the exact dependency of the perforpance

on a particular variable to be seen. In addition it supports performance comparison in that trends

in the results, rather than just sampled numerical values, can be compared. This is particularly

relevant for comparison across platforms, where the values of system parameters may vary.

Analytic solutions are suitable for use with virtual reality systems if a systematic analysis

procedure can be developed that produces the required metrics.

3.3 Simulation methods

Performance estimates can obviously be obtained by implementing a chosen model. Alternatively,

a subset of the model can be implemented in a simulation environment.

An interesting approach using a simulation technique is the orbit model [Wlo95) used to eval­

uate latencies resulting from synchronization lag (see section 2.1). A process must block when

passing data on if the next stage is busy with computation. The length of time spent blocking

affects processes further on. Simulating this process produces strings of possible lags at each stage.

Cycles of these values occur after a number of items have passed through the system, producing

orbits whose values represent statistically relevant latencies. The number of times the value orbits

is a measure of its significance.

A model of the client-server system used in a simple simulator is presented below. The model

is specified in a C-like language. Included in the description are details of the variable values for

which simulation is performed (C from 1 to 25 in steps of 5, X and Y from 1 to 25 in steps of

1). The simulation is run for 10000 time units for each case. The time values for this simulation

CHAPTER 3. PERFOlli\1ANCE ANALYSIS OF PARALLEL SYSTEMS 42

are discrete and constant, although it is easy to perform simulation using random variables with

a specific distribution. A point is designated for the measurement of latency and cycle time.

void client (int pid)

{

}

Message message;

while (running (»
{

}

send (server, 1, 1, NULL, 0);

message = receive (0);

process (x);

if (pid == 1)

{

}

addlatency (syslat, message);

addrate (sysrat, message);

dropmessage (message);

void server (int pid)

{

}

Message message;

int sourcepid;

while (running (»
{

}

message = receive (O};

sourcepid = message->sourceid;

process (y);

resend (message, client, sourcepid, 1, NULL, 0);

void startsim 0
{

syslat latency ("System Latency");

sysrat = rate ("Frame rate");

num = 2;

CHAPTER 3. PERFORJ.HANCE ANALYSIS OF PARALLEL SYSTEMS

}

25

Figure 3.1: Results of the simulation for C=l

runsim ("C", &c, 1, 25, 5);

runsim ("X", &x, 1, 25, 1);

runsim ("Y", &y, 1, 25, 1);

void init 0

{

}

int i;

for (i

{

1; i <= num; i++)

startup (client, i);

}
startup (server, 1);

setdefaultchannel (1, 0, c);

stopat (100001);

43

The values for cycle time and latency are almost equivalent. A small difference between the

two arises from a one cycle transient at startup. The effect of this is diminished by running the

simulation for a number of cycles and using the average result. The results are shown in Figures 3.1

and 3.2, giving the results for all simulated values of X and Y, for two values of C. The results

agree with the analytic values obtained in section 3.2, but are limited to the values explicitly

simulated.

Simulation is sufficiently general to be applied to all the parallel decomposition strategies used

in virtual reality systems. In addition it can be used to generate values of the metrics which

characterize virtual reality systems.

This approach can allow experimentation with different parameters for the system components.

The output of the simulation applies only to the particular parameters used to drive the simula-

CHAPTER 3. PERFOR1'vfANCE ANALYSIS OF PARALLEL SYSTEMS 44

7l
70
61
60
II
SO
4l
40

" 30

'"

2l

'"

Figure 3.2: Results of the simulation for C=6

tion. It does not, however, provide an indication that the chosen values cover areas of "interesting"

behaviour. The results are applicable only to variable values used in the simulation and extrap­

olation to other situations is limited. The suitability of simulation to performance comparison is

thus limited.

Simulations are normally run only for a limited period, sImulating a finite number of instruc­

tions. All of the possible interactions between the components of the model being simulated may

not occur before the simulation ends. Behaviour of the model that does not manifest during this

period does not affect the results. On the other hand, the effect of startup transients and other

spurious behaviour is incorporated into the results. This influences the accuracy of the results

produced by simulation.

3.4 Abstract Modelling

Another alternative to the approaches already described is to transform the model into an abstract

form which has a well-established analysis method. The approaches examined are Petri Nets and

Data Flow Diagrams.

3.4.1 Petri Nets

An introduction to Petri Nets and their workings is given in Appendix A.

By extending the basic model of the Petri Net to include timed transitions, it becomes possible

to analyse the performance of systems. The analysis of Stochastic Petri Nets is based on queueing

theory and so depends heavily on statistical distributions and firing probabilities. These are often

not easily derived from the description of the system being modelled. The solution of a Stochastic

Petri Net model gives the probabilities of being found in various states. These can be used to

determine values such as utilization and throughput. These measures are not easily translated into

the particular values that are required in virtual reality systems, namely cycle times and latency.

CHAPTER 3. PERFORi\1ANCE ANALYSIS OF PARALLEL SYSTEMS 45

The results produced by analysis of Petri Nets usually relate to certain properties of a system,

for example, absence of dead lock and boundedness.

__ The difficulty of s~lving a Petri Net increases dramatically as the complexity of the model

increases. This tends to make analytical solutions inlpractical for all but the simplest cases [BaI9IJ.

An alternative method of solution for Petri Nets is simulation, which does provide the type of

output required. In this case there is a trade off between the overhead of creating the Petri Net

model versus the use of simulation on a more conventional model. In this case it may be simpler

to choose the model representation that most closely resembles the system to be- idtplemented.

T~e difficulty of translating to the Petri Net formalism must be weighed against the large formal

background of the field, and the well established methods for solving Petri Nets.

An example of the solution of a simple client-server system with two clients and a single server

using Petri Nets is given below. This example provides an analysis of the same system previously

examined in section 3.2. Communication delays are ignored.

A Petri Net implementing this algorithm is shown in Figure 3.3, where the places and transi­

tions correspond to the following states and actions:

PI {P3) Clientl (2) about to ask for data

P2 Server free

P4 (P6) Clientl (2) waiting for response to request

P5 Server busy

P7 (P8) Clientl (2) has data and can perform some computation

TI (T2) Clientl (2) sends a request

T3 (T4) Clientl (2) receives a reply

T5 (T6) Clientl (2) performs sequential computation

To obtain useful results from this model, it is assumed that the server takes period Y to respond

to a request, and each client spends a period X pelforming some sequential computation. This

corresponds to transitions T3 and T4 having a firing time of Y and T5 and T6 having a firing time

of X. For the purposes of this example, it is assumed that the firing times are random variables

with an exponential distribution. It is possible to assume other distributions, but this leads to

considerable increase in the complexity of the analysis.

The first step in the analysis of the net is to draw up the reachability graph. This shows the

relationships between the markings that can be reached from the given initial marking, diagram­

ming the state space of the model. These markings are shown in Table 3.1. The markings are

written as the number of tokens in each of places I to 8.

Each state can be classified as either vanishing or tangible. The tangible markings are those

having only timed transitions (T3, T4, T5, T6) enabled, whereas the vanishing transitions are

capable of firing instantaneously. The reachability graph is shown on the left of Figure 3.4.

CHAPTER 3. PERFOR1WANCE ANALYSIS OF PARALLEL SYSTENIS 46

Figure 3.3: Petri Net for the client-server system

State l\'Iarking Enabled Transitions Type

1 1.1.1.0.0.0.0.0 T1(4) T2(5) Vanishing

2 0.1.1.0.0.0.1.0 T2(4) T5(1) Vanishing

3 1.1.0.0.0.0.0.1 Tl(8) T6(1) Vanishing

4 0.0.1.1.1.0.0.0 T3(2) Tangible

5 1.0.0.0.1.1.0.0 T4(3) Tangible

6 0.0.0.0.1.1.1.0 T4(7) T5(5) Tangible

7 0.1.0.0.0.0.1.1 T5(3) T6(2) Tangible

8 0.0.0.1.1.0.0.1 T3(7) T6(4) Tangible

Table 3.1: Possible states of the Petri Net

CHAPTER 3. PERFO&WANCE ANALYSIS OF PARALLEL SYSTEMS 47

(A) (B)

Figure 3.4: Reachability graphs of the client-server system

The solution technique requires solving the continuous time Markov chain for the model. This

requires first solving the discrete parameter Markov chain embedded at the transition pointsofthe
.. -

continuous time version. Simply put, a Markov chain consists of a series of states and transition

probabilities, where the probabilities at any state are independent of history. This memoryless

property requires the exponential distribution mentioned earlier in this section. Discrete Markov

chains can be specified by the matrix of transition probabilities.

The transition probability matrix for the embedded discrete parameter Markov chain is given

in Table 3.2. The transition probabilities are easily derived. In the case where there is only eIre

path from one state to the next, or only one immediate transition, the probability of that path

being taken is one. Where there are two timed transitions with equal delay, the probability is ~

for each path. In the case where there is a transition Tx takes period X to fire and a Ty takes

period Y to fire, the probability of Tx firing first is calculated by:

Tx fires at frequency *
Ty fires at frequency fr

Since the exponential distribution corresponds to memoryless transition probabilities, the prob­

ability of Tx firing first is:

J,. Y
P(Tx)=~=X Y

X+y +

CHAPTER 3. PERFORlvIANCE ANALYSIS OF PARALLEL SYSTEMS 48

111 I 2 I 3 I 4

1 0 0 0 1 1 0 0 0 2" 2"
2 0 0 0 0- 0 1 0 0

3 0 0 0 0 0 0 0 1

4 0 1 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0

6 0 0 0 0
y

0 x 0 X+Y X+Y
7 0 1 1 0 0 0 0 0 2" 2"

8 0 0 0
y

0 0 x 0 X+Y X+V

Table 3.2: Transition probability matrix

II 4 5 I 6 I 7 I 8 I
4 0 0 1 0 0

5 0 0 0 0 1

6 0
y

0 x 0 X+Y x+~'

7 0 0 1 0 1
2 2

8 y 0 0 x 0 x+y X±y

Table 3.3: Compacted transiti()n probability matrix

To simplify calculations it is possible to compact the embedded Markov chain toremoV'evan­

ishing states. This process is described in [Kan92] on pages 440 - 442. The required chain is given

by:

A = Q~T + Q~v [1 - Q~v] -1 Q~T

where Q~v is the portion of the original transition matrix translating vanishing states to vanishing

states, Q~T is the portion translating vanishing states to tangible states, Q~v is the portion of the

matrix translating tangible states to vanishing states and Q~T is the portion translating tangible

states to tangible states.

Performing this compaction results in the transition probability matrix in Table 3.3 which can

be represented by the reachability graph on the right of Figure 3.4.

The states of the compacted chain may be interpreted as described in Table 3.4.

The stationary distribution of the embedded chain can be found by solving the balance equation

I State I Interpretation

4 Client 2 waiting for server, Client 1 using server

5 Client 1 waiting for sen"er, Client 2 using server

6 Client 2 using server, Client 1 performing computation

7 Client 1 and Client 2 performing computation

8 Client 1 using server, Client 2 performing computation

Table 3.4: Interpretation of the states in the compacted Markov chain

CHAPTER 3. PERFORi\1ANCE ANALYSIS OF PARALLEL SYSTEMS 49

D' = D'· Q. Here D' = [d~,d~,d~,d~,d~) is the required stationary distribution and Q is the

transition probability matrix given above.

_ The solution, subject to the constraint that d~ + d~ + d~ + d~ + ds = 1, yields the following:

d' - y
4 - 4(X+Y)

d~ = 4(hy)

d' - 1 6 - 4"

d' x
7 = 2(X+Y)

d' 1
8 = 4"

-~ .

The solution to the original Markov chain may be found by [Kan92):

Let T be the set of tangible states, let i denote some tangible state, let Hi be the set of timed

transitions enabled in this state and let Tj(i) be the mean firing rate of transition tj in state i.

Thus:

(14 Y

(15 Y
XY

(16
X+Y
X

(17
2
XY

(18
X+Y

2y2 +2XY +X2
LdlWi = 4(X + Y)

d4

y2

2Y2 +2XY +X2

d5

y2

2Y2 +2XY +X2

d6
XY

=
2Y2 +2XY +X2

d7
X2

2Y2 +2XY +X2

ds
XY

2y2 +2XY +X2

CHAPTER 3. PERFORiVfANCE ANALYSIS OF PARALLEL SYSTEMS 50

The tuple D = [d4 , d5 , dB, d7 , ds) represents the state probabilities for the original Markov chain.

This is used to produce performance figures by using the probabilities to calculate a weighted sum

ouhe resource usage i.n each state.

Some examples of this solution used to calculate' occupancy of client and server follmv (see the

interpretation of each state given in Table 3.4):

• X = 0, D = [~, h 0, 0, 0] With no time required to perform computation, the clients have

equal share of the server, and spend as much time waiting for the server as'l1sit1g it.

- • X = Y, D = [h t, t, h tJ Clients spend ~ of their time using the server, ~ performing

sequential computation and t waiting for the server .

• Y = 0, D = [0,0,0,1,0) Since the server never blocks, clients spend all their time in sequential

computation.

Analytical solutions for Petri Nets are possible, although the complexity grows rapidly with the

size of the model; most large models tend to be solved numerically [Ibe93) [Has93). This requires

substitution of values for the operating constraints, limiting the generality of the solution.

Analytical solution of Petri Nets is not well suited to deriving latency values for virtual reality

systems. By their nature, the places represent states of system components. This paradigm does

not translate easily into the need to time data flow through a portion of the system. Tracing

messages is better suited to some form of simulation. Queueing theory based approaches are

better able to produce measures based on resource utilization such as throughput, and response

time.

The translation from a system specification to a Petri Net model involves a paradigm shift

from considering event sequences to considering state transitions. Creating the models involves

a degree of expertise in the formalism. Verification of the behaviour of the model against the

specification is non-trivial. Case studies using Petri Nets tend to concentrate on models of a s~ngte .

system or approach for analysis purposes, rather than performing comparative studies.

Petri Nets have the advantage that they are easily applied to modelling parallel and distributed

systems and that a large formal background has been built up with many case studies illustrating

their use. The field is highly fragmented, with numerous variations on the basic Petri Net model,

each created for use in a specific application area.

3.4.2 Data Flow Diagrams

This section describes the work of [Som93] which reports on a system to calculate execution time

and iteration period of programs on a data flow architecture. An introductory description of

data flow concepts is given in Appendix A. This approach deals with real-time systems where

performance measurement concentrates on the time taken for a single iteration, since programs

usually do not terminate.

The measures used are iteration execution time (the time between arrival of input and the

corresponding output, which is equivalent to latency) and iteration period (the time between

successive outputs which is equivalent to cycle time).

CHAPTER 3. PERFORlvIANCE ANALYSIS OF PARALLEL SYSTEMS

n toke

Output Buffer Empty

Input Buffer Full
m tokens

Process
Ready

Figure 3.5: NMG model

Ouput Buffer
Full

51

The Algorithm to Architecture Mapping Model (ATAMM) developed in [Som93] describes a

strategy to map algorithms onto multiprocessor architectures in such a way that it is possible to

predict system time performance as well as processor requirements. Starting with a standard Data

Flow Graph (DFG) representation, the model develops an Algorithm Marked Graph (AMG), with

node·s representing algorithm tasks and arcs for communication paths, and with source and sink

nodes for data differentiated.

A Node l\'1arked Graph (NMG) is a data flow graph representing the execution process in a

processor. This graph displays flow of control and data for the three processes of input, computa­

tion and output. The notable difference from the firing rules of a normal DFG is the requirement

that a processor be free before any input can occur. An example NMG is shown in Figure 3.5.

The initial marking of m tokens on the Process Ready arc allows for instantiation on up to m

processors. For static architectures m is set to one. The n tokens in the Output Buffer Empty

allows limited repetition of the execution of the NMG before the output is consumed.

These two graphs are combined into the Computational Marked Graph (CMG) by a process

of:

• Copying source and sink nodes in the AMG to become source and sink in the CMG.

• Replacing nodes in the AMG that correspond to algorithm tasks with NMGs.

• Replacing arcs with arc pairs, one forward for data flow, the other backward for control flow.

To execute this enhanced data flow graph, which now explicitly contains all necessary control

and data flow, the ATAMM model includes a queue of processors and a graph manager. When a

read node in the CMG is enabled, the graph manager assigns the algorithm task to the processor

at the head of the queue. After the task is complete, the processor is returned to the tail of

the queue. The graph manager also controls parallel access to shared resources. This processor

assignment strategy allows processors to be easily added and removed from the processor queue.

Given a CMG with a specific initial marking, there are greatest lower bounds imposed by the

graph on the execution time and iteration period. ·With sufficient processors, performance at those

bounds may be achieved, while performance below these bounds is not possible.

CHAPTER 3. PERFORiVIANCE ANALYSIS OF PARALLEL SYSTEMS 52

y

Server(a)

Figure 3.6: DFG for the client-server system

The greatest lower bound on execution time is determined by the longest directed path from

input source to output sink. The greatest lower bound on iteration period is the largest time per

token of all directed loops. A directed path is a connected, alternating sequence of nodes and arcs

directed from source to sink, and with each node occurring at most once. A directed loop is a

directed path with the same initial and terminal node. If the critical loop occurs within an NMG,

then .the lowest iteration period can be reduced by adding more tokens, equivalent to allowing the

number of instantiations of that node to increase.

It is also possible to calculate the processor requirements. to achieve a given performance level.

This uses Single Graph Play (SGP) and Total Graph Play (TGP) diagrams. These concepts

inspired the development of the Analytical Simulation technique described in Chapter 4.

The SGP diagram displays execution as a function of time, assuming infinite processors: Node

activity is indicated by a solid line for the intervals during which it occurs. Activity of different

processes is separated vertically on the same horizontal time axis. This diagram easily shows the

maximum number of processors required, by taking the ma.-ximum number active at anyone time.

This value is the minimum required to achieve the minimum execution time.

The TGP diagrams resembles the SGP, but displays execution when the graph is execute9-

with a period P. This is created from the SGP, by dividing it into time intervals of width P,

and stacking each of the intervals. Algorithm iterations are numbered. The maximum number of

processors required to execute the graph repetitively with period P can be found from the largest

number of executing nodes in any time interval.

Applying this method to a simple client-server model with two clients produced a number of

problems. The Data Flow Graph representation might not correspond exactly with the models

produced in previous sections. Each task, corresponding to a node of the graph, does not have to

be executed on the same processor during each cycle. This could have implications for the inter­

pretation of the server process as residing on the processor containing its database. A Data Flow

Graph of the model is given in Figure 3.6. In this case, the two server processes are constrained

to execute sequentially, and so can be limited to a single processor without affecting the results of

the analysis.

The result of interest is the performance of a single client. Its operation is affected by the other

client. The graph cannot be decomposed into a history independent system since performance

changes with history. Cycles are thus introduced which complicate analysis.

CHAPTER 3. PERFORjVIANCE ANALYSIS OF PARALLEL SYSTEMS 53

Figure 3.7: CMG for the client-server system

Creating the CMG as required produces the graph shown in Figure 3.7. The greatest lower

bound on execution time is given by the longest directed path from source to sink. Since no node

may appear twice on a directed path, this is the path from source through Clientl (a), Server(a)

and Clientl(b) which has a path length of X + Y. Iteration period is given by the largest time

per token of all directed loops. The two largest directed loops are

• Server(a) , Server(b), with length 2Y and one token .

• Server(a), Clientl(b), Client1(a) with length X + }r and one token (or its image using

Client2).

This gives iteration period as 2Y, if Y > X, and X + Y otherwise. The execution time is

correct for the first iteration but for further iterations the blocking created by the second clie!l~

must be taken into account. The mechanism used for calculating execution time applies only to

acyclic graphs [Koh75J. The initial value is just a transient when Y > X, and so extra work must

be done to determine the steady state value.

The steady state value for latency can be determined using some results for scheduling of Data

Flow Graphs [Mur94J. An Acyclic Precedence Graph (APG) is constructed from the Data Flow

Graph by removing all arcs containing tokens. The APG gives the intra-iteration precedences

between the nodes. A J-unfolded precedence graph is then constructed, by replicating the APG

J times and adding arcs from node u in the ith to node v in the jth copy (i < j) if there is an arc

from u to v in the original Data Flow Graph containing j - i tokens. The APG for the client-server

example is shown in Figure 3.8, a 3-unfolded precedence graph is given in Figure 3.9.

The critical path is given by the path with the largest weight in the J-unfolded graph. It can

easily be seen in this example that critical path in the J-unfolded graph from the initial source

node to the final sink node is:

X :2: Y:

Y :2: X:

X + Y + J(X +Y)

X + Y + J(2Y)

CHAPTER 3. PERFOR1VfANCE ANALYSIS OF PARALLEL SYSTEJ'vIS 54

.y

Figure 3.8: APG for the client-server system

y

Source Client1(a)

Figure 3.9: 3-unfolded precedence graph for the client-server system

CHAPTER 3. PERFORiHANCE ANALYSIS OF PARALLEL SYSTEMS 55

The required steady state latencies can easily be derived from this result, as the coefficients

of J.

_ This approach prov}des a clear indication of the optimal execution points and makes it possible

to predict changes in performance given changes i~ the number of processors. It also finds the

optimal operation point for a set number of processors. The approach is also well suited to

automation. At present systems are being solved numerically, although it appears that there is

scope for analytic solutions.

The chief drawback is that it is limited to data flow architectures. However, many of the ideas

ar~ used as a basis for the Analytical Simulation approach introduced in Chapter 4.

3.5 System Specific Performance Prediction

The performance analysis techniques presented so far in this chapter are suitable for the analysis of

any parallel system. This section describes other work related to performance analysis of parallel

systems which is more limited in its area of application. This includes techniques that are confined

to a particular architecture, or limited in the form of the results that are generated.

• An approach to performance prediction for a specific class of parallel systems is described in

[Mak90]. The parallel computation must be expressed as a series-parallel acyclic precedence

graph. Resources are modelled as service centres in a queueing network model. The predicted

system completion time is found by iteratively calculating the residence time for each task,

and using these to reduce the precedence graph until the values converge within a set limit.

This approach is limited to programs that can be written as the required graph. Results are

numerical, and do not provide the values required in virtual reality systems.

• In a study of performance improvements in Fortran-D [Men95) an attempt is made to predict

application execution time as a function of the problem size (N) and the number of processgr.s

(P). The Fortran-D compiler generates Single-Program-Multiple-Data (SPMD) code from

high level directives in the Fortran code. The approach in this study involves expressing the

execution time for all possible SPMD events as symbolic expressions of Nand P. Constants

in the expression are evaluated by measuring the performance of the system for given values

of Nand P. On the two example programs tested, the error in prediction varied from about

2% to 20% depending on the level of detail with which the message passing is modelled. This

approach requires the assistance of the compiler producing the code, both for generating the

expressions for each parallel event generated and for adding the instrumentation necessary

for measuring the values of the constants. While producing analytic output, the variables

that may be used are limited.

• Another paper [Adv94) also investigates improvements in the performance of programs com­

piled by the Fortran-D compiler. A model is developed to predict the time required for

pipelined computations as a function of pipeline granularity. Using additional values de­

pendent on the machine architecture, the model is able to predict the granularity value to

minimize execution time. The model is reasonably complex, has to be created by hand, relies

CHAPTER 3. PERFORlvIANCE ANALYSIS OF PARALLEL SYSTEMS 56

on a number of simplifying assumptions and is only valid for pipelined computation. It is

suggested that the compiler be responsible for implementing the model, instantiating the

variables and finding the optimal granuJarity. In addition it is expected that the compiler

should detect the violations in the assumptions' and either use a corrected model or inform

the user of the problem. Performance monitoring code would be automatically added by the

compiler. The performance of pipelined systems is examined in Chapter 11 of this document.

• The research by [Fah93] investigates ways to measure performance of a nuruber. of program

transformations and data distributions of a parallelizing compiler, and automatically select

the best one. Only a single profile run is used to determine branching probabilities and other

variables in data and control flow. The parameters derived from the profiling information

are adapted when calculating the effects of the compiler's program transformations. This

investigation also concentrates on providing useful performance information. Parameters re­

lating to three performance aspects are examined: work load, communication overhead and

data locality. These values provide greater insight into the performance of the program than

a single runtime value. Based on the program parameters, the compiler can apply program

. transformations to program segments based on each different performance drawback. The

prediction tool can be trained to order the priority of each transformation based on the

target architecture. The accuracy of the predictions is_ usually within 5%, and in some rare

cases is off by 10 to 20%.

This work (Fah93] also contains a comprehensive classification of related work in the per­

formance prediction field. That section also describes work done in using benchmarking

for performance prediction. The performance of a set of code-fragments is measured on a

given architecture. A parallel program is then analysed to detect the presence of these code­

fragments, and runtime is estimated by combining the results of the previous measurements.

The practical problems with implementing this approach are found to be considerable .

• The effects of porting programs to different architectures are examined by analysis of program -

stability in (?vlen93] and [Men94]. _ This approach uses traces of program events, the events

being used are computation, message sending and message receiving. Stability is measured by

determining the degree of change in the events in the trace when a disturbance is introduced.

These disturbances are produced by adding time delays to portions of the program. The

degree of change is found by converting each program trace into a graph and measuring

the degree of overlap, found by the size of the largest isomorphic subgraph. The problems

introduced by a non-deterministic receive are discussed. Analysis is restricted to "stable"

programs which do not contain this construct. Non-deterministic constructs are common in

virtual reality systems (and are found in the client-server model examined in this chapter),

and need to be modelled.

Prediction of performance on a new architecture is done by scaling the times taken for

computation and message passing, according to the relative performance values of the two

machines. An extra constraint is added to ensure that messages do not arrive before they

are sent. The prediction error for the example given in [Men93] is 16%. For the examples in

[Men94], the errors are under 19%, and usually range from 5% to 15%.

CHAPTER 3. PERFORi\l[ANCE ANALYSIS OF PARALLEL SYSTEMS 57

• Trace files can be used to generate performance indices which can provide insights into the

nature of the parallel processing that is taking place [Sar94]. The indices are computed from

instrumented programs run directly on _ the target architecture. Here performance indices
. .

are also associated with the various data stnihures. This makes it possible to identify the

structures which most affect the performance of the system. A range of performance indices

are used, with the intention being to isolate the areas in which bottlenecks are occurring.

• Another example of the use of the compiler for generating performance info~I11ation is found

in [MaI94]. A data-parallel compiler pC++, which generates parallel code from high level

additions to C++ code, is constructed with performance analysis issues as an integral part.

Profiling code is included when programs are compiled. Event tracing is also possible with

this system. Share'd memory and distributed memory architectures are supported.

• An alternative approach to performance measurement that concentrates on the improve­

ments not being obtained is the lost cycle analysis as described in [Cr093]. A metric, the

lost cycles, is defined to represent the overhead in the execution of a parallel program. A

set of categories into which lost cycles can fall is chosen which is complete, orthogonal and

. meaningful for analysis purposes. One such set is described, although it is mentioned that

it may need to be extended for more varied situations. Monitoring code is inserted into

a program to determine the lost cycles for each category. For a given program, analyti­

cal models are constructed to predict the overhead for each category as a function of data

size and number of processors. Constants are found by measuring the performance,.of the

program in a few configurations. This model is then used to predict performance for other

configurations of processors and data size. The models are constructed by hand, and vary

for different architectures. Average error for a prediction of the performance of a 2D FFT

is 12.5%.

The goals of the research presented here differ in a number of ways from those required for.

virtual reality systems. The values measured in the above studies concentrate on finding values

for run-time and performance improvenlent through the use of parallelism. On the other hand,

virtual reality systems require values for latency and cycle time, as mentioned previously. Virtual

reality systems generally consist of cyclic processes, which do not terminate; this makes values

such as run-time redundant.

Many of the studies mentioned concentrate on finding certain magic numbers which define the

system and a model which uses these numbers. The models are usually developed by hand, and

tailored to each system. This requires considerable ingenuity and effort. A consistent approach

is required for different architectures if performance comparison is to be performed. Often the

emphasis is on finding the best algorithm for a specific architecture, or on predicting performance

when the configuration of the components of the architecture is changed. In this thesis there is

greater emphasis on examining the effects of different architectures on a given algorithm.

Many approaches require that the system be implemented and provide performance metrics to

optimize it once it is running. Usually these metrics require data from the running system.

CHAPTER 3. PERFORMANCE ANALYSIS OF PARALLEL SYSTEMS 58

Many studies refer to shared memory or SIMD architectures whereas this thesis concentrates

on message passing, MIMD architectures as used by the virtual reality systems in Chapter 2.

3.6 Conclusion

This chapter reviews a number of approaches to performance prediction and analysis in parallel

message passing systems. These approaches are evaluated with respect to their suitability for use
.- - ;-'

",rith virtual reality systems.

Virtual reality systems have two important measures associated with them; latency and cycle

time. The approaches have to be able to generate values for these measures. The evaluation also

takes into account a number of other desirable characteristics:

• Ease of translation from system specification to model.

• Suitability of output to performance comparison.

• Ability to handle constructs found in virtual reality systems.

• Ability to scale to larger problems.

Some approaches are considered in detail:

• Analytic modelling approaches give the correct metrics, and provide results. suita~le for

performance comparison. There is no general analytic approach that can be applied to an

arbitrary architecture.

• Simulation produces the correct metrics and is suitable for arbitrary architectures. The

results are limited to the values used for the simulation, and so are not suitable for comparison

across architectures, or for general performance analysis.

• Petri Nets have the advantage of a substantial theoretical base, and of having been used for

a number of years on a wide range of performance analysis problems. They are also able to

model stochastic events. The construction of the Petri Net model is, however, not trivial.

Analysis for all but the simplest models requires the use of simulation. The form of the

results does not correspond well with that required for performance comparison in virtual

reality systems.

• It is possible to produce the required values from a model using Data Flow Graphs. The

models require some effort to produce, and certain constraints such as scheduling of processes

to processors can introduce extra complications.

A number of other approaches to performance prediction in parallel systems are briefly sur­

,·eyed. None of the performance analysis approaches examined in this chapter are suitable for use

"'ith parallel and distributed virtual reality systems.

Chapter 4

Performance analysis using

Analytical Simulation

The performance analysis techniques examined in the previc)Us chapter are not suitable for use

with virtual reality systems. This chapter presents an approach that satisfies all the criteria for

the analysis and comparison of the performance of parallel and distributed virtual reality systems.

In addition, the approach presented is suitable for the analysis of a number of other classes of

system.

4.1 Analytical Simulation

A technique combining aspects of existing methodologies has been devised by the author. It

overcomes the limitations of the other methodologies for modelling parallel virtual reality systems.

The limitation of simulation is that it is not general enough to cover results that are not explici~l'y

simulated. Analytic performance modelling on the other hand is either ad hoc, does not provide

the desired performance measures, or does not support the required architectural features.

This approach is introduced by way of the simple example used in Chapter 3 (see section 3.2).

Consider the client-server system with two clients which each send a request to the server, get

a reply, and process it for period X. The server, on the other hand, picks up a request, takes

period Y to service it, and returns a reply. vVhen using this example to illustrate the performance

analysis techniques in the previous chapter the result depended on the relative sizes of X and Y.

Tracing the execution of the program produces the process activity versus time diagram shown

in Figure 4.1. The times at which processing occurs are shown as solid blocks. During the

remainder of the time the processes are blocked, waiting for communication with other processes.

In this case the clients are identical, so the one which is first serviced by the server is labelled

Cl and the second C2. The diagram shows that the second synchronization between Cl and the

server occurs when both are ready to communicate, which occurs at:

From Cl's point of view: Y + X

From the server's point of view: Y + Y

59

CHAPTER 4. PERFORiVIANCE ANALYSIS USING ANALYTICAL SII\JULATION 60

X>Y

Cl _ I::::;:{::t:::"::·:·l

C2
!\:::::':::Ib@:';'l, _ !\m:::':::::m:::':;.;.:j

Server _ Mf::::::@::lt:::::::t::::1

Time
o

Y+X

y>x

Cl .. iii .. GIl
C2 .. a1 .. ~

Server

Y 2Y 3Y Time

Figure 4.1: Process activity versus time diagram for the client-server system

Clearly this time depends on the relative sizes of X and Y. If X is larger then the client delays,

otherwise the server is the delaying factor.

A trace of the times at which C1 finishes its processing is given below:

For X:::: Y: X+Y 2X + 2Y 3X + 3Y 4X + 4Y n{X + Y)

For Y:::: X: X+Y X + 3Y X + 5Y X + 7Y 2nY+X-Y

The latency and cycle times for C1 can now be easily calculated. In this case, it is assumed

that input to the client process arrives immediately before the client issues a request to the server,

and output occurs straight after client processing (X) is complete. Since latency is the period

from input to corresponding output, latency and cycle time are the same in this example, and ar~
given by the time between two successive cycles:

For X:::: Y: Latency = Cycle time = X + Y

For Y:::: X: Latency = Cycle time = 2Y

This technique is illustrated for a more complex model, in which latency and cycle time are

different, before the general algorithm is presented.

Consider a common parallel processing topology, the pipeline. The one modelled has three

nodes, and consists of the following processes:

process 1

do forever

measurement point: Latency 1

consume input

process for a period of duration A

send data to 2

CHAPTER 4. PERFOR1VIANCE ANALYSIS USING ANALYTICAL SIMULATION 61

1 .. !II] ..

2 .1Il. Eill • IJ •
3

o Time

Figure 4.2: Process activity versus time diagram for the pipeline system

process 2

do forever

receive data from 1

process for a period of duration B

send data to 3

·process 3

do forever

receive data from 2

process for a period of duration C

produce result

measurement point: Latency 2 / Output

It is assumed that input data is always immediately available and that results can be delivered

without any delay. The latency in this system is the time taken for any specific datum to be

transformed from input data to a result. The cycle time is the time taken per result. -
As with the previous example, a process activity versus time diagram shows several decisions

that need to be made regarding the relative sizes of A, Band C in order to draw the diagram. The

possible diagrams that may be drawn are slightly more numerous in this example, in fact there

are infinitely many of them. The relationships between the variables, which define situations in

which different behaviour occurs, are given below:

• A2::B,A2::C

• A 2:: B, C 2:: A andB + kC ~ (k + l)A ~ (k + 2)A ~ B + (k + l)C k=O ... oo

• B 2:: A, B 2:: C

• B 2:: A, C 2:: B

An example of the second case is illustrated with A = 2B, C = 3B in Figure 4.2. An interesting

feature of this diagram in particular is the manner in which latency becomes constant after the

second iteration. The complex inequality arises from a transient which works its way out of the

system after a certain number of iterations, dependent on the values of A, Band C.

CHAPTER 4. PERFO&YfANCE ANALYSIS USING ANALYTICAL SIA;fULATION 62

By marking certain points in the program (Latency 1 and Latency 2/ Output) and by calcu­

lating the time at which they occur, it is possible to find values for latency and cycle time. The

values are given below. for cycle n:

A~B,A~C:

Latency 1 : (n -l)A

Latency 2/0utput : nA + B + C

A.2: B, C ~ A and B + kC ::; (k + l)A ::; (k + 2)A ::; B + (k + l)C, k = 0 ... 00 :

Latency 1 :
{

(n-1)A

A+B+ (n -3)C

ifn ::; k + 2

otherwise

Latency 2/01dput : A + B + nC

B ~A,B ~ C:

Latency 1 :
{

0 ifn = 1

A + (n - 2)B otherwise

Latency 2/0utput : A+nB+C

B~A,C~B :

Latency 1 :
{

0 ifn = 1

il if n = 2

A + B + (n - 3)C otherwise

Latency 2/0utput : A + B + nC

Latency is the difference between corresponding execution times at the two measureme_nt .

points. Cycle time is given by the coefficient of n at the output point. Thus in the steady

state:

A~B,A~C:

Latency: A + B + C

Cycle Time: A

A ~ B, C ~ AandB + kC ::; (k + l)A ::; (k + 2)A ::; B + (k + l)C, k = 0 ... 00 :

Latency:

Cycle Time:

{
B + nC - (n - 2)A

3C

C

if n ::; k + 2

otherwise

CHAPTER 4. PERFORlvIANCE ANALYSIS USING ANALYTICAL SIiHULATION 63

B 2': A, B 2': C :

Latency: { A+B+C ifn = 1

2B+C otherwise .

Cycle Time: B

B 2': A, C 2': B :

{
A+B+C ifn = 1

~ . ~

Latency: B+2C ifn = 2

3C otherwise

Cycle Time: C

An algorithm for deriving the sets of inequalities associated with the Analytical Simulation

technique, as well as the sequence of time values at various points, is presented below. This

algorithm performs essentially the same process as illustrated in the previous examples. A process

activity versus time diagram is constructed by simulating the program. The synchronization

points are analysed to determine the time of synchronization. This analysis may result in various

constraints being placed on the variables, to guide further simulation.

R.EPEAT

Simulate processes keeping track of the running time of each

process

When two processes need to synchronize, compare their running

times

IF the relation between times cannot be determined

THEN

FOR. all possible relationships between the times

ELSE

Assume that relationship holds and simulate with

that assumption

Synchronization occurs at the later of the two times

UNTIL sufficient data has been accumulated

Several requirements of the algorithm limit the variety of systems upon which analysis can be

performed. The last line assumes the system is going to settle into a stable state after some point.

In the present form this requires a human controlled cutoff, to prevent it degenerating into solving

the halting problem. Some systems may never reach a point at which all possible relationships

have been enumerated. Such a system is illustrated in the pipeline example earlier. In this case,

however, the complete set of constraints can easily be extrapolated from a smaller sample.

CHAPTER 4. PERFORMANCE ANALYSIS USING ANALYTICAL SIMULATION 64

4.2 Implementation of Analytical Simulation

The implementation of the Analytical Simulation algorithm used for the analyses in this docu­

ment allows for the· simulation of parallel processes<communicating using message passing. Other

architectures may also use the algorithm. This is superfluous in this case, since all the systems

modelled fall into the message passing category. The simulation language consists of a few simple

commands:

send :- send a message to another process.

receive :- receive a message from another process.

think :- perform sequential processing for a specified time.

These commands determine the architecture dependence. Other suitable constructs would be

needed for modelling other architectures such as shared memory machines. The system is assumed

to consist of a number of processes each consisting of an infinite loop with these commands in

the body of the loop. A complete description of the simulation language and the use of the

Analytical Simulation process in practice is given in Appendix B. The language shares constructs

found in various process algebras such as CCS and CSP. These algebras are used for describing

communicating, concurrently executing systems [Lee94]. The process of translation into one of

these formal specification languages is shown in Appendix C. This allows easy access to the formal

proof techniques available under such calculi.

Synchronization occurs when t\VO processes attempt to communicate. The run times of each of

the processes is a linear expression consisting of the sum of a number of think times and possibly

communication times. Deciding which time is the later involves comparing the two expressions

and deciding which is greater. These comparisons are often made in the presence of assumptions

about the interrelationships of other expressions involving the same variables.

Making the comparisons turns out to be a reasonably complex problem. The previously men­

tioned problem of finding a suitable point to stop the simulation can be solved comparatively

easily. In practice it is usually possible to identify the tendencies of the system by eye after each

process has run for a limited number of cycles.

4.2.1 Comparison of run times

The method for comparing linear expressions is presented below:

n

LetA = LeiXi
i=l

n

LetB = LIiXi
i=l

The problem is to determine if A ~ B, A 2': B or no known relationship exists, given assumptions

CHAPTER 4. PERFORl''yfANCE ANALYSIS USING ANALYTICAL SIMULATION 65

of the form:

n n

L gijXi ;::: L hijXi j = 1. .. m
i=l i=l

X- > 0 t _ i = 1. .. n

By assigning ai = ei - Ii and bij = gij - hij this problem can be restated mo:e siplply as:

Determine if I:~1 aiXi ;::: 0, ~ 0 or if no knO\vn relationship exists, given:

n

""' b· -X. > 0 ~ 1) 1_

i=l

X- > 0 1 _

j = l ... m

i = l ... n

The inequality I:~=I aiXi ;::: 0 holds if I:~I aiXi is greater than a linear combination of the

assumptions combined using only positive coefficients. The case 2:~=1 aiXi ~ 0 can be reduced to

the previous case if rewritten as I:7=I -aiXi ;::: O. Thus it is necessary only to attempt to solve

the first case.

A simple transformation reduces the problem to one with a known solution. Attempting to

find the desired linear combination produces an expression of the form shown in equation 4.1,

where Wi ;::: 0 and Vi ;::: O. The Wi are the required coefficients and the Vi are slack varia~l~s"to

enforce the inequality.

([
1 0 .. 0 I [VI I [bll

b
I2

.. b

im I [WIll [al I
[X' .. XnJ :: : :: + :~::: ::: :: ~ [X,.XnJ ::

(4~f) .

Solving for the Vi, and using the requirement that each Vi ;::: 0, produces equation 4.2. This

is the standard form of the constraints in a linear programming problem [Str76]. The complete

solution to the linear programming problem is not required however, it suffices to find a single point

in the feasible region. The existence of such a point is equivalent to having a positive coefficient

linear combination of the assumptions which satisfies the desired inequality.

(4.2)

Finding this single point uses the Two-Phase Method described in [KoI80]. This method

consists of introducing two sets of slack variables and applying the simplex method to remove one

set. The success of the simplex method is equivalent to the existence of a solution.

If a relationship between A and B can be found then the next step in the simulation ofthe model

is well defined. If no relationship exists, then an additional constraint is introduced, specifying

CHAPTER 4. PERFORlvIANCE ANALYSIS USING ANALYTICAL SIMULATION 66

the relationship between A and B. Since two possibilities exist (A 2: B, or B 2: A), each must be

introduced in turn and both branches simulated. Reso~ving non-determinism can cause a number

of constraints to be intwduced at one point, splittin.g ~he simulation path in more than two ways.

4.2.2 Non-determinism

The presence of non-determinism in a system when using the Analytical Simulation algorithm

can lead to cases where one set of restrictions on the variables can produce different performance

values when calculating cycle times and latencies. Non-determinism can arise, for example, when

a process receives messages from a number of other processes at the same time, all of which are

valid under the current receive command. In that case the receiving process is usually expected

to choose one in a non-deterministic manner. Non-determinism can s'everely affect the usefulness

of Analytical Simulation, and ways are required to deal with it.

To speed up the analysis, the simulation can be instructed to ignore the non-determinism, and

make the choice in some consistent manner. This limits the analysis to only one of the possible

execution paths, and gives an approximation to the true behaviour. This and other problems

are- discussed in greater detail later when exploring this method with various example problems

(see sections 6.1.2 and 6.1.4). Modification of the Analytical Simulation technique to enhance its

ability to deal with non-deterministic constructs is described in Chapter 7.

4.3 Conclusion

This chapter introduces the Analytical Simulation approach to performance analysis. This ap­

proach satisfies the three main requirements of a performance analysis and comparison tool for

parallel and distributed virtual reality systems in that:

• It provides for the measurement of latency and cycle time.

• It can be applied to arbitrary decomposition strategies, including those used for virtual

reality systems.

• It provides symbolic results suitable for comparison purposes.

In addition, the implementation of the algorithm allows rapid analysis of models, which can

easily be created, and which closely resemble the structure of the system being modelled. Results

include constraint regions which specify the variable values for which each result holds, simplifying

interpretation of the results. The Analytical Simulation approach is the most successful in fulfilling

the requirements for modelling parallel and distributed virtual reality systems.

The next few chapters (Chapters 5 to 8) describe improvements to the Analytical Simulation

approach which enhance its ability to deal with virtual reality systems. These chapters also verify

the results of analysis by comparing them against values measured from implementations of the

systems being modelled.

Chapter 5

-
Collision detection

A test case is required to verify the suitability of the Analytical Simulation approach to perfor­

mance analysis of virtual reality systems. This chapter selects a common component of virtual

reality systems, and develops parallel algorithms for this component using the different decompo­

sition strategies associated with such systems.

The problem selected for analysis is one that occurs in a number of virtual reality systems and

which is solved in a variety of ways (see Chapter 2). It involves the detection of collisions between

objects in a virtual world. The example used in this chapter is that of point particles collid.lng

within a closed container.

It is particularly instructive to examine this problem, since it requires that each particle is aware

of every other particle. Thus it requires that particle data is distributed to every other particle.

Implementation in a distributed system requires use of the database distribution approaches used

in virtual reality systems. Coordination of the computation requires use of a control distribution

approach, as discussed in Chapter 2.

The chapter starts with an examination of the algorithms used in existing systems befo~e
describing the development of an appropriate test case.

5.1 Previous implementations of collision detection

The level at which collision detection is examined is limited to the selection of the objects to be

checked for collision, and the acquisition of the positions and other relevant information regarding

the affected particles which is required to do this. The problem of computing points of intersection,

given a boundary representation of the object, is beyond the scope of this document. Solutions to

the latter problem are well documented elsewhere, for example [Coh94J [Gar94J [Van93J. A more

detailed survey of collision detection techniques can be found in [Hub95aJ. This section is intended

only as background for the algorithms developed in this chapter.

Approximate solutions to collision detection, such as are used in [Ban93], involve sampling the

object positions at discrete intervals and checking for collisions during the snapshot. Provided

that the sampling interval is sufficiently small, most collisions are successfully detected. More

detailed discussion of the problems involved in implementing reliable collision detection is given

67

CHAPTER 5. COLLISION DETECTION 68

in [Hub93].

Performing pairwise comparisons between all pairs of objects results in an O(N2) algorithm.

Spatial subdivision approaches divide the virtual eqvi:onment into smaller volumes, and collision

detection need only be performed between objects sharing these volumes [Zyd93]. Collision de­

tection algorithms often use a number of successive levels of refinement. The topmost levels are

fast but may imagine collisions where none in fact exist; the lower levels are more accurate, but

slower. The upper levels typically use bounding box comparisons, checking for collisions between
r- ~

simple shapes such as spheres or cubes surrounding the object.

- Some restrictions are imposed on the creation of parallel versions of collision detection algo­

rithms for use within a virtual reality environment. The algorithm must fit into a larger system

without imposing constraints on the distribution of the other components. Other operations

overlap with collision detection and the system may be implemented more efficiently if these are

combined with the collision detection. This limits the use of sophisticated distribution mechanisms

using special properties of the problem. Such considerations apply to the use of approaches such

as [Yas92], whose distributed N-Body algorithm uses a tree decomposition. Branch nodes in the

tree ,contain centre of mass information for simplifying calclJlation of forces. Integration with a

collision detection algorithm would require that additional information be added and may neces­

sitate changes to the distribution mechanism. Approaches such as that used in [Par92J, where a

SIMD machine is used for calculating the N-body simulation, are also not feasible. Use of this

architecture requires that all objects be functionally identical, and so no specialized process.ing

can be included with some of the object processes. The parallel decompositions considered here

are limited to coordinating control of the system, and to distributing data about every object, to

every other object.

Discussions amongst the developers of the VRML specifications! suggested three approaches

to implementing distributed collision detection [War95]. A single process could pelform all the

collision detection for the entire system, or every process could perform this collision detecti?~,

each duplicating the work of the others. The first approach would simplify data distribution,

the second would simplify distribution of the results. The third approach suggested would be to

distribute the computation across all the processors in the system.

The third approach offers the most comprehensive test of an analysis technique, and so the

approaches to distribution of collision detection that are described assume that the problem is

decomposed across mUltiple processors.

5.2 A sequential algorithm for collision detection

The goal of this section is to develop a collision detection algorithm that can be used as a fair test

case for a performance analysis technique. The required solution must function correctly and be

amenable to implementation in a distributed environment. It must also use constructs found in

distributed virtual reality systems, thus making the results of the evaluation of the performance

1 VRML: Virtual Reality Modelling Language, a project to combine Virtual Reality with the World Wide Web

(see section 2.3.11)

CHAPTER 5. COLLISION DETECTION 69

analysis tool applicable to these virtual reality systems. Generality, rather than efficiency, is

emphasized, although some optimization strategies ar~ described where appropriate.

- A simple form of the collision detection proble,m; is examined, which satisfies the above re­

quirements. The problem addressed is that of a single virtual world containing N virtual gas

molecules enclosed in a virtual box. The particles do nothing other than move about within the

box, colliding occasionally with the walls and with each other.

The calculation of trajectories, points of collision, and changes in motion after ~ollision is not

considered. The only matter of interest is to ensure that the simulation proceeds realistically,

assuming that functions to perform these calculations are supplied.

It might be expected that a routine along the lines of:

while (simulation.running)

for i = 1 to N

move_particle (i)

for i = 1 to N

for j = i + 1 to N

if colliding(i, j) then

change_direction (i)

change_direction(j)

would perform the required task. However, it turns out on closer examination of this algorithm

that there are a number of flaws (Hub93].

The problems result from the discrete time nature of the simulation. As the simulation ad­

vances, the molecules move from one point to another without truly touching all intervening points.

Thus a situation where molecule1 moves from A to Band molectde2 moves from B to A during

the same time interval results in the two molecules passing through each other without a collision

being detected. This problem may be addressed by extending the colliding predicate to check for

collisions at all intervening points between two successive positions.

However, there is yet another problem that this additional check does not solve. This is the

case where a molecule would collide with more than one other molecule during a simulation step.

The colliding predicate cannot be expected to realize that a molecule, as a result of a collision,

might change direction and strike another.

A possible solution to this problem is to reinvoke the pair of nested loops until no more collisions

occur during the current simulation step. This should catch all secondary collisions.

At this point, a brief digression is necessary to provide a view of the overall intention of this

section. The algorithm developed should be capable of being successfully used in a parallel virtual

reality system. The simulation required in a virtual reality system need not always be accurate; in

many cases, speed is a far more important consideration. There are a number of cases of faster but

less correct algorithms being used in virtual reality systems, for example, the Painter's algorithm

used in hidden surface removal. Hence the approximate solution derived above should not be

discarded immediately. The other consideration is that the algorithm should parallelize easily,

CHAPTER 5. COLLISION DETECTION 70

Molecule 1
-------:-----~-------------------

Molecule 2

Molecule 3

Time

Figure 5.1: Example of a trace

and hence the last adjustment above, which requires repeated access to a shared resource, may

not be feasible.

The other alternative is to drop the requirement of simulation steps which are independent

of the collision detection process. Instead let the steps be governed by the requirements of the

problem.

_ Let the trace of a run of the simulation be a graph, where -a node represents a point at which a

collision occurred between particles and the arcs represent movement of the particles. The nodes

can all be ordered on the time at which the collision occurred, as illustrated in Figure 5.1. The

next node on the trace can be determined while at the previous node, irrespective of the time

difference between them. Thus the collision detection algorithm can be rewritten as:

while (simulation..running)

for i = 1 to N

for j = i + 1 to N

let t be the minimum time until a collision

between i and j

for i = 1 to N

move_particle(i) to its position at time t

if particle[i] is involved in a collision at time t

then

change-Ciirection_of _particle (i)

This algorithm for collision detection can be used in virtual reality systems, and is used as

the basis for developing distributed collision detection routines for testing performance prediction

techniques. Additional enhancements are still possible, such as the volume subdivision step men­

tioned in the previous section. Another optimization is to cache collision points, since they do not

need to be recalculated until at least one of the molecules involved changes trajectory.

5.3 Collision detection on parallel processors

Virtual reality implementations are often constructed from whatever components are available. In

some cases, specialized components are added to enhance the performance of some aspect. Rarely

CHAPTER 5. COLLISION DETECTION 71

are these systems integrated to a state where shared memory is available. In general, as may

be seen in the systems reviewed in Chapter 2, parallel virtual reality systems communicate using

message passing, ofte~ over relatively low bandwidth ·links. Thus all the parallel decomrosition

attempted here assumes a message passing archite~ture, with consideration paid to minimizing

communication.

The approach when parallelizing the collision detection algorithm is to assume that each object

resides on a different processor. The alternative of a single application process performing collision

detection in parallel with the rest of the system does not look much different fron; the sequential

algorithm.

5.3.1 Collision detection using direct Message Passing

Generally a virtual reality system provides some operating system level facilities, which attempt

to enforce a particular communication paradigm. These limit the possible communication op­

tions to make parallel programming easier and less susceptible to errors. These functions are

usually implemented with constructs which perform message passing directly between processes.

This' section describes a distributed collision detection algorithm where all processes are identical,

communicating via the direct message passing calls.

The outline of the algorithm for the direct message passing approach is as follows:

PROCESS molecule[k]

{ process corresponding to a single molecule }

WHILE (running (»
FOR (i = 1; i <= N; i++)

SEND (molecule[i], DATA)

{ send own position to all others}

FOR (i = 1; i <= N; i++)

otherpositions = RECEIVE (DATA)

{ get position of other molecules }

find first collision between this molecule and all

other molecules and the walls

FOR (i = 1; i <= N; i++)

SEND (molecule [i], time...f irst_collision)

{ send best guess at first collision }

FOR (i = 1; i <= N; i++)

temp = RECEIVE ()

IF (temp < smallest..received) THEN

smallest..received <- temp

{ combine guesses to get earliest

collision }

CHAPTER 5. COLLISION DETECTION

move molecule along trajectory by an amount

corresponding to the smallest time received

IF the. molecule is involved in a collision at this

point THEN

alter _traj ectory

72

To simplify the algorithm, it is assumed that messages do not block when they are sent, but

queue at the destination point. This implementation has the disadvantage that all ~olecules must

r~ynchronize after each collision, even those that are not involved and which are not affected by

the outcome of the collision. Other approaches such as that described in section 5.3.3 do not have

this limitation, and so the amount of computation required can be reduced for that case.

5.3.2 Collision detection using a Client-Server approach

The message passing approach associates the data for each object with the corresponding object

process, a distributed databases approach. For all simulation cycles, each molecule must be

polled by every other molecule in order to obtain up to date position information, i.e. O(N2)

communication. This may be reduced by creating a central repository for the position data, a

centralized database, at the cost of requiring each molecule to transmit updates whenever changes

are made.

A server process is created which acts as the central repository for the position data for every

molecule in the system. With this particular problem it is also used to coordinate finding the time

of the next collision, as well as for synchronizing the various processes.

The outline of the algorithm for the client-server approach is as follows:

PROCESS client[k]

{ process corresponding to a molecule }

WHILE (running ()

SEND (server, GETOTHER)

{ send a request for the position database }

allposition = RECEIVE (OTHERDATA)

{ get the database }

find first collision between this molecule and all

other molecules and the walls

SEND (server, BESTTIME)

{ send details of first collision}

besttime = RECEIVE (BESTDATA)

{ get overall value for first collision}

CHAPTER 5. COLLISION DETECTION

move molecule along trajectory by an amount

corresponding to the smallest time received

IF the. molecule is involved in a collision at this

point

THEN alter _traj ectory

SEND (server, UPDATEPOS)

{ update the database }

ack = RECEIVE (UPDATEOK)

PROCESS server

{ coordinates the world database }

WHILE (running (»
req = RECEIVE (ANYTHING) from client[i]

SWITCH on request type

CASE GETOTHER:

SEND (client[i], OTHERDATA);

{ send position database}

CASE BEST:

IF collision time from client[i] is earliest

to date THEN

update earliest to data value

IF all clients have sent their best values

THEN

FOR (i = 1; i <= N; i++)

SEND (client[i], besttodate)

{ send time of first collision }

CASE UPDATEPOS:

update entry for client[i]

IF all clients have updated THEN

FOR (i = 1; i <= N; i++)

SEND (client[i], UPDATEOK)

{ synchronize clients at this step }

73

Since all the collision data gets combined in the end, and due to the fact that the collision

predicate is transitive, this algorithm can easily be enhanced to halve the number of comparisons

required. Thus the time that A collides with B is the same as the time that B collides with A.

5.3.3 Collision detection using a Master-Slave approach

Many virtual reality systems use an event handling approach to control object processes, with

a master process issuing events to a number of slaves. This simplifies control of the objects by

CHAPTER 5. COLLISION DETECTION 74

other processes. In some cases, a separate process is used for collision detection. This process

then sends events to the object processes to indicate. when a collision will occur. The routine

below shows the adaptation of the collision aetecti9n; algorithm to an event driven system. The

object processes are also used for some of the collision detection calculations, thereby increasing

the extent to which parallelism can be used.

The outline of the algorithm for the event handling approach is shown below:

PROCESS slave[k]

{ process corresponding to a molecule }

WHILE (running ())

req = RECEIVE (ANYTHING);

SWITCH on request type

CASE REQDATA :

SEND (master, HEREDATA)

{ send position of this molecule}

CASE FINDYOURBEST :

find first collision between this molecule

and all other molecules and the walls

SEND (master, MYBEST)

CASE RtJNUNTIL :

move molecule along trajectory by an amount

corresponding to the value just received

IF the molecule is involved in a collision at

this point THEN

alter_trajectory

PROCESS master

{ process in charge of collision detection }

WHILE (running ())

FOR (i = 1; i <= N; i++)

SEND (slave[i], REQDATA);

FOR (i = 1; i <= N; i++)

req RECEIVE (HEREDATA);

add data to a local database

FOR (i = 1; i <= N; i++)

SEND (slave[i], FINDYOURBEST);

{ get each slave to do some of the work }

CHAPTER 5. COLLISION DETECTION

FOR (i = 1; i <= N; i++)

req = RECEIVE (MYBEST);

{o get each molecule'~ first collision}

Calculate time of first collision

FOR (i = 1; i <= N; i++)

SEND (slave[i], RUNUNTIL);

{ let molecules run until first collision }

75

This approach is easily modified to accumulate the times of the various collisions and to only

update those that change. It is easy to see that only those particles involved in a collision can

affect subsequent collisions. This modification is not as natural in the other systems where control

is distributed, as opposed to the centralized control present in this variation.

5.4 Conclusion

Colli·sion detection is chosen as a problem suitable for testi~g the capabilities of the Analytical

Simulation approach to performance analysis. A sequential algorithm for the detection of collisions

between point particles is described. This is parallelized in three different ways, using approaches

found in distributed virtual reality systems.

The approaches used are:

• A client-server approach for data distribution, control remaining with the objects.

• A message passing approach maintaining data and control locally with each object process,

and specialized communication for interaction.

• A master-slave approach keeping data for each particle with the corresponding particle Pl'cr .

cess, but using central control from a maSter process.

Analysis of the client-server model is described in Chapter 6. Some enhancements to Analytical

Simulation resulting from this are given in Chapter 7. The remainder of the analysis for the models

described in this chapter, followed by a comparison with the results measured from implementation,

is given in Chapter 8.

Chapter 6

Analysis of client-server collision

detection

Chapter 5 provided a solution to the collision detection problem and examined the parallelization

of this solution. Some of the methods of parallel decomposition used in virtual reality systems

were used to select strategies for the parallel decomposition of the collision detection algorithm.

Amongst the strategies used was the client-server approach for distribution of data and control

information.

Evaluation of the performance analysis techniques in Chapter 3 used a simple· client:server

system as a test case. This chapter extends the analysis to a realistic model. The limitations

uncovered during this analysis are used to improve the Analytical Simulation approach (Chapter 7)

before analysis of the other collision detection algorithms is performed (Chapter 8).

This chapter investigates the use of Analytical Simulation on successive refinements of a client­

server system until the complete client-server decomposition of the collision detection algorithm.

is reached.

6.1 Analysis of client-server models

Analysis of the client-server decomposition strategy starts with the analysis of a simplified version.

Additional complexity is added incrementally, and the effect of these increments can then be seen

in relative isolation. The enhancements are incorporated into the collision detection algorithm in

section 6.2.

6.1.1 Deterministic, simple communication

A simplified client-server model is used as an example when introducing Analytical Simulation.

This consists of two clients, each requesting data from the server and then processing that data

for an interval of X. The server accepts requests from each client in turn and returns a response

after an interval of Y.

76

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION

This model can be extended to N clients using the following algorithm:

process client .[i] (where i = 1 .. ,N)

repeat forever

send request for data to the server

receive the reply from the server

process the reply for period X

end repeat

process server

repeat forever

for i = 1 to N

receive request from client[i]

prepare the reply, taking period Y

send the reply to client[i]

end for

end repeat

This corresponds to the following model for the Analytical Simulation tool:

generate markerendl -

define N 5

replicate N

process client#

send server request

receive server reply

think X

report markerend#

endreplicate

process server

replicate N

receive client# request

think Y

send client# reply

endreplicate

77

The generate statement causes the tool to generate the cycle time of client1. The variable N

defines the number of clients in the model. The tool, run for 100 iterations of the server process,

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION 78

produces the following results, for the model with five clients:

Trace 1 : Program with as sumption_s :

Example: X = 1000 Y = 200 "<

1 X > 4 Y

Change in markerend1 1 Y + 1 X (100)

Trace 2: Program with assumptions:

Example: Y = 1000 X = 1000

4 Y > 1 X

Change in markerend1 5 Y (100)

The constraint regions are indicated, as well as the values for each region. The values in

parentheses indicate the length of the sequence containing that particular result. Repeating the

analysis with different values of N produces the following results:

x ~ (N -l)Y:

(N "':'l)Y ~ X:

Latency = Cycle Time = X + Y

Latency = Cycle Time = NY

Further options for increasing the complexity of the model are to have a differing processing

time for each of the clients, to introduce non-deterministic selection by the server, and to increase

the complexity of the communication to approximate that of the desired algorithm more closely.

The latter two options are more relevant to the problem that is being solved, so these are

examined first.

6.1.2 Non-deterministic, simple communication

Non-determinism can easily be introduced by changing the action of the server. At present it

communicates with each client in turn, waiting for each client, regardless of whether others are"

already available for communication. This can be modified so that the server accepts requests

from the first client capable of communication. Should more than one client satisfy this condition,

then one must be selected in a non-deterministic fashion.

The modified server code in the model for the Analytical Simulation tool is as follows:

process server

receive ANYONE request

think Y

send ANYONE reply

The receive statement contains a variable name as the name of the source process. This will

be instantiated to the name of the first process to communicate, or each of the names in turn if

there is more than one. The value of the same variable is used as the name of the destination

process to which the reply must be returned.

As might be expected from the symmetry of the program, the expected results are not altered

by introducing this change. However, it does have a significant effect on the complexity of the

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION 79

Analytical Simulation. For a situation with N clients, the server must select one of these in a

non-deterministic fashion. After the first cycle, there are still N - 1 requests at the head of the

request queue. The total number of permutations i,s 9-uickly seen to be related to the factorial of

N. The difference between the permutations only affects the relative order in which the processes

run. No change occurs in the latency values or in the cycle times.

The analysis tool faithfully explores all N! paths, producing much the same results as before.

The lengths of the sequences of results are shorter, the new server process cycle§ oI},ce for every

client request now, rather than every set of N requests as before.

- As mentioned in section 4.2.2, the number of cases can be reduced in this case by instructing

the simulation to solve the non-deterministic choice in a predefined and consistent manner. This

does not cause loss of information in this simple case.

6.1.3 Deterministic, complex communication

Increasing the complexity of the communication involves increasing the number of queries to the

server in each cycle of the client. As may be seen from the algorithm presented in section 5.3.2,

the Client requests two items of data from the server, before p-etforming some calculation and then

sending an update to the server. The client processes are thus modelled as:

process client

repeat forever

send server request...for _data

receive server some_data

send server request...for _data

receive server some_data

process for a period of duration X

send server request...for _data (update)

receive server some_data (acknowledgement)

The server, as before, accepts a single request from each client in turn, processes for period Y

and returns a reply.

The results have the same form as those given in section 6.1.1:

x ~ (N -l)Y: Latency = Cycle Time = X + (2N + l)Y

(N -l)Y ~ X: Latency = Cycle Time = 3NY

The actual algorithm being modelled has some extra complexity in the server in that in some

cases it waits for data from all clients before responding to each of the requests. The server code

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION

modified to support this approach has the following outline:

process server

repeat forever

recei ve client! request.for _data

process for a period of duration Y

send client! some_data

receive client2 request.for_data

process for a period of duration Y

send client2 some_data

· .. for all N clients

receive client! request.for..summary

receive client2 request.for..summary

., .for all N clients

process for a period of duration N * Y

send client! some_data

send client2 some_data

... for all N clients

receive client! request.for ..summary

receive client2 request.focsummary

· .. for all N clients

process for a period of duration N * Y

send client! some_data

send client2 some_data

· .. for all N clients

80

The second and third requests from each client to the server, for each cycle of the client, request

summaries rather than position data.

The model for the Analytical Simulation tool is shown below:

replicate N

process client#

send server requestfordata

receive server reply

send server requestforsummary

receive server reply

think X

send server requestforsummary

receive server reply

report markerend#

endreplicate

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION

process server

replicate N

rec~ive client# requestfordata,

think Y

send client# reply

endreplicate

replicate 2

replicate N

receive client## requestforsummary

endreplicate

replicate N

think Y

endreplicate

replicate N

send client## reply

endreplicate

endreplicate

81

.- - -*

The effect of the synchronization is to restrict the order in which events may occur, Bothat

only one path of execution is possible, regardless of the relative "alues of X and Y. The processing

in each of the clients is forced to occur in parallel, and is unable to overlap with any processing

in the server. Applying the Analytical Simulation technique to this system yields a single report,

giving the value of 3NY + X as the cycle time and latency.

6.1.4 Non-deterministic, complex communication

The next logical step to complete the sequence of analyses is to combine the complex communica­

tion sequence in the client with a non-deterministic server process. As illustrated in section 6.1.2,

this server process accepts a request in a non-deterministic fashion, processes it for a period of

duration Y and returns a response.

The model for analysis using Analytical Simulation is shown below:

replicate N

process client#

send server request

receive server reply

send server request

receive server reply

think X

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTIOS

send server request

receive server reply

report markerend#

endreplicate

process server

receive ANYONE request

think Y

send ANYONE reply

82

The version of the system with only two clients produces four cases. The case where X ~ Y

is well behaved and the performance settles down rapidly to a value of 6Y. \Vnen Y ~ X ~ 2Y,

latency also stabilizes on 6Y, but an unstable initial value of 5Y + X may prevail for as long

as chance dictates. Chance, in this case, determines the way in which the non-determinism is

resolved. The other two cases depend on whether X is greater or less than 3Y. In both cases they

settle down to steady state latencies of 6Y for 2Y ~ X ~ 3Y and 3Y + X for X 2:: 3Y. However

there is again a transient phase where the latency may be 5Y + X or 4Y + X for both cases.

These transients are unstable and once a decision is made that eliminates a particular transient,

then the system moves into a state in which that transient never recurs. The analysis explores

548 paths within the 100 cycles of the server process.

This initial unstable state would be missed, or would deceive a simulator.

The complexity is greatly increased when adding a third client. For some values of X and

Y, the latency does not settle down to a steady, stable value. Instead it assumes a number of

values, corresponding to different orders in which each of the clients interact with the server. In

addition the number of permutations is sufficiently large as to prove daunting when it comes to

analysis. At this point it becomes worthwhile to examine the requirements of the analysis and

find some appropriate method of summarizing the results without adversely affecting the analysis ..

A number of alternatives present themselves.

Firstly, the range of values can be expressed in some condensed form. An average value and

a standard deviation, or possibly the minimum and maximum values encountered would suffice.

An alternative is to remove the non-determinism by preselecting the order in which decisions are

made, as discussed in section 4.2.2. This is more applicable in this situation where the clients are

identical and symmetry exists.

The second approach has the advantage of reducing the simulation search space, but can pose

certain problems. Firstly, it does not reveal all details of the behaviour of the system. It can also

result in certain relationships between the variables in the system being ignored.

The range of latency values assumed for the different variable yalues is listed below, with the

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION S3

result obtained by removing the non-determinism given in parenthesis:

x > nY, for n > S (-) 3Y + X, 4Y + X, 5Y + X, 6Y + X

X>SY (3Y + X) .3Y +X, 4Y +X, 5Y +X, 6Y +X'

SY > X > 7Y (3Y +X) 3Y + X, 4Y + X, 5Y + X, 6Y + X

7Y > X > 6Y (4Y +X) 3Y +X, 4Y +X, 5Y +X, 6Y +X

6Y > X> 5Y (4Y +X) 9Y, 4Y +X, 5Y +X, 6Y +X

5Y > X > 4Y (lOY, 9Y, SY (in cycles» 8Y, 9Y, 5Y +X, lOY, 6Y +X-

4Y > X > 3Y (9Y) 9Y, 6Y +X

3Y > X > 2Y (9Y) 9Y

2Y > X > Y (9Y) 9Y

Y>X (9Y) 9Y

The values given above are taken after the initial transient has died away, which is usually

after three cycles. The analysis does not add any further constraints on the relative values of

the variables for the deterministic case once X > 8Y. These restrictiol)s are found for the non­

deterministic case but do not yield any additional values for the cycle time of the system. Transient

values are not .given above. The simulation for the results above was performed for 100 cycles

of the server process. The deterministic version is analysed rapidly, and the values given above

are easily extracted. The non-deterministic case takes the better part of a week for the analysis,

on a dual processor Sparc Server-IO, and produces 60 Mbytes of data (approximately 100000

paths) that require further analysis by hand. Transient values have to be removed and the results

summarized. Examples of the results are shown below. The constraints marked with the "###"
are those that do not form boundaries of the constraint region, and which can be ignored.

Trace 51277: Program with assumptions:

Example: X 1000 Y = 181.818

1 X > 2 Y ###

1 X > 3 Y ###

1 X > 4 Y ###

1 X > 5 Y

6 Y > 1 X

Change in markerendl 6 Y + 1 X (2)

Change in markerend1 7 Y + 1 X (1)

Change in markerend1 5 Y + 1 X (1)

Change in markerend1 4 Y + 1 X (2)

Change in markerend1 5 Y + 1 X (1)

Change in markerend1 4 Y + 1 X (1)

Change in markerend1 9 Y (1)

Trace 51305: Program with assumptions:

Example: X = 1000 Y 222.222

1 X > 2 Y ###

1 X > 3 Y ###

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION

1 X

5 Y

Change

Change

Change

Change

Change

Change

Change

Change

>
>

4 Y

1 X

in markerend1

in markerend1

in markerend1

in markerend1

in markerend1

in markerend1

in markerend1

in markerend1

6 Y + 1 X - (2)

7 Y + 1 X (1)

5 Y + 1 X (1)

9 Y (1)

10 Y (1)

9 Y (1)

8 Y (1)

9 Y (1)

84

It is interesting to compare the results obtained by using a conventional simulation tool on the

same model. The simulation has X ranging from 1 to 50 and Y ranging from 1 to 25. For the two

molecule case, the results are found to conform to:

X<Y: 61'"

X >1'": 51'"+ X

In the three molecule case, the latency/cycle time is:

X<51'": 91'"

X>51'": 41'"+X

Ironically, the results are far more complex for the simple server than in the case with a more

complex one that imposes more restrictions on order of execution. However, it is useful to explore

the limitations of the Analytical Simulation technique that are emphasized by this situation.

A significant problem with Analytical Simulation is that it traverses the tree of possible program

states to a particular depth. This can cause a number of complications. The state space may be

very large, particularly if non-determinism is present. The results calculated for a given set of

constraints may differ according to the order in which events occur in a particular program trace.

Also the depth to which the tree is explored may not be sufficient to define the behaviour of the

system adequately.

Another disadvantage is that the effects of simple variations on the program structure cannot

be easily compared, since these variations create a new and different system. In the examples

given here this means that the effects of adding more clients must be extrapolated from trends

visible in the results of analyses of systems with smaller numbers of clients.

No further analysis of this particular system is carried out using this version of Analytical

Simulation due to the complexity of the analysis. This issue is addressed in Chapter 7, when the

state space extensions to the Analytical Simulation algorithm are discussed. The next case to be

considered is the complete model of the client-server collision detection algorithm.

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION 85

6.2 Collision detection using a client-server decomposition

This section combines the refinements of the client-server model presented in this chapter, and

applies them to the cli'ent-server decomposition of the collision detection algorithm, given in sec­

tion 5.3.2.

The complexity of the analysis in the previous section is reduced in this model because the

additional complexity in the model imposes more constraints on the order in which the various

processes may interact. This fact suggests a useful by-product of the complexitY'"exp10sion of the

previous section: after a minimum latency/cycle time value is found, impose restrictions on the

system so that this order of events is the only one that may occur.

The model used to implement the collision detection algorithm is shown below and may be

compared with that presented in section 5.3.2.

process client

send server request..:for --<iata

receive server some_data

send server request..:for ..summary

receive server some_data

process for a period of duration X

send server request..:for ..summary (update)

receive server some_data (ackno~ledgement)

process server

receive any_client[A] anY-Iequest

case anY-Iequest of

request..for _data

process for a period of duration Y

send any_client[A] some_data

request..:for ..summary :

recei ve any _client [B] request..f or ..summary

... until had a request from all N clients

process for a period of duration N * Y

send any_client [A] some--<iata

send any_client[B] some_data

... for all N clients in the order in ~hich

requests ~ere received

In this model the array any_client represents the processes from which messages are received.

Its members are instantiated during the receive operation. This is the source of the non-deter­

minism in this model. The variable any_request is set to the type of message at the same time.

Comparing this model to the original algorithm, the variable X represents the time taken to

move a molecule and perform any other necessary processing. The time taken to calculate the

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION 86

point of collision is ignored, although this could easily be included by addition of another process

statement. It is excluded to provide consistency with the previous discussion. Moving the position

of -the existing processlng section of the client fioes not alter the final result. The variable Y could
"~ .

represent the time taken for the server to access its database.

The form of this model for use with the Analytical Simulation tool is as follows:

replicate N

process client#

send server requestfordata

receive server reply

send server requestforsummary

receive server reply

think X
send server requestforsummary

receive server reply

report markerend#

endreplicate

process server

in it

assign COUNT 0

endinit

receive ANYONE REQUEST

if REQUEST == requestfordata

think Y

send ANYONE reply

endif

if REQUEST == requestforsummary

if COUNT != N

assign COUNT [COUNT+l]

endif

if COUNT == N

replicate N

think Y

endreplicate

CHAPTER 6. ANALYSIS OF CLIENT-SERVER COLLISION DETECTION

replicate N

send client# reply

endreplicate

assign COUNT 0

endif

endif

87

The results from this model are interesting in that there are no constraints on the relative

siZes of X and Y. The results are numerous, due to the non-determinacy, but are all identical.

The tool shows a desire to generate about 17 x 109 solutions for the two client case, limited

to 100 cycles of the server. These result from the possible alternate execution paths that exist

because of the different non-deterministic choices that can be made. The identical results can be

explained by examining a trace of events. The restrictions imposed by synchronization through

requestforsummary prevent client and server from running concurrently. The only processes that

run at the same time are the various clients. Non-deterministic message passing occurs between

client and server, but this must be completed for every client befote any client can enter its

processing stage.

The value of latency / cycle time for the N client system may be easily guessed and is: 3NY + X.

This is consistent with results obtained using standard simulation techniques.

6.3 Conclusion

The client-server approach to parallel collision detection is successfully analysed using the Analyti­

cal Simulation technique. Different aspects of the model are examined to determine their influence

on the overall performance of the model, and to test the analysis tool.

The tool performs well and delivers the required results. Problems are caused by the number

of paths resulting from non-deterministic choices. Substantial human intervention is required to

simplify the vast quantities of results that are produced. These problems are addressed in an

extension to the original technique described in Chapter 7.

Chapter 7

State space extensions to

Analytical Simulation

This chapter describes the state space extensions to Analytical Simulation that are applicable to

periodic systems. It begins by describing the advantages of state space analysis, before explaining

the method in more detail. Once the description of Analytical Simulation is complete, its areas of

application, limitations and advantages are discussed in section 7.3.

The Analytical Simulation approach as described previously suffers from two significant limi­

tations:

• Non-determinism causes the possible simulation paths to increase, often exponentially. This

makes thorough analysis of the results time-consuming, and increases the computing re­

sources required to perform the analysis.

• The simulation is only performed for a limited number of steps. Any characteristics of the

model that are not present in this portion of the execution trace are ignored.

The systems being modelled in this thesis, virtual reality systems as well as real-time systems in

general, share a common characteristic. They are all intended to run indefinitely, and thus repeat

the same sequence of events periodically. Results are produced for every cycle of the program,

but at no point does the system reach a state at which all computation is complete. The values of

input data, and those of the output results are ignored for the purposes of performance analysis.

In such systems all data undergoes the same sequence of transformations, regardless of its value.

This periodic nature means that the states of the program recur and the state space graph of the

program is cyclic. Conventional simulation as used in Analytical Simulation often explores states

that have been examined before. It is much more efficient to keep track of the state space graph

of the program and to use this to prevent duplication.

Non-determinism creates states with multiple outgoing arcs to each ofthe states resulting from

resolving the non-determinism in all of the possible manners. If these nodes do not occur in cycles

then this behaviour is only transient, and can be identified as such. If the node occurs in a cycle,

then it can be identified as a recurring state. Finding all paths in a cycle may be expensive but

88

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 89

only has to be done once for the cycle, not an arbitrary number of times as is being done with

standard Analytical Simulation.

- Since the complete state space can be explored, all ?-"pects of the model are examined. Travers­

ing state space allows automatic detection of recurring states so there is no need for guessing at a

limit to the interesting activity as before.

Before examining the methods for analysis of state space graphs, a working definition of the

state of a parallel program is given.

7:1 The state of a parallel program

The state of a conventional sequential program consisting of a sequence of instructions can be

specified by providing values for the program counter and all variables defined in the program.

These variables include the registers and stack used for executing the program.

The requirement of any definition of a program state is that given any particular state it must

be possible to determine the successor state uniquely. The successor state is found by executing

a single program statement. This requirement must be satisfied when selecting a specification for

the state of a parallel program.

If one considers a number of sequential programs running simultaneously, a parallel program

in which no interaction occurs between processes, then the state of the parallel program can be

given as a tuple, containing the states of the individual processes. As long as a successor state is

chosen using some consistent rule (e.g. advance every process by one statement) then it is uniquely

determined by its predecessor. Once synchronization constructs are introduced, however, this is

no longer sufficient. Consider a message passing situation where two processes are both executing

a statement which sends a message to a third process. To suitably imitate reality, it would be best

if the message sent first arrives first (assuming equal transmission times). At present there is no

information included in the state definition to allow this. Adding a field giving the local tim(l of

each process would provide this.

In the case when non-deterministic· communication can occur, the successor state must be

chosen non-deterministically and is not uniquely determined. This is acceptable (since it occurs

in real programs) and must be modelled.

As explained previously, the periodic nature of the programs produces cyclic graphs of the

program execution. Adding in a field giving the absolute time for each process would prevent this,

since time is monotonically increasing. Instead relative values are used. One process is used as a

reference and is set as the origin of the time axis in each state. The times of the other processes are

given relative to the reference. More than one level of referencing can be used if all the processes

do not have equal cycle times. This could reduce the number of unnecessary duplicate states.

A simple successor function executes one statement of one of the processes. 'V here processes

must synchronize, each involved process must wait until all are ready to communicate. Other

successor functions are possible, some of which may allow uninteresting states to be ignored. For

example, three successive states in which the same variable is incremented can be replaced by one

state incrementing the variable by three times the amount. Such a modification does not affect

the subsequent analysis of the state space graph.

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 90

The analysis of the state space graph examines paths in the graph. Interesting points occur

where state markers (start and end points of paths) an~ non-deterministic communication (points

wnere paths split) are- found. The state markers?.r? statements to identify useful states, such

as when a process is in the first statement of its cycle. One relatively useful successor function

eliminates unneeded states by executing statements in other processes until it is impossible to

avoid executing the marker or performing non-deterministic communication.

7.2 The exploration of state space

The model is simulated, generating a description of each successive state. When a state is repeated,

then that branch of the simulation can terminate, knowing that the sequence of states that follows

has already been examined. Branching in the sequence of states occurs when non-deterministic

communication occurs and there is more than one valid successor state. The subset of the state

space traversed while simulating the model can be represented as a directed, cyclic graph.

The process is illustrated with the model given below.

process clientl

report markerl

send server req

receive server rep

think Xl

report marker2

process client2

send server req

receive server rep

think X2

process server

declare ANY

receive ANY req

think Y

send [ANY] rep

assign ANY undef

This model examines the first client-server variation suggested in section 6.1.1, where the clients

spend different amounts of time processing. The declare statement in the server process causes an

extra dimension to be added to the state space to represent the values of the variable ANY. The

assign statement at the end of the server process sets the value of the variable back to a default

value, to reduce the number of states that. will be explored. For purposes of illustration, and to

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 91

Figure 7.1: State space graph for the client-server model

lin:it the size of the state space, the range of the variables is constrained to the region:

• Xl ~ Y +X2

• 2Y +X2 ~ Xl

• 2X2 ~ Xl

• Y +X1 ~ 2X2

7he state space graph for this model, under the given -constraints is shown in Figure 7.l.

State 2 corresponds to the second client getting the first message to the server, state 18 occurs

when the first client gets the initial message to the server. Marker 1 occurs in states 0, 6, 12 and

20, while states 5, 11 and 19 contain marker 2.

The values that must be extracted from the graph are cycle times and latencies. Large alllounts

of data are available in the graph, relating to these values. It is possible to generate all possible

sequences of the values that the model may produce. In order to provide a manageable amount

of information, only steady state values are extracted. Often only extreme steady state values are

given.

Cycle times can be found from the time it takes for a state corresponding to the execution of

a marker function to recur. Given that a particular marker is executed in states A and B, cycle

times corresponding to the time taken to go from states A to A, A to B, B to A, and B to B may

be found.

Latency is slightly more complicated to calculate. Latency can be found by calculating the

time taken to go from a state where a first marker occurs, to a corresponding state where a

second marker occurs. Latency measures the time taken for information to move from one state

to another. Thus the notion of corresponding markers requires that there be a message sent from

the process with the first marker, after the marker is executed, and before it is executed again.

This message must arrive at the process with the second marker. Time measurement ceases with

the first execution of the second marker after the message arrives.

This description of latency does not cover the situation where there is more than one message

that qualifies. In the case where the times for all messages are equal then this approach is sufficient.

\Vhen the times differ, for example when the frequency of the first marker differs from that of the

second, then further decisions need to be made. Choosing the messages on which the information

is transmitted would require further effort on the part of the user. At present, all messages are

traced, unless explicit constructs are used in the model to limit search paths.

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 92

Figure 7.2: Graph extracted for cycle time analysis

The analysis of the state space graph to determine cycle time and latency can be simplified

and unified once the relevant information is extracted. Only those states in which the required

markers occur are extracted, together with the time interval between these states. This can be

represented as a graph with the edges labelled by the time values. Cycles in this graph contain

recurring states, these states can occur infinitely often in the execution of the model. Minimum and

maximum latency/cycle time can be extracted by locating minimal/maximal cycles respectively.

The simplified graph can be easily extracted for cycle time analysis by searching for paths

between marked states in the original state space graph. The corresponding time value is that

which elapses in the process containing the marker along each path. The graph extracted for the

client-server example is shown in Figure 7.2.

Generating this graph for latency is slightly more complex. Start states are those containing

the initial marker while stop states contain the final marker. The times for messages to move from

start states to stop states are required. This is done by tracing messages from start to stop states.

A pointer to the current location of the message is kept while searching for paths between start

and stop states. This is initialized to point to the process containing the marker in a start state,

and is set to the destination process whenever a message is traced. The path is only complete .

when a stop state is reached with the pointer set at the process containing the final marker.

Calculating the values to assign to the edges in the latency graph is complicated by the pos­

sibility of messages changing processes. The time fields in the state definition are used to offset

the time interval between two states by the difference in time values of the source and destination

processes. vVhen no change in process occurs, this reduces to the value used to calculate edge

values for cycle time analysis.

The simplified graph does not contain the stop states, but joins the start states. Successive

latency values occur according to the sequence of states containing the start marker. The states

that may follow another are influenced by the value linking them. To obtain this value a message

is traced through the reachability graph of the program. The path followed by this message may

pass several branches in the graph. Each time it selects one route it is making a choice as to the

programs behaviour at that point. Successor states that are linked by the value produced from

this message are required to subscribe to the same behaviour. Thus these states must occur on,

or follow an extension of, the path of the message.

In some cases no message arrives at the destination process. In this case the nodes are joined

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 93

1 Xl + 4 Y + 1 X2

Figure 7.3: Graph extracted for latency analysis

by a NULL edge. This edge contains no value for latency.

The graph extracted to find the latency for the client-server example is shown in Figure 1.3.·

The effect of tracing every message can be dearly seen, when compared to the graph used to find

cycle times. An example of one of the additional paths would be that from clientl to the server,

then from the server to client2 (assuming the reply from the server is not traced, but instead

execution is followed around the server loop until a request from client2 arrives), around the loop

in client2, back to the server and then back to clientl. Obviously, in this example, this is not

the path that should be used to calculate latency; in other cases such a message path might well

be valid. The shortest path gives the fastest way to transmit messages between the two markers

and almost always gives the minimum latency. The exception is when modelling control flow with

message passing. In these cases special care must be taken to disable tracing of paths representing

flow of control.

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 94

7.3 Use of Analytical Simulation

7.3.1 Relationship to other wor~

The initial version ofthe Analytical Simulation approach was inspired by work on data flow graphs.

This approach, discussed in section 3.4.2, introduces the process activity versus time diagram upon

which Analytical Simulation is based. In addition, analysis of data flow graphs provides the basis

of a system capable of measuring both cycle times and latencies.

Analytical Simulation is obviously based on analytic modelling (section 3.2) and simulation

(section 3.3) and combines the flexibility of simulation with the advantages of the analytic solution.

Analytical Simulation is extended to include state space analysis in Chapter 7, which improves

its ability to handle non-determinism in finite time. State space analysis is an integral part of the

analysis of Petri Nets (see section 3.4.1).

The areas in which Analytical Simulation stands out is in the generation of analytical solutions

to the models, and in the automatic generation of constraints, defining the regions in which a

solution holds. Analytical solutions using other approaches are limited to very simple models.

Numerical simulation is usually used for larger models.

Analytical solution techniques are also used for performance prediction in compilers for super­

scalar architectures [Wan94]. Cost of code fragments is estimated and represented symbolically,

as functions of the unknowns in the control structuxes. This allows estimation of the values of

these unknowns to be delayed as long as possible. Comparison of the performance measures sym­

bolically is discussed. For expressions given as polynomials of a single variable, the difference is

taken, and the roots identified. The intervals between these roots identifies the range of variable

values for which one expression is greater than the other. The sign of the difference in a particular

interval indicates which expression is greater. This can be compared to the approach described in

section 4.2.1 for linear expressions with multiple variables.

The use of analysis of traces bears a resemblance to work on CHITRA94 [Abr94] which perfo~~s

analysis on collections of traces resulting from program execution. Analysis produces a stochastic

model which fits these traces to a specified level of accuracy. The characteristics of the random

variables contained in the model can be derived. In this wayan analytic solution can be produced.

Traces can be produced by simulation, rather than from system implementation. Filtering is

pelformed on the traces to reduce the state space of the model that is produced.

The nature of the timing constructs with the Analytical Simulation approach bears some

resemblance to work done on Time Petri Nets. Stochastic timing is considered inappropriate for

modelling large, real-time systems by van der Aalst [Aa194], especially when real-time deadlines

need to be considered. Instead he proposes the Interval Timed Coloured Petri Net model which

assigns minimum and ma.-ximum deterministic firing times to the tokens in the Petri Net. A similar

approach [Ber91] uses Time Petri Nets which have minimum and ma.-ximum times assigned to the

firing of the transitions. Analysis in both cases involves generating a reachability graph of state

classes, where a state class consists of a marking of the Petri Net, together with a range of firing

times. The state class extension is necessary to produce a finite reachability graph. This bears

some relation to the constraint generation of Analytical Simulation, since manipulation of the

CHAPTER 7. STATE SPACE EXTENSIONS TO .4NALYTICAL SIMULATION 95

ranges of firing times also involves manipulating sets of inequalities. The minimum and maximum

values for the Petri Nets are pre-specified and not automatically generated. Analysis is also

simplified by the use 6f numerical values for the limits, as opposed to the symbolic manipulation

of Analytical Simulation.

7.3.2 Area of application

The development of the Analytical Simulation approach has produced a number of erihancements

to_the analysis process, which tend to limit the area of applicability of the approach. Ultimately,

the approach is intended for use on message passing virtual reality systems, and is capable of that

in all its manifestations. In its least sophisticated versions, Analytical Simulation is applicable to

many other areas.

The original algorithm, described in section 4.1, is applicable to any architecture and model.

At this stage, the only requirement is the ability to simulate the program, and to determine the

length of the execution path for each process when synchronization occurs. With this very general

appr.oach there is no indication of when the analysis should terminate,

The next refinement, discussed when considering the implementation details, is to limit the

simulation to models of message passing architectures. This relies on the fact that all virtual

reality systems surveyed use message passing as their communication method. Having made this

decision, the modelling language can be specified and the simulation engine can be implemen~:d.

Analytical Simulation is then refined to allow for automatic termination of the analysis and

to permit finite analysis in the presence of non-deterministic constructs. This state space analysis

requires that the region of state space that can be reached by the model (reachability graph) is

finite. For real-time systems which do not terminate, this requirement means that the model must

be periodic. This is true for all models of virtual reality systems considered in this document.

7.3.3 Limitations

7.3.3.1 Discontinuities in the resUlts

On occasion results quoted from Analytical Simulation analysis for different constraint regions may

show discontinuities in the region of overlap. These may often be associated with the presence of

transients in the boundary region, which are not explicitly mentioned.

The presence of transients usually requires the existence of specific relationships between the

variables in the system being modelled. The length of the transient is also affected by the relative

values of these variables. Transients can arise, for example, when a process blocks waiting for

a second process. The length of time the first process blocks may decrease during each cycle

of the system. At some point the first process does not block any longer, possibly forcing the

second process to block instead, and a sudden change in the performance parameters results. As

the transient behaviour stops a change is seen in system performance. When viewing only the

steady state values of the performance values, this is seen as a discontinuity as one moves from

one constraint region to another.

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SI1VIULATION 96

7.3.3.2 Constraints on the variables

T~e Analytical Simulation technique differs f~om many other performance modelling approaches

in that it is not stoch~tic. The presence of randOm variables would make the simulation step

impossible. This technique requires that two expressions be compared; this is not possible should

the expressions contain random variables.

The automatic generation of constraint regions allows a degree of freedom in the variable values,

since the same expression for the performance value applies throughout a particular region. Rather

than having to specify the range or distribution of variables values beforehand, the Analytical

Simulation approach allows the nature of the model to define these. Variations in the values of

the variables within a constraint region do not affect the nature of the program behaviour.

7.3.3.3 Limitations on the systems being modelled

Analysis, especially that using state space constructs, requires the presence of repeated values.

Thus the system being modelled should be periodic. This is usually the case in systems that run

continuously, especially virtual reality systems.

The complexity of the analysis, and the time required to perform it, grow rapidly with the size

of the model, especially if there are many points at which a non-deterministic choice is possible.

Analysis may have to be limited to relatively small numbers of processes; however these are usually

enough to exhibit the characteristic behaviour of the system.

7.3.3.4 Interpretation of the results

The interpretation of the results can be complicated, though possibly less so than for many other

techniques. Since there is no explicit dependence in the model on the number of processes, this

dependency needs to be extracted by repeating the analysis for different numbers of simulated

processes, and then deducing the dependency. The complexity of the output often benefits frpm

human intervention. The order in which constraints are introduced is not always the most eco­

nomical, especially since that step is independent of the nature of the values being derived.

7.3.4 Advantages

Given that the Analytical Simulation approach has some limitations, it also has several features

that are not found in other performance analysis and prediction tools.

7.3.4.1 Best at the analysis of virtual reality systems

It is intended for use on virtual reality systems and so provides the two measures critical to

determining the abilities of such a system. The cycle time value is found in a number of other

analysis techniques. Very few techniques produce a value for latency, and these are not suitable for

use with virtual reality systems. This approach has the advantage that much of the work required

to produce the one value is also useful for producing the other.

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 97

7.3.4.2 Perforlllance cOlllparison

Pr~ducing output as a symbolic expression, given as'a function of the delays in the system, is

another feature specific to this approach. While soine other approaches can give similar output,

the number of variables which can be used are usually limited, and predefined by the paradigm.

With Analytical Simulation, any processing or communication delay can be represented by a

variable, and the effect of that variable can be clearly seen in the result of any analysis.

The symbolic nature of the output means that Analytical Simulation is parttcularly suitable

for performance comparison. Rather than performing comparisons based on the performance on

a particular architecture, the relative complexities of the different approaches can be compared.

The automatic generation of constraints is found only in Analytical Simulation. In this way,

the manner in which variations in the system parameters affect the performance parameters can

easily be examined.

7.3.4.3 Autolllatic generation of constraints

The inability to use random variables is not necessarily a significant limitation. A number of other

performance analysis measures have the same limitations (for example those based on Data Flow

Graphs). For systems where there is not much dependence on random events such as real-time

DSP applications, and to a certain extent virtual reality applications, processing load is almost

constant, often within fine tolerances. Other performance prediction approaches, Petri Nets. __ in

particular, are not well suited to the use of deterministic firing times. Markovian analysis of Petri

Net models with deterministic firing times is very difficult [Kan92].

The automatic generation of constraints allows a degree of freedom for the 'variable values.

Variables can take on any value within the limits given by a set of constraints without changing

the behaviour of the system. The only effect on performance is the result of reevaluating the

performance expression corresponding to that constraint region.

7.3.4.4 Support for non-deterlllinislll

An advantage to this approach is the ability to handle non-deterministic constructs and still

produce useful results. Other approaches [Men93], examining program traces, have difficulty with

non-deterministic receives.

An advantage of non-determinism is that it allows choices concerning the behaviour of the

system to be delayed until run-time. This simplifies the programmers task in that ordering of

events does not become crucial, but can lead to the system taking a less than optimal execution

path. In some cases the optimal path is not stable; once the system leaves that path it will never

return. Analysis of systems containing non-determinism can detect these cases, and the model

can be adjusted to eliminate the poor choices.

The origin of the Analytical Simulation approach means that it is easy to produce a trace

of process activity and communication, allowing the sequence of events corresponding to optimal

execution paths to be easily extracted. The close correspondence between Analytical Simulation

models and the system from which they are derived makes it relatively simple to translate between

CHAPTER 7. STATE SPACE EXTENSIONS TO ANALYTICAL SIMULATION 98

the two. Alterations in the model to improve performance can readily be carried across to the

original system.

7.3.4.5 Autolllatic transient analysis

Transient analysis is straightforward using Analytical Simulation. The most common transient

arising is that from system startup, and the effect of this is clearly visible once latency and cycle

times are extracted from the state space graph.

A given model can easily be modified to introduce perturbations in variable values. Extracting

the performance values immediately after such an event can be done with ease, and both the

value and length of the transient can be seen. The automatic generation of the constraints in the

variables associated with a model, implicit in the Analytical Simulation approach, also provides

some revealing information about transients in the system that may occur only for certain variable

values (see section 6.1.4).

7.3.4.6 Proof of prograIU properties

Another useful side effect of Analytical Simulation with automatic constraint generation is the

ability to determine certain properties of the model, such as the absence of deadlock. During

simulation, all possible states of the program are visited; checks for deadlock and other properties of

the program can easily be included. Checking for deadlock is in fact obligatory, since that condit~,on

interferes with the periodic nature of the system. This ability is shared by other performance

analysis approaches which enumerate the state space of their models, such as Petri Nets.

7.4 Conclusion

The state space extensions to the Analytical Simulation approach overcome the two major dif­

ficulties in the practical application of the technique. The performance implications of non­

deterministic constructs can be completely assessed. Complete analysis of the model is possible,

v.ithout the need to choose cut-off points. This results in improved performance as duplication of

effort is eliminated.

Section 7.3 describes the relationship of Analytical Simulation to other performance analysis

approaches. It gives details of the nature of the systems to which Analytical Simulation is best

suited. The strengths and weaknesses of Analytical Simulation are discussed. Its limitations do

not affect its applicability to the desired category of systems, while its advantages make it well

suited to the desired form of analysis. Analytical Simulation is ideal for the performance analysis

and comparison of parallel and distributed virtual reality systems.

Chapter 8

-
Verification of Analytical

Simulation

Air approach suitable for the analysis of parallel virtual reality systems was developed and refined in

Chapters 4 to 7. This chapter describes its application to the decomposition techniques used in the

collision detection algorithms, which were introduced in Chapter 5. This starts with the analysis

of the message passing and master-slave variations ofthe distributed collision detection algorithm.

The client-server approach to collision detection has been examined in detail in Chapter 6;'-- A

comparative evaluation is also made of each technique in this chapter.

The results obtained from this analysis are compared with values measured from implemen­

tations of each algorithm. The implementation is carried out on two architectures: a Transputer

cluster using synchronous communication with a well-connected net\vork, and a group of worksta­

tions connected by Ethernet, a shared asynchronous medium.

The decomposition strategies used in implementing the collision detection algorithm are com-_

monly used in virtual reality systems. Successful analysis and validation thus holds implications

for the use of the analysis technique with virtual reality systems. In addition, some confidence

in the validity of the Analytical Simulation approach can be gained, before applying it in more

varied situations.

8.1 Message Passing paradigm

This approach is more common with hand written applications. Each process communicates using

direct, explicit message passing calls.

A simplified outline of the algorithm given earlier in section 5.3.1 is presented below:

while (running (»

Send message to every other process (own position)

Receive message from every other process (their position)

Calculate time of first collision for this molecule

99

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

Send message to every other process (local best time)

Receive message from every other pro~ess (their best time)

Move molecule

100

This model assumes non-blocking communication, allowing processes to send and receive si­

multaneously. To stay in line with the blocking calls of the other approaches, the model is altered

slightly. A second process is added to buffer the incoming communication. Each processor is

assumed to contain two processes, a molecule process and its accompanying buffer process. The

up_dated molecule appears as follows:

Buffer process:

while running ()

Receive start message from local molecule

Receive data from all other molecules

Send receive_complete to local molecule

Molecule process:

while (running ())

Send start message to local buffer

Send message to every other process

Receive receive_complete from local buffer

Calculate time of first collision for this molecule

Send start message to local buffer

Send message to every other process

Receive receive_complete from local buffer

Move molecule

Having developed the model, we now need to identify the areas where sequential computation

occurs. As in the example in the previous section, the time taken to move the molecule, and

perform any other manipulations to it, is denoted by the variable X. In that example the variable

Y was used to denote the time it takes for the server to obtain the required data, and to package

it for transmission. In this approach it can reasonably be modelled by a processing interval before

firing off the batch of sends to each of the other molecules.

The model used for the Analytical Simulation tool is as follows:

replicate N

process molecule#buffer

receive molecule# start

replicate [N-i]

receive ANY data

endreplicate

send molecule# finished

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

process molecule#

replicate 2

thihk Y

send molecule#buffer start

replicate [N-i]

send molecule[###+((###+i»#)]buffer data

endreplicate

receive molecule#buffer finished

endreplicate

think X

report moleculeend#

endreplicate

101

Analysis of this model gives a latency/cycle time value of 2Y + X, irrespective of the number

of molecules involved. This result assumes that each molecule occupies a separate processor and

that . communication takes no time at all. This latter assumption affects the implementation of

the model significantly. Sending off messages to the other molecule processes can be done naIvely

by assigning a number to every process and simply sending in numeric order. When the program

starts, almost all of the processes attempt to send a message to the buffer process of the first

molecule. The zero communication costs allow this load imbalance to pass unnoticed.

Before examining the effects of communication costs, it is beneficial to decide on the manner

in which communication is modelled. In [Men95] the times taken for the send and receive message

passing operations are modelled as linear functions of the length of the message. However the

time for the receive operation in this case includes the time spent waiting for the message to

arrive. This factor is automatically included when using Analytical Simulation due to the nature

of the implementation of the simulation. In [Adv94], communication time, as well as the tirn.e .

for the processor to send and receive data, is modelled as a linear function of the message size.

In the model at present, two types of niessage are being transferred. For each of these messages,

the length is fixed and so the costs are constant. For simplicity, the two types of message are

assumed to have equal length and so total overhead for a single message is modelled by the single

variable C. The sending process blocks from the time it executes the send until a period C after

the receiving process has executed the corresponding receive command. The receiving process is

occupied with receiving the message for period C after synchronization with the sending process.

The extra level of detail involved in modelling time taken for the processor to execute the send

and receive commands can be implemented, if necessary, by including appropriate delays before

send commands and after receive commands.

Repeating the analysis of the model with the naIve message passing order now that com­

munication costs are considered yields the following results: In the three processor case, the

latency/cycle time is 2Y + X + 6C. Occasional values of 2Y + X + 7C are seen, immediately

followed by 2Y + X + 5C, keeping the average value unchanged. The four processor case is even

more complex, due to the greater potential for non-determinism. Steady state values in this case

can range between 2Y + X + BC and 2Y + X + 221 C.

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 102

The minimal values occur when the amount of time spent waiting for communication to occur

is minimized. The destination of the messages sent ~s fixed, but the receiving processors may

setect the source in such a way that blocking in fu"t~re communication is reduced. For the first

send, N - 1 processors are attempting to communicate with the first node and N - 2 must end

up waiting. This wastes at least N - 2 communication periods which can be used to improve

performance.

Optimal performance values are 2C + 2Y + X, when N = 2, and 2N C + 2Y -l:: X ~or values of

N>2.

- A more reasonable approach is to have each molecule start off by sending a message to its

(numeric) successor, and send to successive successors thereafter. This involves replacing the line

in the molecule process that is used to transmit data to the other processes with:

send molecule[«#+###)%N)+l]buffer data C

This approach yields immediate improvement. Latency/cycle time is now reduced to 2(N -

l)C + 2Y + X, where only the communication causes dependency on the number of processors.

-The advantages of non-determinism are few. It simplifies the implementation of the code,

leaving difficult performance ~onsiderations to be resolved by the system at runtime. It allows

programs to respond to changes in the requirements of the various processes without explicitly

planning for these in advance. The disadvantages on the other hand are serious. Non-determinism

complicates the analysis of programs by exploding the possible execution paths. In _ a number' of

the examples examined already it is possible to get trapped into a less efficient mode of execution.

In future discussions, only the optimal solutions are presented.

8.2 Client-Server paradigm

The client-server model is analysed extensively in the preceding sections. The algorithm is lu-·

troduced in section 5.3.2 and analysed in section 6.2. The final result given is 3NY + X as the

latency/cycle time. This result assumes instantaneous communication.

Adding in an extra value C, for the communication overhead yields the following result for

latency / cycle time:

(N - l)C 2: X: 6NC+3NY

X 2: (N - l)C: (5N + l)C + 3NY + X

Analysis of the analytical version of the performance of the system can be valuable in its own

right. The dependence on the variable Y (time spent in the server) in all the results indicates that

the system is always dependent on this variable. Thus any decrease in Y improves performance.

The variable X on the other hand, can be made sufficiently small such that the performance of

the system does not depend on it. There is a limit beyond which performance improvements must

result from increased bandwidth or faster server access.

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 103

8.3 Master-Slave paradigm

The algorithm for the .master-slave implementation or the collision detection algorithm (see sec­

tion 5.3.3) can also be modelled easily. The slave process is the more interesting and is outlined

below. The model of the master process is almost identical to the algorithm.

Slave Process:

receive message from master

case message of

reqdata :

process for a period of duration Y (look up data)

send heredata to master

findyourbest :

(assume this is very fast)

send mybest to master

rununtil :

process for a period of duration X. (move

molecule)

The communication time is represented by the variable C.

The model used for the Analytical Simulation of this system is shown below:

replicate N

process slave#

report start...slave#

receive master COMMAND

if COMMAND == reqdata

think Y

send master heredata C

end if

if COMMAND == findyourbest

send master mybest C

end if

if COMMAND -- rununtil

think X

endif

endreplicate

CHAPTER 8. VERIFICATION OF ANALYTICAL SIlVIULATION

process master

report startmaster

replicate N

send slave# reqdata C

endreplicate

replicate N

receive slave# heredata

endreplicate

replicate N

send slave# findyourbest C'

endreplicate

replicate N

receive slave# mybest

endreplicate

replicate N

send slave# rununtil C

endreplicate

104

- ._"
Finding a point to attach markers for the measurement of latency and cycle time is less obvious

in this case. The slave cycles three times to carry out the equivalent of a full collision detection

cycle in one of the other two approaches. The alternatives involve either measuring a slave and

adding the results of three cycles, or measuring the cycle time of the master process. The former

option is chosen in this case, since it provides more information, allowing greater insight into the

system.

The results are shown below:

y ~ (N - l)C ~ X:

(N + l)C + Y-X

2NC

NC+X

(4N + l)C + Y

Reqdata

Findyourbest

Rununtil

Total

Y ~ (N - l)C, X ~ (N - l)C:

2C + Y Reqdata

2NC Findyourbest

NC + X Rununtil

(3N + 2)C + Y +X Total

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

(N - l)C ~ Y, (N - l)C ~ X:

x ~ (N - 1)C ~ Y:

2NC-X

2NC

NC+X

5NC

(N + l)C

2NC

NC+X

(4N+1)C+X

-Reqdata

Findyourbest

Rununtil

Total

Reqdata

Findyourbest

Rununtil

Total

8.4 Modelling on a MIMD machine_

105

The preceding analyses have all dealt with a model of the various approaches to implementing

distributed collision detection. To confirm that the model is a fair reflection of reality it should

be compared with the performance of an actual implementation.

This section discusses some of the results obtained by implementing the three collision detection

algorithms on a cluster of Transputers. Each Transputer is an independent processor which can

exchange data via a communication link with one of its four neighbours. Communication is

synchronous, with both processes blocking while transfer of data occurs.

For the purposes of this experiment the processors are arranged in a completely connected

network. Given four links, it could be expected that five Transputers could be connected this way.

One link from one of the processors is required for communication with the outside world, limitIng

maximum processors to four when complete connectivity is required.

8.4.1 Message Passing on Transputers

The message passing model initially tested is the unoptimized one described in section 8.1. The

processing overhead modelled by the variable Y is extremely small compared to the other values

and is left out of the model. The cycle time predicted is thus 2NC + X, for N > 2, 2(N -l)C + X

otherwise.

The implementation of the algorithm also includes an artificially produced delay to increase

the value of X, otherwise that to would be too small to produce a noticeable effect. The value of X

was measured as part of the experiment and came out at about 5ms. An attempt was made to find

a value for C, using a variety of small test programs. A message size of 1000 bytes is used for all

communication. This value fluctuated so wildly according to the nature of the communication that

it was decided to calculate it from one of the measured cycle times using the predicted formula.

The different values for C during the tests result from the nature of the communication protocol

on the Transputer links. Each byte sent is acknowledged by a few bits sent in the opposite direction.

CHAPTER 8. VERIFICATION OF ANALYTICAL SIlHULATION 106

N X/[ms] C/[ms] Cycle time/[ms] Cycle time/[ms] % Theory/Practice

Practice . Theory

1 5.06 1.02 5.13 "< 5.06 98.6

2 5.06 1.02 7.09 7.09 100 (Fixed)

3 5.06 1.02 11.08 11.15 100.6

4 5.06 1.02 13.11 13.18 100.5
. -

Table 8.1: Performance of the MIMD message passing system

N X/[ms] C/[ms] Cycle time/[ms] Cycle time/[ms] % Theory/Practice

Practice Theory

1 5.16 0.92 5.12 5.16 100.8

2 5.16 0.92 7.14 7.01 98.1

3 5.16 0.92 8.71 8.88 101.6

4 5.16 0.92 10.74 10.69 99.5

Table 8.2: Performance of the optimized MIMD -inessage passing system

Consequently programs which use extensive bidirectional communication such as this one find a

different link speed to those which use one way traffic (such as the other two algorithms).

In general, it may be expected that the predicted results are always less than those a~hieved

in practice since other delays are left out of the model. This is less noticeable when calculating

the variables from the model's predictions since these extra delays get added to the variable value,

increasing its value beyond what it may really be in practice. The value of C calculated in this

case is about 1ms.

Table 8.1 shows the values for different numbers of processors and provides a comparison of

real and predicted values.

If the communication is optimized as discussed previously, then the model predicts cycle times

of 2(N - l)C + X, for all values of N. Results from an implementation of this model are shown

in Table 8.2. Since the relationship between cycle time and N is a linear one, a linear regression

analysis is used to find the values of X and C in this case.

The predicted values from the model agree well with the values measured from the implemen­

tation.

8.4.2 Client-Server on Transputers

The cycle time for the client-server model is found to be (5N + l)C +3NY +X for X ~ (N -l)C,

and since X > 5C in the implementation, this value applies in all situations described here. The

value of C is calculated from the measured cycle time in the single client case which has a predicted

time of 6C + 3Y + X, where Y is insignificant compared to the other variables. This value is lower

than those calculated for the message passing case, since the links are only being used in one

direction at any time. The results are shown in Table 8.3.

Once again the results are in agreement.

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 107

N X/[ms] C/[ms] Cycle time/[ms] Cycle time/[ms] % Theory / Practice

Practice . Theory

1 5.08 0.88 10.35 "< 10.35 100 (Fixed)

2 5.07 0.88 14.67 14.75 100.5

3 5.08 0.88 19.53 19.15 98.1

4 5.03 0.88 23.84 23.50 98.6
~

Table 8.3: Performance of the MIMD client-server system

N X/[ms} C/[ms] Cycle time/[ms] Cycle time/[ms] % Theory / Practice

Practice Theory

1 5.00 0.88 9.37 9.37 100 (Fixed)

2 5.01 0.88 12.76 12.88 101.0

3 5.01 0.88 16.20 16.39 101.2

4 5.01 0.88 20.08 19.89 99.1

Table 8.4: Performance of the MIMD master-slave system

8.4.3 Master-Slave on Transputers

The master-slave model in section 8.3 yields a cycle time of (4N + l)C + X for the situatio~, in

which the implementation is tested, namely X > 5C > Y = O. Results are given in Table 804.

Once again the results agree.

To justify the above statement and the others like it given in the previous few sections, it may

be worth describing some of the sources of error and their approximate magnitude. The system is

relatively homogeneous, all processors are identical and should all communicate at the same speed.

Measurements made on a random sample reveal differences of up to 15% in a few cases. This may

justify attempting to find an average value for C as is done above. Other overheads, such as

extra processing not accounted for in the measurement of X, may become more noticeable as the

number of processors increases. Measurement of the largest of these, the intersection calculations

for the collision detection, showed this overhead to be about 1 % of the measured value of X.

8.5 Modelling with Ethernet

Modelling the collision detection algorithms on a network of PC's connected using Ethernet in­

volves several changes to the model. Ethernet is a shared medium, and only one process is

permitted to communicate at a time. All processors are connected using the same cable. This is

modelled by introducing an extra process to represent the medium. Other processes must first re­

quest permission from the medium before performing inter processor communication. The medium

ensures that only one process communicates at a time.

The models below assume that only the processes in the system being modelled have access

to the network cable. The effect of other systems sharing the cable is ignored. The models do

not implement other Ethernet protocols such as packet collision detection and random backoff.

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 108

Monitoring of cable transmission shows that these effects occur extremely infrequently when the

medium is used for single, synchronized systems such c:s those modelled.

-The other difference over the MIMD model iSJ~at communication is non-blocking .. Buffer

processes are included to simulate this aspect. The nature of the models, in that every message

requires an acknowledgement, means that the size of the buffers can be easily predicted in advance.

8.5.1 Client-Server on Ethernet

This section examines the client-server model on Ethernet, examining successive refinements to

the model until a reasonable degree of accuracy is achieved. The first step is to model Ethernet

simply as having non-simultaneous communication which is non blocking.

The client-server model is such that each message requires an answer, so each client needs

to be able to buffer only one message, and the server needs to buffer at most N. The buffering

process includes receiving messages and transferring them to the destination process in the correct

order. The simple model outlined below also uses the buffer processes to model the transfer of the

message on the Ethernet cable, handling contention for the medium and modelling communication

overheads.

process clisen[i] eN processes)

receive client[i] MESSAGE

send medium wantmedium

think C

send medium givemedium

send server MESSAGE

process serreq[i] eN processes)

receive server MESSAGE

send medium wantmedium

think C

send medium givemedium

send client[MESSAGE] somedata

process client[i] eN processes)

send clisen[i] reqdata

receive SERVER somedata

send clisen[i] reqsummary

receive SERVER somedata

think X

send clisen[i] reqsummary

receive SERVER somedata

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

process server

receive CLIENT MESSAGE

if MESSAGE == reqdata

think Y

send serreq[COUNT] CLIENT

if MESSAGE == reqsummary

assign COUNT [COUNT+1]

if COUNT == [N+1]

think N*Y

send serreq[i] i (N times)

process medium

receive SOMEONE wantmedium

receive [SOMEONE] givemedium

109

Comparing the predictions for this model with the results from an actual implementation yields

poor results. The parameters for the implementation are measured at 5ms for X, 0.02ms for Y and

2.9ms for C (A packet size of 1000 bytes is used). For between 1 and 5 molecules practice differs

from theory by up to 50%. Examining the real system shows substantial overheads in sending

and receiving data, as opposed to simply transmitting the information across the physical cable.

At the specified bandwidth of lOMbits/s, transmission should take only about 1ms. The extra

1.9ms measured by measuring the round time for a message to pass from one machine to another

and then back again includes extra time required to get the message through the hardware and a

rather extensive array of network drivers.

A portion of the model, modified to take these overheads into account is shown below:

process clisen[i]

receive client[i] MESSAGE

think S1

send medium wantmedium

think C

send medium givemedium

think S2

send server MESSAGE

process serreq[i]

receive server MESSAGE

think S1

send medium wantmedium

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

think C

send medium givemedium

think S2 .

send client[MESSAGE] somedata

110

The values Sl and S2 represent the overheads of sending and receiving messages from the

network respectively. This model only requires the sum of Sl and S2; the relative sizes of these

two variables are not needed at this point.

Even this model is not much more accurate. Examination of packet transmission for a variety

of different communication patterns reveal further interesting behaviour introduced by some un-

derlying network software. This software contains some interesting buffering mechanisms, which

complicate the interpacket transmission times. Since these network drivers are documented only in

expensive places, a number of experiments were performed to increase the accuracy of the model.

Firstly, the relative sizes of Sl and S2 are needed. These were measured using an oscilloscope

connected directly to the Ethernet. Two machines were programmed to. bounce a packet between

them, as described above. The sending and receiving machines produce a pulse to mark the limits

of the Sl and S2 periods. These pulses were monitored on ~ second channel of the oscilloscope.

This gave the values of Sl and S2 as 0.9ms and l.Oms respectively.

A second experiment examined a simple client-server system in which the server would receive

a request from each client until every client had sent one, and then would send replies to each

as quickly as possible. The results from examining the traffic patterns give rise to-a number of

interesting refinements to the model. The behaviour of the send operation depends on the time

of the last communication. If the network driver is still occupied in sending the last message, the

new message is placed straight into a buffer and the sending process can continue immediately. If

the driver is idle, the sending process is required to block for a period Sl before the message is

placed on the wire and the sender allowed to continue. A buffered message cannot be sent as soon

as the wire is idle again, instead it has to wait an additional period Sl.

This asymmetric communication complicates the model. Fortunately this is limited to the

server process, since the client processes never send two messages in quick succession. The en­

hanced model is shown below.

replicate N

process serrec#

receive clisen# MESSAGE

think S2

send server MESSAGE

process clisen#

receive client# MESSAGE

send medium wantmedium

send medium givemedium

send serrec# MESSAGE

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

process cliserrec#

receive comm somedata

think S2

send client# somedata

endreplicate

process buffersend

send bufferlist get

receive bufferlist DEST

send numsending bufinc

receive numsending ok

think S1

send comm DEST

process bufferlist

receive CLIENT MESSAGE

if MESSAGE == get

if LENGTH == 0

assign READY [READY+1]

endif

if LENGTH ! = 0

send buffersend BUF[HEAD]

assign HEAD [«HEAD+1»'l.(N-1)]

assign LENGTH [LENGTH-1]

endif

endif

if MESSAGE != get

if READY == 0

assign BUF[TAIL] MESSAGE

assign TAIL [«TAIL+1»'l.(N-1)]

assign LENGTH [LENGTH+1]

endif

if READY != 0

assign READY [READY-1]

send buffersend MESSAGE

endif

endif

111

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

process numsending

receive CLIENT MESSAGE

if MESSAGE == get

send [CLIENT] [COUNT]

endif

if MESSAGE == inc

assign COUNT [COUNT+i]

endif

if MESSAGE == bufinc

if COUNT != 0

assign ISWAIT 1

endif

if COUNT == 0

assign COUNT 1

send buffersend ok

end if

endif

if MESSAGE == dec

if ISWAIT == 0

assign COUNT [COUNT-i]

endif

if [ISWAIT] != 0

send buffersend ok

assign ISWAIT 0

endif

endif

process comm

receive SOMEONE DEST

send medium wantmedium

send medium givemedium

send [DEST] somedata

send numsending dec

process odi

receive server DEST

send numsending get

receive numsending SENDING

112

CHAPTER 8. VERIFICATION OF ANALYTICAL SIi\lIULATION

if [SENDING] == 0

send numsending inc

think 81

send cornm DEST

send server sent

endif

if [SENDING] != 0

send bufferlist DEST

send server sent

endif

replicate [N]

process client#

report start_client#

send clisen# reqdata Sl

receive cliserrec# somedata

send clisen# reqsurnmary Sl

receive cliserrec# somedata

think X

send clisen# reqsummary Sl

receive cliserrec# somedata

endreplicate

process server

receive CLIENT MESSAGE

if MESSAGE == reqdata

think Y

send odi cli[CLIENT]

receive odi sent

endif

if MESSAGE == reqsurnmary

assign COUNT [COUNT+1]

if COUNT == [N+1]

replicate N

think Y

send odi cliserrec#

113

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

receive odi sent

endreplicate

ass-ign COUNT 1

end if

end if

process medium

receive SOMEONE wantmedium

think C

receive [SOMEONE] givemedium

114

The model works as follows: Messages sent from the clients are directed to the corresponding

clisen processes which model the network drivers. The communication between these is modelled

as blocking for period 81, the expected delay for an idle network driver. This driver process

negotiates with the medium (Ethernet cable) for a free gap in which to send its packet, after

which it passes the packet to one of the buffers for incoming -packets on the server.

Communication in the other direction is slightly more complicated. Messages sent from the

server process go to the odi process which models the network driver. This checks to see if a global

variable indicating the communication state is set. This is modelled by the process numsending.

If the driver is not idle it buffers the message and allows the server to continue immediately~rf it

is idle, it delays for period 81 before allowing the server to continue. At the same time it passes

the message to the process that models sending the packet over the cable.

This process, comm, also waits for a gap in the traffic on the wire before taking control, sending

the packet and releasing control. After the packet is sent, process comm sends a message to the

numsending process to indicate that the system is no longer engaged in the transmission of a

packet. This action triggers the process buffersend which feeds packets out of the buffer, if the .

buffer is not empty.

This process, which extracts messages one at a time from the buffer, is activated when the first

message arrives in the buffer. It sets up a callback with the numsending process which allows it

to continue as soon as the previous packet is transmitted.

The bufferlist process maintains the queue of messages in the buffer.

A comparison between the measured and predicted results from this model is shown in Ta­

ble 8.5. The values of the variables are shown in Table 8.6.

The theoretical values are less than those measured as may be expected, since the model

ignores various small overheads. The accuracy is less than for the Transputer model. This may be

attributed to lower precision in the measurement of the variables; the accuracy of measurement is

estimated at about 5%. There is also greater inhomogeneity in the machines involved. Variations

in the values measured by the machines (X and Y) are about 10%.

Having shown that the Analytical Simulation technique can successfully model this environ­

ment (albeit at the cost of an extremely complex model) for future modelling the network stack is

replaced with one that is simpler to model. This network driver does no buffering and so simplifies

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 115

N Cycle time/[ms] Theoretical value Cycle time/[ms] % Theory /

Practice Theory Practice

1 22.7 651 + 6C + 652 + 3};:" * X 22.1 97.7

2 26.6 851 + 8C + 652 + 3Y + X 25.8 97.0

3 31.9 951 + lOG + 752 + 4Y + X 29.6 92.6

4 38.1 1251 + 12G + 852 + 4Y + X 35.2 92.5

5 44.7 1451 + 15G + 952 + 4Y + X 40.8 _ ~ 91.2

Table 8.5: Performance of the buffered Ethernet client-server system

X 5.00 ms

Y 0.02 ms

51 0.92 ms

G 0.92 ms

52 1.00 ms

Table 8.6: Variable values for the buffered Ethernet client-server model

the model, at the expense of limiting the number of processes that can be used before dropped

packets become a problem.

The model for this simple network stack is very similar to the one initially proposed to c<t:~er

for the sending and receiving overheads. The major difference is an addition to the {"eceive stage

of the server to prevent the 52 stages running in parallel. This is not needed on the client side

because only one packet is received at a time. The model is shown below.

process getrec

receive SOURCE want

receive [SOURCE] give

replicate N

process serrec#

receive clisen# MESSAGE

send getrec want

think S2

send getrec give

send server MESSAGE

process clisen#

receive client# MESSAGE

think Sl

send medium wantmedium

send medium givemedium

send serrec# MESSAGE

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

process cliserrec#

receive sersen somedata

think S2

send client# somedata

endreplicate

process sersen

receive server MESSAGE

think Sl

send medium wantmedium

send medium givemedium

send [MESSAGE] somedata

replicate [N]

process client#

report start_client#

send clisen# reqdata

receive cliserrec# somedata

send clisen# reqsummary

receive cliserrec# somedata

think X

send clisen# reqsummary

receive cliserrec# somedata

endreplicate

process server

init

assign COUNT 1

endinit

receive CLIENT MESSAGE

if MESSAGE == reqdata

think Y

send sersen cli[CLIENT]

endif

if MESSAGE == reqsummary

assign COUNT [COUNT+1]

if COUNT == [N+1]

replicate N

think Y

116

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

N Cycle time/[ms] Theoretical value Cycle time/[ms] % Theory /

Practice Theory Practice

1 20.7 6S1 + 6C + 652 + 3¥ + X 20.4 100.1

2 24.1 8S1 + 8C + 6S2 + 3Y + X 23.6 97.8

3 28.7 9S1 + 10C + 7S2 + 4Y + X 27.1 94.4

4 33.9 10Sl + 15C +7S2+2Y +X 32.3 95.1

5 40.2 12S1 + 18C + 8S2 + 2Y + X 37.3 -~ n.8

Table 8.7: Performance of the standard Ethernet client-server system

X 5.10 ms

Y 0.02 ms

Sl 0.70 ms

C 0.91 ms

S2 0.93 ms

Table 8.8: Variable values for the standard Ethexnet client-server model

send sersen cliserrec#

endreplicate

assign COUNT i

endif

end if

process medium

receive SOMEONE wantmedium

think C

receive [SOMEONE] givemedium

The results for this model are shown in Table 8.7, with variable values given in Table 8.8.

8.5.2 Message Passing on Ethernet

117

The message passing model is also based on the simple Ethernet communication principles intro­

duced in section 8.5.1. The major difference is that every process receives a number of messages

in a short space of time. Thus the protection system used in the client-server model to prevent

parallel receives is extended to each of the processes in this model. The relevant portions are

shown below.

replicate N

process clientr#

receive client# start

replicate [N-i]

CHAPTER 8. VERIFICATION OF ANALYTICAL SIlvlULATION

receive mol#recfrom[##+((##+1»#)] somedata

endreplicate

send client# allhere

process client#

replicate 2

send clientr# start

replicate [N-1]

send mol#sen mol[###+((###+1»#)]recfrom#

endreplicate

receive clientr# allhere

endreplicate

think X

process mol#sen

receive client# MESSAGE

think S1

send medium getmedium

send medium givemedium

send [MESSAGE] data

process get#rec

receive FROM wait

receive [FROM] give

replicate N

process mol#recfrom##

receive mol##sen data

send get#rec wait

think S2

send get#rec give

send clientr# somedata

endreplicate

endreplicate

l18

Since the value for Y in this case is insignificant compared to the other variables, it is dropped

from the model. The results for this approach are shown in Table 8.9. The variable values are the

same as those given for the client-server approach in Table 8.8.

8.5.3 Master-Slave on Ethernet

The master-slave model resembles the client-server version quite closely. Protection against parallel

receiving is implemented only for the master. Since sending for the master is implemented (for

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 119

N Cycle time/[ms] Theoretical value Cycle time/[ms] % Theory /

Practice Theory Practice

1 5.3 X- 5.1 95.6

2 10.9 281 + 2C + 282 + X 10.2 93.3

3 16.3 81 + 10C + 82 + X 15.8 97.4

4 26.6 81 + 18C + 282 + X 24.0 90.5

Table 8.9: Performance of the standard Ethernet message passing system

co'fivenience) as a number of parallel processes in this model, protection against parallel sending

is also included. Portions of the model are shown below.

process getrec

receive SOURCE want

receive [SOURCE] give

. process getsen

receive SOURCE want

receive [SOURCE] give

replicate N

process masrec#

receive slasen# MESSAGE

send getrec want

think S2

send getrec give

send master MESSAGE

process massen#

receive master MESSAGE

send getsen want

think Sl

send medium wantmedium

send medium givemedium

send slarec# [MESSAGE]

send getsen give

process slave#

receive slarec# COMMAND

if COMMAND == reqdata

send slasen# heredata

end if

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION

N Cycle time/[ms) Theoretical value Cycle time/[ms) % Theory /

Practice Theory Practice

1 16.1 4S1 + 4C +4S2+X 15.9 98.7

2 19.2 6S1 + 6C + 4S2 .; X 19.1 99.6

3 23.0 6S1 + 8C + 6S2 + X 22.8 99.1

4 27.1 10Sl + 16C + 6S2 27.1 100.2

Table 8.10: Performance of the standard Ethernet master-slave systilm ..

if COMMAND == findyourbest

send slasen# myb~st

endif

if COMMAND == rununtil

think X

end if

. endreplicate

process master

replicate N

send massen# reqdata

endreplicate

replicate N

receive masrec# heredata

endreplicate

replicate N

send massen# findyourbest

endreplicate

replicate N

receive masrec# mybest

endreplicate

replicate N

send massen# rununtil

endreplicate

120

The results for this model are shown in Table 8.10. The value of X in this case is 5.7 ms, the

other values are as given in Table 8.8.

8.6 Comparison of models and architectures

The symbolic .-alues for the performance of the different models on the two architectures are

summarized in Table 8.11. The expressions shown are those that apply to the operating conditions

CHAPTER 8. VERIFICATION OF ANALYTICAL SIlVfULATION 121

Architecture Decomposition Predicted Cycle Time

strategy

Transputer Client-Server _ (5N + l)G + X
",

Transputer Message Passing 2(N -l)G + X

Transputer Master-Slave (4N + 1)G+X

Ethernet Cli ent-Server 651+6G+652+3Y +X

851+8G+652+3Y +X

951 + lOG + 752 + 4Y + X

lOSl + 15G + 752 + 2Y + X

1251 + 18G + 852 + 2Y + X

Ethernet Message Passing X

251 + 2G + 252 + X

51 + lOG + 52 + X

51 + 18G + 252 + X

Ethernet Master-Slave 451 +4C +452+X

651 + 6G + 4S2 + X

651 + 8G + 652 + X

1051 + 16G + 652

Table 8.11: Summary of the predictions f6r all architectures and paradigms

under which the implementations run.

Examining the different strategies on a particular architecture shows that the message passing

approach is best suited to the Transputer architecture, with its well connected network. The

dependence on a central service by the other two approaches limits the extent to which they

can take advantage of the communication facilities. The opposite situation occurs on the shared

medium where the client-server and message passing approaches scale better with number- of

processors than the message passing approach.

In all but one case, there is a constant dependence on processing time. The exception is the last

sample of the master-slave paradigm implemented under Ethernet. At this point communication

bottlenecks result in the critical path being determined by communication time alone.

Comparison of the results for a particular strategy on both architectures yields additional

insight into its communication requirements. The client-server and master-slave approaches have

lower per-process communication costs on the shared medium. These approaches are better suited

to cooperating in a shared environment, and interleaving their processing and communication

without performance cost to the other processes. Message passing, on the other hand, makes

efficient use of the Transputer network. It passes more messages than the other two approaches,

which affects performance noticeably when it has to use a shared medium.

CHAPTER 8. VERIFICATION OF ANALYTICAL SIMULATION 122

8.7 Conclusion

This chapter describes the analysis of all three parallel cpllision detection approaches. This includes

a comparison between -the results of the modellinga~d results measured from implementation of

the algorithms on two parallel architectures.

The performance of the implementation on Transputer hardware compares extremely well

"ith that predicted from the modelling tool. The accuracy is slightly less when working on a

distributed system of PC's connected with Ethernet. In both cases the results. are within the

bounds of experimental error resulting from inaccuracies in measurements.

- The symbolic form of the results of the Analytical Simulation allows comparison across ar­

chitectures and between different decomposition strategies. It also permits identification of the

variables on the critical path.

In its current form Analytical Simulation is capable of accurate analysis of the constructs

found in parallel and distributed virtual reality systems. In addition, the results allow comparison

between:

• The performance of different approaches on the same a!chitecture .

• The effects of a variety of architectures on one approach.

8.8 Future work

The chapters leading up to this point have dealt extensively with the development of the Analytical

Simulation approach to performance prediction. A number of enhancements are described, of

which the state space extensions are the most significant.

There are still a number of areas in which enhancements can be made to improve the speed of

the analysis and to increase the immediate value of the results.

At present the system tends to produce more constraints than are strictly necessary give-n

the results required. A number of constraint regions can correspond to the same values for the

metrics. Often these result from the order in which the constraints are created, and the combined

region can be defined by a smaller set of inequalities. It should be possible to remove or collapse

constraints, certainly in a postprocessing stage, but possibly while performing the analysis. This

latter option would also prevent duplication of effort during the analysis.

The number of states used in the state space analysis is at present an upper bound on the

number strictly required. It may be possible to remove some components of the state space vector

without affecting the final result. This would result in improvements in both the time and the

space complexity of the analysis tool.

Chapter 9

Performance analysis of virtual

reality systems

Parallel decomposition strategies used in parallel and distributed virtual reality systems were

examined in Chapter 2. Performance analysis techniques were surveyed in Chapter 3 and an

approach that is capable of generating the metrics required for the characterization of virtual

reality systems was developed in Chapter 4. The Analytical Simulation approach was refined,

and tested in Chapters 5 to 8. It is suitable for use with the constructs found in the various

decomposition strategies.

The remainder of this document is concerned with the application of Analytical Simulation to

virtual reality systems. The purpose of the following chapters is twofold:

• To provide a reference which describes the performance characteristics of the parallel de­

composition strategies used in virtual reality systems .

• To explore the use of Analytical Simulation, and to identify the ways in which it can enhance

the understanding of the model under analysis.

This chapter describes the strategy employed for the analysis, and provides a summary of the

ways in which Analytical Simulation can be employed.

9.1 Components of virtual reality systems

Chapter 2 identified parallel decomposition strategies used in virtual reality systems. The software

structure of any virtual reality system can be decomposed into three subsystems which perform the

functions of receiving input, modelling the world and producing the output respectively [Pra93)

[Ban93) [Pin96).

As seen previously in Chapter 6, understanding the complexities of the performance charac­

teristics of a system is made easier by simplifying the object under analysis. Each sUbsystem is

examined in isolation, after which the components are combined into complete systems.

123

CHAPTER 9. PERFOR.'h.1ANCE ANALYSIS OF VIRTUAL REALITY SYSTEi\;fS 124

In multi-user virtual reality systems there are likely to bea number of input and output devices.

These can usually operate independently, since they operate on data specific to a particular user

and device. Thus nQ c,?mmunication occurs between the various input/output devices. Sha,ring of

data and coordination of effort between nodes of the'virtual reality system is the domain of the

world modelling subsystem. The effects of the various parallel decomposition strategies described

in Chapter 2 are examined with respect to the world modelling components.

The use of parallelism within the input and output subsystem is not unknown, but in light of the - ~ -
discussion above it is limited to parallelism within a single instance of the corresponding subsystem.

T~us the following strategy is applied when examining the subsystems of virtual reality systems:

Analysis of input and output concentrates on the parallelism within the subsystem; analysis of the

world modelling component examines the effects of the parallel decomposition strategies described

in Chapter 2.

9.2 Techniques used in Analytical Simulation

As may be expected for any complex system, a complete analysis of the performance characteristics

can produce a substantial amount of information, This is time-consuming to generate and may

produce a lot more information than is required to judge the behaviour of the model. There are

ways to decrease both the time and effort required to extract only the salient features, NIany of

these are used in the following sections, and are pointed out as they occur. A brief summary .. of

these principles is given below:

• Simulate completely for small numbers of processes, and sample at higher numbers to confirm

trends.

• Identify optimal deterministic paths, and limit further analysis to the new, deterministic

model (see section 12.3.7).

• Random variables can be simulated using multi-state processes (see section 11.2), or by using

variables to represent the probabilities of different paths (see section 11.4).

• Limit the use of variables to the most significant delays, or where detail is required in the

analysis (see section 11.5).

• Simulate each decomposition strategy independently first, before considering their combined

behaviour (see section 12.3.2).

• Model only the visible characteristics of complex systems (as in section 12.3.4).

• Simplify non-critical portions of the model (see section 12.3.5).

• Tabulate (section 12.3.5) and graph (section 12.3.8) performance results to identify patterns

and to evaluate behavioural trends.

• Variables can be removed from the model, simplifying analysis without reducing the com­

plexity of the model, by expressing one variable in terms of others (see section 13.4).

CHAPTER 9. PERFORJ.vIANCE ANALYSIS OF VIRTUAL REALITY SYSTEMS 125

9.3 Conclusion

The input, output and world modelling components of-virtual reality systems are to be examined

separately at first, after which analysis of systems<cGnstructed from these components is to be

performed. The input and output subsystem are to be examined with respect to parallelism

within a single unit. The effect of multiple nodes interacting is to be examined with respect to

the world modelling component.

The Analytical Simulation approach can be deployed in a number of different 'Qrays. Some

strategies which speed up analysis by extracting only the required results are described.

Chapter 10

Analysis of the input subsystem

Input in current virtual reality systems is usually limited to devices such as some form of glove for

measuring hand configuration, and trackers for locating the gloves and the head mounted displays.

These and other more esoteric input devices can usually be viewed as sources of discrete events.

Each event provides an update on the status of the device at -the next instant in time. The actual

data input is not relevant to the performance analysis. The factors of importance are the sampling

frequency and the latency of the input data.

Many input devices used in virtual reality systems have a measure of sophistication in that they

are capable of converting physical measurements into digital form on their own. Somealsoh~we the

facility to perform some initial processing on the data, providing readings at regular intervals and

in the most appropriate format. This justifies modelling an input device as a separate processor,

and examining the performance effects resulting from this component of the virtual reality system.

Performance enhancements for the input components of virtual reality systems concentrate on

look-ahead algorithms, where the values associated with future events can be predicted. In this

way the latency, being the time between the actual event and the corresponding response, can-lie·

cut down.

This chapter explores the performance implications ofthe input subsystem, examining different

ways to read the data from the device, and considering the analysis of look-ahead.

10.1 Polled and interrupt-driven input

Many input devices can be read in two ways [Po193] [Pra93]. The simplest is by using polling in

which the device is read when a data value is required. Alternatively, the device can be set up

to generate values continuously, so that the most recent value is always available. The computer

is usually interrupted to receive each data value, hence this technique is referred to as interrupt­

driven.

126

CHAPTER 10. ANALYSIS OF THE INPUT SUBSYSTEM

A model of the polled approach to data input is shown below:

I Variable I Interpretation
-

C Communication time between: input device and system processor

K Communication time between system processors

X Time between data produced by the input device

process device

receive input req

report create

think X

send input rep C

process input

receive useinput request

send device req C

receive device rep

send useinput data K

process useinput

report start ask

send input request K

receive input data

report endask

127

The model contains three processes. The first reproduces the actions occurring on the in~u_t .

device. Upon receiving a request for a value from the transducer, this process proceeds to in­

ten"ogate the device, taking period X to do so. This is then passed to the input process of the

virtual reality system itself. Some other component of the system needs to use the value obtained,

and this is modelled by the third process. Communication time from the input processor to the

attached device is modelled by the variable C, communication time between processors in the

virtual reality system is represented by variable K.

Two intervals are of interest in this model, the total time taken to fetch a value (the interval

from startask to endask) , and the "freshness" of the value (from create to endask). The latter

indicates how well the value corresponds with the current situation in the real world.

For this model, the time taken to fetch the input value is 2[(+ 2C + X, while the freshness of

the value is given by K + C + X.

CHAPTER 10. ANALYSIS OF THE INPUT SUBSYSTEM 128

The alternative approach which continuously reads the device corresponds to the model below:

I Variable I Interpretation
-

C Communication time betweeri'iIiput device and system processor

K Communication time between system processors

X Time between data produced by the input device

process device

report create

think X

send input message C

process input

receive ANY message

if ANY == useinput

send use input data K

endif

assign ANY undef

process useinput

report start ask

send input message K

receive input data

report endask

The input device produces new readings at intervals of X. These are passed onto the input

process which supplies the latest value upon request. The total time to obtain a value with this

model, and the "freshness" are as given below:

2nK ~ X ~ 2(n -l)K: (n = 0 ... (0)

Fetch time = 2I(+ ~C

Freshness = 2(n + l)K + C

The overall time taken to obtain a value has decreased over that for the polled approach, while

the freshness of the value has increased. This latter effect can be attributed to the need for the

input process to attend to the communication from the rest of the system, delaying its response to

the input device. The "freshness" value is an average one, particularly where X is large compared

to K. In this case re-reading the input is still returning the same value which is ageing steadily.

Another interesting point is the sudden discontinuity at points where X = 2nK, caused by using

the old value for an additional 2K cycles. If the input device is capable of supplying values

sufficiently rapidly (X < K), then these effects are not present.

CHAPTER 10. ANALYSIS OF THE INPUT SUBSYSTEM 129

The interrupt-driven approach provides faster turn-around times for including an input value

into the virtual reality system. For a device capable of producing values rapidly eX < K), the

"freshness" of the valu~ is larger for the interrupt-driven approach due to the inability of the input

driver to service the interrupt while communicating'with the rest of the system. Should the archi­

tecture not be suited to performing communication and servicing external devices simultaneously

then the polled approach yields values with lower latency.

10.2 Look-ahead during input

Look-ahead using a predictive filter is studied in a number of cases related to virtual reality

systems. A number of different predictors, in particular Kalman filters and predictors based on

Grey system theory, are examined in [Wu95]. Predictors based on polynomial extrapolation and

Kalman filters are analysed in the frequency domain in [Azu95].

Analytical simulation is not well suited to examining the effects of prediction. Predictive filters

give an advance estimate of the values expected from the input devices. \Vhile this has the effect

of reducing latency, the value predicted may be inaccurate: The effects of these errors in the

prediction influences the quality of the virtual reality experience. This quality of experience can

only be judged subjectively, and so a quantitative analysis is not given.

10.3 Conclusion

Relatively little analysis is performed relating to the input subsystem. The performance impli­

cations of polled versus interrupt driven input are described. Both approaches have their merits,

the choice depends on the target architecture. Look-ahead affects the quality of the system and

is not amenable to quantitative analysis. Further effects, involving the combination of the input

subsystem with the other components of virtual reality systems, are examined in Chapter 13. __

Chapter 11

Analysis of the output subsystem

The graphical output of most virtual reality systems is produced using graphics workstations

which contain hardware implementations of the rendering functions. However these functions are

still combined using a variation of the standard graphics pipeline [Seg94]. Thus this chapter con­

centr"ates on modelling the graphics pipeline. Effects of paraU'elism on portions of the pipeline are

examined. Finally models of some pipelines occurring in virtual reality systems are investigated.

Output to other devices, such as force feedback joysticks, is also found in some virtual reality

systems. The use of parallelism in these components is limited, and so these devices are not

covered in this chapter.

11.1 A model of the graphical pipeline

A model of a simple graphical pipeline is shown below. The pipeline used is composed of three

stages, representing transformation, hidden surface removal and rendering. Each stage is assumed

to take a certain length of time to complete, represented by T, Hand R respectively, before passing·

its results to the next stage. Processes to, model both the supply of data to the pipeline and receipt

of data after rendering are included. These are included to enable the effects of the processes

outside the pipeline to be modelled, and to facilitate some of the parallel modifications described

later. It is assumed that all processes run on separate processors and that all communication is

blocking.

Variable I Interpretation

C Communication time between the stages of the pipeline

D Time for the slowest stage (max(H, R, T))

H Time spent on hidden-surface removal for each item

R Time spent on rendering each item

T Time spent on transforming each item

130

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

process source

report markerl

send transform input C

process transform

receive source input

think T

send hiddsurf ml C

process hiddsurf

receive transform ml

think H

send render m2 C

process render

receive hiddsurf m2

think R

send sink output C

process sink

receive render output

report marker2

131

Latency is measured from marked to ma7'ker2. The cycle time is determined from the period

between recurrences of marker2, which is related to the frequency at which data is output.

Analysis of this system yields the following results:

T~H,T~R:

T~H,R~T:

Cycle time =

Latency =

Cycle time =

Latency =

2C+T

5C+2T+H +R

2C+R

5C +4Rl

IThe system with these constraints is subject to an initial transient value whose duration depends on the relative

values of T, H and R. This eventually reaches the stable state shown. See the previous example on pipelines in

section 4.1 for more detail.

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

H 2: T, H 2: R:

H 2: T, R 2: H:

Cycle time =

-Latency =

Cycle time =

Latency =

2C+H.

5C +<3H +R

2C+R

5C+4R

132

_ The results for this model differ only slightly from the previous pipeline model given in the

initial example of Analytical Simulation (see section 4.1). These differences can be attributed to

the source and sink stages, and to the communication delay.

The results agree with intuitive expectations. The cycle time is dominated by the slowest

stage. The value for the cycle time is the time for this stage plus the time to get the data in and

to send it out. Latency may be slightly less obvious: before the slowest stage, messages block at

each stage for a time equal to the time of the slowest stage. After this stage there is no further

bottleneck and data passes through as fast as possible, limited only by the processing time of each

stage.

It is interesting to note that the source process contributes to the latency, even though it

produces messages as fast as possible, and has no explicit delay. The next message is ready as

soon as the transmission of the previous one is complete. The source process then blocks fo.r a

period equal to the delay of the slowest process while trying to send. By adding an extra deray in

the source routine, latency can actually be reduced without affecting cycle time.

Since latency in this model is measured from the time that data is generated (usually immedi­

ately before it is sent) until it arrives at its destination, delaying the time of generation decreases

latency. Changing the model to implement this is done by sending a message back to the source

from the next stage, once that stage has finished processing and is ready to receive the next mes­

sage. The source can then produce the next message and send it, knowing that the destination is

ready and that it will not block on the send operation. Latency in the model is reduced by C + D,

where D is the time taken on the slowest stage.

Comparing this to other work on lag in virtual reality systems [Wl095], the effect being noted

is synchronization lag, resulting from processes blocking while waiting to pass data on to others.

The solution proposed by Wloka involves delaying processes so that one finishes just as the next

starts. This requires the ability to determine the exact time taken, so that computation can be

started at the correct point. Given that communication delays are not being modelled by \Vloka,

it is simpler to adopt the feedback approach suggested in this section.

This result has significant implications for virtual reality systems. If the system is sending

redraw requests to the graphics pipeline at a rate faster than the rate at which the pipeline

can render, then better performance can be achieved by either dropping certain frames, or by

performing extra work before the state of the world for the next frame is sent to the renderer.

Adding the feedback to the end of the pipeline sets the latency to a constant value of 4C +
T + H + R for all values of the variables, but has the side effect of increasing the cycle time to

5C+T+H +R.

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEAI 133

11.2 The use of buffering in the pipeline

When processes take variable amounts of time to process data, the steady flow of data is interrupted

and processes must block while waiting to send and< receive data. This wastes processor time and

lowers the efficiency of the parallel system.

One approach to maintaining a continuous flow of data through a pipeline is to add buffers

between the output and input of two adjacent stages. This allows the rest of the pipeline to

continue to perform useful work, while the blocking affects only the buffer. It increases the chance

that there is data waiting whenever a process finishes its current cycle and needs to fetch more.

- There some difficulty in modelling this with Analytical Simulation, since the analysis tool

does not provide for random processing times in the model. Stochastic modelling tools such as

Petri Nets might allow this but such tools do not easily provide analytical values for latency, the

important variable with this modification.

The system is modelled using a tristate process to introduce an extra occasional delay in one of

the stages of the pipeline. This process cycles through three delay values, two small and one large.

The effect of placing the slow stage and the buffer in different sections of the pipeline is explored

this way. The use of a multi-state process is not too dissimilar from reality. Virtual reality scenes

often contain a mixture of complex and simple objects whose relative processing times in different

portions of the pipeline differ.

Rendering is typically slower than the other stages and more sensitive to the complexity of the

object. The effect of placing a buffer before this last stage of the pipeline is examined belo.w:.'·

The model that is used in this case is a simple variation of the pipeline seen in section 1l.l.

For simplicity, each process cycles with a period D. The final stage delays for 3D once every three

cycles. The modified final stage is shown below:

I Variable I Interpretation

C Communication time between the stages of the pipeline

D Delay in each stage of the pipeline (except for the tristate stage)

process render

receive hiddsurf m2

think D

send sink output C

receive hiddsurf m2

think D

think D

think D

send sink output C

receive hiddsurf m2

think D

send sink output C

Analysis of this system gives a cycle time of 2C + ~D and a latency of 5C + 23° D.

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM 134

A buffer process can now be added between the hidden surface removal and rendering stages.

This process is shown below. A communication cost B is associated with extracting information

frem the buffer.

I Variable I Interpretation

B Time required for communication with the buffer

C Communication time between the stages of the pipeline

D Delay in each stage of the pipeline (except for the tristate stage)

process hiddsurf

receive transform m1

think D

send buffer1 m2 C

process buffer1

receive hiddsurf m2

send render m2 B

process render

receive buffer1 m2

The performance of this model is given below:

B 2:: C:

Cycle Time = C + i D + B

Latency = 2C + 2; D + 4B

C 2:: B:

C 2:: 2D + B:

Cycle Time = 2C + D

Latency = 5C + 13
4 D + B

C~B:

2D+B ~ C:

2C ~ 2D+2B:

Cycle Time = 2C + D

Latency = HC + 16 D + i.B
3 3 3

(»

(>)

(<)

(><)

«)
(><)

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

C~B:

2D+2B ~ 2C:

3C ~ 2D+3B:

C~B:

2D+3B ~ 3C:

Cycle Time = 2C + D (<)

Latency = 4C + 6D + 2B (><)

Cycle Time = C + fD + B «)
Latency = C + 235 D + 5B (><)

135

The symbols in parentheses after the values indicate whether the value is less «) or greater

(» than the value for the system without buffering. It can be seen immediately that the case

B ~. C gives worse performance in the buffered situation. Thus buffering is not effective unless

communication with the buffer is faster than communication with other processors. This has im­

plications for the practical implementation. Since the buffer does not have a substantial processing

overhead, it can be added to a processor containing a process that communicates with the buffer.

Communication can then occur using a faster mechanism, such as shared memory.

The cases where B < C show improvement in the cycle time. The effect on the latency can be

less beneficial, as may be expected since the length of the pipeline is being increased. Depending

on the relative values of the variables, latency may either increase or decrease. Examples of each

possibility are shown below:

For the case:

C~B:

2D + 3B ~ 3C:

Unbuffered latency is given by 5C + 2~ D, and buffered latency is given by C + 2; D + 5B. For

the variable values:

I B I D I Unbuffered latency I Buffered latency

27 C
2

6C

For this case, a decrease in latency when buffering is added occurs when 4C > iD + 5B.

Adding a second buffer routine also causes increases in cycle time and latency for the case

when B > C. For the other case, C > B, cycle time is reduced over the unbuffered case. No

improvement in the cycle time occurs relative to the version with a single buffer. For some of

the latency values corresponding to a set of constraints on the variables it is no longer possible to

achieve a latency value smaller than the unbuffered version, by varying the values of the variables

within the constraints.

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM 136

The buffering effects are intended to smooth out delays around the slow stage. The next results

describe the effects of placing the slow stage earlier in the pipeline, and placing the buffer before,

and/or after it. The hidden surface removal stag? ~s replaced with the tristate process. The

transformation and rendering stages are the simple versions with only a single processing delay of

duration D. The results are as follows, where it is now assumed that C> B:

Constraint region Cycle Time Latency

No buffering

2C+~D 5C+6D

Buffer before slow stage

2D+B ~ C, ~C+ ~D +!B
333

17 C + 23 D + !. B
3 3 3

C~ 2D+B 2C+D 5C+6D+B

Buffer after slow stage

- 2C+ ~D 5C+6D+B

Buffer both before and after slow stage

C~ 2D+B 2C+D 5C+ 14D+2B
3

2D+B ~ C 2C+D 14C+16D+'!..B
3 3 3

2C ~ 2D + 2B

2D+2B ~ 2C 2C+D 4C+6D+3B

3C ~ 2D+3B

2D+3B ~ 3C C+ ~D+B 2C + 23 D +5B 3

Adding buffers before the hidden surface removal stage results in improvement in cycle time.

Latency is increased. The greatest improvement in cycle time with least cost in latency occurs for

relatively large values of C, where communication is slowing the system and the buffer smoothes

the flow of information.

It is thus possible to improve the performance of the graphics pipeline with an uneven load by .
adding buffering. Cycle time in particular can be decreased. In some cases latency can be improved

as well, in others there is a tradeoff between improvements in the cycle time against increases in

the latency. Care has to be taken with the implementation to ensure that the operating conditions

do not cause a reduction in performance instead.

11.3 Parallelism and the pipeline

There are additional ways to exploit parallelism in a pipeline, other than by just adding additional

stages [Ban94bj. A section of the pipeline can be rewritten to run in parallel, with the intention

to lower the time taken by that particular section. Another option is to replicate the pipelines

and to have a number of pipelines running in parallel.

The first model divides the final stage of the pipeline into N smaller sections which run in

parallel. The time taken for each of these sections should be about -1 of the time taken for the

original stage. In practice it is probably slightly greater than this, but should not exceed the time

required for the original if any gain is to be expected. The relevant portions of this model are

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEAf

shown below:

I Variable I Interpretation

C Communication time bet~veen J:,h~ stages of the pipeline

H Time spent on hidden-surface removal for each item

N Number of rendering stages in use

P Time spent on rendering each item in each of the parallel renderers

T Time spent on transforming each item

process hiddsurf

receive transform m1

think H

replicate N

send render# m2 C

endreplicate

replicate N

process render#

report rend#

receive hiddsurf m2

think P

send sink output C

endreplicate

process sink

replicate N

receive RENDER# output

endreplicate

report marker2

The latency and cycle time measured from this model are given below:

(N - l)C + H ::: T, P ::: (N - l)C + H:

Cycle Time =
Latency =

2C+P

5C+4P

eN - l)C + H ::: T, eN - l)C + H ::: P:

Cycle Time =

Latency =

(N + l)C+H

(3N + 2)C + 3H + P

- ~

137

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

T 2: (N - 1)C + H, T 2: P:

Cycle Time =

Latency =

T 2: (N - 1)C + H, P 2: T:

Cycle Time =

Latency =

2C+T

(N + 4)C + 2T 4' H + P

2C+P

5C+4P (Transient present in this case)

138

The behaviour of this approach agrees with what could be extrapolated from the previous

results for parallel pipelines. Cycle time is dominated by the slowest stage in all but one case.

Latency follows the same lines as before, except for a large communication component. Ignoring

this for the moment, the latency has the same relative dependency on the other three variables,

with P taking the place of R. Since P ==' ~, this gives an improvement in both the cycle time and

the latency.

The substantial dependency on the communication is a result of the manner in which this aspect

of the model is designed. The model assumes that each process is only able to send one message

at a time. This would apply to situations where not all processors are directly interconnected, or

where hardware limitations require that one message be coinpleted before the next can be sent.

The large communication component in the second case above is due to the substantial bottleneck

produced by the combination of a slow second stage and the extra communication. The firststage

is ready to send again almost immediately and ha.s to wait almost a whole cycle before being able

to pass data on to the next stage. This accounts for one third of the communication factor in the

latency, the sequential communication into and out of the final stages is responsible for the rest.

This is also a case where a delay in the source process would actually decrease latency.

A model of a system with sufficient connectivity to allow parallel communication is shown

below:

Variable Interpretation

C Communication time between the stages of the pipeline

H Time spent on hidden-surface removal for each item

L Communication time between intra-processor processes

N Number of rendering stages in use

P Time spent on rendering each item in each of the parallel renderers

T Time spent on transforming each item

process hiddsurf

receive transform m1

think H

replicate N

send renders# m2 L

endreplicate

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

replicate N

process renders#

receive hiddsurf m2

send render# m2 C

process render#

receive renders# m2

think P

send renderr# output C

process renderr#

receive render# output

send sink output L

.endreplicate

process sink

replicate N

receive RENDER# output

endreplicate

report marker2

139

, ~.

The variable L is introduced to model the time required to send a message to or from one of

the extra processes. These processes are likely to be on the same processor as the process using

them for concurrent communication. Thus, this value can be expected to be small, certainly less

than C. Analysis of this model gives the following:

NL+H 2 C+T, C+P 2 NL+H:

Cycle Time =

Latency =

2C+P

7C+5P

NL+H 2 C+T, NL+H 2 C+P:

Cycle Time =

Latency =

C + T 2 N L + H, T 2 P:

Cycle Time =

Latency =

C + T 2 N L + H, P 2 T:

Cycle Time =

Latency =

C+NL+H

3C + 3H + (3N + l)L + P

2C+T

5C + 2T + H + (N + 1)L + P

2C+P

7C+5P

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM 140

This approach does not automatically yield the improvement that could be expected from using

a better connected network. The cycle times are either unchanged, or improve. Latency on the

other hand, improves i,n two cases (assuming L < S),. but increases in the other two cases·, where

the parallel rendering time P dominates. In this latter case, an increase of 2C + P is found. The

additional factor P can be expected, since an extra stage is added before the bottleneck process.

The extra 2C results from earlier stages in the pipeline having to block while holding data, thereby

increasing latency. Once again, feedback can reduce this latency without cost to_ the. cycle time.

A feedback message from the first stage to the source is capable of reducing latency to the values

ac!tieved with the previous model. Using feedback from the second stage results in a improvement

in latency for large values of P. The latency in this case is 4C + 3P.

Parallelizing additional stages of the pipeline yields similar results. The variable representing

the time for the stage is replaced by the variable representing the time for one of the parallel

components. Cycle times improve when this change occurs to the slowest stage. Latency can be

improved when the affected stage occurs at or after the slowest stage.

Two points are again reinforced by these results. The length of the pipeline before the slowest

process should be kept as short as possible, since the late~cy in these stages is equal to the

processing time of the slowest process. This may make it feasible to combine some of the stages,

provided the total time for the combined stage does not exceed that of the slowest stage. The

results also indicate that having each stage accept data as soon as possible is not always best

when considering performance issues. Having processes sitting idle can yield better performance

than having a process waiting to send data on to the next stage. Both these issues affectlatEmcy

independently of cycle time.

The manner in which the relative performance of different models differs according to the

constraints on the variables suggests that modelling could also be useful after implementation of

a system. Some enhancements, for example the feedback used above, are more relevant to certain

variable values, and could be applied once these values are measured for a particular system .. __

The preceding discussion has examined the use of further parallelism within the pipeline. The

effect of combining a number of pipelines in parallel is examined with the next model.

The following specification defines the model of parallel pipelines. The source process feeds

data into each of the N pipelines in turn. The results are removed at the other end of the pipeline

in the same order.

I Variable Interpretation

C Communication time between the stages of the pipeline

H Time spent on hidden-surface removal for each item

N Number of pipelines in use

R Time spent on rendering each item

T Time spent on transforming each item

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTElvI

process source

replicate N

report-markers

send transform# input C

endreplicate

replicate N

process transform#

receive source input

think T

send hiddsurf# mi C

process hiddsurf#

receive transform# mi

think H

send render# m2 C

process render#

receive hiddsurf# m2

think R

send sink output C

endreplicate

process sink

replicate N

receive render# output

report markerf

endreplicate

141

The results of using Analytical Simulation on this model differ, as may be expected, according

to which stage of the pipeline takes the longest. The results are shown below:

I Dominant Variable I Cycle Time I Latency

T 2C+T (3N+2)C+(N+2)T+NH+NR
~ N

H 2C+H (3N+2)G"+(2N+l)H+NR
~ N

R 2C+R t3N+21C+(3N+UR
~ N

(N - 2)C, for N > 2 C 4C+T+H +R

The most obvious benefit from this approach is the perfectly linear decrease in cycle time

with the number of processors, provided communication is fast enough. At some point, however

(N - 2)C outstrips each of T, Hand R and performance reaches a constant level, independent

of number of processors. The equally obvious limitation is the near constant value of the latency

which decreases by marginal amounts as N is increased (and while (N - 2)C does not dominate).

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEAI' 142

11.4 Pipelines in practice: Zero latency rendering

The problem of latency in rendering stages of virtual J;eality systems is addressed by some clever

modifications to the hardware of the display -contfQll~r [Reg92] [Reg93]. When the scene is ren­

dered, it is drawn in a manner independent of orientation. In effect the scene is drawn on a

sphere surrounding the viewer rather than just on a rectangular viewport. Extracting the portion

containing the area that the viewer is looking at and displaying this on the screen is the respon­

sibility of the display controller. This requires extensive modification to the address recalculation

hardware to allow this transformation to occur quickly enough for screen display directly from the

spnerically rendered image.

Thus changes in orientation can be made to take effect immediately (or on the next refresh

cycle if a stable image is required). Changes in orientation (rotation) can be introduced directly

at the end of the graphics pipeline. As mentioned in [Reg93]:

" ... it becomes possible to bind rotational latency to the refresh cycle period which

tends to be short, fixed in length and independent of scene complexity."

-This modification is of use only for changes in orientation. Translation of the scene still requires

re-rendering. Since a greater area needs to be rendered, it can be expected that latency on trans­

lation is increased. An effort is made to reduce this by providing image overlaying functionality

with the modified address recalculation hardware. Objects at different depths may be rendered

on different display memories. These a.re automatically combined during the refresh cycl~,The

images corresponding to objects further away could be re-rendered less frequently.

The model of a pipeline with zero latency abilities is shown below. Since the zero latency

enhancement is limited to rotation, the normal pipeline is maintained for cases when translation is

required as well. As done previously, random selection of rotation/translation has to be emulated

by preselecting some periodic mixture of the two. This model produces a sequence of N simulated

rotations followed by M translations.

I Variable I Interpretation

C Communication time between the stages of the pipeline

H Time spent on hidden-surface removal for each item

M Length of each sequence of translations

N Length of each sequence of rotations

R Time spent on rendering each item

T Time spent on transforming each item

process source

replicate N

report marker!

send transform nolat C

endreplicate

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

replicate M

report marker!

sendt~ansform input C

endreplicate

process transform

receive source X

if X == nolat

send hiddsurf nolat

endif

if X != nolat

think T

send hiddsurf m! C

endif

process hiddsurf

receive transform Y

if Y == nolat

send render nolat

end if

if y != nolat

think H

send render m2 C

endif

process render

receive hiddsurf Z

if Z == nolat

send sink output

end if

if Z != nolat

think R

send sink output C

endif

process sink

receive render output

report marker2

143

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM 144

The simulated rotations in the above model are sent through the pipeline in the same way as

the translations, but with fewer delays. The zero latency stage is modelled this way, rather than

haying source send dir~ctly to sink so as to preserve the order of events. It would not be realistic

to have a rotation that is performed after a translation show up on the display before the effect

of that translation. The overall delay is still the same, a rotation message is still delayed for a

period C before reaching the final stage.

Analysis of this model produces the following predictions for cycle time and latency:

T?. R, T?. H:

{

(N+2M)C+MT+H

Cycle Time = (N+2~b~MT+H+R
ifN = 1

ifN> 1

Latency =

H?. R, H?. T:

N+M

{

(N+5M +1)C+2MT+(M+2)H+(M+l)R
N+M

(N+5 M +l)C+2MT+(M+2)H+(M+3)R
N+M

ifN = 1

ifN> 1

Cycle Time =
{

(N+2M)C+MH+R
N+}v[

(N+2M)C+MH+T
N+M

(N+2M)C+MH+T+R
N+M

if R?. T-andN = 1

ifT?. RandN = 1

otherwise

Latency = {

(N+5M+l)C+3MH+(M+3)R
N+M

(N+5M+l)C+3MH+(M+l)R+2T
N+M

(N+5MH)C+3MH+(M+3)R+2T
N+M

if R ?. T and N = 1

ifT?. RandN = 1

otherwise

Cycle Time =

Latency =

{

(N+2M)C+H+MR
N+M

(N+2M)C+H+T+MR
N+M

(N+5 M +l)C+3HHMR
N+M

(N+5M+l)C+3H+4MR+2T
N+M

ifN = 1

ifN> 1

(N+5 M +l)C+(4+K)H+(4M+Y)R (K+l)2(K+2)T
N+M

(N+5M+l)C+C4+K)H+(4M+Y)R+(2 (K+l)r+2)T
N+M

(N+5M+l)C+(M+2)H+ M2+~M+2 R ~T
N+M

N+M

ifH>T

andN = 1

ifH > T

andN> 1

if A(K) ?. T ?. B(K)

andN = 1

if A(K) ?. T ?. B(K)

andN> 1
'fT> IH(M-2)R
I _ M 1

andN = 1
ifT> H+(M-2)R

- M-l

andN> 1

where: A(K) = H+t+~l)R, B(K) = H!i!:lR, K = 0 ... M - 3

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM 145

To extract useful information from these results, the values for various extremes of the param­

eters Nand A1 are considered.

The case where both Nand A1 are small.correspo·nds to a case where both translations and

rotations occur, but n'either occurs alone in signifi~ant quantity, Taking N = 1, A1 = 1 as an

example, the corresponding performance values are:

Cycle time =

Latency =

{
TifT> R

3C+H+ -
R ifR?T

2

{
2T ifT?R

7C+3H+2R+
2R if R? T
2

This is a slight improvement on the results achieved with a standard pipeline, as should be

expected, The improvement is limited by the need for the pipeline to complete processing on

the translation calculations before the zero latency rotation message can get to the sink process.

Having this message waiting builds up the latency for the message .

. Increasing the number of successive rotations should eliminate most of this waiting and produce

improvements in latency. The results for N » M are approximately as follows:

Cycle Time ~

Latency ~

where DCM) is independent of N. Improvements in bot.h cycle time and latency are expected as J.;

increases and effect of the zero latency modifications dominates. The lower limit of C in this case

corresponds to the cost of the rotation message to get from source to sink while bypassing most

of the pipeline. Thus if use of the virtual reality system consists mostly of looking around while

st.ationary then the zero latency modifications result in substantial pelformance improvementsr -

Examining the alternative case, where it1 » N, the performance measurements approximate:

Cycle time ~ 2C+D

Latency ~ 5C+4D

where D depends only on the pipeline delays; T, Hand R; and is independent of both M and N.

Thus where the zero latency enhancement is used infrequently, performance approximates that of a

normal pipeline, as should be expected. Given that the hardware modifications to implement zero

latency rendering are relatively expensive, they are not viable unless required for an application

where extensive use will be made of them.

11.5 Pipelines in practice : PixelFlow

PixelFlow is the latest of the PixelPlanes series of graphics supercomputers developed at the

University of North Carolina. The architecture of the PixelFlow system is described in [Mol92],

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTElv[146

together with the use of image composition to achieve linear performance improvement as the

number of renderers increases.

_Image composition ~n a parallel rendering system involves dividing the primitives amongst each

of the rendering processors. Each renderer then produces a rasterized version of its primitives in

a local frame buffer. All of the frame buffers are then combined, or composed, at a central frame

buffer which is then used to drive the display. Transferring the frame buffers to the composition

stage involves moving large amounts of data, which in turn requires a high speed network. The

required bandwidth is independent of the graphical primitives, and depends only on-screen reso­

lution and frame rate. This permits performance to scale linearly with the number of rendering

processors.

The graphics pipeline in the PixelFlow machine is implemented as follows: The host computer

passes each renderer a specific set of primitives to render. Each renderer then performs some

standard geometric transformations on its primitives and sorts them into 128x128 pixel regions

on the screen. Each renderer contains a rasterizer which contains an array of 128x128 pixel

processors which computes the pixel values for the region. \Vhen all renderers have completed

rasterization, the region is passed to the compositor. The composed image is then passed to

one of the shader processors where the pixel colours are co~puted. This process is represented

graphically in Figure 11.1.

Deferred shading is used which involves storing surface normal information with each pixel

until it reaches the shading stage. In this way each pixel has to be shaded exactly once. Since the

amount of information associated with each pixel is greater, a greater bandwidth for thejmage

composition network is required. On the other hand, shading becomes independent of image

complexity, and depends only on the shading model.

The PixelFlow system needs to transfer about 30Gbits/second when using deferred shading

and calculating 5 samples for anti-aliasing purposes to achieve a frame rate of 30 frames/second.

This is achieved with a network bus of 256 wires, each operating at 132MHz.

The estimated performance quoted for this system is:

NregiOflS

T/ rame = L
i=l

(
'7"' T Tshade)

max .1 rend, , camp' N
shaders

(11.1)

where T/ rame is the time for one frame, Trend, is the time for rendering the ith region, Tcamp is

the compositing time for a region and Tshade is the time to shade a region.

The remainder of this section describes the use of Analytical Simulation to obtain performance

values for this model. This provides both a validation of the Analytical Simulation approach,

when comparing the results to those shown in equation 11.1, and demonstrates the abilities of the

approach to extend the analysis to include latency measurements.

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

. .. zl Renderer I~artial PnmItlves . .
Regions

,.--------,:/",I Rende<e+,,~- <.

Host I 1----
1

Compositorl

Computer '\~ Rende,., 1 Composed

1 Rende,", I Regio",

. I Renderer 1

IShaderl

IShaderl

IShaderl

Figure 11.1: PixelFlow layout

--I Display I
Shaded
Regiot;S. •

The version intended for use with the Analytical Simulation tool appears as follows:

I Variable I Interpretation

C Communication time between renderers and compositor

Nregion Number of 128x128 regions per image

Nrender Number of rendering processes

Nshaders Number of shading processes

R, Trend. Time spent on rendering for one region

T, Tcomp Time to compose the images

S, Tshade Time to shade one region

process source

report marker1

replicate NREGION

replicate NRENDER

send render## input

endreplicate

endreplicate

replicate NRENDER

process render#

receive source input

think R

send composit m1 C

endreplicate

147

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEAI

process composit

replicate NSHADE

replicate NRENDER

receive render## m1

endreplicate

think T

send shading# m2

endreplicate

replicate NSHADE

process shading#

receive composit m2

think S

send sink output

endreplicate

process sink

replicate NSHADE

replicate NREGION

receive

shading[((((#-1)*NREGION)+(##-1))y'NSHADE)+1]

output

endreplicate

report marker2

endreplicate

148

This pipeline is similar to models used previously when examining parallelization of portions of

the graphics pipeline. The variables R, T and S represent rendering time for one region (Trend;),

time to compose the images (Tcomp), and shading time for one region (Tshade). The principle

difference is the allocation of the shaders. This is modelled so as to assign the first available

shader to an incoming region in need of shading. Since shading time is constant, this is the shader

that has been shading the longest. Thus allocating shaders on a round robin basis simulates this

requirement adequately.

The variable Nrender represents the number of rendering processes, Nregion represents the

number of 128x128 regions per image, and Nshaders is the number of shading processes.

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM

The results from the analysis of this model are as follows:

(Nrender - I)C + Tcomp ~ Trendi' Tshade ~ Nshaders(Nrender C + Tcomp)

C I T ' Nre.gion T
yc e In1e = Nsha.de.. shade

-;, .

Latency =

{

N,ha.d<,.s+2+N,.<gion T N C l'fHCF(N N) < 2
Nsha.d<rs shade - render region, shaders - 2

N,ha.de,.s+N,..gion T + N C + 2T otherwise
N.ha.de,.. shade render comp

(~render - I)C + Tcomp ~ Trendil Tshade ~ Nshaders(NrenderC + Tcomp)

Cycle Time = Nregion(NrenderC + Tcomp)

Latency = Nrender(1 + Nregion)C + (2 + Nregion)Tcomp + Tshade

(Nrender - I)C + Tcomp ~ Trendi' Tshade ~ Nshaders(C + Trend.)

C I T· Nregion T
yc e Ime = Nsha.de,.. shade

Latency =

{

N,ha.ders+2+N,.eg'on T N C
N"haders shade - render

N ... haders+Nregion T + 2T (N 2)C
N- shade rend. - render -

... hade,.."

if HCF(Nregion, Nshaders) ~ 2

otherwise

(Nrender - I)C + Tcomp ~ Trend., Tshade ~ Nshaders(C + Trend.)

Cycle Time = Nregion(C + Trend.)

Latency = (1 + Nregion)(C + Trend.) + Tcomp + Tshade

149

The results from this analysis agree with the predictions made by the PixelFlow researchers

in equation 11.1. \Vhen rendering time is larger than composition and shading times, then cycle

time is proportional to this value. Similarly for the compositing time and the shading time,· the

latter in inverse proportion to the number of shaders. In all these cases, the cycle time is also

proportional to the number of regions being rendered. This replaces the summation in equation

11.1.

This approach also provides insight into the effect ofthe network used for the image composition

and into the latency of the system.

The model above assumes that only one message can be received at the composition stage at

a time. Communication time is only modelled for this section of the network, since the amount of

data transferred in this section is likely to be considerably higher than at any other point.

An interesting point is the dependence of the latency on the highest common factor of Nregion

and Nshaders when Tshade dominates. Data fiow is smoother when the number of regions in the

screen shares a common factor with the number of shaders, producing a lower latency. \Vhen

this is not the case, often the final few regions have to block at the composition stage waiting

for access to a shader. The requirement for a common factor greater than two is related to the

2HCF = highest common factor

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEM 150

effective length of the pipeline, which determines how much blocking can occur before backing

traffic up all the way back to the source.

For: (Nrender - l)C + Tcomp ~ Trend;, Tshade ~ Ns"haders(NrenderC + Tcomp) :

Latency (without = Nshaders + 2 + Nregio'n T" N C
1\T shade - render
l' shaders

Nshaders + Nregion T + 2 Tshade _ N C
N shade N render

shaders shaders
common factor) =

Nshaders + Nregion T C 'l\T - C N shade + 2Nrender + 2Tcomp - Hrender
shaders

>

Nshaders + Nregion T 11., C 2T

N
shade + i'render + comp

shaders
>

> Latency (with common factor)

For: (Nrender - l)C + Tcomp ::; Trend;> Tshade ~ Nshaders(C + Trend;) :

Nshaders + 2 + Nregion T N C
N

shade - render
shaders

Latency (without

common factor) > Nshaders + Nregion T 2C 2'7' 1I.T C
11., shade + +.L rend; - H render
l' shaders

Nshaders + NregionT 2T (N 2)C

N
shade + rend; - render -

shaders
>

> Latency (with common factor)

11.6 Conclusion

This chapter examines the effects of different pipeline variations on cycle time and latency. Latency

is a value that is not used frequently for performance analysis and a number of interesting effects

are uncovered during the analysis process.

Synchronization delay results in ageing of values, increasing their latency while not accom­

plishing any significant work. Delaying production of values, using the delay time to improve the .

result or adding feedback to the pipeline, improves the latency without adversely affecting cycle

times.

The slowest stage in a pipeline has a significant effect in the overall performance and is an ideal

candidate for further parallel decomposition. Synchronization delay causes all processes before the

slowest process in the pipeline to inherit its delay as their contribution to the latency. Ideally the

slowest process should be placed at the front of the pipeline \vhere possible, or the number of

stages before the slowest process should be minimized.

Buffering can be introduced into the pipeline to smooth flow where processing times at the

nodes are irregular. Buffering produces improved cycle times, but can increase latency due to the

extra stage. In some cases, operating conditions do exist where an improvement in latency can be

attained.

The use of additional parallelism within the pipeline can result in improvements in both cycle

time and latency. The effects of the communication network need to be carefully considered in this

case. Replication of the pipeline produces substantial improvement in the cycle time as the number

CHAPTER 11. ANALYSIS OF THE OUTPUT SUBSYSTEi\;f 151

of pipelines increase. Very little change occurs in the latency value. Performance improvement is

only obtained until the communication time dominates the other variables.

_Use of Analytical Si:nulation on pipelines found in virtual reality systems provides resu~ts that

agree with values quoted for those systems. Analytic~l'simulation is able to improve on the results,

examining the effects of factors such as communication times, and producing values for metrics

such as latency. The values obtained indicate the change in performance that can be expected for

an additional investment in hardware.

Chapter 12

Analysis of the world modelling

components

The .manner in which a world is modelled on a virtual reality system is very much dependent on

the nature of the world, and on the requirements on the model. Nevertheless an examination of

distributed virtual reality systems (see Chapter 2) reveals anumber of common constructs which

are implemented in a number of standard ways.

The decomposition into parallel components usually results in a process for every object in

the system. Other aspects of the system, for example collision detection, may be implemented

using additional processes. These may also be implemented in parallel within the object processes.

Some systems make use of application processes where process decomposition is according to the

tasks in the system, rather than the structural components. To encompass these variations, the

models in this chapter assume the presence of object processes which each control the behaviour

of a set of one or more objects.

The data representing the world is distributed to the object processes in a variety of manners.

Each object can be responsible for the -data pertaining to itself and must store it locally to the

object process, data can be stored externally possibly at some central point allowing easy access

to the complete database, or the database may be replicated across all participating processors.

In practice the divisions are not so clear cut in existing systems. Variations of these approaches

may be implemented and this blurs the distinctions. In addition, some systems combine a number

of approaches in an attempt to benefit from the positive features of each approach, or because of

the constraints of implementation environment. Other aspects of the virtual reality system such

as access control or physical simulation may be implemented using a different approach to that

used for data distribution.

In an attempt to isolate the effects of the different approaches to providing distributed control

and to distributing data, this chapter begins by presenting simple models of the most common

decomposition approaches. Analysis of these models provides some insight into the merits of the

corresponding approach. These models are examined on a range of network topologies. Since

these models are very general, models of specialized decomposition strategies in virtual reality

152

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COi'vIPONENTS 153

systems are then presented. These models examine enhancements or alternative approaches which

are limited to a specific application or architecture.

12.1 Control distribution methods

This section presents a number of methods for controlling objects in a parallel virtual reality

system. This control may be required to dictate the behaviour of the object in th.e~virtual world,

or it may coordinate a distributed version of an algorithm necessary for the simulation of the

virtual world, such as collision detection or Newtonian mechanics.

A number of simplifying assumptions are made. Each object in the system is assumed to

participate in a common task which can be subdivided without overhead into any number of

identical components which are run in parallel. The variable X represents the processing time

for this task in one of the components, and the variable Y corresponds to time taken to do some

housekeeping (for example calculating changes of position) by each object. The only interprocess

communication required is that needed to share the results of the common task. The input data

is assumed to be up to date and freely available to every process.

12.1.1 Decentralized control

This approach distributes control amongst all of the object processes taking part in solving the

problem. Each object process performs a predefined sequence of events, uninfluenced ~ythe

remainder of the system. This decomposition could be implemented equally well on a SIMD

architecture.

The basic model is as follows:

replicate N

process objectr#

replicate [N-1]

receive SOMEWHERE data

endreplicate

send object# ok

process object#

think X

replicate [N-1]

send objectr[(((N-1)+#+##)%N)+1] data C

endreplicate

receive objectr# ok

think Y

report marker#

endreplicate

CHAPTER 12. ANALYSIS OF THE WORLD 1\WDELLING COMPONENTS 154

The model is similar to those used previously for the message passing decomposition of the

collision detection algorithm (see section 5.3.1). Each object performs part of the shared compu­

taj;ion for period X, sends the result to all other processes and then performs local computation

for a further period Y. In this model, messages are sent sequentially, but ordered such that no

two messages arrive at the destination simultaneously. The model assumes there are sufficient

communication channels to allow this. This model would fit a network with a star topology, where

a central switched hub can connect pairs of processors together for the duration of their commu­

nication. Thus only one message can be sent and only one received per process~ it any point in

time.

Since there is no interaction in this model, latency is ignored. Only cycle time is measured for

the object processes. The cycle time for this model is X + (N - l)C + Y as may be expected,

since the X and Y stages are separated by the step in which N - 1 messages are sent sequentially

by each process.

The decentralized decomposition approach is best suited to systems that are able to send

messages in parallel across a well connected network. A model which implements this enhancement

is shown below:

replicate N

replicate N

process objectr#x##

receive objects##x# data

send object# ok

process objects#x##

receive object# data

send objectr##x# data C

endreplicate

process object#

think X

replicate [N-i]

send objects#x[(((N-i)+#+##)%N)+i] data

endreplicate

replicate [N-1]

receive objectr#x[##+((##+1»#)] ok

endreplicate

think Y

report marker#

endreplicate

Extra send and receive processes are added to model the parallel communication. This model

assumes that there is no contention for communication channels between any two processors.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING CO;.\1PONENTS 155

Analysis of this model gives the value X + C + Y as the cycle time. This is independent of the

number of object processes involved.

_ Taking the approac~ to the opposite extreme, a model using a shared communication medium

such as Ethernet is shown belo\V". -;. r

process medium

receive ANY get

receive [ANY] give

replicate N

process objectr#

replicate [N-i]

receive SOMEWHERE data

endreplicate

send object# ok

process object#

think X

replicate [N-i]

send medium get

send objectr[(((N-i)+#+##)I.N)+iJ data C

send medium give

endreplicate

receive objectr# ok

think Y

report marker#

endreplicate

This model is non-deterministic and performance varies according to the manner in which this

non-determinism is resolved. The results quoted below are for an optimal deterministic variation

of the model. In this model the order in which processes may access the communication medium

is predetermined and fLxed. An optimal ordering for this model corresponds to that given by

creating a grid of the numbers from 1 to N, repeated for N - 1 rows. Traversing this array from

left to right along the upward diagonal gives the order in which process communication should

occur. For example, with four processes, the grid is:

I/, 2/, 3/' 4/,

I/' 2/, 3/' 4/,

I/' 2/' 3/' 4/'

and the communication sequence is 112123234344.

CHAPTER 12. ANALYSIS OF THE WORLD l'yfODELLING COlvIPONENTS

The cycle time for this model is given by:

PC 2': X + Y:

X + Y 2': PC:

where

N(N -l)C

X+QC+Y

p={

Q={

(If)2 if Niseven

(N ;1)2 + N ;1 _ 1 otherwise

3N
2

_ N + 1 if Niseven
4

3(N-l)2 + (N+!) otherwise
4 2

12.1.2 Central control

156

This approach uses an additional process to gather the results of the distributed computation and

redistribute the combined value, as illustrated in the master-slave version of collision detection

described in section 5.3.3. Centralized control makes it easier to vary the number of computational

processes, since they are not aware of each other. The model for a star network is given below:

process mast err

replicate N

receive ANOBJECT data

endreplicate

send master ok

process master

receive mast err ok

replicate N

send object# combineddata C

endreplicate

replicate N

process object#

think X

send masterr data C

receive master combineddata

think Y

report marker#

endreplicate

The cycle time for this system is X + (N + l)C + Y.

The corresponding model, with additional processes to emulate a totally connected network,

CHAPTER 12. ANALYSIS OF THE WORLD lvIODELLING COMPONENTS

is as follows:

replicate N

process masterr#

receive object# data

send master ok

process masters#

receive master data

send object# combineddata C

endreplicate

process master

replicate N

receive ANY ok

endreplicate

replicate N

send masters# data

endreplicate

replicate N

process object#

think X

send masterr# data C

receive masters# combineddata

think Y

report marker#

endreplicate

157

The cycle time is X + 2C + Y, independent of the number of processors. Communication

overhead with this technique is higher than that for the less centralized approach given previously.

The central controller acts as a bottleneck in the system.

The model for this approach implemented on a shared medium is shown below.

process medium

receive ANY get

receive [ANY] give

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS

process mast err

replicate N

receive ANOBJECT data

endreplicate

send master ok

process master

receive masterr ok

replicate N

send medium get

send object# combineddata C

send medium give

endreplicate

. replicate N

process object#

think X

send medium get

send mast err data C

send medium give

receive master combineddata

think Y

report marker#

endreplicate

The cycle time for this model is of the form:

x + Y 2:: (N - l)C: X + (N + l)C + Y

(N - l)C 2:: X + Y: 2NC

158

with an interesting variation for lower relative values of X +Y versus C. Let A1 = 1 ... (N -4),

then for (M + l)C 2:: X + Y 2:: MC, the cycle time is given by X + (2N - M)C + Y.

Another interesting fact about this approach when modelled on Ethernet is that there is not

the N 2 dependence on communication that occurs with the decentralized approach. While per­

formance using central control is worse than that using distributed control for the networks with

better connectivity, central control actually performs better when using a shared communication

medium. The overall amount of communication has decreased with this approach.

The totally connected network used previously is not actually required with this approach.

It would suffice to have only the processor containing the controller connected to every other

processor.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING CmvIPONENTS 159

12.1.3 Central service provider

A single process is used to perform the calculation previously distributed over all the object

processes. This approach appears to remove any<advantage given by the presence of parallel

processes. However this may be appropriate when a task requiring access to combined resources

must be performed, especially if it cannot be easily distributed.

The model showing control flow using a star network topology is:

process master

replicate N

think X

endreplicate

replicate N

send object# combineddata C

endreplicate

replicate N

process object#

receive master combineddata

think Y

report marker#

endreplicate

A delay of N X is incorporated into the central service provider, since X is used to represent

the duration of a portion of the task on each of the 1'1 object processors used previously. Each

object spends time Y on local housekeeping tasks after receiving word that the central taSk-Is·

complete.

The cycle time of this model is:

Y2:(N-1)C+NX: C+Y

(N-1)C+NX2:Y: NC+NX

Expanding this model to a totally connected system has the expected benefit of producing a

constant communication time. The cycle time is:

NX2:C+Y: NX

C+Y2:NX: C+Y

CHAPTER 12. ANALYSIS OF THE WORLD j\,fODELLING C01'vIPONENTS

I Totally connected I Star topology I Bus (Ethernet)

Decentralized 1 N N2
-

Central control 1 < N N

Central server 1 N,l N,l

Table 12.1: Control distribution dependency on N by C

and this corresponds to the model given below:

replicate N

process masters#

receive master go

send object# combineddata C

endreplicate

. process master

replicate N

think X

endreplicate

replicate N

send masters# go

endreplicate

replicate N

process object#

receive masters# combineddata

think Y

report marker#

endreplicate

160

Since only one process is communicating, the results for the system running on Ethernet are

the same as for the star topology.

12.1.4 Summary

Table 12.1 shows the relationship between the number of object processes (N) and the commu­

nication time (C). The relationship between N and component processing time (X) is shown in

Table 12.2. The value shown is the highest power of N in a term involving each variable (C and

X) in the expression for cycle time.

The decentralized approach is well suited to networks of processors that are capable of carrying

the relatively large numbers of messages that are involved. As network limitations start to become

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 161

Totally connected Star topology Bus (Ethernet)

Decentralized 1 1 1

Central control 1 - 1 1

Central server N
~<

N N

Table 12.2: Control distribution dependency on N by X

significant, solutions which may have been less attractive start to perform sign-ificantly better,

particularly if transmitting a combined result has a similar cost to transmitting each of the original

va1ues. In cases where communication is expensive and time required for the combined task is

small, it becomes worthwhile to abandon q,ny attempt at parallelism, and to use a central service

provider.

12.2 Data distribution methods

The approaches to data distribution are examined in a similar manner to those for control distri­

bution. The assumptions in this case are that each process needs no externally supplied control

and that the variable Y represents the time required for housekeeping during each cycle of the

object process. Only the time to fetch data is of interest, so the processing delay in the object,

previously represented by X, is ignored.

There are a number of enhancements to the data distribution approaches which are notp'ar­

ticularly amenable to modelling. These involve the use of techniques such as dead-reckoning and

updating only selected areas of databases. These often produce only approximations of the results

achieved by more rigorous methods, although they may be sufficient for the purposes required.

These variations are analysed in section 12.3, together with more complex combinations of these

skeletons.

12.2.1 Distributed databases

In this scenario each object contains the data relating to itself. All objects in the system must

explicitly request data from all of the others to build up a complete picture of the world.

The model for this approach is almost identical to the model of decentralized control (see

section 12.1.1), once the delay for X is removed. The results for that analysis apply with X = o.

12.2.2 Centralized database

The client-server approach represents a move toward a centralized database. In section 12.1.2 this

was successful in improving the performance of the control skeJetons under conditions of limited

connectivity. The objects are now required to both fetch data from the central server and to

update the server when changing the information. The model for a completely connected network

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS

is shown below.

process server

receive REQ SOURCE

think Y

if SOURCE != update

send SOURCE snd

endif

replicate N

process serverr#

receive client# MESSAGE

if MESSAGE == request

send server servers#

end if

if MESSAGE != request

send server update

end if

process servers#

receive server snd

send client# data C

process client#

send serverr# request C

receive servers# data

send serverr# update ~

report marker#

endreplicate

Analysis gives the performance of this model (for N clients) as :

C >}?> C .
N-2 - - N-l·

~>Y>C.
N-l - - N·

!2>y.
N - .

2NY

(2N -l)Y +C

(N + l)Y + 2C

3C+Y

162

This solution holds for values of N > 2. Similar results hold for smaller values of N, as shown

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING C01HPONENTS

below:

For N = 1:

For N = 2:

Y~C:

C~Y:

Y~C:

C ~ Y ~~:

£: > y.
2 - .

2C+2Y

3C+Y

4Y

2C+3Y

3C+Y

163

Thus, when server access times dominate, the performance depends on the number of clients.

For slow network communication, the performance is constant and independent of the number of

clients.

The model for the star network follows:

process serverrec

receive ANY MESSAGE

if MESSAGE == update

send server update

end if

if MESSAGE != update

send server ANY

endif

process sendrepl

receive server REPL

send [REPL] data C

process server

receive serverrec MESSAGE

think Y

if MESSAGE != update

send sendrepl MESSAGE

endif

CHAPTER 12. ANALYSIS OF THE vFORLD MODELLING COMPONENTS

replicate N

process client#

send serverrec request C

receive sendrepl data

send serverrec update C

report marker#

endreplicate

164

As might be expected, the cycle time for this model shows a linear dependence on N when

communication dominates. The cycle time is given by (for N > 1):

y 2: C: 2NY

C 2: Y: 2NC

The results for N = 1 are the same as for the completely connected network, as might be

expected.

Finally the Ethernet version:

process medium

receive ANY get

receive [ANY] give

replicate N

process forclient#

receive client# MESSAGE

send server MESSAGE

process serversendforclient#

receive server go

send medium get

send client# data C

send medium give

endreplicate

process server

receive SOURCE MESSAGE

think Y

if MESSAGE == request

send serversend[SOURCE] go

endif

CHAPTER 12. ANALYSIS OF THE WORLD l'vl0DELLING COMPONENTS

I Totally connected I Star topology I Bus (Ethernet)

Distributed databases 1 N N 2

Client-server 1 - N N

Table 12.3: Data distribution dependency on N by C, for large C

replicate N

process client#

send medium get

send forclient# request C

send medium give

receive serversendforclient# data

send medium get

send forclient# update C

send medium give

report marker#

endreplicate

The cycle time is (for N > 2):

Y ~ 3f:
3f ~Y:

2NY

3NC

165

The results for N = 1 are as for the other two models in this section, while for N = 2 they are:

Y > 3C.
- 2 .

3C > Y > C:
2 - -

3C >y.
2 - .

4Y

5C+Y

6C

The dependence on N is linear, with respect to both communication and server access times.

12.2.3 Summary

The relationships between the two decomposition strategies examined in this section are summa­

rized in Tables 12.3 and 12.4. They show the dependency on N by each variable in the system

when that variable dominates. The two variables concerned are the communication time (C) and

the server response time (Y).

As with the control distribution strategies (section 12.1), the totally distributed approach

pelforms best with a well connected network. Simpler networks benefit from the trade-offs offered

by the client-server approach. Communication costs may be higher in some cases for the client­

server approach which transmits large amounts of data in single messages. Lower communication

CHAPTER 12. ANALYSIS OF THE WORLD l'vIODELLING COMPONENTS 166

I Totally connected I Star topology I Bus (Ethernet)

Distributed databases 1 1 1

Client-s~rver N- N N

Table 12.4: Data distribution dependency on N by Y, for large Y

overheads, and the possibility of selective data transmission for some applications, may make this

approach an attractive alternative.

The next section examines specialized .decomposition techniques used in virtual reality systems,

relating to the manner in which objects are controlled and data is distributed. These techniques

also influence the manner in which collisi<;m detection, physical modelling and access control is

implemented. The performance of each approach is analysed in order to identify the merits of

that approach.

12.3 Techniques employed in virtual reality systems

The previous sections examine performance aspects of some 'common techniques for distributing

control and data. The remainder of this chapter investigates the performance of decomposition

techniques which are specializations of these approaches, or' that are specific to particular archi­

tectures.

Results of the performance analyses are summarized at the end of this section to fa<;.ilitate

comparison.

12.3.1 Dead-reckoning

Dead-reckoning is extremely useful in distributed virtual reality systems, being used for data

distribution in systems such as DIS (NPSNET), DIVE and applications of the MR Toolkit.

In dead-reckoning, low communication bandwidths are compensated for with increased pro­

cessing by each entity in the system. Instead of just transmitting position information, additional

information, such as the direction of movement and speed, is included. This information is used by

each entity to continuously update its estimate of the position of the others. Fewer updates can be

sent, since intermediate values can be "dead-reckoned". Objects calculate their own dead-reckoned

position and issue updates when this diverges substantially from their actual position.

The model below implements a simple form of dead-reckoning. Assuming N objects, each

which takes time X to recalculate the position of one object, the model issues an update every K

cycles. The only restriction on communication is a delay of C on the part of the sending object.

Each object has a receiving process which, one can imagine, caches the latest position of the

various objects for use with the dead-reckoning calculation.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS

I Variable I Interpretation

C Time required for communication

K. Number of cycles betwe~n updates

N Number of objects in the system

X Time for sequential processing in each object process

replicate N

process receiver#

receive FROM THING

if FROM == object#

send object# latest

endif

process object#

init

assign COUNT 0

endinit

report rnark#

send receiver# whatsup

receive receiver# latest

replicate N

think X

endreplicate

assign COUNT [COUNT+l]

if COUNT == K

replicate [N-i]

send receiver[##+((##+l»#)] update

think C

endreplicate

assign COUNT 0

endif

endreplicate

167

Measuring latency is difficult in this case because it is not well defined. The time between

changes in the position of the objects is the same as the cycle time in this case, but these positions

are not completely accurate, due to the guesswork inherent in the dead-reckoning. The average

cycle time is N X + ¥C, the communication overhead benefits from the less frequent updates,

but a price is paid in a higher computational overhead. This approach would be suited to situations

in which communication bandwidth is more expensive than processor time.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COivIPONENTS 168

The model above assumes a star topology. Dead-reckoning is well known for its use in NPSNET,

which uses large networks with relatively limited bandwidth. The model below examines dead­

re~koning in a more re~tricted environment, using a snared communication medium.

I Variable I Interpretation

C Time required for communication

K Number of cycles between updates

N Number of object processes in the system

X Time for sequential processing in each object process

process medium

receive ANY get

receive [ANY] give

replicate N

process receiver#

receive FROM THING

if FROM == object#

send object# latest

end if

process object#

init

assign COUNT 0

endinit

report mark#

send receiver# what sup

receive receiver# latest

replicate N

think X

endreplicate

assign COUNT [COUNT+i]

if COUNT == K

replicate [N-i]

send medium get

think C

r ~

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS

send receiver[##+«##+l»#)] update

send medium give

endreplicate

assign COUNT 0

end if

endreplicate

169

The cycle time for this model shows a higher order dependence on the com~uniCation time.

The values are given below:

NX ~ (NJ/)2 C:

(Nj{l)
2
C ~ NX:

As long as N is relatively small and the update interval is sufficiently large, the cycle time

scales linearly with the number of processors. As N increases, the factor (N~1)2 C will dominate

at some point, causing an N 2 dependence in the cycle time. The only way to counteract this is to

increase the interval between updates, which may affect the quality of the simulation.

Dead-reckoning improves the cycle time. It allows a linear dependence on the number of

processes in the system for shared media, provided the number of processors does not grow beyond

a certain threshold.

12.3.2 Token passing

This approach addresses the problems of distributed control and contention for shared resources

within virtual reality systems. Control of shared databases and the resolution of disputes becomes

the responsibility of the process holding the token.

The use of token passing is illustrated in an application written for the MR Toolkit. This

application allows people at different physical locations to playa game of handball. A number of

bricks, which disappear on contact with the ball, are placed at the front of the virtual court. The

colour of the ball corresponds to the player whose turn it is to hit the ball. Each player takes it

in turn to hit the ball and have it reflect off the front and side walls and strike the bricks. Each

MR master process corresponds to a user, complete with HMD, dataglove and trackers. The ball

is used as a token to transfer responsibility for movement and collision detection between master

processes.

The user whose turn it is to hit the ball is the owner of the ball. The corresponding master

process simulates the ball motion and performs the collision detection to cause reflection off walls

and hand. After deflection off the hand, ownership is passed on to the next player.

The access control in this application is very simple and is a function of the application, in

that no specialized functions provided by the system for this purpose are used. The round robin

passing of control of the object in this situation is only suitable in the case of a single shared

resource being shared equally amongst all the contending processes.

A simple model implementing the round robin approach to control of the system is shown

below. Each master process needs to perform a certain amount of work, modelled by the delay of

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 170

Y. Each master process also takes it in turn to control other objects for N cycles which takes an

additional time X. The time taken to pass the token on to the next process is represented by C.

One process is charged with creating and insetting t<h~ token into the system. The model assumes

Jvf master processes in the system.

I Variable I Interpretation

C Time required to communicate the token

The number of processes being modelled
~ ~ ~

M

N The number of sequential cycles for which the token is held

X Time taken for additional work while holding the token

Y Time taken for standard processing during each cycle

Z Potential extra work that can be done while not holding the token

replicate M

process master#

init

if # == M

send master1 token

endif

endinit

report marker#

receive master[((((#+M)-2)'l.M)+1)] token

replicate N

think X

think Y

endreplicate

send master[(#'l.M)+1] token C

replicate [N*(M-1)]

think Y

II think Z

endreplicate

endreplicate

As can be expected, the system is dominated by the process carrying the extra load and this

limits the average performance of each process. The average cycle time is irC + X + Y. The

processes that are not carrying any extra load can run ahead but must block eventually when

they receive the token. This blocking period could be usefully used, either by splitting the task

modelled by X into smaller ones which could be run in parallel, or by performing additional work

on the free processors. The amount of extra work that can be included when not holding the

token can be found by including the variable Z into the above model, to soak up the extra cycles.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COl'vIPONENTS 171

As long as Mjj1-C + eM -1)X ;::: eM -1)Z, the average performance of the system is unaffected.

When Z dominates, the average cycle time becomes (M~l)NC + Z + Y. This could be viewed as

a situation in which the process holding the tokenpe.rforms less work than the others. This has

application where interactive performance is required of only one of the processes at a time.

The model above makes use of synchronous communication, where processes block once their

work is complete and they are waiting for the token. This would apply where all processes have to

run the same number of cycles. This is applicable to distributed access control usiJ;lg token passing

where the extra work for the process is probably quite small and the major overhead arises from the

communication costs in transferring the token. For control distribution, an asynchronous model

is required that will allow processes to run ahead of the one holding the token and performing the

extra work. Such a model is presented below:

I Variable I Interpretation

C Time required to communicate the token by sending process

M The number of processes being modelled

N The number of sequential cycles for which the token is held
-.

Y Time taken for standard processing during each cycle

replicate M

process token#

init

if # == 1

assign TOK 1

endif

if # != 1

assign TOK 0

end if

endinit

receive SOMEONE COMMAND

if COMMAND == token

assign TOK 1

endif

if COMMAND == passon

send token[(#i.M)+l] token

assign TOK 0

endif

if COMMAND == read

send SOMEONE TOK

endif

CHAPTER 12. ANALYSIS OF THE WORLD AIODELLING COMPONENTS

process master#

init

assIgn COUNT 0

endinit

report markerstart#

sendnotrace token# read

receive token# TOK

if TOK == 1

think Y

think Y
assign COUNT [(COUNT+l)Y.N]

if COUNT == 0

sendnotrace token# passon

think C

assign COUNT 0

end if

endif

if TOK == 0

think Y

endif

report markerend#

endreplicate

172

To simplify the analysis, the extra work when holding the token is represented as an extra

delay of period Y. Communication time is modelled by a delay of period C in the source pro~es; ..
The cycle time of this model is given by:

(K + I)Y ~ C ~ KY: (2MN+M-l-K)Y+C
2MN+M N 1 K

(where K = O . .. 2MN + M - 2N - 2)

C ~ (2MN + M - 2N -1)Y: 2Y + Q. N

Unless communication is extremely slow, the average performance indicates that the load is

successfully being balanced, particularly as the number of processors increases. Transient analysis

shows instantaneous values of the higher load occurring when the process is holding the token.

The major reason for the token passing mechanism in the MR Toolkit's handball application is

to provide interactive performance to the owner of the ball, even if equivalent performance cannot

be guaranteed elsewhere. This effect is not obvious from the results presented so far. The models

look at average performance which hides any localized performance enhancements.

The reason for using token passing to distribute collision detection and physical simulation is

that the time required to communicate these results from other processes has an impact on the

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COj\;[PONENTS 173

interactive performance. For a token passing mechanism to be considered, the communication

time would have to be much larger than the time required to compute the results locally. The

mwel below represents the handball application fOll~d in the MR Toolkit. It uses asynchronous

communication with dead reckoning - some information is updated every five cycles, while other

information is only updated every ten cycles. Information is updated only by the process holding

the token.

I Variable I Interpretation

C Time required to communicate the token

M The number of processes being modelled

N The number of sequential cycles for which the token is held
y Time taken for standard processing during each cycle

generate zero1 -

replicate M

process recmaster#

init

assign GOTUPDATE no

endinit

receive ANYWHERE ANYTHING

if ANYTHING == update

assign GOTUPDATE yes

end if

if ANYTHING == latest

if GOTUPDATE == yes

send ANYWHERE update

endif

if GOTUPDATE == no

send ANYWHERE noval

endif

assign GOTUPDATE no

endif

process havetoken#

init

assign TOK 0

assign TIME 0

endinit

receive SOMEONE COMMAND

CHA.PTER 12. ANA.LYSIS OF THE WORLD iHODELLING COMPONENTS

if COMMAND == update

assign TOK [i-TOK]

assign TIME 0

end if

if COMMAND == read

send SOMEONE TOK

if TOK == 1

assign TIME [TIME+i]

end if

send SOMEONE TIME

end if

process mastermedium#

receive master# DESTIN

think C

send DESTIN update

process master#

init

assign COUNT 0

if # == M

send havetokeni update

endif

endinit

report marker#

send havetoken# read _

receive havetoken# TOK

receive havetoken# TIME

if TOK == 1

think Y

think Y

assign COUNT [(COUNT+i)%10]

if [COUNT%5] == 1

replicate [M-1]

send mastermedium#

recmaster[##+«##+i»#)]

endreplicate

endif

174

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS

if [COUNT%10] == 1

replicate [M-1]

send mastermedium#

recmaster [##+ ((##+1) >#)]

endreplicate

endif

if TIME == N

send havetoken# update

send mastermedium# havetoken[(#%M)+1]

endif

report zero#

end if

if TOK == 0

send recmaster# latest

receive recmaster# VALUE

if VALUE == update

report zero#

endif

think Y

end if

endreplicate

175

This model allows processes transmitting messages across process boundaries (tokens and up­

dates) to do so asynchronously by passing the message to a buffer process. This simulates t.he .

delay in transmitting across the medium after allowing the original process to continue. The

buffer can only hold one message at a time, after which the transmitting process blocks. This is

considered sufficient for the analysis. More detail would require additional assumptions about the

communication medium which the system is using.

This model also assumes that the time taken to simulate ball motion is approximately equiv­

alent to the time required to animate the user. The processing time with the token is 2Y, or Y

without the token. The performance measure of interest is the time between the updates of the

ball position that occur at points marked by report markers in the model.

The number of periodic actions within the system (of period 5, 10, N x M) makes solving the

model a complex process and the resulting solution excessively convoluted. For the purposes of the

performance analysis, samples of the solution under various conditions are sufficient to illustrate

the various behavioural characteristics.

A typical cycle for two processes (M = 2) and N = 10 with Y ~ 5C is as follows:

2Y (9 times) 13Y 6Y lOY lOY+C

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 176

The delay between updates is well controlled when the token is held, shown by the sequence

of 2Y s. Performance drops off by a far greater amount when the token is passed on, resulting in

an_average of about llY between updates. T~e length of the cycle without the token lasts for a

period of 39Y + C which seems to imply an asymm:Hry in the system (since this is well over half

of the total token cycle). It turns out that the difference is made up of a period in which nobody

holds the token but in which it is still being transferred. The slower the communication, the more

noticeable this phenomena becomes. Since the processes are cycling at a constant rate, the time

between updates increases if the token is passed frequently. The factor of C in the cycle time

above occurs because of the double update every 10 cycles which overflows the communication

buffer. With a large enough buffer, time between updates would be dependent only on Y.

Removing the dead-reckoning operations and transmitting updates every cycle produces the

following cycle of values for the operating conditions used previously:

5Y (9 times) 8Y C (8 times) 2C 13Y

The cycle time while holding the token has risen due to the blocking resulting from attempting

to communicate. The average time between updates has risen, from about 4.8Y when using dead

reckoning, to 5.8Y using only the token passing mechanism:: The inter-update time when not

holding the token has dropped to about 6.5Y.

The value of token passing for ensuring interactiYe performance levels on the process holding

the token in the presence of slow networks is demonstrated with these models. A measure of

dead-reckoning is beneficial, since off-processor traffic must not saturate the communication links.
- ... -."

12.3.3 Broadcasting

Combined with dead-reckoning is the notion of broadcasting. Updates are transmitted in a single

message, which is received by all other entities in the system.

Broadcasting tends to require a dedicated network, since it is considered to be an undesirable

communication technique when sharing a communication medium with other applications. It

impacts on the performance of other machines attached to the same network, by forcing them

to process packets that are not intended for them. It also sends messages to every node on the

network that may only be applicable to a smaller subset.

The model below implements broadcasting on Ethernet. Each process has some sequential

processing time, X, before sending an update to all other processes. A message from every other

process is then required before the cycle is repeated.

I Variable I Interpretation

C Time required for communication

N Number of object processes in the system

X Time for sequential processing in each object process

process medium

receive ANY get

receive [ANY] give

CHAPTER 12. ANALYSIS OF THE lllORLD }vIODELLING COMPONENTS

replicate N

replicate [N-1]

process object[##+((##+1»#)]f~~m#

receive broadcast# update

send object[##+((##+1»#)] update

endreplicate

process broadcast#

receive object# update

send medium get

think C

send medium give

replicate [N-1]

send object[##+((##+1»#)]from# update

endreplicate

process object#

report mark#

think X

send broadcast# update

replicate [N-1]

receive INCOMING update

endreplicate

endreplicate

177

The results show an improvement on the similar system presented under the generic control

distribution models.

C~X: Cycle time = N C

X~C: Cycle time = X + (N - l)C

The dependence on C is now linear in N, rather than the N2 relationship for the non broadcast

version.

The model below combines dead-reckoning with broadcasting over Ethernet.

I Variable I Interpretation

C Time required for communication

J{ Number of cycles between updates

N Number of object processes in the system

X Time for sequential processing in each object process

CHAPTER 12. ANALYSIS OF THE 1VORLD jvIODELLING COMPONENTS

process medium

receive ANY get

receive~[A~Y] give

replicate N

process receiver#

receive FROM THING

if FROM == object#

send object# latest

end if

process object#

init

assign COUNT 0

endinit

report mark#

send receiver# what sup

receive receiver# latest

replicate N

think X

endreplicate

assign COUNT [COUNT+1]

if COUNT == K

send medium get

replicate [N-1]

send receiver[##+«##+1»#)] update

endreplicate

think C

send medium give

assign COUNT 0

endif

endreplicate

The cycle times achieved with this model are:

NX;:::: NilC:

Ni1C;::::NX:

NX+ lC K

178

The use of broadcasting with dead-reckoning removes the upper limit for the linear dependence

on N. The local processing time has increased against the values found for the broadcast model

without dead-reckoning, while the communication time is reduced further by using less frequent

updates.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING C01V[PONENTS 179

12.3.4 Multicasting

Multicasting is a variant on broadcasting without some of its disadvantages. Multicast messages

can be addressed to a.group of machines. In this way a single message can be used to distribute
"~ ~~

an update to a set of processes. Multicasting is becoming increasingly popular, particularly with

large systems where the many participants are distributed over large areas. Multicasting is used

in such systems as NPSNET, and DIVE.

A simple model of multicasting is to treat each multicast group as a broadcast system that
r ~ ~

does not affect the other groups. This assumes that there is no overlap in any of the groups; each

ptocess communicates with only one group. In that case the results for broadcast apply, with a

smaller value for the number of processes.

The effectiveness of multicasting depends on the coherence of the objects in a particular sim­

ulation, an analysis better suited to a more statistical approach. Simulations are quoted to have

shown a reduction of 90% in traffic [Mac95a]. It is still beneficial to examine the use of multicas­

ting in simple models, to gain some insight into the relationship between performance gains and

resources required.

_ NPSNET is used over the wide area network of the Internet. As such, message propagation is

not completely equivalent to any used in the models given previously in this section. The physical

size of this network means that it is not feasible to attempt to use synchronous communication.

The complexity of the network prevents testing for contention on the net\vork. A more accurate

model may be to treat the network as a black box into which a message disappears and reappeJus

at some other point some time J(later. To model bandwidth limits, we assume the ability to carry

L messages at any time. Each process takes a time interval represented by C to send a message.

This runs concurrently with K, and so we also assume C < K.

Given that a link is established between broadcasting and multicasting, this network model

considers only the broadcasting issues and does not investigate the use of grouping.

I Variable I Interpretation

C Communication overhead in transmitting a message

K Propagation delay for a message through the network

L Bandwidth of the network (number of messages that can be carried)

N Number of object processes in the system

X Time for sequential processing in each object process

generate mark2 - mark1

assume K > C

replicate L

process message#

receive broadcast ready

receive broadcast FROM

CHAPTER 12. ANALYSIS OF THE WORLD lVIODELLING COMPONENTS

think K

send broadcast[FROM] update

- endreplicate

process broadcast

replicate L

send message# ready

receive SOMEONE NUMBER

send message# NUMBER

endreplicate

replicate N

replicate [N-1]

process object[##+«##+1»#)]from#

receive broadcast# update

send objectreceiver[##+«##+l»#)] update

endreplicate

process broadcast#

receive MESPROC update

replicate [N-1]

send object[##+«##+1»#)]from# update

endreplicate

process objectreceiver#

receive ANY ANYTHING

if ANY == object#

send object# latest

endif

process object#

report mark#

send objectreceiver# wotyagot

receive objectreceiver# latest

think X

send broadcast #

think C

endreplicate

180

Trends in the latency between two markers in different processes are summarized in the fol-

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 181

lowing table:

II L=l L»l
-

N=2
2K~X+C: 5K "< K~ L(X +C): 2K

X+C~ 2K: 2C+2X+K X+C~K: 3(X + C)

N>2
NK~X+C: 7K

-
X+C~NK: 2C+2X +K

More detailed examination of the latency values gives the following information: ~

• For constant numbers of object processes:

- Latency is largest for small values ot L at constant N.

- Drop off in latency is initially extremely rapid as L increases and slows once the band-

width is no longer a major influence.

- With relatively large values of X + C latency initially increases as L increases due to

the additional buffering offered by the greater bandwidth. Processes can place more

values on the network before congestion occurs ana they have to block. Latency drops

rapidly when bandwidth increases and no further congestion occurs.

• For constant bandwidth:

- \Vhere K is the dominant variable, the latency is dependent only on K, and increases

with the number of object processes.

- Where X + C is dominant, the value is dependent on X + C, and becomes independent

of N.

Thus for large networks (K » X + C), the major factor influencing latency is the propagation

delay. It is important to have sufficient bandwidth to carry the total load of the system. Very"

significant performance loss can result when this is not the case. Severe increase in latency occurs

when several messages are queued in the network when congestion occurs.·Where computation

time is greater than the propagation delay, latency is unaffected by network performance issues.

\Vhile these trends may not be unexpected to anyone with an understanding of network be­

haviour, this analysis does provide increased detail on the dependence of latency on the variables

in the system. The effects of message queueing on the latency is significant, and is not particularly

easy to observe in large networks.

12.3.5 Object servers

The use of separate processes for each object in the system can require substantial resources if

each process is to be housed on a separate processor. Usually a number of processes are run

concurrently on a single processor. This can be inefficient since it leads to replicated code and

the need to maintain separate contexts for each process. In some systems such as AVIARY and

RhoVeR, there is support for a single process to run the code corresponding to a group of object

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING C01'vIPONENTS 182

processes. This reduces system resources required, decreases the quantity of context switching

and allows migration of object processes from one object server to another for load balancing.

A model used to investigate the communications implications of these object servers is shown

belOw. It assumes th.e presence of M processo~s each with N processes. Communication tirhe is K

for off-processor communication, and C for communication between processes local to a processor.

The medium model is that of Ethernet with a token passing mechanism included as an additional

enhancement to reduce the model's complexity. This enforces a round robin approach to access

to the medium. Local (intra-processor) communication time is assumed to be SIllil,ll eompared to

the other variables.

I Variable I Interpretation

C Time required for communication between processes on the same processor

K Time required for communication between processors

N Number of object processes on each processor

M Number of processors in the system

P Number of processes in the system (N.M)

X Time for sequential processing in each object process

process medium

replicate [M*N]

receive object# get

receive object# give

endreplicate

replicate N

replicate M

process objectr[((#-l)*M)+##]

replicate [(N*M)-l]

receive SOMEWHERE data

endreplicate

send object[((#-l)*M)+##] ok

process object[((#-l)*M)+##]

think X

replicate [(M*N)]

if [(((N*M)+###)-##)'l.M] != 0

send medium get

send objectr[###] data K

send medium give

end if

CHAPTER 12. ANALYSIS OF THE WORLD AfODELLING COi\!IPONENTS

2 3
M

4 5

-
2 2K

3 5K

4 6K+2C 10K

5 17K

6 14K + 2C 20K+C

7

8 26K +2C 42K+C

9 47K +4C

10 42K +2C 72K+C

11

12 62K +2C 86K +9C 98K +4C

Table 12.5: Cycle times for X dominant

if [«(N*M)+###)-##)%M] == 0

if [«#-l)*M)+##] != ###

send objectr[###] dataC

endif

end if

endreplicate

receive objectr[«#-l)*M)+##] ok

report marker[«#-l)*M)+##]

endreplicate

endreplicate

6

26K~

1l0K + C

183

'When X dominates over the inter-processor communication time (K), the results are as shown

in Table 12.5 (A common term of X in each value is not shown).

When K dominates the situation is as shown in Table 12.6.

The system depends quite heavily on the inter-processor communication time, even when local

computation is substantial. Examining the coefficient of K, for equal numbers of processes, it

can be seen that halving the number of processors in the system does not quarter (or even halve)

the communication factor, as might be naively expected given the normal square relationship

between number of processors and communication time on a shared communication medium. The

difference, of course, arises from the presence of more than one communicating process on each

processor. The coefficient (for K dominating the other variables) is given by (N M)2 - N2 M, or

p2 _ N P when phrased in terms of the number of processes (P = N M). The dominant term is

still dependent only on P, and so the advantages of sharing processors are limited, for N < P.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COivIPONENTS 184

I NxM

M
2 3 4 5 6

-
2 X+2K "<

3 6K

4 8K 12K

5 20K

6 18K 24K+C 3fiK~

7

8 32K 48K+C

9 54K +4C

10 50K 80K+C

11

12 12K 96K +9C 108K +4C 120K + C

Table 12.6: Cycle times for K dominant

12.3.6 Synchronous databases

The problem of keeping the distributed world representation consistent across all machines was

addressed in an early version of DIVE.

Initially database locking was used to ensure consistency. The database was managed "by

the ISIS toolkit [Bir90). Changes to objects in the database required changes to be distributed

to all processes. Access control for the database was managed by distributed locks. The ISIS

toolkit provides facilities for fault tolerant distributed databases, amongst other things. As used

in DIVE it uses a multicast protocol to distribute changes and set locks. All nodes in the system

are guaranteed to have seen the same sequence of events, which \vhile good for system integrity,

provides some limits on scalability. A limit of about ten peers is given as an upper bound for a
DIVE system.

The mechanism involved in maintaining the database is modelled below. Each process spends

a period X calculating updates, before distributing the change to other members of the database.

It is assumed that one multicast message is enough to allow processes to choose the one that gains

control of the database and sets the lock. Once a process has locked the database, it can send

an update and then an unlock message. The locking is controlled in the model by the process

representing the medium. Each process is allowed to have a turn. Since the system is symmetrical

the actual order is not important.

I Variable I Interpretation

C Time required for communication between processors

N Number of object processes in the system

X Time for sequential processing in each object process

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS

process medium

replicate N

rec~ive application# get -

receive application# give

replicate N

if # != ##

receive localdbmanager## get

receive localdbmanager## give

endif

endreplicate

receive application#

receive application#

receive application#

receive application#

endreplicate

replicate N

process localdbmanager#

replicate N

if # != ##

get

give

get

give

receive application## DATA

think C

if DATA == lockreq

send medium get

send application## lockrep C

send medium give

receive application## update

receive application## lockrel

end if

endif

endreplicate

process application#

report reports#

think X

II will block until lock established

II send all others lock request

send medium get

185

CHAPTER 12. ANALYSIS OF THE 'WORLD MODELLING COMPONENTS

replicate N

if # != ##

s~nd localdbmanager## lockreq

endif

endreplicate

think C

send medium give

-.:, ~

II receive reply from all others

replicate N

if # != ##

receive localdbmanager## lockrep

end if

endreplicate

II send all others update

send medium get

replicate N

if # != ##

send localdbmanager## update

endif

endreplicate

think C

send medium give

II send all others lock release

send medium get

replicate N

if # != ##

send localdbmanager## lockrel

endif

endreplicate

think C

send medium give

endreplicate

Cycle times for this system are:

(N2 + N - 2)C 2 X: ((N + 1)2 - l)C

(1'12 + N - 2)C ::; X: X + (1'1 + 2)C

186

The N 2 dependence in the coefficient of C for large values of C can be traced to the messages

sent by each process acknowledging the setting of the lock. These cannot be multicast. Removing

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COAJPONENTS 187

this stage from the model produces the cycle time shown below:

3(N - l)C ~ X: 3NC

x ~ 3(N -l)C:

Communication in DIVE with SID uses an enhancement to multicast protocols. By taking

advantage of the multicast environment, processes can watch for specific information for a short

period before actually requesting it. In situations where frequent access to tl;la s~me item is

required, this could conceivably reduce traffic due to requests and repeated replies.

12.3.7 Computation on the server

The client-server approach for data and control distribution is employed in a number of virtual

reality systems. It is usually used to store data to which each client process requires equal access.

A concept introduced in Cyberterm is the ability to run programs (agents) on the server. This is

an advantage when communication bandwidth is limited. Instead of transferring the data to the

process, the process is relocated to the source of the data.

-The idea of a client-server system where the server is c<l.pable of performing computational

tasks, as well as just providing access to a shared database, is explored in the model below. The

net\york model is that of the star topology, which may be a fair representation of a Cyberterm

system interconnected via modem. The model assumes the presence of N clients requesting data

only, which requires a processing time of Yon the server, and AI clients running an agent pn the

server, \vhich requires an additional time VV on the server.

I Variable I Interpretation

C Time required for communication between processes on the same processor

N Kumber of data-only clients in the system

M Number of clients requiring processing on the server

X Time for sequential processing in each object process

Y Time required to fetch data on the server

W Time required to perform requested processing on the server

process server

receive CLI REQ

if REQ == lJork

think W

endif

think Y

send [CLI] rep C

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COA;fPONENTS

replicate N

process reqclient#

report.rep#

think X

send server req C

receive server rep

endreplicate

replicate M

process workclient#

think X

send server work C

receive server rep

endreplicate

The performance of this system is given by:

2(M + N - I)C + (M -1)W + (M + N -1)Y ~ X:

Cycle Time = 2(M +N)C+MW + (M +N)Y

X ~ 2(M + 1'1 - l)C + (M - l)W + (M + N -1)Y:

Cycle Time = X+2C+W+Y

188

The dependency on both Wand Y when the server is not completely loaded (for large X) is an

interesting case which benefits from further investigation. One might expect the factor of W not

to affect the performance of the data-only clients, particularly if the server is not busy. However

the cycle time for both clients in the steady state is in fact the value given above. Investigation

of the system for N = 1, M = 1, shows that a smaller cycle time can in fact be experienced -by

the data only clients, but only during a _particularly unstable transient. As long as the data-only

client can get its request in ahead of a client running the agent, it can benefit from an improved

performance without cost to the one running the agent. The transient is manifested only if the

initial non-deterministic choice of the server is for the data-only client, and lasts only for a short

period determined by the value of X.

The approach can be modified to take advantage of this transient, and to bias the system

toward maintaining it. The model below shows how this can be done:

I Variable I Interpretation

C Time required for communication between processes on the same processor

N Number of data-only clients in the system

M Number of clients requiring processing on the server

X Time for sequential processing in each object process

Y Time required to fetch data on the server

W Time required to perform requested processing on the server

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COi\,'!PONENTS

process serverreceiver

receive ANY THING

if ANY != server

if HAVE != waiting

receive server REO
send server [ANY]

send server [THING]

end if

if HAVE == waiting

send server [ANY]

send server [THING]

assign HAVE undef

end if

end if

if THING == waitt ill

assign HAVE waiting

endif

if THING == got any

send server none

send server none

endif

process server

send serverreceiver waitt ill

receive serverreceiver CLI!

receive serverreceiver REO!

if REO! == work

think W
send serverreceiver got any

receive serverreceiver CLI2

receive serverreceiver RE02

if RE02 == req

think Y

send [CLI2] rep C

endif

think Y

send [CLI!] rep C

189

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COiVIPONENTS

Client
REQUEST.

Figure 12.1: State transition diagram of the serverreceiver process

if REQ2 == work

think W

think Y

send [CLI2] rep C

end if

endif

if REQ1 ! = work

think Y

send [CLI1] rep C

endif

190

Server
GOTANY

The clients are as before, except that messages are directed to serverreceiver instead of server.

The server now tries to service data-only clients before those requiring processing for agents. The

serverreceiver routine can notify the server process of a data-only request that has arrived while

an agent is being processed, and this is serviced before the response to the agent is returned. The

serverreceiver process embodies the simple state transition diagram shown in Figure 12.l.

Performance of the data-only clients turns out to be independent of VV in many cases, partic­

ularly when W is greater than Y. Performance of both clients benefits in many cases, as often

the dependency on TV only manifests once in a number of cycles. Thus a simple priority scheme

as illustrated here can produce performance enhancements in portions of the system, without

adversely affecting others.

12.3.8 Multiple servers

Previously, client-server systems have been treated as if there is only a single system-wide server.

In light of the advantages of grouping used in multicasting, the use of multiple servers which each

provide a specific set of data is suggested. Multiple servers occur in systems such as Division's

dVS, and Cyberterm.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 191

An area that has not been examined previously is the use of multiple client-server systems

utilizing a shared medium. Provided clients do not interact with more than one server, a completely

connected network can run multiple client-seryer systems at the same performance level as a single

client-server system.

The basic model for this client-server system running over Ethernet is shown below, for N

servers each with M clients:

I Variable I Interpretation
~

~

C Time required for communication between processes on the same processor

N Number of servers in the system

M N umber of clients accessing one server

X Time for sequential processing in each object process
y Time required to fetch data by the server

replicate N

process server#

receive ANY SOURCE

think Y

send mediums get

send mediurn get

send [SOURCE] rep C

send medium give

replicate M

process serversender#for##

receive server# rep

send client##forserver#rep

process serverreceiver#from##

receive client##forserver# req

send server# serversender#for##

process client##forserver#

think X

send medium get

send serverreceiver#from## req C

send medium give

receive serversender#for## rep

report c##x#

endreplicate

endreplicate

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COlVIPONENTS

Y/C

8

7

6 2X+2'1'

, ,

5

, 4

3

2

1 BC

1 2 3

, ,

, , , ,

4

, ,
, , ,

, , ,

5

,

, , ,

, , , ,

, ,

, , , ,

6

,
"

,
,

,
, , , ,

, , , , , ,

7

, ,

, ,

, ,

, ,

, , , , ,

, , , ,

8

Figure 12.2: Performance of the 2 serverj2 client system

process medium

receive ANY get

receive [ANY] give

192

XjC

This model explores a variation to the client-server approach described in 12.2.2. Apart from

the multi-server aspect, this model also assumes that the server cannot send replies and pro­

cess requests simultaneously. The update step is also ignored with this model. Difficulties arise

when trying to apply an analysis tool to this model. These result from the frequent use of non­

determinism to choose between processes accessing the servers and the communication medium.

This creates a large state space which is time-consuming to generate and explore. The result of

that analysis produces the possible range of cycle time for clients within the model.

Given that the value of interest is the minimum cycle time, it is beneficial to use the results of

the analysis for relatively small systems to determine the manner in which the non-determinism

should be resolved in order to produce a minimum cycle time. This can then be used to simplify

analysis of larger models. The performance of the model for two servers each with two clients is

shown in Figure 12.2. The values in the relative constraint regions can be seen in this graph of f
versus ~. The areas in which non-determinism affects the results are marked with the range of

performance values that can be expected in the steady state.

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 193

Y/C

g ...

7 .

6

2C+2Y
5···

4 ,

3·- ------------~

2X+4C

2····· 8C

1

2 3 4 8 XlC

Figure 12.3: Performance of the 2 server/2 client system optimized for large Y

Two areas are selected for examination in the attemp·t to eliminate non-determinism and

select an optimal execution path. A sample where Y and C are relatively large compared to X,

and another where X is the dominant variable are shown as the shaded areas in .Figurf:} 12'.2.

Both require that server and client access to the communication medium be alternated to achie\'e

optimal performance. The situation where server delay (Y) is large requires that some jobs from

the clients be queued at the server, so as to keep it continually busy. The case where client delay

(X) dominates requires the opposite, that jobs be serviced immediately so as to keep round trip

time at a minimum. Since these requirements are mutually exclusive, the optimized algorithms

need to be selected once the operating constraints are known, or alternatively, some dynamiC

switching needs to be performed as discussed in section 13.2.

The effect of the two different approaches on the other constraint regions is shown in Fig­

ures 12.3 and 12.4. As can be seen, they achieve optimal performance only in some regions.

These models are used for examining the performance of the multiple server system with

regard to the three constraint regions where each variable is dominant, and optimal performance

is achieved (the area with large values of C occurs at the origin of the diagrams).

Where C dominates: Cycle time = 2M NC

Where Y dominates:

(Y ~ (2N - l)C)

Cycle time = M(C + y)

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS

Y/C

8 .

7 .

6

5 ..

4 .

4C+2Y
/ X+2C+ Y _---

3···· ,,/ _,- ---

2 --------------------------(~:------

1 8C

2

, , , , , ,
,

4 5

4/3X+8/3C

7 8 X/c

Figure 12.4: Performance of the 2 serverj2 client system optimized for large X

vVhere X dominates:

(X;::: (M - l)(Y + 2C), (MN - N + l)Y ;::: (N - 1)(2C + X»

Cycle time = X + 2C + Y

194

These values hold for M > 1, N > 1. The absence of a dependence of M and N (numbers of

clients and servers) is some cases above can be slightly misleading. While it does imply that these

can be increased arbitrarily without impairing the petformance, the region in which C dominates

expands with increased AI and N, eventually resulting in a different expression for cycle time

being applicable.

12.3.9 Asynchronous lossy databases

The use of a synchronous database was discussed in section 12.3.6, where identical copies are

maintained for all processes. The locking mechanism causes performance loss. Many virtual

reality applications would be content if provided with the most recent version of data regarding

the state of the world; consistency between processes is not required. The VEOS system uses

this principle when petforming updates from boundary to external partitions. Values that are not

transferred before new values are generated are dropped.

The performance considerations with this approach are examined with the following model:

I Variable I Interpretation

C Time required for communication between processes on the same processor

N Number of object processes in the system

M Ratio between Nand C (~)

X Time for sequential processing in each object process

CHAPTER 12. ANALYSIS OF THE WORLD lVIODELLING C01HPONENTS

replicate N

process entity#

report-report#

think X
send environ# endcycle

process statussendentity#

init

assign STAT ready

endinit

receive SOURCE hoy

if SOURCE == environ#

send environ# STAT

if STAT == ready

assign STAT busy

endif

endif

if SOURCE != environ#

assign STAT ready

endif

process sendentity#

send statussendentity# hoy

receive environ# message

replicate N

if # != ##

send entityexternal## update C

end if

endreplicate

process entityexternal#

receive ANY update

report arrive#

endreplicate

process sync

replicate N

receive environ# sync

endreplicate

195

CHAPTER 12. ANALYSIS OF THE WORLD AIODELLING COMPONENTS

replicate N

process environ#

send sync·sync

receive entity# endcycle

send statussendentity# how

receive statussendentity# STAT

if STAT == ready

send sendentity# message

endif

endreplicate

196

This model simulates N entities and transfers data from each entity to the external partitions

of the others. The support environment is modelled by a number of processes which pick up

messages and pass them on for transmission to the other processes, provided the transmitting

process is free. If the environment is unable to pass the ITlessage, it is dropped. A construct

of interest is the mechanism (in process statussendentity) to identify a process that is unable to

communicate. This problem is addressed in other models with the sendifready command.

Each entity process has a delay of X in its cycle, and since it does not block at any point,

the cycle time in all cases is exactly X. A value of greater interest is the latency of the upd.?-te

messages. There are variations on the latency value possible with this model, due to-thedtopped

packets. A message may reach its destination and the latency measured for that message, or it

may be dropped and the latency measured from the start of the first attempt until a message does

actually reach the destination. Alternatively, an average time for a message to be passed from the

source entity to the external partition of the destination may be found.

The time taken for a message that successfully passes through the system is X + C, as may
- - .

be expected. This value is independent of the number of processes in the model. To measure this

value, blocks must be placed in the model to prevent exploration of the control paths to the sync

and status entity processes. In addition, blocks must be added to prevent searching of paths that

might traverse more that one cycle of any particular process.

Cycles of the environ processes can be traversed while calculating latency. This produces the

time between messages being sent and their eventual arrival at the destination process. These

results give the range of latencies that may be experienced for a system of this nature. The case

where X > C yields a constant value of X + C as the maximum latency, irrespective of the number

of processes. The case where C dominates, where network communication is slow compared to

the delay in the cycle of each process, increases the likelihood of messages being dropped. The

maximum latency found in this case is C + ((N -l)M + l)X, where N is the number of processes

in the model and C = lvIX, for the cases where M is an integer. The average latency usually

has half the dependency on X, having been averaged out over a number of cycles. The maximum

latency for fractional values of M can be found by rounding up. The system does not reach this

value for every message successfully transmitted, so the coefficient of X for the average latency is

lower. The variation in this coefficient between integral values of M is illustrated in Figure 12.5

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 197

e
'" !.::
~

U
><

5.2 r----,----,------,----.----r----,----,-----,

5

4.8

4.6

4.4

.' 4.2

4

3.8

3.6

3.4
2.6

I

2.8 3 3.2 3.4
M

3.6 3.8

Figure 12.5: Coefficient of X for non-integral values of M

4 4.2

for the three processor model for values of M between 3 and 4. The stepped nature of thisgra'Ph

illustrates the sudden changes in performance values as the relative values of X and C change.

The peak and average latencies are thus dependent on the number of processes in the system

when communication is slow.

12.3.10 Summary

The results obtained from the analyses in section 12.3 are summarized below. The perform~~;e .
values referred to are cycle time and latency within a single node. Usually these values are the

same (see section 4.1), but the exceptions are explicitly noted.

Dead reckoning: Section 12.3.1.

Dead-reckoning uses infrequent updates and causes a decrease in the cycle time. It

produces a linear dependence on the number of processors when using a shared com­

munication medium, provided the number of processors is below a threshold level,

determined by the communication time, and the interval between updates. Processing

overhead in each node is increased due to the extra computation required.

Token passing: Section 12.3.2.

The effect of relocating the larger portion of the processing to the process carrying

the token produces an improvement in the average cycle time, provided processors do

not need to remain synchronized. Synchronous token passing can be used as an access

control mechanism. Asynchronous token passing can be used as a distributed control

mechanism for load balancing, and to improve interactive performance on a single

CH.4.PTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 198

processor. The latter application benefits from the use of dead-reckoning to prevent

saturation of the communication links. Movement of the token results in substantial

pelforman~e degradation. Frequent movement of the token eliminates all benefits.
-~ ~

Broadcasting: Section 12.3.3.

Broadcasting using a distributed data model reduces communication time for a shared

medium from an N2 relationship to a linear one. Combined with dead-reckoning,

communication costs are reduced still further, but introduce a dependel'ice on N to

the computation time in each node.

Multicasting: Section 12.3.4.

Multicasting uses the same principles as broadcasting, but allows selective communi­

cation between groups of processes. The effect of grouping strategies is better suited to

statistical analysis. The effects of multicasting and broadcasting are examined when

applied to a wide area network such as the Internet. This section introduces a fourth

network model, in which bandwidth and propagation delays are independent. Using

the measurement of message latency between two nodes in the network it is found

that the effect of broadcasting/multicasting in a wide area network is dependent on

the propagation delay, provided sufficient bandwidth is present. As bandwidth de­

creases, the latency increases substantially, particularly when messages are forced to

queue throughout the network. If the computation time is large compared to netw?rk

performance then the latency depends only on computation time.

Object servers: Section 12.3.5.

The cost of inter-processor communication does not decrease in proportion to the

decrease in processors. The advantage of localized processes is offset by increased

inter-processor communication.

Synchronous databases: Section 12.3.6.

Use of locks causes an N2 dependence on the communication time (for a shared

medium), even when combined with multicasting. This is due to the need for each

process to acknowledge the lock.

Server computation: Section 12.3.7.

The results of the analysis indicate the presence of unstable transient behaviour with

this model. The transient behaviour produces improved pelformance for the data­

only clients without affecting that of the computation clients. The transient can be

introduced into the steady state of the system through a simple alteration to the server.

The change affects the priority with which service is given to each category of client.

Multiple servers: Section 12.3.8.

The coefficient of the communication component of the cycle time for a multiple server

system over Ethernet is proportional to both the number of servers and the number

of clients per server for large communication times. For large server times, the cycle

time is dominated by the server time scaled by the number per server. For large client

CHAPTER 12. ANALYSIS OF THE WORLD MODELLING COMPONENTS 199

computation times, there is no dependence on the numbers of clients and servers. For

constant client, server and communication times, the effect of communication eventu­

ally domin?-tes as numbers of clients and servers increase. In all cases the depElndence

on numbers of clients and servers is at;10st linear.

Asynchronous databases: Section 12.3.9.

12.4

The latency associated with messages between processes experiences some variation

when the communication time dominates over the processing time in.fl.-node. Discon­

tinuities occur in the value of the latency, suggesting the possibility of sudden changes

in the performance of a system using this approach.

Conclusion

Analysis of the data and control distribution techniques identifies the dependencies on system

characteristics for a range of architectures. These architectures represent the type of platforms

upon which virtual reality systems are most likely to be constructed; a well connected parallel

machine, a switched hub based network (star) and a shared medium such as Ethernet. Other

decomposition techniques intended for specific networks are examined separately.

The two popular strategies ment.ioned in Chapter 2 are the centralized approaches for their

simplicity of implementation, and the replicated approaches for their scalability. The results given

in this section show that centralized client-server approaches scale well on all network architestuies,

exhibiting linear increase in cycle time/latency as the number of processes increases. The totally

distributed architectures perform better with a well connected network, but have an N2 dependency

on communication on shared media. The use of broadcasting/multicasting reduces this to a linear

dependency. Dead-reckoning reduces this further, but with an increase in local processor time.

Dropping messages when communication load is too high can produce a constant dependency on

communication time.

The factors that cannot be evaluated are the reliability of a client-server system which has

a single point of failure in the server, and the quality of a large distributed simulation in which

positions are estimated.

This chapter contains details of the analysis of the most common parallel decomposition strate­

gies found in virtual reality systems, and the most frequently used variations on these. While a

substantial number of strategies are described, they form only an overview of the possible config­

urations that are possible. An additional significant contribution of this chapter is the description

of the analysis strategies used in each case, which provides an insight into the application of

Analytical Simulation. This will assist the designer of a distributed virtual reality system when

performing analysis of refinements of the models presented in this chapter.

Chapter 13

Analysis of complete virtual

reality systems

Thi1! chapter examines the combination of the components 9f virtual reality systems that were

modelled in Chapters 10 to 12. Different arrangements of the components and various inter­

connection strategies are examined. Latencies and cycle times in this chapter are representative of

a complete system and provide an indication of the performance as seen by an external observer,

or a person using the system.

13.1 Asymmetric rendering

This section explores two problems. Firstly, it investigates the use of the sendi/ready construct

to model the constant availability of up-to-date data. Previous use of a create-and-send sequence

produces synchronization delay when the send has to block (see Chapter 11). In some cases., it

is desirable to model a system where the data is created immediately before the send succeeds.

This can be implemented using extra communication or additional processes which complicates

the model (see section 12.3.9).

The second effect that is examined is the use of the asymmetric rendering construct, as found

in the MR Toolkit. Many applications in this system consist of a master process performing the

computation and the rendering for one of the two views required for stereoscopic viewing. A slave

process is used to produce the other view. A number of device servers provide data from the input

devices. This section compares the effect of this extra effort in the master process to that resulting

from the use of an additional slave process.

The device servers in the MR Toolkit continuously sample the device [Gre95] and make only

the most recent values available. This is needed to minimize latency. This trick is common to

many buffered and pipelined systems where it is possible to discard values should the rate of the

incoming data exceed that of the outgoing information.

200

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS

A model of this system, with instant input and asymmetric rendering, is shown below:

I Variable I Interpretation
-

L Maximum number of successive'failures of the sendifready statement

R Time spent on rendering per cycle

X Time between data produced by the input device

y Time spent running the application per cycle

generate end -

generate end - start

process device

report start

sendifready master devicedata

//send master devicedata

think X

process master

receive device devicedata

think Y

send slave picture

think R

receive slave display

report end

process slave

receive master picture

think R

send master display

-

201

The most interesting aspect of this model is in the device process where use is made of the

sendifready statement. This command is intended to send a message only if the receiving process is

waiting for it. This requires a non deterministic decision in that the state of the receiving process

must be known to the sending process before the decision of whether to allow any communication

between them can be made. Simulation of these semantics also raises issues of some complexity.

Instead, it is implemented as a choice, being able to both fail and succeed. The analysis tool

models both paths. The number of consecutive failures is limited to make analysis possible. The

variable L represents the limit on consecutive failures. A variable X is included to prevent the

device from cycling instantaneously.

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS 202

Analysis of this model gives the following results:

X~Y+R:

Minimum cycle time: X

Minimum latency: Y+R

(L + l)X ~ Y + R ~ X:

Minimum cycle time: Y + R

Minimum latency: Y+R

Y+R~(L+l)X:

Minimum cycle time: Y + R

Minimum latency: 2Y+2R-(L+l)X

-The case where L = 0, or the normal send is used (shown -commented out in the model above),

gives a latency of 2Y + 2R - X for Y + R ~ X. The case with data being dropped in the

manner explained above would be where the sendifready statement is working as required, i.e.

when L -+ 00 and X -+ O. If the second of the three constraints above holds, this gives a latency

of Y + R for the case Y + R ~ X. Otherwise the third constraint applies, and the minimum

latency occurs if (L + l)X -+ Y + R, again giving a latency of Y + R.

The model above can be compared to that given below, which uses three processes for the

computation. A single master still processes for period Y, before passing the results to two slave

processes for rendering. In this case there is no need to synchronize with the master at the

completion of rendering.

I Variable I Interpretation

L Maximum number of successive failures of the sendi/ready statement

R Time spent on rendering per cycle

X Time between data produced by the input device

Y Time spent running the application per cycle

process device

report start

sendifready master devicedata

//send master devicedata

think X

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS

process master

receive device devicedata

think Y

replicate 2

send slave# picture

endreplicate

replicate 2

process slave#

receive master picture

think R

report end#

endreplicate

203

-The results for this model are given below, where it is assumed that both Rand Yare greater

than (L + l)X.

R>Y:

Cycle time: R

Latency: 2R + (R - (L + l)X)

Y~R:

Cycle time: Y

Latency: R + Y + (Y - (L + l)X)

Minimum latencies occur in each case if (L + l)X -t max(R, Y). The minimum latency

achieved is:

R>Y: 2R

Y~R: R+Y

The addition of the extra rendering process decreases cycle time, but only increases latency if

the rendering time is greater than the time for running the application in each cycle. The effects

of concurrent world modelling and rendering are examined in greater detail in section 13.2.

The usefulness of the sendifready statement is limited. While it does provide the desired

functionality, it is difficult to use. It requires the addition of two extra variables into the system

(L and X) which then have to be eliminated from the results. Any simplicity gained in the form

of the model is lost in the added complexity of analysis.

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS 204

13.2 Slave renderers

AJ>ystem used to driv~ a pair of slave renderers is described in [Wat94), where two slave machines

are used for rendering. These are controlled by a third master machine which also runs a solid

modelling application. Input hardware is attached to the master machine. The two slave machines

are running VR-386 and each renders the view for one of the eyepoints to create the stereoscopic

view for a Head Mounted Display.

The virtual reality system running on this configuration must receive input from the input

d~vice (a glove), use this to make changes to the objects in the world, and transmit the updates

to the two renderers. Once both renderers have completed their task, they can display the images

on receipt of a synchronizing message from the master. Some latency and cycle time analyses

have been performed for this system. Two variations on the sequence of events which introduce

different tradeoffs in the two performance measures are described. The analysis is repeated here,

using the automated approach developed in this thesis and some extensions are examined.

I Variable I Interpretation

C Time required to communicate a message between processors

N Number of slave renderers in the system

X Time spent running the application per cycle
y Time spent on rendering per cycle

process glove

report source

send master data

process master

receive glove data

think X

replicate N

send slave# draw C

endreplicate

replicate N

receive slave# done

endreplicate

sendnotrace broadcast update C

report cyclepoint

CHAPTER 13. ANALYSIS OF COiVIPLETE VIRTUAL REALITY SYSTEMS

process broadcast

receive master update

replicate N

send slave# show

endreplicate

replicate N

process slave#

receive master draw

think Y

send master done

receive broadcast show

report show#

endreplicate

205

The above model, described as the linear approach, assumes the presence of N slave processes,

and implements the sequence of events described previouslY: The model assumes that the master

process can only communicate with one other process at a time, making the model applicable to

both a shared communication medium such as Ethernet, or a switched hub topology. The c;urrent

model assumes that each slave receives its own specific update of the state of the world, otherwise

this could be implemented with the broadcast mechanism that is used to synchronize the output

of the slaves.

This approach requires that processing on the master be completed before rendering on the

slave can begin. An alternative approach is to run both in parallel, with the disadvantage that

the view being rendered is out of date as soon as the master process finishes its calculations; but·

can only be changed on the next cycle. Thus a longer latency can be expected for this model. The

change to the master process for the pipeline approach is shown below:

I Variable I Interpretation

C Time required to communicate a message between processors

N Number of slave renderers in the system

X Time spent running the application per cycle
y Time spent on rendering per cycle

process master

replicate N

send slave# draw C

endreplicate

receive glove data

think X

CHAPTER 13. ANALYSIS OF COAtfPLETE VIRTUAL REALITY SYSTElv[S

replicate N

receive slave# done

endreplicate

sendnotrace broadcast -update C

report cyclepoint

The results for these approaches are:

Li.near approach:

Pipeline approach:

X>Y:

Y>X:

Cycle time =

Latency =

Cycle time =

Latency =

Cycle time =

Latency =

(N + l)C+X +Y

2[(N + l)C +X + Yj

(N+l)C+X

(2N + 3)C + 3X

(N+l)C+Y

(2N + 3)C + 3Y

206

As expected, the latency is higher for the second approach, but the cycle time has decreased.

The latency is approximately twice the cycle time for both approaches, an effect that can be

explained by viewing the glove and master processes as a short pipeline. If the glove proces~ !S
allowed to collect data at its own pace and is only polled for the latest value when needed, the

results show a substantial improvement: The relevant parts of the affected processes in the model

are shown below:

I Variable I Interpretation

C Time required to communicate a message between processors

K Time required to poll the glove device

N Number of slave renderers in the system

X Time spent running the application per cycle

Y Time spent on rendering per cycle

process glove

receive master givedata

report source

send master data

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS

process master

send glove givedata K

receive glove data

207

The time required to poll the glove process is represented by the variable X. _The revised

results are now:

Linear approach:

Cycle time '=

Latency =

Pipeline approach:

X~Y:

Y>X:

Cycle time =

Latency =

Cycle time =

Latency =

(N + l)C + X + Y + K

(N + l)C +X + Y

(N +l)C+X +K

(N +2)C + 2X

(N + l)C + Y

(N+2)C+2Y-K

The presence of a negative coefficient is a welcome sight in the last case. It indicates a situation

in which a delay can be increased to improve performance. The increase only improves mat!~rs

for t.he pipeline approach with Y the dominant variable; in the other cases it causes an increase

in the cycle time.

The final system implemented in [Wat94] was a mixture of the two approaches. The tradeoff

between the two approaches depends on the loads on the master and slaves; these could vary

depending on the nature of the solid modelling being performed. The system would monitor its

performance variables and switch from one strategy to the other when doing so would result in

performance improvement.

The performance values derived for this model agree with those quoted in [Wat94], once the

effect of using broadcasts for updating the world is taken into account. The dependence on

the number of slave processes derived above shows that additional displays can be added to the

system without loss of performance, provided communication costs are low. With a communication

medium capable of supporting broadcast, the communication cost becomes constant as well.

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS

13.3

Ready for
next frame

Updated state
vectors

L-_--___ Entity state infonnation

Figure 13.1: Data flow in an NPSNET node

Feedback between components

208

This section describes the Analytical Simulation of a model of a single node of a virtual reality sys­

tem. It illustrates the power of the approach for providing simulation results which are applicable

to all values of the variables in the system. This section examines the effects of feedback commu­

nication strategies between the components of the virtual reality system. The use of feedback is

explored in pipelines in section 11.1.

The model examined is that of the software running on a single machine in the well known

NPSNET virtual reality system [Pra93]. The relationships between the components of the sysfem·

are illustrated in Figure 13.1. The interactive performance of the single node is of interest; inter­

processor communication is modelled very coarsely.

The model of this system is given below:

I Variable I Interpretation

C Time between updates from all other nodes in the system

D Time spent simulating dynamics per cycle

S Time spent on scene management per cycle

R Time spent on rendering per cycle

process input

report input

send dynamics data

receive scene next

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS

process network

think C

send dynamics data

receive dynamics update

process dynamics

receive input data

receive network data

think 0

send network update

send scene state

process scene

receive dynamics state

think S

receive render ready

send render display

send input next

process render

send scene ready

receive scene display

think R

report output

209

The variables D, Sand R represent the time spent simulating the dynamics, managing the

scene, and rendering each frame of graphical output, respectively. The variable C is the time

between updates from the other nodes in the network. The two values of interest in a virtual

reality system are the latency and the cycle time. The cycle time for this node is the interval

between recurrences of the output report marker, the latency is the time taken for data created at

the point indicated by the input report marker to reach the output.

The results for the Anal.rtical Simulation of this model are as follows:

S 2 D, D+S2 R:

S2 C, R2 D+S:

Cycle time =

Latency =

Cycle time =

Latency =

D+S

R+S+D

R

2R

CHAPTER 13. ANALYSIS OF COj\fPLETE VIRTUAL REALITY SYSTEMS

C~ S, D+C~ R:

C ~ S, R~D+C:

. Cycle time =
Latency =

-D+C

R+C+D

Cycle time = R

Latency = 2R

210

The results are closely related to those expected for a pipeline construction. It is worth noting

the use of feedback messages within this model to enable output from the input stage, and to

permit transfer of data from the scene management process to the renderer. This construction is

used with the pipelines in section 11.1 to reduce latency. The performance without this feedback

is given by:

S~D+C,S~R:

S~ D+C, R ~ S:

Cycle time =

Latency =

S

R+3S

Cycle time = R

Latency = 4R

D + C ~ S, D + C ~ R:

Cycle time =
Latency =

D+C

R+S+2C +2D

D + C ~ S, R ~ D + C:

Cycle time = R

Latency = 4R

The latency with this version is substantially greater than that for the original.

The original model uses feedback between successive stages. The use of only a single feedback

message, from the end of the output stage, all the way back to the input stage produces the

following result:

S+R ~ C:

Cycle time =

Latency =

D+S+R

D+S+R

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS

C::::S+R:

Cycle time =

Latency = C+D

211

While the latency is smaller than that for the version without feedback, the cycle time has

increased. This system is not making effective use of the parallel processors, and could probably

be implemented on a single processor with similar results (provided network management and

dynamics could overlap).

The use of feedback within pipelined structures is again demonstrated in this section when

it is applied to pipelines formed from the components of virtual reality systems. Latency is

substantially reduced when using the feedback mechanism, without affecting the cycle time.

13.4 Fast interaction

The traditional model of a virtual reality system requires that input be processed through the

world simulation component, before its effect can be realized in the output. Much of the input to

a virtual reality system is comprised of changes to the users position and orientation. This affects

only the camera position, and the attitude of the user's avatar (a term often used to refer to the

user's representation in the virtual world). This information would only affect the view of~he

scene that is rendered. Thus the input data could be fed directly into the output -renderer, for

rapid incorporation into the view, and only then into the simulation engine.

This approach is used in virtual reality systems developed at the University of Virginia [Gos93]

[Pau95). The separation of the rendering rate from the simulation speed is examined in the model

below:

I Variable I Interpretation

M Relative amount of time spent rendering

N Relative amount of time spent in the application

Y Smallest quantum time interval in the model

process input

report input

send output data

process application

send apppoll getlatest

receive apppoll latest

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTElvlS

report inapp

replicate N

think Y

endreplicate

send apppoll latest

process apppoll

receive ANY TYPE

if TYPE == getlatest

send [ANy] latest

endif

process output

receive input data

send apppoll getlatest

receive apppoll latest

replicate M

think Y

endreplicate

report picture

212

Input data is generated and passed directly to the output process. The output process polls a

third process for data shared by the application which would also be required for rendering. The

application, performing the simulation, also polls this process for the latest input values. This

model makes no assumptions about the location of the data. It could be located with the simulation

engine, as is modelled previously (in Chapter 12), or it could reside with the output process to

improve access for the rendering engine.- It could also be located on its own processor. The change

required to the model to implement one of these strategies would be to assign a communication

value to messages to and from the apppoll process when off-processor communication occurs.

The value of interest at present is the performance of the system with the direct connection

between input and output. The model assumes that rendering takes period MY, and simulation

t.akes period NY. The reason for t.his choice is explained below. As may be expected, the cycle

t.ime of the output process is MY, and t.he latency from input to output is 2MY. The factor

of t.wo in t.he latency results from the input process blocking waiting for the output, a pipeline

phenomenon described in detail in Chapt.er II.

A more interesting value is the time taken for the effect of input to be incorporated in the

simulation and show up on the output. A latency value is required for messages from input to

output that pass through the application process. This is measured by adding an extra report

marker to the application process, and measuring lengths of the two intervals from input to

application and from application to output.

CHAPTER 13. ANALYSIS OF COlvIPLETE VIRTUAL REALITY SYSTEMS 213

45

40

35 ...
u
5
j
" 30 0

~ a
en
"ll

i
25

0 z
20

15

10
5 10 15 20 25 30

Nonnalised Simulation Time

Figure 13.2: Simulation latency for large simulation times

This model has the interesting characteristic that it is not periodic if there is any variation

possible in the computation times for the simulation and rendering processes. Thus state sp.?-ce

analysis using two independent variables to model these times would fail because the constraint

generation always allows some variation in the relative values of the variables. Constraint gener­

ation also produces an infinite number of constraints in an attempt to lock variables down into

exact values. This behaviour results from the polling action of the application and output processes

which do not have to synchronize with each other at any time.

This model can be converted into a form suitable for analysis by reducing the number of

independent variables, as shown in the model above. This allows solution for any rational -r~-·
tio of the two processing times. The sequential processing time in both is written as integral

multiples of a common variable Y. Thus, given a simulation time of NY and a rendering

time of MY, the time taken for input to pass through the simulator and affect the output is

[2.5M + 1.5N - HCF(M,N)]Y. This function is shown graphically for a range of simulation

times in Figures 13.2 and 13.3, assuming unit rendering time. This result is interesting in its

seemingly chaotic behaviour. Small changes in the ratio of simulation and rendering times can

produce large changes in the latency. This effect is averaged out in reality since these values are

unlikely to be perfectly constant.

13.5 Combinations of components

The analysis of virtual reality systems examines the various parallel decompositions in a bottom­

up manner. Initially, the performance characteristics of the three sub-components of a virtual

reality system are examined, followed by an investigation into some of the effects resulting from

complete systems. The advantage of doing things this way is that complexity is reduced, and the

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTEMS 214

2.7

2.68

2.66

>. 2.64
u
5
j

2.62

" 0

~ r ~ -
8 2.6
Vi
]

258 "" ~
Z

256

2.54

2.52

0.Q2 0.04 0.06 0.08 0.1 . 0.12 0.14
Normalised Simu1ation TIme

Figure 13.3: Simulation latency for large rendering times

effect of one approach is not shadowed by another.

A disadvantage is that the performance of a complete system with all its complexity can~ot

be examined without repeating the work that has already been performed on each subcomponent.

It is desirable to have the ability to create components with known performance characteristics

which can then be combined to represent a complete system. Analysis of the combined model

then uses the values calculated for the constituent modules to compute the overall performance of

the system.

This "black box" can be created relatively easily should latency and cycle time be equal.1.:l:e

following process has a latency (= cycle time) of X.

process blackbox

receive input message

think X

send output message

If latency and cycle time differ then this model is not able to produce both metrics simultane­

ously. A more complicated piece of code can be created to overcome this limitation. Consider a

system with latency L producing output after every period CT in its stable state. The following

model has the same performance characteristics:

Variable I Interpretation

CT Required cycle time of the model

L Required latency of the model

MAX OVERLAP Maximum number of messages that may be buffered

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REALITY SYSTElvfS

process blackbox

init

assign DUMP 0

endinit

send input ready

receive input data

send bblatency[DUMP] data

assign DUMP [(DUMP+l)%MAXOVERLAP]

think CT

report notrace

replicate MAX OVERLAP

process bblatency[#-l]

receive blackbox data

think L

send bboutput data

report notrace

endreplicate

process bboutput

receive SOMETHING data

send output data

report notrace

215

An item of interest with this model is the use of the MAXOVERLAP variable which represents .

the number of messages that can be buffered by the system, and must be greater than the ratio

Ifr for the model to behave as required: The blackbox process actively requests data, to eliminate

synchronization delays on the input.

There are some problems using a model such as this to represent a more complex system. Any

transient behaviour is unlikely to be duplicated using a simplified model. Reproducing a system

that accepts more than one input and produces more than one output requires modifications to

the "black box" model. It has also not been proven that the two metrics (latency and cycle

time) are sufficient to characterize a component of a system sufficiently to allow component-wise

replacement as proposed, without affecting performance measurements in the remainder of the

system.

Characterization of the cases where component substitution is possible, and identification of

the metrics required to specify these components completely for performance analysis purposes,

is the subject of future work.

CHAPTER 13. ANALYSIS OF COMPLETE VIRTUAL REA.LITY SYSTEMS 216

13.6 Conclusion

T~e behaviour of complete virtual reality systems is described in this chapter.

The use of asymmetric rendering (section 13.1y'produces lower latency when rendering times

are high, than a model in which separate processors are used for the application and for rendering.

Higher cycle times are associated with the asymmetric model. The sendifready statement used in

the models in this section complicates the analysis.

The use of slave renderers (section 13.2) extends the analysis of separate application and

rendering processes. This approach can be implemented in two different ways, which offer a trade­

off between cycle time and latency. This example again illustrates the advantage of automatic

analytical analysis over that which is performed manually and which is limited to particular

models.

The effect of synchronization delay is again demonstrated in section 13.3 in pipelines formed

by combining the components of the virtual reality systems. Feedback between successive stages

is found to reduce latency without affecting the cycle times.

Immediate reduction in latency is obtained by routing input through the output stage, before

processing it through the world modelling component (section 13.4). The latency for input data

that is first processed by the application shows an almost chaotic dependence on the system

parameters, although this effect is averaged out over time.

It is possible to construct a model with any desired cycle time and latency as shown in sec­

tion 13.5. Additional formalism must be developed before a system can be completely characteri~ed
by a simplified model, for performance analysis purposes.

Parallel and distributed virtual reality systems are examined at two levels. The use of paral­

lelism within the components of virtual reality systems is described in Chapters 10 to 12. Issues

regarding the systems that can be built up from these components are discussed in this chapter.

Chapter 14

Conclusions

The original goal of this work was to provide a comparative study of the performance of components

of parallel and distributed virtual reality systems, so as to allow appropriate decisions to be made

when designing for a particular architecture. This has been successfully achieved. To accomplish

this goal, this work has created a performance analysis tech~ique that is ideal for application to

virtual reality systems. It has also provided a reference as to the performance characteristics of

the decomposition strategies found in virtual reality systems.

14.1 Analytical Simulation: Development

14.1.1 Summary of the results

Virtual Reality systems have particular requirements when considering the selection of performance

metrics (see section 2.1). Existing performance analysis tools are inappropriate for determining

the cycle time and latency of a range of system models in such a way that a comparison of the

characteristics of each can be made (see Chapter 3). For comparison purposes, the availability of

more than a single sample of these metrics is required.

The Analytical Simulation approach uses concepts derived from other tools to provide a pow­

erful analysis technique, and includes several additional enhancements which make it suitable for

performance comparison purposes. By producing output as an expression specifying the effects of

each delay in the model, the results are representative of a range of the system parameters. In this

form the contribution from each delay can be identified and compared to that for other models.

Delays which affect the critical path are also identified in this way.

In addition, the Analytical Simulation approach automatically generates constraint regions

which define the relative values of the system variables for which a given result holds. Distributions

need not be specified in advance for each variable. Performance for all variable values within a

region can be found by evaluating a single expression.

The performance measures produced using Analytical Simulation are cycle time and latency,

the two measures essential for proper characterization of virtual reality systems.

The Analytical Simulation approach can be extended in a variety of ways, from conventional

217

CHAPTER 14. CONCLUSIONS 218

simulation to state space analysis. The latter version is limited to periodic systems, but can provide

a complete analysis of the model's performance, including any non-deterministic behaviour. All

m(}dels of virtual reality systems examined ar-e periodic, so the restriction is not a probleql.

The accuracy of the approach is confirmed by~oinparing predicted performance with actual

implementation for three parallel decomposition strategies on two parallel architectures. In all

cases there is excellent correspondence between theory and practice. The form of the results

allows the different strategies to be compared. In addition the effects of the different architectures
.-~ ~

on each strategy can be seen.

_ Analytical Simulation is well suited to the analysis of the performance of parallel and dis­

tributed virtual reality systems. It is also ideal for the comparison of different parallel decompo­

sition strategies within these systems.

14.1.2 Contributions of the work

The following contributions are made in this portion of the thesis (Chapters 2 to 8):

• A ta.'Conomy of the decomposition strategies used in pq,rallel and distributed virtual reality

systems is deyeloped.

• The suitability of existing performance analysis techniques is assessed with regard to their

use with virtual reality systems.

• A performance prediction approach, Analytical Simulation, is developed whicn is ideal for

the performance analysis and comparison of parallel and distributed virtual reality systems.

• A method is devised for comparing the run times of processes, expressed as a symbolic

expression, in the presence of constraints on the variables.

• Methods are described for extracting values for Cycle Time and Latency from simulatlop

results, and from reachability graphs in the state space of a model.

• Analytical Simulation is applicable to a range of classes of systems in its different forms, and

is capable of:

Measurement of latency and cycle time

Producing symbolic output, suitable for comparison purposes

Complete analysis for all values of the variables in the model

Analysis of non-deterministic constructs

Analysis of the transient behaviour of a model

• A number of distributed collision detection algorithms are developed. Analysis of the per­

formance of these systems is described, and verified against implementations of each on two

different architectures. Models for communication in Transputer clusters and the shared

network medium, Ethernet, are created.

CHAPTER 14. CONCLUSIONS 219

14.2 Analytical Simulation: Practice

14.2.1 Summary of the results

A natural decomposition of virtual reality systems is found to consist of three components: input,

output and world modelling.

The effects of performing input using polled and interrupt-driven approaches are examined,

and the performance implications of each approach are summarized. The use of input prediction

is discussed, but this is not suited to quantitative analysis.

- The output subsystems are based around the pipeline topology. Latency issues in pipelines

are examined in detail, including the use of additional delays and feedback to reduce the effect of

synchronization delays on the latency. The effect of buffering on the performance of the pipeline

is investigated, and conditions are identified under which improvements in both latency and cycle

time occur. Use of additional parallelism, both within the pipeline, and using replicated pipelines,

is explored. The latter can substantially improve cycle time without detriment to latency, provided

sufficient communication bandwidth is present. Case studies of output subsystems used in virtual

reality systems provide details of the performance characteristics of these systems. Compared with

a previous analysis of the PixelFlow system, the use of Analytical Simulation confirms the results

and provides additional and more complete information about the cycle time and latency that can

be expected for various operating conditions.

Analysis of different control and data distribution approaches shows that peer-to-peer com­

munication performs best where well-connected communication networks are availaole. The per­

formance of approaches that make use of central services scales better where communication is

limited. Performance characteristics of a number of variations on these approaches are examined.

The results show how these variations can improve the scalability of some approaches, and identify

anomalies in the behaviour of others. The analysis also demonstrates methods of application of

Analytical Simulation so as to produce the desired results rapidly.

Performance in a node of a complete virtual reality system is examined by creating models

consisting of the components identified- in Chapter 9, and modelled in Chapters 10, 11 and 12.

These models demonstrate different interconnection strategies suggested by various virtual reality

systems, and provide details of the tradeoffs in performance offered by each strategy.

14.2.2 Contributions of the work

The following contributions are made in this portion of the thesis (Chapters 9 to 13):

• The section proyides a reference to the performance characteristics of parallel decomposition

strategies in use in parallel and distributed virtual reality systems.

• It demonstrates that Analytical Simulation of message passing models is ideal for the analysis

and comparison of parallel and distributed virtual reality systems.

• Techniques to make effective use of Analytical Simulation to extract the desired information

from a model are described.

CHAPTER 14. CONCLUSIONS 220

• Methods to reduce synchronization delays in pipeline constructs, such as feedback and de­

layed output are introduced and analysed.

• Analysis of the effects of buffering in pipelines. proves that an improvement in both cycle

time and latency can be obtained under the correct operating conditions.

• Performance trends for different decomposition strategies on a range of network topologies

are compared.

• Models of four different network architectures: a well connected network, a star (switched

hub) topology, a shared communication medium (Ethernet) and a wide-area network (such

as the Internet) are developed and used in the analyses.

• Performance characteristics of specialized decomposition techniques on specific architectures

are identified. Behaviour as number of processes increases is described, and optimal perfor­

mance paths are identified.

• Tradeoffs between the two performance metrics, latency and cycle time, are described when

considering different interconnection strategies that are possible using the components of

virtual reality systems.

• The advantages of an automated analytical analysis technique are demonstrated with the

greater range of metrics and improved detail that is achieved over previous analyses.!m­

proved performance values are produced for a number of existing systems for which -perfor­

mance analysis has previously been attempted.

14.3 Assessment of this work

This section contains a few comments by the author on some of the aspects of the work which are

not quantitative, and which cannot be isolated to any single preceding chapter. They reflect on

the overall goal and attitude toward the analyses performed.

It is surprising to discover the complexity unveiled by the analysis of even small models of

familiar systems. The behaviour of a few processes containing only a few communication constructs

generates unexpected effects ranging from transients that can last indefinitely if the conditions

are right, to tendencies to settle into stable states (often non-optimal) that are unintended in the

design. It is disturbing to notice this behaviour occurring in a rigidly controlled simulation and

to imagine its extrapolation to larger, more complex systems where only the overall effect can be

observed. The possibility that these effects are occurring and being ascribed to other characteristics

of a real system is a danger. Many of the cases examined use non-determinism, which often allows

non-optimal performance. In some cases, such as that in section 12.3.7, optimal behaviour is an

unstable transient which is only discovered after performance analysis using Analytical Simulation.

The analysis methodology is valuable for playing "what-if" games on the various models. It

is easy to modify a model quickly to perform actions in a different order, or to impose additional

restrictions to judge the change in behaviour. The analytical form of the output makes it simple to

identify the variable determining the critical path, and to judge whether a particular path seems

CHAPTER 14. CONCLUSIONS 221

reasonable for the expected behaviour of the model. Generating a trace of program behaviour

provides a visual overview of the behaviour. This can reveal many things from its periodic nature

alone. The processes ~hat spend much of their time 'idle are identified, as are those which are

continuously operating, and a probable bottleneck .. Communication orderings that produce a

shorter cycle can be identified at once, allowing the model to be modified to check if such an

ordering represents a stable state.

The ability to try these alternatives rapidly makes it profitable to spend time at the design
~~ ~

stage of a virtual reality system testing alternative decomposition strategies, so as not to experience

u~fortunate effects once a commitment is made to a particular approach.

Many of the models presented are simple and in no way approach the code complexity of a real

virtual reality system (and nor should they). Much of the code of the systems examined during

the course of this work is effectively irrelevant for performance analysis, consisting of conventional

sequential code for performing specific computations. Replacing the most significant blocks by

the think statement used in the models reduces these systems to much the same complexity as

the models. The effective message passing calls are the same as those depicted in the models.

More detail is only required when advanced flow control and buffering calls must be modelled.

Successful analysis of such an instance is also feasible, as is illustrated in section 8.5.I.

The analysis technique developed in this document provides a valuable and practical tool for

use during the design of parallel and distributed virtual reality systems. The analyses performed

provide a comprehensive reference to the techniques commonly used in current systems. Des~gn

of future virtual reality systems will benefit from consideration of the issues uncovered by these

analyses, and from analysis of additional variations and enhancements of these algorithms.

14.4 Future work

The long term goal of this work is to provide a solid foundation for the development of distribu~e~ .

virtual reality systems. Previous development of virtual reality systems has either been from

scratch, or as in the case of some recent systems, based on a previous system developed at the

same site. A limited amount of cross-pollination has occurred, influenced mainly by the profile of

some of the projects. This can be seen by the increasing tendency of newer systems to overlap

in their distribution techniques. While these techniques are sound, and can provide significant

performance enhancement, they often overshadow approaches which may be more useful in other

situations.

This work starts off by developing and testing a performance prediction approach that is

capable of providing useful measures for virtual reality systems. The approach is simple enough to

be quickly and easily used by a system developer, while sufficiently powerful to uncover significant

behayiour patterns. It is able to provide predictions for an approach, based on the enyironment in

\vhich the system is expected to run. This document covers the analysis of parallel and distributed

virtual reality systems, categorizing the different approaches and providing a performance analysis

where appropriate. In this way, the attributes of the different approaches can be compared in a

common and unbiased environment.

The next logical progression is the creation, testing and analysis of new approaches. This is

CHAPTER 14. CONCLUSIONS 222

a major task in its own right, but one which requires a solid foundation. This foundation must

provide both a mechanism for performing a comparative analysis, as well as an evaluation of

e;gsting approaches t~ prevent duplication of effort. It is this foundation that the work of this

thesis is intended to provide.' .

This future task is part of the goal of the group developing the distributed virtual reality system

RhoVeR [Ban96] (see also section 2.3.1). Part of the requirement when creating this system was

to leave the distribution methods sufficiently modular so as to allow different approaches to be

implemented, tested, compared and enhanced. The system provides a set of basic communication

facilities and acts as a standard platform for benchmarking purposes.

The possible future directions for parallel and distributed virtual reality systems are numerous.

The trends in system development are to expand the use of virtual reality across global networks.

Already a number of multi-user virtual worlds have been created on the Internet, supporting

thousands of users in vast and complex worlds. These are based around client-server systems

which have evolved from the hypertext servers on the World Wide Web. A number of variations

on the client-server paradigm are modelled in this thesis. These models can be refined as the nature

of the communication in these systems becomes better understood. Increased use of peer-to-peer

communication can be expected to reduce the load, and dependency, on a centralized server.

The changing nature of networking can also be expected to influence the nature of distributed

virtual reality systems. The tradeoffs between higher speed networks and the requirements of

realistic simulations can alter the performance issues of concern to designers of such systems. !he

algorithms underlying these systems can be expected to evolve to meet these changing require­

ments.

With the work described in this thesis as the foundation, it is now feasible to tackle this next

set of exciting challenges.

Bibliography

[AaI94]

[Abr94]

[Adv94)

[Ams95)

[And93aJ

[And93b)

[And91)

[Azu95)

Wil M.P. van der Aalst, "Using Interval Timed Coloured Petri Nets to Calculate

Performance Bounds", Proceedings of the 7th International Conference of Mod­

elling Techniques and Tools for Computer Performance Evaluation, G. Haring and

G. Kotsis (eds), in "Lecture Notes in Computer Science", Springer-Verlag, New

York, Volume 794, 1994,425-444.

Marc Abrams, Alan Batongbacal, Randy Ribler and Devendra Vazirani, "CHI­

TRA94: A Tool to Dynamically Characterize Ensembles of Traces for Input Data

Modeling and Output Analysis" , Technical Report TR 94-21, Department of Com­

puter Science, Virginia Polytechnic Institute and State University, June 1994.

Vikram S. Adve, Charles Koelbel and John M. Mellor-Crummey, "Performance
- ,,-."

Analysis of Data-Parallel Programs", Technical Report CRPC-TR94405, Center

for Research on Parallel Computation, 1994.

Denis Amselem, "A 'Window on Shared Virtual Environments", Presence: Tele­

operators and Virtual Environments, Volume 4, Number 2, Spring 1995, 130-145.

Magnus Andersson, Christer Carlsson, Olof Hagsand and Olov Stahl, "DIVE - The

Distributed Interactive Virtual Environment, Tutorials and Installation Guide for

DIVE version 2.2", Swedish Institute of Computer Science, Kista, Sweden, March

1993.

Magnus Andersson, Christer Carlsson, Olof Hagsand and 010'1 Stahl, "DIVE -

The Distributed Interactive Virtual Environment, Technical Reference for DIVE

version 2.2", Swedish Institute of Computer Science, Kista, Sweden, March 1993.

John B. Andrews and Constantine D. Polychronopoulos, "An Analytical Approach

to Performance/Cost Modeling of Parallel Computers", Technical Report CSRD-

1110, Center for Supercomputing Research and Development, University of Illinois

at Urbana-Champaign, April 1991.

Ronald Azuma and Gary Bishop, "A Frequency-Domain Analysis of Head-Motion

Prediction", Proceedings of SIGGRAPH '95 Conference, Los Angeles, CA, August

1995.

223

BIBLIOGRAPHY 224

[Ba191]

[Ban93]

[Ban94a]

[Ban94b]

[Ban96]

[Ben94]

[Ber94]

[Ber91)

[Bir90)

[Bri93]

[Bro95]

G. Balbo, S.C. Bruell, P.Chen, G. Chiola, "An Example of Modelling and Eval­

uation of a Concurrent Program Usi.ng Coloured Stochastic Petri Nets: Lam­

port's.Fast Mutual Exclusion Algori~hm", from "High-Level Petri Nets",. editors

K. Jensen and G. Rozenberg, Springer-Verlag, 1991.

Shaun Bangay, "Parallel Implementation of a Virtual Reality System on a Trans­

puter Architecture" , ~lSc Thesis, Department of Computer Science, Rhodes Uni­

versity, November 1993.

Shaun Bangay, "Creating Virtual Reality Applications on a Parallel Architecture" ,

available via URL: ftp://cs.ru.ac.za/www/vrsig/SDB03.ps.Z, March 1994.

Shaun Bangay, Peter Clayton and David Sewry, "Application of Parallel Pro­

cessing to Rendering in a Virtual Reality System", Transputer Applications and

Systems '94 - Proceedings of the 1994 World Transputer Congress, Villa Erba,

Cernobbio, Como, Italy, September 1994.

Shaun Bangay, James Gain, Greg Watkins, .Kevan Watkins, "RhoVeR: Building

the Second Generation of Parallel/Distributed Virtual Reality Systems", Proceed­

ings of the First Eurographics Workshop on Parallel Graphics and Visualization,

Bristol, UK, September 1996. Also to be published in Parallel Computing.

Steve Benford, John Bowers, Lennarte E. Fahlen, Chris Greenhalgh, "Manag­

ing Mutual Awareness in Collaborative Virtual Environments", Proceedings of

VRST '94, Singapore, August 1994.

Joseph E. Berger, Loan T. Dinh, Michael F. Masiello and Jesse N. Schell, "NVR:

A System for Networked Virtual Reality", Proceedings of the IEEE International

Conference on Multimedia Computing and Systems, May 1994.

Bernard Berthomieu and Michael Diaz, "Modeling and Verification of Time De­

pendent Systems using Time Petri Nets", IEEE Transactions on Software Engi­

neering, Volume 17, Number 3, March 1991, 259 -273.

K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F.

Schmuck and M. Wood, "The ISIS System Manual, Version 2.1", Cornell Univer­

sity, September 1990.

William Bricken and Geoffrey Coco, "The VEOS Project", HITL Technical Re­

port TR-93-3, Human Interface Technology Laboratory, University of Washington,

1993.

Wolfgang BroIl and David England, "Bringing Worlds Together: Adding Multi­

User Support to VRML", Proceedings of the Virtual Reality Modeling Language

(VRML) '95 Symposium, San Diego, December 1995.

BIBLIOGRAPHY 225

[Car89]

[Coc92]

[Coc93]

[Cod92]

[Coh94]

[Cro93)

[Dem96]

[Div96]

[Fah93]

[Fen96]

[Gar94]

[Ghe95]

Nicholas Carriero and David Gerlernter, "How to 'Write Parallel Programs: A

Guide to the Perplexed", ACM Co:nputing Surveys, Volume 21, Number 3,

September 1989,323-357.

Geoffrey Coco, "The VEOS project: VEOS 2.0 Tool Builders Manual" , available

via URL: ftp:/ /milton.u.washington.edu/public/veos/veos.tar.Z, May 1992.

Geoffrey P. Coco and Dav Lion, "Experiences with Asynchronous rCol!1munication

Models in VEOS, a Distributed Programming Facility for Uniprocessor LANs",

Technical Report 93-2, Human Interface Technology Laboratory, University of

Washington, 1993.

Christopher Codella, Reza J alili, Lawrence Koved, J. Bryan Lewis, Daniel T. Ling,

James S. Lipscomb, David A. Rabenhorst, Chu P. Wang, Alan Norton, Paula

Sweeny, and Greg Turk, "Interactive simulation in a multi-person virtual world" ,

Proceedings of ACM Human Factors in Computing Systems (CHI'92) Conference,

May 1992, 329-334.

Jonathan D. Cohen, l\1ing C. Lin, Dinesh ivianocha, Madhav K. Ponamgi, "Inter­

active and Exact Collision Detection for Large-Scaled Environments" , Technical

Report TR94-005, Department of Computer Science, University of North Car­

olina, Chapel Hill, 1994.
,,'

Mark E. Crovella and Thomas J. LeBlanc, "The Search for Lost Cycles: A New

Approach to Parallel Program Performance Evaluation", Technical Report 479,

Computer Science Department of University of Rochester, Rochester, New York,

December 1993.

Kris Demunyck, Jan Broeckhove and Frans Arickx, "The impact of communica­

tion mechanisms on the performance in a distributed Virtual Reality system": in

"Lecture Notes in Computer Science", Volume 1067, Springer-Verlag, 1996.

"Division On-Line Manuals", available via URL:

http://www.division.co.uk/onlineJYlanual/division.html, l\lay 1996.

Thomas Fahringer, "Automatic Performance Prediction for Parallel Programs on

Massively Parallel Computers", PhD Thesis, University of Vienna, Department

of Software Technology and Parallel Systems, October 1993.

Clive Fencott, "Formal Methods for Concurrency", International Thomson Com­

puter Press, London, 1996.

Alejandro Garcia-Alonso, Nicolas Serrano and Jaun Flaquer, "Solving the Colli­

sion Detection Problem" , IEEE Computer Graphics and Applications, Volume 14,

Number 3, May 1994, 36-43.

Steve Ghee, "Course Notes for the Programming Virtual 'Worlds course", pre­

sented at SIGGRAPH '95, Los Angeles, California, August 1995.

BIBLIOGRAPHY 226

[Gib84]

[Gos93]

[Gos94]

[Gra93]

[Gre92]

[Gre95]

[Gre94]

[Hag95]

[Has93]

[Hon96)

[Hub93]

[Hub95a]

[Hub93b)

\Villiam Gibson, "Neuromancer", Ace, New York, 1984.

Rich Gossweiler, Chris Long, Bhuichi Koga and Randy Pausch, "DIVER: A Dis­

tributed Virtual Environment Resear2h Platform" , Proceedings of the IEEE Sym­

posium on Research Frontiers in Virtual Reality, San Jose, CA, October 1993.

Rich Gossweiler, Robert J. Laferriere, Michael 1. Keller, Randy Pausch, "An In­

troductory Tutorial for Developing Multi-User Virtual Environm,ent~', Presence:

Teleoperators and Virtual Environments, Volume 3, Number 4, 1994, 255-264.

Robert Grant, Multiverse description and sources, available via URL: ftp:/ /

ftp.hitl.washington.edu/pub /scivw /multiverse/multiverse-1.0.2. tar.Z, April 1993.

Mark Green, "Minimal Reality Toolkit Version 1.2: Programmer's Manual",

Department of Computing Science, University of Alberta, Edmonton, Alberta,

1992.

Mark Green and Lloyd White, "Minimal Reality Toolkit Version 1.4 : Program-
-.

mer's Manual", Department of Computing Science, University of Alberta, Ed-

monton, Alberta, 1995.

Chris Greenhalgh, "An Experimental Implementation of the Spatial Model", Pro­

ceedings of the 6th ERCIM Workshop, Swedish Institute of Computer Science,

Stockholm, Sweden, June 1994.

Olof Hagsand, "SID2 Intelface Specification", Swedish Institute of Computer Sci­

ence, August 1995.

George Hassapis, "High level Petri Net modelling and analysis of VME-based

multiprocessors", Microprocessing and Microprogramming, Volume 36, Number 4,

September 1993.

Yasuaki Honda, Kouichi Matsuda, Jun Rekimoto and Rodger Lea, "Virtual Soci­

ety: Extending the WWW to support a Multi-user Interactive Shared 3D Environ­

ment", Proceedings of the Virtual Reality Modeling Lang1tage (VRML) Symposium

'96, New York, NY, 1996, 109-116.

Philip M. Hubbard, "Interactive Collision Detection", Proceedings of the IEEE

Symposium on Research Frontiers in Virtual Reality, October 1993.

Philip M. Hubbard, "Collision Detection for Interactive Graphics", PhD Thesis,

Department of Computer Science, Brown University, March 1995.

Roger Hubbold, Alan Murta, Adrian West and Toby Howard, "Design Issues

for Virtual Reality Systems", Proceedings of the First Eurographics Workshop on

Virtual Environments, Barcelona, September 1993.

BIBLIOGRAPHY 227

(Hug95]

[Ibe93]

[Ifu193]

[Kan92]

[Kav86]

[Kaz93]

[Koh75]

[Ko180]

[Lee94]

[Lei96]

[Li95]

Charles E. Hughes, J. Michael Moshell, "Shared Virtual

for Education: The ExploreNe.t Experiment" , available via

http://www.cs.ucf.edu/-ExploreNet/papers/VA.Experiment1195.html,

ber 1995.

Worlds

URL:

Novem-

Oliver C. Ibe, Hoon Choi and Kishor S. Trivedi, "Performance Evaluation of

Client-Server Systems", IEEE Transactions on Parallel and Distributed Systems,

Volume 4, Number 11, November 1993.

Roy S. Kalawsky, "The Science of Virtual Reality and Virtual Environments",

Addison-Wesley, Wokingham, 1993.

Krishna Kant, "Introduction to Computer System Performance Evaluation",

McGraw-Hill, New York, 1992.

Krishna M. Kavi, Bill P. Buckles and U. Narayan Bhat, "A Formal Definition

of Data Flow Graph Models", IEEE Transactions on Computers, Volume C-35,

Number 11, November 1986.

Rick Kazman, "Making Waves: On the Design of Architectures for Low-end Dis­

tributed Virtual Environments", Proceedings of the IEEE Virtual Reality Annual

International Symposium 1993 (VRAIS '93), Seattle, Washington, September

1993.

Walter H. Kohler, "A Preliminary Evaluation of the Critical Path Method for

Scheduling Tasks on Multiprocessor Systems", IEEE Transactions on Computers,

Volume C-25, December 1975, 1235-1238.

Bernard Kolman and Robert E. Beck, "Elementary Linear Programming with

Applications", Academic Press, New York, 1980.

Insup Lee and Patrice Bremond-Gregoire, "A Process Algebra Approach to the

Specification and Analysis of Resource-Bound Real-Time Systems", Proceedings

of the IEEE, Special Issue on Real-Time Systems, January 1994.

Jason Leigh, Andrew E. Johnson, Christina A. Vasilakis, Thomas A. DeFanti,

"Multi-perspective Collaborative Design in Persistent Networked Virtual Environ­

ments", Proceedings of the IEEE Virtual Reality Annual International Symposium

1996 (VRAIS '96), Santa Clara, California, March 1996.

Zhiyong Li, Peter H. Mills and John H. Reif, "Models and Resource Metrics for

Parallel and Distributed Computation", Proceedings of the 28th Annual Hawaii

Conference on System Sciences (HICSS-28 Parallel Algorithms Software Technol­

ogy Track), Wailea, Maui, Hawaii, January 1995.

BIBLIOGRAPHY 228

[Loc93]

[Mac95a]

[Mac95b]

[Mac95c]

[Mak90]

[Ma194]

[Man95]

[Mas95]

[Men93]

[Men94]

John Locke, "An Introduction to the Internet Networking Environment and SIM­

NET /DIS", Computer Science Department, Naval Postgraduate School, avail­

able via URL: ftp:/ /sunee.myaterloo.ca/pub/vr/documents/DISlntro.ps, Febru­

ary 1993.' .

Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Donald P. Brutzman,

Paul T. Barham, "Exploiting Reality with Multicast groups: A Network Archi­

tecture for Large-Scale Virtual Environments", IEEE Computg~ Graphics and

Applications, Volume 15, Number 5, September 1995,38-45

Michael R. Macedonia, Michael J. Zyda, "A Taxonomy for Networked Virtual En­

vironments", Proceedings of the 1995 Workshop on Networked Realities, Boston,

MA, October 1995.

Michael R. Macedonia, Donald P. Brutzman, Michael J. Zyda, David R. Pratt,

Paul T. Barham, John Falby, John Locke, "NPSNET: A Multi-Player 3D Virtual

Environment over the Internet", Proceedings of the ACM 1995 Symposium on

Interactive 3D Graphics, Monterey, California, April 1995.

Victor M. Mak and Stephen F. Lundstrom, "Predicting Performance of Parallel

Computations", IEEE Transactions on Parallel and Distributed Systems, Vol­

ume 1, Number 3, July 1990.

A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, F. Bodin, "Performance

Analysis of pC++: A Portable Data-Parallel Programming System for Scal­

able Parallel Computers" , Proceedings of the 8th International Parallel Processing

Symposium (IPPS), Cancun, Mexico, April 1994.

Jon Mandeville, Thomas Furness III, Masahiro Kawahata, Dace Campbell, Paul

Danset, Austin Dahl, Jens Dauner, Jim Davidson, Jon Howell, Kigen Kandie ana·

Paul Schwartz, "GreenSpace: Creating a Distributed Virtual Environment for

Global Applications", Proceedings of the 1995 Workshop on Networked Realities,

Boston, MA, October 1995.

Thomas W. Mastaglio and Robert Callahan, "A Large-Scale Complex Virtual

Enyironment for Team Training", Computer, Volume 28, Number 7, July 1995.

Celso L. Mendes, "Performance Prediction by Trace Transformation" , Proceedings

of the Fifth Brazilian Symposium on Computer Architecture, Florianopolis, Brazil,

September 1993.

Celso L. Mendes and Daniel A. Reed, "Performance Stability and Prediction",

Proceedings of the IEEE Workshop on High Performance Computing (WHPC'94),

March 1994.

BIBLIOGRAPHY 229

[Men95]

[MiI89]

[lvloI89]

[MoI92]

[Mor95]

[Mur94]

[Nyg94]

[OC095]

[Pan95]

[Par92]

[Pau95]

Celso L. Mendes, Jhy-Chun Wang and Daniel A. Reed, "Automatic Performance

Prediction and Scalability Analysis for Data Parallel Programs", Proceedings of

the CRPC/Rice Workshop 01!- Automatic Data Layout and Performance Predic­

tion, Houston, April 1995.

R. Milner, "Communication and Concurrency", Prentice-Hall, Hemel Hempstead,

1989.

Faron Moller and Chris Tofts, "A Temporal Calculus of Communicating Systems" ,

Technical Report ECS-LFCS-89-ID4, Laboratory for Foundations of Computer

Science, Department of Computer Science, University of Edinburgh, December

1989.

Steven Molnar, John Eyles and John Poulton, "P ixelFI ow: High-Speed Rendering

Using Image Composition", Proceedings of SIGGRAPH '92, Chicago, Illinois, July

1992, 231-240.

John Morrison, "The VR-Link Networked Virtual Environment Software Infras­

tructure", Presence: Teleoperators and Virtual Environments, Spring 1995.

Praveen Murthy, "On the Optimal Blocking Factor for Blocked, Non-Overlapped

Schedules", Memo. No. UCB/ERL M94/46, Electronics Research Laboratory, Col­

lege of Engineering, University of California at Berkeley, June 1994.

Erik Nygren, "VETTNet Design and Use", available via URL:

http) /mimsy.mit.edu/VETTnet/vettnet.html, May 1994.

Karl O'Connell, Vinny Cahill, Andrew Condon, Stephen McGerty, Gradimir

Starovic and Brendan Tangney, "The VOID Shell: A Toolkit for the Development

of Distributed Video Games and Virtual Worlds", Proceedings of the Works~o.p.

on Simulation and Interaction in Virtual Environments, July 1995.

Igor Sunday Pandzic, Tolga K. Capin, Nadia Magnenat Thalman and Daniel Thal­

man, "VLNET: A Networked Multimedia 3D Environment with Virtual Humans" ,

Proceedings of Multi-Media Modeling (MMM (95), Singapore, 1995.

Mark Parris, Carl Mueller, Jan Prins, Adam Duggan, Quan Zhou, Erik Erikson,

"A Distributed Implementation of an N-body Virtual World Simulation", Tech­

nical Report TR92-020, Department of Computer Science, University of North

Carolina, Chapel Hill, 1992.

Randy Pausch, Tommy Burnette, A.C. Capehart, Matthew Conway, Dennis Cos­

grove, Rob DeLine, Jim Durbin, Rich Gossweiler, Shuichi Koga and Jeff White,

"A Brief Architectural Overview of Alice, a Rapid Prototyping System for Virtual

Reality", IEEE Computer Graphics and Applications, Volume 15, Number 3, May

1995,8-11.

BIBLIOGRAPHY 230

[pes94]

[P-tg95]

[Pig96]

[pin96]

[poI93]

[Pou91]

[Pra93]

[Reg92)

[Reg93)

[Roe95]

[Sar94]

[Sch96]

[Seg94]

Mark D. Pesce, Peter Kennard and Anthony S. Parisi, "Cyberspace", available

via URL: http://vrml.wired.com/concepts/pesce-www.html, June 1994.

Laurel).t Piguet, Terry Fong, Butler Hine, Phil Hontalas, and Erik Nygren, "VEVI:
-;, ~

A Virtual Reality Tool For Robotic Planetary Exploration" , Proceedings of Virtual

Reality World '95, Munich, Germany, 1995, 263-274.

Laurent Piguet, Butler Hine, Philipp Hontalas, Terrence Fong and

Erik Nygren, "The Virtual Environment Vehicle Interface:-- ~ A Dynamic,

Distributed And Flexible Virtual Environment" , available via URL

ftp:/ / artemis.arc. nasa.gov / papers/imagina. paper. pdf, 1996.

Alexander del Pino, "MPSC - A Model of Distributed Virtual Environments",

Proceedings of the 3rd Eurographics Workshop on Virtual Environments, Monte

Carlo, Monaco, February 1996.

"3SPACE InsideTrak User's Manual", Polhemus Incorporated, Colchester, Ver­

mont, USA, December 1993.

Dick Pountain, "ProVision: The Packaging of Virtual Reality", Byte, Volume 16,

Number 10, October 1991.

David R. Pratt, "A Software Archite.cture for the Construction and Management

of Real-Time Virtual Worlds" ,PhD Thesis, Naval Postgraduate School, Monterey,

California, June 1993.

Matthew Regan and Ronald Pose, "A Low Latency Virtual Reality Display Sys­

tern", Technical Report 92/166, Department of Computer Science, Monash Uni­

versity, Monash, 1992.

Matthew Regan and Ronald Pose, "An interactive graphics display architecture",

Pmceedings of the IEEE Virtual Reality Annual International Symposium 1993

(VRAIS '93), Seattle, 1993.

Bernie Roehl, "Distributed Virtual Reality - An Overview", available via URL:

http://sunee.uwaterloo.carbroehl/distrib.html, June 1995.

Sekhar R. Sarukkai, Jerry Yan and Jacob K. Gotwals, "Normalized Performance

Indices for Message Passing Parallel Programs", Pmceedings of the International

Supercomputing Conference, Manchester, England, June 1994.

Dieter Schmalstieg, Michael Gervautz, Peter Stieglecker, "Optimizing Communi­

cation in Distributed Virtual Environments by Specialized Protocols", Proceed­

ings of the 3rd Eurographics Workshop on Virtual Environments (ed M. Goebel),

Monte Carlo, Monaco, February 1996.

Mark Segal, Kurt Akeley and Chris Frazier, "The OpenGL Graphics System: A

Specification (Version 1.0)", Technical Report, Silicon Graphics Inc., :r-,;Iountain

View, CA, July 1994.

BIBLIOGRAPHY 231

[Sha93]

[Sha95]

[Sin95]

[Sin91]

[Sin96]

[Sno92]

[Sno93]

[Sno94a]

[Sno94b]

[Som93]

[Sri95]

[Sta92]

Chris Shaw and Mark Green, "The MR Toolkit Peers Package and Experiment" ,

Proceedings of the IEEE Virtual Reality Annual International Symposium 1993

(VRAIS '93), Seattle, 1993. _

Chris Shaw, "The MR Toolkit Peer Package" , Department of Computing Science,

University of Alberta, 1995.

Gurminder Singh, Luis Serra, 'Willie Png, Audrey Worg and Hern Ng, "BrickNet:

Sharing Object Behaviours on the Net", Proceedings of the IEEE V'"irtual Real­

ity Annual International Symposium 1995 (VRAIS '95), Research Triangle Park,

North Carolina, March 1995.

Mukesh Singhal and Thomas L. Casavant, "Distributed Co~puting Systems",

Computer, Volume 24, Number 8, August 1991, 12-15.

Sandeep K. Singhal, "Effective Remote Modeling in Large-Scale Distributed Sim­

ulation and Visualization Environments" , PhD Thesis, Department of Computer

Science, Stanford University, August 1996.

Michael Snoswell, "Overview of Cyberterm, a Cyberspace Protocol Imple­

mentation", available via URL ftp://sunsite.unc.edu/pub/academic/computer­

science/virtual-reality/papers/Snoswell.Cyberterm, July 1992.
,"

David N. Snowdon, Adrian J. West and Toby L.J. Howard, "Towards the next

generation of Human-Computer Intetface", Proceedings of Informat-ique '93: In­

terjace to Real and Virtual Worlds, March 1993, 399-408.

Michael Snoswell, "Documents on Cyberterm" , available via URL:

ftp:/ /ftp.adelaide.edu.au/pub/cybertem/ctdocs.zip, April 1994.

David N. Snowdon and Adrian West, "The AVIARY Distributed Virtual Envi­
ronment", Proceedings of the 2nd UK VR-SIG Conference, Theale, Reading, UK,

December 1994, 39-54.

Sukhamoy Som, Roland R. Mielke and John W. Stoughton, "Prediction of Per­

formance and Processor Requirements in Real-Time Data Flow Architectures",

IEEE Transactions on Parallel and Distributed Systems, Volume 4, Number 11,

November 1993.

Sudhir Srinivasan and Bronis R. de Supinski, "Multicasting in DIS: A Unified

Solution", Technical Report CS-95-17, Computer Science Department, University

of Virginia, Charlottesville, March 1995.

Dave Stampe and Bernie Roehl, "REND386 - A 3-D Polygon Rendering Package

for the 386 and 486 : LIBRARY Documentation Version 4.01 - September 1992",

available via URL: ftp:/ /sunee.uwaterloo.ca/pub/rend386/deveI4.zip, September

1992.

BIBLIOGRAPHY 232

[Sta94]

[Str76]

[Sty96]

[Tre82]

(Van93]

[VRM96)

[Wa187]

[Wan94]

[Wan95]

[War95)

[Wat94)

[Wes92]

Dave Stampe, "vr..api.h", available via URL: ftp:/ /psych.toronto.edu/pub/vr-

386/vr..api.h, 1994.

Gilbert Strang, "Linear algel5ra anJi ~ts applications", Academic Press Inc., New

York, 1976.

Martin R. Stytz, "Distributed Virtual Environments", IEEE Computer Graphics

and Applications, Volume 16 Number 3, May 1996.

Philip C. Treleaven, David R. Brownbridge and Richard P. Hopkins, "Data­

Driven and Demand-Driven Computer Architecture", ACM Computing Surveys,

Volume 14, Number 1, March 1982.

George Vanecek Jr. and James Cremer, "Project Isaac: Building Simulations

for Virtual Environments", Technical Report CSD-TR-93-068, Computer Science

Department, Purdue University, November 1993.

"The Virtual Reality Modeling Language Specification - Version 2.0" , ISO /IEC

CD 14772, available via URL: http://webspac-e.sgi.com/moving-worlds/spec/.Au­

gust 1996

David Walker, "Introduction to a Calculus of Communicating Systems", Techni­

cal Report ECS-LFCS-87-22, Laboratory for Foundations of Computer Science,

Department of Computer Science, University of Edinburgh, Ivlarch 1987 ..

Ko-Yang Wang, "Precise Compile-Time Performance Prediction for Superscalar­

Based Computers", Proceedings of the ACM SIGPLAN '94 Conference on Pro­

gramming Language Design and Implementation (PLDI), Orlando, FL, June 1994,

73-84.

Qunjie Wang, Mark Green and Chris Shaw, "EM - an Environment Manager -for

Building Networked Virtual Environments", Proceedings of the IEEE Virtual Re­

ality Annual International Symposium 1995 (VRAIS '95), North Carolina, March

1995.

Robert Warriner, "Re: Collision Detection", Message to VRML discussion list,

available via URL: http://www.eit.com/www.lists/www-vrm1.1995q4/0253.html,

October 1995.

Kevan Watkins, "A Virtual Modelling Environment", Honours Thesis, Computer

Science Department, Rhodes University, November 1994.

A.J. West, T.L.J. Howard, R.J. Hubbold, A.D. Murta, D.N. Snowdon, D.A. But­

ler, "AVIARY - A Generic Virtual Reality Interface for Real Applications", An

invited paper for "Virtual Reality Systems" sponsored by the British Computer

Society, May 1992.

BIBLIOGRAPHY 233

[Wl095]

[\\lu95]

[Yas92]

[You95]

[Zyd93]

Matthias M. vVloka, "Lag in Multiprocessor Virtual Reality", Presence: Teleop­

erators and Virtual Environments, Volume 4, Number 1, vVinter 1995, 50-63.

Jiann-Jlong Wu and Ming Ouhyoung, "A 3D Tracking Experiment. on Latency
"~ ~r

and Its Compensation Methods in Virtual Environment", Proceedings of the ACM

Symposium on User Interface Software and Technology, Pittsburgh, Pennsylvania,

November 1995, 41-50.

Masahiro Yasugi and Akinori Yonezawa, "An Object-Oriented PMalrel Algorithm

for the Newtonian N-Body Problem", Technical Report 92-6, Department of In­

formation Science, University of Tokyo, 1992.

Neil Youngman, "DIS Frequently Asked Questions", available via URL:

http://www.crg.cs.nott.ac.ukrdxl/DIS/dis.faq. October 1995.

Michael J. Zyda, William D. Osborne, James G. Monahan and David R. Pratt,

"NPSNET: Real-Time Vehicle Collisions, Explosions and Terrain Modifications" ,

Journal of Visualization and Computer Animation, Volume 4, Number 1, 1993,

13-24.

Appendix A

Petri Nets and Data Flow Graphs

This chapter contains a brief introduction to Petri Nets and Data Flow Graphs. These constructs

are used in performance analysis techniques considered in Chapter 3.

A~i Petri Nets

This description is drawn from a description of Petri Net based performance modelling given in

[Kan92J.

A Petri Net consists of a 5-tuple (P,T,I, 0, J.,1), where:

P is a set of places

T is a set of transitions

I is a set of input functions, mapping places to transitions

o is a set of output functions, mapping transitions to places

!vI is a set of markings, associating a non-negative integer with each place

Petri Nets are usually represented graphically using circles for places and bars for transitions.

Input functions are given by arcs from circles to bars, output functions by arcs from bars to circles.

Markings are represented by placing small filled circles (tokens) in the places.

The behaviour of Petri Nets is described in terms of firing. When a transition fires, it removes

a token from each place connected to it via an input arc and adds a token to each place connected

to it via an output arc. The transition can only fire if each input place contains at least one token.

Petri Net performance is often given relative the time spent in particular states. The state of

a Petri Net is given by its marking (the number of tokens in each place).

Times can be associated with the transitions to produce a Timed Petri Net. If the firing

times are random variables, then a Stochastic Petri Net (SPN) is produced. In this case, some

simplifying assumptions are often made regarding the distribution of the firing times. Often a

memoryless distribution is chosen, allowing the marking alone to provide an adequate description

of the state of the system.

234

APPENDIX A. PETRI NETS AND DATA FLOW GRAPHS 235

The analysis given in Chapter 3 assumes the use of Generalized Stochastic Petri Nets (GSPN).

These allow both timed and untimed transitions. The firing times are exponentially distributed.

Firing occurs by fir,st ~elaying for the firing time and; if still enabled, removing tokens from the

input places and adding them to the output plac~ in a single instantaneous operation. Firing

rate is allowed to depend on the marking.

States of a GSPN can be tangible (only timed transitions enabled), or vanishing. Vanishing

states occur only momentarily since untimed transitions always fire before timed ones.

Markov processes (and Markov chains) are used in the solution of GSPNs. rTh~ Markovian

pl:operty states that the probability of being in a particular state at any time is independent of

the states occupied previously. A random process is a random variable that is a function of time.

Thus a Markov process is a continuous time random process for which the Markovian property

holds. The discrete time equivalent is called a Markov chain. The state residence time of a Markov

process has an exponential distribution, that for a Markov chain has a geometric distribution.

Solution of a GSPN gives the state probabilities for the tangible states of the Markov process for

the model. The solution process involves the removal of the vanishing states (to reduce complexity),

followed by the solution of the Markov chain embedded at the transition points of the Markov
. ..

process.

A.2 Data Flow Graphs

This description of Data Flow Graphs is based on that given in [Kav86] and [Tre82]:

A Data Flow Graph is a bipartite directed graph whose two types of nodes are called links and

actors.

where

A is a set of actors

L is a set of links

E is a set of edges (E ~ (A x L) U(L x A»

Semantically, the actors can be regarded as processors of information while the links act as

storage points for data items. The arcs joining them can be regarded as channels for the transfer

of data. The Data Flow Graphs in this document do not explicitly show the links, only the tokens

that are stored in them.

The actual interpretation of the data tokens is not relevant for the Data Flow Graphs considered

in this document. Movement of the tokens occurs when actors fire. Firing occurs when the actor

has tokens on all its input links. Firing occurs by removing a token from each input link, delaying

for the firing time of the actor, and then placing a token in each output link.

Appendix B

The use of the Analytical

Simulation tool

This section is intended to provide a description of the use of the Analytical Simulation tool that

was implemented to perform the analyses shown throughout this document. The emphasis is on

describing the capabilities of the prototype system: to show_ the degree to which the analysis can

be automated, as well as to provide a description of the synta.x used in the models presented in

this thesis.

The tool implements both the original Analytical Simulation algorithm, referred to as-flnite­

cycle analysis, as well as the state space extensions to this approach.

B.l Creation of a Model

The various statements that may be used in the description of a system are described in the_

sections following. Each statement is found on a separate line. A pre-processing step occurs

during which some statements are expanded.

Variables can be used as arguments where applicable.

B.1.l Comments

Comments in the file occur on lines starting with / /. Blank lines may also be present.

B.1.2 Variables

Variable names in a model definition are strings containing upper case characters. Surrounding

a variable name ,'lith square brackets means that the value of the variable is substituted. This

is used to distinguish cases where both a variable name, or its value would be valid arguments.

Substitution and evaluation can take place during both pre-processing and model simulation,

depending on the availability of the variable values.

236

APPENDIX B. THE USE OF THE ANALYTICAL SIjV1ULATION TOOL 237

B.lo3 Expressions

Expressions are built of constants, variables and bina~y operators. Precedence is defined through

th-e liberal use of pareRtheses. The operators -availapl.e are:

equal (returns 1 if the arguments are identical, 0 otherwise)

!= not equal (returns 0 if the arguments are identical, 1 otherwise)

> greater than (returns 1 if the left argument is greater than the right, 0 otherwise)

<- less than (returns 1 if the left argument is less than the right, 0 otherwise)

+,-,*,/,% addition, subtraction, multiplication, division and modulus (standard mathematical

operations)

Constants and variables values must be limited to integers for evaluation by most of these

operators to succeed. Only the first two (== and !=) may be successfully applied to strings.

B.-l.4 Analysis control statements

This category of statement usually occurs at the beginning of the model description file and is

used to describe the environment in which the model is analysed, as well as the format of the

output produced after analysis.

B.1.4.1 Generate statement

This statement specifies the type of result required. The statement has the form:

generate arg1 [- [arg2 [arg3JJ

The arguments are labels defined in REPORT statements elsewhere in the model. With only one

argument it produces a list of times at which that report is executed. This is only meaningful when

doing finite-cycle analysis. \Vith the minus symbol included, differences between two sequential

executions of the report are generated. This is useful for producing cycle times (the difference

between the time that a process reaches a certain point, and the time at which it next reaches

that point).

With three parameters, the difference between corresponding occurrences of two different re­

ports is given. The meaning of corresponding occurrences is discussed in the main text in sec­

tion 7.2. This is used for latency calculations.

The variation used for calculating latency also allows an additional argument. This corresponds

to a cut marker, a report marker that prevents any further exploration of the execution paths on

which it occurs. This can be used to limit the exploration of the reachability graph in state space,

simplifying the analysis process, and eliminating paths that do not represent actual flow of data.

Any number of generate statements may be used.

APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL 238

B.1.4.2 Assume statement

The ASSUME statement allows certain assumptions tq be preset for the model. This allows the

state space search to he limited, predefined iestric:tiqns to be specified, or different forms of the

assumptions to be tested. The format is:

assume exp1 > exp2

where each of the expressions consists of a sequence in the following format:

CI VI + C2 V2 •.• Cn Vn where the Ci are numeric constants and the Vi are variable names.

B.1.4.3 Declare statement

This statement is used to identify the variables in a particular process that are to be included in

the state definition. As a rule of thumb, all variables should be declared in this way for the state

space analysis to yield valid results. The format is given below:

declare var1, var2, var3,

B.1.4.4 Define statement

The DEFINE statement sets variable values during the pre-processing stage. This is the only way

to define global variables. These values are only available during the pre-processing stage. The

format is:

define variablename value

B.1.5 Executable statements

B.1.5.1 Process statement

The PROCESS statement is used to start the definition of a process in the model. It also defines the

process name, required for message paSsing purposes. The code following a PROCESS statement

until the next PROCESS statement or the end of the file, and excluding everything contained within

an INIT-ENDINIT pair, is modelled as running within an infinite loop. The format is:

process processname

B.1.5.2 Send statement

The send statement is used to transfer data from one process to another. The format is:

send destinationprocess argTh~ent [time]

If time is not specified then it defaults to zero. The sending process blocks until the receiving

process executes a RECEIVE statement whose source process field matches the name of the sending

process, and whose argument matches the argument of the SEND statement. Both processes then

synchronize for the amount of modelled time given by the time field.

APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL 239

A variation on the SEND statement, named SENDNOTRACE, has the same synta..'(and semantics

but indicates that the message sent is a control message and not a data path to be considered

wIlen calculating latencies.

B.lo5.3 Receive statement

This statement takes the form:

receive sourceprocess argument

- The argument can be a variable name which is instantiated with the value in the argument field

of the SEND statement when synchronization occurs. If it is not a variable, then the argument

of the sending process must match that of the receiving process. The source process can also

be given as a variable. In this case the sender is chosen as the first process (in modelled time)

to attempt communication (provided arguments can match). If more than one source process

matches, then one is chosen non-deterministically. If the source process is given as a variable then

it is instantiated with the name of the sending process when communication occurs. If no process

is currently sending (in modelled time) the receiving process -blocks.

B.1.5.4 SendlfReady statement

This is a variation on the SEND statement which either fails or succeeds non-deterministically. It

uses the same format as the send statement, and the same semantics when it succeeds.vYhen it

fails, no action occurs and execution continues at the statement following the SENDIFREADY.

B.lo5.5 Think statement

This statement delays the process for a period in modelled time. The format is:

think time

B.lo5.6 Report statement

This marks points in the program which are starting or ending points for the calculation of cycle

times and latencies. The format is:

report reportname

B.lo5.7 Assign statement

This is used to assign values to variables. All variables are initially given the value undef The

format is:

assign variable expression

APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL 240

B.lo5.8 If statement

This is a simple form of the IF statement found in most conventional programming languages and

is]Jsed for simple flow control. The format is~

if expression

body

endif

_ The body consists of a sequence of executable statements, excluding the PROCESS statement.

The body is executed if the expression evaluates to a non-zero value.

B.lo5.9 Init statement

The INIT-ENDINIT pair are used to surround portions of code to be executed only once in the life

time of a process. The code is run at the beginning of the first cycle. The format is:

init

body

endinit

The body consists of a sequence of executable statements, excluding the PROCESS statement.

B.1.5.10 Replicate statement

This statement is only available during the pre-processing stage. It duplicates all code between it

and the matching END REPLICATE statement. The number of times this duplication occurs is set

by the value of its argument. For each iteration a hash variable is set to the iteration count, which

ranges from 1 to value. The name of the hash variable is a string of # with a length equal to the

nesting level. The format is:

replicate value

body

endreplicate

The REPLICATE statement acts as a pre-processor version of a FOR loop. It is worth noting

that the body can contain processes.

B.2 Analysis of a model

This section provides a detailed description of the process of analysis of a model. Complete details

are given, as opposed to the examples given in the main body of this text which have had irrelevant

details removed. The various issues involved in constructing a model for efficient analysis are also

mentioned.

APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL 241

B.2.1 Construction of the model

A simple token ring system is chosen as the example 9f the system to be modelled. This system

co-nsists of a number of processes passing a messagEt f:om one to another in a circular fashion. As

an extra constraint, the communication medium allows each process an equal chance of placing

messages on the medium, allocated on a round robin basis. The communication slot is allocated

for at least a period K, independent of whether it is used or not.

The description of the model of this system is shown below:

II simulate a token being passed sequentially from one token process

II to the next via a token controller which allocates slots to each

II process in turn

II let N be the number of token processes

generate havetoken3 -

generate havetoken3 - tokenmark

define N 6

replicate [N]

process token#

declare HAVETOKEN

declare SOMEWHERE

declare SOMETHING

init

if # == 1

assign HAVETOKEN got

endif

end in it

receive SOMEWHERE SOMETHING

if SOMEWHERE == tokencontrol

if HAVETOKEN == got

report tokenmark#

send token[(#Y.N)+l)] token C

assign HAVETOKEN undef

endif

send tokencontrol finished

end if

if SOMETHING == token

assign HAVETOKEN got

report havetoken#

end if

endreplicate

APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL

process token control

replicate [N]

send token# yourturn

think K

receive token# finished

endreplicate

242

The number of processes in the system is set by the variable N, defined in the DEFINE statement.

rn- this case it is set to the value 6, but can be easily changed without having to alter any other

parts of the model.

The token processes are inside a REPLICATE statement whose argument is the variable N. The

suffix is instantiated when the REPLICATE is expanded, generating processes: tokenl, token2,

... , tokenN. Each of the token processes declare three variables, two to hold information about a

communicating process, and the third to determine which process holds the token at any point.

The INIT statement gives the token initially to process tokenl. Based on whether the incoming

message is the token controller allocating a communication slot, or just the token arriving from

another token process, the process either sends the token onward if it holds it, or accepts the

token. 'When the token is passed on it takes time C before· the completion message is sent back

to the tokencontroller, which allows it to allocate the next communication slot.

The token controller process sends a message to each token process in turn, offering it a commu­

nication slot. It then waits a period K before accepting a completion message and allocating the

next slot. These communications are instantaneous (in modelled time) since they are constructs

used to enforce the nature of the model, and not necessarily present in the actual implementation

of such a system.

The technique of assigning the value ttndef to variables simplifies the state space analysis since

duplicates of an earlier state occur much sooner. Using a third value to represent the absence of-a

token would increase the number of possible states that the system could assume. The variables

SOMEWHERE and SOMETHING could also be given the value undef at the end of the token

process to reduce the reachability graph. This optimization does not affect the nature of the model

but can simplify the state space search by a substantial factor.

The placement of REPORT markers needs to be petformed with a view to the required results.

The first GENERATE statement is used to calculate cycle times for one of the token processes.

Since the system is (almost) symmetrical, any token process can be chosen. The value required is

the inter-token arrival time, hence the placing of the havetoken markers. The actual body of the

process repeats more often, each time a communication slot is allocated, or a token arrives.

The second GENERATE statement calculates the latency for a message from process tokenl to

tokenS. This gives the time taken for a token to pass from the one process to the other.

APPENDIX B. THE USE OF THE ANALYTICAL SIlvlULATION TOOL

B.2.2 Analysis of the model

The model after it has gone through the pre-processi~g stage is shown below, for N = 3:

Process tokenl

[3]

[4]

[5]

[6]

*** Initialization section

If 1

Assign HAVETOKEN

End if

1

got

[7] ***End of Initialization

[8] Receive SOMEWHERE SOMETHING

[9]

[10]

[11]

[12]

[13]

[14]

[15]

If SOMEWHERE == tokencontrol

If HAVETOKEN -- got

Report tokerunarkl

Send token2 token (1 C)

Assign HAVETOKEN undef

End if

Send tokencontrol finished

[16] Endif

[17]

[18]

[19]

[20]

If SOMETHING

Assign HAVETOKEN

Report havetokenl

End if

Process token2

got

[3J *** Initialization section

[4J

[5]

If 2

Assign HAVETOKEN

[6J Endif

1

got

[7J *** End of Initialization

[8J Receive SOMEWHERE SOMETHING

token

[9J If SOMEWHERE == token control

[10J If HAVETOKEN got

[llJ Report tokerunark2

[12J Send token3 token (1 C)

[13J Assign HAVETOKEN undef

[14] End if

[15J Send tokencontrol finished

[16] Endif

[17]

[18]

If SOMETHING

Assign HAVETOKEN

[19J Report havetoken2

[20J Endif

got

token

243

APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL

Process token3

[3J *** Initialization section

[4J

[5J

If 3

Assign HAVETOKEN

[6J End if

1-

got

[7J *** End of Initialization

[8J Receive SOMEWHERE SOMETHING

[9J If

[10J If

SOMEWHERE ==
HAVETOKEN

tokencontrol

got

[11J Report tokenmark3

[12J Send token1 token (1 C)

[13J Assign HAVETOKEN undef

[14J End if

[15J

[16J

[17]

[18J

Send

End if

If

tokencontrol finished

SOMETHING

Assign HAVETOKEN got

[19J Report havetoken3

[20J Endif

Process tokencontrol

[OJ Send token1 yourturn

[1J Think K

[2] Receive token1 finished

[3] Send token2 your turn

[4J Think K

[5J Receive token2 finished

[6] Send token3 yourturn

[7] Think K

[8J Receive token3 finished

Dimension of state space: 13

token

244

The last line shows the dimension of state space: three token processes, three variables in three

token processes and the token controller process. For finite cycle analysis, limited to at most ten

cycles of any process, the output produced is shown below:

Trace 1: Program with assumptions:

Example: C

1 C >
1000 K = 500

1 K

Change in havetoken3 3 C (4)

havetoken3 - tokenmark1 2 C (5)

APPENDIX B. THE USE OF THE ANALYTICAL SIAfULATION TOOL

1

Trace number 1: C =. 1000.00 K = 500.00
token
token
tokenl

Trace number 2: K = 1000.00 C = 500.00
token
token
tokenl
tokenconrro

~~~ __ i--L~~~~~~-L~~~~ __ L-~~~ 

Figure B.1: Trace of process activity for the three process token passing system 

Trace 2: Program with assumptions: 

Example: 

1 K 

K = 1000 C = 500 

> 1 C 

Change in havetoken3 3 K (4) 

havetoken3 - tokenmark1 1 C + 1 K 

havetoken3 - tokenmark1 1 K + 1 C (4) 

245 

The two cases resulting from the single assumption are shown, with an example of the values 

of K and C which would satisfy each constraint region. The output specified by the generate. 

statements is also given, the values in parentheses after each result is the number of times that 

the particular result occurs. Thus four token cycles occurred, and five tokens could be traced from 

tokenl to token3. 

The program also generates a graphical trace of the system for this interval, see Figure B.1, 

for verifying the model. This view is also useful for understanding unexpected performance char­

acteristics. 

A state space analysis is performed to guarantee that all performance characteristics of a 

particular model are shown. The same input data is used for this analysis. A number of output 

files are produced from this analysis, depicting the state space at various points of the analysis. 

The most useful is indubitably the final result which in this case consists of the file shown below: 

0: --1 K > 1 C 

----Cycle havetoken3 [3 K(1) -> 3 K(1)] I 
Delay tokenmarkl:havetoken3 [1 K + 1 C(l) -> 4 K + 1 C(l)] 



APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL 246 

1: --1 e > 1 K 

----Cycle havetoken3 [3 CO) -> 3 eel)] I 
Delay ~okenmarkl:havetoken3 [2 eei) -> 5 Cel)] 

The results given are the minimum and maximum values. The format is the cost for a sequence 

of values followed by the sequence length in parentheses. The value per cycle can be obtained 

by taking the total sequence cost and dividing by the sequence length. The large upper limit 

on latency is due to the presence of a second message path in the system: A'lIlessage can go 

from tokenl to token3 via the token passing SEND, or through the messages passed between token 

processes and the tokencontrol process. The path of interest is the former, corresponding to the 

lower bound on the results. 

To determine the dependency on N, the results for different values of N are combined: 

I N I Cycle havetokenl I Delay tokenmarkl:havetokenl I 
2 

2K if K 2:: C K+C if K 2:: C 

2C ifC 2:: K 2C if C 2:: K 

3 
3K if K 2:: C 2K+C jf K 2:: C 

3C ifC 2:: K 3C ifC >K 

4K if K 2:: C 
4 

3K+C_ ifK> C 

4C ifC>K 4C if C 2:: K 

5 
5K if K 2:: C 4K+C if K 2:: C 

5C if C 2:: K 5C if C 2:: K 

6 
6K ifI( > C 5K+C if K 2:: C 

6C ifC > K 6C ifC > K 

7 
7K if K 2:: C 6K+C if K 2:: C 

7C ifC 2:: K 7C if C 2:: K 

The latency measured above is that for a complete traversal of the ring, since the process­

tokenS used previously is not present for all values of N. Thus the results for an arbitrary value 

of N-are: 

K>C: 

Cycle Time: NK 

Latency: (N-l)K+C 

C>K: 

Cycle Time: NC 

Latency: NC 

Other variations can be explored easily. For example the token might not be propagating in 

the same direction as the communication slots. Changing token control to reverse the order as 



APPENDIX B. THE USE OF THE ANALYTICAL SIMULATION TOOL 

follows: 

process tokencontrol 

replicate [N] 

send token[(N+l)-#] your turn 

think K 

receive token[(N+l)-#] finished 

endreplicate 

gives the following result for the N = 3 case: 

0: --1 K > 1 C 

----Cycle havetokenl [6 K(l) -> 6 K(1)] I 
Delay tokenmarkl:havetokenl [4 K + 1 C(l) -> 10 K + 1 C(l)] 

1: --1 C > 1 K 

----Cycle havetokenl [3 K + 3 C(1) -> 3 K + 3 C(l)] I 
Delay tokenmarkl:havetokenl [3 C + 2 K(l) -> 6 C + 5 K(l)] 

247 

This shows the change in performance for a token ring trying to pass information the "wrong" 

way. 



Appendix C 

Translation of Modelling 

Language into CCS 

This appendix describes the translation of models specified for use with the Analytical Simulation 

tool into CCS, Milner's Calculus of Communicating Systems [MiI89]. This transformation has a 

number of benefits. It allows the models used for performance analysis to be translated easily to a 

system which allows additional properties to be provelJ.. CCS also has a well defined semantics, and 

the translation process defines the semantics of the constructs used in the Analytical Simulation 

models (Given with rather less precision in Appendix B). ' 

This section starts by giving a brief description of CCS and the extensions involved in dealing 

",ith time and variables. The translation process is then described, followed by a simple example in 

which a semaphore construct used in many previous models is transformed into a CCS specification 

used to provide exclusive access to critical regions. 

C.l CCS 

The following simple introduction to CCS is based on that given in [WaI87] and [Fen96]. 

Processes contain ports for communicating, these ports occur in complementary pairs consisting 

of an input port and an output port. The same label is used for both the input and output ports 

of a pair, the latter being distinguished by being marked with an overbar. The agent expressions, 

E, in the language are defined by the following BNF: 

E .. - 0 

A 

E\K 

(E) 

(t.E 

248 



APPENDIX C. TRANSLATION OF MODELLING LANGUAGE INTO CCS 249 

-f + f, 

if b then f else f 

The Nil agent, 0, describes a process that performs no actions. The other agent constants, 

represented by A above, require definitions of the form: A d;j E. Prefixing an e;:cprt;ssion with a 

port label indicates that communication must occur on that port before any actions in the rest of 

th,.e expression can occur. Restricting an agent E to a set of labels K removes the ability of the 

agent to communicate on a port contained in K. Summation of two expressions, E + F, allows 

the combined agent to undertake actions from either of the two expressions. Composition of two 

agents, ElF allows the two to run in parallel. 

A rigorous definition of the operational semantics of CCS is given below. The format of the 

rules given specifies the hypotheses above the bar, and the conclusion below. Additional conditions 

are given in brackets to the right . 

. Act--,,­
CL.E-tE 

Sum E~E' 
1 E+F~E' 

Com E~E' 
1 EIF~E'IF 

Res E~E' (a IT. d K) 
E\K~E'\K ' l' 

De! E~E' (A d;j E) 
lA~E' 

Cood E~E' (btrue) 
1 if bthenEelseF~E 

Com F~F' 
2 EIF~EIF' 

De! E~E' (A d;j E') 
2 E..':,A 

Cond2 F~F'" , (bfalse) 
. ifbthenEelseF-tF 

lIT , .. 
Com E-tE" F-tF ' 

3 EIF':'E'IF' 

The synta..x E ~ E' may be read as E performs action a and becomes E'. A state transition 

occurring on a communication between two agents is written as a T action. The rules above define 

the semantics of the prefix, summation, composition, restriction, constant definition, conditional 

and brackets respectively. 

To effectively translate the timing information, an extension to CCS is required. The introduc­

tion of a delay construct produces a calculus known as the Temporal Calculus of Communicating 

Systems (TCCS) [MoI89]. This includes the delay operation and an extra choice (summation) 

construct. The construction (t).E represents a process that behaves as E after t units of time. 

The summation as used above, E + F, can behave as E or F, the choice being made at the time 

ofthe first action and is referred to as strong choice. The weak choice operator, as used in E ® F, 

can behave as E or F, the choice being made at the time of the first action or at a point where 



APPENDIX C. TRANSLATION OF MODELLING LANGUAGE INTO CCS 250 

only one process may continue to delay. The semantics for the two summation operators are as 

for the summation operator in CCS. 

_ The time delay se~antics, given below, are dependent on the function I·I
T 

which giyes the 

ma.ximum time delay before a computation must o~cur and is defined as follows: 

10lT = 0 

IAIT = 0 

la.EIT = 0 

l(t).EIT t+ IEIT 
IEEBFIT = max(IEIT ' IFIT) 
IE+FIT = min(IEIT ' IFIT) 

IEIFIT = min(IEIT , IFIT) 
IE\aIT = IEIT 

The time delay semantics are then: 

Dell • 
(s+t).Ey(t).E 

t , t , 

StrongSum EYE, FyF 
E+FyE +F' 

t , 

WeakSuml EYf (IFI < t) 
E(j}FyE' T 

tIt , 
Com EyE FyF 

EIF~E'IF' 

t , 

Res EyE 
E\K~E'\K 

Del2 t 

(t).EyE 

t , 

WeakSum2 Fy; (lEI < t) 
E(j}FyF' T 

Extensions to CCS to incorporate value passing using variables are described in [Fen96J. The 

value-passing calculus involves only the relabelling of processes to convert it back to CCS, and so 

the semantics above still hold. 

C.2 Translation of Analytical Simulation Modelling Lan­

guage into CCS 

The transformations given apply only to the constructs present after the preprocessing stage of the 

Analytical Simulation process, thus limiting the range of statements that need to be translated. 

The problem of defining suitable restriction sets is not addressed in detail; it is assumed that all 

labels are unique within the system, and restricted so as not to be visible outside the translated 

model. 



APPENDIX C. TRANSLATION OF MODELLING LANGUAGE INTO CCS 251 

C.2.1 Process 

Each model consists of a number of processes running .concurrently, each containing a sequence of 

statements that is repeated in an infinite loop. Th'ts.in CCS: 

Model = (Processl I Process2 I .,. I Processn ) 

and 

where fi is a sequence constructed by translating the sequence of statements in the ith process as 

specified below. 

Each variable in a process is defined by the following definition: 

Variable variable( undef) 

variable(x) = variable. assign(y).var(y) + variable. read(x).var(x) 

where it is assumed that Variable and variable are replaced -by suitably unique descriptors. 

C.2.2 Assign 

The ASSIGN statement of the form 

assign variable value 

translates into the following sequence: 

variable. assign(value) 

C.2.3 Think 

The think statement translates directly into a delay. Thus 

think t 

translates to: 

(t) 

C.2.4 Send and Receive 

The RECEIVE statement provides different functionality depending on its syntax. It can either 

receive a message from a specific process, or select one non-deterministically from a number of 

processes. Variables can be involved in the operation, by both the sending and receiving process. 

These can be found in the field specifying the second process, or as the datum to be transferred 

during the communication. 



APPENDIX C. TRANSLATION OF MODELLING LANGUAGE INTO CCS 252 

The SEND statement can be translated for the different cases as shown below. The statements: 

translate to 

send processname constant commtime 

send processname variable commtime 

send procvariable constant commtime 

send procvariable variable commtime 

processname( sourceprocess, constant). (commtime). sourceprocesss 

- variable. read(x).jJi'ocessname(sourceprocess, x). (commtime).sourceprocess 

procvariable. read( v ).v(sourceprocess, constant). ( commtime).sourceprocess 

procvariable. read(v).variable • read(x).v(sourceprocess, x). (commtime).sourceprocess 

respectively. The variables x and v must be replaced by suitably unique local variable identifiers. 

The name of the process containing the SEND replaces the identifier sourceprocess. 

The receive operation translates similarly. 

translate to 

receive processname constant 

receive processname variable 

receive [procvariable] constant 

receive [procvariable] variable 

receive procvariable constant 

receive procvariable variable 

destinpr"ocess(processname, constant).processname 

destinprocess(processname, x).variable. assign(x).pr"ocessname 

procvariable. read(v).destinprocess(v, constant).v 

procvariable. read(v).destinprocess(v,x).variable. assign(x).v 

destinprocess(v,constant).procvariable. assign(v).v 

destinprocess(v, x).procvariable. assign(v).variable. assign(x).v 

respectively. The last two cases correspond to the situation where the source process is a variable 

and where the RECEIVE is performed non-deterministically. 

The use of two messages ensures that both processes must block for the required length of 

time. A simpler form leaving out the final step can be used should the communication time be 

zero. 

C.2.5 SendlfReady 

This construct either performs a send or it does not. If a is the translation of the corresponding 

form of the send statement, and f is the translation of the remainder of the statements in the 

process, then the required TCCS for this construct is: 



APPENDIX C. TRANSLATION OF j\;IODELLING LANGUAGE INTO CCS 

C.2.6 If 

This statement translates using the equivalent constrlJ.ct under CCS. Given the statement: 

ifb 

body 

end if 

253 

let j3 be the translation of the body, and € be the translation of the remainder of the statements 
r- ~ 

in the process. The translation of the IF statement is: 

if b then j3.€ else € 

If evaluation of the co~dition, b, requires values of variables then read actions may need to be 

issued before the translation of the IF statement to retrieve the values. 

C.3 Restrictions on concurrent access 

This section shows the effect of the translation procedure applied to a simple sample system, 

demonstrating mutual exclusion. The model for Analytical Simulation is given below: 

process p1 

think A 

send mutex start 

think B 

send mutex stop 

process p2 

think C 

send mutex start 

think D 

send mutex stop 

process mutex 

receive ANY start 

receive [ANY] stop 

The translation using the rules above is: 

Program 

PI 

P2 

Mutex 

ANY 

Any(z) 

dy 

d!l 

dy 

dy 

d!l 

dy 

(PI I P2 1 Mutex) 

(a).mutex(PI, start).(O).PI.(b).mutex(pl, stop).(O),Pl,P1 

(c).mutex(p2' start).(O).P2. (d).mutex(p.2' stop).(O),P2,P2 

mutex(x, start).any. assign(x).x.any. read(y).mutex(y, stop).y.Mutex 

Any (undef) 

any. assign(w).Any(w) + any. read(z).Any(z) 



APPENDIX C. TRANSLATION OF MODELLING LANGUAGE INTO CCS 254 

Simplifying, by removing the extra synchronizations which are unnecessary due to the zero 

communication time gives: 

Program 

PI 

P2 

Mutex 

ANY 

Any(z) 

d~ 

d~ 

d~ 

d~ 

d~ 

d~ 

(PI I P2 1 Mutex) 

(a).mutex(Pl, start). (b).mutex(P1 , stop). PI 

(c).mutex(pz, start).(d).m:uteX(pz, stop).P2 

mutex(x, start).any. assign(x).any. read(y).mutex(y, stop).Mutex 

Any (undef) 

any. assign(w).Any(w) + any. read(z).Any(z) 

By examining the specification above, one can see that the variable is assigned a value which 

is then immediately read from it. The variable is not used anywhere else, and can be removed, 

leading to a specification closely resembling that given as an example of a mutual exclusion system 

in (Fen96] and which is reproduced below: 

Mx d~ (PI I P2 1 Sem)\{get, put} 

PI d~ get .Cl .put .P! 

P2 
d~ get.C2.put.P2 

Sem d!l get.put.Sem 


	BANGAY SHAUN D TR 97-30-001
	BANGAY SHAUN D TR 97-30-002
	BANGAY SHAUN D TR 97-30-003

